Conformational Analysis of 4-Azidoproline Derivatives and their Application in Molecular Recognition

Inauguraldissertation
zur
Erlangung der Würde eines
Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel

von
Diplom-Chemiker

Louis-Sebastian Sonntag aus Frankfurt am Main (Deutschland)

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel auf Antrag der Professoren:

Prof. Dr. Helma Wennemers
Prof. Dr. Bernd Giese
Prof. Dr. Urs Séquin

Basel, den 10. Mai 2005

Prof. Dr. Hans-Jakon Wirz
(Dekan)

Edel sei der Mensch, Hilfreich und gut! Denn das allein Unterscheidet ihn Von allen Wesen, Die wir kennen.
- Johann Wolfgang von Goethe, Das Göttliche

"William James describes a man who got the experience from laughing gas: whenever he was under its influence, he knew the secret of the universe, but when he came to, he had forgotten it.

At last with immense effort, he wrote down the secret before the vision faded.
When completely recovered he rushed to see what he had written.
It was "A smell of petroleum prevails throughout."

- Bertrand Russell, A History of Western Philosophy

Abstract
Conformational Analysis of 4-Azidoproline Derivatives and their Application in Molecular Recognition

Louis-Sebastian Sonntag

This thesis presents studies on the influence of 4 -azido-substitutents in azidoproline on the conformation of the pyrrolidine ring system as well as the conformation around the peptide bond in acetylated monomers and dimers. The azido-group may be reduced to an amine, which allows for further modifications. The insights gained were applied to the synthesis of a tripodal molecular scaffold. This scaffold was used as a backbone for a synthetic receptor, which binds peptides in aqueous solution.

In the first part of this thesis the effect of the azido-substituent on the conformation of 4-azidoproline is described. By NMR-spectroscopy, X-ray diffraction, FT-IR spectroscopy and $a b$ initio calculations, the conformation of 4 -azidoproline derivatives was analyzed. Particular focus was laid on the s-cis:s-trans ratio and the factors influencing it. Furthermore, the kinetics of the interconversion of the s-cis and s-trans conformation of diastereomeric 4-azidoproline derivatives were determined by EXSY-NMR.

The second part of this thesis describes the synthesis and structural analysis of the azido-functionalized cyclotriproline and its application as a molecular scaffold for a peptide receptor. The binding properties were analyzed in on-bead screenings against an encoded tripeptide library in different buffer solutions. The binding affinity to a selected peptide was measured by isothermal titration calorimetry (ITC).

Acknowledgements

First and foremost I would like to thank my supervisor, Prof. Dr. Helma Wennemers for her support and guidance, her contagious enthusiasm and for stimulating her co-workers to strive for their highest potential. I am grateful to Prof. Dr. Bernd Giese for accepting to co-referee this thesis.

Furthermore, I would like to thank my colleagues and friends with whom I had the pleasure to share the lab in the last years, Dr. Matteo Conza, Dr. Philipp Krattiger, Dipl. Chem. Michael Kümin, Dr. Matthias Nold and Dr. Jefferson Revell for the good times in- and outside the lab. I would like to thank Dipl. Chems. Jessica Grun and Kristen Koch for ESI measurements and Dipl. Chem Jana Lubkoll for help with the HPLC.

I would like to thank Dr. Daniel Häussinger and Dr. Klaus Kulicke for NMR measurements, Markus Neuburger, Dr. Silvia Schaffner for X-ray diffraction and Dr. Werner Kirsch and Dr. Heinz Nadig for elemental analysis and MS. Furthermore, I would like to thank all the members of the technical staff, from the "Werkstatt" and the "Materialausgabe" as well as the secretaries for their highly efficient and friendly service, without which the chemical institute would not run smoothly.

Special thanks to Dr. Jefferson Revell and Dr. Valérie Jullien for their invaluable help in revising the manuscript.

I am grateful to the Fonds der Chemischen Industrie for a Kekulé Fellowship.

Finally, but not less heartfelt, I would like to thank my family and friends, for their support, their love and their friendship.
1 INTRODUCTION 4
$\underline{2}$ CONFORMATIONAL ANALYSIS OF AZIDOPROLINE DERIVATIVES 12
2.1 Introduction 12
2.2 SYNTHESIS OF ACETYLATED 4-AZIDOPROLINE DERIVATIVES 14
2.3 ANALYSIS OF THE S-CIS:S-TRANS RATIO OF 14-21 16
2.3.1 ANALYSIS OF THE S-CIS:S-TRANS RATIO IN THE METHYL ESTER DERIVATIVES 14 AND 1516
2.3.2 ANALYSIS OF THE S-CIS:S-TRANS RATIO IN THE AMIDE DERIVATIVES 16-19 17
2.3.3 ANALYSIS OF THE S-CIS:S-TRANS RATIO IN THE DIPEPTIDES 20 AND 21 18
2.4 CONFORMATIONAL ANALYSIS 20
2.4.1 CONFORMATIONAL ANALYSIS OF THE PYRROLIDINE RING OF 14 21
2.4.2 CONFORMATIONAL ANALYSIS OF THE PYRROLIDINE RING OF 15 23
2.5 FURTHER STUDIES USING CRYSTAL STRUCTURE ANALYSIS, IR-SPECTROSCOPY AND AB InItIO CALCULATIONS 24
2.5.1 X-Ray analysis 24
2.5.2 IR studies 26
2.5.3 Ab Initio Calculations 27
2.6 KINETIC STUDIES USING 2D EXSY NMR 31
2.7 Summary 35
3 THE CYCLOTRIPROLINE SCAFFOLD 36
3.1 BaCkground 36
3.2 Synthesis of the Cyclotriproline Scaffold 38
3.3 GLOBAL REDUCTION OF THE AZIDES TO AMINES FOLLOWED BY ACETYLATION 40
3.4 Structural analysis of cyclotri[(4S)-azidoproline] 34 41
3.5 STRUCTURAL ANALYSIS OF CYCLOTRI[(4S)-ACETAMIDOPROLINE] 33 43
3.6 SUMMARY 46
4 BINDING STUDIES OF A CYCLOTRIPROLINE-BASED PEPTIDE RECEPTOR 48
4.1 SYNTHESIS OF CYCLOTRIPROLINE BASED PEPTIDE RECEPTORS 48
4.2 Combinatorial Screenings 50
4.3 Determination of Binding Affinities by Isothermal Titration Calorimetry 53
4.4 Summary 56
5 CONCLUSIONS AND OUTLOOK 58
6 EXPERIMENTAL SECTION 61
6.1 LIST OF ABBREVIATIONS 61
6.2 General Methods 64
6.3 General Procedures: 66
6.3.1 GENERAL PROCEDURE FOR THE SAPONIFICATION OF A METHYL-ESTER (2 MMOL SCALE): 66
6.3.2 GENERAL PROCEDURE FOR THE FORMATION OF A PENTAFLUOROPHENYL ESTER (2 MMOL SCALE): 66
6.3.3 GENERAL PROCEDURE FOR BOC-DEPROTECTION (2 MMOL SCALE): 66
6.3.4 GENERAL PROCEDURE FOR FMOC-DEPROTECTION (2 MMOL SCALE) 67
6.3.5 GENERAL PROCEDURE FOR THE COUPLING OF A PFP-ESTER WITH A HCl-SALT (2 Mmol scale): 67
6.4 SYNTHESIS OF THE ACETYLATED 4-AZIDOPROLINE DERIVATIVES 68
6.4.1 SYNTHESIS OF THE MONOMERIC METHYL ESTER DERIVATIVES. 68
6.4.2 SYNTHESIS OF THE MONOMERIC AMIDE DERIVATIVES. 72
6.4.3 SYNTHESIS OF THE DIMERIC METHLY ESTER DERIVATIVES 79
6.5 SYNTHESIS OF THE CYCLOTRIPROLINE SCAFFOLD AND DERIVATIVES 83
6.5.1 BOC-[PRO(4S) $\left.-\mathrm{N}_{3}\right]_{3}-\mathrm{OCH}_{3} 35$ 83
6.5.2 Boc $\left[\text { Pro-(4S) }-\mathrm{N}_{3}\right]_{3}-\mathrm{OH}$ 84
6.5.3 $\mathrm{HCL} \cdot \mathrm{H}-\left[(4 \mathrm{~S})-\mathrm{N}_{3}-\mathrm{L}-\mathrm{PRO}\right]_{3}-\mathrm{OH} 36$ 85
6.5.4 CYCLO[PRO-(4S)-N $\left.\mathrm{N}_{3}\right]_{3} 34$ 86
6.5.5 CYCLO[PRO(4S)NHAC] 33 87
6.5.6 CYCLO[PRO-(4R)- $\left.\mathrm{N}_{3}\right]_{3} 40$ 88
6.5.7 CYCLO[PRO-(4R)-NHAC] 32 89
6.6 SYNTHESIS OF THE RECEPTOR PROTOTYPE 90
6.6.1 CYCLOTRIPROLINE-TYR(DR)-BOC 42 90
6.6.2 Cyclotriproline-Tyr(DR)-Asp(${ }^{\text {T }}$ BU)-FMOC 43 91
6.6.3 Cyclotriproline-Tyr(DR)-Asp(${ }^{T}$ BU)-AsP(${ }^{T}$ Bu)-Fmoc 44 92
6.6.4 Cyclotriproline-TyR(DR)-ASP($\left.{ }^{(} \mathrm{BU}\right)$-ASP($\left.{ }^{\top} \mathrm{BU}\right)$ - AC 45 93
Cyclotriproline-TyR(DR)-Asp-Asp-Ac 46 94
7 REFERENCES AND APPENDICES 96
7.1 References 96
7.2 APPENDIX A: LIST OF SEQUENCES FOUND IN THE COMBINATORIAL SCREENINGS 102
7.3 APPENDIX B: CRySTALLOGRAPHIC DATA 104

1 Introduction

In nature, the function of a molecule depends largely upon its conformation. This holds true for nature's largest molecules such as DNA and proteins, as well as for its relatively small molecules, such as peptides (both linear and cyclic) or polyketides among many others. As these molecules are typically only active in a specific conformation, understanding the factors that control the conformation of relatively small molecules is of great importance. While proteins have secondary, tertiary and even quaternary structural elements controlling their conformation, the conformation of small molecules is controlled by more elementary, structure-inherent effects.

A basic principle nature applies to control the conformation of small molecules is by covalently restricting the conformation, for instance by cyclization. Cyclization to cyclic or even polycyclic systems, restricts the conformational flexibility of molecules, leading to more rigid, conformationally defined structures. A well-known example illustrating this principle is Vancomycin, a glycopeptidic antibiotic isolated from Amycolatopsis orientalis. ${ }^{[1]}$

Figure 1: Vancomycin and its target sequence.
The efficiency of Vancomycin is highly dependent upon its conformation. The vancomycin skeleton (figure 1) consists of three interlocked cyclic tripeptides which collectively afford a conformationally rigid cup-shaped structure. ${ }^{[2]}$ Small changes in
the structure of Vancomycin lead to less active or even inactive compounds. Due to the perfect alignment of hydrogen donor and acceptor sites on the molecule, Vancomycin binds its target sequence UDP- N-acetylmuramyl-L-Ala-D-Glu-L-Lys-D-Ala-D-Ala-OH with a binding constant of $1.6 \times 10^{-5} \mathrm{M}^{-1}$ (or a dissociation constant of $62.5 \mu \mathrm{M}$). ${ }^{[3]}$

In the realm of the polyketides, nature uses two major principles to destabilize undesired conformations: one is to avoid 1,3-allylic strain and the other is to avoid syn-pentane interactions. ${ }^{[4,5,6]}$

Figure 2: Preferred conformation of a 1,1-disubstituted allylic system (left) and of a pentane destabilized by a syn-pentane interaction (right).

The destabilizing syn-pentane interaction is created when a hydrocarbon chain is folded in such a way that the terminal methyl groups are in gauche conformations to the backbone. This brings the methyl groups into close proximity, similar to the 1,3-diaxial arrangement in substituted cyclohexanes. Thus, the conformation shown in figure 2 on the right is energetically unfavorable and will be avoided if possible. In contrast, the 1,1-disubtituted allylic system shown in figure 2 on the left is a low energy conformation and will be adopted if possible. Using these basic principles, nature controls the conformation of seemingly flexible molecules. One example is Zincophorin 1, an ionophore antibiotic isolated from a strain of Streptomyces griseus. ${ }^{[7,8]}$

Figure 3: The ionophore antibiotic Zincophorin.
The conformation of Zincophorin is governed by avoidance of 1,3 allylic strain (in the part of the molecule marked "Part A" in figure 3) and syn-pentane interactions (in the part of the molecule marked "Part B" in figure 3). Hoffmann and coworkers have shown
that the careful placement of the methyl groups along the backbone of hydrocarbon and polyketide natural products renders them "flexible molecules with a defined shape". ${ }^{[9]}$

These examples illustrate some of the ways in which nature controls the conformation of small molecules. These conformation-directing elements have been applied to control the stereochemical outcome of organic reactions, ${ }^{[10 \mathrm{a}-\mathrm{c}]}$ in the total synthesis of natural products, ${ }^{[10 d]}$ as well as in the design of structurally defined small molecules. ${ }^{[10 \mathrm{e}]}$ Hoffmann and coworkers have demonstrated, that with the principles of the allylic strain and the syn-pentane interaction, a mimic for the β^{II}-hairpin can be designed (figure 4). ${ }^{[10 e]}$

A

B

Figure 4: $\beta^{I I}$-hairpin-mimic A and natural $\beta^{I I}$-hairpin B.
Using the same principles, Still and coworkers designed podand ionophores (figure 5). ${ }^{[11]}$ Even though the molecule shown in figure 5 could principally form many conformers, by careful placement of methyl groups, the undesired conformations are destabilized through syn-pentane interactions. Thus, only one low energy conformation is found. ${ }^{[11 f]}$

Figure 5: General structure of podand ionophores, $X=\mathrm{CH}_{2}, \mathrm{O}, \mathrm{S}$ or SO_{2}.

Still and coworkers showed that podands of this type are chiral analogs of 18-crown-6 and allow for highly enantioselective binding of the protonated N -terminus of amides and esters of amino acids, due to their highly defined structure. For example, a podand of the class shown in figure 5 , in which $\mathrm{X}=\mathrm{SO}_{2}$ binds amides and esters of α-amino acids with enantioselectivities as high as 80% ee. ${ }^{[11]}$

Peptides can adopt secondary structure motifs such as α-helices, β-sheets and turn conformations. Furthermore, there are polyproline helices as found in collagen. With the exception of the polyproline helices, the stabilization of these secondary structure elements relies upon hydrogen bonding interactions and the number of residues needed to form these structures is typically larger than $5 .{ }^{[12]}$ At a more basic level, the conformation of peptides is also governed by the principles shown above: Syn-pentane interactions and 1,3-allylic strain.

Figure 6: Mesomeric structures of an amide bond (left) and analogous allylic system (right).
The amide bond has two mesomeric structures, shown in figure 6 on the left. By comparison to 2,4-dimethylpent-2-ene shown on the right, it can be seen that the ionic mesomeric structure is analogous to the allylic systems discussed earlier. Likewise, the conformational preference is similar to the allylic systems discussed. The conformation of the peptide backbone is described by three dihedral angles, ϕ, ψ and ω (see figure 6). Taking the 1,3 -allylic strain and the syn-pentane interactions into account, a peptide is ideally arranged when its backbone dihedral angles ϕ and ψ alternate between $+120^{\circ}$ and -120°. ${ }^{[12]}$

Due to the mesomeric structures shown in figure $6, \omega$ can only take the value of 0 or 180°, which are referred to as s-cis and s-trans, respectively (figure 7). In most peptide bonds, the s-trans conformer is greatly favored over the s-cis conformer.

Figure 7: s-trans versus s-cis conformation in a peptide bond.

Among the natural amino acids, proline is special. It is the only cyclic proteinogenic amino acid and the only one with a secondary amine. Furthermore, it differs from the other amino acids in its conformational preference. In all other amino acids for steric reasons, the amide bond is found almost exclusively in the s-trans ($\omega=180^{\circ}$)
conformation. A survey of 571 protein structures found 0.03% of Xaa_{i-1}-nonPro ${ }_{i}$ peptide bonds to be in the s-cis. In contrast, the $\mathrm{Xaa}_{i-1}-\mathrm{Pro}_{i}$ bond was found to be in the s-cis conformation $(\omega=0)$ in 5.2% of the peptide bonds of the proteins studied. ${ }^{[13,14]}$

The cis-proline conformation plays an important role in the folding and the activity of proteins. An example, in which a cis-proline is an important for the folding of enzymes, is the class of the glutathione S -transferases. In this class of enzymes, a cis-proline unit mediates a sharp turn between an α-helical part of the protein and a β-strand, essential for its conformational stability and activity. ${ }^{[15]}$ Bovine prothrombine is an example, in which the change from a trans-proline to a cis-proline is a switch for the activity of the protein. The binding of calcium leads to isomerization of a trans-proline to a cis-proline bond, inducing bovine prothrombine to assume its active, membrane-binding conformation. ${ }^{[16]}$ Furthermore, proline cis/trans isomerizations have been identified as the rate-limiting step in the folding of many proteins. ${ }^{[17]}$ For some proteins the correct conformation is achieved with the help of peptidylproline cis/trans isomerases (PPIases), a class of enzymes, which also plays an important role in the immune response. ${ }^{[18]}$

Apart from proline itself, a variety of proline derivatives are found in nature. Both dehydrogenated, as well as mono- and polysubstituted proline derivatives have been found (figure 8). ${ }^{[19]}$ In many cases, the proline derivatives themselves, or peptides containing them, display antibiotic, neurotoxic or anti-tumor activity. The most common proline derivative is ($4 R$)-hydroxyproline 3 , which is a major component of collagen and was first discovered in gelatin hydrolysates in 1902. ${ }^{[20]}$ Collagen is an abundant triple-helical structure protein. In collagen, free hydroxyproline is not incorporated directly, instead proline is converted to hydroxyproline after its incorporation into the peptide chain. ${ }^{[21]} 3$-Hydroxyproline 4 was first isolated from hydrolysates of mediterranean sponge, ${ }^{[22]}$ and was later also found in human urine, resulting from collagen metabolism. ${ }^{[23]}$ Moreover, many members of the class of the actinomycin antibiotics ${ }^{[24]}$ also contain (4R)-hydroxyproline $3,{ }^{[25]}$ as well as 4-ketoproline $\mathbf{6},{ }^{[26,27]} 3$-hydroxy-5-methylproline $\mathbf{5}^{[28,29]}$ or 5-methylproline $\mathbf{2} .{ }^{[27,30]}$

Figure 8: Natural proline derivatives.
Both diastereoisomers of 3-methylproline $\mathbf{8}^{[31]}$ and $\mathbf{9}^{[32,33]}$ are known, both as part of cyclic peptides, and even cis-3,4-methano-L-proline $\mathbf{1 0}^{[34]}$ has been isolated. Another noteworthy member of the proline derivatives is kainic acid $7,{ }^{[35]}$ which is a neurotoxin, ${ }^{[36]}$ by a neurotransmitting effect mediated through glutamate receptors. It is a conformationally restricted analog of glutamic acid, which has been found to be the molecular basis for its activity. ${ }^{[37]}$ By administration of kainic acid 7, an animal model of Huntington's chorea in rats was generated. ${ }^{[38]}$

Non-natural proline derivatives have been developed as mimics of proline and hydroxyproline. It would be interesting to lock the $\mathrm{Xaa}_{i-1}-\mathrm{Pro}_{i}$ bond in an s-cis conformation to analyze its influence on the folding process. For example, $5,5^{\prime}$-dimethylproline (dmP) $\mathbf{1 1}^{[39,40]}$ (figure 9) was developed as a proline mimic, which locks the s-cis conformation of the peptide bond N -terminal to it.

Figure 9: 5,5'-dimethylproline (dmP) 11.
This was studied with the tripeptide sequences Tyr-Pro-Asn and Asn-Pro-Tyr, of Bovine pancreatic nulclease A , in which the $\mathrm{Xaa}_{i-1}-\mathrm{Pro}_{i}$ bond is in the s-cis conformation in the native form. 5,5'-dimethylproline was incorporated into these two tripeptide fragments and it was shown that for the Tyr-dmP-Asn peptide, the s-cis conformation of the Tyr-dmP bond was stable over a temperature range of 6 to $60^{\circ} \mathrm{C}$ [41]

Scheme 1: Synthesis of YPro; $X=O$ or $S, R=H$ or $C H_{3}, R^{\prime}, R^{\prime \prime}=$ aryl, alky.
Another type of proline mimics are the pseudo-prolines ($\Psi P r o$). These analogs derive from serine, threonine and cysteine, which can be converted to ($4 S$)-oxazolidine- and (4R)-thiazolidine-carboxylic acid, respectively (scheme 1). ${ }^{[42]}$ They can be used as protected forms of the amino acids they derive from, as the oxazolidine- and thiazolidine rings can be cleaved after peptide synthesis. ${ }^{[42 a]}$ In peptide synthesis, the use of pseudo-prolines helps to facilitate the synthesis by their capability to break aggregates, self-association, and β-sheet-like structures, thus improving the solubility of the growing in peptide chain. ${ }^{[43]}$ Furthermore, depending on the steric demand of the substituents R^{\prime} and R^{\prime}, the population of the s-cis conformation can be increased up to $>99 \%$. ${ }^{[44]}$

Figure 10: (4S)- and (4R)-fluoroproline 12 and 13 (left and right, respectively).
Another approach to modify proline to control the local conformation is the introduction of a fluoro-substituent at the 4-position (figure 10). Unlike 5,5'-dimethylproline 11 or the pseudo-prolines, the conformation of the 4-fluoroprolines $\mathbf{1 2}$ and $\mathbf{1 3}$ is not mainly influenced by steric effects, but by stereoelectronic effects. ${ }^{[45]}$ The inductive effect of the electronegative substituent at the 4-position influences the equilibrium between the s-cis and s-trans conformation in dependence of the configuration at $\mathrm{C}(4) .{ }^{[46,47]}$

This thesis presents studies on the influence of 4-azido-substitutents in azidoproline on the conformation of the pyrrolidine ring system as well as the conformation around the peptide bond in acetylated monomers and dimers. The azido-group may be reduced to an amine, which allows for further modifications. The insights gained were applied to the synthesis of a tripodal molecular scaffold. This scaffold was used as a backbone for a synthetic receptor, which binds peptides in aqueous solution.

In the first part the effect of a 4 -azido-substituent on the conformation of azidoproline is described. By NMR-spectroscopy, X-ray diffraction, FT-IR spectroscopy and ab initio calculations, the conformation of 4 -azidoproline derivatives was analyzed. Particular focus was laid on the s-cis:s-trans ratio and the factors influencing it. Furthermore, the kinetics of the interconversion of the s-cis and s-trans conformation of diastereomeric 4-azidoproline derivatives were determined by EXSY-NMR.

The second part of this thesis describes the synthesis and structural analysis of the azido-functionalized cyclotriproline and its application as a molecular scaffold for a peptide receptor. The binding properties were analyzed in on-bead screenings against an encoded tripeptide library in different buffer solutions. The binding affinity to a selected peptide was measured by isothermal titration calorimetry (ITC).

2 Conformational Analysis of Azidoproline Derivatives

2.1 Introduction

Previous studies have shown that the tendency for the formation of a diketopiperazine of 4 -azidoproline is dependent on the configuration at the $\mathrm{C}(4)$-position, on which the azide resides. ${ }^{[48]}$ When the configuration is (4S), an activated ester of azidoproline reacts to form the diketopiperazine in a one-pot reaction in 47% yield (scheme 2 a). However, when the configuration is $(4 R)$, the same reaction conditions yield less than 5% of the desired product (scheme 2 b). ${ }^{[49]}$

Scheme 2: Diketopiperazine formation in dependence of the configuration at C-4.
The diketopiperazine of $(4 R)$-configured azidoproline can be formed; however, the linear dipeptide precursor needs to be formed first (scheme 3). ${ }^{[50]}$

Scheme 3: Diketopiperazine formation of di[(4R)-azidoproline] methyl ester.
NMR studies revealed that the diketopiperazine derived from ($4 R$)-configured azidoproline is rigid and possesses a single favorable conformation, with the azido-group occupying the pseudo-axial conformation. In contrast, the diketopiperazine derived from (4S)-azidoproline is more flexible and shows a fast equilibrium between conformations with azido-substituent in the pseudo-axial and pseudo-equatorial
positions. ${ }^{[51]}$ These results indicate that the configuration of the $\mathrm{C}(4)$-position of azidoproline influences the conformation of the pyrrolidine ring system. Furthermore, the different cyclization tendencies indicate that the s-cis:s-trans equilibrium is also influenced by the configuration at $C(4)$.

Therefore, the influence of the azido-substituent and the configuration at $\mathrm{C}(4)$ on the conformation of 4 -azidoproline was studied. The 4 -azidoproline derivatives $\mathbf{1 4 - 2 1}$ (figure 11) were prepared for this study.

14

16

18

20

15

17

19

21

Figure 11: Acetylated 4-azidoproline derivatives studied.
Initially, the s-cis:s-trans ratio of the methyl ester derivatives $\mathbf{1 4}$ and $\mathbf{1 5}$ were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (chapter 2.3.1). Consequently, the influence of the C-terminal modification was analyzed by comparison with the amide derivatives 16-19 (chapter 2.3.2). Furthermore, the influence of the N -terminal modification was analyzed by comparison of the acetyl-derivatives 14-19 with the dipeptides 20 and 21 (chapter 2.3.3). To further probe the influence of the azido-substituent, the conformation of the pyrrolidine ring systems, 14 and 15 were analyzed by interpretation of the ${ }^{3} J_{(\mathrm{H}-\mathrm{H})}$ coupling constants, as well as COSY, TOCSY and NOESY experiments in various solvents (chapter 2.4.). Furthermore, crystal structure analysis, IR-spectroscopy and $a b$
inito calculations were performed (chapter 2.5). Finally, the kinetics of the s-cis:s-trans isomerization in $\mathbf{1 4}$ and $\mathbf{1 5}$ were determined by 2D EXSY NMR (chapter 2.6).

2.2 Synthesis of acetylated 4-azidoproline derivatives

Scheme 4: Synthesis of acetyl-(4S)-azidoproline methyl ester 14 and acetyl-(4R)-azidoproline methyl ester 15.

The synthesis started from commercially available $\mathrm{N}-\alpha$-Boc-($4 R$)-hydroxyproline 22, which was converted into its methyl ester 23. The hydoxy-group of N - α-Boc-(4R)hydroxyproline methyl ester 23 was activated as the mesylate and reacted in an $\mathrm{S}_{\mathrm{N}} 2$-reaction with sodium azide under inversion of configuration at $\mathrm{C}(4)$ to yield the N - α-Boc-(4S)-azidoproline methyl ester 24. Boc-deprotection and acetylation led to acetyl-($4 S$)-azidoproline methyl ester $\mathbf{1 4}$. To obtain the acetylated methyl ester with opposite stereochemistry at $\mathrm{C}(4), \mathrm{N}-\alpha$-Boc-(4R)-hydroxyproline methyl ester 23 was converted in a Mitsunobu reaction to the mesylate $\mathbf{2 5}$ under inversion of configuration at $\mathrm{C}(4)$. The mesylate $\mathbf{2 5}$ was reacted without further purification under inversion of configuration with sodium azide, yielding $\mathrm{N}-\alpha$-Boc-(4R)-azidoproline methyl ester 26. Boc-deprotection and acetylation led to acetyl-(4R)-azidoproline methyl ester $\mathbf{1 5}$ (scheme 4).

a) i) $\mathrm{NaOH}(2 \mathrm{eq}), \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}$, r.t., 1 h ; ii) $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}\left(1.1 \mathrm{eq}\right.$), $\mathrm{EDC}(1.5 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1.5 h , 85%; b) $\mathrm{HNMe}_{2} \cdot \mathrm{HCl}(10 \mathrm{eq}), \mathrm{NEt}_{3}(10 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 10 min .; 87%; c) pyrrolidine (2 eq), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., quant.; d) i) 4 M HCl in Dioxane, r.t., 95%; ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 80%.

Scheme 5: Synthesis of acetylated 4-azidoproline amide derivatives.
The amide modified acetylated proline derivatives 16 and $\mathbf{1 8}$ were synthesized (scheme 5) starting from $\operatorname{Boc}\left[\operatorname{Pro}-(4 S)-\mathrm{N}_{3}\right] \mathrm{OCH}_{3}$ 24, which was converted into the pentafluorophenol ester 27, which in turn was either reacted with dimethylamine hydrochloride yielding the dimethyl amide $\mathbf{2 8}$ or with pyrrolidine yielding the pyrrolidine amide 29. The Boc-protected amide derivatives 28 and 29 were converted to their acetyl derivatives $\mathbf{1 6}$ and 18, respectively, by Boc-deprotection followed by acetylation with acetic anhydride in the presence of triethylamine. The diastereomeric acetylated (4R)-azidoproline amide derivatives 17 and 19 (figure 11) were synthesized analogously starting from the (4R)-configured methyl ester 26.

a) i) $\mathrm{NaOH}(2 \mathrm{eq}), \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}$, r.t., 1 h ; ii) $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{OH}(1.1 \mathrm{eq})$, $\mathrm{EDC}(1.5 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1.5 h , 85%; b) 4 M HCl in dioxane, r.t., $30 \mathrm{~min} ., 95 \%$; c) ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(4.4 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $12 \mathrm{~h}, 88 \%$; d) i) 4 M HCl in dioxane, r.t., 95%; ii) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 80%.

Scheme 6: Synthesis of acetyl-di[(4S)-azidoproline] $\mathrm{OCH}_{3} 20$.
The synthesis of acetyl-di[(4S)-azidoproline $\mathrm{OCH}_{3} \mathbf{2 0}$ (scheme 6) commences from $\mathrm{N}-\alpha$-Boc-(4S)-azidoproline methyl ester $\mathbf{2 4}$ which was on the one hand converted into
the pentafluorophenyl ester 27, and on the other hand, Boc-deprotected to the hydrochloride salt 30. The pentafluorophenyl ester 27 and the hydrochloride salt 30 were reacted with each other to form the dipeptide 31. Boc-deprotection and acetylation lead to acetyl-di[(4S)-azidoproline $] \mathrm{OCH}_{3}$ 20. The diastereomeric acetyl-di[(4R)-azidoproline] $\mathrm{OCH}_{3} 21$ was synthesized analogously.

2.3 Analysis of the s-cis:s-trans ratio of 14-21

To study the dependence of the s-cis:s-trans equilibrium on the configuration of the $\mathrm{C}(4)$-position of the 4 -azidoproline derivatives, the relative populations of the s-cis and s-trans conformers of the ($4 S$)-derivatives $\mathbf{1 4}, \mathbf{1 6}, 18$ and 20 and the $(4 R)$-derivatives $\mathbf{1 5}$, 17, 19 and 21 (figure 11) were determined by ${ }^{1} \mathrm{H}$-NMR. The ${ }^{1} \mathrm{H}$-NMR spectra of all derivatives show two seperate six-spin systems corresponding to the protons of the pyrrolidine ring in the s-cis and the s-trans conformation. 2D NOE spectroscopy was used to assign the conformation of the two spin systems. Integration of the peaks in the ${ }^{1} \mathrm{H}$-NMR yielded the relative populations.

2.3.1 Analysis of the s-cis:s-trans ratio in the methyl ester derivatives $\mathbf{1 4}$ and $\mathbf{1 5}$

Initially, the relative population of the s-trans and the s-cis conformation of the methyl ester derivatives $\mathbf{1 4}$ and $\mathbf{1 5}$ was determined in various solvents (table 1).

Table 1: s-cis:s-trans ratios of $\mathbf{1 4}$ and $\mathbf{1 5}$ compared to Ac -Pro- OCH_{3} as determined by ${ }^{l} H-N M R$.

		$\mathbf{1 4}$	$\mathbf{1 5}$	Ac-Pro-OCH ${ }_{3}$
Entry	Solvent	s-cis:s-trans	s-cis:s-trans	s-cis:s-trans
1	$\mathrm{D}_{2} \mathrm{O}$	$1: 2.5$	$1: 6$	$1: 5$
2	DMF-d $_{7}$	$1: 1.5$	$1: 4.5$	$1: 3.6$
3	pyridine- $_{6}$	$1: 2$	$1: 4.5$	n.d. ${ }^{\mathrm{a}}$
4	acetone-d $_{6}$	$1: 2$	$1: 4$	$1: 3.5$
5	CDCl_{3}	$1: 2$	$1: 4$	$1: 3.7$
6	${\text { dioxane- } \mathrm{d}_{8}}$	$1: 2$	$1: 4$	n.d. ${ }^{\mathrm{a}}$

All samples were measured at 295 K and 80 mM concentration. a) "n.d.": not determined.

As expected, in both diastereoisomers 14 and 15, the s-trans conformation is favored (table 1). The comparison of the s-cis:s-trans ratio shows that the $(4 R)$-configured diastereoisomer $\mathbf{1 5}$ displays a higher preference for the s-trans conformation than the $(4 S)$-configured diastereoisomer 14. Generally, the acetyl-(4R)-azidoproline methyl ester 15 favors the s-trans conformation by a factor of 2-3 compared its ($4 S$)-diastereoisomer 14. Furthermore the largest difference between 14 and 15 is observed in water and DMF (table 2, entries 1 and 2). The typical ratio found for $\mathbf{1 5}$ is $1: 4$; for $\mathbf{1 4}$ the typical ratio is $1: 2$. For $\mathbf{1 4}$, in DMF an almost even distribution of the two conformations is observed (table 1, entry 2). The comparison to acetylated proline methyl ester demonstrates that the s-cis:s-trans ratio of ($4 S$)-azidoproline $\mathbf{1 4}$ lies further to the side of the s-cis conformer, while it lies more to the side of the s-trans conformation for (4R)-azidoproline 15 . This shows that the configuration at $\mathrm{C}(4)$ has a distinct influence on the s-cis:s-trans ratio of acetyl 4-azidoproline methyl ester.

2.3.2 Analysis of the s-cis:s-trans ratio in the amide derivatives 16-19

The studies presented thus far have all been performed with 4 -azidoproline methyl ester derivatives. To test the influence of the methyl ester, the amide derivatives 16-19 (figure 11) were analyzed. As the studies described in chapter 2.3.1 found the largest influence on the s-cis:s-trans ratio in DMF- d_{7}, this solvent was used for the NMR-spectroscopical analysis of the amide derivatives 16-19 (table 2).

Table 2: s-cis:s-trans ratio of acetylated 4-azidoproline amide derivatives in DMF-d $7,80 \mathrm{mM}$.

Entry	Compound	s-cis to s-trans ratio
1	$\mathbf{1 6}$	$1: 2$
2	$\mathbf{1 7}$	$1: 2$
3	$\mathbf{1 8}$	$1: 2$
4	$\mathbf{1 9}$	$1: 2$

Intriguingly, in DMF both diastereoisomers of the dimethyl amide derivatives $\mathbf{1 6}$ and $\mathbf{1 7}$ as well as both diastereoisomers of the pyrrolidine amide derivatives $\mathbf{1 8}$ and $\mathbf{1 9}$, show the same s-cis to s-trans ratio (table 2). This clearly indicates that the higher preference
for the s-trans conformation found in acetyl-($4 R$)-azidoproline methyl ester $\mathbf{1 5}$ is dependent on the C -terminal ester function.

2.3.3 Analysis of the s-cis:s-trans ratio in the dipeptides 20 and 21

To test whether the preferences for the ratio of s-cis:s-trans described in the previous chapters are dependent on the acetyl group, the acetylated diproline derivatives $\mathbf{2 0}$ and 21 were studied by NMR spectroscopy in DMF-d 7 .

The ${ }^{1} \mathrm{H}$-NMR spectra of $\mathbf{2 0}$ and $\mathbf{2 1}$ show four sets of signals, indicating the presence of four different conformers. Based on NOESY experiments, these conformers were assigned as the s-trans/s-trans, s-trans $/$ s-cis, s-cis/s-trans and s-cis/s-cis conformations (scheme 7).

Scheme 7: The four possible conformers of acetyl-di[(4S)-azidoproline] OCH_{3}. The arrows indicate the positions of protons that show an NOE with each other, indicative of the conformation.

An NOE between the protons of the acetyl group and the protons at $\mathrm{C}(\delta)$ is indicative of an s-trans conformation of the N -terminal amide bond (scheme 7, left). Conversely, an NOE between the protons of the acetyl group and the proton at $\mathrm{C}(\alpha)$ indicates an s-cis conformation (scheme 7, right). The s-trans conformation of the central amide bond was assigned based on an NOE between the proton at $\mathrm{C}(\alpha)$ of the N -terminal 4 -azidoproline and the proton at $\mathrm{C}(\delta)$ of the C -terminal 4 -azidoproline (scheme 7 , top). In the s-cis conformation of the central amide bond, an NOE between the two protons at the $\mathrm{C}(\alpha)$ positions of the two 4 -azidoprolines was observed (scheme 7, bottom).

Table 3: Population of conformations in 20 and 21, listed for each amide bond.

Entry	N-terminal	Central	$\mathbf{2 0}$	$\mathbf{2 1}$
1	s-trans	s-trans	21	22
2	s-cis	s-trans	8	8
3	s-trans	s-cis	1	1
4	s-cis	s-cis	4	1

Measurements at 80 mM concentration in DMF-d $\mathrm{d}_{7}, 295 \mathrm{~K}$.
By integration of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals corresponding to the different conformers, the relative population of each of the conformers was determined. The relative populations of the s-trans/s-trans, s-trans/s-cis and s-cis/s-trans conformations were found to be equal in both diastereoisomers, 20 and 21 (table 3, entries 1-3). However, 20 shows a 4-fold higher population of the s-cis/s-cis conformation (table 3, entry 4).

Table 4: s-cis:s-trans ratio for the amide bonds of 20 and 21.

Entry	Amide Bond	$\mathbf{2 0}$	$\mathbf{2 1}$
		s-cis:s-trans	s-cis:s-trans

Measurements at 80 mM concentration in DMF-d $\mathrm{d}_{7}, 295 \mathrm{~K}$.
Looking at each amide bond separately, the influence of the configuration at $\mathrm{C}(4)$ and of the C-terminal residue becomes apparent (table 4). For the conformation around the N-terminal amide bond, no difference between the diastereoisomers is found (table 4, entry 1). This is in accordance with the results presented in chapter 2.3.2, which indicated that 4 -azidoproline derivatives with a C-terminal amide show the same s-cis:s-trans ratio, regardless of the configuration at $\mathrm{C}(4)$. The conformation around the central amide bond, however, shows a dependence on the configuration at $\mathrm{C}(4)$ (table 4 , entry 2). While ($4 S$)-derivative 20 shows a 1:6 ratio of the population of the s-cis:s-trans conformer, ($4 R$)-derivative 21 shows a 1:15 ratio. Thus, 21 shows a 2.5 -fold higher preference for the s-trans conformation than $\mathbf{2 0}$. This is in accordance with the findings described in chapter 2.3.1, which indicated that acetyl-(4R)-azidoproline methyl ester $\mathbf{1 5}$
has a 2- to 3-fold higher preference for the s-trans conformation than its diastereoisomer

14.

2.4 Conformational analysis

To understand the basis of the higher preference for the s-trans conformation in N - α-acetyl-($4 R$)-azidoproline methyl ester 15 compared to its diastereoisomer 14, the conformations of the diastereoisomers were further analyzed by interpretation of the ${ }^{3} J_{(\mathrm{H}-\mathrm{H})}$ coupling constants, as well as by COSY, TOCSY and NOESY experiments in various solvents.

The pyrrolidine ring of proline can occupy a variety of conformations, which are in fast equilibrium with each other. ${ }^{[52]}$ For the analysis of the 4 -azidoproline derivatives, two main conformations are of importance: An endo-conformation, shown in scheme 8 on the top, and an exo-conformation shown on the bottom. For reasons of clarity, scheme 8 shows idealized depictions of only one of each of the many endo- and exo-conformations.

endo-conformation
14: $X=N_{3}, Y=H \gamma$
15: $\mathrm{X}=\mathrm{H} \gamma^{\prime}, \mathrm{Y}=\mathrm{N}_{3}$

14: $X=N_{3}, Y=H \gamma$

exo-conformation
15: $\mathrm{X}=\mathrm{H} \gamma^{\prime}, \mathrm{Y}=\mathrm{N}_{3}$
Scheme 8: Possible conformations of the pyrrolidine ring system in azidoprolines and Newman projections of these conformations (idealized).

The endo-conformation results in a pseudo-axial position of the azido-substituent in the case of acetyl-($4 S$)-azidoproline derivatives such as 14, whereas for acetyl-($4 R$)-azidoproline derivatives, such as 15, the azido-substituent is in a pseudo-equatorial position. Conversely, in a exo-conformation, the azide in $\mathbf{1 4}$ is in a pseudo-equatorial position, while in $\mathbf{1 5}$ it is in a pseudo-equatorial position. The

Newman projections in scheme 8 show, how the dihedral angles of these two conformations differ. The magnitude of the vicinal proton coupling constant, ${ }^{3} J_{(\mathrm{H}, \mathrm{H})}$, is dependent on the dihedral angle between the protons. This dependency can be fitted by the Karplus curve, ${ }^{[53]}$ which enables conclusions about the dihedral angles based upon the magnitude of ${ }^{3} J_{(\mathrm{H}, \mathrm{H})}$ to be drawn. The Karplus curve is described by the following equation:

$$
{ }^{3} J_{H, H}=A \cos ^{2} \Theta+B \cos \Theta+C
$$

In this equation Θ is the dihedral angle between the vicinal protons and the factors A, B and C are parameters used to fit the curve to specific types of molecules. ${ }^{[54]}$ In the following discussion, the parameters used are: $\mathrm{A}=9.5, \mathrm{~B}=-1, \mathrm{C}=1.4$. These parameters were developed for cyclotriproline. ${ }^{[55]}$

2.4.1 Conformational analysis of the pyrrolidine ring of 14

Table 5: ${ }^{3} J_{H, H}$ Coupling constants of N - α-acetyl-(4S)-azidoproline methyl ester 14.

entry	${ }^{3} J_{(H, H)}$	$\mathrm{D}_{2} \mathrm{O}$		DMF-d		$\mathrm{CD}_{3} \mathrm{OD}$		CDCl_{3}	
		s-trans	s-cis	s-trans	s-cis	s-trans	s-cis	s-trans	s-cis
1	$\mathrm{H}^{\alpha}-\mathrm{H}^{\beta}$	9.6	7.2	9.1	9.0	9.2	8.5	8.9	6.1
2	$\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$	2.5	3.1	4.2	1.5	3.7	1.5	4.3	4.1
3	$\mathrm{H}^{\beta}-\mathrm{H}^{\gamma}$	5.2	nd^{a}	6.0	5.2	5.7	4.8	nd^{a}	nd^{a}
4	$\mathrm{H}^{\beta^{\prime}-\mathrm{H}^{\gamma}}$	2.4	nd^{a}	4.7	3.0	3.8	1.6	4.4	nd^{a}
5	$\mathrm{H}^{\gamma}-\mathrm{H}^{\delta}$	5.3	5.3	6.1	5.4	5.9	5.5	6.1	nd^{a}
6	$\mathrm{H}^{\gamma}-\mathrm{H}^{\delta^{\prime}}$	1.6	<1	4.0	1.5	3.5	<1	4.2	1.3
7	$\mathrm{H}^{\beta^{\prime}-\mathrm{H}^{\delta^{\mathrm{b}}}}$	1.5	nd^{a}	<1	<1	0.7	1.6	nd^{a}	nd^{a}

All measurements were performed at 80 mM concentration at 295 K . a) "nd" coupling constants could not be determined due to signal overlap; b) ${ }^{4} J$ "W" coupling indicating the pseudo-equatorial protons at $C(\beta)$ and $\mathrm{C}(\delta)$.

Table 5 shows the vicinal coupling constants of $\mathbf{1 4}$ in various solvents. For the analysis of conformation of the pyrrolidine ring, three coupling constants are of particular interest, the $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$ coupling, the $\mathrm{H}^{\beta^{\prime}}-\mathrm{H}^{\gamma}$ coupling and the $\mathrm{H}^{\gamma}-\mathrm{H}^{\delta^{\prime}}$ coupling (table 5, entries 2, 4 and 6 , respectively). From the magnitude of these couplings, and the
dihedral angles associated with them by the Karplus curve, ${ }^{[53,55]}$ the conformation of the pyrrolidine ring was determined.

Based on the Karplus curve and the parameters used, coupling constants close to 1.4 Hz are indicative of dihedral angles close to 90°. For the s-cis conformer, the vicinal coupling constants found for the $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$ coupling, the $\mathrm{H}^{\beta^{\prime}}-\mathrm{H}^{\gamma}$ coupling and the $\mathrm{H}^{\gamma}-\mathrm{H}^{\delta^{\prime}}$ coupling (table 5, entries 2, 4 and 6, respectively) are almost all smaller than 3 Hz , in most cases even smaller than 1.5 Hz . This indicates that the dihedral angles of these protons are close to 90°. It is clear from the Newman projections in scheme 8 that these dihedral angles are in good agreement with the endo-conformation.

The somewhat larger values found for these coupling constants in the s-trans conformer indicate that the pyrrolidine ring is more flexible and that a higher population of the exo-conformation, with the azido-substituent in the pseudo-equatorial position, is present. This leads to an averaging of these coupling constants, however, the magnitude of the coupling constants found show that the weight of this equilibrium is largely on the side of the endo-conformation. This is further supported by the ${ }^{4} J_{(\mathrm{H}, \mathrm{H})}$ "W" coupling found between $\mathrm{H}^{\mathrm{\beta}^{\prime}}$ and $\mathrm{H}^{\delta^{\prime}}$ (table 5, entry 7), which indicates that these protons occupy the pseudo-equatorial positions. Thus, for both the s-cis and the s-trans conformation, the pyrrolidine ring of N - α-acetyl-(4S)-azidoproline methyl ester $\mathbf{1 4}$ favors the endoconformation. This leads to the azido-group being in the pseudo-axial position.

2.4.2 Conformational analysis of the pyrrolidine ring of 15

Table 6: ${ }^{3} J_{H, H}$ Coupling constants of N - α-acetyl-(4R)-azidoproline methyl ester 15.

entry	${ }^{3} J_{(\mathrm{H}, \mathrm{H})}$	$\mathrm{D}_{2} \mathrm{O}$		DMF-d		$\mathrm{CD}_{3} \mathrm{OD}$		CDCl_{3}	
		s-trans	s-cis	s-trans	s-cis	s-trans	s-cis	s-trans	s-cis
1	$\mathrm{H}^{\alpha}-\mathrm{H}^{\beta}$	8.0	8.6	8.2	7.5	8.2	8.5	8.2	8.3
2	$\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$	8.3	nd^{a}	7.1	6.7	7.5	6.0	6.4	5.8
3	$\mathrm{H}^{\beta}-\mathrm{H}^{\gamma^{\prime}}$	3.3	4.7	4.4	nd^{a}	4.1	5.0	5.0	5.1
4	$\mathrm{H}^{\beta^{\prime}-\mathrm{H}^{\gamma^{\prime}}}$	5.3	nd^{a}	5.6	nd^{a}	5.5	5.9	6.1	6.1
5	$\mathrm{H}^{\gamma^{\prime}}-\mathrm{H}^{\delta}$	2.3	nd^{a}	3.5	nd^{a}	3.2	1.5	3.8	4.8
6	$\mathrm{H}^{\gamma^{\prime}-\mathrm{H}^{\delta^{\prime}}}$	5.9	5.5	5.4	5.7	5.2	5.7	5.6	5.8
7	$\mathrm{H}^{\beta}-\mathrm{H}^{\delta b}$	1.5	nd^{a}	1.2	nd^{a}	1.4	1.4	1.0	1.2

a) "nd" coupling constants could not be determined due to signal overlap, b) ${ }^{4} J$ " W " coupling indicating the pseudo-equatorial protons at $\mathrm{C}(\beta)$ and $\mathrm{C}(\delta)$.

Analogously to the (4S)-diastereoisomer 14, the coupling constants of the $(4 R)$-diastereoisomer 15 were analyzed. At the first glance, the coupling constants observed for 15 differ significantly from the ones observed for 14 and are not in agreement with an endo-conformation. The $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$ coupling constant found (table 6, entry 2) is much larger than in the case of $\mathbf{1 4}$, while the $\mathrm{H}^{\prime}-\mathrm{H}^{\delta}$ coupling constant (table 6 , entry 5) is much smaller than in the case of $\mathbf{1 4}$. The $\mathrm{H}^{\gamma^{\prime}}-\mathrm{H}^{\delta}$ coupling constant is in the range of $1.5-4 \mathrm{~Hz}$, indicating an angle close to 60 and 90°. Furthermore, the ${ }^{4} J_{(\mathrm{H}, \mathrm{H})}$ "W" coupling found between H^{β} and H^{δ} (table 6 , entry 7), indicates that now these protons occupy the pseudo-equatorial positions. The coupling constants found match the dihedral angles predicted for an exo-conformation, as shown in scheme 8. The pseudoequatorial positions of H^{β} and H^{δ} further support this analysis. Thus, the pyrrolidine ring of $\mathbf{1 5}$ is in an exo-conformation, with the azido-group in the pseudo-axial position.

It is intriguing that in both diastereoisomers the azide occupies the pseudo-axial position. This suggests that the conformation of the pyrrolidine ring is determined by the azido-substituent. In both diastereoisomers, the main conformers show a gauche arrangement between the azide and the amide. This suggests that the conformation of
the pyrrolidine ring is controlled by a gauche interaction of the azido-group analogous to the known gauche effect found for fluoride. ${ }^{[56]}$

2.5 Further studies using crystal structure analysis, IR-spectroscopy and ab initio calculations

The studies in the previous chapters have revealed a higher preference for the s-trans conformation of the N -terminal peptide bond of (4R)-azidoproline methyl ester derivatives (see chapters 2.3.1 and 2.3.3). Thus far, no indications why this preference exits have been found. Therefore, further studies to understand this preference were undertaken.

2.5.1 X-Ray analysis

Single crystals of $\mathbf{1 5}$, suitable for X-ray diffraction were obtained by crystallization from acetone. Unfortunately, $\mathbf{1 4}$ is an oil, which could not be crystallized.

Figure12: X-ray structure of N - α-acetyl-(4R)-azidoproline methyl ester 15.
15 crystallized in a monoclinic system with four molecules per unit cell, with two different conformations. Figure 12 on the left, shows the s-trans $\mathrm{C} \gamma$-exo-conformation found in the crystal structure. This conformation is in good agreement with the conformations suggested by the anaylsis of the NMR-spectroscopical data (see chapter 2.4.2). The second structure found (figure 12, right) shows a twisted s-cis $\mathrm{C} \gamma$-endo-conformation, which is not in agreement with the analysis of the NMR spectra (see chapter 2.4.2). Probably this conformation is stabilized by interactions in the crystal lattice and thus does not represent an overall favorable conformation.

The analysis of the crystal structure reveals an element of the conformation which could not be analyzed by the NMR studies presented in the previous chapters: The orientation of the methyl ester. Its orientation is such that the oxygen of the acetyl group is at an angle of 98° and at a distance of $2.8 \AA$ to the carbonyl carbon of the methyl ester (figure 13). This angle is close to the ideal 103° angle of the Bürgi-Dunitz-trajectory, ${ }^{[57]}$ upon which a nucleophile attacks a carbonyl.

Figure 13: Bürgi-Dunitz-trajectory of the acetyl oxygen on the carbonyl group (X-ray structure).
The orientation of the methyl ester relative to the acetyl oxygen suggests a possible explanation for the higher s-trans preference of acetyl-($4 R$)-azidoproline methyl ester 15. The s-trans conformation might be stabilized by an interaction of the non-bonding electrons of the acetyl group with the π^{*}-orbital of the carbonyl bond of the methyl ester. Both the angle of 98° and the distance of $2.8 \AA$, which is well within the van-der-Waals distances, support this hypothesis. The existence of such an interaction is further supported by a slight pyramidalization of the carbonyl of the methyl ester, which is bent 3.7° out of its optimal plane. A similar observation was made in 4-fluroprolines, and has been referred to as an " $\mathrm{n}-\pi^{*}$ " interaction. ${ }^{[58,59]}$

This hypothesis is furthermore supported by the results presented in the previous chapters. It was shown that the higher preference for the s-trans conformation is observed in N - α-acetyl-(4R)-azidoproline methyl ester 15, but not in its amide derivatives $\mathbf{1 7}$ and $\mathbf{1 9}$ (see chapters 2.3 .1 and 2.3.2, respectively). This is in agreement with the hypothesis of an " $n-\pi^{*}$ "-interaction between the acetyl group and the carbonyl carbon. The non-bonding electrons of the oxygen of the acetyl group may be seen as a nucleophile, the carbonyl carbon is the electrophile; it is interacting with the electrophilic carbonyl carbon. In the case of the amide derivatives $\mathbf{1 7}$ and 19, the eletrophilicity of the carbonyl carbon is greatly reduced due to the mesomeric
stabilization from the nitrogen of the amide, which makes the nucleophilic interaction less favorable. The carbonyl carbon of the methyl ester is more electrophilic and thus, the nucleophilic interaction may take place. ${ }^{[60]}$

2.5.2 IR studies

To further test the hypothesis that an interaction between the oxygen of the acetyl group and the carbonyl group of the methyl ester, stabilizes the s-trans conformation in $(4 R)$-azidoproline derivatives, the vibrational stretching frequency of the ester carbonyl was determined by FT-IR spectroscopy in solution. The vibrational stretching frequency of carbonyl bonds is indicative of the bond length and bond order. A lower wave number corresponds to a lower bond order and longer bond length. An electron donation into the π^{*}-orbital, as suggested by the " $n-\pi^{*}$-interaction, should lead to a weakening of the double bond, the single bond character should be increased, which should lead to a lowering of the bond order, which should reflected in a shorter wave number.

Table 7: Vibrational stretching frequencies of the ester carbonyl group of 14 and 15.

Entry	Compound	$\mathrm{CHCl}_{3}\left[\mathrm{~cm}^{-1}\right]$	Dioxane $\left[\mathrm{cm}^{-1}\right]$
1	Ac-[Pro(4R) $\left.\mathrm{N}_{3}\right]-\mathrm{OCH}_{3} \mathbf{1 5}$	1745.3	1747.9
2	Ac-[Pro(4S)N $\left.\mathrm{N}_{3}\right]-\mathrm{OCH}_{3} \mathbf{1 4}$	1749.0	1752.0

All measurements were performed at 100 mM concentration in a NaCl cell.
In chloroform the carbonyl stretching band of the ($4 R$)-configured acetylated azidoproline methyl ester 15 is $4.7 \mathrm{~cm}^{-1}$ shorter (table 7, entry 1) than the carbonyl stretching band of the ($4 S$)-configured diastereoisomer $\mathbf{1 4}$ (table 7, entry 2). In dioxane, the difference is $4.1 \mathrm{~cm}^{-1}$.

Table 8: Vibrational stretching frequencies of the ester carbonyl group of 20 and 21.

Entry	Compound	$\mathrm{CHCl}_{3}\left[\mathrm{~cm}^{-1}\right]$
1	$\mathrm{Ac}-\left[\operatorname{Pro}(4 R) \mathrm{N}_{3}\right]_{2}-\mathrm{OCH}_{3} \mathbf{2 1}$	1744.9
2	Ac- $\left[\operatorname{Pro}(4 S) \mathrm{N}_{3}\right]_{2}-\mathrm{OCH}_{3} \mathbf{2 0}$	1748.1

All measurements were performed at 100 mM concentration in a NaCl cell.

Similarly, FT-IR spectroscopy of the acetylated dipeptides 20 and 21 in solution show that the vibrational stretching frequency of the ester carbonyl of $\mathrm{Ac}-\left[\operatorname{Pro}(4 R) \mathrm{N}_{3}\right]_{2}-\mathrm{OCH}_{3}$ 21 (table 8 , entry 1) is $3.2 \mathrm{~cm}^{-1}$ shorter than that of the diastereomeric acetylated dipeptides 20 (table 8 , entry 2).

The shifts of the vibrational stretching frequencies of the diastereomeric methyl ester derivatives $\mathbf{1 4}$ and $\mathbf{1 5}$ and $\mathbf{2 0}$ and $\mathbf{2 1}$ support the hypothesis, that in the ($4 R$)-configured methyl esters, the s-trans conformation is stabilized by an " $\mathrm{n}-\pi^{*}$ "-interaction.

2.5.3 Ab Initio Calculations

The analysis of the data obtained by NMR spectroscopy, X-Ray diffraction and FT-IR spectroscopy suggests that the conformation of the pyrrolidine ring systems of the 4 -azidoproline derivatives is governed by a gauche effect of the azide with the N-terminal amide, and that the s-trans conformation of the methyl ester derivatives of $(4 R)$-azidoproline is stabilized by an $" \mathrm{n}-\pi^{*} "$-interaction between the non-bonding electrons of the oxygen of the acetyl group with the carbonyl carbon of the methyl ester. To further investigate the gauche effect found and to gain insight into why the (4S)-azidoproline methyl ester derivatives do not stabilize the s-trans conformation, $a b$ initio calculations were performed in collaboration. ${ }^{[61]}$ Conformational searches with Spartan' $02^{[62]}$ were performed using molecular mechanic calculations with the force field MMFF (Merck Molecular Force Field). The structures of the conformers were optimized at the B3LYP/6-31G** level using the ab inito program QChem. ${ }^{[63]}$ RI-MP2/TZVP energetics were computed with Turbomole. ${ }^{[64]}$ These calculations are models for the gas phase and do not take solvent effects into account.

The preference for a gauche conformation over an eclipsed or anti conformation of 1,2-difluoroethane has been termed the gauche effect. ${ }^{[56]}$ In 1,2-difluroethane, the gauche effect has been studied intensively in computational studies ${ }^{[65]}$ and by spectroscopy. ${ }^{[66]}$ The gauche effect has also been observed in amide derivatives, such as N -(2-fluoroethyl)benzamide derivatives, where it has been observed in the solid state ${ }^{[67]}$ Thus, as a benchmark for the accuracy of the ab intio calculations and to see if the azide gauche effect found in the pyrrolidine systems is also present in conformationally less restricted molecules, disubstituted ethane derivatives were initially studied by ab initio calculations.

Table 9: Energy differences between the anti and the gauche conformation, calculated for ethane derivatives.

Entry	Compound	$\Delta \mathrm{E}=\mathrm{E}_{\text {anti }}-\mathrm{E}_{\text {gauche }}\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	
		$\mathrm{R}=\mathrm{F}$	$\mathrm{R}=\mathrm{N}_{3}$
1		0.9	1.3
2		1.4	1.3
3		1.7	3.3

For each ethane derivative the energy of the two conformations, anti and gauche was calculated. Table 9 lists the difference between the energies calculated; positive values indicate a preference for the gauche conformation. The energy difference calculated for 1,2 -difluoroethane (table 9, entry 1) of $0.9 \mathrm{kcal} \mathrm{mol}^{-1}$ is in good agreement with the experimental value of $0.8 \mathrm{kcal} \mathrm{mol}^{-1} .^{[66 a]}$ Thus, it can be assumed that the methods used are able to detect a gauche effect, not only in 1,2-difluoroethane, but also in other compounds. It is intriguing that the azidoethane derivatives all show an equal or higher preference for the gauche conformation than the fluoroethane derivatives (table 9, entries 1-3).

After these basic studies, the energy difference between the pseudo-axial (gauche) and the pseudo-equatorial (anti) conformation of the substituent in the 4-position of azidoproline and fluoroproline was studied (table 10).

Table 10: Energy differences between the gauche and the anti conformation calculated for acetylated 4-azido- and 4-fluoroproline methyl ester.

			$\Delta \mathrm{E}=\mathrm{E}_{\text {anti }}-\mathrm{E}_{\text {gauche }}\left[\mathrm{kcal} \mathrm{mol}{ }^{-1}\right]$	
Entry	Configuration	Conformation	$\operatorname{Ac}\left[\operatorname{Pro}\left(4 \mathrm{~N}_{3}\right)\right] \mathrm{OCH}_{3}$	$\mathrm{Ac}[\operatorname{Pro}(4 \mathrm{~F})] \mathrm{OCH}_{3}$
1	$(4 R)$	s-trans	0.7	0.5
2	$(4 R)$	s-cis	1.8	1.5
3	$(4 S)$	s-trans	0.8	0.7
4	$(4 S)$	s-cis	3.2	3.0

Table 10 lists the calculated energy differences between the anti and the gauche conformations of 4-azidoproline methyl ester and 4-fluoroproline methyl ester, positive values indicate a gauche preference. The ab initio calculations suggest a preference for the gauche conformation in all diastereoisomers of both 4-azidoproline and 4-fluoroproline. In the s-cis conformers this preference is more pronounced than in the s-trans conformers. This finding is in agreement with the analysis of the NMR data as discussed in chapter 2.4 and the crystal structure analysis discussed in chapter 2.5.1.

Furthermore, the energy difference between the s-trans and the s-cis conformers was calculated for both azido- as well as fluoroproline (table 11).

Table 11: Energy difference between s-trans and s-cis conformations calculated for acetylated 4-azidoand 4-fluoroproline methyl ester.

			$\Delta \mathrm{E}=\mathrm{E}_{s-t r a n s}-\mathrm{E}_{s-c i s}\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	
Entry	Configuration	Conformation	$\mathrm{Ac}\left[\operatorname{Pro}\left(4 \mathrm{~N}_{3}\right)\right] \mathrm{OCH}_{3}$	$\mathrm{Ac}[\operatorname{Pro}(4 \mathrm{~F})] \mathrm{OCH}_{3}$
1	$(4 R)$	gauche	-1.6	-1.6
2	$(4 R)$	anti	-2.7	-2.6
3	$(4 S)$	gauche	0.1	0.02
4	$(4 S)$	anti	-2.4	-2.2

In general, the calculations show, in accordance with the data obtained by NMR (see chapter 2.3.1), a preference for the s-trans conformer (indicated by negative values in table 11). The acetylated (4S)-azidoproline methyl ester in the gauche conformation, as
well as the acetylated ($4 S$)-fluoroproline methyl ester in the gauche conformation (table 11 , entry 3) shows no preference for the s-trans or the s-cis conformation.

To judge, why acetylated ($4 S$)-azidoproline methyl ester 14, does not seem to stabilize the s-trans conformation as much as acetylated ($4 R$)-azidoproline methyl ester $\mathbf{1 5}$ does, a comparison of the lowest energy conformations was made (figure 14). The conformation calculated for $\mathbf{1 5}$ is very similar to the conformation found in the solid state by X-ray diffraction. Likewise, the conformation calculated for $\mathbf{1 4}$ is in good agreement with the conformation derived from the analysis of the NMR data.

Figure 14: Conformations calculated for $\mathrm{Ac}\left[\mathrm{Pro}(4 \mathrm{~S}) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} 14$ (left) and $\mathrm{Ac}\left[\mathrm{Pro}(4 \mathrm{R}) \mathrm{N}_{3}-\mathrm{OCH}_{3} 15\right.$ (right).

Figure 14 shows the lowest energy conformations found for the two diastereoisomers, 14 and 15. In the conformation calculated for the ($4 R$)-diastereoisomer 15 the angle of the oxygen of the acetyl group and the carbonyl group of the ester is close to 103° and the distance between the acetyl-oxygen and the carbonyl-carbon is calculated to be $2.9 \AA$. This is in complete agreement with the conformation found in the solid state and the proposed " $\mathrm{n}-\pi^{*}$-interaction. The conformation of the diastereoisomer $\mathbf{1 4}$ shows an angle of 142° between the acetyl oxygen and the carbonyl group of the ester and the distance between the oxygen of the acetyl group and the carbon of the carbonyl group is calculated to be $3.4 \AA$. Thus, in the case of the ($4 S$)-diastereoisomer, both the distance as well as the angle between the atoms involved, do not meet the requirements for an "n- π^{*} " interaction. Therefore, a stabilization of the s-trans conformation by such an interaction is not feasible. This may explain why the (4R)-configured azidoproline
methyl ester derivatives show a higher pereference for the s-trans conformation than the (4S)-configured derivatives.

2.6 Kinetic studies using 2D EXSY NMR

The studies described so far, have all dealt with the thermodynamic stability of the different conformations of the diastereoisomers. To measure the kinetics of the interconversion between the conformers, two-dimensional EXSY NMR was performed.

EXSY NMR is a variant of NOESY NMR, making use of the fact that conformers, which are in chemical exchange on a millisecond time scale, have two distinct sets of signals. Cross-peaks with opposite phase to the regular NOE cross-peaks between the signals corresponding to the exchanging protons are observed. These peaks arise because the conformers interchange during the course of the measurement, and a proton, which at the beginning of the experiment is in one conformation, will be in another conformation at the end of the experiment. The value of the sum of the rate constants k_{ct} and k_{tc}, k can be determined by the following equation: ${ }^{[68]}$

$$
k=\frac{1}{t_{m}} \ln \frac{r+1}{r-1}(1)
$$

The variable r is defined as follows:

$$
\begin{equation*}
r=\frac{4 X_{A} X_{B}\left(I_{A A}+I_{B B}\right)}{\left(I_{A B}+I_{B A}\right)-\left(X_{A}-X_{B}\right)^{2}} \tag{2}
\end{equation*}
$$

t_{m} is the mixing time of the EXSY experiment, I refers to the integrated intensity of the peak; the indices A and B refer to diagonal peaks of the s-cis and the s-trans conformer when they are equal and to cross peaks when they are different. X is the molar fraction of the conformers indicated in the index and k is equal to the sum of the isomerization rates k_{ct} and k_{tc}. From knowledge of k and the equilibrium constant K , which was determined by peak integration in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the rates k_{ct} and k_{tc} were calculated.

EXSY experiments were performed with $\mathbf{1 4}$ and $\mathbf{1 5}$ in DMF-d ${ }_{7}$. By measuring a series of experiments at different mixing times and temperatures, sets of k values were generated from which sets of $k_{c t}$ and $k_{t c}$ values were determined.

Table 12: Isomerization rates and equilibrium constants of the s-cis:s-trans equilibrium of 14 and $15 .{ }^{a}$

$$
\mathrm{Ac}\left[\operatorname{Pro}(4 S) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} \mathbf{1 4} \quad \mathrm{Ac}\left[\operatorname{Pro}(4 R) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} \mathbf{1 5}
$$

$\mathrm{T}[\mathrm{K}]$	$\mathrm{k}_{\mathrm{ct}}\left[\mathrm{s}^{-1]}\right]$	$\mathrm{k}_{\mathrm{tc}}\left[\mathrm{s}^{-1}\right]$	$\mathrm{K}^{[\mathrm{b}]}$	$\mathrm{k}_{\mathrm{ct}}\left[\mathrm{s}^{-1}\right]$	$\mathrm{k}_{\mathrm{tc}}\left[\mathrm{s}^{-1}\right]$	$\mathrm{K}^{[\mathrm{b}]}$
285.4	0.035	0.021	1.70	0.031	0.0075	4.11
298	0.14	0.07	1.7	0.11	0.028	3.81
303	0.30	0.16	1.68	n.d. $^{[\mathrm{cc}]}$	n.d. $^{[\mathrm{cc}]}$	n.d. $^{[\mathrm{cc}]}$
308	0.44	0.18	1.70	0.36	0.10	3.58
313	n.d. $^{[\mathrm{cc}]}$	n.d. $^{[\mathrm{cc}]}$	n.d. $^{[\mathrm{cc}]}$	0.64	0.18	3.47
325.3	3.5	2.1	1.70	2.6	0.83	3.10
336.4	9.2	5.7	1.70	7.2	2.4	2.96
348.5	28.5	16.5	1.68	21.1	7.1	2.87

a) All measurements were performed at 80 mM concentration; b) as found by integration of the signals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$; c) " n.d." not determined.

The studies revealed that the rate of isomerization from the s-cis to the s-trans conformation (table 12, k_{ct}) is equally fast in both diastereoisomers, while the isomerization from s-trans to s-cis (table $12, \mathrm{k}_{\mathrm{tc}}$) is significantly faster in the (4S)-derivative 14. Thus, the higher population of the s-trans conformation in $(4 R)$-configured azidoproline is not due to a faster isomerization from the s-cis to the s-trans conformer, but due to a slower isomerization from the s-trans to the s-cis conformer.

Figure 15: Eyring plots of the rate constants for the isomerization of the acetylated proline derivatives: 14 cis-to-trans (empty circles), 15 cis-to-trans (full circles), 14 trans-to-cis (empty diamonds), 15 trans-to-cis (full diamonds).

The activation enthalpy and entropy of the conversions from the s-cis to the s-trans conformation of the diastereomeric azidoproline derivatives were determined by analysis of the rate constants in Eyring plots (figure 15). The Eyring equation is defined as follows:

$$
\begin{equation*}
k=\frac{k_{B} T}{h} e^{-\frac{\Delta H^{\ddagger}}{R T}} e^{\frac{\Delta S^{\ddagger}}{R}} \tag{3}
\end{equation*}
$$

Transformed:

$$
\begin{equation*}
\ln \frac{k}{T}=-\frac{\Delta H^{\ddagger}}{R T}+\ln \frac{k_{B}}{h}+\frac{\Delta S^{\ddagger}}{R} \tag{4}
\end{equation*}
$$

Where k_{B} is the Boltzmann-constant, h is the Planck constant and R is the ideal gas constant. In the Eyring plot the natural logarithm of the rate constants per temperature is plotted against the reciprocal temperature. From the slopes of the lines defined by the data points the activation enthalpy of the conversion was determined. The axis intercept of the y -axis was used to calculate the activation entropy.

Table 13: Activation enthalpies and entropies of the s-cis to s-trans and s-trans to s-cis isomerization. ${ }^{a}$

$$
\begin{array}{ccc}
\mathrm{Ac}\left[\operatorname{Pro}(4 S) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} \mathbf{1 4} & \mathrm{Ac}\left[\operatorname{Pro}(4 R) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} \mathbf{1 5} \\
\Delta \mathrm{H}^{\ddagger} & \Delta \mathrm{S}^{\ddagger} & \Delta \mathrm{H}^{\ddagger}
\end{array}
$$

Isomerization	$\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	$\left[\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]$	$\left[\mathrm{kcal} \mathrm{mol}^{-1}\right]$	$\left[\mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]$
s-cis to s-trans	20.5 ± 0.5	6.6 ± 2.6	20.2 ± 0.5	5.2 ± 2.8
s-trans to s-cis	20.6 ± 0.5	5.9 ± 2.6	21.4 ± 0.5	6.5 ± 2.8

a) Extracted from Eyring plots, errors were determined by least square fit analysis.

The analysis of the activation enthalpies and activation entropies extracted from the Eyring plots (table 13) shows that for both $\mathrm{Ac}\left[\operatorname{Pro}(4 S) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} \quad \mathbf{1 4}$ and $\mathrm{Ac}\left[\operatorname{Pro}(4 R) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} 15$ the isomerization barrier is of enthalpic and not of entropic nature. Furthermore, for $\mathbf{1 4}$ the activation enthalpy (table $13, \Delta \mathrm{H}^{\ddagger}$) is equal for both the trans-to-cis and cis-to-trans isomerization. For $\mathbf{1 5}$ the trans-to-cis isomerization has a slightly higher activation energy than the cis-to-trans isomerization.

Figure 16: Van't Hoff plot for $\mathrm{Ac}\left[\mathrm{Pro}(4 \mathrm{~S}) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} 14$ (emptry circles) and $\mathrm{Ac}\left[\operatorname{Pro}(4 R) N_{3}\right] \mathrm{OCH}_{3} 15$ (full circles).

Finally, the temperature dependence of the equilibrium constant K was determined. Figure 16 shows the van't Hoff plot of $\operatorname{Ac}\left[\operatorname{Pro}(4 S) N_{3}\right] \mathrm{OCH}_{3} \quad 14$ and
$\mathrm{Ac}\left[\operatorname{Pro}(4 R) \mathrm{N}_{3}\right] \mathrm{OCH}_{3} 15$. The s-trans:s-cis equilibrium of $\mathbf{1 5}$ shows a slight dependence on temperature, approaching a 1:1 s-cis:s-trans ratio with increasing temperature (figure 16). Interestingly, the s-trans:s-cis equilibrium of $\mathbf{1 4}$ is independent of the temperature.

2.7 Summary

In conclusion, by analysis of a variety of acetylated 4-azidoproline derivatives using NMR spectroscopy, X-ray diffraction, FT-IR spectroscopy and ab initio calculations, it was shown that a gauche effect between the azido-group in the 4-position and the amide function dominates the conformation of acetylated azidoproline derivatives. This azide gauche effect was confirmed by ab initio calculations of 1,2 disubstituted ethanes and of 4 -azidoproline derivatives. Furthermore, the s-cis:s-trans ratio of a variety of diastereomeric 4-azidoproline derivatives was determined and a higher preference for the s-trans conformation in ($4 R$)-azidoproline methyl ester derivatives was found. By analysis of the conformation in the solid state, FT-IR measurements and ab inito calculations, it was shown that the reason for the preference is likely to be an " $n-\pi *$ "-interaction between the oxygen of the N -terminal amide with the carbonyl carbon of the methyl ester. The kinetics of the interconversion between the s-cis and the s-trans conformation of the disastereomeric acetylated 4-azidoproline methyl esters were studied by EXSY NMR. These studies demonstrate that the isomerization from s-cis to s-trans is equally fast in both diastereoisomers, while the isomerization from s-trans to s-cis was slower in the case of the ($4 R$)-configured acetylated azidoproline methyl ester.

3 The Cyclotriproline Scaffold

3.1 Background

Previous studies demonstrated that diketopiperazine-based two-armed receptors with tripeptides as recognition elements (scheme 9, top) are able to bind peptides with high affinity and sequence selectivity in organic and aqueous media. ${ }^{[50,51,69,70]}$ A scaffold which allows for the attachment of three recognition elements, can be expected to lead to receptors with even higher binding affinities since the possible number of interactions with the guest molecules is increased. We therefore envisaged extending the diketopiperazine scaffold by another proline unit to a cyclotriproline derived scaffold. (scheme 9, bottom).

Scheme 9: Schematic drawings of the diketopiperazine receptor class (top) and the two possible diastereomeric cyclotriproline receptors (bottom); $R E=$ recognition element.

Since the configuration at $C(4)$ had proven to have a significant effect on the conformation and binding properties of the diketopiperazine receptors, ${ }^{[51]}$ conformational searches were initially performed, using MacroModel 7.1 ${ }^{[71,72]}$ (figure 17). As the recognition elements will be attached by amide linkages (as in the case of the diketopiperazine based receptors), the two diastereoisomers cyclotri[(4S)-acetamidoproline] $\mathbf{3 3}$ and cyclotri[(4R)-acetamidoproline] $\mathbf{3 2}$ were used as minimal receptor models in these computational studies. The calculations used the

OPLS-AA ${ }^{[73]}$ force field and the $\mathrm{GB} / \mathrm{SA}^{[74]}$ model for chloroform. Searching was performed using the MCMM method in blocks of 20'000 steps.

32

33

Figure 17: Lowest energy conformations of cyclotri[(4R)-acetamidoproline] (top) and cyclotri[(4S)-acetamidoproline] (bottom) as calculated by MacroModel 7.1.

In the case of the $(4 R)$-derivative 32 (figure 17 , top), the conformational searches yielded a flat, star-like arrangement of the acetamides, which occupy the pseudo-equatorial positions of the pyrrolidine rings as the lowest energy conformation. For a possible receptor, this arrangement is not favorable, as the recognition elements would be pointing away from each other. In the lowest energy conformation found for the ($4 S$)-derivative 33 (figure 17, bottom), however, the acetamides occupy the pseudoaxial positions of the pyrrolidine rings, leading to a bowl-shaped structure. This creates a pocket which should be favorable for the enclosure of guest molecules. ${ }^{[51]}$

34
Figure 18: Cyclotri[(4S)-azidoproline] 34.
Taking these considerations into account, cyclotri[(4S)-azidoproline] 34 (figure 18) was envisioned as a precursor for synthetic tripodal receptors.

3.2 Synthesis of the Cyclotriproline Scaffold

The logical precursor to cyclotri[(4S)-azidoproline] 34 is the linear tripeptide. The synthesis of linear tri[(4S)-azidoproline] 36 (scheme 10) commences from $\operatorname{Boc}\left[\operatorname{Pro}(4 S) \mathrm{N}_{3}\right]_{2} \mathrm{OCH}_{3} 31$.

a) i) $\mathrm{NaOH}(2 \mathrm{eq}), \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}$, r.t., 2 h ; ii) 30 (1.5 eq), HATU (3 eq), ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(9 \mathrm{eq})$, DMF, r.t., 95%; e) i) $\mathrm{NaOH}(4 \mathrm{eq}), \mathrm{H}_{2} \mathrm{O}, \mathrm{THF}, \mathrm{MeOH}$, r.t., 2 h ; ii) 4 M HCl in dioxane, r.t., $30 \mathrm{~min} ., 90 \%$.

Scheme 10: Synthesis of tri[(4S)-azidoproline] 36.

The methyl ester 31 was saponified and the resulting acid coupled with the hydrochloride salt 30, using HATU as the coupling reagent. The resulting methyl ester 35 was again saponified and the Boc-group was removed using 4 M HCl in dioxane, which afforded the hydrochloride salt $\mathbf{3 6}$.

a) pyridine, $1-4$ days, $65^{\circ} \mathrm{C}$; b) coupling reagent, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(9 \mathrm{eq}), \mathrm{DMF}, 2 \mathrm{~h}$, r.t.

Scheme 11: Cyclization methods tested for cyclotriproline.

For the cyclization, a series of different reaction conditions were examined. Initially, the cyclization was attempted following the classical approach as used by Rothe (scheme 11 , top); ${ }^{[75]}$ an active ester derivative of the tripeptide was added to pyridine over the course of 16 hours by syringe-pump to a final peptide concentration of 1 mM . Pyridine acted both as solvent and base. After 96 hours reaction time at $65^{\circ} \mathrm{C}, 40 \%$ of the cyclized product was isolated (table 14, entries 1 and 2).

Table 14: Cyclization conditions and yields for cyclotri[(4S)-azidoproline] 34.

Entry	Reactant	Conditions	Yield
1	$\mathbf{3 7}$	pyridine, $1 \mathrm{~d}, 65^{\circ} \mathrm{C}^{\mathrm{a}}$	11%
2	$\mathbf{3 8}$	pyridine, $4 \mathrm{~d}, 65^{\circ} \mathrm{C}$	40%
3	$\mathbf{3 6}$	TBTU $^{\text {b }}, 2$ h, r.t.,	31%
4	$\mathbf{3 6}$	PyBop, 2h, r.t.	38%
5	$\mathbf{3 6}$	HATU, 2 h, r.t.	74%

a: Final peptide concentration: 1 mM ; b: Final peptide concentration: 8 mM .
To optimize the reaction conditions, the cyclization was attempted by addition of a DMF solution of the hydrochloride salt $\mathbf{3 6}$ by syringe-pump during 1 hour to a solution of DMF with different coupling reagents and Hünig's base to a final peptide concentration of 8 mM (scheme 11, bottom). Under these conditions, the reaction was complete after 2 hours at room temperature. For TBTU and PyBOP, the yields were comparable to the yield obtained by addition of the C-terminally activated peptide to pyridine (table 14, entries 3 and 4). Using HATU as coupling reagent, the product was isolated in 74% yield even on a 1 g scale.

a) coupling reagent (3 eq), ${ }^{i} \operatorname{Pr}_{2} \mathrm{NEt}$ (9 eq), DMF, 2 h , r.t.

Scheme 12: Cyclization of tri[(4R)-azidoproline] 39.

The diastereomeric tripeptide, tri[(4R)-azidoproline] $\mathbf{3 9}$ was synthesized analogously to 36 and was also tested in cyclization experiments (scheme 12).

Table 15: Cyclization conditions and yield for the cyclization of 16.

Entry	Conditions	Yield
1	TBTU, 2h, r.t. ${ }^{\text {a }}$	$<10 \%$
2	PyBop, 2h, r.t. ${ }^{\text {a }}$	$<15 \%$
3	HATU, 2h, r.t. ${ }^{\text {a }}$	$<15 \%$

a: Final peptide concentration: 8 mM .
Under identical conditions the cyclization yields of tri[(4R)-azidoproline] 39 were significantly lower than the yields obtained with the diastereomeric tripeptide $\mathbf{3 6}$ (table 15). Using HATU and PyBOP as coupling reagents (table 15, entries 2 and 3) less than 15% yield was obtained, using TBTU (table 15, entry 1) the yield was even less than 10%. The low yields obtained for the cyclization of $\mathbf{3 9}$ can be explained by the higher preference for the s-trans conformation in ($4 R$)-azidoproline derivatives as described in the previous chapter.

3.3 Global reduction of the azides to amines followed by acetylation

To allow for the attachment of recognition elements to the cyclotriproline scaffold, the azides were reduced to amines. The reduction of the azides was achieved both through hydrogenation with palladium on activated charcoal as a heterogeneous catalyst, as well as by Staudinger reduction, using trimethyl phosphine and water (scheme 13).

a) $\mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{MeOH} / \mathrm{THF}(3 / 1)$, r.t, 1h, quant.; b) $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ in THF (2 M), $\mathrm{H}_{2} \mathrm{O}, 15$ min., r.t., quant.; c) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$.

Scheme 13: Reduction of the azide groups and acetylation of cyclotri [(4S)-azidoproline] 34.

Acetylation of the amines using acetic anhydride in the presence of triethylamine, yielded cyclotri[(4S)-acetamido proline] 33, which served as a minimal receptor model for conformational analysis.

3.4 Structural analysis of cyclotri[(4S)-azidoproline] 34

Single crystals suitable for X-ray diffraction of cyclotri[(4S)-azidoproline] 34 were obtained by crystallization from chloroform.

Figure 19: X-ray structure of cyclotri [(4S)-azidoproline] 34, ORTEP view (right) and capped stick view (left).

By X-ray diffraction, the unit cell was found to be orthorhombic, with four molecules per cell. Figure 19 shows the structure of cyclotri[(4S)-azidoproline] 34 in the crystalline state. The C_{3}-symmetry is only slightly distorted; one of the three pyrrolidine rings of the azidoprolines is in a perfect N -exo-conformation, the second shows a slightly distorted N -exo-conformation and the third is in a C^{δ}-endo-conformation. The azides are in a neutral position, which cannot be determined as pseudo-equatorial or pseudo-axial.

Table 16: Comparison of coupling constants found for 34 and coupling constants calculated.

Entry	Protons	Coupling constant found ${ }^{\mathrm{a}}[\mathrm{Hz} \pm 0.5]$	Coupling constant expected for $\mathrm{N}-$ exo $^{\mathrm{b}}[\mathrm{Hz} \pm 0.5]$	Coupling constant exp. for distorted $\mathrm{N}-$ exo $^{\mathrm{b}}[\mathrm{Hz} \pm 0.5]$
1	$\mathrm{H}^{\alpha}-\mathrm{H}^{\beta}$	8.2	8.7	8.9
2	$H^{\alpha}-H^{\beta^{\prime}}$	2.1	1.8	2.0
3	$\mathrm{H}^{\beta}-\mathrm{H}^{\gamma}$	10.0	9.9	9.8
4	$\mathrm{H}^{\beta{ }^{\prime}}-\mathrm{H}^{\gamma}$	5.2	4.1	5.7
5	$\mathrm{H}^{\gamma}-\mathrm{H}^{\delta}$	8.1	9.0	8.0
6	$\mathrm{H}^{\gamma}-\mathrm{H}^{\delta^{\prime}}$	8.1	7.8	9.4

a) Coupling constants as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy in CDCl_{3} at 295 K . b) N -exo and distorted N -exo conformation as found in the crystal structure.

To analyze whether the conformation found in the crystalline state also occurs in solution, NMR studies were performed. The NMR spectrum of cyclotri[(4S)-azidoproline] in CDCl_{3} shows a six-spin system for the pyrrolidine ring protons, indicating that on the average time scale of the NMR measurement, a C_{3}-symmetric conformation is present. The vicinal coupling constants of $\mathbf{3 4}$ in chloroform were compared to values expected for the torsion angles found in the crystal structure. These expected vicinal coupling constants were calculated based on the Karplus equation (see chapter 2.4), ${ }^{[53,54]}$ using parameters developed for cyclotriproline ${ }^{[55]}$ (table 16). The vicinal coupling constants found for the $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta}$, $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$, and the $\mathrm{H}^{\beta}-\mathrm{H}^{\gamma}$ coupling (table 16 , entries 1-3) match the expected values within the margin of error. The values found for the $\mathrm{H}^{\beta^{\prime}-\mathrm{H}^{\gamma}}$, the $\mathrm{H}^{\gamma}-\mathrm{H}^{\delta}$ and the $\mathrm{H}^{\gamma}-\mathrm{H}^{\delta^{\prime}}$ coupling lie between the values expected for the N -exo-conformation and the distorted N -exo-conformation found in the crystal structure (table 16, entries 4-6). This indicates that the conformation in solution is likely to be a dynamic equilibrium between different forms of the N -exo-conformation found in the crystal structure.

In conclusion, the conformations determined by interpretation of the vicinal coupling constants of the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3} and the conformation found in the crystal structure are in agreement. Furthermore, unlike in the acetylated monomers studied in chapter 2.4, in cyclotri[(4S)-azidoproline] 34 the azido-groups are not in the pseudo-axial conformation and assume an anti-conformation relative to the amide bond. This is probably due to the conformation of the nine-membered inner ring, which dominates the
conformation of the pyrrolidine rings, and thereby overrides the gauche effect observed for the linear 4-azidoproline derivatives (see chapters 2.4 and 2.5).

3.5 Structural analysis of cyclotri[(4S)-acetamidoproline] 33

Since receptors based on the cyclotriproline scaffold are designed to have amide linkages to the recognition elements, the conformation of the $(4 S)$-acetamide derivative 33 was studied as a minimal receptor fragment. As in the case of the azide-derivative 34, the NMR spectrum of $\mathbf{3 3}$ in CDCl_{3} shows a six-spin system for the pyrrolidine ring protons, indicating that on the average time scale of the NMR measurement, a C_{3}-symmetric conformation is present.

Table 17: Coupling constants of cyclotri[(4S)-acetamido proline] 33.

Entry	${ }^{3} J(\mathrm{H}, \mathrm{H})$	Coupling Constant $[\mathrm{Hz} \pm 0.5]$	Coupling Constant expected $[\mathrm{Hz} \pm 0.5]^{\mathrm{a}}$
1	$\mathrm{H}^{\alpha}-\mathrm{H}^{\beta}$	7.4	7.6
2	$\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$	<1	1.4
3	$\mathrm{H}^{\beta}-\mathrm{H}^{\gamma}$	9.1	7.8
4	$\mathrm{H}^{\beta^{\prime}-\mathrm{H}^{\gamma}}$	<1	1.4
5	$\mathrm{H}^{\gamma}-\mathrm{H}^{\delta}$	8.7	9.3
6	$\mathrm{H}^{\gamma}-\mathrm{H}^{\delta^{\prime}}$	4.1	2.3
7	$\mathrm{H}^{\mathrm{N}}-\mathrm{H}^{\gamma}$	9.5	n.d.

a From calculating the vicinal coupling constant using the Karplus equation and the dihedral angles found in the MacroModel calculation described in chapter 3.1.

The vicinal coupling constants of the acetamide derivative 33 (table 17) differ from the vicinal coupling constants of azide derivative 34 (see table 16), indicating a change in conformation. The main difference lies in the coupling constants $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$ and especially $\mathrm{H}^{\beta^{\prime}}-\mathrm{H}^{\gamma}$ (table 17, entries 2 and 4), which are less than 1 Hz , corresponding to a dihedral angle between these protons of approximately 90°. The two 90° torsion angles between H^{α} and $\mathrm{H}^{\beta^{\prime}}$, and $\mathrm{H}^{\beta^{\prime}}$ and H^{γ} can only be realized in a conformation, in which the acetamide-groups are in the pseudo-axial positions. The vicinal coupling constants found for cyclotri[(4S)-acetamido proline] $\mathbf{3 3}$ are in agreement with both a
C^{β}-exo-conformation and a C^{α}-endo-conformation, as these conformations differ only slightly in the torsion angles.

The C^{β}-exo-conformation was also found to be the lowest energy conformation of cyclotri[(4S)-acetamido proline] $\mathbf{3 3}$ in the calculations using MacroModel (see figure 17 , bottom). The coupling constants found for the $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}$ and the $\mathrm{H}^{\beta^{\prime}}-\mathrm{H}^{\gamma}$ coupling are in good agreement with the ones expected for the lowest energy conformation by the Karplus ${ }^{[53,54]}$ equation using parameters optimized for cyclotriproline. ${ }^{[55]}$ The values expected for the coupling constants of $\mathrm{H}^{\alpha}-\mathrm{H}^{\beta}, \mathrm{H}^{\alpha}-\mathrm{H}^{\beta^{\prime}}, \mathrm{H}^{\beta^{\prime}}-\mathrm{H}^{\gamma}$ and $\mathrm{H}^{\gamma}-\mathrm{H}^{\delta}$ (table 17, entries $1,2,4$ and 5) match the values found by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ within the margin of error. This indicates that the conformation found in the conformational searches is a good representation of the conformation in chloroform solution.

The lowest energy conformation found by conformational searches suggests a possible explanation for the difference in conformation found between cyclotri[(4S)-azidoproline] 34, in which the C^{γ}-substituents (the azido-groups) are in neutral positions and the pyrrolidine ring is in a N -exo-conformation, and cyclotri[(4S)-acetamido proline] 33, in which the C^{γ}-substituents (the acetamide-groups) are in a pseudo-axial conformation and the pyrrolidine ring systems are in a C^{β}-exo-conformation (figure 20).

Figure 20: Lowest energy conformation of [4S-acetamidoproline] 33 as calculated by MacroModel 7.1, possible hydrogen bond shown in red.

The distance (1.9 \AA) and orientation of the $\mathrm{N}-\mathrm{H}$ bonds of the acetamide relative to the carbonyl groups of the cyclic backbone found in the lowest energy conformation of cyclotri[(4S)-acetamido proline] 33, suggest that the conformation of the pyrrolidine rings is stabilized by intramolecular hydrogen bonding (figure 20). This hydrogen bond could overrule the conformational preference induced by the nine-membered inner ring, leading to the conformation observed.

To test whether these hydrogen bonds are also present in the conformation found in solution by NMR spectroscopy, NOE spectroscopy was performed.

Scheme 14: NOE contacts in cyclotri [(4S)-acetamido proline] 33, shown for one of the pyrrolidine rings. The arrows indicate NOE contacts, while the dashed line indicates a possible hydrogen bridge.

Scheme 14 shows the intense NOE contacts found in 2D NOE spectroscopy of cyclotri[(4S)-acetamido proline] 33. NOE contacts of the N-H to the δ^{\prime} - and β^{\prime}-protons are detected, while no NOE contacts to the δ and β protons and only a weak NOE contact to the γ-proton is found, suggesting that rotation around the $\mathrm{C}^{\gamma}-\mathrm{N}^{\mathrm{Ac}}$ bond is restricted and that the $\mathrm{N}-\mathrm{H}$ bond is orientated towards the inner 9 -membered ring. This is further supported by the $\mathrm{H}^{\mathrm{N}}-\mathrm{H}^{\gamma}$ coupling constant of 9.5 Hz (table 17, entry 7), indicating a trans geometry of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}^{\gamma}-\mathrm{H}^{\gamma}$ bond. This leads to a conformation in which the $\mathrm{N}-\mathrm{H}$ bond is orientated towards the carbonyl of the central, nine-membered ring, bringing them in a conformation, which supports the existence of a possible hydrogen bond.

In this conformation, the acetamides occupy the pseudo-axial conformation, giving the molecule a bowl-shaped form, opening a cavity in between the recognition elements in which host molecules can interact with the receptor. Such a conformation has been favorable in the case of the diketopiperazine receptors developed previously. ${ }^{[50,51,69,70]}$

3.6 Summary

Based on computational models of the two diastereoisomers of cyclotri[4-acetamido proline], cyclotri[(4S)-azidoproline] $\mathbf{3 4}$ was envisioned as the precursor to tripodal molecular receptors. 34 was synthesized and its conformation was analyzed using NMR spectroscopy. Cyclotri[(4S)-acetamidoproline] $\mathbf{3 3}$ was synthesized as a minimal receptor fragment to analyze the conformation of the pyrrolidine rings in a receptor. The conformational analysis suggests that a tripodal molecular scaffold based on cyclotri[(4S)-aminoproline] should be a good molecular template for synthetic receptors.

4 Binding Studies of a Cyclotriproline-Based Peptide Receptor

4.1 Synthesis of cyclotriproline based peptide receptors

Based on the finding that the conformation of the (4S)-amide-substituted cyclotriproline (see chapter 3.5) is likely to be suitable as a scaffold for a tripodal receptor, a model receptor was synthesized. Previous studies in the Wennemers group showed that diketopiperazine receptors functionalized with acid-rich peptides as recognition elements recognize arginine-rich sequences selectively in aqueous buffers. ${ }^{[70]}$ Thus, an analogous three-armed receptor was designed. Dye-marked tyrosine ${ }^{[50]}$ was chosen as the first amino acid of the tripeptidic recognition element, as it allows for visual detection of binding in on-bead combinatorial binding assays. Aspartates were chosen as second and third amino acid in the recognition elements, in order to introduce acidic functional groups.

The cyclotriproline based peptide receptors were synthesized by coupling the Disperse Red-marked Boc-Tyr(DR)-OH ${ }^{[50]}$ to the primary amines of cyclotri[(4S)-aminoproline] 41. HATU in DMF with Hünig's base was used as coupling reagent in the first coupling step. After removal of the Boc-protecting group by treatment with 4 M HCl in dioxane, the resulting hydrochloride salt was coupled in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with $\mathrm{Fmoc}-\mathrm{Asp}\left({ }^{(} \mathrm{Bu}\right)-\mathrm{OH}$ using EDC as coupling reagent to yield the dipeptide modified cyclotriproline 43. After Fmoc-deprotection using diethylamine, another Fmoc-Asp($\left.{ }^{(} \mathrm{Bu}\right)$-OH was coupled as the last amino acid of the receptor "arms".

a) Boc-Tyr(DR)-OH (4.5 eq), HATU (6 eq), ${ }^{i}{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ (18 eq), DMF, 2h, r.t., 60%; b) i) 4 M HCl in dioxane, 0 min., r.t.; ii) Fmoc- $\mathrm{Asp}\left({ }^{t} \mathrm{Bu}\right)-\mathrm{OH}(6 \mathrm{eq})$, $\mathrm{EDC}(6.3 \mathrm{eq}),{ }^{i}{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(7 \mathrm{eq}), 2 \mathrm{~h}$, r.t, 91%; c) HNEt_{2}
 d) i) $\mathrm{HNEt}_{2}(60 \mathrm{eq}), \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcCN} 2 / 1$, 1h, r.t.; ii) $\mathrm{AcOH}(100 \mathrm{eq}), \mathrm{HCTU}(300 \mathrm{eq}),{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}(900 \mathrm{eq})$, DMF, 2 h, r.t., 50%; e) 50% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 1 h, r.t., 90%.

Scheme 15: Synthesis of the cyclotriproline based peptide receptors.
After removal of the Fmoc-group, the N-termini of the peptides were acetylated to yield 45. The side-chain protecting groups were removed using $50 \% \mathrm{TFA}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to yield the final receptor 46 (scheme 15).

4.2 Combinatorial Screenings

To test the binding properties of the cyclotriproline based peptide receptor 46, combinatorial on-bead assays in aqueous buffer against an encoded ${ }^{[76,77]}$ split-andmix ${ }^{[78,79]}$ library of tripeptides ${ }^{[80]}$ were performed. In the library, 31 D - and L-amino acids were used in each position of the combinatorially varied tripeptide, leading to a maximum of 29'791 different tripeptide sequences. To allow for further cleavage studies the tripeptide was flanked by nitrotyrosine on the N -terminus and by an anthranilic acid functionalized lysine on the C -terminus (scheme 16).

Scheme 16: General structure of the combinatorial tripeptide library used.
Each amino acid in the library was encoded with a set of "tags", which may later be used to identify the tripeptide sequence. ${ }^{[76,77]}$ The "tags" of the library consist of chloro-phenol ethers of long chain diols, which can be detected in their silylated form using a gas chromatograph with an electron capture detector (ECD). The tags have different retention times, due to different chain lengths and substitution patterns. The amino acids are encoded in a binary fashion, with each tag representing one digit. Five tags together code for one position of the library.

For the screenings, 10 mM Tris $\cdot \mathrm{HCl}$ buffer at $\mathrm{pH} 7.2,10 \mathrm{mM} \mathrm{NaHCO}_{3}$ buffer at pH 8.5 and 10 mM NaOH at pH 12 were used. Since the side chain carboxylic acid of aspartate has a pK_{a} of 3.9 , screenings at acidic pH were not performed, as the carboxylates of the aspartates in the receptor arms would become at least partially protonated. The interaction between the receptor and the peptide is assumed to be at least in part based
upon electrostatic interactions, thus protonated, and therefore neutral, aspartate residues would not be favorable.

After 24 hours at room temperature, inspection of the beads under a visual light microscope showed that in 10 mM Tris HCl buffer at pH 7.2 none of the beads had picked up the red color of the receptor 46 (figure 21a). In $10 \mathrm{mM} \mathrm{NaHCO}_{3}$ buffer at pH 8.5 some of the beads had picked up the red color (figure 21b) of the dye-marked receptor 46, indicating a binding interaction. The screening in 10 mM NaOH at pH 12.0 (figure 21c) also showed red beads.

Figure 21: Screenings of the dye-marked receptor 46 in different buffers; a) $10 \mathrm{mM} \mathrm{Tris} \cdot \mathrm{HCl}$ buffer at pH 7.2 (left); b) 10 mM NaHCO 3 buffer at pH 8.5 (middle); c) 10 mM NaOH at pH 12.0 (right).

Comparing the results of the screenings at pH 8.5 and 12.0 under the microscope, it was found that for the screenings at pH 8.5 most of the beads remained colorless (the slight yellow coloring of the beads is inherent of the library at basic pH), some show a slight hue of orange and a few are slightly red (approximately 1 in 150). At pH 12 , again most beads remained colorless, but here, the beads that did pick up the color of the receptor 46, are dark red (approximately 1 in 150), rather than just orange. This indicates that the binding of receptor $\mathbf{4 6}$ at pH 12 is probably more specific than at pH 8.5 .

To elucidate the tripeptide sequence on the beads which picked up the color of the receptor, several of the red beads were isolated and the "tags" of each bead were cleaved off separately and analyzed by ECD-GC.

Table 18: Percentage of L- and D-arginine in the sequences found in the screenings of 46.

$$
10 \mathrm{mM} \mathrm{NaHCO} 3 \text { buffer } \mathrm{pH} 8.5^{\mathrm{a}} \quad 10 \mathrm{mM} \mathrm{NaOH} \text { at } \mathrm{pH} 12.0^{\mathrm{b}}
$$

Entry	Position	L-Arg	D-Arg	Total	L-Arg	D-Arg	Total
1	AA1	28%	49%	77%	18%	15%	33%
2	AA2	23%	40%	63%	33%	39%	72%
3	AA3	28%	35%	63%	42%	36%	78%

a) a total of 43 sequences were analyzed; b) a total of 33 sequences were analyzed.

Previous results had shown that receptors based on the diketopiperazine scaffold with tripeptidic recognition elements bind arginine-rich sequences in basic aqueous buffer. ${ }^{[70]}$ Based on these results it was expected that the cyclotriproline based receptor would also bind arginine-rich sequences, which it does indeed (table 18). Furthermore, depending on the buffer and pH used, slight differences in selectivity were found. In 10 mM NaOH at pH 12.0 , receptor 46 binds mainly peptides with sequences containing an arginine as the second and third amino acid, indiscriminate of stereochemistry (table 18, entries 2 and 3). In 10 mM NaHCO 3 buffer pH at 8.5 on the other hand, receptor 46 binds peptides with sequences containing almost equal frequencies of arginine in all three positions (table 18, entries 1-3). Intriguingly, for positions 1 and 2 an almost 1:2 ratio between L-and D-arginine (table 18, entries 1 and 2) is found.

Table 19: Distribution of sequences containing at least two arginines.

Entry	Sequence $^{\mathrm{a}}$	NaHCO_{3} buffer pH 8.5	$\mathrm{NaOH} \mathrm{pH} 12.0^{\mathrm{c}}$
1	Arg-Arg-X	12%	$51 \%^{\mathrm{d}}$
2	X-Arg-Arg	28%	18%
3	Arg-X-Arg	37%	21%
4	Arg-Arg-Arg	12%	3%
		Total: $89 \%^{\mathrm{e}}$	Total: $94 \%{ }^{\mathrm{e}}$

a) Arg stands for both L- and D-arginine, X stands for any other amino acid; b) a total of 43 sequences were analyzed; c) a total of 33 sequences were analyzed; d) 70% of the residues found in the X position were hydrophobic amino acids; e) the remaining sequences contained one arginine residue.
Most sequences found for receptor 46, both in $10 \mathrm{mM} \mathrm{NaHCO}_{3}$ buffer at pH 8.5 and in 10 mM NaOH at pH 12.0 , contain at least two arginine residues (table 19, totals).

Nonetheless, the pH influences the distribution of sequences found. In 10 mM NaHCO 3 buffer at pH 8.5 receptor 46 selects for peptides with sequences with an Arg-X-Arg motif, in which the two arginines are flanking another, random, amino acid (table 19, entry 3). Likewise, with nearly equal selectivity, sequences with an X-Arg-Arg motif were found, in which a random amino acid is followed by two arginines (table 19, entry 2). In contrast, in 10 mM NaOH at pH 12.0 , receptor $\mathbf{4 6}$ shows a preference for peptides with an Arg-Arg-X motif, in which two arginines are followed by a random amino acid. This sequence was not favored in 10 mM NaHCO 3 buffer at pH 8.5 (table 19, entry 1). While the overall selectivity for sequences with at least two arginines was equal for both screening conditions (table 19, totals), the selectivity for a triple arginine sequence was slightly higher in 10 mM NaHCO 3 buffer at pH 8.5 (table 19, entry 4). The differences in selectivity found for the different buffers and pH , indicate that small changes can influence the binding.

In summary, the combinatorial on-bead screenings show that receptor 46 binds to arginine-rich sequences, both in 10 mM NaOH at pH 12.0 , as well as in 10 mM NaHCO_{3} buffer at pH 8.5 . In 10 mM NaOH at pH 12.0 , the screenings indicate that receptor 46 has a preference for sequences containing an Arg-Arg-X motif, where X is a random amino acid. In 10 mM NaHCO 3 buffer at pH 8.5 , receptor 46 displays selectivity for arginines in each of the three positions, and also shows binding to a triple arginine sequence.

4.3 Determination of Binding Affinities by Isothermal Titration Calorimetry

To analyze the binding affinity of receptor 46 to a specific target sequence, isothermal titration calorimetry (ITC) was performed. During ITC the enthalpy $\Delta \mathrm{H}$ is measured while the ligand is titrated to the receptor. The enthalpy released per injection changes over the course of the titration, as the receptor molecules become saturated with peptidic guest molecules. From the change in enthalpy per injection in dependence of the molar ratio of receptor to ligand, the stoichiometry of the complex, the enthalpy $\Delta \mathrm{H}$, the binding constant K , and from it the free energy, $\Delta \mathrm{G}$, of the binding is determined.

The combinatorial screening indicated that receptor $\mathbf{4 6}$ is able to bind to arginine-rich sequences (see chapter 4.1). In 10 mM NaHCO 3 -buffer at pH 8.5 , receptor 46 binds to sequences with at least two arginine residues, as well as to triple arginine. To get an estimate of the binding energy, the peptide Ac-Arg-Arg-Arg-NH-propyl was used as guest molecule. Previous studies with diketopiperazine-based receptors have shown that, even though other sequences were also found in the screening, the binding affinity was highest with a triple arginine sequence. ${ }^{[81]}$ An N -acetylated peptide with a propylamide C-terminus was used since the tripeptides in the library used are part of longer peptides, and therefore do not bear a free N - or C-terminus either.

Two ITC measurements were performed, with receptor concentrations of $150 \mu \mathrm{M}$ and $175 \mu \mathrm{M}$, respectively, at $25^{\circ} \mathrm{C}$ in $10 \mathrm{mM} \mathrm{NaHCO}_{3}$ buffer at pH 8.0 . A solution of the target peptide in $10 \mathrm{mM} \mathrm{NaHCO}_{3}$ buffer at pH 8.0 was titrated to the receptor in aliquots of $5 \mu \mathrm{~L}$. A total of 59 injections were made, at five minute intervals. As the peptide was titrated to the receptor, the ratio of receptor to peptide changed from $8: 1$ to $1: 8$ in the measurement performed with a $150 \mu \mathrm{M}$ receptor concentration, and from 10:1 to 1:6.5 in the measurement performed with $175 \mu \mathrm{M}$ receptor concentration.

Figure 22: ITC titration curves and fits of the curves of the change of ΔH per injection. Left measurement 1, right measurement 2.

In an ITC measurement, the area underneath the curve recorded is equal to the $\Delta \mathrm{H}$ per injection. For the interpretation of the data measured, $\Delta \mathrm{H}$ per injection is plotted against the molar ratio of receptor to ligand (figure 22). The titration curve for $\Delta \mathrm{H}$ recorded for the titration of the ligand to a buffer solution without receptor is subtracted, eliminating the heat of dilution of the peptide. The data is fitted using a method of least squares, in which the complex stoichiometry, $\Delta \mathrm{H}$ of the complex formation and the binding constant are varied. ${ }^{[82]}$

The best fit for the data recorded showed a $2: 1$ receptor:peptide complex. The mathematical model used assumes a receptor with two independent binding sites, which bind one substrate per binding site. The fit therefore provides two different binding constants for the two different binding sites as well as $\Delta \mathrm{H}$ and $\mathrm{T} \Delta \mathrm{S}$ values for each complexation step. ${ }^{[82]}$

Table 20: Thermodynamic data determined for the binding of 46 with the peptide Ac-Arg-Arg-Arg-NH-propyl by ITC measurements.

Entry	Thermodynamic Parameter $^{\mathrm{a}}$	Value found $^{\mathrm{b}}$
1	$\Delta \mathrm{G}_{1}[\mathrm{kcal} / \mathrm{mol}]$	-6.0 ± 0.1
2	$\Delta \mathrm{G}_{2}[\mathrm{kcal} / \mathrm{mol}]$	-4.9 ± 0.1
3	$\Delta \mathrm{H}_{1}[\mathrm{kcal} / \mathrm{mol}]$	-2.2 ± 0.1
4	$\Delta \mathrm{H}_{2}[\mathrm{kcal} / \mathrm{mol}]$	-2.9 ± 0.1
5	$\mathrm{~T} \Delta \mathrm{~S}_{1}[\mathrm{kcal} / \mathrm{mol}]$	3.9 ± 0.1
6	$\mathrm{~T} \Delta \mathrm{~S}_{2}[\mathrm{kcal} / \mathrm{mol}]$	2.0 ± 0.1

a) The subscripts of the values denote the two different binding events, b) averaged values of two measurements, using $150 \mu \mathrm{M}$ and $175 \mu \mathrm{M}$ receptor solutions.

The two measurements are in close agreement, showing that the binding is a reproducible event. Table 20 shows the averaged values for the thermodynamic parameters determined. The binding energy for the first binding (table 20, entry 1), $\Delta \mathrm{G}$ is averaged to be $-6.0 \pm 0.1 \mathrm{kcal} \mathrm{mol}^{-1}\left(\mathrm{~K}_{\mathrm{a}}=25500 \pm 500 \mathrm{M}^{-1}\right)$. The second binding energy (table 20, entry 2) is averaged to be $-4.9 \pm 0.1 \mathrm{kcal} \mathrm{mol}^{-1}\left(\mathrm{~K}_{\mathrm{a}}=4300 \pm 500 \mathrm{M}^{-1}\right)$. The other thermodynamic data indicate, that the binding is favored both enthalpically (table 20, entries 3 and 4) and entropically (table 20, entries 5 and 6). As the binding constants are relatively close to each other, the least square fit is equally good when the chronological order of binding is reversed, thus the first binding might be the second in time and vice versa.

4.4 Summary

The dye-marked tripodal receptor 46 was screened in combinatorial on-bead assays at different pH against an encoded split-and-mix library of approximately $29^{\prime} 000$ different tripeptides. The acid-rich receptor $\mathbf{4 6}$ shows selectivity for arginine-rich sequences. ITC measurements show that receptor 46 binds peptides in a $2: 1$ peptide:receptor stoichiometry, with binding affinities, $\Delta \mathrm{G}$, averaging at $-6.0 \pm 0.1 \mathrm{kcal} \mathrm{mol}^{-1}$ and -4.9 ± 0.1 kcal mol^{-1}.

5 Conclusions and Outlook

This thesis presents studies on the influence of the azido-substituent on the conformation of 4-azidoproline. An azide gauche effect was observed in several diastereomeric 4-azidoproline derivatives by conformational analysis using a combination of NMR-spectroscopy, X-ray diffraction, FT-IR-spectroscopy and ab initio calculations. This gauche effect dominates the conformation of both, (4R)- and (4S)-configured azidoproline derivatives. As a result, the pyrrolidine ring adopts a C^{γ}-endo-conformation in the case of the (4S)-configured derivatives and a C^{γ}-exo-conformation in the case of the $(4 R)$-configured derivatives. Furthermore, in the comparison of the s-cis/s-trans equilibrium of acetylated 4 -azidoproline derivatives, the $(4 R)$-azidoproline methyl ester derivatives show a higher preference for the s-trans conformation than the ($4 S$)-diastereoisomers. This s-trans preference of the $(4 R)$-derivatives was rationalized by a stabilization of the s-trans conformation by an " $\mathrm{n}-\pi$ *"-interaction of the non-bonding electrons of the acetyl oxygen with the carbonyl carbon of the methyl ester. The kinetics of this equilibrium were studied and the individual rate constants and activation enthalpy and entropy were determined by EXSY NMR.
(4S)-azidoproline was then employed in the synthesis of a tripodal molecular scaffold for synthetic receptors. A model receptor with tripeptidic, acid-rich recognition elements was prepared and showed selective binding properties to arginine-rich peptides in combinatorial on-bead screenings. Isothermal titration calorimetry (ITC) studies revealed binding affinities, $\Delta \mathrm{G}$, in the range of -5 to $-6 \mathrm{kcal} \mathrm{mol}^{-1}$ for a $2: 1$ peptide:receptor complex with the tripeptide Arg-Arg-Arg in aqueous media.

The azide gauche effect in general and the effect of the 4-azido substituent on the conformation of proline in particular, can be applied to the design of conformationally defined molecules. For instance, the stability of secondary structure elements, such as the polyproline II (ppII) helix, which is found in collagen, is dependent on the conformation of the amide bond. All amide bonds in a ppII helix are in the s-trans conformation. Thus, introduction of $(4 R)$-azidoproline should increase the stability of the ppII helix due to its higher preference for the s-trans conformation. Furthermore, 4-azidoproline can not only be used as a structure directing element, but also allows for further modifications, for example, by reaction with alkynes in a [3+2] cycloaddition (also referred to as "Click Chemistry"). Polyproline II helices containing 4-azidoproline are therefore going to be applied in the design of new materials and as inhibitors of helical peptide binding proteins.

6 Experimental Section

6.1 List of abbreviations

AA	amino acid
Ac	acetyl
$\mathrm{Ac}_{2} \mathrm{O}$	acetic anhydride
AcOH	acetic acid
Ala	alanine
anh.	anhydrous
aq.	aqueous
Arg	arginine
Asn	aspargine
Asp	aspartic acid
Bn	benzyl
Boc	tert-butyloxycarbonyl
Boc ${ }_{2} \mathrm{O}$	tert-butyloxycarbonyl anhydride
CAM	ceric ammonium molybdate
DEPBT	3 -(diethoxyphosphoryloxy)-1,2,3-benzotriazin-4(3H)-one
DIAD	diisopropylazodicarboxylate
DIPEA	N, N-diisopropylethylamine
DMAP	N, N-dimethylamino pyridine
DMF	N, N-dimethylformamide
DMSO	dimethylsulfoxide

DNA	deoxyribonucleic acid
DR	disperse Red
EC-GC	electron capture gas chromatography
EDC	1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide
eq	equivalent
$\mathrm{Et}_{3} \mathrm{~N}$	triethylamine
EXSY	Exchange spectroscopy
Fmoc	9-fluorenylmethoxycarbonyl
Gln	glutamine
Glu	glutamic acid
Gly	glycine
h	hour(s)
HATU	O-(7-azabenzotriazol-1-yl)1,1,3,3-tetramethyluronium
	hexafluorophosphate
HCTU	2-(6-Chloro-1H-benzotriazole-1-yl)-1,1,3,3-tetramethlyuronium
	hexafluorophosphate
His	histidine
HOBt	N-hydroxybenzotriazole
Leu	leucine
Lys	lysine
min	minute(s)
MsCl	methansulfonylchloride
NaN_{3}	Sodium azide
NOE	nuclear overhauser enhancement
NOESY	nuclear overhauser enhancement spectroscopy

Pbf	$2,4,6,7-$ Pentamethyldihydrobenzofurane-5-sulfanyl
PEG	polyethylene glycol
Pfp	pentafluorophenol
Phe	phenylalanine
Pmc	$2,2,5,5,7,8$-pentamethylchroman-6-sulfonyl
PPh $_{3}$	triphenylphosphine
Pro	proline
quant.	quantitative
r.t.	room temperature
sat.	saturated
Ser	serine
sol.	solution
TBTU	2-(1H-Benzotriazole-1-yl)-1,1,3,4-tetramethyluronium
Tetrafluoroborate	
TFA	trifluoro acetic acid
THF	tetrahydrofuran
Thr	threonine
Tha	thin layer chromatography

6.2 General Methods

Materials and reagents were of the highest commercially available grade and used without further purification. Reactions were monitored by thin layer chromatography using Merck silica gel $60 \mathrm{~F}_{254}$ plates. Compounds were visualized by UV, ceric ammonium molybdate (CAM) and ninhydrin. Flash chromatographies were performed using Merck silica gel 60 , particle size $40-63 \mu \mathrm{~m}$. Gel filtrations were performed on Sephadex LH20 resin purchased from Sigma. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian Gemini 300, a Bruker DPX 400 or a Bruker DPX 500 spectrometer. Chemical shifts are reported in ppm using CHCl_{3} and TMS as a reference. Infrared spectra were obtained on a Perkin-Elmer 1600 series; peaks are reported in cm^{-1}. Finnigan MAT LCQ and TSQ 700 instruments were used for electrospray ionization (ESI) mass spectrometry.

EXSY-NMR Spectroscopy. Experiments were performed on a Bruker DMX 600 instrument (600.13 MHz) using a 5 mm inverse broadband probe equipped with a shielded z-gradient. Samples of $\operatorname{Ac}\left[\operatorname{Pro}(4 S)-\mathrm{N}_{3}\right] \mathrm{OMe}$ and $\operatorname{Ac}\left[\operatorname{Pro}(4 R)-\mathrm{N}_{3}\right] \mathrm{OMe}$ were prepared in DMF-d ${ }_{7}(99.5 \% \mathrm{D})$ and were both 80 mM . Experiments were performed in the temperature range from 288 K to 345 K . Temperature calibrations were carried out using a glycerol standard and were reproducible within $\pm 0.5 \mathrm{~K}$. For each temperature setting, a one-dimensional ${ }^{1} \mathrm{H}$-NMR spectrum was recorded with a recovery delay of 10 s , to allow for complete relaxation. The trans:cis ratio K was obtained from these spectra by simple peak integration. EXSY spectra were recorded using a standard pulse scheme ${ }^{[83,84]}: 90^{\mathrm{x}}-\mathrm{t}_{1}-90^{\mathrm{x}}-\mathrm{t}_{\text {mixing }} / 2-\operatorname{grad}(\mathrm{z})-180^{\mathrm{x}}$-grad(-z)- $\mathrm{t}_{\text {mixing }} / 2-90^{\mathrm{x}}$-aquisition.

2048 data points in the direct and 512 data points in the indirect dimension were collected using a TPPI phase cycle resulting in acquisition times of 170 ms and 85 ms respectively. After zero-filling in the indirect dimension to 1024 data points, shifted squared sine bell window functions were applied in both dimensions prior to Fourier transformation. For a given temperature at least five EXSY spectra were recorded with different mixing times in a range from 10 ms to 4 s to obtain cross peak intensities that were smaller than the diagonal peak intensities for all temperatures. Linear baseline
corrections were carried out in both dimensions and peak volumes were determined manually. At least two resonances ($\mathrm{O}-\mathrm{CO}-\mathrm{CH}_{3}$ and $\mathrm{H} \alpha$ or $\mathrm{H} \delta^{\prime}$) were analyzed independently for each compound in order to minimize experimental errors.

Kinetics. Rate constants were calculated from peak volumes using the following equation: ${ }^{[68]}$

$$
k=\frac{1}{t_{m}} \ln \frac{r+1}{r-1}
$$

Where r is defined as follows:

$$
r=\frac{4 X_{A} X_{B}\left(I_{A A}+I_{B B}\right)}{\left(I_{A B}+I_{B A}\right)-\left(X_{A}-X_{B}\right)^{2}}
$$

t_{m} is the mixing time of the EXSY experiment, I refers to the integrated intensity of the peak; the indices A and B refer to diagonal peaks of the s-cis and the s-trans conformer when they are equal and to cross peaks when they are different. X is the molar fraction of the conformers indicated in the index and k is equal to the sum of the isomerization rates k_{AB} and k_{BA}.

For each temperature the ten (or fifteen) independent values for k were averaged and k_{AB} and k_{BA} were obtained thereof using the mole fraction obtained from the one-dimensional ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. Thermodynamic parameters and their standard deviations were then obtained by linear least-squares fitting of $\mathrm{k}_{\mathrm{AB}}, \mathrm{k}_{\mathrm{BA}}$ and K to the Eyring and Van't Hoff equation.

Isothemal Titration Calorimetry. Titrations were performed at $25^{\circ} \mathrm{C}$ using a Microcal VP-ITC titration microcalorimeter. Sample solutions were prepared using Milli-Q water. Titrations of Ac-Arg-Arg-Arg-NHPr were performed by adding aliquots of a 5 mM peptide solution to a 0.2 mM receptor solution. The titrations were analyzed using a least squares curve-fitting procedure (Origin ${ }^{\circledR}$ implemented with the calorimetric setup provided by Microcal).

6.3 General Procedures:

6.3.1 General procedure for the saponification of a methyl-ester ($\mathbf{2} \mathbf{~ m m o l}$ scale):

The methyl ester was dissolved in a $1: 1$ mixture of THF and $\mathrm{MeOH}(20 \mathrm{~mL})$ and a solution of $\mathrm{NaOH}(1.5 \mathrm{eq})$ in water $(2 \mathrm{~mL})$ was added. The reaction mixture was stirred for 2 h at room temperature and was then carefully acidified to pH 4 using 1 M HCl . $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and water $(20 \mathrm{~mL})$ were added, and the mixture was extracted once with additional $1 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 50 \mathrm{~mL})$, the organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation of the solvent at reduced pressure yielded the acid that was used without further purification, unless otherwise stated.

6.3.2 General procedure for the formation of a Pentafluorophenyl ester (2 mmol scale):

Pentafluorophenol (Pfp-OH) (1.05 eq) and 1-(3-Dimethylaminopropyl)-3ethylcarbodiimide hydrochloride (EDC) (1.5 eq) were added to the solution of the carboxylic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction mixture was stirred for 1 h , then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $0.5 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of all volatiles afforded the Pfp-ester.

6.3.3 General procedure for Boc-deprotection ($\mathbf{2} \mathbf{~ m m o l ~ s c a l e) : ~}$

The Boc-protected amine was dissolved in 4 M HCl in dioxane (5 mL) and stirred at room temperature for 1 hour. After removal of all volatiles at reduced pressure, the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$ providing the HCl -salt.

6.3.4 General procedure for Fmoc-deprotection (2 mmol scale)

The Fmoc-protected amine was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcCN} 3 / 1(4 \mathrm{~mL})$. Diethylamine (200 eq) was added and the reaction mixture was stirred at room temperature for 1 hour. After removal of all volatiles at reduced pressure, the residue was triturated with pentanes $(3 \times 10 \mathrm{~mL})$ providing the free amine.

6.3.5 General procedure for the coupling of a Pfp-ester with a HCl -salt (2 mmol scale):

The Pfp-ester (1.1 eq) was added to a solution of the HCl -salt (1 eq) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and Hünig's base (2.5 eq). After stirring over night, the reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $0.5 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and removal of all volatiles at reduced pressure yielded the crude product.

6.4 Synthesis of the acetylated 4-azidoproline derivatives

6.4.1 Synthesis of the monomeric methyl ester derivatives.

6.4.1.1 Boc-(4S)-azidoproline methyl ester 24

Boc-hydroxyproline methyl ester ($16.28 \mathrm{~g}, 66.36 \mathrm{mmol}$) was cooled to $0^{\circ} \mathrm{C}$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Triethylamine ($11.08 \mathrm{~mL}, 79.63 \mathrm{mmol}$) and methanesulfonylchloride ($6.2 \mathrm{~mL}, 79.63 \mathrm{mmol}$) were added. After 30 minutes, the reaction mixture was extracted with sat. NaHCO_{3} solution (30 mL). The aqueous phase was washed twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(15 \mathrm{~mL})$. The combined organic layers were dried and the solvent was removed in vacuo. The residual oil was dissolved in dry DMF (50 mL). Sodium azide (21.57 g , 331.8 mmol) was added and the suspension was stirred for 3 hours at $80^{\circ} \mathrm{C}$. The DMF was removed in vacuo and the residual slurry was taken up in diethyl ether (50 mL). Remaining sodium azide was filtered off and the filtrate was extracted with sat. NaHCO_{3} solution (50 mL). The aqueous phase was washed with diethyl ether $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried and the solvent was removed in vacuo to yield the desired Boc-(4S)-azidoproline methyl ester 24 ($17.93 \mathrm{~g}, 66.36 \mathrm{mmol}$, quant.).

The NMR-spectra show a mixture of major and minor signals or two conformers.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.38(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha$ minor), 4.27 (dd, $J=8.6$ $\mathrm{Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha$ major), $4.11\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma\right.$ major + minor), $3.71\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right.$ major+ minor), $3.66(\mathrm{~m}$, $1 \mathrm{H} ; \mathrm{H} \delta$ major + minor $), 3.43(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \delta$ major + minor $), 2.43(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta$ major + minor $) 2.12(\mathrm{dt}, J=$ 13.5, $4.41 \mathrm{H} ; \mathrm{H} \beta$ major + minor), 1.43 (s, 9H; ${ }^{t}$ bu minor), 1.37 ($\mathrm{s}, 9 \mathrm{H} ;{ }^{t}$ bu major).

[^0]6.4.1.2 Acetyl-(4S)-azidoproline methyl ester $\mathbf{1 4}$

Boc-[Pro-($4 S$) $\left.-\mathrm{N}_{3}\right] \mathrm{OCH}_{3} 24$ ($340 \mathrm{mg}, 1.258 \mathrm{mmol}$) was Boc-deprotected following the general procedure. The crude product was reacted with acetic anhydride ($238 \mu \mathrm{~L}$, 2.517 mmol) and triethylamine ($524 \mu \mathrm{~L}, 3.774 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The reaction was monitored by T.L.C., after completion, $1 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ was added and the mixture was extracted twice with ethyl acetate (25 mL). The combined organic layers were dried and the solvent was removed in vacuo. After flash chromatography on silica gel (gradient of DCM:MeOH from 98:2 to 97:3) the acetylated methyl ester $\mathbf{1 4}$ (253 mg , $1.192 \mathrm{mmol}, 95 \%)$ was isolated as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,25^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-$ trans $)=4,53(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 4,49(\mathrm{dd}, J=9.2,4.3,1 \mathrm{H} ; \mathrm{H} \alpha)$, $3,97$ (dd, $J=11,6.1,1 \mathrm{H} ; \mathrm{H} \delta), 3,54\left(\mathrm{dd}, J=11,3.9,1 \mathrm{H} ; \mathrm{H} \delta^{\prime}\right), 2,62(\mathrm{ddd}, J=13.5,9.2,6,1 \mathrm{H} ; \mathrm{H} \beta), 2,03$ (dt, $J=13.5,4.3,1 \mathrm{H} ; \mathrm{H}^{\prime}$);
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,25^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-\mathrm{cis})=4,84(\mathrm{dd}, J=9.05,1.5,1 \mathrm{H} ; \mathrm{H} \alpha), 4,53 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H} ; \mathrm{H} \gamma)$, 3,69 (dd, $J=13,5.5,1 \mathrm{H} ; \mathrm{H} \delta$), 3,41 (dt, $J=13,1.5,1 \mathrm{H} ; \mathrm{H} \delta), 2,62$ (m, $J=9.05,5.2,1 \mathrm{H} ; \mathrm{H} \beta$), 2,38 (dddd, $\left.J=13.7,3.2,1.5,0.4,1 H ; H \beta^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR (125 MHz, DMF-d $\left._{7}, 25^{\circ} \mathrm{C}\right): \delta(\mathrm{s}-$ trans $)=172.3,169.4,57.7,60.2,52.3,52.7,34.9,22.1$.
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMF}^{2}-\mathrm{d}_{7}, 25^{\circ} \mathrm{C}\right): \delta(\mathrm{s}-c i s)=172.7,170.1,59.1,59.1,52.8,51.7,36.7,22.1$.

ESI-MS: m / z : calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}[M+\mathrm{Na}]+235$; found 235 (100%); [$\left.2 M+\mathrm{Na}\right]+447$; found 447 (60\%).

Elemental analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}(212,09)$: C 45,28; H 5,70; $\mathrm{N} 26,40$; found: C 45.26; H 5.63; N 26.28.
6.4.1.3 Boc-(4R)-azidoproline methyl ester 26

A solution of triphenylphosphine $(9.5 \mathrm{~g}, 36.239 \mathrm{mmol}, 1.8 \mathrm{eq})$ and methanesulfonic acid $(1.57 \mathrm{~mL}, 24.160 \mathrm{mmol} 1.2 \mathrm{eq})$ were stirred in dry toluene (20 mL). Following the addition of triethylamine ($1.12 \mathrm{~mL}, 8.053 \mathrm{mmol}, 0.4 \mathrm{eq}$) and boc-hydroxyproline methyl ester ($5.232 \mathrm{~g}, 20.133 \mathrm{mmol}, 1 \mathrm{eq}$) dissolved in dry toluene (2.5 mL), DIAD ($7.8 \mathrm{~mL}, 40.266 \mathrm{mmol}, 2 \mathrm{eq}$) was added drop-wise. The temperature of the reaction mixture was held below $35^{\circ} \mathrm{C}$ by cooling with an ice bath. After completion of the addition, the reaction mixture was heated to $70^{\circ} \mathrm{C}$ for 3 h . After cooling, the reaction mixture was poured in sat. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ solution and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The crude mesylate was dissolved in DMF (15 mL) and $\mathrm{NaN}_{3}(6.54 \mathrm{~g}$, $100.665 \mathrm{mmol}, 5 \mathrm{eq}$) was added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h . After cooling, the solvent was removed at reduced pressure. The residual oil was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and poured onto sat. NaHCO_{3} solution $(100 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. After flash chromatography on silica gel (gradient of pentanes:ethyl acetate from $10: 1$ to 7.5:1) $\mathrm{N}-\alpha$-Boc-(4R)-azidoproline methyl ester 26 $(4.327 \mathrm{~g}, 16.009 \mathrm{mmol}, 80 \%)$ was isolated as a colorless oil.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR show a double set of peaks $(\approx 1.5: 1)$ due to the s-trans and s-cis conformers.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ (major) $=4.31(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.15(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma)$, $3.75\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.7(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.45(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \delta), 2.49(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta) 2.16(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.41(\mathrm{~s}, 9 \mathrm{H} ;$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta($ minor $)=4.42(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.15(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma)$, $3.75\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right), 3.7(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.45(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \delta), 2.49(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta) 2.16(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.47(\mathrm{~s}, 9 \mathrm{H} ;$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right): \delta($ major $)=172.9,153.3,80.6,58.7,57.7,52.1,51.2,36.2,28.1$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right): \delta($ minor $)=172.7,153.9,80.6,59.2,57.3,52.3,51.3,35.3,28.3$.
ESI-MS: m / z : calculated for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}[M+\mathrm{Na}]+293$; found 293 (100\%).

N - α-acetyl-(4R)-Azidoproline methyl ester $\mathbf{1 5}$

N - α-acetyl-(4R)-azidoproline methyl ester 15 was synthesized according to the same procedure as 14.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,25^{\circ} \mathrm{C}\right): \delta(\mathrm{s}$-trans $)=4.53(\mathrm{~m}, J=9.3,5.1,3.9,1 \mathrm{H} ; \mathrm{H} \gamma) 4.38(\mathrm{dt}, J=7.7$, $1 \mathrm{H} ; \mathrm{H} \alpha$), 3.89 (dd, $\left.J=11.1,5.3,1 \mathrm{H} ; \mathrm{H} \delta^{\prime}\right), 3.66$ (m, 1H; H δ), 2.38 (dddd, $J=12.0,8.2,4.4,1.2,1 \mathrm{H} ; \mathrm{H} \beta$), 2.25 (dd, $\left.J=7.1,5.6,1 H ; H \beta^{\prime}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,25^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-c i s)=4.78(\mathrm{dd}, J=8.0,6.4,1 \mathrm{H} ; \mathrm{H} \alpha), 4.43(\mathrm{~m}, J=9.2,5.4,1 \mathrm{H}$; H γ), 3.66 (m, 1H; H δ), 3.56 (dd, $\left.J=12.3,5.7,1 H ; H \delta^{\prime}\right), 2.48\left(\mathrm{~m}, 1 \mathrm{H} ; H \beta^{\prime}\right), 2.23(\mathrm{dd}, J=7.1,5.6,1 \mathrm{H} ;$ $H \beta$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,25^{\circ} \mathrm{C}$): $\delta(\mathrm{s}$-trans $)=172.8,169.3,60.7,57.9,53.1,52.3,35.3,22.1$;
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \operatorname{DMF}-\mathrm{d}_{7}, 25^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-c i s)=173.1,169.8,59.0,58.9,52.92,51.2,37.0,21.6$.

ESI-MS: m / z : calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}[M+\mathrm{Na}]+235$; found $235(100 \%)$; [2M+Na]+ 447; found 447 (60\%).

Elemental analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}(212,09)$: C 45,$28 ; \mathrm{H} 5,70$; $\mathrm{N} 26,40$; found: C 45.27 ; H 5.64 ; N 26.36 .

6.4.2 Synthesis of the monomeric amide derivatives.

6.4.2.1 Boc-(4S)-azidoproline pentafluorophenyl ester 27

The methyl ester of Boc-($4 S$)-azidoproline methyl ester $24(2.00 \mathrm{~g}, 7.40 \mathrm{mmol}$) was saponified with $\mathrm{NaOH}(0.44 \mathrm{~g}, 11.04 \mathrm{mmol})$ following the general procedure. The resulting acid was reacted with pentafluorophenol ($1.43 \mathrm{~g}, 7.77 \mathrm{mmol}$) and EDC $(2.13 \mathrm{~g}, 11.11 \mathrm{mmol})$ following the general procedure to provide the Pfp-ester 27 (2.90 g, $6.87 \mathrm{mmol}, 93 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR show a double set of peaks $(\approx 2: 1)$ due to the s-trans and s-cis conformers.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta($ major $)=4.70(\mathrm{dd}, 9.3 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.29(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 3.76$ ($\mathrm{m}, ~ J=11.9,1 \mathrm{H} ; \mathrm{H} \delta$), $3.63\left(\mathrm{dd}, J=11.8 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta^{\prime}\right), 2.68(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.37\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta^{\prime}\right), 1.46$ $\left(\mathrm{s}, 9 \mathrm{H} ;{ }^{\mathrm{t}} \mathrm{bu}\right) ; \delta($ minor $)=4.76(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.29(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 3.76(\mathrm{~m}, J=11.9,1 \mathrm{H}$; H δ), $3.54\left(\mathrm{dd}, J=11.3 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}^{\prime}\right), 2.68(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.37\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta^{\prime}\right), 1.49\left(\mathrm{~s}, 9 \mathrm{H} ;{ }^{t} \mathrm{bu}\right)$.
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta($ major $)=168.3,153.6,143.5,138.8,81.9,59.8,57.7,51.5,36.9$, $28.5 ; \delta($ minor $)=168.0,153.9,143.5,138.8,81.6,60.8,57.5,51.7,35.8,28.7$.

FT-IR (NaCl, v/cm-1): 2980, 2118, 1798, 1713, 1518, 1260.

ESI-MS: m / z : calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{4}[M+\mathrm{H}]+423$; found $423(100 \%)$.
Elemental analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{5} \mathrm{~N}_{4} \mathrm{O}_{4}$ (422.3): C 45.51, H 3.58, N 13.27; found C 45.27, H 3.56, N 13.14 .
6.4.2.2 Boc-(4S)-azidoproline dimethyl amide 28

Boc-Pro[(4S)-N $\left.\mathrm{N}_{3}\right]$-OPfp ($147 \mathrm{mg}, 0.348 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. Dimethlyamine hydrochloride ($284 \mathrm{mg}, 3.48 \mathrm{mmol}$) and triethylamine ($540 \mu \mathrm{~L}$, 3.83 mmol) were added and the reaction mixture was stirred at room temperature for 30 min. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and extracted with 1 N HCl $(10 \mathrm{~mL})$. The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layers were dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation, the residual oil was purified by flash chromatography on silica gel (gradient, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 100: 0$ to $96: 4$) to yield Boc-[Pro-(4S)-N $\left.\mathrm{N}_{3}\right]-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(86 \mathrm{mg}, 0.303 \mathrm{mmol}, 87 \%)$ as a colorless oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta($ major $)=4.65(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 6.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.04(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma)$, $3.85(\mathrm{dd}, J=11.0 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.42(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.05\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.96(\mathrm{~s}, 3 \mathrm{H}$; $\left.\mathrm{NCH}_{3}\right), 2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.89(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.43\left(\mathrm{~s}, 9 \mathrm{H} ;{ }^{t} \mathrm{bu}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta($ minor $)=4.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.02(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 3.90(\mathrm{dd}$, $J=10.7 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.40(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.03\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.72\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right)$, $2.55(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.87(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.37\left(\mathrm{~s}, 9 \mathrm{H} ;{ }^{\mathrm{t}} \mathrm{bu}\right)$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right): \delta$ (major) $=170.9,153.9,80.3,58.3,55.0,53.451 .0,36.8,34.6$, 28.3.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right): \delta($ minor $)=171.3,153.2,80.2,57.6,55.2,55.0,50.4,36.1,35.3$, 28.2.

ESI-MS: m / z : calcd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{3}[M+\mathrm{Na}]+306$; found 306 (100\%).
6.4.2.3 Boc-(4S)-azidoproline pyrrolidine amide 29

Boc-[Pro(4S)-N $\left.\mathrm{N}_{3}\right]$ OPfp $27(50 \mathrm{mg}, 0.118 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Pyrrolidine ($20 \mu \mathrm{~L}, 0.236 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature for 30 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and extracted with $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$. The aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layers were dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent yielded Boc-($4 S$)-azidoproline pyrrolidineamide ($36 \mathrm{mg}, 0.118 \mathrm{mmol}$, quant.) as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.32-4.49(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H} \alpha), 4.01(\mathrm{~m}, 1 \mathrm{H}), 3.37(1 \mathrm{H}), 3.29-3-71(\mathrm{~m}$, $5 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 1.75-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.35-1.44\left(9 \mathrm{H},{ }^{t} \mathrm{bu}\right)$.

The carbon spectrum shows a 1:1 mixture of signals.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}$): $\delta=169.7,169.4,153.9,153.2,80.2,58.3,57.6,56.7,56.4,51.0$, $50.4,46.2,46.1,35.2,34.5,28.4,28.2,26.3,26.2,24.0,23.9$.

ESI-MS: m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}[M+\mathrm{Na}]+332$; found 332 (100%).
6.4.2.4 Acetyl-(4S)-azidoproline dimethyl amide 16

Boc-Pro $\left[(4 S)-\mathrm{N}_{3}\right]-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}(106 \mathrm{mg}, 0.374 \mathrm{mmol})$ was Boc-deprotected according to the general procedure. The crude product was reacted with acetic anhydride ($175 \mu \mathrm{~L}$, $1.87 \mathrm{mmol})$ and triethylamine $(420 \mu \mathrm{~L}, 2.99 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction was monitored by T.L.C., after completion, $1 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$ was added and the mixture was extracted twice with ethyl acetate (25 mL). The combined organic layers were dried and the solvent was removed in vacuo. After flash chromatography on silica gel (gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ from $99: 1$ to $95: 5$) the acetylated dimethyl amide $\mathbf{1 6}$ ($76 \mathrm{mg}, 0.337 \mathrm{mmol}, 90 \%$) was isolated as a colorless oil.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,22^{\circ} \mathrm{C}$): $\delta(\mathrm{s}$-trans $)=4.38(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 6.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.49(\psi \mathrm{q}, J=$ $14.5 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \gamma), 4.09$ (dd, $J=10.4 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.41$ (dd, $J=10.4 \mathrm{~Hz}, 7.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta$), $\left.3.10\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.86\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.74(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H} ; \text { acetyl-CH })_{3}\right), 1.76(\mathrm{dt}, J=12.9$ $\mathrm{Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,22^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-c i s)=5.05(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.36(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma)$, 3.93 (dd, $J=12.3 \mathrm{~Hz}, 6.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta$), 3.33 (dd, $J=12.3 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta$), 3.13 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}$), 2.93 $\left(\mathrm{s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.88(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.97(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.80\left(\mathrm{~s}, 3 \mathrm{H} ;\right.$ acetyl- $\left.\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,22^{\circ} \mathrm{C}$): $\delta(\mathrm{s}$-trans $)=171.3,168.5,59.3,55.6,52.6,36.8,34.5,34.7,22.3$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,22^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-\mathrm{cis})=171.1,169.6,58.1,57.9,51.3,36.7,36.6,35.7,21.7$.

ESI-MS: m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}[M+\mathrm{Na}]+248$; found $248(100 \%)$; $[2 M+\mathrm{Na}]+473$; found $473(80 \%)$.
6.4.2.5 Acetyl-(4S)-azidoproline pyrrolidine amide $\mathbf{1 8}$

Boc-(4S)-azidoproline pyrrolidineamide ($35 \mathrm{mg}, 0.142 \mathrm{mmol}$) was Boc-deprotected following the general procedure. The crude product was reacted with acetic anhydride ($67 \mu \mathrm{~L}, 0.71 \mathrm{mmol}$) and polyvinylpyridine ($50 \mathrm{mg}, \sim 0.71 \mathrm{mmol}$) as solid base in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction mixture was stirred over night at room temperature. The polyvinylpyridine was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. After removal of the solvent, the residual oil was purified by flash chromatography on silica gel (gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ from $99: 1$ to $95: 5$) to yield the acetylated pyrrolidineamide $\mathbf{1 8}$ ($31 \mathrm{mg}, 0.125 \mathrm{mmol}, 88 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMF-d $7,25^{\circ} \mathrm{C}$): δ (major) $=4.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.37(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 4.08$ (dd, $J=10.2 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta$), $3.67(\mathrm{~m}, 2 \mathrm{H} ;$ pyrrolidine), $3.48(\mathrm{~m}, 2 \mathrm{H} ;$ pyrrolidine), 3.39 (dd, $J=10.2$ $\mathrm{Hz}, 7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 2.73(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.00\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.93(\mathrm{~m}, 2 \mathrm{H} ;$ pyrrolidine), $1.81(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta)$, 1.79 (m, 2H; pyrrolidine).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMF}^{2} \mathrm{~d}_{7}, 25^{\circ} \mathrm{C}$): δ (major) $=4.83(\mathrm{dd}, J=9.0 \mathrm{~Hz}, 4.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.36(\mathrm{~m}, 1 \mathrm{H}$; $\mathrm{H} \gamma$), $3.94(\mathrm{dd}, J=12.1 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.36(\mathrm{~m}, 2 \mathrm{H}$; pyrrolidine), $3.31(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.29(\mathrm{~m}, 2 \mathrm{H}$; pyrrolidine), 2.86 (ddd, $J=13.2 \mathrm{~Hz}, 9.0 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta$), $1.99\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta\right.$), $1.82\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right), 1.81$ (m, 2H; pyrrolidine), $1.77(\mathrm{~m}, 2 \mathrm{H}$; pyrrolidine).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}$): $\delta=169.1,168.9,58.4,56.2,52.0,46.3,46.0,34.0,26.1,24.0,22.3$.

ESI-MS: m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}[M+\mathrm{Na}]+274$; found 274 (100%); [2M+Na]+525; found $525(30 \%)$.
6.4.2.6 Acetyl-(4R)-azidoproline dimethyl amide $\mathbf{1 7}$

Acetyl-(4R)-azidoproline dimethyl amide $\mathbf{1 7}$ was synthesized in analogy to acetyl-(4S)azidoproline dimethyl amide 16 .
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,22^{\circ} \mathrm{C}$): $\delta(\mathrm{s}$-trans $)=4.91(\mathrm{dd}, J=8.3 \mathrm{~Hz}, 6.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.49(\psi \mathrm{q}, J=$ $9.6 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \gamma$), 3.84 (dd, $J=11.0 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.64$ (ddd, $J=11.0 \mathrm{~Hz}, 3.4 \mathrm{~Hz}, 1.1 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{H} \mathrm{C}^{\prime}$), $3.14\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right.$), $2.84\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.36(\mathrm{dddd}, J=13.1 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{H} \beta$), $2.14\left(\mathrm{dt}, J=13.3 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta^{\prime}\right), 2.01$ ($\mathrm{s}, 3 \mathrm{H}$; acetyl- CH_{3}).
${ }^{1} \mathrm{H}$ NMR (500 MHz, DMF-d $7,22^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-c i s)=5.12(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 5.86 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.37(\mathrm{~m}, J=9.4$ $\mathrm{Hz}, 5.6 \mathrm{~Hz}, 3.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \gamma$), 3.68 (ddd, $J=12.3 \mathrm{~Hz}, 3.2 \mathrm{~Hz}, 1.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta$), 3.55 (dd, $J=12.3 \mathrm{~Hz}$, $5.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.16\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.93\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{NCH}_{3}\right), 2.65(\mathrm{dddd}, J=13.0 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1.5 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{H} \beta)$, $2.42(\mathrm{dt}, J=13.4 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.82\left(\mathrm{~s}, 3 \mathrm{H} ;\right.$ acetyl- $\left.\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,22^{\circ} \mathrm{C}\right): \delta(\mathrm{s}$-trans $)=171.5,168.3,60.5,55.0,53.1,36.6,34.9,22.0$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMF}-\mathrm{d} 7,22^{\circ} \mathrm{C}$): $\delta(\mathrm{s}-c i s)=171.3,169.16,58.9,56.9,51.4,36.5,36.3,35.4,21.3$.

ESI-MS: m / z : calculated for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}[M+\mathrm{Na}]+248$; found 248 (100%); [2M+Na]+ 473; found 473 (40\%).
6.4.2.7 Acetyl-(4S)-azidoproline pyrrolidine amide 19

Acetyl-(4S)-azidoproline pyrrolidine amide 19 was synthesized in analogy to acetyl-(4S)-azidoproline pyrrolidine amide 18.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.69(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.46(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 3.92(\mathrm{~m}$, $2 \mathrm{H} ; 2 \mathrm{H} \delta), 3.32-3.56(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine H$), 2.26(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.16(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 1.78-$ $2.02(\mathrm{~m}, 4 \mathrm{H}$, pyrrolidine H$)$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=169.7,169.0,59.8,56.2,52.8,46.5,46.0,34.7,26.0,24.1,22.3$.

ESI-MS: m / z : calcd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}[M+\mathrm{Na}]+274$; found $274(100 \%)$; $[2 M+\mathrm{Na}]+525$; found $525(30 \%)$.

6.4.3 Synthesis of the dimeric methly ester derivatives

6.4.3.1 (4S)-azidoproline methyl ester hydrochloride $\mathbf{3 0}$

Boc-[Pro-($4 S$) $\left.-\mathrm{N}_{3}\right] \mathrm{OCH}_{3} 24$ ($1.20 \mathrm{~g}, 4.44 \mathrm{mmol}$) was deprotected following the general protocol yielding the HCl -salt $\mathbf{3 0}$ ($916 \mathrm{mg}, 4.44 \mathrm{mmol}$, quant.).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}$): $\delta=4.62(\mathrm{dd}, J=9.9 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.58(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 3.52$ (dd, $J=12.5 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.45\left(\mathrm{dt}, J=12.5 \mathrm{~Hz}, 1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta^{\prime}\right), 2.65(\mathrm{ddd}, J=14.4 \mathrm{~Hz}, 9.9 \mathrm{~Hz}$, $5.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta$), 2.43 (dddd, $\left.J=14.4 \mathrm{~Hz}, 4.2 \mathrm{~Hz}, 2.5 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}$): $\delta=169,59.6,58.6,53.2,51.1,34.2$.

ESI-MS: m / z : calculated for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}[M+\mathrm{H}]+171$; found 171 (100%).

6.4.3.2 Boc-di-(4S)-azidoproline methyl ester 31

The Pfp-ester 27 ($2.06 \mathrm{~g}, 4.88 \mathrm{mmol}$) and the HCl -salt $30(916 \mathrm{mg}, 4.44 \mathrm{mmol})$ were coupled following the general procedure. The crude product was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 100: 1\right)$ yielding the dipeptide $31(1.64 \mathrm{~g}$, $4.02 \mathrm{mmol}, 90 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR show a double set of peaks $(\approx 2: 1)$ due to the s-trans and s-cis conformers.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): δ (major) $=4.73$ (dd, $\left.J=4.6 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha\right), 4.48$ (dd, $J=8.4$ $\mathrm{Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.28(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 4.07(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H} \gamma, \mathrm{H} \delta), 3.82(\mathrm{dd}, J=7.1 \mathrm{~Hz}, 10.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta)$, 3.72 (s, 3H; CH3), 3.47 (ddd, $J=14.7 \mathrm{~Hz}, 4.3 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}$), 3.38 (dd, $J=10.9 \mathrm{~Hz} ; 7.1 \mathrm{~Hz} \mathrm{1H}$; Hס), 2.61 (dt, $J=13 \mathrm{~Hz}, 7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta$), 2.47 (ddd, $J=6 \mathrm{~Hz}, 9 \mathrm{~Hz}, 14.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta$), 2.17 (dt, 13.5 Hz , $4.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.09(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 1.4\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta($ minor $)=4.69(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=7.6), 4.27$ $(\mathrm{m}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.22(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta($ major $)=171.2,170.3,154.2,80.7,59.7,58.5,57.5,56.3,52.7$, 51.4, 51.1, 34.4, 34.1, 28.5.
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta($ minor $)=170.9,170.4,154.2,80.6,57.9,57.6,56.8,52.8,51.3$, 50.8, 35.3, 28.4.

ESI-MS: m / z : calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{5}[M+\mathrm{Na}]+431$; found 431 (100\%).

Elemental analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{5}$ (408.19): C 47.05, H 5.92, N 27.44; found: C 47.20, H 5.89, N 27.31 .
6.4.3.3 Acetyl-di-(4S)-azidoproline methyl ester 20

Boc-di-($4 S$)-azidoproline methyl ester ($98 \mathrm{mg}, 0.24 \mathrm{mmol}$) was Boc-deprotected following the general procedure. The HCl salt was reacted withacetic anhydride ($62 \mu \mathrm{~L}$, $0.66 \mathrm{mmol})$ and pyridine ($197 \mu \mathrm{~L}, 1.32 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature for 30 min . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and was extracted with 2 N HCl . The aqueous layer was extracted two additional times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layers were dried and the solvent was removed in vacuo. The crude product was purified by column chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 100: 0$ to $96: 4$), yielding 20 ($77 \mathrm{mg}, 0.034 \mathrm{~mol} 60 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.68(\mathrm{dd}, J=8.8 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.52(\mathrm{dd}, J=7.9 \mathrm{~Hz}, 6.8$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.29(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 4.17(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 6.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 4.13(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 3.84(\mathrm{dd}, J=$ $10.2 \mathrm{~Hz}, 7.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta$), $3.72\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}\right.$), $3.50(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.47$ (dd, $J=10.4 \mathrm{~Hz} ; 4.1 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H} \delta$), $2.61(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta)$, 2.46 (ddd, $J=13.4 \mathrm{~Hz}, 8.8 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \beta$), $2.16(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.12(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta)$, $2.05\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ac}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=171.0,169.6,169.1,59.4,58.4,57.2,56.0,52.5,52.0,51.4,33.9$, 33.8, 22.1.

ESI-MS: m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{4}[M+\mathrm{Na}]+373$; found $373(60 \%)$; $[2 M+\mathrm{Na}]+723$; found $723(100 \%)$.

6.4.3.4 Acetyl-di-(4R)-azidoproline methyl ester 21

Acetyl-di-(4R)-azidoproline methyl ester was prepared analogously to Acetyl-di-(4S)-azidoproline methyl ester 20.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=4.65(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 5.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.61(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 6.5$ $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{H} \alpha), 4.45(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 4.32(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \gamma), 4.07$ (dd, $J=10.3 \mathrm{~Hz}, 4.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta), 3.88$ (dd, $J=$ $10.7 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H} \delta$), 3.85 (m, 1H; H δ), 3.74 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{OCH}_{3}$), 3.48 (dd, $J=10.7 \mathrm{~Hz} ; 3.8 \mathrm{~Hz} 1 \mathrm{H} ; \mathrm{H} \delta$), $2.31(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H} \beta), 2.20(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H} \beta), 2.06\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{Ac}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=172.0,170.6,169.3,59.8,59.5,57.6,56.0,52.8,52.5,51.6,34.5$, 34.3, 22.1.

ESI-MS: m / z : calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{4}[M+\mathrm{Na}]+373$; found $373(60 \%)$; $[2 M+\mathrm{Na}]+723$; found $723(100 \%)$.

6.5 Synthesis of the cyclotriproline scaffold and derivatives

6.5.1 Boc-[Pro(4S)-N $\left.\mathbf{N}_{3}\right]_{3}-\mathrm{OCH}_{3} 35$

The methyl ester of the dipeptide $31(504 \mathrm{mg}, 1.224 \mathrm{mmol})$ was hydrolysed, converted into a Pfp-ester and coupled with the HCl salt $\mathbf{3 0}(253 \mathrm{mg}, 1.224 \mathrm{mmol})$ following the general procedures. Purification by flash chromatography on silica gel (gradient of EtOAc:pentane from 1:1 to 3:1) yielded the tripeptide 35 ($486 \mathrm{mg}, 0.889 \mathrm{mmol}, 73 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR show multiple sets of peaks due to the s-trans and s-cis conformers. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=4.72-4.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} \alpha), 4.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} \gamma), 4.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} \gamma, \mathrm{H} \delta), 4.03(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H} \gamma$), 3.85-3.73 (m, 1H, H δ), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.52-3-39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} \delta), 3.35-3.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} \delta), 2.67-2.40$ (m, 3H, HB), 2.22-1.98(m, 3H, Hß) 1.41-1.37 (2s, 9H, 'bu).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=171.1,170.5,170.0,169.7,169.5,154.1,153.0,80.6,80.4,59.7$, $58.9,58.5,57.8,57.4,57.3,56.7,56.3,51.6,50.8,35.0,34.09,34.07,33.3,28.4,52.6,51.6,51.3,51.1$.

ESI-MS: m / z : calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{12} \mathrm{O}_{6}[M+\mathrm{Na}]+569$; found 569 (100\%).

Elemental analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{12} \mathrm{O}_{6}(546,54)$: C 46.15, H 5.53, N 30.75 ; found: C $46.10, \mathrm{H}$ 5.58, N 30.65 .

6.5.2 Boc[Pro-(4S)- $\left.\mathrm{N}_{3}\right]_{3}-\mathrm{OH}$

The methyl ester of the tripeptide $35(465 \mathrm{mg}, 0.851 \mathrm{mmol})$ was saponified, following the general procedure. Purification by flash chromatography on silica gel (gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOH} / \mathrm{MeOH}$ from $98.5 / 1 / 0.5$ to $97 / 1 / 2$) yielded the tripeptide (439 mg , $0.824 \mathrm{mmol}, 97 \%$) as a colorless oil.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR show multiple sets of peaks due to the s-trans and s-cis conformers. ${ }^{1} \mathrm{H}$-NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=4.72-4.45(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} \alpha), 4.42-4.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} \gamma), 4.17-4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} \delta), 4.10-3.98$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} \gamma$), 3.87-3.32 (m, 4H, H δ), 2.67-2.01 (m, 6H, H阝), 1.46-1.38 ($2 \mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{bu}$)
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=172.4,172.3,171.3,170.3,154.3,153.1,81.0,80.7,59.6,58.9$, $58.6,58.3,57.9,56.9,56.5,52.2,51.4,51.2,51.0,35.0,34.1,33.4,33.2,28.5,28.4$

ESI-MS: m / z : calculated for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{12} \mathrm{O}_{6}[M+\mathrm{Na}]+555$; found $555(100 \%)$, $533(40 \%,[M+\mathrm{H}]+), 433$ ($25 \%,[M-\mathrm{Boc}+\mathrm{H}]+$).

6.5.3 $\mathrm{HCl} \cdot \mathrm{H}-\left[(4 \mathrm{~S})-\mathrm{N}_{3} \text {-L-Prol }\right]_{3}-\mathrm{OH} 36$

The Boc-protecting group of $\operatorname{Boc}\left[\operatorname{Pro}-(4 S)-\mathrm{N}_{3}\right]_{3}-\mathrm{OH}(498 \mathrm{mg}, 0.935 \mathrm{mmol})$ was removed following the general procedure to yield the HCl -salt $\mathbf{3 6}(438 \mathrm{mg}, 0.935 \mathrm{mmol}$, quant.) as a white solid that was used without further purification.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR show multiple sets of peaks due to the s-trans and s-cis conformers.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}$): $\delta=4.82-4.58(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} \alpha), 4.58-4.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} \gamma), 4.15-3.35(\mathrm{~m}$, 6H, Hס), 2.95-1.95 (6H, Hß);
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=174.5,173.7,172.2,171.0,170.8,168.2,167.4,61.0,60.8,60.5$, $60.3,60.0,59.7,59.5,59.3,59.1,59.0,58.9,58.6,58.5,53.6,53.5,53.3,52.7,52.6,52.3,51.7,37.4,37.1$, $36.9,35.8,35.6,35.0,34.9,34.3$.

ESI-MS: m / z : calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{12} \mathrm{O}_{4}[M+\mathrm{H}]+433$; found 433 (100%).

6.5.4 cyclo[Pro-(4S)-N $\left.\mathrm{N}_{3}\right]_{3} 34$

The HCl-salt 36 ($438 \mathrm{mg}, 0.935 \mathrm{mmol}$) was dissolved in anhydrous DMF (17 mL) and added within 1 h via syringe pump to a stirred solution of HATU ($1.066 \mathrm{~g}, 2.805 \mathrm{mmol}$) and Hünig`s base ($1.44 \mathrm{~mL}, 8.428 \mathrm{mmol}$) in anhydrous DMF (90 mL). The reaction mixture was stirred for an additional hour before removal of all volatiles at reduced pressure. The remaining oil was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$. The aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$, the organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Filtration and evaporation of the solvent at reduced pressure followed by flash chromatography on silica gel (EtOAc) yielded the cyclotripeptide 34 ($284 \mathrm{mg}, 0.685 \mathrm{mmol}, 73 \%$) as a white solid.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl} 3,25^{\circ} \mathrm{C}\right) ; \delta=5.07(\mathrm{dd}, J=8.1 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \alpha), 4.52(\mathrm{dd}, J=12.5 \mathrm{~Hz}, 8.1$ $\mathrm{Hz}, \quad 3 \mathrm{H} ; ~ \mathrm{H} \delta$), 4.04 (dtd, $J=9.9 \mathrm{~Hz}, \quad 8.1 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 3 \mathrm{H} ; \quad \mathrm{H} \gamma$), 3.14 (dd, $J=12.5 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \delta), 2.64(\mathrm{ddd}, J=13.9 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \beta), 2.54(\mathrm{ddd}, J=13.8 \mathrm{~Hz}$, $10.0 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \beta$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=165.9,56.3,55.7,49.3,34.1$.

FT-IR ($\mathrm{NaCl}, ~ v / \mathrm{cm}-1$): 2108, 1646, 1441, 1362, 1263, 1211.

ESI-MS: m / z : calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{3}[M+\mathrm{Na}]+437$; found 437 (100\%).

Elemental analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{3}$ (414.16): C 43.48, H 4.38, N 40.56, found: C 43.41, H 4.34, N 40.50.

6.5.5 $\operatorname{cyclo}\left[\operatorname{Pro}(4 S) \mathrm{NHAc}_{3} 33\right.$

Palladium on carbon $(10 \%, 3 \mathrm{mg})$ was added to the solution of the triazide $36(10 \mathrm{mg}$, $24 \mu \mathrm{~mol})$ in a 1:2 mixture of THF:MeOH (2 mL). The black suspension was evacuated, flushed with hydrogen and allowed to stir for 2 h at room temperature. After filtration over celite and removal of the solvent at reduced pressure, the residue was dissolved in THF, acetic anhydride ($35 \mu \mathrm{~L}, 360 \mu \mathrm{~mol}$) and polyvinylpyridine $(10 \mathrm{mg})$ were added and the reaction mixture was stirred for 1 h . After filtration and removal of all volatiles at reduced pressure the residue was triturated with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$ to afford the acetylated cyclotriproline $\mathbf{3 3}(7 \mathrm{mg}, 15 \mu \mathrm{~mol}, 63 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.67(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{NH}), 5.15(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \alpha), 4.93$ (dq, $J=8.7 \mathrm{~Hz}, 4.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \gamma$), 4.37 (dd, $J=13.7 \mathrm{~Hz}, 8.7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \delta$), 3.04 (dd, $J=13.7 \mathrm{~Hz}, 4.1 \mathrm{~Hz}$, $\left.3 \mathrm{H} ; \mathrm{H} \delta^{\prime}\right), 2.50(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{H} \beta), 2.18\left(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \beta^{\prime}\right), 2.03\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{AcCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (100.5 MHz, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta=169.6,167.1,57.6,53.7,44.5,36.5,23.5$.

ESI-MS: m / z : calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{6}[M+\mathrm{Na}]+485$; found 485 (100%).

6.5.6 cyclo[Pro-(4R)-N $\left.\mathbf{N}_{3}\right]_{3} 40$

40 was prepared in analogy to 34 and isolated as a white solid in approximately 15% yield.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=5.15(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \alpha), 4.86(\mathrm{qd}, J=7.4 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 3 \mathrm{H} ;$ $\mathrm{H} \gamma^{\prime}$), 3.87 (dd, $J=13.2 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \delta^{\prime}$), 3.55 (dd, $J=13.2 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \delta$), 2.86 (ddd, $J=13.3$ $\left.\mathrm{Hz}, 7.5 \mathrm{~Hz}, 1.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \beta^{\prime}\right), 2.06$ (ddd, $J=13.4 \mathrm{~Hz}, 7.4 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \beta$).
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=166.3,58.7,56.8,51.1,35.0$.
FT-IR (KBr): $v=3345,2930,2109,1653,1628,1437,1356,1317,1269$.

ESI-MS: m / z : calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{3}[M+\mathrm{Na}]+437$; found 437 (100\%).

Elemental analysis calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{3}$ (414.16): C 43.48, H 4.38, $\mathrm{N} \mathrm{40.56}$, found: C 43.47, H 4.26, N 40.44 .

6.5.7 cyclo[Pro-(4R)-NHAc] 32

32 was prepared in analogy to 33 and isolated as a white solid in 64% yield.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}$): $\delta=5.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{Ha}), 4.93(\mathrm{dq}, J=5.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 3 \mathrm{H}$; $\mathrm{H} \gamma$), 3.65 (dd, $\left.J=12.9 \mathrm{~Hz}, 5.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \delta^{\prime}\right), 3.57(\mathrm{dd}, J=12.9 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \delta)$, 2.68 (dd, $J=12.9$ $\left.\mathrm{Hz}, 8.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \beta^{\prime}\right), 1.97(\mathrm{dt}, J=12.9 \mathrm{~Hz}, 7.7 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{H} \beta), 1.93\left(\mathrm{~s}, 9 \mathrm{H} ; \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 25^{\circ} \mathrm{C}$): $\delta=171.0,167.1,56.2,50.3,47.0,34.6,20.8$.

ESI-MS: m / z : calculated for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{6}[M+\mathrm{Na}]+485$; found 485 (100%).

6.6 Synthesis of the receptor prototype

6.6.1 Cyclotriproline-Tyr(DR)-Boc 42

Cyclo[(4S)-N3-L-Pro] 34 ($23 \mathrm{mg}, 0.056 \mathrm{mmol}$) was suspended in dry THF (0.5 mL). 1 M trimethylphosphine in THF ($0.27 \mathrm{~mL}, 0.27 \mathrm{mmol}$) was added and the reaction was stirred at room temperature. After 10 minutes $\mathrm{H}_{2} \mathrm{O}(0.27 \mathrm{~mL})$ were added. The reaction was stirred for 2 hours, then the solvent was removed and the residual solid was coevaporated with toluene $(5 \times 3 \mathrm{~mL})$. The residual, off-white solid was reacted with Boc- $\operatorname{Tyr}(\mathrm{DR})-\mathrm{OH}(146 \mathrm{mg}, 0.252 \mathrm{mmol})$, HATU ($128 \mathrm{mg}, 0.337 \mathrm{mmol}$) and Hünig's base $(172 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$ in dry DMF $(0.5 \mathrm{~mL})$. After 2 hours the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and extracted with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$. The aqueous layer was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The combined organic layers were dried and the solvent was removed in vacuo. The crude product was purified by column chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 100: 0$ to $90: 10$), and gel filtration (LH20, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 90: 10\right)$ yielding cyclotriproline- $\mathrm{Tyr}(\mathrm{DR})-\mathrm{Boc} 42$ ($68 \mathrm{mg}, 0.22 \mathrm{~mol}$, $60 \%)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.28(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 8.09(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 7.88(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{ar})$, 7.08 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{ar}), 6.78(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{ar}), 5.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Pro-H\alpha }), 4.95(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$; NHcarb), 4.81 (m, 1H; Pro-H $), 4.31$ (m, 2H; Tyr-Ha, Pro-H δ), 4.12 (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}$), 3.57 (q, $J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.04(\mathrm{dd}, J=14.1 \mathrm{~Hz}, 5.5 \mathrm{~Hz}, 1 \mathrm{H}$; Tyr-Hß), 2.91 (m, 2H; Pro-H, Tyr-H β), 2.42 (m, 1H; Pro-Hß), $2.08(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Pro}-\mathrm{H} \beta), 1.37\left(\mathrm{~s}, 9 \mathrm{H} ;{ }^{t} \mathrm{Bu}\right), 1.25\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=170.7,167.1,157.4,156.7,155.2,151.2,147.3,143.6,130.4$, $129.0,126.2,124.6,122.6,114.5,111.4,79.9,65.3,57.5,55.6,53.4,49.8,46.1,44.7,37.5,36.0,29.6$, 28.3, 12.2.

ESI-MS: m / z : calculated for $\mathrm{C}_{105} \mathrm{H}_{123} \mathrm{~N}_{21} \mathrm{O}_{21}[M+\mathrm{Na}]+2037$; found 2037 (100\%); [1/2M+Na]+ 1030, found $1030(90 \%)$.

6.6.2 Cyclotriproline-Tyr(DR)-Asp(tbu)-Fmoc 43

Cyclotriproline-Tyr(DR)-Boc ($23 \mathrm{mg}, 0.011 \mathrm{mmol}$) was Boc-deprotected using the general procedure. The hydrochloride salt was reacted with Fmoc-Asp('bu)-OH (27 mg , $0.066 \mathrm{mmol})$, EDC ($13 \mathrm{mg}, 0.069 \mathrm{mmol}$), and Hünig's base ($13 \mu \mathrm{~L}, 0.077 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$. After 1 hour the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and extracted with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$. The aqueous layer was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$. The combined organic layers were dried and the solvent was removed in vacuo. The crude product was purified by column chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$ 100:0 to 90:10), and gel filtration ($\mathrm{LH} 20, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 90: 10$) yielding 43 (29 mg , $0.01 \mathrm{~mol}, 91 \%$) as pure product.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.30(\mathrm{~m}, 2 \mathrm{H} ;$ ar), $8.20(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 7.88(\mathrm{~m}, 2 \mathrm{H} ;$ ar), 7.83 (m, $2 \mathrm{H} ; \mathrm{ar}$), $7.74(\mathrm{~m}, 2 \mathrm{H} ;$ ar), $7.57(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 7.38(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 7.29(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 7.05(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar})$, 6.88 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 6.69(\mathrm{~m}, 4 \mathrm{H} ;$ ar), 6.01 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 5.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H} ;$ Pro-H α), 4.77 (m, 1H; Pro-H γ), 4.57 (m, 2H; Asp-H α, Tyr-H α), 4.40 (dd, $J=10.5 \mathrm{~Hz}, 6.9 \mathrm{~Hz}, 1 \mathrm{H}$; $\mathrm{CH}_{2} \mathrm{Fmoc}$), 4.31 (m, 2H; Pro-H $\delta, \mathrm{CH}_{2} \mathrm{Fmoc}$), $4.18\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H} ;\right.$ CHFmoc), 3.93 (m, $2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{dye}$), 3.67 (m, 2H; CH 2 dye), 3.47 (q, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.04 (m, 2H; Asp-Hß), 2.89 (m, 2H; Pro-H β, Tyr-Hß), 2.65 (m, 1H; Tyr-Hß), 2.31 (m, 1H; Pro-H β), 2.00 (d, $J=13.9 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Pro-H\beta }$), 1.40 (s, 9H; $\left.{ }^{\prime} \mathrm{Bu}\right), 1.18$ (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{dyy}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta=171.4,170.4,169.6,166.8,157.4,156.7,156.1,151.2,147.3$, $143.8,143.6,143.5,141.2,130.4,127.8,127.1,126.2,125.2,125.0,124.6,122.6,120.0,114.4,111.3$, 81.7, 67.3, 65.1, 57.5, 54.5, 53.6, 51.1, 49.7, 47.0, 46.0, 44.6, 36.7, 36.5, 36.2, 28.0, 12.2.

ESI-MS: m / z : calculated for $\mathrm{C}_{159} \mathrm{H}_{168} \mathrm{~N}_{24} \mathrm{O}_{30}[M+\mathrm{Na}]+2915$; found 2915 (100\%).

6.6.3 Cyclotriproline-Tyr(DR)-Asp(${ }^{\text {tbu}}$)-Asp (${ }^{t}$ bu) -Fmoc 44

Cyclotriproline-Tyr(DR)-Asp-Fmoc (29 mg, 0.01 mmol) was Fmoc-deprotected following the general procedure. The free amine was reacted with Fmoc-Asp(${ }^{(b u)}$)-OH $(25 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{EDC}(12 \mathrm{mg} 0.063 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$. After 1 hour the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and extracted with 1 N HCl (5 mL). The aqueous layer was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic layers were dried and the solvent was removed in vacuo. The crude product was purified by column chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 100: 0$ to $90: 10$), and gel filtration ($\mathrm{LH} 20, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 90: 10$) yielding 44 ($21 \mathrm{mg}, 0.061 \mathrm{~mol} 61 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.30(\mathrm{~m}, 2 \mathrm{H} ;$ ar), $8.13(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 7.87(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{ar})$, $7.74(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 7.55(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 7.38(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 7.28$ (m, $2 \mathrm{H} ; \mathrm{ar}$), 7.18 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 7.08$ (m, 2H; ar), 6.77 (m, 4H; ar), 5.86 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), 4.98 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Pro-H\alpha }), 4.79$ (m, 1H; Tyr-H α), 4.72 (m, 1H; Pro-H γ), 4.47 (m, 1H; Asp1-H α), 4.43-4.28 (m, 4H; Pro-H δ, Asp2-H α, $\mathrm{CH}_{2} \mathrm{Fmoc}$), $4.20\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H} ;\right.$ CHFmoc), $4.08\left(\mathrm{~m}, 2 \mathrm{H} ; C H_{2} \mathrm{dye}\right), 3.76\left(\mathrm{~m}, 2 \mathrm{H} ; C H_{2} \mathrm{dye}\right), 3.54(\mathrm{q}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3}$), 3.14 (dd, $J=14.0 \mathrm{~Hz}, 5.0 \mathrm{~Hz}, 2 \mathrm{H} ;$ Asp1-H β), 3.00-2.78 (m, 4H; Pro-H δ, Asp1-H β, Asp2-H β, Tyr-H β), 2.69 (m, 1H; Asp2-H β), 2.55 (m, 1H; Tyr-H β), 2.30 (m, 1H; Pro-H β), 2.01 (d, $J=$ $14.0 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Pro-HB}), 1.43\left(\mathrm{~s}, 9 \mathrm{H} ;{ }^{\text {'Bu}}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H} ;{ }^{\text {'Bu), }} 1.22\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{dye}\right)\right.$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta=171.3,171.1,170.7,170.3,170.0,167.0,157.4,156.9,156.2$, 151.4, 147.4, 143.8, 143.7, 141.4, 141.3, 130.4, 129.7, 128.0, 127.3, 127.2, 126.4, 125.2, 124.8, 122.7, $120.2,114.6,111.5,82.2,81.8,67.2,65.3,57.6,55.2,51.8,49.9,49.7,47.1,46.2,44.9,36.3,36.2,29.8$, 28.2, 28.1, 12.4.

ESI-MS: m / z : calculated for $\mathrm{C}_{183} \mathrm{H}_{207} \mathrm{~N}_{27} \mathrm{O}_{39}[M+\mathrm{Na}]+3429$; found 3429 (100%).

6.6.4 Cyclotriproline-Tyr(DR)-Asp(${ }^{t}$ bu)-Asp (${ }^{t}$ bu ${ }^{(1) A c} 45$

Cyclotriproline-Tyr(DR)-Asp-Fmoc ($18 \mathrm{mg}, 0.0053 \mathrm{mmol}$) was Fmoc-deprotected following the general procedure. The free amine was reacted with acetic acid ($45 \mu \mathrm{~L}$, 0.792 mmol), which had been preactivated by mixing with HCTU (393mg, 0.950 $\mathrm{mmol})$ and Hünig's base ($0.5 \mathrm{~mL}, 2.85 \mathrm{mmol}$) in dry DMF (0.3 mL). After 1 hour, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and extracted with $1 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$. The aqueous layer was extracted again with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic layers were dried and the solvent was removed in vacuo. The crude product was purified by column chromatography (gradient $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 100: 0$ to $90: 10$), and gel filtration ($\mathrm{LH} 20, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 90: 10$) yielding pure 45 ($8 \mathrm{mg}, 0.0027 \mathrm{~mol}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=8.32(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 8.13(\mathrm{~d}, J=9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 7.90(\mathrm{~m}, 4 \mathrm{H}$; ar), 7.43 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}$), $7.12(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 6.80(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{ar}), 6.73$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{NH}), 5.06$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H} ;$ Pro-H α), 4.81-4.68 (m, 2H; Tyr-H α, Pro-H $), 4.60$ (m, 1H; Asp1-H α), 4.42 (m, 1H; Asp2-H α), 4.33 (dd, $J=13.5 \mathrm{~Hz}, 8.5 \mathrm{~Hz}, 1 \mathrm{H} ;$ Pro-H $\delta), 4.14\left(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H} ; C H_{2} \mathrm{dye}\right), 3.83(\mathrm{t}, J=5.7$ $\left.\mathrm{Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{dye}\right), 3.60\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H} ; C H_{2} \mathrm{CH}_{3} \mathrm{dye}\right), 3.22$ (dd, $J=14.2 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Asp} 2-\mathrm{H} \beta$), 2.95 (m, 2H; Asp2-H β, Pro-H δ), 2.73 (m, 3H; Tyr-Hß, 2xAsp1-H $), 2.56$ (m, 1H; Tyr-H β), 2.39 (m, 1H; Pro-Hß), 2.04 (d, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H} ;$ Pro-Hß), 1.97 ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{AcCH}_{3}$), 1.41 ($\mathrm{s}, 9 \mathrm{H} ;{ }^{\mathrm{t}} \mathrm{Bu}$), 1.33 ($\mathrm{s}, 9 \mathrm{H} ;{ }^{\dagger} \mathrm{Bu}$), 1.27 (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{dye}\right)$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=171.1,171.0,170.5,170.4,170.3,170.1,167.0,157.2,156.8$, $151.3,147.3,143.7,130.2,129.9,126.3,124.7,122.6,114.4,111.4,82.0,81.6,65.2,57.5,55.4,53.0$, 49.9, 49.6, 46.2, 44.9, 36.7, 36.1, 35.8, 29.7, 28.0, 27.9, 23.0, 12.3.

ESI-MS: m / z : calculated for $\mathrm{C}_{144} \mathrm{H}_{183} \mathrm{~N}_{27} \mathrm{O}_{36}[M+\mathrm{Na}]+2889$; found 2889 (100\%).

Cyclotriproline-Tyr(DR)-Asp-Asp-Ac 46

Cyclotriproline-Tyr(DR)-Asp($\left.{ }^{\text {tbu }}\right)$-Asp($\left.{ }^{\text {tbu }}\right)-\mathrm{Ac} 45$ ($6 \mathrm{mg}, 0.002 \mathrm{mmol}$) was treated with 50% TFA in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ for 30 minutes at room temperature. After removal of all volatiles, the residual oil was triturated with pentanes to yield the deprotected receptor 46 ($2.6 \mathrm{mg}, 0.001 \mathrm{mmol}, 50 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=7.99(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 7.57(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{ar}), 6.82(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{ar}), 6.52(\mathrm{~m}, 4 \mathrm{H}$; ar), 5.08 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Pro}-\mathrm{H} \alpha), 4.51(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Tyr}-\mathrm{H} \alpha), 4.31(\mathrm{~m}, 1 \mathrm{H} ;$ Asp1-H $), 4.25(\mathrm{~m}$, 1 H ; Pro-Hס), 4.10 (dd, $J=8.7 \mathrm{~Hz}, 5.3 \mathrm{~Hz}, 1 \mathrm{H} ;$ Asp2-Ha), 4.00 (dd, $J=13.0 \mathrm{~Hz}, 8.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Pro}-\mathrm{H} \delta)$, $3.84\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H} ; C H_{2} \mathrm{dye}\right), 3.53\left(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H} ; C H_{2} \mathrm{dye}\right), 3.30\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H} ; C H_{2} \mathrm{CH}_{3} \mathrm{dye}\right)$, 2.83 (dd, $J=14.0 \mathrm{~Hz}, 5.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ Asp2-Hß; Pro-H δ), 2.67 (m, 1H; Asp2-Hß), 2.59 (dd, $J=13.4 \mathrm{~Hz}, 4.4$ $\mathrm{Hz}, 1 \mathrm{H} ;$ Pro-H δ), 2.50 (m, 2H; Tyr-H β, Asp1-H β), 2.39 (m, 2H; Tyr-H β, Asp1-H β), 2.11 (m, 1H; Pro$\mathrm{H} \beta), 1.78(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Pro-H\beta }), 1.62\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{AcCH}_{3}\right), 0.56\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{2} \mathrm{CH}_{3} \mathrm{dye}\right)$.
${ }^{13}{ }^{3}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta=173.6,172.6,172.0,171.6,168.7,158.1,157.3,152.3,147.8$, 144.1, 130.8, 130.1, 127.0, 125.2, 123.0, 115.0, 112.2, 66.1, 57.8, 56.3, 50.5, 50.4, 40.5, 49.3, 49.2, 49.0, $48.8,48.7,48.5,36.2,35.9,35.5,30.1,22.6,12.5$.

ESI-MS: m / z : calculated for $\mathrm{C}_{120} \mathrm{H}_{135} \mathrm{~N}_{27} \mathrm{O}_{36}[M-3 \mathrm{H}]-824$; found 824 (100%).

7 References and Appendices

7.1 References

1. D. H. Williams, Nat. Prod. Rep. 1996, 13, 469-477.
2. M. Schäfer, T. R. Schneider, G. M. Sheldrick, Structure, 1996, 4, 1509-1515.
3. J. Liu, K. J. Volk, M. S. Lee, M. Pucci, S. Handwerger, Anal. chem. 1994, 66, 2412-2416.
4. For a review see: R. W. Hoffmann, Angew. Chem. Int. Ed. 2000, 39, 2054-2070.
5. a) W. C. Still, P. Hauck, D. Kempf, Tetrahedron Lett. 1987, 28, 2817-2820; b) P. K. Somers, T. J. Wandless, S. L. Schreiber, J. Am. Chem. Soc. 1991, 113, 8045-8056.
6. D. A. Evans, R. P. Polniaszek, K. M. DeVries, D. E. Guinn, D. J. Mathre, J. Am. Chem. Soc. 1991, 113, 7613-7630.
7. a) U. Gräfe, W. Schade, M. Roth, L. Radics, M. Incze, K. Ujszaszy, J. Antibiot. 1984, 37, 836-846; b) L. Radics, J. Chem. Soc. Chem. Commun. 1984, 599-601.
8. H. A. Brooks, D. Gardner, J. P. Pyser, T. J. King, J. Antibiot. 1984, 37, 15011504.
9. R.W. Hoffmann, Angew. Chem. 1992, 104, 1147-1157; Angew. Chem. Int. Ed. Engl. 1992, 31, 1124-1134.
10. a) W. Adam, T. Wirth, Acc. Chem. Res. 1999, 32, 703-710; b) B. Giese, W. Damm, R. Batra, Chemtracts: Organic Chemistry, 1994, 7, 355-370; c) R.W. Hoffmann, Chem. Rev. 1989, 89, 1841-1860; d) S. Hanessian, V. Mascitti, S. Giroux, Proc. Nat. Am. Sci. 2004, 101, 11996-12001; e) U. Schopfer, M. Stahl, T. Brandl, R. W. Hoffmann, Angew. Chem. 1997, 109, 1805-1807; Angew. Chem. Int. Ed. Engl. 1997, 36, 1745-1747.
11. a) S. Tang, W.C. Still, Tetrahedron Lett. 1993, 34, 6701-6704; b) S.S. Yoon, T. M. Georgiadis, W.C. Still, Tetrahedron Lett. 1993, 34, 6697-6700; c) G. Li, W.C. Still, J. Am. Chem. Soc. 1993, 115, 3804-3805; d) G. Li, W.C. Still, Tetrahedron Lett. 1993, 34, 919-922; e) G. Li, W.C. Still, Bioorg. Med. Chem. Lett. 1992, 2, 731-734; f) X. Wang, S. D. Erickson, T. Iimori, W.C. Still, J. Am. Chem. Soc. 1992, 114, 4128-4137; g) S. D.. Erickson, W.C. Still, Tetrahedron Lett. 1990, 31, 4253-4256; h) T. Iimori, S. D.. Erickson, A. L. Rheingold, W.C. Still, Tetrahedron Lett. 1989, 30, 6947-6950.
12. G. Quinkert, E. Egert, C. Griesinger, Aspekte der Organischen Chemie : Struktur, Verl. Helvetica Chemica Acta, Basel, 1995.
13. E.S. Eberhardt, N. Panasik, R. T. Raines, J. Am. Chem. Soc. 1996, 118, 1226112266.
14. a) D. E. Stewart, A Sarkar,. J. E. Wampler, J. Mol. Biol. 1990, 214, 253-260. (b) M. S. Weiss, A. Jabs, R. Hilgenfeld, Nat. Struct. Biol. 1998, 5, 676.
15. C. Nathaniel, L. A. Wallace, J. Burke, H. W. Dir, Biochem. J. 2003, 372, $241-$ 246.
16. T. C. Evans Jr., G. L. Nelsestuen, Biochemistry 1996, 35, 8210-8215.
17. K. Lang, F. X. Schmid, G. Fischer, Nature 1987, 329, 268-270.
18. For an overview of the biochemistry of PPIases see: A. Galat, S. M. Metcalfe, Proc. Biophys. molec. Biol. 1995, 63, 67-118.
19. A. B. Mauger, J. Nat. Prod. 1996, 59, 1205-1211.
20. E. Fischer, Ber. Dtsch. Chem. Ges. 1902, 35, 2660-2665.
21. M. R. Stetten, J. Biol. Chem. 1949, 181, 31-37.
22. F. Irreverre, K. Morita, A. V. Robertson, B. Witkop, J. Am. Chem. Soc. 1963, 85, 2824-2831.
23. M.-T. Weiss, M. Weninger, J. Hausler, G. Lubec, Padiatrie Padagogie 1988, 23, 9-14.
24. G. Lancini, F. Parenti, Antibiotics - An Integrated View, Springer-Verlag, New York, 1982.
25. H. Brockmann, G. Pampus, J. H. Manegold, Chem. Ber. 1959, 92, 1294- 1302.
26. H. Brockmann, J. H. Manegold, Z. Physiol. Chem. 1965, 343, 86-100.
27. H. Brockmann, E. A. Stähler, Tetrahedron Lett. 1973, 2567-2570.
28. E. Katz, K. T. Mason, A. B. Mauger, Biochem. Biophys. Res. Commun. 1975, 63, 502-508.
29. A. B. Mauger, O. A. Stuart, E. Katz, K. T. Mason, J. Org. Chem. 1977, 42, 1000-1005.
30. E. Katz, K. T. Mason, A. B. Mauger, Biochem. Biophys. Res. Commun. 1973, 52, 819-826.
31. S. Nakamura, T. Chikaike, H. Yonehara, H. Umezawa, Chem. Pharm. Bull. 1965, 13, 599-602.
32. G. W. Engstrom, J. V. DeLance, J. L. Richard, A. L. Baetz, J. Agric. Food Chem. 1975, 23, 244-253.
33. J. P. Springer, R. J. Cole, J. W. Dorner, R. H. Cox, J. L. Richard, C. L. Barnes, D. van der Helm, J. Am. Chem. Soc. 1984, 106, 2388-2392.
34. L. Fowden, A. Smith, D. S. Millington, R. C. Sheppard, Phytochemistry 1969, 8 , 437-443.
35. S. Murakami, T. Takemoto, Z. Shimizu, K. Daigo, Jpn. J. Pharm. Chem. 1953, 25, 571-574.
36. J. V. Nadler, Life Sci. 1979, 24, 289-300.
37. G. A. R. Johnston, D. R. Curtis, J. Davies, R. M. McCulloch, Nature (London) 1974, 248, 804-805.
38. J. T. Coyle, R. Schwarcz, Nature (London) 1976, 263, 244-246.
39. V. W. Magaard, R. M. Sanchez, J. W. Bean, M. L. Moore, Tetrahedron Lett. 1993, 34, 381-384.
40. Bonnett, R.; Clark, V. M.; Giddey, A.; Todd, S. A. J. Chem. Soc. 1959, 20872093.
41. S. S. A. An, C. C. Lester, J.-L. Peng, Y.-J. Li, D. M. Rothwarf, E. Welker, T. W. Thannhauser, L. S. Zhang, J. P. Tam, H. A. Scheraga, J. Am. Chem. Soc. 1999, 121, 11558-11566.
42. a) T. Haack, M. Mutter, Tetrahedron Lett. 1992, 33, 1589-1592; (b) T. Wöhr, M. Mutter, Tetrahedron Lett. 1995, 36, 3847-3848; (c) M. Mutter, A. Nefzi, T. Sato, X. Sun, F. Wahl, T. Wöhr, Peptide Res. 1995, 8, 145-153.
43. T. Wöhr, F. Wahl, A. Nefzi, B. Rohwedder, T. Sato, X. Sun, M. Mutter, J. Am. Chem. Soc. 1996, 118, 9218-9227.
44. M. Keller, C. Sager, P. Dumy, M. Schutkowski, G. S. Fischer, M. Mutter, J. Am. Chem. Soc. 1998, 120, 2714-2720.
45. J. A. Hodges, R. T. Raines, J. Am. Chem. Soc. 2003, 125, 9262-9263.
46. a) E. S. Eberhardt, N. Panasik, R. T. Raines, J. Am. Chem. Soc. 1996, 118, 12261-12266. b) S. K. Holmgren, K. M. Taylor, L. E. Bretscher, R. T. Raines Nature 1998, 392, 666-667.
47. M. L. DeRider, S. J. Wilkens, M. J. Waddell, L. E. Bretscher, F. Weinhold, R. T. Raines, J. L. Markley, J. Am. Chem. Soc 2002, 124, 2497-2505.
48. M. C. Conza, M. Nold, P. Krattiger, H. Wennemers, unpublished results.
49. Matthias Nold, Ph.D. Thesis.
50. H. Wennemers, M. Conza, M. Nold, P. Krattiger, Chem. Eur. J. 2001, 7, 33423347.
51. H. Wennemers, M. C. Nold, M. M. Conza, K. J. Kulicke, M. Neuburger, Chem. Eur. J. 2003, 9, 442-448.
52. D. F. DeTar, N. P. Luthra, J. Am. Chem. Soc 1977, 99, 1232-1244.
53. M. Karplus, J. Phys. Chem., 1959, 30, 11-15.
54. G.C.K. Roberts, NMR of Macromolecules - A Practical Approach, Oxford University Press, p. 362.
55. C.M. Derber, D.A. Torchia, E.R. Blout, J. Am. Chem. Soc., 1971, 93, 48934897.
56. S. Wolfe, Acc. Chem. Res. 1972, 5, 102-111.
57. (a) H. B. Bürgi, J. D. Dunitz, E. Shefter, J. Am. Chem. Soc. 1973, 95, 50655067; (b) H. B. Bürgi, J. D. Dunitz, J. M. Lehn, G. Wipff, Tetrahedron 1974, 30, 1563-1572; (c) H. B. Bürgi, J. M. Lehn, G. Wipff, J. Am. Chem. Soc. 1974, 96, 1965-1966; (d) H. B. Bürgi, J. D. Dunitz, E. Shefter, Acta Crystallogr. Sect. B 1974, 30, 1517-1527.
58. L.E. Bretscher, C.L. Jenkins, K.M. Taylor, M.L. DeRider, R.T. Raines, J. Am. Chem. Soc. 2001, 123, 77-778.
59. J. A. Hodges, R.T. Raines, J. Am. Chem. Soc. 2003, 125, 9262-9263.
60. The higher mesomeric stabilization of the amide versus the ester is a well-established fact; it is also used to explain the lower reactivity of amides in nucleophilic substitution reactions. See: R. Brückner, Reactionsmechanismen: Organische Reaktionen, Stereochemie, moderne Synthesemethoden, Spectrum, Akad. Verlag, 1996, p. 205.
61. Collaboration with Dipl. Chem. Sabine Schweizer and Prof. Dr. Christian Ochsenfeld at the Univeristy of Tübingen, Germany.
62. Spartan'02 Wavefunction, Inc., Irvine, CA.
63. J. Kong, C. A. White, A. I. Krylov, C. D. Sherrill, R. D. Adamson, T. R. Furlani, M. S. Lee, A. M. Lee, S. R. Gwaltney, T. R. Adams, H. Daschel, W. Zhang, P. P. Korambath, C. Ochsenfeld, A. T. B. Gilbert, G. S. Keziora , D. R. Maurice, N. Nair, Y. Shao, N. A. Besley, P. E. Maslen, J. P. Dombroski, J. Baker, E. F. C. Byrd, T. v. Voorhis, M. Oumi, S. Hirata, C.-P. Hsu, N. Ishikawa, J. Florian, A. Warshel, B. G. Johnson, P. M. W. Gill, M. Head-Gordon, J. A. Pople, J. Computational Chem.,2000, 21, 1532.
64. R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. Phys. Lett., 1989, 162, 165.
65. a) L. Radom, W. A. Lathan, W. J. Hehre, J. A. Pople, J. Am. Chem. Soc. 1973, 95, 693-698; b) T. K. Brunck, F. Weinhold, J. Am. Chem. Soc. 1979, 101, 17001709; c) P. R. Rablen, R. W. Hoffmann, D. A. Hrovat, W. T. Borden, J. Chem. Soc., Perkin Trans. 2: 1999, 8, 1719-1726; d) K. B. Wiberg, M. A. Murcko, K. E. Laidig, P. J. MacDougall, J. Phys. Chem. 1990, 94, 6956-6959; e) K. B. Wiberg, Acc. Chem. Res. 1996, 29, 229-234; f) C. Trindle, P. Crum, K. Douglass, J. Phys. Chem. A 2003, 107, 6236-6242; g) V. G. S. Box, L. L. Box, J. Mol. Struct. 2003, 649, 117-132; h) K.-H. Chen, G. A. Walker, N. L. Allinger, THEOCHEM 1999, 490, 87-107; i) O. Engkvist, G. Karlstroem, P.-O. Widmark, Chem. Phys. Lett. 1997, 265, 19-23; j) S. Papasavva, K. H. Illinger, J. E. Kenny, J. Phys. Chem. 1996, 100, 10100-10110; k) J. M. Martell, R. J. Boyd, Z. Shi, J. Phys. Chem. 1993, 97, 7208-7215; 1) I. A. Topol, S. K. Burt, Chem. Phys. Lett. 1993, 204, 611-616; m) D. A. Dixon, N. Matsuzawa, S. C. Walker, J. Phys. Chem. 1992, 96, 10740-10746; n) D. A. Dixon, B. E. Smart, J. Phys. Chem. 1988, 92, 2729-2733; m) K. B. Wiberg, M. A. Murcko, J. Phys. Chem. 1987, 91, 3616-3620; o) T. Miyajima, Y. Kurita, T. Hirano, J. Phys. Chem. 1987, 91, 3954-3959; p) G. F. Smits, M. C. Krol, P. N. Van Kampen, Cs. Altona, THEOCHEM 1986, 32, 247-253; q) L. Radom, J. Baker, P. M. W. Gill, R. H. Nobes, N. V. Riggs, J. Mol. Struct. 1985, 126, 271-290.
66. a) J. R. Durig, J. Liu, T. S. Little, V. F. Kalasinsky, J. Phys. Chem. 1992, 96, 8224-8233; b) N. C. Craig, A. Chen, K. H. Suh, S. Klee, G. C. Mellau, B. P. Winnewisser, M. Winnewisser, J. Phys. Chem. A 1997, 101, 9302-9308; c) L. Fernholt, K. Kveseth, Acta Chem. Scand., A: Phys. Inorg. Chem. 1980, A34, 163-170; d) H. Takeo, C. Matsumura, Y. Morino, J. Chem. Phys. 1986, 84, 4205-4210.
67. D. O’Hagan, C. Bilton, J. A. K. Howard, L. Knight and D. J. Tozer, J. Chem. Soc., Perkin Trans. 2 2000, 605-607.
68. C. Perrin, T. Dwyer, Chem. Rev. 1990, 90, 935-967.
69. M. Conza, H. Wennemers, J. Org. Chem. 2002, 67, 2696-2698.
70. P. Krattiger, H. Wennemers, Synlett 2005, 4, 706-708.
71. F. Mohamadi, N. G. J. Richards, W. C. Guida, R. Liskamp, M. Lipton, C. Caufield, G. Chang, T. Hendrickson, W. C. Still, J. Comput. Chem. 1990, 11, 440-467.
72. Calculations were performed by Dipl. Chem. Stanislav Ivan of the group of Prof. Dr. Bernd Giese, University of Basel.
73. W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, J. Am. Chem. Soc. 1996, 118, 11225-11236.
74. D. Qiu, P.S. Shenkin, F.P. Hollinger, W. C. Still, J. Phys. Chem. A 1997, 101, 3005-3014.
75. M. Rothe, K.-D. Steffen, I. Rothe, Angew. Chem. 1965, 77, 347-348.
76. M. H. J. Ohlmeyer, R. N. Swanson, L. W. Dillard, J. C. Reader, G. Asouline, R. Kobayashi, M. Wigler, W. C. Still, Proc. Natl. Acad. Sci. USA 1993, 90, 10922.
77. H. P. Nestler, P. A. Bartlet, W. C. Still, J. Org. Chem. 1994, 59, 4723.
78. A. Furka, F. Sebestyén, M. Asgedom, G. Dibo, Int. J. Pept. Protein Res. 1991, 37, 487.
79. K. S. Lam, S. E. Salmon, E. M. Hersh, V. J. Hruby, W. M. Kazmierski, R. J. Knapp, Nature 1991, 354, 82.
80. M. Nold, H. Wennemers, Chem. Commun. 2004, 16, 1800-1801.
81. This assumption is supported by studies of diketopiperazine-based receptors with acid-rich side-chains, which bound similar peptides as receptor 46. In ITC measurements with Ac-Arg-Ser-Arg-NH-propyl and Ac-Arg-Arg-Ser-NHpropyl, sequences also found in the combinatorial screening, lower binding affinities were found. PhD thesis, Philipp Krattiger.
82. The titrations were analyzed using a least squares curve-fitting procedure (Origin ${ }^{\circledR}$ implemented with the calorimetric setup provided by Microcal).
83. J. Jeener, B.H. Meier, P. Bachmann, R.R. Ernst, J. Chem. Phys. 1979, 71,45464553.
84. R. Wagner, S. Berger, J. Magn. Reson. 1996, 123 A, 119-121.

7.2 Appendix A: List of Sequences found in the combinatorial screenings

Sequences found in on-bead combinatorials screenings:
$0,01 \mathrm{M} \mathrm{NaHCO} 3 \mathrm{pH} 8,5$
Position

3.	2.	1.
D-Ala	D-Arg	D-Arg
D-Ala	D-Arg	L-Arg
D-Ala	L-Arg	L-Aro
D-Arg	D-Arg	D-Arg
D-Arg	D-Arg	D-Lys
D-Arg	D-Arg	D-Phe
D-Arg	D-Arg	D-Val
D-Arg	D-Pro	D-Arg
D-Arg	D-Thr	D-Arg
D-Arg	Gly	D-Arg
D-Arg	Gly (?)	L-Arg
D-Arg	L-Arg	D-Val
D-Arg	L-Asn	D-Arg
D-Arg	L-Glu	L-Arg
D-Arg	L-His	D-Arg
D-Asn	D-Arg	D-Arg
D-Asn	D-Arg	L-Arg
D-Asn	L-Arg	L-Arg
D-Lys	L-Arg	L-Ser/L-Lys
D-Pro	D-Arg	L-Pro
D-Thr	D-Arg	L-Arg
D-Thr	L-Arg	L-Arg
L-Arg	D-Arg	?
L-Arg	D-Arg	D-Arg
L-Arg	D-Arg	D-Arg
L-Arg	D-Arg	D-Arg
L-Arg	D-Arg	D-Thr
L-Arg	D-Asn	D-Arg
L-Arg	D-Asn	L-Arg
L-Arg	D-Gln	L-Arg
L-Arg	D-Ser	D-Arg
L-Arg	D-Ser	D-Arg
L-Arg	D-Ser	D-Arg
L-Arg	D-Thr	L-Arg
L-Arg	D-Thr (?)	D-Arg
L-Arg	Gly	D-Arg
L-Arg	L-Arg	L-Arg
L-Gln	D-Arg	L-Arg
L-Gln	L-Arg	L-Pro
L-His	D-Arg	D-Arg
L-His	L-Arg	D-Arg

L-Pro	L-Arg	D-Arg
L-Val	L-Arg	D-Arg

0,01M NaOH pH 12.0		
Position		
3.	2.	1.
D-Arg	$?$	$?$
D-Arg	D-Arg	D-Thr
D-Arg	D-Arg	D-Val
D-Arg	D-Arg	L-Ala
D-Arg	D-Arg	L-Thr
D-Arg	D-Arg	L-Val
D-Arg	D-Arg	D-Phe
D-Arg	Gly	D-Arg
D-Arg	L-Arg	L-Phe
D-Arg	L-Arg	L-Phe
D-Arg	L-Glu	D-Arg
D-Arg	L-Ser	L-Arg
D-Lys	L-Arg	L-Pro(?)
D-Pro	D-Arg	D-Arg
D-Thr	L-Arg	L-Arg
D-Val	L-Arg	L-Arg
L-Ala	D-Arg	L-Arg
L-Arg	D-Arg	D-Leu
L-Arg	D-Arg	D-Ser
L-Arg	D-Arg	D-Thr
L-Arg	D-Arg	D-Val
L-Arg	D-Arg	L-Thr
L-Arg	D-Arg(?)	L-Ala(?)
L-Arg	D-Ser	L-Arg
L-Arg	L-Ala	D-Arg(?)
L-Arg	L-Arg	D-Arg
L-Arg	L-Arg	D-Val
L-Arg	L-Arg	D-Val
L-Arg	L-Arg	L-Ala
L-Arg	L-Ser	D-Ser(?)
L-Arg	L-Ser	L-Arg(?)
L-Arg (?)	D-Ser	L-Arg(?)
L-Leu	L-Arg	L-Arg
L-Thr	L-Arg	D-Arg

7.3 Appendix B: Crystallographic data

Table 1: Crystal data for $\mathbf{1 5}$

formula	$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$
formula weight	212.21
Z, calculated density	$4,1.392 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{~F}(000)$	448
description and size of crystal: colorless plate,	$0.10 \cdot 0.22 \cdot 0.23 \mathrm{~mm}^{3}$
absorption coefficient	$0.109 \mathrm{~mm}^{-1}$
min/max transmission	$0.98 / 0.99$
temperature	173 K
radiation(wavelength $)$	$\mathrm{Mo} K_{\alpha}(\lambda=0.71073 \AA)$
Crystal system, space group	monoclinic, $\mathrm{P} 12_{1} 1$
a	$9.2443(2) \AA$
b	$12.7360(2) \AA$
c	$9.4877(2) \AA$
α	90°
β	$115.0156(8)^{\circ}$
γ	90°
V	$1012.25(4) \AA^{3}$
min/max Θ	$2.369^{\circ} / 27.870^{\circ}$
number of collected reflections	7874
number of independent refections	$2524(m e r g i n g ~ r=0.077)$
number of observed reflections	$2226(\mathrm{I}>0.50 \sigma(\mathrm{I}))$
number of refined parameters	271
r	0.0390
Rw	0.0495
goodness of fit	0.9367

Bond distances		Å
C1	C2	1.541(3)
C1	C7	1.515(3)
C1	N1	1.460 (3)
C1	H11	0.984
C2	C3	1.527(3)
C2	H21	0.986
C2	H22	0.985
C3	C4	1.521(3)
C3	N2	1.495 (3)
C3	H31	0.995
C4	N1	1.471(3)
C4	H42	0.992
C4	H41	1.023
C5	C6	1.498(3)
C5	N1	1.349(3)
C5	O1	1.235 (3)
C6	H61	1.020
C6	H63	0.985
C6	H64	0.978
C7	O2	1.330 (3)
C7	O3	1.204(3)
C8	O2	1.447(3)
C8	H81	0.995
C8	H82	0.990
C8	H83	0.989
C9	C10	1.540(3)
C9	C15	1.522(3)
C9	N5	1.457(3)
C9	H91	0.980
C10	C11	1.527(3)
C10	H101	0.971
C10	H102	0.987
C11	C12	1.524(4)
C11	N6	$1.485(3)$
C11	H111	0.990
C12	N5	1.458(3)
C12	H121	0.992
C12	H122	0.962
C13	C14	1.504(3)
C13	N5	1.350 (3)
C13	O4	1.229(3)
C14	H141	0.990
C14	H142	0.996
C14	H143	0.972
C15	O5	1.198(3)
C15	O6	1.329(3)
C16	O6	1.446 (3)
C16	H161	1.000
C16	H162	1.000
C16	H163	1.000

N2	N3	$1.226(3)$
N3	N4	$1.133(3)$
N6	N7	$1.223(3)$
N7	N8	$1.127(3)$

Bond angles			Deg
C2	C1	C7	$110.52(18)$
C2	C1	N1	$103.09(16)$
C7	C1	N1	$110.72(18)$
C2	C1	H11	111.864
C7	C1	H11	108.237
N1	C1	H11	112.383
C1	C2	C3	$104.55(18)$
C1	C2	H21	108.752
C3	C2	H21	109.838
C1	C2	H22	110.284
C3	C2	H22	115.580
H21	C2	H22	107.675
C2	C3	C4	$103.4(2)$
C2	C3	N2	$113.9(2)$
C4	C3	N2	$106.16(19)$
C2	C3	H31	112.796
C4	C3	H31	111.378
N2	C3	H31	108.893
C3	C4	N1	$102.62(19)$
C3	C4	H42	110.883
N1	C4	H42	109.975
C3	C4	H41	110.575
N1	C4	H41	110.564
H42	C4	H41	111.860
C6	C10	C5	C9

C15	C9	H91	110.259
N5	C9	H91	110.600
C9	C10	C11	$103.18(17)$
C9	C10	H101	110.494
C11	C10	H101	111.221
C9	C10	H102	109.786
C11	C10	H102	112.520
H101	C10	H102	109.495
C10	C11	C12	$103.98(18)$
C10	C11	N6	$110.60(19)$
C12	C11	N6	$110.0(2)$
C10	C11	H111	110.471
C12	C11	H111	109.718
N6	C11	H111	111.774
C11	C12	N5	$104.69(18)$
C11	C12	H121	110.612
N5	C12	H121	109.686
C11	C12	H122	113.210
N5	C12	H122	109.947
H121	C12	H122	108.627
C14	C13	N5	$117.3(2)$
C14	C13	O4	$122.0(2)$
N5	C13	O4	$120.7(2)$
C13	C14	H141	111.735
C16	C13	C14	H142

Table 2: Crystal data for $\mathbf{3 4}$
formula
formula weight
Z, calculated density
F(000)
description and size of crystal
absorption coefficient
$\min /$ max transmission
temperature
radiation(wavelength)
Crystal system, space group
a
b
c
α
β
γ
V
$\min / \max \Theta$
number of collected reflections
number of independent refections
number of observed reflections
number of refined parameters
r
rW
goodness of fit
$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{12} \mathrm{O}_{3}$
414.39
$4,1.453 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
864.300
colorless plate, $0.100 .220 .50 \mathrm{~mm}^{3}$
$0.109 \mathrm{~mm}^{-1}$
0.98 / 0.99

293K
$\operatorname{Mo} K_{\alpha}(\lambda=0.71073 \AA)$
orthorhombic, $\mathrm{P} 2_{1} 2_{1} 2_{1}$
10.842(1) Å
11.840(5) A
14.757(7) A
90°
90°
90°
$1894.3 \AA^{3}$
$4.13^{\circ} / 27.57^{\circ}$
13264
4271 (merging $\mathrm{r}=0.12$)
2914 (>2.00 $\sigma(\mathrm{I})$)
272
0.0449
0.0480
1.0616

Bond distances		Å
O1	C1	1.222(3)
O2	C6	1.213(3)
O3	C11	1.217 (3)
N1	C1	1.342(3)
N1	C2	1.463 (3)
N1	C5	1.470 (3)
N2	C6	1.345 (3)
N2	C7	1.463(3)
N2	C10	$1.465(3)$
N3	C11	1.332 (3)
N3	C12	1.456 (3)
N3	C15	1.472(3)
N4	N5	$1.202(4)$
N4	C3	1.483(4)
N5	N6	$1.128(4)$
N7	N8	$1.212(4)$
N7	C8	1.466(4)
N8	N9	1.132(4)
N10	N11	1.231(4)
N10	C13	1.468(3)
N11	N12	1.123(4)
C1	C15	$1.535(3)$
C2	C3	$1.519(5)$
C2	H21	1.000
C2	H22	1.000
C3	C4	1.514(5)
C3	H31	1.000
C4	C5	1.533(3)
C4	H41	1.000
C4	H42	1.000
C5	C6	1.532(3)
C5	H51	1.000
C7	C8	1.512(4)
C7	H71	1.000
C7	H72	1.000
C8	C9	1.542(4)
C8	H81	1.000
C9	C10	1.522 (3)
C9	H91	1.000
C9	H92	1.000
C10	C11	1.527(3)
C10	H101	1.000
C12	C13	1.514(3)
C12	H121	1.000
C12	H122	1.000
C13	C14	$1.532(4)$
C13	H131	1.000
C14	C15	1.532(3)
C14	H141	1.000
C14	H142	1.000
C15	H151	1.000

Bond Angles			Deg
C1	N1	C2	$121.4(2)$
C1	N1	C5	$127.6(2)$
C2	N1	C5	$108.0(2)$
C6	N2	C7	$122.0(2)$
C6	N2	C10	$127.68(19)$
C7	N2	C10	$110.03(18)$
C11	N3	C12	$122.87(18)$
C11	N3	C15	$128.14(18)$
C12	N3	C15	$108.67(16)$
N5	N4	C3	$115.2(3)$
N4	N5	N6	$173.0(4)$
N8	N7	C8	$116.1(2)$
N7	N8	N9	$173.9(3)$
N11	N10	C13	$116.0(2)$
N10	N11	N12	$172.2(3)$
O1	C1	N1	$121.9(2)$
O1	C1	C15	$120.0(2)$
N1	C1	C15	$117.9(2)$
N1	C2	C3	$100.9(2)$
N1	C2	H21	$111.58(15)$
C3	C2	H21	$111.57(15)$
N1	C2	H22	$111.58(13)$
C3 23	C2	H22	$111.59(16)$
N2 28	C8	C7	C7
N21	C6	C6	C5

H71	C7	H72	109.467
N7	C8	C7	108.5(2)
N7	C8	C9	113.3(2)
C7	C8	C9	106.19(18)
N7	C8	H81	106.55(13)
C7	C8	H81	113.60(15)
C9	C8	H81	108.84(13)
C8	C9	C10	106.59(19)
C8	C9	H91	110.18(14)
C10	C9	H91	110.18(13)
C8	C9	H92	110.20(13)
C10	C9	H92	110.18(13)
H91	C9	H92	109.467
N2	C10	C9	103.39(18)
N2	C10	C11	108.11(17)
C9	C10	C11	111.87(18)
N2	C10	H101	115.03(12)
C9	C10	H101	111.46(13)
C11	C10	H101	107.02(11)
O3	C11	N3	121.3(2)
O3	C11	C10	119.7(2)
N3	C11	C10	118.95(18)
N3	C12	C13	102.53(19)
N3	C12	H121	111.16(11)
C13	C12	H121	111.16(13)
N3	C12	H122	111.20(11)
C13	C12	H122	111.19(13)
H121	C12	H122	109.467
N10	C13	C12	114.0(2)
N10	C13	C14	115.7(2)
C12	C13	C14	105.71(18)
N10	C13	H131	100.44(14)
C12	C13	H131	111.46 (13)
C14	C13	H131	109.60(13)
C13	C14	C15	106.2(2)
C13	C14	H141	110.28(14)
C15	C14	H141	110.28(13)
C13	C14	H142	110.27(13)
C15	C14	H142	110.27(14)
H141	C14	H142	109.467
N3	C15	C1	107.72(18)
N3	C15	C14	102.85(18)
C1	C15	C14	111.74(19)
N3	C15	H151	115.54(11)
C1	C15	H151	107.21(14)
C14	C15	H151	111.77(15)

8 Curriculum Vitae

Louis-Sebastian Sonntag

Date of Birth: 9th of August 1976
Place of Birth: Frankfurt (Main), Germany

Academic record:

Since July 2005 Post-doctoral research in the group of Prof. David A. Evans, Harvard University, Cambridge, U.S.A.
April 2001- PhD studies in the group of Prof. Helma Wennemers,

May 2005
Febuary 2000
July 2000-
February 2001
June 2000
April 1998
April 1996
July 1995 Graduation from Schutz American School, in Alexandria, Egypt

Publications and poster presentations:
L.-S. Sonntag, S. Schweizer, C. Ochsenfeld, H. Wennemers, "The Azide Gauche Effect and its Influence on the Conformation of 4-Azidoproline", in preparation.
L.-S. Sonntag, S. Ivan, M. Langer, M. Conza, H. Wennemers, „Functionalised Cyclotriproline - A Bowl-shaped Tripodal Scaffold", Synlett 2004, 7, 1270-1272.
L.-S. Sonntag, M. Conza, M. Langer, H. Wennemers, „From Diketopiperazines to Cyclotriprolines: Development of a Novel Class of Three-Armed Receptors", American Chemical Society, National Meeting, Boston, M.A., August 2002.
L.-S. Sonntag, M. Conza, M. Langer, H. Wennemers, „From Diketopiperazines to Cyclotriprolines: Development of a Novel Class of Three-Armed Receptors", $6^{\text {th }}$ German Peptide Symposium, Berlin, 23.-26.3.2003.

The following Professors contributed to my education:

B. Brutschy, E. Constable, E. Egert, J. Engels, H. Fasold, B. Giese, M. Göbel, C. Griesinger, S. Hashmi, K. Hensen, B. Ludwig, A. Pfaltz, T. Priesner, G. Quinkert, D. Rehm, F. Schüth, U. Séquin, M. Wagner, H. Wennemers, W. Woggon.

[^0]: ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right): \delta($ major $)=172.1,153.3,80.4,58.1,57.6,52.1,35.9,28.1$.
 ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}$): δ (minor) $=171.8,153.8,80.4,59.1,57.2,51.1,35.0,28.2$.

