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Summary 

The teleost family Cichlidae (Teleostei: Percomorphaceae), comprising almost two thousand 

described species, clearly ranks among the largest fish families. Their outstanding 

morphological, behavioral and ecological diversity and their propensity to generate adaptive 

radiations made cichlids prime model systems in various fields of biology. Consequently, 

tremendous efforts have been devoted into the reconstruction of their evolutionary history, 

albeit with yet partial success. The relationships between major lineages of the megadiverse 

East African cichlid radiation (EAR) as well as the precise reconstruction of their evolutionary 

time line remain still hotly debated. This apparent intractability can be partially attributed to 

their complex evolutionary history, which includes phases of ancient hybridization leading to 

massive introgression, and to the rapid origin of multiple major lineages. The reconstruction of 

the spatio-temporal scene that enabled the evolutionary success of African austrotilapiine 

cichlids is further hampered by the yet unsettled age of the origin of the family Cichlidae, which 

is due to the paucity of suitable calibration points.  

This dissertation focuses on the evolutionary history of African austrotilapiine cichlids 

(Pseudocrenilabrinae), with particular attention to the riverine haplochromine lineages from 

Southern-Central Africa. In contrast to the famous EAR of the African Great Lakes, their 

riverine precursor lineages have been considerably less well studied, which applies both to their 

phylogenetic relationships as well as to their systematics and taxonomy.  

The first section of this thesis concentrates on the classification and taxonomy of several 

riverine cichlid lineages endemic to the Upper Congo drainage as well as on selected taxa of 

neighbouring Lake Tanganyika (chapters 1 – 3). In total, eight new species and two new genera 

were described including one ancient member of the EAR, a Hemibates species from Lake 

Tanganyika. Further five species of the rheophilic genus Orthochromis are described from 

isolated rivers from the southeastern Democratic Republic of the Congo (DRC) and Zambia, 

and finally two new species belonging to two new genera Lufubuchromis and Palaeoplex. The 

latter are endemic to two neighbouring areas in northeastern Zambia. These descriptions 

represent an important contribution to the knowledge on the still underexplored cichlid diversity 

of the Katanga-Chambeshi region (see discussion).  

The second section provides new insights into the complex phylogenetic history of African 

cichlids related to the EAR. They are analyzed and presented in the geomorphological context 

of the palaeo-drainage evolution of the East African Rift and tectonically related areas (chapters 
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4 – 5 & discussion). First, new divergence age estimates were obtained for the phylogeny of 

the family Cichlidae and particularly for austrotilapiine Pseudocrenilabrinae. These are based 

on an extensive mitogenomic data set with DNA sequences of ten protein coding genes from 

180 cichlid species. The corresponding molecular clock analyses were conservatively 

constrained by carefully selected calibration points including six fossils and one geological 

event. The divergence of the monophyletic African Pseudocrenilabrinae and American 

Cichlinae was dated to the Late Cretaceous, thus tentatively supporting the “Marine Dispersal 

Hypothesis” and thus contradicting a strict Gondwana-break up scenario for the origin of the 

two continental cichlid radiations. In the same analyses the origin of the EAR was dated to as 

early as of Late Eocene/Early Oligocene age, and more importantly, the divergence ages of 

multiple endemic Lake Tanganyika cichlid tribes were firmly estimated to predate the formation 

of extant Lake Tanganyika basin itself. This result supports the recently suggested “Melting-

pot Tanganyika hypothesis”, which hypothesized Lake Tanganyika to be a comparatively 

young reservoir of lineages partially originating from hybridization of more ancient precursor 

lineages.  

Finally, a refined and comprehensive phylogenetic hypothesis based on a comprehensive 

genomic nuclear DNA (ddRAD) dataset is provided for all major australotilapiine cichlid 

lineages related to the EAR. This massive dataset not only includes representatives of all major 

lacustrine tribes and lineages but particularly all potential riverine precursor lineages, altogether 

206 specimens from 160 species. This dataset, in combination with a further increased taxon-

sampling of the mitogenomic dataset, now with about 330 cichlid species, was used to infer 

candidate ancient hybridization events among australotilapiines lineages that may have 

contributed to the complex network-like evolutionary history and success of the EAR. This was 

done applying statistical methods previously applied to reconstruct the equally complex human 

phylogenetic history, i.e. the so-called D-statistics or the genomic evaluation of cyto-nuclear 

discordances. Apart from many previously reported candidate cases of ancient hybridization, 

numerous new ones were detected especially within major haplochromine lineages. The 

analysis of these results in the light of recent tectonic re-arrangements in the region strongly 

suggest that hybridization has played an even more important role in shaping the evolutionary 

history of African cichlids than already presumed.  

An important methodogical result of the comparative mitogenomic and nuclear genomic 

molecular clock analyses contrasts with previous assumptions, i.e. surprisingly divergence time 
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estimates based on mitochondrial and nuclear (ddRAD) data emerged as largely comparable 

across austrotilapiine cichlids and Neogene timescales. 

Zusammenfassung 

Die Knochenfischfamilie Cichlidae gehört mit fast zweitausend beschriebenen Arten eindeutig 

zu den größten Fischfamilien. Ihre außergewöhnliche morphologische, verhaltensbiologische 

und ökologische Vielfalt, als auch ihre Tendenz adaptive Radiation hervorzubringen, machte 

Buntbarsche zu erstklassigen Modelorganismen für verschiedenste biologische 

Forschungsfelder. Trotz der großen Bemühungen um die Rekonstruktion der evolutionären 

Entwicklungsgeschichte der Buntbarsche ist diese bis heute nicht vollständig verstanden. Dabei 

werden nicht nur die Verwandtschaftsverhältnisse zwischen den Haupt-Entwicklungslinien der 

sogenannten „East African cichlid radiation (EAR)“, sondern auch der genaue zeitliche Ablauf 

der Evolutionsgeschichte dieser hochdiversen Buntbarschgruppe kontrovers diskutiert. Die 

Rekonstruktion der räumlich-zeitlichen Prozesse, die den evolutionären Erfolg der 

afrikanischen austrotilapiinen Buntbarsche ermöglichten, wird auch durch das noch immer 

ungeklärte Entstehungsalter sowie durch den bisher nicht präzisierten zeitlichen Ursprung der 

Familie Cichlidae erschwert. Der Grund dafür ist teilweise auf den Mangel geeigneter 

Kalibrierungspunkte für entsprechende Rekonstruktionen zurückzuführen. 

Die vorgelegte Dissertation beschäftigt sich primär mit der Evolutionsgeschichte afrikanischer 

austrotilapiiner Buntbarsche mit einem besonderem Fokus auf die fluviatilen haplochrominen 

Buntbarsch-Linien des südlichen Zentralafrikas. Im Gegensatz zu den berühmten 

Entwicklungslinien der EAR in den Grabenbruchseen Ostafrikas, wurden den fluviatilen Linien 

der EAR und ihrer Vorläuferlinien bedeutend weniger Beachtung geschenkt. Dies betrifft 

sowohl die Erforschung der phylogenetischen Verwandtschaftsverhältnisse, als auch ihre 

Systematik und Taxonomie.  

Der erste Abschnitt dieser Dissertation befasst sich daher mit der systematischen Einordnung 

und der Taxonomie mehrerer fluviatiler Buntbarschlinien, allesamt Endemiten des oberen 

Einzugsgebiets des Kongo, als auch ausgewählter Taxa aus dem benachbarten Tanganjikasee 

(Kapitel 1 – 3). Insgesamt wurden acht neue Arten sowie zwei neue Gattungen beschrieben. 

Darunter eine neue Hemibates Art aus dem Tanganjikasee, die einer alten Linie (Tribus) der 

EAR angehört. Außerdem wurden fünf Arten der rheophilen Gattung Orthochromis 
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beschrieben, die in verschiedenen isolierten Flusssystemen Sambias und der südöstlichen 

Demokratischen Republik Kongo (DRC) vorkommen. Weiter wurden zwei neue Arten 

beschrieben, die jeweils ebenfalls zwei neu aufgestellten Gattungen Lufubuchromis und 

Palaeoplex angehören. Diese Beschreibungen stellen einen wichtigen Beitrag zur Erfassung 

der bis heute wenig erforschten Diversität der Buntbarsche der Katanga-Chambeshi Region dar 

(siehe Diskussion). 

Der zweite Abschnitt liefert neue Erkenntnisse über die komplexen phylogenetischen 

Zusammenhänge der afrikanischen Buntbarsche aus der Verwandtschaftsgruppe der EAR. 

Diese wurden im Kontext der Entwicklung der Paläo-Flusssysteme des ostafrikanischen 

Grabenbruchs sowie tektonisch angrenzender Gebiete analysiert und präsentiert (Kapitel 4 – 5 

& Diskussion). Dabei wurden zuerst neue Altersabschätzungen für die Phylogenie der 

Buntbarsche und insbesondere der austrotilapiiner Pseudocrenilabrinae berechnet. Diese 

basieren auf einem umfangreichen mito-genomischen Datensatz, der DNS Sequenzen von zehn 

proteincodierenden Genen von 180 Buntbarscharten umfasst. Die „Molekulare Uhr“ der 

korrespondierenden altersabschätzenden Analysen wurde dabei mittels vorsichtig ausgewählter 

Kalibrierungspunkte kalibriert, darunter sechs Fossilien sowie ein geologisches Ereignis. Dabei 

wurde das Divergenzereignis zwischen den jeweils monophyletischen afrikanischen 

Pseudocrenilabrinae sowie der amerikanischen Cichlinae als in der Oberkreide liegend datiert. 

Dies spricht zumindest vorläufig für die sogenannte „Marine Dispersal Hypothesis“ und 

widerspricht somit der Annahme, dass die Divergenz der beiden kontinentalen 

Buntbarschradiationen direkt auf dem Auseinanderbrechen von Gondwana basiert. In der 

gleichen Analyse wurde der Ursprung der EAR in das späte Eozän bis frühes Oligozän datiert. 

Darüber hinaus wurde das Divergenzalter mehrerer im Tanganjikasee endemischer Triben als 

deutlich älter als die Entstehung des rezenten Tanganjikasee-Beckens selbst abgeschätzt. Dies 

unterstützt die vor kurzem vorgeschlagene „Melting-pot Tanganyika“-Hypothese, die 

formuliert, dass der Tanganjikasee ein verhältnismäßig junges Reservoir für verschiedene 

evolutionär alte Linien sowie Linien, die aus Hybridisierungen ebendieser hervorgegangen sind 

darstellt.  

Des Weiteren wurde basierend auf einem umfangreichen kerngenomischen DNS (ddRAD) 

Datensatz eine überarbeitete und umfassende Phylogenie der australotilapiinen Buntbarsche 

erstellt. Der Datensatz bestand aus 206 Individuen, die 160 Arten zugeordnet werden, und 

enthielt dabei nicht nur Vertreter aller lakustrischen Triben und Linien der EAR, sondern auch 
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Vertreter aller potentieller Vorgängerlinien aus den Flüssen. In Kombination mit einem noch 

weiter vergrößerten mitochondrialen Datensatz, der etwa 330 Buntbarscharten berücksichtige, 

wurde der kerngenomische Datensatz genutzt um potentielle alte Hybridisations-Ereignisse 

zwischen den australotilapiinen Linien zu detektieren. Diese könnten möglicherweise nicht nur 

den evolutionären Erfolg der EAR erklären, sondern auch ihre komplexen, teilweise retikulären 

Verwandtschaftsverhältnisse. In dieser Teilstudie wurden vor allem statistische Analysen 

durchgeführt, die kürzlich zur Analyse der ebenfalls hochkomplexen Evolutionsgeschichte des 

Menschen zum Einsatz gekommen waren, z.B. die so genannte „D-statistics“ oder die 

genomische Auswertung von cyto-nuklearen Diskordanzen. Neben vielen bereits schon früher 

dokumentierten potentiellen alten Hybridisations-Ereignissen konnten dabei auch zahlreiche 

neue detektiert werden, vor allem zwischen und innerhalb der Hauptlinien des Tribus 

Haplochromini. Die Analyse dieser Ergebnisse im Kontext der jüngeren tektonischen 

Umlagerungen in der Region zeigt deutlich, dass der Hybridisierung als Evolutionsfaktor eine 

noch wichtigere Rolle in der Evolutionsgeschichte der afrikanischen Buntbarsche zukommt als 

bisher angenommen.  

Ein wichtiges methodisches Ergebnis resultierte aus dem Vergleich altersabschätzender 

Analysen, die entweder auf mitochondrialen Daten oder auf kerngenomischen Daten basierten. 

Entgegen früherer Annahmen, waren die korrespondierenden Altersabschätzungen der beiden 

Analysen für die austrotilapiinen Buntbarsche (Zeitraum: Neogen) erstaunlicherweise 

weitgehend miteinander vergleichbar. 
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Introduction 

The family Cichlidae 

Famous for their outstanding morphological, behavioral and ecological diversity and 

specializations, cichlids (family: Cichlidae) represent one of the most species-rich vertebrate 

families with about 1726 valid species and a total of 3000 estimated species (Fricke et al. 2020; 

Kocher 2004). Within the ray-finned fishes (Actinopterygii), cichlids are placed together with 

the marine convict blennies (family: Pholichdichthyidae) in the recently introduced order 

Cichliformes within the diverse percomorph clade Ovalentaria (Alfaro et al. 2018; Betancur-R 

et al. 2013; Wainwright et al. 2012). Currently, four cichlid subfamilies are recognized (Fricke 

et al. 2020; Sparks and Smith 2004): the Etroplinae (Indian subcontinent & Madagascar; 16 

valid species), the Ptychochrominae (Madagascar; 16 valid species), the Cichlinae (South & 

Central Amerika; 568 valid species) and the diverse Pseudocrenilabrinae (Africa, Middle East, 

Iran; 1126 valid species). 

Figure 1: Map roughly showing the distribution of the four cichlid subfamilies Cichlinae, 
Pseudocrenilabrinae, Ptychochrominae (co-occurring with the Etroplinae in the North and 
East of Madagascar) and Etroplinae; based on (Matschiner 2019; Sparks and Smith 2004). 
Depicted cichlids are clockwise from top center: Oreochromis niloticus (Linnaeus 1758), photo: 
F.D.B. Schedel; Etroplus suratensis (Bloch 1790), photo: F.D.B. Schedel; Paratilapia cf. polleni
Bleeker 1868, photo: A. Indermaur; Teleogramma cf. depressa Roberts & Stewart 1976, photo:
SNSB-ZSM Inga 2013 expedition; and Symphysodon aequifasciatus Pellegrin 1904, photo:
F.D.B. Schedel. Base map was obtained from Natural Earth (www.naturalearthdata.com).
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Although cichlids exhibit a wide range of body shapes (from highly elongated to “typical perch 

like” to strongly laterally compressed, see Figure 1) and body sizes (from approximately 25 

mm up to 1 meter length), cichlids are easily recognized by several external morphological 

features. For instance, cichlids are characterized by an interrupted lateral line (except for the 

genera Gobiocichla Kanazawa 1951 and Teleogramma Boulenger 1899 with uninterrupted 

lateral lines), a single nostril on each side on their snout (versus two nostrils in most other teleost 

fish families) and by the division of the dorsal and anal fins into a spiny and soft-rayed portion 

(Barlow 2000; Kullander 2003; Nelson et al. 2016). All cichlids display uniparental or 

biparental parental care, and feature various mating systems, e.g. monogamous, polygamous or 

agamous. Their breeding strategies range from open substrate brooders, cave brooders, 

ovophilic or larvophilic mouthbrooders, and even complex cooperative breeding systems have 

been described (Barlow 2000; Goodwin et al. 1998; Klett and Meyer 2002; Sefc 2011; Wong 

and Balshine 2011).  

Likewise, cichlids occupied various trophic niches and evolved countless feeding 

specializations including, for example: detritivores, herbivores, planktivores, molluscivores, 

piscivores, paedophages and lepidophages (Albertson et al. 1999; Konings 2019). Their 

extreme plasticity and adaptability has been attributed to another cichlid key character, the 

cichlid pharyngeal jaw apparatus involving the fusion of lower pharyngeal jaws. This 

anatomical feature which was hypothesized to allow for the functional decoupling of the food 

acquisition by the oral jaw and food processing starting with pharyngeal jaw movements (Liem 

1973). The evolutionary success of cichlids, especially those of the East African cichlids 

radiations, was further postulated to be the result of a combination of further lineage-specific 

key innovations and traits, among others diverse body coloration allowing for pronounced 

sexual dichromatism and increased divergent sexual selection (Maan and Sefc 2013), increased 

visional sensitivity with an adaptive potential to thrive under different light environments 

(Seehausen et al. 2008) and maternal mouthbrooding (Salzburger et al. 2005). Additional 

intrinsic factors of their success may be, last but not least, genomic features such as an increased 

gene duplication rates (Brawand et al. 2014). All these intrinsic factors unfolded their potential 

in conditions of novel ecological opportunities, as e.g. present in emerging tectonic or crater 

lakes (Salzburger et al. 2005; Wagner et al. 2012). Finally, there is increasing evidence that 

hybridization associated with introgression played and potentially still plays a significant role 

for enabling the rapid evolutionary success of cichlids through the provision of novel genetic 
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variation sourced from recombining ancient variation of different lineages in novel moscaic 

hybrid genotypes (Meier et al. 2017; Meier et al. 2019; Schwarzer et al. 2012b). 

Especially the African Pseudocrenilabrinae received considerable research interest in the field 

of evolutionary biology due their exceptional diversity and their propensity to generate adaptive 

radiations exemplified by the celebrated adaptive radiations of Lake Tanganyika, Lake Malawi 

and Lake Victoria (Kocher 2004; Salzburger 2018; Seehausen 2015; Turner 2007). Attempts to 

clarify cichlid intrarelationships particularly within the Pseudocrenilabrinae and deriving a 

phylogenetically sound suprageneric classification based on morphological characters started 

already in the early 19th century, e.g. using scale and squamation, pharyngeal apophysis, lateral 

line foramina characters, but they failed to be completed in a comprehensive way (Greenwood 

1978; Lippitsch 1990; Lippitsch 1997; Lippitsch 1998; Poll 1986; Regan 1920; Regan 1922; 

Stiassny 1991; Takahashi 2003a; Takahashi 2003b). With the advent of molecular 

phylogenetics, recognition of tribes and major lineages had been increasingly based on 

molecular characters. Currently, approximately 26 and 28 major lineages and tribes for the 

Pseudocrenilabrinae are currently recognized. The discrepancies in the counts are the result of 

different views about the classification of several taxa, i.e. whether Heterochromis, 

Orthochromis sensu stricto and the Tropheini should be treated as tribes of their own or not 

(Dunz and Schliewen 2013; Koblmüller et al. 2008b; Schwarzer et al. 2009; Weiss et al. 2015). 

For example, Heterochromis was found to represent the earliest splitting lineage within the 

Pseudocrenilabrinae based on molecular data (Farias et al. 1999; Friedman et al. 2013; Keck 

and Hulsey 2014; Smith et al. 2008), whereas morphological data failed to recover an 

unambiguous relationship of Heterochromis with the Pseudocrenilabrinae (Kullander 1998; 

Stiassny 1991).  

It should be noted that although several major lineages have been assigned to the tribus level, 

several corresponding tribus names (ending with “-ini”) are currently not available based on the 

rules of the ICZN due to various reasons (van der Laan et al. 2014). To facilitate the verbal 

communication about cichlid relationships, it was suggested to rephrase taxonomically 

unavailable tribus names with the ending “-ines” (see e.g. Dunz and Schliewen 2010; Schwarzer 

2011). In addition to these recognized tribal assemblages, numerous clades and lineages have 

been informally named and are widely used in the cichlid literature as well as in the chapters of 

this thesis as they simplify the communication about cichlid relationships (see Table 1). 

However, some of the informal clades are only supported by nuclear or mitochondrial data 

(Meyer et al. 2015; Weiss et al. 2015).  
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Table 1: Overview of currently recognized major lineages and tribus names of the cichlid 
subfamily Pseudocrenilabrinae as well as of selected informal clade names above tribus level 
as used in the cichlid literature. Several major lineages informally assigned to tribus level are 
currently without taxonomic available tribus name (see van der Laan et al. 2014) and 
corresponding names are therefore placed in quotation marks and they are written with the 
suffix “-ines”, or, if they are monotypic, they are listed with the corresponding genus name.  

Tribes or major 
lineages previously 

assigned to tribal level 

Haplotilapiines 

(Schliewen and 
Stiassny 2003) 

Austrotilapiines 

(Schwarzer et al. 
2009) 

East African 
cichlid 

radiation 
(EAR) 

e.g. (Schwarzer
et al. 2009)

C-lineage

(Clabaut et 
al. 2005) 

MVhL-clade 

(Takahashi 
et al., 2001) 

H-lineage 

(Nishida 
1991) 

Heterochromis Regan 
1922 
“tylochromines” 
“chromidotilapiines” 
“pelmatochromines” 
“hemichromines” 
Etia Schliewen & 
Stiassny 2003 

X 

Heterotilapiini X 
Coelotilapiini X 
Gobiocichlini X 
Coptodonini  X 
Pelmatolapiini X 
Oreochromini X 
Tilapiini X X 
Steatocranini X X 
Boulengerochromini X X X 
Bathybatini incl.  
Hemibatini 

X X X 

Trematocarini X X X 
Lamprologini X X X X 
Eretmodini X X X X X 
Cyphotilapiini X X X X X X 
Limnochromini X X X X X X 
Ectodini X X X X X X 
Perissodini X X X X X X 
Cyprichromini X X X X X X 
Benthochromini X X X X X X 
Orthochromis sensu 
stricto 

X X X X X X 

Haplochromini X X X X X X 
Tropheini (placed within 
the Haplochromini) 

X X X X X X 

9



Cichlid diversity in Southern-Central Africa 

Although cichlids show an almost pan-African distribution as they are only absent in the 

extreme southern part of Southern Africa, their center of diversity clearly lays in East Africa 

and in the Great African lakes (Matschiner 2019; Skelton 2001). Understandably, the 

outstanding phenotypical, behavioral and genetic diversity of the adaptive cichlid radiations 

(EAR) of the Great African lakes, especially those of Lake Tanganyika, received a considerable 

amount of research interest and haven been intensively studied (Kocher 2004; Salzburger 

2018). Nevertheless, the importance of including riverine lineages as, e.g., early diverging 

haplotilapiine cichlids and riverine haplochromine taxa for the reconstruction and 

understanding of the evolutionary history of EAR is increasingly recognized (Genner et al. 

2015; Irisarri et al. 2018; Koblmüller et al. 2008a; Meier et al. 2017; Meier et al. 2019; 

Salzburger et al. 2005; Schedel et al. 2019; Schwarzer et al. 2009; Weiss et al. 2015). Therefore, 

one of the objectives of the thesis presented here was to elucidate the evolutionary relationships 

of riverine haplochromine lineages in the larger cichlid phylogenetic context, in particular those 

endemic the ancient upper Congo subdrainage systems, e.g. in the northern part of the Katanga-

Chambeshi region (sensu Cotterill 2005) located in Southern-Central Africa. 

Nowadays, the Katanga-Chambeshi region is characterized by a landscape mosaic of savannah 

grasslands and wetlands and is centered within the Zambezian phytochorion (White 1983). The 

region covers several freshwater ecoregions (sensu Abell et al. 2008; Thieme et al. 2005), 

among others the “Bangweulu-Mweru ecoregion”, the “Upper Lualaba ecoregion” and the 

southern part of the “Lake Tanganyika ecoregion”, all of which are of particular interest for the 

taxonomical studies presented in this thesis. The Katanga-Chambeshi region includes several 

biodiversity hotspots and harbors an extremely rich aquatic fauna with a high degree of 

endemism. This is exemplified by the Bangweulu-Mweru ecoregion where one third of the fish 

species have been reported to be endemic (Balon and Stewart 1983; Thieme et al. 2005; van 

Steenberge et al. 2014). Cichlids in particular contribute to the ichthyological diversity of the 

focal area and are represented by several lineages, predominantly by members of the Tilapiini 

and two major haplochromine lineages referred herein as the ‘extended Pseudocrenilabrus-

group’ (sensu Schedel et al. in prep. ) and the ‘extended serranochromines’ (sensu Schedel et 

al. in prep.). In addition, species of Oreochromini, Tylochromini and Coptodonini are 

documented from the focal area of this thesis (Balon and Stewart 1983; Meier et al. 2019; 

Schedel et al. 2018; Schedel et al. 2020; van Steenberge et al. 2014; Vreven et al. 2015).  
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The ‘extended Pseudocrenilabrus-group’ is delineated based on nuclear (ddRAD) data and 

follows the concept of the Pseudocrenilabrus-group introduced by Weiss et al. (2015), which 

later was widened by Schedel et al. (2019). It represents one the four major haplochromine 

lineages in addition to Ctenochromis pectoralis Pfeffer 1893, the ‘extended serranochromines’, 

and the ‘ocellated eggspot Haplochromini’ (including the Tropheini) as suggested in Schedel 

et al. (in prep.) (see Figure 1, Chapter 5). The center of diversity of this clade clearly is located 

within the Katanga-Chambeshi region and four of the six principal lineages appear to be 

endemic to the region namely: Lufubuchromis Schedel, Kupriyanov, Katongo, & Schliewen 

2020, Orthochromis indermauri Schedel, Vreven, Katemo Manda, Abwe, Chocha Manda & 

Schliewen, 2018, Palaeoplex Schedel, Kupriyanov, Katongo, & Schliewen 2020 and the 

Northern-Zambian-Orthochromis (sensu Weiss et al. 2015). The two remaining lineages, the 

‘LML-Orthochromis’ (sensu Weiss et al. 2015) and the genus Pseudocrenilabrus Fowler 1934, 

are much more widespread. Particularly, the genus Pseudocrenilabrus is widely distributed in 

northern, eastern, southern and central Africa (Greenwood 1989; Katongo et al. 2017; Schedel 

et al. 2020). Pseudocrenilabrus specimens found in the Katanga-Chambeshi region have been 

usually and uncritically assigned to Pseudocrenilabrus philander (Weber, 1897). However, 

morphological as well as genetic evidence clearly suggest that P. philander as currently defined 

represents a species complex (Egger et al. 2015; Katongo et al. 2005; Koblmüller et al. 2012; 

Seegers 1996). Moreover, an adaptive radiation of Pseudocrenilabrus-related species has 

recently been recognized from Lake Mweru, which appears to be of hybrid origin originating 

from different lineages of the ‘Pseudocrenilabrus philander species complex’ (Katongo et al. 

2006; Meier et al. 2019). Note that in the study of Meier et. al (2019) all representatives of the 

‘extended Pseudocrenilabrus-group’ are referred to as ‘Orthochromines’, a usage which might 

possibly be misleading with regard to the undoubtedly polyphyletic status of the name bearing 

genus (see below). 

In contrast, the ‘extended serranochromines’ are primarily distributed in Southern Africa, 

although several early splitting lineages of this clade are found in the upper tributaries of the 

Congo and Kasai as well as in the Lower Congo (Joyce et al. 2005; Musilová et al. 2013; 

Schwarzer et al. 2012b). Within the ‘extended serranochromines’ the comparatively diverse 

subclade commonly referred as ‘serranochromines sensu stricto’ (see e.g. Musilová et al. 2013). 

It was suggested to represent an ancient radiation that had been hypothesized to have evolved 

within the palaeolake Makgadikgadi located in northern Botswana in the Kalahari Desert; 

descendants of this ancient lacustrine radiation would then have secondarily dispersed to 
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adjacent drainage systems of Southern Africa such as that of the Okavango and Zambezi (Joyce 

et al. 2005; Katongo et al. 2007). Recently, two adaptive radiations, most likely of hybrid origin 

but phylogenetically nested within the ‘serranochromines senus stricto’, have been identified 

from Lake Mweru (Meier et al. 2019). Moreover, two strongly rheophilic lineages, the 

‘Katanga-Orthochromis’ (sensu Schedel et al. in prep.) and the ‘Orthochromis torrenticola 

species complex’ (sensu Schedel et al. in prep.), together with two undescribed genera 

representing two clearly distinct lineages within the ‘extended serranochromines’ from the 

Lubudi River appear to be endemic to the Katanga-Chambeshi region (Schedel et al. 2018).  

As a separate independent but closely related lineage the Tilapiini are widely distributed over 

Central and Southern Africa. Of the three genera currently placed within the tribe only the genus 

Tilapia Smith, 1840 is represented in the Katanga-Chambeshi region with three out of the four 

described species (Dunz and Schliewen 2013). Tilapia baloni Trewavas & Stewart 1975 

represents the only described endemic species of the genus for the region and is only known 

from the Luongo River (Balon and Stewart 1983). Tilapia sparrmanii Smith, 1840 on the other 

hand, represents most likely a species complex and several undescribed Tilapia species appear 

to occur in the region (Dunz 2012; Seegers 1996).  

Overview of the polyphyletic genus Orthochromis Greenwood, 1954 

As indicated above, the genus Orthochromis Greenwood, 1954 as currently defined is 

polyphyletic and includes as one part the type species Orthochromis malagaraziensis (David, 

1937) and its congeners, which are distributed in three eastern tributaries of the Lake 

Tanganyika (Malagarasi, Rugufu and Luiche River). This partial group is commonly referred 

to as Malagarasi-Orthochromis (sensu Weiss et al. 2015) or as Orthochromis sensu stricto, but 

other rheophilic haplochromines currently placed in Orthochromis either belong to the 

‘extended serranochromines’ or to the ‘extended Pseudocrenilabrus-group’ (De Vos and 

Seegers 1998; Koblmüller et al. 2008a; Schedel et al. 2018; Schedel et al. 2019; Schedel et al. 

in preparation; Schwarzer et al. 2012b; Weiss et al. 2015). 

The genus Orthochromis was established by Greenwood (1954) for Haplochromis 

malagaraziensis David, 1937, a species previously described from the Malagarasi River. It was 

characterized by its elongated body shape and having no scales on the cheeks and chest 

(Greenwood 1954). Already at time, additional rheophilic cichlid species and genera, eco-

morphologically vaguely characterized by a comparatively slender body, a reduced squamation 

12



on chest, nape and head as well by rounded pelvic fins (Roberts and Stewart 1976), had been 

already described from the Upper Congo drainage. Schwetzochromis neodon Poll 1948 (and its 

synonym Haplochromis rheophilus Poll, 1948), for example, had been described from the karst 

river “Lac” Fwa. Orthochromis polyacanthus (Boulenger 1899) and Orthochromis stormsi 

(Boulenger 1902), had already been described from Lake Mweru and the Upper Congo, 

respectively, but originally assigned to the genus Tilapia (Boulenger 1899a; Boulenger 1902). 

Several years later, Haplochromis torrenticola Thys van den Audenaerde 1963, originally 

described as Haplochromis rheophilus Thys van den Audenaerde, 1963 was described from 

above the Kyubo falls (sometimes spelled Kiubo) on the Lufira River, a tributary of the Lualaba 

River. In the same study, Rheohaplochromis Thys van den Audenaerde 1963 was described as 

a subgenus of Haplochromis Hilgendorf, 1888, in which Thys van Audenaerde (1963) grouped 

his new taxon from the Lufira as well as O. polyacanthus. Later, Thys van Audenarde (1964) 

raised Rheohaplochromis to the genus level, while clearly differentiating between 

Rheohaplochromis from Orthochromis as defined at the time by the presence of minute scales 

on the nape and chest. Unfortunately however, no type species was assigned for the genus 

Rheohaplochromis by Thys van den Audenaerde (1963), which renders the genus name 

Rheohaplochromis Thys van den Audenaerde 1963 taxonomically unavailable (see Article 13.3 

of the ICZN, Greenwood 1979). Over the following years Greenwood revised his genus 

Orthochromis several times (Greenwood 1979; Greenwood 1984). In doing so he synonymized 

Rheohaplochromis with Orthochromis as he considered the ecomorphological characters 

shared by the respective species taxa as putatively shared derived characters, e.g. the reduced 

squamation, and thus as an argument for their monophyly and congenerity. Consequently, he 

further included Haplochromis machadoi Poll, 1967 from the Cunene River in Namibia and 

Angola into the genus Orthochromis. One decade later, Roberts and Kullander (1994) revised 

the taxonomy of the Lac Fwa endemic cichlids and found that most of the putatively diagnostic 

characters of Orthochromis as defined by Greenwood (1979) were also present in 

Schwetzochromis neodon Poll, 1948. Thus, they synonymized Orthochromis with the older 

available name Schwetzochromis. Accepting the new classification, Greenwood and Kullander 

(1994) revalidated and re-classified Tilapia stormsi Boulenger, 1902, which was considered as 

synonym of Tilapia polyacanthus Boulenger 1899 since the classification of Regan (1922), as 

Schwetzochromis stormsi (Boulenger, 1902). They further described Schwetzochromis 

luongoensis Greenwood and Kullander, 1994 Schwetzochromis kalungwishiensis Greenwood 

and Kullander, 1994 from the Luongo River, a tributary of the Luapula River, and from the 
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Kalungwishi River, a tributary of Lake Mweru, respectively. However, a few years later De 

Vos and Seegers (1998) removed the genus Orthochromis from the synonymy with 

Schwetzochromis. They argued that the putatively synapomorphic characters uniting S. neodon 

and all other Orthochromis species, including seven new species they described from eastern 

Lake Tanganyika affluent in the same study, must have evolved convergently. To consolidate 

they action, they further provided new morphological and chromatic characters to better 

diagnose both genera. For example both genera can be distinguished by the presence of sexual 

dichromatism in Schwetzochromis vs. no or only weak sexual dichromatism in Orthochromis; 

by the presence of Haplochromis-like egg spots in Schwetzochromis vs. their absence in 

Orthochromis; and by the absence of lachrymal stripes in Schwetzochromis vs. their presence 

in Orthochromis (De Vos and Seegers 1998). Twenty years later, five rheophilic species from 

the Katanga-Chambeshi region were described in the genus Orthochromis (Schedel et al. 2018). 

Although phenotypically similar to the Malagarasi-Orthochromis, these new species feature 

characters which are not fully compatible with the latest generic diagnosis of Orthochromis by 

De Vos and Seegers (1998), yet the authors decided to place those species only provisionally 

in the genus Orthochromis, i.e. until a generic revision of all haplochromine genera becomes 

available as an important precondition to describe new haplochromine genera (see Chapter 2 

for more details).  

Currently, 19 valid species are included in the genus Orthochromis with only eight belong to 

the ‘Malagarasi-Orthochromis’ (Fricke et al. 2020; Schedel et al. 2018). Monophyly of the 

‘Malagarasi-Orthochromis’ is well supported by molecular data and they were repeatedly 

recovered as sister group to the Haplochromini including the remaining species currently placed 

in Orthochromis (Clabaut et al. 2005; Irisarri et al. 2018; Matschiner et al. 2016; Schedel et al. 

2019; Weiss et al. 2015). The eleven remaining “haplochromine Orthochromis” species on the 

other hand appear to belong to at least six different evolutionary lineages (see Figure 2 for 

representative members of the corresponding lineages) based on molecular data (Meier et al. 

2019; Schedel et al. 2019; Schedel et al. in preparation; Weiss et al. 2015). Based on nuclear 

data, three of these lineages (‘Orthochromis indermauri’, ‘Northern-Zambia-Orthochromis’ 

and the ‘LML-Orthochromis’) can be assigned to the ‘extended Pseudocrenilabrus-group’, 

although extensive cyto-nuclear discordances were reported to occur for several lineages of this 

clade (Schedel et al. in prep.; see Chapter 5). For example, the so-called ‘LML-Orthochromis’ 

are regularly recovered to be closely related with serranochromine taxa based on mitochondrial 

data (Koblmüller et al. 2008a; Musilová et al. 2013; Salzburger et al. 2002; Schedel et al. 2019; 
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Schwarzer et al. 2012b; Weiss et al. 2015), but nuclear DNA based phylogenies recover a closer 

relationship with taxa of the ‘Pseudocrenilabrus-group’ (Schedel et al. in preparation; 

Schwarzer et al. 2012b; Weiss et al. 2015). Orthochromis machadoi (Poll, 1967) represents the 

fourth lineage recovered within the ‘extended Pseudocrenilabrus-group’, but is was found to 

be a member of the Pseudocrenilabrus philander species complex based on mitochondrial data 

and nuclear (RAD data) (Egger et al. 2015; Koblmüller et al. 2008a; Meier et al. 2019). Within 

the ‘extended serranochromines’ two “haplochromine Orthochromis” lineages are recovered 

based on nuclear as well as on mitochondrial data namely the ‘Orthochromis torrenticola 

species complex’ and the ‘Katanga-Orthochromis’ (Schedel et al. in preparation; Schwarzer et 

al. 2012b; Weiss et al. 2015). As for the ‘extended Pseudocrenilabrus-group’, cyto-nuclear 

discordance appears widespread among the lineages of the ‘extended serranochromines’ and 

the monophyly of the ‘Katanga-Orthochromis’ is supported by nuclear data only (Schedel et al. 

in preparation; Schwarzer et al. 2012b).  
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Figure 2: Overview of representative taxa currently placed in the polyphyletic genus 
Orthochromis. Preliminary working names for lineages which appear clearly distinct of the 
Orthochromis sensu stricto (Malagarasi-Orthochromis; sensu Weiss et al. 2015) based on 
molecular data and the corresponding phylogenetic relationships are indicated and follow 
the studies of (Schedel et al. 2020; Schedel et al. 2019; Schedel et al. in preparation; Weiss 
et al. 2015). A. Orthochromis uvinzae (Tribe/Lineage: Orthochromis sensu stricto; photo: 
F.D.B. Schedel); B. Orthochromis luongoensis (Tribe/Lineage: Haplochromini; ‘extended 
Pseudocrenilabrus-group’, ‘Northern-Zambia-Orthochromis’; photo: F.D.B. Schedel); C. 
Orthochromis polyacanthus (Tribe/Lineage: Haplochromini, ‘extended Pseudocrenilabrus-
group’, LML-Orthochromis; photo: F.D.B. Schedel); D. Orthochromis indermauri 
(Tribe/Lineage: Haplochromini, ‘extended Pseudocrenilabrus-group’, ‘Orthochromis 
indermauri’; photo: F.D.B. Schedel); E. Orthochromis machadoi (Tribe/Lineage: 
Haplochromini, ‘extended Pseudocrenilabrus-group’, most likely a member of the genus 
Pseudocrenilabrus; photo: E. Schraml); F. Orthochromis torrenticola (Tribe/Lineage: 
Haplochromini, ‘extended serranochromines’, ‘Orthochromis. torrenticola species complex’; 
photo: F.D.B. Schedel); G. Orthochromis gecki (Tribe/Lineage: Haplochromini, ‘extended 
serranochromines’, Katanga-Orthochromis; photo: Katanga 2016 Expedition). 
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Divergence time estimates for the family Cichlidae 

Over the past decades, tremendous efforts have been made to elucidate the age and origin of 

the family Cichlidae and the reconstruction of their biogeographical history. Although evidence 

is accumulating for a Late Cretaceous to Palaeocene age for the family (reviewed in Matschiner 

2019), a long-standing discussion on the evolutionary time scale of cichlids preceded those 

findings.  

The striking Gondwana-like distribution of the family Cichlidae (see Figure 1) led to the 

traditional predisposition that the divergence of the four cichlid subfamilies was linked to the 

fragmentation of the this supercontinent, i.e. implying a Late Jurassic or Early Cretaceous origin 

of the family (Farias et al. 1999; Sparks and Smith 2004; Stiassny 1987; Stiassny 1991; 

Streelman et al. 1998). This “vicariance hypothesis” is further supported by the phylogenetic 

relationships of cichlid subfamilies which reflects the well-studied chronological sequence of 

the fragmentation of the supercontinent (Sparks and Smith 2004). For example, the divergence 

of the Ptychrominae from its sister group, the monophylum comprising the Old World 

Pseudocrenilabrinae and New World Cichlinae, matches the breakup of the Madagascar/Indian 

landmass from the remaining Gondwanaland, which started around 150 Mya; this, while it is 

assumed that Madagascar reached its current position in relation to Africa roughly 120 Mya 

(Ali and Aitchison 2008; Matschiner 2019; Matthews et al. 2016). The sister relationship of 

Pseudocrenilabrinae and Cichlinae could be linked to the tectonic separation of Africa and 

South America which is assumed to have been completed around 103 Mya (Heine et al. 2013; 

Matthews et al. 2016). Likewise, the relationships of three genera Madagascan Paretroplus 

Bleeker 1868 and Etroplus Cuvier 1830 and Pseudetroplus Bleeker 1862 [in Günther 1862] 

from India and Sri Lanka of the subfamily Etroplinae mirrors the separation of the Indian 

subcontinent and Madagascar which was dated to 90-85 Mya (Ali and Aitchison 2008; Storey 

1995). 

In contrast to these ancient tectonic events, the oldest cichlid fossils are much younger. They 

belong to the extinct genus †Mahengechromis Murray 2000 from palaeo-crater lake Mahenge 

(Singida Plateau, Tanzania), whose sediments have been dated to 45.83 ± 0.17 Mya based on 

U/Pb isotope analysis (Harrison et al. 2001; Murray 2000; Murray 2001b). Although the precise 

phylogenetic placement of †Mahengechromis is uncertain, the presence of a single supraneural 

bone suggests a placement within a subgroup of the extant Pseudocrenilabrinae, i.e. excluding 
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Heterochromis, Tylochromis Regan 1920 and Etia Schliewen & Stiassny 2003 which have two 

supraneural bones (Murray 2001b; Schliewen and Stiassny 2003). The oldest South American 

cichlid fossils †Gymnogeophagus eocenicus Malabarba, Malabarba & Del Papa 2010, 

†Plesioheros chaulidus Perez, Malabarba & Del Papa 2010 and †Proterocara argentina 

Malabarba, Zuleta & Del Papa 2006 have been described from the lacustrine “Faja Verde” 

deposits of the Lumbrera Formation (Argentina). The exact age of the “Faja Verde” deposits 

are still under discussion but it most likely ranges between 40 Mya, constrained by the age of 

the above lying tuffs (del Papa et al. 2010), and 45 Mya representing the maximum age of the 

Casamyoran South American Land Mammal Age (SALMA) to which the Lumbrera Formation 

was assigned to (del Papa et al. 2010; Matschiner 2019; Vucetich et al. 2007). The young age 

of these oldest cichlid fossils appear (~ 46 Mya) in stark contrast to the old divergence ages 

implied by the vicariance hypothesis, e.g. for the ~ 103 Mya split of Pseudocrenilabrinae and 

Cichlinae. According to this, Pseudocrenilabrinae and Cichlinae would have left not fossil trace 

for a time span of roughly 60 Mya, and even longer if a Late Jurassic to Early Cretaceous age 

of origin is assumed for the family Cichlidae (Friedman et al. 2013; Matschiner 2019; Murray 

2001a). Therefore, it was proposed that the observed biogeographic patterns are the result of 

‘through oceanic dispersal’, i.e. implying that the divergence of cichlids must have started only 

after the final breakup of Gondwana (Murray 2001a; Vences 2001). Although most cichlids are 

freshwater fishes, a few species are known to thrive in brackish and sometimes even marine 

conditions, and they are even capable to breed in these environments (Matschiner 2019). This 

has been reported, for example, for introductions of the African cichlid Oreochromis 

mossambicus (Peters 1852) into the lagoons and estuaries on the marine Fanning Atoll (Lobel 

1980). This and similar findings render a trans-oceanic dispersal scenario likely, or, at least it 

is not improbable; this particularly, if the factor of time is taken into account, because marine 

dispersal potential most likely has not remained unchanged over the last ~ 100 Mya (see 

Matschiner (2019) for a detailed discussion). 

The two competing hypotheses have led to highly divergent assumptions about the age and 

biogeographic history of cichlids. This, in turn, is reflected by highly conflicting divergence 

time estimates obtained by a growing body of molecular clock studies aiming to skrutinize the 

phylogenetic time line of cichlids, i.e. divergence time estimates for the family Cichlidae range 

from 45 Mya to 160 Mya (Matschiner 2019; Schedel et al. 2019). Likewise, divergence time 

estimates of more shallow nodes, e.g. for those of the radiations of the Great African lakes, are 

highly contradicting and hence also of limited use with regard to inferences and insights drawn 
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from these results for the evolutionary biology of cichlids, particularly the explanations about 

the rapid origin of ecologically and morphologically megadiverse species flocks (Matschiner 

2019). 

Bayesian molecular clock analyses have mostly been used in these studies, but it is important 

to note, that they are highly dependent on numerous assumptions, which may compromise their 

confidence in resulting estimates. Most importantly, molecular clock calibrations are 

commonly conducted by applying temporal constraints on at least one node of the tree, because 

real substitution rates are unknown. These constraints are either provided by fossil or geological 

evidence (Bromham et al. 2018; Ho and Duchêne 2014). In particular, calibrations applied to 

the root were shown to affect divergence time estimates more than those applied on shallower 

internal nodes. Application of multiple well-scrutinized calibration points should render 

divergence estimates more consistent (Duchêne et al. 2014; Ho and Duchêne 2014). Many 

calibration points for various cichlid clades have been proposed over the last decades, but not 

all have been well scrutinized. Several assume a correlated divergence of endemic clades, e.g. 

those of the Great African Lakes, with the onset of geological formation of the respective lakes, 

for instance the estimated age of the most ancient Lake Tanganyika has been used as a 

calibration point for the origin of the EAR (Day et al. 2008; Koblmüller et al. 2008a). 

Analogously, presumed desiccation and refilling events of lake basins, e.g. the re-establishment 

of lacustrine conditions of the Lake Malawi has been used to constrain the node age for the 

origin of the Lake Malawi cichlid radiation (Sturmbauer et al. 2001). Unfortunately, these 

approaches are problematic, not only because of the complex and not yet fully understood 

history of the formation of the East African rift lakes, but also because of accumulating evidence 

from fossils and molecules that several of the Lake Tanganyika endemic tribes might have 

evolved well before the formation of the lake itself (Altner et al. 2017; Schedel et al. 2019; 

Weiss et al. 2015).  

Likewise, the incorporation of cichlid fossils into molecular clock analyses has remained a 

demanding task. In contrast to the incredible extant species richness, only comparatively few 

cichlid fossil species have been described (Murray 2001a), and this despite several new fossil 

taxa have been described recently from East Africa (Altner et al. 2017; Kevrekidis et al. 2019; 

Penk et al. 2019). Up to now, only about 37 cichlid fossil species are known from articulated 

fossils and additional ones have been described from disarticulated material such as bones and 

teeth, which are even more difficult to place phylogenetically (Kevrekidis et al. 2019; Penk et 

al. 2019). As an additional problem, phylogenetic assignment of cichlid fossil species into the 
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cichlid tree of life remains difficult due to, among others factors, the paucity of phylogenetically 

informative morphological characters (see Penk et al. 2019). It was further pointed by Friedman 

(2013) that convergent evolution of morphological characters is a widespread phenomenon, and 

this complicates morphology-based phylogenetic placement of cichlid fossils (Albertson and 

Kocher 2006; Hulsey et al. 2018; Muschick et al. 2012; Rüber and Adams 2001). Yet, after 

careful examination at least six cichlid fossils could established as calibration points 

(Matschiner et al. 2016; Schedel et al. 2019), although only a single recently described fossil 

(†Tugenchromis pickfordi Altner, Schliewen, Penk & Reichenbacher 2017) is available for the 

calibration of the megadiverse EAR. Notably, up to now there is no fossil calibration point 

available for the EAR-subclade Haplochromini, i.e. the lineage which gave rise to the 

megadiverse species flocks of Lake Malawi and Lake Victoria. 

Despite of all these obstacles, the spatio-temporal reconstruction of cichlid phylogenetic 

relationships is continuously progressing and remains crucial to understand the evolutionary 

history of cichlids as well as the underlying processes which shaped the incredible diversity of 

this fish family.  

 

The genomic record of rheophilic cichlids in the light of landscape evolution 

 

The multidisciplinary field of “biogeomorphology”, a subdiscipline of geomorphology, aims to 

elucidate the complex interactions between geomorphological, ecological and biological 

systems and processes over a broad temporal and spatial spectrum (Viles 2019). Although the 

underlying ideas of the concept can be traced back to the 19th century, the term 

biogeomorphology was coined by Viles (1988) and is based on the observation that the 

distribution of various organisms is often tightly linked to the underlying geomorphology 

(landforms), while, vice versa, organisms do influence earth surface processes impacting the 

evolution of landforms (Naylor 2005; Viles 2011; Viles 2019). Within the larger framework of 

biogeomorphology and comparative biogeography recently, the concept of geoecodynamics 

was introduced by Cotterill and De Wit (2011). The concept integrates landscape evolution with 

the evolutionary history of living biota and theoretically enables to reconstruct the tempo and 

mode of geomorphological processes by exploiting the genomic record. Geoecodynamical 

research relies on the assumption that the history of landforms and that of organism living on 

those are causally interlinked by ecological associations. Hence, the formative events, e.g. 

tectonic events altering the landscape structure, potentially leave signatures in the form of 
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DNA- (nucleotide sequence) changes in the genomic record of species, either due to ecological 

selection or due to disrupted or newly generated genetic connectivity between species 

inhabiting these landscapes (Cotterill and de Wit 2011). Ultimately, these temporal correlates 

of these signatures can be traced along phylogenetic trees, and thus, can be dated using 

molecular clock analysis (Cotterill and de Wit 2011). Clearly, not all taxa are equally well suited 

for this purpose, as species differ in their ecology ranging from ecological generalists (eurytopic 

species) to ecologically highly specialized species (stenotopic species). The latter are 

commonly more confined to certain types of landforms and habitats, which further is reflected 

by their generally higher vulnerability to landscape changes (Cotterill and de Wit 2011; Pickett 

et al. 2007). Therefore, especially stenotopic species and their corresponding phylogeographic 

records are supposedly ideally predisposed to preserve co-evolutionary signatures of landform 

and associated biota changes; this renders aquatic species of special interest for geoecodynamic 

questions, because they are naturally confined stringently to geographically and ecologically 

well defined landforms (Cotterill and de Wit 2011).  

While fish in general are stenotopic because they are confined to aquatic habitats, they 

nevertheless have evolved countless ecological specializations, expressed by very narrow 

ecological niche boundaries and thus, many taxa are tightly restricted to their habitats. For 

example, members of the predatory genus Hydrocynus Cuvier 1816 (family: Alestidae, 

tigerfish) are restricted to large rivers and lakes of Africa due to their dependence on well-

oxygenated freshwater (Otero et al. 2011; Skelton 1994); hence, their biogeographic patterns 

have been recently linked to Neogene tectonic events that, despite all tectonic changes, must 

have allowed for the persistence of large, well-oxygenatied river landscapes (Goodier et al. 

2011). Other examples are the highly specialized cichlids of the Great African Lakes, 

particularly rock-dwelling cichlids of Lake Malawi (“mbuna”), which are specialized to a life 

in rocky habitats and show a tight fidelity to their habitats (Fryer and Iles 1972; Konings 2007; 

Konings 2019). But most nogetably the rheophilic cichlids, e.g. those fluviatile cichlids 

confined and specialized to live in rocky rapids, as e.g. members of the genus Steatocranus 

Boulenger 1899 and, to some extent, members of the genus Nanochromis Pellegrin 1904, can 

be regarded as highly valuably biotic indicators for studies in geoecodynamics (Cotterill and de 

Wit 2011). Indeed, it has been shown that the geomorphological evolution and hydrological 

origin of the modern Congo River with its principal knickpoints, e.g. the Inga rapids, is tightly 

interlinked to the evolutionary history of the species flocks of Steatocranus and Nanochromis 

endemic to the Lower Congo rapids (Schwarzer et al. 2011). Interestingly, the onset of 
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speciation of a third riverine species flock endemic to the Lower Congo rapids, i.e. ‘Lower 

Congo Lamprologus clade’ formed by several species of the genus Lamprologus Schilthuis 

1891, was dated to Late Miocene to Early Pliocene age, too, which is concordant with the onset 

of divergence of the two other lower Congo endemic radiations of Steatocranus and 

Nanochromis (Schedel et al. 2019). 

Another promising cichlid group for the spatio-temporal reconstruction of the landscape 

evolution using a geoecodynamical approach are those rheophilic haplochromine cichlids 

currently placed in the polyphyletic genus Orthochromis (see above). Notably, among the six 

different recognized “haplochromine Orthochromis” lineages, five occur in fast flowing rivers 

and rapids of the Katanga-Chambeshi region. Large parts of this region are located in the 

southwestern extension of the East African Rift system which is a tectonically highly dynamic 

landscape (Chorowicz 2005; Cotterill 2005; Kipata et al. 2013; Mondeguer et al. 1989). Since 

the late Miocene, the landscape of the region has been radically reshaped through recurrent 

episodes of active faulting and rifting which led to substantial changes in the course of major 

rivers and to reorganizations of the ancient drainage networks including river and stream 

captures, and furthermore, to the formation of several large lakes in the region such as Lake 

Bangweulu, Lake Mweru and Lake Upemba (Chorowicz 2005; Cotterill 2004; Cotterill and de 

Wit 2011; Moore et al. 2012; Moore et al. 2007; Olivotos et al. in review). Particularly the 

intense seismic activity lead to the creation of numerous knickpoints in the focal area including 

several major waterfalls (Flügel et al. 2015; Flügel et al. 2017; Olivotos et al. in review). It is 

commonly assumed that these major knickpoints, rapids and waterfalls, constrained limits of 

and shaped fish dispersal in south-central Africa (Bell-Cross 1968; Skelton 1994). Interestingly, 

some waterfalls in the Katanga-Chambeshi region appear to represent effective barriers for 

upstream migration of fish even leading to allopatric speciation events, which maybe best 

exemplified by the sister group pair of ‘Orthochromis torrenticola species complex’. It is 

endemic to the Lufira River with at least two species known, one yet undescribed species from 

below the Kyubo waterfalls and its described sister species O. torrenticola from above the falls 

(Schedel et al. 2018; Schedel et al. in preparation). In the same way, the waterfall series of three 

falls of the Kalungwishi River, i.e. the Lumangwe, Kabweluma and Kundabikwa appear to have 

given rise to a small species assemblage consisting of members of the ‘Northern-Zambia-

Orthochromis’ (Schedel et al. in preparation). In particular, several unnamed species closely 

related to O. kalungwishiensis described from above the Kundabikwa falls by Greenwood and 

Kullander (1994), have been recorded from Kalungwishi River system; these species are 
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referred here to as ‘Orthochromis kalungwishiensis species complex’. However, the 

evolutionary history of those candidate species belonging to the ‘Orthochromis 

kalungwishiensis species complex’ are less well understood and their taxonomic status still 

needs to be clarified (see discussion). Independent of that, the molecular-clock-derived 

divergence age estimates for the most recent comment ancestor (MRCA) of the ‘Orthochromis 

torrenticola species complex’ as well as for the divergence of the ‘Orthochromis 

kalungwishiensis species complex’ are of paramount interest for geo-ecomorphology, as both 

can be used to date the knickpoint formation of these major landforms; or, alternatively, they 

might be used to scrutinize node age estimates in other parts of the cichlid phylogenetic tree, 

which, in turn would allow for scrutinizing dates of additional geomorphological key events 

related to cichlid evolution. This in turn, might lead to a better overall understanding of cichlid 

evolution of haplochromine species complexes in East African, particularly with regard to the 

presumed tectonic controls on the famous explosive cichlid speciation (see discussion). 

 

Thesis outline 

 

The Results part of this thesis is organized in two sections. The first section includes three 

publications (chapters 1 – 3) which aimed to provide new insights into the biodiversity of East 

African cichlid radiations with focus on the taxonomy of the still understudied riverine and 

rheophilic cichlids of the Katanga-Chambeshi region. The second section comprises two 

publications (chapters 4 – 5) and focusses on the reconstruction of the evolutionary history of 

austrotilapiine cichlids by providing new divergence time estimates as well as additional 

support for widespread hybridization and introgression among the lineages of this megadiverse 

clade. 

 

Section 1: Diversity and taxonomy of cichlids in southern and central Africa with a focus 

on rheophilic taxa 

 

The first publication (chapter 1) presented in this section aimed to clarify whether there is a 

second species of the previously monotypic Lake Tanganyika endemic genus Hemibates Regan 

1920. This had been was suggested by Konings (1998) who reported male Hemibates specimens 

from Chituta Bay (Zambia) with flank color patterns clearly distinctive from those known from 

Hemibates stenosoma (Boulenger 1901a). Based on the morphological and molecular evidence 
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as well as on differences in the mentioned male color pattern, Hemibates koningsi Schedel & 

Schliewen 2017 could be described, thereby adding a valuable contribution to the still ongoing 

assessment of the taxonomic diversity of the endemic cichlids of Lake Tanganyika (Ronco et 

al. 2019). Further, the chapter provides a critical compilation of previously (Barel et al. 1977; 

Dunz and Schliewen 2010; Schedel et al. 2014) and newly defined meristic characters as well 

as morphological measurements used in African cichlid taxonomy. This compilation proved to 

be helpful for the description of African cichlid species, because many taxonomic data 

acquisition methods have remained poorly communicated and defined. Hence it will facilitate 

future alpha-taxonomical studies on this family. 

The second publication (chapter 2) represents a first step towards the systematic revision of 

the polyphyletic genus Orthochromis. In total, five new rheophilic species were described, two 

from the Upper Lualaba ecoregion (Orthochromis kimpala Schedel, Vreven, Katemo Manda, 

Abwe, Chocha Manda & Schliewen, 2018 and O. gecki), two from the Bangewlu-Mweru-

ecoregion (Orthochromis mporokoso Schedel, Vreven, Katemo Manda, Abwe, Chocha Manda 

& Schliewen, 2018 and O. katumbii Schedel, Vreven, Katemo Manda, Abwe, Chocha Manda 

& Schliewen, 2018) and one from the lower reaches of the Lufubu River ,i.e. from within the 

drainage of the Lake Tanganyika ecoregion (O. indermauri). Due to their superficial 

phenotypical similarity with the Malagarasi-Orthochromis, these new species were only 

provisionally placed in the genus Orthochromis, a generic assignment that will last only until a 

comprehensive revision of haplochromine genera becomes available. This provisional step was 

further justifiable by the fact that the phylogenetic relationships of haplochromine cichlids, 

especially those of the rheophilic taxa currently placed in the genus Orthochromis, had not been 

fully elaborated by the time: however, at the time of the submission of the present thesis this 

gap of knowledge has been partly being filled by results presented in chapter 4 & 5. Overall, 

the study highlights our lack of knowledge on the ichthyological diversity of the Katanga-

Chambeshi region and stipulates the urgent need of further systematic research in that region.  

The third publication (chapter 3) introduced and formally described two new monotypic 

haplochromine genera, namely Palaeoplex endemic to the Kalungwishi and Luongo River 

(Bangweulu-Mweru ecoregion) and Lufubuchromis endemic to the upper reaches of the Lufubu 

River. These genus descriptions with their necessary genus-wide comparison initialized the 

overdue taxonomic revision of the ‘extended Pseudocrenilabrus group’. The species of the two 

new genera had been included in several phylogenetic studies before their formal description. 

These studies had already partially revealed their complex evolutionary origin with evidence 
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for ancient hybridization events and the capture of mitochondrial haplotypes; this despite their 

phenotypical similarity with the species of the genus Pseudocrenilabrus, (Koblmüller et al. 

2012; Koblmüller et al. 2008a; Meier et al. 2019; Schedel et al. 2019; Schedel et al. in 

preparation). Yet, both genera are clearly diagnosable from the genus Pseudocrenilabrus by 

several morphological characters as well as from potential ancient hybridization partners 

(different precursor lineages of the ‘Northern-Zambian-Orthochromis’). Up to date, the 

Pseudocrenilabrus-group (sensu Weiss et al. 2015; Schedel et al. 2019) has only been defined 

by molecular evidence. Therefore, a comparison of morphological characters of the different 

species and genera associated with the Pseudocrenilabrus-group was provided as a starting 

point for further systematic research on this major haplochromine lineage. 

Section 2: New divergence age estimates for the major cichlid lineages with focus on the 

African austrotilapiine cichlids. 

The first publication (chapter 4) presented in this section represents another important 

contribution to the spatio-temporal reconstruction of the evolutionary history of cichlids. Based 

on a large mitogenomic dataset encompassing ten mitochondrial protein coding genes and 

including representative species of almost all major cichlid lineages and tribes, new divergence 

age estimates were estimated successfully for the family Cichlidae. The focus was set on the 

East African cichlid cichlid radiation (EAR), for which a new fossil calibration point 

(†Tugenchromis pickfordi) had become available in the course of my thesis. The systematic 

assignment of cichlid fossils to extant lineages and genera proved to be a difficult task (see e.g. 

Penk et al. 2019), and hence the suitability of all cichlid fossils as calibration points for 

molecular clock analysis have to be carefully scrutinized before using them as informative 

constraints for selected clade ages. The presented study therefore provides a critical re-

evaluation of cichlid fossils as well as of geological constraints used in previous studies as 

calibration points for various cichlid clade ages, and this assessment will undoubtedly serve as 

a guideline for following molecular clock studies. Acknowledging the remaining uncertainties 

concerning the true age of the Cichlidae (see introduction) as well as those of the exact 

phylogenetic placement of certain cichlid fossils (e.g. of †Tugenchromis, see Penk et al. 2019), 

eighteen different calibration schemes were applied to thoroughly evaluate the impact of 

alternative calibration settings on divergence time estimates. Roughly, the resulting Bayesian 

divergence time estimates were in line with the ‘dispersal hypothesis’ (e.g. Friedman et al. 
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2013; Matschiner et al. 2016; Murray 2001a) and tentatively support the assumption for a Late 

Cretaceous to Palaeocene age for the Cichlidae as recently advocated for by Matschiner (2019). 

Yet, divergence time estimates for MRCA of EAR and most Lake Tanganyika endemic cichlid 

tribes were recovered to be substantially older than the supposed maximum age for the 

formation of the Lake Tanganyika basin. This result is consistent with the “Melting-pot 

Tanganyika” hypothesis (Weiss et al. 2015) and the “Ancient Reservoir” hypothesis (Genner et 

al. 2007). The “Melting-pot Tanganyika” hypothesis postulates that the precursor lineages of 

the various Lake Tanganyika endemic tribes had diverged already before the formation of 

extant Lake Tanganyika, e.g. in precursor lakes and adjacent river systems; only subsequently 

they would have amalgamated within the Lake Tanganyika basin (Weiss et al. 2015). In 

summary, the study underlines the important role that riverine cichlid taxa must have played in 

the evolutionary history of the EAR. This may best be exemplified by the case of Haplochromis 

vanheusdeni Schedel, Friel & Schliewen 2014. This species was described from the Great 

Ruaha River drainage, a coastal East African drainage. It was included here for the first time in 

a molecular phylogenetic study, and, interestingly, it was recovered as a sister group of the Lake 

Tanganyika endemic Tropheini, suggesting for the first time a past connection between the 

proto-Malagarasi / Lake Tanganyia and the Great Ruaha River drainage.  

The last manuscript (chapter 5) presented in this thesis focused on the detection of ancient 

hybridization events among austrotilapiine cichlid lineages. Ancient hybridization and 

introgression are increasingly recognized to have played a key role in the evolutionary history 

of cichlids and might even have fueled the adaptive radiation of the Great African Lakes (Irisarri 

et al. 2018; Meier et al. 2017; Meier et al. 2019; Schwarzer et al. 2012a; Schwarzer et al. 2012b; 

Weiss et al. 2015). Using a combination of extensive molecular datasets including nuclear 

ddRAD data and mitochondrial genome data and applying different lines of evidence (D 

statistics and cyto-nuclear discordance) allowed not only to re-evaluate previously detected 

signals of hybridization but also led to the detection of numerous new potential hybridization 

events. Especially between and among the three major haplochromine lineages, the ‘extended 

serranochromines’, the ‘extended Pseudocrenilabrus-group’ and the ‘ocellated eggspot 

Haplochromini’, hybridization appears to be widespread. Particularly, lineages belonging to the 

polyphyletic genus Orthochromis appear to have been involved in different ancient 

hybridization events. Furthermore, several cases of ancient mitochondrial haplotype captures 

have been detected, e.g. for the aforementioned case of H. vanheusdeni, some of which, 

intriguingly, went without leaving an apparent nuclear genomic signature of introgression. This 
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important latter point highlights the importance of mitochondrial genome data for studying the 

evolutionary history of cichlids, even in the “age of phylogenomics”. In addition, the study 

aimed to clarify the comparability of divergence time estimates derived from different data, i.e. 

either obtained from data sets based on mitochondrial sequences or from massive nuclear 

(ddRAD) data sets. For a meaningful comparison, two reduced datasets have been generated, 

covering almost exactly the same representative taxon sampling. While one was based on 610 

nuclear ddRAD loci (alignment length: 113.578 bp), the other one was based on ten 

mitochondrial protein coding genes (alignment length: 7884 bp). Subsequently, two molecular 

clock analyses were conducted based on these two data sets under fully identical calibration 

schemes. Resulting divergence time estimates of the two analyses were largely congruent, as 

reflected, e.g., by widely or totally overlapping 95 % highest posterior density (HPD) intervals 

of the corresponding node ages; however, 95 % HPD intervals obtained from the nuclear dataset 

were generally wider than those obtained from the mitochondrial data. These results are in line 

with previous findings which had suggest that site rates of ddRAD loci and of mitochondrial 

DNA might be similar (see Near et al. 2018), and that that divergence time estimates obtained 

from these datatypes are likely to yield comparable estimates.  

 

 

 

 

 

 

 

 

 
 

27



Results 

 

Section 1: Diversity and taxonomy of cichlids in southern and central Africa with a focus 
on rheophilic taxa 
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Abstract

Hemibates koningsi, new species, is described from southern Lake Tanganyika (Republic of Zambia) as the second species 

of Hemibates Regan, 1920. Males of the new species are easily distinguished from H. stenosoma (Boulenger, 1901) based 

on their adult color pattern, i.e. black vertical bars on the anterior flanks part and posterior horizontal bands on a silvery-

whitish body coloration vs. an anterior flank color pattern of black blotches of variable number, size and shape and pos-

terior horizontal bands. Males and females of the new species are further distinguished by their longer lower pharyngeal 

jaw (37.6–38.2% HL vs. 27.8–32.5% HL) with a characteristically curved keel, which is straight or only slightly curved 

towards the tips in H. stenosoma. The new species has on average fewer gill rakers on the first gill arch than its only con-

gener (33–37 vs 35–43). 

Key words: Lake Tanganyika, Bathybatini, Hemibates, new species

Introduction

Lake Tanganyika, the deepest of the East African Great Lakes, harbors the most diverse cichlid species flock with 

regard to behavioral, phenotypic, and ancient genetic diversity (Muschick et al 2012). The monotypic deep-water 

genus Hemibates stenosoma Boulenger, 1901 is one of its least known and most enigmatic members of the ancient 

Lake Tanganyika cichlid flock. Like some of the closely related Bathybates species, H. stenosoma is an epibenthic 

shrimp and fish predator, inhabits depths between around 40 and 210 m, even approaching anoxic deepwater 

layers. Despite its lake-wide distribution it appears abundant only at the southern part of the lake, possibly because 

of its preference for very deep sandy and muddy bottoms, which are only oxygenated in the southern part of Lake 

Tanganyika (Poll 1956, Coulter et al. 1991). It is a maternal mouthbrooder, and, together with Bathybates vittatus, 

B. ferox and Petrochromis polyodon it is the cichlid with largest eggs (7.0 mm diameter) known so far (Kuwamura 

1986, Coulter et al. 1991, Duponchelle et al. 2008).

Species of Bathybates and Hemibates are sexually dimorphic with male species-specific flank color patterns, 

which have been suggested to play an important role in mate recognition and for reproductive isolation among 

closely related congeners (Kirchberger et al. 2012). The pattern of male H. stenosoma consists of black blotches of 

variable number, size and shape on the anterior flank, which are followed posteriorly by broad horizontal bands. 

Females are entirely silvery-whitish without any distinctive color pattern (Boulenger 1901, Coulter 1991). 

Interestingly, a second male color morph with black vertical bars instead of blotches on the anterior flanks followed 

by narrow horizontal bands had been reported from Chituta Bay (Zambia) by Konings (1998). He offered three 

alternative hypotheses with regard to that male phenotype: it could be (1) either an ontogenetic color phase that 

would develop only in large males, (2) a polychromatic species, i.e. with alternative coloration of all life history 

stages, as only large males with stripe pattern have been documented until then, or (3) it simply might represent a 

second Hemibates species (Konings 1998, 2015, Koblmüller et a. 2005). Koblmüller et al. (2005) in their mtDNA 

based investigation of Lake Tanganyika deepwater cichlids were unable to differentiate unambiguously between 

both phenotypes, but they had only one colored male and three females in their sample. Although they had detected 
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in Hemibates strongly divergent haplotypes as compared to the species of the genus Bathybates, they could not 

refer them to one of the two color morphs. 

Based on a preliminary inspection of a Hemibates sample from southern Lake Tanganyika (Mpulungu region) 

it became apparent that both phenotypes are not only distinguishable based on coloration but also exhibit 

differences in body shape and the lower pharyngeal jaw morphology. Morphological comparisons of this sample 

with the syntype series as well as genetic comparisons of a comparatively large sample support a view of species 

specific differences of the two phenotypes. Here, we present these data and describe the striped phenotype as a 

second Hemibates species. 

Material and methods

Material. Morphometric comparisons are based on 42 specimens of Hemibates stenosoma specimens including all 

syntypes and nine specimens of the new Hemibates species described in this paper from the following institutions: 

the Royal Museum for Central Africa, Tervuren, Belgium (MRAC); the Natural History Museum, London, United 

Kingdom (BMNH); the Bavarian State Collection of Zoology, Munich, Germany (ZSM). 

TABLE 1. Overview of meristics and their corresponding definitions based on: 1 = Barel et al. 1977, 2 = Dunz and 

Schliewen 2010, 3 = Schedel et al. 2014 and/or 4 = new or alternatively defined meristics.

Meristics: Short Definition: Recommended tool:

Dorsal-fin spines1 Total number of spinous rays radiograph

Dorsal-fin rays1 Total number of soft (branched) rays radiograph

Anal-fin spines1 Total number of spinous rays radiograph

Anal-fin rays1 Total number of soft (branched) rays radiograph

Pelvic-fin spines4 Total number of spinous rays stereomicroscope

Pelvic-fin rays4 Total number of soft (branched) rays stereomicroscope

Pectoral-fin rays2 Total number of soft (branched) rays stereomicroscope

Upper procurrent caudal fin 

rays4

Total number of upper procurrent caudal rays; only rays not 

connected to upper hypurals (3,4 and 5) are counted

radiograph

Lower procurrent caudal fin 

rays4

Total lower procurrent caudal rays; only rays not connected to lower 

hypurals (1 and 2) and parhypural are counted

radiograph

Caudal fin rays4 Total caudal rays, all caudal rays are counted (including rays on 

hypurals)

radiograph

Scales (horizontal line)2 Number of scales along the horizontal line from the edge of the 

opercle to the base of caudal fin; including the lower lateral line 

scales and excluding scales on the caudal fin

stereomicroscope

Upper lateral line scale2 Number of scales on the upper lateral line (only pored scales are 

counted)

stereomicroscope

Lower lateral line scales2 Number of scales on the lower lateral line (only pored scales are 

counted)

stereomicroscope

Circumpeduncular scales3 Circumpeduncular scales on the level of the 4th pored scale 

(posterior most scales = 1st scale, excluding pored scales on caudal 

fin) of the lower lateral line

stereomicroscope

Series of Scales on check1 Number of scales ventrally of eye counted on a vertical line 

(representing more or less horizontal rows)

stereomicroscope

Scales (horizontal line) on 

operculum3

Scales between edge of the postero-dorsal angle of the operculum to 

the anterior edge of the operculum where the preoperculum begins

stereomicroscope

Scales between lateral line 

and dorsal-fin origin3 

Scales between lateral line and dorsal fin origin (below insertion of 

the 1st dorsal fin spine); counted in a vertical alternating (zigzag) 

manner; excluding the pored lateral line scale

stereomicroscope

......continued on the next page
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Morphology and principal component analysis. Twenty-eight meristic characters were examined either 

based on stereomicroscope observations or on digital x-rays (Faxitron UltraFocus LLC x-ray unit), following either 

Barel et al. (1977), Dunz & Schliewen (2010) or Schedel et al. (2014), and some are new or are alternatively 

defined in this study; for a comprehensive list see Table 1. The anterior basis of flank scales of Hemibates might be 

covered with minute, cycloid to weakly ctenoid scales (Fig 4). Those minute scales were not included in 

squamation counts. In addition, we recorded several anatomical features concerning the caudal fin skeleton (state 

TABLE 1. (Continued)

Meristics: Short Definition: Recommended tool:

Scales between upper lateral 

line and last dorsal-fin spine3

Scales below insertion of last dorsal spine and upper lateral line; 

counted in a vertical alternating (zigzag); excluding the lateral line 

pored scale

stereomicroscope

Abdominal vertebrae1 Total number of abdominal vertebrae; bear laterally displaced 

parapophyses and lack closed hemal arches and spines

radiograph

Caudal vertebrae1 Total number of caudal vertebrae; lack parapohyses and pleural ribs 

and bear well-developed hemal and neural spines; urostyle is 

excluded from count

radiograph

Total number of vertebrae1 Total number of vertebrae excluding the urostyle radiograph

Teeth in upper outer row1 Total number of teeth in upper outer row stereomicroscope

Teeth in lower outer row4 Total number of teeth in lower outer row stereomicroscope

Teeth rows in upper jaw1, 3 Number of jaw tooth rows (one outer and one or more inner) in 

upper jaw; counted from behind the anterior tip of the premaxillae

stereomicroscope

Teeth rows in lower jaw1, 3 Number of jaw tooth rows (one outer and one or more inner) in 

lower jaw; counted from behind the anterior tip of lower jaw

stereomicroscope

Gill rakers (ceratobranchial)1, 

2

Number of gill rakers on the first (most rostral) ceratobranchial 

(lower) gill-arch are counted; excluding gill rakers on the 

cartilaginous plug (angle between ceratobranchial and epibranchial 

gill-arch)

stereomicroscope

Gill rakers (angle + 

epibranchial)2

Number of gill rakers on the first (most rostral) epibranchial (upper) 

gill-arch are counted; including gill rakers on cartilaginous plug

stereomicroscope

Total gill rakers4 Total number of gill rakers on the first (most rostral) gill-arch; 

including gill rakers form the ceratobranchial, cartilaginous plug and 

epibranchial 

stereomicroscope

Morphological features:

State of hypurals (1 and 2)3 (1) hypurals fused (seamless unit); (2) hypurals separated by a 

clearly visible seam but never fused into a single seamless unit; (3) 

hypurals separated.

radiograph

State of hypurals (2 and 3)3 (1) hypurals fused (seamless unit); (2) hypurals separated by a 

clearly visible seam but never fused into a single seamless unit; (3) 

hypurals separated.

radiograph

Position of the pterygiophore 

supporting last dorsal fin 

spine4

Recorded is the vertebra number (counted from anterior to posterior) 

at which pterygiophore of last dorsal fin spine is attached to the 

neural spines (inferred by proximity to the neural spine) of 

corresponding vertebrae (e.g. if pterygiophore is embedded between 

neural spines of 18th and 19th vertebrae the 18th vertebra is 

recorded)

radiograph

Position of pterygiophore 

supporting last anal fin spine4

Recorded is the vertebra number (counted from anterior to posterior) 

at which pterygiophore of last anal fin spine is attached to the hemal 

spine (inferred by proximity to haemal spine) of corresponding 

vertebrae; (e.g. if pterygiophore is embedded between hemal spine 

of 14th and 15th vertebrae the 15th vertebra is recorded; in rare cases 

hemal spine are not fully developed or the corresponding vertebra is 

still an abdominal vertebra)

radiograph
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of hypuralfusion), the pterygiophore insertion pattern of dorsal and anal fins see Table 1. Distance measurements 

followed either Barel et al. (1977), Dunz & Schliewen (2010) or Schedel et al. (2014) while one measurement 

(interpectoral width) is newly defined in this study; for a comprehensive list see Table 2. Measurements were taken 

point-to-point on the left side of specimens using digital caliper (accuracy of 0.01 mm) and were rounded to the 

nearest 0.1 mm. Head measurements taken are given as percentage of head length (HL), all remaining 

measurements are given as percentage of standard length (SL). Additionally, we took three measurements from X-

ray pictures of dissected lower pharyngeal jaws and which are given in percentage of the head length (HL). 

Principal component analysis (PCA) using a covariance matrix was performed with the statistical program PAST 

3.07 (Hammer et al. 2001) for 24 log transformed morphometric measurements indicated in Table 2. Scores of 

most informative principal components PC II and PC III are plotted against each other for visualization and 

variables contributing most to PC variation were identified using their loadings as tabulated.

TABLE 2. Overview of morphometric measurements and their corresponding definitions based on: 1 = Barel et al. 1977, 

2 = Dunz and Schliewen 2010, 3 = Schedel et al. 2014 and/or 4 = new or alternatively defined morphometric 

measurements.

Measurement: Short Definition: Used for PCA in 

this study (log-

transformed raw 

measurements):

Total length2 Distance between rostral tip of snout and an imaginary line drawn 

between the two lobe tips of caudal fin (bilobular length)

No

Standard length (SL)1, 2 Distance between rostral tip of snout and caudal-fin base at articulation 

(flexion point of hypurals at end of hypural plate)

X

Head length (HL) given in % SL1, 

2

Distance from the rostral tip of snout to the caudal end of the 

membranous border of operculum; interorbital width, minimal distance 

between orbits (membranous)

X

Given in % HL

 Interorbital width1, 2 Minimal distance between orbits (membranous) X

 Preorbital width2 Width between the left and right preorbital process X

 Horizontal eye length1, 2 Distance (excluding ligamentous ring) from the rostral point of the orbit 

(at lateroethmoid to lacrymal bone) to the ventral point (at sphenotic-

circumorbitals) of the postorbital process of the neurocranium

X

 Snout length1, 2 Distance from the rostral tip of upper lip to the rostral point of the 

membranous border of the orbit (as in the horizontal eye length but 

including the ligamentous ring)

X

 Internostril distance2 Minimum distance between the bases of the tubular nostrils X

 Cheek depth1, 2 Vertical distance from the rearmost point on the lower rim of the 

preopercle to the membranous margin of the orbit

X

 Upper lip length2 Distance from anterior tip of upper lip (at symphysis of upper jaw) to

posteriormost point of upper lip

X

 Lower lip length2 Distance from anterior point of lower lip (at symphysis of lower jaw) to 

posteriormost point of lower lip

X

 Lower lip width2 Horizontal distance from left to right distal corner of lower lip (taken 

across the width of the head)

X

 Lower jaw length1, 2 Distance from the rostral to the caudal tip of the retroarticular process 

marked by the insertion of the well-developed interopercular-

mandibular ligament

X

 Lower pharyngeal jaw length1, 4 Measurements are taken from radiographs or digital pictures; measured 

from the rostral point of the element (seen on its dentigerous area) 

perpendicularly to the line connecting the caudal tips of the horns

No

......continued on the next page
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Molecular methods and phylogenetic analysis. Fin clips were taken from freshly caught (dead) specimens 

obtained from local fishermen. Each specimen was photographed and subsequently fixed in formalin roughly 

following suggested sample procedures of Neumann (2010). Extraction of total genomic DNA was done by using 

the DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer´s protocol. Amplification of the 

mitochondrial protein coding gene ND2 (NADH dehydrogenase subunit 2) of 21 specimens was performed using 

the primer pair ND2Met/ND2Trp (Kocher et al. 1995) and the PCR protocol of Schwarzer et al. (2009). PCR 

products were purified using ExoSAP-IT (Affymetrix). Sequencing was performed using the Big Dye 3.1 

sequencing chemistry (Applied Biosystems) on an ABI 3730 48 capillary sequencer (Applied Biosystems) at the 

Sequencing Service Unit of the Ludwig Maximilians Unversity Munich, Germany. Quality control and sequence 

editing based on electropherograms was done in Geneious v.7.05 (http://www.geneious.com, Kearse et al., 2012) 

and uploaded to Genbank (see Table 3 for Genbank IDs). In addition, our data set was complemented with 30 

sequences from GenBank (see Table 3 for Genbank IDs) of the genera Bathybates (N=20), Hemibates (N=4) and 

Trematocara (N=6). The 51 sequences were then aligned using the Geneious Alignment tool (implemented 

Geneious, default settings) and subsequently trimmed to a uniform length of 900 bp. Maximum likelihood (ML) 

analysis was performed on the CIPRES Science Gateway (Miller et al. 2010) using RAxML v8.2.6 (Stamatakis 

2014). For doing so the alignment was partitioned into the first, second and third codon position and the 

substitution model GTR + Gamma was applied. Trematocarini and Bathybatini (including Hemibates) were 

recovered as sister groups in several phylogenetic studies bases on mitochondrial and as well on nuclear data (e.g. 

Salzburger et al. 2002, Koblmüller et al. 2005, Weiss et al. 2015, Takahashi & Sota 2016). Therefore, Trematocara

TABLE 2. (Continued)

Measurement: Short Definition: Used for PCA in 

this study (log-

transformed raw 

measurements):

 Lower pharyngeal jaw width1, 4 Measurements are taken from radiographs or digital pictures; distance 

between the caudal tips of the horns is measured

No

 Width of dentigerous area of  

 Lower pharyngeal jaw1, 4

Measurements are taken from radiographs or digital pictures; distance 

between the lateral margins of the most lateral left and right teeth (or 

tooth-sockets).

No

Given in % SL

 Predorsal distance2 Horizontal length from anterior tip of upper lip (at symphysis of the 

upper jaw) to the insertion of the first dorsal-fin spine

X

 Dorsal fin base length2 Length of dorsal-fin base distance between rostral and caudal base X

 Last dorsal-fin spine length2 Length of last dorsal-fin spine from the insertion to its distal end X

 Anal-fin base length2 Length of anal-fin base distance between the rostral and caudal base X

 Third anal-fin spine length2 Length of third anal-fin spine, from the insertion to its distal end X

 Pelvic fin length2 Distance between insertion of pelvic-fin spine and distal end of longest 

pelvic-fin ray

No

 Pectoral fin length1, 2 Distance from insertion of uppermost pectoral-fin ray to distal end of 

longest ray

X

 Caudal peduncle depth1, 3 Measured on the level of the 4th scale (posterior most scales = 1st scale, 

excluding pored scales on caudal fin) of the lower lateral line

X

 Caudal peduncle length1, 2 Horizontal distance between the vertical line through the caudal most 

point of the anal-fin base to the end of hypural plate

X

 Body depth (pelvic fin base)1, 2 Body depth at the pelvic-fin base X

 Preanal length2, 4 Distance between the rostral tip of symphysis of lower jaws and the 

posterior edge of the anus

X 

 Anus-anal fin base distance2 Distance between caudal border of anus and the articulation of first 

anal-fin spine

X

 Interpectoral width4 Distance between pectoral fin base to pectoral fin base X
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was chosen as outgroup for our RAxML analysis. Bootstrap analysis was automatically halted by RAxML 

(majority rule criterion) after 360 replications. Based on male color pattern and lower pharyngeal shape we 

assigned our Hemibates to one of the two phenotypes and subsequently compared mitochondrial haplotype clade 

position of corresponding specimens in our phylogenetic tree. Moreover, Kimura 2-parameter (K2P) genetic 

distances for Hemibates and Bathybates species were computed in MEGA7 (Kumar, Stecher, and Tamura 2015) 

under inclusion of all codon positions (pairwise deletion of ambiguous positions).

Results

PCA based on distance measurements (Fig. 1). In the PCA which was based on 24 morphometric measurements 

and included 51 Hemibates specimens (Fig. 1), PC I explained 92.8%, PC II explained 3.0%, and PC III explained 

1.1% of the total variance. Factor loadings contributed to PC II were anus-anal fin base distance, interpectoral 

width and preorbital width and to PC III lower lip width, interpectoral width, and caudal peduncle length (see Table 

4 for factor loadings PCI-PCIII). Hemibates koningsi sp. nov. and Hemibates stenosoma are mainly separated on 

the basis of low PC III scores for H. koningsi sp. nov. and high PC III scores for H. stenosoma. The separation is 

amongst others largely based on a combination of morphometric measurements derived from the head such as 

upper lip length, lower lip length, lower lip width, preorbital width, interorbital width and lower jaw length but also 

on the interpectoral width. In summary, the 24 morphometric measurements are able to separate the two 

phenotypes adding convincing support for the presence of a second Hemibates species. 

TABLE 4. Factor loadings of PCI-III for all investigated specimens (N=51, see Fig. 1). Highest loadings for each 

principal component indicated in boldface.

Meristic PC I PC II PC III

Standard length (SL) 0.20303 -0.011832 0.14864

Head length (HL) 0.19016 0.0056058 0.11758

Interorbital width 0.21972 0.0051824 0.26492

Preorbital width 0.22876 0.11397 -0.27411

Horizontal eye length 0.14778 -0.041001 0.15605

Snout length 0.2225 0.018887 -0.11361

Internostril distance 0.2066 0.054075 -0.027884

Cheek depth 0.2219 -0.011182 -0.0074499

Upper lip length 0.1975 0.11241 -0.16631

Lower lip length 0.18381 0.074297 -0.05131

Lower lip width 0.24116 0.060872 -0.45202

Lower jaw length 0.19037 0.068581 -0.050568

Predorsal distance 0.19676 -0.003764 0.15084

Dorsal fin base length 0.20902 0.047596 0.12104

Last dorsal fin spine length 0.17373 0.097398 0.024946

Anal fin base length 0.21745 0.00035501 0.30765

Third anal fin spine length 0.14675 0.034523 0.19993

Pectoral fin length 0.18435 0.075813 0.063969

Caudal peduncle depth 0.20252 -0.0032082 0.10919

Caudal peduncle length 0.21662 -0.027686 0.32076

Body depth 0.22296 0.030802 0.064003

Preanal length 0.19331 0.017534 -0.0021079

Anus-anal fin base distance 0.22625 -0.92356 -0.22612

Interpectoral width 0.22352 0.28542 -0.44353

Eigenvalue 0.246735 0.008061 0.002882

% variance 92.812 3.0322 1.0842
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FIGURE 1. PCA scatter plot based on 24 morphometric measurements, species score limits visualized as convex hulls (N=51). 

PCII vs. PCIII. PC II explains 3.0% of the variance while PC II explains 1.1%. Dots = Hemibates koningsi sp. nov., diamond = 

holotype of Hemibates koningsi sp. nov., squares = Hemibates stenosoma, triangles = syntypes of Hemibates stenosoma.

FIGURE 2. Maximum likelihood tree (RAxML; substitution model GTR + Gamma) of the Lake Tanganyika endemic cichlid 

genera Hemibates (2 species), Bathybates (7 species) and Trematocara (5 species) as outgroup based on 51 mitochondrial 

protein coding gene ND2 haplotypes (900 bp). Numbers at nodes represent bootstrap (BS) values based on 360 bootstrap 

replications. Black circles represent BS values of 100. BS values below 50 are not shown. Representative species and 

specimens depicted from the top to bottom: male Hemibates koningsi sp. nov. (ZSM 45056, DRC-2012/3138), female 

Hemibates koningsi sp. nov. (ZSM 44566, DRC-2012/3275), male Hemibates stenosoma (ZSM 44573, DRC-2012/3211), 

female Hemibates stenosoma (ZSM 44567, DRC-2012/3126), Bathybates graueri, Bathybates fasciatus, Bathybates vittatus, 

Bathybates leo, Bathybates minor, Trematocara macrostoma and Trematocara unimaculatum.
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ML phylogenetic analysis of mtDNA haplotypes (Fig. 2).  ML-analysis of ND2 data resulted in reciprocal 

monophyly of both genera, Hemibates and of Bathybates with high bootstrap support (100). Intrageneric 

relationships of Bathybates were largely congruent with previous mtDNA based hypotheses, i.e. with B. minor

being the sister group of all remaining Bathybates species. In contrast to earlier results B. ferox was placed as 

sistergroup to a clade including B. fasciatus and B. horni instead to B. vittatus and B. leo. These relationships, 

however, were not well supported in our study nor in a previous study of Koblmüller et al. (2005). Within 

Hemibates two clades were recovered with high support. The first clade (BS 97) includes ND2-haplotypes of either 

males (N=8) with the blotch pattern or those of uniformly colored specimens (N=4) which had the same straight 

pharyngeal jaw phenotype as the blotched specimens. These are assigned to Hemibates stenosoma, because the 

syntype series is homogenous with regard to pharyngeal jaw morphology and the single male is a blotched 

specimen. The second clade (BS 99) included mainly males of the stripe coloration phenotype (N=8) and one 

female which had the curved pharyngeal jaw phenotype as our striped specimens. The four ND2-sequences 

generated by Koblmüller et al. (2005) fell into both clades, one into the stripe-clade (H. koningsi sp. nov.) and 

three into the blotch-clade (H. stenosoma), supporting the view that the two clades of Koblmüller et al. 2005 

indeed belong to the same two phenotypes as those of our sample. The average K2P distance within Hemibates was 

1.9% and of Bathybates 6.5%. The K2P distance between Hemibates and Bathybates was 13.1%, while K2P 

distances between Bathybates species varied between 3.2% (B. leo and B. vittatus) and 11.9% (B. ferox and B. 

minor); K2P distance between H. stensoma and H. koningsi sp. nov. was 3.6%, which is comparable to the range 

found for species pairs in the sister lineage Bathybates. 

Hemibates koningsi sp. nov.

Hemibates sp. “stenosoma zambia” Konings 2015 

Holotype. ZSM 45056 (1, 192.2 mm SL, male, DRC-2012/3138) Zambia, Northern Province, Lake Tanganyika, 

Mpulungu basin, no exact locality data available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. 

Schedel, 28.VIII.2015

Paratypes. BMNH 2016.9.1.2. (1, 153.5 mm SL, males, DRC-2012/3242), Zambia, Northern Province, Lake 

Tanganyika, Mpulungu basin, no exact locality data available, purchased in Inguenyo fish market, Mpulungu (-

8.73°/31.11°), F. Schedel, 05.IX.2015. MRAC 2017-005-P-0001 (1, 154.2 mm SL, males, DRC-2012/3103), 

Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data available, purchased in 

Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 23.VIII.2015. ZSM 44570 (1, 162.5 mm SL, male, 

DRC-2012/3186), Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data available, 

purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 01.IX.2015. ZSM 44565 (1, 150.8 mm 

SL, male, DRC-2012/3243), Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data 

available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 05.IX.2015. ZSM 44566 (1, 

141,9 mm SL, female, DRC-2012/3275) Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact 

locality data available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 07.IX.2015. 

ZSM 44571 (1, 99.9 mm SL, male, DRC-2012/3179) Zambia, Northern Province, Lake Tanganyika, Mpulungu 

basin, no exact locality data available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 

31.VIII.2015. ZSM 44677 (1, 106.1 mm SL, male, DRC-2012/3139) purchased with holotype. ZSM 44678 (1, 

217.4 mm SL, males, DRC-2012/3104), Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact 

locality data available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 23.VIII.2015. 

Differential diagnosis. Adult males of the Hemibates koningsi can be distinguished from H. stenosoma, the 

only congener, by a flank color pattern of four to seven black vertical bars (two to three flank-scales wide) on the 

anterior flank region and five horizontal bands (one to two, rarely three flank-scales high) on the posterior flank 

region vs. black blotches of variable number, size and shape at the anterior part of the flanks and five (rarely four) 

horizontal bands in H. stenosoma. They can further be distinguished by the fourth horizontal band (counted from 

dorsal to ventral) starting below pectoral fin base sometimes before and extending to caudal fin base in H. koningsi

vs. normally ending well before caudal fin base in Hemibates stenosoma. Moreover, both species exhibit a black 

band on dorsal fin membrane along the dorsal-fin base, which is however wider and more pronounced in H. 

koningsi males. Females as well as males of the new species can be unambiguously separated from H. stenosoma
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by their longer lower pharyngeal jaw (37.6–38.2% HL, N=4 vs 27.8–32.5% HL, N=7) with a characteristically 

curved keel (distinctive bulge ventrally of the keel), which contrasts with the more or less straight keel of H. 

stenosoma, which is only rounded towards the tip (Fig. 4). Meristics of H. koningsi overlap with those of 

Hemibates stenosoma, but the new species on average has fewer gill rakers on the first gill arch (33–37 vs. 35–43). 

Ranges of morphometric measurements of the new species overlap with those of H. stenosoma, but H. koningsi

tend to have longer lower jaws (44.0–47.1% HL vs 39.22–45.9% HL), longer upper lips (32.6–36.7% HL vs 27.6–

33.6% HL) and longer lower lips (34.5–37.8% vs 30.1–36.0% HL). 

 

FIGURE 3. Hemibates koningsi sp. nov. A. Holotype, shortly after collection B. Holotype, ZSM 45056, DRC-2012/3138, 

192.2 mm SL; Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data available, purchased in 

Inguenyo fish market, Mpulungu C. radiograph of holotype.
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Description. Morphometric measurements and meristic characters based on type specimens. Values and 

corresponding ranges presented in Table 5. For general appearance see Figs. 3 and 4. Maximum recorded total 

length of wild caught specimen (male) 262.2 mm with corresponding SL of 217.4 mm. Laterally compressed and 

relatively deep-bodied species with maximum body depth (31.6–34.8% SL) slightly behind dorsal-fin origin, 

decreasing towards caudal peduncle. Ratio of caudal peduncle length to depth: 1.55–1.92. Head length about one 

third of standard length. Dorsal head profile moderately concave with slightly visible premaxillary pedicel 

prominence. No nuchal gibbosity present. Eyes round, eye diameter less than one third of head length (26.2–31.1% 

HL) and larger than interorbital width. Jaws isognathous to slightly prognathous, lower jaw slightly protruding and 

comparatively narrow. Mouth strongly oblique. Posterior tip of maxilla not reaching level of eye. Lower lip 

anteriorly wider than upper lip. Lips not noticeably enlarged or thickened. Lachrymal with five sensory-canal 

pores. Two separate lateral lines. 

TABLE 5. Measurements & counts for holotype and paratypes of Hemibates koningsi sp. nov. 

Measurements holotype holotype + paratypes

min Max SD n

Total length (mm) 235.5 124.6 262.2 9

Standard length SL (mm) 192.2 99.9 217.4 9

Head length HL (mm) 63.17 33.1 72.3 9

% HL

 Interorbital width 21.1 20.9 23.5 0.9 9

 Preorbital width 29.7 27.9 31.5 1.2 9

 Horizontal eye length 26.5 26.2 31.1 1.4 9

 Snout length 32.6 31.5 33.3 0.6 9

 Internostril distance 16.5 15.2 18.4 0.9 9

 Cheek depth 26.7 22.6 26.7 1.3 9

 Upper lip length 36.1 32.6 36.7 1.2 9

 Lower lip length 35.8 34.5 37.8 1.1 9

 Lower lip width 24.8 21.7 26.6 1.5 9

 Lower jaw length 46.0 44..0 47.1 0.8 9

 Lower pharyngeal jaw length - 37.6 38.2 0.3 4

 Lower pharyngeal jaw width - 18.3 21.0 1.2 4

 Width of dentigerous area of Lower pharyngeal jaw - 12.9 14.7 0.8 4

% SL

 Predorsal distance 36.3 35.2 37.4 0.8 9

 Dorsal fin base length 50.2 47.6 50.5 1.0 9

 Last dorsal fin spine length 14.8 11.7 16.2 1.4 9

 Anal fin base length 19.0 17.9 19.8 0.7 9

 Third anal fin spine length 10.0 9.6 12.3 1.0 9

 Pelvic fin length 28.4 24.4 39.1 4.3 9

 Pectoral fin length 29.5 27.5 30.7 1.1 9

 Caudal peduncle depth 11.2 10.7 12.0 0.4 9

 Caudal peduncle length 20.0 18.4 20.9 0.9 9

 Body depth (pelvic fin base) 34.2 31.6 34.8 1.1 9

 Preanal length 62.5 61.8 67.0 1.7 9

 Anus-anal fin base distance 3.3 1.8 3.9 0.6 9

 Interpectoral width 12.0 9.7 12.4 0.9 9

......continued on the next page
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Squamation. Flanks and dorsum covered with relatively large weakly ctenoid scales. Anterior base of some 

flank scales covered with minute, cycloid or weakly ctenoid scales (Fig. 4). Cycloid scales of ventral belly region 

smaller than on flanks. Cycloid chest scales, especially ventrally, smaller than flank scales; smallest scales on 

isthmus. Snout scaleless. Interorbital, nape and occipital region with slightly smaller scales than on flanks. Cheeks 

covered by one to three rows of cycloid scales about size of ventral belly scales. Operculum covered with ovoid 

and cycloid scales of variable size (small to about size of flank scales). Three to six scales on vertical line starting 

form edge of posterior-dorsal angle of operculum to anterior edge of operculum. Caudal fin scales small and 

becoming minute more caudally; scaled area may extend to more than half of the caudal fin. 

Upper lateral line with 58–69 scales, lower lateral line with 35–43 scales and horizontal line with 60–65 scales 

plus one to three pored scales on caudal fin. Upper and lower lateral lines separated by three scales. Seven to eight 

scales between dorsal-fin origin and upper lateral line. 28–32 scales around caudal peduncle. 

Jaws, dentition and gill rakers. Anterior teeth of outer row of lower and upper jaw unicuspid and widely and 

irregularly set. Teeth becoming smaller, less widely spaced and more regularly set towards mouth angle. Individual 

unicuspid teeth comparatively slender and slightly recurved with acutely pointed brownish crowns. Outer row of 

upper jaw with 67–84 teeth and outer row of lower jaw with 48–67 teeth in specimens between 99.9 and 217.4 mm 

SL. Neither number of teeth in the lower jaw nor of upper jaw is significantly correlated with SL (Pearson 

Correlation Coefficient: r-score for SL against number of teeth in the lower jaw -0,24593, p = 0.174533; r-score for 

TABLE 5. (Continued)

Counts holotype holotype + paratypes

min Max SD n

 Dorsal fin spines 15 14(3); 15(6) 9

 Dorsal fin rays 14 13(1); 14(4), 15(4) 9

 Anal fin spines 3 3(9) 9

 Anal fin rays 13 12(5); 13(2); 14(2) 9

 Pelvic fin spines 1 1(9) 9

 Pelvic fin rays 5 5(9) 9

 Pectoral fin rays 13 13(6); 14 (3) 9

 Upper procurrent caudal fin rays 9 8(1); 9(7); 10(1) 9

 Lower procurrent caudal fin rays 10 9 (2); 10(7) 9

 Caudal fin rays 34 33(1); 34(1); 35(6); 36(1) 9

 Scales (horizontal line) 62 60(1); 61(3); 62(2); 63(1); 65(1) 8

 Upper lateral line 65 58(1); 62(1); 63(1); 67(2); 69(2) 8

 Lower lateral line 39 35(1); 36(4); 39(2); 43(1) 8

 Circumpeducular 28 28(3); 30(4); 32(1) 8

 Series of Scales on check 3 1(1); 2(5); 3(3) 9

 Scales (horizontal line) on operculum 5 3(2); 4(2); 5(3); 6(2) 9

 Scales between lateral line and dorsal fin origin 7 7(4); 8(5) 9

 Scales between upper lateral line and last dorsal fin 

spine

5 5 (8) 8

 Abdominal vertebrae 16 16(8);17(1) 9

 Caudal vertebrae 18 17(2); 18(7) 9

 Total number of vertebrae 34 33(1); 34(8) 9

 Teeth in upper outer row 69 67(1); 69(1); 70(1); 72(1); 75(1); 77(1); 83(1); 

84(2) 

9

 Teeth in lower outer row 58 41(1); 48(1); 51(1); 52(1); 56(1); 58(1); 59(1); 

64(1); 67(1)

9

 Gill rakers (ceratobranchial) 28 26(4); 27(2); 28(3) 9

 Gill rakers (angle + epibranchial) 8 7(4); 8(3), 9(2) 9
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SL against number of teeth in upper jaw -0,32063, p= 0.399645). Unicuspid teeth of inner tooth rows smaller than 

those of outer rows, upper jaw with one or two inner tooth rows and lower jaw with single inner tooth row. Lower 

pharyngeal bone (Fig. 5) about 1.8 to 2.1 times longer than broad. Width of dentigerous area of lower pharyngeal 

bone 0.3 to 0.4 times length of lower pharyngeal bone length, with 26–27 teeth along posterior margin of 

dentigerous area. Individual teeth slender, beveled (i.e. bicuspid), with its labial side featuring several cusp 

protuberances, and always with a pointed major cusp. Lower pharyngeal jaw teeth largest along posterior margin of 

dentigerous area and becoming smaller towards the keel, anterior teeth slender and beveled sometimes unicuspid. 

Keel of lower pharyngeal bone characteristically curved with distinctive bulge on ventral keel. Total gill raker 

count 33–37, with six to eight epibranchials, one angle (cartilaginous plug) and 26–28 ceratobranchial rakers. 

Individual rakers long and slender. Smallest rakers anterior of ceratobranchial increasing in size towards 

cartilaginous plug. Gill raker of cartilaginous plug smaller than neighboring creatobranchial rakers. Epibranchial 

rakers decreasing in size dorsally.

FIGURE 4. Hemibates koningsi sp. nov. A. Arrangement and morphology of oral jaw teeth (Holotype, ZSM 45056, DRC-

2012/3138, 192.2 mm SL) B. Flank scales with minute, cycloid to weakly ctenoid scales on their anterior basis (holotype) C.

Female Hemibates koningsi sp. nov, shortly after collection, ZSM 44566, DRC-2012/3275 141.9 mm SL; Zambia, Northern 

Province, Lake Tanganyika, Mpulungu basin, no exact locality data available, purchased in Inguenyo fish market, Mpulungu.

Fins. Dorsal fin XIV-XV, 13–15. First dorsal-fin spine shortest. Dorsal-fin base length 47.6–50.5% SL. Dorsal-

fin rays of mature males extending to around level of caudal fin base whereas in young males (< 106 mm SL) and 

in females rays only extending to around the first half of caudal peduncle. Anal-fin rays not reaching caudal fin 

base in young males and in females, but reaching about first half of caudal peduncle. Anal fin III, 12–14; third anal-

fin spine longest. Anal-fin base shorter (17.9–19.8% SL) than pectoral-fin length (27.5–30.7% SL). Pectoral fin 

with 13 or 14 rays; longest pectoral-fin ray (fifth ray, counted from dorsally to ventrally) more or less slightly 
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exceeding level of anus. Pelvic-fin base posterior to pectoral-fin base, separated by roughly three to five flank scale 

widths. Pelvic fin with one spine and five rays; first pelvic-fin ray longest, variably elongated in mature males, 

either terminating slightly before anal-fin origin or exceeding it slightly; in females and young males only slightly 

exceeding level of anus. Caudal-fin outline furcate and composed of 34–36 rays (16 principal caudal fin rays and 

18 to 20 procurrent caudal fin rays).

Vertebrae and caudal fin skeleton (Fig. 3). Total vertebrae 33–34 (excluding the urostyle), with 16–17 

abdominal and 17–18 caudal vertebrae. Pterygiophore supporting the last dorsal-fin spine located between the 

neural spines of the thirteenth and fourteenth vertebrae or of the fourteenth and fifteenth vertebrae. Pterygiophore 

supporting the last anal-fin spine located between hemal spines of seventeenth and eighteenth vertebrae, rarely 

between rips of the fourteenth (abdominal) vertebrae and hemal spine of the fifteenth (caudal) vertebrae. One 

single predorsal (supraneural) bone present. Hypurals 1 and 2 and hypurals 3 and 4 always fused into a single 

seamless unit. 

Coloration in life (based on field photographs of freshly caught adult specimens; Fig. 3 and 4).

Pronounced sexual color dimorphism present. Males with distinct color pattern of black vertical bars (between 

two and three flank-scales wide) and horizontal bands (between one and two, rarely three flank-scales high). Body 

ground coloration silvery-whitish. Iris of eyes whitish with dusky areas. Cheeks, operculum and dorsum of freshly 

caught specimens sometimes in light purplish iridescent. Dorsal head surface, dorsal area of nape and area just 

below dorsal fin base dusky greyish-brown. Preorbital area whitish to dusky. Cheek with blackish horizontal stripe 

of variable shape and width below eye. Second horizontal stripe on ventral part of preoperculum, intraoperculum, 

and lower jaw, fused at the mental area with corresponding stripe of other side. Area between those stripes whitish 

including ventral area between lower jaws (area of the musculus genio-hyoideus) and ventral parts of 

branchiostegal membrane. Operculum and suboperculum with two blackish vertical elements of variable shape and 

width. Four to seven blackish vertical bars at anterior part of flanks with first bar situated just behind gill cover; if 

seven vertical bars shape of most posterior bar blotchlike. Five horizontal bands present. Dorsalmost one in most 

specimens shortest starting on the level of first (anterior) dorsal-fin ray or behind it, extending to caudal fin base 

and dorsal caudal peduncle area, there fusing with the horizontal band of the other side. Second and third horizontal 

band (counted from dorsal to ventral) commencing anterior to dorsalmost horizontal band; third band sometimes 

commencing before second horizontal band and extending to caudal fin base. Fourth horizontal band commencing 

below pectoral-fin base, sometimes even before, and extending to caudal fin base while fusing ventrally of caudal 

peduncle with the corresponding band of other side. Most ventral horizontal band extending from gill cover to the 

anal fin base. Vertical bars in most cases ventrally fused with horizontal bands. Dorsal-fin membrane with black 

band along base, commencing at level of third or fourth dorsal-fin spine and extending to soft-rayed area of dorsal 

fin; above this black band, a smaller whitish or turquoise iridescent band; margin of dorsal-fin membrane black. 

Anal-fin membrane with blackish or whitish areas of variable extent; soft rayed part with one to three conspicuous 

markings; eggspot-like markings of ovoid shape and of greyish to whitish color and a blackish outline. Caudal-fin 

membrane white with black horizontal elements, which might be partially fused. Pectoral fin whitish hyaline. 

Pelvic fin whitish to greyish, posterior part of rays black. 

Females almost entirely silvery white without any striking color pattern. Cheeks, operculum and dorsum of 

freshly caught specimens iridescent light purple. Chest and belly whitish. Iris of eye whitish. Dorsal head surface, 

dorsal area of nape and areas just below dorsal-fin base dusky (light greyish-brown to silvery) but less prominent 

than in males. Anal, pelvic and pectoral whitish. Caudal fin whitish to dusky. Dorsal fin membrane whitish to 

dusky, margin of membrane between tips of spines and rays darkish. 

Coloration of juveniles unknown. Two subadult males (99.9 & 106.1 mm SL) with a less contrasting flank 

coloration than adults males, i.e. with vertical bars only slightly visible and horizontal bands almost invisible. 

Coloration in alcohol. (Fig. 3) 

Overall color pattern of vertical bars, horizontal bands, and head stripe elements comparable to fresh male 

specimens but dark brown. Body ground coloration in male and female beige, only ventral region might appear 

whitish. Dorsal head surface brownish.
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FIGURE 5. Pharyngeal jaws of the Hemibates stenosoma and H. koningsi sp. nov. A. Lateral view of pharyngeal jaws of H. 

stenosoma from the top to bottom: BMNH 1906–9–6–77–78 (syntype); ZSM 44567, DRC-2012/3124; ZSM 44564, DRC-

2012/3116 B. Lateral view of pharyngeal jaws of Hemibates koningsi sp. nov. paratypes from the top to bottom: MRAC 2017–

005–P-0001, DRC-2012/3103; ZSM 44570, DRC-2012/3186; ZSM 44565, DRC-2012/3243 C. Dorsal view of the lower 

pharyngeal jaw of Hemibates koningsi sp. nov. (MRAC 2017–005–P-0001, DRC-2012/3103, paratype), left: radiograph, suture 

of lower pharyngeal jaw straight, right: same lower pharyngeal jaw photographed through a stereomicroscope.
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Distribution and biology. Hemibates koningsi is known only from the southern part of Lake Tanganyika from 

around Mpulungu and the Chituta Bay and appears to be epibenthic. It is caught with gill nets at depths between 40 

and 150 meters, mainly between 40–60 meters, along with Hemibates stenosoma (pers. com J. Chanda, fisherman 

from a village near Kalambo river mouth). No stomach investigation was conducted, as they appeared to be empty 

in X-ray pictures, Hemibates koningsi appears to be rare compared to H. stenosoma: two and a half weeks of daily 

inspection of daily artisanal catches in August/September (23.08.2015–09.09.2015) yielded only a maximum of 

zero to two individuals per day of H. koningsi but hundreds of H. stenosoma (identification based on male color 

pattern). This might explain why both Hemibates species are named Mpande (or “Mhpandi” in Konings (2015) in 

Bemba language and are not differentiated by the local fishermen although both species are highly appreciated. 

Further, Hemibates catches appear to be sex-biased, with either males or females dominating single catches; this 

suggests sex specific schooling and homing (pers. obs., pers. comm. Joseph Chanda).

Etymology. The species is named for the first person who recognized the new Hemibates species as a distinct 

phenotype, Ad Konings, in appreciation of the inspiration to many cichlidophiles that arose from his continued 

popular and scientific contributions.

Discussion

Initially, the approximately 250 endemic cichlid species of Lake Tanganyika were classified into twelve tribes by 

Poll (1986) based on morphology. Revisions by Takahashi (2003) and Koblmüller et al. (2008) recognized 16 

different clades based on anatomical features and molecular data, respectively. Especially the tribal assignment of 

the deepwater genera of Bathybates Boulenger, 1898, Hemibates Regan, 1920 and Trematocara Boulenger, 1899

was debated. Poll (1986) placed Trematocara into the tribe Trematocarini and the two genera Bathybates and 

Hemibates into the tribe Bathybatini whereas Takahahsi (2003) assigned all three genera into a single tribe 

Bathybatini. In contrast, Koblmüller et al. (2008) suggested placing each genus in a separate tribe. Recent studies 

mainly follow the classification of Poll (1986) placing Hemibates and Bathybates into Bathybatini and 

Trematocara in Trematocarini (e.g. Weiss et al. 2015, Takahashi & Sota 2016). Bathybatini and Trematocarini 

represent comparatively old lineages within the East African Radiation (e.g. Koblmüller et al. 2005, Weiss et al.

2015, Takahashi & Sota 2016). Since the genus Hemibates was established in 1920 by Regan with Hemibates 

stenosoma as the type species, only one additional species has been described in this genus, Hemibates bellcrossi

Poll, 1976; however, this species was soon transferred to Limnochromis (Bailey & Stewart 1977) rendering 

Hemibates monotypic again. While the presence of a potential second Hemibates species, which is herein 

described as Hemibates koningsi, from southern Lake Tanganyika was known for some time (e.g. Konings 1998, 

2015, Koblmüller et al. 2005) the status of this species had remained unstudied due to lack of morphological data 

and problems with correct assignment of molecular data to one of the two species (color morphs at that time). In 

addition to their distinct male color pattern, we identified several morphological and genetic characters 

differentiating the two. The species-specific color pattern is already exhibited by male H. koningsi with an SL of 

about 10 cm, i.e. by the smallest specimens available. Male nuptial coloration in cichlids plays an important role 

for species recognition and assortative mating and hence for the maintenance of reproductive isolation (Maan et al.

2004, Genner et al. 2007). The evolution of distinctive color patterns appears to be influenced by several 

mechanisms of sexual selection mediated through male-male competition and female mate choice (Seehausen & 

Schluter 2004, Knight & Turner, 2004). Interestingly, male color pattern of agamous cichlids proved to be a very 

useful character for differentiating Bathybates species despite the limited spectral light environment with only blue 

and green wavelengths penetrating deeper than around 20m. Apparently this limitation is compensated by 

increasing color pattern contrast rather than by color diversity, a tendency, which is equally present in ecologically 

analogous deepwater cichlids of Lake Malawi, i.e. members of the haplochromine genus Diplotaxodon (Genner et 

al. 2007). As both Hemibates species live sympatrically in the deep benthic habitats of southern Lake Tanganyika 

the strikingly different male color patterns of H. stenosoma and H. koningsi might have evolved to enhance 

reproductive isolation among those apparently ecologically different species. Both Hemibates species differ 

ecophenotypically in the morphology of their lower pharyngeal jaw bones and in mean gill raker number, which 

points to differences in the prey type. 

Analogously in Bathybates, some species mainly feed on clupeids in the shallow pelagic region whereas others 
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rather prey on cichlids and have different depth preferences (Konings et al. 2015, Coulter 1991). Information 

concerning depth preferences of H. koningsi is restricted to statements of local fishermen, who report H. stenosoma

to be caught mainly between 75–150 meters (pers. com J. Chanda), which agrees with previous studies reporting a 

peak of H. stenosoma catches at around 120 meters and deeper (Coulter 1991). In contrast, H. koningsi apparently 

prefers depths of only 40–60 meters (J. Chanda, pers. comm.). Konings (1998, 2015) stated that specimens of the 

stripped Hemibates (H. koningsi). might attain a larger size than its congener. Our results do not support this 

assumption, because our largest specimen had attained only 217.4 mm SL, whereas Coulter (1991) reports a 

maximum length of 330 mm for Hemibates stenosoma. Additional samples of H. koningsi might pinpoint the 

maximum size of H. koningsi, while examination of gut contents would help identifying alternative prey 

preferences of the two sympatric Hemibates species. 

Comparative material examined

Hemibates stenosoma (Boulenger 1901): BMNH 1906.9.6.77–78 (1, 144.9–174.2 mm SL, females, syntype), 

Zambia, South end of Lake Tanganyika, no GPS data available, J. Moore. BMNH 1906.9.6.79 (1, 189.9 mm SL, 

male, syntype), Tanzania, Maswah, South of Ujiji, no GPS data available, J. Moore. BMNH 1906.9.8.150 (1, 203.0 

mm SL, female), Tanzania, Kabonge, Lake Tanganyika, no GPS data available, W. Cunnington. MRAC P 43826 

(1, 215.5 mm SL, female), Burundi, Usumbura, Lake Tanganyika, no GPS data available, A. Lestrade, 1935. 

MRAC 112103–112104 (1 out of 2, 193.5 mm SL, male), Burundi, Usumbura, (stat. 243, à 1 mille à l'ouest du 

pier), no GPS data available, M. Poll, 15.IV.1947. MRAC 112106–112120 (3 out of 11, 77.9–165.5 mm SL, 

juvenile, female and male), Burundi, (baie de Nyanza, stat. 267), no GPS data available, M. Poll, 01.V.1947. 

MRAC 112121–112123 (1 out of 3, 189.4 mm SL, male), Burundi, (au large de la grande Ruzizi, stat. 273), no 

GPS data available, M. Poll, 03.V.1947. MRAC 112124–112126 (1 out of 3, 185.0 mm SL, female), Burundi, 

Usumbura, (stat. 276, à l'ouest du pier jusqu' à la Ruzizi), no GPS data available, M. Poll, 05.V.1947. MRAC 

112127–112131 (1 out of 6,196.5 mm SL, male), Burundi, (à 13 km au sud d'Usumbura, stat. 279, 3 à 5 km de la 

côte), no GPS data available, M. Poll, 06.V.1947. MRAC-P-112132 (1, 196.1 mm SL, female), Democratic 

Republic of the Congo, (dans le golfe de Burton, stat. 293, au large de Kazele au centre d'Ubwari), no GPS data 

available, M. Poll, 10.V.1947. MRAC 112134–112135 (2, 131.4–138.2 mm SL, male), United Republic of 

Tanazania, (au large du delta de la Malagarazi, stat. 311 (2°), à la périphérie du cône alluvionnaire), no GPS data 

available, M. Poll, 22.V.1947. MRAC 112136 (1, 152.8 mm SL, female), United Republic of Tanazania, (au large 

du delta de la Malagarazi, stat. 311 (2°), à la périphérie du cône alluvionnaire), no GPS data available, M. Poll, 

22.V.1947. MRAC 94–069–P-1029–1031 (1 out of 3, 100.5 mm SL, males), Burundi, Makombe (km 37 route 

Bujumbura-Nyaz Lac, lac Tanganyika), no GPS data available, L. De Vos, 16.III.1994. MRAC 94–069–P-1032–

1034 (3, 91.9–127.9 mm SL, males), Burundi, Magara (km 38 route Bujumbura-Nyaz Lac, lac Tanganyika), no 

GPS data available, L. De Vos, 11.V.1994. MRAC 95–098–P-0340–0346 (2 out of 4, 115.0–124.8 mm SL, males), 

Burundi, Gitaza, (km 26 route Bujumbura-Nyanaza-Lac, Lac Tanganyika), no GPS data available, L. De Vos, 

20.X.1995. ZSM 44564 (7 out of 14, 112.8–206.1 mm SL, males, DRC-2012/3106–3119), Zambia, Northern 

Province, Lake Tanganyika, Mpulungu basin, Chituta Bay, purchased from local fishermen at lodge “Tobys place” 

(-8.73°/31.11°), A. Indermaur & F. Schedel, 28.VIII.2015. ZSM 44567 (4 out of 7, 165.7–178.3 mm SL, females, 

DRC-2012/3123–3129), Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data 

available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 26.VIII.2015. ZSM 44568 (1 

out of 5, 117.8–146.4 mm SL, females, DRC-2012/3181–3185), Zambia, Northern Province, Lake Tanganyika, 

Mpulungu basin, no exact locality data available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. 

Schedel, 01.IX.2015. ZSM 44572 (1 out of 4, 148.2–170.3 mm SL, females, DRC-2012/3271 & 3274), Zambia, 

Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data available, purchased in Inguenyo fish 

market, Mpulungu (-8.73°/31.11°), F. Schedel, 07.VIII.2015. ZSM 44573 (2, 180.1–186.1 mm SL, males, DRC-

2012/3208 & 3211), Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data 

available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 03.IX.2015. ZSM 44574 (1 

out of 3, 194.1–195.0 mm SL, females, DRC-2012/3130–3132), Zambia, Northern Province, Lake Tanganyika, 

Mpulungu basin, no exact locality data available, purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. 

Schedel, 26.VIII.2015. ZSM 44679 (3, 171.4–180.2 mm SL, males, DRC-2012/3120–3122), Zambia, Northern 
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Province, Lake Tanganyika, Mpulungu basin, no exact locality data available, purchased in Inguenyo fish market, 

Mpulungu (-8.73°/31.11°), F. Schedel, 26.VIII.2015. ZSM 44680 (1 out of 3, 108,2–112.6 mm SL, females, DRC-

2012/3133–3135), Zambia, Northern Province, Lake Tanganyika, Mpulungu basin, no exact locality data available, 

purchased in Inguenyo fish market, Mpulungu (-8.73°/31.11°), F. Schedel, 27.VIII.2015.
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Abstract

Five new rheophilic haplochromine cichlid species are described from the Upper Congo drainage of Zambia and the Dem-

ocratic Republic of the Congo: Orthochromis mporokoso sp. nov. and O. katumbii sp. nov. from the Bangwelu-Mweru 

ecoregion, O. kimpala sp. nov. and O. gecki sp. nov. from the Upper Lualaba ecoregion, and O. indermauri sp. nov. from 

the Lufubu River of the Lake Tanganyika ecoregion. Orthochromis kimpala sp. nov, O. gecki sp. nov., and O. indermauri

sp. nov. are distinguished from all currently valid species of the genus Orthochromis Greenwood 1954, except for O. tor-

renticola (Thys van den Audenaerde 1963), by the presence of eggspots or eggspot-like maculae on the anal fin (vs. no 

eggspots). The three species can be easily distinguished from O. torrenticola by having three anal spines (vs. four anal 

spines). Moreover, all five new species can be individually distinguished from all currently known rheophilic taxa placed 

in the genera Orthochromis, Schwetzochromis Poll 1948 and the rheophilic species of the genus Haplochromis Hilgendorf 

1888 (e.g. H. bakongo Thys van den Audenaerde 1964, H. snoeksi Wamuini Lunkayilako & Vreven 2010, H. vanheusdeni

Schedel et al. 2014) either based on meristic values, morphometric distances and colouration patterns, or on a combination 

of them.

Key words: Upper Congo basin, Lualaba, Luapula, Lufubu, Orthochromis, Schwetzochromis, rheophilic cichlids
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Introduction

While literally hundreds of endemic species are described from each Lake Tanganyika, Lake Malawi and Lake 

Victoria, strikingly few haplochromine taxa are known to inhabit exclusively rivers (Greenwood 1979) and the 

number of species considered to be rheophilic is even less with currently 19 valid species. Ecomorphologically, 

bentho-rheophilic cichlids are vaguely characterized by morphological adaptations such as reduced squamation on 

head, nape, and chest, rounded pelvic fins, and a comparatively slender body presumably facilitating a bottom-

oriented life in the strong, current (Roberts & Stewart 1976). Taxonomically, rheophilic haplochromine taxa are 

currently classified in different genera, i.e. Orthochromis Greenwood 1954 and the single member of the genus 

Schwetzochromis Poll 1948, S. neodon Poll 1948. In addition, several rheophilic taxa are placed in the catch-all 

genus Haplochromis Hilgendorf 1888, but a consensus about a phylogenetically consistent classification has not 

yet been reached (Schedel et al. 2014). Currently eight species endemic to the Malagarasi and Luiche drainages are 

classified as Orthochromis (“Malagarasi-Orthochromis” sensu Weiss et al. 2015) including the type species of the 

genus, O. malagaraziensis (David 1937), originally described as Haplochromis malagaraziensis. These 

Malagarasi-Orthochromis appear to form a monophyletic group (Koblmüller et al. 2008, Schwarzer et al. 2012, 

Dunz & Schliewen 2013, Weiss et al. 2015, Matschiner et al. 2016). An additional five Orthochromis have been 

described from the Luapula-Mweru system, i.e. O. kalungwishiensis (Greenwood & Kullander 1994), O. 

luongoensis (Greenwood & Kullander 1994), O. polyacanthus (Boulenger 1899), and O. torrenticola (Thys van 

den Audenaerde 1963) from the Lufira River and O. stormsi (Boulenger 1902) from the Congo-Lualaba 

mainstream including Lake Mweru (Greenwood & Kullander 1994). Finally, Orthochromis machadoi (Poll 1967) 

is known only from the Cunene River in Namibia and Angola. These latter six Orthochromis species from outside 

of the Malagarasi and Luiche drainage systems are not closely related to the Malagarasi-Orthochromis based on 

molecular phylogenetic results (Salzburger et al. 2002, Koblmüller et al. 2008, Schwarzer et al. 2012, Dunz & 

Schliewen 2013, Weiss et al. 2015, Matschiner et al. 2016). This is equally true for the few rheophilic 

haplochromines currently classified in Haplochromis, i.e. H. bakongo Thys van den Audenaerde 1964, H. snoeksi

Wamuini Lunkayilakio & Vreven 2010 from the Lower Congo basin, and H. vanheusdeni Schedel, Friel & 

Schliewen 2014 from the Great Ruaha River drainage in Tanzania, which represent different lineages of their own 

(Schwarzer et al. 2012, unpublished data). The greater Congo drainage, i.e., including Lake Tanganyika and its 

affluents, is home to almost all of these taxa except for H. vanheusdeni and O. machadoi (Poll 1967).

Recently, three apparently undescribed rheophilic haplochromine cichlids have been collected in Upper Congo 

affluents of Zambia including the Lufubu River, a southern affluent of Lake Tanganyika (Schedel et al. 2014, 

Indermaur 2014), and two additional ones, from the Lubudi River and from Kalule North River in the Upper 

Lualaba (Congo) basin respectively (Fig. 1). Further, preliminary observations revealed that the new species differ 

in several diagnostic characters from Orthochromis or Schwetzochromis sensu De Vos & Seegers (1998). For 

instance, the two new species from southeastern DRC (rivers Lubudi and Kalule Nord; Upper Lualaba ecoregion) 

as well as the new species from the Lufubu River have eggspots or eggspot-like maculae on the anal fin, a situation 

that contrasts with that found in Orthochromis, which either have no eggspots, or, in the case of O. torrenticola,

only eggspot-like maculae on the anterior lower margin of the anal fin (De Vos & Seegers 1998). The two species 

from the Luapula affluents fit with most diagnostic characteristics for the genus Orthochromis, but they both 

exhibit a well-developed cheek squamation vs. absence or extensive reduction in cheek squamation according to 

De Vos & Seegers (1998). Finally, genomic data suggest that all new species are not closely related to the 

Malagarasi-Orthochromis (Schedel et al., unpublished). In addition, all five new species possess a lachrymal stripe 

which is lacking in Schwetzochromis. As a generic revision of haplochromine genera is still pending, all new 

species are described in the phenotypically overall similar genus Orthochromis until a phylogenetic sound generic 

revision of haplochromine cichlids becomes available. This approach has become common practice for 

haplochromine cichlids (e.g. Wamuini Lunkayilakio & Vreven 2010, De Zeeuw et al. 2013, Schedel et al. 2014) 

following the logic of Van Oijen et al. (1991) and Van Oijen (1996), with the difference, however, that the new 

rheophilic taxa are placed in the current catch-all genus for rheophilic haplochromine cichlids Orthochromis and 

not in Haplochromis. This because the genus Haplochromis should be rather restricted to taxa closely related to the 

type species of Haplochromis from the Lake Victoria Region superflock, i.e. Haplochromis obliquidens

Hilgendorf, 1888.
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FIGURE 1. Map of south-eastern DRC and Northern Zambia, with indications of the type localities of the known 
Orthochromis species of the Upper Congo drainage system and new Orthochromis species. Star = type locality, circle = either 
paratype locality or sample locality of comparative specimens. Species indicated by colour: O. mporokoso sp. nov. (light blue); 
O. katumbii sp. nov. (purple); O. kimpala sp. nov. (orange); O. gecki sp. nov. (deep orange); O. indermauri sp. nov. (deep 
blue); O. kalungwishiensis (dark red); O. luongoensis (green). O polyacanthus (brown) and O. torrenticola (yellow). Major 
citys are depicted in black. Map is based on shapefiles obtained from DIVA-GIS (http://www.diva-gis.org/Data).

Materials and methods

A total of 344 specimens of rheophilic haplochromine cichlids were examined for morphological comparison (see 

Appendix). These are deposited in CUMV (Cornell University Museum of Vertebrates, Ithaca); NHM (Natural 

History Museum London); MRAC (Royal Museum for Central Africa, Tervuren); Tanganjikasee-Buntbarsch-

Sammlung (collection of the University of Basel); ZSM (Bavarian State Collection of Zoology, Munich); and at the 

personal collection of O. Seehausen (EAWAG - Swiss Federal Institute of Aquatic Sciences and Technology, 

Dübendorf). All five new species described herein share morphological characters typical of rheophilic 

haplochromines. Therefore, the new putative species were compared with all haplochromine cichlid species 

currently placed in the rheophilic genera Orthochromis and Schwetzochromis as recognized in the revision of De 

Vos & Seegers (1998), and, in addition, with all rheophilic representatives of the genus Haplochromis Hilgendorf 

1888 sharing Orthochromis-like body shape, i.e. rounded pelvic fins and a slender body. Furthermore, one yet 

undescribed Orthochromis species from the Malagarasi drainage was included in the comparisons as well.

Overall, 28 meristic characters were recorded for almost all examined specimens of the five new species, 

which were either based on stereomicroscope observations (18 characters) or on digital x-rays (10 characters using 

a Faxitron UltraFocus LLC x-ray unit) following previous publications (Barel et al. 1977, Dunz & Schliewen 2010, 

Schedel et al. 2014, Schedel & Schliewen 2017). In addition, four morphological character states as defined in 

Schedel & Schliewen 2017 were examined: (1) position of the pterygiophore supporting the last dorsal-fin spine 

[used for Principal Components Analyses (PCA)]; (2) position of the pterygiophore supporting the last anal-fin 

spine (used for PCA); (3) state of hypurals 1 and 2; and (4) state of hypurals 2 and 3. Live colour notes were based 

on photographs of fresh wild caught specimens (adults) as well as on live specimens kept in aquaria (if available). 

In addition, we took colour notes of preserved specimens with a focus on head stripes and bars (commonly referred 
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as “head mask”) that appear to be of diagnostic value for the different species of Orthochromis (De Vos & Seegers 

1998). For the PCA, a subsample of 20 meristic characters (eight squamation characters and twelve skeletal 

characters) of most examined specimens (N=327) was used. Twenty-nine morphometric distance measurements 

were used for species descriptions, i.e. they were only measured in the types and additional specimens of the new 

species, but not in the specimens for the comparison study except for a number of selected species in which there 

was overlap in meristic counts with the new species, e.g. O. machadoi, O. luongoensis, and H. vanheusdeni. All 

measurements were recorded as defined in Schedel & Schliewen (2017), a compilation of distance measurement 

definitions largely but not completely based on previous cichlid studies (Barel et al. 1977, Dunz & Schliewen 

2010, Schedel et al. 2014). Measurements were taken point-to-point on the left side of specimens using digital 

callipers (accuracy of the calliper 0.1 mm). Head measurements are given as percentage of the head length (HL), all 

remaining measurements as percentage of the standard length (SL). Measurements of the lower pharyngeal jaw 

were taken from digital microscope images of dissected lower pharyngeal jaws and are given in percentage of the 

head length (HL).

To test for morphological discreteness of putative new species and to identify diagnostic character states or 

combinations, a first PCA using a correlation matrix was performed for 20 meristic characters (see above) of the 

total data set. The monophyletic Malagarasi-Orthochromis were grouped together in our analysis due to their 

phenotypic similarity and to simplify subsequent interpretation. After identifying clearly separate clusters in the 

total dataset, five subsequent species-specific PCAs with reduced taxon sets were performed, each composed of 

one of the five new species and those described species with overlapping PC values in bivariate plots of PC I vs. 

PC II of the total dataset. For three of these species-specific PCAs nonvariant meristic counts were excluded. For 

example, in the species-specific PCA targeting the diagnostic differentiation of O. kimpala sp. nov. counts for 

scales between the upper lateral line and last dorsal-fin spine were nonvariant for the used data subsets while for 

the two species-specific PCAs targeting the diagnostic differentiation of O. gecki sp. nov. and O. indermauri sp. 

nov. counts for the anal-fin spines were excluded due to nonvariance. This exercise was done to reduce the total 

variance in each dataset to test for increased separation of each of the new species with the morphologically closest 

taxa. The software PAST 3.07 (Hammer et al. 2001) was used to calculate PCs. Scores of most informative 

principal components (PC I, PC II and in some cases for PC III) were visualized using bivariate plots, and variables 

contributing most to PC variation were identified using their loadings as tabulated. The PCA focused on meristic 

characters only because these characters appear to be unambiguous and are available for all included species and 

specimens.

Results

In the first PCA on the meristic values (all specimens included, N = 327, Fig. 2, Table 1), PC I explained 32.18 %, 

PC II 12.81 %, and PC III 10.16% of the total variance. Differences in the total number of vertebrae, scales in a 

horizontal line, and the number of scales in the upper lateral line contributed most to the factor loadings of PC I; PC 

II is mainly influenced by different counts for scales on the cheek and in the lower lateral line, and by the number 

of upper procurrent caudal-fin rays. The PC I and PC II scores of Orthochromis mporokoso sp. nov. overlap with 

O. machadoi, Haplochromis snoeksi, O. katumbii sp. nov., O. kimpala sp. nov., O. gecki sp. nov., and 

Schwetzochromis neodon. Orthochromis katumbii sp. nov. is grouped with O. mporokoso sp. nov., O. gecki sp. 

nov., O. kimpala sp. nov., O. luongoensis, O. torrenticola, S. neodon, and with the Malagarasi-Orthochromis based 

on the PC scores I and II. Scores of PC I and PC II of Orthochromis kimpala sp. nov. overlap with those of H. 

bakongo, H. snoeksi, H. vanheusdeni, O. machadoi, O. stormsi, O. katumbii sp. nov., O. mporokoso sp. nov., and 

O. gecki sp. nov. while the PC I and PC II scores of O. gecki sp. nov. overlap with those of O. mporokoso sp. nov., 

O. kimpala sp. nov., O. katumbii sp. nov., O. indermauri sp. nov., O. polyacanthus, S. neodon, and Malagarasi-

Orthochromis. Finally, the PC I and PC II scores of O. indermauri sp. nov. overlap with those of O. stormsi, H. 

vanheusdeni, O. gecki sp. nov. and with the Malagarasi-Orthochromis.

The first species-specific PCA with a reduced taxon set (106 specimens included, Table 1; Appendix: Fig. S1) 

targets the diagnostic differentiation of O. mporokoso sp. nov. from the six species which overlap with their PC I 

and PC II scores of the total dataset (see above). In this PCA PC I explains 27.87 %, PC II 15.43 %, and PC III 

10.77 % of the total variance. PC I mainly integrates the variance of the total number of vertebrae, caudal-fin rays, 
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and of scales in the upper lateral line, and PC II mainly the variance of the number of dorsal-fin spines, dorsal-fin 

rays, and position of the pterygiophore supporting the last dorsal-fin spine. PC III mainly integrates the variance of 

the number of caudal and abdominal vertebrae and the position of the pterygiophore supporting the last anal-fin 

spine. The PCA plots separate O. mporokoso sp. nov. from H. snoeksi based on low PC II scores and from S. 

neodon based on high PC I scores, while a combination of low PC II scores and low PC III further separates it from 

O. gecki sp. nov. 

FIGURE 2. PCA scatter plots based on 20 meristic values; species score limits visualized as convex hulls. PC I vs PC II for all 
examined specimens (N = 327). PC I explain 32.18 % of the variance and PC II explains 12.81 %.

The second species-specific PCA (225 specimens included, Table 1; Appendix: Fig. S2) targets the diagnostic 

differentiation of O. katumbii sp. nov. from the six species and the Malagarasi-Orthochromis which overlap with 

their PC I and PC II scores of the total dataset (see above). In this PCA PC I explains 30.76 %, PC II 14.68 %, and 

PC III 9.89 % of the total variance. PC I mainly integrates the variance of the total number of vertebrae, scales in a 

horizontal line, and of the position of the pterygiophore supporting the last dorsal-fin spine, and PC II mainly the 

variance of the number of scales on cheek and in the lower lateral line, and number of anal-fin rays. The species-

specific PCA separates O. katumbii sp. nov. from O. kimpala sp. nov. mainly based on low PC I scores. Values of 

PC II and PC III for O. katumbii sp. nov. overlapped with all remaining species. 

The third species-specific PCA (143 specimens included, Table 1, Appendix: Fig. S3) targets the diagnostic 

differentiation of O. kimpala sp. nov. from the eight species overlapping with their PCI and PCII scores in the total 

dataset (see above). PC I explains 23.09 %, PC II 14.63 % and PC III 12.34 % of the total variance. The variance of 

the number of scales along the horizontal line, total number of vertebrae, and caudal vertebrae contributed most to 

PC I whereas the variance of the number of upper and lower procurrent caudal-fin rays and total number of caudal-

fin rays contributed most to PC II. PC III is mainly composed of the variance of the number of abdominal 

vertebrae, the number of dorsal-fin spines, and the position of the pterygiophore supporting the last dorsal-fin 

spine. The species-specific PCA separates O. kimpala sp. nov. from H. snoeksi based on low PC III scores. 

The fourth species-specific PCA (196 specimens included, Table 1, Appendix: Fig. S4) targets the diagnostic 

differentiation of O. gecki sp. nov. from the six species and the Malagarasi-Orthochromis which overlap with their 

PCI and PCII scores of the total dataset (see above). PC I explains 33.42 %, PC II 14.91 % and PC III 11.95 % of 

the total variance. Differences in the number of scales along the horizontal line, total number of vertebrae, and 

dorsal-fin spines contribute most to PC I whereas differences in the number of scales on the cheek, number of 

upper procurrent caudal-fin rays, and total number of caudal-fin rays mainly contribute to PC II. PC III mainly 

integrates variance of the number of circumpeduncular scales and in the number of dorsal- and anal-fin rays. The
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species-specific PCA separates O. gecki sp. nov. from O. indermauri sp. nov. based on low PC II scores and from 

H. snoeksi based on high PC II scores and from O. polyacanthus by high PC III scores. 

Finally, the fifth species-specific PCA (171 specimens included, Table 1, Appendix: Fig. S5) targets the 

diagnostic differentiation of O. indermauri sp. nov. from the three species and the Malagarasi-Orthochromis which 

overlap with their PCI and PCII scores of the total dataset (see above). PC I explains 36.45 %, PC II 13.84 % and 

10.65 % of the total variance. Differences in the number of scales along the horizontal line, total number of 

vertebrae, and the position of the pterygiophore supporting the last dorsal-fin spine contribute most to PC I while 

differences in the number of scales between the upper lateral line and dorsal-fin origin, number of upper procurrent 

caudal-fin rays, and total number of caudal-fin rays mainly contribute to PC II. The species-specific PCA separates 

O. indermauri sp. nov. from O. gecki sp. nov. based on high PC II scores. Values of PC III for O. indermauri sp. 

nov. overlap for all remaining species.

In summary, meristic values alone allow to diagnostically separate each of the new species from almost all 

analysed rheophilic haplochromine species with the exception of a few taxa; these are, however, well diagnosable 

using morphometric measurements and colour patterns. Differential diagnoses for the new species were therefore 

based on a combination of meristic characters, which are supplemented by additional characters. 

Orthochromis mporokoso sp. nov.

Orthochromis sp. “Kasinsha”—Schedel et al. 2014

Holotype. ZSM 46840 (59.04 mm SL, ex ZSM 41443), Zambia, Kasinsha stream north of Luwinga affluent to 

Lake Mweru (-9.4894/30.5769).

Paratypes. ZSM 41429 (9, 34.0–74.48 mm SL), Zambia, Mutoloshi stream above Kapuma Falls at 

Mporokoso on road Mukunsa-Luwinga (-9.3889/30.0956).—ZSM 41443 (4, 40.9–63.2 mm SL), collected with 

holotype.—MRAC 2018-006-P-0009-0011 (3, 48.7–51.9 mm SL) Zambia, Mutoloshi stream above Kapuma Falls 

at Mporokoso on road Mukunsa-Luwinga (-9.3889/30.0956).

Additional material. ZSM 46841 (1, ex 41429, 54.28 mm SL; specimen with deformed jaws), Zambia, 

Mutoloshi stream above Kapuma Falls at Mporokoso on road Mukunsa-Luwinga (-9.3889/30.0956). 

Differential diagnosis. Orthochromis mporokoso can be readily distinguished from all species currently 

placed in Orthochromis species of the genus Orthochromis and O. sp. “Igamba” from the Malagarasi drainage 

system by having more scale rows on cheek (2–4 vs. 0–1). Furthermore, O. mporokoso can be distinguished from 

O. kasuluensis, O. mosoensis, and O. rugufensis by having more scales on operculum (3–4 vs. 0–2); from O. 

kasuluensis by having fewer total vertebrae (30 vs. 31–32); from O. rugufuensis by fewer dorsal-fin spines (16–17 

vs. 19); from O. mazimeroensis by more horizontal line scales (29–30 vs. 26–28), more abdominal vertebrae (14 

vs. 12–13) and more total vertebrae (30 vs. 28–29); from O. rubrolabialis and O. uvinzae by fewer dorsal-fin spines 

(16–17 vs. 18–20); it has more total gill rakers than O. rubrolabialis (10–12 vs. 8–9) and differs in position of 

pterygiophore supporting last dorsal-fin spine (vertebral count: 16 vs. 17–18). It differs from O. uvinzae

additionally by having fewer scales between upper lateral line and dorsal-fin origin (4–5 vs. 6–8), fewer abdominal 

vertebrae (14 vs. 15–16), fewer total vertebrae (30 vs. 31–33), position of pterygiophore supporting last dorsal-fin 

spine (vertebral count: 16 vs. 18–19), position of pterygiophore supporting last anal-fin spine (vertebral count: 14-

15 vs. 16–17); from O. luongoensis and O. torrenticola by having fewer caudal vertebrae (16 vs. 17–18) and total 

vertebrae (30 vs. 31–33); from O. kalungwishiensis by having fewer total vertebrae (30 vs. 31–33) and fewer 

horizontal line scales (29–30 vs. 31–32); from O. torrenticola additionally by having fewer anal-fin spines (3 vs. 4) 

and position of pterygiophore supporting last anal-fin spine (vertebral count: 14–15 vs. 16–17). It can be 

distinguished from O. stormsi and O. polyacanthus by having fewer scales between upper lateral line and dorsal-fin 

origin (4–5 vs. 6–9). In addition, it is distinguished from O. stormsi by having more horizontal line scales (29–30 

vs. 26–28), more total vertebrae (30 vs. 28–29) and fewer total gill rakers (10–12 vs. 13–15); from O. polyacanthus

by having more series of scales on cheek (2–4 vs. 0), fewer dorsal-fin spines (16–17 vs. 18–20) and in position of 

pterygiophore supporting last dorsal-fin spine (vertebral count: 16 vs. 17–18) as in position of pterygiophore 

supporting last anal-fin spine (vertebral count: 14–15 vs. 16–17). Meristic values of O. mporokoso overlap with 

those of O. machadoi, but it can be readily distinguished by having more vertical bars on flanks (13–15 vs. 9–10), 
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which moreover extend mainly ventrally; those of O. machadoi extend mainly dorsally. In addition, it is 

distinguished in head mask pattern, i.e. V-shape nostril stripe in O. mporokoso vs. straight nostril stripe in O. 

machadoi; cheek stripe present vs. absent in O. machadoi. It differs from Schwetzochromis neodon by having more 

circumpeduncular scales (16 vs. 12), fewer inner series of teeth (1–3 vs. 4–6) and fewer dorsal-fin rays (9–10 vs. 

11–12). It differs from H. bakongo and H. moeruensis by having more horizontal line scales (29–30 vs. 26–28), 

more caudal vertebrae (16 vs. 12–15) and more total vertebrae (30 vs. 26–29). Additionally, it is distinguished from 

H. moeruensis by having more upper lateral line scales (21–23 vs. 19–20); from H. bakongo by having more 

dorsal-fin spines (16–17 vs. 14–15) and in position of pterygiophore supporting last dorsal-fin spine (vertebral 

count: 16 vs. 13–14); and from H. snoeksi it is distinguished by having more abdominal vertebrae (14 vs. 13), 

fewer caudal vertebrae (16 vs. 17), more anal-fin rays (7–9 vs. 5–6), more total gill rakers (10–12 vs. 9), and in 

position of pterygiophore supporting last dorsal-fin spine (vertebral count: 16 vs. 15) and position pterygiophore 

supporting last anal-fin spine (vertebral count: 14–15 vs. 13). Meristic values of O. mporokoso overlap with those 

of H. vanheusdeni, but it lacks eggspots, has a nostril stripe (vs. absent in H. vanheusdeni), exhibits a cheek stripe 

(vs. absent in H. vanheusdeni), and has higher number of vertical bars on flank (13–15 vs. 6–7). It differs from 

herein newly described species O. kimpala by having fewer scales between upper lateral line and dorsal-fin origin 

(4–5 vs. 6–7); from O. indermauri by having more series of scales on the cheek (2–4 vs. 0–1), more caudal 

vertebrae (16 vs. 14–15), and more total vertebrae (30 vs. 28–29). Meristic values of O. mporokoso overlap with 

those of O. katumbii but former differs by having more vertical bars on flank (13–15 vs. 7–9) and by head mask 

pattern (i.e.: cheek stripe present vs. absent in O. katumbii). Meristic values of O. mporokoso overlap with those of 

O. gecki but former is distinguished by having much wider interorbital (15.3–19.5 vs. 9.6–12.9 % HL) and by 

lacking eggspots on anal fin vs. present in O. gecki.

Description. Morphometric measurements and meristic characters are based on 17 type specimens and one 

additional deformed specimen. Values and their ranges are presented in Table 2. For general appearance see figure 

3. Maximum length of wild caught specimens 74.5 mm SL. Moderately slender species with maximum body depth 

(24.7–29.3 % SL) at level of dorsal-fin origin, slowly decreasing towards caudal peduncle. Caudal peduncle rather 

elongated and moderately deep (ratio of caudal-peduncle length to depth: 1.5–2.3). Head length almost one third of 

standard length. Dorsal head profile slightly curved without prominent nuchal gibbosity. Eye diameter larger than 

interorbital width. Jaws isognathous or slightly retrognathous. Posterior tip of maxilla not reaching anterior margin 

of orbit but ending slightly before. Lips not noticeably enlarged or thickened. Two separate lateral lines.

Squamation. Flank above and below lateral lines covered with comparatively large ctenoid to cycloid scales, 

especially in large specimens only few scales of ctenoid appearance. Anterior dorsal and ventral flank area covered 

by cycloid scales. Belly with comparatively small cycloid scales. Chest covered with even smaller cycloid scales 

compared to belly squamation; chest to flank transition with larger cycloid scales. Snout scaleless up to anterior 

margin of orbit. Interorbital, nape, and occipital region with medium sized cycloid scales. Cheeks covered by small 

cycloid scales; 2–4 scale rows on cheek. Cycloid scales on operculum of variable size (small to medium sized) and 

shape (ovoid to circular); opercular blotch partially covered by medium sized scales, but posterior margin scaleless. 

3–4 scales on horizontal line starting from edge of postero-dorsal angle of operculum to anterior edge of 

operculum.

Upper lateral line scales 21–23 and lower lateral line 9–11. Horizontal line scales 29–30. Caudal fin with 0–2 

pored scales. Upper and lower lateral lines separated by two scales. 3–5 scales between upper lateral line and 

dorsal-fin origin. Anterior part of caudal fin covered with 4–5 vertical columns of small cycloid scales with median 

scales slightly larger; scaled area of caudal fin extended posteriorly especially at upper and lower area with minute, 

interradial scales (approximately up to one third of caudal fin). Sixteen scales around caudal peduncle.

Jaws and dentition. Anterior bicuspid teeth of outer row in both upper and lower jaw large and closely set; 

posterior teeth becoming almost subequally bicuspid; towards corner of mouth teeth smaller and less closely set, 

may become unicuspid or weakly bicuspid especially in upper jaw. Individual bicuspid teeth with minimally 

expanded brownish crown, cusps (major cusp with almost horizontal edge) uncompressed and moderately widely 

set, and neck moderately slender to stout. Outer row upper jaw with 31–44 teeth and outer row lower jaw with 23–

33 teeth (specimens: 34.0–59.0 mm SL). Larger specimens generally with more teeth. Two to three (rarely one) 

inner upper and lower jaw tooth rows with small tricuspid teeth. Lower pharyngeal bone (Fig. 3) of single dissected 

paratype (ZSM 41429, 59.8 mm SL) about 1.3 times wider than long with short anterior keel about 0.4 times length 

dentigerous area. Dentigerous area of lower pharyngeal bone about 1.5 times wider than long, with 10+10 teeth 
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along posterior margin and 7–8 teeth along midline. Anterior pharyngeal teeth (towards keel) bevelled and slender; 

those of posterior row larger than anterior ones, bevelled (bicuspid; well-developed major and minor cusp). Largest 

teeth medially situated in posterior row. Teeth along midline slightly larger than more lateral ones. 

Gill rakers. Total gill raker count 10–12, with two epibranchial, one angle, and 7–9 ceratobranchial gill rakers. 

Most anterior ceratobranchial gill rakers very small, increasing in size towards cartilaginous plug (angle). Gill 

raker in angle slightly shorter than longest ceratobranchial raker and epibranchial gill rakers further decreasing in 

size. 

Fins. Dorsal fin with 16–17 spines and with 9–10 rays. First dorsal-fin spine always shortest. Dorsal-fin base 

length between 50.2–55.6 % SL. Posterior end of dorsal-fin rays ending slightly before or at caudal fin base; 

posterior tip of anal fin ending slightly before caudal-fin base. Caudal-fin outline subtruncate and fin composed of 

26–29 rays (16 principal caudal-fin rays and 10–13 procurrent caudal-fin rays). Anal fin with three spines (third 

spine longest) and 7–9 rays. Anal-fin base length between 15.2–20.1 % SL. Pectoral fin with 15–16 rays. Pectoral-

fin length between 21.6–25.7 % SL, longest pectoral ray not reaching level of anus. First upper and lower pectoral-

fin rays very short to short. Pelvic fin with first spine thickly covered with skin and five rays. Pelvic-fin base 

slightly posterior of pectoral-fin base. Pelvic fin slightly longer than pectoral fin; longest pelvic-fin ray almost 

reaching anus (ending approximately 0.5–2 flank scale widths before).

TABLE 2. Measurements and counts of the holotype, paratypes and one additional specimen (no proportions given due 

to deformed jaws) of Orthochromis mporokoso sp. nov.

Measurements holotype holotype + paratypes ZSM 46841

min Max SD n

Total length (mm) 72.7 42.0 90.0 17 62.2

Standard length SL (mm) 59.0 34.0 74.5 17 54.3

Head length HL (mm) 17.5 11.3 23.0 17 17.2

% HL

  Interorbital width 18.4 29.6 34.0 1.5 17 -

  Preorbital width 31.4 24.5 32.0 2.4 17 -

  Horizontal eye length 23.2 21.3 28.2 1.7 17 -

  Snout length 36.2 26.9 38.1 2.8 17 -

  Internostril distance 15.8 13.5 18.8 1.5 17 -

  Cheek depth 23.9 19.6 25.5 1.7 17 -

  Upper lip length 30.6 25.4 32.1 2.1 17 -

  Lower lip length 26.1 19.2 30.0 2.9 17 -

  Lower lip width 29.1 19.6 34.9 3.9 17 -

  Lower jaw length 29.7 22.0 34.1 3.6 17 -

  Lower pharyngeal jaw length - 28.0 - 1 -

  Lower pharyngeal jaw width - 36.2 - 1 -

  Width of dentigerous area of lower pharyngeal jaw - 25.9 - 1 -

% SL

  Predorsal distance 32.8 32.1 37.9 1.6 17 -

  Dorsal-fin base length 55.5 50.2 55.6 1.5 17 -

  Last dorsal-fin spine length 11.1 10.7 13.9 0.9 17 -

  Anal fin-base length 16.3 15.2 20.1 1.3 17 -

  Third anal-fin spine length 15.1 11.4 16.4 1.3 17 -

  Pelvic fin length 22.9 22.1 27.3 1.5 17 -

  Pectoral fin length 23.2 21.6 25.7 1.2 17 -

  Caudal peduncle depth 10.8 7.9 11.7 1.0 17 -

......continued on the next page
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Vertebrae and caudal fin skeleton. (Fig. 3). A total of 30 vertebrae (excluding urostyle element), with 14 

abdominal and 16 caudal vertebrae. The pterygiophore supporting last dorsal-fin spine is inserted between neural 

spines of 16th and 17th vertebra (counted from anterior to posterior). Pterygiophore supporting last anal-fin spine is 

inserted between haemal spines of 15th and 16th vertebra, rarely between ribs of 14th and haemal spine of 15th

vertebra (N=2). Single predorsal bone (=supraneural bone) present. Hypurals 1 and 2 as well as hypurals 3 and 4 

always fused into single seamless units.

Colouration in life (based on field photographs of adult specimens). (Fig. 3) Body ground colouration pale 

TABLE 2. (Continued)

Measurements holotype holotype + paratypes ZSM 46841

min Max SD n

  Caudal peduncle length 20.7 16.5 20.7 1.2 17 -

  Body depth (pelvic fin base) 15.2 24.7 29.3 1.2 17 -

  Preanal length 59.7 46.1 64.5 4.1 17 -

  Anus-anal fin base distance 3.8 2.0 3.8 0.5 17 -

  Interpectoral width 15.1 9.0 15.8 1.6 17 -

Counts

  Dorsal-fin spines 17 16 (2); 17 (15) 17 17

  Dorsal-fin rays 10 9 (4); 10 (13) 17 10

  Anal-fin spines 3 3 (17) 17 3

  Anal-fin rays 8 7 (4); 8 (12); 9 (1) 17 8

  Pelvic-fin spines 1 1 (17) 17 1

  Pelvic-fin rays 5 5 (17) 17 5

  Pectoral-fin rays 16 15 (8); 16 (9) 17 16

  Upper procurrent caudal-fin rays 6 5 (1); 6 (14); 7 (2) 17 7

  Lower procurrent caudal-fin rays 6 5 (3); 6 (14) 17 6

  Caudal-fin rays 28 26 (1); 27 (2); 28 (12); 29 (2) 17 29

  Scales (horizontal line) 30 29 (9); 30 (8) 17 29

  Upper lateral line 21 21 (8); 22 (8); 23 (1) 17 22

  Lower lateral line 11 9 (8); 10 (2); 11 (7) 17 11

  Circumpeducular 16 16 (17) 17 16

  Series of scales on cheek 3 2 (3); 3 (9); 4 (5) 17 3

  Scales (horizontal line) on operculum 4 3 (13); 4 (4) 17 3

      Scales between lateral line and dorsal fin origin                                             3 3 (1); 4 (15); 5(1) 17 5

  Scales between upper lateral line and last dorsal fin
  spine

2 2 (17) 17 2

  Abdominal vertebrae 14 14 (17) 17 14

  Caudal vertebrae 16 16 (17) 17 16

  Total number of vertebrae 30 30 (17) 17 30

  Teeth in upper outer row 44 31 (1); 33 (1); 35 (2); 39 (1); 
40 (3); 41 (1); 42 (2); 43 (3); 
44 (2)

17 -

  Teeth in lower outer row 29 23 (1); 24 (1); 25 (1); 26 (2); 
27 (2); 28 (2); 29 (2); 30 (2); 
31 (1); 32 (2); 33 (1)

17 -

  Gill rakers (ceratobranchial) 9 7 (3); 8 (11); 9 (2) 17 8

  Gill rakers (angle + epibranchial) 3 3 (17) 17 3
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brown to light grey; anterior flank with yellow to golden reticulated pattern which becomes less prominent at level 

of anus and stops at level of caudal peduncle. Dark grey to brownish, interrupted midlateral band from operculum 

to just posterior caudal fin base, ending in mostly visible blotch; intensity midlateral band varies depending on 

mood often hardly visible. Midlateral band crossed by 13–15 vertical bars, which extend mainly ventrally, hardly 

recognizable except for more distinct first 4–5 anterior bars. In some specimens dorsum with irregular dark brown 

areas, which sometimes connect with midlateral band. Scales on, above and below midlateral band until level of 

anus with blackish-blue to greyish-blue centres. Dorsum and caudal peduncle pale brown to light grey; chest and 

belly light beige. Dorsal head surface pale brown to light grey; snout and cheek beige, ventrally brighter. 

Branchiostegal membrane light beige. Operculum beige to yellowish, sometimes with metallic turquoise speckles, 

a black opercular spot connecting with anterior extension of midlateral band (interrupted at level of preoperculum) 

ending in well-pigmented blotch slightly anterior of eye. Another dark grey to brownish element of variable form 

on ventral corner of operculum. Cheek with small, dark grey to brownish vertical stripe of variable shape and 

intensity, extending to slightly below eye (not reaching eye). Dark grey to brownish lachrymal stripe ending at 

posterior end upper lip. Very thin, dark grey to brownish nostril stripe (sometimes interrupted) V-shaped, extending 

between nostrils. Thin, dark grey to brownish interorbital stripe present; no distinct supraorbital stripe, but area just 

above eye somewhat darker than remaining dorsal head region. Upper and lower lip beige to pale brown, lower 

margin of upper lip greyish (darker coloured), lower lip lighter than upper. Dorsal-fin membrane transparent with 

orange maculae, sometimes arranged in inclined rows; maculae bordered with orange and outlined with black, 

especially in spinous part of fin. Anal fin transparent to yellow, towards margin becoming more intensively 

coloured, no maculae or eggspots present. Caudal fin yellowish to greyish with two or three rows of small yellow-

orange maculae near fin base. Outer caudal-fin rays with black margin. Pectoral and pelvic fins transparent but rays 

yellowish to greyish.

FIGURE 3. Orthochromis mporokoso sp. nov. A. probably the holotype, alive. Dorsal, anal and caudal fin background 
coloration is uniform semitransparent and might be lightly yellowish to greyish, i.e. not as in picture (human fingers holding the 
specimen in photo tank gave artificial beige color to semitransparent fins). B. Holotype (ZSM 46840), 59.0 mm SL; Zambia, 
Kasinsha stream C. radiograph of holotype D. lower pharyngeal bone (specimen with 59.8 mm SL; ZSM 41429) E. Overview 
of arrangement and morphology of oral jaw teeth (specimen with 74.5 mm SL; ZSM 41429).
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Juvenile colouration in life. No information about juvenile colouration available.

Colouration in alcohol. Colouration and melanin patterns similar to live specimens, but due the preservation 

procedure of specimens, i.e., first formalin fixation, transfer to 75 % EtOH etc., specimens tend to lose original 

colouration (especially melanin patterns more intense than in live specimens). Overall body ground colouration 

light brownish; dorsum darker than flank below midlateral band. Chest and belly beige to yellowish-beige. 

Branchiostegal membrane beige, along operculum and ventrally becoming reddish brown. Dorsal head surface and 

dorsum brownish, ethmoidal region greyish-brown. Upper lip beige to light greyish anteriorly, lower lip beige. 

Cheek beige to pale brownish; vertical stripe on cheek faint. Operculum beige to pale brown greyish and with 

opercular spot as described above (brownish element on operculum less clearly defined than in live specimens and 

covering almost entire operculum). Head mask brownish. Midlateral band and vertical bars brownish and more 

intense (especially posterior bars). Dorsal fin whitish to light greyish and margins outlined in black; maculae 

visible but less intense and greyish. Anal fin whitish to beige; margins blackish outlined. Caudal fin light whitish to 

beige; margins blackish outlined, small greyish speckles visible on membrane. Pectoral fin and pelvic fin whitish to 

light grey.

Distribution and biology. Orthochromis mporokoso is known from two clear water streams in the vicinity of 

Mporokoso town. Kasinsha stream (holotype locality, Fig. 1) is about five meters wide with a rocky bottom and on 

average 50–100 cm deep (Fig. 8).

The water temperature at the type locality was 19.5 °C (15.07.2011, late afternoon) and had a pH of 6.7; at the 

second sampling locality (Mutoloshi River at Kapuma Falls) a temperature of 19.3 °C (15.07.2011) and a pH of 7.3 

was recorded (pers. comm. H. van Heusden 2017). Orthochromis mporokoso is a benthic-rheophilic species. 

Etymology. The species name mporokoso is derived from Mporokoso, a town in the Northern Province 

(Zambia) near the type locality of the species. A noun in apposition.

Orthochromis katumbii sp. nov.

Orthochromis sp. “Mambilima“—Schedel et al. 2014

Holotype. MRAC 2015-009-P-0006 (1, 85.9 mm SL), Democratic Republic of the Congo, Kiswishi River, near 

confluence with Matete stream, Luapula basin (-11.486528/ 27.650306)

Paratypes. MRAC 2015-009-P-0001 (1, 53.2 mm SL), Democratic Republic of the Congo, Kiswishi River, 

Futuka farm, Luapula basin (-11.488028/27.645833).—ZSM 46844 (1, ex MRAC 2015-009-P-0002, 81.8 mm SL), 

Democratic Republic of the Congo, Kiswishi River, Futuka farm, Luapula basin (-11.488028/ 27.645833).—

MRAC 2015-009-P-0003 (1, 56.6 mm SL), Democratic Republic of the Congo, Kiswishi River, Futuka farm, 

Luapula basin (-11.488028/27.645833).—MRAC 2015-009-P-0007-0009 (3, 58.7–85.2 mm SL), collected with 

holotype.—ZSM 41450 (6, 27.2–57.4 mm SL), Zambia, Luapula River below Mambilima Falls (-10.5689/

28.6783). 

Additional material. ZSM 42322 (2, 71.3–88.9 mm SL), Zambia, Luapula River below Mambilima Falls; 

kept in aquarium (-10.5689/28.6783).

Differential diagnosis. Orthochromis katumbii is distinguished from all Malagarasi-Orthochromis species 

including O. sp. “Igamba” except O. mazimeroensis and O. rubrolabialis by having more scale rows on cheek (1–4 

vs. 0). Further it is distinguished from O. kasuluensis, O. mosoensis, and O. rugufuensis by having more scales in 

lower lateral line (10–13 vs. 7–9) and furthermore from O. kasuluensis by having fewer dorsal-fin rays (7–9 vs. 

10); from O. mosoensis by having more scales on operculum (2–3 vs. 0–1); from O. uvinzae by having fewer scales 

between upper lateral line and dorsal-fin origin (4–5 vs. 6-8), by having fewer dorsal-fin spines (16–18 vs. 19–20) 

and it is distinguished in position of pterygiophore supporting last dorsal-fin spine (vertebral count: 15–17 vs. 18-

19). From O. mazimeroensis it is distinguished by having more horizontal line scales (30–31 vs. 26–28), more 

abdominal vertebrae (14–15 vs. 12–13) and more total vertebrae (30–31 vs. 26–28). It is distinguished from O. 

rubrolabialis by having more ceratobranchial gill rakers (7–9 vs. 5–6) and total gill raker (10–13 vs. 8-9); from O. 

stormsi by having more caudal vertebrae (16–17 vs. 14–15), more total vertebrae (30–31 vs. 28–29), more 

horizontal line scales (30–31 vs. 26–28) and fewer scales between upper lateral line and dorsal-fin origin (4–5 vs. 

6–9); from O. polyacanthus by having more series of scales on cheek (1–4 vs. 0); from O. torrenticola by having 
 Zootaxa 4461 (3)  © 2018 Magnolia Press  ·  313NEW RHEOPHILIC CICHLID SPECIES

62



fewer anal-fin spines (3 vs. 4). Meristic values of O. katumbii overlap with those of O. kalungwishiensis but is 

distinguished by differences in colour and melanin patterns (e.g. nostril stripe in O. katumbii not extending to 

interorbital stripe vs. extending in O. kalungwishiensis; operculum yellowish-grey in O. katumbii vs. reddish-

brownish in O. kalungwishiensis; vertical bars crossing midlateral band more pronounced in O. kalungwishiensis). 

Meristic values of O. katumbii overlap with those of O. luongoensis but is distinguished by ratio length/depth of 

caudal peduncle (1.6–1.9 vs. 2.0–2.4); in addition O. katumbii tends to have fewer vertical bars on flank (7–9 vs. 9–

12). Meristic values of O. katumbii overlap with those of O. machadoi but is distinguished by smaller body depth 

(22.4–27.7 vs. 30.0–32.2 % SL). It is distinguished from S. neodon by having more circumpeduncular scales (16 

vs. 12), and fewer dorsal-fin rays (9–10 vs. 11–12). It differs from H. snoeksi by having more scales on lower 

lateral line (10–13 vs. 9), more abdominal vertebrae (14–15 vs. 13), fewer caudal vertebrae (16 vs. 17), more anal-

fin rays (7–9 vs. 5–6) and more total gill rakers (10–13 vs. 9), in position pterygiophore supporting last anal-fin 

spine (vertebral count: 15–16 vs. 13) and by having hypurals 3 and 4 fused (vs. clearly separated or fused with 

distinctly visible seam); differs from H. bakongo and H. moeruensis by having more horizontal line scales (30–31 

vs. 26–28), more caudal vertebrae (16–17 vs. 12–15) and more total vertebrae (30–31 vs. 26–29). Additionally, O. 

katumbii differs from H. bakongo by having more dorsal fin spines (16–18 vs. 14–15), by having hypurals 1 and 2 

and hypurals 3 and 4 fused (vs. clearly separated or fused with distinctly visible seam) and by position of 

pterygiophore supporting last dorsal-fin spine (vertebral count: 15–17 vs. 13–14) and from H. moeruensis by 

having more scales on upper lateral line (21–24 vs. 19–20). It differs from H. vanheusdeni by having more 

horizontal line scales (30–31 vs. 26–29). It is distinguished from herein newly described species O. kimpala by 

having more horizontal line scales (30–31 vs. 27–29), fewer scales between upper lateral line and dorsal-fin origin 

(4–5 vs. 6–7); from O. indermauri by having more horizontal line scales (30–31 vs. 25–29), caudal vertebrae (16–

17 vs. 14–15), total vertebrae (30–31 vs. 28–29) and by having hypurals 1 and 2 fused vs. clearly separated or fused 

with distinctly visible seam). Meristic values of O. katumbii overlap with those of O. mporokoso but is 

distinguished by having fewer vertical bars on flank (7–9 vs. 13–15) and in head mask pattern (i.e.: no cheek stripe 

present vs. present in O. mporokoso). Meristic values of O. katumbii overlap with those of O. gecki but is 

distinguished by having a wider interorbital (15.5–21.7 vs. 9.6–12.9 % HL), moreover O. katumbii lacks eggspots 

on anal fin (vs. present in O. gecki).

Description. Morphometric measurements and meristic characters are based on 13 type specimens. Values and 

their ranges are presented in Table 3. For general appearance see figure 4. Maximum length of wild caught 

specimens 85.9 mm SL. Moderately slender species with maximum body depth (28.1 % SL) at level of first dorsal-

fin spine (smaller specimens) or slightly behind dorsal-fin origin (larger specimens), decreasing towards caudal 

peduncle. Caudal peduncle rather elongated and moderately deep (ratio of caudal peduncle length to depth: 1.6–

1.9). Head length about one third of standard length. In adult specimens dorsal head profile gently curved and 

without prominent nuchal gibbosity. Dorsal head profile of subadult specimens more distinctly curved (Fig. 9). Eye 

diameter larger than interorbital width. Jaws isognathous or slightly retrognathous. Posterior tip of maxilla 

reaching vertical between nostril and anterior margin orbit. Lips not noticeably enlarged or thickened. Two separate 

lateral lines.

Squamation. Flank above and below lateral lines covered with comparatively large ctenoid scales. Anterior 

dorsal and ventral flank covered by cycloid scales. Belly with comparatively small cycloid scales. Chest covered 

with minute, deeply embedded cycloid scales; chest to flank transition with slightly larger cycloid scales. Snout 

scaleless. Interorbital scales cycloid and deeply embedded. Nape and occipital region with medium sized cycloid 

scales. Cheeks covered by small, partly embedded cycloid scales; 2–4 scale rows on cheek. Cycloid scales on 

operculum of variable size (small to medium) and shape (ovoid to circular); opercular blotch only partially covered 

by medium sized scales, but posterior margin always scaleless. Two to three scales on horizontal line starting from 

edge of postero-dorsal angle of operculum to anterior edge of operculum.

Upper lateral line scales 21–24, lower lateral line 10–13. Horizontal line scales 30–31. Caudal fin with 0–2 

pored scales. Upper and lower lateral lines separated by two scales; 4–5 scales between upper lateral line and 

dorsal-fin origin. At level of last dorsal-fin spine one dorso-ventrally compressed cycloid scale and one normal 

sized ctenoid scale between origin of last dorsal-fin spine and upper lateral line. Anterior part of caudal fin covered 

with 3–4 vertical columns of small cycloid scales; with median scales being slightly larger; scaled area of caudal 

fin extended posteriorly, especially at upper and lower area, with minute, interradial scales (approximately up to 

two fifths of caudal fin). Sixteen scales around caudal peduncle.
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TABLE 3. Measurements and counts of holotype and paratypes and of additional specimens of Orthochromis katumbii 

sp. nov. 

Measurements holotype holotype + paratypes ZSM 42322

min Max SD n Ind. 1 Ind. 2

Total length (mm) 103.6 33.3 103.6 13 84.8 106.5

Standard length SL (mm) 85.9 27.2 85.9 13 71.3 88.9

Head length HL (mm) 25.7 8.9 25.7 13 22.2 26.6

% HL

  Interorbital width 20.6 14.5 21.7 2.1 13 17.4 19.4

  Preorbital width 35.1 26.2 35.1 2.7 13 32.6 36.0

  Horizontal eye length 23.7 22.5 28.9 1.6 13 23.9 21.0

  Snout length 40.7 28.5 40.7 3.5 13 37.4 39.0

  Internostril distance 18.6 16.4 21.7 1.4 13 19.9 21.4

  Cheek depth 25.1 18.5 28.4 2.7 13 32.8 26.0

  Upper lip length 31.5 24.6 34.6 2.7 13 29.6 37.6

  Lower lip length 30.2 18.9 31.2 3.9 13 28.4 33.1

  Lower lip width 35.4 24.6 38.3 3.3 13 34.2 41.4

  Lower jaw length 33.3 26.1 36.8 2.8 13 35.1 33.7

  Lower pharyngeal jaw length - 25.7 - 1

  Lower pharyngeal jaw width - 30.1 - 1

  Width of dentigerous area of lower 
pharyngeal jaw

- 21.9 - 1

% SL

  Predorsal distance 32.0 31.6 36.1 1.4 13 32.6 31.8

  Dorsal-fin base length 55.1 54.1 58.1 1.2 13 55.9 57.0

  Last dorsal-fin spine length 9.5 9.5 13.8 1.2 13 12.3 11.8

  Anal-fin base length 18.9 14.7 20.2 1.5 13 15.5 17.8

  Third anal-fin spine length 10.5 10.5 20.2 2.5 13 11.1 12.1

  Pelvic fin length 21.0 19.6 25.7 1.8 13 18.1 18.1

  Pectoral fin length 22.1 19.5 23.8 1.1 13 20.1 19.4

  Caudal peduncle depth 11.0 10.3 12.2 0.6 13 11.0 11.0

  Caudal peduncle length 19.1 17.9 20.9 0.7 13 18.6 16.9

  Body depth (pelvic fin base) 27.6 22.4 27.7 1.9 13 27.5 28.5

  Preanal length 58.5 54.9 62.1 1.6 13 63.2 62.2

  Anus-anal fin base distance 3.8 1.4 4.0 0.9 13 3.1 3.4

  Interpectoral width 15.5 10.6 15.5 1.4 13 16.0 15.4

Counts

  Dorsal-fin spines 17 16 (2); 17 (6); 18 (4) 12 18 17

  Dorsal-fin rays 9 9 (7); 10 (5) 12 9 10

  Anal-fin spines 3 3 (12) 12 3 3

  Anal-fin rays 7 7 (6); 8 (5); 9 (1) 12 7 8

  Pelvic-fin spines 1 1 (12) 12 1 1

  Pelvic-fin rays 5 5 (12) 12 5 5

  Pectoral-fin rays 15 15 (10); 16 (2) 12 15 15

  Upper procurrent caudal-fin rays 7 6 (6); 7 (6) 12 7 7

......continued on the next page
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Jaws and dentition. Anterior teeth of outer row of upper and lower jaw bicuspid to subequally bicuspid, large 

and closely set; more posterior teeth becoming subequally bicuspid, towards corner of mouth teeth smaller and less 

closely set and unicuspid. Individual bicuspid teeth with minimally expanded brownish crown, cusps slightly 

compressed and moderately widely set, neck moderately slender. Outer row of upper jaw with 29–52 teeth and 

outer row of lower jaw with 24–39 teeth (specimens: 37.2–85.6 mm SL). Larger specimens generally with more 

teeth. Two to three (rarely one or four) inner upper and lower jaw tooth rows with small tricuspid teeth. Generally 

larger individuals with more inner tooth rows. Lower pharyngeal bone (Fig. 4) of single dissected paratype (MRAC 

2015-009-P-0007-0009, 77.2 mm SL) about 1.2 times wider than long with short anterior keel about 0.4 times 

length of dentigerous area. Dentigerous area of lower pharyngeal bone about 1.4 times wider than long, with 12+12 

(empty tooth-sockets included) teeth along posterior margin and 6–8 (empty tooth-sockets included) teeth along 

midline. Anterior pharyngeal teeth (towards keel) bevelled and slender; those of posterior row larger than anterior 

ones, bevelled (bicuspid; well-developed major and minor cusp). Largest teeth medially situated in posterior row. 

Teeth along midline slightly larger than more lateral ones.

Gill rakers. Total gill raker count 10–13 with 2–4 epibranchial, one angle, and 7–9 ceratobranchial gill rakers. 

Most anterior ceratobranchial gill rakers smallest, increasing in size towards cartilaginous plug (angle). Anterior 

gill rakers on ceratobranchial unifid, towards cartilaginous plug sometimes bifid. Gill raker on cartilaginous plug 

shorter than longest ceratobranchial gill raker and epibranchial gill rakers further decreasing in size. 

Fins. Dorsal fin with 16–18 spines and with 9–10 rays. First dorsal-fin spine always shortest. Dorsal-fin base 

length between 54.0–58.1 % SL. Posterior end of dorsal-fin rays almost reaching caudal-fin base; posterior tip of 

anal fin ending before caudal fin base. Caudal fin outline subtruncate and composed of 27–29 rays (16 principal 

caudal-fin rays and 11–13 procurrent caudal-fin rays). Anal fin with 3 spines (3rd spine longest) and 7–9 rays. Anal-

fin base length between 14.8–20.2 % SL. Pectoral fin with 15 or 16 rays. Pectoral-fin length between 19.5–23.8 % 

SL; longest pectoral ray not reaching level of anus. First upper and lower pectoral-fin rays very short to short. 

TABLE 3. (Continued)

Measurements holotype holotype + paratypes ZSM 42322

min Max SD n Ind. 1 Ind. 2

  Lower procurrent caudal-fin rays 6 5 (1); 6 (11) 12 7 7

  Caudal-fin rays 29 27 (1); 28 (5); 29 (6) 12 29 29

  Scales (horizontal line) 30 30 (9); 31 (3) 12 30 30

  Upper lateral line 21 21 (5); 22 (4); 23 (2); 24 (1) 12 24 22

  Lower lateral line 13 10 (1); 11 (3); 12 (6); 13 (2) 12 11 11

  Circumpeducular 16 16 (2) 12 16 16

  Series of scales on cheek 2 1 (3); 2 (5); 3 (3); 4 (1) 12 3 3

  Scales (horizontal line) on operculum 3 2 (6); 3 (6) 12 3 3

  Scales between lateral line and dorsal fin
  origin      

5 4 (2); 5 (10) 12 5 5

  Scales between upper lateral line and last
  dorsal fin spine

2 2 (12) 12 2 2

  Abdominal vertebrae 14 14 (10); 15 (2) 12 14 14

  Caudal vertebrae 17 16 (6); 17 (6) 12 17 17

  Total number of vertebrae 31 30 (4); 31 (8) 12 31 31

  Teeth in upper outer row 52 29 (1); 30 (1); 32 (1); 36 (2); 
38 (1); 39 (1); 41 (1); 45 (1); 
48 (1); 49 (1); 52 (1)

12 46 54

  Teeth in lower outer row 35 24 (1); 25 (1); 26 (2); 27 (1); 
31 (1); 32 (1); 33 (2); 35 (1); 
37 (1); 39 (1)

12 28 37

  Gill rakers (ceratobranchial) 7 7 (8); 8 (2); 9 (2) 12 8 7

  Gill rakers (angle + epibranchial) 3 3 (8); 4 (3); 5 (2) 12 4 4
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Pelvic fin with 1st spine thickly covered with skin, and 5 rays. Pelvic fin base slightly further posterior pectoral fin 

base. Longest pelvic-fin ray almost reaching (especially in smaller specimens) or ending well before anus (ending 

approximately 2 flank scales width before).

FIGURE 4. Orthochromis katumbii sp. nov. A. holotype, alive B. holotype (MRAC 2015-009-P-0006), 85.9 mm SL; 
Democratic Republic of the Congo, Kiswishi River C. radiograph of holotype D. lower pharyngeal bone (specimen: MRAC 
2015-009-P-0007-0009, 77.2 mm SL) E. Overview of arrangement and morphology of oral jaw teeth (specimen: MRAC 2015-
009-P-0007-0009, 77.2 mm SL).

Vertebrae and caudal fin skeleton. 30–31 total vertebrae (excluding urostyle element), with 14–15 

abdominal and 16–17 caudal vertebrae. Pterygiophore supporting last dorsal-fin spine is inserted between neural 

spines of 15th and 16h, 16th and 17th, or 17th and 18th vertebra (counted from anterior to posterior). Pterygiophore 

supporting last anal-fin spine is inserted between haemal spines of 15th and 16 th vertebra or 16th and 17th vertebra. 

Single predorsal bone (=supraneural) present. Hypurals 1 and 2 as well as hypurals 3 and 4 always fused.

Colouration in life (based on field photographs of adult specimens). (Fig. 4) Body ground colouration pale 

brown to yellowish. Dark grey to brownish, interrupted midlateral band extending from operculum to just behind 

caudal fin base ending as a blotch (less distinct than in O. luongoensis and sometimes hardly visible at all); 

midlateral band intensity varies depending on mood, sometimes fainting to greyish band. Midlateral band crossed 

by 7–10 light brown to sooty black vertical bars; these bars are short (extending shortly above and below midlateral 

band) and rather faint in colouration and not always recognizable. However, it should be mentioned that intensity 

of body markings is strongly dependent on motivational state. Chest light beige with some reddish sparkles 

(especially in bigger specimens). Belly light beige. Dorsal head surface and snout pale brown to greyish; cheek 

beige to yellow-greyish. Iris reddish at level of interorbital stripe/anterior extension of midlateral band (red more 

prominent in bigger specimens). Lower jaw and mental area pale beige to reddish. Throat and branchiostegal 

membrane reddish (ventral side of branchiostegal membrane in O. luongoensis blackish). Operculum beige to 

yellow-greyish with a dark grey to blackish opercular spot connecting anterior extension of midlateral band that 

ends almost at posterior edge of eye. Another light brownish element of variable form and intensity on ventral 
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corner of operculum; such element also present in O. luongoensis but less intense in H. katumbii. Dark grey to 

brownish lachrymal stripe ending at posterior end of upper lip. Thin, dark grey to brownish nostril stripe 

(sometimes interrupted) in form of flattened U extending between nostrils. Dark grey to brownish interorbital stripe 

more intense than nostril stripe. No supraorbital stripe present. Upper and lower lip beige to pale brown, lower 

margin of upper lip greyish, lower lip lighter then upper lip. Dorsal fin membrane light orange to pale brown with 

columns of light reddish-orange to brownish maculae between branched rays and to some degree between last 

dorsal-fin spine (membrane between maculae brighter, almost hyaline); spinous dorsal fin with black marginal 

band and reddish-orange lappets; marginal band extending to some degree onto rayed part of dorsal fin. Anal fin 

light orange to pale brown, more intensively coloured towards distal margin. Spinous anal fin with faint reddish-

orange margin. No maculae or eggspots present. Caudal fin light orange to pale brown becoming more intensively 

coloured near margin; membrane between rays with three vertical columns of small greyish maculae (membrane 

between maculae brighter, almost hyaline, especially in central part of caudal fin). Outer caudal-fin rays with dark 

orange to blackish margin. Pectoral fin light orange, especially rays of this colour. Pelvic fin compared to pectoral 

fin less coloured, appearing almost transparent, membrane of pelvic fin spine greyish.

Juvenile colouration in life. (based on photos of tank-raised juveniles approximately 25 mm SL; Fig. 9) 

Ground colouration greyish, belly beige. Patterns and stripes of head as described for adults. Greyish vertical bars 

on flanks more prominent than in adults. Iris greyish. Dorsal fin hyaline with some blackish spots on membrane; all 

other fins hyaline.

Colouration in alcohol. Colouration and melanin patterns similar to live specimens, but due the preservation 

procedure of specimens, i.e., first formalin fixation, transfer to 75 % EtOH etc., specimens tend to lose original 

colouration (especially melanin patterns more intense than in live specimens). Overall body ground colouration 

brownish; dorsum, flank and caudal peduncle brownish becoming beige at ventral side (band of one to two scales 

ventrally of flanks and caudal peduncle). Chest beige to light brownish and belly beige. Branchiostegal membrane 

light greyish, ventral side of branchiostegal membrane dark brown, towards anterior tip becoming brighter. Dorsal 

head surface brownish as dorsum, ethmoidal area becoming greyish-brown. Upper lip light greyish to beige; lower 

margin of upper lip greyish; lower lip beige. Cheek beige to brownish; centrally below eye a brownish blotch of 

variable intensity visible (as in O. luongoensis, which is not the case in living specimens). Operculum brown to 

dark brownish with opercular spot as described above; light brownish element of living specimens hardly visible or 

indistinguishable from operculum ground colouration in conserved specimens. Markings of head mask dark 

brownish to dark grey. Midlateral band dark brownish and vertical bars light brownish (less distinct than midlateral 

band). Dorsal fin greyish with black margin, subsequently followed by beige lappets; greyish maculae mainly on 

rayed part still visible but less intense. Anal fin whitish to beige. Pectoral fin beige. Pelvic fin beige; membrane of 

spine light greyish. Caudal fin light, at base pale brownish, caudally becoming beige; greyish maculae still present 

but less intense; margins blackish.

Distribution and biology. Orthochromis katumbii is known from Kiswishi River, a western tributary of the 

Luapula and from the Mambilima Falls on the Luapula (Fig. 1). At the type, locality the Kiswishi River is about ten 

meters wide and on average about one meter deep and the bottom substrate consists of gravel and smaller rocks 

(Fig. 8). Water temperature varied between 19.3 and 23.8 °C (measured in August and September), pH between 

7.73–7.95, electrical conductivity 377.7 and 380.1µS. O. katumbii is a benthic-rheophilic maternal mouthbrooder 

with clutch sizes, in captivity, of between 25 and 30 eggs (pers. comm. J. Geck). Recently a monogenean gill 

parasite Cichlidogyrus consobrini Jorissen, Pariselle and Vanhove 2017 was described from specimens obtained 

from O. katumbii and Sargochromis mellandi (Boulenger 1905).

Etymology. The species is named after Mr. Moïse Katumbi who supported part of the 2015 ichthyological 

research field expedition of the Mbisa Congo project in Katanga province of the DRC, who himself is a great fish 

enthusiast. Some specimens of the new species were collected on his farm “Ferme de Futuka”.

Orthochromis kimpala sp. nov.

Holotype. MRAC 2012-031-P-2096 (84.58 mm SL), Democratic Republic of the Congo, Kalule Nord River, right 

tributary of Lualaba River, near to the bridge on road Makulakulu-Lubudi (-9.6935/25.8479).

Paratypes. ZSM 46849 (2, ex MRAC uncat., 62.7–78.8 mm SL), collected with holotype.—ZSM 46850 (1, ex 
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MRAC uncat., 44.0 mm SL), collected with holotype.—MRAC 2015-005-P-0032-0033 (2, 56.9–62.6 mm SL), 

Democratic Republic of the Congo, Kalule Nord River, bridge Lubudi-Luena (-9.693472/25.847833).—MRAC 

2015-005-P-0034-0035 (2, 56.3–60.5 mm SL), Democratic Republic of Congo, Kalule Nord River, Kyabule 

village, bridge Mukulakulu-Kolwezi (-9.66725/25.740056).—MRAC 2015-005-P-0036-0037 (2, 57.7–61.3 mm 

SL), Democratic Republic of the Congo, Kalule Nord River, Kyabule village, bridge Mukulakulu-Kolwezi (-

9.66725/25.740056).

Differential diagnosis.  Orthochromis kimpala can be readily distinguished from all species currently placed 

in Orthochromis (sensu de Vos & Seegers, 1998) except O. torrenticola, by presence of eggspot-like maculae on 

anal fin. Further, it is distinguished from Malagarasi-Orthochromis species, including O. sp. “Igamba”, by having 

more scale rows on cheek (3–4 vs. 0 or 0–1 in case of O. mazimeroensis and O. rubrolabialis). Furthermore, O. 

kimpala differs from O. luichensis, O. malagaraziensis, O. mazimeroensis, O. mosoensis, and O. rubrolabialis by 

having more scales between upper lateral line and dorsal-fin origin (6–7 vs. 4–5). Additionally, it has fewer dorsal-

fin spines than O. luichensis, O. malagaraziensis, and O. rubrolabialis (15–16 vs. 17–19). Moreover, it differs from 

O. rubrolabialis by having more total gill rakers (11–12 vs. 8–9) and by position of pterygiophore supporting last

dorsal-fin spine (vertebral count: 14-16 vs. 17-19); from O. mazimeroensis by having more abdominal vertebrae

(14–15 vs. 12–13); from O. mosoensis by having more scales (horizontal line) on operculum (3 vs. 0–1). O.

kimpala is distinguished from O. kasuluensis, O. rugufuensis and O. uvinzae by having fewer dorsal-fin spines

(15–16 vs. 17-20); from O. kasuluensis and O. rugufuensis by having more scales (horizontal line) on operculum (3

vs. 1–2); from O. kasuluensis and O. uvinzae by having fewer scales in upper lateral line (20–22 vs. 23–25) and

fewer total vertebrae (28–30 vs. 31–33). Moreover,it differs from O. uvinzae by having fewer horizontal line scales

(27–29 vs. 30–32) and by position of pterygiophore supporting last dorsal-fin spine (vertebral count: 14–16 vs. 18–

19). It can be distinguished from O. kalungwishiensis, O. luongoensis, O. polyacanthus, and O. torrenticola by

having fewer dorsal-fin spines (15–16 vs. 17–20); further from O. kalungwishiensis, O. luongoensis, and O.

torrenticola by fewer horizontal line scales (27–29 vs. 30–32) and fewer total vertebrae (28–30 vs. 31–33); from O.

luongoensis and O. torrenticola by fewer caudal vertebrae (13–16 vs. 17–18); from O. torrenticola by having fewer

anal-fin spines (3 vs. 4). Moreover, it is distinguished from O. torrenticola and O. polyacanthus by position of

pterygiophore supporting last anal-fin spine (vertebral count: 14–15 vs. 16–17). It is distinguished from O. stormsi

by having fewer total gill rakers (11–12 vs. 13–15). It differs from S. neodon by having more scale rows on cheek

(3–4 vs. 1–2), fewer horizontal line scales (27–29 vs. 30–31), more circumpeduncular scales (16 vs. 12), fewer

inner series of teeth (2–3 vs. 4–6). It differs from H. snoeksi by having fewer horizontal line scales (27–29 vs. 30–

31), fewer scales on upper lateral line (20–22 vs. 23), more abdominal vertebrae (14–15 vs. 13) and fewer caudal

vertebrae (13–16 vs. 17), more anal-fin rays (8–10 vs. 5–6) and more total gill rakers (11–12 vs. 9); from H.

bakongo by having more scales between upper lateral line and dorsal-fin origin (6–7 vs. 3–5); from H. moeruensis

by having more upper procurrent caudal-fin rays (6–7 vs. 5) and more total caudal-fin rays (26–27 vs. 28–29); from

H. vanheusdeni by having more scale rows on cheek (3–4 vs. 0–2). It is distinguished from herein newly described

species O. mporokoso by more scales between upper lateral line and dorsal-fin origin (6–7 vs. 4–5); from O.

katumbii by having fewer horizontal line scales (27–29 vs. 30–31), and by more scales between upper lateral line

and dorsal-fin origin (6–7 vs. 4–5); from O. gecki by having more series of scales on cheek (3–4 vs. 0–2); from O.

indermauri by having more series of scales on cheek (3–4 vs. 1–2) and by fewer dorsal-fin spines (15–16 vs. 17–

18).

Description. Morphometric measurements and meristic characters are based on 10 type specimens. Values and 

their ranges are presented in Table 4. For general appearance see figure 5. Maximum length of wild caught 

specimens 84.6 mm SL. Moderately slender species with maximum body depth (24.8–30.5 % SL) at level of first 

dorsal-fin spine, decreasing rather quickly towards caudal peduncle. Caudal peduncle rather short and deep (ratio 

of caudal peduncle length to depth: 1.2–1.4). Head length almost one third of standard length. Dorsal-head profile 

rather strongly curved and without a prominent nuchal gibbosity. Eye diameter larger than interorbital width. Jaws 

isognathous. Posterior tip of maxilla reaching or almost reaching to anterior margin of orbit. Lips not noticeably 

enlarged or thickened, but upper lip becoming thicker posteriorly. Two separate lateral lines.

Squamation. Flank above and below lateral lines covered with comparatively large, well developed ctenoid 

scales. Anterior dorsal and ventral flank covered by cycloid scales. Margin of belly with deeply embedded medium 

sized scales; central belly region scaleless. Chest covered with minute, deeply embedded cycloid scales, giving 

impression of a scaleless chest; chest to flank transition with larger cycloid scales, however, still deeply embedded. 
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Snout scaleless. Interorbital scales minute to small, cycloid and deeply embedded. Nape region covered with small, 

deeply embedded cycloid scales becoming slightly larger towards occipital region. Occipital region with small to 

medium sized cycloid scales. Cheek covered by medium sized cycloid scales; 3–4 scale rows on cheek. Cycloid 

scales on operculum of medium size and variable shape (ovoid to circular); opercular blotch only on anterior 

margins covered by medium sized scales, main area of opercular blotch scaleless. Three scales on a horizontal line 

starting from edge of postero-dorsal angle of operculum to anterior edge of operculum.

TABLE 4. Measurements and counts of holotype and paratypes of Orthochromis kimpala sp. nov.

Measurements holotype holotype + paratypes

min Max SD n

Total length (mm) 101.7 54.4 101.7 10

Standard length SL (mm) 84.6 44.0 84.6 10

Head length HL (mm) 26.7 14.2 26.7 10

% HL

  Interorbital width 18.1 13.0 18.1 1.7 10

  Preorbital width 36.1 28.2 36.1 2.8 10

  Horizontal eye length 23.4 20.6 28.4 2.3 10

  Snout length 38.1 29.8 40.3 3.7 10

  Internostril distance 22.7 17.2 22.7 1.6 10

  Cheek depth 29.9 25.3 31.8 1.9 10

  Upper lip length 36.9 29.0 36.9 2.9 10

  Lower lip length 35.8 26.1 35.8 3.9 10

  Lower lip width 44.6 27.1 44.6 4.7 10

  Lower jaw length 37.8 33.4 40.4 2.3 10

  Lower pharyngeal jaw length - 29.3 - 1

  Lower pharyngeal jaw width - 34.0 - 1

  Width of dentigerous area of lower pharyngeal jaw - 25.8 - 1

% SL

  Predorsal distance 34.9 32.9 38.1 1.6 10

  Dorsal-fin base length 56.7 51.4 56.9 1.9 10

  Last dorsal-fin spine length 12.9 10.4 14.0 1.2 10

  Anal-fin base length 20.0 17.4 20.6 1.1 10

  Third anal-fin spine length 9.9 9.7 12.7 1.0 10

  Pelvic fin length 20.8 20.6 25.2 1.4 10

  Pectoral fin length 20.6 20.6 24.8 1.4 10

  Caudal peduncle depth 11.9 10.5 11.9 0.5 10

  Caudal peduncle length 15.5 12.7 16.1 1.0 10

  Body depth (pelvic fin base) 29.7 24.8 30.5 2.0 10

  Preanal length 67.8 60.3 67.8 2.3 10

  Anus-anal fin base distance 3.1 2.0 4.7 0.8 10

  Interpectoral width 16.4 12.9 16.9 1.2 10

Counts

  Dorsal-fin spines 16 15 (4); 16 (6) 10

  Dorsal-fin rays 11 10 (4); 11 (6) 10

  Anal-fin spines 3 3 (10) 10

......continued on the next pa
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Upper lateral line scales 20–22 and lower lateral line 8–11. Horizontal line scales 27–29. Caudal fin with 0–2 

pored scales. Upper and lower lateral lines separated by two scales; 6–7 scales between upper lateral line and 

dorsal-fin origin. Anterior part of caudal fin covered with 2–3 vertical rows of small cycloid scales; with median 

scales slightly larger; scaled area of caudal fin extended posteriorly especially at upper and lower area with minute, 

interradial scales (approximately up to one half of caudal fin). Sixteen scales around caudal peduncle.

Jaws and dentition. Anterior teeth of outer row of upper and lower jaw bicuspid to subequal bicuspid, large 

and moderately closely set; towards corner of mouth, teeth smaller and more widely set and unicuspid. Individual 

bicuspid teeth with minimally expanded brownish crown, cusps uncompressed and moderately narrowly set, neck 

moderately stout. Outer row of upper jaw with 30–47 teeth and outer row of lower jaw with 28–38 teeth 

(specimens: 44.4–84.6 mm SL); larger specimens generally with more teeth. Two to three inner upper and lower 

jaw tooth rows with small tricuspid teeth (rarely bicuspid).

Lower pharyngeal bone (Fig. 5) of single dissected paratype (ZSM 46849, 62.7 mm SL) about 1.2 times wider 

than long with anterior keel about 0.5 times of length of dentigerous area. Dentigerous area of lower pharyngeal 

bone about 1.6 times wider than long, with 11+11 (empty tooth-sockets included) teeth along posterior margin and 

eight teeth along midline. Anterior pharyngeal teeth (towards keel) bevelled to pronounced and slender; those of 

posterior row larger than anterior ones, bevelled (minor cusp not well developed). Largest teeth medially situated in 

posterior tooth row. Teeth along midline slightly larger than more lateral ones. 

Gill rakers. Total gill raker count 11, with 2–3 epibranchial, one in angle, and 7–8 ceratobranchial gill rakers. 

Most anterior ceratobranchial gill rakers smallest increasing quickly in size towards cartilaginous plug (angle). Gill 

raker in angle slightly shorter than longest ceratobranchial gill raker and epibranchial gill rakers further decreasing 

in size. 

TABLE 4. (Continued)

Measurements holotype holotype + paratypes

min Max SD n

  Anal-fin rays 9 8 (6); 9 (3); 10 (1) 10

  Pelvic-fin spines 1 1 (10) 10

  Pelvic-fin rays 5 5 (10) 10

 Pectoral-fin rays 15 14 (1); 15 (6); 16 (3) 10

  Upper procurrent caudal-fin rays 6 6 (5); 7 (5) 10

  Lower procurrent caudal-fin rays 6 6 (10) 10

  Caudal-fin rays 28 28 (5); 29 (5) 10

 Scales (horizontal line) 29 27 (4); 28 (2); 29 (4) 10

  Upper lateral line 22 20 (3); 21 (4); 22 (3) 10

  Lower lateral line 11 8 (2); 9 (3); 10 (4); 11 (1) 10

  Circumpeducular 16 16 (10) 10

  Series of scales on cheek 4 3 (3); 4 (7) 10

  Scales (horizontal line) on operculum 3 3 (10) 10

   Scales between lateral line and dorsal fin origin   6 6 (7); 7 (3) 10

  Scales between upper lateral line and last dorsal fin spine 2 2 (10) 10

 Abdominal vertebrae 14 14 (9); 15 (1) 10

  Caudal vertebrae 16 13 (1); 14 (1); 15 (7); 16 (1) 10

 Total number of vertebrae 30 28 (2); 29 (7); 30 (1) 10

  Teeth in upper outer row 30 (1); 33 (1); 37 (1); 38 (1); 43 (2); 44 (3); 
47 (1)

10

  Teeth in lower outer row 28 (1); 29 (2); 32 (1); 33 (2); 35 (1); 36 (1); 
38 (2)

10

  Gill rakers (ceratobranchial) 7 (1); 8 (8); 9 (1) 10

  Gill rakers (angle + epibranchial) 3 (9); 4 (1) 10
 Zootaxa 4461 (3)  © 2018 Magnolia Press  ·  321NEW RHEOPHILIC CICHLID SPECIES

70



Fins. Dorsal fin with 15–16 spines and with 10–11 rays. First dorsal-fin spine always shortest. Dorsal-fin base 

length between 51.4–56.9 % SL. Posterior end of dorsal-fin rays reaching or slightly extending beyond caudal fin 

base; posterior tip of anal fin ending slightly before caudal fin base. Caudal fin outline subtruncate and fin 

composed of 28–29 rays (16 principal caudal-fin rays and 12–13 procurrent caudal-fin rays). Anal fin with 3 spines 

(3rd spine longest) and 8–10 rays. Anal-fin base length between 17.4–20.6 % SL. Pectoral fin with 14–16 rays. 

Pectoral-fin length between 20.6–24.8 % SL; longest pectoral ray not reaching level of anus. First upper and lower 

pectoral-fin rays very short to short. Pelvic fin with 1st spine thickly covered with skin and five rays. Pelvic-fin base 

slightly more posterior than pectoral fin base. Longest pelvic-fin ray not reaching anus (ending approximately 3 

flank scale widths before).

FIGURE 5. Orthochromis kimpala sp. nov. A. probably the holotype, alive B. Holotype, (MRAC 2012-031-P-2096), 84.6 mm 
SL; Democratic Republic of the Congo, Kalule Nord River stream C. radiograph of holotype D. lower pharyngeal bone 
(specimen: ZSM 46849, 62.7 mm SL) E. Overview of arrangement and morphology of oral jaw teeth (specimen: MRAC 2015-
005-P-0036-0037, 61.3 mm SL).

Vertebrae and caudal fin skeleton. 28–30 total vertebrae (excluding urostyle element), with 14–15 

abdominal and 13–16 caudal vertebrae. Pterygiophore supporting last dorsal-fin spine inserted between neural 

spines of 14th and 15th, 15th and 16th or 17th and 18th vertebra (counted from anterior to posterior). Pterygiophore 

supporting last anal-fin spine is inserted between rips of 14th (or 15th) and haemal spine of 15th (or 16th) vertebra or 

between haemal spine of 15th and 16th vertebra. Single predorsal bone (=supraneural bone) present. Hypurals 1 and 

2 as well as hypurals 3 and 4 clearly separated (most common state) or fused while any other combination is 

possible (e.g. hypurals 1 and 2 fused and hypurals 3 and 4 separated or vice versa).

Colouration in life (based on field photographs of adult specimens). Body ground colouration pale brown 

to beige; dorsum, flank and caudal peduncle light brown; belly whitish; chest whitish to yellow. Dark grey to 

blackish, interrupted midlateral band from operculum to just behind caudal fin base, ending in dark blotch; 

midlateral band crossed by 7–9 light grey vertical bars (sometimes hardly visible) extending mainly dorsally; at 

level of upper lateral line most bars fuse forming dorso-lateral band which extends to posterior origin dorsal fin. 
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Scales on flank and dorsum with orange blotch on anterior surface and greenish metallic highlights, especially 

scales on or row above or below lower lateral line. Dorsal head surface brownish; anterior snout brownish, 

preorbital area and cheek yellowish to brownish; mental area and ventral parts of preoperculum and cheek light 

bluish. Operculum yellowish with brownish sprinkles; black opercular spot present. Greyish vertical preopercular 

stripe of variable intensity is always present, at least in the form of a faint blackish blotch at mid orbit level. Dark 

grey to brownish lachrymal stripe between orbit and posterior end upper lip. Greyish to brownish nostril stripe (less 

intense than lachrymal stripe) fused posteriorly with lachrymal stripe. Faint greyish interorbital stripe. Upper lip 

brownish to olive, beige to light bluish posteriorly and lower lip beige to light bluish. Dorsal fin membrane greyish 

with orange margins; soft rayed part of dorsal fin with orange maculae arranged in 2–3 rows. Anal-fin membrane 

greyish, margin of spinous part dark grey; 2–3 orange maculae on soft rayed part anal fin. First macula situated just 

posterior last anal-fin spine at outer margin of anal fin. Second macula almost in centre of rayed part anal fin. When 

present, third macula less prominent (smaller and less colourful). Maculae resembling eggspots but without white 

concentric ring. Caudal fin yellowish with grey margin and four columns of small orange maculae. Pectoral fin 

yellowish. Pelvic fin yellowish; skin around pelvic fin spine and adjacent membrane of first two rays blackish.

Juvenile colouration in live. No information about juvenile colouration available.

Colouration in alcohol. Colouration and melanin patterns similar to live specimens, but due the preservation 

procedure of specimens, i.e., first formalin fixation, transfer to 75 % EtOH etc., specimens tend to lose original 

colouration (especially melanin patterns more intense than in live specimens). Overall body ground colouration 

brownish; dorsum and flank brownish. Orange blotches on flank scales no longer visible. Chest and belly beige to 

light brown. Branchiostegal membrane greyish brown. Dorsal head surface brownish, ethmoidal region greyish 

brown. Upper lip greyish; lower lip greyish anteriorly becoming beige. Cheek light brown to brownish. 

Preoperculum greyish. Operculum dark brown to greyish with opercular spot as described above. Head mask dark 

brownish to grey. Midlateral band, vertical bars and dorso-lateral band brownish. Dorsal fin greyish, lappets with 

very fine black seam; maculae on soft-rayed part beige. Anal fin greyish; margin dark grey to black, eggspot-like 

maculae whitish. Caudal fin greyish with dark greyish margin; maculae dark grey. Pectoral fin light grey. Pelvic fin 

light grey, skin around pelvic fin spine and adjacent membrane of first two rays dark grey.

Distribution and biology. Orthochromis kimpala is known from the Kalule Nord River (Fig. 1), a right 

tributary of the Lualaba River in the Democratic Republic of the Congo. At the type locality the Kalule Nord River 

has a rocky bottom with some patches of sand and gravel, and is about 5–8 meters wide and on average about 50 

cm deep (Fig. 8). Water temperature varied between 21.1 and 26.8 °C (measured over several years in August and 

September), pH between 7.95–8.71, electrical conductivity 333.5–359 µS. The species appears to be benthic-

rheophilic.

Etymology. The species name kimpala refers to the local name for this species: “Kimpala” in the Sanga 

language. A noun in apposition.

Orthochromis gecki sp. nov.

Orthochromis sp. “Lubudi”

Holotype. MRAC 2012-031-P-2097 (73.8 mm SL), Democratic Republic of Congo, Lubudi River downstream of 

Kendo Rapids, near Tshifuntshi Village (-10.5635/24.6354).

Paratype. MRAC 2012-031-P-2098-2116 (19, 52.1–77.7 mm SL), collected with holotype.—ZSM 46851 (5, 

ex MRAC uncat., 46.3–62.9 mm SL), Democratic Republic of Congo, Lubudi River at Kendo Rapids, near 

Tshifuntshi Village (-10.5668/24.6373).—MRAC 2012-031-P-2117-2126 (10, 45.9–69.8 mm SL), Democratic 

Republic of Congo, Lubudi River at Kendo Rapids, near Tshifuntshi Village (-10.5670/24.6374). – ZSM 46852 (1, 

ex MRAC uncat., 67.1 mm SL), collected with holotype.

Differential diagnosis.  Orthochromis gecki can be readily distinguished from all all species currently placed 

in Orthochromis (sensu de Vos & Seegers 1998) except O. torrenticola (which has eggspot-like maculae) by 

presence of eggspots on anal fin. It is further distinguished from O. kasuluensis by having fewer anal-fin rays (8–9 

vs. 10); from O. malagaraziensis by having more scales between upper lateral line and dorsal-fin origin (5–8 vs. 3–

4); from O. mazimeroensis by having more horizontal line scales (29–31 vs. 26–28); from O. rubrolabialis, O. 
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rugufuensis and O. uvinzae by having fewer anal-fin spines (16–17 vs. 18–20) and in position of pterygiophore 

supporting last dorsal-fin spine (vertebral count: 15–16 vs. 17–19). It is furthermore distinguished from O. uvinzae 

by having fewer abdominal vertebrae (13–14 vs. 15–16) and by position of pterygiophore supporting last anal-fin 

spine (vertebral count: 14–15 vs. 16–17). O. gecki is distinguished from O. stormsi by having more horizontal line 

scales (29–31 vs. 26–28) and fewer total gill rakers (9–12 vs. 13–15); from O. polyacanthus by having fewer 

dorsal-fin spines (16–17 vs. 18–20), more dorsal-fin rays (10–12 vs. 8–9) and it is distinguished by position of 

pterygiophore supporting last dorsal-fin spine (vertebral count: 15–16 vs. 17–18); from O. torrenticola by having 

fewer anal-fin spines (3 vs. 4). Meristic values of O. gecki overlap with those of O. luongoensis, O. 

kalungwishiensis, and O. machadoi but is distinguished by narrower interorbital width (9.62–12.86 vs. 13.18-21.27 

% HL). It is distinguished from S. neodon by having more circumpeduncular scales (16 vs. 12); from H. snoeksi by 

having more anal-fin rays (8–9 vs. 5–6); from H. bakongo by more horizontal line scales (29–31 vs. 26–28), more 

dorsal-fin spines (16–17 vs. 15–15) and by position of pterygiophore supporting last dorsal-fin spine (vertebral 

count: 15–16 vs. 13–14); from H. moeruensis by having more horizontal line scales (29–31 vs. 27–28) and more 

scales in upper lateral line (21–25 vs. 19–20). Meristic values of O. gecki overlap with those of H. vanheusdeni but 

is distinguished by having a smaller interorbital width (9.62–12.86 vs. 14.20–20.30 % HL). It is distinguished from 

herein newly described species O. kimpala by having fewer series of scales on cheek (0–2 vs. 3–4). Meristic values 

of O. gecki overlap with those of O. mporokoso, O. katumbii, and O. indermauri but is distinguished by having 

smaller interorbital width (9.6–12.9 vs. 13.0–21.7 % HL).

Description. Morphometric measurements and meristic characters are based on 36 type specimens. Values and 

their ranges are presented in Table 5. For general appearance see figure 6. Maximum length of wild caught 

specimens 77.7 mm SL. Rather slender and elongated species with maximum body depth (20.2–27.4 % SL) 

slightly before or at level of first dorsal-fin spine, decreasing rather gradually towards caudal peduncle. Caudal 

peduncle moderately elongated and deep (ratio of caudal peduncle length to depth: 1.5–2.0). Head length about one 

third of standard length. Dorsal-head profile moderately curved, from anterior eye region to dorsal-fin origin only 

slightly curved. No prominent nuchal gibbosity present. Eye diameter larger than interorbital width. Jaws 

isognathous. Posterior tip of maxilla almost reaching to slightly beyond anterior orbit margin. Lips well developed. 

Two separate lateral lines.

Squamation.  Flank above and below lateral lines covered with comparatively large ctenoid scales. Anterior 

dorsal and ventral flank covered by cycloid scales. Margin of belly with deeply embedded minute to small sized 

scales; central belly region scaleless. Chest completely scaleless, except for deeply embedded cycloid scales 

ventro-anteriorly of pectoral fin. Chest to flank transition relatively abrupt with small, embedded cycloid scales. 

Snout scaleless. Interorbital region scaleless or with minute, deeply embedded cycloid scales. Nape region covered 

with minute to small, embedded cycloid scales becoming slightly larger towards occipital region. Occipital region 

with small to medium sized cycloid scales. Cheek covered with small, partly deeply embedded cycloid scales 

sometimes almost appearing scaleless; 0-2 scale rows on cheek. Cycloid scales on operculum of variable size 

(small to medium) and variable shape (ovoid to circular); opercular blotch only on anterior margin covered with 

medium sized scales, main area of opercular blotch scaleless. 1–3 scales in column from edge of postero-dorsal 

angle of operculum to anterior edge of operculum.

Upper lateral line scales 21–25 and lower lateral line 8–12. Horizontal line scales 29–31. Caudal fin with 0–1 

pored scale. Upper and lower lateral lines separated by two scales. 5–8 scales between upper lateral line and dorsal-

fin origin. Anterior part of caudal fin covered with 2–3 columns of small cycloid scales; with median scales being 

slightly larger; scaled area of caudal fin extended posteriorly, especially at upper and lower end, with minute, 

interradial scales (approximately up to one half of caudal fin). Sixteen scales around caudal peduncle.

Jaws and dentition. Anterior teeth of outer row of upper and lower jaw bicuspid to subequally bicuspid, large 

and closely set; towards corner of mouth, teeth smaller and more widely set and becoming unicuspid (rarely 

tricuspid or subequally bicuspid teeth present in posterior upper jaw). Individual bicuspid teeth without or 

minimally expanded brownish crown, cusps (tips roundish) uncompressed and moderately narrowly set, neck 

moderately stout. Outer row of upper jaw with 33–49 teeth and outer row of lower jaw with 26–42 teeth 

(specimens: 46.3–77.7 mm SL); larger specimens generally with more teeth. Upper and lower jaw with 2–4 inner 

tooth rows with small tricuspid teeth (rarely 5 rows in upper jaw and 1 or 5 in lower jaw); larger specimens 

generally with more inner tooth rows. Lower pharyngeal bone (Fig. 6) of single dissected paratype (MRAC 2012-

031-P-2098-2116, 69.1 mm SL) about 1.1 times wider than long with anterior keel about 0.6 times length of
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dentigerous area. Dentigerous area of lower pharyngeal bone about 1.4 times wider than long, with 10+9 teeth 

along posterior margin and 6 teeth along midline. Anterior pharyngeal teeth (towards keel) bevelled to pronounced 

and slender; those of posterior row larger than anterior ones, bevelled (minor cusp not well developed). Largest 

teeth medially in posterior tooth row. Teeth along midline slightly larger than more lateral ones. 

Gill rakers. Total gill raker count 9–12, with 1–2 epibranchial, one angle, and 7–9 ceratobranchial gill rakers. 

Anteriormost ceratobranchial gill rakers smallest, increasing in size towards cartilaginous plug (angle). Anterior 

gill rakers on ceratobranchial unifid, towards cartilaginous plug sometimes bifid or trifid. Raker on cartilaginous 

plug largest in size and in most cases trifid, sometimes bifid. Epibranchial gill rakers then decreasing in size. 

FIGURE 6. Orthochromis gecki sp. nov. A. probably the holotype, alive B. Holotype (MRAC 2012-031-P-2097), 73.8 mm 
SL; Democratic Republic of the Congo, Lubudi River C. radiograph of holotype D. lower pharyngeal bone (specimen with 69.1 
mm SL; MRAC 2012-031-P-2098-2116) E. Overview of arrangement and morphology of oral jaw teeth (specimen with 75.0 
mm SL; MRAC 2012-031-P-2098-2116).

Fins. Dorsal fin with 16–17 spines and with 10–12 rays. First dorsal-fin spine always shortest. Dorsal-fin base 

length between 52.1–61.0 % SL. Posterior tip of dorsal-fin rays reaching slightly beyond caudal fin base; posterior 

tip of anal fin reaching slightly before or at caudal-fin base. Caudal fin outline subtruncate and composed of 27–29 

rays (16 principal caudal-fin rays and 11–13 procurrent caudal-fin rays). Anal fin with 3 spines (3rd spine longest) 

and 8–9 rays. Anal-fin base length between 15.6–20.7 % SL. Pectoral fin with 15–16 rays. Pectoral-fin length 

between 19.6–25.0 % SL; longest pectoral ray not reaching level of anus; first upper and lower pectoral-fin rays 

very short to short. Pelvic fin with 1st spine thickly covered with skin and 5 rays. Pelvic-fin base at level or slightly 

anterior of pectoral-fin base. Pelvic fin ending at same level as pectoral fin; longest pelvic-fin ray not reaching anus 

(ending approximately 2-3 flank scale widths before).

Vertebrae and caudal fin skeleton. 29–31 total vertebrae (excluding urostyle element), with 13–14 

abdominal and 16–18 caudal vertebrae. Pterygiophore supporting last dorsal-fin spine inserted between neural 

spines of 15th and 16th or 16th and 17th vertebra (counted from anterior to posterior). Pterygiophore supporting last 

anal-fin spine is inserted between haemal spines of 15th and 16th vertebra or between rips of 14th and haemal spine of 
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15th vertebra. Single predorsal bone (=supraneural) present. Hypurals 1 and 2 in most types fused into either single, 

seamless unit or separated by clearly distinct seam. Hypurals 3 and 4 always fused into single seamless unit, except 

for one paratype which has clearly separated hypurals.

TABLE 5. Measurements and counts of holotype and paratypes of Orthochromis gecki sp. nov.

Measurements holotype holotype + paratypes

min Max SD n

Total length (mm) 89.1 55.4 94.4 36

Standard length SL (mm) 73.8 46.3 77.7 36

Head length HL (mm) 22.5 14.1 25.2 36

% HL

  Interorbital width 12.9 9.6 12.9 0.7 36

  Preorbital width 29.1 25.2 34.3 1.6 36

  Horizontal eye length 21.2 18.1 26.8 3.0 36

  Snout length 36.0 30.3 44.4 3.3 36

  Internostril distance 17.9 12.7 20.2 1.6 36

  Cheek depth 27.6 22.2 30.9 2.1 36

  Upper lip length 34.3 27.9 36.9 2.7 36

  Lower lip length 31.8 20.1 35.1 3.7 36

  Lower lip width 32.6 25.0 37.0 3.4 36

  Lower jaw length 32.0 28.6 38.4 2.5 36

  Lower pharyngeal jaw length - 28.1 - 1

  Lower pharyngeal jaw width - 32.3 - 1

  Width of dentigerous area of lower pharyngeal jaw - 21.8 - 1

% SL

  Predorsal distance 32.2 30.1 36.0 1.5 36

  Dorsal-fin base length 57.1 52.1 61.0 2.2 36

  Last dorsal-fin spine length 12.5 8.9 19.2 1.9 36

  Anal-fin base length 19.2 15.6 21.7 1.4 36

  Third anal-fin spine length 13.2 10.1 14.6 1.1 36

  Pelvic fin length 21.4 20.4 24.7 1.1 36

  Pectoral fin length 22.8 19.5 24.9 1.4 36

  Caudal peduncle depth 10.3 9.3 11.5 0.6 36

  Caudal peduncle length 17.4 15.9 19.8 0.9 36

  Body depth (pelvic fin base) 25.3 20.2 27.4 1.6 36

  Preanal length 60.3 56.8 63.8 1.5 36

  Anus-anal fin base distance 3.2 2.2 5.4 0.7 36

  Interpectoral width 13.6 9.0 16.0 1.4 36

Counts

  Dorsal-fin spines 16 16 (16); 17 (20) 36

  Dorsal-fin rays 11 10 (17); 11 (18); 12 (1) 36

  Anal-fin spines 3 3 (36) 36

  Anal-fin rays 8 8 (11); 9 (25) 36

  Pelvic-fin spines 1 1 (36) 36

......continued on the next page
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Colouration in life (based on field photographs of adult specimens). Body ground colouration brownish to 

greyish; dorsum, flanks and caudal peduncle greyish, beneath lower lateral line becoming yellowish; belly yellow; 

chest anteriorly whitish and remaining area yellow. Dark grey interrupted midlateral band from eye (anteriorly 

extended midlateral band) to just behind caudal-fin base ending in well pigmented vertically elongated blotch. 

Midlateral band crossed by 7–9 greyish vertical bars; at level of upper lateral line they sometimes fuse with each 

other forming dorso-lateral band sometimes interrupted and ending at posterior end of dorsal fin. On ventral flank 

at level of pectoral fin vertical bars sometimes fuse to ventro-lateral band (less intensive then previous mentioned 

ones) that ends well before level of anus. Iris dorsally yellow remaining greyish. Dorsal head surface, ethmoidal 

area, preorbital area greyish; cheek greyish near eyes, yellowish below and with vertical stripe-like pattern 

centrally (less distinct than other stripes of face mask). Preoperculum light greyish-yellow; operculum greyish, 

black opercular spot outlined with yellow. Branchiostegal membrane brownish to orange. Dark grey lachrymal 

stripe ending slightly anterior of caudal end upper lip. Greyish nostril stripe caudally fused with lachrymal stripe 

(beneath eye); interorbital stripe greyish. No clearly defined supraorbital stripe or nape band but recognizable to 

some extent by darker (grey) colouration than remaining dorsal head surface. Upper lip and lower lip yellow-

orange; upper and lower margin of upper lip greyish. Dorsal-fin membrane brownish (especially spinous part) to 

yellowish (soft rayed part); margin orange; brownish to dark greyish maculae from about posterior half of spiny 

part to end soft-rayed part arranged in several almost vertical columns. Anal-fin membrane transparent proximally 

becoming yellowish distally (soft rayed part), margin of spiny and soft-rayed part black becoming yellow to 

brownish towards posterior tip; 3–6 orange eggspots (large orange centre surrounded by yellow concentring ring 

and outlined by more or less ill-defined transparent margin) on anal fin in both sexes. Eggspots arranged into 1–2 

TABLE 5. (Continued)

Measurements holotype holotype + paratypes

min Max SD n

  Pelvic-fin rays 5 5 (36) 36

  Pectoral-fin rays 16 15 (8); 16 (28) 36

  Lower procurrent caudal-fin rays 7 6 (6); 7(24) 36

  Lpper procurrent caudal-fin rays 6 5 (7); 6 (29) 36

  Caudal-fin rays 29 27 (2); 28 (15); 29 (19) 36

  Scales (horizontal line) 30 29 (9); 30 (26); 31 (1) 36

  Upper lateral line 22 21 (3); 22 (13); 23 (15); 24 (4); 25 (1) 36

  Lower lateral line 12 8 (2); 9 (13); 10 (15); 11 (5); 12 (1) 36

  Circumpeducular 16 16 (36) 36

  Series of scales on cheek 1 0 (10); 1 (15); 2 (11) 36

  Scales (horizontal line) on operculum 2 1 (3); 2 (16); 3 (17) 36

  Scales between lateral line and dorsal fin origin  6 5 (9); 6 (15); 7 (6); 8 (2) 32

  Scales between upper lateral line and last dorsal fin spine 2 2 (36) 36

  Abdominal vertebrae 14 13 (8); 14 (28) 36

  Caudal vertebrae 16 15 (1); 16 (13); 17 (19); 18 (3) 36

  Total number of vertebrae 30 29 (2); 30 (16); 31 (18) 36

  Teeth in upper outer row 44 33 (1); 34 (2); 36 (2); 37 (4); 38 (1); 39 
(6); 40 (1); 41 (2); 42 (3); 44 (2); 45 (3); 
46 (1); 47 (1); 48 (2); 49 (1)

36

  Teeth in lower outer row 42 25 (1); 26 (1); 27 (3); 28 (5); 29 (1); 30 
(2); 31 (6); 32 (1); 33 (2); 34 (3); 35 (1); 
36 (2); 37 (1); 38 (3); 39 (2); 40 (1); 42 
(1) 

36

  Gill rakers (ceratobranchial) 7 7 (17); 8 (16); 9 (3) 36

  Gill rakers (angle + epibranchial ) 2 2 (7); 3 (29) 36
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rows, first eggspot located centrally on fin just behind last anal spine. Caudal fin yellowish, orangey distally, 

margin outlined in grey-black; caudal with brownish maculae arranged into 3–4 vertical columns. Pectoral fin 

transparent, rays greyish. Pelvic fin deep black (especially skin around spine) except for small yellow central 

portion of rayed area.

Juvenile colouration in live. (based on wild caught juveniles of approximately 25 mm SL; Fig. 9). Ground 

colouration beige, belly whitish. Patterns and head mask as described for adults but less prominent. Brown to 

greyish vertical bars on flank appear wider than in adults, dorso-lateral band and ventro-lateral band not visible. 

Last vertical bar on caudal fin base roundish blotch extending onto caudal fin (not a vertical bar as in adults). 

Dorsal fin brownish with several hyaline patches, margin not orange. Anal fin light brownish-orange; no eggspots 

on anal fin present. Caudal fin brownish-orange, no maculae present. Pectoral fin hyaline. Pelvic fin white to 

yellowish.

Colouration in alcohol. Colouration and melanin patterns similar to live specimens, due the preservation 

procedure of specimens, i.e., first formalin fixation, transfer to 75 % EtOH etc., specimens tend to lose original 

colouration (especially melanin patterns more intense than in live specimens). Overall body ground colouration 

brownish; dorsum and flank brownish becoming brighter ventrally. Chest and belly light brown to beige. 

Branchiostegal membrane dark greyish. Dorsal head surface brownish; ethmoidal area greyish brown. Upper and 

lower lip beige; upper and lower margin of upper lip greyish brown. Cheek light brown to brownish; cheek stripe 

dark brown. Operculum dark brown becoming somewhat darker ventrally; with opercular spot as described above. 

Head mask dark grey. Midlateral band, vertical bars, dorso-lateral band and ventro-lateral band dark brown. Dorsal 

fin greyish brown becoming greyish beige caudally, margin blackish with very fine black seam; maculae on spiny 

and soft-rayed part dark grey. Anal fin beige with blackish distal margin and dark grey at posterior margin; 

eggspots on anal fin faded and not visible in preserved specimens. Caudal fin beige to light greyish with dark 

greyish margin; maculae dark grey. Pectoral fin beige to light grey. Pelvic fin deep black except small central 

portion of rayed part greyish.

Distribution and biology. Orthochromis gecki is known from the Lubudi River a left-hand tributary of the 

Lualaba River in the Katanga region, Democratic Republic of the Congo (Fig. 1). It was also found to be present in 

the Mukuleshi River. At the type locality the Lubudi River has a rocky bottom with patches of gravel and sand, and 

is about 15 meters wide and about 50 cm deep; upstream the river is much deeper with 3 meters or more (Fig. 9).

O. gecki seems to be a maternal mouthbrooder. One of the female paratypes (MRAC 2012-031-P-2117-2126; 57.0

mm SL), was found mouthbrooding when preserved and carried around 12 comparatively large eggs. Fixed eggs

are brownish and oval and ca. 3.8 mm long and 2.5 mm wide.

Etymology. The species is named in honour of Mr. Jakob Geck who is a passionate, German fish naturalist, 

thanking him for his dedicated volunteer work and untiring support for the ichthyology section of the ZSM. His 

great experience in keeping rheophilic cichlids contributed to the knowledge of behaviour and ecology of many 

cichlid taxa, including O. katumbii and O. indermauri.

Orthochromis indermauri sp. nov. 

Orthochromis sp. “Chomba” Indermaur 2014

Holotype. ZSM 46853 (1, ex ZSM 43080, 54.0 mm SL), Zambia, Lufubu River, below last series of rapids near 

Chomba village, ~ 25.5 km (air distance) from confluence with Lake Tanganyika and 20 km (air distance) south of 

Sumbu (-8.687010/30.556273)

Paratypes. ZSM 46855 (13, 35.8–68.9 mm SL), Zambia, Lufubu River, Lower Lufubu at Chomba Village, 

~30 km from confluence with Lake Tanganyika, Northern Province (-8.686376/30.563983).—ZSM 46854 (1, 61.2 

mm SL), Zambia, Lufubu River, Lower Lufubu at Chomba Village, ~30 km from confluence with Lake 

Tanganyika, Northern Province (-8.686376/30.563983).—ZSM 43083 (4, 45.6–59.4 mm SL), collected with 

holotype.—ZSM 43080 (2, 42.0–43.1 mm SL), collected with holotype.—ZSM 44283 (3, 50.8-63.5 mm SL), 

Zambia, Lufubu River, Lower Lufubu at Chomba Village, ~30 km from confluence with Lake Tanganyika, 

Northern Province (-8.686376/30.563983).—MRAC 2018-006-P-0001-0002 (2, ex ZSM 44283, 56.8–51.9 mm 

SL) Zambia, Lufubu River, Lower Lufubu at Chomba village, ~30 km from confluence with Lake Tanganyika, 
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Northern Province (-8.686376/30.563983).—MRAC 2018-006-P-0003-0008 (6, 43.3–64.1 mm SL), Zambia, 

Lufubu River, Lower Lufubu at Chomba village, ~30 km from confluence with Lake Tanganyika, Northern 

Province (-8.686376/30.563983). 

Diagnosis. Orthochromis indermauri is distinguished from all all species currently placed in Orthochromis

(sensu de Vos & Seegers, 1998) except O. torrenticola, by having hypurals 1 and 2 clearly separated or separated 

by distinct seam (vs. always fused). It is further distinguished from Malagarasi-Orthochromis species, except O. 

mazimeroensis, O. malagaraziensis, and O. rubrolabialis, by having fewer caudal vertebrae (14–15 vs. 16–18) and 

total vertebrae (28–29 vs. 30–32). It is also distinguished from O. luichensis, O. malagaraziensis, O. 

mazimeroensis, O. mosoensis by having more inner series of teeth in upper jaw (3–5 vs. 1–2). Moreover, it differs 

from O. kasuluensis by having fewer anal-fin rays (7–9 vs. 10); from O. malagarazienisis by having more scales 

between upper lateral line and dorsal-fin origin (5–7 vs. 3–4) and by having more ceratobranchial gill rakers (8–11 

vs. 6–7); from O. mazimeroensis by having more abdominal vertebrae (14–15 vs. 12–13); from O. mosoensis and 

O. rubrolabialis by having more ceratobranchial gill rakers (8–11 vs. 5–7) and total gill rakers (11–15 vs. 8–10); 

from O. uvinzae by having fewer horizontal line scales (25–29 vs. 30–32), fewer dorsal-fin spines (17–18 vs. 19–

20) and by position of pterygiophore supporting last dorsal-fin spine (vertebral count: 16–17 vs. 18–19). It is 

distinguished from O. kalungwishiensis, O. luongoensis, and O. torrenticola by having fewer horizontal line scales 

(28–29 vs. 30–32) and by having fewer caudal vertebrae (14–15 vs. 17–18). Further, it differs from O. luongoensis 

and O. machadoi by having fewer series of scales on cheek (0–1 vs. 2–5); from O. kalungwishiensis by having 

fewer total vertebrae (28–29 vs. 31–33). It is distinguished from S. neodon by having fewer horizontal line scales 

(28–29 vs. 30–31), more circumpeduncular scales (16 vs. 12), fewer caudal vertebrae (14–15 vs. 16–17), fewer 

total vertebrae (28–29 vs. 30–32), fewer dorsal-fin rays (8–10 vs. 11–12) and by having hypurals 1 and 2 clearly 

separated or separated by distinct seam (vs. fused). It differs from H. snoeksi by having fewer scales on cheek (0–1 

vs. 2–3), fewer horizontal line scales (25–29 vs. 30–31), more abdominal vertebrae (14–15 vs. 13), fewer caudal 

vertebrae (14–15 vs. 17), fewer total vertebrae (28–29 vs. 30), more anal-fin rays (7–9 vs. 5–6), more dorsal-fin 

spines (17–18 vs. 16), more ceratobranchial gill rakers (8–11 vs. 6) and total gill rakers (11–15 vs. 9); from H. 

bakongo by having more inner series of teeth (3–5 vs. 1–2), more dorsal-fin spines (17–18 vs. 14–15) and in 

position of pterygiophore supporting last dorsal-fin spine (vertebral count: 16–18 vs. 13–14); from H. moeruensis 

by having hypurals 1 and 2 clearly separated or separated by distinct seam (vs. always fused). Meristic values of O.

indermauri overlap with those of H. vanheusdeni but is distinguished by differences in head mask (e.g. nostril 

stripe present vs. absent; caudal corner of cheek with blackish element vs. no such element present) and by size and 

colouration of eggspot-like maculae on anal fin (e.g. deep red centre vs. orange centre in H. vanheusdeni). It is 

distinguished from O. mporokoso and O. katumbii by having fewer caudal vertebrae (14–15 vs. 16–17), fewer total 

vertebrae (28–29 vs. 30–31) and by having hypurals 1 and 2 and hypurals 3 and 4 clearly separated or separated by 

distinct seam (vs. always fused). Further from O. mporokoso by having fewer series of scales on cheek (0–1 vs. 2–

4); from O. katumbii by having fewer horizontal line scales (25–29 vs. 30–31). It is distinguished from O. kimpala 

by having fewer series of scales on cheek (0–1 vs. 3–4) and by having more dorsal-fin spines (17–18 vs. 15–16). 

Meristic values of O. indermauri overlap with those of O. gecki but is distinguished by having a wider interorbital 

width (13.5–18.2 vs. 9.6–12.9 %HL).

Description. Morphometric measurements and meristic characters are based on 21 out 32 type specimens. 

Values and their ranges are presented in Table 6. For general appearance see figure 7. Maximum length of wild 

caught specimens 68.9 mm SL. Moderately slender species with maximum body depth (24.5–29.9 % SL) slightly 

posterior or at level of first dorsal-fin spine, decreasing rather gradually towards caudal peduncle (but decreasing 

relatively quick just before caudal peduncle). Caudal peduncle rather short and deep (ratio of caudal peduncle 

length to depth: 1.2–1.4). Head length almost one third of standard length. Dorsal-head profile moderately curved 

without prominent nuchal gibbosity. Eye diameter always larger than interorbital width. Jaws slightly 

retrognathouswith lower jaw shorter than upper jaw. Posterior tip of maxilla not reaching anterior margin of orbit 

but slightly before. Lips not noticeably enlarged or thickened. Two separate lateral lines.

Squamation. Flank above and below lateral lines covered with cycloid scales, even in smaller specimens. 

Belly and chest covered by deeply embedded minute scales giving appearance of being scaleless. Ventro-anterior 

area of pectoral fin with small, deeply embedded cycloid scales. Chest to flank transition with small, embedded 

cycloid scales.

Snout scaleless. Interorbital region with minute, deeply embedded cycloid scales. Nape and occipital region 
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covered with minute to small, embedded cycloid scales becoming slightly larger towards occipital region. Cheek 

appears scaleless, but rarely small deeply embedded cycloid scales present just below eye; 0–1 scale rows on 

cheek. Cycloid scales on operculum of variable size (small to medium) and mainly of circular shape; opercular 

blotch only on anterior margin covered by medium sized scales, main area of opercular blotch scaleless. 5–7 scales 

on horizontal line from edge of postero-dorsal angle of operculum to anterior edge of operculum.

Upper lateral line scales 20–23 and lower lateral line 7–11. Horizontal line scales 27–29. Caudal fin with 0–2 

pored scales. Upper and lower lateral lines separated by two scales. 3–5 scales between upper lateral line and 

dorsal-fin origin. Anterior part of caudal fin covered with 2–3 vertical rows of small cycloid scales with median 

scales being slightly larger; scaled area of caudal fin extended posteriorly with interradial scales (approximately up 

to two thirds of caudal fin). Sixteen scales around caudal peduncle.

Jaws and dentition. Anterior teeth of outer row of upper and lower jaw bicuspid to subequally bicuspid, large 

and very densely set; teeth smaller towards corner of mouth, more widely set and becoming unicuspid (rarely 

tricuspid or subequally bicuspid teeth present on upper jaw near corner mouth). Individual bicuspid teeth with not 

expanded brownish crown, cusps (tips pointed) slightly compressed and narrowly set, and neck slender. Outer row 

of upper jaw with 42–59 teeth and outer row of lower jaw with 26–45 teeth (specimens: 35.8–68.9 mm SL); larger 

specimens generally with more teeth. Inner upper jaw with 3–5 tooth rows and 3–4 rows (rarely 2) in lower jaw, all 

with small tricuspid teeth. 

Lower pharyngeal bone (Fig. 7) of single dissected paratype (ZSM 46854, 61.2 mm SL) about as wide as long 

with anterior keel about 0.6 times length of dentigerous area. Dentigerous area of lower pharyngeal bone about 1.5 

times wider than long, with 11+11 teeth (empty tooth-sockets included) along posterior margin and eight teeth 

along midline. Anterior pharyngeal teeth (towards keel) bevelled and slender; teeth posterior row larger than 

anterior ones, bevelled (bicuspid; well-developed major and minor cusp). Largest teeth medially in posterior row. 

Teeth along midline slightly larger than more lateral ones. 

FIGURE 7. Orthochromis indermauri sp. nov. A. paratype (ZSM 44283), 63.5 mm SL, alive B. Holotype (ZSM 46853, 54.0 
mm SL), 54.0 mm SL; Zambia, Lufubu River C. radiograph of holotype D. lower pharyngeal bone (ZSM 46854, 61.2 mm SL) 
E. Overview of arrangement and morphology of oral jaw teeth (specimen: ZSM 43083, 59.4 mm SL).
SCHEDEL ET AL.330  ·  Zootaxa 4461 (3)  © 2018 Magnolia Press

79



TABLE 6. Measurements and counts of holotype and paratypes of Orthochromis indermauri sp. nov.

Measurements holotype holotype + paratypes

min Max SD n

Total length (mm) 66.2 44.6 86.0 32

Standard length SL (mm) 54.0 35.8 68.9 32

Head length HL (mm) 18.0 11.7 21.4 32

% HL

  Interorbital width 15.1 13.5 18.2 1.4 21

  Preorbital width 32.8 30.2 39.7 2.3 21

  Horizontal eye length 21.4 20.1 25.0 1.4 21

  Snout length 37.9 36.3 43.3 2.1 21

  Internostril distance 17.5 15.7 32.8 3.6 21

  Cheek depth 28.9 24.2 34.1 2.7 21

  Upper lip length 30.4 23.8 32.5 2.5 21

  Lower lip length 26.2 20.0 29.2 2.5 21

  Lower lip width 35.0 26.2 43.3 3.7 21

  Lower jaw length 23.4 23.4 37.5 3.6 21

  Lower pharyngeal jaw length - 31.9 - 1

  Lower pharyngeal jaw width - 33.2 - 1

  Width of dentigerous area of lower pharyngeal jaw - 24.5 - 1

% SL

  Predorsal distance 31.9 31.4 35.9 1.0 21

  Dorsal-fin base length 60.3 56.9 65.4 2.6 21

  Last dorsal-fin spine length 13.5 12.5 16.0 0.9 21

  Anal-fin base length 17.4 16.7 21.9 1.3 21

  Third anal-fin spine length 13.3 11.0 15.5 1.1 21

  Pelvic fin length 22.1 20.5 26.04 1.5 21

  Pectoral fin length 22.7 19.7 25.6 1.3 21

  Caudal peduncle depth 12.9 11.8 14.22 0.6 21

  Caudal peduncle length 17.5 14.7 18.5 1.0 21

  Body depth (pelvic fin base) 28.1 24.45 30.54 1.7 21

  Preanal length 61.4 54.9 63.6 2.3 21

  Anus-anal fin base distance 2.2 2.1 4.9 0.8 21

  Interpectoral width 14.9 12.2 16.9 1.1 21

Counts

  Dorsal-fin spines 18 17 (7); 18 (14) 21

  Dorsal-fin rays 9 8 (3); 9 (15); 10 (3) 21

  Anal-fin spines 3 3 (21) 21

  Anal-fin rays 8 7 (1); 8 (18); 9 (2) 21

  Pelvic-fin spines 1 1 (21) 21

  Pelvic-fin rays 5 5 (21) 21

  Pectoral-fin rays 15 14 (5); 15 (16) 21

  Upper procurrent caudal-fin rays 7 6 (5); 7 (16) 21

  Lower procurrent caudal-fin rays 6 5 (1); 6 (20) 21

......continued on the next page
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Gill rakers. Total gill raker count 11–15, with 2–4 epibranchial, one angle, and 8–10 ceratobranchial gill 

rakers. Anteriormost ceratobranchial gill rakers smallest increasing in size towards cartilaginous plug (angle). 

Anterior gill rakers on ceratobranchial generally unifid, sometimes bifid towards cartilaginous plug. Gill raker on 

cartilaginous plug shorter than longest ceratobranchial gill raker and epibranchial gill rakers further decreasing in 

size. 

Fins. Dorsal fin with 17–18 spines and with 8–10 rays. First dorsal-fin spine always shortest. Dorsal-fin base 

length between 56.9–65.4 % SL. Posterior end of dorsal-fin rays extending slightly beyond caudal fin base; 

posterior tip of anal fin reaching slightly before or at caudal fin base. Caudal fin outline subtruncate and composed 

of 27–29 rays (16 principal caudal-fin rays and 11–13 procurrent caudal-fin rays). Anal fin with 3 spines (3rd spine 

longest) and 7–9 rays. Anal-fin base length between 16.7–21.9 % SL. Pectoral fin with 14 to 15 rays and length 

between 19.7–25.6 % SL; longest pectoral ray not reaching or in rare cases almost reaching level of anus (ending 

approximately 1-2 flank scale widths in front of it). First upper and lower pectoral-fin rays very short to short. 

Pelvic fin with 1st spine thickly covered with skin and 5 rays. Pelvic fin base at same level pectoral fin base. 

Longest pelvic-fin ray not reaching or in rare cases almost reaching anus (ending approximately 1-2 flank scale 

widths in front of it).

Vertebrae and caudal fin skeleton. 28–29 total vertebrae (excluding urostyle element), with 14–15 

abdominal and 14–15 caudal vertebrae. Pterygiophore supporting last dorsal-fin spine inserted between neural 

spines of 16th and 17th or 17th and 18th vertebra (counted from anterior to posterior). Pterygiophore supporting last 

anal-fin spine inserted between haemal spines of 15th and 16th or 16th and 17th vertebra, rarely between rips of 14th

and haemal spine of 15th vertebra (N=1). Single predorsal bone (=Supraneural bone) present. Hypurals 1 and 2 

either clearly separated or separated by distinct seam but never fused into single seamless unit. Hypurals 3 and 4 

either fused into single seamless unit or separated by distinct seam.

Colouration in life (based on field photographs of adult specimens). Body ground colouration brownish 

yellow, towards belly more yellowish; dorsum brownish yellow to pale brown; chest below pectoral fins yellow 

becoming reddish ventrally; belly yellow. Dorsal head surface pale brown dorsally with reddish speckles; 

ethmoidal area pale brown and densely speckled with reddish spots, especially in dominant males (Indermaur 

TABLE 6. (Continued)

Measurements holotype holotype + paratypes

min Max SD n

  Caudal-fin rays 29 27 (1); 28 (4); 29 (16) 21

  Scales (horizontal line) 28 27 (6); 28 (14); 29 (1) 21

  Upper lateral line 21 20 (2); 21 (8); 22 (10); 23 (1) 21

  Lower lateral line 10 7 (2); 8(3); 9 (10); 10 (5); 11 (1) 21

  Circumpeducular 16 16 (21) 21

  Series of scales on cheek 0 0 (16); 1 (5) 21

  Scales (horizontal line) on operculum 2 2 (10); 3 (11) 21

    Scales between lateral line and dorsal fin origin                                             6 5 (2); 6 (9); 7 (10) 21

  Scales between upper lateral line and last dorsal fin spine 1 1 (12); 2 (9) 21

  Abdominal vertebrae 14 14 (19); 15 (2) 21

  Caudal vertebrae 15 14 (7); 15 (14) 21

  Total number of vertebrae 29 28 (5); 29 (16) 21

  Teeth in upper outer row 54 42 (1); 45 (2); 47 (2); 48 (2); 49 (1); 50 
(3); 51(1); 53 (2); 54 (1); 56 (1); 57 
(1); 58 (2); 59 (1); 66 (1)

21

  Teeth in lower outer row 41 26 (1); 30 (2); 31 (1); 32 (2); 31 (1); 35 
(3); 36 (1); 37 (2); 38 (3); 39 (1); 40 
(1); 41 (2); 45 (1)

21

  Gill rakers (ceratobranchial) 9 8 (6); 9 (13); 10 (2) 21

  Gill rakers (angle + epibranchial ) 5 3 (2); 4 (11); 5 (8) 21
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2014). Iris reddish posteriorly, yellow dorsally, remaining greyish. Upper lip dark grey anteriorly sometimes with 

reddish speckles; lower lip light greyish, yellowish posteriorly. Cheek pale brown becoming yellowish towards 

corner mouth and mental area; blackish pear-shaped blotch at caudal-ventral corner, expanding to anterior 

extension of midlateral band. Branchiostegal membrane along operculum yellow becoming whitish to pale pinkish 

ventrally. Operculum yellow with black opercular spot, which is fused with anterior extension of midlateral band 

which is ending just anterior of the eye. Broad blackish lachrymal stripe between orbit and caudal corner of upper 

lip. A relatively faint greyish nostril stripe, sometimes covered by many reddish speckles. Relatively wide blackish 

interorbital stripe. Blackish supraorbital stripe connected with nape band. Nape band ending slightly anterior of 

dorsal-fin origin and fused with dorso-lateral band. Dorso-lateral band slightly below dorsal fin base and visible up 

to third or fourth anterior vertical bar. Relatively thin midlateral band ending with dark blotch just posterior base 

caudal fin. 7–9 blackish vertical bars crossing midlateral band and extending onto dorsal fin almost to fin margin; 

anterior-most vertical bar (just behind operculum) less intensive than remaining bars. Vertical bars wider than 

space between them. Dorsal-fin membrane yellow without maculae, skin/membrane of first three dorsal-fin spines 

black creating the appearance of a broad black oblique band between 1st and 4th spine. Margin of spiny part dorsal 

fin with fine black outline and red (distally) and transparent submarginal band; rayed part of dorsal fin lacks 

transparent submarginal band. Anal fin yellow; margin greyish outlined. Posterior half of anal fin with deep-red 

maculae on membrane (between last four anal-fin rays); maculae elongated proximally becoming more rounded 

distally (maculae not to fin margin but ending slightly before). In general, these maculae resemble egg-spots: large 

deep red centre surrounded by faint greyish ring then by ill-defined transparent ring. Caudal fin yellow with deep 

red maculae as described for anal fin but only with roundish maculae. Caudal fin with reddish marginal band with 

narrower bluish submarginal band; another submarginal band of red maculae (intensity varies). Outer caudal-fin 

rays outlined in black. Pectoral fin yellow to orange. Pelvic fin yellowish with dark greyish anterior margin 

spanning spine and first two rays.

Juvenile colouration in life. (based on tank-raised juveniles of approximately 20 to 30 mm SL; Fig. 9). 

Ground colouration greyish to beige. Patterns and head mask as described for adults. No reddish speckles present. 

Dorsal and midlateral band, greyish vertical bars on flank as described for adults. Dorsal fin hyaline to beige with 

vertical flank bars extending onto fin. Anal, caudal, pectoral and pelvic fin hyaline. 

Colouration in alcohol. Colouration and melanin patterns similar to live specimens, but due the preservation 

procedure of specimens, i.e., first formalin fixation, transfer to 75 % EtOH etc., specimens tend to lose original 

colouration (especially melanin patterns more intense than in live specimens). Overall body ground colouration 

pale brownish to pale yellowish; chest and belly beige to yellowish. Branchiostegal membrane greyish-beige to 

greyish-brown. Dorsal head surface pale brownish; ethmoidal region greyish-brown. Upper lip brownish and lower 

lip beige. Cheeks beige to brownish; pear-shaped blotch on lower caudal corner of cheek greyish-brownish and less 

prominent than in living specimens. Operculum greyish and with opercular spot as described above. Head mask 

and mid- and dorso-lateral band and vertical bars brownish to greyish. Dorsal fin light greyish except dark grey 

skin/membrane of first three anterior spines, remaining fin with black margin; extensions of vertical bars on dorsal 

fin dark grey. Anal fin light greyish; margin outlined in dark grey; no maculae visible. Caudal fin light greyish and 

margins outlined in black; some thin blackish streaks on membrane between rays may be present. Pectoral fin light 

grey. Pelvic fin light grey, skin/membrane of pectoral spine and first two rays greyish.

Distribution and biology. Orthochromis indermauri is only known from the lower reaches of the Lufubu 

River (Zambia), the third largest tributary of Lake Tanganyika (Fig. 1). Several cascades and waterfalls seem to 

represent insurmountable barriers to the upstream movement of the lake ichthyofauna hence the fish communities 

of the upper and lower reaches are clearly distinct. The Upper Lufubu has faunistic similarities to the Congo and 

Zambezi systems while the Lower Lufubu shows faunistic influences of Lake Tanganyika (Koblmüller et al. 2012). 

At the type locality the Lufubu River is rocky with some patches of sand and gravel, about 20 meters wide and on 

average 50 cm deep (Fig. 8). The water temperature varies throughout the year, 23 °C was measured in July and 

28.1 °C in November, the pH ranged between 8.0–8.55, and electrical conductivity around 29 µS (Indermaur 2014, 

pers. com. Bernd Egger). O. indermauri is benthic-rheophilic and prefers stretches of fast flowing water where it is 

found between and among large rocks or patches of gravel. No stomach contents were examined, however, 

underwater observations indicate it scrapes aufwuchs from the substrate and forages between rocks and patches of 

sand and gravel (Indermaur 2014, pers. obs. FS). Orthochromis indermauri is a maternal mouthbrooder. Females in 

captivity have comparatively small clutches of between 17 and 21 fry (two spawns, pers. com. Adrian Indermaur). 
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FIGURE 8. Type localities of the five newly described species A. Type locality of Orthochromis mporokoso, Kasinsha stream 
(July 2011, Hans van Heusden) B. Type locality of Orthochromis katumbii, Kiswishi River (2015, VLIR expedition) C. Type 
locality of Orthochromis gecki, Lubudi River (July 2017, Katanga 2016 Expedition) D. Type locality of Orthochromis kimpala, 
Kalule North River near bridge on the road Makulakulu-Lubudi (2012, PRODEPAAK expedition) E. Type locality of 
Orthochromis indermauri, Lufubu River at Chomba village (August 2015, photo F. Schedel).
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FIGURE 9. Live Pictures of juveniles. A. captive raised F1 juvenile of Orthochromis katumbii about 25 mm SL (Photo J. 
Geck). B. wild caught juvenile of Orthochromis gecki C. captive raised F1 juvenile of Orthochromis indermauri.
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Etymology. The species name indermauri honours the Swiss ichthyologist Dr. Adrian Indermaur, who was the 

first to document this new species with underwater photographs, videos, and with aquarium observations, thereby 

contributing to a large extent to our knowledge of behavior and ecology of this species. 

Discussion

Generic placement and affinities. Overall, the five new species superficially resemble species of Orthochromis, 

but their characters are only partially compatible with the morphological diagnosis of that genus as of the latest 

generic diagnosis of Orthochromis by De Vos & Seegers (1998), and they differ in most diagnostic characteristics 

from Schwetzochromis sensu De Vos & Seegers (see Tables 7 and 8). Nevertheless, we chose to place them in the 

genus Orthochromis instead of placing them in the catch-all genus Haplochromis Hilgendorf 1888, as had been 

done for Haplochromis vanheusdeni, another rheophilic species which shares superficial similarities with 

Orthochromis (Schedel et al. 2014). The reasons for this overall placement are as follows: (1) phylogenetic 

reconstructions based on nuclear and mitochondrial DNA sequence data strongly indicate that rheophilic 

haplochromines superficially similar to Orthochromis as currently defined are polyphyletic (e.g. Salzburger et al.

2002, Koblmüller et al. 2008, Schwarzer et al. 2012, Dunz & Schliewen 2013, Weiss et al. 2015, Matschiner et al.

2016). Therefore, placement of the new species within the anyway polyphyletic genus Orthochromis does not 

compromise current taxonomic (in)stability; (2) although all new species described herein appear distinct from all 

Orthochromis s.s., the latter are equally rheophilic haplochromine-like cichlids of the Malagarasi and Luiche 

drainages, an haplochromine subgroup which appears to be comparatively uniform with regard to meristic values, 

other morphological and colouration characters, and which has been inferred to be monophyletic by molecular 

analyses with an almost complete taxon sampling of that group (Matschiner et al. 2016), and that, most 

importantly, hosts O. malagaraziensis, the type species of the genus Orthochromis. All five new species described 

herein are overall phenotypically similar to Orthochromis s.s. as they exhibit several morphological similarities; (3) 

haplochromine cichlid phylogenetic intra-relationships have not been investigated with a fully comprehensive 

taxon sampling, neither on the morphological nor on the molecular level; nevertheless, all results of partial 

analyses suggest strongly that many haplochromine genera are paraphyletic, and that rheophilic haplochromine 

taxa are widely dispersed in available haplochromine phylogenetic hypotheses (e.g., Schwarzer et al. 2012, Weiss 

et al. 2015). Until a fully representative phylogenetic evaluation of haplochromine cichlids incorporating 

morphological and genetic data will be available, a stable taxonomic appraisal of the generic placement of the new 

species most likely remains drastically fragmentary. Therefore, placing the new species in Orthochromis will be a 

temporal solution but creating at least a temporal nomenclatural stability highlighting phenotypic dissimilarity with 

members of the other haplochromine catch-all genus Haplochromis.

Furthermore, apart from the new species described herein, at least two new species of the Malagarasi-

Orthochromis lineage (Orthochromis sp. “Igamba” and Orthochromis sp. “red”; only the first species was available 

for this study) await formal description; and, moreover, preliminary data suggest that O. cf. torrenticola specimens 

collected from the Lufira River below Kiubo Falls represent an as yet undescribed species which is the sister taxon 

to O. torrenticola, which was described from specimens collected above the falls. These species will be described 

in forthcoming papers once more data become available. 

The five new species described herein appear to belong to at least three different evolutionary lineages based 

on published and not yet published preliminary molecular phylogenetic analyses, a result which is partially 

reflected by distinctive morphological and colouration characters, as well as patterns of geographic distribution: the 

four species O. luongoensis, O. kalungwishiensis, O. katumbii and O. mporokoso are distributed in the Luapula-

Lake Mweru drainage, and, according to preliminary molecular phylogenetic data they form a monophyletic group 

(Schedel et al. unpublished), and, to some extent, show meristic similarities (see Fig. 2). However, inter- and 

intrarelationships of this clade need further examination as O. kalungwishiensis was shown to be either related to 

Pseudocrenilabrus-like cichlids (mtDNA-data) or to O. stormsi and O. polyacanthus (nuclear DNA data) 

(Schwarzer et al. 2012, Weiss et al. 2015). The two new species O. gecki and O. kimpala both feature eggspots or 

eggspot-like maculae on their anal fin, and their pelvic fin shows a characteristic colouration with the spines and 

adjacent membranes being blackish, suggesting a closer relationship of these two species. In addition, unpublished 

molecular  data  suggest  that  they  potentially  represent  a  distinct  haplochromine lineage. Based on preliminary
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molecular analyses of mitochondrial data O. indermauri appears to represent a lineage of its own, too (Schedel et 

al. submitted). It is worth mentioning that the overall appearance of O. indermauri reminds of Eretmodini (e.g. 

Eretmodus), which are endemic to Lake Tanganyika and its outlet Lukuga (Kullander & Roberts 2011), because as 

in Eretmodus, O. indermauri has a comparatively short, laterally compressed body, superolaterally positioned eyes 

and broad vertical bars on flanks. On the other hand, O. indermauri differs in several morphological characters 

from Eretmodini species as its dorsal fin is composed of 17 or 18 spines whereas Eretmodini species have 

comparatively high dorsal-fin spine counts of between 21 and 25, which are among the highest among cichlids 

(Poll 1986). Although each of the three Eretmodini genera is characterized by a distinctive oral tooth shape (e.g. 

spatulate, cylindrical or conical) all have in common unicuspid oral teeth (Huysseune et al. 1999, Vandervennet et 

al. 2006); this contrasts with the bicuspid to subequally bicuspid teeth in the outer row of upper and lower jaw of O. 

indermauri. Further, O. indermauri exhibits maculae which are vaguely similar to egg-spots, which contrasts with 

the lack of egg-spots or eggspot-like maculae on the anal fin of Eretomodini. Several molecular phylogenetic 

studies established alternative hypotheses for the placement of Eretmodini when comparing nuclear and 

mitochondrial phylogenies (e.g. Clabaut et al. 2005, Meyer et al. 2015, Weiss et al. 2015), and Weiss et al. (2015) 

found support for a mosaic genomic composition of Eretmodini with phylogenetic signal of both Lamprologini and 

Malagarasi-Orthochromis and/or Haplochromini. Orthochromis indermauri might represent an additional lineage 

with a mosaic genomic composition but so far no nuclear data for this taxon are available. 

Conservation. The five new species appear to be endemics of the Katanga-Chambeshi region (sensu Cotterill 

2005), a landscape mosaic of savannah grasslands and wetlands, centred within the Zambezian phytochorion 

(sensu White 1983). The Katanga-Chambeshi region is characterised by high physiographic diversity 

encompassing several high plateaux (e.g. Bia, Kibara, and Kundelungu plateaux), deep ravines and wide 

depressions providing a wide variety of habitats which is also reflected by the diversity of vegetation types in this 

area (Broadley & Cotterill 2004). The Katanga-Chambeshi region is only loosely defined but includes parts of 

three freshwater ecoregions sensu Thieme et al. (2005): Bangwelu-Mweru (O. mporokoso, O. katumbii), Upper 

Lualaba (O. kimpala, O. gecki) and Lake Tanganyika (O. indermauri). These ecoregions have been reported to 

harbour a rich aquatic fauna with a high degree of endemism, e.g., one third of the Bangwelu-Mweru ecoregion 

fish species appear to be endemic to it (Balon & Stewart 1983, Thieme et al. 2005). A very rich aquatic 

herpetofauna is documented from the Upper Lualaba ecoregion but the ichthyological fauna appears to be only 

incompletely known even though many endemic fish species are reported from this ecoregion (Poll 1976, Thieme 

et al. 2005). 

The different drainage systems of the Katanga-Chambeshi region are prone to different environmental threats. 

Major threats for aquatic fauna of the poorly studied Upper Lualaba ecoregion are the extensive mining activities 

due to the rich mineral deposits such as copper, zinc, and cobalt, and this especially along the Copperbelt with the 

associated negative impacts on the environment such as erosion, contaminations, and pollution of the soil and 

waterbodies (Thieme et al. 2005, Katemo Manda et al. 2010). Generally, the five new species described herein 

might be threatened by the common hazards for aquatic wildlife in the region (e.g. unsustainable fishing methods, 

deforestation, damming, pollution, and mining), which might be aggravated by the fact that most of their known 

distribution ranges are located outside of protected areas. Moreover, it appears that the ichthyological fauna of the 

Bangwelu-Mweru ecoregion and Upper Lualaba ecoregion is understudied as several species caught along with the 

new species still were new and await formal description. Future conservation plans and prioritisations should 

therefore consider that the number of endemic taxa in these regions might not only be higher than previously 

assumed but potentially also locally restricted to individual river drainages or stretches due to biogeographical 

barriers such as waterfalls (e.g. Lufubu River). An updated assessment of the ichthyodiversity of National Parks 

(e.g. Parc National de Kundelungu and Parc National de Upemba) in DRC is in preparation (Mbisa Congo Project), 

but areas outside these parks still need more attention. 
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Appendix. Comparative material examined

Haplochromis bakongo Thys van den Audenaerde 1964: MRAC 142002, 1, holotype, 74.7 mm SL; Democratic Republic of 
Congo, Ngombe River at Banza Mfinda, Lower Congo (-5.38/15).—MRAC 142003-009, 7, paratypes, 63.5–87.8 mm SL; 
Ngombe River at Banza Mfinda, Lower Congo, (-5.38/15).—MRAC 142010-011, 2, paratypes, 75.3–87.8 mm SL; Moerbeke, 
Lower Congo, (-5.5/14.7).—ZSM 37741, 2, 41.9–46.1 mm SL; Democratic Republic of Congo, drainage Kwilu, small stream, 
north of Yabi station on Jules van Lancker farm (-5.5901/14.7514).

Haplochromis moeruensis (Boulenger 1899): MRAC 216-222, 4, syntypes, 49.4–75.7 mm SL; Democratic Republic of 
Congo, Pweto, Lake Mweru (-8.46/28.7). 

‘Haplochromis’ snoeksi Wamuini Lunkayilakio & Vreven 2010: MRAC A7-009-P-0001, 1, holotype, 82.5 mm SL; 
Democratic Republic of the Congo, River Ngeba/Ngufu, village Ngeba, affluent of River Inkisi, Lower Congo (-5.1838/
15.2064).—MRAC A7-009-P-0004, 1, paratype, 93.8 mm SL; Democratic Republic of the Congo, River Ngeba/Ngufu, village 
Ngeba, affluent of River Inkisi, Lower Congo (-5.1838/15.2064).—MRAC A9-014-P-0001, 1, paratype, 81.2 mm SL; 
Democratic Republic of the Congo, River Ngeba, village Ngeba, affluent of River Inkisi, at Kimasi Bridge, Lower Congo (-
5.1838/15.2064).

Haplochromis vanheusdeni Schedel, Friel & Schliewen 2014: CUMV 97639, 1, Holotype, 70.7 mm SL, Tanzania, Morogoro 
State, drainage Rufiji, Sonjo River at bridge in Man’gula on road from Mikumi to Ifakara, altitude 302 m (-7.808231/
36.896561).—CUMV 93835, (1)13, paratypes 31.5–78.7 mm SL, Tanzania, Morogoro state, drainage Rufiji, Sonjo River at 
bridge in Man’gula on road from Mikumi to Ifakara, altitude 302 m (-7.808231/36.896561).—ZSM 40703, 2, paratypes 50.3–
58.7 mm SL), Tanzania, Morogoro state, drainage Rufiji, Sonjo River at bridge in Man’gula on road from Mikumi to Ifakara, 
altitude 302 m (-7.808231/36.896561).—MRAC 34-09-P-001-003, 3, paratypes, 54.0–58.3 mm SL, Tanzania, Morogoro state, 
drainage Rufiji, Sonjo stream at bridge on road Ifakara- Kidodi (-7.808339/36.896189).—ZSM 41440, 3, paratypes, 56.2–63.6 
mm SL, Tanzania, Morogoro state, drainage Rufiji, Sonjo stream at bridge on road Ifakara-Kidodi (-7.808339/36.896189.—
ZSM 41559, 7, paratypes, 47.2–67.8 mm SL, Tanzania, Morogoro state, drainage Rufiji, Sonjo stream at bridge on road 
Ifakara- Kidodi (-7.808339/36.896189).—ZSM 42308, 1, paratype, 83.9 mm SL Tanzania, Morogoro state, drainage Rufiji, 
Sonjo River at bridge in Man’gula on road from Mikumi to Ifakara, altitude 302 m (-7.808231/36.896561).—CUMV 93833, 
2(3), 31.5–60.4 mm SL; drainage Rufiji, Great Ruaha River at bridge in Kidatu on road from Mikumi to Ifakara (-7.66174/
36.9773).—CUMV 93834, 2, 36.6–56.2 mm SL; drainage Rufiji, Idete River at bridge in Idete on road from Ifakara to Taveta 
(-8.10391/36.4881).

Orthochromis kalungwishiensis (Greenwood & Kullander 1994): MRAC 99-035-P-0031-0032, 2, 69.3–78.3 mm SL; Keso 
village, Pambashe River, local name Luena River, (possibly:-9.6000/29.4833).—MRAC 99-035-P-0033-0035, (2)3, 66.4–69.2 
mm SL, Luena River (=Pambashe River), tributary of Kalungwishi River (possibly: -9.6000/29.4833).—ZSM 41427, 1, 79.2 
mm SL; Zambia, Kalungwishi stream above Lumanmgwe Falls on road Mukunsa-Kawambwa (-9.5431/29.3878).—ZSM 
41431, 6, 44.4–75.8 mm SL; Zambia, Kalungwishi stream above Lumanmgwe Falls on road Mukunsa-Kawambwa (-9.5431/
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29.3878).—ZSM 44369, (8)13, 48.5–70.7 mm SL; Zambia, Kalungwishi River, above Kundabwika and below Kabwelume 
Falls, near to road Mporokoso—Mununga (-9.217887/ 29.304202)

Orthochromis kasuluensis De Vos & Seegers 1998: MRAC 93-152-P-0725-0740, 4(15), paratypes, 63.5–68.4 mm SL; 
Mgandazi River, Ruchugi drainage, Malagarasi basin, around 80 km north of Kigoma on road to Kasulu, few km before Kasulu 
(-4,56/30.1).—ZSM 41455, 5, 48.2–67.0 mm SL; Tanzania, Ruchugi River east of Kasulu on road to Kasulu-Kibondo (-
4.5347/30.1483).

Orthochromis luichensis De Vos & Seegers 1998: MRAC 93-152-P-0122-0135, 7(13), paratypes, Mkuti River, affluent 
Luiche, about 40 km on the road Kigoma-Kasulu (-4.86/29.86).—ZSM 41445, 7, 38.0–72.7 mm SL; Tanzania, Mkuti River, 
road bridge east of Kandihwa village (-4.8867/29.8703).

Orthochromis luongoensis (Greenwood & Kullander 1994): CU 91747, 1, 69.9 mm SL; Zambia, Lufubu River Falls below 
bridge at Chipili on Mansa-Munuga road, (-10.7286/29.0936).—ZSM 41437, (5)6, 46.3–68.4 mm SL; Zambia, Luongo stream 
at bridge on road Mwenga-Kashiba, affluent to Lake Mweru / Upper Congo basin (-10.4708/29.0261).—ZSM 44345, 6, 61.5–
106.9 mm SL; Zambia, Kalungwishi River, immediately above Kabwelume Falls (below Lumangwe Falls), ~ 20 km 
downstream bridge on road Mporokoso-Kawambwa, Northern Province, (-9.527083/29.353102).—ZSM 44432, 7, 53.8–98.0 
mm SL; Zambia, Luongo River, at bridge on road Kawambwa-Mansa about 40 km (driving distance) S of Kawambwa (-
10.144359/ 29.167193).—ZSM 44467, (5)7, 42.6-59.0 mm SL; Zambia, Luongo River, below Mumbuluma Falls, ~ 40 km (air 
distance) NW of Luwingu Luapula Province (-10.106146/ 29.571487).—ZSM 44569, 1, 69.9 mm SL; Zambia, Kalungwishi 
River, above Kundabwika and below Kabwelume Falls, near to road Mporokoso—Mununga (-9.217887/ 29.304202). 

Orthochromis machadoi (Poll 1967): BMNH 1984.2.6.104-108, 5, 42.31–52.1 mm SL; Angola, Cunene River (-17.267/
14.50).—BMNH 1984.2.6.109, 1, 44.7 mm SL; Angola, Cunene River (-17.05/13.5).—BMNH 1984.2.6.113, 1, 52.2 mm SL; 
Angola, Cunene River (-17/13.25).—BMNH 1984.2.6.116-131, (1) 22, 50.5–60.1 mm SL; Angola, Cunene River (-16.983333/
13.366667).—BMNH 1984.2.6.132-141, 3, 43.4–55.4 mm SL, Angola, Cunene River (-14.383333/15.300000).—BMNH 
1984.2.6.142-145, 4, 50.3–65.7 mm SL; Angola, Cunene River (-14.916667/15.100000).

Orthochromis malagaraziensis David 1937: MRAC 47077-47079, 3, 74.5-83.3 mm SL; paralectotypes, Malagarasi River and 
its affluents, near Bururi (-4.43/29.76).—ZSM 41469, 2, 66.5-68.8 mm SL; Tanzania, Malagarasi River close to Uvinza (-
5.1183/30.3825).

Orthochromis mazimeroensis De Vos & Seegers 1998: MRAC 91-062-P-1620-1651, (4)31, paratypes, 44.3-55.8 mm SL; 
Kabingo, Mazimero River, road Rutana-Kinyinya, Malagarasi basin (-3.9/30.21).—MRAC 93-150-P-0432-0476, (4)44, 52.1-
58.3 mm SL; paratypes, Mazimero River, affluent Malagarasi, on the Road Prov. 85 after ”Faille des Allemands“ direction 
Giharo (-3.9/30.21).—University Basel Uncat, 1, 45.5 mm SL; Burundi, Mazimero River, affluent of Upper Malagarasi River, 
upstream of bridge (-3.884722/ 30.197750).—University Basel KDD3, 1, 39.9 mm SL; Burundi, Mazimero River, affluent of 
Upper Malagarasi River, upstream of bridge (-3.884722/ 30.197750).—University Basel KDD4, 1, 44.2 mm SL; Burundi, 
Mazimero River, affluent of Upper Malagarasi River, upstream of bridge (-3.884722/ 30.197750).—University Basel KDD6, 1, 
40.4 mm SL; Burundi, Mazimero River, affluent of Upper Malagarasi River, upstream of bridge (-3.884722/ 30.197750).—
University Basel KDC8, 1, 59.7 mm SL; Burundi, Mazimero River, affluent of Upper Malagarasi River, upstream of bridge (-
3.884722/ 30.197750).—University Basel KDC9, 1, 43.0 mm SL; Burundi, Mazimero River, affluent of Upper Malagarasi 
River, upstream of bridge (-3.884722/ 30.197750). 

Orthochromis mosoensis De Vos & Seegers 1998: MRAC 93-150-P0478-0481, 4, 47.1-60.3 mm SL; River Rurur, 9 km from 
Muyaga near Cenda Juru, Malagarasi basin (-3.3/30.55). 

Orthochromis polyacanthus (Boulenger 1899): Personal collection of O. Seehausen (Field number MKB18), 5, 60.1-66.4 mm 
SL; drainage Lake Mweru, no further information available.—MKL 11, 2, 51.1-65.1 mm SL; no further information 
available.—Personal collection of O. Seehausen (Field number MKL 12), 1, 63.5 mm SL; no further information available.

Orthochromis rubrolabialis De Vos & Seegers 1998: MRAC 96-022-P-0002-004, 3, paratypes, 43.4-48.7 mm SL; Majamazi 
River, Malagarasi drainage, Ugalla subdrainage, 58 km north of Mpanda on road to Uvinza; (-5.93/30.95).—ZSM 41463, (7)8, 
44.5-86.7 mm SL; Tanzania, Malagarasi River close to Uvinza (-5.1183/30.38)

Orthochromis rugufuensis De Vos & Seegers 1998: MRAC 96-022-P-0006, 1, paratype, 47.1 mm SL; Tanzania, Upper 
Rugufu River: on road from Uvinza to Mpanda, about 83 km south of Uvinza (-5.7000/ 30.6666.

Orthochromis stormsi (Boulenger 1902): MRAC 96-031-P-1303-1307, (3)5, 38.5-64.5 mm SL; Democratic Republic of the 
Congo, Lualaba River chutes 47 km on road of Kisangani-Lubutu near of the Concasserie, no GPS data available.—ZSM 
32393, (5)6, 40.0-65.6 mm SL; Republic of Congo, Congo main channel near Djoue River confluence at “Les Rapides” (-
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4.31306/15.2289).—ZSM 37603, 1, 44.8 mm SL; Democratic Republic of the Congo, Lubuya stream below bridge on Lubutu 
road, close to Wanie Rukula (0.1928/25.5319).—ZSM 37541, 3, 63.5-80.3 mm SL; Democratic Republic of the Congo, 
Kisangani market, bought from woman who sells fishes from Wagenia rapids or fishes bought directly at Wagenia village 
(0.4939/25.2072).—ZSM 38129, 3, 52.5- 88.0 mm SL; Democratic Republic of the Congo, Congo River, obtained from local 
fishermen at Kinsuka rapids, exact collecting location unclear (-4.3278/15.2306).—ZSM 38337, 1, 52.8 mm SL; Democratic 
Republic of the Congo, Congo River “Chutes Kipokosso” at Wanie Rukula, (0.1856/25.5218).—ZSM 38382, 1, 69.1 mm SL; 
Democratic Republic of the Congo, Congo River obtained from local fishermen at Kinsuka rapids, exact collecting location 
unclear (-4.3278/15.2306).

Orthochromis torrenticola (Thys van den Audenaerde 1963): MRAC 140100, 1, holotype, 67.3 mm SL; Democratic Republic 
of the Congo, Lufira River rapids, just above the main falls at Kiubo, Congo, no GPS data available.—MRAC 140101, 1, 
paratype, 67.3 mm SL; Democratic Republic of the Congo, Lufira River rapids, just above the main falls at Kiubo, Congo, no 
GPS data available.—MRAC 182787-182804, (4)17, 66.0-85.5 mm SL; Lufira River, between Koni and Mwashia (-10.71/
27.35).—ZSM 38201, (4)5, 37.2-52.3 mm SL; Democratic Republic of the Congo, drainage Congo, Lufira River near Mwashia 
village near small rapids (-10.7008/27.3403).

Orthochromis uvinzae De Vos & Seegers 1998: ZSM 41430, (6)7, 57.2-80.8 mm SL; Tanzania, Malagarasi River close to 
Uvinza (-5.1183/30.38).—ZSM 41562, (4)5, 63.7- 83.9 mm SL; Tanzania, Malagarasi River, riffles/rapids upstream of Uvinza 
(-5.1889/30.0517).—ZSM 41564, 5, 56.6-73.3 mm SL; Tanzania, Malagarasi River, riffles/ rapids upstream of Uvinza (-
5.1889/30.0517).

Orthochromis sp. “Igamba”: ZSM 41561, 5, 49.9-73.1 mm SL; Tanzania, Malagarasi River, Igamba cataracts approximately 
56 km downriver of Uvinza (-5.1803/30.0531).—ZSM 41563, 3, 57.0-79.3 mm SL; Tanzania, Malagarasi River, Igamba 
cataracts approximately 56 km downriver of Uvinza (-5.1803/30.0531).

Schwetzochromis neodon Poll 1948: MRAC 79591-79644, (14)53, 69.5-92.2 mm SL; Democratic Republic of the Congo, 
River Fwa, no GPS data available.

Appendix. 

Individual species-specific principal component analyses (with a reduced taxon sets). Pictures of different species and 

specimens depicted in the plots were obtained on different field trips and form private photo collections: O. katumbii sp. 

nov. (holotype), O. kimpala sp. nov. (probably the holotype), O. mporokoso sp. nov. (probably the holotype), O. gecki sp. 

nov. (photo: probably the holotype and a second specimen from the Katanga 2016 Expedition), O. indermauri sp. nov. 

(paratype), H. bakongo (preserved specimen: MRAC 142003-142009; paratype), H. snoeksi (preserved specimen; 

holotpye), H. vanheusdeni (photo: H. van Heusden), S. neodon (preserved specimen, MRAC 79591-79644), O. 

kalungwishiensis (Zambia 2015 Expedition), O. luongoensis (photo: Zambia 2015 Expedition), O. uvinzae (representing 

the Malagarasi-Orthochromis; photo: J. Geck), O. machadoi (photo: E. Schraml), O. cf. polyacanthus (Aquarium 

specimen, F. Schedel),O. stormsi (Aquarium specimen, photo: J. Geck), O. torrenticola (Katanga 2016 Expedition). 
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FIGURE S1:Species-specific PCA scatter plots focusing on O. mporokoso sp. nov. based on 20 meristics; species score limits 
visualized as convex hulls. PC I vs PC II (A)and PC vs PC III (B) for a 106 examined specimens. PC I explain 27.87 %, PC II 
explains 15.43 % and PC III explains 10.77 % of the variance. Species depicted from top to bottom: O. mporokoso sp. nov. , O. 

katumbii sp. nov., O. kimpala sp. nov., O. gecki sp. nov., H. snoeksi, O. machadoi, S. neodon.
 Zootaxa 4461 (3)  © 2018 Magnolia Press  ·  345NEW RHEOPHILIC CICHLID SPECIES

94



FIGURE S2: Species-specific PCA scatter plots focusing on O. katumbii sp. nov. based on 20 meristics; species score limits 
visualized as convex hulls. PC I vs PC II (A) and PC vs PC III (B) for a 225 examined specimens. PC I explain 30.76 %, PC II 
explains 14.68 % and PC III explains 9.89 % of the variance. Species depicted from top to bottom: O. katumbii sp. nov., O. 

kimpala sp. nov., O. mporokoso sp. nov., O. gecki sp. nov., O. uvinzae, S. neodon, O. kalungwishiensis, O. luongoensis, O. 

torrenticola. 
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FIGURE S3: Species-specific PCA scatter plots focusing on O. kimpala sp. nov. based on 19 meristics; species score limits 
visualized as convex hulls. PC I vs PC II (A) and PC vs PC III (B) for a 143 examined specimens. PC I explain 23.09 %, PC II 
explains 14.63 % and PC III explains 12.34 % of the variance. Species depicted from top to bottom: O. kimpala sp. nov., O. 

mporokoso sp. nov., O. katumbii sp. nov., O. gecki sp. nov., H. bakongo, H. snoeksi, H. vanheusdeni, O. stormsi, O. machadoi.
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FIGURE S4: Species-specific PCA scatter plots focusing on O. gecki sp. nov. based on 19 meristics; species score limits 
visualized as convex hulls. PC I vs PC II (A) and PC vs PC III (B) for a 196 examined specimens. PC I explain 33.42 %, PC II 
explains 14.91 % and PC III explains 11.95 % of the variance. Species depicted from top to bottom: O. gecki sp. nov., O. 

indermauri sp. nov., O. katumbii sp. nov., O. kimpala sp. nov., O. mporokoso sp. nov.. O. uvinzae, O. cf. polyacanthus, S. 

neodon.
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FIGURE S5: Species-specific PCA scatter plots focusing on O. indermauri sp. nov. based on 19 meristics; species score limits 
visualized as convex hulls. PC I vs PC II (A) and PC vs PC III (B) for a 171 examined specimens. PC I explain 36.45 %, PC II 
explains 13.84 % and PC III explains 10.65 % of the variance. Species depicted from top to bottom: O. gecki sp. nov. H. 

vanheusdeni, O. uvinzae, O. stormsi.
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Abstract

Two monotypic haplochromine cichlid genera (Teleostei: Cichlidae) of the Pseudocrenilabrus group are described from 
northern Zambia. One new genus is Palaeoplex gen. nov., with Pa. palimpsest sp. nov. as the type species, from the 
Luongo and Kalungwishi Rivers (Upper Congo drainage, Luapula subdrainage). It is diagnosed by a unique combination 
of morphological characters: (1) a fully developed infraorbital series without a distinct gap between the lachrymal and 
second infraorbital bone, (2) fused hypuralia 1+2 and hypuralia 3+4, (3) molariform teeth on the sagittal series of the 
lower pharyngeal jaw, and (4) a large maximum size. The second new genus, Lufubuchromis gen. nov., with L. relictus 
sp. nov. as the type species, is restricted to the upper Lufubu River catchment (Upper Congo drainage, Lake Tanganyika 
subdrainage). It is diagnosed by a unique combination of morphological characters: (1) a fully developed infraorbital 
series without a distinct gap between the lachrymal and second infraorbital bone, (2) fused hypuralia 1+2 (rarely with a 
visible suture) and fused hypuralia 3+4, (3) a unique male coloration pattern, i.e. deep crimson red colored areas on the 
anterior ventral flank parts, chest and belly and on the lower head; remaining parts of flanks and caudal peduncle bluish), 
and (4) a Pseudocrenilabrus blotch present in both sexes. Both new genera are compared with all remaining taxa of the 
Pseudocrenilabrus group and with all representatives of all other major haplotilapiine lineages. 

Key words: Pseudocrenilabrus, Kalungwishi River, Luongo River, Lufubu River

Introduction

Fowler (1934) described a new genus and species as Pseudocrenilabrus natalensis Fowler 1934 based on material 
he had obtained from H. W. Bell-Marely which was collected in 1932 in Durban, Natal (South Africa). He placed his 
new genus in a new subfamily Pseudocrenilabrinae together with the marine dottybacks (today Pseudochromidae). 
Later, Trewavas (1973) realized that Ps. natalensis is a haplochromine cichlid identical with Chromis philander 
Weber, 1897 and consequently synonymized Ps. natalensis with C. philander. Nevertheless, acknowledging their 
generic distinctiveness, Trewavas (1973) placed this species together with Chromis multicolor Schöller 1903 in the 
genus Pseudocrenilabrus. Since Wickler (1963) had previously established a new genus for C. multicolor, namely 
Hemihaplochromis Wickler, 1963, Hemihaplochromis had to be synonymized with Pseudocrenilabrus based on the 
principle of priority (Trewavas 1973).

Although Wickler (1963) diagnosed Hemihaplochromis (now Pseudocrenilabrus) mainly based on differences 
in the spawning behaviour of H. multicolor (now Ps. multicolor) as compared with other haplochromine cichlids, 
he also identified one chromatic character on the anal fin, which appears to be correlated with the behavioural dif-
ferences: male Pseudocrenilabrus have a single, non-ocellated and distinctly coloured orange or red blotch at the 
tip of the anal fin (referred here as Pseudocrenilabrus blotch), but they lack well defined ocellated egg-dummies 
on the anal fin. During spawning the male presents his anal fin to the female in a folded state, which makes the 
Pseudocrenilabrus blotch appear to be a three-dimensional egg-like structure at the tip of the anal fin. The genus 
Pseudocrenilabrus is further distinguished by a reduction of the infraorbital bone series and by having a rounded 
caudal fin (Wickler 1963; Trewavas 1973; Greenwood 1989). 
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Pseudocrenilabrus species are widely distributed in southern, central, eastern and northern Africa. They are 
found from coastal Natal (South Africa) to the west in Namibia and Eastern Congo Basin, in the north up to the 
Nile delta region and they are widespread in eastern Africa (Greenwood 1989, Seegers 1990, Katongo et al. 2005, 
Katongo et al. 2017). Currently the genus has four valid species: Pseudocrenilabrus pyrrhocaudalis Katongo, See-
hausen & Snoeks 2017, recently described from Lake Mweru; Ps. nicholsi (Pellegrin 1928) from the Lualaba River 
in the Upper Congo drainage; Ps. multicolor from the Nile drainage (Egypt); and Ps. philander, described from the 
Umhlasine River (South Africa), but widely distributed in South-Central Africa. For the two latter taxa, subspecies 
have been described: the nominate subspecies Ps. multicolor multicolor is restricted to the Lower Nile drainage and 
Ps. multicolor victoriae Seegers, 1990 to the upper Nile drainage including Lake Victoria, Lake Albert and the Al-
bert Nile but excluding Lake Turkana (Seegers 2000). For Pseudocrenilabrus philander, three subspecies have been 
suggested, i.e., Ps. philander philander from South-Eastern Africa (Skelton 2001), Ps. philander luebberti (Hilgen-
dorf, 1902) from the Otavi region in Namibia, and Ps. philander dispersus (Trewavas, 1936) from Lake Otjikoto, a 
sinkhole lake in northern Namibia. Pseudocrenilabrus philander appears to have a complex biogeographic history 
and recent phylogenetic studies revealed several distinct mitochondrial lineages within this species (Katongo et al. 
2005, Koblmüller et al. 2012, Egger et al. 2014), some possibly representing distinct species.

Within African cichlids, Pseudocrenilabrus is placed among the megadiverse tribe Haplochromini (Salzburger 
et al. 2002, Koblmüller et al. 2008). Interestingly, several other haplochromine species currently placed in different 
genera are closely related to Pseudocrenilabrus as inferred from mitochondrial and nuclear DNA analyses (Egger 
et al. 2014, Koblmüller et al. 2008, Koblmüller et al. 2012, Weiss et al. 2015, Matschiner et al. 2016; Meier et al. 
2017, Schedel et al. 2019): Haplochromis moeruensis (Boulenger 1899a) from Lake Mweru is part of the Pseu-
docrenilabrus Lake Mweru radiation that contains many undescribed species (Katongo et al. 2006; Wagner et al. 
2012); Orthochromis machadoi (Poll 1967), a rheophilic species described from the Cunene River (Namibia) is 
nested within Ps. philander; and the four Northern Zambian Orthochromis species (sensu Weiss et al. 2015), i.e., 
O. kalungwishiensis (Greenwood & Kullander 1994), O. luongoensis (Greenwood & Kullander, 1994), O. katum-
bii Schedel, Vreven, Katemo Manda, Abwe, Chocha Manda, Schliewen 2018 and O. mporokoso Schedel, Vreven,
Katemo Manda, Abwe, Chocha Manda, Schliewen 2018 represent the sister lineage to the Pseudocrenilabrus group
(sensu Weiss et al. 2015) based on nuclear data; or they are nested within the Pseudocrenilabrus group based on
mitochondrial data (Schedel et al. 2019).

The term Pseudocrenilabrus group was first introduced by Weiss et al. (2015) for a clade supported by molecu-
lar characters encompassing members of the genus Pseudocrenilabrus and, at that time, one undescribed haplochro-
mine species referred to as New Kalungwishi Cichlid (see below). A few years later, Schedel et al. (2019) widened 
the concept of the Pseudocrenilabrus group by including all Northern Zambia Orthochromis and one additional 
undescribed species from the Lufubu River referred to as New Lufubu Cichlid (see below). Neither study, however, 
provided morphological characters to define this clade, which is well supported by mitochondrial DNA analyses, 
but nevertheless the term has become increasingly accepted in the literature (e.g. Altner et al. 2017, Penk et al. 
2019). Table 1 provides a cursory overview of previous studies using the term and of the assignment of taxa placed 
within the Pseudocrenilabrus group. It further provides an overview of the presence or absence of characters shared 
with Pseudocrenilabrus sensu stricto. 

In this study, two new Pseudocrenilabrus-like species are described. The first new species lives in the Luongo 
and Kalungwishi rivers, two tributaries of the Luapula River, Upper Congo drainage, in northern Zambia (see Fig. 
1). It has been referred to as the New Luongo Cichlid or New Kalungwishi Cichlid and is a member of the Pseudo-
crenilabrus group (sensu Weiss et al. 2015). Based on molecular data it is either related to O. mporokoso (based on 
mitochondrial data; Schedel et al. 2019) or it represents the sister group of the genus Pseudocrenilabrus (based on 
AFLP data; Weiss et al. 2015, Meier et al. 2019). To our knowledge this species was depicted first in Balon et al. 
(1983) as Ps. philander (see page 237, Fig. 10d in Balon et al. 1983). Interestingly, this species attains a much larger 
maximum size (143.4 mm SL) than any other member of the Pseudocrenilabrus group. The second new species 
has long been known from the upper Lufubu River catchment, Lake Tanganyika drainage of the Upper Congo in 
northern Zambia. It had been referred to as “Haplochromine sp. nov.” (Koblmüller et al. 2008), “Pseudocrenilabrus 
sp. ‘Lufubu A’“ (Koblmüller et al. 2012) or as “New Lufubu Cichlid” (Schedel et al. 2019). The species was discov-
ered by the late L. de Vos, who had presented a photo at the International Conference of the PARADI Association 
and the Fisheries Society of Africa (1998) in his talk on the ichthyofauna of the Lake Tanganyika drainage (de Vos 
1998). It belongs to the Pseudocrenilabrus group sensu Weiss et al. (2015) and appears to represent the sister group 
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of O. kalungwishiensis, although this relationship was only weakly supported based on mitochondrial data (Schedel 
et al. 2019) while nuclear data (RAD) revealed this species to represent the sister group of a clade encompassing 
Pseudocrenilabrus and as well as the New Kalungwishi Cichlid (Meier et al. 2019). 

Both new species possess a Pseudocrenilabrus blotch at the distal end of the anal fin in adult males (in the new 
species of the Lufubu drainage it is also present in females) but they differ substantially from Pseudocrenilabrus by 
several morphological characters. Further, both represent early splitting and distant lineages within the molecularly 
defined Pseudocrenilabrus group (Weiss et al. 2015, Meier et al. 2019, unpublished own data). Based on new col-
lections from different localities and extensive comparisons with described and undescribed haplochromine cichlid 
species of the Pseudocrenilabrus group, we describe both new species as members of two new monotypic genera, 
which according to molecular genetic analysis do not form a monophylum.

FIGure 1. Map of northern Zambia, with colour indications of the type localities of Lufubuchromis relictus sp. nov. (purple) 
and Palaeoplex palimpsest sp. nov. (dark green) and sample locations of additional material of Palaeoplex palimpsest “Kalung-
wishi” (red). Star = type locality, circle = either paratype locality or sample locality of comparative specimens. Kasama (a major 
city) is depicted in black. Map is based on shape files obtained from DIVA-GIS (http://www.diva-gis.org/Data).

Specimens and methods

Specimens investigated. In total, 203 specimens of the Pseudocrenilabrus group (sensu Weiss et al. 2015 and Sche-
del et al 2019) were examined. Investigated specimens are deposited in NHM, Natural History Museum, London; 
CU, Cornell University Museum of Vertebrates, New York; MRAC, Musée Royal de l’Afrique Centrale, Tervuren; 
NRM, Naturhistorika Riksmuseet. Stockholm; SAIAB, South African Institute for Aquatic Biodiversity, Graham-
stown; and ZSM, Zoologische Staatssammlung, Munich. All specimens examined for comparisons are listed in the 
Comparative material section below. Based on genetic data, the rheophilic species Orthochromis kalungwishiensis, 
O. luongoensis, O. katumbii, and O. mporokoso might be considered members of the Pseudocrenilabrus group, 
but they do not exhibit the typical Pseudocrenilabrus blotch and hence are easily distinguished from the remaining 
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members of the Pseudocrenilabrus group. Therefore, they are referred to in species diagnoses but are not included in 
principal component analysis (PCA). On the other hand, O. machadoi possesses the Pseudocrenilabrus blotch and is 
therefore included in comparative analyses. Based on genetic data, Haplochromis moeruensis is part of the “Pseudo-
crenilabrus Lake Mweru radiation” (Katongo et al. 2006; Wagner et al. 2012, Meier et al. 2019) and, according to 
a specimen figure labelled as H. moeruensis (Katongo et al. 2006; Fig. 2) this species carries a Pseudocrenilabrus 
blotch, too. Therefore the (faded) type material of H. moeruensis was included in our morphological comparisons.

Comparative material
 Haplochromis moeruensis (boulenger 1899a): MRAC 216–222, 4, syntypes, 49.4–75.7 mm SL; Democrat-
ic Republic of Congo, Pweto, Lake Mweru (-8.46/28.7). Orthochromis indermauri Schedel, Vreven, Katemo 
Manda, Abwe, Chocha Manda, Schliewen 2018: ZSM 46853, 1, holotype, 54.0 mm SL; Zambia, Lufubu River, 
below last series of rapids near Chomba village, ~ 25.5 km from confluence with Lake Tanganyika and 20 km (air 
distance) south of Sumbu (-8.687010/30.556273)—ZSM 46855, paratypes, 13, 35.8–68.9 mm SL; Zambia, Lufubu 
River, Lower Lufubu at Chomba Village, ~30 km from confluence with Lake Tanganyika, Northern Province (-
8.686376/30.563983).—ZSM 46854, 1, paratype, 61.2 mm SL; Zambia, Lufubu River, Lower Lufubu at Chomba 
Village, ~30 km from confluence with Lake Tanganyika, Northern Province (-8.686376/30.563983).—ZSM 43083, 
4, paratypes, 45.6–59.4 mm SL; collected with holotype.—ZSM 43080, 2, paratype, 42.0–43.1 mm SL; collected 
with holotype.—ZSM 44283, 3, paratypes, 50.8–63.5 mm SL; Zambia, Lufubu River, Lower Lufubu at Chom-
ba Village, ~30 km from confluence with Lake Tanganyika, Northern Province (-8.686376/30.563983).—MRAC 
2018-006-P-0001-0002, 2, paratypes, 56.8–51.9 mm SL; Zambia, Lufubu River, Lower Lufubu at Chomba vil-
lage, ~30 km from confluence with Lake Tanganyika, Northern Province (-8.686376/30.563983).—MRAC 2018-
006-P-0003-0008, 6, paratypes, 43.3–64.1 mm SL; Zambia, Lufubu River, Lower Lufubu at Chomba village, ~30 
km from confluence with Lake Tanganyika, Northern Province (-8.686376/30.563983). Orthochromis kalung-
wishiensis (Greenwood & Kullander 1994): MRAC 99-035-P-0031-0032, 2, 69.3–78.3 mm SL; Keso village, 
Pambashe River, local name Luena River, (possibly: -9.6000/29.4833).—MRAC 99-035-P-0033-0035, (2)3, 66.4-
69.2 mm SL, Luena River (=Pambashe River), tributary of Kalungwishi River (possibly: -9.6000/29.4833).—ZSM 
41427, 1, 79.2 mm SL; Zambia, Kalungwishi stream above Lumanmgwe Falls on road Mukunsa-Kawambwa 
(-9.5431/29.3878).—ZSM 41431, 6, 44.4–75.8 mm SL; Zambia, Kalungwishi stream above Lumanmgwe Falls 
on road Mukunsa-Kawambwa (-9.5431/29.3878).—ZSM 44369, (8)13, 48.5–70.7 mm SL; Zambia, Kalungwishi 
River, above Kundabwika and below Kabwelume Falls, near to road Mporokoso-Mununga (-9.217887/ 29.304202). 
Orthochromis katumbii Schedel, Vreven, Katemo Manda, Abwe, Chocha Manda, Schliewen 2018: MRAC 
2015-009-P-0006, 1, holotype, 85.9 mm SL; Democratic Republic of the Congo, Kiswishi River, near confluence 
with Matete stream, Luapula basin (-11.486528/ 27.650306)—MRAC 2015-009-P-0001, 1, paratype, 53.2 mm SL; 
Democratic Republic of the Congo, Kiswishi River, Futuka farm, Luapula basin (-11.488028/27.645833).—ZSM 
46844, 1, paratype, 81.8 mm SL; Democratic Republic of the Congo, Kiswishi River, Futuka farm, Luapula ba-
sin (-11.488028/ 27.645833).—MRAC 2015-009-P-0003, 1, paratype, 56.6 mm SL; Democratic Republic of the 
Congo, Kiswishi River, Futuka farm, Luapula basin (-11.488028/27.645833).—MRAC 2015-009-P-0007-0009, 
3, paratypes, 58.7–85.2 mm SL; collected with holotype.—ZSM 41450, 6, paratype, 27.2–57.4 mm SL; Zambia, 
Luapula River below Mambilima Falls (-10.5689/ 28.6783).—ZSM 42322, 2, 71.3–88.9 mm SL; Zambia, Luapula 
River below Mambilima Falls; kept in aquarium (-10.5689/28.6783). Orthochromis luongoensis (Greenwood & 
Kullander 1994): CU 91747, 1, 69.9 mm SL; Zambia, Lufubu River Falls below bridge at Chipili on Mansa-
Munuga road, (-10.7286/29.0936).—ZSM 41437, (5)6, 46.3–68.4 mm SL; Zambia, Luongo River at bridge on road 
Mwenda-Kashiba, affluent to Lake Mweru / Upper Congo basin (-10.4708/29.0261).—ZSM 44345, 6, 61.5–106.9 
mm SL; Zambia, Kalungwishi River, immediately above Kabwelume Falls (below Lumangwe Falls), ~ 20 km 
downstream bridge on road Mporokoso-Kawambwa, Northern Province, (-9.527083/29.353102).—ZSM 44432, 
7, 53.8–98.0 mm SL; Zambia, Luongo River, at bridge on road Kawambwa-Mansa about 40 km (driving distance) 
S of Kawambwa (-10.144359/ 29.167193).—ZSM 44467, (5)7, 42.6–59.0 mm SL; Zambia, Luongo River, below 
Mumbuluma Falls, ~ 40 km (air distance) NW of Luwingu Luapula Province (-10.106146/ 29.571487).—ZSM 
44569, 1, 69.9 mm SL; Zambia, Kalungwishi River, above Kundabwika and below Kabwelume Falls, near to road 
Mporokoso-Mununga (-9.217887/ 29.304202). Orthochromis machadoi (Poll 1967): BMNH 1984.2.6.104–108, 
5, 42.31–52.1 mm SL; Angola, Cunene River (-17.267/ 14.50).—BMNH 1984.2.6.142–145, 4, 50.3–65.7 mm SL; 
Angola, Cunene River (-14.916667/15.100000). Orthochromis mporokoso Schedel, Vreven, Katemo Manda, 
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Abwe, Chocha Manda, Schliewen 2018: ZSM 46840, 1, holotype, 59.04 mm SL; Zambia, Kasinsha stream north 
of Luwinga affluent to Lake Mweru (-9.4894/30.5769)—ZSM 41429, 9, paratypes, 34.0–74.48 mm SL, Zam-
bia, Mutoloshi stream above Kapuma Falls at Mporokoso on road Mukunsa-Luwinga (-9.3889/30.0956).—ZSM 
41443, 4, paratypes, 40.9–63.2 mm SL; collected with holotype.—MRAC 2018-006-P-0009-0011, 3, paratypes, 
48.7–51.9 mm SL; Zambia, Mutoloshi stream above Kapuma Falls at Mporokoso on road Mukunsa-Luwinga (-
9.3889/30.0956).—ZSM 46841, 1, 54.28 mm SL; Zambia, Mutoloshi stream above Kapuma Falls at Mporoko-
so on road Mukunsa-Luwinga (-9.3889/30.0956). Pseudocrenilabrus multicolor Schöller, 1903: ZSM 40011, 1, 
45.99 mm SL; Zambia, Drainage Nile; Lake Mariout, at road bridge Zawyet-Abd-el-Qadir to Alexandria, SW of 
Alexandria (31.112803°/ 29.885594°).—ZSM 41574, 2, 41.6–49.8 mm SL; Egypt, Drainage Nile; aquarium raised 
offspring, male parents from Lake Mariout (31.112803°/ 29.885594°)., female parent from Lake Birkat-Abu-Ju-
masm (30.559664/32.269147). Pseudocrenilabrus multicolor victoriae Seegers, 1990: ZSM 41695, 1, 35.1 mm 
SL; Uganda, Drainage Nile; Katonga River at Kabagole village, affluent to Lake George, Kiruhura District, Western 
Region (0.198250/ 30.892750).—ZSM 43928, 1, 44.5 mm SL; Tanzania, Drainage Zambezi; Lufiro River at con-
fluence at northern shore with Lake Malawi, 3 km W of Matema & 7 km E of Kyela villages, Shire River subbasin, 
Mbeya Province (-9.509997/33.998843).—BMNH 1985.7.16.81–82, 2, 39.7–52.6 mm SL; Uganda, in a stream 
N. of Lake Victoria, no GPS data available. Pseudocrenilabrus nicholsi Pellegrin 1928: MRAC-P-70060-061, 2, 
paratypes, 44.1–49.4 mm SL; Democratic Republic of Congo, Kabalo, fleuve Lualaba, no GPS data available.—
MRAC-P-70053-057, 5, paratypes, 24.8–45.4 mm SL; Democratic Republic of Congo, Kabalo, fl. Lualaba, chenal, 
no GPS data available.—MRAC-P-70058, 1, paratype, 21.3 mm SL; Democratic Republic of Congo, Kabalo, fl. 
Lualaba, no GPS data available.—ZSM 47140, 46.2–46.5 mm SL (only used for comparisons of infraorbital bones); 
Democratic Republic of Congo, Lake Kisale at Kipamba village, approx. 70km SW of Mulongo and 150km NE 
of Luena, Katanga Province (-8.205118/26.433161). Pseudocrenilabrus philander (Weber 1897): ZSM 42326, 
1, 73.3 mm SL; South Africa, Drainage Orange; Aquarium stock originating from Spitz Kop Dam (-28.128517/ 
24.496972).—ZSM 40944, 3, 61.9–69 mm SL; South Africa, Drainage Orange; Spitz Kop Dam, Orange River 
drainage (-28.128517/ 24.496972).—ZSM 40918, 1, 59.9 mm SL; South Africa, Drainage Orange; Spitz Kop Dam, 
Orange River drainage (-28.128517/ 24.496972).—BMNH 1935.3.21.1–2, 2, paralectotypes, 28.4–36.1 mm SL; 
South Africa, River Umhlati, Natal, no GPS data available.—BMNH 1904.5.17.19–24, 5, 53.8–85.9 mm SL; South 
Africa, Near Durban, no GPS data available. Pseudocrenilabrus philander dispersus Trewavas 1936: BMNH 
1905.10.18.31–33, 3, paralectotypes, 64.8–69.1; South Africa, Pretoria, no GPS data available. Pseudocrenilabrus 
pyrrhocaudalis Katongo, Seehausen, Snoeks 2017: MRAC-A4-025-P-0105-0108, 3, 47.3– 49.1 mm SL; Zam-
bia, Mwatishi, Lake Mweru, no GPS data available.—MRAC-A4-025-P-0103-0104, 2, paratypes, 52.0–54.2 mm 
SL; Zambia, Mwatishi, Lake Mweru, no GPS data available.—MRAC-A4-025-P-0137-0138, 2, 45.7–48.9 mm 
SL; Zambia, Mwatishi, Lake Mweru.—MRAC-A7-034-P-0238-0247, 10, 55.7–72.6; Zambia, Mukwakwa inshore, 
Lake Mweru, no GPS data available. 

Pseudocrenilabrus populations of yet undefined taxonomic status and/or undescribed species: Pseudocrenilab-
rus sp. “lufira”: ZSM 45846, 3, 33.3–45.0 mm SL; Democratic Republic of Congo, Drainage Congo, Lufira River, 
within rapids above Kiubo Falls at Kiubo Lodge, tributary to Upemba Lakes subbasin, approx. 230 km N of Lubum-
bashi, Katanga Province (-9.5175/27.0393). Pseudocrenilabrus sp. “lunzua”: ZSM 44309, 3, 33.3–41.9 mm SL; 
Zambia, Drainage Congo upper Lunzua [above Lunzua fall] in “Gt” village at bridge, 8 km on road to Lualika after 
Mpulungu intersection, direct affluent of Lake Tanganyika, Northern Province (-8.955842/31.174187). Pseudocre-
nilabrus sp. “botswana”: ZSM 44171, 10, 41.0–58.1 mm SL; Botswana, Drainage Okavango; Boteti river, “8 km 
en aval de Makalamabedi, rive D” [8 km E of Makalamabedi], Central District (-20.300002/23.983333). Pseudo-
crenilabrus sp. “Kalungwishi”: ZSM 44424, 4, 33.5–56.8 mm SL; Zambia, Drainage Congo; Kalungwishi River, 
at bridge on road Mporokoso—Kawambwa, near Chimpempe village, Northern Province (-9.550173/29.448585).—
ZSM 44350, 2, 44.6–69.0 mm SL; Zambia, Drainage Congo; Kalungwishi River, immediately above Kabwelume 
Falls [bellow Lumangwe Falls], ~ 20 km downstream bridge on road Mporokoso—Kawambwa, Northern Province 
(-9.525757/29.352505).—ZSM 044326, 1, 57.0 mm SL; Zambia, Drainage Congo; Kalungwishi River, immediate-
ly above Lumangwe falls, Mporokoso—Kawambwa, Northern Province (-9.543595/29.388307).—ZSM 44388, 5, 
37.5–54.3 mm SL; Zambia, Drainage Congo; Chimbofuma stream in Kalabwe village, trib to Kalungwishi, 50 km 
W of Mporokoso on road to Kawambwa, Northern Province (-9.471495/29.668661).—NRM-012333, 6, 37.6–68.9 
mm SL; Zambia, Congo River; Locality: Congo River drainage: Kalungwishi River, Kundabwika Falls just above 
cataracts; Northern Province (-9.216666/29.3).—CU-91181, 3, 38.7– 45.2 mm SL; Zambia, Luapula, Drainage 
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Kalungwishi River; above Lumangwe Falls on Kalungwishi River (-9.5426/29.3875). Pseudocrenilabrus sp. “lu-
ongo”: CU-91173, 1, 49.9 mm SL; Zambia, Luapula, Drainage Luongo River, Luongo River below Musonda Falls 
(-10.7043/28.8009).—CU-91175, 6, 26.6–42.0 mm SL; Zambia Luapula, Drainage Luongo River; Luongo River 
at bridge on Kashiba-Mwenda road (-10.4701/29.0245).—ZSM 41496, 1, 42 mm SL; Zambia, Drainage Congo; 
Luongo stream at bridge on road Mwenda—Kashiba, affluent to Lake Mweru/Upper Congo basin, Luapala Provin-
ce (-10.470725/29.026200). Pseudocrenilabrus sp. “upper Kalungwishi”: ZSM 44541, 18, 25.6–47.9 mm SL; 
Zambia, Drainage Congo; Upper Kalungwishi River, about 46 km [air distance] N of Luwingu, on road after Shi-
milungu village [8 km distance], Luapula Province (-9.813650/29.880345). Pseudocrenilabrus sp. “Mukuleshi”: 
ZSM 45181, 3, 42.8–64.6 mm SL; Democratic Republic of Congo, Drainage Congo; Mukuleshi River below Muk-
wiza Falls, about 12 km from Malemba Village and approx. 100 km WNW of Kolwezi, tributary of Lualaba River, 
Katanga Province (-10.3404/24.5974). Pseudocrenilabrus sp. “lufubu b?”: ZSM 44319 (4, 16.5–23.7 mm SL) 
Zambia, Drainage Congo; Upper Mululwe River [above Mwanyonga falls], trib. to Lufubu River/Lake Tanganyika, 
25 km S of Mpulungu, Northern Province (-9.008968/31.130549).

Morphological data collection and principal component analysis
 A total of 28 meristic characters (character definitions according to Schedel & Schliewen 2017) was included 
of which 18 were recorded using a stereomicroscope (Leica MZ6) and ten were recorded from digital X-rays gener-
ated by a Faxitron Ultrafocus LLC X-ray unit. Following Schedel & Schliewen 2017, four additional postcranial 
skeleton character states were scored: (1) position of the pterygiophore supporting the last dorsal-fin; (2) position 
of the pterygiophore supporting the last anal-fin spine; (3) state of hypurals 1 + 2; and (4) state of hypurals 3 + 4. In 
total, 29 morphometric (body) measurements were taken point-to-point on the left side of specimens using a manual 
calliper as in Schedel & Schliewen (2017). Head measurements taken are given as percentages of head length (HL), 
all other measures as percentages of standard length (SL). Finally, three lower pharyngeal jaw measurements were 
taken from digital microscope pictures, i.e. lower pharyngeal-jaw length, lower pharyngeal-jaw width and width 
of dentigerous area of lower pharyngeal jaw; they are given as percentages of HL. Terminology of morphological 
characters (e.g. teeth) in the descriptions follows Barel et al.1977.

In order to identify diagnostic character states or a combination of those, and for the evaluation of non-diagnos-
tic morphological differentiation of the new species, two principal component analyses (PCA) were performed with 
the statistical program PAST 3.21 (Hammer et al. 2001). The first PCA was based on a subset of 23 meristic char-
acters (i.e. excluding nonvariant meristic counts and highly variable meristic and tooth counts) and on a correlation 
matrix. The second PCA was based on a subset of 20 log-transformed morphometric measurements, i.e. excluding 
measurements only available for a subset of specimens or potentially sexually dimorphic distance measurements, 
and it was based on the covariance matrix.

results

In the first PCA (Fig. 2) based on 23 meristic characters and including all 203 investigated specimens, principal 
component I (PC I) explained 37.5 %, PC II explained 12.2 % and PC III 8.9 % of the total variance. Differences 
in the total number of gill rakers, scales on horizontal line and lower lateral line scales contributed the most to the 
factor loadings of PC I, while factor loadings of PC II mainly integrate the variance of different counts for the posi-
tion of the pterygiophore supporting the last dorsal fin spine, position of pterygiophore supporting the last anal fin 
spine and dorsal fin counts (See Table 2). PC I and PC II scores of Paleoplex palimpsest sp. nov. partially overlap 
with those of Ps. pyrrhocaudalis. Separation of these two taxa and other taxa included in the study was mainly 
based on the high scores of PC I in combination with low PC II scores. Scores of PC I and PC II of Lufubuchromis 
relictus sp. nov. overlap with those of O. machadoi, H. moeruensis and Ps. philander philander. High scores of PC 
I separate L. relictus sp. nov. from Ps. multicolor multicolor, Ps. multicolor victoriae and Ps. nicholsi while lower 
PC I scores separate it from Pa. palimpsest sp. nov. and Ps. pyrrhocaudalis, whereas a combination of high PC I 
and PC II scores separate L. relictus sp. nov. from Ps. philander dispersus and Pseudocrenilabrus populations of 
yet undefined taxonomic status.
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FIGure 2. PCA scatter plots based on 23 meristic values; species score limits visualized as convex hulls. PC I vs PC II for all 
examined specimens (N = 203). PC I explain 37.53 % of the variance and PC II explains 12.17 %.

TAble 2. Factor loadings of PCI-III for all examined specimens (N=203, see Fig. 2). Highest loadings for each principal 
component are indicated in boldface.

Meristic PC 1 PC 2 PC 3
Series of scales on cheek 0.011122 -0.072094 0.20793
Scales on operculum 0.12611 0.177 0.15983
Scales (horizontal line) 0.28461 0.066054 -0.14018
Upper lateral line scale 0.19245 0.095669 -0.15758
Lower lateral line scales 0.26716 -0.011245 -0.035904
Scales between lateral line and dorsal fin origin 0.16907 -0.05294 0.21889
Scales between upper lateral line and last dorsal fin spine 0.25388 -0.09697 0.15397
Inner series of teeth (Upper jaw) 0.2047 -0.13884 -0.13619
Inner series of teeth (Lower jaw) 0.17133 -0.16231 -0.12204
Pectoral rays 0.23067 0.10129 0.19334
Gill rakers (ceratobranchial) 0.26461 -0.14373 -0.15223
Total gill rakers 0.28659 -0.11744 -0.11202
Abdominal vertebrae 0.22544 0.22789 0.1947
Caudal vertebrae 0.20141 0.08631 -0.39403
Total number of vertebrae 0.27686 0.18055 -0.2232
Anal-fin rays 0.13315 -0.10237 -0.25914
Dorsal-fin spines 0.13005 0.49168 0.10505
Dorsal-fin rays 0.1778 -0.27153 -0.25691
Upper procurrent caudal-fin rays 0.1947 -0.14488 0.27996
Lower procurrent caudal-fin rays 0.20322 -0.20307 0.33611
Caudal-fin rays 0.21251 -0.20243 0.3418
Position of the pterygiophore supporting the last dorsal fin spine 0.12435 0.51758 0.084214
Position of pterygiophore supporting the last anal fin spine 0.22533 0.24137 0.069637
Eigenvalue 8.63124 2.79827 2.04682
% variance 37.527 12.166 8.8992
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The second PCA was based on 20 log-transformed morphometric measurements of all 203 investigated speci-
mens. In this analysis PC I explained 93.1 %, PC II 2.0 % and PC III 1.4 % of the total variance. Factor loadings 
indicate that the characters that contributed the most to PC II were the last dorsal fin spine length, length of third 
anal fin spine and cheek depth while in PC III distance between anus and anal-fin base, snout length and cheek depth 
contributed the most (see Supplementary Table 2 for factor loadings PCI-PCIII). PC II and PC III scores of the dif-
ferent species overlapped widely and did not allow for any clear separation of species (Supplementary Fig. 1).

Overall, the combination of meristic counts, morphometric measurements, color patterns and additional mor-
phological characters allowed to separate the two new monotypic genera from all analysed taxa associated with the 
genus Pseudocrenilabrus (including O. machadoi and H. moeruensis) and were therefore used as the basis for their 
differential diagnosis.

Palaeoplex new genus

Type species: Palaeoplex palimpsest sp. nov.

Diagnosis. Palaeoplex gen. nov belongs to the megadiverse cichlid lineage of haplotilapiines (sensu Schliewen & 
Stiassny 2003) characterised by tricuspid teeth in the inner tooth rows of the oral jaws. Within the haplotilapiines it 
belongs to the still weakly defined tribe Haplochromini, which is generally characterized by the combination of fol-
lowing characters: basioccipital forming together with parasphenoid the apophysis of the upper pharyngeal bones, 
type A infraorbitals (sensu Takahashi, 2003a), bicuspid outer and tricuspid inner teeth on both jaws, ctenoid scales 
on flanks, and by being maternal mouthbrooders (Poll 1986, Eccles & Trewavas 1989, Takahashi 2003b). Within 
Haplochromini, Palaeoplex gen. nov. is placed within the Pseudocrenilabrus group (including Lufubuchromis gen. 
nov., Pseudocrenilabrus, Orthochromis machadoi and Haplochromis moeruensis) by the presence of a Pseudo-
crenilabrus blotch at the distal end of the anal fin in adult males, a placement which is supported also by genetic 
analyses. The currently monotypic genus Palaeoplex is characterized by a unique combination of the following 
characters: (1) a fully developed infraorbital series without a distinct gap between the lachrymal and the second 
infraorbital bone (in some cases the pore of the laterosensory tubule of both bones appears to be shared) (see Fig. 9); 
(2) fused hypuralia 1+2 and hypuralia 3+4 and (3) molariform teeth on sagittal series of the lower pharyngeal jaw
(see Fig. 5). Finally, the new genus is characterised by (4) a large maximum size of up to 143.4 mm SL.

Palaeoplex is distinguished from all members of Pseudocrenilabrus and from Haplochromis moeruensis by 
having no distinct gap between the lachrymal and second infraorbital bone (vs. distinct gap always present, varying 
from narrow to very wide). In addition, the infraorbital series of Palaeoplex palimpsest is composed of the lachry-
mal bone (first infraorbital bone), four infraorbital bones and in some cases the dermosphenotic element (sixth in-
fraorbital bone), hereby contrasting with Pseudocrenilabrus, where a trend towards the reduction of the infraorbital 
series can be observed including various combinations of fusion and loss of entire infraorbital bones (see Fig. 9, see 
also Greenwood 1989). 

The genus Palaeoplex with its single species Pa. palimpsest differs from Pseudocrenilabrus multicolor by 
having more abdominal vertebrae 14–15 vs. 13 and more scales on the horizontal line 28–31 vs. 26–27; from Ps. 
nicholsi by having more scales on the horizontal line 28–31 vs. 25–26, more total gill rakers 12–17 vs. 10–11, more 
abdominal vertebrae 14–15 vs. 12–13 and total vertebrae 27–30 vs. 25–26; from Ps. pyrrhocaudalis by having more 
abdominal vertebrae 14–15 vs. 12–3. It is distinguished form Ps. philander philander (populations from type local-
ity and the Orange river drainage, South Africa) by more abdominal vertebrae 14–15 vs. 12–13; it is distinguished 
from Ps. philander dispersus and from several examined Pseudocrenilabrus populations of yet undefined taxono-
mic status (i.e. Ps. sp. “Lufira”, Ps. sp. “Lunzua”, Ps. sp. “Botswana”, Ps. sp. “Kalungwishi”, Ps. sp. “Luongo”, 
Ps. sp. “Mukuleshi) by having more abdominal vertebrae 14–15 vs. 13; in addition Palaeoplex palimpsest has more 
scales on the horizontal line 28–31 vs. 26–27 than Ps. philander dispersus, and from the putatively new species 
Pseudocrenilabrus sp. “Upper Kalungwishi” it is distinguished by having more total vertebrae 27–30 vs. 26.

From Orthochromis machadoi it is distinguished by having comparatively large scales on the chest (vs. partly 
scaleless chest, with deeply embedded minute scales); moreover, Palaeoplex palimpsest is distinguished from O. 
machadoi by having a distinctively longer last dorsal fin spine (14.7–18.6 vs. 10.1–14.6% SL), fewer dorsal fin 
spines (14–15 vs. 16–17) and by the position of the pterygiophore supporting last dorsal-fin spine at vertebral count: 
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13–14 vs. 15–16.
Palaeoplex palimpsest is distinguished from the Northern Zambian Orthochromis sensu Weiss et al. 2015 (O. 

kalungwishiensis, O. luongoensis, O. katumbii, and O. mporokoso) by having fewer dorsal fins spines (14–15 vs. 
16–19) and by the position of the pterygiophore supporting the last dorsal-fin spine (vertebral count: 13–14 vs. 
15–18) and by having fewer total vertebrae albeit with overlap (27–30 vs. 30–33). Further, Palaeoplex palimpsest is 
distinguished from the Northern Zambian Orthochromis by having comparatively large and well-developed scales 
on belly and chest (vs. small to minute scales, sometimes with deeply embedded chest scales, in the Northern Zam-
bian Orthochromis). Further, adult males of Palaeoplex palimpsest feature a large orange Pseudocrenilabrus blotch 
at the distal end of the anal fin which is absent in the Northern Zambian Orthochromis.

Palaeoplex differs from Lufubuchromis gen. nov. by having longer dorsal-fin spines (length of last dorsal fin 
spine: 14.7–18.6 vs. 10.9–14.2 % SL), by higher total gill raker counts (12–17 vs. 10–12), and by a difference in the 
coloration (e.g. Lufubuchromis with Pseudocrenilabrus blotch in both sexes vs. only present in males of Palaeoplex 
palimpsest) and in maximum size (143.4 vs. 93.2 mm).

etymology. The genus name Palaeoplex alludes to the concept of geoecodynamics where the palaeoplex of a 
species is the proxy for the total genomic variation of a given species comprising DNA signatures of the evolution-
ary history of a species in a given landscape (Cotteril & de Wit 2011). The analysis of the palaeoplex of a species 
theoretically allows for reconstruction of the species history in that landscape. As the new genus is tied geographi-
cally to a very ancient landscape, and, as published DNA analyses suggest, a long history of this genus in that land-
scape (e.g. Weiss et al. 2015, Schedel et al. 2019, unpublished data), the genus name refers to the scientific potential 
of this genus to elucidate the complex landscape evolution of that region through the analysis of the palaeoplex of 
the new genus. Gender masculine.

Included species. Palaeoplex palimpsest sp. nov.

Palaeoplex palimpsest, new species 

Pseudocrenilabrus philander (non Weber), Balon et al. 1983
Chetia mola (non Balon & Stewart), Friedmann et al. 2013
New Kalungwishi cichlid; Weiss et al. 2015, Schedel et al. 2019
Orthochromis sp. “New Kalungwishi” Meier et al. 2019

Holotype. ZSM 47492, ex ZSM 44438 (7 in lot, now 6), 143.4 mm SL; Zambia, Luongo River, at bridge on road 
Kawambwa-Mansa about 40 km [driving distance] S of Kawambwa, Luapula Province (-10.144359/ 29.167193).

Paratype. ZSM 43077, 1, 116.0 mm SL; Zambia, Drainage Congo; Luongo Reservoir, right bank above dam 
~ opposite of Chisunka Luongo village, Luongo River 9 km above Musonda Falls on Luongo River, 56.5 km N of 
Mansa, Luapula Province (-10.685519/28.900466).—ZSM 44438, 6, 81.9–106.3 mm SL; Zambia, Drainage Con-
go; Luongo River, at bridge on road Kawambwa-Mansa about 40 km [driving distance] S of Kawambwa, Luapula 
Province (-10.144359/ 29.167193).—ZSM 43079, 6, 62.9–130.1 mm SL; Zambia, Drainage:Congo; Luongo Reser-
voir, right bank above dam ~opposite of Chisunka Luongo village, Luongo River 9km [air distance] above Muson-
da Falls on Luongo River, 56.5 km [air distance] N of Mansa, Luapula Province (-10.685519/28.900466).—ZSM 
43078, 1, 137.4 mm SL; Zambia, Drainage Congo; Luongo Reservoir, right bank above dam ~ opposite of Chisunka 
Luongo village, Luongo River 9 km above Musonda Falls on Luongo River, 56.5 km N of Mansa, Luapula Province 
(-10.685519/ 28.900466).—CU 91755, 8, 50.0–82.1 mm SL; Zambia, Drainage: Luongo River; Luongo River at 
Mukonshi Bridge on Mwenda-Kawanbwa road (-10.1442/29.167).—CU 99504, 4, 39.5–100.8 mm SL; Zambia, 
Drainage Luongo River; Luongo River at bridge on Kashiba-Mwenda road (-10.4701/29.0245).—SAIAB 208051, 
3, ex ZSM 43077 (4 now 1), 102.8–122.8 mm SL; Zambia, Drainage Congo; Luongo Reservoir, right bank above 
dam ~ opposite of Chisunka Luongo village, Luongo River 9 km above Musonda Falls on Luongo River, 56.5 km 
N of Mansa, Luapula Province (-10.685519/28.900466).—MRAC 2019.009.P.0001-0003, 3, ex ZSM 43079 (9 now 
6), 66.2–133.8 mm SL; Zambia, Drainage: Congo; Luongo Reservoir, right bank above dam ~ opposite of Chisunka 
Luongo village, Luongo River 9km [air distance] above Musonda Falls on Luongo River, 56.5 km [air distance] 
N of Mansa, Luapula Province (-10.685519/28.900466).—ZSM 47493, ex ZSM 41496 (2 now 1), 1, 33.2 mm SL; 
Zambia, Drainage Congo; Luongo stream at bridge on road Mwenda-Kashiba, affluent to Lake Mweru/Upper Con-
go basin, Luapula Province (-10.470725/29.026200).
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Additional specimens examined. Palaeoplex palimpsest (specimens from Kalungwishi River): ZSM 41425, 6, 
73.0–102.9 mm SL; Zambia, Drainage Congo; Kalungwishi stream above Lumangwe falls, W of Mukuma, on road 
Mukunsa—Kawambwa, approached from Northern Province (-9.543011/ 29.387789).—ZSM 44357, 9, 53.9–116.6 
mm SL; Zambia, Drainage Congo; Kalungwishi River, 3 km below Kabwelume Falls [above Kundabwika Falls], 
~ 23.5 km downstream bridge on road Mporokoso—Kawambwa, Northern Province (-9.502106/29.352734).—
SAIAB 77188, (1 out of 5 specimens), 118.9 mm SL; Kundabwika falls on Kalungwishi River (-9.2179/29.3040).

Diagnosis. Species diagnosis as for genus. 
Description. Morphometric measurements and meristic characters are based on 34 type specimens. Values and 

their ranges are presented in Table 3. For general appearance see Fig. 3 (male) and Fig. 4 (female). Maximum length 
of a wild caught male specimen 143.4 mm SL; largest female 110.7 mm SL. A rather deep bodied (BD: 28.9–36.0 % 
SL) species with maximum body depth slightly behind pelvic fin origin, decreasing towards caudal peduncle (dorsal 
margin of caudal peduncle roughly on level with dorsal margin of orbit). Ratio caudal peduncle length to depth: 
1.2–1.8. HL about one third of SL. Adult males with a slightly concave upper head profile; females with a straight 
to slightly curved upper head profile. No prominent nuchal gibbosity. Jaws isognathous to slightly retrognathous. 
Posterior tip of maxilla reaching slightly behind nostril. Lips not noticeably enlarged or thickened. Two separate 
lateral lines. 

Squamation. Flank and dorsum covered with comparatively large cycloid or weakly ctenoid (if ctenoid, ctenii 
very short; see Supplementary Fig. 2). Cycloid scales of belly slightly smaller than flank scales. Chest scales cycloid 
and smaller than belly scales, smallest behind branchiostegal membrane; chest to flank transition with slightly larger 
cycloid or weakly ctenoid scales. Snout scaleless. Medium sized interorbital scales cycloid; anteriormost scales 
partially embedded in skin. Nape and occipital region with slightly smaller cycloid scales compared to flank scales. 
Cheek covered with 2–4 scale rows of small to medium sized cycloid scales. One cycloid scale between posterior 
orbital margin and preoperculum. Operculum covered with cycloid scales of variable size, some almost size flank 
scales. Opercular blotch squamated to variable extent; posteriormost margin always scaleless. Three to five scales 
on horizontal line starting from anterior edge operculum to postero-dorsal edge operculum. 

Scales on upper lateral line 16–24, lower lateral line 10–14 scales and horizontal line with 28–31 scales. Up-
per and lower lateral lines separated by two rows of scales. Five to nine scales between dorsal-fin origin and upper 
lateral line; 2–4 scales between origin last dorsal-fin spine and upper lateral line. Anterior caudal fin part covered 
with 2–4 ill-defined vertical columns of small cycloid scales including 0–2 pored scales; scaled area extending 
posteriorly to approximately 28–42 % caudal fin length with minute, interradial scales. Specimens from the Luongo 
River with 18–20 scales around caudal peduncle, specimens from Kalungwishi River with 16–18 scales around 
caudal peduncle.

Jaws and dentition. Anterior jaw teeth of outer rows of upper and lower jaw subequally bicuspid to subequilater-
ally bicuspid and closely set; towards corner of mouth, teeth are increasingly smaller and more widely set and might 
become unicuspid. Bicuspid teeth are slightly recurved and without or with a minimally expanded brownish crown; 
cusps only slightly compressed and blunt, with a moderately narrow cusp gap; neck moderately slender. Outer tooth 
row of upper jaw with 21–57 teeth, of lower jaw with 17–51 teeth (only counted for specimens from 50.8–143.3 
mm SL); larger specimens have incrementally more teeth. One (rarely in lower jaw) to four inner upper and lower 
jaw tooth rows with small tricuspid teeth.

Lower pharyngeal bone of six paratypes (SAIAB 208051, 118.0–122.9 mm SL; ZSM 43079, 109.3–130.1 
mm SL; ZSM 44438, 106.3 mm SL) about as wide as long (width of lower pharyngeal jawbone 95 to 103 % of 
pharyngeal-jaw length; Fig. 5). Dentigerous area of lower pharyngeal bone about 0.6 to 0.7 times length of lower 
pharyngeal bone length, with 21–30 teeth along posterior margin of dentigerous area. Teeth in sagittal series 7–11, 
molariform. Lateral anterior pharyngeal teeth bevelled to pronounced to moderately slender; those of posterior row 
larger than anterior ones, bevelled (minor cusp not well developed). Largest teeth (excluding molariform teeth of 
sagittal series) are located centrally in posterior tooth row whereas smallest teeth are found in the posterior corners 
of dentigerous area. 

Gill rakers. Total gill rakers 13–17 with 2–4 epibranchials, one in angle (rarely two), and 9–12 ceratobranchial 
rakers. Anteriormost ceratobranchial gill rakers smallest. Gill rakers slender to broad and unifid, sometimes of anvil 
shape to bifid towards cartilaginous plug, increasing in size towards cartilaginous plug at angle. Gill raker on carti-
laginous plug slightly shorter or as long as longest ceratobranchial gill raker; unifid epibranchial gill rakers slightly 
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decreasing in size and more slender than ceratobranchial gill rakers. 

FIGure 3. Palaeoplex palimpsest sp. nov. A. holotype, alive b. holotype (ZSM 47492), 143.3 mm SL; Zambia, Luongo River 
C. radiograph of holotype
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FIGure 4. Female and type locality of Palaeoplex palimpsest sp. nov. A. female paratype alive b. same individual (ZSM 
44438, ID: DRC-2012-/3649, 85.3 mm SL) C. Type locality of Pa. palimpsest, Luongo River (21.09.2015, Fenton P. D. Cot-
terill)
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FIGure 5. Pharyngeal jaws and overview of oral jaws of Paleoplex palimpsest sp. nov. A. Lateral view of the lower pharyn-
geal jaw of Pa. palimpsest sp. nov. (Paratype; ZSM 43077, 122.9 mm SL) b. Dorsal view of the same lower pharyngeal jaw C. 
Arrangement and morphology of the oral jaw teeth (Paratype, ZSM 43079, ID: P-AA-936, 133.8 mm SL).
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Fins. Dorsal fin with 14–15 spines and 10–12 rays. First dorsal-fin spine shortest. Dorsal-fin base length be-
tween 51.2–57.3 % SL. Posterior end of dorsal fin reaching caudal fin base or ending slightly before (females) or 
reaching behind caudal-fin base (adult males); posterior tip of anal fin reaching caudal-fin base or ending slightly 
before. Caudal fin outline rounded to subtruncate and composed of 26–30 rays (16 principal caudal-fin rays and 
10–14 procurrent caudal-fin rays). Anal fin with 3 spines (3rd spine longest) and 7–9 rays. Anal-fin base length be-
tween 16.0–20.6 % SL. Pectoral fin with 13–16 rays. Pectoral-fin length between 19.1–27.9 % SL; longest pectoral 
ray (4th or 5th ray counted from dorsal margin) ending slightly before level of anus. Pelvic fin with one spine and 5 
rays. Pelvic fin base slightly further (approximately 1.5–2 times flank scale width) posterior of pectoral fin base. 
Longest pelvic-fin ray ending behind anterior origin of anal fin base (especially in males) or ending slightly before 
(especially in females); adult males with moderately elongated 1st pelvic fin ray. 

Axial skeleton. Vertebral column with 27–29 (rarely 30) total vertebrae (excluding urostyle), with 14–15 ab-
dominal vertebrae and 13–15 caudal vertebrae. Pterygiophore supporting last dorsal-fin spine inserted between 
neural spines 13th and 14th vertebra (counted from anterior to posterior) or 14th and 15th vertebra. Pterygiophore sup-
porting last anal-fin spine inserted between ribs of 15th vertebra and haemal spine of 16th vertebra or between haemal 
spines of 15th and 16th vertebrae (rarely between haemal spines of 16th and 17th vertebrae). One predorsal bone (= 
supraneural bone) present. Hypuralia 1 + 2 and hypuralia 3 + 4 always fused into single, sutureless unit.

Coloration in life (based on field photographs of adult specimens). Pronounced sexual colour dimorphism 
present. Sexually mature males with characteristic coloration pattern of metallic greenish to turquoise flanks and 
caudal peduncle, lower lip whitish with turquoise to greenish gleam and deep black pelvic fins (see Fig. 3).

Body ground coloration olive; dorsum olive to pale brownish, flank and caudal peduncle greenish to turquoise. 
Most flank and caudal peduncle scales with greenish metallic gleam, limited to posterodorsal scale margin, and 
continuous with neighbouring upper and lower scale; resulting pattern giving impression of shiny oblique bars 
across flank. Flank scales posterior of head (first one to two rows) and chest golden to greenish. Ventral part of 
chest blackish (some scales with greenish gleam), belly whitish to beige. In large adult males a greyish midlateral 
band can be present, but mostly faint and hardly visible; between 7 and 9 light greyish vertical bars, but mostly faint 
or completely absent. No distinct caudal fin spot. Iris brownish with whitish patches. Dorsal head surface and eth-
moidal area olive to brownish. Cheek olive with greenish to golden gleam, preoperculum golden. Operculum with 
golden-orange to greenish gleam, blackish opercular spot present but might be overlain by a metallic gleam. A faint 
greyish lachrymal stripe present. Upper lip olive with greenish gleam, lower lip whitish with turquoise to greenish 
gleam (especially at corner of mouth). Branchiostegal membrane greyish to turquoise. Dorsal fin membrane olive 
to brownish; dorsal fin lappets of spinous part deep black (first four spines with largest fin lappets), black dorsal fin 
lappets delineated by a narrow reddish submarginal band from the fifth dorsal fin spine. Soft rayed part of dorsal-fin 
membrane with small transparent to whitish maculae organized in loose oblique rows. Anal fin membrane olive to 
brownish (whitish to hyaline distally), with irregularly set transparent to whitish maculae; orange Pseudocrenila-
brus blotch on posterior margin soft rayed part anal fin, proximal side outlined with narrow whitish band. Caudal 
fin membrane olive to yellowish; becoming less intensively coloured towards margin, with loosely set vertical rows 
of transparent to whitish maculae. Pectoral fin membrane transparent, pectoral fin rays olive. Pelvic fin membrane 
blackish. 

Females (Fig. 4) less colourful, without prominent green, gold or turquoise gleam. Body primary coloration 
grey to olive. Flank, caudal peduncle and chest with silvery gleam. Chest and belly white to beige. No midlateral 
band visible, 7 to 9 light greyish vertical bars, but mostly faint. Iris brown with whitish patches. Cheek silvery. 
Operculum silvery with patches of golden gleam; opercular spot black with gold metallic gleam. A faint grey lach-
rymal stripe. Lips white to grey. Branchiostegal membrane white to grey. Dorsal fin membrane as in males. Anal fin 
yellowish, without transparent or white maculae and without Pseudocrenilabrus blotch. Pectoral fins transparent, 
pectoral fin rays yellow to olive. Caudal fin and pelvic fin membrane yellowish. 

Juvenile coloration in life. No information about juvenile coloration available. 
Coloration in alcohol. Pigmentation and melanin patterns similar to live specimens, but due the preserva-

tion specimens lost original coloration, rendering especially melanin patterns more intense than in live specimens. 
Overall body coloration brownish. Chest in females white to beige, in males comparatively dark. Operculum grey to 
brown; opercular spot dark brown to black. Branchiostegal membrane dusky in males and beige in females. Large 
adult males with a faint brownish midlateral band along the horizontal line, vertical bars appear to be missing; fe-
males and small males either with or without any visible melanin pattern on flank, or with 6 to 9 faint vertical bars; 
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vertical bars in subadult individuals (< 40.5 mm SL) more pronounced. Dorsal fin membrane grey to brown, dorsal 
fin lappets blackish. Anal fin brown to grey with transparent maculae; Pseudocrenilabrus blotch whitish or faded; 
anal fin of females greyish. Pelvic fin blackish in males and beige to greyish in females.

Distribution and biology. Palaeoplex palimpsest is known from the Luongo River, a tributary of Luapula 
River, and from several locations in the Kalungwishi River drainage, which drains into Lake Mweru (Luapula drain-
age). At the type locality, the Luongo River is rocky with sandy to muddy patches, about 25 m wide, and with an 
estimated depth of approx. 1.5 m. Its shoreline is fringed with dense vegetation (reeds and small trees). 

The species seems to prefer stretches of slow flowing water as it was neither observed nor collected in the small 
rapid-like stretches of the river close to the type locality. No stomach contents were examined, but in X-ray pictures 
approximately half of the investigated specimens had guts almost entirely filled with a dense fine-grained material, 
most likely sand, whereas in one specimen fragments of snail shells were visible in the x-rays. The molariform teeth 
of the lower pharyngeal jaw suggest that this species feeds at least partly on molluscs which are crushed by the 
pharyngeal jaws. 

etymology. A palimpsest is a parchment manuscript page, most commonly used in medieval times, that has 
been secondarily overwritten after layers of old handwritten letters had been scraped off, sometimes repeatedly. In 
many palimpsests the old letters are still visible in the background, because they had not been completely removed. 
The species name palimpsest is used here to denote that the palaeoplex of the new species (see etymology of ge-
nus name Palaeoplex gen. nov. above) is like a palimpsest: it is the result of the history of the species endemic to 
a dynamic landscape, where, e.g., recent changes in landscape and/or in ecological conditions have affected gene 
flow and have left genetic signatures by overwriting the genome several times, whereas remnants of more ancient 
genomic signatures still persist in the background of the endemic species. The contrasting hypotheses regarding the 
phylogenetic position of the new species, either based on nuclear DNA (Weiss et al. 2015) or on mtDNA (Schedel 
et al. 2019), are likely the result of these kinds of events that have affected the genome of Palaeoplex palimpsest 
gen. nov. sp. nov. The idea of referring to the genome as a palimpsest is based on Cotterill & de Wit (2011). A noun 
in apposition.

Lufubuchromis new genus

Type species: Lufubuchromis relictus sp. nov. 

Diagnosis. Lufubuchromis gen. nov. belongs to the megadiverse lineage of haplotilapiines (sensu Schliewen & 
Stiassny 2003) characterised by tricuspid teeth in the inner tooth rows of the oral jaws. Within haplotilapiines it 
belongs to the still weakly defined tribe Haplochromini characterized generally by the combination of following 
characters: basioccipital bone forming together with parasphenoid the apophysis for the upper pharyngeal bones, 
type A infraorbitals (sensu Takahashi, 2003a), bicuspid outer and tricuspid inner teeth on both jaws, ctenoid scales 
on flanks and by being maternal mouthbrooders (Poll 1986, Eccles & Trewavas 1989, Takahashi 2003b). Within 
the Haplochromini it is placed within the Pseudocrenilabrus group (including Palaeoplex, Pseudocrenilabrus, Or-
thochromis machadoi and Haplochromis moeruensis) by the presence of a Pseudocrenilabrus blotch at the distal 
end of the anal fin in adult males, a placement which is supported by genetic analyses. The genus Lufubuchromis is 
monotypic and characterised by the unique combination of the following characters: (1) a fully developed infraor-
bital series, however without a distinct gap between posterior margin of the lachrymal and the second infraorbital 
bone (in some cases the opening of the laterosensory tubule of both bones appears to be shared); (2) hypuralia 1+2 
either fused (or sometimes fused with distinctly visible suture) and hypuralia 3+4 fused. Further, Lufubuchromis 
exhibits (3) a male colour pattern characterised by deep, crimson red coloured areas on the anterior and ventral flank 
regions, on parts of the chest and belly, and on the suborbital head region; and with dorsal fin lappets orange (same 
colour as Pseudocrenilabrus blotch). In addition, (4) the Pseudocrenilabrus blotch at the distal end of the anal fin 
is present in both sexes of Lufubuchromis (vs. only present in only present in males of Palaeoplex and Pseudocre-
nilabrus).

Lufubuchromis is distinguished from all members of the genus Pseudocrenilabrus and from Haplochromis 
moeruensis by having no distinct gap between the lachrymal and second infraorbital bone (vs. distinct gap always 
present, varying from narrow to very wide). In addition, the infraorbital series of Lufubuchromis is composed of 
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the lachrymal bone (= first infraorbital bone), four infraorbital bones, and in some cases a dermosphenotic element 
(sixth infraorbital bone), thereby contrasting with Pseudocrenilabrus, where a trend towards the reduction of the 
infraorbital series is observed including various combinations of fusion and loss of entire infraorbital bones is (see 
Fig. 9, see also Greenwood 1989).

Lufubuchromis with its single species L. relictus differs from Ps. multicolor by having more abdominal verte-
brae (14–15 vs. 13); from Ps. nicholsi by having more abdominal vertebrae (14–15 vs. 12–13), more total vertebrae 
(27–29 vs. 25–26), and more dorsal fin spines (15–16 vs. 13–14); and from Ps. pyrrhocaudalis by having more 
abdominal vertebrae (14–15 vs. 12–13). 

It is distinguished form Ps. philander philander populations from the type locality and from the Orange River 
drainage (South Africa) by more abdominal vertebrae (14–15 vs. 12–13); from Ps. philander dispersus and from 
several other examined Pseudocrenilabrus of yet undefined taxonomic status, i.e., Ps. sp. “Lufira”, Ps. sp. “Lun-
zua”, Ps. sp. “Botswana”, Ps. sp. “Kalungwishi”, Ps. sp. “Luongo”, and Ps. sp. “Mukuleshi”, by having more ab-
dominal vertebrae (14–15 vs. 13); in addition Lufubuchromis relictus has more dorsal fin spines than Ps. philander 
dispersus (15–16 vs. 13–14), and from the putatively new species Pseudocrenilabrus sp. “Upper Kalungwishi” it is 
distinguished by having more total vertebrae 27–29 vs. 26.

From Orthochromis machadoi it is distinguished by having comparatively large scales on the chest (vs. a par-
tially scaleless chest, with only deeply embedded and minute scales); furthermore, Lufubuchromis relictus tends to 
have more abdominal vertebrae (14–15 vs. 13–14) and fewer caudal vertebrae (13–15 vs. 15–16). 

Lufubuchromis relictus is distinguished form the Northern Zambian Orthochromis by having a large orange 
Pseudocrenilabrus blotch at the distal end of the anal fin (vs. absent), and by having comparatively large scales on 
belly and chest (vs. small to minute scales, if present deeply embedded on chest). Further, Lufubuchromis relictus 
is distinguished from the Northern Zambian Orthochromis by having fewer caudal vertebrae (13–15 vs. 16–18) and 
fewer total vertebrae (27–29 vs. 30–33). 

Apart from coloration and its smaller maximum size (maximum recorded SL: 93.2 vs. 143.4 mm) Lufubuchromis 
is distinguished from Palaeoplex by its shorter dorsal fin spines (length of last dorsal fin spine: 10.9–14.2 vs. 14.7–
18.6 % SL) and by having lower total gill raker counts (10–12 vs. 12–17). 

etymology: Lufubu- refers to the Lufubu River as the only species of the genus is restricted to the Upper Lufu-
bu and its tributaries in northern Zambia; and -chromis a widely used suffix for cichlid genera. Gender masculine.

Included species. Lufubuchromis relictus sp. nov.

Lufubuchromis relictus, new species 

Haplochromine sp. nov.; Koblmüller et al. 2008
Pseudocrenilabrus sp. ‘Lufubu A’; Koblmüller et al. 2012, Egger et al. 2014, Indermaur 2014
New Lufubu Cichlid; Schedel et al. 2019
Orthochromis sp. “New Lufubu” Meier et al. 2019

Holotype. ZSM 47494, ex ZSM 44312 (5 in lot, now 4), 77.8 mm SL, Zambia, Drainage Congo; Mululwe rapids 
at Mululwe village, below Mwanyonga falls, trib. to Lufubu River/ Lake Tanganyika, 37 km SW of Mpulungu, 
Northern Province (-9.072543/30.932815). 

Paratypes. ZSM 44526, 2, 44.5–93.2 mm SL; Zambia, Drainage Congo; Upper Lufubu River, at bridge on road 
to Kaponga, 4 km W of Chinakila village, Northern Province (-9.255956/30.877441).—ZSM 44312, 4, 49.9–56.7 
mm SL; collected with holotype.—ZSM 44535, 4, 40.6–56.9 mm SL; Zambia, Drainage Congo; Luwle creek at 
bridge on road Mpulungu-Senga Hill, 25 km away from Chinakila village, affluent of Lufubu River, Northern 
Province (-9.202418/30.948029).—ZSM 41442, 6, 33.7–70.8 mm SL; Zambia, Drainage Congo; Mululwe stream 
at bridge on road Lualika-Summe, affluent to Lufubu River, Northern Province (-9.061658/31.033958).– SAIAB 
208050, 3, ex ZSM 44535 (7 now 4) , 44.1–58.7 mm SL; Zambia, Drainage Congo; Luwle creek at bridge on 
road Mpulungu-Senga Hill, 25 km away from Chinakila village, affluent of Lufubu River, Northern Province (-
9.202418/30.948029).—MRAC 2019.009.P.0004-0006, 3, ex ZSM 41442, 39.2–63.0 mm SL; Zambia, Draina-
ge Congo; Mululwe stream at bridge on road Lualika-Summe, affluent to Lufubu River, Northern Province (-
9.061658/31.033958).

Non type: one single juvenile ethanol voucher, field ID DRC-2012/3241, associated to lot ZSM 44312 (not 
measured or compared for this work).
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Diagnosis. Species diagnosis as for genus. 
Description. Morphometric measurements and meristic characters are based on 23 type specimens. Values and 

their ranges are presented in Table 4. For general appearance see Fig. 6 (male) and Fig. 7 (female). Maximum SL of 
wild caught male specimen 93.2 mm; largest female is 70.8 mm SL. A comparatively deep bodied (BD: 29.9–34.7% 
SL) species with maximum body depth slightly before pelvic fin origin, decreasing gently towards caudal peduncle. 
Ratio caudal peduncle length to depth: 1.3–1.6. HL about one third of SL. Head profile moderately curved, without 
prominent nuchal gibbosity. Jaws isognathous to slightly retroganthous. Posterior tip of maxilla reaching slightly 
behind anterior orbit margin. Lips not noticeably enlarged or thickened. Two separate lateral lines. 

Squamation. Flank covered with comparatively large ctenoid or, especially in larger individuals, cycloid scales 
(Supplementary Fig. 3). Anterior dorsal flank covered by cycloid scales, ventral flank scales ctenoid to cycloid. 
Belly with medium sized cycloid to weakly ctenoid scales, approximately half the size of flank scales. Cycloid chest 
scales smaller than those of belly; chest to flank transition with slightly larger cycloid scales. Snout scaleless. Me-
dium sized interorbital scales cycloid; anteriormost ones partly embedded. Nape and occipital region with slightly 
smaller cycloid scales (in comparison to flank scales). Cheek covered with small to medium sized cycloid scales; 
3–5 scale rows on cheek. Operculum covered with cycloid scales of variable size, from small to about the size of 
flank scales. Opercular blotch squamated to variable extent; posteriormost margin always scaleless. Three to four 
scales on horizontal line from anterior edge operculum to posterodorsal margin operculum. 

Upper lateral line with 18–22 scales, lower lateral line 9–12 scales and horizontal line with 26–30 scales. Upper 
and lower lateral lines separated by two scales. Five to eight scales between dorsal-fin origin and upper lateral line; 
two scales (rarely 3) between origin of last dorsal-fin spine and upper lateral line. Anterior part of caudal fin cov-
ered with 3–4 ill-defined vertical columns of small cycloid scales including 0–2 pored scales; scaled area extended 
posteriorly, with minute, interradial scales covering approximately 25 to 40% of caudal fin. 16 scales around caudal 
peduncle. 

Jaws and dentition. Anterior teeth of outer row of lower and upper jaw subequally bicuspid to equilaterally 
bicuspid, closely set; teeth slightly smaller and more widely set towards corner of mouth, and becoming unicuspid. 
Individual bicuspid teeth are recurved and with slightly expanded brownish crown; cusps minimally compressed 
and moderately wide cusp gap, with tips blunt to pointed; neck moderately stout. Outer row of upper jaw with 25–53 
teeth and outer row of lower jaw with 14–48 teeth in (counts for specimens between 16.6 and 93.2 mm SL; larger 
specimens have more teeth). One to three inner upper and lower jaw tooth rows with small tricuspid teeth.

Lower pharyngeal bone of four paratypes (MRAC 2019.009.P.0004-0006, 63.0 mm SL; ZSM 44312, 56.7 mm 
SL; ZSM 44535 54.7–56.9 mm SL [keel damaged]) slightly wider than long with width of lower pharyngeal-jaw 
bone 90–117% of pharyngeal-jaw length (Fig. 8). Dentigerous area of lower pharyngeal-jaw bone about 0.6 to 0.7 
times the length of lower pharyngeal bone, with 19–22 teeth along posterior margin of dentigerous area and 6–10 
teeth along the sagittal series. Lateral anterior pharyngeal teeth towards keel bevelled to hooked and moderately 
slender, those of posterior row larger than anterior ones and bevelled with the minor cusp not well developed. Larg-
est teeth located central in posterior tooth row. Teeth along sagittal series slightly larger than more lateral ones. 

Gill rakers. Total gill raker count 10–12 with 2–3 epibranchials, one at angle, and 7–8 ceratobranchial rakers. 
Anteriormost ceratobranchial gill rakers smallest. Gill rakers comparatively stout and unifid, sometimes of anvil or 
bifid shape towards cartilaginous plug, increasing in size towards cartilaginous plug at angle. Gill raker on carti-
laginous plug slightly shorter or as long as longest ceratobranchial gill raker; unifid epibranchial gill rakers further 
decreasing in length towards cartilaginous plug and slenderer than ceratobranchial gill rakers. 

Fins. Dorsal fin with 14–16 spines and with 9–11 rays. First dorsal-fin spine shortest. Dorsal-fin base length 
between 39.5–55.3 % SL. Posterior end of dorsal fin reaching caudal-fin base or ending slightly behind, especially 
in males; posterior tip of anal fin reaching caudal-fin base or ending slightly before. Caudal fin outline subtruncate 
and sometimes or almost slightly emarginate and composed of 26–28 rays (16 principal caudal-fin rays and 10–12 
procurrent caudal-fin rays). Anal fin with 3 spines (3rd spine longest) and 7–8 (rarely 9) rays. Anal-fin base length 
14.5–17.9 % SL. Pectoral fin with 13–14 rays. Pectoral-fin length 15.7–26.6 % SL; longest pectoral ray (4th or 5th ray 
counted from dorsal margin) ending slightly before or at level of anus. Pelvic fin with one spine and 5 rays. Pelvic-
fin base slightly posterior pectoral-fin base, at a distance of approx. twice the flank scale width. Longest pelvic-fin 
ray reaching level of anus; adult males with slightly elongated 1st pelvic fin ray. 

Axial skeleton. Vertebrae column with 27–29 total vertebrae (excluding the urostyle), with 14–15 abdominal 
and 13–15 caudal vertebrae. The pterygiophore supporting the last dorsal-fin spine is inserted between the spines 
of the 13th and 14th vertebra, or of the 14th and 15th vertebra. The pterygiophore supporting the last anal-fin spine is 
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inserted between ribs or haemal spines of the 14th, 15th or 16th vertebrae. One predorsal bone (=supraneural bone) 
present. Hypuralia 1 + 2 are either fused without a suture or, rarely, with clearly visible suture; hypuralia 3 + 4 al-
ways fused into single sutureless unit.

Coloration in life. Sexual colour dimorphism present. Males with characteristic coloration pattern of deep 
crimson red coloured areas on the anterior ventral flank parts, chest and belly and on the lower head; remaining parts 
of flank and caudal peduncle bluish (Fig 6.). 

Body ground coloration greyish olive to pale brown; dorsum olive to pale brownish, flank and caudal peduncle 
bluish. Individual flank and caudal peduncle scales on the anterior part of the caudal scale area reddish to brown-
ish/olive; posterior scale area metallic blue.

Anterior ventral flank, belly, and chest deep red; ventral flank whitish. No visible midlateral band present, but 
5–8 greyish vertical bars, mostly faint; vertical bars extending from dorsal fin origin to roughly the level of pectoral 
fin, sometimes irregular in shape, i.e. interrupted or almost blotch-like. Caudal-fin spot present. Iris brownish with 
some light brown to orange patches. Dorsal head surface and ethmoidal area olive to pale brownish; preorbital area, 
anterior snout, cheek and preoperculum below level of eye deep crimson red. Operculum olive to pale brownish 
ventral part deep crimson red; blackish opercular spot with golden to greenish metallic gleam. Faint greyish lachry-
mal stripe present. Upper lip metallic blue, especially posteriorly, and lower lip whitish to intensive metallic blue, 
more than upper lip. Branchiostegal membrane white to light grey. 

Dorsal fin membrane olive to brownish; dorsal fin lappets orange, same colour as Pseudocrenilabrus blotch 
in anal fin; dorsal fin lappets delineated by fine whitish submarginal band in spinous part dorsal fin, sometimes 
extending into soft-rayed part of dorsal; last dorsal fin rays without orange lappets. Soft-rayed part dorsal-fin mem-
brane with irregularly set white to bluish maculae; sometimes few maculae present on spinous part as well. Anal-fin 
membrane olive to yellowish with irregularly set white to bluish maculae, more prominent than those on dorsal fin; 
prominent orange Pseudocrenilabrus blotch on posterior margin of soft-rayed anal fin, distal margin Pseudocrenila-
brus blotch outlined in black. Caudal-fin membrane olive to yellowish, becoming less intensively coloured towards 
posterior margin, with irregularly set vertical columns of white to bluish maculae, more prominent than those on 
dorsal fin; distal margin caudal fin reddish. Pectoral fin transparent or slightly yellowish. Soft-rayed part pelvic fin 
light yellowish to greyish, membrane of pelvic fin spine grey to bluish. 

Females (Fig. 7) not as brightly coloured as males and without prominent red areas on flank, chest, belly, and 
head. Body ground coloration greyish olive to pale brown. Flank and caudal peduncle without bluish metallic 
gleam, or, if present, less intensive than in males. Belly and chest region beige to whitish. No visible midlateral band 
present; 6 to 8 greyish to brownish vertical bars, in most cases clearly visible; vertical bars extending from dorsal fin 
origin to roughly midlevel of pectoral fin, sometimes of irregular shape, e.g. interrupted, blurred or almost blotch 
like. Caudal fin spot present. Iris brownish with some light brown to orange patches. Blackish opercular spot with 
golden to greenish metallic gleam, less intensive than in males. Faint greyish lachrymal stripe present. Upper lip 
and lower lip whitish to metallic blue, less intensive than in males. Branchiostegal membrane white to light greyish. 
Dorsal fin, anal fin and caudal-fin membrane similar to males, however, without prominent maculae. Anal fin with 
orange Pseudocrenilabrus blotch as in males. Pectoral fin and pelvic fin transparent or light yellowish to greyish. 

Juvenile coloration in life. (based on tank-raised juveniles of approximately 14.1 mm SL to 21.5 mm SL; Ap-
pendix: Supplementary Fig. 4).

Body ground coloration whitish to beige. Greyish melanin pattern on flank consisting of irregular blotches and 
vertical bars (and not regularly shaped vertical bars as in sympatric Pseudocrenilabrus sp. “Lufubu B?” juveniles); 
up to six blackish stripe-like blotches along dorsal fin base present, forming an interrupted dorsal medial band. Faint 
grey lachrymal stripe. Iris greyish. Dorsal fin hyaline with few white to bluish spots, all other fins hyaline, no Pseu-
docrenilabrus blotch on anal fin. Tip of anal-fin membrane light orange in juveniles over ~20 mm SL. 

Coloration in alcohol. Pigmentation and melanin patterns similar to live specimens, but due to preservation 
original coloration lost, rendering melanin pattern more intense than in live specimens. Overall body coloration 
brownish. Chest and belly brownish, particularly in males, to beige. Branchiostegal membrane dusky, especially 
in males, to light greyish. Ethmoidal area and lips greyish brown. Cheek light brownish; cheek stripe dark brown. 
Operculum greyish to brownish; opercular spot dark brown. Vertical bars and caudal fin base dark brown; the an-
terior three to four vertical bars might be connected at the level of the horizontal line. Dorsal fin greyish, dorsal fin 
lappets transparent to whitish. Anal fin light greyish to grey; Pseudocrenilabrus blotch in males whitish, not visible 
in females (vs. visible in life). Caudal fin grey brownish. Pectoral fin beige to light grey. Pelvic fin dusky in males 
and beige to greyish in females. 
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TAble 4. Measurements and counts for holotype and paratypes of Lufubuchromis relictus sp. nov.
Measurements holotype holotype + paratypes

min max Mean±SD N
Total length (mm) 96.1 42.5 113 65.8 ± 17.3 23
Standard length SL (mm) 77.8 33.7 93.2 52.7 ± 14.3 23
Head length HL (mm) 27.4 12 34.2 18.7 ± 5.2 23
% HL
 Interorbital width 23.4 18.8 24 21.6 ± 1.5 23
 Preorbital width 27.1 23.3 30.3 27.1 ± 1.7 23
 Horizontal eye length 21.9 20.9 30.9 25.9 ± 2.7 23
 Snout length 36.9 25.9 41.3 33.1 ± 3.7 23
 Internostril distance 20.2 13.7 24.0 18.2 ± 2.3 23
 Cheek depth 29.7 18.2 29.7 24.7 ± 3.0 23
 Upper lip length 31.1 20.9 31.4 25.5 ± 3.5 23
 Lower lip length 32.7 24.2 34.4 27.7 ± 3.1 23
 Lower lip width 30.0 19.9 32.7 25.4 ± 3.5 23
 Lower jaw length 35.0 33.2 38.8 36.0 ± 1.4 23
 Lower pharyngeal jaw length - 28.4—36.9 - 3
 Lower pharyngeal jaw width - 31.4—36.5 - 4
 Width of dentigerous area of Lower pharyngeal jaw - 20.6—21.5 - 4
% SL
 Predorsal distance 37.8 35.0 39.6 37.8 ± 1.1 23
 Dorsal fin base length 53.8 39.5 55.3 52.2 ± 3.0 23
 Last dorsal fin spine length 12.2 10.8 14.2 12.6 ± 1.0 23
 Anal fin base length 16.3 14.4 17.9 16.4 ± 0.9 23
 Third anal fin spine length 11.3 11.1 15.6 13.5 ± 1.1 23
 Pelvic fin length 23.5 20.0 26.0 23.3 ± 1.4 23
 Pectoral fin length 25.1 15.7 26.6 24.6 ± 2.3 23
 Caudal penduncle depth 11.6 11.2 13.3 12.3 ± 0.5 23
 Caudal penduncle length 17.4 16.1 19.1 17.9 ± 0.8 23
 Body depth (pelvic fin base) 33.0 29.9 34.7 32.5 ± 1.4 23
 Preanal length 63.6 58.9 65.3 62.8 ± 1.4 23
 Anus-anal fin base distance 2.9 2.4 4.8 3.7 ± 0.6 23
 Interpectoral width 12.6 10.3 15.9 12.6 ± 1.4 23
Counts
 Dorsal fin spines 15 14 (1); 15 (16); 16 (6) 23
 Dorsal fin rays 10 9 (5); 10 (16); 11 (2) 23
 Anal fin spines 3 3 (23) 23
 Anal fin rays 8 7 (4); 8 (18); 9 (1) 23
 Pelvic fin spines 1 1 (23) 23
 Pelvic fin rays 5 5 (23) 23
 Pectoral fin rays 14 13 (3); 14 (20) 23
 Upper procurrent caudal fin rays 6 5 (3); 6 (20) 23
 Lower procurrent caudal fin rays 6 5 (12); 6 (11) 23
 Caudal fin rays 28 26 (3); 27 (9); 28 (11) 23
 Scales (horizontal line) 28 26 (3); 27 (3); 28 (9); 29 (6); 30 (2) 23
 Upper lateral line 19 18 (8); 19 (9); 20 (4); 21 (1); 22 (1) 23
 Lower lateral line 10 9 (1); 10 (8); 11 (9); 12 (5) 23
 Circumpeducular 16 16 (23) 23

......continued on the next page
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TAble 4. (Continued)
Measurements holotype holotype + paratypes

min max Mean±SD N
 Series of Scales on check 3 3 (15); 4 (7); 5 (1) 23
 Scales (horizontal line) on operculum 3 3 (16); 4 (7) 23
 Scales between lateral line and dorsal fin origin 7 5 (3); 6 (5); 7 (7); 8 (8) 23
 Scales between upper lateral line and last dorsal fin spine 2 2 (21); 3 (2) 23
 Abdominal vertebrae 14 14 (22); 15 (1) 23
 Caudal vertebrae 14 13 (2); 14 (18); 15 (3) 23
 Total number of vertebrae 28 27 (1); 28 (19); 29 (3) 23
 Teeth in upper outer row 53 25(1); 26 (1); 27 (1); 28 (1); 29 (1); 30 (1); 

32 (2); 33 (4); 34 (1); 36 (2); 38 (2);40 (1); 
42 (1); 44 (2); 49 (1) 

23

 Teeth in lower outer row 31 14 (2); 15 (1); 16 (1); 19 (2); 20 (1); 22 (3); 
23 (3); 24 (1); 26 (1); 27 (2); 28 (1); 29 (1); 
31 (1); 36 (1); 46 (1); 48 (1)

23

 Gill rakers (ceratobranchial) 8 7 (13); 8 (10) 23
 Gill rakers (angle + epibranchial ) 4 3 (8); 4 (15) 23

Distribution and biology. Lufubuchromis relictus is only known from the upper reaches of the Lufubu River 
and its tributaries, including small streams and creeks, on the northeastern Zambian High Plateaux. The ichthyo-
fauna of the lower Lufubu is clearly different from the one in the upper Lufubu, which appears to be the result of 
isolation by a series of cascades and waterfalls (Koblmüller et al. 2012, Schedel et al. 2018). At the type locality, the 
Mululwe River is about 15 m wide with an estimated average depth of 50 cm; it is rocky with patches of sand and 
gravel and with few patches of submerged vegetation (e.g. Nymphaea sp.).

No stomach contents were examined but Indermaur (2014) suggested that L. relictus feeds on insect larvae and 
detritus. Lufubuchromis relictus is a maternal mouthbrooder. In captivity the clutch-size varied between 20 and 30 
eggs with an incubation time of 18 to 20 days (Indermaur 2014). In the wild (Luwle Creek) mouth-brooding females 
were observed to form groups (pers. obs. F. Schedel).

etymology. The species name relictus [L.] refers to the restricted distribution of this species in the isolated 
upper region of an ancient plateau. The basal phylogenetic position of Lufubuchromis (together with Orthochromis 
kalungwishiensis) as the ancient mitochondrial sister group of all other members of the Pseudocrenilabrus lineage 
(Koblmüller et al. 2008, Schedel et al. 2019) suggests that it represents a relict ancient evolutionary lineage, that 
once may have had a wider distribution. The specific epithet is an adjective.

remarks: Comparisons of the two new genera with all other haplotilapiine genera. Based on molecular 
phylogenetic data Palaeoplex and Lufubuchromis are placed within the informally recognized Pseudocrenilabrus 
group (see above, Table 1). Both new taxa can be distinguished from members of the haplotilapiine tribes Coeloti-
lapiini, Coptodonini, Gobiocichlini, Heterotilapiini, Oreochromini, Pelmatolapiini, Steatocranini and Tilapiini by 
possessing at least a few weakly ctenoid flank scales (vs. cycloid scales; for details see Dunz et al. 2013). Further-
more, both new genera can be distinguished from the Lake Tanganyika tribes of the haplotilapiine East African 
cichlid radiation as follows: from Boulengerochromini by having ctenoid scales vs. cycloid scales (Poll 1986); 
from Bathybatini (including trematocara Boulenger 1899b), Cyphotilapiini (including trematochromis benthicola 
(Matthes 1962)) and Limnochromini by having bicuspid teeth in the outer row of the oral jaws (teeth towards corner 
of mouth might be unicuspid, though) vs. conical (unicuspid) teeth (in juvenile Cyphotilapia Regan 1920 bicuspid 
teeth become unicuspid when adult; in addition members of the genus Cyphotilapia develop a distinct hump on the 
forehead which is not present in Palaeoplex or Lufubuchromis (Poll 1986, Takahashi 2003b)); from Cyprichromini 
and Benthochromini by having a rounded to subtruncate caudal fin outline vs. a truncated one (Takahashi 2003b); 
from Ectodini by having fewer total vertebrae 27–30 (Palaeoplex) / 27–29 (Lufubuchromis) vs. 31–38 and fewer 
horizontal line scales 28–31 (Palaeoplex) / 26–30 (Lufubuchromis) vs. 32–64 (Poll 1986, Altner et al. 2017); from 
Eretmodini by having scales on operculum and cheek vs. a scaleless condition (Lippitsch 1998); from Lamprologini 
by having three anal fin spines vs. four or more and by having bicuspid teeth in the outer row of the oral jaw vs. 
conical (unicuspid) teeth (Poll 1986, Takahashi 2003b); and from Perissodini by having an inner series of teeth in 
the oral jaw vs. absence of inner teeth series (Takahashi 2003b).
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FIGure 6. Lufubuchromis relictus sp. nov. A. holotype, alive b. holotype (ZSM 47494), 77.8 mm SL; Zambia, Mululwe 
River, trib. to Lufubu River C. radiograph of holotype
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FIGure 7. Female and type locality of Lufubuchromis relictus sp. nov. A. female paratype alive b. same individual (ZSM 
44312, ID: DRC-2012-/3248, 56.7 mm SL) C. Type locality of L. relictus, rapids on the Mululwe River close to Mululwe Vil-
lage (05.09.2015, F.D.B. Schedel).
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FIGure 8. Pharyngeal jaws and overview of oral jaws of Lufubuchromis relictus sp. nov. A. Lateral view of the lower pharyn-
geal jaw of L. relictus (Paratype; ZSM 44535, ID: DRC-2012/3897, 54.7 mm SL) b. Dorsal view of the same lower pharyngeal 
jaw C. Arrangement and morphology of the oral jaw teeth (Paratype, ZSM 44526, ID: DRC-2012/3884, 93.2 mm SL).
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FIGure 9. Overview of snout and infraorbital area of different taxa of the Pseudocrenilabrus group and related taxa. Where 
applicable, the gap between the lachrymal and 2nd infraorbital bone is indicated by red arrows, i.e. not in Pseudocrenilabrus 
multicolor as the infraorbital series of this species appears to be highly reduced. A. Paleoplex palimpsest sp. nov. (Paratype, 
ZSM 44438, ID: DRC-2012/3683, 81.9 mm SL, no gap between lachrymal and 2nd infraorbital bone present) b. Lufubuchromis 
relictus sp. nov. (Paratype, ZSM 44312, ID: DRC-2012/3249, 50.0 mm SL, no gap between lachrymal and 2nd infraorbital bone 
present) C. Pseudocrenilabrus multicolor (ZSM 40011, ID: Nr. 1, 46.0 mm SL) D. Pseudocrenilabrus philander (ZSM 40918, 
58.9 mm SL) e. Pseudocrenilabrus nicholsi (ZSM 47140, ID: Nr. 1, 46.2 mm SL) F. Pseudocrenilabrus pyyrochaudalis (Para-
type, MRAC-A7-034-P-0238-0247; ID: Nr.5, 64.2 mm SL) G. Orthochromis machadoi (BMNH 1984.2.6.104-108, ID: Nr. 1, 
51.9 mm SL) H. Haplochromis moeruensis (Syntype, MRAC 216-222, ID: Nr. 222, 48.4 mm SL).
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From the members of Orthochromis s.s. (“Malagarasi-Orthochromis” sensu Weiss et al. 2015) the new species 
can be distinguished by fewer dorsal-fin spines 14–15 (Palaeoplex) / 15–16 (Lufubuchromis) vs. 16–22, and by hav-
ing more scales on cheek 2–4 (Palaeoplex) / 3–5 (Lufubuchromis) vs. 0–1 (Schedel et al. 2018). 

Further, Palaeoplex and Lufubuchromis can be distinguished from Ctenochromis pectoralis Pfeffer 1893, the 
earliest splitting lineage of Haplochromini (e.g. Verheyen et al. 2003, Koblmüller et al 2008, Schedel et al. 2019), 
by having fused hypuralia 1+2 (in Lufubuchromis hypuralia 1+2 are either fused or fused with distinctly visible 
suture) and 3+4 vs. separate hypuralia (Greenwood 1979); both new taxa can be distinguished from C. pectoralis 
and other haplochromine cichlids originally placed by Greenwood 1979 in Ctenochromis by having no abrupt size 
transition between very small chest scales and larger ventrolateral anterior flank scales vs. abrupt size transition of 
scales sizes and by having a fully scaled chest vs. naked areas on chest in C. pectoralis.

From Astatoreochromis Pellegrin, 1904 both new taxa can be distinguished by having fewer dorsal fin spines 
14–15 (Palaeoplex) / 15–16 (Lufubuchromis) vs. 16–20, and by having fewer anal fin spines 3 vs. 3–7 (Banyankim-
bona et al. 2013). From haplochromine cichlids placed by Greenwood (1979) in thoracochromis both new taxa can 
be distinguished by having no abrupt size transition between very small chest scales and larger ventrolateral anterior 
flank scales vs. an abrupt size transition of scales sizes in these taxa (Greenwood 1979). Further, Palaeoplex and Lufu-
buchromis can be distinguished from haplochromine cichlids placed by Greenwood (1979) in Astatotilapia Pellegrin, 
1904 and from Haplochromis Hilgendorf, 1888 by missing true ocelli on the anal fin; and further from Greenwood´s 
Astatotilapia by having more total gill rakers 12–17 (Palaeoplex) / 10–12 (Lufubuchromis) vs 8–9 (Greenwood 1979) 
and from Haplochromis by having fused hypuralia 1+2 (in Lufubuchromis hypuralia 1+2 are either fused or fused with 
distinctly visible suture) and 3+4 vs. non fused. From members of the megadiverse haplochromine Lake Malawi ra-
diation they can be distinguished by the absence of any ocellate or non-ocellate anal fin mark, whether round or lon-
gitudinally arranged along anal fin rays vs. present (at least in most genera; Konings 2007, Eccles & Trewavas 1989). 

Palaeoplex and Lufubuchromis are distinguished from members of the serranochromine lineage (sensu Green-
wood 1993) by occurrence of ctenoid scales above the lateral line (Supplementary Fig 2. & 3), despite the fact that 
most scales are cycloid in these taxa) vs. cycloid scales above lateral line in serranochromines; and by the complete 
absence of non-ocellated anal fin markings vs. present in serranochromines.

Both new taxa are distinguished from Haplochromis vanheusdeni Schedel, Friel & Schliewen 2014 by having 
fewer dorsal fin spines, i.e. 14–15 (Palaeoplex) / 15–16 (Lufubuchromis) vs. 16–17; further H. vanheusdeni features 
true ocelli on the anal fin (Schedel et al. 2014). Finally, the two genera are distinguished from Orthochromis inder-
mauri Schedel, Vreven, Katemo Manda, Abwe, Chocha Manda & Schliewen 2018 by having fewer dorsal fin spines 
14–15 (Palaeoplex) / 15–16 (Lufubuchromis) vs. 17–18.

Discussion

With the description of Palaeoplex and Lufubuchromis which are representing early splitting members of the Pseu-
docrenilabrus group we provide a first step towards the overdue generic revision of this understudied haplochromine 
lineage. Nevertheless, the genus Pseudocrenilabrus needs to be critically revised as it appears to be presently para-
phyletic with respect to the generic placement of Orthochromis machadoi and Haplochromis moeruensis. Both taxa 
were recovered to be nested within the genus Pseudocrenilabrus based on mitochondrial data with O. machadoi 
closely related to Ps. philander and with H. moeruensis being part of the “Pseudocrenilabrus Lake Mweru radia-
tion” (Katongo et al. 2006; Koblmüller et al. 2008; Wagner et al. 2012, Meier et al. 2019). However, as long as no 
comprehensive phylogenetic hypothesis for all major haplochromine lineages and all known but yet undescribed 
Pseudocrenilabrus species, based, e.g., on nuclear data and a fully comprehensive haplochromine taxon sampling is 
available, we refrain from transferring those two taxa to the genus Pseudocrenilabrus. This conservative approach 
seems further justified as both taxa might have been subject to ancient hybridization events, and thus might have 
to be placed into their own hybrid origin lineages. Furthermore, the species Pseudocrenilabrus philander as cur-
rently interpreted undoubtedly represents a species complex (known as the Pseudocrenilabrus philander species 
complex, Katongo et al. 2005), an inference which is not only based on mitochondrial data (see Katongo et al. 2005, 
Koblmüller et al. 2012, Egger et al. 2014), but which also became apparent in the present study. We investigated ten 
populations from a wide range of its distribution, including the types of Ps. philander and Ps. philander dispersus. 
Several populations revealed to be distinct, and might represent distinct species, but need additional comparative 
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study. The most obvious case here is the one of Pseudocrenilabrus. sp. “Upper Kalungwishi”. Additional highly 
distinct Ps. philander-like phenotypes have recently been discovered by the “Mbisa Congo” team of the Africa Mu-
seum (Tervuren, Belgium), the South African Institute of Aquatic Biodiversity team (Grahamstown, South Africa) 
and by us (ZSM), all of which should be considered. Thus, it would have been premature to implement taxonomi-
cal implications concerning the Ps. philander species complex at this point, as this would require a larger sample 
set incorporating populations of the entire distribution range, but also including genetic data for the corresponding 
populations. 

The description of Palaeoplex palimpsest is based on specimens collected from different locations along the 
Luongo and the Kalungwishi River. The apparent close affinity of the two populations is adding support to the notion 
that the Kalungwishi River and the Luongo River once were connected, or still are via the Luena Veld as suggested 
by Balon et al. (1983). However, Palaeoplex were neither collected in the uppermost reaches of the Kalungwishi 
River (i.e., above the rapids near Shimilungu Village -9.813650°/ 29.880345°) nor in the uppermost Luongo River 
(i.e., neither above nor below the Mumbuluma falls -10.109617°/29.575728°), and the same holds true for the sym-
patric O. kalungwishiensis and O. luongoensis (present below Mumbuluma falls). We have restricted the type series 
to specimens from the Luongo River, and listed the Kalungwishi specimens under “additional specimens”. This, 
because preliminary genetic analysis based on mitochondrial genome data and ddRAD loci (Schedel & Schliewen, 
in prep) tentatively suggest that both populations are genetically differentiated. However, neither PCA analyses 
based on log-transformed morphometric measurements nor those based on meristic characters revealed characters 
differentiating the two populations from each other, except that the Kalungwishi River specimens have tentatively 
fewer circumpeduncular scales (see table 3). Further, the adult breeding coloration of the Kalungwishi River popu-
lation is insufficiently documented, although the male nuptial coloration appears to include more reddish elements 
(F. Schedel, pers. obs.). Three larger waterfalls, i.e. Lumangwe, Kabwelume, and Kundabwika Falls, separate the 
course of the Kalungwishi River into various sections. The waterfalls potentially represent barriers to gene flow for 
different species/populations of Palaeoplex, which have been collected from different river sections, rendering the 
taxonomical evaluation of the Kalungwishi River populations even more complex (Meier et al. 2019). Therefore, 
we have here refrained from describing Palaeoplex population(s) as separate species at this stage, but additional 
material is currently being examined and new collections are planned to obtain additional specimens, particularly 
adult males (Katongo et al., in prep.).

Recently, Orthochromis indermauri has been described from the lower reaches of the Lufubu River, where it 
appears to be endemic. Interestingly, it represents a different ancient mitochondrial haplotype lineage within the 
megadiverse Haplochromini (Schedel et al. 2019). Lufubuchromis relictus is the second endemic cichlid species 
described from the Lufubu but appears to be restricted to the upper reaches of the Lufubu and its tributaries. Fur-
thermore, there are at least two undescribed cichlid species present in the Lufubu drainage system, telmatochromis 
sp. “Lufubu”, restricted to the lower reaches of the Lufubu (Indermaur 2014), and Serranochromis sp. “Lufubu”, 
currently documented only from a single location in the upper reaches of the Lufubu River (Koblmüller et al. 2012). 
The striking difference in the ichthyofaunal composition of the Upper and Lower Lufubu River has been suggested 
to be the result of several cascades and waterfalls prohibiting upstream and, possibly, downstream migration, which 
could explain the absence of Lufubuchromis in the lower reaches of the river (Koblmüller et al. 2012). 
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SuPPleMeNTAry FIGure 1. PCA scatter plot based on 20 morphometric measurements, species score limits visualized 
as convex hulls (N=203). PCII vs. PCIII. PC II explains 1.95 % of the variance while PC II explains 1.38 %. 
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SuPPleMeNTAry FIGure 2. Scales of Palaeoplex palimpsest (holotype); red lines indicating depicted areas; the con-
trast of scale pictures was slightly enhanced A. Ctenoid scales on the horizontal line (area around the 24th horizontal line scale; 
counted from posterior to anterior) b. Ctenoid scales on the horizontal line (area around the 17th horizontal line scale; counted 
from posterior to anterior) C. Ctenoid to cycloid scales above upper lateral line (area around 8th upper lateral line scale; counted 
from anterior to posterior).
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SuPPleMeNTAry FIGure 3. Scales of Lufubuchromis relictus (holotype); red lines indicating depicted areas; the con-
trast of scale pictures was slightly enhanced A. Ctenoid scales on the horizontal line (area around the 23rd horizontal line scale; 
counted from posterior to anterior) b. Ctenoid scales on the horizontal line (area around the 17th horizontal line scale; counted 
from posterior to anterior) C. Ctenoid to cycloid scales above upper lateral line (area around 11th upper lateral line scale; counted 
from anterior to posterior; picture taken from the righthand side of the specimen).
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SuPPleMeNTAry FIGure 4. Live Pictures of juvenile Lufubuchromis relictus. A. captive raised juvenile about 14.8 mm 
SL b. captive raised juvenile about 17.5 mm SL C. captive raised juvenile about 21.5 mm SL.
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SuPPleMeNTAry FIGure 5. Overview of snout and infraorbital area of the four Northern Zambian Orthochromis sensu 
Weiss et al. 2015: A. Orthochromis kalungwishiensis (ZSM 44369, ID: DRC-2012/3433, 69.8 mm SL) b. Orthochromis ka-
tumbii, (Paratype, ZSM 46844, ID: 2808, 81.8 mm SL) C. Orthochromis luongoensis (ZSM 44432, ID: DRC-2012/3669, 88.0 
mm SL) D. Orthochromis mporokoso (Holotype, ZSM 46840, 59.0 mm SL).
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SuPPleMeNTAry FIGure 6. Overview of snout with highlighted infraorbital series A. Paleoplex palimpsest sp. nov. 
(Paratype, ZSM 44438, ID: DRC-2012/3683, 81.9 mm SL, no gap between lachrymal and 2nd infraorbital bone present) b. 
Pseudocrenilabrus nicholsi (ZSM 47140, ID: Nr. 1, 46.2 mm SL).
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SuPPleMeNTAry TAble 1. Factor loadings of PCA based on 20 morphometric measurements. PCI-III for all 
examined specimens (N=203, see Supplementary Fig. 1). Highest loadings for each principal component are indicated in 
boldface.

Morphometric measurements (Log transformed) PC 1 PC 2 PC 3
Standard length (Log) 0.21987 -0.051674 -0.018623
Head length (Log) 0.19499 0.067962 -0.094968
Interorbital width (Log) 0.22353 -0.066402 -112
Preorbital width (Log) 0.23918 0.10644 -0.096048
Horizontal eye length (Log) 0.16701 -0.10503 -0.012765
Snout length (Log) SnL 0.23928 0.061354 -0.14533
Internostril distance (Log) 0.22679 0.039011 0.040389
Cheek depth (Log) 0.23773 0.43224 -0.13138
Upper lip length (Log) 0.22367 0.30609 -0.063715
Lower lip length (Log) 0.22505 0.2877 -0.0034675
Lower jaw length (Log) 0.19919 0.16403 -0.066961
Predorsal distance (Log) 0.20241 0.014482 -0.099135
Dorsal fin base length (Log) 0.2378 -0.076967 -0.0061471
Last dorsal fin spine length (Log) 0.27412 -0.52159 0.10152
Anal fin base length (Log) 0.23415 -0.065393 -0.00043173
Third anal fin spine length (Log) 0.23102 -0.49452 0.0015095
Pectoral fin length (Log) 0.24347 -0.12629 -0.0046514
Body depth (Log) 0.22106 1.6083E-05 -0.070937
Preanal length (Log) 0.21437 -0.00381 -0.073614
Anus-anal fin base distance (Log) 0.19511 0.16574 0.94313
Eigenvalue 0.587466 0.0123204 0.00870962
% variance 93.125 1.953 1.3806
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East African cichlid lineages (Teleostei:
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Abstract

Background: Cichlids are a prime model system in evolutionary research and several of the most prominent
examples of adaptive radiations are found in the East African Lakes Tanganyika, Malawi and Victoria, all part
of the East African cichlid radiation (EAR). In the past, great effort has been invested in reconstructing the
evolutionary and biogeographic history of cichlids (Teleostei: Cichlidae). In this study, we present new divergence age
estimates for the major cichlid lineages with the main focus on the EAR based on a dataset encompassing
representative taxa of almost all recognized cichlid tribes and ten mitochondrial protein genes. We have
thoroughly re-evaluated both fossil and geological calibration points, and we included the recently described
fossil †Tugenchromis pickfordi in the cichlid divergence age estimates.

Results: Our results estimate the origin of the EAR to Late Eocene/Early Oligocene (28.71 Ma; 95% HPD: 24.43–33.15
Ma). More importantly divergence ages of the most recent common ancestor (MRCA) of several Tanganyika cichlid
tribes were estimated to be substantially older than the oldest estimated maximum age of the Lake Tanganyika:
Trematocarini (16.13 Ma, 95% HPD: 11.89–20.46 Ma), Bathybatini (20.62 Ma, 95% HPD: 16.88–25.34 Ma), Lamprologini
(15.27 Ma; 95% HPD: 12.23–18.49 Ma). The divergence age of the crown haplochromine H-lineage is estimated to 22.8
Ma (95% HPD: 14.40–26.32 Ma) and of the Lake Malawi radiation to 4.07 Ma (95% HDP: 2.93–5.26 Ma). In addition, we
recovered a novel lineage within the Lamprologini tribe encompassing only Lamprologus of the lower and central
Congo drainage with its divergence estimated to the Late Miocene or early Pliocene. Furthermore we recovered two
novel mitochondrial haplotype lineages within the Haplochromini tribe: ‘Orthochromis’ indermauri and ‘Haplochormis’
vanheusdeni.

Conclusions: Divergence time estimates of the MRCA of several Tanganyika cichlid tribes predate the age of the
extant Lake Tanganyika basin, and hence are in line with the recently formulated “Melting-Pot Tanganyika” hypothesis.
The radiation of the ‘Lower Congo Lamprologus clade’ might be linked with the Pliocene origin of the modern lower
Congo rapids as has been shown for other Lower Congo cichlid assemblages. Finally, the age of origin of the Lake
Malawi cichlid flock agrees well with the oldest age estimate for lacustrine conditions in Lake Malawi.

Keywords: East African cichlid radiation (EAR), Molecular clock, Lamprologini, Congo River, African Great Lakes,
Tugenchromis
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Background
The exceptional diversity and propensity to generate
adaptive radiations have made cichlid fishes one of the
most important vertebrate model systems for evolution-
ary biology research [1–4]. Much effort has been
invested in the reconstruction of the evolutionary time
scale and biogeographic history of cichlids distributed in
the Americas, Africa, the Middle East, Madagascar and
the Indian subcontinent [5–9]. The primary focus has
been on the biogeographic origin of the cichlids from
the so-called East African Radiation (EAR), i.e., the clade
that comprises the famous megadiverse radiations of the
East African Lakes Tanganyika (LT), Malawi (LM) and
Victoria (LV). Nevertheless, there remains debate over
the divergence age estimates of their origin, as well as a
lack of a precise reconstruction of their paleogeographic
environments providing the stage for these spectacular
radiations. One of the reasons is that unambiguous and
important calibration points for molecular clock esti-
mates, e.g. a consolidated root age of the family Cichli-
dae or a lack of cichlid fossils within EAR with the
phylogenetically clear position.
Two major hypotheses relating to the problem of the

cichlid root age have been proposed, i.e., the Vicariance
Hypothesis and the Dispersal Hypothesis. The former
places the cichlid origin before the Gondwana fragmen-
tation and is supported by evidence for reciprocally
monophyletic cichlid lineages on in Africa (Pseudocreni-
labrinae) and the Americas (Cichlinae), a pattern that is
more difficult to envisage under the second hypothesis.
This postulates a marine dispersal of early cichlids after
tectonic separation of South America, Africa and
Madagascar and is supported by the fact, that the oldest
cichlid fossil, †Mahengechromis, is of only Eocene age
(approx. 46Ma, [10]). Both the Gondwana divergence
date based on tectonics as well as the cichlid fossil cali-
brations have been previously used as calibration priors
in molecular clock studies on cichlids and yield, not sur-
prisingly, dramatically different divergence time esti-
mates and biogeographic implications, not only for the
EAR evolution ([5–8, 11, 12]). For example, the most re-
cent study on this subject based on the yet most com-
prehensive dataset inferred a mean divergence age of
New World and African cichlid lineages of approxi-
mately 82Ma, i.e. soon after the final separation of Af-
rica and South America ([9]), whereas other recent
studies infer either substantially younger (approx. 46Ma;
[7]) or substantially older (approx. 147Ma; [13]) diver-
gence ages for this split. Consequently, different age esti-
mates for EAR-lineages turned out to be highly
divergent as well [5, 14]. To further complicate the issue,
inferred lake ages of the African great lakes or their lake
level histories have frequently been used to calibrate
cichlid molecular clocks under the assumption that

endemic clades diverged only after lake formation or, fol-
lowing complete lake basin desiccation, after refilling
events [14–16]. This approach is problematic for several
reasons. Firstly, the geological history of the formation
of the East African rift lakes is highly complex and still
not fully understood; therefore, the geological age and
onset of truly lacustrine conditions of LT continues to be
under debate (e.g. [17]). Several EAR molecular clock
studies used an age of 9–12Ma as a calibration point for
the formation of the LT lacustrine basin (e.g. [14, 15]).
This age was based on extrapolation of recent sedimen-
tation rates in LT under the assumption of roughly uni-
form sedimentation rates over the past million years.
This assumption is most likely too simplistic, because
dramatic climate changes as well as the highly dynamic
East African rift tectonics and their associated volcanism
must have influenced sedimentation rates substantially
[17–19]. Indeed, more recent studies based on thermo-
chronology and sedimentology constrain pre-rift forma-
tion of the Albertine Rift system to 4–11Ma, and the
onset of true rifting activity at around 5.5Ma in the
norther LT basin; this in turn implies a much younger
age for modern LT than 9–12Ma [20–23]. Secondly,
some of recent endemic and sympatric LT cichlid line-
ages are likely to have evolved independently in the lar-
ger proto-LT drainage area, and only later met and
possibly hybridized in the extant LT basin [17]. Hence,
as the true age of extant lake basin formation of LT re-
mains unknown and as the assumption of all LT cichlid
lineages having originated in situ is not unambiguously
supported, studies using a presumably precise age 9–12Ma
as calibration prior for the origin of endemic lacustrine LT
fish radiations are potentially misleading. In a analogous
case, the age of endemic Lake Malawi lacustrine cichlid lin-
eages has previously been constrained in molecular clock
analyses [15, 16] to be younger than the postulated
complete desiccation of Lake Malawi either at around 1.6–
1.0Ma, or at the post-drought re-establishment of truly la-
custrine conditions at 1.0–0.57Ma [24]. This approach is in
conflict with a recent study reporting continuous sedimen-
tation in the geological LM basin over the last 1.3Ma, i.e.
raising doubts about the previously used LM calibration
points [25] Therefore, the use of the sedimentology-based
lake age estimates as molecular clock calibration points for
the origin of cichlid taxa endemic to large and paleogeo-
graphically complex rift lakes appears problematic and
might result in highly misleading node age estimates.
Nevertheless, relative and absolute divergence time

estimates remain essential for the study of the cichlid
biogeographic origin and the history of evolutionary
processes whose interplay generated the yet unrivaled
vertebrate diversity within the dynamic landscape of the
East African rift and its lakes (e.g., [17, 26]). Ultimately, the
spatiotemporal reconstruction of phylogenetic relationships
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between riverine and lacustrine East African cichlid lineages
may not only inform evolutionary biology but will also help
to reconstruct geomorphological landscape evolution in the
identification of lake colonization routes and river capture
events [27].
Here we present new divergence age estimates based

on eighteen different calibration sets, which includes up
to seven different calibration points represented by three
neotropical cichlid fossils, up to three pseudocrenilabr-
ine cichlid fossils and one geological event; the root was
calibrated with three different secondary constraints (see
below). In particular, the recently described African cich-
lid fossil †Tugenchromis pickfordi is included [28]. Our
primary sequence alignment consists of ten mitochon-
drial protein coding genes including representatives of
almost all recognized cichlid tribes with emphasis on the
EAR. The application of eighteen different calibration
sets enabled us to compare recent cichlid molecular
clock studies with our findings, as well as to infer the
impact of †Tugenchromis pickfordi as a calibration point.
There is a long-standing debate about the applicability
of mitochondrial DNA data for molecular clock esti-
mates. For example, Matschiner [29] pointed out that
nuclear marker-based studies (e.g. [7, 29]) often yield
younger divergence time estimates than mitochondrial
marker-based studies (e.g. [5, 6]). Therefore, we comple-
ment our mtDNA-based analyses (calibration Sets 1–17)
with an independent nuclear DNA-based alignment
(calibration Set 18) to infer whether or not an identical
calibration strategy would result in similar node age esti-
mates for both data sets. We provide a new relative di-
vergence time frame for the African Pseudocrenilabrinae
and especially for the mtDNA lineages belonging to the
EAR, which is critical in the context of clarifying the
phylogeographic history and origin of the famous adap-
tive radiations of LT, LM and LV but also of several
smaller haplochromine lineages. In this study, we in-
clude several riverine lineages for the first time allowing
for new insights into the complex evolutionary history
of the EAR.

Methods
Taxon and nucleotide sampling
Ten mitochondrial protein coding genes were sequenced
or obtained from Genbank for 180 cichlid species
(Additional file 1: Table S1). The focus of the data set was
on taxa representing all major lineages of the East African
cichlid Radiation (EAR), but members of all other cichlid
subfamilies were included as well: Madagascan and Asian
Etroplinae (N = 2) and Ptychrominae (N = 2), American
Cichlinae (N = 31) and African Pseudocrenilabrinae (N =
145). The latter are represented by almost all major tribes
including Tylochromini (N = 1), chromidotilapiines (N =
2), hemichromines (N = 2), pelmatochromines (N = 1);

haplotilapiine lineages (sensu Schliewen & Stiassny, 2003)
are represented by the mouthbrooding Oreochromini (N
= 14), substrate brooding Pelmatotilapiini (N = 1) and bor-
eotilapiines (sensu Schwarzer et al. 2009, Dunz et al.,
2013) including Coptodonini (N = 2) and Gobiocichlini
(N = 1) and austrotilapiines (N = 121). The austrotilapiine
lineage is represented by Tilapiini (N = 3), Steatocranini
(N = 3) and EAR lineages. The taxon sampling of the EAR
lineages (N = 115) comprised members of all formally de-
scribed Lake Tanganyika tribes (sensu Takahashi [30] and
Koblmüller et al. [31]), i.e. Boulengerochromini (N = 1),
Bathybatini inclunding Hemibatini (N = 7), Trematocarini
(N = 5), Lamprologini (N = 16) including nine riverine
taxa of the Congo basin sensu stricto and the Lufubu
River (a southern affluent to Lake Tanganyika), Eretmodini
(N = 2), Cyphotilapiini (N = 2), Limnochromini (N = 2),
Ectodini (N = 6), Perissodini (N = 2), Cyprichromini (N =
2), Benthochromini (N = 1) and Tropheini (N = 9; a sub-
group of Haplochromini). Moreover, the dataset contains
representatives of several additional riverine taxa repre-
senting informally named lineages. Since the placement of
many recently discovered riverine Haplochromini in
Greenwood’s classification [32] of Haplochromis and re-
lated taxa is problematic, we accounted for these taxo-
nomic uncertainties by placing species of unsettled
generic status in the catch-all genera ‘Haplochromis’,
‘Orthochromis’ or ‘Ctenochromis’; this follows the practice
first suggested by Hoogerhound [33] and later adopted by
several studies (e.g. [17]). Nomenclature for most of
these lineages follows Schwarzer et al. [34] and Weiss
et al. [17], i.e. we included Northern-Zambia-Ortho-
chromis (4), LML-Orthochromis occurring at Luapula-
Mweru system and the Lualaba/Congo main stem (N =
1), Malagarasi-Orthochromis (N = 4) as well most rheo-
philic mtDNA lineages of the Congo basin, i.e. ‘Ortho-
chromis’ indermauri, ‘Orthochromis’ torrenticola,
‘Orthochromis’ stormsi; further included are ‘Haplochro-
mis’ vanheusdeni (N = 1), Astatoreochromis straelini (N
= 1), Congo-basin ‘Haplochromis’ (N = 3), Ctenochromis
pectoralis (N = 1), ‘Pseudocrenilabrus-group’ (N = 9;
including the Northern-Zambia-Orthochromis) and
serranochromines-mtDNA-lineage (N = 11; including
the Congo-basin ‘Haplochromis’ and LML-Orthochro-
mis) as well as two undescribed species referred here as
“New Kalungwishi Cichlid” and “New Lufubu Cichlid”.
We further included representative members of all
major lineages of the Lake Malawi species flock (N =
22) as well as riverine and ‘modern’ Haplochromini of
East Africa (N = 10). Selection of representative taxa
was optimized to encompass the oldest divergence
events of clades within austrotilapiine mitochondrial
clades and is based on previous studies (e.g. [35–39]).
This approach was chosen to infer the oldest mtDNA
divergence age estimates for each of these lineages.
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In addition to the mitochondrial data set we generated
a second data set based on partial sequences of four nu-
clear loci, i.e. RAG1, ENC1, RH1 and TMO-4c4. All
these sequences were obtained from GenBank with the
aim to compile a widely comparable taxon sampling to
our mitochondrial data set. Since more than one se-
quence per locus was available for several species, only
the most complete sequence of each locus was chosen,
and, where ever possible, sequences of the same species
would derive from the same study and individual. Further-
more, to obtain a dataset with few missing data only taxa
with two or more loci represented in Genbank were kept
(except Gymnogeophagus balzanii and Gymnogeophagus
setequedas for which only one locus was available). In
total, the nuclear data set included 117 species represent-
ing all cichlid subfamilies and most of the major lineages
of the EAR (Additional file 2: Table S3). Nevertheless, se-
quences of several comparatively recently diverged
lineages were not available in Genbank, e.g. Malagara-
si-Orthochromis, ‘Haplochromis’ vanheusdeni, the Congo-
basin ‘Haplochromis, LML-Orthochromis, Astatoreochro-
mis, Ctenochromis pectoralis, ‘Haplochromis’ vanheusdeni
and ‘Orthochromis’ indermauri.

Sampling procedures
Material for this study was obtained from the commer-
cial cichlid fish trade in Germany, private collection of
aquarium hobbyists or collected on previous field trips.
Individual fish were either caught using various fishing
methods (gill net, beach seine net, gill net, hand net) or
bought freshly fished from local fishermen. Freshly
caught fish were sacrificed by an overdose of approved
fish anesthetic (Benzocaine, MS-222). Subsequently, fin
clips were fixed in 96% ethanol and entire specimens
were fixed in 10% formalin, as explained in [40]. We
followed all applicable international and national guide-
lines of animal use and ethical standards for the collec-
tion of samples.

Molecular methods
Total genomic DNA was extracted by using the DNeasy
Blood & Tissue Kit (Qiagen) following the manufac-
turer’s protocol and the DNA concentration was stan-
dardized to 25 ng/μl. We either amplified the whole
mitochondrial genome or three large fractions using the
following three primer pairs: Primer pair A (L2508KAW:
5’-CTC GGC AAA CAT AAG CCT CGC CTG TTT
ACC AAA AAC-3’; [41]; and ZM7350R: 5’-TTA AGG
CGT GGT CGT GGA AGT GAA GAA G-3`), Primer
pair B (ZM7300F:5`-GCA CAT CCC TCC CAA CTA
GGW TTT CAA GAT GC-3’ and ZM12300R: 5’-TTG
CAC CAA GAG TTT TTG GTT CCT AAG ACC-3’)
and Primer pair C (ZM12200F: 5’-CTA AAG ACA GAG
GTT AAA ACC CCC TTA TYC-3’ and ZM2100R:

5’-GAC AAG TGA TTG CGC TAC CTT TGC ACG
GTC-3; all ZM primers taken from [9]; the number in
the primer names refers to an approximate position
within the mitogenome starting by the tRNA-Phe). The
amplified fragments overlapped and enabled the assem-
bly of contiguous mitochondrial genome fragments
across primer sites. Long-range PCR were conducted
using the TaKaRa LA Taq DNA polymerase kit (TaKaRa)
with the following thermal profiles: initial denaturation
at 98 °C (60 s), followed by 35 cycles of denaturation 98 °
C (10 s), annealing at60°C (Primer pair A), 62 °C (Primer
pair B) or 60 °C (Primer pair C) for 60s, elongation at
68 °C (15 min), and a last extension step at 72 °C (10
min). Amplification products were purified using the
QIAquick Gel Extraction Kit (Qiagen) following the
manufacturer’s protocol. DNA concentration of purified
amplification products were adjusted to 0.21 ng/μl and
fragments of each species were pooled equimolarly. The
Nextera XT DNA Sample Preparation Kit (Illumina) was
used for library preparation following the manufacturer’s
protocol until the normalization step. Library pooling
and sequencing was conducted at the Sequencing Ser-
vice of the Ludwig Maximilian University of Munich on
an Illumina MiSeq platform. Alternatively, several sam-
ples were sequenced on the Ion Torrent PGM platform
following the library preparation using the Ion Xpress™
Plus Fragment Library Kit and the template preparation
on the Ion OneTouch™ 2 System (following OT2 proto-
col). Adaptor trimming, quality control and assembly of
the sequencing reads were done by using the CLC Genom-
ics Workbench (Qiagen). Annotation of the assembled se-
quences (mean coverage: 6820; mean sequence length:
9923 bp) was performed in Geneious v.7.05 [42] using the
complete mitochondrial genome of Oreochromis niloticus
as a reference genome (GenBank accession number:
GU370126; [43]). Sequence data were deposited in
Genbank under the accession numbers (MK144668 –
MK144786 and MK170260 – MK170265, Additional file 1:
Table S1). To complement our data set we included pub-
lished mitochondrial genomes from previous studies that
were deposited in GenBank (Additional file 1: Table S1).

Phylogenetic analysis, divergence time estimate and fossil
calibration
We extracted protein coding sequence information of
ten mitochondrial protein-coding genes (ND1, ND2,
COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4)
for all taxa from of our data set. If sequences of a par-
ticular gene were missing (e.g. due to poor quality of se-
quence) a multi-N string was inserted into the
alignment in the respective positions (Additional file 1:
Table S1). For Lamprologus tigripictilis three genes were
missing, therefore we used the ND2 sequence of another
specimen of the sampled at the same river location
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(Genbank accession number: JX157061) to complement
sequence information for this species. Sequences were
aligned for each gene separately using the Geneious
alignment tool with default settings and then checked
by eye. Single gene alignments were concatenated in
Geneious, resulting in a total alignment of 7893 bp with
4529 variable sites and relative base frequencies (ex-
cluding gaps and ambiguous sites) of A = 0.25, T = 0.28,
C = 0.32 and G = 0.15. Each codon position was tested
for saturation by calculating the number of transitions
and transversions for all taxon pairs for each codon
position separately in PAUP v. 4.0 [44] and plotting
them against each other.
The complementary four nuclear loci alignment with se-

quences from Genbank (RAG1, ENC1, RH1 and
TMO-4c4) comprised 117 taxa. Missingness was as fol-
lows: 16 species had no RAG1 sequence, 8 had no ENC1,
40 had no RH1 and 41 had no TMO-4c4, and missing
data were replaced by Ns. Genbank sequences were indi-
vidually aligned using the Geneious alignment tool with
default settings and subsequently checked by eye and
trimmed to equal length. All single locus alignments were
concatenated in Geneious resulting in a total alignment of
3483 bp and 35.8% missing data. Relative base frequencies
(excluding gaps and ambiguous sites) of this alignment are
A = 0.24, T = 0.25, C = 0.24 and G = 0.27.
Selection of the best-fitting substitution model (GTR + I

+ G) for each gene was conducted using the program jMo-
deltest [45] based on Akaike information criterion (AIC).
Maximum likelihood (ML) inference of phylogenetic rela-
tionships was conducted with RAxML v8.2.6 [46] on the
CIPRES Science Gateway [47]. For this step, the data set
was further partitioned into first, second and third codon
positions and the two Etroplinae taxa Etroplus maculatus
and Paretroplus maculatus were defined as outgroup,
based on consilient evidence from previous phylogenetic
studies [7, 8]. Bootstrap replications were automatically
halted by RAxML (using the majority rule criterion) after
108 replications followed by ML search. Relative diver-
gence times of clades were estimated using the Bayesian
software BEAST v2.3.2 [48] under a relaxed lognormal
clock model with a birth-death speciation model on the
CIPRES Science Gateway. Again, the data set was parti-
tioned in first, second and third codon position. Moreover,
for the BEAST analysis we defined five clades as mono-
phyletic based on the results of the Maximum Likelihood
analysis (see above): Clade 1 (Ptychochrominae + Pseu-
docrenilabrinae + Cichlinae), Clade 2 (Pseudocrenilab-
rinae + Cichlinae), Clade 3 (Pseudocrenilabrinae), Clade
4 (Cichlinae) and Clade 5 (containing: austrotilapiines,
Pelmatolapiini, Oreochromini). These clades were sup-
ported by high bootstrap values (except Clade 2 and
Clade 5) in our analysis and were concordant by previ-
ous studies (e.g. [5, 7, 8]).

Calibration points were chosen conservatively based
on a critical evaluation of all previously used calibration
points in cichlid phylogenetic studies. Up to six fossils
(three Neotropical cichlid fossils and three fossils be-
longing to the Pseudocrenilabrinae) and one geological
event (geological age of the crater lake Barombi Mbo
maar) were finally selected. Justifications for their inclu-
sion is detailed below; for reasons why previously used
cichlid fossils and geological calibration points were ex-
cluded, see the Additional file 3. Ninety five percent
quantiles of prior-probability-densities width for fossil
calibration points laid between 29.2 and 39.1Ma, which
roughly matches the recommendation by [9]). Generally,
only fossils with well evaluated evidence for their phylo-
genetic position and with equally well corroborated ages
were included.
The three neotropical cichlid fossil are: †Plesioheros

chaulidus, †Gymnogeophagus eocenicus and †Tremem-
bichthys (e.g. †T. paulensis and †T. garciae).
†P. chaulidus and †G. eocenicus were described from

lacustrine “Faja Verde” deposits of the uppermost section
of the Lower Lumbrera formation in Northwestern
Argentina [49, 50]. The exact age of “Faja Verde” de-
posits remains under debate, but it is possible to con-
strain the youngest possible age of the whole Lumbrera
formation to 39.9Ma based on U/Pb dating of its upper-
most layer [51]; and it is possible to constrain the cichlid
bearing layer to a maximum age of 45.4–38.0Ma based
on accompanying mammal fossils, whose association
suggests an Casamayoran-Vacan age (for a more detailed
discussion of the age of Lumbrera formation see [9, 52],
who used the same calibration). The phylogenetic place-
ment of †Plesioheros chaulidus within the Cichlinae tribe
Heroini is well supported by several morphological syn-
apomorphies, but a refined placement of †Plesioheros is
hampered by the presence of lingual cusps on the teeth
in the fossil, which are not present in the two heroine
genera Hypselecara and Hoplarchus [53]. Since phylo-
genetic analyses of Heroini intrarelationships based on
morphological [53] and molecular datasets (e.g [52, 54])
are partially incongruent, and since our Heroini taxon
sampling is limited to a few key taxa, we conservatively
place †Plesioheros at the node uniting only Heroini with
lingual cusps being present, i.e. after the divergence of
Hypselecara. The phylogenetic placement of †Gymnogeo-
phagus eocenicus in the extant genus Gymnogeophagus is
well supported based on two unambigous apomorphies
[50]. We conservatively place the calibration point at a
node uniting our single Gymnogeophagus species (G.
balzanii) with two other geophagine taxa (Mikrogeopha-
gus ramirezi, ‘Geophagus’ brasiliensis).
†Tremembichthys has been recorded from the

Entre-Córregos Formation (Aiuruoca Tertiary Basin) and
from the Tremembé formation (Taubaté Basin) in Brazil

Schedel et al. BMC Evolutionary Biology           (2019) 19:94 Page 5 of 25

143



[55] The Entre-Córregos Formation was suggested to be
of Eocene-Oligocene age based on palynological evi-
dence [56, 57], whereas lacustrine shales of Tremembé
formation are dated to Oligocene-Miocene based on
geological and paleontological studies [58, 59]. Phylogen-
etic analysis based on the character matrix of Kullander
[60] placed †Tremembichthys within Cichlasomatini, a
tribe which is supported by several morphological apo-
morphies. Of those, however, only the square shaped
lachrymal is preserved in †Tremembichthys [55]. We
accept the placement of †Tremembichthys within Cichla-
somatini for most of our calibrations, and following [52]
we apply a conservative time range of 55.8–23.03Ma for
†Tremembichthys as no precise age estimate is available
for the Entre-Córregos formation. Nevertheless, it is worth
mentioning that †Tremembichthys has three pterygio-
phores articulated with the first haemal arch [55], a condi-
tion unknown from any extant Cichlasomatini member.
Generally, cichlasomatines have one to two pterygio-
phores articulated to the first haemal spine whereas some
Heroini lineages have three or even more [60]. Therefore,
we calibrated one analysis with †Tremembichthys at the
base of Heroini to evaluate the impact of the alternative
plausible placement of †Tremembichthys. Phylogenetic
placement of all neotropical cichlid fossils was based on
Kullander [60] or on López-Fernandez et al. [61]. How-
ever, recent molecular studies ([54, 62]) might differ
slightly from these phylogenetic hypotheses.
The three included Pseudocrenilabrinae cichlid fossils

are: †Mahengechromis (e.g. †Mahengechromis plethos,
†Mahengechromis rotundus), †Oreochromis lorenzoi and
†Tugenchromis pickfordi.
†Mahengechromis represents the oldest known cichlid

fossil and was discovered in the ancient crater lake
Mahenge which is part of the Singida kimberlite field on
the Singida Plateau in Tanzania [10, 63]. The age of the
Mahenge maar is estimated to 45.83 ± 0.17Ma based on U/
Pb isotope dating, and a maar lake mostly likely persisted
for only 0.2–1.0Ma [64]. The presence of a single supra-
neural bone places †Mahengechromis in a lineage encom-
passing all Pseudocrenilabrinae except for Heterochromis,
Tylochromis and Etia which have two supraneural bones.
The phylogenetic position of †Mahengechromis has already
been discussed in several studies and different positions
have been suggested depending on which data sets and
characters were used. It was either placed within the EAR,
as a basal offshoot within Pseudocrenilabrinae or as a sister
group to Hemichromis [10, 63, 65]. A sister-group relation-
ship of †Mahengechromis and Hemichromis was inferred to
be most parsimonious based on an osteological character
matrix including representatives of all cichlid subfamilies
with a focus on the Pseudocrenilabrinae lineages (but miss-
ing several important lineages, e.g., pelmatochromines, pel-
matolapiines tilapiines, steatocranines), which was mapped

on a composite tree with predefined character evolution
based on the knowledge of the time. However, when solely
based on osteological characters, the relationship between
†Mahengechromis and Hemichromis was not supported
[65]. As additional support for a relationship of †Mahenge-
chromis and Hemichromis Murray [65] stated that both ex-
hibit a low number of total vertebrae (fewer than 26),
however this is also the case in other African cichlid genera
of the tribes, e.g., Etiini, chromidotilapiines and pelmato-
chromines [66, 67]. Therefore, we consider the exact phylo-
genetic placement of †Mahengechromis as unresolved,
except that it represents an early branching member of
Pseudocrenilabrinae. Therefore, we use the fossil age to re-
strict the maximum ages of the calibration points of †Oreo-
chromis lorenzoi and †Tugenchromis pickfordi as these taxa
undoubtedly represent more derived lineages within Pseu-
docrenilabrinae (see below).
†Oreochromis lorenzoi was described from the

Gessoso-Solfifera Formation (Messinian) in Italy [68].
The Messinian age is dated from 7.24–5.33Ma based on
astronomical chronology and 40Ar/39Ar dating while fos-
sil bearing euxinic shale interstrata of lower evaporite
cycles of the Gessoso-Solfifera formation are dated by
magnetostratigraphy to 5.96 ± 0.2Ma [69–71]. No
comprehensive phylogenetic analysis is available for †O.
lorenzoi but its current placement in the tribus
Oreochromini is convincingly supported by characters
characterizing Sarotherodon and Oreochromis [68]. Un-
fortunately, diagnostic characters of several oreochro-
mine genera are often not well preserved in fossils, and
moreover, [68] had not compared the fossil with add-
itional genera placed today in Oreochromini, e.g. Tris-
tramella and Danakilia, rendering the placement of †O.
lorenzoi to some extent ambiguous [35, 72]. For a con-
servative approach we therefore decided to use †O.
lorenzoi as calibration point for the crown age of Oreo-
chromini and not for the genus Oreochromis, i.e. with a
time range of 5.98–46Ma based on the age lower of
lower evaporite cycles of the Gessoso-Solfifera formation
and the maximum age of †Mahengechromis.
†Tugenchromis pickfordi was recently described from

the Waril site of the Ngorora fish Lagerstätte in the
Central Kenya Rift Valley [28]. Based on a particular
horse (Equidae) tooth fragment of the paleosol above
the lacustrine sediments and lithostratigraphy, the Ngor-
ora fish Lagerstätte was assigned to the upper Miocene
9–10Ma, [73–75]. †T. pickfordi can be safely assigned to
the family Cichlidae based on several osteological and squa-
mation patterns [28]. Within the Pseudocrenilabrinae it is
suggested to be an extinct lineage within the ‘most ancient
Tanganyika tribes’ (sensu [17]) based on the character state
“lacrimal which bears six lateral line foramina”; this state
is present only in six Lake Tanganyika tribes Bathybatini,
Perissodini, Limnochromini, Ectodini, Lamprologini and
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Eretmodini. It most likely represents a stem lineage of the
‘ancient Tanganyika mouth-brooders’ (sensu [17]) as it
shares a mosaic-like character set of a tripartite lateral line
(present only in two genera of Ectodini from the Lake
Tanganyika Xenotilapia and Grammatotria), a lacrimal
with six lateral line foramina, and the shape of the trape-
zeoid lacrimal and arrangement of tubules resembling
strongly those of Limnochromini. Further, its meristics are
similar Ectodini and Limnochromini. We therefore accept
†Tugenchromis pickfordi as a potential precursor lineage
of the ‘ancient Tanganyika mouth-brooders’ (sensu Weiss
et al. [17]) as this appears to be the most probable phylo-
genetic position of †T. pickfordi; and, alternatively, we use
it as a calibration point encompassing the Lake Tangan-
yika C-lineage (sensu Clabaut et al. [76]), which includes
not only the ‘ancient Tanganyika mouth-brooders’, but also
the ‘Malagarasi-Orthochromis’ and Haplochromini (alter-
native calibration: E1). Nevertheless, we applied two add-
itional alternative calibrations to account for remaining
uncertainties of the phylogenetic placement of this fossil.
The first included in the C-lineage but also Eretmodini (=
H-lineage sensu Nishida [77]; alternative calibration: E2)
as Eretmodini exhibit six lateral line foramina as †Tugen-
chromis. The second alternative position of †Tugenchromis
is at the EAR-bases (alternative calibration: E3), thus ac-
counting for the vague possibility that †Tugenchromis
pickfordi might be an extinct lineage within the ‘most an-
cient Tanganyika tribes’, because of its plesiomorphic cyc-
loid flank scales.
We further used one geological event for calibration, i.

e. the geological origin of the Cameroonian crater lake
Barombi Mbo. The lake harbors an endemic monophy-
letic radiation of eleven species which must have radi-
ated in situ, and whose riverine founder species,
Sarotherodon galilaeus is still extant [78, 79]. Based on
K/Ar dating the Barombi Mbo maar was active around
1.05 ± 0.7Ma [80], suggesting a slightly younger age as
the maximum age for the onset of the divergence of the
cichlid radiation in the lake. In contrast to the complex
tectonic history of the East African Great Lakes the vol-
canic history of the Barombi Mbo maar is far better
understood. We therefore decided to include the forma-
tion of Barombi Mbo as a maximum age constraint for
the MRCA of the strictly endemic Lake Barombi Mbo
species flock.
As root calibrations we applied three alternative

age-range priors and associated probabilities. One
time-range (R1) was set very conservatively by allowing
the age prior to range between 46 and 174.78Ma, either
with a lognormal prior (R1a) and or with a uniform
probability (R1b). This range covers all possible prob-
abilities for the first emergence of cichlids: the younger
bound is based on the age of the oldest known cichlid
fossil (46Ma, †Mahengechromis) and the older bound on

the oldest maximum age estimate for the family Cichli-
dae based on independent cichlid molecular clock re-
sults (95% HPD: 128.2–174.78Ma; [13]. The second
time-range (R2) is taken from study of Matschiner et al.
[9], which is so far the most comprehensively evaluated
age estimate for Cichlidae. Their estimate (95% HPD:
82.17–98.91Ma) is based on a sequence dataset encom-
passing over 1000 teleost species, 40 mitochondrial and
nuclear loci and a calibration with 147 teleost fossils, as
well as a critical re-evaluation of previous publications.
To evaluate the effects of inclusion and alternative

placement of calibration points, and moreover the im-
pact of different prior distributions (lognormal vs. uni-
form) for the important root calibration divergence time
estimates, we conducted seventeen different BEAST
runs based on the mitochondrial dataset and with the
following settings. Node calibrations were set to
log-normal distributions except for the root calibration
(R1b) which in one run was set to a uniform distribution
(for more calibration prior details see Table 1): calibra-
tion Set 1, Set 2, Set 5, Set 7 and Set 9 were root cali-
brated using the conservative calibration R1a (prior
range of 46–174.78Ma), while Set 3, Set 4, Set 6, Set 8,
Set 10, Set 12, Set 13, Set 14 and Set 15 were calibrated
with the root calibration R2 (prior range of 82.17–98.91
Ma). Set 1 and Set 3 were calibrated with †Tugenchromis
placed on the node of the MCRA of the C-lineage and
Eretmodini while Set 2 and Set 4 excluded the Eretmo-
dini in the placement. Set 5 and Set 6 did not include
†Tugenchromis as a calibration point. Set 9 and Set 10
were calibrated with †Tugenchromis, but this time at the
base of the EAR. †Oreochromis lorenzoi was excluded as
calibration point from Set 7 and Set 8. Sets 13, 14 and
15 were calibrated as Set 4 except that †Tremembichthys
was excluded from Set 13 as calibration point, †Gymno-
geophagus eocenicus as a calibration point from Set 14
and the age of the Barombi Mbo maar as calibration
point from Set 15. Set 17 was calibrated as Set 4 except
for †Tremembichthys, which was placed as a calibration
point for the Heroini rather than Cichlasomatini. The
calibration of Set 11 was identical to the calibration of
Set 2 with the only exception being that the root was
calibrated with a uniform distribution (R1b). Set 16 was
calibrated as Set 4 but without root calibration. Several
studies demonstrated that saturation can lead to the ef-
fect of compressing basal branches resulting in overesti-
mated divergence dates of shallow nodes [81–83]. For
the evaluation of this effect we designed an additional
Set 12 identical to Set 4 but with the third codon pos-
ition removed of the alignment. Finally, we calibrated
the comparative nuclear dataset applying identical set-
tings as the calibration Set 4 to investigate whether
mitochondrial and nuclear DNA data calibrated and
analysed with identical priors would yield comparable
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Table 1 Overview of calibration prior details

Cichlid fossils and geological events used as calibration points: Parameter settings (Beast):

Calibration
point

Fossil/event Estimated age Calibrated clade Offset Standard
deviation

Mean Distribution

A1 †Tremembichthys 55.8–23.03 Ma (Tremembé
formation)

Cichlasomatini 23.03 0.67 2.39 Log normal

A2 †Tremembichthys 55.8–23.03 Ma (Tremembé
formation)

Heroini 23.03 0.67 2.39 Log normal

B †Gymnogeophagus
eocenicus

45.4–39.9 Ma (Lumbrera
formation)

Mikrogeophagus ramirezi,
Gymnogeophagus balzanii,
‘Geophagus’ barsiliensis

39.9 0.8 2.4 Log normal

C †Plesioheros
chaulidus

45.4–39.9 Ma (Lumbrera
formation)

Heroini (except: of
Pterophyllum and
Hypselecara)

39.9 0.8 2.4 Log normal

D †Oreochromis
lorenzoi

7.24–5.33 Ma (Gessoso-
Solfifera formation)

Oreochromini 5.98 1.148 1.8 Log normal

E1 †Tugenchromis
pickfordi

9–10 Ma (Ngorora
Formation)

C-lineage (sensu Clabaut
et al., 2005): ‘ancient
Tanganyika mouth-brooders
’, ‘Malagarasi-Orthochromis’,
‘Ctenochromis’ pectoralis
and Haplochromini

9 0.98 2 Log normal

E2 †Tugenchromis
pickfordi

9–10 Ma (Ngorora
Formation)

H-lineage (sensu Nishida,
1991): ‘ancient Tanganyika
mouth-brooders’, ‘
Malagarasi-Orthochromis’,
‘Ctenochromis’ pectoralis,
Haplochromini and
Eretmodini

9 0.98 2 Log normal

E3 †Tugenchromis
pickfordi

9–10 Ma (Ngorora
Formation)

East African Radiation (EAR) 9 0.98 2 Log normal

F Onset Lake
Barombi Mbo

1.12–0.98 Ma Barombi Mbo species flock 0.0 0.07 0.98 (real
space)

Log normal

– †Mahengeochromis 45.83 ± 0.17 (Singida
kimberlite field)

– – – – –

Root calibration

R1a Time range:
46–174.78 Ma

Based on:
Age of †Mahengeochromis
& the oldest maximum age
estimate for the family
Cichlidae (López-Fernández
et al. 2013)

46 0.44 3.99 Log normal

R1b 46–174.78 Ma as for R1a 0 Lower
Bound: 46

Upper bound:
174.78

uniform

R2 82.2–98.9 Ma Estimated divergence age
for the family Cichlidae by
Matschiner et al. (2016)

82.17 0.455 2.07 Log normal

Combination of calibration points of the different calibration sets:

Included
calibration points

Included calibration points: Included calibration points:

Set 1 A1, B, C, D, E2, F,
R1a

Set 7 A1, B, C, E1, F, R1a Set 13 B, C, D, E1, F, R2

Set 2 A1, B, C, D, E1, F,
R1a

Set 8 A1, B, C, E1, F, R2 Set 14 A1, C, D, E1, F, R2

Set 3 A1, B, C, D, E2, F,
R2

Set 9 A1, B, C, D, E3, F, R1a Set 15 A1, B, C, D, E1, R2

Set 4 A1, B, C, D, E1, F, R2 Set 10 A1, B, C, D, E3, F, R2 Set 16 A1, B, C, D, E1, F
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node age estimates. Although the taxon sampling of the
comparative nuclear dataset is slightly reduced and not
fully identical as comparted to the mitochondrial dataset
it covered all major cichlid lineages, hereby enabling a
meaningful comparison at least for some divergence
time estimates of several key nodes.
Each BEAST run was performed three times independ-

ently (180 million generations per run) and sampling of
parameters and trees was done every 15,000 generation.
The three independent runs (for each alternative BEAST
run configuration) were combined using LogCombiner
after accounting for a burn-in of 15%. We used Tracer
v1.6 [84] for inspection of effective sample size (ESS) of all
parameters of the different BEAST runs. All EES had ac-
ceptable values (> 200) and appeared to converge to sta-
tionary distributions, indicating an acceptable sample size
for the posterior distribution of parameters of individual
analyses. Maximum clade credibility trees (posterior prob-
ability limit: 0.5, mean heights) were retrieved from the
posterior tree distribution.

Results
The alternatively calibrated BEAST runs (Calibration Set
1–11 and Sets 13–17) yielded maximum-clade credibility
(MCC) trees which were largely identical to the topology
of the ML tree. The few inconsistencies include (a) the
position of ‘Lower Congo Lamprologus clade’, which is
placed as a sister group to all remaining Lamprologini in
the Bayesian MCC trees but as a sister group to the
‘non-ossified Lamprologini’ in the ML tree; and (b) the
position of Cyphotilapiini which are either a sister group
to Limnochromini, or in the ML tree, or a sister group
to the clade encompassing Limnochromini and all
remaining members of the EAR (see Fig. 1 and Fig. 2).
The topology of the maximum-clade credibility (MCC)
tree based on the BEAST runs of calibration Set 12
(third codon positions removed) is compatible with
those of the ML tree and the MCC trees of the other
calibrations sets but show several inconsistencies within
the Pseudocrenilabrinae. For example, the Steatocranini
are placed as the sistergroup to the EAR in the ML tree
and other MCC trees (Sets 1–11 and Sets 13–17) but
they are placed as the sister group to a clade comprising
Oreochromini, Pelmatolapiini and Tilapiini (T. ruweti
and T. sparrmanii) in the MMC tree of Set 12. Both T.
ruweti, T. sparrmanii and C. crassa form the sister group
to a clade consisting off the EAR and Steatocranini in

the ML and all other MCC trees (Set 1–11 and Sets 13–
17). The Malagarasi-Orthochromis are placed as sis-
tergroup to the Haplochromini in the MCC trees (Set
1–11 and Sets 13–17) and the ML tree but are sis-
tergroup to a clade consisting of Perissodini, Cyprichro-
mini, Benthochromini and Limnochromini in the MMC
tree of Set 12. Moreover, the placement of H. vanheus-
deni and ‘Orthochromis’ indermauri differed from the
ML tree and the other MCC trees (Set- 1 – 11 and Sets
13–17). However, all of these alternative placements in
the MMC tree (Set 12) are only weakly supported.
The topology of the MCC tree based on the nuclear

dataset resembled those of the mitochondrial dataset to
some extent except for several topological differences
within the Pseudocrenilabrinae and Cichlinae. Within
the Cichlinae, for example, Astrontus ocellatus and
Chaetobranchiopsis orbicularis were resolved as sister
taxa to Geophagini instead of forming the sister group
to Cichlasomatini and Heroini. There were compara-
tively minor topological differences of the taxa within
Cichlasomatini and Heroini, e.g. the placement of Krobia
within the Cichlasomatini, and the placement of Rocio,
Uaru and Symphysodon within Heroini. Major
topological differences within Pseudocrenilabrinae were:
‘Tilapia’ brevimanus formed a clade together with Pel-
matolapia mariae which was resolved as a sister clade
to the EAR; Steatocranini and Tilapiini were resolved as
sister taxa; and within the EAR differences arose for the
placement of several tribes endemic to Lake Tanganyika
(e.g. Boulengerochromis and Bathybatini incl. Hemibatini
formed a monophyletic clade; the monophyly of the
benthopelagic LT clade (see below) was not recovered; a
clade composed of Eretmodini, Ectodini and Lamprolo-
gini was resolved as the sister group to Haplochromini;
Tropheini and Serranochromis macrocephalus were re-
solved as sister taxa). In general, nodes of the topology
based on the nuclear dataset were weakly supported as
compared to the mitochondrial based topology.
The divergence time estimates based on the different

calibration sets of the full mitochondrial alignment dif-
fered only slightly from each other. Divergence ages based
on the Calibration Set 1, Set 2, Set 5, Set 7, Set 9 and Set
11 (with the root age range of 46–174.78Ma) were only
slightly older and had a wider 95% HPD interval than
those based on the calibration Set 3, Set 4, Set 8, Set 10,
Set 13, Set 14 and Set 15 (root age range of 82.17–98.91
Ma). Application of a log-normal distributed prior for the

Table 1 Overview of calibration prior details (Continued)

Cichlid fossils and geological events used as calibration points: Parameter settings (Beast):

Set 5 A1, B, C, D, F, R1a Set 11 A1, B, C, D, E1, F, R1b Set 17 A2, B, C, D, E1, F, R2

Set 6 A1, B, C, D, F, R2 Set 12 (third codon
position stripped)

A1, B, C, D, E1, F, R2 Set 18
(Nuclear data)

A, B, C, D, E1, F, R2

Fossil taxa are indicated by †
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root (Set 2) or a uniform distribution of the root (Set 11)
had only marginal impact on node ages, which were only
slightly older for Set 11. If no root calibration was applied
(Set 16), divergence ages were slightly older than those of
Set 4 but their 95% HPD intervals still widely overlapped,
even so they were generally wider than those of calibration
Set 4. On the other hand, divergence ages of our

non-rooted calibration set were younger than those of Set
2 but again 95% HPD intervals of both sets overlapped to
some extent.
Three alternative placements of the fossil †Tugenchro-

mis, i.e. either including the C-lineage and Eretmodini
(Set 1 and Set 3) or excluding Eretmodini (Set 2 and Set
4) or alternatively at the base of the EAR (Set 9 and Set

Fig. 1 ML-phylogeny (RAxML) based on ten protein coding mitochondrial genes (ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4)
of 180 cichlid taxa representing all cichlid subfamilies. Focus of the taxon sampling was put on members of the East African cichlid Radiation
represented by 115 taxa. Numbers at nodes refer to bootstrap-values while black dots represent bootstrap support of 100. Specimens depicted
from top to bottom (photographersin brackets): M. auratus (E. Schraml), H. callipterus (U.K. Schliewen), N. linni (E. Schraml), H. nyererei (E. Schraml),
T. moorii (Z. Musilová), H. vanheusdeni (J. Geck), O. luongoensis (F.D.B. Schedel), New Lufubu Cichlid (F.D.B. Schedel), ‘O.’ indermauri (F.D.B. Schedel),
‘O.’ stormsi (J. Geck), O. uvinzae (J. Geck), C. furcifer (Z. Musilová), H. microlepis (Z. Musilová), G. bellcrossi (E. Schraml), L. symoensi (E. Vreven), V.
moorii (F.D.B. Schedel), L. teugelsi (F.D.B. Schedel), H. stenosoma (F.D.B. Schedel), T. macrostoma (F.D.B. Schedel), S. glaber (F.D.B. Schedel), T. ruweti
(F.D.B. Schedel), P. maclareni (J. Geck), C. zillii (J. Geck), N. consortus (F.D.B. Schedel), T. polylepis (F.D.B. Schedel), A. pulcher (Z. Musilová), N. anomala
(Z. Musilová), G. steindachneri (Z. Musilová), P. maculatus (F.D.B. Schedel)
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10), had marginal impact on divergence age estimates,
too. Divergence ages based on calibration sets without
†Tugenchromis (Set 5 and Set 6) usually yielded slightly
older ages than calibrations sets including †Tugenchromis.

Likewise, divergence ages obtained by calibration sets ex-
cluding †Oreochromis lorenzoi (Set 7 and Set 8) were
slightly older than divergence ages based on comparable
calibration sets including the fossil (Set 2 and Set 4). The

Fig. 2 Time-calibrated phylogeny (BEAST, relaxed normal molecular clock) of 180 cichlid taxa based on ten protein coding mitochondrial genes
and on the calibration Set 4 (see Table 1). Time constrained nodes (black circles) were calibrated using fossils, i.e. A: †Tremembichthys, B:
†Gymnogeophagus eocenicus, C: †Plesioheros chaulidus, D: †Oreochromis lorenzoi, E: †Tugenchromis pickfordi), one geological event (F: age of
Lake Barombi Mbo maare) or as in the case of the root using secondary constraint (divergence time estimate for the age of the MRCA
of cichlids taken from Matschiner et al. [9]; 82.17–98.91 Ma). Node bars indicate 95% HPD intervals of divergence events and are coloured
according to their Bayesian Posterior Probability (blue: BPP 1.0; violet: BPP 0.99–0.95; green: BPP 0.94–0.8; orange: BPP 0.79–0.5, node bars
with BPP < 0.5 are not depicted). Numbers next to the nodes correspond to the numbers in the Additional file 4: Table S2
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same was true for the calibration Set 13 excluding the
neotropical cichlid fossil †Tremembichthys, which yielded
only slightly older divergence ages in comparison to cali-
bration Set 4. If †Tremembichthys was placed at the base
of Heroini instead of Cichlasomatini (Set 17) divergence
ages were revealed to be only slightly older than those of
calibration Set 4. Divergence ages of the calibration set ex-
cluding the age of the Barombi Mbo maar (Set 15) as a
calibration point were in general slightly older than those
of the calibration Set 4, but confidence intervals over-
lapped widely. The exclusion of †Gymnogeophagus eoceni-
cus (Set 14) as a calibration point resulted in marginally
younger divergence age estimates in comparison to those
of calibration Set 4.
The small impact on divergence age estimates of both

taxa might be explained by the fact that we applied six
additional calibration points, including one root cali-
bration point. Root calibration points are affecting time
estimates more than shallow ones and estimates be-
come more consistent when multiple calibration points
are applied [85, 86].

The divergence times of deep nodes (e.g., the root of
Cichlidae; split of Pseudocrenilabrinae and Cichlinae;
crown age of Pseudocrenilabrinae; crown age of Cichli-
nae) of the calibration Set 12 (mitochondrial alignment
with third codon positions removed) were comparatively
younger than those of the corresponding Set 4 (third po-
sitions included) but nevertheless widely overlapped with
their 95% HPD intervals (see Figs. 3 and 4). These youn-
ger estimates for comparatively old nodes in Calibration
Set 12 contrasted with comparatively older divergence
time estimates of shallower nodes (i.e., EAR, Tanganyika
tribes, haplochromine lineages) in the same analysis.
Further, divergence ages of Set 12 had wider 95% HPD
ranges, especially those of more recent splits (e.g., Lake
Malawi species flock divergence). In summary, we could
not detect severe effects of basal branch compressions
by including the partially saturated third codon position
in our analyses but rather found even younger age esti-
mates for shallow nodes when doing so. Therefore, we
conclude that despite partial saturation of third codon
positions, their exclusion had no drastic impact on node

Fig. 3 Overview of divergence age estimates from this study. Calibration Sets based on the mitochondrial dataset (Set 2, Set 4, Set 12, Set 13, Set
14 and Set 15) are depicted in green. Calibration Set 18 based on the nuclear dataset is depicted in blue and several previous studies for selected
cichlid groups (Cichlinae and Pseudocrenilabrinae, austrotilapiines and the East African Radiation) are depicted in orange. Depicted are either 95%
HPD (highest posterior intervals), 95% credibility intervals, 95% confidence intervals or standard deviations depending on the source study. Mean
ages are indicated by middle bar of each interval
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age estimates but actually removed informative data,
which were particularly relevant for resolution of shal-
lower nodes. Divergence time estimates based on the
comparative nuclear dataset with calibrations as for Set
4 had wider 95% HPD ranges and were generally older
than corresponding estimates of the mitochondrial data
set with calibration Set 4 (Figs. 3 and 4). However, 95%
HPD intervals overlapped widely, sometimes even com-
pletely, as e.g. for the MRCA of the EAR. In summary,
divergence estimates based on the nuclear dataset did
not contradict the results of the mitochondrial datasets.
Furthermore, these findings suggest that the use of only
nuclear versus mitochondrial data alone is not entirely

responsible for older divergence estimates observed on
previous studies using mitochondrial data only.
A comprehensive list of mean divergence ages and

their corresponding 95% HPD age ranges of selected
nodes is given in the Additional file 4: Table S2. Here,
we focus on age estimates obtained by the Calibration
Set 4 because alternative estimates were highly similar
and because Set 4 represents in our view the most likely
setting, as the root calibration was constrained based on
the most comprehensive data set [9], and it accounted
for the more likely placement of †Tugenchromis [28].
We may want to point out that our age estimates are mito-
chondrial haplotype divergence ages, which do not fully

Fig. 4 Overview of divergence age estimates from this study. Calibration-Sets based on the mitochondrial dataset (Set 2, Set 4, Set 12, Set 13, Set
14 and Set 15) are depicted in green. Calibration Set 18 based on the nuclear dataset is depicted in blue and several previous studies for selected
cichlid groups (Bathybates, Ectodini, Tropheini and the Malawi radiation) are depicted in orange. Depicted are either 95% HPD (highest posterior
intervals), 95% credibility intervals, 95% confidence intervals or standard deviations depending on the source study. Mean ages are indicated by
middle bar of each interval
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reflect speciation events, but rather are a first solid hint to
minimum divergence ages. Moreover, comparatively young
divergence age estimations (especially those younger than
1Ma) might be inaccurate and most probably overestimate
the actual diversification ages due to several reasons: For
instance divergence time estimations are influenced by to
the time-dependence nature of molecular rates which are
reflected by the fact that there is a measurable transition
from low, long-term substitution rates to increased,
short-term mutation rates, most likely as a result from
multiple factors (e.g., purifying selection, ancestral poly-
morphism) but also due to sequencing errors and calibra-
tion errors that can account for time-depended molecular
rates [5, 87, 88].

Mitochondrial phylogeny and divergence time estimates
of selected lineages
The ML-analysis (Fig. 1) and all BEAST-analyses recov-
ered the monophyly of all recognized cichlid subfamilies,
and additional major lineages and general relationships
are consistent with most previously published studies
(e.g. [5, 7–9]). The Etroplinae outgroup (Madagascar,
southern India and Sri Lanka) formed the sister group to
all other Cichlidae, and Ptychochrominae (Madagascar)
were recovered as a sister group to a weakly supported
clade of African Pseudocrenilabrinae + Neotropical
Cichlinae (BS: 64). Mean divergence age (calibration Set
4) of the MRCA of African Pseudocrenilabrinae and
Neotropical Cichlinae were estimated to be of Late Cret-
aceous age: 84.37Ma (95% HPD: 75.71–93.25Ma).
Monophyly of Cichlinae was well supported (BS: 100)
and the MRCA divergence age estimate is dated to 73.93
(95% HPD: 66.27–82.33Ma). Internal relationships of
tribes and lineages of Cichlinae were widely congruent
with previous studies except for the poorly supported
monophylum of Chaetobranchini and Astronotini (BS:
32), which was recovered as a sister group of the Cichla-
somatini + Heroini monophylum. Similarly, monophyly
of Pseudocrenilabrinae was well supported (BS: 100), but
the divergence age of Pseudocrenilabrinae MRCA in our
dataset was dated younger than that of Cichlinae, i.e.
60.79Ma (95% HPD: 50.87–71.10Ma). However, the es-
timate would have been substantially older if Heterochro-
mis, which is the early branching sister group to all
remaining Pseudocrenilabrinae, had been included (eg.
[7, 8]). Thus, MRCA age estimates for two cichlid sub-
families Pseudocrenilabrinae and Cichlinae are largely
compatible with several previous studies, e.g. [5] (based
on Gondwanan landmass fragmentation), [6] (2008;
based on 21 teleost fossils of different lineages) and [9]
(based on 147 fossil clade age calibration points).
Intrarelationships of major African cichlid tribes (tylo-

chromines, chromidotilapiines, hemichromines pelmato-
chromines) were only poorly supported as it was the

case in previous studies (e.g. [5, 35, 89]. Monophyly of
haplotilapiines (sensu [67]) was, however, well supported
(BS: 100) with an estimated Eocene divergence age of
45.38Ma (95% HPD: 37.98–54.49Ma). Within haplotila-
piines, Oreochromini (BS: 88) and austrotilapiines (BS:
38) were recovered as sister groups for the first time
based on mitochondrial data alone, albeit with very weak
support (BS: 41). Monophyly of boreotilapiines was not
recovered in our analysis. Divergence age of the MRCA
of Oreochromini was dated to 22.95 (95% HPD: 17.27–
29.11Ma) and of austrotilapiines to 31.98Ma (95% HPD:
27.17–36.92Ma). Within austrotilapiines, Steatocranini
were resolved as a sister group to the EAR with rela-
tively high support (BS: 94) and the divergence age of
the MRCA was estimated to 30.62Ma (95% HPD:
26.59–35.40Ma).
Monophyly of the EAR was well supported (BS: 100)

and the onset of divergence for this lineage was esti-
mated to be of Late Eocene/Early Oligocene age: 28.71
Ma (95% HPD: 24.43–33.15Ma). Boulengerochromini
were recovered as the earliest diverging EAR lineage
followed by a strongly supported clade (BS: 100) of Bath-
ybatini + Trematocarini. This is congruent with two pre-
vious mtDNA studies (e.g. Day et al. 2008), but contrasts
with other mtDNA studies which retrieved Boulengero-
chromini, Bathybatini and Trematocarini as the sis-
tergroup to the remaining lineages of the EAR (e.g. [36,
90, 91]. Trematocarini were estimated to have diverged
16.13Ma ago (95% HPD: 11.89–20.46Ma) while Bathy-
batini started diverging 20.62Ma (95% HPD: 16.88–
25.34Ma). In contrast with previous studies, which
found Lamprologini and Eretmodini to form a sister
group to the remaining members of EAR (e.g. [14, 17,
36, 76] Lamprologini were resolved as the sister group
to the H-lineage (C-lineage including the Eretmodini) in
our analyses. Divergence of the MRCA of Lamprologini
and the H-lineage was well supported (BS 100) and esti-
mated to 23.6Ma (95% HPD: 20.18–27.33Ma).
According to our data, Lamprologini diverge into

three strongly supported (BS: 100) lineages during the
Miocene at around 15.27Ma (95% HPD: 12.23–18.49
Ma). The first clade was composed of the ‘non-ossified
Lamprologines’ with taxa mainly endemic to LT but in-
cluded some riverine taxa of disjunct distributions in the
Congo Basin, e.g. L. werneri and L. symoensi. This clade
diverged at around 12.51Ma (95% HPD: 9.75–15.51).
The second Lamprologini clade was composed of the LT
endemics belonging to the ‘ossified Lamprologines’ and
diverged at around 10.66Ma (95% HPD: 7.39–13.97Ma).
Surprisingly and for the first time a mtDNA clade
encompassing only Lamprologus of the lower and central
Congo drainage (L. mocquardi, L. markerti, L. tigripicti-
lis, L. lethops, L. teugelsi and L. sp. Kwango) was recov-
ered; we refer to it as the ‘Lower Congo Lamprologus
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clade’, because most members of this clade are only
known form the Lower Congo area. Its divergence was
dated substantially younger than the other two clades,
i.e. to Late Miocene or early Pliocene at around 6.62Ma
(95% HPD: 4.31–9.49Ma). Interrelationships of the three
lamprologine clades were poorly supported.
Monophyly support for each of the ancient Tanganyika

mouthbrooder tribes (Cyphotilapiini, Limnochromini,
Ectodini, Perissodini, Benthochromini and Cyprichro-
mini) was strong (BS: 100). For the first time a clade
composed mostly three pelagic or epibenthic clades
Perissodini, Cyprichromini and Benthochromini was re-
covered with strong support (BS 100), based on mito-
chondrial markers,. We refer to this clade as the
“benthopelagic LT clade”. It was only weakly supported
in previous mtDNA based studies [36, 92], but is well
supported by nuclear DNA data and more recently by
AFLP and RAD based studies [7, 17, 93]. Divergence of
the MRCA of the benthopelagic LT clade was dated to
the Middle to Early Miocene age: 16.14Ma (95% HPD:
12.83–19.54Ma). Divergence of Perissodini took place at
around 6.18Ma (95% HPD: 3.16–9.59Ma), of Cyprichro-
mini at around 10.38Ma (95% HPD: 6.20–14.53Ma) and
of Limnochromini at around 10.71Ma (95% HPD: 5.20–
16.30Ma). Further, monophyly of Eretmodini were re-
covered with strong support (BS 100) and their diver-
gence age is 7.60Ma (95% HPD: 3.92–11.99Ma) which
was comparable with those of Perissodini. In contrast,
Ectodini and Cyphotilapini diverged slightly earlier with
mean ages of 14.06Ma (95% HPD: 11.18–17.70Ma) and
14.16Ma (95% HPD: 8.71–19.25Ma), respectively.
The Malagarasi-Orthochromis are recovered as the sister

group of Haplochromini with moderate support (BS 71),
which contrasts with the placement of Malagarasi-Ortho-
chromis of previous mtDNA based studies, which recovered
for example a relationship of Malagarasi-Orthochromis and
Ectodini (e.g. [15, 76]). Several nuclear DNA based studies
however recovered the Malagarasi-Orthochromis as a sister
group of the Haplochromini as is the case in this study (e.g.
[17, 76]). Monophyly of Haplochromini was highly sup-
ported (BS 100) and the onset of diversification of Haplo-
chromini was dated to Early Miocene: 16.64Ma (95% HPD:
14.25–19.16Ma). ‘Ctenochromis’ pectoralis from the Pan-
gani River drainage (Tanzania, Kenya) was placed as a sister
group to all remaining Haplochromini with high support
(BS 100), hereby confirming previous studies which how-
ever only found poor support for this node ([15, 26, 94].
Intrarelationships and monophyly of previously recognized

haplochromine mtDNA lineages (e.g serranochromines-
mt-lineage s.l.; ‘Pseudocrenilabrus-group’ incl. Northern-
Zambian-Orthochromis, ‘New Kalungwishi cichlid’, ‘New
Lufubu cichlid’; Astatoreochromis, LT Tropheini; Lake
Malawi species flock and ‘modern Haplochromini’ incl. Lake
Victoria Region Superflock and riverine east and central

African haplotypes) were in large part congruent with
previous mtDNA based studies (e.g. [15, 37, 39]. The
serranochromines-mtDNA-lineage sensu lato, i.e. the
southern-central African lineage including the Lake Fwa
cichlids and ‘O.’ stormsi (mean age: 13.41Ma; 95% HPD:
11.18–15.85Ma) are estimated to be slightly older than all
remaining major lineages, i.e. the ‘Pseudocrenilab-
rus-group’ (mean age: 11.82Ma; 95% HPD: 9.63–14.18
Ma), Tropheini (mean age: 8.69; 95% HPD: 6.77–10.70
Ma), ‘modern Haplochromini’ (mean age: 9.42Ma; 7.72–
11.23Ma) and Lake Malawi species flock (mean age: 4.07
Ma; 2.93–5.26Ma). The well supported (BS 99) clade
encompassing the serrranochromines-mtDNA-lineage s.
str. (following Joyce et al. [95] and Musilová et al. [39])
represented in our study by Serranochromis robustus, S.
altus, Pharyngochromis sp. and the undescribed taxon
‘Haplochromis’ sp. Kwango are of Pliocene to Early
Late Miocene age: 5.46Ma (95% HPD: 3.79–7.24Ma).
The Lake Victoria Region Superflock (LVRS, following
Verheyen et al. [96] and was recovered with strong
support (BS: 100) and its divergence started in the
Pleistocene age: 0.31Ma (95% HPD: 0.12–0.53Ma). In
addition to these lineages, two novel mitochondrial
haplotype lineages within Haplochromini were recov-
ered here for the first time. ‘Orthochromis’ indermauri
was recovered as the sister lineage of a clade encom-
passing the ‘Pseudocrenilabrus-group’ and the ‘ocel-
lated eggspot Haplochromini’ (BS: 85). It is endemic
to rapids on the lower Lufubu, the largest affluent of
the southern Lake Tanganyika basin ([97]). Divergence
of ‘Orthochromis’ indermauri and remaining Haplo-
chromini was dated to around 15.15Ma (95% HPD:
12.91–17.46 Ma). The second novel lineage was ‘Hap-
lochromis’ vanheusdeni from the Great Ruaha drain-
age system, which was recovered with strong support
(BS: 96) as sister taxon to all LT endemic Tropheini,
a subgroup of Haplochromini. Divergence of this East
African coastal drainage species and LT Tropheini
was estimated to have taken place in the Miocene at
around 10.51Ma (95% HPD: 8.47–12.61Ma).
Even so a large fraction of the nodes of the ML tree

was well supported (BS: 100), it is worth mentioning that
several nodes were comparatively weakly supported (Fig.
1). Most of the latter referred to early diversification
events within Pseudocrenilabrinae and Cichlinae, or they
are located among rapidly diversifying EAR clades, e.g.
among early diverging EAR-tribes or among haplo-
chromine cichlids. In contrast, different BEAST analyses
resolved many more nodes with high support supported
(BBP = 1) and consequently comparatively fewer nodes
had low support (see e.g. Figure 2). This contrast might
have several reasons. Generally, Bayesian analyses tend
to yield on average higher node support than ML ana-
lyses and therefore might be overoptimistic ([98, 99]).
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Moreover, in the addition to the different calibration
points we predefined five monophyla based on the ML
analysis in our BEAST analyses, which may have
strengthened BPPs for nodes related to these phylogen-
etic constraints.

Discussion
The present study represents a comparatively compre-
hensive and robust data set in terms of number of mito-
chondrial markers (10 coding genes) and taxa (180
species of Cichlidae), with a novel calibration set includ-
ing the recently described fossil species (†Tugenchromis;
[28]). We recovered novel mitochondrial haplotype phy-
logenies based on the improved taxon sampling, which
in combination with novel and re-evaluated node age es-
timates allow for a refined phylogeographic view on the
origin and diversification of Cichlidae, especially those of
the EAR.

Divergence age estimates in comparison of previous
studies
Overall, our attempts to date the evolutionary history of
cichlids based on the conservative selection of five
well-corroborated fossils, one geological and two alter-
native root calibrations yielded robust divergence age es-
timates. These are congruent with several preceding
studies while other studies resulted in partially different
divergence age estimates. These discrepancies can be
partially attributed to different calibration priors. By in-
tegrating extreme age estimates from previous studies
into our alternative root age calibration strategy, we
endevaored to evaluate these results with the back-
ground of our conservative internal node calibration
strategy.
Divergence age estimates for two cichlid subfamilies

Pseudocrenilabrinae and Cichlinae of this study are
largely compatible with several previous studies (e.g. [5,
6, 9]). In contrast, they are in more or less dramatic con-
flict with other studies (Fig. 3), substantially with those
López-Fernandez et al. [13], Friedman et al. [7], less dra-
matic with studies by McMahan et al. [8, 100] and Iri-
sarri [101], and partially with some partial results
presented by Genner et al. [5] and Day et al. [14].
López-Fernandez et al. [13] had estimated much older

divergence age for Cichlidae (mean: 147Ma, 95% HPD:
124.49–171.05Ma), but their age estimates were recently
challenged as they predate the oldest first spiny-rayed
teleost (Acanthomorpha) and because multiple taxon
concatenations in their alignment appeared to be com-
posed of sequences from different taxa [52, 102]. At the
other extreme, Friedman et al. [7] estimated a much
younger divergence age for the MRCA of Pseudocreni-
labrinae and Cichlinae (mean: 46.4 Ma, 95% HPD: 40.9–
54.9Ma). They had used ten non-cichlid fossils for

calibration and no cichlid fossil. Again, such young di-
vergence ages were questioned later [52] because they
strongly contradicted the fossil record. The oldest Lum-
brera formation cichlid fossils are at least 39.9 Ma old,
which is considerably older than Friedman et al.´s (2013)
divergence age estimate for Cichlinae (=Neotropical
cichlidae) with a mean age of 29.2 Ma (95% CI: 25.5–
34.8Ma). Finally, application of one of the two calibra-
tion sets of Genner et al. (2007) using seven cichlid fos-
sils resulted in substantially younger node age estimates
than ours and also partially conflicts with the fossil rec-
ord. Their age estimate for divergence of Pseudocreni-
labrinae (33.6 Ma, 95% HPD: 33.2–33.9Ma) substantially
postdated the oldest known African cichlid fossil by
about 12 million years (†Mahengechromis – 46Ma); and
the age of the MRCA of Cichlasomatini was younger
(14.2 Ma; 95% HPD: 7.6–21.1Ma) than the oldest known
fossil for this tribe, i.e. †Tremembichthys, 55.8–23.03Ma,
although the placement of †Tremembichthys as a mem-
ber of Cichlasomatini might be considered as problem-
atic due to its high “Heroine-like” number of
pterygiophores articulated with the first haemal arch.
Such young age estimates are most likely the result of
calibration with fossils which are not the oldest fossils of
their respective lineage (e.g. †Aequidens saltensis from
Argentina with an estimated age of 5.33–23.03Ma has
been used as a calibration for the entire tribe Cichlaso-
matini), whose priors were calibrated with hard upper
and lower bounds. Moreover, following Malabarba et al.
[103] they placed †Proterocara argentina from the Lum-
brera formation as the earliest member of a clade unit-
ing Geophagini, Cichlasomatini and Chaetobranchini;
later however, Smith et al. [104]) revised †Proterocara
argentina to be related with Crenicichla and Teleocichla.
In addition, the use of further fossils with very uncertain
phylogenetic placements like ? Tylochromis [105] and ?
Heterochromis [106] as a calibration points in the ana-
lyses of Genner et al. [5] might have led to these young
divergence age estimates obtained in their study. A more
recent study by Meyer et al. [100] was based on two differ-
ent divergence estimation methods and two secondary
constraints taken from results of McMahan et al. [8]. Di-
vergence ages obtained by McMahan et al. [8] are, based
on calibrations with four cichlid fossils and one early
acanthomorph fossil, in large parts compatible to our
divergence estimates in the range of the 95% confidence
intervals; their mean age estimates are, however,
consistently younger than ours. One possible explanation
for the younger estimates of McMahan et al. [8], and con-
sequently that of Meyer et al. [100], is a that they placed
two neotropical fossils †Plesioheros and †Tremembichthys
at the basis of a clade consisting of the Heroini and
Cichlasomatini, which is different from our placement
accepting †Plesioheros as Heroini and †Tremembichthys as

Schedel et al. BMC Evolutionary Biology           (2019) 19:94 Page 16 of 25

154



Cichlasomatini. Finally, the only study using the recently
described fossil †Tugenchromis pickfordi as a calibration
point obtained for basal divergence events, e.g. the diver-
gence of Pseudocrenilabirinae and Cichlinae, older esti-
mates but for more recent events substantially younger
estimates as compared to ours (Figs. 3 and 4) [101]. This
study was based on an anchored loci approach with 533
nuclear loci for a total of 149 taxa. Due to their massive
dataset, the usage of the software BEAST [48] for infer-
ence of divergence time estimates was not possible and
therefore the non-Bayesian method RelTime [107] was
used ([101]). The discrepancies in the divergence time es-
timations between this and our study might be partially at-
tributable to the use of different analytical approaches as
implemented in the different software packages, since
RelTime divergence time estimates for comparatively old
nodes appear to be inferred with a strict clock model,
which was subsequently contradicted by a recent study of
the software developers [29, 108, 109]. Apart from this
disputable feature of RelTime, it is worth mentioning that
RelTime only allows for hard boundaries for age con-
straints, and those were applied in the study of Irisarri et
al. [101] partially for fossils with disputable phylogenetic
placement, i.e. †Tylochromis (see discussion of this fossil
in Additional file 3), or with conservative maximum age
boundaries secondarily taken from the Gondwana-set of
the study of Genner et al. [5]. Therefore, it would be inter-
esting if a Bayesian analysis with a reduced dataset with a
comparable calibration scheme, as suggested by Matschi-
ner [29], would yield comparable results to ours.
In contrast to the aforementioned conflicts with previ-

ous studies, our divergence age estimates, especially
those for the age, origin and diversification of the EAR,
are compatible with results from other studies, i.e. the
Gondwana breakup calibration inference of Genner et al.
[5] and Day et al. [14] Day et al. (2008) and the fossil
based inference of Schwarzer et al. [35]. In the light of
the recently published findings and overlooked calibra-
tion problems, conflicts of our age estimates with
previous studies appear explainable. Since our study
conservatively incorporates carefully selected calibration
points, includes for the recently described EAR fossil
(†Tugenchromis), and carefully accounts for remaining
uncertainties by evaluating alternative placements of
critical fossils in molecular clock analyses, we provide an
improved framework for the discussion of the phylogeo-
graphic history of the exact cichlid diversity, in particular
the one of East African cichlids of Lake Tanganyika.

Divergence age estimates of Pseudocrenilabrinae and
Cichlinae favor a short-distance dispersal scenario across
the emerging proto-Atlantic
The recent geographic distribution of the two reciprocally
monophyletic cichlid subfamilies Cichlinae (Americas)

and Pseudocrenilabrinae (Africa) is a matter of the
long-standing debate. Such a pattern can be interpreted as
a result of either the Gondwana breakup (“Vicariance Hy-
pothesis”), or, alternatively, by a trans-Atlantic dispersal
event (“Marine Dispersal Hypothesis”) if the radiation of
extant Cichlinae and Pseudocrenilabrinae took place after
the fragmentation of Gondwana. [5–8, 11, 12, 29, 110].
Unfortunately, evaluation of these alternative hypotheses
has been and still remains difficult. This is due to the dif-
ferent geological age estimates for the final separation of
South America and Africa, which according to recent esti-
mates took place at around 103Ma at the Ghanaian Ridge
and the Piauí-Ceará margin [111]. Genner et al. [5], for ex-
ample, calibrated the South America and Africa separation
with a range of 86 to 101Ma whereas Azuma et al. [6] cal-
ibrated the same event with 100 to 120Ma. The most
comprehensive previous study dates the separation of
Cichlinae and Pseudocrenilabrinae to 81.8Ma (95% HDP:
89.4–74.0Ma), i.e. a few million years thereafter [9]). The
latest comprehensive review on this discussion argues that
the divergence of Pseudocrenilabrinae and Cichlinae oc-
curred probably around 60 to 75 Mya after evaluating po-
tential sources creating observed differences in divergence
time estimation studies [29].
Our divergence age estimates for the split of Neotrop-

ical and African cichlids (84.37Ma (95% HPD: 75.71–
93.25Ma) tentatively support the “Marine Dispersal Hy-
pothesis”, which is in accordance with Vences, Friedman
et al. [7], and Matschiner [29], as well as with, import-
antly, one of the most comprehensive teleost-scale study
[9]. Nevertheless, our age estimates are older than the
estimate of 65 to 75Ma for the recently suggested
trans-Atlantic dispersal event of cichlids [29]. If the
log-normal or uniform root prior including the ex-
tremely old age ranges for the cichlid origin (prior range
of 46.0–174.78Ma) are taken into account, the com-
bined minimum and maximum 95% HPD ranges of all
our estimated scenarios is 75.61 and 107.83Ma, i.e. it
slightly overlaps with the period of the final separation
of the two continents (103Ma), but the mean ages
(84.38 to 91.94Ma) clearly postdate the split event.
Nevertheless, it is important to stress here that the nas-
cent southern Atlantic was only a few hundred kilome-
ters wide around that time of the continent split [111],
such that freshwater plumes of several large rivers (e.g.
the proto-Congo or proto-Niger River) most likely ex-
tended far offshore into the narrow oceanic gap [112],
and that multiple island clusters existed there along the
Rio Grande Rise and the Walvis Ridge until approx. 30
Ma ago [113, 114]). In combination, these factors imply
an island-hopping scenario of euryhaline cichlids over
comparatively short distances rather than a long-dis-
tance marine dispersal. This inference is supported by
the fact that not a single oceanic cichlid species is
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known today. In contrast, quite a few members of sev-
eral distantly related cichlid lineages are inshore brackish
water species [63, 115, 116] or are known from hypersa-
line inland habitats [72, 117]. Further, Matschiner [29]
argues that even longer distances (650–900 km) might
have been possible to cross. Alternatively, a vicariant ori-
gin of Cichlinae and Pseudocrenilabrinae cannot be falsi-
fied completely, if the 95% HPD intervals are taken into
account.

Divergence of the Lake Tanganyika tribes supports the
“melting-pot Tanganyika” hypothesis
Considering our age estimates for the Lake Tangan-
yika (LT) cichlid tribes and all estimated ages for the
formation of a LT basin (e.g. 5.5 Ma or 12Ma) that
could have served as a habitat for lacustrine cichlid
radiations an intra-lacustrine origin of divergence for
the LT tribes appears highly improbable. For instance,
our age estimates for the MRCA of the EAR but also
of the two MRCA of the most ancient Lake Tangan-
yika tribes (e.g., Bathybatini - 20.62 Ma, and Tremato-
carini - 16.13 Ma), and the MRCA of Lamprologini
and H-lineage (23.6 Ma) are estimated to be substan-
tially older than 12 million years. Hence, they predate
the often-cited maximum age of LT of 12 Ma, which
itself might even represent an overestimated age for
the origin of the extant LT basin as those estimates
are based on the probably incorrect assumption of
uniform sedimentation rates (see below). Likewise, di-
vergence age estimates for the MRCA of H-lineage
and the MRCA of the benthopelagic LT clade are
substantially older than the maximum estimate for
the origin of LT. Ectodini and Cyphotilapiini mean di-
vergence age estimates are still around two million
years older than 12Ma. While Cyprichromini and
Limnochromini divergence ages fall in the time range
of the older maximum age estimate of LT (9–12Ma),
the estimates were still older than the younger esti-
mate of 5.5 Ma for the age of LT. Only the MRCA of
Perissodini and Eretmodini had 95% HPD intervals
which were partly younger than 5.5 Ma but mean ages
still remain slightly older. It is worth mentioning that
several of these lineages with a clear lacustrine ecol-
ogy (such as Bathybatini, Trematocarini and the pela-
gic LT clade) started to radiate, according to our data,
well before the onset of LT basin formation, even
though their extant diversity evolved with high prob-
ability later under lacustrine conditions.
There is an ongoing debate about the geological age of

the Lake Tanganyika basin and the onset of persistent la-
custrine conditions which would have allowed for the
evolution of the lacustrine species flocks of the EAR
[17]. In the cichlid literature, the most commonly cited
maximum age of the opening of the oldest central

segment of the proto-Lake Tanganyika is 9 to 12Ma
[18]. This estimate is based on extrapolation of Quar-
ternary sedimentation rates on seismically inferred
deep-lake sediment layers assuming roughly uniform
sedimentation rates [18, 118]. The northern Bujumbura
LT basin and the southern Mpulungu LT basin are esti-
mated to be younger with of ages of 7–8Ma and 2–4
Ma, respectively. In contrast to the assumption of uni-
form sedimentation rates, episodes of regional tectonic,
volcanic and climatic changes in the LT area rather sug-
gest that sedimentation rates strongly fluctuated in the
past and were higher especially during the late Miocene/
early Pliocene. This would potentially translate into
overestimated dates for the origin of lacustrine condi-
tions of LT [17, 19]. Indeed, Cohen et al. [18] already
stipulated that their age estimates are only maximum
ages, and several more recent studies based on thermo-
chronology and sedimentology date the onset of pre-rift
formation of the Albertine Rift to 4–11Ma and the earli-
est onset of true rifting activity that could possibly have
created deep rift lakes in the northern basins to only 5.5
Ma [20–23]. Due to the complex geological history and
the remaining uncertainties regarding the age of LT we
will compare both age estimates (9–12Ma and 5.5Ma)
of the origin of LT with our divergence age estimates.
Several hypotheses of the origin and timing of diversi-

fication of Lake Tanganyika cichlid tribes have been pro-
posed over the past years. One scenario postulates that
the diversification of Lake Tanganyika lineages took
place within the limits of the extant LT basin, i.e. the
older lineages formed during the proto-LT phase, (9–12
Ma), whereas younger tribes would have evolved in the
extant lake [90]. Genner et al. [5], based on their mo-
lecular clock analysis calibrated using Gondwana frag-
mentation (see above), suggested LT to be a reservoir of
multiple ancient riverine lineages, which adaptively radi-
ated into lacustrine species flocks after the proto-LT area
had changed to become a rift lake; this, however, oc-
curred without leaving any riverine descendants. In con-
trast to the two former scenarios, the recently proposed
“Melting Pot Tanganyika” hypothesis of Weiss et al. [17]
proposes an independent pre-rift diversification of sev-
eral LT cichlid precursor lineages in different drainages
and precursor lakes of the greater LT area. After river
captures in the Neogene and Pleistocene, i.e. during a
phase of tectonic rearrangements in a highly dynamic
and heterogeneous LT area landscape, secondary contact
of those divergent cichlid lineages led to hybridization
among them. Support for this scenario comes from evi-
dence for a reticulate phylogenetic history of several LT
lineages [17, 119], and, more recently, from the discov-
ery of a Miocene age EAR fossil in Kenya with a mosaic
of characters, of which some are present today only in
selected LT cichlid tribes [28].
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Overall, our divergence age estimates are compatible
with both the hypotheses of Genner et al. [5] and Weiss et
al. [17], i.e. that LT might represent a reservoir of multiple
ancient lineages that have evolved before the origin of the
extant LT Tanganyika basin. In combination with the dis-
covery of †Tugenchromis pickfordi in the Lake Baringo
area of Kenya and the recent evidence for introgression
and hybridization between several ancient LT and extant
riverine cichlid lineages but also among LT lineages them-
selves [17, 100] the “melting-pot Tanganyika” hypothesis
appears to be favorable. Even though our study provides
comparatively robust age estimations for the MRCA of
different LT tribes, no age estimates for potential intro-
gression and hybridization events can be provided as only
maternally inherited mtDNA data were used in this study.

Divergence of riverine Lamprologini supports several
dispersal events from LT region towards the Congo
system
The present study identified for the first time a third
basal lamprologine mtDNA clade, whose primary diver-
gence took place latest at around 15.27 Ma (95% HPD:
12.23–18.49 Ma) and hence predate the origin of the
extant LT basin under any geological scenario. Interest-
ingly, the third novel clade comprises only lower and
central Congo taxa, whereas the two previously known
clades contain both Congo basin and LT taxa, with the
Congo taxa being deeply nested within the LT species
community. Unfortunately, alternative relationships
among the three main clades are only weakly sup-
ported, rendering any vicariance-based inference about
the geographic origin of Lamprologini difficult.
Two different scenarios had previously been suggested

for the origin and distribution of Lamprologini. The first
suggests that Lamprologini evolved within Lake Tangan-
yika as a single radiation and subsequently colonized the
Congo Basin, possibly via the Lukuga River [90, 120–
122]. This scenario had been suggested because Lampro-
logus species of the Congo and Malagarasi-drainage are
consistently nested deep within the ‘non-ossified Lam-
prologines’ of Lake Tanganyika in several studies (e.g.
[90, 120–122]). In contrast, the study of Clabaut et al.
[76] identified a clade encompassing a sample identified
as L. teugelsi1 and L. congoensis as the sister group of all
remaining LT Lamprologines in their nuclear DNA data
set. This phylogenetic result suggested that Congo Lam-
prologini seeded the LT Lamprologini radiation, and
hence rendering Congo Lamprologini ancestral relict
species.
According to the results presented herein, the crown

age of the two lineages harbouring predominantly LT
taxa (the ‘ossified’ and ‘non-ossified’ Lamprologines), is
substantially older than that of the Congo-lineage, a
geographic origin of Lamprologini in the proto-LT

region appears more likely and hence they appear to
have colonized the western and central Congo basin
later through multiple dispersal events. A first
colonization event in the Late Miocene to Early Plio-
cene might have seeded the ‘Lower Congo Lamprologus
clade’; and, interestingly, it falls in the same time range
of previously estimated age of the MRCA of the lower
Congo endemic radiation of Nanochromis and Steato-
cranus [123]. The diversification of the ‘Lower Congo
Lamprologus clade’ might therefore be linked to the
Pliocene origin of the modern lower Congo River
rapids, which has been suggested to be correlated with
the species-flock formation of Steatocranus and Nano-
chromis in the same area [123]. If the Lamprologini ori-
gin in the greater LT region is correct, and if the Lower
Congo Lamprologini originally were monophyletic as
suggested by morphology [124], then only a second
colonization event could explain the alternative
mtDNA haplotype placement of L. werneri in the ‘non--
ossified Lamprologines’ clade. Indeed, complete ex-
change of mtDNA-haplotypes is known for LT endemic
Lamprologini and therefore cannot be ruled out until
more nuclear data are available for this group [125,
126].
We have included for the first time in a molecular

phylogenetic analysis the only Upper Congo (Lualaba)
endemic Lamprologus, L. symoensi from the Upemba
Lakes region. Similarly to the L. teugelsi case, it appears
to be either a descendant of a secondary colonization
event (most likely by a member of the ‘non-ossified
Lamprologines’ as suggested by morphological data; see
Schelly et al. [124]) or L. symnoensi captured the mito-
chondrial genome from dispersing LT Lamprologini.
Interestingly, our mtDNA divergence ages estimates of
L. symoensi and Telmatochromis cf. temporalis are young
at around 2.55Ma (95% HPD: 1.34–3.87Ma), roughly
similar to those of Pseudocrenilabrus multicolor and P.
nicholsi, the former one a Nilotic species and the latter
one an Upper Congo (Lualaba) species: 2.20Ma (95%
HPD: 1.20–3.34Ma). This coincidence may indicate that
the closely neighbouring Upper Congo, Lake Tanganyika
and Nile drainage systems were relatively permeable at
this time, e.g. through river captures and/or shared
headwater areas, allowing the exchange of faunistic ele-
ments. This inference is also compatible with established
Congo-Nilotic sister group relationships of selected
modern Haplochromini [26].

Age and divergence within riverine Haplochromini and
their lacustrine radiations
Originally, the “Out of Tanganyika” hypothesis had sug-
gested that the geographic and genetic cradle of Haplo-
chromini is Lake Tanganyika and that LT Haplochromini
secondarily left the lake to seed all other haplochromine
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radiations in East Africa [37]. Our new node age
estimates in combination with an improved riverine
Haplochromini taxon sampling enabled us to re-evaluate
this hypothesis, as well as the biogeographic and tem-
poral origin of several other Haplochromini radiations,
i.e. the modern Haplochromines of the Lake Victoria Re-
gion superflock (LVRS), the Lake Malawi species flock,
the LT Tropheini.
In line with other more recent phylogenetic studies

(e.g. [9]) our molecular clock data suggesting that the
onset of the Haplochromini diversification had started
already by the Early Miocene (16.64 Ma; 95% HPD:
14.25–19.1). This date substantially predates the pre-
sumed tectonic origin of the LT basin by several mil-
lion years and renders an “Out of Tanganyika”
scenario rather unlikely based on our estimates. Tak-
ing into account that the Malagarasi-Orthochromis
and the Haplochromini are resolved as sister lineages
and that the earliest split within the Haplochromini is
the sister-group relationship of Ctenochromis pectora-
lis endemic to coastal drainages in Kenya and
Tanzania, and remaining Haplochromini, it seems
more parsimonious that the MRCA of haplochromine
cichlids lived east of LT. Nevertheless, a key role of
the greater LT region as a reservoir of ancient haplo-
chromine cichlid lineages is shown by the relict-like
distribution patterns of the riverine mtDNA lineage of
the recently described ‘Orthochromis’ indermauri,
which is estimated to have diverged from other Hap-
lochromini lineages including the ‘Pseudocrenilab-
rus-group’, Tropheini plus ‘H’. vanheusdeni, the Lake
Malawi species flock and modern Haplochromini well
before the origin of the LT basin in the Early to Mid-
dle Miocene.
Undoubtedly, LT with its history of climate-driven lake

level fluctuations shaped the evolution of the Tropheini
(e.g. [127–129]), but the origin of this LT endemic
haplochromine lineage is only partially understood. In
previous studies Tropheini had been resolved as the sis-
ter group to a clade encompassing the many riverine
and modern Haplochromini (including the LVRS) and
the Lake Malawi species flock (e.g. [7, 37, 119]). Further,
two recent studies found support for a potential ancient
hybrid origin for the Tropheini [17, 100]. Therefore, it is
quite unexpected that the here newly recognized lineage
represented by ‘H’. vanheusdeni, endemic to the coastal
Great Ruaha drainage in eastern Tanzania system, is re-
solved as the mitochondrial sister group to Tropheini.
Divergence of those two lineages is estimated to have oc-
curred in the early or middle Miocene, which indicates a
past connection of the proto-Malagarasi drainage system
and the Proto-Great Ruaha drainage system at that time.
Interestingly, in addition to ‘H’. vanheusdeni is another
biogeographically important lineage known from Ruaha

drainage system. Genner et al. [130] recovered Astatoti-
lapia sp. ‘Ruaha’ as sister lineage of the Lake Malawi
species flock. Unfortunately, our study is missing this
taxon, but it underlines the remarkable drainage evolu-
tion of the Ruaha.
The MRCA of the megadiverse Lake Malawi species

flock is dated to the Pliocene at around 4.07Ma (95%
HDP: 2.93–5.26Ma). This age is compatible with previ-
ous findings based on fossil and Gondwana fragmenta-
tion calibration [5], or on secondary calibrations
(Genner et al. [131] based on [35]). However, our Plio-
cene divergence age sharply contrasts with the findings
of several other studies dating the age of the Lake
Malawi species flock considerably younger, i.e. 0.93–
1.64Ma [16], 0.73–1.0 Ma [15], 0.7–1.5 Ma ([100]; con-
catenation set) and 0.4–1.2Ma ([100]; multispecies co-
alescent model). The young age estimates obtained by
the studies of Sturmbauer et al. [16] and Koblmüller et
al. [15] appear to be the result of a calibration based on
the assumption of Delvaux [24] that Lake Malawi almost
completely desiccated between 1.6 Ma until 1.0–0.57Ma,
and on the assumption that an intralacustrine origin of
major Lake Malawi cichlid clades (“mbuna”, “utaka”)
would have taken place only after hypothetical refilling
of the LM. This assumption might be, however, inappro-
priate, as a recent study recorded continuous sedimenta-
tion in Lake Malawi over the last 1.3Ma, even though
15 severe droughts had intermittently resulted in lake
level decreases of more than 400 m [25]. Moreover, the
geological and sedimentological age of LM is still poorly
understood. The Malawian Rift is bordered by the
Rungwe volcanic province, which is estimated to have
formed between 5.45 to 8.6 Ma based on K/Ar dating of
different volcanic materials [132, 133]. These ages are
commonly associated with the onset of rifting of LM rift
basin (e.g. [24, 131]). The lower Chiwondo Beds north-
west of LM coast are dated to 4Ma or older based on
biostratigraphy and represent the first evidence for la-
custrine conditions of LM [134]. Our divergence time
estimates for the origin of the LM species flock are thus
compatible with the reported onset of lacustrine condi-
tions of LM and which would imply that ancient lineages
of the LM species flock survived these droughts. Inter-
estingly, the MRCA of the clade containing predomin-
antly sand-dwelling genera (mean age: 0.69Ma;
95%HPD: 0.45–0.96Ma) and the MRCA of the clade
containing predominantly rock-dwelling genera (mean
age: 0.6 Ma; 95%HPD: 0.39–0.81Ma) appear to have
emerged at around the Mid-Pleistocene restoration of la-
custrine conditions in LM The radiation of these clades
hence may be the result of increased ecological oppor-
tunity and habitat stability in LM [25, 100].
The exact geological age of the largest freshwater lake

in world, Lake Victoria (LV), is still debated, but its
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formation is estimated to 0.4Ma or 0.8 to 1.6Ma [135,
136] and paleolimnological data provide evidence for a
nearly complete or even complete desiccation of LV dur-
ing the late Pleistocene (e.g. [135, 137]). These findings
fostered doubts whether the LVRS (following Verheyen
et al. [96] and Meier et al. [26]) originated before or after
the late Pleistocene desiccation events. Divergence esti-
mates of previous studies ranged between 0.1Ma and
4.42Ma, i.e. suggesting that the LVRS origin predates
the desiccation of LV [96, 100, 138]. Our mitochondrial
divergence time estimate dates the LVRS to around 0.31
Ma (95% HPD: 0.12–0.53Ma) which is roughly compat-
ible with the estimated age of LV; however, our taxon
sampling is not fully representative for that flock as sev-
eral lineages e.g. from Lake Kivu, Lake Edward and Lake
Albert are missing. Nevertheless, it still includes Haplo-
chromis stappersii, which together with Haplochromis
sp. “Yaekama” forms the sister clade to the LVRS [26].
We estimated the divergence age for the MRCA of the
LVRS and H. stappersii to around 0.99Ma (95% HPD:
0.51–1.53Ma). Moreover, it has recently been shown by
Meier et al. [26] that the LVRS might be the result of an-
cient hybridization events between two haplochromine
lineages (a ‘Congolese lineage’ including for example H.
stappersii, and an Upper Nile lineage consisting of ‘Hap-
lochromis’ gracilior and Haplochromis pharyngalis)
which should be considered for the divergence time re-
construction of the LVRS.
Through the inclusion of the newly discovered fossil

†Tugenchromis and the careful selection of additional cali-
bration points, we provide novel and refined divergence
age estimates for most haplochromine radiations. These
estimates are still preliminary, however, as for a more ac-
curate reconstruction of the evolutionary history, particu-
larly of the younger haplochromine lineages, additional
nuclear DNA-data, younger calibration points and add-
itional analysis methods based on population-level sam-
pling, are needed.

Conclusion
Our study, based on an alignment of ten mitochondrial
protein-coding genes including representative taxa of all
cichlid subfamilies, resulted in a comparatively well-re-
solved mitochondrial phylogenetic hypothesis for cichlids
with focus on members of the East African radiation.
Bayesian divergence time estimates based on eighteen dif-
ferent calibration sets evaluating even extremely young or
old age previous age estimates are, nevertheless highly
consistent and several novel mtDNA haplotype lineages
are recognized. One is a novel third clade of lower Congo
Lamprologus, and the other two east-central African ones
with considerable phylogeographic interest, i.e., ‘Ortho-
chromis’ indermauri and Haplochromis vanheusdeni. Re-
markably, all three novel lineages represent riverine taxa

with close affinities to important cichlid radiations. This
underscores the importance of a fully representative river-
ine taxon sampling when phylogenetically inferring the
evolutionary history and biogeography of cichlid radia-
tions (e.g. [15, 26, 37, 131]).
Although our study is based to a large part on the

protein coding genes of the mitochondrial genome we
were able to obtain robust minimum ages of diver-
gence ages associated with the origin of the East Afri-
can cichlid fauna. Moreover, our molecular clock
analysis adds addtitional support to several previously
ambiguously supported findings. First, divergence age
estimates for the MRCA of the African Pseudocreni-
labrinae and Neotropical Cichlinae are consilient with
the those of teleost-based Matschiner et al. [9], tenta-
tively supporting the dispersal hypothesis, i.e. that
seemingly vicariant phylogeography of Cichlidae can
be explained by short-distance marine dispersal events
(e.g. [7, 9, 63]), but not with long-distance oceanic
dispersal. In particular, the sister relationship of Afri-
can Pseudocrenilabrinae and Neotropical Cichlinae
can be explained with an ecologically plausible disper-
sal scenario covering only short distances across now
submerged island chains between the South American
and African continents, e.g. the Rio Grande Rise and
the Walvis Ridge.
Further, Genner et al.´s [5] “Ancient Reservoir” and

the “Melting Pot Tanganyika” hypothesis of [17] are
supported by our cichlid age estimates in combination
with the recent discovery of a Miocene EAR cichlid
fossil in Kenya exhibiting synapomorphies with sev-
eral extant Lake Tanganyika cichlids [28], and with
recent evidence for repeated hybridization among an-
cient cichlid lineages in Lake Tanganyika [17, 119].
Our divergence time estimates for almost each of the
MRCA of all endemic LT tribes predate the estimated
origin of the extant LT basin at 5.5 Ma and only Peri-
ssidini and Eretmodini might have formed after the
formation of LT.

Endnotes
1There seems to be some confusion with the identi-

fication of one or more “L. teugelsi” samples in previ-
ous studies. After the description of Lamprologus
teugelsi by Schelly et al. [124] samples and sequences
previously identified as L. mocquardi (e.g. [90]) were
renamed as L. teugelsi in subsequent studies (e.g. [76,
120]). Unfortunately, no precise sample location for
these samples were provided. With the exception of a
dubious type locality record in the primary descrip-
tion, L. teugelsi is known only from the Inga area of
the Lower Congo rapids. Without locality information
and reexamination of those specimens it is not
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possible to clarify whether L. teugelsi carries two dif-
ferent mitochondrial haplotypes or if previously ana-
lyzed specimens were misidentified.
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Abstract 

Background: The megadiverse family Cichlidae (Teleostei: Cichlidae) comprises thousands of species 

and some of the best studied adaptive radiations (e.g. those of the African Great Lakes) of our planet. 

Understanding the evolutionary history of cichlids hence become a key priority of countless studies 

and was further been boosted by the development of high-throughput sequencing approaches. Among 

other factors, hybridization and introgression have been identified as important components 

facilitating adaptive radiations. They have thus played an important role for their evolutionary history 

and can explain numerous persisting uncertainties of their phylogenetic tree of life, e.g. with regard to 

the famous East African cichlid radiation (EAR). Consequently, the precise reconstruction of the 

biogeographic history and evolutionary time line of cichlids has remained problematic. Here, we 

present additional evidence for multiple ancient hybridization events among major austrotilapiine 

cichlid lineages, based on a comprehensive genomic nuclear DNA (ddRAD) and mitogenomic dataset 

comprising representative taxa of almost all tribes of the African cichlid subfamily Pseudocrenilabrinae. 

We further re-evaluated cichlid node divergence estimates of cichlids based on the most extensive 

Ovalentaria and cichlid taxon sampling up to date, i.e. including almost all major ovalentarian lineages 

and approximately 330 cichlid taxa.  

Results: In addition to previously reported signatures of ancient hybridization events we found 

evidence for multiple new hybridization events among all major haplochromine lineages of southern 
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and Central Africa, especially within the so-called ‘extended Pseudocrenilabrus-group’, and within the 

‘extended serranochromines’. We further report several new cases of cyto-nuclear phylogenetic 

discordance, however without any corresponding nuclear genomic hybridisation signal for various 

austrotilapiines, including cases involving, e.g., key taxa as H. vanheusdeni (Haplochromini) and L. 

symoensi (Lamprologini). Further, we present refined mitochondrial divergence time estimates with 

focus on the austrotilapiines lineages. Interestingly, and in contrast to many other comparable studies, 

we find divergence time estimates based on nuclear and on mitochondrial data to be largely congruent 

with each other.  

Conclusions: Our data suggest that hybridization and introgression has been even more common 

among African cichlids than already suggested before, thus highlighting once again their importance 

for shaping the evolutionary history of cichlids. Combination of several lines of evidence, i.e. cyto-

nuclear discordances and significant D-statistics, proved to be crucial for an improved reconstruction 

of cichlid phylogenetic history, as cyto-nuclear discordances often identified very ancient introgression 

candidate events, which would have remained uncovered with D-statistics alone. We further conclude 

that divergence time estimates based on nuclear (ddRAD) and mitochondrial data are largely 

comparable within austrotilapiine cichlids. Mitogenome cichlid data therefore represent a valuable 

resource even in the age of phylogenomics as they provide complementary and highly informative data 

for the reconstruction of the complex biogeographic history of African cichlids. 

Keywords: Austrotilapiines, Ovalententaria, Cichlidae, Molecular clockd, dRAD, mitochondrial 

genomes, cyto-nuclear discordance 

Introduction 

Belonging to the percomorph clade Ovalentaria, cichlids (Teleostei: Cichlidae) represent one of the 

most diverse and largest vertebrate families on our planet ([1, 2]). Over the last decades they have 

spawned important model systems for various biology research fields such as ecology, developmental 

biology and general evolutionary biology [3-8]. The African Pseudocrenilabrinae, the most species-rich 

of the four cichlid subfamilies, is of particular interest for speciation and phylogenetic research due its 

exceptional diversity and its propensity to generate adaptive radiations. Especially the megadiverse 

adaptive radiations of the East African rift lakes Tanganyika, Malawi and Victoria have been studied 

well ([4, 8-10]), but also the smaller ones, e.g. Rift Valley Soda lakes and volcanic crater lakes of West-

Central and East Africa (e.g. [11-13]); and even examples of African riverine cichlid radiations have 

been studied and documented in the Lower Congo rapids [14]. In order to understand the phylogenetic 

time-line of speciation and adaptive radiation processes extensive efforts have thus been made, 

especially with regard to Pseudocrenilabrinae but for the family Cichlidae in general, too. ([15-19]). 

Despite significant progress in the elucidation of the cichlid phylogenetic record important key 
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relationships, e.g. those of the East African Radiation, have remained poorly understood, as alternative 

hypotheses either remain statistically poorly supported or show significant signal of cyto-nuclear 

discordance, and because it is often difficult to differentiate between effects of incomplete lineage 

sorting or ancient introgression on the reconstruction of the species phylogeny ([8, 20]). Finally, a long 

standing debate about the age of origin of cichlids and, therefore, on precise node age estimates for 

the origin and divergence of the major cichlid lineages remains unsettled. Here, two hypotheses, i.e. 

the Vicariance Hypothesis and the Dispersal Hypothesis, compete for the explanation of the 

evolutionary history of the cichlids after the tectonic separation of Gondwana. Although molecular 

evidence for the Dispersal Hypothesis is accumulating, i.e. suggesting that cichlids diversified only after 

the continental separation of Gondwana (reviewed in [21]), the exact timing of separation of the four 

vicariantly distributed major cichlid subfamilies remains open due to the scarcity of unambiguous 

calibration points for molecular clock estimates ([16, 21-25]).  

The advent of next generation sequencing methods and the development of a broad variety of cost-

efficient high-throughput sequencing approaches such as sequencing restriction site associated DNA 

markers (RAD, ddRAD), anchored hybrid tags and whole genomes boosted research on the 

evolutionary history of cichlids over the last decade tremendously [8]. Nevertheless, most 

phylogenomic studies on African cichlids mainly focused on selected tribes and lineages of the EAR 

(e.g. [15, 26-29]) and hence included only comparatively few representative taxa of non-focal lineages. 

This contrasts with evidence, that riverine haplochromine cichlids and numerous early splitting 

lineages of the more inclusive African cichlid subgroup named haplotilapiines (sensu [30]) have been 

identified as important as they have contributed significantly to the phylogenetic history of the most 

impressive EAR, and to the complex biogeographical history of Pseudocrenilabrinae ([15, 25, 27, 31-

34]). Thus, the inclusion of riverine lineages into large-scale phylogenomic studies appears to be even 

more crucial. They might be important to trace the origin of several lineage-specific key innovations 

and traits (e.g. the functional decoupling of oral and pharyngeal jaws [35], body coloration and 

associated selection pressures [36], but also of the origin of genomic features such as an increased rate 

of gene duplication [37]) which, together with ample ecological opportunity [6], are candidate factors 

that have been suggested to fuel the adaptive radiations of the East African rift lakes. Not only the 

contribution of riverine cichlid lineages to these radiations as their sister groups might have been 

important, but also secondary introgression after hybridization of riverine lineages with lacustrine 

lineages might have played an important role in triggering explosive diversification observed in certain 

EAR cichlid lineages. For example, the young and megadiverse Lake Victoria region species flock (LVRS) 

has recently been identified to represent a hybrid swarm resulting from an ancient hybridization event 

of two ancient and distantly related riverine lineages [27]. The same appears to hold true for the four 

independent cichlid radiations endemic to Lake Mweru, i.e. the Sargochromis-, Large-tooth 
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serranochromines-, Small-tooth serranochromines- and the Lake Mweru Pseudocrenilabrus radiation; 

they have recently been proposed to have a hybrid origin involving Zambezian as well as Congolese 

lineages of serranochromine and Pseudocrenilabrus-group cichlids [34]. Last but not least, the study of 

selected riverine cichlid lineages themselves has revealed a complex history of introgression and 

hybridization, as e.g. shown for the lionhead cichlids (Steatocranus) radiation of the Congo [38] and 

for selected riverine haplochromine lineages of the serranochromines and Pseudocrenilabrus-group 

[34, 39]. 

For decades phylogenetic research on cichlids was mainly dominated by mitochondrial (mtDNA) 

markers. The maternal haploid mode of inheritance, the limited amount of mtDNA recombination, the 

lack of introns in mtDNA genes and the abundance of genome copies facilitated sequencing of mtDNA 

markers ([40, 41]). Unfortunately, mtDNA haplotype phylogenies do bear the shortcoming that they 

might not reflect the “true” species tree due to the lack of mtDNA recombination and inheritance of 

the mtDNA genome as a single locus; further, the small size of the mitochondrial genome and 

comparatively high mutation rate translates into reduced ancient phylogenetic signal retention 

necessary for the resolution [42]. Despite these shortcomings, and if analysed within the limits of 

phylogenetic resolution potential, the mitochondrial genome preserves an important element of the 

evolutionary history of an organism and hence bears valuable information for the reconstruction of a 

fundamental component of a species´ phylogenetic history. This is true particularly with regard to 

mitochondrial haplotype divergence and introgression age estimates which are highly informative for 

biogeography reconstruction in the context of corresponding landscape evolution, especially in the 

Neogene ([25, 39]). Further, sequencing of partial or entire mitochondrial genomes has become highly 

cost-efficient, e.g., by using a combination of long-range amplification and high-throughput 

sequencing (e.g. [25, 43]), and thus represents a useful complement for nuclear-DNA-based 

phylogenomic studies.  

As a consequence of their sheer species numbers, the rapid succession of their speciation events and 

their widespread occurrence, the reconstruction of the phylogenetic relationships of African cichlids 

remains a difficult quest. In a fully comprehensive way this ultimate goal might only be accomplished 

by a generous and comprehensive taxon sampling and by simultaneously accounting in nucleotide 

sampling for their underlying reticulate history including incomplete lineage sorting, introgression and 

hybridization. This is particularly true for the African cichlid clade that includes the megadiverse EAR 

as well as the closely related and widespread Tilapiini and Steatocranini, i.e. the so-called 

austrotilapiines (sensu [44]). The comprehensive understanding of their evolutionary history is not only 

crucial for understanding speciation processes, but equally for reconstructing the spatio-temporal 

setting that provided the palaeogeographical stage for those divergence processes. Deciphering the 

spatio-temporally related phylogenomic pattern preserved in the African cichlid phylogenetic record 
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may support the reconstruction of the landscape evolution of Africa. For example, past river capture 

events and associated colonization routes preserved in the genomic record of vicariant lineages as 

ancient genomic signatures of recurrent isolation and gene flow can be highly informative, as they 

would mirror the tectonically dynamic East African rift valley evolution which served as the cradle of 

EAR ([45]). 

We consequently addressed several major goals to obtain new insights into the evolutionary history 

of austrotilapiine cichlids. Using a ddRAD approach, a comprehensive phylogenomic DNA hypothesis 

for the Pseudocrenilabrinae with the main focus on the austrotilapiines was reconstructed; it included 

almost all major lineages of this exceptionally diverse clade for the first time. To reconstruct the 

phylogenomic DNA hypothesis we applied different methods including a maximum likelihood 

approach based on the concatenated alignment and a summary species tree approach. This allowed 

detection of topological differences between differently inferred phylogenies which might either be 

the result of incomplete lineage sorting (ILS) or of hybridization events. In addition, we sequenced 10 

protein coding genes of the mitochondrial genome of almost all ddRAD-genotyped individuals. The 

combination of the two analyses allowed screening for cyto-nuclear discordances between mtDNA- 

and ddRAD-derived hypotheses. Finally, Patterson´s D-statistics (“ABBA-BABA tests”) were performed 

to search candidate hybridizations signal between taxa of different austrotilapiine tribes and, more 

importantly, between taxa from within major haplochromine lineages with a special focus on 

serranochromines and Pseudocrenilabrus-group members. Finally, for molecular node age estimates 

we established for the first time a mitogenomic dataset and analysis comprising not only almost all 

major cichlid lineages cichlids of almost all recognized tribes but also representatives of all major 

atherinomorph lineages, a major sister lineage of cichlids. This expanded taxon sampling allowed for 

updating and re-valuating node age estimates derived from a smaller dataset with fewer calibration 

points and topological constraints in the recent study of Schedel et al. [25]. By comparing these 

mtDNA-derived molecular clock estimates with estimates based on 610 highly represented ddRAD loci 

and on an almost identical taxon sampling and identical calibration scheme we evaluated the 

compatibility of the divergence time estimates for austrotilapiine cichlids obtained from those 

different molecular datasets. This study therefor not only provides a refined phylogenetic hypothesis 

for the megadiverse austrotilapiine cichlids but also new insights into their reticulate evolutionary 

history which apparently played an essential role for their evolutionary success. 

Material and methods 

Taxon Sampling  
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Two main taxon sample sets were created for this study. For the ddRAD set 206 specimens 

(representing approximately 160 species) were sequenced (see Table S1. The focus of the ddRAD set 

was on the austrotilapiines (sensu [44]) encompassing representatives samples of all major tribes and 

lineages of the EAR (N = 172), Steatocranini (N = 7) and Tilapiini (N = 17). Taxon sampling within the 

EAR mainly concentrated on the megadiverse tribe Haplochromini (N = 129) with particular focus on 

rheophilic lineages. Most of these lineages are only informally named, and we adopted the 

nomenclature as in [25]), i.e. serranochromine cichlids (N = 49) and Pseudocrenilabrus-group (N = 43, 

sensu [46, 47]); refer to Table S1 for a comprehensive overview of all sampled individuals and their 

designated lineages. In addition, representatives of most remaining Pseudocrenilabrinae major 

lineages and tribes were included: Heterochromis (N=1), hemichromines (N=1), chromidotilapiines 

(N=1), Coptodonini (N=1), Etiini (N=1), Gobiocichlini (N=1), pelmatochromines (N=2), Pelmatolapiini 

(N=1) and tylochromines (N=1). The only tribes not represented in our dataset were Coelotilapiini, 

Heterotilapiini and Oreochromini. 

The second explorative data set was based on ten protein coding genes of the mitochondrial genome 

and aimed for a substantially broader taxon set than our ddRAD set by not only including 

representatives of the four cichlid subfamilies: Etroplinae (N=4; Asian and Madagascar) and 

Ptychrominae (N=2; Madagascar), Cichlinae (N=36; Americas) and the Pseudocrenilabrinae (N=362; 

Africa) but also of almost all major orders and families currently placed within the Ovalentaria, i.e. the 

well supported clade comprising cichlids and related teleost families (sensu [2, 48]). For this purpose, 

we downloaded all available ovalentarian mitochondrial genomes from GenBank and randomly 

selected one representative sequence per taxon (in the case multiple mitochondrial genomes were 

available for the same species) resulting in a core dataset with 587 species distributed over the 

following families (see Tables S2 & S3): Adrianichthyidae (N=9), Ambassidae (N=2), Aplocheilidae 

(N=3), Atherinidae (N=4), Atherinopsidae (N=6), Belonidae (N=3), Blenniidae (N=4), Cichlidae (N=403), 

Cyprinodontidae (N=8), Embiotocidae (N=3), Exocoetidae (N=11), Fundulidae (N=5), Gobiesocidae 

(N=1), Goodeidae (N=3), Hemiramphidae (N=6), Melanotaeniidae (N=8), Mugilidae (N=17), 

Notocheiridae (N=1), Opistognathidae (N=1), Orestiidae (N=2), Plesiopidae (N=2), Poeciliidae (N=11), 

Pomacentridae (N=16), Pseudochromidae (N=2), Rivulidae (N=2). As outgroup taxa representative 

species of the supragroups Anabantiformes (N=5), Carangaria (N=4) and Scombriformes (N=4) were 

used. This core dataset served as basis for the creation of working alignments of this study (see below). 

Wherever possible we sequenced mitogenomic of the same cichlid specimens as in the ddRAD dataset 

(see Table S1 & S2).  

Sampling procedures 
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Samples used in this study were collected on various field trips or were obtained from the commercial 

fish trade in Germany. A variety of different fishing techniques, e.g. beach seining, gill netting and hand 

netting, were applied depending on the conditions of the different sampling sites. Freshly collected 

fish were sacrificed by applying an overdose of an approved fish anaesthetic (MS-222). In addition, 

selected fish specimens were obtained from local fish markets or directly from the fishermen. Fin clips 

were taken from the right pectoral fin and fixed in 96% ethanol, and corresponding specimens were 

fixed in 10% formalin (as recommended in [49]). We followed all applicable international and national 

guidelines of animal use and ethical standards for the collection of samples. 

Molecular methods: ddRad genotyping and mitochondrial genome sequencing 

Genomic DNA was extracted with a custom CTAB DNA extraction protocol to ensure sufficient yield of 

high weight molecular DNA. DNA was quantified using a photospectrometer (NanoDrop ND-1000, 

Thermo Scientific) and sporadically checked using gel electrophoresis. Library preparation for double 

digest restriction associated DNA (ddRAD) sequencing mostly followed the protocol of [50]. Each 

ddRAD library comprised 48 individuals. For each genotyped individual approximately 300 ng template 

DNA were double-digested using the restriction enzymes MluCI and SphI (NewEngland Biolabs) for 

three hours at 37° C. Digested samples were cleaned using the DNA Clean & Conentrator 5 Kit (Zymo 

Research), each individual was tagged with a unique 5 base pair barcode, and subsequently size- 

selected for fragments > 250 bp using AMPure XP beads following the target enrichment protocol of 

[51]. Proper size selection was verified by gel electrophoresis. Each 48 tagged samples were then 

pooled (approx. 100 ng DNA per sample), and the volume of the resulting pool was reduced to 30 µl 

using the DNA Clean & Cocentrator 5 Kit. Subsequently a second fragment size selection aiming for a 

target length of 300 bp was conducted using the BluePippin Prep electrophoresis system (Sage Sience, 

Beverly, MA, USA) followed by another cleaning step using the DNA Clean & Cocentrator 5 Kit. 

Individual pools were PCR-amplified to incorporate multiplex-indices and Illumina flow cell annealing 

adaptors using the Phusion Polymerase Kit (New England Biolabs). PCR products were cleaned using 

the GeneJET Gel Extraction Kit (Thermo Fisher Scientific), and DNA concentration of resulting pools 

were verified using a Qubit Fluorometer (Invitrogen) measurement. Quantification of molarity and 

library fragment size distribution of individual pools was performed on a Bioanalyzer (Agilent). 

Sequencing of individual ddRAD libraries was conducted by sequencing service of the Ludwig 

Maximilian University of Munich on the Illumina MiSeq platform. Several specimens were genotyped 

twice to increase coverage and to check for reproducibility (see Table S1).  

In addition, we sequenced partial mitochondrial genomes of almost all ddRAD genotyped individuals 

along with additional Pseudocrenilabrinae taxa (see Table S1 & S2). For doing so we amplified are large 

fragment of the mitochondrial genome using the following primer pairs (L2508KAW: 5´-CTC GGC AAA 
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CAT AAG CCT CGC CTG TTT ACC AAA AAC-3´; [52] and ZM12300R: 5´-TTG CAC CAA GAG TTT TTG GTT 

CCT AAG ACC-3´; [16]) and TaKaRa LA Taq DNA polymerase kit (TaKaRa) with an adapted thermal 

profile from [25]: initial denaturation at 98 °C (60 s), followed by 35 cycles of denaturation 98 °C (10 

s), annealing at 60°C for 60s, elongation at 68 °C (15 min), and a last extension step at 72 °C (10 min). 

Resulting PCR products were purified using the GeneJET Gel Extraction Kit (Thermo Fisher Scientific) 

following the manufacturer´s protocol. Cleaned amplification products were adjusted to 0.21 ng/µl. 

Where long range PCR amplification (see above) failed, a shotgun library approach was applied (see 

Table S2). Library preparations of PCR products and of shotgun samples were conducted with the 

Nextera XT DNA Sample Preparation Kit (Illumina) according to the manufacturer´s protocol; this up to 

the library normalization step. Libraries were pooled at equal molarity; different pools were prepared 

for the “amplified partial mitochondrial genome libraries” and those for the “shotgun libraries”. 

Sequencing was conducted at the Sequencing Service of the Ludwig Maximilian University of Munich 

on the Illumina MiSeq platform (MiSeq Reagent Kit v2; 2X250). Quality control, adaptor trimming and 

assembly of the demultiplexed reads was done using the CLC Genomics Workbench (Qiagen). To 

assemble the mitochondrial genomes derived from shotgun libraries we mapped all reads against the 

complete mitochondrial genome of Oreochromis niloticus (GenBank accession number: GU370126; 

[53]) using the default parameters of the “Map to reference” tool implemented in Geneious v.11.0.4 

[54] and subsequently extracted the resulting consensus sequences. Annotation of the assembled

sequences was conducted in Geneious v.11.0.4 [54] using again the complete mitochondrial genome

of Oreochromis niloticus (GU370126) as a reference sequence. Newly created sequence data (see Table

S2) will be uploaded to the GenBank once the manuscript is submitted to a peer reviewed journal. In

the meantime, data are available upon request from the authors. The mitochondrial dataset was

complemented with mitochondrial genome data obtained from GenBank (Table S3).

Bioinformatic processing ddRAD sequences 

Adaptors of raw reads were trimmed using the program cutadapt [55]. Subsequently, reads were 

demultiplexed using the process radtags script with the additional flag -r (rescue RAD Tags) and 

allowing for at most one mismatches in barcodes as implemented in Stacks [56]. Paired reads were 

merged using the program PEAR [57] and subsequently trimmed to a maximum length of 215 bp using 

cutadapt. Reads of specimens sequenced twice were merged using a custom script. Subsequently 

reads were mapped end-to-end against the Maylandia zebra reference genome (Genbank assembly 

accession number: GCA_000238955.5; [58]) using the “sensitive option” of bowtie2 v2.3.4.3 [59]. We 

extracted only those reads which mapped to the reference genome using the program samtools [60], 

and bam files were converted into fastq files using the program Picard SamToFastq 

(https://broadinstitfute.github.io/picard/). Between the different processing steps quality of reads 

(e.g. per base sequence quality, GC content, read length) were assessed using FASTQC [61]. Extracted 
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mapped reads were subsequently assembled and aligned using the PyRad v. 3.0.66 [62] pipeline, 

excluding reads with more than four sites and with Phred scores below 20. Further, we allowed for a 

similarity threshold of 88 % for the clustering step of the individual reads, and clusters with a coverage 

below six were excluded from further analysis while we allowed for a maximum of five shared 

polymorphic sites per cluster. We required a locus to be shared among 62 samples (approximately 30 

% of the samples) to be retained in our consensus sequences.  

In addition to this dataset, referred from now on as “Full ddRAD Set”, we generated two additional 

datasets by running the PyRad pipeline on two different subsets. The first subset (“Austrotilapiine 

ddRAD Set”) was composed of austrotilapiine specimens which recovered at least 50 % of loci in our 

“Full ddRAD Set” PyRad analysis; nevertheless, we included some critical specimens with lower locus 

coverage (not less than 20 % locus coverage) to ensure that most of the main austrotilapiine lineages 

were represented by at least one taxon. Furthermore, we included only one specimen per species or 

distinct lineage, preferring the sample with higher data density. Finally, we run the PyRad pipeline on 

the remaining 103 specimens. We used the same parameters as for the “Full ddRAD Set” with the 

exception that we required a locus to be shared among 93 samples (approximately 90 % of the 

samples). Subsequently, we removed the Steatocranini taxa as well as the single Trematocara species 

and Coptodon cf. rendalli “Lukoshi” from the dataset. The resulting alignment included 97 taxa and 

was used as input for downstream molecular clock analyses. 

The second subset (“Introgression-test ddRAD Set”) was specifically designed for testing for signatures 

of introgression and potential gene flow between the different lineages of the austrotilapiine cichlids. 

To ensure a particularly high data density in this subset we included only specimens from the 

“Austrotilapiine ddRAD Set” which recovered at least 80 % of loci, except for the outgroup taxon 

Coptodon cf. rendalli “Lukoshi”. Further, we reduced the set by including a maximum of four taxa per 

main lineage, except for one lineage, that included one additional yet undescribed taxon 

“Haplochromine genus sp. Lubudi blue cheek” to our sample set. The settings for the PyRad pipeline 

for this subset, finally including 60 specimens, were the same as for the PyRad analysis of the “Full 

ddRAD Set”; however, a locus to be included required to be shared by at least 36 samples (= 60 % of 

all samples). 

Demultiplexed raw reads and extracted mapped reads used in the different analyses will be uploaded 

to a public nucleotide archive once the manuscript is submitted to a peer review journal. In the 

meantime, data are available upon request from the authors.  

RAD-based phylogenetic analysis 
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For each of the three ddRAD sets we applied two different approaches to infer the phylogenetic 

relationships. The first method was based on the concatenated alignments of the recovered loci of the 

different PyRAD runs and maximum likelihood (ML) analysis using RAxML v.8.1.12 [63] on the CIPRES 

Sciene Gateway [64], applying a GTR+gamma nucleotide substitution model and allowed RAxML to 

stop bootstrap replications automatically (using the majority rule criterion) for each analysis. In 

addition, we accounted for potential incomplete lineage sorting (ILS) using a summary species tree 

method which allowed to screen for topological discordances between resulting summary species 

trees and the ML hypothesis derived from the concatenated alignments. Using IQ-tree v.2.0 [65] and 

the GTR nucleotide substitution we inferred individual gene trees for each of recovered locus with at 

least one parsimony informative site in our different ddRAD analyses . In total, 18,369 individual trees 

were calculated for the “Full ddRAD Set” and 610 for the “Austrotilapiine ddRAD Set”. Due to 

computational constraints a subset of the first 4000 trees for the Full ddRAD Set and all trees of the 

“Austrotilapiine ddRAD Set” were used to calculate coalescent-based summary species trees in ASTRAL 

III v.5.7.3 [66, 67], using default parameters. Depending on the ddRAD set we rooted the resulting trees 

either with Heterochromis multidens (Full ddRAD Set) or with Coptodon cf. rendalli “Lukoshi” 

(Austrotilapiine ddRAD Set). 

Mitochondrial based phylogenetic analysis 

In total, we included 304 partial mitochondrial genomes and 281 full mitochondrial genomes from 587 

specimens to generate an explorative mitochondrial working alignment. These included representative 

taxa of almost all major cichlid lineages and most major ovalentarian lineages (see Table 3 for GenBank 

accession numbers). For that purpose, we extracted ten mitochondrial protein-coding genes from the 

mitogenome data, as in [25]: ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4). With a few 

exceptions, sequence information was available for all samples. Sequences of individual genes were 

aligned separately using the Geneious alignment tool (default settings) and individual single gene 

alignments were subsequently concatenated resulting in an alignment of 7884 bp with about 1% 

missing data and relative base frequencies) of A=25.2, T=28.6, C=30.6 and G=17.7 (excluding gaps and 

ambiguous sites). In rare cases where a sequence of a particular gene was incomplete or missing a 

multi-N string was inserted into the alignment in the respective position. The resulting alignment, 

referred from now on as “Full mitochondrial dataset”, included for some taxa several specimens and 

was subsequently used to generate two data subsets.  

In the first subset we kept only taxa belonging either to the Atherinomorphae or Cichliformes [48], 

except for of few representative outgroup taxa (see below). Further, we excluded all specimens except 

one for taxa represented by multiple specimens in our “Full mitochondrial dataset”; where possible 

we aimed to keep those specimen data that we had previously used in the ddRad sets (see above). In 
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order to avoid long-branch artifacts, we further excluded those taxa which produced extraordinary 

long branches in pilot RAXML-analyses on the “Full mitochondrial dataset” resulting in alignment with 

464 taxa; we refer to this dataset as “AC mitochondrial dataset”. The second subset “Austrotilapiine 

mtDNA dataset” was further restricted to include only African cichlids in order to mirror the taxon 

composition of the “Austrotilapiine ddRAD Set”; this by including as far as possible the same specimens 

or, if not available, at least the same species.  

For all three mitochondrial alignments we performed ML-analyses using RAxML v.8.1.12 on the CIPRES 

Science Gateway. Individual data sets were partitioned into first, second and third codon position and 

the GTR+gamma nucleotide substitution model was applied. Further, depending on the corresponding 

data set, we defined different outgroups e.g. representative members of the ovalentarian families 

Ambassidae (N=2), Blenniidae (N=2), Embiotocidae (N=1), Mugilidae (N=2), Opistognathidae (N=1), 

Pomacentridae (N=2) and Pseudochromidae (N=1) for the “AC mitochondrial dataset” while Coptodon 

cf. rendalli “Lukoshi” was defined as outgroup for the “Austrotilapiine mtDNA dataset”. Bootstrap 

replications of different analysis were halted automatically in RAxML-analyses using the majority rule 

criterion  

Fossil calibration and divergence time estimates 

To estimate cichlid divergence in general and those of austrotilapiine cichlids in detail we conducted 

three independent analyses using the Bayesian software BEAST v.2.6.1 [68] under a relaxed lognormal 

clock model with a birth-death speciation model on the CIPRES Science Gateway. The different 

analyses compared the contribution of mitochondrial vs. nuclear data on the node age estimates. The 

first analysis was based on the “AC mitochondrial dataset” alignment, the second analysis on the 

“Austrotilapiine mtDNA dataset”, and the third on the concatenated alignment of the “Austrotilapiine 

ddRAD Set”. The mitochondrial datasets were partitioned according to first, second and third codon 

position. The monophyly of 63 clades (see Table 1) was constrained for the BEAST analysis of the “AC 

mitochondrial dataset” based on 100% bootstrap support for these clades in our RAxML analysis, and 

independently derived support for additional four clades (see Table 1) as based on, e.g.[48, 69, 70]). 

For the two BEAST analysis based on austrotilapiine data sets 17 clades (see Table 1) were constrained 

to be monophyletic as these were recovered with 100% bootstrap support values in the corresponding 

RAxML trees and which further were supported to be monophyletic in previous studies (e.g. [15, 25, 

71, 72]).  

Table 1: Overview of calibration points and their corresponding parameter settings as applied in the 

three different molecular clock (BEAST) analyses. Detailed justification for the inclusion or exclusion of 

particular cichlid fossils (calibration points: A-H) is given in [25]. Additional clades for which monophyly 

was constrained in the various molecular clock analysis were all strongly supported with 100% 
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bootstrap support except for four the clades indicated by an asterisk (*); the latter had received strong 

statistical support in previous studies (e.g. [44, 46, 48, 69-71]). 

Calibration scheme for the “AC mitochondrial dataset”, Parameter settings (Beast):
Calibration point: Fossil/event: Estimated age (geological formation): Calibrated clade: Offset SD Mean Distribution

A †Tremembichthys  spp. 55.8-23.03 Ma (Tremembé formation, Brazil) Cichlasomatini 23.03 0.67 2.39 Log normal

B †Gymnogeophagus eocenicus 45.4-39.9 Ma (Lumbrera formation, Argentina) Geophagini (conservative approach) 39.9 0.8 2.4 Log normal

C †Plesioheros chaulidus 45.4-39.9 Ma (Lumbrera formation, Argentina) Heroini (except: of Pterophyllum  and Hypselecara ) 39.9 0.8 2.4 Log normal

D †Oreochromis lorenzoi 7.24-5.33 Ma (Gessoso-Solfifera formation, Italy) Oreochromini 5.98 1.148 1.8 Log normal

E †Tugenchromis pickfordi 9-10 Ma (Ngorora Formation, Kenya)

H-lineage (sensu Nishida, 1991): 'ancient 
Tanganyika mouth-brooders', 'Malagarasi-
Orthochromis' , 'Ctenochromis' pectoralis, 
Haplochromini and Eretmodini

9 0.98 2 Log normal

F Onset Lake Barombi Mbo 1.12-0.98 Ma (Cameroon) Barombi Mbo species flock 0.0 0.07
0.98 (real 

space)
Log normal

†Mahengechromis  spp. 45.83 ± 0.17 (Singida kimberlite field, Tansania)
Used to set upper pound (95% CI)  for the 
calibration of: †Oreochromis lorenzoi  & 
†Tugenchromis pickfordi

Non cichlid fossils used as calibration points:
G †Hemitrichas stapfi ~ 23 Ma (Quarry ‘‘Am Katzenrech’’, Germany) Atherinidae 23 1.1 1.8 Log normal
H †Rhamphexocoetus volans ~49 Ma (Pesciara locality of Monte Bolca, Italy) Exocoetoidei 49.0 0.96 2.3 Log normal

I †Fundulus lariversi 17.8-16.2 (Siebert Tuff, Nevada, USA)
Fundulus  (Fundulus grandis , Fundulus heteroclitus , 
Fundulus diaphanus )

16.2 1.04 2 Log normal

J †Tapatia occidentalis
 23.03-5.33 Ma (Barranca de Santa Rosa, Jalisco, 
Mexico)

Goodeidae 5,33 0.99 1.4 Log normal

Secondary constrains:
Clade Time range: Used to constrain the age of

Atherinoidei 61,06-88,56 Ma
Minimum age was used to set the upper bound 
(95% CI) of the Hemitrichas stapfi  calipration point

Cyprinodontoidei 58,51-79,9  Ma
Minimum age was used to set the upper bound 
(95% CI)  of the †F. lariversi  calipration point

Goodeide + Profundulidae 23,12-58,97 Ma
Minium age was used to set the upper bound (95% 
CI) of the  †Tapatia occidentalis  point

Root: Ovalentaria 97,54-116,33 Ma (taken from Matschiner et al. 
2016)

Minium age was used to set the upper bound (95%
CI) of the  †Rhamphexocoetus volans point and of
the root

97,54 0.45 2.1 Log normal

Clades constrained (N=63): 

Australotilapine cichlids, BS: 72 (but supported by previous stuHaplochromini, BS: 100 Belonidae, BS: 100

Bathybatini, BS: 100
Haplotilapiines (sensu Schliewen & Stiassny, 2003), 
BS: 100 Steatocaranini, BS: 100 Callopanchax , BS 100

Benthopelagic clade (sensu Schedel et al. 2019), BS: 100 hemichromines', BS: 100
Termatocarini, BS: 100 Cyprinodon, BS: 100

chromidotilapiines', BS: 100 Lac Fwa radiation, BS: 100 Tilapia  (excluding Tilapia ruweti , BS: 100 Cyprinodontidae, BS: 100

Cichlidae + Cichlinae + Ptychochrominae, BS: 100 Lake Malawi radiation, BS: 100 Tilapiini, BS: 100 Cyprinodontoidei, BS: 100

Lamprologini, BS: 100 Epiplatys, BS: 100
Cichlidae, BS: 100 Limnochromini, BS: 100 Tropheini, BS: 100 Exocoetidae, BS: 100
Cichlinae, BS: 100 LML-Orthochromis , BS: 100 Non cichlid lineages: Fundulopanchax, BS 100
Coptodonini + Heterotilapiini, BS 100 Lower Congo Lamprologus , BS 100 Adrianichthyidae, BS: 100 Melanotaeniidae (excluding Bedotia), BS: 100
Cyprichromini, BS 100 Malagarasi-Orthochromis , BS: 100 Aphyosemion , BS 100 Nothobranchiidae, BS: 100
EAR, BS: 91 (but supported by previous studies*) Perisodini, BS, 100 Aplocheiloidei, BS: 99 Outgroup: Ambassidae, BS: 100

Ectodini, BS: 100
Pseudocrenilabrinae (including Heterochromis ), BS: 
47 (supported by previous studies*) Outgroup: Blenniidae, BS: 100

Eretmodini, BS: 100 Pseudocrenilabrus , BS: 100 Atheriniformes, BS: 99 Poecilia , BS 100

Etroplinae, BS:100
Pseudocrenilabrus -group (including Northern-
Zambian-Orthochromis ), BS: 100 Atherinoidei (Old world sliverslides and Rainbowfishes), BS: 100 Poeciliidae, BS: 100

Gobiocichlini, BS: 100 Ptychochrominae , BS: 100 Atherinomorphae, BS: 72 (but supported by previous studies*) Scriptaphyosemion, BS 100
‘extended serranochromines’ (excluding Lac Fwa 
radiation & H. cf. bakongo ), BS: 100 Atherinopsidae, BS 100 Xiphophorus  + Gambusia , BS: 100

Calibration scheme for the “Austrotilapiine mitochondrial dataset" and “Austrotilapiine ddRAD dataset" Parameter settings (Beast):
Calibration point: Fossil/event: Estimated age (geological formation): Calibrated clade: Offset SD Mean Distribution

E †Tugenchromis pickfordi 9-10 Ma (Ngorora Formation, Kenya)

H-lineage (sensu Nishida, 1991): 'ancient 
Tanganyika mouth-brooders', 'Malagarasi-
Orthochromis' , 'Ctenochromis' pectoralis, 
Haplochromini and Eretmodini (H-lineage not well 
supported in mt-tree)

9 0.98 2 Log normal

Secondary constrains:

Root: Austrotilapiines 27.17 0.85 1.54 Log normal

Clades constrained (recovered in ddRad as well as mt RAxML trees with BS of 100):
Haplochromini Eretmodini Limnochromini Tilapia
Astatoreochromis Haplochromini (excluding C. pectoralis ) Malagarasi-Orthochromis Trophenini
EAR (BS in mt-tree: 81) Lac Fwa radiation Pseudocrenilabrus

Lake Malawi Radiation
Ectodnini Lamprologini

‘extended serranochromines’ (not including H. demeusii  and H.
fasciatus , but including LML-Orthochromis ), BS: 100

27.17-46 Ma;  Minimum divergence time estimation taken from Schedel et al. 2019 (Set 4: Mean age: 
31.98 Ma; 95% HPD of Austrotilapiines: 27.17-36.92 Ma) while maximum age for australotilapiines was 
constrained with the age of †Mahengeochromis (oldest member of Pseudocrenilabrinae)

a subclade of the ‘extended serranochromines’ (including: Sargochromis  sp. Saise, Sa . sp. Kipopo & Pharyngochromis 
Pseudocrenilabrus  group (includinng Northern-Zambian-Orthochromis )EAR( excluding Boulengerochromini, Bathybatini, 

Cichlidae + Pseudocrenilabrinae, BS: 85 (supported by 
previous studies*)

Haplochromini (excluding C. pectoralis), BS: 100

Tropheini (plus H. vanheusdeni ) + Lac Malawi radiation + "modern 
Haplochromini", BS 100

Atheriniformes + Cichliformes, BS: 35 (supported by previous 
studies*)
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Depending on the respective BEAST analysis alternative calibration schemes were applied (see Table 1 

for a general overview of the applied calibration schemes). In total, ten fossils, one geological event 

and one secondary constraint (the root) had been conservatively selected for the calibration of the 

“AC mitochondrial dataset”. Inclusion of Ovalentaria fossil is based on the critical re-evaluation of 

fossils used in previous studies for the calibration of Ovalentaria (e.g. [16]), whereas the selection of 

seven cichlid-related calibration points (geological age of the crater lake Barombi Mbo, three 

Neotropical cichlid fossils and three African cichlid fossils) follows the reasoning given in [25]. The 

calibration of both austrotilapiine data sets is based on one secondary constraint (see below) for the 

root and one cichlid fossil (†Tugenchromis pickfordi). We constrained the onset of divergence of the 

austrotilapiines (the MRCA) using the minimum age of 27.17 Ma; this date is derived from [25] as the 

minimum age and as a soft upper bound the age of the oldest known cichlid fossil, †Mahengechromis 

(Eocene age, approx. 46 Ma, [73]). The age †Tugenchromis pickfordi is of upper Miocene age (9-10 Ma) 

based on the supposed age of its type locality the Waril site of the Ngorora fish Lagerstätte in the 

Central Kenya Rift Valley [74, 75]. The phylogenetic placement of †Tugenchromis pickfordi within the 

Pseudocrenilabrinae remains slightly imprecise due its mosaic-like character set (see [25, 74]) but the 

consensus is that †T. pickfordi is placed among the most ancient Tanganyika tribes (sensu [46]); hence 

alternative positions for this fossil had been selected in previous studies ([15, 25]), i.e. either at the 

origin of the EAR, of the C-lineage (sensu [76]) or of the H-lineage (C-lineage plus Eretmodini, sensu 

[77]). As the phylogenetic position of Eretmodini within the EAR differs between our ddRAD and 

mtDNA derived phylogenic hypotheses we accounted for this uncertainty by placing †T. pickfordi at 

the MRAC of the H-lineage. This, because Eretmodini either recovered as the sister group to a clade 

composed of Orthochromis sensu stricto (also referred as Malagarasi-Orthochromis [46]) and 

Haplochromini (ddRAD; see Figure 1), or as the sister group of so called C-lineage, (mtDNA; see e.g. 

Figure S1 & S2).  

A detailed justification of the phylogenetic placement and corresponding ages of the four atheriniform 

fossils used as calibration points in our molecular clock analysis based on the “AC mitochondrial 

dataset” is given below (see also Table 1).  

†Hemitrichas stapfi Gaudant and Reichenbacher, 2005 was described from the quarry “Am 

Katzenrech” near Dexheim (Germany) which compromises sedimentary sequences of the Lower and 

Upper Cerithium Beds. The stratigraphic layer of the fossil was assigned to the lower part of the Upper 

Cerithium Bed which is believed to be of late Oligocene age based on the biostratigraphical data ([78, 

79]). The genus Hemitrichas (and its junior synonym Palaeoatherina) was clearly identified as a 

member of the family Atherinidae based on several morphological features (e.g. the presence of two 

widely separated dorsal fins, high vertebral numbers and relatively large scales [78, 80]). The 

phylogenetic placement of Hemitrichas within the Atherinidae needs yet to be thoroughly studied. We 
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therefore used †H. stapfi as a calibration point for the Atherinidae by constraining the minimum age 

for this family to 23 Ma while constraining the maximum age to 61.06 Ma (the estimated minimum 

age of the MRCA of the Atherinoidei, see [16]). 

†Rhamphexocoetus volans Bannikov et al., 1985 was described from the Pesciara di Bolca site located 

in northern Italy ([81, 82]). The Pesciara sediments are restricted to a small overlap of the biozonational 

sequences NP14 (calcareous nanoplankton) and SBZ11 (shallow benthic) which constrains the age of 

the Pesciara sediments to the Late Ypersian (Early Eocene) based on biostratigraphy ([83]). No 

comprehensive phylogenetic analysis is available for †R. volans but its placement as a member of the 

Beloniformes within the infraseries Atherinomorpha is supported by the expanded ventral lobe of the 

caudal fin bearing more principal fin-rays than the dorsal caudal fin lobe. Further, the fossil can be 

assigned to the Exocetoidei based the elongated dentary, a character associated with the 

(paraphyletic) family Hemiramphidae, and enlarged pectoral and pelvic fins commonly found in the 

Exocetidae ([82, 84]). We therefore accept †Rhamphexocoetus volans as the earliest record for the 

family Exocetidae and constrained the lower age of this clade to 49.0 Ma based on the age of the 

Pesciara sediments while setting conservative maximum age of 97.5 Ma (the estimated minimum age 

of the MRCA of the Ovalententaria, see [16]) . 

†Fundulus lariversi Lugaski, 1977 was described from the Siebert Tuff in Nevada. Its age is 15.4±0.8 Ma 

as based on radiometric age determinations of the Siebert formation ([85-87]). In a recent 

phylogenetic analysis †F. lariversi was placed into the subgenus Fundulus (currently four subgenera: 

Zygonectes, Plancterus, Wileyichthys and Fundulus are recognized) based on an total evidence data set 

including 63 cyprinodontiform taxa and a combination of molecular and anatomical characters ([86, 

88]). We therefore used †F. lariversi to calibrate the crown age of the subgenus Fundulus by a allowing 

for minimum age of 16.2 Ma for this clade while conservatively constraining the maximum age to 58.51 

M (the estimated minimum age for the Cyprinodontoidei, see [16]). 

†Tapatia occidentalis Alvarez and Arriola-Longoria, 1972 was described from a location north of 

Amatitlán (Barranca de Santa Rosa, Mexico). The fossil bearing sediments of the type locality were 

tentatively assigned to Miocene age based on sedimentology ([89]). While this taxon is commonly 

accepted as the oldest representative of the family Goodeidae (e.g. [16, 90, 91]) its phylogenetic 

placement within this family remains elusive. It was suggested to be related to the extant genera 

Allotoca or Girardinichthys based on its conic and slightly recurved tooth shape, and on meristics ([90, 

92, 93]); however, a more recent study suggest a closer relationship with the tribe Chapalichthyini and 

further reports a mosaic like character set of the fossil taxon (e.g. for gonopodial characters) [89, 94, 

95]. We therefore conservatively constrain the minimum age of the family Goodeidae to 5.33 Ma based 
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on Miocene age of †T. occidentalis while constraining the maximum age to 23.12 Ma (the estimated 

minimum age of the MRCA of the Goodeidae and Profundulidae, see [16]). 

Each BEAST analysis was per performed three times independently for 180 million generations per 

BEAST run and sampling of parameters and trees was done every 30,000 generations (except those 

based on the “AC mitochondrial dataset” which run for 300 million generations). The log and tree files 

of the three independent runs of each BEAST analysis were then combined using LogCombiner after 

accounting for a burn-in of 10 %. We used Tracer v.1.7.1 [96] to check the MCMC trace files obtained 

from the individual BEAST analysis, assuming values (> 200) for individual effective sample sizes (ESS) 

of the different parameters as acceptable. Finally, we retrieved maximum clade credibility trees 

(posterior probability limit: 0.5, mean heights) from the posterior tree distributions.  

Testing for shared ancestry between austrotilapiine lineages 

In order to detect potential signatures of ancient introgression between the austrotilapiine lineages 

we used the fineRADstructure package [97]. We converted the PyRAD alleles output file of the 

“Introgression-test ddRAD Set” into the input format for fineRADstructure using the script 

fineRADstruture-tools (https://github.com/edgardomortiz/fineRADstructure-tools). We specified 

inclusion of only unlinked loci (default parameter) represented in at least 40 specimens (approx. in 65 

%). In addition, we re-ordered the unsorted RAD loci using the sampleLD.R script as recommended by 

the authors for unmapped loci. Based on these data we calculated the co-ancestry matrix using 

RADpainter and subsequently run the Markov chain Monte Carlo (MCMC) clustering algorithm 

(parameters: -x 100,000, -z 100,000 and -y 1000) using fineRADstrucure and additionally ran a simple 

tree-building algorithm (using fineSTRUCTURE; parameters: -m T, -x 10,000). Finally, we used the 

Finestructure GUI for visualisation of the resulting output data, co-ancestry matrix, MCMC output and 

the coalescence tree). 

In addition, we tested for potential signatures of introgression between austrotilapiine species and/or 

entire lineages using D-statistic´s (“ABBA-BABA tests”), first introduced by [98, 99]). D-statistics 

approaches assess the likelihood of ancient gene flow ancient ILS) between populations or species 

quartets comprising one outgroup taxon (P0) and two ingroup taxa (P1 and P2) which are tested for 

signs of introgression with regard to a third ingroup taxon (P3). ABBA-BABA tests are based on the 

assumption that the frequency of derived alleles exclusively shared by P1 and P3 and those shared by 

P2 and P3 are equal in the absence of introgression; then ILS is statistically likely the only source of 

genetic discordance observed. The presence of introgression ,i.e. between P3 and P1 or P3 and P2, on 

the other hand is rather reflected by a bias of shared alleles between only two out of three tested taxa, 

i.e. by an excess of shared alleles due to geneflow after introgression between only two taxa. To

calculate the D-statistics and associated p-values (with the null hypothesis that no introgression
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occurs= D-statistic is 0) of all possible species trios of our “Introgression-test ddRAD Set” (26,235 

combinations for 55 target taxa) we used the program Dsuite v. 0.3 [100] which enables the calculation 

of the D-statistics across all possible species combinations directly from the variant call format (VCF) 

file obtained from the PyRAD pipeline. D-statistics significance was assessed using jackknifing and 

splitting the dataset in 20 jackknife blocks (default parameters). Further, we provided Dsuite with a 

tree (based on the RAxML analysis of the corresponding dataset) specifying the independently inferred 

phylogenetic relationships of the species tested. We applied the Benjamini-Hochberg correction to the 

corresponding P-values of the D-statistic values using the function p.adjust in R 3.6.3 [101]. Finally, the 

Ruby script plot_d.rb written by M. Matschiner (https://github.com/mmatschiner) was used to 

visualize introgression patterns supported by D-statistics, by plotting the results reported in the Dmin 

(not shown) and tree output files, while allowing for maximum D value of 0.7.  

Results 

Partial mitogenomes and ddRADseq data 

In total, we sequenced for this study partial mitochondrial genome fragments (average length = 8822 

bp) of 184 individuals representing approximately 128 cichlid species, including several putative 

species which await formal description. The shotgun approach successfully recovered almost complete 

mitochondrial genomes for additional five specimens representing four cichlid species, and, moreover, 

large fragments of the mitochondrial genome (average length = 5,786 bp) of five additional specimens 

(representing four cichlid species; see Table S2 for detailed overview of newly sequenced samples).  

We further established ddRAD data for 206 individuals representing approximately 160 African cichlid 

species (including several undescribed species) and representing the almost all major austrotilapiines 

lineages. After quality filtering and mapping to the reference genome on average ~ 379,000 reads / 

sample were retained (see Table S4). The PyRAD pipeline recovered on average ~ 74,000 clusters / 

individual with a mean coverage of 4.23 reads / locus (Mean SD: 12.52); this after removing clusters 

with a coverage <6, and after removing loci represented in fewer than 32 samples (“Full ddRAD Set”), 

as well as after additional filtering for, e.g. paralogs. Each specimen was left with an average number 

of ~ 8,300 loci. The proportion of missing data in final concatenated alignments of all loci was 55.6 % 

for the “Full ddRAD Set”, 7.4 % for the “austrotilapiine ddRAD Set” and 25.3 % “Introgression-test 

ddRAD Set” (see also Table S4).  

Phylogenetic trees 

The ML trees (RAxML) based on the ddRAD based sets (Full ddRAD Set, Austrotilapiine ddRAD Set, 

Introgression-test ddRAD Set) recovered largely identical topologies for the relationships of the various 

Pseudocrenilabrinae tribes and major lineages of the Haplochromini (Figure 1 and Figure S3 & S4). The 
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only exceptions concern the phylogenetic position of clade comprising Limnochromini and Ectodini: it 

was recovered as sister group to the Cyphotilapiini in the “Full ddRAD Set” and “Introgression-test 

ddRAD Set” ML-trees (BS: 100), whereas it was recovered as sister to a clade encompassing Eretmodini, 

Orthochromis sensu stricto and Haplochromini in the tree based on the “Austrotilapiine ddRAD Set”. 

The monophyly of all recognized austrotilapiine tribes included in the three datasets was strongly 

supported (BS: 100), except for Tilapiini (sensu [44, 71]); Tilapiini were paraphyletic with respect to the 

position of the genus Congolapia which was placed with week support (BS: 52) as the sister group to 

the Steatocranini.  

Topologies of the two coalescent species trees (ASTRAL) either derived from the 4000 gene trees of 

the “Full ddRAD Set” (ddRAD loci, Figure S5) or 610 gene trees of the “Austrotilapiine ddRAD Set” 

(ddRAD loci, Figure S6) were largely congruent with their corresponding ML trees (see Figure 1 and 

Figure S3). Several inconsistencies were, however, detected particularly between the two tree 

hypotheses based on the “Full ddRAD Set”. In the ASTRAL hypothesis, e.g., the relationships of the 

early splitting Pseudocrenilabrinae lineages were only poorly supported, and this topology did not 

match with the alternative and highly supported RAxML tree hypothesis. More strikingly, monophyly 

of austrotilapiines was not recovered in the ASTRAL hypothesis where the combined Gobiocichlini and 

Pelmatolapiini were resolved as the sister lineage to a combined C. duponti and Steatocranini clade; in 

contrast, monophyly of all austrotilapiines was highly supported in the ML based hypothesis. 

Additional topological inconsistencies included for example (i) the position of the benthopelagic LT 

clade (sensu [25]), (ii) the position of O. indermauri and L. relictus within the ‘extended 

Pseudocrenilabrus-group’ (see Figure 1), and (iii) relationships within the Northern-Zambian-

Orthochromis. In addition it should be mentioned that about a dozen specimens belonging to various 

phylogenetic lineages were recovered at highly improbable phylogenetic positions in the ASTRAL tree, 

e.g. one of the three L. relictus one specimens formed a clade together with the single P. acuticeps

specimen and T. callichromus, while the topological position of the corresponding specimens in the

RAxML-tree appeared to match the assumed relationship (e.g. the aforementioned L. relictus

specimens was recovered to form a highly supported (BS: 100) monophyletic clade with the two other

genotyped specimens of the same species). There was a clear correlation between specimens with

questionable phylogenetic position in the ASTRAL tree and the recovered loci (low number) in the

PyRAD analysis which most likely led to those discrepancies. For example, only 74 loci were recovered

in the PyRAD analysis of the Full ddRAD Set for the questionably placed L. relictus specimen while on

average ~ 8,300 loci were recovered per sample for this data set.
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Figure 1: ML-phylogenetic hypothesis (RAxML) of Pseudocrenilabrinae with focus on australotilapiine 
cichlids, based on a concatenated alignment of 18,369 ddRAD loci (3,454,607 bp) while each locus was 
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required to be shared in approximately 30 % of the 206 included specimens (see “Full ddRAD Set”). All 
nodes recovered with a bootstrap support of 100 unless labeled otherwise. Specimens depicted from 
top to bottom (if not stated otherwise photographs by F.D.B. Schedel): E. lucanosi, Hemichromis exsul, 
P. mariae (E. Schraml), C. duponti (J. Geck), S. cf. gibbiceps “GGM Inga clade” (Inga 2013 Expedition), 
T. sp. Upper Lufubu, B. microlepis, H. koningsi, T. sp. Lufubu, L. markerti (Inga 2013 Expedition), N. 
multifasciatus, T. otostigma (E. Schraml), B. tricoti (E. Schraml), E. cyanostictus (E. Schraml), O. uvinzae, 
C. pectoralis, O. indermauri, O. polyacanthus, L. relictus, P. palimpsest “Kalungwishi”, P. nicholsi (J. 
Geck), P. sp. Mukuleshi River (Katanga 2016 Expedition), O. sp. aff. luongoensis, O. kalungwishiensis 
“Red”, O. kalungwishiensis, H. demeusii (Inga 2013 Expedition), ‘H.’ callichromus, New Haplochromine 
genus sp. Lubudi blue Cheek (Katanga 2016 Expedition), O. gecki (Katanga 2016 Expedition), O. 
torrenticola (Katanga 2016 Expedition), S. sp. Mukuleshi (Katanga 2016 Expedition), Sa. sp. Lufupa 
(Katanga 2016 Expedition), S. cf. angusticeps, C. mola, T. moori, H. vanheusdeni (J. Geck), ‘H.’ burtoni, 
‘H.’ gigliolii, H. piceatus, N. livingstonii. 

 

Overall, interrelationships of major African cichlid tribes are well recovered in ddRAD based 

phylogenies. Except for a few exceptions they were compatible with previous studies based on large 

nuclear DNA datasets (e.g. [15, 16, 72]). Several cyto-nuclear discordances were detected, however, 

between ddRAD based ML hypotheses and those based on the “Austrotilapiine mtDNA dataset” and 

the “AC mitochondrial dataset”, comprehensively listed in Table 2. Many of those had already 

previously been recognized within Pseudocrenilabrinae, i.e. for the Pelmatolapiini, Gobiocichlini, 

Eretmodini, the LML-Orthochromis, Astatoreochromis, several lineages of the ‘extended 

serranochromines’ from the Congo basin, some of lineages of the ‘extended Pseudocrenilabrus-group’ 

and ‘ocellated eggspot Haplochromini’ [27, 34, 39, 44, 46, 71]). Interesting novel cases were found 

with regard to the placement of several lineages and species of the EAR: L. symoensi, O. indermauri 

and for the riverine lineages O. kimpala and the two yet undescribed genera from the Lubudi River, i.e. 

‘Haplochromine genus sp. Lubudi blue cheek’ and ‘Haplochromine genus sp. Lubudi tropheuslike’. 

Importantly, we the most extensive distribution of cyto-nuclear discordance was recovered within the 

‘extended serranochromines’: only few of the major discernible clades within this lineage based on 

nuclear ddRAD data were recovered as monophyletic in corresponding mtDNA based phylogenies as 

already reported by Schwarzer et al. [39]. 

Table 2: Overview of cyto-nuclear discordances detected between dichotomous ddRAD based ML 

hypotheses and those based on the mtDNA data only (“Austrotilapiine mtDNA dataset” and “AC 

mitochondrial dataset”). In addition, candidate signals for introgression events of lineages or species 

with identified cyto-nuclear discordance are commented with regard to possible hybridisation partners 

involved (see Figure 1 and Figures S1, S2 & S5). D-values ranging between approx. 0.01 and 0.15 are 

considered low, those between approx. 0.15 and 0.25 moderate, and those between approx. 0.25 and 

0.6 elevated in this table (see also Figure 4). 
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Taxon Phylogenetic position recovered in the ddRAD based trees (RAxML). 
Bootstrap support values refer to the maximum likelihood tree based 
on the "Full ddRAD Set"; Local posterior probabilities (pp) refer to the 

main topology of the coalescent species tree (ASTRAL) infered from the 
“Austrotilapiine ddRAD Set 

Phylogenetic position recovered in the mitochondrial data trees 
(RAxML). BS values refer to the maximum likelihood tree based on the 

"AC mitochondrial dataset" if not stated otherwise

Signals for introgression (based on ABBA-BABA tets) 
recovered with Dsuite for this clade (see Figure X. B)                           

Hemichromines Sister group to Pelmatochromini (BS: 100); pp: N.A. Sister group to all African cichlid tribes except of Heterochromini (BS: 100) N.A.

Chromidotilapiines
Sister group to all African cichlid tribes except of Heterochromis  and 
tylochromines (BS: 100); pp: N.A.

Sister group to tylochromines (BS: 61) N.A.

Gobiocichlini Sister group Pelmatolapiini (BS: 100); pp: N.A.
Sister group to a clade encompassing  the austrotilapiines, Oreochromini, 
Pelmatolapiini and Coptodonini (incl. Heterotilapiini) (BS: 100)

N.A.

Congolapia
Together with C. duponti  sister group to the Steatocranini (BS: 52); pp: 
N.A. Sister group to the genus Tilapia  (BS: 100)

N.A.

Chilochromis duponti
Together with Congolapia  sister group to the Steatocranini (BS:52); 
Congolapia not present in the ASTRAL tree; but C. duponti  sister to a clade 
consisting of Steatocranini and Tilapiini; pp: 0.67 Sister group to the a clade encompassing Congolapia  and Tilapia  (BS: 100)

No significant D values detected for C. duponti

Steatocranini
Together with Congolapia and C. duponti  sister group to the remaining 
the Tilapiini (BS: 52); in ASTRAL tree recovered as sister group to Tilapiini; 
pp: 0.62

Sister group to the EAR (BS: 96)
Low to moderate D values reported for ABBA-BABA tests including 

members Steatocranini and almost all members of the EAR (hence not 
mentioned separately in the following clades discussed)

Boulengerochromini
Sister group to a clade encompassing the Bathybatini (incl. Hemibates) 
and Trematocarini (BS: 100); pp: 0.33

Sister group to all remaining taxa of the EAR (BS: 93)
Low D values reported for ABBA-BABA tests including Boulengerochromis 

microlepis  with several taxa e.g. Cyphotilapiini, Limnochromini and 
Malagarasi-Orthochromis

Lower Congo Lamprologus
Nested within the "non-ossified Lamprologini"; sister group to a clade 
encompassing L. brichardi  and L. burgeoni  (BS: 100); pp: 1 (L. burgeoni 
not included in the ASTRAL data set)

Sister group to Neolamprologus crassus  (AC mitochondrial dataset; BS: 
100) or sister group to all other Lamprologini (Austrotilapiine
mitochondrial dataset; BS: 100)

No significant D values within Lamprologini detected, but low D values 
for ABBA-BABA tests including Lamprologini and Ectodini

Lamprologus symnoensi
Nested with Lower Congo Lamprologus ; sister group to L. mocquardi  (BS: 
100); in ASTRAL tree recovered as sister group to L. sp. Kwango; pp: 1

Nested within the "non-ossified Lamprologini"; sister group to L. cf. 
brichardi (BS: 100)

No significant D values within Lamprologini detected, but low D values 
for ABBA-BABA tests including Lamprologini and Ectodini

Eretmodini
Sister group to a clade encompassing Orthochromini (sensu stricto) and 
Haplochromini (BS: 100); pp: 0.91

Sister group to Lamprologini (AC mitochondria dataset; BS: 47) or sister 
group to a clade encompassing all remaining tribes of the C lineage (sensu 
Clabaut et al. 2005) (Austrotilapiine mitochondrial dataset; BS: 60)

No significant D values detected for Eretmodini

Cytonuclear discordances detected within the Haplochromini

‘extended 
serranochromines’

Sister group to the "extended Pseudocrenilabrus -group" (see Figure 1) (BS: 
100); pp: 0.78

(incl. the "Lower Congo Haplochromis ") sister group to all other 
Haplochromini (except of C. pectoralis ) (BS: 99)

For all ABBA-BABA tests including taxa of the ‘extended 
serranochromines’, the Pseudocrenilabrus group (incl. the Northern-

Zambian-Orthochromis ), O. polyacanthus  and Tropheini (P. trewavasae ) 
elevated D values were reported; further elevated D values were 

observesed for ABBA-BABA tests within the serranochromine cichlid 
lineage (however not for O. torrenticola )

Orthochromis indermauri
Sister group to a clade encompassing the LML-Orthochromis (sensu Weiss 
et al. 2015) and the Pseudocrenilabrus-Group (incl. the Northern-Zambian-
Orthochromis) (BS: 100);  pp: 1

Sister group to a clade encompassing the Pseudocrenilabrus -Group (incl. 
the Northern-Zambian-Orthochromis ) and modern riverine & ocellated 
eggspot Haplochromini (incl. Tropheini) (BS: 81)

Moderate D values reported for ABBA-BABA tests including O. 
indermauri and Ectodini, Limnochromini but elevated D values for tests 
including the Northern-Zambian-Orthochromis, L. relictus  and Tropheini 

(P. trewavasae )

LML-Orthochromis
Sister group to the Pseudocrenilabrus -Group (incl. the Northern-Zambian-
Orthochromis ) (BS:100); pp: 0.74

Sister group to a clade encompassing several lineages of serranochromine 
cichlid lineage (but excluding a clade encompassing H.  cf. bakongo  and 
the taxa of the Lac Fwa radiation and further the still undescribed genus 
found in the Lomami and Lubudi River) (BS: 57)

Moderate D values reported for ABBA-BABA tests including Orthochromis 
polyacanthus (LML-Orthochromis) and Ectodini, Limnochromini but 

elevated D values for tests including taxa of the‘extended 
serranochromines’ and Tropheini (P. trewavasae )

Orthochromis luongoensis 
species complex (incl. O. 
katumbii and O. 
mporokoso)

Sister group to Orthochromis kalungwishiensis  (species complex) (BS:100); 
pp: 1

O. luongoensis  together with O. katumbii recovered as sister group to a 
clade encompassing O. mporokoso  and Palaeoplex palimpsest ) (BS: 100)

Moderate D values reported for ABBA-BABA tests including the species 
O. luongoensis  and Ectodini, Limnochromini and L. relictus and elevated 

D values for test including O. indermauri  and (Tropheini Tropheini (P. 
trewavasae)

Orthochromis mporokoso
Nested within the Orthochromis luongoensis  species complex (BS:94); pp:
0.5

Sister group to P. palimpsest (BS: 65)
Moderate D values reported for ABBA-BABA tests including the species 
O. luongoensis and Ectodini, Limnochromini and L. relictus and elevated 
D values for test including O. indermauri and Tropheini (P. trewavasae)

Orthochromis 
kalungwishiensis 

Sister group to the Orthochromis luongoensis  species complex (BS: 100); 
pp: 1

Sister group to L. relictus (BS: 100)
Moderate D values reported for ABBA-BABA tests including the species 
O. luongoensis and Ectodini, Limnochromini and L. relictus and elevated 
D values for test including O. indermauri and Tropheini (P. trewavasae)

Orthochromis kimpala Sistergroup to Orthochromis gecki  (BS: 100); pp: 1 
Nested within the serranochromine cichlid lineage; sister group to 
Serranochromis  sp. Lufubu (undescribed species) (AC mitochondrial 
dataset; BS: 41)

Moderate D values reported for ABBA-BABA tests including H. kimpala 
and modern riverine & ocellated eggspot Haplochromini and elevated D-

values for test including taxa of the Pseudocrenilabrus -group, LML-
Orthochromis , Tropheini and other members of the serranochromine 

cichlid lineage.

Haplochromis demeusii

Together with Haplochromis fasciatus (BS:100) and  H. polli sister group 
remaining taxa of the ‘extended serranochromines’ (BS: 100); H. fasciatus 
is not present in the ASTRAL tree but the nested relationship of H. 
demeussi  of the "serranochromine cichlid lineage" is weakly supported; 
pp: 0.39

Together with H. fasciatus  sister group to Haplochromis burtoni (AC 
mitochondria dataset; BS: 46) or sister group to Haplochromis desfontainii 
(Austrotilapiine mitochondrial dataset; BS: 83)

Moderate D values reported for ABBA-BABA tests including H. demeusii 
and taxa of the ‘extended serranochromines’ (but e.g. not for 

Orthochromis torrenticola , H. vanheusdeni and elevated D-values  for 
test including taxa of the Pseudocrenilabrus -group, LML-Orthochromis 

and Tropheini (P. trewavasae )

Haplochromis vanheusdeni Sister group to Astatoreochromis (BS: 100); pp: 1 Sister group to the Tropheini (BS: 95)
Moderate D values reported for ABBA-BABA tests including H. 

vanheusdeni and taxa of the ‘extended serranochromines’ (including H. 
demeusii )

Haplochromis burtoni
Sister group to a clade encompassing all lineages of the 'occelated 
eggspot Haplochromini' except of the Tropheini, H. vanheusdeni  and 
Astatoreochromis ;(BS: 100); pp: 1

Togher with a clade encompassing H. demeussi  and H . fasciatus sister 
group to ac clade encompassing the LVRS and several riverine lineages 
(but e.g. not the Lake Malawi radiation, Tropheini, Astatoreochromis   & 
H. vanheusdeni ) (BS: 90)

Moderate D values reported for ABBA-BABA tests including H. burtoni 
and taxa of the ‘extended serranochromines’ while elvated D values are 
reported for tests including taxa of the LVRS, Lake Malawi radiation and 

H. desfontainii

Astatoreochromis
Together with H. vanheusdeni  sister group to a clade encompassing 
modern riverine & ocellated eggspot Haplochromini (e.g. the Lake Malawi 
radiation and LVRS) but not the Tropheini (BS: 100); pp: 1

Sister group to all remaining 'ocellated eggspot Haplochromini'  (including 
the Tropheini) (BS: 87)

Moderate D values reported for ABBA-BABA tests including A. alluadi, H. 
bloyetii and H. sp. Kyoga while very moderate D values for ABBA-BABA 

tests including taxa of the serranochromine cichlid lineage

Haplochromine genus sp. sp 
Lubudi blue cheek 
(undescribed taxon)

Sister group to a clade encompassing H. stigmatogenys, H. sp.  Kwango, H. 
cf. luluae (serranochromine taxa of the southern Congo basin) (BS: 100); 
pp: 0.52

Sister group to Serranochromis  sp. Mukuleshi (BS: 100)

Moderate D values reported for ABBA-BABA tests including the 
undescribed taxon and the other new genus from the Lubudi 

(Haplochromine genus sp. Lubudi tropheuslike) and H. demeusii  further 
elevated D values reported for test including the Pseudocrenilabrus 

group (incl. the Northern-Zambian-Orthochromis ), O. polyacanthus  and 
Tropheini (P. trewavasae ) and the serranochromine taxa: O. gecki, O. 

kimpala  and some Serranochromis  and Sargochromis  species
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Time tree analyses 

The topologies of the maximum-clade credibility (MCC) tree obtained from the molecular clock (BEAST) 

analysis based on the “AC mitochondrial dataset” and from that of the corresponding ML tree were 

consistent with each other (see Figure S1 & S7). Divergence time estimates concerning the family 

Cichlidae were, with few exceptions, in agreement across analyses. They had widely overlapping 95 % 

HPD intervals with those obtained from a previous mitochondrial based study [25],and further with 

those obtained from the molecular clock analysis based on the “Austrotilapiine mtDNA dataset” (see 

Figure 2). Divergence age estimates obtained for the “AC mitochondrial dataset” were on average 

slightly younger and had narrower 95 % HPD intervals as compared to those of the “Austrotilapiine 

mtDNA dataset”. However, divergence time estimates obtained for major atherinomorph lineages 

were recovered consistently older than those obtained from previous studies (e.g [16, 69, 102]). 

Therefore, divergence time of this particular molecular clock analysis are not further discussed here, 

as an improved calibration scheme for the “AC mitochondrial dataset” is in preparation and will be 

presented with the finalized manuscript. 

The two molecular clock analyses based on the same calibration scheme and taxon sampling but on 

two different datasets (“Austrotilapiine mtDNA dataset” and “Austrotilapiine ddRAD Set”) recovered 

MCC trees with topologies largely congruent with ML-based topologies. If cyto-nuclear discordances 

had been observed between the mitochondrial and nuclear phylogenies (see Table 2) those were also 

recovered in MCC trees (see Figure S8 & S9). Divergence time estimates of both analyses agreed largely 

as inferred from widely overlapping % 95 HPD intervals (Figure 4; but with general wider 95% HPD 

intervals derived from the ddRAD Set). However, two discrepancies from this pattern, i.e. with little 

HPD overlap between both analyses were recovered, too: i) the MRCA of the genus Tilapia s.str. was 

recovered as much older in the mtDNA-based analysis to a Miocene-Oligocene age (19.05 Ma; 95% 

HPD: 12.93–25.42 Ma) as compared to the younger Pliocene-Miocene age recovered in the ddRAD 

based analysis (12.05 Ma; 95% HPD: 4.72–20.48 Ma); ii) the MRCA of the O. kalungwishiensis-species 

complex had a very narrow and comparatively young 95% HPD interval in the mtDNA-based analysis 

which was dated to Pleistocene age (1.09 Ma; 95% HPD:0.66–1.57 Ma) but a much older inthe ddRAD-

based one suggesting rather a Pliocene age (2.22 Ma; 95% HPD: 0.52–4.57 Ma). Overall, divergence 

times estimates based on the two different datasets did not contradict each other, apart from the two 

aforementioned incongruities. 
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Figure 2: Divergence age estimates of selected nodes obtained from the three different molecular clock 
analysis conducted with BEAST. Highest posterior density intervals (95 % HPD) based on mtDNA-based 
analyses are depicted in green (AC mtSet = “AC mitochondrial dataset”; mtSet = “Austrotilapiine mtDNA 
dataset”), those based on the nuclear DNA-based ones (ddRAD) data in blue and those in orange depict 
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(ddRAD Set = “Austrotilapiine ddRAD Set”), if available (Figure capture A.), comparable divergence time 
estimates of the recent molecular clock study in Schedel et al. (2019)(their Calibration Set 4) 

Detection of shared haplotypes and potential signals of introgression 

The clustered fineRADstructure co-ancestry matrix (Figure 3) based on the “Introgression-test ddRAD 

Set” (59 austrotilapiines and one outgroup) revealed comparatively homogeneous patterns of shared 

ancestry within most major austrotilapiine lineages (e.g. Steatocranini, Lamprologini, Limnochromini, 

Eretmodini and Malagarasi-Orthochromis). The important exceptions concern Tilapiini and, not 

surprisingly, the megadiverse Haplochromini. Tilapiini were represented by four species, three 

belonging to genus Tilapia and one Chilochromis duponti. The latter appears to share haplotypes with 

Tilapia species but also with Steatocranini, Boulengerochromini and Trematocarini. The co-ancestry 

matrix further revealed elevated, yet partially heterogeneous haplotype sharing between three major 

Haplochromini lineages: i) one clade, from now on referred to as the ‘extended Pseudocrenilabrus-

group’ (see Figure 1) encompassing the Pseudocrenilabrus-group incl. the Northern-Zambian-

Orthochromis, the LML-Orthochromis and O. indermauri, ii.) one clade, referred from now on as the 

‘extended serranochromines’ (see Figure 1) encompassing the serranochromines sensu lato sensu 

[103], but also including the Lower Congo ‘Haplochromis’ and iii.) one clade referred from now on as 

the ‘ocellated eggspot Haplochromini’ encompassing the Tropheini, the LVRS, Lake Malawi radiation 

and many additional riverine lineages (e.g. Astatoreochromis, ‘H’. vanheusdeni, ‘H’. burtoni, ‘H.’ 

gigliolii, A. desfontainii and ‘H.’ bloyeti (see Figure 1). Ctenochromis pectoralis, the sister group to the 

remaining lineages of Haplochromini lineages, was recovered as the sister group of Malagarasi-

Orthochromis and several Lake Tanganyika tribes in the dichotomous tree topology produced by 

fineRADstructure, but it showed only week haplotype sharing with all other Haplochromini. Further 

zooming into closer relationships within these three haplochromine lineages high and homogeneous 

levels of shared ancestry were detected within the Northern-Zambian-Orthochromis, 

Pseudocrenilabrus, ‘serranochromines sensu stricto’ (represented by Serranochromis, Sargochromis 

and Chetia in the “Introgression-test ddRAD Set”), a clade, referred from now on as the Katanga-

Orthochromis (including Orthochromis gecki and Orthochromis kimpala), the Orthochromis 

torrenticola species complex, the Lake Malawi radiation, one clade including ‘H.’ cf. bloyeti and 

Haplochromis sp. Kyoga (LVRS), and one further clade including Astatoreochromis and H. vanheusdeni. 

The single taxon of Tropheini included in the dataset, Petrochromis trewavsae, featured comparatively 

week haplotype sharing within the other ‘ocellated eggspot Haplochromini’ but also with all other 

lineages of the Haplochromini.  
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Figure 3: fineRADstructure plot based on 11,488 loci present in the dataset in at least 60 % percent of 
the samples and summarizing results for 59 austrotilapiine cichlid species and one outgroup (Coptodon 
cf. rendalli “Lukoshi”). Pairwise coefficients of co-ancestry between individuals are color-coded, with 
low values indicated in yellow and high values indicated in blue (see also scale bar on the right). Legends 
on the right and below the co-ancestry matrix show the sample names of individuals (including 
abbreviated species names, see Table S1 for corresponding specimen information) and the main 
lineages represented by the data set, respectively. Major haplochromine lineages are indicated by black 
frames and the letters A to D in the plot. The dendrogram on the top of the co-ancestry matrix indicates 
the clustering of samples obtained from the fineRADstructure tree building algorithm. 

As a complementary analysis targeting the identification of candidate introgression events among 

austrotilapiine lineages of the ddRAD dataset, we performed four-taxon D statistic tests as 

implemented in in Dsuite on all possible ingroup-species trios and using with Coptodon cf. rendalli 

“Lukoshi” as outgroup taxon for all ABBA-BABA tests. Results were visualized by plotting the D- values 

in a heatmap, including corresponding p-values corrected for multiple testing with Benjamini-

Hochberg as suggested by [100] (Figure 4). Altogether 1593 out of 26,235 ABBA-BABA tests had 

significant p- values < 0.05, with D values ranging between 0.17 and 0.59 (see Table S5). Overall, we 

found high support for candidate introgression signals between most species, for which we had 
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detected cyto-nuclear discordances signals, but there were several notable cases for which no 

apparent traces of introgression between candiate hybrid partners were detected in the ddRAD 

dataset (see Table 2 and Figure 4): i) Lamprologus symoensi, either grouped within the‘non-ossified 

Lamprologini’ in mtDNA analysis or in the Lower Congo Lamprologus clade in the ddRAD analysis ii) O. 

mporokoso, forming with P. palimpsest the sister group to clade encompassing O. luongoensis and O. 

katumbii based on the mtDNA or grouped within the Orthochromis luongoensis species complex in the 

ddRAD analysis) iii) H. vanheusdeni, either the sister group of Tropheini in the mtDNA analysis or the 

one of Astatoreochromis in the ddRAD analysis.  

 

 

Figure 4: Heatmap visualizing most significant D-statistic values detected across all possible species 
trios (26,235 trios tested) and calculated with Dsuite v. 0.3. Plotted are the testedspecies pairs 
(corresponding to the ingroup species P2 and P3 of the D-statistic testing structure) sorted on the 
horizontal and vertical axes according their phylogenetic position in the ML tree of the “Introgression-
test ddRAD Set”. D-statistic values are colour-coded with low values indicated in blue high D values 
indicated in red and intermediate values in purple. Significance level after corresponding Benjamini-
Hochberg corrected p-values are indicated by saturation (higher saturation of colours indicates higher 
significance of the D values; in log-scale). All D statistic values are summarized in Table S5. 
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Discussion 

Divergence time estimates for mtDNA-based and nuclear-based (ddRAD) datasets are largely 

congruent 

Divergence time estimates for Pseudocrenilabrinae based on nuclear and mtDNA data are to large 

parts comparable or, at least, they do not contradict each other, although nuclear DNA-based analyses 

95 % HPD intervals were generally wider and yielded generally older mean ages [25]. This is surprising 

as on average mtDNA experiences higher mutation rates than nuclear DNA (e.g. [104]) and hence 

mtDNA markers should to tend be saturated more quickly. This should translate rather into older 

divergence time estimates [21, 105], whereas other studies suggest that saturation of mtDNA markers 

may lead to younger age estimates at deeper nodes and, simultaneously, to older divergence age 

estimates at comparatively young nodes [106, 107]. Further, it should be mentioned that the 

comparative nuclear DNA dataset used in the study of Schedel et al. [25] was only based on a 

compilation of four partial nuclear genes from 117 GenBank species entries. Thus, this data set only 

partially mirrored the respective mtDNA dataset as several important lineages were missing, e.g. the 

Malagarasi-Orthochromis. This imperfect match might have contributed to the observed congruent 

divergence time estimates. To improve comparability we generated two novel subsets, one consisting 

only of mitogenomic data (ten complete protein-coding genes) and one of ddRAD data comprising 

short read sequences of 610 nuclear loci, which fully mirrored each other in taxon sampling. Both data 

sets were analysed under fully identical same calibration schemes. In order to further maximise 

comparability of results, we paid particular attention to keep levels of missing data low and 

comparable, i.e. with about 1% in the mtDNA dataset and 7.4% in the ddRAD dataset; this despite 

missing data affect molecular clock estimates comparatively little [108]. Intriguingly, our recovered 

divergence time estimates were largely compatible in their respective mean ages, but the divergence 

age the ddRAD-based analysis yielded wider 95 % HPD intervals. This with the exception of some minor 

peculiarities concerning few node age estimates, e.g. that of the Orthochromis kalungwishiensis 

species complex, which might have been influenced by the observed ancient hybridization events for 

the corresponding clades. Yet, the high BS node support recovered for most nodes in the ddRAD 

analysis, even for comparatively deep ones, confirms recent findings showing ddRAD data may yield 

sufficient phylogenetic signal not only for shallow but also for substantially older divergence events, 

dating back to 50-60 Ma; nevertheless phylogenetically informative signal density deteriorates 

substantially over this time span [109, 110]. The consistent divergence age estimates obtained from 

our different molecular clock analyses further support recent findings that ddRAD loci might exhibit 

overall similar mutation rates as mtDNA and hence might be especially useful for dating divergence 

events of late Cenozoic age; this in turn allows for a refined understanding of the biogeographic history 

of cichlids [109].  
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Widespread signatures of hybridization across major austrotilapiine lineages 

We found signatures of hybridization between and within all major haplochromine lineages, among 

the comparatively older Lake Tanganyika tribes, and even between the EAR and the Steatocranini. This 

result strongly suggests that hybridization and introgression persistently shaped the evolutionary 

history of austroltilapiines across times. The extensive taxon sampling encompassing almost all 

austrotilapiine lineages allowed not only to evaluate previously recognized introgression events but 

also to identify newly recognized signals of introgression, and to analyse them in a spatio-temporal 

context. 

Our results are in line with previous studies which had recovered evidence for ancient hybridization 

events between lineages at the base of the EAR involving Boulengerochromini and the benthopelagic 

LT clade [15, 28]). Likewise, D-statistics detected weak but consistent signals for ancient hybridization 

between Steatocranus (three species) and essentially almost all included EAR species. The wide range 

of D-statistics signal across the EAR suggests an ancient hybridization event between the Steatocranini 

and the precursor lineage of the EAR. and did not continue after the diversification of the modern EAR 

(see Figure 4). This would further explain the comparatively week signatures of gene flow detected 

between Steatocranini and the lineages of the EAR in this study (see Figure 3) which could be explained 

by signal erosion over long geological time scales. Hybridization between Steatocranini and 

sublineages of the H-lineage apparently continued after the initial diversification of the EAR. This 

inference is based on data for one Steatocranus species, which showed weak and heterogeneously 

strong signals for ancient gene flow with Lamprologini and stronger signals with members of the H-

lineage [15]. 

The adaptive radiations of both, the Lake Victoria Superflock (LVSF) and Lake Malawi radiaton, were 

recently proposed to have been fuelled by ancient hybridization events, and riverine haplochromine 

lineages were documented to have been in involved in the corresponding hybridization events: the 

‘Congolese lineage’ and ‘Upper Nile lineage’ showed hybridisation signals with LVRS, and evidence for 

ancient gene flow was detected between the undescribed species ‘H.’ sp. ruaha blue and the Lake 

Malawi radiation, [26, 27, 29]). As our data set did not include any representatives of the ‘Congolese 

lineage’ (e.g. ‘H.’ sp. Yaekama and ‘H.’ stappersii), ‘Upper Nile lineage’ (e.g. ‘H.’ pharyngalis and ‘H.’ 

gracilior) nor ‘H.’ sp. ruaha blue it was impossible to revisit those proposed hybridization events. 

However, we found potential signals of gene flow between ‘Haplochromis.’ burtoni, a widespread 

species from the Lake Tanganyika drainage [111], and clade encompassing the Lake Malawi radiation, 

the LVRS and the riverine taxa ‘H.’ bloyeti and A. desfontainii (but not with ‘H.’ gigliolii, see Figure 3 

and Figure S4). This suggests that gene flow between ‘H.’ burtoni and the precursor of the 

aforementioned clade had taken place before the diversification of the LVRS and Lake Malawi radiation 
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drawing an even more complex scenario for the evolutionary history for two of the most diverse 

vertebrate adaptive radiations. Yet, it should be mentioned that these D-statistics results are based on 

a single ‘H.’ burtoni specimen. Additional specimens and populations of ‘H.’ burtoni need to be 

included in future analyses, as ‘H.’ burtoni can be divided into a northern and a southern lineage [111]. 

We further detected introgression signals within the other major haplochromine lineages including the 

‘extended Pseudocrenilabrus group’ (referred in [34] as ‘Orthochromines’) and within the ‘extended 

serranochromine’[34, 39]. Both lineages have seeded several of the small adaptive radiations of Lake 

Mweru, which were proposed to be of hybrid origin [34]. The genomic mosaic of the Pseudocrenilabrus 

radiation of Lake Mweru, for example, has elements of Pseudocrenilabrus cf. philander lineages of 

Bangweulu system as well as of a different P. cf. philander lineage from the Cunene/Western Zambezi 

drainage (see [34]). Our dataset “Introgression-test ddRAD Set” did not allow for extensive testing of 

hybridization events amongst the genus Pseudocrenilabrus. Yet, as in the study of Meier et al. [34], we 

recovered signals of gene flow between Lufubuchromis from the upper Lufubu [47], and all tested 

Northern-Zambian-Orthochromis.  

In contrast to the previous results of [34], we did not detect signatures of hybridization between 

Palaeoplex from the Luongo River and Kalungwishi River systems [47] and Pseudocrenilabrus, and we 

detected only comparatively weak signals between Palaeoplex and the Northern-Zambian-

Orthochromis using D-statistics (see Figure 4 and Table S5). This is surprising as cyto-nuclear 

discordance suggests a hybridization event between those two lineages: Palaeoplex has a 

mitochondrial haplotype clearly related to the Orthochromis luongoensis species complex. Except for 

its larger maximum size Palaeoplex strongly resembles Pseudocrenilabrus but has a suite of derived 

morphological characters [47]. The nuclear genomic data therefore suggest that Palaeoplex represents 

a comparatively old lineage which had recently captured mitochondrial haplotype from the Northern-

Zambian-Orthochromis, and not that it is a recently evolved lineage of pure hybrid origin, as suggested 

by [34]. Interestingly, both potential hybridisation partners Palaeoplex as well as representatives the 

Orthochromis luongoensis species complex are found in same drainage, the Kalungwishi river[47, 112], 

and hence that hybridization between those two lineages is biogeographically plausible. Molecular 

clock analysis of the mitochondrial “Austrotilapiine mtDNA dataset” dates this inferred introgression 

to the Pliocene at around 3.4 Ma (95 % HPD: 2.1–5.0 Ma). Whereas the molecular clock analysis based 

on the nuclear “Austrotilapiine ddRAD Set” recovered a Pliocene to Late Miocene age (7.0 Ma, 95 % 

HPD: 3.9–10.4 Ma) for the divergence of Palaeoplex an Pseudocrenilabrus and a slightly older age for 

the MRCA of Lufubuchromis and the clade encompassing Palaeoplex an Pseudocrenilabrus (8.3 Ma, 95 

% HPD: 4.9–12.1 Ma) which further supports assumption that these lineage are comparatively old. 

Although these nuclear divergence time estimates should be scrutinized carefully as hybridization is 
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known to potentially influence divergence time estimates and may lead to under- or overestimation 

of the corresponding divergence age [113, 114].  

The ‘extended serranochromines’ appear to represent a hybrid swarm which might have originated 

from ancient hybridization event(s) between the ‘extended Pseudocrenilabrus-group’ and the 

‘ocellated eggspot Haplochromini’. We found strong D-statistics signatures of hybridization between 

the LML-Orthochromis, represented e.g. by O. polyacanthus in our dataset, and all tested species of 

the ‘extended serranochromines’, and this result is further supported by the cyto-nuclear discordances 

The LML-Orthochromis are either nested within the ‘extended serranochromines’ in the mtDNA data 

analyses (see e.g. Figure S1) or they are recovered as the sister group of all other lineages of the 

‘extended Pseudocrenilabrus-group’ except of O. indermauri (see Figure 1) based on phylogenomic 

data. More importantly, we found strong signals of hybridization of all taxa of the ‘extended 

serranochromines’ with other members of the ‘extended Pseudocrenilabrus-group’, i.e. with 

Pseudocrenilabrus, Palaeoplex and Lufubuchromis but not with Northern-Zambian-Orthochromis. And 

equally important, we found those signatures between the ‘extended serranochromines’ and the 

‘ocellated eggspot Haplochromini’, albeit to a less extent.  

Beside, some taxa of the ‘Lower Congo Haplochromis clade’ (e.g. H. demeusii and H. fasciatus) were 

reported to carry a mitochondrial haplotype deeply nested within the ‘ocellated eggspot 

Haplochromini’, whereas nuclear data suggest that these taxa form the sister group to all other taxa 

of the ‘extended serranochromines’ together with the other taxa of the ‘Lower Congo Haplochromis’ 

(e.g. H. polli) (see Figure 1 and Figure S1; [39]). We did not explicitly test for the directionally of gene 

flow but a possible scenario explaining the observed patterns would be that the lineage of the 

‘extended serranochromines’ itself represents a hybrid swarm which potentially arose from an ancient 

hybridization event (or events) involving precursor lineages of the ‘ocellated eggspot Haplochromini’ 

as well as of the ‘extended Pseudocrenilabrus-group’ (but probably not O. indermauri).  

Intriguingly, the ‘extended serranochromines’ are highly diverse in terms of species numbers, of their 

morphology and their ecological adaptations. They have evolved, e.g., elongated piscivores, deep 

bodied molluscivores and strongly rheophilic elongated species. In contrast, to the extended 

Pseudocrenilabrus-group’ is a comparatively uniform haplochromine lineage, even if members of the 

Lake Mweru lineage are taken into account. The origin of the high diversity found within the 

‘serranochromines sensu stricto’ has been attributed the ancient adaptive radiation, which would have 

evolved within ancient palaeolake Makgadikgadi. After its disappearance, they would subsequently 

have dispersed widely over their present distribution area and southern and central Africa [103, 115, 

116]. Yet the diversity of the many basally diverging lineages of the ‘extended serranochromines’ is 

equally impressive as the recently diverged lineages of the ‘serranochromines sensu stricto’ as a recent 
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the analysis of Musilova et al. [103] suggest. It includes, e.g., eco-morphologically diverse species 

southern Congo drainage rivers, from the Cuanza and the Cunene River ( see Figure 1 and e.g. [103]). 

The ancient hybridization event(s) leading to the divergence of the ‘extended serranochromines’ might 

have been fuelled their eco-morphological diversification as it was suggested several other lineages 

within the Haplochromini [27, 34]; and this, rather than a lacustrine adaptive radiation origin in a 

palaeo-lake that is dated substantially younger than our date estimates for the their divergence.  

The reconstruction of the complex evolutionary history of O. indermauri has provided new insights in 

the biogeographic history of the ‘extended Pseudocrenilabrus-group’ and in the drainage evolution of 

the Lufubu River. Interestingly, we recovered strong signals of hybridization between O. indermauri, 

the ‘Northern-Zambian-Orthochromis’ and L. relictus. O. indermauri is endemic to the lower Lufubu 

river, a southern affluent of Lake Tanganyika, and was only recently recognized as ancient distinct 

mitochondrial haplotype lineage within the Haplochromini [25, 112]. Here we recover it as the earliest 

diverging lineage of the ‘extended Pseudocrenilabrus-group’ based on nuclear data and it is recovered 

as sister group to a clade encompassing the ‘occellated eggspot Haplochromini’ and the ‘extended 

Pseudocrenilabrus-group’ based on mitochondrial data, albeit with comparatively low support (BS: 81). 

The present day upper and lower Lufubu river are separated by several series of cascades and 

waterfalls which act nowadays as barriers to fish migration, as inferred from the distinct ichthyological 

communities between the two main sections [112, 117]. Hybridization events between the different 

ancient lineages, e.g. the precursor lineages of O. indermauri, Lufubuchromis and the Northern-

Zambia-Orthochromis, thus would have taken place before O. indermauri became isolated in the Lower 

reaches of the Lufubu River. The geological history leading to the formation of the western (Albertine) 

branch of the East African Rift has been highly dynamic and complex and still poorly known; for 

example, the age and history of formation the extant Lake Tanganyika basin and of the connections to 

its affluents like the Lufubu river is still under discussion [118]. It has been suggested that true rifting 

activity stared around 5.5 in the northern LT basin whereas the pre-rift formation of the Albertine Rift 

was dated to 4–11 Ma based on thermochronology and sedimentology [119-122], but other studies 

indicate an older age for the origin of the formation of the extant LT basin (9-12 Ma). The latter study 

was based on the extrapolation of recent and uniform sedimentation rates which might be too 

simplistic [118, 123]. On other the hand it had been proposed that the initiation of the formation of 

the western branch and associated volcanism in the Rukwa basin had started already 25 Ma based 

geochronology and magnetostratigraphy. According to this scenario tectonic dynampimcs reshaping 

western branch drainage systems might have started as early as in the Oligocene [124]. Our 

mitochondrial divergence times estimates suggest that O. indermauri became isolated at around the 

middle Miocene (14.2 Ma; 95 % HPD:11. 1–17.8 Ma), and thus most likely before the formation of 
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extant LT. This age estimate for an endemic lower Lufubu cichlid divergence hence tentatively suggests 

that lower Lufubu River became separated from its upper reaches at about that time. 

“Mitochondrial ghosts of the past” facilitate reconstructions of complex biogeographic histories in 

tectonically dynamic landscapes 

In addition to the numerous signatures of hybridization detected across austrotilapiine cichlid lineages, 

we identified several cyto-nuclear discordances which left no detectable traces of nuclear gene flow 

between potential hybridization partners in our ddRAD data set (see Table 1). More importantly, these 

“mitochondrial ghosts of the past” provide new insights in the complex biogeographic history of the 

involved lineages which might date back even into the Miocene. Mitochondrial introgression with 

subsequent complete replacement of ancestral mitochondrial genomes in the absence of obvious signs 

of associated nuclear signals of introgression has been documented in several fish families, e.g. in 

salmonids [125], pupfishes [126] but also in cichlids [127]. However, these cases of mitochondrial 

capture appear to have happened relatively recent in those cases, as, e.g., the mitochondrial 

introgression event between Lamprologus callipterus and Lamprologus fasciatus was estimated to 

0.53 to 0.94 Ma [127] and that between of Salvelinus alpinus and S. namaycush to late Pleistocene or 

early Holocene [125]. 

Surprisingly, we detected one mitochondrial introgression event involving ‘H’. vanheusdeni and the LT 

endemic tribe Tropheini, which appears to be of Miocene age (mean age: 9.6 Ma ;95 % HPD: 7.0–12.3 

Ma; based on mitochondrial divergence time estimates). Based on nuclear DNA data the eastern 

Tanzanian ‘H’. vanheusdeni a taxon only known from the Great Ruaha drainage system situated in 

eastern Tanzania [128] was recovered as the sister group of Astatoreochromis, a genus distributed in 

the Lake Victoria region and several major affluents of the Lake Tanganyika basin [129]; based on 

mtDNA data ‘H’. vanheusdeni was recovered as the sister group to the LT endemic Tropheini. It is 

therefore highly likely that ‘H’. vanheusdeni captured the mitochondrial genome of an early 

representative of the LT Tropheini lineage, which is today endemic to LT drainage with some species 

occuring in the Lukuga river and in least in the lower sections of the Malagarasi river [130, 131]. 

Interestingly, our tests for hybridization did not recover apparent signals of gene flow between the 

potential hybridization partners, although only one representative species were included for the 

Tropheini and Astatoreochromis in the corresponding D-Statistic tests (see figure 4). Based on 

mitochondrial DNA haplotype relationships a previous study had already suggested that the proto-

Malagarasi drainage and the Proto-Great Ruaha drainage were connected in the past [25]. The 

discovery of the discordant phylogenetic position of ‘H’. vanheusdeni in mtDNA and nuclear based 

phylogenies does not contradict this assumption but rather adds additional support for this hypothesis 

by constraining the geographical area of the potential introgression event. Astatoreochromis as well 
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as some taxa of Tropheini (e.g. ‘H.’ horei [131]) are known to occur in the Malagarasi drainage, the 

major tributary of LT). Based on our analyses the precursor lineage of ‘H’. vanheusdeni captured 

probably soon after the divergence of ‘H.’ vanheusdeni and Astatoreochromis a mitochondrial 

haplotype of a precursor lineage of the Tropheini, somewhere in the proto-LT drainage, i.e. in the wider 

area of the present day Malagarasi and LT basin. This mitochondrial capture event dates back to 

Miocene, and during this time the proto-Malagarasi and proto-Great Ruaha systems were still 

connected according the relict distribution of ‘H’. vanheusdeni [25]. 

The second “mitochondrial ghost of the past” concerns L. symoensi from the Upemba lakes in the 

Upper Lualaba, the Lower Congo Lamprologus and the ‘non-ossified Lamprologini’ of LT. L. symoensi is 

the only Lamprologus species endemic to the Upper Congo (Lualaba) [132] and it was found to be 

related to Telmatochromis cf. temporalis, a member of the LT ‘non-ossified Lamprologini’; surprisingly, 

it was not related closely to other riverine Lamprologini of the Congo, e.g. to the Lower Congo 

Lamprologus, in a recent study based on mitochondrial data [25]. Two scenarios for the observed 

biogeographical pattern were proposed (see [25]): either i) L. symoensi represents the descendant of 

an independent colonization event of the Congo basin; or ii) L. symoensi captured the mitochondrial 

genome from LT Lamprologini dispersing into the Congo. Our nuclear data recovered the Lower Congo 

Lamprologus including L. symoensi to be deeply nested within ‘non-ossified Lamprologini’ (see Figure 

1). In contrast, our mitochondrial analyses (see Figure S1) recovered most Lower Congo Lamprologus 

(but not including L. symoensi and L. werneri) together with the LT endemic L. crassus as the sister 

group to a clade comprising the LT endemics N. mustax, N. nigriventris, N. pectoralis and N. cylindricus 

(corresponding to the “Clade C” sensu [133] and the “mtDNA Clade I” sensu [134]). Unfortunately, 

neither L. crassus nor any representative taxa of the ‘mtDNA Clade I’ were included in our ddRAD data 

set. Yet, based on the nuclear DNA data the recovered monophyly of Lower Congo Lamprologus 

including L. symoensi, L. werneri, and L. teugelsi, which carry ‘non-ossified Lamprologini’ mitochondrial 

haplotypes [25, 133, 134] points to a first colonization from the greater LT region into Congo river 

through one single precursor lineage of the Lower Congo Lamprologus. The initial colonization event 

would then subsequently been followed by at least one secondary colonization event, which led to the 

secondary capture of mitochondrial haplotypes of the ‘non-ossified Lamprologini’ by only few Congo 

Lamprologus species as, e.g. L. symoensi and L. werneri. Interestingly, we were not able to detect any 

additional signatures of introgression between any other lamprologine species and L. symoensi with 

our data set (“Introgression-test ddRAD Set”; no ABBA-BABA tests were conducted including L. 

werneri). This suggests that possibly only a single hybridization event led to the capture of ‘non-ossified 

Lamprologini’ haplotype characterising L. symoensi whereas subsequent repeated backcrosses of the 

hybrid progeny would have eradicated nuclear DNA signals of this introgression event, analogous to 

similar cases suggested for LT endemic Lamprologini [134]. This scenario becomes even more probable 
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if only a comparatively small seeding population is assumed to have left LT as secondary colonizers. 

This appears highly likely giving the different water chemistry of Lake Tanganyika and the Congo River 

and its major tributaries, which was already suggested to impede dispersal of LT cichlids into the Congo 

basin [130]. Interestingly, our mitochondrial dataset (see Figure S1) recovered a clade encompassing 

riverine taxa (Congo: L. werneri and L. symoensi; Malagarasi River: L. devsoi) as well as LT endemic taxa 

(T. temporalis, N. christyi) which was nested within the ‘non-ossified Lamprologini’. Therefore it seems 

likely that ancestors of this particular clade colonized the Congo basin, most likely during in a short 

time period, e.g. during an extreme flooding event, and subsequently hybridized with at least two 

different lineages of the Lower Congo Lamprologus as reflected today by the cyto-nuclear discordances 

observed for L. symoensi and L. werneri. These mitochondrial capture events thereby appear of 

Pliocene age, e.g. as the divergence time estimates of a recent study for that mitochondrial capture 

event involving L. symnoensi suggest [25]. The here newly detected cases of “mitochondrial ghosts of 

the past” not only allow for a more accurate reconstruction of complex biogeographic history of the 

corresponding taxa but also underline the importance of comprehensive taxon and data sampling 

including both nuclear as well as mitochondrial data which ultimately represent the basis for the 

detection of “mitochondrial ghosts of the past”. 

Conclusion 

Based on a comprehensive ddRAD data set comprising representatives of almost all major African 

cichlid lineages we recovered a well resolved phylogenetic hypothesis for the African subfamily 

Pseudocrenilabrinae. The focus was laid on the lineage that includes the East African cichlid radiations, 

i.e. the austrotilapiines, and on the inclusion of several key taxa for the first time in nuclear DNA 

(ddRAD) based phylogenetic analyses, e.g. Tilapia baloni and allies, Katanga-Orthochromis, O. 

indermauri. Comparisons of the our ddRAD based phylogeny with a phylogenetic hypothesis based on 

a large mitochondrial data set including approximately 330 cichlid species recovered numerous cyto-

nuclear discordances. Extensive testing for signatures of hybridization identified widespread gene flow 

among as well as within almost all major austrotilapiine lineages, hereby highlighting the importance 

of hybridization and introgression for the reconstruction of the evolutionary history of African cichlids. 

Several ancient introgression events were only recovered by cyto-nuclear discordant phylogenetic 

patterns and not through the analysis of massive nuclear DNA datasets alone. This result emphasizes 

analytical value of sampling not only nuclear DNA data, even if massive genomic data are available, 

but of mitogenomic data as well. The added value of mitogenomic data allow for more complete 

reconstruction of the evolutionary and biogeographic history of cichlids, even if it represents only a 

small fraction of their genome. Interestingly, mtDNA based on nuclear DNA based tree topologies were 

consistent, e.g. we found divergence age estimates based on nuclear (ddRAD) data and on mtDNA data 

to be largely compatible, but statistical confidence intervals based on mitogenomic data were found 

196



to be more restricted. Thus, based on comparative analyses we conclude, that divergence time 

estimates obtained from mitogenomic data in combination with nuclear genomic are highly 

informative with regard to the reconstruction of palaeo-biogeographical patterns that have shaped 

the success of the African Cichlid radiations, both in rivers and lakes.  
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Supplementary Material 

Figure S1. ML-based phylogenic hypothesis (RAxML) based on the “AC mitochondrial dataset” 

including ten protein coding mitochondrial genes (ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, 
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ND4L, ND4) and 464 specimens with representatives of almost all major ovalentarian lineages with 

focus on the family Cichlidae (N = 330). Numbers at nodes refer to bootstrap-values. 

Figure S2. ML-based phylogenic hypothesis (RAxML) based on the “Austrotilapiine mtDNA dataset” 

including ten protein coding mitochondrial genes (ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, 

ND4L, ND4) and 103 specimens. Numbers at nodes refer to bootstrap-values. 

Figure S3. ML-based phylogenic hypothesis (RAxML) based on the “Austrotilapiine ddRAD Set” 

including a concatenated alignment of 610 ddRAD loci (113,578 bp) for 103 individuals. Numbers at 

nodes refer to bootstrap-values. See Table S1 for specimen information of the corresponding tip labels 

(ddRAD IDs). 

Figure S4. ML-based phylogenic hypothesis (RAxML) based on the “Introgression-test ddRAD Set” 

including a concatenated alignment of 14,750 ddRAD loci (2,751,967 bp) for 60 individuals. Numbers 

at nodes refer to bootstrap-values. See Table S1 for specimen information of the corresponding tip 

labels (ddRAD IDs). 

Figure S5. Coalescent species tree (ASTRAL) based on the “Full ddRAD Set” and 4000 individual gene 

(ddRAD loci) trees. Numbers at nodes are support values from local posterior probabilities for the main 

topology (pp1) and the two alternative topologies (pp2 & pp3). See Table S1 for specimen information 

of the corresponding tip labels (ddRAD IDs). 

Figure S6. Coalescent species tree (ASTRAL) based on the “Austrotilapiine ddRAD Set” and 610 

individual gene (ddRAD loci) trees. Numbers at nodes are support values from local posterior 

probabilities for the main topology (pp1) and the two alternative topologies (pp2 & pp3). See Table S1 

for specimen information of the corresponding tip labels (ddRAD IDs). 

Figure S7. Time tree (BEAST, relaxed normal molecular clock) based on the “AC mitochondrial dataset” 

(including in total 330 cichlid species, including several undescribed species, and 134 taxa representing 

the remaining major ovalentarian lineages). For detailed information on constrained nodes and applied 

calibration scheme please refer to Table 1. Node bars indicate 95% HPD intervals of divergence events. 

Numbers at nodes refer to Bayesian Posterior Probabilities  

Figure S8. Time tree (BEAST, relaxed normal molecular clock) based on the “Austrotilapiine ddRAD Set” 

(including 97 taxa). For detailed information on constrained nodes and applied calibration scheme 

please refer to Table 1. Node bars indicate 95% HPD intervals of divergence events. Numbers at nodes 

refer to Bayesian Posterior Probabilities. See Table S1 for specimen information of the corresponding 

tip labels (ddRAD IDs). 
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Figure S9. Time tree (BEAST, relaxed normal molecular clock) based on the “Austrotilapiine mtDNA 

dataset” (including 97 taxa). For detailed information on constrained nodes and applied calibration 

scheme please refer to Table 1. Node bars indicate 95% HPD intervals of divergence events. Numbers 

at nodes refer to Bayesian Posterior Probabilities.  

Supplementary Tables  

Table S1. Overview of individuals genotyped using ddRAD sequencing, information on taxonomy, 

repository numbers of specimens, availability of corresponding partial mitochondrial genomes and 

where applicable origin of samples are provided. 

Table S2. Overview of cichlid specimens for which partial or complete mitochondrial genomes were 

sequenced for this study, information on taxonomy, repository numbers of specimens, and where 

applicable origin of samples are provided. 

Table S3. Overview of mitochondrial genome data retrieved from GenBank with corresponding 

information on specimen metadata, taxonomy and GenBank accession number. 

Table S4. Overview of input Reads for PyRAD and recovered loci per sample for the various PyRAD 

analysis conducted. 

Table S5. Overview of D-statistics and corresponding Bonferroni-corrected p-values for all possible 

ABBA-BABA species trios tested. 

207



Discussion 

 

The underexplored riverine cichlid diversity of Southern-Central Africa 

 

Traditionally, Africa is subdivided into ten major ichthyological provinces of which one, the 

Congo Basin, the second largest drainage basin of the world, stands out by its high species 

richness (Darwall et al. 2011; Roberts 1975; Runge 2007). The Congo basin can further be 

divided into several major sections,: (i) the Upper Congo-Lualaba from the Congo headwaters 

in Zambia to the Boyoma falls, (ii) the middle Congo from the Boyoma falls to Pool Malebo), 

(iii) the lower Congo from Pool Malebo to the river mouth, and (iv) Lake Tanganyika and its 

tributaries. Each section harbors its own characteristic fauna, possibly best exemplified by the 

distinctive and almost fully endemic ichthyofauna of Lake Tanganyika (Brooks et al. 2011; 

Darwall et al. 2011; Runge 2007). In addition to these larger sections, more fine scaled 

freshwater ecoregions have been recognized (Abell et al. 2008; Thieme et al. 2005), e.g., and 

among others, the “Bangweulu-Mweru ecoregion” and the “Upper Lualaba ecoregion” which 

are both within the northern boundaries of the loosely defined Katanga-Chabeshi region (sensu 

Cotterill 2005). The exploration of the ichthyological diversity of the Congo basin had started 

already in the early 19th century, and a first inventory of the ichthyofauna of the Congo basin 

became first available with the extensive work by Boulenger (1901b). Since then, knowledge 

on fish diversity is continuously increasing and approximately 1250 valid species have been 

described from the Congo basin today (Darwall et al. 2011). However, most of the important 

historical ichthyological collections available are restricted to the main channel of the Congo 

River and its major tributaries, mostly in proximity of major cities; thus. large areas of the 

Congo basin have remained drastically underexplored (Brooks et al. 2011). Indeed, recent 

regional surveys of the AfricaMuseum in Tervuren (Belgium) focusing on comparatively small 

river systems across the Congo basin as e.g. the Inkisi, Lowa and Itimbiri rivers have led to the 

discovery of numerous new species (Decru et al. 2017; Kisekelwa et al. 2020; Wamuini 

Lunkayilakio et al. 2010).  

Further, the ichthyological fauna of the upper Congo-Lualaba system appears to be only 

insufficiently studied although a high degree of endemism was reported for this area. For 

example, Poll (1976) reported 116 species from Lake Upemba of the “Upper Lualaba 

ecoregion”, whereas a more recent inventory found 193 species to be present in the area of 

Upemba National Park (Katemo Manda et al. 2013). Likewise, Thieme et al. (2005) indicated 
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approximately 100 species to be present in the “Bangweulu-Mweru ecoregion” while the study 

of van Steenberge et al. (2014) reported 135 species just from the Luapula-Mweru area, a 

subregion of the “Bangweulu-Mweru ecoregion”. The most specious families of the Katanga-

Chabeshi region include the Cyprinidae, Mormyridae, Mochokidae, Alestidae and, last but not 

least, Cichlidae (Thieme et al. 2005; van Steenberge et al. 2014; Vreven et al. 2015). The 

cichlids of the region are represented by six major cichlid lineages: Tilapiini, Oreochromini, 

Tylochromini, Coptodonini, the ‘extended Pseudocrenilabrus-group’ and the ‘extended 

serranochromines’ (the composition of the latter two are outlined in the introduction).  

In the course of this thesis seven new cichlid species and two new genera, either related to 

‘extended serranochromines’ or to the ‘extended Pseudocrenilabrus-group’, have been 

described form various freshwater ecoregions associated with the Katanga-Chambeshi region 

(see e.g. chapter 2 and 3). Further, numerous other putative new cichlid species (see Figure 3) 

have been collected during various field expeditions across Northern Zambia and the former 

Katanga province (DRC), focusing on the riverine ichthyofauna of this vast region. Candidate 

species have been preliminary identified based on their distinctive appearance, e.g. coloration 

or general morphology. These could not be assigned to any valid species, because a detailed 

morphological examination for most of the putative species is still pending. However, 

molecular data, including mitochondrial genome data as well as ddRAD data, for some of the 

candidate species have been generated for the studies presented in chapter 4 and 5. These 

molecular data suggest the presence of at least 26 new, distinct genetic lineages in the focal 

area. Those putative species either belong to the genera Pseudocrenilabrus (at least seven 

species), to Serranochromis Regan 1920 (at least four species), to Telmatochromis Boulenger 

1898 (one species), to Tilapia (four species) and to two putative new genera related to the 

‘extended serranochromines’(three species in total). Further, several putative species belonging 

to different lineages of the polyphyletic genus Orthochromis were identified: one species of the 

‘Katanga-Orthochromis’, one species of the ‘Orthochromis torrenticola species complex’ and 

at least four species of the ‘Northern-Zambian-Orthochromis’. Although future systematic 

research will decide about the taxonomic status of these candidate species, it became clear that 

many more cichlid species are present in the northern part of the Katanga-Chambeshi region 

than previously reported. Altogether, about 40 valid cichlid species are known to occur in the 

“Bangweulu-Mweru ecoregion”, the “Upper Lualaba ecoregion” and the southern part of the 

“Lake Tanganyika ecoregion” but excluding the cichlid species endemic to Lake Tanganyika 

(Balon and Stewart 1983; Banister and Bailey 1979; Jackson 1961; Katongo et al. 2017; Poll 
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1976; Schedel et al. 2018; Schedel et al. 2020; van Steenberge et al. 2014; Vreven et al. 2015). 

This means that more than one third of the cichlid diversity of the focal area remains 

undescribed, even when not taking into account the numerous putative species recently reported 

from Lake Mweru (Katongo et al. 2006; Meier et al. 2019).  

 
 

 
Figure 3: Representative overview of several undescribed species from the northern part of 
the Katanga-Chambeshi region and the Upper Lomami River. A. Tilapia sp. Upper Kalungwishi 
(Tribe: Tilapiini; photo: F. Schedel); B. Telmatochromis sp. Lufubu (Tribe: Lamprologini; photo 
F. Schedel); C. Orthochromis sp. Lomami (Tribe: Haplochromini, ‘extended serranochromines’; 
photo: A. Chocha Manda); D. Orthochromis sp. aff. torrenticola (Tribe: Haplochromini, 
‘extended serranochromines’; photo: Katanga 2016 Expedition); E. ‘Haplochromine genus sp. 
Lubudi blue cheek’ (Tribe: Haplochromini, ‘extended serranochromines’; photo: Katanga 2016 
Expedition); F. ‘Haplochromine genus sp. Lubudi tropheuslike’ (Tribe: Haplochromini, 
‘extended serranochromines’; photo Katanga 2016 Expedition); G. Serranochromis sp. 
Mukuleshi (Tribe: Haplochromini, ‘extended serranochromines’; photo Katanga 2016 
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Expedition); H. Pseudocrenilabrus sp. Upper Kalungwishi (Tribe Haplochromini, ‘extended 
Pseudocrenilabrus-group’; photo: F. Schedel). 

Most of the putative species reported here appear to have narrow distribution ranges and some 

might even be restricted to only a small section of a particular river. However, it should be kept 

in mind that the sample efforts made in the scope of this study focused on major knickpoints 

(waterfalls) of the focal area and hence our knowledge on the distribution ranges of these 

species remains highly incomplete. Yet, some river systems within the study area revealed to 

harbor a comparatively rich ichthyofauna with high degrees of endemism. 

One example is the third largest tributary of Lake Tanganyika, the Lufubu River, located in the 

southern part of the “Lake Tanganyika ecoregion”, which stands out by its distinctive cichlid 

fauna. The course of the Lufubu River is interrupted by several major rapids and waterfalls 

which are assumed to represent natural barriers to the upstream movement of fish (Koblmüller 

et al. 2012). Indeed, from the uppermost reaches of the Lufubu four cichlid species are currently 

known, three of which them still undescribed, but all apparently endemic to this river section. 

The recently described monotypic genus Lufubuchromis with its species L. relictus is assumed 

to be confined to this river section (see chapter 3). The fish community of the lower reaches 

(excluding the river mouth) has not been studied well either, but at least five cichlid species 

appear to be present (Indermaur 2014; Theis et al. 2014; personal observation, F.D.B. Schedel), 

of which O. indermauri (described in chapter 2) and Telmatochromis sp. Lufubu are currently 

known from only a single location in this river section (Schedel et al. 2018).  

Another exceptional river system in respect to its cichlid fauna is that of the Lubudi River and 

its tributaries, e.g. the Mukuleshi River, located in the “Upper Lualaba ecoregion”. Explorative 

collections to the Lubudi and the Mukuleshi rivers conducted in the framework of this study 

and by previous field trips of the Mbisa Congo Project, suggest the presence of at least eight 

cichlid species in the Lubudi system. Only a single recently described cichlid species can be 

unequivocally assigned to the species level: Orthochromis gecki (see chapter 2). Further, two 

species tentatively identified as Serranochromis cf. robustus (Günther 1864) and 

Serranochromis cf. thumbergi (Castelnau 1861) were recorded from the Mukuleshi River (a 

tributary of the Lubudi River), but thorough taxonomic investigations for these taxa are still 

pending. The remaining five species are undoubtedly undescribed. Notably, two of these 

putative species, here referred to as ‘Haplochromine genus sp. Lubudi tropheuslike’ and 

‘Haplochromine genus sp. Lubudi blue cheek’, cannot be assigned to any described cichlid 

genus based on preliminary morphological investigations. Interestingly, these two were found 
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to represent two ancient lineages within the ‘extended serranochromines’ (see figure 1 in 

chapter 5). Interestingly, phylogenetic analyses based on ten protein coding mitochondrial 

genes revealed that another undescribed species (referred as ‘Haplochromine genus sp. 

Lomami’) from the Lomami River, located in the “Upper Congo ecoregion”, is the sister species 

of the ‘Haplochromine genus sp. Lubudi tropheuslike’ suggesting a past connection between 

the part of the Lualaba-drainage to which the Lubudi River system belongs and the upper 

Lomami River drainage. A past connection between those two areas is further supported by the 

observed sister group relationship of O. gecki and the still undescribed species Orthochromis 

sp. Lomami as well as between Serranochromis sp. Mukuleshi and Serranochromis sp. Kisese 

from the Lomami River. Taken together, the high percentage of undescribed and potentially 

endemic cichlid species in the Lubudi system and their close relationship with species from the 

Lomami exemplifies our drastically limited knowledge on the ichthyological diversity of 

selected regions of the upper Congo-Lualaba systems.  

The list of ichthyologically underexplored river systems of the focal region could be easily 

enlarged, and even comparatively well studied river systems such as the Lufira River (Banister 

and Bailey 1979; Poll 1976) yielded several undescribed cichlid species, thus highlighting the 

need of further systematic research in the region. This would be especially important for 

establishing adequate conservation priorities for diversity hotspots, as. e.g., the Lufubu River; 

or, more in general, the aquatic ecosystems of the Katanga-Chambeshi region, which are 

threatened by human activities including damming, deforestation, mining, pollution and 

unsustainable fishing methods (Brooks et al. 2011; Schedel et al. 2018; Thieme et al. 2005).  

 

Spatio-temporal insights in the evolutionary history of rheophilic African cichlids help to 

reconstruct the landscape evolution of Southern-Central Africa 

 

The concept of geoecodynamics aims to exploit the genomic record of living organisms to 

reconstruct the tempo and mode of geomorphological processes, e.g. tectonic events altering 

the landscape structure such as the formation of knickpoints. It is based on the assumption that 

evolutionary histories of organisms are tightly interlinked with these of landscapes they are 

associated with, which are reflected by changes in the nucleotide sequences, and hence can be 

dated using molecular clocks (Cotterill and de Wit 2011). During the course of this thesis, two 

highly promising cichlid lineages for spatio-temporal reconstruction of the landscape evolution 
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have been identified, using a geoecodynamical approach, which are critically discussed in the 

following paragraphs. 

 

The ‘Orthochromis torrenticola species complex’ 

 

The first cichlid lineage with genomic signatures possibly mirroring landscape evolution in the 

region, i.e. that of knickpoint formation and of the associated interruption of gene flow, is the 

‘Orthochromis torrenticola species complex’ (see Figure 4). The species complex represents a 

distinct lineage within the ‘extended serranochromines’ and is only known from the Lufira 

drainage system, a major tributary of the upper Lualaba River. The course of the Lufira River 

is interrupted by two major knickpoints: the Cornet falls at Mwandingusha which were 

originally 113 meter high before the falls have been damned in 1925 for the purpose of 

hydropower generation; and, further downstream, the Kyubo falls with an approximate height 

of 60 meters (Damas 1961; Kambembo 2018). The latter forms a natural barrier for the 

upstream movement of fish and separates the species O. torrenticola, which was described from 

above the Kyubo falls, from its still undescribed sister species referred here as Orthochromis 

sp. aff. torrenticola (see Figure 1, chapter 5) found below the Kyubo falls. Both species can be 

readily distinguished from each another by their characteristic coloration, e.g. O. torrenticola 

has a yellow belly and metallic yellowish flank scales in contrast to O. sp. aff. torrenticola 

which has a white to light reddish belly and metallic bluish flank scales (see Figure 4). They 

differ further from each other by several morphological and meristic characters, e.g. number of 

abdominal vertebrae, and the formal description will follow after the final examination of 

additional O. torrenticola populations occurring upstream of the Kyubo falls, for example in 

the Lofoi River (Schedel et al. in prep).  

The maximum likelihood (ML) analyses (see chapter 5) based on nuclear (ddRAD) data and 

mitochondrial data (10 protein coding genes) recovered the monophyly of the ‘Orthochromis 

torrenticola species complex’ with a high bootstrap support (BS: 100). The comparative 

molecular clock analyses contrasting mitochondrial and ddRAD-based analyses (see chapter 

5) dated the divergence of the MRCA of the ‘Orthochromis torrenticola species complex’ either 

to Pliocene-Pleistocene age (mean age 2.5 Mya; 95 % HPD: 0.5–5.2 Mya) based on nuclear 

(ddRAD) data or to Late Miocene-Pliocene age (mean age 4.1 Mya; 95 % HPD: 2.4–6.0 Mya) 

based on mitochondrial data. As outlined in chapter 5, the 95 % HPD intervals of the 

divergence time estimates of both molecular clock analyses widely overlap, but divergence time 
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estimates derived from the ddRAD dataset with substantially wider 95 % HPD intervals. In 

addition, the genomic tests of hybridization based on thousands of ddRAD loci (D-statistics, 

see chapter 5) revealed strong signatures of ancient hybridization between the ‘extended 

Pseudocrenilabrus group’ and the ‘extended serranochromines’ to which the ‘Orthochromis 

torrenticola species complex’ belongs. Notably, the possibility that specimens of O. 

torrenticola dropped and might continue to drop down the Kyubo falls and survive cannot be 

ruled out; this has been shown for other cichlid species that even surivive a drop of (~ 220 m 

down the impressive Kalambo falls (Pauquet et al. 2018). This option leaves the possibility that 

fallen O. torrenticola individuals have interbred with individuals of the O. sp. aff. torrenticola; 

this would hypothetically allow for unidirectional secondary gene flow between the two 

anciently diverged sister species. However, the D-statistics did not reveal any significant signals 

of introgression between the species (Figure 4, chapter 5), but for each species one specimen 

only have been tested so far. Hybridization might compromise divergence time estimates which 

can result in both younger or older age estimates than speciation ages (Leaché et al. 2014; 

Springer et al. 2019). Therefore, the mitochondrial divergence times might reflect more 

accurate node age estimates for the onset of the divergence of the ‘Orthochromis torrenticola 

species complex’, as cichlid mitochondrial genomes are predominantly maternally inherited, 

and they are only marginally affected by recombination, if at all (Hebert et al. 2003; Saccone 

et al. 1999).  

It is not unlikely that the seismic activity associated with ,e.g., the genesis of the Upemba fault 

system has led to the initial formation of the Kyubo knickpoint, and that that this knickpoint 

formation has interrupted gene flow and thus initiated initial divergence between upstream and 

downstream members of the two proto-‘Orthochromis torrenticola species complex’. If this 

assumption is correct, the node age estimates reported above for this vicariant scenario would 

also provide a first genome-derived age Pliocene-Late Miocene date estimate for the geological 

formation of Kyubo knickpoint.  

Alternatively, it would have been tempting to use the Kyubo knickpoint system as a 

geochronological calibration point for the onset of divergence of the ‘Orthochromis 

torrenticola species complex’ in molecular clock analyses. If available, this calibration point 

might significantly improve the spatio-temporal reconstruction of the EAR and especially of 

the Haplochromini, for which no unambiguously reliable calibration points are available until 

today. Undoubtedly, the age of the extant Kyubo falls is much younger than the formative event 

that created the knickpoint system as waterfalls are the result geomorphologically highly 
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dynamic processes. Knickpoint formation itself might be the result of variable rock resistance, 

base level changes or tectonic deformation, whereas the knickpoint retreatment rate, i.e. the rate 

waterfalls “migrate” upstream a riverbed through time due to erosion is influenced by a 

combination of various factors including the size of the catchment area, climatic conditions, 

elevation, underlying lithology and geological morphology, erosion processes and tectonic 

activity (Bishop et al. 2005; Brocklehurst 2010; Howard et al. 1994; Loget and Van den 

Driessche 2009; Whipple et al. 2000; Whipple and Tucker 1999). Unfortunately, these factors 

considerably complicate the dating of knickpoints, e.g. by cosmogenic nuclide dating, and 

hence the dating of knickpoint system itself (Olivotos et al. in review). Unfortunately, no 

geological estimates for the age of the Kyubo knickpoint system have become available so far, 

leaving the great potential of the Kyubo system as cichlid calibration point untapped for the 

time being.  

 

 
Figure 4: Overview of the ‘Orthochromis torrenticola species complex’ and its environment. 
A. Map of Northern Zambia and south-eastern DRC, with indication of the position of the 
Kyubo falls on the Lufira River (red star); Shapefiles were obtained from DIVA-GIS 
(http://www.diva-gis.org/Data) B. Representative specimens of the two species of 
‘Orthochromis torrenticola species complex’ occurring above the Kyubo falls (O. torrenticola; 
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photo: Katanga 2016 Expedition) and below the Kyubo falls (O. sp. aff. torrenticola; photo: 
Katanga 2016 Expedition) C. View on the Kyubo falls on the Lufira River (photo: Katanga 2016 
Expedition). 

 

The ‘Orthochromis kalungwishiensis species complex’ 

 

The ‘Orthochromis kalungwishiensis species complex’ represents the second newly recognized 

cichlid lineage with an evolutionary history apparently heavily shaped by the dynamic 

landscape evolution which occurred in the restricted distribution range of that lineage. Together 

with its sister lineage referred here to as ‘Orthochromis luongoensis species complex’ they form 

a clade known as ‘Northern-Zambia-Orthochromis’ (Weiss et al. 2015) within the ‘extended 

Pseudocrenilabrus-group’ (see Figure 1, chapter 5). At least five distinct lineages can be 

recognized within ‘Orthochromis kalungwishiensis species complex’ (see Figure 5) which are 

confined to the Kalungwishi River and its tributaries as well as to the rocky shores of Lake 

Mweru as it has been recently documented by Meier (2019). The study of Meier (2019) reported 

two color morphs from Lake Mweru for a species referred as Orthochromis sp. “red-cheek” 

which might be conspecific with the species referred herein as Orthochromis cf. 

kalungwishiensis “Rainbow”, a species recently imported from Lake Mweru for the ornamental 

fish trade (Lucanus 2017). However, no morphological nor genetical comparative analyses 

including specimens of both putative species has been conducted so far.1  

The course of the Kalungwishi River, a major tributary of Lake Mweru, is interrupted by several 

major knickpoints (Flϋgel 2014). The most important knickpoints are lined up in a series of 

three large waterfalls, the uppermost being the impressive Lumangwe falls (~ 40 meters high), 

followed a few kilometers downstream by the Kabwelume falls (~ 35 meters high), and about 

35 km further downstream and approx. 43 km upstream of the Kalungwishi estuary into Lake 

Mweru by the Kundabikwa falls (~ 25 meters high) (Flϋgel 2014; Olivotos et al. in review). 

Analogous to the divergence for the ‘Orthochromis torrenticola species complex’ above and 

below the Kyubo falls, the waterfalls on the Kalungwishi River appear to constrain fish 

1 In this context it must be noted that the clade 1 ‘Orthochromis kalungwishiensis complex’ of Meier et al. (2019) 
appears to include only taxa closely related to O. luongoensis, i.e. O. katumbii and O. mporokoso). In addition, 
the specimen identified as O. kalungwishiensis in this study appears rather to represent a member of the yet 
undescribed species O. cf. luongoensis “Kalungwishi”, based on the appearance of the depicted specimens and 
on the reported mitochondrial relationships. In contrast, the specimens depicted for in the clade 4 ‘O. sp. 
“Kalungwishi” + O. sp. “red-cheek” of Meier et al. (2019) clearly resemble in their appearance that of taxa of the 
‘Orthochromis kalungwishiensis species complex’. 
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dispersal. Other fish species, as, e.g., the characiform Bryconaethiops boulengeri Pellegrin, 

1900 (Family Alestidae) are widely distributed in the Congo basin, but have recorded only from 

below the Kundabikwa falls and not further upstream (Zambia field trip 2015, personal 

observation: F.D.B. Schedel). Likewise, the distribution of several different candidate species 

of the ‘Orthochromis kalungwishiensis species complex’ seem to be constrained by the 

waterfalls to certain river sections, e.g. O. cf. kalungwishiensis “Lumangwe” is only found 

above the Lumangwe falls, and O. cf. kalungwishiensis “Rainbow” appears to be confined to 

the shores of Lake Mweru. However, some river sections, e.g. the section between Kundabikwa 

falls and Lumangwe falls (including Kabwelume falls) are home to at least three distinct 

lineages of ‘Northern-Zambian-Orthochromis’ in sympatry: O. kalungwishiensis described 

from above the Kundabikwa falls, O. kalungwishiensis “Red” (the “Red” refers to the reddish 

seam of the dorsal and caudal fin) and O. cf. luongoensis “Kalungwishi”. 

In comparison to the vicariant sister species of the ‘Orthochromis torrenticola species complex’ 

the putative species of the ‘Orthochromis kalungwishiensis species complex’ are less readily 

distinguished from each another, although subtle morphological (e.g. head shape) and clear 

coloration differences are present (see Figure 5). The monophyly of the ‘Orthochromis 

kalungwishiensis species complex’ is statistically well supported by the phylogenetic ML 

analyses either based on the nuclear (ddRAD) or on the mitochondrial dataset (BS: > 91; see 

Figure 1 & Figure S1, chapter 5). The inter-relationships between the lineages of the 

‘Orthochromis kalungwishiensis species complex’ however are, by far, more complex as those 

of the ‘Orthochromis torrenticola species complex’. For example, they are characterized by 

cyto-nuclear discordances: the ML-analysis based nuclear data recovered O. cf. 

kalungwishiensis “Itabu” as the sister group of the all remaining lineages of the species complex 

whereas the one based on mitochondrial data recovered it as the sister group to a clade 

encompassing only O. cf. kalungwishiensis “Rainbow” and O. kalungwishiensis (see Figure 1 

& Figure S1, see chapter 5). Additional ancient hybridization events between the ‘Northern-

Zambian-Orthochromis’ and the recently described genera Lufubuchromis and Palaeoplex have 

been detected in the study of Meier (2019) as well as by the D-statistics conducted in chapter 

5. In addition, hybridization between the sympatric members of the ‘Orthochromis 

kalungwishiensis species complex’ and O. cf. luongoensis “Kalungwishi” are likely based on 

preliminary analyses, but this has still to be extensively tested. Therefore, divergence time 

estimates obtained for the ‘Orthochromis kalungwishiensis species complex’ in chapter 5, 

which suggest an Early Pleistocene-Pliocene age (mean age: 2.2 Mya; 95 % HPD: 0.5–4.6 Mya) 
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for the MRCA of the species complex based on nuclear (ddRAD data) and Pleistocene age 

(mean age: 1.1 Mya; 95 % HPD: 0.6–1.6 Mya) based on mitochondrial data, should be 

scrutinized carefully and taking into account the complexity of multiple ancient hybridization 

events.  

This might be even more important as recently published geological evidence suggest that the 

palaeo-lake levels of Lake Mweru were much higher during the Pleistocene, potentially 

reaching an elevation of 1200 meter asl. Such a high lake level would have covered a 

substantially larger area than present day Lake Mweru (Olivotos et al. in review). The same 

study suggested that the Lumangwe falls were located at the eastern-shore line of the palaeo-

Lake Mweru, and that the knickpoint systems of the Kundabikwa falls as well as of the 

Kabwelume falls had been flooded by high lake levels of palaeo-Lake Mweru. The study is 

based on relative 10Be and 26Al age estimates for burial ages of rock samples collected from the 

knickpoint sites. Interestingly, the estimated burial age for rock samples of the Kundabikwa 

falls is > 1 Mya, which suggests that Lake Mweru must have existed for more than a million 

year and most likely even much longer (~ 2 Mya) as suggest by Olivotos et al. (in review). 

However, as for the other great Lakes of East Africa it is hypothesized that Palaeo-Lake Mweru 

experienced severe lake level fluctuations over this period (Olivotos et al. in review). The 

formation of the Lake Mweru was most likely initialized through the southward propagation of 

the western branch of the East African Rift system roughly 2 to 4 Mya (Chorowicz 2005; 

Olivotos et al. in review; Tiercelin and Lezzar 2002). The knickpoints of Kundabikwa and 

Lumangwe themselves had likely been formed well before the aforementioned lake-level rise; 

they are most likely the result of the propagation of western branch of the African rift system 

as is the Lake Mweru graben (Olivotos et al. in review). Hence both the estimated mean ages 

for the onset of the divergence of the ‘Orthochromis kalungwishiensis species complex’ (see 

above: 1.1 to 2.2 Mya) tentatively suggest that the clade diversified before the lake level rise of 

Lake Mweru approx. 1 Mya, and that older divergence ages of within that lineage relate to pre-

burial knickpoint formation events. However, it would be premature at this point to correlate 

the divergence of the different lineage of the species complex to those ancient formation, 

because both, the complex and not fully resolved phylogenetic relationships within the 

‘Orthochromis kalungwishiensis species complex’, and the complicated geological history of 

the knickpoints themselves are not yet fully understood. The burial of the Kundabikwa and 

Kabwelume falls by the upper lake level of palaeo-Lake Mweru for example might have 

eradicated potential signals in the genomic record of the ‘Orthochromis kalungwishiensis 
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species complex’, even if they had evolved as a consequence of the formation of these 

knickpoints. In contrast, the knickpoint system of the Lumangwe falls most likely was not 

affected by the lake level rise and thus qualifies as potential calibration point for the 

‘Orthochromis kalungwishiensis species complex’ in the future studies, at least once the 

evolutionary history of this lineage is better understood.  
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Figure 5: : Overview of the ‘Orthochromis kalungwishiensis species complex’ and a 
representative member of the ‘Orthochromis luongoensis species complex’ A. 
Representative specimens of the O. kalungwishiensis and putative species of the 
‘Orthochromis kalungwishiensis species complex’ occurring in the Kalungwishi drainage 
system: O. kalungwishiensis, caught at the type location above the Kundabwika falls; O. cf. 
kalungwishiensis “Red”; caught below the Kabewluma falls; O. cf. kalungwishiensis “Itabu”, 
caught in the Itabu River (ID:DRC-3588); O. cf. kalungwishiensis “Rainbow”, aquarium 
specimen most likely from Lake Mweru, O. cf. kalungwishiensis “Lumangwe”, caught above 
Lumangwe falls B. Orthochromis luongoensis “Kalungwishi”, caught below Kabewluma falls C. 
Map of Northern Zambia and south-eastern DRC, with indication of major waterfalls on the 
Kalungwishi River: Lumangwe falls (green star), Kabweluma falls (blue star) and Kundabwika 
falls (red star); Shapefiles were obtained from DIVA-GIS (http://www.diva-gis.org/Data) D. 
View on the Lumangwe falls and the Kundabwika falls on the Kalungwishi River. All photos by 
F.D.B. Schedel.

Conclusion 

African cichlids of the austrotilapiine clade have evolved thousands of species in the African 

Great Lakes, known as the East African Cichlid Radiation (EAR). The phylogenetic history of 

the riverine austrotilapiine precursor lineages that gave rise to the EAR has remained poorly 

studied, although refined phylogenetic reconstructions are a necessary prerequisite for 

understanding the age, origin and processes that have led to the enormous success of the EAR. 

The phylogenetic analysis of massive and comprehensive mitochondrial and nuclear DNA 

(ddRAD) datasets presented in this thesis for the austrotilapiine cichlids in combination with 

the spatio-temporal reconstructions of the dynamic palaeo-landscapes that are the cradle of 

these radiations have thus provided new insights for the evolutionary history of African cichlids 

in general and about the intimate link between tectonic landscape evolution and their 

phylogenetic history in particular. The refined reconstruction of the phylogenetic relationships 

included extensive testing for signatures of ancient hybridization events. This, because they 

were enabled by tectonic watershed rearrangements which, in turn, provided novel gene flow 

opportunities between previously isolated cichlid lineages. Particularly a refined view on the 

geomorphological evolution of the southeastern part of the African continent across the 

southeastern limits of the watersheds of the Upper Congo including the Lake Tanganyika 

drainage allowed for an improved reconstruction of the fascinating biogeographic precursor-

history of the EAR; and, on the other side of the coin, application of molecular clock 
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reconstructions to date landscape-fish co-evolutionary events allowed for a better 

understanding of palaeo-geomorphological setting in which the EAR evolved.  

The results identified a key-role of selected rheophilic haplochromine lineages, because through 

their tight ecological cohesion to changes of tectonic knickpoints such as waterfalls and rapids, 

their phylogenetic diversification was shown to be particularly well linked to tectonic landform 

changes that either enabled or impaired gene flow between previously isolated or, respectively, 

connected rheophilic cichlid populations. Thus, carefully scrutinized molecular clock 

divergence time estimates for these rheophilic cichlid lineages, related to the EAR, allowed to 

put the tectonic events of the corresponding knickpoint formations into a geological timeframe. 

Once solid geology-derived date estimates for the formation dates for selected knickpoint 

systems will become available in the near future, e.g. that of the Kyubo falls, these could in turn 

be used to globally constrain EAR molecular clock analyses, and this would undoubtedly 

further improve our understanding of the biogeographic history of these fascinating 

haplochromine cichlids. 

The basis for the meaningful interpretation of the various aspects of the evolutionary history of 

cichlids as well as the identification of promising systems for geo-ecomorphological research 

as outlined above ultimately rely on a sound systematic and taxonomic framework. With the 

description of eight new species and two new genera, an important contribution to the 

taxonomic classification of austrotilapiine cichlid had been made, but a complete phylogenetic-

based revision of their systematics and taxonomy is far off being completed. Especially the 

polyphyletic genus Orthochromis, including at least seven distinct lineages, either belonging to 

the Orthochromis sensu stricto., the so-called ‘extended serranochromines’ or the ‘extended 

Pseudocrenilabrus-group’, urgently need to be revised. The improved knowledge of the 

phylogenetic relationships of this rheophilic cichlids provided here will facilitate this task. 

Further steps aiming for the revision of all Orthochromis lineages related to the ‘extended 

serranochromines’ are in preparation. 
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