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Abbreviations 
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1. Summary 
Steroid hormones regulate a broad variety of physiological functions through the transcriptional 

regulation of target genes. The active steroid hormones discussed in this thesis largely elicit their 

physiological effects through the activation of nuclear receptors. Many of these receptors reside 

in their inactive form in the cytoplasm, translocate to the nucleus upon ligand binding and drive 

the transcription of target genes. The local interconversion of active and inactive steroid 

hormones is regulated by members of 17β-hydroxysteroid dehydrogenases/reductases (17β-

HSDs). The enzyme 17β-HSD2 converts active estrogen estradiol and the potent androgen 

testosterone to its inactive keto-forms, whereas 17β-HSD3 mainly converts androstenedione into 

testosterone. The present thesis is split into three major projects that focus mainly on potential 

toxicological and therapeutic effects of inhibiting the enzyme 17β-HSD2 and biochemical aspects 

of the enzymes 17β-HSD3.  

The first project was designed to develop a 17β-HSD2 pharmacophore model and subsequently 

use this model as a virtual screening tool to identify novel nonsteroidal 17β-HSD2 inhibitors. It 

has been hypothesized that pharmacological inhibition of the enzyme 17β-HSD2 expressed in 

osteoclasts could be a useful strategy to treat osteoporosis through increasing local 

concentrations of active sex hormones. Our approach was initiated through the development of 

a pharmacophore model that underwent several rounds of experimental validation and 

improvement. In silico screening of internal and external compound databases using the 

optimized pharmacophore model resulted in the identification of several novel nonsteroidal 

compounds that inhibit 17β-HSD2 at nanomolar concentrations in vitro. Furthermore, the virtual 

screening of a cosmetic ingredients database revealed several paraben compounds as potential 

17β-HSD2 inhibitors. In vitro examinations revealed that all tested paraben compounds were 

found to significantly inhibit 17β-HSD2 at a concentration of 20 µM. However, parabens are 

rapidly metabolized to p-hydroxybenzoic acid, which does not influence 17β-HSD2 activity. We 

reported a novel potential estrogenic effect of paraben compounds by inhibiting 17β-HSD2 

although their estrogenic potential is unlikely to be of toxicological concern due to their rapid 

metabolism by esterases. 

In the second project we biochemically analyzed six mutations in the HSD17B3 gene that were 

associated to cause 17β-HSD3 deficiency in Egyptian and Tunisian patients with 46, XY disorder 
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of sexual development (DSD). Patients with 17β-HSD3 deficiency are unable to synthesize 

sufficient amounts of testosterone during embryogenesis which leads to severe undervirilization 

of internal and external genitals. All tested mutations (G133R, C206X, T54A, M164T, and L194T) 

were confirmed to be nearly inactive in vitro and therefore unable to sufficiently convert 

androstenedione into testosterone. Further analyses showed that the G289S polymorphism 

exhibited a similar rate of testosterone formation as the wild type 17β-HSD3 enzyme and 

consequently cannot be causing the pathogenesis of 46, XY DSD. All HSD17B3 mutations 

associated with 46, XY DSD in this project were predicted by an in silico 17β-HSD3 homology 

model (based on the structure of 17β-HSD1) to interfere with either cofactor (NADPH) or 

substrate (androstenedione) binding sites. The G289S polymorphism however, was located on 

the surface of the enzyme without eliciting any effects on the cofactor or substrate active sites.  

Besides its critical role in sexual differentiation, testosterone regulates a variety of physiological 

functions. The vast majority of testosterone is produced in testicular Leydig cells. The final project 

in the thesis focused on reviewing the in vitro models available for investigating androgen 

disruption by xenobiotics. Our in vitro investigations focused on validating the three most 

promising Leydig cell lines (MA-10, BLTK, TM3) for their potential to report androgen disruption 

by xenobiotic compounds through alteration of 17β-HSD3 activity and transcription. Our 

experiments revealed that these cell lines express minimal levels of 17β-HSD3 mRNA compared 

to freshly isolated mouse testes. Furthermore, the cell lines also exhibited a low rate of 

androstenedione to testosterone formation. In conclusion, all tested cell lines are not useful as 

screening tool to test androgen disruption by xenobiotic compounds due to the lack of 

endogenous 17β-HSD3.  

 

Through the work described in this thesis, we have developed and optimized an in silico 17β-HSD2 

pharmacophore model for the identification of inhibitors of the enzyme. We then confirmed and 

mechanistically evaluated mutations in the HSD17B3 gene associated with 46, XY DSD and finally 

investigated Leydig cell models to test testosterone disruption by xenobiotic compounds. 

Altogether, these findings significantly expand the knowledge about physiological and 

biochemical aspects of the enzymes 17β-HSD2 and 17β-HSD3. 

 

7



2. Introduction 

2.1 Steroid Hormones 

Steroid hormones are organic compounds with a broad variety of functions that are involved in 

almost every aspect of development and regulation of physiological processes[1, 2]. Most steroids 

act as signaling hormones on nuclear receptors in target tissues[3]. Upon steroid binding in the 

cytoplasm (Figure 2) or in the nucleus, nuclear receptors undergo conformational changes that 

lead to dissociation of accessory proteins[4]. Dissociated cytosolic nuclear receptors are able to 

translocate to the nucleus, where they bind to specific response elements (RE) located on 

deoxyribonucleic acid (DNA) and therefore initiating target gene transcription[5-7]. All steroids 

share a common planar basic sterane structure (Figure1), which is rigid and consists of three 

cyclohexane rings (A,B,C) and one cyclopentane ring fused together (D)[8].  

 

Figure 1. Basic steroid chemical structure. (Carbons = numbers, rings = letters) 

Generally, steroid hormones can be classified into five different groups; including progestogens, 

mineralocorticoids, glucocorticoids, androgens, and estrogens[9]. Progestogens, 

mineralocorticoids, and glucocorticoids consist of 21 carbon atoms, while androgens and 

estrogens consist of 19 and 18 carbons respectively[10, 11]. Steroid hormones bind and activate 

different nuclear receptors with different affinities[4, 12]. In order to activate their target nuclear 

receptors, steroid hormones have to be activated from their inactive forms, which allows for tight 

regulation[13]. Progestogens act on the progesterone receptor (PR) and are important for female 

reproduction[14]. Mineralocorticoids (mainly aldosterone) activate the mineralocorticoid 

receptor (MR) and regulate water retention in the kidneys by increasing sodium transport and 

potassium excretion[15]. Glucocorticoids (mainly cortisol) mediate their action through the 
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activation of the glucocorticoid receptor (GR), regulating many processes including the stress 

response, energy metabolism, and the immune system response[16-18]. In addition, 

glucocorticoids are able to activate the MR[19]. Hormonally active androgens initiate male 

development and maintain male physical characteristics through the activation of the androgen 

receptor (AR)[20]. Testosterone and dihydrotestosterone (DHT) are the most potent and 

predominant physiological active androgens in humans[21]. Estrogens belong to the sex 

hormones and induce the development of female sexual characteristics[22]. Estradiol is the most 

potent estrogen and induces its effect though activation of the estrogen receptor alpha (ERα) and 

estrogen receptor beta (ERβ)[23]. All steroid hormones are derived from cholesterol, which is de 

novo synthesized in specific cells or absorbed from food[24]. The synthesis of steroid hormones 

occurs in specific cells in the gonads and the adrenals. Adrenal and gonadal steroidogenesis are 

under the control of the hypothalamus and pituitary gland, respectively[25, 26]. Luteinizing 

hormone (LH) secreted by the pituitary gland stimulates gonadal steroidogenesis. Systemic 

testosterone and estradiol levels independently control the secretion of hypothalamic LH 

releasing hormone  by regulating negative feedback loops[27]. The pituitary gland releases LH 

following stimulation by LH releasing hormone[28]. Adrenal steroid homeostasis is controlled by 

the hypothalamic-pituitary-adrenal axis (HPA). Briefly, low circulating cortisol levels effect 

hypothalamic release of corticotropin-releasing hormone (CRH) through a negative feedback[29, 

30]. CRH stimulates the release of adrenocorticotropic hormone (ACTH) from the anterior 

pituitary gland into peripheral circulation[31]. Mineralo- and glucocorticoids are synthesized in 

the zona glomerulosa and the zona fasciculata of the adrenal cortex, respectively. However, local 

peripheral interconversion of active and inactive glucocorticoids by specific enzymes also plays a 

critical role in the regulation of physiological processes[32].  
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Figure 2. Nuclear signaling pathway of testosterone. Modified from Levin et al[4]. (AR = androgen 

receptor; T = testosterone; HSP = heat shock protein) 

Additionally, the zona reticularis in the adrenal cortex produces the systemic sex hormone 

precursors DHEA and DHEA sulfate[33]. Generally, female and male sex hormones are produced 

in specific cells of the gonads. Men produce the majority of testosterone in testicular Leydig cells 

whilst females produce sex hormones in the ovarian theca and granulosa cells[34, 35]. However, 

the majority of systemic estrogens and androgens in females are produced in the peripheral 

tissues from the inactive adrenal precursors DHEA and DHEA sulfate[36]. It is noteworthy that 

intracrinological and peripheral steroid production have an enormous impact on systemic steroid 

hormone levels[37]. The majority of circulating sex steroids are bound to sex hormone-binding 

globulin, cortisol-binding globulin, and albumin with various binding affinities[17, 38, 39]. 

However, only free and weakly bound circulating steroids are considered to be biologically 

active[40]. Steroid hormones are eliminated mainly through the urine and to a lesser extent in 

the feces in various conjugated forms[41].  
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2.2 Human Steroidogenesis  

Human steroidogenesis involves interactions of many crucial enzymes, cofactors, and regulators 

etc. A comprehensive overview of steroid synthesis is reported by Payne and Hales[42]. Figure 3 

illustrates a brief overview of the most important human enzymes involved in steroid synthesis. 

  

Figure 3. Overview of human steroid synthesis and their classification in five groups 

(Progestogens, mineralocorticoids, glucocorticoids, androgens, and estrogens). Modified from 

Häggström et al[43].  

Generally, two types of protein classes are responsible for the biosynthesis of steroid hormones. 

The heme-containing cytochrome P450 enzymes (CYP) as well as the hydroxysteroid 

dehydrogenases (HSD)[44]. Steroidogenesis involves the biosynthesis of steroid hormones from 

the common precursor cholesterol[24]. Cholesterol is actively transported by the steroidogenic 

acute regulatory protein (StAR) into the inner mitochondrial membrane where it is converted by 

the cholesterol side-chain cleavage enzyme (P450scc) into pregnenolone[24]. Pregnenolone 

undergoes further metabolism in the endoplasmic reticulum (ER). Depending on the expression 

levels of specific enzymes in the ER, pregnenolone is converted into progesterone  by 3β-

hydroxysteroid dehydrogenase type 1 and 2 (3β-HSD1/2)[45, 46]. Progesterone itself is an active 

progestogen but can further be converted into the active mineralocorticoid aldosterone, by 21-
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hydroxylase (CYP21, ER), 11-hydroxylase (CYP21, mitochondria) and finally aldosterone synthase 

(CYP11B2, mitochondria)[47-49]. For the biosynthesis of glucocorticoids, pregnenolone is 

converted into 17α-hydroxy pregnenolone by the enzyme 17α-hydroxylase, 17,20 lyase (P450c17, 

CYP17A1)[50]. For the final synthesis of cortisol, 3β-HSD1 or 2, 21-hydroxylase (CYP21), and 11-

hydroxylyase (CYP11B1) are involved[51]. Alternatively, to synthesize androgens and estrogens, 

17-hydroxy pregnenolone is converted into dehydroepiandrosterone (DHEA) by P450c17. During 

this reaction, cytochrome b5 acts as an allosteric effector of P450c17 to augment its 17,20 lyase 

activity[52]. DHEA is converted into the inactive androgen, androstenedione, by 3β-HSD1 or 2 in 

the ER[45, 46]. In order to activate the potent androgens, testosterone and DHT, the expression 

of 17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3)[53] and 5α-reductase type 2[54] is 

essential. Estrogens can be produced from androstenedione or testosterone by the enzyme 

aromatase (CYP19)[55]. Additionally, the interconversion of active and inactive steroid hormones 

and the intracrinological active steroid production from inactive precursors are regulated by many 

genes located in various peripheral tissues such as brain, fat tissue, liver, prostate, intestines and 

skin[56-62].  

  

2.3 Hydroxysteroid Dehydrogenases 

The hydroxysteroid dehydrogenases, which catalyze the biosynthesis of steroids, belong to two 

protein superfamilies, the SDRs and aldo-keto reductases (AKRs)[63]. Most human HSDs belong 

in the SDR superfamily and play a major role in sex steroid synthesis. In humans, important HSDs 

of the AKR superfamily involved in steroidogenesis are AKR1C1 (20α-HSD1), AKR1C2 (3α-HSD3), 

AKR1C3 (17β-HSD5), and AKR1C4 (3α-HSD1)[64, 65]. They share an overall sequence identity of 

about 86% and consist of a basic structure containing α-helices and β-strands that repeats 8 times 

to form a barrel like tertiary structure[13]. In contrast, HSDs exhibit a very low sequence identity 

of less than 30% despite sharing characteristic conformational protein structures including a 

common Gly-XXX-Gly-X-Gly pattern in the cofactor binding site[66]. Additionally, the cofactor 

binding site of HSDs in the SDR superfamily contain a Rossmann fold. The Rossmann fold consists 

of up to seven parallel β-sheets surrounded by at least six α-helices[67, 68]. The substrate binding 
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domain contained within SDRs, consists of a typical Asn-Ser-Tyr-Lys motif[68]. Important 

members of HSDs in steroidogenesis are 3β-HSD1 and 2, 11β-HSD1 and 2, and 17β-HSD1-3[68].  

2.3.1 17β-Hydroxysteroid Dehydrogenases 

Several members of the 17β-HSDs were of particular interest in this thesis. To date, 14 different 

subtypes of human 17β-HSDs have been identified[69, 70]. In addition, retinol dehydrogenase 

type 5 (RDH5) has been described in the literature which is also known as HSD17B9[71, 72].  The 

majority of enzymes investigated in this thesis belong to the SDR superfamily with the exception 

of 17β-HSD5 which is an AKR[73]. 17β-HSDs catalyze the interconversion of steroids, β-oxidation 

of fatty acids, retinoic metabolism and cholesterogenesis[71, 74-76]. However, many 

physiological functions of HSDs are still not well investigated. Bidirectional conversion properties 

of most of the 17β-HSDs impedes the evaluation of the physiological function in vitro[77]. Besides, 

17β-HSDs are capable to convert various substrates on different carbon positions[70]. In vitro 

studies showed that some 17β-HSDs additionally possess 3 α/β, 20 α/β, or 21 activities[70, 78, 

79]. This clearly indicates that enzymes have been classified as 17β-HSDs because of their 

capability to modify steroids at carbon position 17 without carefully investigating other potential 

major substrates. However, members of the HSDs have been reported to be potential prognostic 

cancer markers and potential drug targets[68]. Altered regulation of 17β-HSDs is associated with 

endocrine related cancer progression due to their ability to control intracellular active sex steroid 

hormones[80]. Additionally, the HSDs play an important role in regulating sexual differentiation 

and sexual development during embryogenesis and puberty[22, 81].  

In conclusion, 17β-HSDs play a major role in the interconversion of sex steroid hormones. This 

thesis mainly focused on the identification of compounds that inhibit 17β-HSD2 and on the 

biochemical evaluation of mutations in the 17β-HSD3 enzyme.  

 

 

 

 

13



3. Project 1: 17β-Hydroxysteroid Dehydrogenase Type 2 

3.1 Introduction 

This project is split into two major studies based on the enzyme 17β-HSD2. The first main study, 

describes three sub investigations, which focus on the identification of nonsteroidal compounds 

that inhibit the enzyme 17β-HSD2, as a novel potential approach to treat osteoporosis. The 

second major study, focuses on potential endocrine disrupting effects of paraben compounds 

targeting 17β-HSD1 and 2. 

Several human 17β-HSD members play a pivotal role in the final biosynthesis of sex 

hormones[82]. The enzyme 17β-HSD2 primarily oxidizes the active estrogen estradiol and the 

active androgen testosterone into their inactive keto-forms estrone and androstenedione 

respectively, using nicotinamide adenine dinucleotide (NAD+) as cofactor. Additionally, 17β-HSD2 

converts androstenediol into DHEA and the most potent androgen DHT into 5α-

androstanedione[83]. Generally, 17β-HSD2 protects specific tissues from excessive amounts of 

active sex hormones. The enzyme 17β-HSD2 consists of 387 amino acids, is located on 

chromosome 16, and is mainly expressed in the placenta, liver, bones, small intestines, 

endometrium, ovaries and prostate. [82, 84, 85]. The enzyme 17β-HSD2 is an endoplasmic 

reticulum (ER) membrane protein with its catalytic moiety facing the cytoplasm[86]. 

The conversion from estrone into estradiol is efficiently catalyzed by the enzyme 17β-HSD1 using 

nicotinamide adenine dinucleotide phosphate (NADPH) as cofactor. Additionally, 17β-HSD1 is 

able to convert androstenedione into testosterone but with less efficiency compared to the 

conversion of estrone into estradiol[87, 88]. The enzyme 17β-HSD1 consists of 328 amino acids, 

is a cytosolic homodimer, and is located in placenta, ovary, endometrium, and breast[89-92].  

The inhibition of 17β-HSD1 may decrease the systemic and local concentration of estradiol which 

could affect the onset of osteoporosis. In the two major studies presented, every tested 

compound that significantly inhibited 17β-HSD2 (>70% inhibition at 20 µM compared to DMSO 

control) was also tested against 17β-HSD1 to get first insights about their selectivity.  

In the EU, the prevalence of people suffering from osteoporosis is high with estimated 27.5 million 

affected people in 2010[93]. Osteoporosis is a condition where decreased bone density and 

reduced bone mass results in increased risk of bone fractures[94]. The balance of osteoblast and 

osteoclast activity is crucial for maintenance of healthy bone homeostasis. In the elderly, 
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decreased bone density is linked to locally decreased concentrations of active estrogens and 

androgens[95-97]. In osteoclasts, estradiol and testosterone inhibit bone degradation[98]. To 

date, typical anti-osteoporosis drugs, such as selective estrogen modulators, bisphosphonates, or 

hormone replacement therapy bear several disadvantages and side effects[99, 100]. New 

therapeutic approaches are of particular interest. Local inhibition of 17β-HSD2 by specific 

nonsteroidal inhibitors increase estradiol and testosterone concentrations and therefore 

stimulate the reduction of bone resorption in osteoclasts. The potential of this treatment has 

recently been demonstrated in a study from Bagi et al., where they showed reduced bone 

resorption in ovariectomized cynomolgus monkeys treated with a 17β-HSD2 inhibitor[101].  

The application of pharmacophore models was used to identify novel inhibitors of the enzyme 

17β-HSD2. Virtual screening of pharmacophore models was applied to pre-screen several 

databases containing >200’000 chemical compounds. This screening method allows a cost-

efficient and fast pre-selection of potential hit compounds[102]. The ligand-based 17β-HSD2 

pharmacophore model was designed by Daniela Schuster and Anna Vuorinen using 

LigandScout[103]. Pharmacophore models characterize a three dimensional arrangement of 

chemical features and interactions of a specific substrate and its binding pocket. In the case of 

the 17β-HSD2 pharmacophore models, these features correspond to hydrogen bond donors, 

hydrogen bond acceptors, hydrophobic areas, and aromatic rings. Additionally, exclusion volumes 

were added that mimic steric limitations within the binding pocket. Originally, three ligand-based 

17β-HSD2 pharmacophore models were designed and used for screening databases. These 

models were constantly improved using data generated from in vitro experiments from all tested 

compounds over the years. To date, model A has been shown to generate most of the active hit 

compounds and has been chosen as the standard 17β-HSD2 pharmacophore model to pre-screen 

databases. 

The first sub investigation, of the first major project, focused on establishing a ligand-based 

pharmacophore model to identify potent nonsteroidal compounds that inhibit the enzyme 17β-

HSD2. The second sub investigation was a follow up project focusing on improving the chemistry 

of identified compounds with respect to improving potency and eliminating potential side chains 

which are susceptible to metabolic modifications. The third sub investigation focused on the 

identification of natural products that inhibit 17β-HSD2 as potential lead compounds. In 
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summary, the focus of the first three sub investigations were to identify novel nonsteroidal 17β-

HSD2 inhibitors. Inhibition of 17β-HSD2 in bone cells could lead to a local increase of sex 

hormones, eventually reducing bone resorption and therefore diminishing the onset of 

osteoporosis.  

The focus on the second major study clearly differs from the first, since we investigated the 

potential consequences of inhibiting the enzyme 17β-HSD2. This study focused on potential 

endocrine disrupting effects of xenobiotics that inhibit 17β-HSD2. Screening a database 

containing ingredients of cosmetic products using the 17β-HSD2 pharmacophore model revealed 

several paraben compounds as potential inhibitors. Parabens have been proposed to possess 

endocrine disrupting properties[104-107]. Inhibition of 17β-HSD2 is suspected to contribute to 

endocrine disruption effects caused by parabens and was therefore further investigated in this 

study. Moreover, the human exposure to parabens is high due to its widespread use in cosmetic 

products, foods, and beverages[108, 109]. In total 10 parabens were chosen for biochemical in 

vitro evaluation. 

 

 

 

 

 

 

 

 

 

 

 

16



3.2 Paper 1 (Vuorinen et al., 2014) 
 

Ligand-based pharmacophore modeling and virtual screening for the 

discovery of novel 17β-hydroxysteroid dehydrogenase 2 inhibitors 

 

Anna Vuorinen, Roger T. Engeli, Arne Meyer, Fabio Bachmann, Ulrich J. Griesser, Daniela 

Schuster, Alex Odermatt 

 

Published manuscript 

 

 

Contribution: Provided the biochemical data of the lysate activity assays (Table 2 and 3). 

Drafting the materials and methods part on the activity assay description. 

Aims: Identify novel non-steroidal 17β-HSD2 inhibitors using a ligand-based pharmacophore 

model as screening tool.   

Main Results: The most potent hits identified, 12, 22 and 15, were selective over 17β-HSD1 and 

had IC50 values of 240 nM, 1 μM, and 1.5 μM, respectively. 

Conclusion: This study showed that the applied pharmacophore model is a powerful tool to 

predict novel selective 17β-HSD2 inhibitors from a screened library of compounds.  
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Ligand-Based Pharmacophore Modeling and Virtual Screening
for the Discovery of Novel 17β-Hydroxysteroid Dehydrogenase
2 Inhibitors
Anna Vuorinen,† Roger Engeli,‡ Arne Meyer,‡ Fabio Bachmann,‡ Ulrich J. Griesser,§ Daniela Schuster,*,†

and Alex Odermatt*,‡

†Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck − CMBI, University of Innsbruck,
Innrain 80/82, 6020 Innsbruck, Austria
‡Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical
Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
§Institute of Pharmacy/Pharmaceutical Technology, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria

*S Supporting Information

ABSTRACT: 17β-Hydroxysteroid dehydrogenase 2 (17β-HSD2) catalyzes the inactivation of estradiol into estrone. This
enzyme is expressed only in a few tissues, and therefore its inhibition is considered as a treatment option for osteoporosis to
ameliorate estrogen deficiency. In this study, ligand-based pharmacophore models for 17β-HSD2 inhibitors were constructed and
employed for virtual screening. From the virtual screening hits, 29 substances were evaluated in vitro for 17β-HSD2 inhibition.
Seven compounds inhibited 17β-HSD2 with low micromolar IC50 values. To investigate structure−activity relationships (SAR),
30 more derivatives of the original hits were tested. The three most potent hits, 12, 22, and 15, had IC50 values of 240 nM, 1 μM,
and 1.5 μM, respectively. All but 1 of the 13 identified inhibitors were selective over 17β-HSD1, the enzyme catalyzing
conversion of estrone into estradiol. Three of the new, small, synthetic 17β-HSD2 inhibitors showed acceptable selectivity over
other related HSDs, and six of them did not affect other HSDs.

■ INTRODUCTION

The worldwide prevalence of osteoporosis is high: already in
2006 it was estimated that over 200 million people suffered from
this disease.1 Osteoporosis is defined as a condition, where
reduced bone mass and bone density lead to bone fragility and
increased fracture risk.2 Bone density is a result of the balance
between osteoblast and osteoclast activities: while osteoblasts are
responsible for the formation and mineralization of the bone,
osteoclasts play an important role in bone degradation. Bone
density is known to decrease in the elderly and is linked to
decreased concentrations of sex steroids.3 Postmenopausal
estrogen deficiency promotes osteoporosis in women,4 and an
age-related decrease of testosterone has been associated with
osteoporosis in men.5 It has been shown that both estradiol and
testosterone inhibit bone degradation, thereby providing an
explanation for the age-related onset of osteoporosis.6

To date, there are only few treatment options for osteoporosis:
bisphosphonates, which prevent bone loss, selective estrogen
receptor modulators (SERMs) such as raloxifene, and hormone
replacement therapy that increases circulating estrogen levels.7,8

However, all of these therapies have disadvantages. Bisphosphonates
need to be orally administered at least 0.5 h before breakfast and
any other medication, and the treatment has to be continued for
at least three years, which diminishes the patient’s compliance.8

SERMs and hormone-replacement therapies have been
associated with cardiovascular complications.78 Besides, hor-
mone replacement therapy increases the risk of breast cancer and
is therefore only recommended for patients where a non-
hormonal therapy is contraindicated.9 Because of the limitations
related to existing treatments, there is a great demand for novel
therapies. One promising approach to overcome the cardiovas-
cular complications and increased breast cancer risk is to increase
estradiol concentrations locally in bone cells without altering
systemic levels.
The activity of estrogen receptors is dependent on the local

availability of active estradiol, which is regulated by the synthesis
via aromatase, deconjugation by sulfatase, and conversion from
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estrone by 17β-hydroxysteroid dehydrogenase 1 (17β-HSD1).10

Estradiol is primarily converted to the inactive estrone by 17β-
HSD2.11 Besides its expression in bone cells, 17β-HSD2 is
localized only in a few tissues, including placenta,12 endome-
trium,13 prostate,14 and small intestine epithelium.15 Thus,
inhibition of 17β-HSD2 may be a suitable way to increase
estradiol levels without raising breast cancer and cardiovascular
risks. Indeed, there is support from in vivo studies that 17β-
HSD2 could be a target for the treatment of osteoporosis. In
ovariectomized monkeys, oral administration of a 17β-HSD2
inhibitor increased bone strength by elevating bone formation
and decreasing bone resorption.16

In addition to the oxidative inactivation of estradiol to
estrone, 17β-HSD2 was reported to convert testosterone into
4-androstene-3,17-dione (androstenedione), dihydrotestosterone
into 5α-androstanedione, and 5α-androstenediol into dehydroe-
piandrosterone (Figure 1).17,18 It can also adopt 20-hydroxysteroids

as substrates and convert 20α-dihydroprogesterone into
progesterone (Figure 1).17 17β-HSD2 is an NAD+-dependent
microsomal membrane enzyme.1819 It belongs to the short-chain
dehydrogenases (SDRs), an enzyme family of oxidoreductases
comprising at least 72 different genes in humans.20,21 Members
of this family share a similar protein folding, the so-called
“Rossman-fold”, where six or seven β-sheets are surrounded by
three to four α-helices.21 Even though the sequence identities of
SDRs are low, often less than 20%, they share a conserved
glycine-rich area in the cofactor binding site and a Tyr-X-X-X-Lys
motif in the active site. Despite the low sequence identities, the

SDRs are well superimposable in 3D and their active site
structures are similar.21 Thus, when developing inhibitors for one
of the SDRs, the selectivity of the compounds over the other
related enzymes should be evaluated.
In recent years, several potent and selective 17β-HSD2

inhibitors (e.g., 1−4, Figure 2) have been reported.22−25 Some of

these compounds (such as 4) have been discovered during the
search for selective 17β-HSD1 inhibitors by synthetizing estrone-
mimicking compounds.25Most of these compounds were steroid
mimetics or developed rationally by structure−activity-relation-
ship (SAR) studies.22,23,26,27 The starting structure for the SAR
studies had been a previously developed inhibitor (3) or a
promising scaffold such as flavonoids that represent the basis for
compound 1.23 Because most of the known inhibitors are based
on estrone-mimicking compounds or previously developed
inhibitors, they often are similar in size, are derived from the same
scaffold, or include analogue bioisosteric groups. For this reason,
there is a need for novel scaffolds and inhibitors that could serve as
starting points for further drug development. We approached the
search for novel, chemically diverse 17β-HSD2 inhibitors by ligand-
based pharmacophore modeling and virtual screening.
Pharmacophore models represent the 3D-arrangement of the

chemical features and steric limitations that are necessary for a
small molecule to interact with a specific target protein.28 These
features correspond to chemical functionalities such as hydrogen
bond acceptors (HBAs), hydrogen bond donors (HBDs),
hydrophobic areas (Hs), aromatic rings (ARs), positively/negatively
ionizable groups (PIs/NIs), and exclusion volumes (XVOLs).
Pharmacophoremodels are widely used as virtual screening filters.29

A result of a virtual screening is a so-called hit list containing
compounds with functional groups that map the pharmacophore
model. These compounds are predicted to be active against a
specific target. In this study, we report the development of a
pharmacophore model for 17β-HSD2 inhibitors and its use in a
virtual screening campaign. From the virtual hit lists, 29 compounds
were biologically evaluated, of which 7 showed activities in the low
micromolar range. As follow-up, we focused on one scaffold and
tested similar compounds to get insights into their SAR.

■ RESULTS
Due to the lack of an experimentally determined 3D-structure of
17β-HSD2, a ligand-based pharmacophore modeling approach

Figure 1. Sex steroid metabolism catalyzed by 17β-HSD2 and other
17β-HSDs.

Figure 2. Previously reported 17β-HSD2 inhibitors.22−25
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was chosen. In this method, a model is based on the common
chemical features of already known active compounds. After
construction, the newly generated pharmacophore model is
refined to recognize only the active compounds from a so-called
test set, containing previously known active and inactive
compounds. The theoretical model quality can be described
quantitatively by its specificity and selectivity, which are defined
by the retrieval of active and inactive compounds, respectively.
Often an increase in specificity decreases the sensitivity: a model
that finds all active compounds might also find multiple inactive
compounds. Therefore, constructing a good pharmacophore
model requires balancing between specificity and sensitivity. We
aimed to overcome this fact by the parallel use of several
restrictive models, complementing each other in their hit lists.30

Using several restrictive models, we aimed to achieve the best
overall enrichment of active compounds from the test set without
finding a large number of inactive entries.
All generated models were based on the common chemical

features of two training compounds, respectively, that were
collected from the literature: model 1 on 531 and 6,22 model 2
on 5 and 7,22 and model 3 on 7 and 8,24 respectively (Figure 3).
The selection of these two molecules as training sets for each
model was based on their structural diversity and potency. The
automatically created common feature pharmacophore models
were refined by removing features, adjusting the XVOL size, and
setting features optional to correctly recognize the active
compounds from the test set containing 15 active and 30
inactive compounds (Supporting Information, Table S1). The
general workflow for model refinement has been described
previously.32

Model 1 consisted of six features: two H, one HBD, one AR,
and two HBAs, of which one was set optional, and 54 XVOLs
(Figure 3A). This model was able to recognize eight active but no
inactive compounds from the test set. Model 2 consisted of the
same features as model 1, but with different spatial arrangement
(Figure 3B). This model also recognized eight active compounds,
of which five were common with model 1, but no inactive
compounds from the test set. Model 3 consisted of seven features:
three Hs, two ARs, two HBAs, of which one was set optional, and
56 XVOLs (Figure 3C). This model was more restrictive than the
other two: it found six active but no inactive compounds from the
test set screening. Together, these three models were able to
correctly retrieve 13 active compounds from the test set,
representing 87% of all the actives (overall sensitivity: 0.87.
Sensitivity of models 1 and 2: 0.53, respectively, andmodel 3: 0.4).
Remarkably, not a single inactive compound was found.
Because the combined retrieval of the active compounds from

the test set was encouraging, the three models were employed for
virtual screening of the SPECS database including 202 906 small
molecules (www.specs.net). Models 1, 2, and 3 returned 573,
825, and 318 hits, respectively. In total, 1716 hits were obtained,
of which 185 molecules were found by two models. Without
duplicates, our models retrieved 1531 hits, representing 0.75% of
all the compounds in the database. To separate the druglike
compounds from the others, all the hit lists were filtered using a
modified Lipinski filter,33 resulting in total of 1381 unique,
druglike hits.
From each hit list, the ten top-ranked hits were considered

for further analysis. However, these top hits often contained
chemically very similar hits. To get more diverse hits for

Figure 3. Pharmacophore models 1 (A), 2 (B), and 3 (C) for 17β-HSD2 inhibition with their training compounds. On the left-hand side, the training
compounds are represented as 2D structures with their activities. On the right-hand side, the training compounds are aligned with the chemical features
of the respective models. The pharmacophore features are color-coded: HBA, red; HBD, green; H, yellow; AR, blue. Optional features are shown in
scattered style. For clarity, the XVOLs are not depicted.
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biological testing, for each hit list 10 clusters were calculated. Out
of each cluster, the 3 best-ranked compounds were kept. The
preferred compounds list finally contained 73 unique hits.
Among them, 3 were consensus hits of two models and therefore
selected for biological evaluation. The other compounds were
selected based on their overall fit score and a preferentially high
fit score within their cluster. Finally, the OSIRIS property
explorer (www.organic-chemistry.org/prog/peo34) was used to
predict druglikeness, mutagenicity, irritant, and tumorigenic
effects of the compounds. Only compounds passing this filter
were considered for further research. Giving preference for the
best ranked compounds from the filtered hit lists, 2 consensus
hits mapping the models 1 and 2, 10 compounds mapping model
1, 8 compounds fitting to model 2, and 9 compounds fitting
model 3 were selected. In summary, the selection was based on
compound druglikeness, pharmacophore fit score, chemical
diversity, and availability. The chemical structures of all selected
compounds with their pharmacophore fit scores and ranks in the
hit lists are available in the Supporting Information, Table S2.

Next, the 17β-HSD2 inhibitory activities of the chosen hits
were evaluated in a cell-free assay. The activities were first
determined at an inhibitor concentration of 20 μM using lysates
of transfected HEK-293 cells. In all experiments, vehicle was
included as negative control and N-(3-methoxyphenyl)-N-
methyl-5-m-tolylthiophene-2-carboxamide (compound 19 from
ref 26) as positive control. Of the newly predicted 29 compounds,
7 showed more than 70% enzyme inhibition (Figure 4), which
corresponds to a 24% true positive hit rate. The other compounds
were inactive or weakly active (data not shown).
The seven active compounds (9−15) were further biologically

evaluated. First, the IC50 values were determined in the cell-free
assay (Table 1). Irreversible inhibition was excluded by
comparing enzyme activity upon preincubation of the enzyme
preparation with the inhibitor of interest for 10 and 30 min with
that after simultaneous incubation.35 Promiscuous enzyme
inhibition due to aggregate formation of the chemicals was
excluded by comparing activities in the absence and presence of
0.1% Triton X-100.36 Structurally, most of the active compounds

Figure 4. Seven newly discovered 17β-HSD2 inhibitors with their activities and mapping pharmacophore models. Activities are given as remaining
enzyme activity (% of control) at an inhibitor concentration of 20 μM in a cell-free assay.

Table 1. Inhibitory Activities (IC50) of the Seven Newly Discovered Inhibitors against 17β-HSD2 and Related HSDs

compd 17β-HSD2 lysate 17β-HSD2 intact 17β-HSD1 lysate 11β-HSD1 lysate 11β-HSD2 lysate 17β-HSD3 intact

9 7.1 ± 0.4 μM n.d.a n.i.b n.i. n.i. n.i.
10 6.9 ± 3.5 μM n.d. n.i. n.i. n.i. n.i.
11 4.1 ± 1.4 μM 23 ± 3 μM 52 ± 15%c 69 ± 2% 61 ± 3% 1.6 ± 0.8 μM
12 240 ± 65 nM 520 ± 210 nM n.i. 2.1 ± 0.7 μM n.i. 8.5 ± 3.5 μM
13 3.0 ± 1.5 μM 10 ± 1 μM n.i. n.i. n.i. 3.9 ± 1.2 μM
14 33 ± 5 μM n.d. n.i. n.i. n.i. n.i.
15 1.5 ± 0.6 μM 1.1 ± 0.1 μM n.i. n.i. n.i. n.i.

an.d. = not determined. bn.i = no inhibition (rest activity >70% at the concentration of 20 μM). c% rest activity at 20 μM.
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shared a sulfonamide or sulfonic acid ester linker between two
benzene rings. The remaining three active compounds
represented other chemical classes. To the best of our
knowledge, similar compounds or the same chemical scaffolds
have not been reported previously as 17β-HSD2 inhibitors.
The compounds with IC50 values below 5 μM in lysed cells

were tested in intact HEK-293 cells transfected with 17β-HSD2.
The four compounds (11, 12, 13, and 15) concentration-
dependently inhibited 17β-HSD2 (Figure 5). The two most
potent inhibitors, 12 and 15, had IC50 values of 520 ± 210 nM
and 1.1 ± 0.1 μM, respectively. Compound 15 had comparable
IC50 values for 17β-HSD2 in intact and in lysed cells. For
compound 14, the initial enzyme inhibition tests at the
concentration 20 μM yielded a remaining activity of 29 ± 8%.
However, the IC50 for this compound was higher than the initial
tests led to expect. The reason for this high IC50 value is unclear
but may be due to limited solubility and/or stability of the
compound.
Because of the structural similarity to related HSDs and their

common intracellular localization at the ERmembrane, the seven
most active compounds were evaluated for inhibitory activities
against other HSDs: (i) 17β-HSD1 catalyzing the conversion of
estrone into estradiol (Figure 1), (ii) 11β-HSD1 and -2 that are
responsible for the interconversion of glucocorticoids,37 and (iii)
17β-HSD3 that converts androstenedione to testosterone
(Figure 1).38 The enzyme activity of 17β-HSD3 was assessed
in intact cells because the activity declines rapidly upon cell lysis;
therefore, the relative inhibition of the compounds might be
affected by their ability to enter the intact cell. IC50 values were
determined for compounds with an inhibitory activity of at least
70% at a compound concentration of 20 μM. Otherwise, the
compound was considered as inactive. The results of the
selectivity studies are presented in Table 1. Compounds 9, 10,
14, and 15 turned out to be selective over the other tested HSDs.
Importantly, all compounds were selective over 17β-HSD1.
However, compound 12 inhibited 11β-HSD1 and 17β-HSD3

with IC50 values of 2.1 ± 0.7 μM and 8.5 ± 3.5 μM, respectively.
Compounds 11 and 13 showed equal or more potent inhibition
of 17β-HSD3 with IC50 values below 5 μM.
Inspired by the new inhibitors, we searched for compounds

similar to the new 17β-HSD2 inhibitors in the SPECS database,
especially focusing on the phenylbenzenesulfonamide and
phenylbenzenesulfonate scaffolds. The aim of the similarity
search was to generate a SAR for this scaffold. The similarity
search was approached from two ways: (i) plain 2D similarity
search for all the new inhibitors without fitting the compounds
into the pharmacophore models prior to purchasing them and
(ii) search for similar compounds in the SPECS database via
virtual screening using model 1, which found the originally active
phenylbenzenesulfonamides and phenylbenzenesulfonates.
Altogether, 30 compounds were selected for the biological

analysis (Table 2). Sixteen of them were selected just based on
their structural similarity to active compounds, and 14 were
picked from the virtual screening hits. From the 16 compounds
that were selected because of plain 2D similarity, only one
compound, 16, inhibited 17β-HSD2 with an IC50 value of 3.3 ±
1.2 μM. The other tested compounds (17−19, 25−28, 21−24,
32−35, and 45−48), independent of their high structural
similarity to the original hits (9−15), showed only weak or no
activity (Table 2). However, among the compounds selected by
model 1, several substances were active: five inhibited 17β-HSD2
with IC50 values between 1 and 15 μM, three had weak activity
(50−70% inhibition at 20 μM), two were not tested because they
were insoluble in commonly used solvents, and the remaining
four compounds were inactive (Table 2).
These active inhibitor-derivatives were also tested against

other related HSDs (Table 3). Compound 22 was the only
compound with weak activity on 17β-HSD1; however, it was still
18-fold more active toward 17β-HSD2. Compounds 20 and 23
were almost equipotent toward 17β-HSD2 and 11β-HSD1.
Compounds 16 and 22 were weak 17β-HSD3 inhibitors, while
the other derivatives did not have effect on this enzyme.

Figure 5. IC50 determinations for compounds 11−13 and 15 in intact cells (n = 3−5).
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With all the activity data from the phenylbenzenesulfonamides
and -sulfonates, SAR rules were deduced. The SAR analysis
confirmed that the HBD functionality is essential for the 17β-
HSD2 inhibitory activity. In all the active compounds, except for

the weak inhibitors 39 and 46, this functionality is a phenolic OH
group that is an attractive metabolism site. Therefore, five other
compounds (40−44) were purchased and biologically evaluated.
In two of these compounds (40 and 41) the hydroxyl group was

Table 2. Phenylbenzenesulfonamides and -sulfonates with Their 17β-HSD2 Inhibitory Activities

aCompound found by similarity search without fitting it to model 1. b17β-HSD2 rest activity given as % of control at an inhibitor concentration of
20 μM. cn.i. = no inhibition (rest activity >70% at the concentration of 20 μM).
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replaced by fluorine, whereas the other three had a
hydroxymethyl, 1-hydroxyethyl, or acetamide moiety. None of
these compounds were active, which confirms the importance of
the HBD feature being directly attached to ring B. Compounds
40 and 41, where the HBD functionality was replaced by an
HBA, were inactive andweakly active, in comparsion to the active
compounds 13 and 21, in which the substitution pattern was
otherwise identical with 40 and 41. In case of the compounds
42−44, the HBD functionality was present but not directly
attached to the ring B. Unfortunately, no amine substitution of
the OH group was available, so this option could not be tested.
Either the inactivity of these compounds was caused by spacious
substituents in ring B or was caused by different substitution
patterns in ring A. To derive further information on this scaffold,
a further medicinal chemistry study with a full synthesis series
would be required.
In addition to just comparing the 2D-structures of the

compounds, a ligand-based pharmacophore model from
compounds 9, 10, 12, and 13 was developed. The automatically
generated model consisted of two Hs, one AR, two HBAs, and
42 XVOLs (Figure 6A). However, a comparison of the
2D-structures of the active compounds revealed that an HBD
functionality on B-ring is essential for the activity. Fitting of the
training compounds into the model also showed an overlay
of hydroxyl groups in the respective area. Therefore, an
HBD-feature was manually added to the model (Figure 6B).
After fitting all the tested phenylbenzenesulfonamides and
-sulfonates to this model, one new XVOL was placed near the
HBD functionality to make the model more restrictive toward
compounds with too spacious substituents (Figure 6C).
All the phenylbenzenesulfonamides and -sulfonates were fitted

to the SAR models. As expected, the model without the HBD
feature (Figure 6A) found 11 of the active but also all of the
inactive and weakly active compounds. In comparison, the model
where the HBD feature was manually added (Figure 6B) found 9
of the active hits, 2 weakly active and 2 inactive compounds.
Once the new space restriction was added, (Figure 6C) 9 active
and only 2 weakly active compounds fitted to the model. These
results emphasized that phenylbenzenesulfonamides and
-sulfonates need to have an HBD functionality attached to the
B-benzene ring to inhibit 17β-HSD2. When the HBD is part qof
a more spacious substituent (e.g., in an amide), activity is
decreased.
Finally, the quality of the original 17β-HSD2 pharmacophore

models (models 1−3) was evaluated. Therefore, all 28 tested
derivatives were fitted into the models to (i) evaluate the model
qualities and (ii) to deduce and confirm activity rules from the
obtained alignments with the models. In summary, model 1
found 15 phenylbenzenesulfonamides and -sulfonates, of which
six (19, 20−24) were active or weakly active. When screening
without any space restrictions (XVOLs), compound 16 and

three inactive compounds fitted into model 1 as well. Because
model 1 performed well in finding active compounds, but also
mapped a number of inactive ones, a possible refinement step
could be an optimization of the space restrictions so that the
specificity of the model improves. Model 2, in contrast, found the
active compounds 16 and 22−24. Additionally, one weakly
active derivative and two inactive compounds mapped to this
model. None of the derivatives fitted to model 3.
Because model 1 performed well in finding active compounds,

but also mapped a number of inactive ones, it was chosen to be
refined for higher specificity. For this purpose, the original test set
comprising 15 active and 30 inactive compounds and the 13
active and 43 inactive compounds from the newly generated data
were gathered to form a refinement database. All in all, model 1
correctly recognized 19 active compounds from the refinement
database but found also 15 inactive compounds. The model’s

Table 3. Inhibitory Activities of Active Phenylbenzenesulfonamide and -sulfonate Derivatives Toward 17β-HSD2 and Related
HSDs

compd 17β-HSD2 lysate 17β-HSD1 lysate 11β-HSD1 lysate 11β-HSD2 lysate 17β-HSD3 intact

16 3.3 ± 1.2 μM n.i.a n.i. n.i. 43 ± 4%b

20 9.6 ± 0.4 μM n.i. 8.1 ± 1.9 μM n.i. n.i
21 4.9 ± 0.9 μM n.i. n.i. n.i. n.i
22 1.0 ± 0.2 μM 18 ± 2 μM n.i. n.i. 53 ± 4%
23 15 ± 2 μM 53 ± 5% 13 ± 3 μM n.i. n.i
24 6.3 ± 1.1 μM 58 ± 3% n.i. n.i. n.i

an.i. = no inhibition (rest activity >70% at the concentration of 20 μM). b% rest activity at 20 μM.

Figure 6. SAR models for 17β-HSD2 inhibiting phenylbenzenesulfo-
namides and -sulfonates. Automatically generated, ligand-based
pharmacophore model (A), manually optimized model (B), and
optimized model with space restrictions, added XVOL highlighted
(C). Pharmacophore features are color coded: HBA, red; HBD, green;
H, yellow; AR, blue; XVOL, gray.
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specificity was then increased by adding new XVOLs as spatial
restrictions to the model. In total, 7 new XVOLs were added in
the regions, where the inactive molecules were located, but the
actives did not protrude into this space. In the end, the refined
model 1 found 19 active and 4 inactive compounds. To see how
the model performed over a larger database, the SPECS database
was screened again. The refined model returned 193 hits, in
comparison to the 573 hits of the original model. Thus, the
spatial refinement of model 1 drastically decreased the number of
hits. This decreased number of hits may indicate an improvement
in the models specificity and sensitivity and in its ability to enrich
active compound from a database.

■ DISCUSSION
This study aimed to identify new 17β-HSD2 inhibitors by ligand-
based pharmacophore modeling. In the course of this study,
three specific 17β-HSD2 pharmacophore models were devel-
oped and used in combination for prioritizing test compounds
from the commercial SPECS database. Initially, 29 compounds
from a total of 1381 hit molecules were selected for biological
evaluation. Of these compounds, seven inhibited 17β-HSD2
activity more than 70% at a concentration of 20 μM when
assayed in lysed cells. In total, this yielded a 24% success rate for
these pharmacophore models. A further search for similar
compounds resulted in 30 small molecules, which were also
tested against 17β-HSD2. Six of these compounds inhibited
17β-HSD2bymore than 70% at a concentration of 20μM,ninewere
weak inhibitors (40−69% inhibition at 20 μM concentration), and
the remaining compounds were inactive or insoluble. The remaining
28 compoundswere then used to evaluate the pharmacophoremodel
quality and derive an SAR model for phenylbenzenesulfonamide
and -sulfonate type inhibitors of 17β-HSD2.
Because the original hit compounds were picked from the

database by three separate models, the predictive power for each
model was analyzed separately. Twelve of the biologically
evaluated compounds were picked by model 1, and six of them
turned out to be 17β-HSD2 inhibitors. This results in a success
rate of 50%, which is very good for an unrefined model. In
contrast, the predictive power of models 2 and 3 were moderate:
one of the ten compounds selected by model 2 was active. None
of the nine compounds picked by model 3 inhibited 17β-HSD2,
yielding success rates of 10% and 0%, respectively.
The experimental validation of the models confirmed that the

performance of model 1 was excellent, whereas that of models 2
and 3 should be improved if they will be used for further virtual
screening studies. A further refinement of model 1 should render
it more restrictive and thereby reduce the overall number of hits.
However, in light of the obtained screening results, model 1
already showed good predictive power even within one scaffold.
In addition, the results that most of the active compounds fit to
model 1 and the structurally similar inactive derivatives do not
supports the usage of pharmacophore modeling as a method for
prioritizing compounds for in vitro assays.
During this study, 13 new 17β-HSD2 inhibitors were

discovered. Two of these compounds were previously reported
in the literature: 9 is a reagent in the preparation of translation
initiation inhibitors,39 and 20 is a substructure for protein kinase
and angiogenesis inhibitors for cancer treatment.40 For the other
new 17β-HSD2 inhibitors, no references were found. The two
studies mentioning compounds 9 and 20 described them as
intermediate or substructures but not as actual endproducts, and
no biological activity was reported for them. Eleven out of the 13
novel 17β-HSD2 inhibitors had IC50 values lower than 10 μM,

and the most potent hit 12 had a nanomolar IC50 value. Because
the first virtual screening revealed phenylbenzenesulfonates and
phenylbenzenesulfonamides as promising hits, this scaffold was
further explored and six additional 17β-HSD2 inhibitors were
discovered. Therefore, a new validated scaffold for 17β-HSD2
inhibitors can be reported.
The similarities in the 3D-folding, functions, and intracellular

location of relatedHSDsmake it difficult to predict the selectivity
of compounds active against an individual member of this
enzyme family. Although the pharmacophore models were based
on inhibitors that were selective against 17β-HSD1, the
selectivity of the hits needed to be experimentally confirmed.
Therefore, selectivity studies for the newly identified 17β-HSD2
inhibitors were performed. Twelve of the 13 discovered inhibitors
were selective over 17β-HSD1, which is important regarding
treatment of osteoporosis. The only hit that showed activity 17β-
HSD1 activity, compound 22, inhibited 17β-HSD1 with an IC50
value of 18 μM, thus being 18 times more active against
17β-HSD2. Compound 22 is similar to compound 10, however,
where 22 has chlorine, and 10 has a methoxy substituent. This
suggests that 17β-HSD2may tolerate more spacious groups in this
region. Importantly, all compounds were selective over 11β-HSD2,
an antitarget associated with cardiovascular complications such as
hypertension and hypokalemia.37,41 Unfortunately, the most active
hit 12 inhibited 11β-HSD1 and 17β-HSD3, with 9-fold and 35-fold
selectivity against 17β-HSD2, respectively. Because other com-
pounds from the same scaffold (compounds 9, 10, 16, 21, and 24)
that were selective over the other tested HSDs were discovered, it
may be possible to optimize the selectivity of 12. In addition,
compounds 20 and 23 were equipotent 17β-HSD2 and 11β-HSD1
inhibitors. However, 11β-HSD1 is considered as an antidiabetic
target,42 and its inhibition may actually have beneficial effects in
patients suffering from osteoporosis.
Unfortunately, compound 11 turned out to be more active

against 17β-HSD3 than 17β-HSD2 and 13 was equipotent
toward these two enzymes. Compounds 16 and 26 showed weak
activity on 17β-HSD3. 17β-HSD3 is responsible for gonadal
testosterone production, and its proper function is essential for
fetal development and during puberty.38 Because osteoporosis
usually arises among the elderly, inhibition of 17β-HSD3 may
not lead to severe adverse effects. In addition, because this
enzyme is expressed almost exclusively in testis43 and in prostate
cancer tissues,44 its inhibition is not expected to cause adverse
effects in postmenopausal patients.
The crystal structure of 17β-HSD2 is not known, but for

17β-HSD1, there are multiple crystal structures available in the
Protein Data Bank (PDB, www.pdb.org,45). Therefore, the
generated pharmacophore models and active compounds of this
study were analyzed against the 17β-HSD1 structure (PDB code
3HB546). Model 1 as well as the established SAR model aligned
remarkably well with the cocrystallized estradiol derivative. The
alignment of the phenylbenzenesulfonates and phenylbenzene-
sulfonamides with model 1 in the 17β-HSD1 binding pocket
does not explain the compound’s selectivities. Interestingly, in
the binding site of 17β-HSD1, there are two hydrophobic
residues, Leu149 and Val225, that may cause unfavorable
interactions with the sulfonamide core of most 17β-HSD2-active
compounds. However, this does not explain why compound 22
inhibits 17β-HSD1 but compound 10 does not. Precise
conclusions regarding the selectivity cannot be drawn without
a crystal structure or a high quality homology model of 17β-HSD2.
In the end, 13 novel 17β-HSD2 inhibitors were discovered

during this study. Compound 15, which was the most potent and
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selective hit, was 5-fold less potent than the most active hit,
making it a promising lead candidate. All of the identified 17β-
HSD2 inhibitors are small molecules that can be easily optimized
by ring substitution or bioisosteric replacements for better
biological efficacy and/or selectivity.
Even though half of the in vitro evaluated derivatives were not

active or were weak inhibitors, some precious information on our
models and on the 17β-HSD2 binding site could be derived.
Most of the inactive compounds did not fit to the pharma-
cophore models and especially model 1 was able to enrich the
active compounds even within one scaffold. Structural analysis of
the identified inhibitors and the derivatives suggested that the
hydrogen bond donor functionality is essential for inhibitory
activity. For example, compounds 12, 13, and 15 bore a hydroxyl-
substituted benzene ring B and are active. In contrast, their
derivatives, compounds 17, 22, and 45 either lacked this
functionality or it was shielded by a methyl group to form an
ether (compound 17). The same tendency was present among
the phenylbenzenesulfonamides and -sulfonates in comparison
with inactive compounds from the same scaffold (Table 2). In
addition, substituents longer than two atoms in the benzene ring
decreased the compounds inhibitory activity or rendered the
compound inactive (compounds 36−39). Therefore, we
observed that, ideally, 17β-HSD2 inhibitors contain an HBD
feature directly linked to an aromatic ring B. The highest activity
was gained when this functionality is in meta-position of the
benzene ring, followed by ortho- and para-positions. The
importance of this HBD feature was also confirmed with the
SAR-pharmacophore model. Visual inspections of the sub-
stitution pattern of the A benzene ring suggested that
hydrophobic substituents (tert-butyl, multiple methyl substitu-
ents) were well tolerated, whereas hydrogen-bond-forming
functionalities decreased the activity.
To determine if our newly discovered 17β-HSD2 inhibitors

could be unspecific, multitarget inhibitors interfering with many
proteins, we applied a pan assay interference compounds
(PAINS) filter.47 This PAINS filter contains substructures that
can possibly interfere with the biological assay by absorbing
specific UV wavelengths, sticking to the unspecific binding sites,
or interfering with singlet oxygen that is often transferred in
certain high-throughput-screening assays. Two of our original
hits, compounds 11 and 13, were recognized as potential
PAINS.47 Compound 11 hitted filters 282:hzone_phenol_
A(479) and 283:hzone_phenol_B(215), whereas compound
13 matched with filter 392:sulfonamideB(41). Both of these
substructures are chromophores and therefore most likely
predicted as PAINS. However, chromophoric compounds do
not interfere with the biological assays used in this study. The
enzyme activity was measured in the presence of the radiolabeled
ligand, and the amounts of the substrate and product were
detected by scillantation counting, measuring the 3H activity.
Therefore, the presence of a possible chromophore does not
interfere with the assay, unlike in the HTS methods described by
Baell and Holloway.47 Moreover, compounds having the same
substructures as 11 and 13 were also evaluated against 17β-
HSD2 activity, and they were weakly active or inactive (such as
29 and 30, and 47 and 48). This also indicates that compounds
11 and 13 are true positive hits.

■ CONCLUSION
In the present project, specific pharmacophore models for
17β-HSD2 inhibitors were developed. Using these models as virtual
screening filters, 7 novel 17β-HSD2 inhibitors were discovered. An

additional search for structurally similar compounds resulted in the
biological evaluation of 28 small molecules. In total, 13 new
17β-HSD2 inhibitors, from which 10 represented phenylbenzene-
sulfonamides and -sulfonates, were discovered. To the best of our
knowledge, this scaffold has not been reported previously in the
literature as 17β-HSD2 inhibitors. These inhibitors aided in the
development of the SARmodel and rules for this specific scaffold: in
general, 17β-HSD2 inhibitors need to have anHBD functionality on
the meta-position of one benzene ring, and hydrophobic
substituents on the other.
This study proved that pharmacophore modeling is a powerful

tool in predicting activities and setting priorities for virtual
screening. However, quality evaluation of the pharmacophore
models revealed that model 1 outperformed the other two
models in finding actives. Therefore, model 1 will be further
refined for better sensitivity and specificity and used for further
virtual screening campaigns.

■ MATERIALS AND METHODS
Data Sets. For the ligand-based pharmacophore modeling, a test set

from the literature was collected. The aim was to collect structurally
diverse, active compounds, which were shown to inhibit 17β-HSD2
in lysed cells. In contrast, all the inactive compounds had to be tested
against 17β-HSD2 activity and be structurally similar to the actives.
The final test set including the training molecules consisted of 15
17β-HSD2 inhibitors and 30 compounds that were inactive toward
17β-HSD222−25,31,48−52 (see Supporting Information Table S1 for
structures and activities). The 2D structures of these compounds were
drawn with ChemBioDraw Ultra 12.0.53 For each molecule, a maximum
of 500 conformations was generated with OMEGA-best settings (www.
eyesopen.com,54−56) incorporated in LigandScout 3.03b (www.
inteligand.com57).

For virtual screening campaigns, the SPECS database was down-
loaded from the SPECS Web site (www.specs.net). This commercial
database is composed of small synthetic chemicals and consists of 202
906 compounds for which the company had at least 10 mg quantities in
stock in January 2012. These compounds were transformed into a
LigandScout database using the idbgen-tool of LigandScout. The
database was generated using OMEGA-fast settings and calculating
a maximum of 25 conformers/molecule (www.eyesopen.com,54−56).
For the search for phenylbenzenesulfonamides and -sulfonates fitting
model 1, the SPECS database version May 2013 (n = 197 475) was
downloaded from the SPECS Web site and transformed into a
multiconformational 3D database as described for the January 2012 version.

Pharmacophore Modeling. The pharmacophore models were
constructed using LigandScout 3.0b (www.inteligand.com57). For the
training set compounds, 500 conformations were created withOMEGA-
best settings,54−56 implemented in LigandScout. The programwas set to
create ten shared feature pharmacophore hypotheses from each of the
training sets. In a shared feature pharmacophore model generation,
LigandScout generates pharmacophore models from the chemical
functionalities of the training compounds and aligns the molecules
according to their pharmacophores.58 Only features present in all
training molecules are considered for model building. For the best
alignment, common pharmacophore features are generated and
assembled together, comprising the final pharmacophore model. The
shared feature pharmacophore models contain only chemical features
present in all the training molecules. The number of common chemical
features naturally decreases when there are more training molecules,
especially when using diverse ones. During this study, we started with
larger training sets. However, when the training set contained more than
two compounds, the obtained pharmacophore model became too
general with only few features and low restrictivity, finding all the
inactive compounds from the data set. The best of the generated
hypotheses were selected for further refinement (removing features,
setting features optional, adding XVOLs; for a general model refinement
workflow, see ref 32), aiming to train each model to find only the active
compounds and exclude the inactive ones from fitting. The quality of the
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pharmacophore models was quantitatively evaluated by calculating the
selectivity (eq 1) and specificity (eq 2) for each model separately and for
a combination of multiple models.

=sensitivity
found actives

all actives in the database (1)

=specificity
found inactives

all inactives in the database (2)

Virtual Screening and Selection of the Hits. Virtual screening of
the SPECS database (www.specs.net) was performed using LigandScout
3.0b. The original hit lists were filtered using Pipeline Pilot59 to reduce
the number of hits. The modified Lipinski-filter was set to pass all the
compounds with molecular weight 250−500 g/mol, AlogP 1−6, more
than two rotatable bonds, more than two HBAs, and less than three
HBDs. Then the hit lists were clustered using DiscoveryStudio 3.0
(www.accelrys.com60). The program was set to create ten clusters for
each hit list using function class fingerprints of maximum diameter 6
(FCFP_6) fingerprints.
Similarity Search. The search for the similar compounds for each of

the active hits found in the first screening run was performed within
SciFinder,61 using the Explore Substances−Similarity search tool. For
each of the new inhibitors, the compounds with similarity score ≥70
were collected. From these compounds, the ones that were
commercially available from SPECS and had a modified substitution
pattern (such as methyl group into ether or hydroxyl to methyl ether)
were purchased and biologically evaluated. For the search for
phenylbenzenesulfonamides and -sulfonates fitting model 1, the
SPECS database version May 2013 was virtually screened using
LigandScout 3.0b with model 1 only.
Screening against PAINS. To evaluate virtual screening libraries

against PAINS,47 our original 29 compounds were screened against the
PAINS filter using the programKNIME.62 The PAINS filters in SMILES
format were downloaded from http://blog.rguha.net/?p=850, and the
KNIME script for PAINS filtering63 from http://www.myexperiment.
org/workflows/1841.html.
Pharmacophore Model and Compound Alignments in

17β-HSD1. The new 17β-HSD2 inhibitors, model 1, and the SAR
were evaluated against the 17β-HSD1 structure (PDB code 3HB5.46 All
the alignments were performed using LigandScout3.0b. The ligand from
the protein was copied to the “alignment view”, set as references, and
aligned by features with model 1 or the SAR model. Then one of the
models was set as reference structure, and all the active compounds were
aligned to the model. After this, all the models and the compounds were
copied into the ligand-binding pocket in the “structure-based view”. On
the basis of these alignments, the models and the compounds were
visually analyzed against the 17β-HSD1 structure.
Literature Survey for Active Compounds. To search whether or

not our active hit molecules have been reported in the literature
previously, a SciFinder search was performed. Each of the active
compounds was drawn in the SciFinder Structure editor, and an exact
structure search was performed. In case a compound already had
references, these were downloaded and further investigated.
Preparation of Inhibitors and Cytotoxicity Assessment.

Inhibitors were dissolved in DMSO to obtain 20 mM stock solutions.
For solubility reasons, compound AH-487/15020191 (see Supporting
Information Table S1 for structure) was dissolved in chloroform.
Further dilutions to the end concentration of 200 μM were prepared in
TS2 buffer (100 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1 mMMgCl2,
250 mM sucrose, 20 mM Tris-HCl, pH 7.4).
To exclude that decreased enzyme activity might be due to unspecific

toxicity, all compounds were tested at a concentration of 20 μM in intact
HEK-293 cells for their effect on cell number, nuclear size, membrane
permeability, and lysosomal mass. Cells grown in 96-well plates were
incubated with compounds for 24 h, followed by addition of 50 μL of
staining solution (Dulbecco’s modified Eagle medium (DMEM)
containing 2.5 μM Sytox-Green, 250 nM LysoTracker-Red, and
500 nM Hoechst-33342), rinsing twice with PBS and fixation with 4%
paraformaldehyde. Plates were analyzed using a Cellomics ArrayScan
high-content screening system using Bioapplication software according

to the manufacturer (Cellomics ThermoScientific, Pittsburgh, PA).
None of the compounds altered these parameters.

Preparation of Cell Lysates. HEK-293 cells were transfected by
the calcium phosphate precipitation method with plasmids for human
17β-HSD1, 17β-HSD2, or 11β-HSD2. Cells were cultivated for 48 h,
washed with phosphate-buffered saline, and centrifuged for 4 min at
150g. After removal of the supernatants, cell pellets were snap frozen in
dry ice and stored at −80 °C until further use.

17β-HSD1 and 17β-HSD2 Activity Measurements Using Cell
Lysates. Lysates of human embryonic kidney cells (HEK-293)
expressing either 17β-HSD1 or 17β-HSD2 were incubated for 10 min
at 37 °C in TS2 buffer in a final volume of 22 μL containing either
solvent (0.2% DMSO/chloroform) or the inhibitor at the respective
concentration. N-(3-Methoxyphenyl)-N-methyl-5-m-tolylthiophene-
2-carboxamide (compound 19 in ref 26) and apigenin50 were used as
positive controls for 17β-HSD1 and 17β-HSD2, respectively, in all
experiments. 17β-HSD1 activity was measured in the presence of
190 nM unlabeled estrone, 10 nM radiolabeled estrone, and 500 μM
NADPH. In contrast, 17β-HSD2 activity was determined in the
presence of 190 nM unlabeled estradiol, 10 nM radiolabeled estradiol,
and 500 μM NAD+. Reactions were stopped after 10 min by adding an
excess of unlabeled estradiol and estrone (1:1, 2 mM in methanol).
Possible promiscuous enzyme inhibition by aggregate formation of the
chemicals was excluded by measuring the inhibition of the enzyme
activity by the compounds in the presence of 0.1% Triton X-100.36 The
presence of the detergent did not affect the inhibitory effect of any of
the compounds investigated. To exclude irreversible inhibition by
the compounds investigated,35 cell lysates were preincubated with the
compounds for 0, 10, and 30 min, respectively, followed by
measurement of the enzyme activity. Preincubation did not affect the
inhibitory effects of any of the compounds investigated. The steroids
were separated by TLC, followed by scintillation counting and
calculation of substrate concentration. Data were collected from at
least three independent measurements.

11β-HSD1 and 11β-HSD2 Activity Measurements Using Cell
Lysates. The methods to determine 11β-HSD1 and -2 activity were
performed as described previously.64 Briefly, lysates of stably transfected
cells, expressing either 11β-HSD1 or 11β-HSD2, were incubated for 10
min at 37 °C in TS2 buffer in a final volume of 22 μL containing either
solvent (0.2% DMSO) or the inhibitor at the respective concentration.
The nonselective 11β-HSD inhibitor glycyrrhetinic acid was used as
positive control. Activity measurements of 11β-HSD1 were performed
with 190 nM unlabeled cortisone, 10 nM radiolabeled cortisone, and
500 μM NADPH. To measure 11β-HSD2 activity, lysates were
incubated with 40 nM unlabeled cortisol, 10 nM radiolabeled cortisol,
and 500 μM NAD+. Reactions were stopped after 10 min by adding an
excess of unlabeled cortisone and cortisol (1:1, 2 mM inmethanol). The
steroids were separated by TLC, followed by scintillation counting and
calculation of substrate concentration. Data were collected from at least
three independent measurements.

17β-HSD2 and 17β-HSD3 Activity Measurement in Intact
Cells. Human embryonic kidney cells (HEK-293) were cultivated in
DMEM containing 4.5 g/L glucose, 10% fetal bovine serum, 100 U/mL
penicillin, 0.1 mg/mL streptomycin, 1×MEMnonessential amino acids,
and 10 mM HEPES buffer, pH 7.4. The cells were incubated at 37 °C
until 80% confluency. The cells were transfected using the calcium
phosphatemethod with expression plasmids for 17β-HSD2 and 17β-HSD3.
After 24 h, the cells were trypsinized and seeded on poly-L-lysine-coated
96-well plates (15 000 cells/well).

The inhibitory activities were measured 24 h after seeding as follows:
old medium was aspirated and replaced by 30 μL of charcoal-treated
DMEM (cDMEM). Ten microliters of inhibitor dissolved in cDMEM
into the respective concentration was added, and mixtures were
preincubated at 37 °C for 20 min. 17β-HSD2 inhibitory activities were
measured in the presence of 190 nM unlabeled estradiol and 10 nM
radiolabeled estradiol. N-(3-Methoxyphenyl)-N-methyl-5-m-tolylthio-
phene-2-carboxamide (compound 19 in ref 26) was used as positive
control. The reaction mixtures were incubated for 20 min, and the
reactions were stopped by adding an excess of estradiol and estrone
(1:1, 2 mM in methanol) to the mixture.
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17β-HSD3 inhibitory activities were measured in the presence of
190 nM unlabeled androstenedione and 10 nM radiolabeled
androstenedione. Benzophenone-1 was used as positive control65.
The reaction mixtures were incubated for 30min, and the reactions were
stoppedby adding an excess of androstenedione and testosterone (1:1, 2mM
in methanol). The steroids were separated by TLC, followed by scintillation
counting and calculation of substrate concentration. Data was obtained from
three independent measurements.
Characterization of Compounds 9−16 and 20−24. The

infrared spectra of the 13 active compounds were recorded with a
Bruker ALPHA equipped with a PLATINUM-ATR unit (spectral range
4000−400 cm−1, 4 scans per cm−1, Opus 7 software). The melting
behavior of the substances was observed with an Olympus BH2
polarization microscope (Olympus Optical, J) equipped with a Kofler
hot stage (Reichert, Vienna, Austria). The temperature calibration of the
hot stage was performed with a series of melting point standards such as
azobenzene (Tfus: 68 °C), acetanilide (Tfus: 114.5 °C), benzanilide
(Tfus: 163 °C), and saccharin (Tfus: 228 °C). The compound
characterization data are available in the Supporting Information.
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17b-Hydroxysteroid dehydrogenase type 2 (17b-HSD2) converts the potent estrogen estradiol into the
weakly active keto form estrone. Because of its expression in bone, inhibition of 17b-HSD2 provides an
attractive strategy for the treatment of osteoporosis, a condition that is often caused by a decrease of
the active sex steroids. Currently, there are no drugs on the market targeting 17b-HSD2, but in multiple
studies, synthesis and biological evaluation of promising 17b-HSD2 inhibitors have been reported. Our
previous work led to the identification of phenylbenzenesulfonamides and -sulfonates as new 17b-
HSD2 inhibitors by ligand-based pharmacophore modeling and virtual screening. In this study, new
molecules representing this scaffold were synthesized and tested in vitro for their 17b-HSD2 activity to
derive more profound structure-activity relationship rules.

� 2017 Elsevier Ltd. All rights reserved.
The microsomal enzyme 17b-hydroxysteroid dehydrogenase 2
(17b-HSD2) regulates the intracellular concentrations of the sex
steroid hormones estradiol and testosterone. It is responsible for
the oxidative inactivation of estradiol into estrone and inactivation
of testosterone into D4-androstene-3,17-dione (androstenedione),
respectively (Fig. 1).1,2 Additionally, 17b-HSD2 is involved in the
inactivation of 5a-dihydrotestosterone into 5a-androstanedione
and conversion of androstenediol into dehydroepiandrosterone.2,3

17b-HSD2 is expressed only in a few tissues: placenta,4

endometrium,4,5 prostate,6 small intestine,7 and bone.1 Inhibition
of 17b-HSD2 is an attractive way to increase local estradiol concen-
trations only in the target tissues, without affecting estrogen
receptor signaling in tissues where it is not expressed. This is
thought to be especially beneficial in the treatment of osteoporosis,
a condition where reduced bone density increases the fracture risk.
The onset of osteoporosis is often connected with the age-related
decrease of estradiol in women and decrease of testosterone in
men.8 Currently, osteoporosis is treated by estrogen replacement
therapy, bisphosphonates, monoclonal antibodies against receptor
activator of nuclear factor kappa-B ligand (RANKL), and selective
estrogen receptor modulators (SERMs).9–11 All of these treatments
have their disadvantages: Hormone replacement therapies and
SERMs have been associated with cardiovascular complications
and bisphosphonate therapy suffers from low oral bioavailability.12

Because of the challenges in the current treatment options, there is
a considerable demand for novel therapies such as 17b-HSD2 inhi-
bitors. In fact, there is evidence from a study in ovariectomized
cynomolgus monkeys that 17b-HSD2 inhibition lowered bone
resorption, although the effects were moderate and only observed
at the highest dose tested (25 mg/kg/day).13 Additionally, treat-
ment with 17b-HSD2 inhibitor reversed the ovariectomy-depen-
dent decrease in bone strength at 5 mg/kg and 25 mg/kg.
Nevertheless, the selectivity of the inhibitor used as well as inhibi-
tor concentration reached in the bone needs to be further assessed.
To the best of our knowledge, there are currently no 17b-HSD2
inhibitors in clinical trials or already on the market. However, there
are multiple studies on the discovery and development of 17b-
HSD2 inhibitors.14–17

Our recently published study described 17b-HSD2 inhibitors
that were discovered by ligand-based pharmacophore modeling
and virtual screening.18 In total, three pharmacophore models rep-
resenting the common chemical features of 17b-HSD2 inhibitors
were developed and used for virtual screening of the commercial
SPECS database (www.specs.net) containing about 200,000 small
synthetic chemicals. From the hit molecules, 27 were purchased
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Fig. 1. Reactions catalyzed by 17b-HSD2.

Fig. 3. The most active phenylbenzenesulfonamides and sulfonates from Vuorinen
et al.18 with their IC50-values.

Table 1
Structures and activities of the newly synthesized compounds.

Compound X Y R R1 R2 R3 Activity1

5 NH2 NH H H H H 46 ± 5%
6 NH2 O H CH3 H H 37 ± 1%
7 NH2 O H H H H 33 ± 4%
8 NH2 NH H Cl Cl H 11 ± 4%

4.65 ± 0.35 mM
9 NH2 NH H CH3 CH3 H 58 ± 7%
10 NH2 O H Cl H H 44 ± 2%
11 NH2 O H CH3 H CH3 49 ± 3%
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and biologically evaluated for 17b-HSD2 inhibition. Seven of these
compounds inhibited 17b-HSD2 by more than 70% at a concentra-
tion of 20 mM. Four of these compounds represented the
phenylbenzenesulfonate and –sulfonamide scaffold and were
found by the most successful model (Fig. 2). To further explore
the phenylbenzenesulfonamide and -sulfonate scaffold, 16 deriva-
tives and additional 14 virtual hits representing this scaffold were
purchased. From these compounds, six inhibited 17b-HSD2. In
total, ten 17b-HSD2 inhibitors representing phenylbenzenesulfon-
amides and sulfonates were discovered. From these compounds,
the most active ones are depicted in Fig. 3. The full series has been
published previously.18

This follow-up study aims at a more comprehensive structure-
activity relationship (SAR) analysis of this scaffold by synthesizing
derivatives of the most active compounds. An additional aim was
to replace the phenolic hydroxy group that is an attractive meta-
bolic site and toxicologically not favorable.19,20

In total, 20 derivatives of the most active compounds shown in
Fig. 3 were synthesized (Table 1) from the corresponding 1,2-
phenylendiamine or 2-hydroxyaniline and 4-tert.-butylbenzene-
sulfonylchloride (see Fig. 4). These compounds were tested for
17b-HSD2 inhibition in a cell-free radioligand binding assay using
the same test system as reported in Vuorinen et al.18 Ten of them
Fig. 2. (A) Pharmacophore model correctly predicting phenylbenzenesulfonamides
and -sulfonates as 17b-HSD2 inhibitors. This model consists of six pharmacophore
features: two hydrophobic areas (yellow), two hydrogen bond acceptors (red), of
which one was optional (scattered representation), one hydrogen bond donor
(green), an aromatic ring (blue rings), and 54 exclusion volumes (grey) mimicking
spatial restrictions by the binding site. (B) Compound 1 fitted into the model.

12 NH2 O H H CH3 H 36 ± 3%
13 NH2 O Bn H H 43 ± 1%
14 NH2 O H Ph H H 86 ± 3%
15 OH NH H H H H 5 ± 3%

1.23 ± 0.35 mM
16 OH NH H H CH3 H 13 ± 3%

4.09 ± 0.49 mM
17 OH NH H H Cl H 6 ± 4%

0.80 ± 0.22 mM
18 OH NH CH3 H CH3 H 18 ± 7%

5.19 ± 0.92 mM
19 OH NH H CH3 H H 22 ± 1%

4.40 ± 0.79 mM
20 OH NH H H Ph H 2 ± 2%

1.25 ± 0.09 mM
21 OH NH H H Bn 7 ± 3%

2.90 ± 0.69 mM
22 NH2 NH H H Cl H 28 ± 6%

5.58 ± 1.09 mM
23 NH2 NH H Cl H H 35 ± 4%
24 NH2 NH H F H H 36 ± 2%
4 (positive control) 10 ± 3%

1.0 ± 0.2 mM

1 Given as remaining enzyme activity at a compound concentration of 20 mM (%)
or as IC50.
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inhibited 17b-HSD2 by more than 70% at a concentration of 20 mM,
and IC50 values were determined subsequently. These compounds
inhibited 17b-HSD2 with low micromolar IC50 values, with the
most active compound 17 exhibiting an IC50 of 0.80 ± 0.22 mM.
(2017), http://dx.doi.org/10.1016/j.bmcl.2017.05.005
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Fig. 4. Schematic synthesis of compounds 5–24.

Fig. 5. New SAR-pharmacophore model with selected compounds: (A) 19 (light
blue) and 20 (orange), (B) 21 (grey), (C) 14 (red) and 20 (green), (D) 15 (blue) and 17
(yellow). The pharmacophore features are color-coded: hydrogen bond acceptor –
red, hydrogen bond donor green, aromatic ring – blue, hydrophobic – yellow. In
case a feature is optional, it is depicted in a scattered style. Exclusion volumes were
not generated.

Fig. 6. (A) 15 (purple), 16 (green), 17 (blue), 19 (red), 20 (yellow), and 22 (grey)
with the predictive SAR-model described previously.18 (B) Compounds 16 (green),
17 (cyan), and 20 (yellow) fitted into the original pharmacophore model. The
pharmacophore features are color coded: hydrogen bond acceptor – red, hydrogen
bond donor green, aromatic ring – blue, hydrophobic – yellow. In case a feature is
optional, it is depicted in a scattered style. Exclusion volumes are not shown for
clarity.
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As already observed in the previous publication, the phenolic
hydroxyl group is advantageous for the activity. However, this
functionality is an attractive site for metabolic modification19,20

and therefore exchanging this feature with a bioisosteric group
would be beneficial for the in vivo half-life of the molecule and
may also address possible toxicological concerns. Nevertheless,
replacing the phenolic hydroxy group by an amino group results
in the formation of anilines, which also need to be evaluated for
their toxic potential. The previous work revealed a decreased activ-
ity upon methylation of the phenol group, suggesting that a hydro-
gen bond donor is needed for the activity. Therefore, the hydroxy
group was replaced by an amine. Unfortunately, the activity was
decreased (compounds 5 and 7). Introducing an electronegative
substituent, such as chlorine or fluorine, to the sulfonamide com-
pounds increased the activity, as can be concluded from the com-
parison of activities of the unhalogenated compound 5 and the
corresponding halogenated derivatives 8, 22, 23 and 24. In the
sulfonamide series, methyl substituents in any position of the ben-
zene ring reduced the inhibitory ability (compounds 16 and 18–19)
compared to compound 15, however the activity was not com-
pletely lost. The position of the single methyl substituents did
not make a significant difference in the activity of the compounds,
as represented by their IC50 values. Interestingly, in the sulfon-
amide series, large aromatic ring substituents were tolerated by
the enzyme (20–21); however, this was not the case in the sul-
fonate series. Whether the linker between the benzene rings was
a sulfonamide or a sulfonate did not play a major role in the
activity: Compounds 23 and 10were equipotent. However, the sul-
fonate compound 1 was six times more active than the respective
sulfonamide compound 15. Still, compound 15 was more active
than the sulfonamide 5 and the sulfonate 7, respectively.

To demonstrate the observed SAR, a refined pharmacophore
model representing the common chemical functionalities of our
lead compound 1 and the most active compound from the new ser-
ies (17) was generated. An addition of a phenyl and benzo anella-
tion were tolerated (Fig. 5A and B), however, without significant
effect on the potency of the compounds (compare compounds 7
vs. 13 and 15 vs. 21). Substitution with a phenyl in para position
to the amino group (position R2 in Table 1) was tolerated in the sul-
fonamide 20. However, in the sulfonate 14, a phenyl in the para
position to the linker (R1 in Table 1) led to a loss of activity
Please cite this article in press as: Vuorinen A., et al. Bioorg. Med. Chem. Lett.
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(Fig. 5C). Therefore, the position of the phenyl substituent makes
a difference in the activity. However, this loss of activity in com-
pound 14 could also be caused by the hydroxyl-amino group
exchange and by the different linker. It is speculated that the rea-
son for the activity loss of 14may lie in the spatial properties of the
binding site in this position. Still, without structural data for 17b-
HSD2, this remains an assumption. A chlorine substituent at posi-
tion R2 in Table 1 is well tolerated, as compounds 15 and 17 are
similarly active (Fig. 5D), and they both fit into the model well.

The previous report also depicted a predictive SAR-model for
this scaffold.18 The new compounds were fitted into this model
as well. In fact, when the tolerance area of the hydrogen bond
donor (HBD) functionality of the model was slightly increased by
0.15 Å, the following compounds could fit into the model: 15–17,
19–20, and 22 (Fig. 6A). Our previously published predictive SAR-
model found most of the active compounds, but most remarkably,
it was able to exclude the weakly active ones. The newly synthe-
sized and biologically evaluated compounds were also fitted to
our previously established pharmacophore model, the one that ini-
tially identified the scaffold. If screened without the exclusion vol-
ume spheres, three of the compounds: 15, 16, and 20 fitted into
that model (Fig. 6B).

Additionally, the most active compounds were also tested
against other HSDs (Table 2) that are structurally and functionally
close to 17b-HSD2. Unfortunately, four of the new 17b-HSD2 inhi-
bitors were also active on 17b-HSD1, the enzyme that is responsi-
ble for the reductive activation of estrone into estradiol.21 Two of
(2017), http://dx.doi.org/10.1016/j.bmcl.2017.05.005
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Table 2
Qualitative selectivity assessment of the active compounds represented as % of control at the inhibitor concentration of 20 mM.

Compound 17b-HSD2 17b-HSD1 SI 11b-HSD1 SI 11b-HSD2 SI

8 11 ± 4% 23 ± 3%a 2.1 74 ± 4% 6.7 21 ± 11% 1.9
15 5 ± 3% 41 ± 6% 8.2 37 ± 5% 7.4 83 ± 9% 16.6
16 13 ± 3% 38 ± 6% 2.9 46 ± 2% 3.5 63 ± 12% 4.8
17 6 ± 4% 15 ± 6% 2.5 35 ± 3% 5.8 7 ± 4% 1.2
18 18 ± 7% 19 ± 8% 1.1 43 ± 2% 2.4 37 ± 10% 2.1
19 22 ± 1% 35 ± 9% 1.6 24 ± 4% 1.1 62 ± 9% 2.8
20 2 ± 2% 13 ± 3% 6.5 62 ± 5% 31 3 ± 3% 1.5
21 7 ± 3% 46 ± 7% 8.6 21 ± 4% 3 21 ± 4% 3
22 22 ± 6% 46 ± 10% 2.1 28 ± 7% 1.3 75 ± 8% 3.4
24 36 ± 2% 56 ± 11% 1.6 26 ± 8% 0.7 97 ± 4% 2.7
Positive controls 10 ± 3%

(4)
11 ± 3% (apigenin)23 5 ± 1% (glycyrrhetinic acid)24 7 ± 2% (glycyrrhetinic acid)24

a % residual enzyme activity compared to non-inhibited control at 20 mM concentration. SI = selectivity index (residual HSD activity / residual 17b-HSD2 activity).
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the compounds (17 and 20) also potently inhibited 11b-HSD2. This
enzyme converts cortisol into cortisone in kidneys and is consid-
ered as an antitarget because its inhibition causes cardiovascular
complications such as hypokalemia and hypertension.22 Therefore,
these compounds should be optimized for better selectivity. Com-
pounds 19, 21, 22 and 24 inhibited 11b-HSD1, which activates cor-
tisone to cortisol. Importantly, compound 15 could be considered
as a relatively selective 17b-HSD2 inhibitor, indicating the feasibil-
ity to develop potent and selective compounds from this class.

In this study, 20 phenylbenzenesulfonamides and -sulfonates
were synthesized and tested for 17b-HSD2 inhibition. In total, nine
of them inhibited the enzyme with low micromolar IC50 values.
Even though none of these new compounds was more active than
the parental compound 1, they allowed establishing more compre-
hensive SAR-rules for this scaffold. In addition, these compounds
provide also valuable information on the selectivity towards
related enzymes.
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ABSTRACT: 17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2) converts the active steroid hormones estradiol,
testosterone, and 5α-dihydrotestosterone into their weakly active forms estrone, Δ4-androstene-3,17-dione, and 5α-androstane-
3,17-dione, respectively, thereby regulating cell- and tissue-specific steroid action. As reduced levels of active steroids are
associated with compromised bone health and onset of osteoporosis, 17β-HSD2 is considered a target for antiosteoporotic
treatment. In this study, a pharmacophore model based on 17β-HSD2 inhibitors was applied to a virtual screening of various
databases containing natural products in order to discover new lead structures from nature. In total, 36 hit molecules were
selected for biological evaluation. Of these compounds, 12 inhibited 17β-HSD2 with nanomolar to low micromolar IC50 values.
The most potent compounds, nordihydroguaiaretic acid (1), IC50 0.38 ± 0.04 μM, (−)-dihydroguaiaretic acid (4), IC50 0.94 ±
0.02 μM, isoliquiritigenin (6), IC50 0.36 ± 0.08 μM, and ethyl vanillate (12), IC50 1.28 ± 0.26 μM, showed 8-fold or higher
selectivity over 17β-HSD1. As some of the identified compounds belong to the same structural class, structure−activity
relationships were derived for these molecules. Thus, this study describes new 17β-HSD2 inhibitors from nature and provides
insights into the binding pocket of 17β-HSD2, offering a promising starting point for further research in this area.

17β-Hydroxysteroid dehydrogenase type 2 (17β-HSD2)
belongs to a large family of short-chain dehydrogenase/
reductase (SDR) enzymes with the systematic name
SDR9C2.1 It is mainly expressed in the placenta, endometrium,
breast, prostate, small intestine, liver, and bone.2−5 This NAD+-
dependent enzyme converts active sex steroid hormones such
as estradiol, testosterone, and 5α-dihydrotestosterone into their
respective inactive forms, namely, estrone, Δ4-androstene-3,17-
dione (androstenedione), and 5α-androstane-3,17-dione (an-
drostanedione), thereby protecting tissues from excessive sex
steroid hormone action (Figure 1).6,7 Furthermore, 17β-HSD2

catalyzes the oxidation of Δ5-androstene-3β,17β-diol (andros-
tenediol) to dehydroepiandrosterone (DHEA). The enzyme
shares considerable structural and functional similarity with
other extensively studied SDR enzymes such as 17β-HSD1 and
17β-HSD3.8 In contrast to 17β-HSD2, the enzymes 17β-HSD1,
17β-HSD3, and the aldo-keto-reductase 17β-HSD5 (also
known as AKR1C3) are oxidoreductases converting the weak
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estrogen estrone to the potent estradiol and the weak
androgens androstenedione and androstanedione to testoster-
one and 5α-dihydrotestosterone, respectively.9−11 Whereas
17β-HSD3 is responsible for the last step of testosterone
synthesis in the testes, 17β-HSD5 is responsible for the
production of extratesticular testosterone and plays a crucial
role in androgen maintenance in the elderly.9,10

Owing to its favorable localization and its role as a main
contributor to the inactivation of estradiol, testosterone, and
5α-dihydrotestosterone in bone cells,2 17β-HSD2 has been
proposed as a promising target for the treatment of
osteoporosis.12 This condition, where decreased bone density
leads to an increased fracture risk, is in the majority of cases

linked with the age-related decrease of sex steroid hormones.13

The age-related onset of osteoporosis in postmenopausal
women14 and men with low testosterone levels15 can be
explained, at least in part, by a decline in the concentrations of
estradiol and testosterone, which inhibit bone degradation.16

Thus, by inhibiting 17β-HSD2, the amount of active steroids
can be locally increased in the bones, thereby improving bone
health. This hypothesis is supported by an in vivo study, where
a 17β-HSD2 inhibitor was administered to ovariectomized
cynomolgus monkeys.17 In this study, the 17β-HSD2 inhibitor
was shown to improve bone strength by increasing bone
formation and decreasing bone resorption, although the effects
were rather weak and only observed at the highest dose of 25
mg/kg/day.
Although multiple synthetic 17β-HSD2 inhibitors have

already been reported,18−21 natural products inhibiting this
enzyme are currently underexplored. There are only a few
reports on natural product inhibitors of 17β-HSD2 and other
steroid-metabolizing enzymes, and the majority of these
compounds are flavonoids.22−24 Flavonoids share certain
functional similarities with steroids and can be considered as
steroid mimetics (Figure S1, Supporting Information).
However, most of these compounds are not selective. They
also inhibit other members of the SDR enzyme family, and,
additionally, they frequently show activity toward estrogen and
androgen receptors. Nevertheless, natural compounds play an
important role in providing new structures as potential lead
candidates in drug discovery, and hence they are of high general
interest.25,26 Remarkably, from 1999 to 2008, 28% of all new
FDA-approved, first-in-class small-molecule drugs were natural
products or compounds derived thereof.27

Despite the fact that osteoporosis is not well represented
among the conditions treated with plants and phytotherapy,28

there are many other conditions related to bone homeostasis
and fractures that are reported in the literature on ethno-
pharmacology. Interestingly, an ethnopharmacological study
has been reported that shows that plants such as Pholidota
articulate Lindl. and Coelogyne cristata Lindl. (both of the
Orchidaceae family) contain several flavonoids that are used to
treat bone fractures in India.29 Even though part of the
observed effects of these compounds may be due to direct

Figure 1. Enzymatic reactions catalyzed by 17β-HSD2 and reverse
reactions catalyzed by other HSD enzymes.

Figure 2. Pharmacophore models for 17β-HSD2 inhibitors. (A) Chemical features of models 1 and 2 describing the types, locations, and tolerance
spheres of inhibitory chemical functionalities. Pharmacophore features are colored as follows: red, hydrogen-bond acceptor; green, hydrogen-bond
donor; yellow, hydrophobic; and blue, aromatic ring. Optional features are depicted in scattered style. (B) Full versions of models 1 and 2 with gray
exclusion volumes as steric restraints for inhibitor size (forbidden areas). A 3D video view of model 1 is available as Supporting Information.

Journal of Natural Products Article

DOI: 10.1021/acs.jnatprod.6b00950
J. Nat. Prod. 2017, 80, 965−974

966
38

http://pubs.acs.org/doi/suppl/10.1021/acs.jnatprod.6b00950/suppl_file/np6b00950_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jnatprod.6b00950/suppl_file/np6b00950_si_002.avi
http://dx.doi.org/10.1021/acs.jnatprod.6b00950


modulation of estrogen and androgen receptor activities, the
mechanism of action of these compounds in the treatment of
bone-related conditions is largely unknown. Accordingly, 17β-
HSD2 inhibition might well contribute to the effects of these
herbal remedies.
As natural compounds represent a rich source of potential

lead structures, novel 17β-HSD2 inhibitors of natural origin
were searched using in silico methods. Previously, a procedure

to discover new synthetic chemicals that inhibit 17β-HSD2 was
established.19 In this previous study, pharmacophore models
representing the chemical functionalities and steric require-
ments essential for the activity of small molecules toward 17β-
HSD2 were constructed and employed for virtual screening of a
commercial synthetic chemical database. From this previous
experimental validation, the two pharmacophore models 1 and
2 (Figure 2) showed good predictive power, with positive hit

Table 1. Active Hit Compounds of Natural Origin, Databases, Mapping Pharmacophore Models, and Activities against 17β-
HSD2

compound database pharmacophore models remaining activity at 20 μM (% of control) or IC50

nordihydroguaiaretic acid (1) Atanasov models 1 and 2 0.38 ± 0.04 μM
oleanolic acid (2) Atanosov model 1 omfa 49 ± 6%
curcumin (3) Atanosov models 1 and 2 omf 1.73 ± 0.2 μM
(−)-dihydroguaiaretic acid (4) Davis models 1 and 2 0.94 ± 0.02 μM
jaceosidin (5) Davis models 1 and 2 omf 9.3 ± 2.3 μM
isoliquiritigenin (6) Davis models 1 and 2 0.36 ± 0.08 μM
pinoresinol (7) Waltenberger models 1 and 2 42 ± 5%
lupinalbin A (8) Krenn model 2 omf 1.52 ± 0.15 μM
2′-hydroxygenistein (9) Krenn model 2 omf 2.03 ± 0.37 μM
butein (10) Sigma model 1 7.3 ± 2.7 μM
rosmarinic acid (11) Sigma model 1 3.72 ± 0.17 μM
ethyl vanillate (12) Sigma model 1 1.28 ± 0.26 μM

aomf, screening by allowing one omitted feature.

Table 2. Active Semisynthetic Fungal Natural Products, Origin, Mapping Pharmacophore Models, and Activities against 17β-
HSD2

compound database
pharmacophore

models remaining activity at 20 μM (% of control) or IC50

2-(3-chloro-4-hydroxyphenyl)-N-phenethylacetamide (13) Davis model 1 1.57 ± 0.16 μM
2-(3-chloro-4-hydroxyphenyl)-N-(2-methoxyethyl)acetamide (14) Davis model 1 omfa 37 ± 3%
N-butyl-2-(3-chloro-4-hydroxyphenyl)acetamide (15) Davis model 1 33 ± 6%
N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (16) Davis model 1 3.42 ± 0.74 μM
N-(2-(1H-indol-3-yl)ethyl)-2-(3-chloro-4-hydroxyphenyl)acetamide (17) Davis model 1 0.98 ± 0.24 μM
2-(3-chloro-4-hydroxyphenyl)-N-(2-chlorobenzyl)acetamide (18) Davis model 1 0.78 ± 0.16 μM
aomf, screening by allowing one omitted feature.

Figure 3. Structures of natural products identified in this study that inhibit 17β-HSD2.
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rates of 50% and 10%, respectively. Although the models are
very similar in feature types and distribution, they differ slightly
in feature location, which is why they may lead to somewhat
different virtual hits. Thus, both of these models were selected
for virtual screening of selected natural product databases.

■ RESULTS AND DISCUSSION

In-house natural product databases based on input from several
academic institutions (total of 439 entries) and the Sigma-
Aldrich catalogue (Sigma-Aldrich, St. Louis, MO, USA),
containing natural products and synthetic compounds, were
screened virtually using the two pharmacophore models. The
virtual screening procedure and its results are described in
detail in the Supporting Information (text and Table S1). As
the full models were quite restrictive, most databases were also
screened in models where one omitted feature (omf) was
applied during the pharmacophore mapping.
The 36 selected virtual hits were evaluated in an in vitro assay

using lysates of cells expressing the recombinant human
enzyme 17β-HSD2. Initially, all compounds were tested at a
final concentration of 20 μM. Compounds showing more than
50% inhibition at that concentration are shown in Tables 1 and
2 as well as Figures 3 and 4. For all compounds inhibiting 17β-
HSD2 activity by at least 70% (remaining activity ≤30% of
vehicle control), IC50 values were determined. The complete
list of the compounds tested is provided in Table S2,
Supporting Information.
From the selected 36 tested compounds, 12 were active with

IC50 values of <5 μM, six were moderately active showing at
least 50% inhibition at a compound concentration of 20 μM,
and the remaining compounds were considered inactive.
Altogether, this corresponds to a 50% hit rate, indicating that
the pharmacophore models performed explicitly well, not only

for synthetic molecules but also for natural compounds. This is
an important aspect, because natural products often differ from
synthetic drug-like structures. From the 33 in-house database-
derived test compounds, 10 fit into model 1 and four into
model 2, respectively, without omitted features during the
screening (Tables 1 and 2). Remarkably, all these hits were
active in vitro. Additionally, the strategy of allowing one
pharmacophore feature to be left out during the natural product
database screening proved successful: The hits obtained by
allowing one omitted feature additionally included the active
compounds oleanolic acid (2), curcumin (3), jaceosidin (5),
lupinalbin A (8), 2′-hydroxygenistein (9), and the semi-
synthetic derivative 2-(3-chloro-4-hydroxyphenyl)-N-(2-
methoxyethyl)acetamide (14). Although, admittedly, all in-
active compounds from this study have also been identified in
the screenings with one omitted feature, these additional active
hits encourage this screening mode, when a wider range of
chemically diverse 17β-HSD2 inhibitors is sought and a higher
number of false positive virtual hits is acceptable.
For a possible therapeutic use of a 17β-HSD2 inhibitor, a

compound must be selective over 17β-HSD1, which catalyzes
the reverse reaction. Therefore, the most active newly identified
17β-HSD2 inhibitors were screened at a final concentration of
20 μM in vitro using lysates of cells expressing the recombinant
human 17β-HSD1 enzyme. For all compounds inhibiting 17β-
HSD1 by 70% or more, IC50 values and corresponding
selectivity factors were determined. The results are shown in
Table 3. Follow-up experiments should include additional SDR
enzymes such as 11β-HSDs, 3α/β-HSDs, and retinol
dehydrogenases as well as a careful assessment of the cytotoxic
potential of the identified compounds.
Most of the active hits found in this study belong to

compound classes associated with steroidogenic activities. This

Figure 4. Semisynthetic fungal natural products that inhibit 17β-HSD2.

Table 3. Selectivity of the Most Active 17β-HSD2 Inhibitors toward 17β-HSD1

compound
17β-HSD2 activity

(IC50)
17β-HSD1 activity (IC50 or remaining activity at 20

μM)
selectivity
factor

nordihydroguaiaretic acid (1) 0.38 ± 0.04 μM 5.5 ± 1.3 μM 15
curcumin (3) 1.73 ± 0.20 μM 52.2 ± 7.1% ∼12
(−)-dihydroguaiaretic acid (4) 0.94 ± 0.02 μM 7.7 ± 2.2 μM 8
isoliquiritigenin (6) 0.36 ± 0.08 μM 2.83 ± 0.80 μM 8
lupinalbin A (8) 1.52 ± 0.15 μM 0.049 ± 0.019 μM 0.03
2′-hydroxygenistein (9) 2.03 ± 0.37 μM 1.09 ± 0.06 μM 0.5
rosmarinic acid (11) 3.72 ± 0.17 μM n.i.a >5
ethyl vanillate (12) 1.28 ± 0.26 μM n.i. >15
2-(3-chloro-4-hydroxyphenyl)-N-phenethylacetamide (13) 1.57 ± 0.16 μM n.i. >12
N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (16) 3.42 ± 0.74 μM n.i. >5
N-(2-(1H-indol-3-yl)ethyl)-2-(3-chloro-4-
hydroxyphenyl)acetamide (17)

0.98 ± 0.24 μM n.i. >20

2-(3-chloro-4-hydroxyphenyl)-N-(2-chlorobenzyl)acetamide (18) 0.78 ± 0.16 μM 54.8 ± 5.8% ∼25
an.i., no inhibition.
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includes the triterpene oleanolic acid (2), which belongs to a
compound class containing several 11β-HSD inhibitors.30−33

Compounds 5, 8, and 9 are flavonoids, a class known to have
estrogenic activity. Nordihydroguaiaretic acid (1) is a lignan
found at high concentrations in the leaves of Larrea tridentata
(Sesse ́ & Moc. ex DC.) Coville, a common shrub in the United
States and in Mexico.34 The leaves have been used in the
preparation of a tea for the treatment of cancer, arthritis, and
tuberculosis. Compound 1 is an antioxidant that also inhibits
lipoxygenase, thus influencing the leukotriene cascade and
suppressing ovulation in rats.35 Thereby, it may pose a potential
risk for reproductive toxicity if ingested in large amounts.
Compound 1 was proposed to be converted into a
phytoestrogen by gut flora.36 In addition, it was shown to
have estrogenic effects, being an ERα-agonist, with a tendency
to be selective over ERβ.37 Additionally, compound 1 was
shown to inhibit the formation of β-amyloid fibrils in the
central nervous system and the accumulation of β-peptides.
These properties suggest that 1 is an interesting compound for
the development of potential anti-Alzheimer disease (AD)
pharmaceuticals.38 Similar anti-amyloidogenic effects were also
reported in studies with mice for 1, 3, and 11, supporting the
potential preventive properties of these natural compounds
against AD.39

Curcumin (3) is a tautomeric diarylheptanoid compound
that is found in the roots of Curcuma longa L. and has a great
variety of potential therapeutic activities.40,41 It is one of the
main ingredients of curry spice mixtures and is responsible for
the yellow color.42 Many papers have been published in the
past few decades describing anti-inflammatory,43 anti-
cancer,44,45 and antioxidant properties of 3.40 In Asian
medicine, 3 was used for topical or oral application to treat a
variety of diseases for thousands of years. Despite the low
bioavailability and rapid hepatic metabolism, 3 was shown to be
therapeutically active against several diseases.46 There is debate
as to whether 3 may be an invalid bioactive compound because
of its PAINS properties47−49 or may still have some potential as
a lead structure candidate for certain conditions.50 According to
the experiments and observations from this study, 3 directly
and specifically inhibits 17β-HSD2 and 17β-HSD1. A detailed
discussion on this issue is provided in the Supporting
Information (p S9). Although 3 may not be a suitable lead
compound for various reasons, it still reflects the ability of the
virtual screening workflow to detect structurally diverse 17β-
HSD2 inhibitors.
Dihydroguaiaretic acid (4) is another lignan that is present in

various plant extracts, such as those derived from the bark of
Machilus thunbergii51 Siebold & Zucc. and the seeds ofMyristica
f ragrans Houtt.52 These plants are found predominantly in
tropical and subtropical Asian countries. Compound 4 was
reported to possess antibacterial,53 antioxidative,54 and
potential anticancer properties.55 Little is known about the
potential interference of 4 with estrogen-metabolizing
hormones. In 2001, Filleur et al. reported that 4 showed no
effects on 17β-HSD activity in placenta microsomes.56 This is
in contrast with the potent inhibition (IC50, 940 ± 20 nM) of
17β-HSD2 by 4 found in the present study. The reason for this
discrepancy is unclear but may be due to experimental
differences, as in the present study recombinant human enzyme
was used. In contrast, in the study by Filleur et al. placenta
microsomes that also express other steroid-metabolizing
enzymes were applied.

Isoliquiritigenin (6) is a hydroxylated chalcone found in
Glycyrrhiza uralensis Fisch. ex. DC.57 and other various plant
preparations. Many pharmacological effects of 6 have been
described in the literature such as antitumor, antioxidative, and
antibacterial properties.58 Using a recombinant protein, it was
reported that 6 inhibits aromatase activity with an IC50 value of
3.8 μM.59 This would lower the amount of estrogens produced
from androgens, which may aggravate osteoporosis. Never-
theless, 6 is a moderately potent inhibitor of aromatase, and
efficient inhibition of 17β-HSD2 was achieved at concen-
trations 10 times lower. Importantly, 6 did not inhibit 17β-
HSD1. Using yeast strains expressing human receptors, 6 was
shown to bind to ERα (IC50 to displace estradiol of 1.87 μM)
and ERβ (IC50 of 269 nM), however, with much lower affinity
than estradiol.60

Compounds 8 and 9 are major constituents contained in a
methanolic extract of the aerial parts of Eriosema laurentii De
Wild, which was shown to have protective effects against femur
mass loss and significantly increased calcium and inorganic
phosphorus content in the femur in ovariectomized rats.61,62

Inhibition of 17β-HSD2 by these compounds may enhance
local levels of estradiol, thereby potentiating estrogen receptor
α (ERα)-mediated signaling. However, some of these effects
may be explained by direct effects of the compounds on steroid
receptors and/or helix−loop−helix transcription factors. In
yeast systems expressing the human ERα and the human aryl
hydrocarbon receptor, 8 showed agonistic effects with EC50
values of 21.4 nM and 1.34 μM, respectively.63 Additionally, 9
was reported to activate ERα with an EC50 value of 6.1 μM.
Regarding 8 and 9, it needs to be noted that these compounds
exert more potent inhibitory effects against 17β-HSD1 than
17β-HSD2. In fact, 8 potently inhibited 17β-HSD1 with an
IC50 of 49 ± 19 nM and an approximately 30-fold selectivity
over 17β-HSD2. This in vitro information suggests that 8 most
potently activates ERα and potently inhibits estrone to estradiol
conversion by 17β-HSD1 but shows weaker effects on 17β-
HSD2-mediated estradiol inactivation. Depending on the tissue
and cell type, ERα is expressed together with either 17β-HSD1
or 17β-HSD2, which may result in cell-specific estrogenic
effects of 8.
Rosmarinic acid (11) was first isolated from an extract of

Rosmarinus of f icinalis L.64 This compound was studied for
many years and showed antinociceptive and anti-inflammatory
effects in animal studies.65 In addition, several clinical trials
showed positive effects of comfrey roots containing 11 as a
topical treatment against pain.66 Antinociceptive effects would
clearly be beneficial in the treatment of osteoporosis because of
increasing pain with progression of the disease. Compound 11
selectively inhibited 17β-HSD2 over 17β-HSD1, although with
rather moderate activity. It therefore remains to be seen
whether such concentrations can be reached in bone cells.
Alternatively, paracrine effects from neighboring cells may affect
estrogen availability and therefore bone metabolism.
Ethyl vanillate (12) is an antioxidative67 compound that has

been found in hedge mustard [Sisymbrium of f icinale (L.) Scop.]
and also in Pinot noir wine.68 Although 12 has been known for
quite some time, due to its intense vanilla taste and its use as a
flavoring additive, its biological properties remain poorly
investigated.
Most of the newly discovered 17β-HSD2 inhibitors were

already known as phytoestrogens or compounds that are
converted into phytoestrogen by gut flora (e.g., pinoresinol (7)
and 1).36 The rationale why the pharmacophore model found
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these ER-active compounds was that the substrate (estradiol) of
17β-HSD2 is the endogenous ER agonist, and thus the binding
pockets of ER and 17β-HSD2 are obviously able to
accommodate similar compounds that may be considered as
steroid mimetics. This was reflected by the pharmacophore
model that is based on the properties of compounds binding to
17β-HSD2: the compounds that share features needed for
binding to 17β-HSD2 are likely to bind to ERα and ERβ as
well.
Many of the active hits share considerable structural

similarity. Interestingly, the most active substance, 6, has one
phenolic hydroxy group less than 10. This difference led to a
drastic effect on the activity of these compounds: 6 gave an IC50
value of 0.36 ± 0.08 μM, whereas 10 was 20-fold less active,
with an IC50 of 7.3 ± 2.7 μM. However, the difference in the
overall lipophilicity of these compounds may also play a role in
their different activities.
The semisynthetic fungal natural products (13−1869)

followed a clear structure−activity relationship (SAR), with
the activity shown to increase when a second aromatic ring was
present. The parent compound (i.e., natural product) for this
semisynthetic series, 2-(3-chloro-4-hydroxyphenyl)acetamide
(S11), and the related natural products 2-(3-chloro-4-
hydroxyphenyl)acetic acid (S15) and 2-(4-hydroxyphenyl)-
acetamide (S16) (see Table S1, Supporting Information, for
their chemical structures), did not inhibit 17β-HSD2, whereas
compounds 2 - (3 - ch lo ro -4 -hyd roxypheny l ) -N - (2 -
methoxyethyl)acetamide (14) and N-butyl-2-(3-chloro-4-
hydroxyphenyl)acetamide (15) were moderately active. The
most active compounds from this series were 2-(3-chloro-4-
hydroxyphenyl)-N-phenethylacetamide (13) and 16−18, which
all shared a similar interaction pattern (Figure 5A). However, if
the acetamide fragment is extended with, for example, an N-
butyl chain, the compound can form additional hydrophobic
interactions with the enzyme, resulting in an increased activity
(Figure 5B). In addition to the alkyl chain, the most active
compounds have a second aryl ring that can form aromatic
interactions with the enzyme (Figure 5C). On the basis of the
activities of these compounds, it can be proposed that 17β-
HSD2 has a hydrophobic ligand binding pocket and aromatic
amino acid residues in the active site that may contribute to the
affinities of these ligands.
Most of the tested compounds inhibited selectively 17β-

HSD2 over 17β-HSD1, except for compounds 8 and 9. The
semisynthetic compounds 13 and 16−18 also showed good
selectivity in terms of the inhibition of 17β-HSD2. The two
most potent compounds, 1 and 6, were 15 and 8 times more
active toward 17β-HSD2 than 17β-HSD1. Both compounds are
potential natural lead structures that could be used for the
development of 17β-HSD2 drug candidates. Unlike many other
related compounds that are possibly rapidly metabolized due to
the presence of several hydroxy groups, 2-(3-chloro-4-
hydroxyphenyl)-N-(2-chlorobenzyl)acetamide (18) has only a
single hydroxy group and might therefore be less prone to rapid
biotransformation. Compound 18 still potently and selectively
inhibited 17β-HSD2 with an IC50 of 0.78 ± 0.16 μM.
Among the most active compounds identified during these

studies were also the flavonoids 5 and 9. Schuster et al. earlier
reported several flavonoids inhibiting 17β-HSD2. Taking the
data together (Table 4),24 a SAR model for the flavonoids that
inhibit this enzyme could be established (Figure 6).
In general, the active flavonoids share a typical pharmaco-

phore model containing hydrogen bond acceptors and donors

and hydrophobic and aromatic features (Figure 6A). The
hydrogen bond acceptor in position C-3 (scaffold A) was found
to be beneficial for activity, as the most active flavonoids, 30
and 31, contain a hydroxy group at this position (Figure 6B). If
this feature was absent, the activity decreased or the compound
was inactive. Furthermore, the hydrogen bond acceptor unit at
the C-4′-position is important and shared by all active
compounds. If the hydrogen-bonding feature at this position
was deleted, active and inactive compounds were no longer
distinguished (Figure 6C).
To learn more about the general properties of 17β-HSD2

inhibitors, model 1 and the flavonoid model were aligned
(Figure 7). Every model contains an aromatic ring feature next
to a hydrogen bond donor/acceptor feature. Among the
compounds mapped, this combination was often represented
by a phenolic hydroxy group. Another common feature was the
hydrophobic/aromatic group in a certain distance from the first
feature group. Interestingly, in between these aligned hydro-
phobic/aromatic features, there were hydrogen bond acceptor
features. These indicate that in the binding pocket there may be
two hydrophobic regions that tolerate aromatic interactions,
and in between these pockets, there was most likely a
hydrogen-bonding partner. This feature arrangement is in line
with the architecture of already crystallized 11β-HSD1 and 17β-
HSD1, where inhibitors are anchored to the catalytically active
amino acids by central hydrogen bonds and form further,
adjacent hydrophobic contacts (e.g., the PDB structures 4c7j70

and 3hb571).

Figure 5. Illustration of the SAR of semisynthetic natural product
derivatives (Table 3). (A) The core structure with compounds S12
(gray), S15 (red), and S11 (blue) with a pharmacophore model
illustrating the interaction pattern. (B) The moderately active
compounds 14 (yellow) and 15 (gray) with the additional
hydrophobic feature. (C) The most active compounds 13 (orange),
N-benzyl-2-(3-chloro-4-hydroxyphenyl)acetamide (16, green), N-(2-
(1H-indol-3-yl)ethyl)-2-(3-chloro-4-hydroxyphenyl) (17, purple), and
18 (gray) with the additional aromatic ring feature.
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The present virtual screening approach for the identification
of natural products-derived 17β-HSD2 inhibitors was produc-
tive. Thus, only 38 compounds had to be tested to yield 17
active hits with sub- and low-micromolar IC50 values. The most
potent bioactive compound, 6, exhibited an IC50 value of 360 ±
80 nM. Thus, the present approach had a success rate of 47%
within the virtual hit lists. The fact that so many interesting
17β-HSD2 inhibitors were obtained within this relatively small
natural product collection points toward the probable presence
of more potent active compounds among other natural
products.
Furthermore, SAR information was derived for two

compound classes, providing more detailed insight into the
binding pocket of the enzyme. Only 8 and 9, which were
identified by model 2 with one omitted feature, were not
selective and even preferentially inhibited 17β-HSD1. Con-
sequently, both compounds seem not to be suitable lead
structures for further development as antiosteoporosis leads. All
other newly discovered 17β-HSD2 inhibitors were preferen-
tially selective over 17β-HSD1, and therefore they could serve
as lead structures for further optimization. It needs to be noted
that the activities of these compounds toward 17β-HSD2 are at
least an order of magnitude lower than that of reported
synthetic, chemically optimized compounds.18,20,21 To further
develop potential lead candidates, additional investigations into
the bioavailability, metabolism, and tissue distribution of the
identified natural compounds are needed. Inhibition of 17β-
HSD2 is expected to result in tissue-specific elevated levels of
estradiol, and potential adverse effects include endometrial
hyperplasia and impaired growth control of the glandular
epithelium of the breast.72−74 Thus, compounds that are
primarily active in the bone would be preferred for future drug
development.

■ EXPERIMENTAL SECTION
Databases. The Davis Compound Library (Griffith Institute for

Drug Discovery, Griffith University) consisted of 352 compounds, of
which the majority were obtained from Australian natural sources,
such as endophytic fungi,75 macrofungi,76 plants,77 and marine
invertebrates.78,79 Approximately 15% of the entries of this library
were semisynthetic natural product analogues,80,76 while a small
percentage (∼5%) are known commercial drugs or synthetic
compounds inspired by natural products. The Atanasov and Krenn
databases consisted of 51 and 13 in-house available natural products,
respectively, from the Department of Pharmacognosy at the University
of Vienna, Austria. From the University of Innsbruck, 23 selected
plant- and lichen-derived compounds81−84,62 available in-house at the
Institute of Pharmacy/Pharmacognosy were collected in the
Waltenberger database. Finally, the Sigma-Aldrich catalogue was also
screened, as it includes some commercially available natural products.

Virtual Screening. The databases were prepared for virtual
screening by deleting counterions and generating multiconformational
databases using OMEGA implemented in LigandScout 3.03b. For the
relatively small in-house databases used, BEST settings were employed
with a maximum of 500 conformers per molecule. For the larger
Sigma-Aldrich database, FAST settings were used, which allowed for a
maximum of 50 conformations per compound.

Origin, Isolation, and Purification of the Natural Com-
pounds. All natural products from the Davis Compound Library were
isolated from plants, marine invertebrates, or endophytic fungi
archived at the Griffith Institute for Drug Discovery, Griffith
University, Australia, or purchased from Sigma-Aldrich. The extraction
and isolation of the natural products featured in this paper have been
previously reported by Davis et al.69,85−88 The synthesis and
characterization of the semisynthetic fungal analogues 13−18 have
also been previously reported in the literature.69 All compounds from
the Davis collection were analyzed for purity prior to screening and
were shown by LC-MS or 1H NMR analysis to have purities of >95%.
The compounds from the Atanasov library were obtained from Sigma-
Aldrich, except for 2, 3, and butyl gallate (S3), which were purchased
from Fisher, Molekula, and ABCR GmbH & Co. KG, respectively. All

Table 4. Flavonoid Structures and Activities Used for Deriving a Flavonoid SAR Model of 17β-HSD2 Inhibitors
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compounds were purchased at a purity of ≥90%. Compounds 8 and 9
were isolated in an activity-guided approach from a MeOH extract
from Eriosema laurentii de Wild and unambiguously identified by
following MS and NMR analysis. HPLC was applied to determine
purity and resulted in 98.7% purity for 8 and 92.1% purity for 9. The
compounds from the Waltenberger library were isolated from different
plant and lichen species in the course of the project “Drugs from
Nature Targeting Inflammation” (DNTI).89 Compound 7 was isolated

from a MeOH extract of the bark material of Himatanthus sucuuba
(Spruce) Woodson as described elsewhere.62 The purity of this
compound was determined by HPLC and NMR experiments as >95%.

Activity Assays for 17β-HSD1 and 17β-HSD2 Using Cell
Lysates. The 17β-HSD1 and 17β-HSD2 activity assays were
performed as described previously.19 Briefly, lysates of human
embryonic kidney cells (HEK-293, ATCC, Manassas, VA, USA)
expressing either human 17β-HSD1 or human 17β-HSD2 were
incubated for 10 min at 37 °C in TS2 buffer (100 mM NaCl, 1 mM
EGTA, 1 mM EDTA, 1 mM MgCl2, 250 mM sucrose, 20 mM Tris-
HCl, pH 7.4) in a final volume of 22 μL containing either solvent
(0.1% DMSO) or the inhibitor at the respective concentration. 17β-
HSD1 activity was measured in the presence of 200 nM estrone,
containing 50 nCi of [2,4,6,7-3H]-estrone, and 500 μM NADPH. In
contrast, 17β-HSD2 activity was determined in the presence of 200
nM estradiol, containing 50 nCi of [2,4,6,7-3H]-estradiol, and 500 μM
NAD+. Reactions were stopped after 10 min by adding an excess of
unlabeled estradiol and estrone (2 mM of each in methanol).
Unlabeled steroids and cofactors were purchased from Sigma-Aldrich
and radiolabeled compounds from PerkinElmer (Boston, MA, USA).
The steroids were separated by TLC, followed by scintillation
counting and calculation of substrate conversion. Data were collected
from at least three independent measurements. Compound 2924 was
used as a positive control for 17β-HSD1 assays and compound 22
from Vuorinen et al.19 as a positive control for 17β-HSD2 tests.

Structure−Activity-Relationship Modeling. The SAR models
were generated using LigandScout 4.09 with default settings (Wolber
2005 JCIM;90 LigandScout 4.09, 2005−2016, Inte:Ligand GmbH,
Vienna, Austria, www.inteligand.com). For all compounds, BEST
conformational models using iCon (max 500 conformers per entry)
were calculated and overlaid by chemical features using the
pharmacophore-based alignment algorithm of the program.
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Abstract 

 

Background: Parabens are effective preservatives widely used in cosmetic products and 

processed food, with high exposure to humans. Resent evidence suggested estrogenic effects of 

parabens. This study investigated the potential interference of parabens with the activities of 17β-

hydroxysteroid dehydrogenase (17β-HSD) 1 and 2. 

Methods: A ligand-based 17β-HSD2 pharmacophore model was applied to screen a cosmetic 

chemicals database. HEK-293 cells were transiently transfected with human 17β-HSD1 or 17β-

HSD2 expression plasmids. Lysates of these cells were incubated for 10 min at 37°C with 200 nM 

radiolabeled substrates, 500 µM co-factor NAD(PH) and paraben compounds. Steroids were 

separated using TLC and analyzed using scintillation counting. 

Results: All tested parabens and paraben-like compounds, except their common metabolite p-

hydroxybenzoic acid, inhibited 17β-HSD2 activity. Ethylparaben and ethyl vanillate inhibited 17β-

HSD2 with an IC50 of 4.64 ± 0.83 µM and 1.28 ± 0.26 µM. Besides, parabens size-dependently 

inhibited 17β-HSD1. Hexyl- and heptylparaben were most active and showed IC50 values of 2.6 ± 

0.6 µM and 1.8 ± 0.3 µM against 17β-HSD1.     

Conclusion: Low micromolar concentrations of hexyl- and heptylparaben decreased in vitro 

activity of human 17β-HSD1 and ethylparaben and ethyl vanillate decreased in vitro activity of 

human 17β-HSD2. However, regarding their very rapid metabolism to the inactive metabolite p-

hydroxybenzoic acid by esterases, it seems questionable whether micromolar concentrations of 

parabens are occurring in target cells to effectively disturb estrogen synthesis in vivo.  

 

 

Keywords 

Paraben; 17β-hydroxysteroid dehydrogenase; endocrine disrupting chemical, estrogen; 

xenobiotic 
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Introduction 

Paraben compounds are widely used as additives in cosmetic products and processed food due 

to their broad spectrum preservative efficiency, low cost, and low toxicity[1, 2]. Additionally, 

parabens possess excellent chemical stability, are tasteless, inert, and biodegradable. Chemically, 

parabens are alkyl esters of p-hydroxybenzoic acid of which propyl- and methylparaben are the 

most frequently used parabens in cosmetic products[3, 4]. European Union (EU) authorities 

permit a paraben content in cosmetic products of 0.4% for one ester compound and 0.8% for 

mixtures of esters (EU Council Directive, Cosmetic Products, 76/768/EEC/M11). Generally, 

mixtures of parabens are used to increase preservative efficiency. Lately, the acceptance of the 

use of parabens has decreased among chemical and pharmaceutical companies, and despite their 

excellent properties they tend to replace parabens with other compounds[5].  

Parabens can enter the systemic circulation via oral intake or by transdermal penetration, which 

was confirmed by the detection of systemic paraben concentrations upon exposure to these 

compounds [6-8]. However, parabens are very rapidly metabolized to p-hydroxybenzoic acid by 

esterases in the liver and in the skin, followed by excretion via the urine[9]. Parabens are mainly 

excreted as glycine, sulfate, and glucuronide conjugates [10]. The topical application of paraben 

containing products more likely contributes to the systemic paraben concentration than their oral 

intake due to the rapid intestinal and hepatic metabolism of parabens[11]. This assumption is 

supported by the fact that the main human paraben exposure is due to the extensive use of 

personal care products[12].   

Estrogens are primary female sex hormones playing a central role in a variety of physiological 

actions in females and males. In females, estrogens primarily regulate sexual development of the 

reproductive tissues and development of secondary sexual characteristics at puberty[13]. 

Estrogens trigger target gene expression mainly by acting through estrogen receptors α and β 

(ERα, ERβ)[14]. The 17β-hydroxysteroid dehydrogenase type 1 and 2 (17β-HSD1 and 17β-HSD2) 

regulate the local balance between potent and weakly active estrogens. While 17β-HSD1 converts 

the weakly active estrone (E1) into the most potent estrogen estradiol (E2), 17β-HSD2 catalyzes 

the opposite reaction and decreases the local concentrations of active estrogens [15]. A high 17β-

HSD2 to 17β-HSD1 ratio in ERα-positive breast cancer patients has been shown to positively 
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correlate with survival in ERα-positive patients[16]. This finding illustrate the importance of 

proper 17β-HSD2 function.  

Potential estrogenic activities of parabens have been extensively investigated in the past 

decades[6, 9]. In 2004, Darbre et al. reported the detection of unconjugated parabens in breast 

cancer tissue, triggering further investigations into estrogenic activities of parabens[17]. Most of 

these studies focused on the effects of parabens on estrogen receptors. Possible interferences of 

parabens with pre-receptor control enzymes modulating endocrine functions, such as 

hydroxsteroid dehydrogenases (HSDs), remained to be investigated. Therefore, the present study 

addressed potential endocrine disrupting effects of parabens on estrogen homeostasis through 

inhibition of human estrogen metabolizing enzymes.  

 

Results  

Virtual screening of a cosmetic chemical database using a 17β-HSD2 ligand-based pharmacophore 

model reveled parabens as possible 17β-HSD2 inhibitors. The chemical database contained 

around 75’000 chemical compounds that are used as additives in cosmetic products. Several 

paraben compounds were among the hits and this class of compounds was therefore subjected 

to biological testing. In total, ten parabens, its main metabolite p-hydroxybenzoic acid, and four 

paraben-like compounds were analyzed in vitro. All tested parabens as well as methyl vanillate, 

ethyl vanillate, ethyl gallate, and butyl gallate inhibited 17β-HSD2 at a concentration of 20 µM 

(Figure 1). The common paraben metabolite p-hydroxybenzoic acid was inactive. For the two 

most potent compounds, IC50 values were determined. Ethylparaben and ethyl vanillate inhibited 

17β-HSD2 with an IC50 of 4.64 ± 0.83 µM and 1.28 ± 0.26 µM, respectively (Figure S1, Supporting 

Information). A mixture of ethyl- (6 µM) and hexylparaben (12 µM) showed additive effects in 

terms of 17β-HSD2 inhibition compared to each individual compound (Figure 2).  

Additionally, effects of parabens and paraben-like compounds on the activity of 17β-HSD1 were 

analyzed. Small parabens such as the main metabolite p-hydroxybenzoic acid, methyl-, and 

ethylparaben did not inhibit 17β-HSD1. In contrast larger parabens, size-dependently inhibited 

17β-HSD1 activity (Figure 3). Methyl vanillate, ethyl vanillate, ethyl gallate, and butyl gallate did 

not inhibit 17β-HSD1 (data not shown). IC50 values were determined for the two most potent 
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parabens inhibiting 17β-HSD1. Hexyl- and heptylparaben showed IC50 values of 2.6 ± 0.6 µM and 

1.8 ± 0.3 µM, respectively, in 17β-HSD1 lysate assays. COV434 cells were used to determine IC50 

values of hexylparaben (3.5 ± 1.3 µM) and heptylparaben (4.9 ± 0.6 µM.) in intact cells expressing 

endogenous 17β-HSD1, indicating that parabens are able to penetrate cell membranes and inhibit 

the enzyme (Figure 4).  

 

 

Figure 1. Estrone formation in HEK-293 cell lysates expressing human 17β-HSD2. HEK-293 cells 

were transiently transfected using the calcium phosphate method. Transfected cells were lysed 

and incubated with 200 nM radiolabeled estradiol and parabens or paraben-like compounds at a 

final concentration of 20 µM for 10 min at 37°C. Steroids were separated using TLC and the 

formation of estrone was determined using scintillation counting. Results represent mean ± SD 

of three independent measurements. BM13 was used as positive control published in Vuorinen 

et al., (compound 22)[18]. 
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Figure 2. Additive effects of two parabens in terms of 17β-HSD2 activity. Lysates of transiently 

transfected HEK-293 cells were incubated with radiolabeled estradiol for 10 min at 37°C, 

containing 6 μM of ethyl- (2-P) or 12 μM of hexylparaben (6-P) or a mixture of both compounds. 

The 17β-HSD2 activity upon incubation with parabens was compared to that of the DMSO control. 

Steroids were separated using TLC and analyzed using scintillation counting. Experiments were 

performed three times independently.  
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Figure 3. Inhibition of 17β-HSD1 activity by parabens. HEK-293 cell were transiently transfected 

with 17β-HSD1 using the calcium phosphate method. Lysates were incubated together with 

radiolabeled estrone, 500 µM NADPH, as well as parabens at a final concentration of 20 µM, for 

10 min at 37°C. Steroids were separated using TLC and estradiol formation was determined using 

scintillation counting. Experiments were performed three times independently and shown as 

mean ± SD.  
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Figure 4. Inhibition of 17β-HSD1 by hexyl- and heptylparaben measured in lysates and intact cells. 

Lysate assays were performed using HEK-293 cells transiently transfected with 17β-HSD1. Intact 

cell assays were performed using human COV434 granulosa cells endogenously expressing 17β-

HSD1. Both assays were conducted using 200 nM radiolabeled estrone as substrate. The lysate 

assay additionally contained 500 μM NADPH. Results represent mean ± SD of three independent 

experiments.  

 

Discussion 

In this study, we identified several parabens potentially interfering with local estrogen 

metabolism by inhibiting 17β-HSD1 and 17β-HSD2. Parabens have successfully been used as 

preservative additives for more than 50 years. However, in recent years, following the detection 

of parent paraben compounds in female breast tumors, possible estrogenic effects were 

extensively investigated[17]. The first weak estrogenic effects of parabens were reported by 

Routledge et al. using a yeast-based estrogen receptor (ER) assay[19]. Methyl-, ethyl-, propyl-, 

and butylparaben were found to have weak estrogenic effects. Butylparaben was the most potent 
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estrogenic paraben found, but still 10’000 times less potent than estradiol. Furthermore, 

Routledge et al. reported minor estrogenic effects of paraben in vivo. Subcutaneous application 

of high doses of butylparaben (600-1200 mg/kg/day) significantly increased uterotrophic 

response in rats. However, it was approximately 100’000 times less potent than the positive 

control estradiol (0.4 mg/kg/day). The oral administration of butylparaben failed to increase 

uterotrophic response[19]. This observation may be explained by highly abundant paraben 

metabolizing enzymes, located in the intestine and liver. Miller et al. showed estrogenic activity 

of benzyl-, butyl-, propyl-, ethyl-, and methylparaben in a yeast-based estrogen assay. 

Benzylparaben was reported to be the most active paraben despite being 4000-fold less potent 

than estradiol[20]. In the present study, benzylparaben inhibited 60% of 17β-HSD2 activity at a 

concentration of 20 µM (Figure 1). The Benzylparaben concentration used in the activity assays 

of this study was 100 times in excess to the substrate concentration. Therefore, it can be assumed 

that the weak estrogenic effects of benzylparaben may be due to the inhibition of 17β-HSD2 and 

subsequently elevated estradiol concentrations rather than by a direct activation of the ER.   

Byford et al. reported estrogenic effects of methyl-, ethyl-, propyl-, and butylparaben in estrogen-

dependent MCF7 human breast cancer cells[21]. Parabens were able to competitively replace 

estradiol from binding to ERα in these cells. To replace estradiol from binding to its receptor a 

1’000’000-fold molar excess of parabens was used. Additionally, parabens increased the 

proliferation of MCF7 cells, while in ERα receptor-negative MDA-MB-231 cells parabens showed 

no increase in proliferation at equal concentrations. In both cases butylparaben was the most 

active estrogenic paraben tested. Similar results were published by Okubo et al. showing ER-

dependent proliferation of MCF7 cells treated with methyl,- ethyl-, propyl-, butyl-, isopropyl-, or 

isobutylparaben at concentrations that were 100’000 to 1’000’000 higher than estradiol[22]. 

However, the ERα-mediated estrogenic effects were not potent and it remains unclear whether 

these effects were indeed due to the activation of ERα or whether other pathways are involved.   

The main metabolite of parabens, p-hydroxybenzoic acid, was reported by Pugazhendhi et al. to 

be slightly estrogenic [23]. They reported that p-hydroxybenzoic acid competitively displaced 

estradiol from ERα at a 106 to 107-fold molar excess. Despite the fact that p-hydroxybenzoic acid 

is the main metabolite of all parabens and its presence in serum, the paraben concentrations 

needed to observe estrogenic effects are several orders of magnitude higher than the circulating 
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concentrations, questioning the concerns about their potential estrogenic properties in human. 

Besides, p-hydroxybenzoic acid is a highly hydrophilic compound with no evidence for 

bioaccumulation but rapid excretion via the urine[9].  

Parabens were shown to inhibit sulfotransferases (SULTs) in human epidermal keratinocytes and 

skin cytosolic fractions and therefore block local estrogen inactivation[24]. It was suggested that 

a chronic application together with a potential accumulation of parabens in the skin might lead 

to increasing local estrogen concentrations due to the inhibition of SULTs. Butylparben was the 

most potent paraben tested with an IC50 of 37 ± 5 µM. Thus, parabens are thought to be rather 

weak inhibitors of SULTs; however, subcutaneous accumulation of parabens due to extensive use 

of dermally applied cosmetic products might actually lead to endocrine disruption due to the 

interference with estrogen sulfation by parabens. The inhibition of SULTs was the first study that 

showed estrogenic effects of paraben without direct modulation of ER activity.  

Several studies showed that parabens can easily penetrate rat[25], rabbit[26] and human skin[7]. 

Daily application of cosmetic products for one-month led to an accumulation of methylparaben 

in the stratum corneum (SC) of the human fore arm. However, two days after stopping daily 

application, methylparaben in the SC was no longer detected[27]. These results indicate the 

possibility of local accumulation of parabens in the SC. However, only a daily and extensive use of 

products containing parabens will eventually lead to accumulation.   

Despite the rapid metabolism of parabens to p-hydrxybenzoic acid, original parent paraben 

compounds can be detected in human plasma[28], seminal plasma[28], urine[10] and milk[29]. It 

is supposed that the detection of systemic paraben concentrations is due to dermal rather than 

oral application of products containing parabens because of highly active intestinal and liver 

esterase activities[6, 11]. This report showed additive effects of parabens (Figure 2). Often, a 

mixture of parabens is added to the cosmetic formulation to improve preservative efficiency. 

Studies showed that various parabens can be detected systemically, substantiating the 

importance of investigating potential additive effects[7]. Additive effects clearly increase their 

estrogenic potential and are important to take into account for further evaluation of the 

estrogenic potential of parabens.  
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Conclusion 

The present study identified several parabens inhibiting 17β-HSD1 and 17β-HSD2. Parabens can 

exert estrogenic effects by inhibiting 17β-HSD2. Inhibition of 17β-HSD2 prevents local inactivation 

of the active estrogen E2. All tested parabens and paraben-like structures, except the main 

metabolite p-hydroxybenzoic acid, interfered with the activity of 17β-HSD2 at a concentration of 

20 µM. The most potent compounds had IC50 values in low micromolar range. The potential 

estrogenic effects reported in this study were observed at lower concentrations than those 

activating the ER or inhibiting SULTs as previously reported[8, 20-24]. Whereas most of the tested 

parabens were found to interfere with 17β-HSD2 activity, thereby increasing local E2 

concentrations, only larger parabens were found to inhibit 17β-HSD1. The most frequently used 

parabens in cosmetic products are short parabens; therefore, inhibition of 17β-HSD1 by parabens 

used in cosmetic products is of minor relevance regarding health issues. Nevertheless, this study 

revealed a size-dependent 17β-HSD1 inhibition by parabens, and structure-activity relationship 

analyses should allow improving the previously established 17β-HSD1 pharmacophore 

models[30].  

 

Materials and Methods 

Human embryonic kidney cells (HEK-293, ATCC, Manassas, VA, USA) were cultured in Dulbecco’s 

modified Eagle’s medium solution (DMEM, Sigma-Aldrich, St. Louis, MO, USA) supplemented with 

10% fetal bovine serum (FBS, Connectorate, Dietikon, Switzerland), 100 U/mL penicillin, 100 

µg/mL streptomycin, 10 mM HEPES buffer (Gibco life technologies, Carlsbad, CA, USA) at pH 7.4, 

and 1% of non-essential amino acids solution (Sigma-Aldrich).  

Endogenous 17β-HSD1 activity assays were performed in intact COV434 cells (Sigma-Aldrich). 

Cells were cultured under standard condition (5% CO2, 37°C) in DMEM (Sigma-Aldrich) 

supplemented with 100 µg/mL streptomycin and 100 U/mL penicillin (Gibco life technologies), 

10% FBS (Connectorate), and 2 mM L-glutamine (Sigma-Aldrich). 

Lysate activity assays were performed as previously described. Briefly, HEK-293 cells (ATCC) were 

transiently transfected by the calcium phosphate precipitation method with plasmids for human 

17β-HSD1 or 17β-HSD2. Lysates of HEK-293 expressing either 17β-HSD1 or 17β-HSD2 were 
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incubated for 10 min at 37 °C in TS2 buffer (100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 250 mM 

sucrose, 1 mM MgCl2, 20 mM Tris-HCl, pH 7.4), containing either the inhibitor at the respective 

concentration or solvent (0.2% DMSO). 17β-HSD1 activity was determined in the presence of 200 

nM estrone, including 50 nCi of [2,4,6,7-3H]-estrone and 500 μM NADPH. Whereas, the 17β-HSD2 

activity was performed in the presence of 200 nM estrone, including 50 nCi of [2,4,6,7-3H]-

estradiol and 500 μM NAD+.  

To determine 17β-HSD1 activity in COV434 cells, cells were seeded (50’000) into 96-well plates 

and incubated for 90 min with 200 nM estrone, including 50 nCi of [2,4,6,7-3H]-estrone in serum-

free charcoal treated media containing either the inhibitor at the respective concentration or 

solvent (0.1% DMSO). Both activity essays were stopped by adding a 1:1 ratio of 2 mM unlabeled 

E1 and E2 in methanol. Radiolabeled steroids were obtained from Perkin-Elmer (Boston, MA, USA) 

whereas normal steroids and cofactors were purchased from Sigma-Aldrich. Estrogens were 

separated by thin layer chromatography and samples were analyzed using scintillation counting. 

All data were collected from at least three independent measurements. 
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3.7 Conclusion 

The goal of the studies in project 1 was to establish a ligand-based 17β-HSD2 pharmacophore 

model to identify specific novel nonsteroidal compounds that inhibit 17β-HSD2. The success of 

our first paper (Vuorinen et al., 2014) using this approach was the catalyst for three further 

projects. The pharmacophore model was constantly improved over the years and resulted in a 

remarkable predictive power of about 40-50% positive hit rate in the natural product paper 

(Vourinen/Engeli et al., 2017b). Taking into account that no crystal structure of 17β-HSD2 is 

currently available and the pharmacophore model is just based on two active inhibitors, this 

positive hit rate is extraordinarily high. Additionally, it is noteworthy that the model predicts the 

selectivity over the enzyme 17β-HSD1 surprisingly well. In all projects, the selectivity over the 

enzyme 17β-HSD1 was evaluated. Enzymes of the HSD family share considerable structural 

similarity and therefore it is highly likely that other members of this family are also inhibited by 

the newly identified inhibitors. However, it is currently technically impossible to test the 

selectivity over all related enzymes. The physiological function of many HSDs is still not fully 

understood. Besides the use of pharmacophore models to identify new inhibitors, such models 

could also be applied to test potential interactions of new drugs candidates with selected targets 

in future work.  

The focus in these studies was clearly on identifying novel compounds that inhibit 17β-HSD2. 

Metabolism, bioavailability, and distribution of the compounds were not tested. However, in the 

Vuorinen/Engeli et al., 2017a study, we had a strategy to attempt to minimize potential intestinal 

and liver metabolism of the compounds by replacing phenolic sides chains in the structure. 

Unfortunately, every chemically altered scaffold showed decreased activity. For any substance to 

be taken forward as a lead drug candidate ADME (absorption, distribution, metabolism and 

elimination) and many other preclinical tests need to be performed. To further develop 17β-HSD2 

inhibitors as potential clinical drug candidates to treat osteoporosis, it has to be established if 

indeed 17β-HSD2 localized in bone tissues is actually accessible to the test compound. However, 

Bagi et al., showed that high doses of an orally administered 17β-HSD2 inhibitor (WH-9062) 

reduced bone resorption in ovariectomized cynomolgus monkeys relative to the control[101]. 

Additionally, the ovariectomized monkeys treated with 17β-HSD2 inhibitor regained ultimate 
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bone strength, substantiating that inhibition of 17β-HSD2 is an interesting potential osteoporosis 

target[110].  

In contrast to the first major study within this project, the second major study focused on the 

evaluation of potential endocrine disruption effects of parabens by inhibiting 17β-HSD enzymes 

involved in estrogen metabolism. Parabens were identified as potential 17β-HSD2 inhibitors by 

virtual screening of a cosmetic chemical database using the 17β-HSD2 pharmacophore model and 

was therefore analyzed in vitro accordingly (Engeli et al. Manuscript in preparation 2017). Most 

of the parabens significantly decreased estrone formation by inhibiting 17β-HSD2, but none of 

the paraben compounds were able to potently inhibit 17β-HSD2. Besides, the major metabolite 

of all parabens, p-hydroxybenzoic acid, was not active at all. Interestingly, parabens inhibited 17β-

HSD1 in a size-dependent matter. This finding will be used to perform a structure-activity 

relationship (SAR) study. This data will help to further improve the predictive power of the 

previously established 17β-HSD1 pharmacophore model[111]. In addition to the common lysate 

activity assay, 17β-HSD1 inhibition was also determined in COV434 cells which express 

endogenous 17β-HSD1. Parabens were able to penetrate cell membranes and also inhibited 

endogenous 17β-HSD1. This data demonstrates the capability of parabens to penetrate cell 

membranes and interfere with the intracellular activity of 17β-HSD1. However, it is very unlikely 

that parabens access cells expressing 17β-HSD1 or 2 at concentrations high enough to significantly 

disturb the activity of both enzymes since parabens are efficiently cleaved by esterases into p-

hydroxybenzoic acid, rapidly metabolized in the liver, and excreted in urine[112]. This study 

revealed a novel endocrine disrupting effect of parabens. Although, the concentrations of parent 

paraben compounds needed to significantly disturb 17β-HSD enzymes activity will probably never 

be reached in target cells. However, potential estrogenic disrupting effects by parabens inhibiting 

17β-HSD1 or 2 found in this study are more feasible than the previously reported ERα mediated 

estrogenic effects of paraben due to their very low potency towards ERα[104, 105, 107].  
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4. Project 2: 17β-Hydroxysteroid Dehydrogenase Type 3 

4.1 Introduction 

A human fetus exhibits no gender specific phenotypes until approximately the sixth week of 

gestation[113]. Male sexual differentiation is initiated by a complex interplay of androgens and 

essential sex determining genes located on the Y sex chromosome[114]. Androgens stimulate the 

development of internal and external male genitalia[115]. During embryogenesis, testosterone 

acts via the AR to stabilized the Wolffian ducts, which leads to the internal formation of the vas 

deference, seminal vesicles, and epididymis[116]. Testosterone can further be reduced to the 

most potent androgen DHT, by the enzyme 5α-reductase type 2[54]. DHT initiates the formation 

of external genitalia development (penis and scrotum) as well as the urethra and prostate[115]. 

Furthermore, Müllerian inhibitor hormone is produced by testicular Sertoli cells to regress the 

Müllerian duct development[117]. Mutations in both HSD17B3 and SRD5A2 genes result in severe 

46. XY disorder of sexual development[118]. Currently, more than 40 different mutations (introns 

and exons) in the HSD17B3 gene have been reported[119, 120]. So far, more than 50 mutations 

have been reported in the SRD5A2 gene [121]. Proper function of the human 17β-HSD3 and 5α-

reductase type 2 enzymes is essential for prenatal androgen formation and male sexual 

differentiation[22].     

The enzyme 17β-HSD3 is predominantly expressed in the testicular Leydig cells and mainly 

converts the inactive androgen androstenedione into its active from testosterone using NADPH 

as cofactor[53, 122]. Additionally, 17β-HSD3 converts the ∆5-steroid DHEA into androstenediol, 

which is further converted into testosterone[123]. Conversion of other substrates play a minor 

role. The 17β-HSD3 enzyme consists of 310 amino acids, with a molecular mass of 34.5 kDa and 

is located in the ER membrane facing the cytosol[86, 122]. Mutations in the HSD17B3 gene (9q22) 

can result in lower testosterone concentrations during embryogenesis causing severe effects on 

male sexual development in affected patients[53, 124]. So called 17β-HSD3 deficiency is a rare 

autosomal recessive cause of 46, XY disorder of sexual development (46, XY DSD)[125]. Patients 

with such a disorder are XY individuals that characteristically show undervirilization at birth with 

an ambiguous or female genital phenotype[119]. Often the disorder is unnoticed at birth and 

patients are commonly raised as females. Typically, the disorder is recognized during puberty due 

to primary amenorrhea and occurring virilization[126]. Virilization is usually caused by increasing 
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systemic testosterone concentrations due to the appearance of 17β-HSD5 (at this specific stage 

of development) or residual 17β-HSD3 activity and can have severe effects on sex identity of the 

patient[127]. Several affected patients, who are usually raised as females, undergo sex change 

due to substantial masculinization at puberty[128]. Mutations in the SRD5A2 gene can result in 

lower DHT levels in affected patients resulting in a very similar phenotype at birth, revealing that 

the most potent androgen DHT is also essential for male sex development[129].  

In this chapter we biochemically investigated mutations in the HSD17B3 gene of Tunisian and 

Egyptian patients that were associated with 46, XY DSD. A homology model of 17β-HSD3 based 

on the crystal structure of 17β-HSD1 was applied to further examine the structural changes 

caused by the mutations. All together five different 17β-HSD3 mutations, one polymorphism, and 

20 patients were reported and analyzed.  
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A B S T R A C T

Mutations in the HSD17B3 gene resulting in 17b-hydroxysteroid dehydrogenase type 3 (17b-HSD3)
deficiency cause 46, XY Disorders of Sex Development (46, XY DSD). Approximately 40 different
mutations in HSD17B3 have been reported; only few mutant enzymes have been mechanistically
investigated. Here, we report novel compound heterozygous mutations in HSD17B3, composed of the
nonsense mutation C206X and the missense mutation G133R, in three Tunisian patients from two non-
consanguineous families. Mutants C206X and G133R were constructed by site-directed mutagenesis and
expressed in HEK-293 cells. The truncated C206X enzyme, lacking part of the substrate binding pocket,
was moderately expressed and completely lost its enzymatic activity. Wild-type 17b-HSD3 and mutant
G133R showed comparable expression levels and intracellular localization. The conversion of D4-
androstene-3,17-dione (androstenedione) to testosterone was almost completely abolished for mutant
G133R compared with wild-type 17b-HSD3. To obtain further mechanistic insight, G133 was mutated to
alanine, phenylalanine and glutamine. G133Q and G133F were almost completely inactive, whereas
G133A displayed about 70% of wild-type activity. Sequence analysis revealed that G133 on 17b-HSD3 is
located in a motif highly conserved in 17b-HSDs and other short-chain dehydrogenase/reductase (SDR)
enzymes. A homology model of 17b-HSD3 predicted that arginine or any other bulky residue at position
133 causes steric hindrance of cofactor NADPH binding, whereas substrate binding seems to be
unaffected. The results indicate an essential role of G133 in the arrangement of the cofactor binding
pocket, thus explaining the loss-of-function of 17b-HSD3 mutant G133R in the patients investigated.
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1. Introduction

17b-hydroxysteroid dehydrogenase type 3 (17b-HSD3) defi-
ciency is a rare autosomal recessive cause of 46, XY Disorders of Sex
Development (46, XY DSD) described in 1971 [1]. It is caused by
mutations in the HSD17B3 gene (9q22) encoding the 17b-
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HSD3 enzyme consisting of 310 amino acids [2,3]. 17b-HSD3 is
predominantly expressed in the testes and utilizes NADPH as a
cofactor [2,4]. 17b-HSD3 catalyzes the conversion of the D4-
androstene-3,17-dione (androstenedione) to testosterone, which is
responsible for the normal fetal development of male genitalia [5].

17b-HSD3 deficiency is characterized by a spectrum of clinical
phenotypes due to a complete loss or residual activity of the
mutated 17b-HSD3 enzyme in the testes [6], as well as differences
in the degree of end-organ responsiveness and timing of exposure
of external genitalia to androgens. The onset of the extra-testicular
conversion of androstenedione to testosterone by 17b-HSD5 (also
known as AKR1C3) is responsible for the observed virilization at
puberty [1,7–9]. The characteristic phenotype at birth is an XY
individual with undervirilization of the external genitalia, which
often appear female with or without clitoromegaly and/or labial
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fusion and a blind-ending vagina [1,10]. Affected patients have
testes and often have normal Wolffian duct derivatives. The
diagnosis of 17b-HSD3 deficiency is based on an increased ratio of
androstenedione to testosterone. It can be suspected in case of
inguinal hernia or sexual ambiguity at early childhood and in case
of severe virilization and primary amenorrhea at puberty age [11].

Here, we report on three Tunisian patients with 17b-
HSD3 deficiency from two different non-consanguineous Tunisian
families. Our results revealed novel compound heterozygous
mutations, i.e., the premature stop codon C206X and the missense
mutation G133R, in the HSD17B3 gene responsible for 17b-
HSD3 deficiency. The impact of the missense mutations was
studied by site-directed mutagenesis, expression of the recombi-
nant proteins in HEK-293 cells and biochemical analysis of enzyme
activity. In order to understand the loss of enzyme activity of
mutant G133R, additional substitutions of G133 were investigated
and a 17b-HSD3 homology model was generated using Modeller
Version 9.11 [12–14].

2. Experimental procedures

2.1. Subjects and clinical history

Three Tunisian patients diagnosed with 46, XY Disorders of Sex
Development (DSD) were studied. Since birth, all patients were
raised as girls; patient P1 consulted at the age of 7 years for
inguinal hernia, and the two remaining patients were sisters and
consulted at puberty age for primary amenorrhea. For all patients,
the physical examination revealed normal female external
genitalia, and the karyotype analysis, performed using standard
G-banding technique, revealed 46, XY. The magnetic resonance
imaging of the pelvis and the abdomen showed no visualization of
the uterus or vagina but revealed inguinal testes. The results of
hormonal baseline testing of all patients are presented in Table 1.

2.2. Sequencing the HSD17B3 gene

Peripheral blood samples of the patients (P1, P2 and P3) and the
parents of P1 were collected and genomic DNA was extracted using
phenol-chloroform standard procedures [15]. All exons and
flanking intron regions of the HSD17B3 gene were tested for
mutations by sequence analysis using the previously reported
primers [16]. The PCR was performed using a thermal cycler
(GenAmp PCR System 9700, Applied Biosystem, Waltham, MA) in a
final volume of 50 mL containing 50 ng genomic DNA, 0.2 mM of
each primer, 1� PCR buffer, 1.2 mM MgCl2, 0.5 mM dNTP, and 1 U
Taq DNA polymerase (Promega GoTaq DNA Polymerase, Fitchburg,
WI). Direct sequencing of PCR products was performed using the
ABI Prism BigDye Terminator Cycle Sequencing Ready Reaction Kit
(ABI PRISM/Biosystems) and the products were resolved on an ABI
PRISM.
Table 1
Characterization of patients.

Patient 1 (P1) Patient 2 (P2) Patient 3 (P3)

Age (years) 7 14 15
Height (cm) 155 – –

Weight (kg) 45 – –

Tanner stage P1B1 P4B1 P5B1
Testosterone (ng/mL) 0.8 3 4
LH (IU/L) 12.5 – –

FSH (IU/L) 4.7 40 42
Caryotype analysis 46, XY 46, XY 46, XY

References values: Luteinizing hormone (LH): 1.24–8.62 mUI/mL; follicle stimulat-
ing hormone (FSH): 1.27–19.26 mUI/mL; testosterone: 1.75–7.61 ng/mL.
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2.3. Site-directed mutagenesis and construction of expression
plasmids

A pCMV6 expression vector containing the full-length human
17b-HSD3 sequence was a kind gift of the late Prof. Dr. Stefan
Andersson. The cDNA sequence from the ATG initiation codon to
the stop codon, which was replaced by a FLAG epitope followed by
a stop codon, was amplified by PCR and inserted into the
pcDNA3.0 expression vector (Thermo Scientific, Rockford, IL,
USA) between the restriction sites BamH1 and Xba1 (Roche, Basel,
Switzerland). This construct was used as a template to introduce
the FLAG-tagged point mutations. Point mutations were intro-
duced by site-directed mutagenesis using Pfu Polymerase (Prom-
ega, Madison, WI, USA) (for oligonucleotide primer sequences see
Supporting information). All expression plasmids were verified by
sequencing.

2.4. Cell culture and enzyme activity assay

Human Embryonic Kidney-293 cells (HEK-293, ATCC, Manassas,
VA, USA) were cultured in Dulbecco’s Modified Eagle Medium
(DMEM, Sigma–Aldrich, St. Louis, MO, USA) supplemented with
10% fetal bovine serum (FBS, Connectorate, Dietikon, Switzerland),
100 U/mL penicillin, 100 mg/mL streptomycin (Life Technologies,
Grand Island, NY, USA), 10 mM HEPES buffer pH 7.4 (Life
Technologies, Grand Island, NY, USA), and 1% MEM non-essential
amino acid solution (Sigma–Aldrich). Cells were cultivated under
standard conditions (37 �C, 5% CO2) in an incubator (Thermo Fisher
Scientific, Waltham, MA, USA). HEK-293 cells (1.5 �10�6) were
seeded into 10 cm dishes, followed by transient transfection by the
calcium phosphate precipitation method with 8 mg of expression
plasmid for wild-type 17b-HSD3 [17,18] or mutant 17b-HSD3 (see
below). Transfected HEK-293 cells were incubated for 24 h at 37 �C,
and 15,000 cells were seeded in 100 mL medium in 96-well plates,
pre-coated with poly-L-lysine (Sigma–Aldrich). After incubation
for another 24 h, the medium was replaced by 50 mL charcoal-
treated DMEM and the 17b-HSD3 enzyme activity measurements
were performed by adding androstenedione (Sigma–Aldrich) at a
final concentration of 200 nM, containing 50 nCi [1,2,6,7-3H]-
androstenedione (American Radiolabeled Chemicals, St. Louis, MO,
USA). After 30 min reactions were stopped and cells lysed by
adding 20 mL of methanol containing 2 mM unlabeled androstene-
dione and 2 mM testosterone (Sigma–Aldrich). An amount of 20 mL
of lysate was loaded onto TLC plates (Macherey-Nagel, Oensingen,
Switzerland) and steroids were separated using chloroform/ethyl
acetate at a 4:1 ratio. Corresponding substrate and product
concentrations were determined after scintillation counting
(PerkinElmer, MA, USA).

2.5. Immunostaining

HEK-293 cells were seeded on glass coverslips and transiently
transfected with plasmids for FLAG-tagged wild-type and mutant
17b-HSD3 constructs after 24 h. At 48 h post-transfection cells
were washed with PBS, fixed with 4% paraformaldehyde and cell
membranes were permeabilized for 5 min with 0.3% Triton X-100.
After blocking with 2% defatted milk in PBS for 30 min, cells were
incubated with the primary antibody at a dilution of 1:100 for 1 h
at room temperature. Rabbit anti-FLAG (Sigma–Aldrich) and
mouse anti-protein disulfide isomerase (PDI) antibodies (Abcam,
Camdridge, UK) were used. Anti-PDI antibodies were used as
control for a protein with an endoplasmic reticulum distribution.
After washing, cells were incubated for 30 min at room tempera-
ture with goat anti-rabbit Alexa Fluor1 488 and goat anti-mouse
Alexa Fluor1 555 IgG (Sigma–Aldrich) at a dilution of 1:300. After
washing, samples were mounted in Mowiol 4-88 (Roth, Karlsruhe,
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Germany) and analyzed using an Olympus Fluoview 1000 laser
scanning confocal microscope (Olympus, Tokyo, Japan).

2.6. Western blot

HEK-293 cells (300,000) were seeded in 60 mm dishes. After 24 h,
the calcium phosphate transfection method was used to transfect
5 mg of plasmid for FLAG-tagged wild-type and mutant enzymes.
Medium was changed after 4 h and cells were incubated for another
48 h. Cells were lysed using RIPA buffer (Sigma–Aldrich), containing
protease inhibitor cocktail (Roche, Basel, Switzerland), and centri-
fuged at 14,000 � g for 20 min at 4 �C. The supernatant was collected
and protein concentrations were quantified using the Pierce1

biocinchonic acid protein assay kit (Thermo Scientific, Rockford, IL,
USA). Samples were prepared in Laemmli solubilization buffer (LSB)
(5 mM Tris–HCl, 10% glycerol, 0.2% sodium dodecyl sulfate, 0.04%
bromophenol blue, pH 6.8), containing 5% b-mercaptoethanol
(Promega, Madison, WI, USA) and boiled for 5 min. An amount of
35 mg of total protein was separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% acrylam-
ide gel and transferred to Immun-Blot1 polyvinylidene difluoride
(PVDF) membranes (Bio-Rad Laboratories, Hercules, CA, USA). For
detection of the FLAG epitope, the membrane was blocked using 3%
defatted milk in PBS for 30 min and incubated with the mouse
monoclonal M2 antibody (Sigma–Aldrich) at a dilution of 1:750 in
blocking solution overnight at 4 �C. After washing with Tris-
buffered saline (20 mM Tris buffer, pH7.4, 140 mM NaCl) containing
0.1% Tween-20 (TBS-T), the membrane was subsequently incubated
with horseradish peroxidase-conjugated goat anti-mouse second-
ary antibody (Sigma–Aldrich) for 1 h at room temperature. For the
detection of the house keeping control cyclophilin A, blocking was
performed overnight at 4 �C using 3% defatted milk in PBS.
Subsequently, the membrane was incubated with the rabbit anti-
human cyclophilin A polyclonal antibody (Abcam, Camdridge, UK)
at a dilution 1:2000 in blocking solution for 1 h at room
Fig. 1. Mutational analyses of 46, XY DSD patients.
Automated DNA sequencing of the HSD17B3 gene for the three patients: the sequence
heterozygous substitution (cDNA position 397, G > A) in exon 5 of patients P1, P2 and P3. (
her family members. (B) Results of the mutational analysis of exon 9 and exon 5 for pati
represent males. Filled symbols indicate patients with mutated HSD17B3 alleles and half-
a double line. *** indicates a patient homozygous for the C206X mutation. (For interpreta
version of this article.)
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temperature. After washing with TBS-T, the membrane was
subsequently incubated with horseradish peroxidase-conjugated
goat anti-rabbit secondary antibody (Sigma–Aldrich) at a dilution
1:2000 in 3% defatted milk in PBS. After washing, the protein bands
were visualized on a Fujifilm ImageQuantTM LAS-4000 (GE
Healthcare, Glattbrugg, Switzerland) using the Immobilon Western
Chemiluminescent HRP substrate kit (Merck, Kenilworth, NJ, USA).
The bands obtained for the FLAG-tagged wild-type and mutant 17b-
HSD3 proteinwere subjected to densitometryanalysis using Image J
software. Signals were normalized to those of cyclophilin A house
keeping control to correct for loading differences.

2.7. Molecular modeling

Protein sequences were aligned by multiple alignment using
the Multiple Sequence Viewer implemented in Maestro [19]. A
homology model of wild-type as well as of the G133R mutant of
17b-HSD3 were obtained by using the aligned sequences (see
Supporting information) together with a crystal structure of 17b-
hydroxysteroid dehydrogenase 1 (17b-HSD1, PDB code: 3DHE,
2.3 Å) as input for Modeller (Version 9.11), provided by the MPI
Bioinformatics Toolkit [12–14].

SiteMap was used to predict the androstenedione binding site
of the obtained homology model and was subsequently used as
input for generating a Glide Docking Grid [20–24]. The Glide XP
docking protocol was used to dock androstenedione to the
generated rigid docking grid. The protein–ligand complex was
refined using Prime [25–27]. Figures were produced by PyMOL
[28].

2.8. Multiple protein alignment

Multiple protein alignment of relative 17b-HSDs was per-
formed using ExPASy (http://embnet.vital-it.ch/software/Clus-
talW.html). Protein amino acid sequences of all tested 17b-HSDs
s revealed a heterozygous substitution (cDNA position 618, C > A) in exon 9 and a
A) Results of the mutational analysis of exon 9 and exon 5 for patient P1 and some of
ents P2 and P3. Symbols indicate sex phenotype: circles represent females, squares
filled symbols indicate one mutated allele. Consanguineous marriage is indicated by
tion of the references to color in this figure legend, the reader is referred to the web

http://embnet.vital-it.ch/software/ClustalW.html
http://embnet.vital-it.ch/software/ClustalW.html


Fig. 2. Enzymatic activity of wild-type and mutant 17b-HSD3.
HEK-293 cells (15,000 cells per well of a 96-well plate) were transiently transfected
with expression plasmids for wild-type human 17b-HSD3 and mutants G133R,
G133A, G133Q and G133F. Enzymatic activity was measured by incubating cells for
30 min at 37 �C with androstenedione at a final concentration of 200 nM and
containing 50 nCi [1,2,6,7-3H]-androstenedione, followed by analysis of the
conversion of androstenedione to testosterone by scintillation counting. The
percentage of testosterone formed from the initially supplied androstenedione is
shown. Results represent mean � SD of four independent experiments.

Fig. 3. Western blot of wild-type and mutant 17b-HSD3.
HEK-293 cells were transiently transfected with plasmids for C-terminally FLAG
epitope-tagged wild-type and mutant 17b-HSD3. After an incubation time of 48 h,
transfected cells were harvested and equal amounts of total protein were separated
by SDS-PAGE and subjected to Western blotting using a mouse anti-FLAG antibody
for detection. Cyclophilin A (PPIA) was used as a control and analyzed using an anti-
PPIA antibody. One out of three similar experiments is shown.
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were collected from the gene database from the National Center of
Biotechnology Information (http://www.ncbi.nlm.nih.gov/gene/).

3. Results

3.1. 17b-HSD3 mutation G133R occurs in 46, XY DSD patients

The familial history of P1 recorded a paternal cousin with 17b-
HSD3 deficiency due to a homozygous mutation (cDNA position
618, C > A) in exon 9 resulting in the substitution of the cysteine at
position 206 to a premature stop codon (C206X) [29]. Therefore,
the genomic DNA from patient P1 was analyzed for mutations in
the HSD17B3 gene. For patients P2 and P3, due to the signs of
virilization observed at the age of puberty and the absence of a
complete hormonal profile including an hCG stimulation test, two
deficiencies were initially suspected: 5a-reductase 2 deficiency
with loss of function mutations in the SRD5A2 gene or 17b-
HSD3 deficiency. DNA analysis of the SRD5A2 gene showed no
abnormalities in the entire coding region and the adjacent intron/
exon boundaries. Therefore, the genomic DNA of the patients was
analyzed for mutations in HSD17B3. Patients P1, P2 and P3 were
heterozygous for the previously described nonsense mutation
C206X. In addition, they were also heterozygous for a novel
missense mutation (cDNA position 397, G > A) in exon 5, resulting
in the mutation G133R (Fig. 1A and B). The verification of the
transmission of the mutations among the family of P1 showed that
the mutation C206X was coded by a paternal allele and G133R by a
maternal allele (Fig. 1A).

3.2. Truncation C206X and substitution G133R cause abolished 17b-
HSD3 activity

The mutation C206X, derived from the paternal allele, causes a
truncation of the enzyme at position 206, only four amino acids
downstream of the essential catalytic site (Y198 and K202) [30].
The truncated enzyme lacks a significant part of the substrate
binding site. Enzyme activity measurements were performed in
intact HEK-293 cells transfected with expression plasmids for
either wild-type or mutant 17b-HSD3 enzymes. The formation of
testosterone was examined after incubation of cells for 30 min with
200 nM androstenedione. No activity could be detected for mutant
C206X, even after prolonged incubation time (not shown), and an
almost complete loss of activity was obtained for mutant G133R
(Fig. 2). Since the substitution of a glycine by an arginine residue
alters both size and charge of the side chain, three additional
mutant enzymes were constructed, i.e., G133A, G133Q and G133F.
Enzymatic analysis revealed that substitution of glycine by the
bulky phenylalanine and by the non-charged glutamine also
almost completely abolished 17b-HSD3 activity, whereas mutant
G133A retained approximately 70% of wild-type activity (Fig. 2).

Next, Western blotting of FLAG-tagged wild-type and mutant
17b-HSD3 proteins was conducted to investigate whether the loss
of enzymatic activity of the mutant enzymes was due to impaired
protein expression (Fig. 3). Wild-type and G133 mutant proteins
yielded one specific band at about 35 kDa, as expected. Densitom-
etry analyses of three independent experiments did not yield
significant differences in the expression levels of wild-type and
G133 mutant proteins (data not shown). A specific band for mutant
C206X could be detected at about 18 kDa; however, the expression
level seemed to be low and the band was visible only after
prolonged exposure of the blot, which also led to the detection of
several unspecific bands as shown by the empty vector control
sample. Further investigation by immunofluorescence staining and
confocal microscopy confirmed the typical endoplasmic reticulum
(ER) membrane localization of FLAG-tagged wild-type and
G133 mutant 17b-HSD3 enzymes (Fig. 4). No signs of dislocation
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or degradation of the G133 mutant enzymes were observed. In
contrast, for mutant C206X, despite its moderate signal, signs of
aggregated protein could be detected, suggesting impaired folding.

3.3. G133 is conserved among 17b-HSD enzymes

A sequence alignment of human 17b-HSD3 with 17b-HSD3 of
other species revealed that G133 is highly conserved (not shown).
More importantly, alignment with sequences from related 17b-HSD
enzymes corresponding to the region of the turn between b4–a5 on
17b-HSD3 showed that the glycine residue is highly conserved
(Fig. 5). All of the 13 analyzed 17b-HSD enzymes of the short-chain
dehydrogenase/reductase family (17b-HSD1-14, with the exception
of 17b-HSD5that belongstothe familyof aldo-keto reductases (AKR)
and was therefore not included in the alignment [31]) possess a
glycine at this position. The glycine is the last residue of a cluster of
seven conserved amino acids with the consensus sequence (I/V)(I/L/
V)(I/V)NN(A/V)G. These residues are forming the turn between the
4th b-sheet and the 5th a-helix of the conserved SDR structure. A
glycine corresponding to position 133 on 17b-HSD3 is also found in

http://www.ncbi.nlm.nih.gov/gene/


Fig. 4. Immunolocalization of wild-type and mutant 17b-HSD3.
HEK-293 cells were transiently transfected with plasmids for FLAG-tagged wild-type 17b-HSD3 and FLAG-tagged mutants G133R, G133A, G133Q, G133F and C206X,
respectively. After an additional incubation time of 48 h, transfected cells were stained with rabbit anti-FLAG (green) and mouse anti-protein disulfide isomerase (PDI, red).
Wild-type and mutant enzymes showed an endoplasmic reticular localization pattern similar to that of the control PDI. Anti-FLAG, anti-PDI and both stainings merged are
shown. Pearson’s correlation coefficients were calculated by the inbuilt Olympus Fluoview 1000 software for the images shown: 0.52 for wild-type 17b-HSD3, 0.75 for G133R,
0.78 for G133Q, 0.82 for G133A, 0.91 for G133F, 0.76 for C206X. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 5. Alignment of the region containing G133 on 17b-HSD3 with other 17b-
HSDs.
Sequences of 17b-HSD enzymes belonging to the SDR family and corresponding to the
region of the turn between the 4th b-sheet and the 5th a-helix of 17b-HSD3 were
aligned. The alignment shows that the glycine at position 133 in 17b-HSD3 (marked
and indicated with an arrow) is highly conserved among related 17b-HSD enzymes.
Several amino acids upstream of the glycine residue are also conserved. Three
hydrophobic amino acid residues are followed by two asparagine residues, an alanine
or a valine, and the glycine, suggesting that the conserved residues of the b4–a5 turn
have a role in the arrangement of the cofactor binding pocket.
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many other SDR enzymes; however, to our knowledge no other
substitutionof thisspecificglycineresiduehasbeenreportedsofarin
any of the other SDR members.

3.4. Molecular modeling

To begin to understand the loss-of-function of the G133R
substitution, homology modeling was performed. The available
crystal structures of the relatedenzyme 17b-HSD1 (see Supporting
information for PDB codes) suggested that the glycine residue
corresponding to position 133 in 17b-HSD3 lies in the cofactor
binding pocket and that its mutation to an arginine might interfere
with the binding of NADPH. Because no crystal structures of 17b-
HSD3 are yet available, homology modeling was employed. Two
models were built, the first represents the wild-type enzyme, and
the second contains the G133R mutation. Both models are based on
a crystal structure of 17b-HSD1 (PDB code: 3DHE, 2.3 Å) [12]. The
wild-type 17b-HSD3 homology model suggests that the first four
amino acids (127–130; ILVN) of the cluster of conserved amino acid
residues lie at the end of the 4th b-sheet and the last three amino
Fig. 6. Impaired cofactor binding of mutant G133.
(A) Homology model of wild-type 17b-HSD3 (green) with bound NADP+ (cyan) and the c
G133R (yellow) homology models; the side-chain of R133 protrudes into the cofactor
rotational isomers is shown. (For interpretation of the references to color in this figure
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acids (131–133; NVG) at the start of the 5th a-helix, close to the
NADPH binding pocket.

Superimposing the obtained models with a crystal structure of
17b-HSD1 complexed with cofactor NADP+ (PDB code: 1QYV, 1.8 Å
[32]) reveals the inherent inability of the G133R mutant to
accommodate NADP+. The homology model of wild-type 17b-
HSD3 supported this conclusion and showed that the wild-type
enzyme is able to bind the cofactor (Fig. 6). Furthermore, the highly
conserved N131 is involved in hydrogen bonding to NADP+ and
stabilization of the b1a2 turn that features the classical TGxxxGxG
cofactor binding motif of related SDRs [33,34]. Docking of
androstenedione to the homology model of wild-type 17b-
HSD3 and mutant G133R and subsequent refinement yielded a pose
of the steroid slightly tilted towards N240 in comparison to bound
ligands of 17b-HSD1 crystal structures. Three hydrogen bonds were
observed from androstenedione to S185, Y198 and N240 (wild-type
17b-HSD3: 1.8 Å, 1.8 Å and 1.8 Å, respectively; G133R mutant: 2.0 Å,
2.3 Å and 1.8 Å, respectively) as well as Van der Waals contacts to
L135, I187, W192, Y195, Y198, Y229 and C266 (Fig. 7).

4. Discussion

17b-HSD3 deficiency is a rare autosomal recessive disease,
which is prevalent in the adolescent and adult 46, XY DSD
population [3]. It is frequently unnoticed at birth and misdiag-
nosed during childhood and puberty, unless there is a complete
hormonal profile including an hCG stimulation test. For our
patients, the hypothesis of 17b-HSD3 deficiency was made on the
basis of the family history of P1 and the observed signs of
virilization at puberty age for P2 and P3. Initially, exon 9 of the
HSD17B3 gene was sequenced, revealing the previously described
substitution C > A at cDNA position 618, which leads to the
substitution of a cysteine by a premature stop codon (C206X) [29].
Then, further mutational analysis of the remaining exons and their
flanking intron regions revealed a novel heterozygous mutation
G > A at cDNA position 397 in exon 5, causing the mutation G133R.

To date, approximately 40 different mutations have been
identified in the HSD17B3 gene; most of them are homozygous
mutations (http://hgmd.cf.ac.uk; [11]). Massanyi et al. reported a
case of compound heterozygous mutations of the HSD17B3 gene
with a mutation corresponding to the cDNA position 277 + 4, A > T
causing a splicing defect and skipping of exons 4–9 on one allele,
and a 25.4 kb amplification of a region containing exon 3 to exon
10 on the second allele [35]. Another case of compound
heterozygous mutations, i.e., cDNA position 277 + 2, T > G and
277 + 4, A > T, both located within the intron 3 splice donor site of
atalytic triad (magenta). (B) Superimposed wild-type 17b-HSD3 (green) and mutant
 binding pocket and causes steric hindrance. One conformation of many possible

 legend, the reader is referred to the web version of this article.)
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Fig. 7. Binding of androstenedione in mutant G133.
(A) Androstenedione (cyan) docked to the homology model of wild-type 17b-HSD3 (green), and (B) docked to the homology model of mutant G133R (yellow). The catalytic
triad is highlighted in magenta; hydrogen bonds are shown by dashed lines (gray). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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the HSD17B3 gene, was described by Castro et al. [11]. In the
present work, we report the first case of compound heterozygous
point mutations consisting of the known nonsense mutation
C206X and the novel missense mutation G133R in HSD17B3 gene
responsible for 17b-HSD3 deficiency.

The prevalence of 17b-HSD3 deficiency is especially high in the
Arab population, ranging from 1:100 to 1:300, due to a high
frequency of consanguineous marriages [11]. So far, four Tunisian
patients with 17b-HSD3 deficiency have been described [29].
However, the rate of this etiology is expected to be high in Tunisia
because of many facts. First, we currently have many other cases
with suspected 17b-HSD3 deficiency under investigation. Second,
a high consanguinity rate is observed in Tunisia, which raises the
frequency of homozygous mutations and, therefore, affected
patients. Finally, the cultural habits and taboos often prevent
families from exchanging information about sexual disorders
among their children and reporting them to their physicians [29].
Thus, the number of affected patients may be underestimated
because some of them are not brought to medical attention.

Expression analyses of G133R and the additional substitutions
indicated that the mutant enzymes were expressed at levels
comparable to that of wild-type 17b-HSD3. There were no signs
of dislocation or degradation. Enzymatic analyses revealed almost
completely abolished activity of mutants G133R, G133Q and G133F,
whereas mutant G133A retained comparable activity to wild-type
17b-HSD3. Expression levels of mutant C206X were moderate, with
signs of aggregation, and this mutant enzyme was devoid of activity.

These results suggest that the 17b-HSD3 deficiency causing 46,
XYDSDinthethreeTunisianpatients iscausedbytheinactivityof the
truncation mutation C206X from one allele and the loss of activity
due to steric hindrance of NADPH binding by the bulky arginine
residue of the G133R mutation from the other allele. Regarding the
G133R mutant, the positive charge of the arginine side-chain seems
not to be responsible for the enzyme inactivation, since amino acids
with uncharged, similarly bulky side-chains such as glutamine and
phenylalanine equally abolished enzyme activity, predicted by
molecular modeling to be due to interference with NADPH binding.
However, wild-type 17b-HSD3 and mutant G133A, containing the
two smallest amino acids glycine and alanine, showed similar ability
to form testosterone, indicating proper NADPH binding.

Mutations within the highly conserved residues from V127 to
G133 are likely to affect 17b-HSD3 activity. The importance of
these residues is emphasized by the finding of Moghrabi et al. who
showed that the mutation N130S led to an abolished activity of
17b-HSD3, resulting in 46, XY DSD [36]. Due to the high level of
conservation of G133 and the motif containing residues V127 to
G133, mutations in other SDR enzymes can be expected to affect
their enzyme activity by interfering with cofactor binding.
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Docking studies using the homology models showed similar
poses for both wild-type 17b-HSD3 and mutant G133R, suggesting
a binding mode where the 3-position of androstenedione forms a
hydrogen bond with N240. This interesting finding clearly needs
further experimental investigation. Furthermore, overlapping of
the 17b-HSD3 homology models with crystal structures of 17b-
HSD1 revealed that the G133R mutation had no or only minor
effect on the arrangement of the amino acids involved in the
catalytic triad (S185, Y198, and K202). Therefore, it seems likely
that the abolished activity of the G133R mutant enzyme is caused
by a loss of NADPH binding due to steric hindrance.

5. Conclusions

Genetic analyses revealed the novel compound heterozygous
mutations G133R and C206X, causing 46, XY DSD in three Tunisian
patients. The mutation C206X was shown to be completely
inactive, and G133R was completely devoid of enzymatic activity
despite normal expression levels and intracellular localization.
Biochemical analyses and molecular modeling suggest that the loss
of activity is due to steric hindrance of NADPH binding by the bulky
arginine side-chain of mutant G133R. Furthermore, amino acid
sequence alignment revealed that G133 is located in a motif highly
conserved among 17b-HSDs and other SDR members, indicating
the importance of this residue for the arrangement of the cofactor
binding pocket. The screening for the two mutations identified in
the present study could help in the rapid diagnosis of 17b-
HSD3 deficiency in the Tunisian population. The genetic confir-
mation of mutations in the HSD17B3 gene provides crucial
information for genetic counseling and prenatal diagnosis.
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A B S T R A C T

17b-Hydroxysteroid dehydrogenase type 3 (17b-HSD3) is expressed almost exclusively in the testis and
converts D4-androstene-3,17-dione to testosterone. Mutations in the HSD17B3 gene causing 17b-
HSD3 deficiency are responsible for a rare recessive form of 46, XY Disorders of Sex Development (46, XY
DSD). We report novel cases of Tunisian patients with 17b-HSD3 deficiency due to previously reported
mutations, i.e. p.C206X and p.G133R, as well as a case with the novel compound heterozygous mutations
p.C206X and p.Q176P. Moreover, the previously reported polymorphism p.G289S was identified in a
heterozygous state in combination with a novel non-coding variant c.54G > T, also in a heterozygous state,
in a male patient presenting with micropenis and low testosterone levels. The identification of four
different mutations in a cohort of eight patients confirms the generally observed genetic heterogeneity of
17b-HSD3 deficiency. Nevertheless, analysis of DNA from 272 randomly selected healthy controls from
the same geographic area (region of Sfax) revealed a high carrier frequency for the p.C206X mutation of
approximately 1 in 40. Genotype reconstruction of the affected pedigree members revealed that all p.
C206X mutation carriers harbored the same haplotype, indicating inheritance of the mutation from a
common ancestor. Thus, the identification of a founder effect and the elevated carrier frequency of the p.
C206X mutation emphasize the importance to consider this mutation in the diagnosis and genetic
counseling of affected 17b-HSD3 deficiency pedigrees in Tunisia.

ã 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

46, XY Disorders of Sex Development (46, XY DSD) is defined by
the presence of female or incompletely virilized external genitalia
in a 46, XY individual. 46, XY DSD can be classified in three main
groups: (1) gonad development disorders (ovotesticular DSD and
gonadal dysgenesis), (2) testosterone synthesis disorders (e.g.
CYP11A1 deficiency, 3b-hydroxysteroid dehydrogenase type 2
(3b-HSD2) deficiency, 17b-hydroxysteroid dehydrogenase type 3
(17b-HSD3) deficiency, defects in luteinizing hormone receptor
(LHR loss-of-function), and (3) disorders of testosterone action
(Androgen Insensitivity Syndromes AIS) or metabolism (5a-
reductase type 2 deficiency) [1].

17b-HSD3 deficiency (OMIM: 264300) is a rare autosomal
recessive cause of 46, XY DSD described in 1971 and resulting from
loss-of-function mutations in 17b-HSD3 [2–4]. The enzymatic
defect results in decreased conversion of D4-androstene-3,17-
dione (androstenedione) to testosterone in the testes (testoster-
one/androstenedione ratio <0.8), and, as a consequence, dimin-
ished testosterone secretion and abnormal male sexual
development [2].

The characteristic phenotype of 17b-HSD3 deficiency at birth is
an XY individual with undervirilization of the external genitalia,
which often appear female with or without clitoromegaly and/or
labial fusion and a blind-ending vagina [2]. Less often, ambiguous
external genitalia, male genitalia with micropenis or hypospadias
are reported [2]. Affected patients have testes and often show
normal Wolffian duct derivatives [2].

17b-HSD3 is composed of 310 amino acids, uses NADPH as
cofactor and is expressed predominantly in the testes. It is encoded
by the HSD17B3 gene, mapped to 9q22 and composed of 11 exons.
To date, about 40 mutations have been reported in the HSD17B3
gene; comprising homozygous or compound heterozygous muta-
tions, including intronic splice site mutations, exonic deletions,
duplications of exons, as well as missense and nonsense mutations
[5,6].

In an earlier report, we described a novel homozygous nonsense
mutation, p.C206X, in a Tunisian patient with sexual ambiguity [7].
Later, we reported on another three Tunisian cases with
17b-HSD3 deficiency due to compound heterozygous mutations
in the HSD17B3 gene [8]. Here, we present additional cases of
Tunisian patients with 17b-HSD3 deficiency. We performed
mutational analyses and investigated the frequency of one of
the newly identified mutations as well as the presence of a possible
founder effect.

2. Subjects and methods

2.1. Subjects

Seven patients admitted to the Hedi Chaker hospital in Sfax,
Tunisia, and belonging to five unrelated Tunisian families, were
investigated. Patients P1 and P3 consulted for sexual ambiguity,
patient P4 presented with inguinal hernia, and patients P2, P5,
P6 and P7 were referred to the hospital due to primary amenorrhea
and hirsutism. Since birth, all patients have been raised as girls;
pelvic exams for all patients showed bilateral inguinal masses
consistent with testes. The magnetic resonance imaging of the
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pelvis and the abdomen showed no visualization of the vagina or
uterus. The karyotype was determined by standard G banding
technique and showed a 46, XY formula for all patients. The
corresponding data from the clinical assessment are presented in
Table 1. The parents of patients P1 and P4, the mother of P3 and the
brother of P1 were also recruited.

In addition, patient P8, a boy, consulted at age 11 for micropenis
in the Pediatrics Department of the Hedi Chaker Hopital in Sfax,
Tunisia. As his hormonal profile indicated abnormal testosterone
biosynthesis (Table 1), this patient was further investigated for
17b-HSD3 deficiency. Informed consent was obtained from all
patients and their relatives in accordance with the ethics
committee of the Hedi Chaker Hospital (Sfax, Tunisia).

2.2. Controls

Peripheral blood samples of 272 unrelated controls were
collected. They originated from the same geographic region as
the patients, their parents and grandparents (region of Sfax).
Importantly, these control individuals did not have any personal or
family history of 46, XY DSD.

2.3. Methods

2.3.1. Analysis of HSD17B3 mutations
Genomic DNA was extracted from peripheral blood leukocytes

following a phenol–chloroform-based method described earlier
[9]. The coding regions and intron–exon boundaries of the
HSD17B3 gene were amplified by PCR (oligonucleotide primer
sequences available upon request). The PCR was performed in a
thermal cycler (GenAmp PCR System 9700; Applied Biosystem) in a
final volume of 50 ml containing 50 ng genomic DNA, 0.2 mM of
each primer, 1 � PCR buffer, 1.2 mM MgCl2, 0.5 mM dNTP, and 1U
Taq DNA polymerase (Promega). Direct sequencing of PCR products
was performed using the ABI Prism BigDye Terminator Cycle
Sequencing Ready Reaction Kit (ABI PRISM/Biosystems) and the
products were resolved on an ABI PRISM instrument. The mutation
c.618C > A responsible for the premature stop p.C206X was found
to abolish an HhaI endonuclease restriction site (using http://nc2.
neb.com/NEBcutter2/program) and this characteristic was used to
verify the presence or absence of this mutation via Polymerase
Chain Reaction Restriction Fragment Length Polymorphism (PCR-
RFLP) in the patients and in controls. The amplified exon 9 DNA
product was digested by HhaI for 4 h at 37 �C, followed by
separation of the fragments on a 3% agarose gel.

2.3.2. Computational analyses
To analyze the effects of the c.54G > T variant on the splicing

event, we used HSF software (http://www.umd.be/HSF3/HSF.html)
and the ESE finder 3.0 software (http://rulai.cshl.edu/cgi-bin/tools/
ESE3/esefinder.cgi?process=home). The effect of the c.54G > T
mutation on mRNA secondary structure was also performed by
using the MFOLD program (available at http://unafold.rna.albany.
edu/?q=mfold).

2.3.3. SNP typing and microsatellite analysis
To test for a possible founder effect, we analyzed one Single

Nucleotide Polymorphism (SNP) localized in intron 5 (rs408876,

http://nc2.neb.com/NEBcutter2/program
http://nc2.neb.com/NEBcutter2/program
http://www.umd.be/HSF3/HSF.html
http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi%3Fprocess=home
http://rulai.cshl.edu/cgi-bin/tools/ESE3/esefinder.cgi%3Fprocess=home
http://unafold.rna.albany.edu/%3Fq=mfold
http://unafold.rna.albany.edu/%3Fq=mfold
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c.453 + 37T > C) of the HSD17B3 gene and the three polymorphic
microsatellite markers D9S287, D9S1690 and D9S1786 consisting
of tandemly repeated dinucleotide (CA) sequences. The SNP
rs408876 was chosen based on available sequencing data,
suggesting an association with the mutation c.618C > A. Two
extragenic microsatellite markers, D9S287 and D9S1690,
were selected from the panel ABI PRISM1Linkage Mapping Set
version 2.5, Applied Biosystems. D9S287 and D9S1690 are
located at 540,434 bp proximal and 5,093,506 bp distal from
the c.618C > A mutation, respectively. The polymorphic intragenic
marker D9S1786 in intron 2 was also chosen (the probes
were determined according to information from the web site
http://www.ncbi.nlm.nih.gov/probe/?term=D9S1786/). It is locat-
ed at 33,364 bp from the mutation in exon 9 (Fig. 1). PCR for the
microsatellite markers was performed using a fluorescence-
labeled forward primer and an unlabeled reverse primer, in a
25 ml reaction mixture containing 20 ng of genomic DNA, 1
Unit of Taq polymerase (Gotaq, Promega), 2.5 mM of MgCl2,
5 mM of each primer, and 10 mM of dNTP. After 7 min at
95 �C, 40 cycles of amplification (95 �C for 30 s; 55 �C for 30 s;
72 �C for 40 s) were performed, followed by 5 min in at 72 �C.
Then, the fluorescence-labeled alleles were analyzed on an ABI
PRISM 3100-Avant automated Genetic Analyzer (Applied Bio-
systems). The genotypes were determined using the GenScan
software (Applied Biosystems). Alleles were named using an
arbitrary scale for the observed fragment length of the micro-
satellites. A haplotype co-segregating with the disease was
derived from the segregation of the SNP and markers within the
whole pedigree; in fact, the profiles of markers as well as the
SNP haplotype were compared among the affected members of
the six families.

3. Results

3.1. Clinical investigation of the patients

17b-HSD3 deficiency was suspected in eight Tunisian patients
of different age and that were admitted to the hospital for different
reasons (Table 1). In case of P1, the hypothesis of 17b-
HSD3 deficiency was made based on the hormonal profile
revealing a testosterone/androstenedione ratio <0.8. For patient
P4, 17b-HSD3 deficiency was suspected due to the family history,
which reported P1 as a paternal cousin. Patients P2, P5, P6 and
P7 were investigated because they consulted for primary
amenorrhea and hirsutism. The patient P8 presented with a male
phenotype but a micropenis and a low testosterone level following
hCG test, indicating abnormal steroidogenesis. The remaining
patient P3 was diagnosed to be 46, XY DSD during the prenatal
stage. Due to the advanced maternal age (42 years), the fetal
karyotype was determined and a 46, XY formula in discordance
with the female fetal phenotype was observed. Then, in the
postnatal stage, the patient’s hormonal profile indicated 17b-
HSD3 deficiency.

3.2. Mutational analysis of the HSD17B3 gene and identification of
three different mutations, a polymorphism and a novel silent variant

The genomic DNA of all patients was analyzed for the p.C206X
mutation by PCR-RFLP using the HhaI restriction enzyme (data not
shown), followed by sequencing of all exons and intron-exon
boundaries of the HSD17B3 gene. The mutational analysis revealed
the presence of the previously described mutation c.618C > A in
exon 9 in all patients, except P8, i.e. in a homozygous state in
patients P1, P2 and P3, and in a heterozygous state in the patients
P4-P7 (for representative sequences see Fig. 2A). The results of the
sequencing were in accordance with those of the PCR-RFLP assay

http://www.ncbi.nlm.nih.gov/probe/%3Fterm=D9S1786/


Fig. 1. Schematic representation of the HSD17B3 gene. The scheme shows the intragenic SNP rs408867 in intron 5, the two extragenic microsatellite markers D9S1690 and
D9S287 and the intragenic microsatellite marker D9S1786 used for haplotype analysis and their positions relative to the mutation c.618C > A.
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(data not shown). The mutation c.618C > A is responsible for the
generation of a premature stop codon in position 206 (p.C206X).
The three patients P4, P5 and P6, presenting the mutation p.C206X
in a heterozygous state, were investigated for additional mutations
in the remaining 10 exons of the HSD17B3 gene and their flanking
regions. The analysis revealed a heterozygous nucleotide change in
exon 5, i.e. the substitution of guanine to adenine at position 397 of
the coding sequence (c.397G > A) (for representative sequences see
Fig. 2B). The mutation c.397G > A results in the substitution of
glycine by arginine in position 133 (p.G133R). The presence of the
compound heterozygous mutations p.C206X and p.G133R explains
the 17b-HSD3 deficiency in patients P4, P5 and P6, as reported
recently [8].

Upon sequencing the remaining exons of the HSD17B3 gene of
patient P7, the mutation c.527A > C was identified in a heterozy-
gous state (Fig. 2C). This substitution results in the mutation p.
Q176P, which was previously described by Andersson et al. to cause
loss-of-function [10]. Thus, the compound heterozygous mutations
Fig. 2. Mutational analysis of the HSD17B3 gene in patients P1-P7. Identification of thre
Genomic DNA sequence of the HSD17B3 gene from healthy control individuals (exon 9:A
c.618C > A mutation in a heterozygous state (A-b) and in a homozygous state (A-c), respec
(B-b); and finally an affected individual with the pathogenic variant c.527A > C in a het
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p.C206X and p.Q176P, reported here for the first time, explain the
17b-HSD3 deficiency in P7.

The sequencing of the HSD17B3 gene of patient P8 revealed the
previously described substitution c.856G > A resulting in the
missense p.G289S in a heterozygous state (rs2066479) (Fig. 3A)
[11]. In addition, sequencing of exon 1 revealed a novel
substitution, i.e. c.54G > T in a heterozygous state (Fig. 3A). This
substitution does not alter the leucine residue at position 18. To
test whether the SNP c.54G > T might affect the splicing efficiency
of the HSD17B3 gene, we performed a more detailed analysis. The
bioinformatics analysis of its neighboring region in exon 1 using
ESEfinder predicted a strong recognition site for the splicing
enhancer protein SRp40 for the G allele, while the T allele
completely lacks any sites at this position. The abolition of the
SRp40 binding site (the affinity score of the wild-type sequence is
over 2.86, compared to the SRp40 binding threshold of 2.67)
located further inside the exon might alter the normal assembly of
the splicing factors on pre-mRNA. These results were confirmed by
e different mutations in the HSD17B3 gene in exon 9 (A), exon 5 (B) and exon 8 (C).
-a; exon 5:B-a and exon 8:C-a). Chromatograms showing an individual bearing the
tively; an affected individual bearing the c.397G > A mutation in a heterozygous state
erozygous state in the HSD17B3 gene (C-b).



Fig. 3. Mutational and computational analyses for the variant found in patient P8. (A) Identification of the novel synonymous variant c.54G > T in exon 1 and the c.856G > A
polymorphism in exon 11 in heterozygous states. (B) Computational analyses using the Mfold program showed a modified mRNA secondary structure due to the c.54G > T
variant. (a) The normal sequence contained an external closing pair between G102 and C19. (b) The c54U variant (U102) forms an external closing pair with G114.
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the HSD software, which predicted a disruption of the SRp40 site in
the C allele. The results of the MFOLD program showed several
changes in the RNA secondary structure (Fig. 3B). In fact, the
commonly conserved structure is formed by the external closing
G43 and C91 with a hairpin loop between A56 and U77. The
80
remaining secondary structure was altered by the c.54G > T
substitution. For example, in the wild-type prediction, G102 and
C19 form an external closing; however, the substitution to
U102 results in the formation of an external closing with G114
(Fig. 3B).
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3.3. Haplotype reconstruction and c.618C > frequency calculation

Because the c.618C > A mutation was detected in all patients
belonging to the five unrelated families from the same geographic
area in Tunisia, this could be due to a founder effect. A founder
effect is expected to result in sharing of allelic sequence
polymorphisms in the vicinity of the mutation or close to the
gene (linkage disequilibrium due to a common ancestor). To test
the presence of a founder effect, the three microsatellite markers
D9S1786, D9S287 and D9S1690 together with the SNP
rs408876 were analyzed (Fig. 1). The haplotype analysis was
performed in the seven patients and in all available relatives. Both
markers D9S287 and D9S1786 were analyzed, showing that alleles
of 302 bp and 204 bp repeat length, respectively, were shared in a
homozygous state by the three patients harboring the homozygote
c.618C > A mutation and in a heterozygous state for patients P4-P7,
as well as P1’s parents, P1’s brother, P2’s father, and P3’s mother
(the genotypes obtained are shown in Fig. 4). To further strengthen
this association, we analyzed SNP rs408876, revealing a common
haplotype in all patients. As the patients’ genotypes showed a
segregation of a haplotype composed of the 301 bp repeat length
allele, the 203 bp repeat length allele and the SNP rs408876
(c.453 + 37C) with the c.618C > A mutation (Fig. 4), we concluded
that the c.618C > A mutation is not the result of separate mutations
occurring independently in different individuals, but is due to a
mutation occurring in a common ancestor of the autosomal
recessive 17b-HSD3 deficiency patients in Tunisia that were
identified so far.

To identify the prevalence of mutation carriers in a random
sample of people from the same geographic community, genomic
DNA from 272 healthy individuals were screened for the c.618C > A
mutation by PCR-RFLP. Fourteen individuals (5%) carrying the
c.618C > A (p.C206X) mutation in a heterozygous state were
Fig. 4. Pedigrees of the six Tunisian families showing the inheritance of the c.618C > A mu
boxes in the seven affected individuals and the available relatives. All patients shared the
for D9S1786 transmitted with the c.618C > A mutation. (m) indicates mutated allele and 

figure legend, the reader is referred to the web version of this article.)
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identified. Based on these observations, the p.C206X carrier
frequency can be estimated approximately as 1/40 in the region
of Sfax.

4. Discussion

Mutations in the HSD17B3 gene that lead to abolished
conversion of androstenedione to testosterone in the testes result
in 46, XY DSD. This etiology of 46, XY DSD is frequently unnoticed
at birth and misdiagnosed during the pediatric consultation [2]. In
fact, 46, XY DSD patients with 17b-HSD3 deficiency may be
overlooked since external genitalia observed at birth often appear
female [2]. In prepubertal patients, 17b-HSD3 deficiency is
clinically indistinguishable from other 46, XY DSD etiologies
including AIS, 5a-reductase type 2 deficiency, and testosterone
biosynthesis disorders such as LHR defects [2]. The common
clinical features of these etiologies in childhood are varying
degrees of virilisation, inguinal hernia consisting of testes, and, less
often, ambiguous external genitalia and male genitalia with a
micropenis or hypospadias [2]. During puberty, 17b-
HSD3 deficiency is indistinguishable from 5a-reductase type
2 deficiency as virilisation is commonly observed [12]. The
excessive virilisation at puberty is thought to occur by an
extratesticular conversion of androstenedione to testosterone or
a residual function of the mutated 17b-HSD3 enzyme [2,12].

17b-HSD3 deficiency can be diagnosed by the presence of
characteristically decreased testosterone but increased andro-
stenedione levels [2,15]. At different age, the basal concentrations
of testosterone and androstenedione can vary considerably;
however, in adults at baseline a testosterone/androstenedione
ratio <0.8 was found to be characteristic for 17b-HSD3 deficiency
[2]. In infants younger than six month the testosterone/andro-
stenedione ratio <0.8 is a reliable diagnostic marker (sensitivity
tation. Haplotype analysis showed a common haplotype indicated by the framed red
 same founder allele: 301 bp repeat length for marker D9S287, 203 bp repeat length
(�) indicates wild-type allele. (For interpretation of the references to colour in this
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100%), whereas in prepubertal children a hCG stimulation test was
found to increase the sensitivity from about 60% to 90% when a
cutoff of <0.8 is applied. Because a testosterone/androstenedione
ratio <0.8 might also be observed in conditions with abnormal
testes, confirmation of 17b-HSD3 deficiency by molecular genetics
analysis is necessary.

17b-HSD3 deficiency is considered as a rare autosomal
recessive cause of 46, XY DSD [2,3,7]. In fact, a study on DSD
over a 25-year period in the United States did not identify a single
patient with 17b-HSD3 deficiency [13]. Moreover, in the United
Kingdom DSD database, patients diagnosed with 17b-
HSD3 deficiency represent only 4% of the total 46, XY DSD subjects
(13/322) [14]. So far, only about 40 different mutations have been
identified in the HSD17B3 gene [5,6]. However, the incidence of
17b-HSD3 deficiency is likely to be underestimated because of
misdiagnosis as AIS or 5a-reductase type 2 deficiency. Indeed, the
rate of 17b-HSD3 deficiency misdiagnosis was estimated earlier to
be 67% [15]. The recent identification of a first Tunisian case with
17b-HSD3 deficiency led to an improved diagnosis and confirma-
tion of 17b-HSD3 deficiency in patients who were initially
misdiagnosed with LHR defect (P4) and 5a-reductase type
2 deficiency (P2, P5, P6 and P7) [7,8].

The mutational analysis of HSD17B3 of the eight Tunisian
patients revealed four different mutations, i.e. the homozygous
mutation p.C206X, the two compound heterozygous mutations p.
C206X/p.G133R and p.C206X/p.Q176P, as well as the compound
heterozygous variants p.G289S and c.54G > T. Patients P1, P2 and
P3 were born from consanguineous parents and are homozygous
for the mutation p.C206X. Patients P4-P7, deriving from non-
consanguineous families, showed the two remaining compound
heterozygous mutations [8]. The truncated p.C206X mutant
enzyme lacks half of the substrate binding region and was poorly
expressed and inactive [8]. Mutant p.G133R was shown to be
almost completely devoid of enzymatic activity despite normal
expression levels and intracellular localization [8]. Biochemical
analyses and molecular modeling suggested that the loss of activity
is due to steric hindrance of NADPH binding by the bulky arginine
side-chain of mutant G133R. The p.Q176P variant has been shown
by Andersson et al. to exhibit very low activity in transfected intact
cells and no activity in cell lysates [12]. The authors hypothesized
that the substitution of glutamine by proline may result in an
unstable and/or incorrectly folded protein, as proline residues can
cause bends in a-helices of protein structures due to the inability
to form hydrogen bonds with from the main chain nitrogen [11].
Thus, the three mutations p.C206X, p.G133R and p.Q176P abolish
the enzymatic activity, explaining the 17b-HSD3 deficiency in the
seven Tunisian patients.

Recurrence of several mutations in multiple patients offered the
opportunity for genotype/phenotype comparison. The patients
homozygous for the mutation p.C206X, i.e. P1, P2 and P3, consulted
for primary amenorrhea or sexual ambiguity. Thus, distinct
phenotypic variation occurs for patients homozygous for this
mutation. In addition, phenotypic variation in patients of
compound heterozygous mutations was observed, as the two
sisters P5 and P6 were thought to be normal girls during childhood,
while the unrelated patient P4 carrying the same mutations
consulted for inguinal hernia at age of 7. Our observation of a lack
of phenotype to genotype correlation in patients with 17b-
HSD3 deficiency is in accordance with other reports [2,3,13,14]. The
phenotypic differences may be a result of the ability of some
subjects to form active androgens in peripheral tissues or even in
the testes by another 17b-HSD isoenzyme, i.e. 17b-HSD5 (also
known as AKR1C3) [2,5,16,17].

We were the first to confirm the diagnosis of 17b-HSD3
deficiency in Tunisia [7,8]. The homozygous mutation p.C206X
and the compound heterozygous mutations p.C206X/p.G133R and
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p.C206X/p.Q176P, as well as the compound heterozygous variants
G289S and c.54G > T, have, so far, only been found in the Tunisian
population. The Tunisian population belongs to the Arabian
population. According to the literature, p.R80Q is the most common
mutationintheMediterraneanandintheArabianpopulation [14,15].
It was first identified in a Palestinian family from the Gaza Strip [15],
then found in different regions of Israel, Lebanon, and Syria [17,18]. A
secondmutationp.Y287XwasdescribedintheSudaneseandTurkish
population[19,20]andthe novelmutationp.W192X inOmanand the
Gulf region [3]. These mutations have not been detected in the
Tunisian population so far, even in a heterozygous state, but three
different novel mutations were found. The possibility that the
mutations arising in the Middle East were introduced into the
Tunisian population, following Phoenician, Banu Hilal or the
Ottoman invasions, cannot not be ruled out and should thus be
considered in the genetic assessment.

Patient P8 exhibits a less severe phenotype than the other
patients (P1-P7), as he presented a male phenotype with a
micropenis. The hormonal profile revealed a testosterone level
elevation after a hCG test; however, the level was lower than 3 ng/
ml and the clinical evaluation reported no adrenal insufficiency.
These findings pointed to normal Leydig cell stimulation in
addition to normal adrenal steroidogenesis. Sequencing of the
HSD17B3 gene revealed two substitutions in a heterozygous state.
The novel identified substitution in exon 1 is a synonymous variant
c.54G > T (Leu18=). According to the literature, silent substitutions
could influence the efficiency and precision of splicing by altering
the regulatory elements of auxiliary splicing factors [21–23], in
fact, several studies have demonstrated that single point mutations
in exonic splicing enhancers (ESEs) can contribute to disease
development [24–26]. For example, a C/T mutation in an ESE
sequence of the human mitochondrial acetoacetyl-CoA thiolase
gene results in exon 10 skipping. The protein is no longer
functional, causing the mitochondrial acetoacetyl-CoA thiolase
(T2) deficiency disorder [25]. Two silent substitutions in the
pyruvate dehydrogenase complex (PDHA1 gene) found in most
patients with PDHc deficiency cause exon 5 skipping by disruption
of a putative exonic splicing enhancer [24]. Therefore, we
evaluated the effect of the c.54G > T variation on the splicing
event using HSF software and ESE software and provide evidence
for a disruption of a SRp40 site. The SRp40 factor is a member of the
arginine and serine rich protein family (SR proteins), which binds
to exonic splicing enhancer elements and promotes splicing [27]. A
number of other polypeptides including SF2/ASF, Sc35, SRp55 and
members of the hnRNP family together with small nuclear RNAs
participate in splicing by ensuring the correct recognition of exons
and excision of introns from transcribed RNA [21,28]. The lack of a
SRp40 factor to the region located deeper in the exon might
displace the other factors and thus exert a negative effect on the
spliceosome assembly, which might lead to a splicing abnormality
of exon 1 and lower levels of intact mRNA. Moreover, the c.54G > T
mutation may cause important changes of the pre mRNA
secondary structure of the exon 1. This fact can inhibit the
recruitment of spliceosome components mediating splicing in this
crucial position [29]. A growing body of evidence showed that the
folding of mRNA influences a diverse range of transcription events
such as pre mRNA splicing, processing, translational control and
regulation [30]. However, the functional significance of this
synonymous variant, deduced from bioinformatics tools, needs
to be defined through functional studies.

The second identified substitution was c.856G > A encoding p.
G289S. It was identified earlier by Moghrabi et al. [11] and was
considered as polymorphism since it is frequent in all populations
reported in the screening of 1000 genomes [31]. Enzyme activity
analysis showed no difference between mutant G289S and wild-
type enzyme [11]. However, it was found in a female patient with



B. Ben Rhouma et al. / Journal of Steroid Biochemistry & Molecular Biology 165 (2017) 86–94 93
compound heterozygous mutations, also carrying the p.N130S
mutation [16] and in a homozygous state in a female patient with
phallus enlargement and hirsutism [31]. The authors supposed
that these female patients might carry other mutations in the
regulatory regions of the HSD17B3 gene [16,31], which could cause
their phenotypes. In addition, the p.G289S amino acid substitution
has been associated with an increased risk of developing prostate
cancer, and with hypospadias in a case where mRNA expression
levels were significantly lower for the mutant p.G289S compared
with the wild-type enzyme [32]. These findings indicated that the
variant p.G289S may not be as neutral as it had been initially
thought [16,31], and it should be reconsidered as a possible genetic
contributor for 17b-HSD3 deficiency and 46, XY DSD. This variant
together with the nonsynonymous variant c.54G > T might be
responsible for the mild testosterone synthesis deficiency of
patient P8. Nevertheless, additional functional analyses are
required to support our hypothesis.

In the present study, we also calculated the frequencyof mutation
c.618C > A in the geographic area of all patients investigated. To
estimate the prevalence of mutation carriers in a random sample of
individuals from the same geographic community, genomic DNA
from 272 healthy individuals were screened for the c.618C > A
mutation by PCR-RFLP. Fourteen individuals carrying the c.618C > A
(p.C206X) mutation in a heterozygous state were identified. Thus,
the carrier frequency for a heterozygous mutation is about 1 in 40 in
the region of Sfax. The theoretical probability of a marriage between
two carriers is 1 in 1600, and that for the birth of an affected child
with a homozygous mutation based on random mating is predicted
as 1 in 6400. The actual number of 17b-HSD3 deficiencycases in Sfax
was not calculated. A higher prevalence than the predicted number
can be expected due to the practice of consanguinity in the town, as
well as the high variability of identified mutations in the HSD17B3
gene. In fact, although Sfax is an industrialized town and not
considered as rural region where the consanguinity is spread,
consanguineous marriages and endogamy in this urban region have
been traditionally performed as a way of maintaining land
possession and families’ names.

In the present study, we provide also evidence for a founder
effect associated with the mutation p.C206X in six Tunisian
families. This founder effect was supported by genotyping using
the intragenic microsatellite marker D9S287, located in intron 2 of
the HSD17B3 gene, and the extragenic microsatellite marker
D9S1786 together with the SNP rs408876. The seven patients
harboring the p.C206X mutation carried the same haplotype.
Importantly, for the more distant marker D9S1690, recombination
(allele 232, 236, 226, 228 and 234) had occurred, which confirmed
the pedigree analysis showing no close genetic relationship
between families.

The subjects carrying the p.G133R mutation in a heterozygous
state belonged to two unrelated families. They share the same
haplotype for the p.G133R mutation, which would support a
founder effect. This finding needs to be confirmed by a greater
number of both controls and subjects harboring the p.G133R
mutation. For the remaining p.Q176P mutation, which was first
identified by Andersson et al. in The Netherlands [10], sequencing
revealed its presence in only one Tunisian case of 17b-
HSD3 deficiency in a heterozygous state. Unfortunately, no further
genotyping data was available for this mutation to compare
different intra and/or interethnic haplotypes, and to conclude
concerning its geographic origin or whether it occurred de novo.

Haplotype analysis of genetic markers flanking the HSD17B3 gene
has been performed also to establish the ancient or de novo
occurrence of mutations described in European, North American,
Latin American, Australian and Arabs’ populations [13]. Dutch,
German, white Australian and white American patients, carrying
the 325 + 4,A > T mutation, share the same genetic markers and
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seemed to have a common European ancestor. A founder effect was
also demonstrated for the R80Q mutation that is common in Dutch,
Arabian (in Gaza), white Brazilian, and white Portuguese patients
[13]. As this mutation is associated with a specific haplotype, a
common ancestor introduced during the Phoenician migration has
been hypothesized. An additional founder effect has been suggested
for the 655–1,G > T mutation found in Greek, Turk and Syrian
patients that may have spread to the Mediterranean area during the
Ottoman empire [12]. On the contrary, patients harboring the 326–
1,G > C and the p.P282L mutations have a different marker genotype
suggesting that these are de novo mutations [12].

To detect novel newborns with 17b-HSD3 deficiency, individu-
als should be properly evaluated by thorough physical examina-
tion, abdominal and pelvic ultrasonography, and systematic
endocrine analysis. Then, the initial diagnosis should be consis-
tently confirmed by molecular analysis. Also, all family members
should be tested to identify the carriers, and they should be
informed about the risk of marrying a heterozygous carrier during
a prenuptial consulting, and the prenatal diagnosis to their
progeny should be available and systematic.

Diagnosis and consequently early treatment of 17b-
HSD3 deficiency is difficult because clinical signs are often mild
or absent from birth until puberty. Moreover, 17b-HSD3 deficiency
is clinically indistinguishable from other forms of 46, XY DSD such
as AIS or 5a-reductase 2 deficiency. The correct diagnosis can be
reached by systematic endocrine evaluation and, most important-
ly, by the calculation of the testosterone/androstenedione ratio.
However, the diagnostic power of biochemical parameters is not
always specific, because a normal reference range has not yet been
established in strictly age-matched controls and because of
overlapping with other causes of 46, XY DSD due to impaired
testosterone biosynthesis. Thus, molecular genetic testing by
sequencing or PCR-RFLP is an efficient way to confirm the
diagnosis. Founder mutations are also of particular interest
because they allow a rapid molecular diagnosis and targeted
screening of ethnically restricted disease mutations in the
appropriate population subgroups.

5. Conclusion

We reported novel cases of 46, XY DSD patients with 17b-
HSD3 deficiency in the Tunisian population. The identification of
four different mutations in a cohort of eight patients confirmed the
previously observed heterogeneity of 17b-HSD3 deficiency. Nev-
ertheless, haplotyping revealed a founder effect for the p.C206X
mutation detected in six Tunisian families, and the carrier
frequency of this mutation was estimated as 1 in 40. Due to the
rather difficult diagnosis, the genetic heterogeneity and consan-
guinity, the incidence of 17b-HSD3 deficiency is likely to be
underestimated and molecular diagnosis is indicated in 46, XY DSD
patients. The screening for the identified mutations or the common
haplotype may contribute to the rapid diagnosis of 17b-
HSD3 deficiency. The genetic confirmation of mutations in the
HSD17B3 gene provides crucial information for genetic counseling,
prenatal diagnosis and quick therapeutic approaches.
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Abstract 

Background. Mutations in the HSD17B3 gene are associated with a 46, XY disorder of sexual 

development (46, XY DSD) as a result of low testosterone production during embryogenesis.   

Aims. Four missense mutations in HSD17B3 (T54A, M164T, L194P, G289S) from Egyptian patients 

with 46, XY DSD were biochemically analyzed to elucidate the molecular basis of the disorder in 

these patients. 

Methods. Expression plasmids for wild-type 17β-hydroxysteroid hydrogenase type 3 (17β-HSD3) 

and mutant enzymes generated by site-directed mutagenesis were transiently transfected into 

human HEK-293 cells. Protein expression was verified by western blotting and activity determined 

by measuring the conversion of radiolabeled Δ4-androstene-3,17-dione to testosterone (T). 

Application of a homology model provided an explanation for the observed effects of the 

mutations. 

Main Outcome Measures. Comparison of testosterone (T) formation by wild-type and mutant 

17β-HSD3 enzymes. 

Results. The mutations T54A and L194P, despite normal protein expression, completely abolished 

17β-HSD3 activity, explaining their severe 46, XY DSD phenotype. Mutant M164T was still able to 

produce T, albeit with significantly reduced activity compared to wild-type 17β-HSD3, resulting in 

ambiguous genitalia or a microphallus at birth. The substitution G289S represented a 

polymorphism exhibiting comparable activity to wild-type 17β-HSD3. Sequencing of the SRD5A2 

gene in three siblings bearing the HSD17B3 G289S polymorphism revealed the homozygous Y91H 

mutation in the former gene, thus explaining the 46, XY DSD presentations. Molecular modeling 

analyses supported the biochemical observations and predicted a disruption of cofactor binding 

by mutations T54A and M164T and of substrate binding by L196P, resulting in the loss of enzyme 

activity. In contrast, the G289S substitution was predicted to neither disturb 3D structure nor 

enzyme activity.  

Clinical translation. Biochemical analysis of mutant 17β-HSD3 enzymes is necessary to 

understand genotype-phenotype relationships. 

Conclusion. The G289S substitution, previously reported in other 46, XY DSD patients, is a 

polymorphism not causing 46, XY DSD; thus further sequence analysis was required and revealed 

a mutation in SRD5A2, explaining the cause of 46, XY DSD in these patients. 
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Introduction 

17β-hydroxysteroid dehydrogenase type 3 (17β-HSD3) converts the weak androgen Δ4-

androstene-3,17-dione (AD) into the potent androgen testosterone (T) using NADPH as a cofactor 

[1, 2]. This enzyme is predominantly expressed in testicular Leydig cells [3, 4]. T can be further 

converted into 5α-dihydrotestosterone (DHT) in fetal genital tissues by 5α-reductase type 2 

(SRD5A2) [5]. T and DHT synthesis is crucial for the normal male genital development during 

embryogenesis. While T mediates the masculinization of the Wolffian ducts, seminal vesicles, and 

vas deferens, DHT is responsible for the growth of the prostate and external genital development 

[6, 7].  

Mutations in the HSD17B3 gene (9q22) can lead to a 46, XY disorder of sex development (46, XY 

DSD) due to the lack of T and DHT production [3]. The prevalence of 17β-HSD3 deficiency in 

European countries is rather low, representing approximately 4% of all 46, XY DSD cases [8]. A 

study in The Netherlands reported an incidence of 1:147,000 in newborns [9]. However, in some  

Arabic populations, the prevalence is much higher due to a high rate of consanguineous marriages 

[10-12]. To date, more than 40 different mutations in introns and exons of the HSD17B3 gene are 

known [13-15]. Patients with this disorder are XY individuals that characteristically show 

undermasculinization. The external genitalia often appear to be female with or without 

clitoromegaly or labial fusion and a blind ending vagina [16, 17]. The spectrum of phenotypes can 

vary from ambiguous female genitalia to male microphallus, depending on T and DHT levels 

during development [18]. Unfortunately, the diagnosis of 46, XY DSD is sometimes missed until 

puberty and moreover, the clinical phenotype overlaps with that of SRD5A2 deficiency to a great 

extent [19]. Patients may frequently be raised as girls, and undergo sex change after puberty 

because of ongoing masculinization due to partial activity of the mutant 17β-HSD3 enzyme or 

extra-testicular T production by 17β-hydroxysteroid dehydrogenase type 5 (17β-HSD5, AKR1C3) 

[17, 20].  

In this study, we biochemically investigated four missense mutations in the HSD17B3 gene that 

were previously proposed to cause 46, XY DSD in Egyptian patients [13]. The mutant enzymes 

were biochemically analyzed to check for their expression and remaining activity. Additionally, a 
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17β-HSD3 homology model was applied in an attempt to understand the impact of the mutated 

amino acid residues on the enzyme activity.  

 

Materials and methods 

Patient details and sequencing  

Blood samples were collected from seven patients with 46, XY DSD representing five unrelated 

families. The patients were recruited from the outpatient Clinical Genetics and Endocrinology 

Clinics at the Egyptian National Research Centre. Written informed consent was obtained from 

all patients or their guardians according to the Medical Ethics Committee at the Egyptian National 

Research Centre. Clinical examinations, hormonal profile and karyotyping were provisionally 

suggesting the diagnosis of 46, XY DSD with 17β-HSD3 enzyme deficiency. The age of referral 

differed from very young (two months) up to post pubertal stages (16-20 years) (Table 1). Post-

pubertal patients presented with either primary amenorrhea or virilization, and pre-pubertal 

patients with ambiguous genitalia. Patients (no. 5-7) were ascertained from one family, the older 

siblings (no. 6 & 7) were dizygotic twins who were reared as females and seeking for sex reversal 

later in development. Human chorionic gonadotropin (hCG) stimulation was only performed in 

pre-pubertal patients. Only the short hCG stimulation protocol was performed (2500 IU hCG were 

administered by intramuscular injection daily for three consecutive days). Steroid hormone levels 

were measured before and after stimulation. 

Genomic DNA extraction was performed according to a standard protocol [21]. For all patients 

the coding regions and flanking intron/exon boundaries of the HSD17B3 gene were sequenced. 

The SRD5A2 gene was sequenced in selected cases bearing the HSD17B3 G289S substitution. PCR 

conditions and the oligonucleotide primers were described previously [13, 22].  

 

Plasmids and molecular cloning 

The pcDNA3 plasmid containing the coding sequence of 17β-HSD3 followed by a C-terminal FLAG 

epitope tag (17β-HSD3-FLAG) was described earlier [23]. This plasmid was used as a template for 
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site-directed mutagenesis using the Pfu Polymerase (Promega, Madisson, WI, USA) in order to 

introduce the corresponding mutation into the coding sequence of 17β-HSD3. Expression of these 

constructs led to the mutant 17β-HSD3 proteins T54A, M164T, L194P and G289S. All constructs 

were sequence-verified. The oligonucleotide primer sequences used for PCR are available upon 

request.  

 

Cell culture and western blotting  

For enzymatic activity determination, the wild-type and mutant 17β-HSD3-FLAG constructs were 

transiently expressed in the HEK-293 cell line (ATCC, Manassas, VA, USA). HEK-293 cells were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma-Aldrich, St. Louis, MO, USA) 

supplemented with 10% fetal bovine serum (FBS, Connectorate, Dietikon, Switzerland), 100 U/mL 

penicillin, 100 μg/mL streptomycin (Sigma-Aldrich), 10 mM HEPES buffer, pH 7.4 (Life 

Technologies, Grand Island, NY, USA) and non-essential amino acid solution (Sigma-Aldrich). Cells 

were cultivated under standard conditions (37°C, 5% CO2). Western blotting, for confirmation of 

proper protein expression was performed as described earlier [23]. Briefly, cells were transfected 

with the corresponding cDNA constructs using the calcium phosphate precipitation method, and 

lysed 48 h later with RIPA buffer (Sigma-Aldrich) containing protease inhibitor cocktail (Roche, 

Basel, Switzerland). For detection of the FLAG epitope the mouse monoclonal antibody M2 was 

used (Sigma-Aldrich) at a final concentration of 0.5 μg/mL in 3% defatted milk solution. To confirm 

equal loading, membranes were probed with the anti-actin polyclonal antibody sc-1616 (Santa 

Cruz Biotechnology Inc., CA, USA), which was used at a final concentration of 1 μg/mL.  

 

Enzyme activity assay  

The procedure for enzymatic activity measurements in intact cells has been described  previously 

[23]. Briefly, HEK-293 cells (2 x 10-6) were seeded into 10 cm dishes, 24 h prior to transfection. 

Expression plasmids (8 µg) for wild-type and mutant enzymes were transiently transfected using 

the calcium phosphate precipitation method. Media was replaced with fresh media 4 h post 

transfection. After an incubation time of 24 h, transfected cells were seeded (15’000) into poly-L-
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lysine (Sigma-Aldrich) pre-coated 96-well plates containing 100 mL media. The day after, media 

was replaced by 50 µL charcoal-treated serum-free media containing 200 nM AD with 50 nCi 

[1,2,6,7-3H]-AD (American Radiolabeled Chemicals, St. Louis, MO, USA). Reactions were stopped 

after 0.5 h and 1 h by adding a mixture of 2 mM unlabeled AD and T (Sigma-Aldrich). Samples 

were loaded onto TLC plates (Macherey-Nagel, Oensingen, Switzerland) and steroids were 

separated using chloroform/ethyl actetate (4:1 ratio). Corresponding substrate and product 

concentrations were determined using scintillation counting (PerkinElmer, Waltham, MA, USA).  

 

Molecular modeling 

The 17β-HSD3 homology models were generated as previously described [23]. Briefly, wild-type 

and mutant gene sequences were aligned together with the crystal structure of 17β-HSD1 (3DHE, 

2.3 Å) using Modeller (Version 9.11) [24, 25]. The Multiple Sequence Viewer implemented in 

Maestro was used to align protein sequences [26]. Model refinement was performed using Prime, 

treating all residues within 8 Å of the respective mutated residue as flexible, while keeping the 

rest of the model rigid [27-29]. All modeling Figures were created using PyMOL [30].  

 

Results 

Characterization of 46, XY DSD patients 

The clinical, hormonal, and molecular data of seven patients with 46, XY DSD are shown in Table 

1. Sequencing data of the HSD17B3 gene of four patients (cases no. 1, 3-5) was reported 

previously [13]. Like for patient no 1, sequencing of the HSD17B3 gene in patient no. 2 revealed 

a homozygous T54A mutation in exon 2 (Fig. 1). Patients no. 1 and 2 had comparable age and 

similar hormonal and molecular profiles and they both exhibited hirsutism in body and face, 

developed pubic hair, had no palpable gonads, a microphallus (4 cm) and a Quigley score of 3. 

The genital examination of patient no. 4 revealed the presence of two palpable gonads in the 

labioscrotal folds, single opening, and microphallus (2 cm) [13], suggesting weak androgen-

dependent sex development. Regarding patients 6 and 7, a heterozygous G289S substitution in 

exon 11 was detected (Fig. 2). These dizygotic twins from a consanguineous family had a clinical 
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phenotype similar to that of their sibling with the homozygous G289S substitution, case no 5. This 

implied that sequencing of the SRD5A2 gene was necessary. A homozygous Y91H mutation was 

found in exon 1 in all three siblings (patients no. 5-7) (Fig. 2C).  

 

Analysis of expression and activity of mutant 17β-HSD3 enzymes 

In order to assess the biochemical effects of the different mutations in the HSD17B3 gene on the 

activity of the expressed enzymes, we first generated the corresponding mutations in the cDNA 

by site-directed mutagenesis. A FLAG epitope tag was inserted right after the coding region in all 

cDNA constructs for facilitated detection of the expressed proteins. The expression plasmids for 

wild-type and mutant 17β-HSD3 were then transfected into HEK-293 cells and protein expression 

was assessed by western blotting. Quantification of protein expression from three independent 

experiments showed that mutant and wild-type 17β-HSD3 were efficiently expressed and at 

comparable levels (Fig. 3). After confirming expression of all mutated proteins, we sought to 

assess their enzymatic activity in comparison to the wild-type enzyme. Cells were incubated for 

60 min with 200 nM AD, followed by determination of T production. The wild-type enzyme 

converted approximately 30% of AD to T, whereas no conversion was detected for 17β-HSD3 

mutants T54A and L194P (Fig. 4A). 17β-HSD3 mutant M164T retained weak activity but it was 

approximately 15-20 times less active than 17β-HSD3 (Fig. 4B). The substitution G289S efficiently 

catalyzed the conversion of AD to T, at comparable activity to wild-type 17β-HSD3. Comparison 

of activities upon incubation for 0.5 h and 1 h revealed an indistinguishable conversion rate to T 

for the substitution G289S and wild-type 17β-HSD3, indicating that G298S is a fully functional 

polymorphism (Fig. 4A).  

 

Modeling  

The 17β-HSD3 homology model was used to study impacts of all investigated mutations on the 

activity of the enzyme (Fig. 5). The T54A mutation is located on the highly-conserved cofactor 

binding site among the short-chain dehydrogenase/reductase (SDR) family (Fig. 5A). The 

threonine to alanine mutation leads to the loss of two hydrogen bonds with the β4α5-loop 

backbone, which could propagate to the conserved glycine region (GXXXGXG), essential for 

cofactor binding. A mutation (G133R) in the β4α5-loop was previously elaborated as culprit of 
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enzyme inactivation [23] and it seems that perturbations in this loop have a huge impact on 

cofactor binding.   

The M164T mutation is located closely to the cofactor binding site (Fig. 5B). The mutated polar 

threonine residue is smaller and could lead to more freedom of the β4α5-loop and most likely 

interferes with the affinity of the cofactor binding. The mutant model also shows a slight 

rearrangement of the N131 side chain. However, this might be an artifact of the employed 

methods, and reasons of dynamic nature, not revealed by the homology model, could be the 

cause of a loss of affinity.  

The L194P mutation most likely disrupts the arrangement of bulky, hydrophobic side-chains, such 

as Y195 and Y258, closely to the substrate binding site (Fig. 5C). Proline is the only cyclic amino 

acid and has a huge impact on secondary structures, frequently breaking α-helices and β-sheets 

by introducing inflexibility. However, whether this added rigidity disturbs the binding of the 

substrate by negatively affecting the induced fit of the binding pocket or the substrate is hindered 

to enter the binding pocket at all, cannot be examined conclusively only using the obtained 

homology model.  

The G289S substitution is located on the surface of the enzyme, more than 20 Å away from the 

NADPH cofactor and substrate binding site (Fig. 5D). The mutated serine residue does not have 

any impact on the structure of the enzyme. 

 

Discussion 

This study describes the activity assessment of four mutations in the HSD17B3 gene from Egyptian 

patients with 46, XY DSD. The enzymological consequences of the mutations were biochemically 

examined in transfected HEK-293 cells expressing wild-type and mutant 17β-HSD3 enzymes, 

followed by in silico homology modeling to visualize the structural changes caused by the 

mutations.  

Biochemical assays showed completely abolished enzyme activity for 17β-HSD3 mutants T54A 

and L194P. The homozygous T54A state in both cases no 1 and 2 could explain the severe 

phenotype and their late referral to the clinician. This was also evidenced in patient no. 3 where 

the compound heterozygous state of L194P/c.588C>T resulted in a severe 46, XY DSD phenotype. 
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Molecular modeling simulations for mutant T54A predicted a disruption of the cofactor binding 

site (Fig. 5A). The mutated alanine residue is expected to destabilize the cofactor binding site due 

to the loss of hydrogen bonds formed by threonine. Amino acid residue 54 is located one residue 

upstream of the well-conserved GXXXGXG motif involved in cofactor binding at the N-terminal 

region that is highly conserved among SDR enzymes [31]. Furthermore, two other mutations 

(A51V [13] and A56T [19, 32]) have been previously identified in the cofactor binding region that 

resulted in a similar clinical appearance in these patients. Introduction of an additional proline 

residue in the L194P mutation was predicted by the homology model to disrupt the substrate 

binding site (Fig. 5C), thus providing an explanation for the loss of function of this mutant enzyme.  

Regarding patient 4, the identification of microphallus and developed testes is a sign for partial 

androgen-dependent fetal masculinization [13]. Activity assays in transfected HEK-293 cells 

revealed residual T formation by mutant M164T. The mutant enzyme was able to convert AD into 

T; however, with 15-20 times lower activity than wild-type 17β-HSD3. Molecular modeling 

simulations revealed small changes in the 3D-structure close to the cofactor binding site that may 

negatively influence the binding affinity for NADPH or its positioning for the electron transfer (Fig. 

5B), thereby resulting in a significantly reduced activity (Fig. 4D). M164T caused major effects on 

genitalia, though not complete loss of enzymatic activity. The low amounts of T produced during 

the critical period of fetal sexual differentiation could explain the patient’s phenotype.  

Molecular modeling simulations showed that the G289S substitution is located far away from the 

substrate and cofactor binding site (Fig. 5A). The extra hydroxy group from the introduced serine 

does not affect the 3D-structure nor the enzymatic activity. In the literature, contradictory data 

was found about the residual activity of the G289S substitution and its potential cause of 46, XY 

DSD. Homozygous G289S substitution was reported to cause 46, XY DSD in Italian and Brazilian 

patients by Bertelloni et al. [33] and Castro et al. [18]. Additionally, three patients from Egypt 

were also described carrying this substitution that was suspected to be responsible for 46, XY DSD 

[13]. Besides, an increased risk of developing hypospadias for G289S carriers was reported by Sata 

et al. [34]. Furthermore, an association of the G289S substitution with an increased prostate 

cancer risk was described by Margiotti et al. in a study on Italian men [35]. These studies highlight 

the actual research interest in this substitution. However, these studies did not functionally 

investigate the G289S substitution. In the present study, we showed that the G289S variant has 
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comparable enzymatic activity as wild-type 17β-HSD3 (Fig. 4A), consistent with an early 

biochemical study by Moghrabi et al. [36]. Together with the molecular modeling analysis 

showing no potential disruption by this substitution of substrate and cofactor binding (Fig. 5A), 

this data emphasizes that G289S is a fully functionally active polymorphism not causing 46, XY 

DSD. Thus, other causes of 46, XY DSD have to be investigated in patients homozygous for G289S, 

such as mutations in other genes related to androgen synthesis or mutations in the androgen 

receptor (AR). This was successfully demonstrated in the sibling patients no. 5-7, where further 

genetic analysis revealed that the homozygous mutation Y91H in SDR5A2 is causative for the 46, 

XY DSD phenotype. The measured high T/DHT ratio, atypical for 17β-HSD3 deficiency, and the 

masculine gender identity led to the assumption of SRD5A2 deficiency in these patients. Failure 

of hormone testing to elucidate clearly the cause of XY undervirilization may relate to the 

variability and lack of consensus among hCG stimulation protocols. Herein, we used the short 

stimulation protocol with a daily dose of 2500 units for 3 days. The protocols differ in dose and 

duration, ranging from 500 to 1500 units/day and extending from 2 days to a month [9, 37-41]. 

Furthermore; the value of AD/T ratio as a sole reliable diagnostic tool of 17β-HSD3 deficiency has 

been questioned, and a confirmation by molecular studies is highly warranted [42].  

The Y91H mutation has been previously reported in Egyptian, Palestinian and Turkish 46, XY 

patients [37, 43], supporting  that the SRD5A2 mutation Y91H is responsible for 46, XY DSD in the 

three Egyptian siblings included in this study. However, biochemical confirmation that the Y91H 

mutation abolishes SRD5A2 expression and/or enzyme activity is needed to exclude other causes 

of 46, XY DSD in these patients.  

 

Conclusion 

In this study, we biochemically analyzed four mutations in the HSD17B3 gene of Egyptian patients 

that were suspected to cause 46, XY DSD. The missense mutations T54A and L194P completely 

abolished 17β-HSD3 activity despite normal protein expression, whereas mutant M164T 

exhibited low residual activity, providing an explanation for its somewhat less severe 46, XY DSD 

phenotype. In contrast to the functional loss of these missense mutations, we demonstrate that 

the G289S substitution, associated in the literature with 46, XY DSD, is a fully functional 

polymorphism not causing 46, XY DSD. In three siblings bearing the G289S polymorphism 
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(patients no 5, 6, and 7) further genetic screening led to the identification of the homozygous 

mutation Y91H in the SRD5A2 gene. Molecular modeling analyses supported the biochemical 

observations and predicted a disruption of cofactor binding by mutations T54A and M164T and 

of substrate binding by L196P, resulting in the loss of enzyme activity. In contrast, the G289S 

substitution was predicted not to disturb the 3D structure and enzyme activity. Thus, biochemical 

analyses in combination with molecular modeling can provide important information on the 

identified mutations, helping to understand genotype-phenotype relationships.  

 

Figure Legends 

 

Figure 1. Patients with 46, XY DSD bearing the T54A mutation in the HSD17B3 gene. (A) Pedigree 

charts of two families showing patients no.1 & 2. (B) Electropherogram of part of the HSD17B3 

gene sequence showing wild-type T54. (C) Electropherogram of part of the HSD17B3 gene 

sequence showing the homozygous T54A mutation. The site of the mutation is denoted by the 

red arrow. Pedigree chart symbols: □ male, ○ female, ● affected individual, strikethrough symbols 

(deceased individual), number of children written inside symbol, double line indicates 

consanguineous marriage.   
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Figure 2. Family with three 46, XY DSD patients. (A) Pedigree chart of the family through four 

generations showing three affected patients (no. 5-7). (B) Electropherogram of part of the 

HSD17B3 gene sequence (exon 11) showing the heterozygous G289S mutation in patients no. 6 

& 7 and the homozygous mutation in patient no. 5. (C) Electropherogram of part of the SRD5A2 

gene sequence (exon 1) showing the homozygous Y91H mutation in the three siblings. The site of 

the mutations is denoted by the red arrow. Pedigree chart symbols: □ male, ○ female, ● affected 

individual, ∆ spontaneous abortion, strikethrough symbols (deceased individual), double line 

indicates consanguineous marriage, and two diagonal lines from one point represent dizygotic 

twin. 
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Figure 3. Expression of wild-type and mutant 17β-HSD3 enzymes. HEK-293 cells were transiently 

transfected with C-terminally FLAG epitope-tagged plasmids for wild-type and mutant (T54A, 

M164T, L194P, and G289) 17β-HSD3 enzymes. After an incubation time of 48 h, cells were 

harvested and total cellular proteins subjected to SDS-polyacrylamide gel electrophoresis and 

western blotting. The mouse monoclonal antibody M2 was used to detect the FLAG epitope. The 

anti-actin polyclonal antibody sc-1616 was used as a loading control. One representative 

experiment out of three independently performed measurements is shown.    
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Figure 4.  Testosterone formation by wild-type and mutant 17β-HSD3 enzymes. HEK-293 cells 

were transiently transfected with plasmids for wild-type and mutant 17β-HSD3 enzymes (T54A, 

M164T, L194P, and G289S). Transfected cells (15’000) were incubated at 37°C in 96-well plates 

with 200 nM androstenedione, containing 50 nCi [1,2,6,7-3H]-androstenedione, for different 

period of time. Testosterone formation was quantified after separation of steroids by TLC and 

scintillation counting. Results represent testosterone formation in percentage of initially supplied 

androstenedione. (A) Testosterone formation by mutants T54A, M164T, L194T, and G289S 

incubated for 0.5 h and 1 h compared with wild-type 17β-HSD3. Results show mean ± SD of three 

independent measurements. (B) Testosterone formation by mutant M164T after 1 h, 2 h, 4 h and 

8 h compared with wild-type 17β-HSD3 (WT). Results show mean ± SD from four independent 

wells of a representative experiment.  
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Figure 5. Pictures of wild-type enzyme and studied mutations. (WT) Homology model of wild-

type 17β-HSD3 (green) with bound NADPH (cyan) and androstenedione (cyan). Mutation sites 

labelled A-D correspond to the respective close-up. (A) T54A model (blue) shows the two  

hydrogen bonds lost compared to WT. (B) M164T model (orange) shows the void introduced by 

the mutation, which causes surrounding residues to gain in flexibility. (C) L194P model (gray) 

shows the rearrangement of hydrophobic amino acid side chains. (D) G289S model (magenta) 

shows the distance of >20 Å to the cofactor.  
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Table 1: Clinical, hormonal and genetic results of 7 patients with 46, XY DSD 

 

NA = not available; N/D = not determined. Clinical and genetic analysis of patients 1, 3, 4 and 5 

(except SRD5A2 analysis) have been previously reported [13] 

 

 

 

 

 

 

 

 

 

# Complaint 
Age, Geo-
graphical 

origin 

Consan-
guinity 

Quigley 
Scoring 

T 
(ng/ml) 

AD 
(ng/ml) 

DHT 
(ng/dl) 

T/AD T/DHT 
Masculin-ity/ 
Feminin-ity 

index 

HSD17B3 
mutation 

SRD5A2 
mutation 

1 primary 
amenorrhea 

15 years, 
Giza Positive 3 Basal: 

2.1 7.8  25.3  0.27 8.3 

Feminine 
gender identity 
with masculine 

behavioral 
characters 

T54A 

N/D 

2 primary 
amenorrhea 

16 years, 
Kaliobeya Positive 3 Basal: 

2.7 6.9 28.6 0.39 9.4 

Masculine 
gender identity 

with 
undifferentiate
d gender role 

T54A 

N/D 

3 virilization 20 years, 
NA Positive 5 Basal: 

2.5  9  48  0.28 5.2 

Masculine 
gender identity 
(sex reversal 
was done) 

L194P  
&  

c.588C>T 

wild-type 

4 ambiguous 
genitalia 2 m, Luxor Negative 4 

Basal: 
1.7 

Post 
hCG: 
3.8 

4.1   
5.6  

35   
61.9  

0.41          
0.68 

4.9                   
6.1 N/D M164T 

N/D 

5 ambiguous 
genitalia 

1m 2w, 
Kaliobeya Positive 4 

Basal: 
1.3   

Post 
hCG: 
2.3  

2.5    
6.4  

24.7    
41.8  

0.52          
0.36 

5.3                   
5.5 N/D G289S 

Y91H 

6 virilization 11 years, 
Kaliobeya Positive 4 Basal: 

2.5  6.4  20.5  0.39 12.2 

Masculine 
gender identity 
(arrangement 

for sex 
reversal) 

G289S 
(heterozygo

us) 

Y91H 

7 virilization 11 years, 
Kaliobeya Positive 4 Basal:  

3.0  8.2  24.1 0.37 12.5 

Masculine 
gender identity 
(arrangement 

for sex 
reversal) 

G289S 
(heterozygo

us) 

Y91H 

102



References 

1. Luu-The, V., et al., Structure of two in tandem human 17 beta-hydroxysteroid 
dehydrogenase genes. Mol Endocrinol, 1990. 4(2): p. 268-75. 

2. Inano, H. and B. Tamaoki, Testicular 17 beta-hydroxysteroid dehydrogenase: molecular 
properties and reaction mechanism. Steroids, 1986. 48(1-2): p. 1-26. 

3. Geissler, W.M., et al., Male pseudohermaphroditism caused by mutations of testicular 17 
beta-hydroxysteroid dehydrogenase 3. Nature genetics, 1994. 7(1): p. 34-9. 

4. Saez, J.M., et al., Familial male pseudohermaphroditism with gynecomastia due to a 
testicular 17-ketosteroid reductase defect. I. Studies in vivo. J Clin Endocrinol Metab, 
1971. 32(5): p. 604-10. 

5. Thigpen, A.E., et al., Molecular genetics of steroid 5 alpha-reductase 2 deficiency. The 
Journal of clinical investigation, 1992. 90(3): p. 799-809. 

6. Tsuji, M., H. Shima, and G.R. Cunha, In vitro androgen-induced growth and morphogenesis 
of the Wolffian duct within urogenital ridge. Endocrinology, 1991. 128(4): p. 1805-11. 

7. Marchetti, P.M. and J.H. Barth, Clinical biochemistry of dihydrotestosterone. Annals of 
clinical biochemistry, 2013. 50(Pt 2): p. 95-107. 

8. Hughes, I.A., Disorders of sex development: a new definition and classification. Best Pract 
Res Clin Endocrinol Metab, 2008. 22(1): p. 119-34. 

9. Boehmer, A.L., et al., 17Beta-hydroxysteroid dehydrogenase-3 deficiency: diagnosis, 
phenotypic variability, population genetics, and worldwide distribution of ancient and de 
novo mutations. The Journal of clinical endocrinology and metabolism, 1999. 84(12): p. 
4713-21. 

10. Rosler, A., Steroid 17beta-hydroxysteroid dehydrogenase deficiency in man: an inherited 
form of male pseudohermaphroditism. The Journal of steroid biochemistry and molecular 
biology, 1992. 43(8): p. 989-1002. 

11. Ben Rhouma, B., et al., Novel cases of Tunisian patients with mutations in the gene 
encoding 17beta-hydroxysteroid dehydrogenase type 3 and a founder effect. J Steroid 
Biochem Mol Biol, 2017. 165(Pt A): p. 86-94. 

12. Mazen, I., et al., Screening of genital anomalies in newborns and infants in two egyptian 
governorates. Horm Res Paediatr, 2010. 73(6): p. 438-42. 

13. Hassan, H.A., et al., Mutational Profile of 10 Afflicted Egyptian Families with 17-beta-HSD-
3 Deficiency. Sexual development : genetics, molecular biology, evolution, endocrinology, 
embryology, and pathology of sex determination and differentiation, 2016. 10(2): p. 66-
73. 

14. Mendonca, B.B., et al., 46,XY disorder of sex development (DSD) due to 17beta-
hydroxysteroid dehydrogenase type 3 deficiency. J Steroid Biochem Mol Biol, 2017. 165(Pt 
A): p. 79-85. 

15. Phelan, N., et al., Screening for mutations in 17beta-hydroxysteroid dehydrogenase and 
androgen receptor in women presenting with partially virilised 46,XY disorders of sex 
development. European journal of endocrinology / European Federation of Endocrine 
Societies, 2015. 172(6): p. 745-51. 

16. Mendonca, B.B., et al., Male pseudohermaphroditism due to 17 beta-hydroxysteroid 
dehydrogenase 3 deficiency. Diagnosis, psychological evaluation, and management. 
Medicine, 2000. 79(5): p. 299-309. 

103



17. George, M.M., et al., The clinical and molecular heterogeneity of 17betaHSD-3 enzyme 
deficiency. Hormone research in paediatrics, 2010. 74(4): p. 229-40. 

18. Castro, C.C., et al., Clinical and molecular spectrum of patients with 17beta-hydroxysteroid 
dehydrogenase type 3 (17-beta-HSD3) deficiency. Arquivos brasileiros de endocrinologia 
e metabologia, 2012. 56(8): p. 533-9. 

19. Lee, Y.S., et al., Phenotypic variability in 17beta-hydroxysteroid dehydrogenase-3 
deficiency and diagnostic pitfalls. Clinical endocrinology, 2007. 67(1): p. 20-8. 

20. Mindnich, R., G. Moller, and J. Adamski, The role of 17 beta-hydroxysteroid 
dehydrogenases. Molecular and cellular endocrinology, 2004. 218(1-2): p. 7-20. 

21. Miller, S.A., D.D. Dykes, and H.F. Polesky, A simple salting out procedure for extracting 
DNA from human nucleated cells. Nucleic acids research, 1988. 16(3): p. 1215. 

22. Soliman, H., Amr, K., El-Ruby, M., Mekkawy, M., Elaidy, A. and Mazen, I., Mutational 
pattern in the 5α reductase 2 (SRD5A2) gene in 46, XY Egyptian DSD patients. Middle East 
Journal of Medical Genetics. 4(2): p. 77-82. 

23. Engeli, R.T., et al., Biochemical analyses and molecular modeling explain the functional 
loss of 17beta-hydroxysteroid dehydrogenase 3 mutant G133R in three Tunisian patients 
with 46, XY Disorders of Sex Development. The Journal of steroid biochemistry and 
molecular biology, 2016. 155(Pt A): p. 147-54. 

24. Sali, A., et al., Evaluation of comparative protein modeling by MODELLER. Proteins, 1995. 
23(3): p. 318-26. 

25. Biegert, A., et al., The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic 
acids research, 2006. 34(Web Server issue): p. W335-9. 

26. Maestro, S.R.-. Schrödinger, LLC, New York, NY,2016. 
27. Jacobson, M.P., et al., On the role of the crystal environment in determining protein side-

chain conformations. J Mol Biol, 2002. 320(3): p. 597-608. 
28. Jacobson, M.P., et al., A hierarchical approach to all-atom protein loop prediction. 

Proteins, 2004. 55(2): p. 351-67. 
29. Prime, S.R.-. Schrödinger, LLC, New York, NY, 2016. 
30. The PyMOL Molecular Graphics System, V.S., LLC. 
31. Persson, B., M. Krook, and H. Jornvall, Short-chain dehydrogenases/reductases. Advances 

in experimental medicine and biology, 1995. 372: p. 383-95. 
32. Maestro, v., Schrödinger, LLC, New York, NY (2014). 
33. Bertelloni, S., et al., 17beta-Hydroxysteroid dehydrogenase-3 deficiency: from pregnancy 

to adolescence. Journal of endocrinological investigation, 2009. 32(8): p. 666-70. 
34. Sata, F., et al., Genetic polymorphisms of 17 beta-hydroxysteroid dehydrogenase 3 and 

the risk of hypospadias. The journal of sexual medicine, 2010. 7(8): p. 2729-38. 
35. Margiotti, K., et al., Association of the G289S single nucleotide polymorphism in the 

HSD17B3 gene with prostate cancer in Italian men. The Prostate, 2002. 53(1): p. 65-8. 
36. Moghrabi, N., et al., Deleterious missense mutations and silent polymorphism in the 

human 17beta-hydroxysteroid dehydrogenase 3 gene (HSD17B3). The Journal of clinical 
endocrinology and metabolism, 1998. 83(8): p. 2855-60. 

37. Maimoun, L., et al., Phenotypical, biological, and molecular heterogeneity of 5alpha-
reductase deficiency: an extensive international experience of 55 patients. The Journal of 
clinical endocrinology and metabolism, 2011. 96(2): p. 296-307. 

104



38. Douglas, G., et al., Consensus in Guidelines for Evaluation of DSD by the Texas Children's 
Hospital Multidisciplinary Gender Medicine Team. Int J Pediatr Endocrinol, 2010. 2010: p. 
919707. 

39. Ahmed, S.F., et al., UK guidance on the initial evaluation of an infant or an adolescent with 
a suspected disorder of sex development. Clin Endocrinol (Oxf), 2011. 75(1): p. 12-26. 

40. Paris, F., et al., Disorders of sex development: neonatal diagnosis and management. 
Endocr Dev, 2012. 22: p. 56-71. 

41. Chan, A.O., et al., Diagnosis of 5alpha-reductase 2 deficiency: is measurement of 
dihydrotestosterone essential? Clin Chem, 2013. 59(5): p. 798-806. 

42. Khattab, A., et al., Pitfalls in hormonal diagnosis of 17-beta hydroxysteroid dehydrogenase 
III deficiency. J Pediatr Endocrinol Metab, 2015. 28(5-6): p. 623-8. 

43. Akcay, T., et al., AR and SRD5A2 gene mutations in a series of 51 Turkish 46,XY DSD 
children with a clinical diagnosis of androgen insensitivity. Andrology, 2014. 2(4): p. 572-
8. 

 

 

 

 

 

105



4.5 Conclusion 

Disorder of sexual development in men can be provoked by a number of causes including defects 

in androgen signaling, defects in androgen synthesis, defects in sex determining genes and many 

more[22, 130]. The most frequent causes of 46, XY DSD are; the complete androgen insensitivity 

syndrome (CAIS) and the partial androgen insensitivity syndrome (PAIS)[22, 131, 132]. Patients 

with CAIS often have a defect in androgen signaling, whereas the cause of PAIS is likely to be due 

to defects in AR co-regulators[132-134]. Patients with CAIS are usually raised as girls due their 

female genital phenotype. Despite higher androgen levels at puberty, those patients do not 

undergo virilization due to androgen insensitivity. Fortunately, the vast majority of affected 

patients are satisfied with their female gender[135]. However, this is not the case in patients with 

17β-HSD3 deficiency, where virilization at puberty occurs due to extra testicular androgen 

formation. A high percentage of patients with 46, XY DSD raised a girls, change their gender to 

male at puberty due to pronounced virilization[128, 136]. These circumstances result in a stressful 

stage of life for the affected individual during puberty. If the 17β-HSD3 deficiency is diagnosed in 

early life, doctors and family members should decide whether the patient should be raised as a 

girl or a boy. The decision may be taken depending on phenotype of the external genitalia. 

Besides, it is important to recognize that every cause of 46, XY DSD is unique and requires 

extensive investigations[118]. Nowadays, it is possible to reconstruct genitals from both genders 

using plastic surgery in modern and well equipped hospitals[114, 137]. Patients raised as boys 

that underwent surgical correction and androgen replacement therapy can even have normal 

sexual intercourse[22]. If the patient is raised as a female, surgical corrections of the external and 

internal genitalia need to be performed. In the case of the appearance of internal gonads, they 

need urgently be removed to prevent excessive androgen production during puberty[22, 137]. 

Estrogen replacement therapy is required during puberty to develop secondary sexual 

characteristics[129].   

Medical interventions are complicated and expensive and cannot be performed in every hospital. 

Unfortunately, most of the 17β-HSD3 deficient patients are reported in poor Arab countries and 

regions where the access to medical health care is limited[138]. In terms of diagnosis, 17β-HSD3 

deficiency is a very rare disease but the actual number of affected people is very likely to be 

106



higher. Psychological, familial, and social factors prevent the patients from being open about their 

condition and therefore the incidence of 46, XY DSD may be under estimated[139].  

Females have the same probability to inherit HSD17B3 defective genes as men. However, so far 

no case is known in which 17β-HSD3 deficiency was diagnosed in a XX karyotype[130, 132]. Lower 

testosterone formation in a female embryo due to 17β-HSD3 deficiency seems to have no 

influence on female genital development or anything else resulting in a specific phenotype. 

Mutations in the HSD17B3 gene in women appears not to affect genital development or fertility 

compared to the severe effects on male sexual development.  

In this project we present a novel 17β-HSD3 homology model to visualize the effects of mutations 

on the 3-dimensional structure of the 17β-HSD3 enzyme. The construction of a 17β-HSD3 

homology model, based on the 3-dimensional structure of the enzyme 17β-HSD1, was successful. 

Despite low sequence identity, the conserved cofactor binding among SDR’s and their similar 3-

dimensional structure resulted in a homology model with accurate cofactor and substrate binding 

sites[127]. NADPH (NADP+ depicted) was shown to interact with the cofactor binding site through 

the formation of 12 hydrogen bonds (Figure 4). The catalytic triad containing Ser185, Tyr198, and 

Lys202 was facing the D-ring of the substrate androstenedione reinforcing the accuracy of the 

model (Figure 4). Due to the fact that 17β-HSD1 is localized in the cytosol and 17β-HSD3 is 

anchored to the ER membrane via its N-terminus, we were unable to predict the 3-dimensional 

structure of the amino acids in this specific region. The model allowed us to predict on a molecular 

level the cause of the loss of activity of 17β-HSD3 mutations identified in humans. In most of the 

cases, the mutated amino acid residues adversely affected cofactor or substrate binding of the 

protein. The main limitation of the applied homology model was the lack of a 17β-HSD3 crystal 

structure. Additionally, it was not possible to investigate mutations potentially affecting the 

induced fit of the protein as well as mutations interfering with the ER membrane binding. Our 

generated 17β-HSD3 homology model has its limitations and biochemical analyses need to be 

performed to confirm our predictions on enzyme activity.  

However, not every mutation found in the HSD17B3 gene abolishes the activity of the enzyme. In 

most clinical reports of 17β-HSD3 deficiency, mutated enzymes were not biochemically analyzed.  

Polymorphisms such as G289S[81] do not affect the protein activity. Therefore, other defects 

need to be inspected to understand the causes of the disorder. Taken together, five different 
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mutations in the HSD17B3 gene (G133R, C206X, T54A, M164T, and L194P) and one polymorphism 

(G289S) were biochemically analyzed in this project. Biochemical evaluation of mutations in the 

HSD17B3 gene confirm the diagnosis of 17β-HSD3 deficiency in suspected patients. An early 

diagnosis of 17β-HSD3 deficiency and sequential medical interventions are crucial to prevent 

patients from undergoing social and psychological stress later on in life. A fast diagnosis is 

beneficial for decisions regarding gender assignment by doctors and family members. Our data 

will help clinicians to diagnose 17β-HSD3 deficiency more effectively. 

 

 

Figure 4. 2-Dimensional model of the 17β-HSD3 cofactor and substrate binding pocket. NADP+ 

embedded in the cofactor binding pocket (left) stabilized through the formation of 12 hydrogen 

bonds with amino acids side chains. Androstenedione embedded in the substrate binding pocket, 

stabilized through hydrogen bonds by Ser185 and Tyr198 (right). 
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5. Project 3: Murine Leydig Cell Lines 

5.1 Introduction 

Testosterone plays a critical role in sexual differentiation and regulates a variety of physiological 

functions. These include muscle growth, bone density, and libido. In mammals, testosterone 

formation occurs in the Leydig cells, which are found in the interstitial compartment of the 

testes[140]. These cells produce the majority of systemic testosterone through de novo synthesis  

from cholesterol[141]. The dramatic phenotypic effect of loss of function mutations in the 

HSD17B3 gene highlight the importance of this enzyme in male sexual development. Over the 

course of a life time, humans are exposed to a huge variety of chemical compounds used in 

personal care products or as food additives[142]. Any compound that potentially interferes with 

the activity or transcriptional regulation of 17β-HSD3 may exert toxicologically relevant effects. 

Therefore, research on environmental disrupting chemicals (EDC) that can interfere with 

androgen action in humans is of particular interest. Due to the rapid evolution of synthetic 

chemistry, thousands of new organic compounds entered the market in the past decades[143]. 

Most investigations on endocrine disrupting effects of xenobiotic compounds are limited to 

steroid receptor interferences[144, 145]. Little is known about the impact of xenobiotics on pre-

receptor regulation or non-receptor mediated effects[142]. Therefore, the development of 

accurate, cheap, and rapid endocrine disrupting testing systems that test for endocrine pre-

receptor regulation would be helpful. In the first study, we reviewed the literature for cell models 

(which include Leydig cells) currently used to investigate the disruption of steroidogenesis by 

xenobiotics. We identified three potential Leydig cell lines which could be further characterized. 

In the second study, we were focused on establishing a Leydig cell model which endogenously 

expresses 17β-HSD3, in order to examine xenobiotic compounds that potentially disrupt the 

formation of testosterone. Ideally, the cell model could be used to test the potential effects of 

xenobiotic compounds on 17β-HSD3 activity and on the transcriptional regulation of Hsd17b3. In 

an unpublished work carried out in our lab, we examined the influence of organotins on the 

activation of the human HSD17B3 promoter. Triphenyltin (TPT) and Tributyltin (TBT) were shown 

to activate the human HSD17B3 promoter at nanomolar concentrations (Fürstenberger et al., 

unpublished data). Since they are no commercially available human Leydig cell lines, we selected 

murine Leydig cell lines to study the influence of TPT and TBT on transcriptional Hsd17b3 
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messenger ribonucleic acid (mRNA) levels. In addition to transcriptional regulation, we were also 

interested in assessing 17β-HSD3 activity. In this project, three different murine Leydig cell lines 

(MA-10, BLTK, TM3) were used to establish a screening model able to identify compounds 

interfering with testosterone synthesis. Fortunately, human and murine androgen 

steroidogenesis are similar, indicating that murine Leydig cells could be a suitable model to study 

testosterone disruption that may be further extrapolated to humans. 
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5.2 Paper 8 (Odermatt et al, 2016) 

 

Disruption of steroidogenesis: Cell models for mechanistic 

investigations and as screening tools 

 

Alex Odermatt, Petra Strajhar, Roger T. Engeli 

 

 

Published manuscript 

 

Contribution: Carefully reviewed the section on Leydig cell culture models. Collected and 

overviewed references about the most important Leydig cell models in the literature.  

Aims: Provided an overview of all available gonadal and adrenal cell lines regarding their 

suitability as screening tools for steroidogenic disruption by xenobiotics. 

Results: This review demonstrates the species specific differences between rodent and human 

cell lines, and highlights that steroidogenesis is altered in most cell lines due to their tumor 

origins.  

Conclusion: The currently available cell lines are limited as screening tools for steroidogenesis. 

Future efforts should specifically aim to develop a human Leydig cell producing testosterone.  
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A B S T R A C T

In the modern world, humans are exposed during their whole life to a large number of synthetic
chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to
the development and/or progression of major diseases. Every year approximately 1000 novel chemicals,
used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the
market, often with limited safety assessment regarding potential endocrine activities. Steroids are
essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for
endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell
lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations
and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting
activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order
to apply them properly, and there is a great demand for improved cell-based testing systems and
protocols. This review intends to provide an overview of the available cell lines for studying effects of
chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future
improvements of cell-based testing systems and protocols.
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1. Introduction

There is an increasing interest in the identification of chemicals
that interfere with the endocrine system. The Endocrine Society
defines an endocrine disrupting chemical (EDC) as an “exogenous
chemical or mixture of chemicals that can interfere with any aspect
of hormone action” [1]. It is important, in our opinion, to
distinguish between transient influences followed by adaptation
* Corresponding author.
E-mail address: alex.odermatt@unibas.ch (A. Odermatt).

http://dx.doi.org/10.1016/j.jsbmb.2016.01.009
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112
and disruption of endocrine functions leading to adverse health
effects. This is considered by the European Union (EU) that defines
an EDC as an “exogenous substance that causes adverse health
effects in an intact organism, or its progeny, secondary to changes
in endocrine function” [2,3]. The protection of human health and
the environment is of high priority for major organizations and
regulatory authorities. Regarding the large number of chemicals
that need to be tested for potential endocrine disrupting effects, in
programs such as REACH (Registration, Evaluation, Authorization
and Restriction of Chemicals, http://ec.europa.eu/growth/sectors/
chemicals/reach/index_en.htm), the EPA’s EDSP (Environmental

http://ec.europa.eu/growth/sectors/chemicals/reach/index_en.htm
http://ec.europa.eu/growth/sectors/chemicals/reach/index_en.htm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsbmb.2016.01.009&domain=pdf
mailto:alex.odermatt@unibas.ch
http://dx.doi.org/10.1016/j.jsbmb.2016.01.009
http://dx.doi.org/10.1016/j.jsbmb.2016.01.009
http://www.sciencedirect.com/science/journal/09600760
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Protection Agency’s Endocrine Disruptor Screening Program,
http://www.epa.gov/endo/) or the FDA (U.S. Food and Drug
Administration) guidelines for drug development (http://www.
fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Gui-
dances/), it is important to first evaluate the most relevant
chemicals, i.e. chemicals with evidence of causing adverse effects
and for which relevant exposure is known or can be expected.
Besides chemicals used in industrial production, agriculture,
electronics, and consumer products, the safety of pharmaceuticals
and food constituents need to be assessed. Thus, a huge number of
chemicals need to be tested for a wide range of possible adverse
effects, including such caused by a disruption of steroid hormone
action.

Amongst other endocrine hormones, steroids play crucial roles
in the regulation of nearly all physiological processes. Several
reports provided evidence for an association of disturbances of
steroid hormone action caused by exogenous chemicals with
developmental defects [4], infertility and reproductive dysfunc-
tions [5,6], testicular, prostate and breast cancer [7–9], obesity and
diabetes [10–12], immune disorders and neurobehavioral and
learning dysfunctions [13,14]. Further research is needed to
identify other chemicals disrupting steroid hormone action, to
evaluate the mechanisms by which such chemicals disrupt steroid
hormone action, and to assess the critical exposure windows and
concentrations that are relevant regarding development and
progression of diseases.

For the initial endocrine safety testing of a large number of
chemicals, improved in silico and in vitro assays are needed to
facilitate the prioritization of chemicals for further toxicological
investigations. Cell-based steroidogenesis assays represent a
suitable starting point to assess disturbances of steroid biosyn-
thesis, induced by direct inhibition of steroidogenic enzymes or by
affecting their expression. The advantage of the cell-based models
is that several enzymes and receptors required for the synthesis of
steroids, as well as the signaling pathways regulating their
activities, may be covered in a single assay. In addition to the
identification of potentially hazardous chemicals, the cell-based
steroidogenesis assays allow first mechanistic insights into the
mode-of-action of EDCs; however, the users need to be aware of
the limitations of the system applied in order to avoid drawing
inappropriate conclusions and over-interpretation of results. This
review focuses on the cell lines that are available to study
steroidogenesis, their advantages and limitations, and the existing
Fig. 1. Schematic overview of adrenal steroidogenesis. Major steroids produced are ind
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gaps for early safety testing of chemicals disrupting steroid
homeostasis.

2. Steroidogenesis

Primary organs that are producing steroids from their precursor
cholesterol include the adrenal glands and the gonads, with testes
in males and ovaries in females. Additionally, in females the
placenta produces high amounts of progesterone during pregnan-
cy [15]. Other organs expressing steroidogenic enzymes include
the brain [16,17], the intestinal tract [18] and the skin [19].
However, the steroids produced in these tissues seem to be
restricted to affect local rather than systemic levels, and the
relevance of steroidogenesis in these tissues will not be discussed.

The major steroidogenic organs synthesize steroids de novo
from cholesterol that is either produced directly by the cell from
acetyl-CoA or taken up from dietary cholesterol bound to low-
density lipoproteins (LDL) in the circulation (for a comprehensive
review see [20]). Cholesterol can be esterified, stored in lipid
droplets and be released by the activity of hormone-sensitive
lipase. The rate-limiting step in adrenal and gonadal steroidogen-
esis is the uptake of cholesterol into the mitochondria. The
steroidogenic acute regulatory protein (StAR) facilitates the
transfer of cholesterol from the outer to the inner mitochondrial
membrane, and its conversion to pregnenolone by the cytochrome
P450 side chain cleavage enzyme (P450scc, CYP11A1) in coopera-
tion with adrenodoxin reductase that functions as an electron
transfer protein of CYP11A1 [20]. Dependent on the organ,
pregnenolone is then further converted by tissue- and cell type-
specific enzymes into androgens, estrogens, glucocorticoids or
mineralocorticoids.

The cortex of the adult human adrenals is responsible for the
production of mineralocorticoids in the zona glomerulosa, gluco-
corticoids in the zona fasciculata and precursors of active
androgens in the zona reticularis (Fig. 1). The zona reticularis
expresses high levels of CYP17A1 [21], which possesses 17a-
hydroxylase activity for the formation of 17a-hydroxypregneno-
lone and 17,20-lyase activity for the subsequent formation of
dehydroepiandrosterone (DHEA). The high expression of cyto-
chrome b5, in the presence of cytochrome P450 reductase, allows
efficient 17,20-lyase activity that is needed for the production of
DHEA [20,22]. Additionally, the zona reticularis expresses high
levels of the steroid sulfotransferase SULT2A1 that is responsible
icated in bold and by solid lines, minor metabolites are indicated by dashed lines.
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for the formation of sulfated DHEA (DHEAS) [23], the most
abundant steroid in human blood [24]. Importantly, 3b-hydrox-
ysteroid dehydrogenase 2 (3b-HSD2) is expressed in the zona
reticularis at very low levels, thus leading to only low amounts of
D4-androstene-3,17-dione (androstenedione) production [20].
Since 17b-hydroxysteroid dehydrogenase type 3 (17b-HSD3) is
absent and 17b-HSD5 (AKR1C3) expressed at very low levels in the
zona reticularis [21,25], only very low levels of testosterone are
produced by the adrenals [26,27]. CYP21A2 is absent in the zona
reticularis, thus no mineralocorticoids and glucocorticoids are
formed in this layer [20].

In the zona fasciculata pregnenolone is converted to 17a-
hydroxypregnenolone by CYP17A1, and pregnenolone and
17a-hydroxypregnenolone are converted to progesterone and
17a-hydroxyprogesterone, respectively, by 3b-HSD2. Most of the
progesterone formed is also 17a-hydroxylated. Further metabo-
lism by CYP21A2 leads to 11-deoxycortisol and lower amounts of
11-deoxycorticosterone that are further converted by CYP11B1,
which is specifically expressed in this zone, into cortisol and
corticosterone, respectively [20,28]. Cytochrome b5 is expressed at
background levels in the zona fasciculata [21], resulting in very low
CYP17A1 17,20-lyase activity and thus low amounts of DHEA
formation [20]. The zona fasciculata expresses the melanocortin-2-
receptor and is therefore responsive to adrenocorticotrophic
hormone (ACTH) [20,28].

The zona glomerulosa does not express CYP17A1, and pregnen-
olone is converted to progesterone by 3b-HSD2 and further to 11-
deoxycorticosterone by CYP21A2, and to corticosterone and
aldosterone by CYP11B2. In the adrenals, CYP11B2 expression is
restricted to the zona glomerulosa and the production of aldoste-
rone is regulated by angiotensin II receptors [20].

The human fetal adrenals produce high amounts of DHEAS,
which is abolished soon after birth where the adrenals mainly
consist of a zona glomerulosa and a zona fasciculata and thus
produce mineralocorticoids and glucocorticoids [29]. The zona
reticularis actively starts producing adrenal androgens at adre-
narche at around 6–8 years of age and reaching peak levels in the
third decade of life, before declining gradually [30,31].

In the testis, steroidogenesis is restricted to the Leydig cells.
They convert pregnenolone by CYP17A1 into 17a-hydroxyprege-
nenolone and further to DHEA (Fig. 2). Because of the high
expression of 3b-HSD2 and 17b-HSD3 but the absence of SULT2A1,
DHEA is not sulfated and therefore further converted to
androstenediol, or by a lower extent to androstenedione, and
subsequently to testosterone in Leydig cells [20,32]. Furthermore,
CYP21A2, CYP11B1 and CYP11B2 are absent, thus no gluco- and
mineralocorticoids are produced. Testicular steroidogenesis is
under the control of human chorionic gonadotropin (hCG) and
luteinizing hormone (LH).
Fig. 2. Schematic overview of steroidogenesis in Leydig cells.
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In the ovaries, steroidogenesis is mediated by theca and
granulosa cells. The granulosa cells are located in the avascular
cellular compartment surrounding the oocyte, and the theca cells
reside in the ovarian stroma; these cellular compartments are
separated by the basal membrane. The theca and granulosa cells
both express StAR and CYP11A1 [33]. Because granulosa cells do
not express CYP17A1 [34], they can synthesize pregnenolone from
cholesterol and they convert it further to progesterone in the
corpus luteum (Fig. 3) [20]. However, for the production of
estrogens, pregnenolone needs to be secreted from the granulosa
cells and taken up by the theca cells, or it is produced directly by
the theca cells, to form DHEA. The theca cells express 3b-HSD2 and
convert DHEA into androstenedione [35]. Androstenedione is then
delivered back to the granulosa cells for the aromatase-dependent
production of estrogens [34]. Granulosa cells also express 17b-
HSD1, which is needed for the conversion of estrone into estradiol.
There are cycle-dependent changes in ovarian steroidogenesis: in
the luteal phase the luteinized granulosa cells are supplied with
sufficient cholesterol, due to enhanced vascularization of the
previously avascular compartment, and elevated LH levels enhance
the expression of CYP11A1 and 3b-HSD2, resulting in the synthesis
of high amounts of progesterone [33]. In the follicular phase,
follicle stimulating hormone (FSH) enhances the expression of
aromatase and 17b-HSD1 for the production of increased amounts
of estradiol from theca cell-derived androstenedione. LH also
activates LH receptors on theca cells to induce CYP17A1 expression,
thereby enhancing androgen precursors for estrogen production by
granulosa cells. Thus, a tight control of the cooperation of
granulosa and theca cell function is essential for the appropriate
regulation of estradiol synthesis.

3. Leydig cell models to investigate steroidogenesis

Three independent large epidemiological studies revealed a
decline in male serum testosterone levels in the general population
[36–38]. Obesity was identified as a contributing factor for some
but not all observations [39]. Increasing evidence suggests that
exposures to EDCs contribute to male reproductive diseases and
that prevention of EDC exposures may reduce the burden of male
reproductive health problems [40]. As an example, cryptorchidism
is a typical impairment following exposure to antiandrogenic
chemicals during male sexual development [41]. Evidence was
provided that levels of polybrominated diphenyl ethers (PBDEs) in
Fig. 3. Schematic overview of ovarian steroidogenesis.
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human breast milk are associated with congenital cryptorchidism,
although a contribution of other environmental factors cannot be
excluded [42]. PDBEs have been shown in in vitro studies to directly
antagonize AR activity (IC50 of approximately 5 mM for the mixture
DE-71 in an MDA-kb2 cell model expressing an AR-dependent
luciferase reporter), and PDBEs additively and/or synergistically
acted with other AR antagonistic compounds [43]. In in vivo studies
PDBEs were shown to cause diminished growth of androgen-
dependent tissues and a delay in puberty in the male rat following
a pubertal exposure to 60 and 120 mg/kg/day of the DE-71 mixture
[44]. Although such high exposure levels are unlikely to be reached
in humans, the fact that humans are exposed to a multitude of
compounds that may exert additive or synergistic effects
emphasizes the need for the screening of chemicals for potential
antiandrogenic effects. Because of the high public demand to
reduce animal testing [45], improved cell-based assays are needed
that allow the identification of chemicals disrupting the biosyn-
thesis of steroids and the gaining of insights into the mode-of-
action of such chemicals.

There are several immortalized rodent Leydig cell lines
available for studying the regulation of steroidogenesis and to
assess the impact of substances on steroid hormone production.
However, to our knowledge, no human Leydig cell model is
currently available that can be used for screening purposes and for
toxicological studies. The available rodent Leydig cell lines have
been derived from spontaneous tumors, upon experimental
induction, or by in vitro immortalization. All of these cell systems
have their limitations, as some of the steroidogenic enzymes and
regulatory pathways are expressed at very low levels, if at all, likely
as a result of the selection of cell clones that rapidly proliferate and
because of dedifferentiation and loss of initial phenotype during
prolonged cultivation.

Probably the most widely used immortalized Leydig cell line is
MA-10 [46]. MA-10, the related MA-12, and the frequently used
mLTC-1 are all derived from a C57Bl/6 Leydig cell tumor
(designated M5480) [47]. These cell lines express LH receptors,
and incubation with LH/hCG induces cAMP-dependent steroido-
genesis. MA-10 cells also express mouse epidermal growth factor
receptor (EGFR), which suppresses the hCG-induced steroidogen-
esis [48]. In both, MA-10 and mLTC-1, progesterone was the main
steroid being produced, in line with the observation that the
original tumor M5480 secreted progesterone but only very low
amounts of testosterone, and the two cell lines displayed similar
functional characteristics [47]. These observations suggest that
3b-hsd1 activity is dominant over Cyp17a1; therefore, pregneno-
lone is mainly converted into progesterone, with only minor
amounts being further converted into androstenedione and
testosterone. For these reasons, we propose that, using progester-
one as a read-out, MA-10 and mLTC-1 cells can serve as suitable
models to detect chemicals that affect the induction of steroido-
genesis, the cAMP- and PKA-dependent signaling, or that directly
inhibit the activities of StAR, Cyp11a1 or 3b-hsd1. Due to the
generation of only low amounts of testosterone by these cell lines,
it is difficult to quantitatively assess the effect of chemicals that
disrupt Cyp17a1 or 17b-hsd3 activities. Nevertheless, the mRNA
expression of key steroidogenic enzymes, including StAR,
Cyp11a1 and 3b-hsd1, and to a lesser extent that of
Cyp17a1 and 17b-hsd3, has been detected in MA-10 and mLTC-
1 cells, and has been found to be affected upon exposure to
chemical modulators [49–51].

MA-10 cells are applied by many investigators to study the
impact of EDCs on the regulation of steroidogenesis; only a few will
be mentioned in this review as examples. Recent studies on effects
of bisphenol A (BPA) and its analogs on steroidogenesis in MA-
10 cells suggested that tetrabromobisphenol A (TBBPA) concen-
tration-dependently increased testosterone production at
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concentrations of 3 mM and higher, while bisphenol S (BPS) had
no effect and BPA and bisphenol F (BPF) induced testosterone
secretion only at very high concentrations (30 and 100 mM,
respectively) [49,50]. Following incubation of the cells for 48 h in
the presence of 10 mM of TBBPA, BPF or BPS an increased
production of progesterone, and in the case of TBBPA of 17a-
hydroxyprogesterone and androstenedione, was measured. Fur-
thermore, incubation of cells with 10 mM of BPF, BPS or TBBPA led
to an elevated expression of 5a-reductase 1, indicating an
increased production of 5a-androstanedione and dihydrotestos-
terone. Importantly, the authors provided evidence that the
TBBPA-mediated increase in testosterone production may be
due to an inhibition of the efflux of androgen precursors required
for testosterone synthesis by the multidrug resistance proteins
MRP1 and MRP4 [50]. These observations emphasize the need to
include steroid transporters in the assessment of EDCs and provide
a further explanation for the low amount of testosterone produced
by MA-10 cells under basal conditions.

MA-10 cells were also used to study direct effects of mono-
phthalates on testicular steroidogenesis [52]. The LH-induced
production of cAMP and progesterone was significantly inhibited
in MA-10 cells treated with 30 mM of mono(2-ethylhexyl)
phthalate (MEHP), whereas testosterone production was signifi-
cantly lowered upon incubation of the cells with 1 mM MEHP, 3 mM
monobutylphthalate (MBP), 10 mM mono-n-oxtylphthalate
(MnOP) or 3 mM monebenzylphthalate (MBeP) but not in the
presence of monoethylphthalate (MEP) or monomethylphthalate
(MMP) [52]. At the high concentration of 100 mM MEHP the mRNA
expression levels of StAR, Cyp11A1 and Cyp17A1 were down
regulated. Interestingly, in mLTC-1 cells (not induced by LH) the
phthalates di-n-butyl phthalate (DBP), MBP, di(2-ethylhexyl)
phthalate (DEHP) and MEHP seemed to increase testosterone
production at low concentrations of 0.001 to 0.1 mM but inhibited
at high concentrations of 100 mM. Interestingly, the mRNA
expression levels of Cyp11A1, Cyp17 and 3b-HSD1 were decreased
even at concentrations as low as 0.1 mM [53,54]. Also, the impact of
the major metabolites of MEHP and DEHP on the expression of
steroidogenic genes has been analyzed, suggesting that the
metabolite 2-ethylhexanal might inhibit Leydig cell testosterone
formation, although this effect was only observed at high
concentrations of 100 mM [55]. The human relevance of such high
concentrations are questionable and further research using lower
concentrations is needed. Also, it should be noted that progester-
one and testosterone were measured by ELISA in this study.
Furthermore, a possible effect of phthalates on the efflux of
androgen precursors or on cholesterol flux in MA-10 or in mLTC-
1 cells has not been investigated.

Other studies focused on initial steps of steroidogenesis.
Incubation of MA-10 and mLTC-1 cells with an organochlorine
compound mixture resulted in a decreased expression of StAR,
CYP11A1 and the adrenodoxin reductase, enzymes crucial for the
production of pregnenolone from cholesterol [56]. The cAMP- and
hCG-induced production of progesterone tended to be lower at
1 mg/ml and was significantly lower at 10 mg/ml of organochlorine
mixture. Also, the UV-filter chemical 2,20,4,40-tetrahydroxybenzo-
phenone (BP2), applied at 30 mM, was found to alter the expression
of StAR, 3b-hsd and Cyp17a1 and had opposite effects on Leydig
cell steroidogenesis than thyroid hormone signaling [57]. More-
over, MA-10 cells were employed to test pesticide formulations
that are widely used in agriculture. The pesticide mixture
Roundup, a broad-spectrum systemic herbicide containing glyph-
osate (N-phosphonomethyl-glycine), inhibited the cAMP analog-
induced progesterone production at subcytotoxic concentrations
of 25 mg/ml by decreasing the expression of the StAR protein [58].
Furthermore, the benzodiazepine midazolam was found to
stimulate progesterone and testosterone production, measured
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by radio-immunoassay, at the subcytotoxic concentrations of
30 and 150 mM in primary mouse Leydig cells and in MA-10 cells by
an induction of the expression of the peripheral-type benzodiaze-
pine receptor and StAR, probably via a pathway involving protein
kinase A (PKA) and protein kinase C (PKC) [59]. Murine mLTC-
1 Leydig cells were used to further investigate the reproductive
toxicity of perfluorooctanic acid (PFOA) that was observed in mice
treated by gavage [60]. Exposure of mLTC-1 cells with 100 mM
PFOA decreased Cyp11a1 mRNA and protein expression and at
300 mM PFOA progesterone production was significantly de-
creased. Also, StAR protein seemed to be decreased, likely as a
result of oxidative stress caused by PFOA exposure [60,61]. The
mycotoxin zearalenone at concentrations of 5 mM was suggested
to affect steroidogenesis in mLTC-1 cells by disrupting lipid
metabolism and inducing endoplasmic reticulum stress-mediated
apoptosis [62,63]. Furthermore, the polybrominated diphenyl
ether BDE-47 at a concentration of 1 mM was found to decrease
progesterone production via cAMP-PKA-dependent downregula-
tion of CYP11a1 [64]. Thus, a multitude of chemicals were shown to
affect inial steps of steroidogenesis by different mechanisms. It
should be noted that in order to judge on the human relevance of
the findings described above further investigations are required, as
in most if these in vitro studies the concentrations applied were
either much higher than concentrations measured in humans or
data on such concentrations are not yet available.

Another mouse Leydig cell line, designated TTE1, was derived
from transgenic mice, upon immortalization using a temperature-
sensitive simian virus 40 (SV40) large T-antigen [65]. These cells can
be grown at 33 �C and differentiated at a non-permissive tempera-
ture of 39 �C. The cell model was used to study genes involved in
Leydig cell differentiation characteristics, and the expression of the
terminal enzyme of testosterone synthesis, 17b-hsd3, was con-
firmed at least on the mRNA level [66]. TTE1 cells were only used in
very few studies, so for example to investigate the impact of
diethylstilbestrol on the expression of steroidogenic genes [67,68].
Diethylstilbestrol at concentrations of 50 nM or higher decreased
Cyp11a1 expression and, furthermore, diminished apoptotic cell
death pathways and DNA repair capability, suggesting an increased
carcinogenic potential of the exposed cells.

Mice transgenic for the SV40 T-antigen under the control of the
inhibin-a promoter were used to establish the steroidogenic
Leydig cell line BLT-1 [69]. BLT-1 cells responded well to LH and
hCG by increased cAMP levels and enhanced production of
progesterone. As observed for MA-10 and mLTC-1, BLT-1 cells
are only producing very low amounts of testosterone, as measured
by enzyme immunoassay. Regarding investigations into EDCs, the
BLT-1 derived cell clone BLTK1 was used to study several
environmental toxicants [70]. BLTK1 cells seem to express all
key steroidogenic proteins such as StAR, Cyp11a1, Cyp17a1, 3b-
hsd1, 17b-hsd3 and 5a-reductase 1. These cells were shown to
respond to hCG and forskolin, which resulted in enhanced cAMP
production and expression of steroidogenic genes. An elevated
production of progesterone and testosterone was indicated by
enzyme immuno assays measurements. The antifungals pro-
chloraz (30 mM) and triclosan (30 mM) seemed to decrease the
hCG-induced testosterone production, whereas MEHP (300 mM)
and atrazine (at concentrations of 30 mM or higher) promoted
basal testosterone formation but inhibited the hCG-dependent
testosterone synthesis. Furthermore, the triazine herbicides
atrazine, simazine, propazine and terbuthylazine were reported
to enhance progesterone and testosterone production in
BLTK1 cells at high concentrations (with significant effects
observed at 100 mM or higher), effects explained by the altered
expression of steroidogenic genes [71]. However, in these studies
very high concentrations of questionable human relevance were
used.
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The non-tumor mouse epithelial Leydig cell line TM3 was
originally derived from the testis of an immature Balb/c mouse
[72]. TM3 cells respond to LH, but not FSH, with an increased cAMP
production [73]. Evidence was provided that LH and EGF are
involved in the regulation of cyclin-dependent kinase 5 (Cdk5)
expression and activity, and that this signaling pathway modulates
hormonally stimulated testicular steroidogenesis [74]. Further-
more, LRH-1 was found to regulate Cyp19a1 expression via
promoter II in multiple testis cell types [75]. Additionally, a role
for hypoxia-inducible factor-1a by mediating hypoxia-dependent
changes on steroidogenesis by regulating the transcriptional
expression of 3b-hsd1 was reported [76]. The C1q and tumor
necrosis factor-related protein (CTRP3) was found to induce
testosterone production by increasing cAMP and phosphorylation
of cAMP response element-binding protein (CREB) by PKA and
subsequently enhancing the expression of StAR and Cyp11a1 [77].
TM3 cells express V1 type arginine vasopressin receptors that
seem to act independent of the adenylate cyclase system [78] and
calcitonin receptors, which mediate calcium influx and stimulate
cAMP formation and testosterone secretion [79]. They also express
inhibin/activin b-A subunits and activin receptors II and IIB [80]. A
role for the Src tyrosine kinase in the regulation of phosphodies-
terase PDE4 activity and the production of cAMP was reported [81].
TM3 cells mainly produce progesterone, and only minor amounts
of testosterone (own observations), suggesting that they can serve
as a model to study early steps of the regulation of steroidogenesis
and direct inhibition of the activities of StAR, Cyp11a1 and 3b-
hsd1.

The TM3 mouse Leydig cell line is frequently used to study the
impact of environmental pollutants on testicular toxicity and on
alterations in steroidogenesis. A study on gap junctional intercel-
lular communication in TM3 cells showed inhibitory effects by
estradiol and diethylstilbestrol via an estrogen receptor (ER)-
dependent mechanism [82]. Interestingly, similar effects were
observed at 10 pM and 10 mM concentrations for both diethylstil-
bestrol and estradiol, and these effects were fully reversed in the
presence of an ER antagonist. Incubation of TM3 cells with diesel
exhaust particles led to a reduced expression of ERa (at 0.1 mg/ml
particle concentration) and an induction of Cyp1a1 (at 1 mg/ml)
[83]. A transcriptomics analysis was performed on the impact of
1 and 5 mM methoxyacetic acid, the active metabolite of the
industrial chemical ethylene glycol monomethyl ether, on
TM3 cells revealing alterations in steroidogenesis, inflammation
reactions and metabolic functions [84]. It needs to be noted that
these concentrations are very high, and thus the human relevance
is questionable. Two recent studies provided evidence for a
protective role of the activation of the transcription factor
Nrf2 toward the toxicity caused by the phthalate DBP, indicating
the importance of the antioxidant defence system to protect Leydig
cells from toxic chemicals [85,86]. Studies on chemicals affecting
testosterone production in TM3 cells are rather uncertain, since
these cells produce very low amounts. Furthermore, results on
changes in testosterone production obtained using ELISA kits
should be confirmed using quantification by GC–MS or LC–MS.

I-10 clonal Leydig cells were originally obtained from a
spontaneous mouse testicular tumor [87]. Like other mouse
Leydig cell lines described above, I-10 were reported to mainly
produce progesterone, which was stimulated by cAMP [88],
although not as efficient as in MA-10 and mLTC-1 cells. I-10 Leydig
cancer cells were scarcely used for the assessment of EDCs. A study
on PCBs showed enhanced CYP19a1 expression in mouse I-
10 Leydig and human H295R adrenal cells following incubation for
24 h with the high concentration of 10 mM PCB126 [89].
Interestingly, this effect was blunted in hCG and cAMP analog-
treated cells, and the authors proposed a role for AhR in these
effects. Similarly, the mouse Leydig tumor cell line K28 was applied
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only in a few studies, including the investigation of the time-
dependent induction of StAR mRNA expression and progesterone
production by 9-cis and all-trans of retinoic acid (increases at
concentrations greater than 10 nM) [90], the impact of LH on the
expression of Nur77 (NR4A1) [91], the effect of 1 mM BPA under
serum-free conditions for 24 h on the induction of Nur77
expression and the production of progesterone [92], as well as
the stimulating effects of 30 mM cadmium chloride on CREB
protein phosphorylation and StAR expression [93].

The rat Leydig tumor interstitial cell line R2C displays high StAR
expression and produces high amounts of progesterone [94–96].
The high expression of StAR, Cyp11a1 and 3b-hsd1 was confirmed
by RT-PCR and Western blot [97] and the production of
progesterone was detected by ELISA and RIA measurements
[98,99]. The expression of Cyp17a1 and the production of
testosterone have been reported [97–99]; however, a general
problem with antibody-based quantification of proteins and
steroids remains the often limited specificity of the antibodies
used [100]. Thus, testosterone production by R2C cells should be
confirmed using quantification by GC–MS or LC–MS. An interesting
property of R2C cells is that they are insensitive to cAMP regulation
and do not require trophic stimulation to produce progesterone,
which might be explained by a constitutively activated down-
stream signaling pathway [95,101]. Because of the constitutive
production of progesterone, these cells are suitable to test
chemicals that directly inhibit the activity of StAR, Cyp11a1 or
3b-hsd1. On the other side, this cell line is not suitable to study
chemicals affecting the induction of steroidogenesis due to the lack
of sensitivity of the involved signaling pathways.

R2C cells were used in a comparative study with MA-10 cells to
assess effects of various phthalates on testosterone production
measured by ELISA [98]. The phthalates MBP and MEHP
significantly inhibited testosterone synthesis at concentrations
of 1 and 3 mM, with IC50 values of 3 and 6 mM respectively.
Phthalates with shorter alkyl side chains were found to be less
active or inactive. Interestingly, R2C cells express substantial levels
of Cyp19a1, and this cell line has been applied to characterize
aromatase inhibitors [102,103]. A study on effects of BPA
(concentrations of 0.1–10 nM) on steroidogenesis suggested an
up regulation of Cyp19a1 protein expression and activity, whereas
testosterone synthesis was decreased [104]. Testosterone was
measured by ELISA. Using R2C cells the anabolic androgenic
steroids nandrolone and stanozolol (at 1 mM concentration) were
shown to increase Cyp19a1 expression as well as estradiol
production [105]. Further, these authors provided evidence for
an additive effect of androgens and IGF-1 on R2C cell proliferation
and aromatase expression. In contradiction, a recent study showed
that treatment of R2C cells with the androgen mibolerone up
regulated the transcription factor DAX-1 and inhibited the
expression and activity of Cyp19a1, in line with observations in
old Fischer rats with spontaneous Leydig cell tumors where AR and
DAX-1 were down regulated and Cyp19a1 was up regulated [106].
The reason for the discrepances of the above studies remains
unclear and requires further research.

A major limitation for mechanistic investigations into the
regulation of steroidogenesis in Leydig cells and the assessment of
the impact of potential EDCs is the fact that currently no human
Leydig cell model is available. There are considerable species
differences in the functions of Leydig cells. For example, it has been
shown that the expression level of LH receptors is an order of
magnitude higher in rat compared with human Leydig cells, and
that rat Leydig cells respond with hyperplasia to hCG, whereas
human Leydig cells become hypertrophic [107–110]. Furthermore,
rat Leydig cells express gonadotropin-releasing hormone, whereas
mouse and human Leydig cells do not [111,112].
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Additionally, several studies demonstrated species-specific
inhibition of testicular steroidogenesis by EDCs. Using organotypic
primary culture systems, the phthalate MEHP at a concentration of
10 mM was shown to decrease testosterone production in rat but
not in human fetal testis explants [113,114]. Further support for
species-specific effects of phthalates was provided by studies
where rat and human fetal testes were xenografted into a host
mouse or rat [115,116]. Treatment with di-n-butylphthalate
(500 mg/kg per day for four days) inhibited steroidogenesis in
animals with rat but not human xenografts. Also, diethylstilbestrol
did not affect human fetal testicular steroidogenesis in the
xenograft model [117] and in human fetal testis explants, in
contrast to rat and mouse testis cultures [118,119], a difference
explained by the fact that ERa is expressed in rat and mouse but
not in human fetal Leydig cells [117]. Moreover, the anti-diabetic
drug metformin inhibited testosterone production at an order of
magnitude higher concentrations in human compared with mouse
testis explants [120]. In contrast, it was shown that BPA inhibited
testosterone synthesis at 100 times lower concentrations in human
compared with rat and mouse fetal testis explants [118]. These
studies demonstrate important species-specific differences in the
susceptibility of human, rat and mouse testes to xenobiotics and
further emphasize the need to establish a human Leydig cell model
for the investigations into the molecular mechanisms of steroido-
genesis disruption.

4. Cell-based systems to study effects of EDCs on ovarian
steroidogenesis

In the industrialized countries, there is an increasing incidence
of reproductive disorders such as polycystic ovary syndrome
(PCOS) [121], which is characterized by chronic anovulation and
hyperandrogenism and results in hirsutism, infertility and
menstrual disturbances. As with male infertility, there is evidence
for the contribution of EDCs from consumer products or
environmental pollutants to the increasing incidence of female
reproductive disorders (for a recent comprehensive review see
[122]). Several EDCs and potential EDCs have been detected in
human samples, including follicular fluid, from the general
population [123–127]. Exposure to EDCs likely contributes to
sub-fecundity, ovarian failure and infertility, and affects reproduc-
tive behavior. Exposure to EDCs may contribute to ovulatory
dysfunction by decreasing estradiol biosynthesis in granulosa cells
or as abortifacients by disrupting progesterone production in luteal
cells [128].

In vivo testing of EDCs for reproductive toxicity is mostly
conducted in rodents, with fertility as a primary endpoint [129].
Alteration in serum steroid levels may indicate an adverse effect
but it may also represent an adaptive response, thus often not
providing sufficient information on the toxicity of a given
chemical. Also, changes in circulating steroid levels may be due
to a direct effect on steroidogenesis or an altered feedback
regulatory system. Ex vivo tissue samples, e.g. whole ovaries or
isolated individual follicles, can be used to study follicular
development, ovulation and steroidogenesis, and assays using
such samples can provide results on multiple fertility-related
endpoints [130]. In order to allow high throughput analyses and to
gain mechanistic insight into the action of EDCs, cultured cells are
advantageous. Isolated primary theca and granulosa cells can be
applied for functional studies, and they retain the normal
responses and steroidogenic pathways [131]. Porcine and bovine
primary cells can be isolated from ovaries obtained from the
slaughterhouse or from ovaries of rodent animal models; however,
there are significant species-specific differences in the steroido-
genic pathways, which need to be taken into account when trying
to extrapolate results to the human system. Human granulosa cells
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are mostly obtained from women undergoing in vitro fertilization;
however, these cells are usually subjected to supraphysiological
concentrations of hCG and FSH, and these cells can only be
cultivated for a relatively short time [132]. For these reasons, there
is a great demand for suitable human theca and granulosa cell lines
to investigate a large number of individual EDCs at various
concentrations and incubation time as well as mixtures of EDCs.
The establishment of a theca cell line was not successful so far; in
contrast, several granulosa cell lines are available for investigating
effects of chemicals on steroidogenesis.

Granulosa cell lines are useful to study the impact of potential
EDCs on progesterone synthesis as well as on the aromatase- and
17b-HSD1-dependent production of estradiol upon incubation of
these cells with androstenedione. There is a large number of
human ovarian cancer cell lines available (for a recent review see
[133]). Most of them express CYP19A1 and 17b-HSD1 and their
proliferation is stimulated by estrogens. Additionally, immortal-
ized granulosa cell lines from various animal species and of human
origin have been described [134].

Among the rodent granulosa cell lines, KK-1, GRM01 and
GRM02 were found to produce progesterone, and retain respon-
siveness to cAMP, FSH and LH/hCG [134]. KK-1 cells were derived
from mice bearing an SV40 T-antigen driven by the inhibin-a
promoter, and treatment of these cells with hCG, forskolin and FSH
increased cAMP 10-fold, 40-fold and 2.6-fold, respectively,
indicating enhanced steroidogenesis [135]. KK-1 cells were shown
to express Cyp19a1 and 17b-hsd1 and convert androstenedione to
estradiol. The KK-1 cell line was used, for example, to study effects
of phthalates on the stimulation of steroidogenesis [136]. The
phthalate MEHP at high concentrations of 20–100 mM stimulated
basal steroid production in KK-1 granulosa cells, a finding
confirmed in mLTC-1 Leydig cells. The expression of StAR and
cAMP-mediated signaling did not seem to be affected, and the
authors suggested that MEHP may stimulate steroidogenesis by
enhanced cholesterol supply. Thus, KK-1 represents a mouse cell
system to study granulosa steroidogenesis. GRM01 and GRM02
granulosa cell lines were established by transfection of murine
granulosa cells with v-myc [137]. Both cell lines retained
steroidogenic activity and were shown to express 3b-hsd2 and
17b-hsd1 [138]. GRM01 was able to produce both progesterone
and estradiol de novo, whereas GRM02 produced progesterone but
not estradiol [139]. However, aromatase activity was also
demonstrated in GRM02 upon the addition of androstenedione
or testosterone to the culture medium. Steroid production was
induced in both GRM01 and GRM02 by LH/hCG, FSH, forskolin and
cAMP analogs. Both cell lines also express inhibin-a, which has a
role in feedback regulation by inhibiting pituitary FSH secretion.
They represent alternative murine cell models to study the impact
of potential EDCs that act as direct inhibitors of enzymes involved
in progesterone or estradiol production or of the signaling
pathways involved in steroidogenesis in granulosa cells.

There are several human granulosa cell lines that are useful for
the investigation of endogenous regulators of steroidogenesis as
well as pathways involved in metabolic regulation, the regulation
of cell proliferation and apoptotic pathways. The cell lines HGP53,
HO23, HGL5, HTOG and SVOG were primarily used to study
signaling pathways, which are involved in the regulation of
steroidogenesis and effects on apoptosis as well as cell prolifera-
tion [140–145]. The immortalized human granulosa cell line
COV434, initially isolated from a primary granulosa cell tumor, was
shown to express FSH receptor and CYP19A1. In FSH supplemented
medium COV434 was able to produce estradiol from androstene-
dione [146]. FSH and forskolin both stimulated steroidogenesis by
induction of cAMP. Pharmacological inhibition of the FSH receptor
was found to inhibit COV434 cell proliferation [147]. Furthermore,
incubation of COV434 cells with soy isoflavones, considered to act
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as phytoestrogens, promoted cell proliferation [148]. Incubation
with 5–50 mM genistein led to increased expression of ERa and
enhanced cell proliferation by repressing proapoptotic genes. The
human relevance of these observations remain uncertain because
of the low bioavailablity of oral intake of isoflavones.

The most widely used human ovarian granulosa-like tumor cell
line is KGN. Progesterone production as well as CYP19A1- and 17b-
HSD1-dependent estradiol formation from androstenedione sup-
plemented culture medium was found to be induced by FSH via
induction of IGF-1 in KGN granulosa cells [149]. Additionally,
several endogenous regulators, such as steroidogenic factor-1 (SF-
1) [150], liver receptor homolog-1 (LRH-1) [151], AMP-kinase
(AMPK)/sirtuin-1 (SIRT1) [152], oocyte-derived growth differenti-
ation factor and bone morphogenic protein 15 [153], the Notch
signaling patway [154] and the Hippo pathway [155], were shown
to affect progesterone production and CYP19A1- and 17b-HSD1-
dependent estradiol synthesis.

Several investigators used the KGN granulosa cell line to
address the impact of xenobiotics on steroid synthesis. Bisphenol-
A (BPA) was found to activate peroxisome proliferator-activated
receptor (PPAR)g and inhibit the FSH-stimulated insulin-like
growth factor-1 (IGF1)-dependent induction of CYP19A1 expres-
sion and estradiol synthesis in KGN cells and in primary granulosa
cells [156]. A significant blunting of the FSH-induced CYP19A1
expression was seen at 40 mM whereas estradiol production was
reduced after treatment with 80 mM of BPA. The BPA concen-
trations applied are very high and human relevance of this findings
remains uncertain. Another study found that BPA concentration-
dependently down regulated CYP19A1 expression in KGN cells as
well as in human fetal osteoblastic cells, with significant effects
seen at 5 mM [157]. Additionally, DEHP (5 mM) and TCDD (10 nM)
were found to inhibit the FSH-induced estradiol synthesis and to
enhance the AhR expression in a PPAR-dependent manner [158].
Another study found that atrazine and simazine at 10 mM
enhanced the stimulatory effect of transfected SF-1 on aromatase
mRNA expression and activity in KGN cells [159]. Recently, the
pesticide simazine was found to shorten anogenital distance and to
decrease whole body, ovarian and uterine weights in offspring of
pregnant mice treated with 5–500 mg/kg of this pesticide [160].
Simazine at a concentration of 1 nM diminished the viability and
proliferation of KGN granulosa cells. Interestingly, a U-shaped
curve was observed, whereby concentrations of 100–1000 nM no
longer inhibited cell viability and proliferation.

Currently, most studies on EDCs affecting ovarian steroidogen-
esis are conducted using tumor cell lines of granulosa origin, where
several pathways may be altered compared with normal granulosa
cells. This limitation needs to be considered in the interpretation of
results. Also, most cell lines are cultivated in medium containing
high glucose concentrations and fetal bovine serum as well as
under hyperoxia, a situation clearly distinct from that of the
physiological context and likely to affet metabolic pathways and
steroid production. Another limitation is that currently no suitable
human theca cell line is available. Since the production of steroids
by the ovaries requires a tight cooperation of granulosa and theca
cells, ideally a co-culture system of granulosa and theca cells
should be applied for the investigation of ovarian steroidogenesis.

5. Adrenal cell models to investigate disruption of
steroidogenesis

The adrenal glands play an essential role in the regulation of
electrolyte and energy homeostasis [161]. An over production of
glucocorticoids by the adrenal glands ultimately causes Cushing's
syndrome, which is characterized by increased visceral adipose
tissue, insulin resistance, skin and skeletal muscle atrophy, and
impaired wound healing. In contrast, insufficient glucocorticoid
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production causes Addison's disease, characterized by hypoten-
sion, fatigue, muscle weakness, loss of body weight and depres-
sion. The clinical observations emphasize the importance of
including the assessment of chemicals applied to humans (drugs,
chemicals in food and personal care products) or released at high
amounts into the environment for potential adrenal toxicity. In this
respect, fatal adrenal isufficiency, due to unexpected severe
adverse drug effects [162–165], is a known clinical problem that
has been recognized by the FDA [166]. In contrast to the
investigations of the safety of chemicals regarding reproductive
and developmental endpoints, with a major focus on the
disruption of sex steroid hormone action, the adrenal gland has
been neglected in EDCs regulatory testing strategy, as recently
discussed by Harvey [167]. However, there are several chemicals,
e.g. drugs, chemicals contained in consumer products and
environmental pollutants, that were shown to cause adrenal
toxicity (for reviews see [163,167,168]), further emphasizing the
necessity of testing chemicals for potential adrenal toxicity.

Nevertheless, regarding the use of cell-based testing systems,
there is a widely used human adrenal cell line, i.e. H295R. The
OECD (Organization for Economic Cooperation and Development)
published a guideline for the testing of chemicals using this cell
line [169]. The H295R cell line was derived from the NCI-H295 cell
line that was established from an adrenocortical carcinoma of a
female patient [170]. The use of NCI-H295 cells was limited by the
slow proliferation and the fact that they formed cell clusters in
culture. Using GC-MS analysis and radio-immuno assays (RIA) NCI-
H295 cells were shown to produce about 30 different steroids
[170–174]. Importantly, this cell line was shown to express most of
the major steroidogenic genes; it also expresses CYP11B2 and has
the ability to produce aldosterone, mainly upon stimulation with
angiotensin II or potassium. The parental NCI-H295 cells were used
to derive the H295A cells [175] as well as the H295R cells [173].
H295R cells can further be distinguished as H295R-S1, H295R-
S2 and H295R-S3 clones, depending on the cultivation conditions.
H295R-S1 are cultivated in a medium containing Nu-serum,
H295R-S2 in a medium with the serum substitute Ultroser-G and
H295R-S3 in a medium containing Cosmic calf serum [176].
Furthermore, three additional clones were derived from NCI-H295,
namely HAC13, HAC15 and HAC50 [176–178]. The NCI-
H295 derived clonal cell lines all grow as adherent monolayers
but show significant differences in the expression of steroidogenic
enzymes, the response to endogenous regulators and the amounts
of steroids synthesized, emphasizing the importance of the culture
medium composition. Nevertheless, the NCI-H295 cell lines
respond to angiotensin II and potassium by increased aldosterone
production; however, their response to ACTH is either absent or
very weak [179]. Besides the NCI-H295 clonal cell lines, no other
human adrenal cell line with substantial steroidogenic properties
has been reported to date.

Based on the secreted steroids and mRNA analyses the NCI-
H295 clonal cell lines appeared to express all of the adrenocortical
enzymes that were present in the original tumor including StAR,
3b-HSD2, CYP11A1, CYP17A1, CYP21A1, CYP11B1, CYP11B2, 3b-
hydroxysteroid sulfotransferase and low levels of CYP19A1
[173,178]. The expression pattern and steroids produced indicates
that these cells represent characteristics of the different adrenal
zones. It needs to be noted that the basal production of cortisol and
aldosterone in H295R cells is low, indicating a low expression of
CYP11B1 and CYP11B2 in the absence of inducers. However,
treatment with endogenous regulators can enhance some zone-
specific effects. Forskolin and cAMP analogs enhance the produc-
tion of adrenal androgens (DHEA, DHEAS, androstenedione) and
glucocorticoids (cortisol, 11-deoxycortisol, corticosterone), where-
as angiotensin II, the primary regulator of the renin-angiotensin-
aldosterone system, and potassium induce the production of
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aldosterone in H295R cells [171,172,180,181]. It was shown that
H295R cells mediate angiotensin II effects through angiotensin
receptor 1 (AT1) [172,179,182–184]. In contrast, H295A do not
express substantial levels of AT1 and lack sensitivity to angiotensin
II [185]. NCI-H295 clonal cell lines show weak or absent response
to ACTH due to the very low expression of melanocortin 2 receptor
(MC2R) [177]. Interestingly, in H295R cells ACTH induced a
transient increase in aldosterone but not in cortisol production.
Thus, depending on whether the cells are used in the basal state or
upon stimulation with various effective agonists, the adrenal cell
lines may be used to study the effect of EDCs on the functions of the
different adrenocortical zones.

Besides the human NCI-H295 clonal cell lines, mouse adrenal
cell lines have been used in several studies on adrenal steroido-
genesis. The mouse Y-1 cells were reported to exhibit character-
istics of both zona fasciculata and zona glomerulosa, and they are
able to produce corticosterone and aldosterone [173,186–188]. Y-
1 cells were shown to respond to ACTH with increased expression
of steroidogenic genes and enhanced corticosterone production;
however, the stimulatory effect was rather modest compared with
that of isolated primary mouse adrenal cells [179,189]. Later, two
other cell lines, designated ATC1 and ATC7-L, established from
adrenal tumors of two transgenic mice expressing the SV40 large
T-antigen under the control of the akr1b7 promoter, have been
described [190]. Both cell lines exhibited a typical phenotype of the
zona fasciculata. They produced high amounts of corticosterone
and retained responsiveness to ACTH. Incubation of these cells
with ACTH increased SF-1 and decreased DAX-1 expression,
providing an explanation for the observed stimulation of
corticosterone production. Thus, ATC1 and ATC7-L represent
useful cell models to study zona fasciculata specific function.

In contrast to the testicular and ovarian cell models, there is a
human adrenal cell model (H295R) that has been recognized by the
regulators for toxicity screening and resulted in an OECD test
guideline for the evaluation of EDCs [169]. Therefore, a large
number of studies applied the H295R cell model for the
assessment of chemicals that cause disturbances of steroidogene-
sis, including pharmaceuticals, consumer products, food constit-
uents and environmental pollutants [191–198], and it is out of the
scope of this review to cover the findings of these studies.
Currently, the OECD guideline only focuses on the use of H295R
cells in their basal state and on the production of estradiol and
testosterone as endpoints [199], two hormones not typically
produced by the adrenals. Thus, there are limitations of the current
protocol as well as in the use of the H295R cells and the
exploitation of this cell model could be significantly extended.
Interestingly, the measurement of the main adrenal steroids, i.e.
adrenal androgens, glucocorticoids and mineralocorticoids, is
currently not covered by the OECD guideline and an extended
protocol to include the quantification of DHEA, cortisol and
aldosterone needs to be validated [200,201]. Other important
steroids such as progesterone, 17a-hydroxyprogesterone, 11-
deoxycorticosterone and 11-deoxycortisol should also be deter-
mined simultaneously with the major adrenal steroids in order to
obtain a broader picture of disturbances caused by a given
chemical.

Since in their basal state H295R cells produce only low amounts
of cortisol and aldosterone, the cells should be used in the basal
state to detect chemicals that induce steroidogenesis and upon
treatment with specific agonists such as ACTH, angiotensin II and
potassium [202] in order to detect chemicals that inhibit
steroidogenesis. For the latter, the time point of adding a chemical
is important. The pre-incubation or simultaneous addition of a
chemical with an inducer may allow to identify chemicals that
disrupt regulatory pathways of steroidogenesis. Incubation of a
chemical following stimulation of the cells will allow to identify
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compounds that directly inhibit steroidogenic enzymes. Thus,
different protocols need to be applied depending on the mode-of-
action of a given compound. Also, inclusion of appropriate
reference compounds (positive and negative controls) and time
course analysis of the steroid production would aid the interpre-
tation of the data. Another important issue is the inclusion of
measurements of the steroid concentrations in the complete
medium at the time of the start of the experiment, as the amounts
of these steroids are influenced by the composition of the serum
used. Furthermore, the availability of LC–MS based methods allows
to simultaneously quantify several steroid hormones and specific
steroid pattern analysis can be performed for reference com-
pounds and individual EDCs [201,203–205]. In many recent studies
antibody-based detection methods have still been used for
quantification of steroids. These methods often are lacking
specificity due to cross-reactivity of the antibodies. Thus, GC–
MS and LC–MS methods should not only allow more accurate
quantification but allow the simultaneous assessment of multiple
steroids.

A major limitation of the H295R cell system is the insensitivity
toward ACTH. Thus, the establishment of an additional human
adrenal cell line is required. Regarding ACTH response, murine
ATC1 and ATC7-L cells may represent useful alternatives for testing
until a suitable human cell system is available; however, species-
specific differences in signaling pathways need to be taken into
account.

6. Conclusions and outlook

Cell-based steroidogenesis models are highly valuable for
mechanistic studies of chemicals disrupting steroidogenesis and
allow an initial medium to high throughput assessment of the
potential endocrine toxicity of chemicals. In contrast, to adrenal
steroidogenesis, there is no commonly used cell line or standard-
ized procedure to assess effects of chemicals on steroidogenesis in
Leydig cells and ovarian cells. Future efforts should therefore aim
at establishing a human Leydig cell line with the capability to
respond to LH and produce testosterone. To investigate ovarian
steroidogenesis, a human theca cell model is needed and, ideally, a
theca granulosa co-culture cell system responding to FSH should
ideally be established, with the capability for de novo steroid
synthesis up to the final step of estradiol production. Moreover,
there is a need for an ACTH-sensitive human adrenal cell line.

In order to extend and improve the current cell-based testing
protocols for studying chemicals that disrupt steroidogenesis and
to facilitate the comparison of results from different laboratories,
several general issues should be considered: (1) the description of
experiments using steroidogenic cell lines should include passage
number, cell density, incubation time and the composition of the
complete medium used, including glucose concentration, possible
use of antibiotics, amount of serum as well as the amount of
steroids contained in the complete medium. Cells should only be
used within certain passage numbers to guarantee comparable
steroidogenic activity and responsiveness of the involved signaling
pathways; (2) Ideally, the same positive and negative controls
should be included in every experiment to verify the responsive-
ness of the cell batch used; (3) The cells should be used in the basal
state as well as upon stimulation with specific inducers. Ideally, the
same inducers, concentrations and conditions should be applied in
different laboratories and experiments to allow a direct compari-
son of the results. The chemicals to be tested should be added prior
to stimulation or simultaneously with the inducer in order to
investigate whether the response to an inducer is blunted or
potentiated, as well as following stimulation in order to detect
direct effects on steroidogenic enzymes; (4) The quantification of
steroid metabolites should be performed by GC–MS or LC-MS to
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assure specificity of the results. The major steroids should be
quantified rather than a single steroid; and (5) another key issue
remains the experimental concentration of a given chemical to be
tested. A drawback of cell-based studies is the short duration of the
incubation compared with humans who might be exposed for a
long period of time. Also, often human exposure data is not
available and concentrations of a given compound can vary
significantly from its tissue concentration. Usually concentrations
chosen for in vitro experiments are higher than those observed in
humans. Nevertheless, it has to be distinguished between studies
aiming at providing mechanistic information and studies for risk
assessment. For the latter, it is crucial to choose concentrations
that realistically can be reached after occupational exposure or in
case of environmental toxicants after exposure in the general
population. As suggested by Teeguarden and Hanson-Drury
toxicity study exposures should be directly compared to human
exposure if such data are available and qualification of a study as
“low dose” in the absence of reliable human exposure data should
be avoided [206].

Thus, there is still considerable room for improvement of the
currently available cellular testing systems and the protocols for
measurements of chemical-induced disturbances of steroidogen-
esis.
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Contribution: Conducted all in vitro cell experiments in MA-10, BLTK, and TM3 cells. Analyzed 

and provided all real time-PCR data. Drafted the paper manuscript.   

Aims: To characterize and select a murine Leydig cell model to develop an in vitro screening tool 

for disruption of androgens synthesis.  

Results: All tested cell lines were not able to produce detectable levels of testosterone without 

stimulation. Stimulated cells were able to dose-dependently increase testosterone synthesis but 

to a lesser extent compared to other steroids, such as progesterone and androsterone. Gene 

expression studies revealed low levels of endogenous 17β-HSD3, an absence of 17β-HSD5, and 

significant levels of 17β-HSD1 in all of the tested cell lines.    

Conclusion: This study emphasizes the need to use of LC-MS to quantitatively analyze steroids 

secreted by Leydig cells and shows that MA-10 and BLTK1 cells produce a variety of steroids but 

only low amounts or no testosterone. 
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Abstract 

Mammalian Leydig cells produce the majority of the systemic levels of the primary male sex 

hormone testosterone (T). T plays a crucial role during development of male reproductive tissues, 

onset of puberty, and maintaining health state. Disruption of T synthesis has been associated with 

several diseases. The final step of T synthesis is catalyzed by 17β-hydroxysteroid dehydrogenase 

3 (17β-HSD3). Due to the lack of a human Leydig cell model, murine cell lines (MA-10, BLTK1, 

TM3) were assessed for their suitability to investigate substances interfering with T production. 

Endogenous 17β-HSD3 expression and the ability to convert ∆4-androstene-3,17-dione (AD) into 

T was studied in these murine cell lines. Furthermore, cells were stimulated using br-8-cAMP and 

forskolin to study the effects on steroidogenesis. Cell supernatants were analyzed using LC-

MS/MS. The results revealed that the unstimulated murine Leydig cell lines incubated with AD 

produced very low T but substantial amounts of the inactive metabolite androsterone. Further 

characterization showed that stimulated MA-10 cells generated low but concentration-

dependent amounts of AD and T but high amounts of progesterone. Gene expression analyses 

revealed very low or background 17β-HSD3 levels, absence of 17β-HSD5 (Akr1c6), but substantial 

17β-HSD1 expression. In conclusion, murine MA-10, BLTK1 and TM3 Leydig cells are not suitable 

to study 17β-HSD3 activity. The low T produced by these cells may be due to 17β-HSD1, accepting 

AD as substrate. This study emphasizes the necessity of quantitatively analyzing steroids using LC-

MS/MS or related methods and shows that MA-10 and BLTK1 cells produce a variety of steroids 

but only low amounts or no T. 
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Introduction 

Steroid hormones are involved in the regulation of essential physiological processes. Systemic 

levels of steroids are mainly produced by the adrenal glands, synthesizing mineralocorticoids, 

glucocorticoids and precursors of active androgens, and the gonads, synthesizing active sex 

steroids [1]. Disruption of steroidogenesis by genetic defects or environmental influences, 

including the exposure to synthetic chemicals, has been associated with developmental 

disturbances [2], impaired reproduction [3, 4], cancer [5-7], metabolic disorders [8-10], immune 

and neurologic diseases [11, 12].  

For the identification of substances interfering with steroidogenesis and for mechanistic 

investigations cell lines derived from the adrenals or from testicular Leydig cells represent 

ethically accepted, low-cost and rapid testing systems and alternatives to primary cells and animal 

experimentation. Nevertheless, cell-based models must be well characterized and they should be 

used only for well-defined applications for which they have proven useful. In contrast to the 

adrenals, where a human adrenal adenoma cell line (H295R) has been validated according to the 

Organization for Economic Cooperation and Development (OECD) guideline to detect substances 

disrupting steroid production [13], currently no human Leydig cell line to study testicular 

steroidogenesis is available. Primary human Leydig cells are difficult to obtain due to low yield, 

and there are large inter-individual differences; similarly, the preparation of primary rodent 

Leydig cells is laborious and the yield rather low. There are, however, several commercially 

available rodent Leydig cell lines to study testicular steroidogenesis (reviewed in [14, 15]).  

Human and rodent de novo androgen production from cholesterol differs regarding 

androstenedione (AD) synthesis. In humans AD is produced via the Δ5 metabolic steroid 

intermediates pregnenolone (Preg) and 17α-hydroxypregnenolone (17OH-Preg). The human 

enzyme CYP17A1 efficiently converts 17OH-Preg to dehydroepiandrosterone (DHEA) but has low 

affinity to 17α-hydroxy progesterone (17OH-P). In rodents, CYP17 is able to convert Δ4 and Δ5 

steroids, but in contrast to humans it prefers the Δ4 intermediates progesterone (P) and 17OH-P 

[16]. Importantly, in both species AD is converted in the last step into T by 17β-hydroxysteroid 

dehydrogenase type 3 (17β-HSD3)[17].  

Several reports describe the use of mouse Leydig cell lines to investigate the interference of 

xenobiotics with steroidogenesis, especially focusing on the disruption of T production (reviewed 
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in [15]). Many studies have chosen a single steroid as a read-out, mostly T, and using antibody-

based detection methods. Such methods often suffer from limited specificity [18-21], and it 

cannot be excluded that other steroid metabolites might interfere with the read-out due to lack 

of selectivity.  

An initial aim of the present project was to find a mouse Leydig cell model expressing substantial 

levels of 17β-HSD3 in order to investigate the impact of substances on the last step of testicular 

T formation. Three mouse Leydig cell lines, MA-10, BLTK1 and TM3 were investigated by assessing 

the conversion of exogenous AD to T, the basal production of T, as well as the production of T and 

additional steroids following stimulation by br-8-cAMP and forskolin. The mRNA expression levels 

of key genes involved in androgen production was measured by quantitative RT-PCR, providing 

an explanation for the observed steroid production by these cells.   

 

 

Material and Methods 

Cultivation of MA-10, BLTK+ and TMR cell lines 

The mouse Leydig cell line MA-10 (ATCC, Manassas, VA, USA) was cultivated as described 

previously [22]. Cell culture materials and chemicals were obtained from Gibco, Carlsbad, CA, 

USA, and Sigma-Aldrich, St. Louis, MO, USA, unless otherwise stated. Briefly, cells were grown on 

0.1% gelatin-coated cell culture dishes in DMEM/F12 media containing 20 mM HEPES, pH 7.4, 

15% horse serum, and 50 µg/mL gentamicin. The BLTK1 mouse Leydig cell line (kindly provided 

by Prof. Ilpo Huhtaniemi and Dr. Nafis Rahman, University of Turku, Turku, Finland [23]) was 

maintained in DMEM/F12 media with 10% fetal bovine serum (FBS), 100 U/mL penicillin and 100 

μg/mL streptomycin. The mouse Leydig cell line TM3 was cultivated in DMEM/F12 media, 

containing 15 mM HEPES, pH 7.4, 100 U/mL penicillin and 100 μg/mL streptomycin, 2.5 mM L-

glutamine, 5% horse serum and 2.5% FBS. All cell lines were incubated under standard conditions 

(5% CO2, 37°C). For ultra-pressure liquid chromatography-tandem mass spectrometry (UPLC-

MS/MS) measurements phenol red-free medium containing overnight charcoal/dextran-treated 

FBS or horse serum. 
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Determination of mRNA expression 

Total RNA from mouse Leydig cells (300’000 cells seeded in 6-well plates) was extracted using 

Trizol reagent, followed by reverse transcription using the Superscript III reverse transcriptase. 

The mRNA levels from different genes were analyzed using a Rotor-Gene 6000 light cycler 

(Corbett, Sydney, Australia). Reactions were performed in a total volume of 10 μL reaction buffer 

containing KAPA SYBR master mix (Kapasystems, Boston, MA, USA), 10 ng cDNA and specific 

oligonucleotide primers (Table 1). Relative gene expression was compared to the internal control 

cyclophilin A (PPIA). 

 

Determination of androstenedione metabolism  

The conversion of radiolabeled AD by BLTK1 cells (10’000 grown in 24-well plates) was measured 

using a modified protocol from Legeza et al. [22]. Briefly, cells were incubated in serum free 

DMEM/F12 medium containing 200 nM radiolabeled 50 nCi [1, 2, 6, 7-3H]-AD (GE Healthcare, 

Little Chalfont, UK). The enzymatic reactions were terminated by adding 2 mM unlabeled AD and 

T dissolved in methanol. The steroids were separated on UV-sensitive silica TLC plates (Macherey-

Nagel, Oensingen, Switzerland) using a chloroform-methanol solvent system at a ratio of 9:1. 

Bands migrating with an Rf of AD and T as well as two fractions in between AD and T were scraped 

off the TLC plate and transferred to tubes containing scintillation cocktail. Radioactive decay of 

AD and corresponding metabolites were analyzed using a scintillation counter (PerkinElmer, 

Waltham, MA, USA). For UPLC-MS/MS analysis unlabeled AD (250 nM) was used, and steroids 

analyzed after extraction from bands of TLC plates by UPLC-MS/MS. Alternatively, for 

experiments where steroids were directly analyzed by UPLC-MS/MS MA-10 (100’000), BLTK1 

(200’000) and TM3 (75’000) cells were seeded in 12-well plates and cultivated for 24 h. Cells were 

washed with phosphate buffered saline (PBS) and incubated with charcoal/dextran-treated 

FBS/horse serum phenol red-free complete DMEM/F12 medium containing 200 nM AD, cAMP 

analogue or forskolin. Cells were incubated for 24 h, followed by collection of culture 

supernatants. Samples were stored at -20°C prior to UPLC-MS/MS analysis.  
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Assessment of cross-reactivity of the enzyme immunoassay (EIA) kit for testosterone  

The EIA kit for testosterone (Cayman Chemical Company, MI, USA) was applied according to the 

manufacturer’s instructions. DHT and 5β-dihydrotestosterone, androstenediol, 5α-

androstanedione, ADT, eticholanolone and dihydroepiandrosterone were purchased from 

Steraloids (Newport, RI, USA). All tested metabolites were dissolved in ethanol, diluted in the 

buffer provided with the kit and measured at three different concentrations (150 pg/mL, 75 

pg/mL and 37.5 pg/mL) in duplicates. Cross-reactivity was calculated in percentage of the 

recovery rate of the corresponding metabolite.  

 

Ultra-pressure liquid chromatography-tandem mass spectrometry 

Stock solutions were prepared in methanol for deuterium labeled internal standards (IS) 

(Steraloids) at a concentration of 10 mM. Thereafter, standards and deuterium labeled IS working 

solutions were prepared by mixing each individual stock solution to obtain a working 

concentration of 100 µM. Calibration curves were prepared by serial dilution of the working 

solutions of standards in DMEM/F12 phenol red-free medium in the range of 0.975 nM to 1000 

nM. Cell supernatant was taken at the appropriate time point and IS at a final concentration of 

0.1 µM in protein precipitation solution (zinc sulfate 0.8 M in water/methanol 50/50 v/v) were 

added. After shaking vigorously for 10 min at 4°C, the samples were centrifuged for 10 min at 

10’000 × g. Samples were transferred onto Oasis HBL SPE columns (Waters, Milford, MA, USA) 

that were preconditioned with methanol and water. Samples were washed twice with water, 

eluted with methanol and evaporated at a vacuum evaporator. Samples were reconstituted in 

100 µL methanol by vigorously shaking for 30 min at 4°C.  

The samples were analyzed by an Agilent 1290 UPLC coupled to an Agilent 6490 triple quadruple 

mass spectrometer equipped with an electrospray ionization (ESI) source (Agilent Technologies, 

Basel, Switzerland). Analytes were separated by using a reversed-phase column (ACQUITY UPLC 

BEH C18, 1.7 µm, 2.1 × 150 mm, Waters, Wexford, Ireland), heated to 70ºC. Data acquisition and 

analysis was performed using Mass Hunter software (Agilent Technologies). The mobile phase 

consisted of water-acetonitrile-formic acid (A) (95/5/0.1; v/v/v) and (B) (5/95/0.1; v/v/v). The 

eluent gradients were set from 25 - 75% of B during 0- 20 min, and 100% of B at 22 min onwards. 
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The run was stopped at 24 min, including washing and re-equilibration of the column. The flow 

rate was set to 0.650 mL/min. Ionization was performed using an ESI source operated in the 

positive ion modes (Table 2). Fragmentation was tuned for each compound using Optimizer 

software (Agilent Technologies). Optimal conditions are shown in Table 2. The source parameters 

were set to gas temperature 290°C, gas flow 14 L/min, nebulizer pressure 15 psi, sheath gas 

temperature 300ºC, sheath gas flow 11 L/min, capillary voltage 6000 V (positive), nozzle voltage 

1500 V and cell accelerator voltage 4 V. Ion funnel parameters for positive and negative high 

pressure were set to 200 and 110, respectively. 
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Results  

Rapid metabolism of AD to androsterone by BLTK1 cells 

The initial aim of this study was to identify a mouse Leydig cell line suitable for assessing 17β-

HSD3 expression and enzyme activity in order to investigate xenobiotics interfering with the last 

step of testosterone synthesis. Based on a previous study reporting the expression of 17β-HSD3 

and detecting T production using an antibody-based quantification method [23], the mouse 

Leydig cell line BLTK1 was first chosen as a cell model. As mRNA levels often do not provide 

sufficient information on protein expression and a suitable anti-17β-HSD3 antibody was not 

available, we attempted to measure 17β-HSD3 enzyme activity by incubating BLTK1 cells with 200 

nM of radiolabeled AD and determining its metabolism by subjecting the culture supernatants to 

steroid separation by TLC and scintillation counting. Four distinct fractions were collected: 

fraction 1 migrating with the Rf of AD, fraction 2 migrating with the Rf of T and fractions 3 and 4 

with Rf between AD and T. The results suggested a time-dependent metabolism of AD and the 

formation of one major metabolite migrating with the Rf of T and two minor metabolites (Fig. 

1A). T was expected to be the main product because of the rapid conversion of AD into T by 17β-

HSD3 in adult Leydig cells. However, the formation of this metabolite could not be blocked by the 

potent 17β-HSD3 inhibitor BP1 at concentrations of 1 μM and 10 μM (Fig. 1B), suggesting that it 

might not be T. Therefore, the fraction migrating with the Rf of T was extracted from the TLC plate 

and subjected to LC-MS/MS analysis, revealing the absence of T.  

Next, supernatants of BLTK1 cells incubated with 250 nM AD for different time periods were 

analyzed using LC-MS/MS. The main metabolite produced by BLTK1 cells was identified as 

androsterone (ADT). The time-dependent loss of AD over time was proportional to the increase 

of ADT in the culture supernatants. 5α-Dihydrotestosterone (DHT) was below the detection limit 

and only very low amounts of T were measured (Fig. 2).  

 

Discrepancy to earlier work due to lack of specificity of antibody-based steroid quantification 

An earlier study reporting T production by BLTK1 cells applied an EIA kit for T quantification [23]. 

Radioimmuno (RIA) and enzymes-linked immunosorbent assays (ELISA) are methods that have 
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been used to detect very low amounts of steroids for decades. However, all steroids share a 

common backbone and therefore it is important to assess the cross-reactivity rates between the 

key steroids produced by the system that is used in a corresponding experiment [19, 20, 24]. Thus, 

the recovery rates of eight androgenic steroids were tested using the T detection EIA kit (Cayman 

Chemical, Ann Arbor, MI, USA) used in the earlier study reporting T production by BLTK1 cells 

[23]. The highest mean recovery rate was detected for DHT (59%) (Table 3). Other androgens 

showed recovery rates between 5-36%. Most importantly, cross-contamination was found for 5α-

androstandione (21%), AD (25%) and ADT (16%). Thus, the high amounts of ADT formed by BLTK1 

cells from AD shown in the present study suggest that ADT might have been detected instead of 

T in the earlier study using quantification by EIA. These results emphasize the use of mass 

spectrometry-based steroid quantification methods when analyzing complex biological systems. 

 

Comparison of the conversion of androstenedione to testosterone and androsterone in MA-10 

and BLTK1 cells 

Next, BLTK1 and the more widely used MA-10 cells were incubated with 200 nM AD for 4.5 h to 

compare their capacity to catalyze the last step of T synthesis (Fig. 3). AD concentrations dropped 

to about 50% after 4.5 h of incubation with both MA-10 and BLTK1 cells (Fig. 3 A, D). BLTK1 cells 

did not produce AD de novo (Fig. 3A), compared to MA-10 cells, where low amounts of AD could 

be detected (Fig. 3D). AD was absent from the medium control (Fig. 3 A, D), indicating that it was 

completely removed by charcoal treatment. In contrast, T could not be completely removed from 

the BLTK1 culture medium, which contains charcoal treated FBS (Fig. 3B), whereas it was 

completely removed from horse serum containing MA-10 culture medium (Fig. 3E). Thus, higher 

amounts of T were measured in BLTK1 cell supernatants due to T contamination contributed by 

the serum. However, T concentrations in supernatants of both cell lines were increased after 

incubation with AD compared to the medium control (Fig. 3 B, E). ADT was a major metabolite 

formed upon incubation of both cell lines with AD (Fig. 3 C, F). Both cell lines produced similar 

amounts of ADT from AD. Importantly, BLTK1 cells incubated with AD produced approximately 

100 times more ADT than T, whereas MA-10 cells produced about 20 times more ADT than T (Fig. 

3 C, F). Furthermore, MA-10 and BLTK1 cells both produced low amounts of ADT de novo. No ADT 
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was detected in the medium controls. However, regarding the mass balance, in both cell lines not 

all of the AD metabolized was converted into ADT, indicating that ADT is further metabolized (for 

example by conjugation) or that other metabolites were formed from AD. This finding was further 

supported by the fact that Hsd17b3 mRNA is 1000 times lower expressed in BLTK1 and MA-10 

cells compared to mice testis (Table 4). This finding confirms that the endogenous expression of 

17β-HSD3 in BLTK1 cells is too low to sufficiently convert AD into T. Therefore, BLTK1 is not a 

suitable model to the T regulation. Despite the high levels of Srd5a mRNA within the cells (data 

not shown), DHT is not produced due to the lack of functional 17β-HSD3.  

 

 

Effects of steroidogenesis inducing compounds 8-Br-cAMP and forskolin  

Forskolin and 8-Br-cAMP are well known inducers of steroidogenesis. Two different concentration 

of each compound (10 μM and 50 μM) were used to stimulate androgen synthesis in MA-10 cells. 

Cells were treated once with 10 and 50 μM of 8-Br-cAMP and forskolin for 24 hours. Steroid 

concentrations were analyzed in cell supernatant using LC-MS. Result shown is a single 

representative experiment from three independent measurements. Cells without any stimulation 

(vehicle control) produced 3 nM of P. Progesterone levels were significantly increased in 

supernatant of cells stimulated with 8-Br-cAMP and forskolin (Fig.4A). 17OH-P levels were 

significantly increased in supernatant of cells stimulated with 8-Br-cAMP (50 μM). The stimulation 

of 8-Br-cAMP (10 μM) and forskolin (10 μM and 50 μM) did not significantly alter detectable 

concentrations of 17OH-P (Fig.4B).  

Results in Fig.5A showed significant dose dependent induction of AD in 8-Br-cAMP treated cells. 

These results were reproduced independently four times. Similar trends were observed in all 

experiments. Nevertheless, high standard deviation occurred in different passages of the cells. 

Stimulation of 8-Br-cAMP did not have the same strong inducible effect in different cell passages 

but dose dependent increase of AD was overserved in every experiment (data not shown). 

Forskolin did not have a significant effect on AD levels measured in the supernatant. Compared 

to the amount of AD detected in the supernatant, T level were much lower (Fig.5B). Despite low 
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concentrations detected, T was significantly increased in both concentrations of both treatments. 

Though, the 50 μM 8-Br-cAMP treatment was 4 times more efficient in comparison to the 50 μM 

forskolin treatment. MA-10 cells produced less than 100 pM of T in DMSO control (0.5%) without 

any stimulation. ADT was produced by MA-10 cells in DMSO treated cells in quantities up to 3 nM 

(Fig.5C).  Both treatments decreased the levels of ADT in serum after 24 hrs, but only the 50 μM 

forskolin treatment was able to decrease the ADT concentrations significantly. Despite of a very 

similar mechanism of steroid stimulation, 8-Br-cAMP and forskolin trigger androgen production 

completely diverse. Significance for all treatments was always compared to the DMSO control. 

 

 

Discussion 

Mice Leydig cells were used to establish a model to study disruption of gonadal steroidogenesis 

and regulation of involved steroidogenic enzymes. Enzyme of interest was the 17β-HSD3 because 

of its importance for male genital development during embryogenesis. Mutations in that gene 

lead to severe disorders of sexual development due to lack of AD into T conversion [25, 26]. It 

was shown that confluent seeded BLTK1 cells (100’000 per 96 well) almost completely converted 

radiolabeled AD into an unknown metabolite. AD and T were added in excess into the supernatant 

to visualize the radiolabeled steroids under UV light on the TLC plate after separating them using 

a chloroform/ethyl acetate mixture. Four spots were chosen to analyze the radioactive contents.  

The AD fraction, T fraction and two spots in-between those to two visible spots. Results showed 

time dependent increase of a metabolite in the T fraction of the TLC plate indicating the presence 

of T. Low amounts of radiolabeled products were detected in the TLC fraction 1 and 2. Those 

detected products could be other produced steroids or degradation products. However, further 

studies with the 17β-HSD3 inhibitor BP1[27] showed no significant decrease in the amount of the 

product in the T fraction. We concluded that the unknown metabolite found in the T fraction was 

most likely not T itself. Involvement of other enzymes able to convert of AD to T such as 17β-HSD5 

was excluded because due to the absence of its corresponding mRNA. Another steroid with 

similar R/f values as T was suspected to be produced in BLTK1 cells. Indeed, after validation of 
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many potential metabolites of AD using LC-MS analysis, ADT was identified as main product (Fig. 

2). In Fig. 2 the concentrations of ADT at time point 270 min were higher than the originally added 

AD concentration due to ADT which was produced by the cells itself. Whereas in the Fig. 1 only 

radiolabeled ADT was detected by scintillation counting that has been originally converted from 

radiolabeled AD. Amounts of ADT produced by the cells were not able to be detected using 

scintillation counting.  

Using LC-MS we could proof that T barely was formed in BLTK1 cells incubated with 200 nM AD 

for 4.5 hrs. We hypothesized that AD is converted into 5α-androstandione by Srd5a1 and further 

converted into ADT by Akr1c14 [28-30]. Both genes are highly expressed in MA-10 and BLTK1 cells 

and play a crucial role in the steroidogenic backdoor pathway (Fig.6). Unfortunately, 8-Br-cAMP 

stimulation did not increase AD or T concentrations in supernatant of BLTK1 cells in three 

independent measurements. This is not in line with the literature. Three papers show increasing 

amounts of T in supernatant of BLTK1 cells stimulated with recombinant human chorionic 

gonatropin (rhCH) [23, 31, 32]. However, BLTK1 cells produce more P than T, which is consistent 

with our data (data not shown). Unfortunately, these groups do not mention if they use serum 

free media or char coal treated media for the experiments. Additionally, no data are shown about 

cross reactivity of the ELISA kit with other steroids.  

RT-PCR measurements of the most important steroidogenic enzymes involved in T synthesis were 

performed in MA-10 cells. Results showed lack of Hsd17b3 mRNA compared to healthy adult wild 

type black six mice. Hsd3b1 mRNA levels were not altered. No change of mRNA expression was 

expected to be found in Star and Cyp11 genes, because of high levels of progesterone in 

supernatant of MA-10 cells. Nevertheless, mRNA levels of Cyp17 were decreased compared to 

adult mice, leading to an accumulation of P in the supernatant. Progesterone is the main steroid 

produced in MA-10 cells and that’s in line with what Ascoli observed 30 years after establishing 

the MA-10 cell line[33]. Decrease expression levels of Cyp17 and increased expression levels of 

Srd5a1 and Akr1c14 clearly support the production of steroids involved in the backdoor pathway.  

Stimulation of MA-10 cells with 8-Br-cAMP for 24 hours lead to significant increase of AD and T 

detection in cell supernatant. Similar trends were observed in four independent experiments. 

However, stimulation of AD and T differed in all experiment despite of same treatment and similar 
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passages of the cells. It is possible to stimulate AD and T production in MA-10 cells using 8-Br-

cAMP. Though, reproducibility of experiments is challenging. The pro steroidogenic effects of 

forskolin were much lower compared to 8-Br-cAMP, although forskolin increases intracellular 

cAMP concentrations and should anyhow stimulate steroidogenesis similar to 8-Br-cAMP. It could 

be that forskolin somehow blocks enzymatic activities in steroidogenic enzymes due to its 

chemical structure. Used concentration of forskolin and 8-Br-cAMP were nontoxic but lead to 

visible differences of the cell morphology. However, forskolin was able to significantly decrease 

ADT concentrations in supernatant of MA-10 cells. We hypothesized that forskolin stimulates 

production of steroids involved in backdoor pathway leading to accumulation of 3α-

androstanediol (3α-diol) (Fig.6). A huge peak was detected in supernatant of forskolin treated 

cells using LC-MS that is suspected to be 3α-diol. Further studies have to be done to proof that 

this peak is indeed 3α-diol. ADT is the precursor of 3α-diol and the synthesis of high amounts of 

3α-diol could explain the significant decrease in ADT levels. However, under basal conditions MA-

10 cells produce very low amounts of T. AD and ADT were produced by cells, indicating that 

Cyp17, Srd5a1, and Akr1c14 are still enzymatically active. Only very low amounts of T could be 

formed in MA-10 cells due to very low expression of Hsd17b3. MA-10 cells are not applicable to 

investigate T disruption without any stimulation of the steroidogenesis. Besides that we have to 

take into account that MA-10 cells produce several steroids under basal and stimulated condition. 

Steroid found in supernatant of cells that are able to produce several different steroids, need to 

be separated using HLPC before getting quantifiably analyzed by EIA kits. EIA kits are great to 

quantify very low amounts of steroids. But all steroids share a basic structure and are very likely 

to be under or overestimated in terms of detected quantities. Despite its expensive use, LC-MS 

should be the gold standard method to quantify steroids measured in supernatants of cell with 

intact steroidogenesis.  

The use of long term culture murine Leydig cells to test disruption of androgen synthesis is 

challenging. The three established mice Leydig cell lines BLTK1, MA-10, and TM3 showed altered 

steroid enzyme expression compared to adult Leydig cells. All three tested cell lines showed fetal 

Leydig cell (FLC) like behavior due to the lack of 17β-HSD3. Shima et al. showed that FLC produce 

and secrete AD, while T is further produced in Sertoli cells. Yet, fetal testis produce much less T 

138



under co-incubation of FLC and Sertoli cells compared to adult Leydig cells[34, 35]. Immature mice 

testis minces incubated with 2 and 5 μM [3H]progesterone showed less T conversion compared 

to 16,17 days old embryonic mouse testes[36].  Additionally, O’Shaughnessy et al. showed that 

17β-HSD3 was expressed in seminiferous tubules (Sertoli cells) up to day 20 and later on the 

expression of 17β-HSD3 was limited to the interstitial tissues (Leydig cells)[37]. It can be 

concluded that FLC produce higher amounts of AD but low amounts of T. Mice do undergo a 

certain puberty process which leads to adult Leydig cells producing T as main androgen. 

Unfortunately, the progesterone variant of the Leydig cell tumor (M5480), adapted for serial 

transplantation by Dr. W. F. Dunning (Miami) was used to establish the MA-10 cell line[38]. 

M5480P variant was known to produce high amounts of P and very low amounts of T do to the 

lack of 17β-HSD3 and low amounts of Cyp17[39]. There exists a variant of the M5480 Leydig cell 

tumor (M5480A) that produces similar amounts of P and T at basal levels. This variant could be 

used to develop a Leydig cell line producing T to investigate T disruption and to study gene 

regulation of endogenous 17β-HSD3 [39]. 

 

Conclusion 

Mice Leydig cells remain an indispensable in vitro model to investigate T disruption as long as no 

human cell line will be available. The simple handling and cheap maintaining of cell cultures 

enables high throughput screening of potential endocrine disrupting chemicals. However, 

steroidogenesis in mammalian testes changes during development. Unfortunately, most available 

murine Leydig cell lines are fetal like and do not produce T as main steroid due to the low 

expression of 17β-HSD3. The stimulation of MA-10 cells with 8-Br-cAMP leads to the production 

of detectable amounts of T. Using LC-MS methods, MA-10 cells are a usable model to test T 

interference by xenobiotics. Using ELISA or RIA kits to quantify steroids in supernatant of cells is 

not recommended anymore. Unknown metabolites and unspecific binding of antibodies do not 

allow an accurate measurement of steroids. LC-MS should be used as gold standard to quantify 

steroids in supernatant of cells capable of synthesizing complex steroid profiles.  
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Figure Legends 
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Fig.1. Endogenous activity assays in MA-10 and BLTK1 cells using radiolabeled androstenedione 

as a substrate. Formation of unknown metabolites by BLTK1 cells after incubation of 200 nM 50 

nCi [1,2,6,7-3H]-androstenedione for several time points up to 180 minutes. The main formed 

product was found in the testosterone TLC fraction. Minor amounts of formed products were 

detected in TLC fraction 1 and 2.  Data are represented as ±SD from two independent experiments 

(A). Product formation by BLTK1 cells after 30 min exposure to 200 nM radiolabeled 

androstenedione and the 17β-HSD3 inhibitor benzophenone 1 (1 μM and 10 μM) compared to 

the DMSO (0.1%) control. Data are represented as ±SD from three independent measurements 

(B). In all experiments, the supernatant of cells was collected and analyzed. Analytes were 

separated using thin layer chromatography. Samples were quantified using scintillation counting.  
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Mean recovery rate 

(cross reacvity ) 

Testosterone 98.33 ± 9.57 

5α-Androstanedione 20.55 ± 8.40 

5α-Dihydrotestosterone 58.55 ± 8.83 

5β-Dihydrotestosterone 28.46 ± 4.94 

Androstendione 25.37 ±6.16 

Androstenediol 36.42 ± 2.80 

Androsterone 16.43 ± 10.90 

Dihydroepiandrosterone  5.45 ± 2.99 

Etiocholanolone 18.33 ±0.57 

Table 3. Cross reactivity of a commercially available ELISA kit (Cayman Chemical) tested on 

several steroids. Experiments were performed according to the manufacturer protocol. Data 

show mean recovery rate of three tested steroid concentrations (150 pg/μL, 75 pg/μL, 37.5 pg/μL) 

from a single representative experiment. Results were conformed in a second independent 

measurement. Mean recovery rates from several tested steroids interacting with the 

testosterone antibody varied from 5% up to 60%.   
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Fig.2. Time depended decrease and increase of androstenedione and androsterone quantified 

using LC-MS. Androsterone, testosterone and dihydrotestosterone formation by BLTK1 cells after 

incubation of 250 nM androstenedione. Supernatant was collected for different time points (0, 

30, 90, and 270 min) and analyzed using LC-MS. Data are shown as ±SD in technical triplicates.  

 

 

 

Fig. 3. Formation of testosterone and androsterone in BLTK1 and MA-10 Leydig cells after 

exposure to 200 nM androstenedione. Steroids were quantified by UPLC-MS/MS in supernatants 

of BLTK1 (A-C) and MA-10 Leydig cells (D-F) incubated for 4.5 h with 200 nM AD in charcoal treated 

medium. Results represent steroid concentrations (in nM) in supernatants of medium control (- 
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cells), treatment control (200 nM AD, - cells), cells exposed to AD (200 nM AD, + cells), and cells 

incubated in medium in the absence of AD (medium only, + cells). Statistical significance was 

assessed using one-way ANOVA analysis followed by a post Tukey test. Data of BLTK1 cells 

represent mean ± S.D. from two independent experiments. MA-10 data represent mean ± S.D. 

from three independent experiments.  

 

 

Fig. 5. Quantification of de novo production of progesterone and 17-hydroxyprogesterone by 

MA-10 cells. Progesterone and 17-hydroxyprogesterone levels were quantified by UPLC-MS/MS 

in medium and supernatants of MA-10 cells stimulated for 24 h with 8-Br-cAMP (10 μM and 50 

μM) or forskolin (10 μM and 50 μM). DMSO (0.5%) and medium served as controls. Statistical 

differences to the DMSO control were assessed using one-way ANOVA analysis followed by a post 

Tukey test. Data represent mean ± S.D. from one out of three independent experiments 

performed in duplicate. *** p<0.001  
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 Fig. 4. Quantification of de novo synthesis of androstenedione, testosterone and androsterone 

by MA-10 cells. Steroids were quantified by UPLC-MS/MS in MA-10 cell supernatants following 

stimulation for 24 h with 8-Br-cAMP (10 μM and 50 μM) or forskolin (10 μM and 50 μM). DMSO 

(0.5%) and medium served as controls. Medium contained charcoal/dextran-treated serum. 

Statistically significant difference to DMSO control was assessed using one-way ANOVA analysis 

followed by a post Tukey test. Data represent mean ± S.D. from one out of four independent 

experiments performed in duplicate.  
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Table 4. Messenger RNA expression levels of steroidogenic enzymes in MA-10 Leydig cells and mice 

(black six) testes. MA-10 cells were grown confluent in 6-well plates and lysed using TRI-reagent. Mice 

testes were lysed in TRI-reagent using a stirring homogenizer. Messenger RNA was isolated and 

converted into cDNA. CT-values were determined using 10 ng of cDNA. Significant changes of mRNA 

expression in MA-10 cells compared to mice testes are shown in red. MA-10 (1-3) data are represented 

from three independent experiments in technical triplicates. Testis 1 and 2 data are represented in 

technical triplicates from two different mice (11 weeks old) testis.  

 MA-10 (1) MA-10 (2) MA-10 (3) Testis (1) Testis (2) 

Hsd3b1 19.33 18.29 18.36 18.17 19.13 

Cyp17a1 24.03 24.18 21.97 16.33 17.33 

Hsd17b3 - 31.47 31.22 21.35 22.4 

Akr1c6 - - - 27 33.98 

Srd5a1 21.04 20.38 19.99 21.91 22.47 

Akr1c14 17.48 17.24 17.00 23.8 24.61 

Hsd17b1 26.01 26.6 25.5 27.97 27.6 

Ppia 13.7 13.59 13.33 14.17 14.55 
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Fig. 6. Murine and human androgen steroidogenesis. Classic murine and human biosynthesis pathways 

of T in testes (black). Alternative/Backdoor pathway of 3α-androstanediol in human and mice (grey). 

Intermediate steroids are pictured in white. Murine pathways are pictured in dotted and human 

pathways in black arrows. Main human biosynthesis pathway of T via DHEA (bold black arrow). Preferred 

murine pathways of T via P and 17OH-P (bold dotted arrow)[28, 40].      
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Tables 

Table 1. Oligonucleotide primers used for quantitative RT-PCR.  

Gene Oligonucleotide Forward Primers Oligonucleotide Reverse Primers 

Hsd3b1 5’-GTCACAGGTGTCATTCCCAG-3’ 5’-TTCTTGTACGAGTTGGGCC-3’ 

Cyp17a1 5’-AGAGTTTGCCATCCCGAAG-3’ 5’-AACTGGGTGTGGGTGTAATG-3’ 

Hsd17b3 5’-ACAATGGGCAGTGATTAC-3’ 5’-GTGGTCCTCTCAATCTCTTC-3’ 

Akr1C6 5’-TCCGAAGCAAGATAGCAGATG-3’ 5’-GTTGGACTATGTGGACCTGTAC-3’ 

Srd5a1 5’-TCACCTTTGTCTTGGCCTTC-3’ 5’-TTATCACCATGCCCACTAACC-3’ 

Akr1c14 5’-GTACAAGCAAACACCAGCAC-3’ 5’-ATGTCCTCTGAAGCCAACTG-3’ 

Hsd17b1 5’-GCTGTGTTGGATGTGAATGTG-3’ 5’-ACTTCGTGGAATGGCAGTC-3’ 

Ppia 5’-CAAATGCTGGACCAAACACAAACG-3’ 5’-GTTCATGCCTTCTTTCACCTTCC-3’ 

 

 

Table 2. Parameters for the androgens measured and mass spectrometer properties 

Steroid 

RT  

[min] 
Precursor 

Ion (m/z) 

Product 

ion 

(m/z) 

Collision 

energy 

(V) 

Polarity Internal Standard 

Androsterone 18.1 273.2 255.2 12 Positive Testosterone-d2 

Testosterone 8.1 289.2 97.1 28 Positive Testosterone-d2 

Androstenedione 9.5 287.2 97.1 20 Positive Testosterone-d2 

5α-DHT 12.5 291.2 159.1 24 Positive Testosterone-d2 

Testosterone-d2 8.1 291.5 111.1 24 Positive  
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5.4 Conclusion 

In conclusion, three different murine Leydig cell lines (MA-10, BLTK1, TM3) were selected based 

on exhaustive literature review (Odermatt et al., 2016), to establish a model to study the 

regulation and activity of the enzyme 17β-HSD3.  

In 1980, Mario Ascoli used a variant of the M5480 Leydig cell tumor, which was initially described 

to produce low levels of testosterone but high levels of progesterone, to establish the MA-10 cell 

line[146]. The progesterone Leydig cell tumor variant responded better to human chorionic 

gonadotropin (hcG) and LH stimulation and was therefore further established as a steroidogenesis 

activation read-out model[147]. However, reviewing the available literature revealed the 

frequent use of MA-10 cells as a standard model for testosterone disruption. This led to the 

assumption that low amounts of testosterone were still produced[148]. And indeed, stimulation 

with 8-Br-cAMP and forskolin did increase testosterone formation but had no effect on the mRNA 

levels of Hsd17b3 (Figure 1 Appendix). We showed the mRNA levels of Hsd17b3 were low and 

close to the limit of detection using real-time PCR. It seems that the endogenous regulation of 

17β-HSD3 is lost in this cell line and the detected testosterone concentrations are most likely due 

to the conversion of androstenedione to testosterone by the enzyme 17β-HSD1. This hypothesis 

is substantiated by low to moderate expression of Hsd17b1 mRNA levels in MA-10 cells and the 

fact that mouse 17β-HSD1 has a similar affinity for androstenedione as to estrone[149]. The MA-

10 cell line is therefore not useful to further study the regulation or activity of endogenous 17β-

HSD3.  

BLTK1 cells were recently established and were reported to express Hsd17b3 mRNA and produce 

very low amounts of testosterone when stimulated with forskolin and recombinant hCG. Enzyme 

protein expression could not be shown due to the lack of a specificity of the commercially 

available antibody[150]. However, we were not able to detect significant amounts of Hsd17b3 

mRNA levels using real-time PCR. Furthermore, testosterone formation was not inducible using 

8-Br-cAMP in our hands. In conclusion, the promising cell line BLTK1 was not adequate to 

investigate endogenous Hsd17B3 expression or its enzyme activity. Comparing Hsd17b3 mRNA 

expression in MA-10 and BLTK1 cells with Hsd17b3 mRNA expression in a minced mouse testis, 

revealed a 1000-fold higher expression in a freshly isolated testis. This finding explains the low 

formation of testosterone in both cell lines. Yet, incubation of androstenedione in both cell lines 
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resulted in a loss of androstenedione and the formation of huge amounts of androsterone, 

indicating the expression of several enzymes involved in the backdoor pathway that have been 

originally described by Richard J. Auchus in testes of young pouch of the tammar wallaby[151]. 

Real-time PCR studies confirmed high expression of enzymes involved in the backdoor 

pathway[152]. In both cell lines the mRNA expression of Srd5a1 and Akr1c14 were upregulated 

compared to mice testes. High expression of Srd5a1 and Akr1c14 might explain the rapid 

conversion of androstenedione to androsterone through the intermediate metabolite 5α-

androstanedione observed in these experiments.  

Real-time PCR studies in TM3 cells revealed similar expression levels of Hsd17b3 mRNA compared 

to MA-10 and BLTK1 cells, indicating that Hsd17b3 expression is also absent in TM3 cells. All 

tested cell lines failed to express substantial levels of endogenous 17β-HSD3, and therefore 

cannot be used as a screening model for testosterone disruption. Unfortunately, so far there is 

no conventional in vitro model expressing endogenous levels of 17β-HSD3 available to confirm 

the findings from the established HSD17B3 promoter transactivation assays. In the future, it is 

essential to establish primary mouse Leydig cells, or preferably human Leydig cells to investigate 

17β-HSD3 disruption. However, when using primary cells, inter individual differences have to be 

taken into account. The isolating procedure is challenging and expensive also.  

The section which described the Leydig cell models in the review, pointed out the importance of 

using accurate detection methods to measure steroids. Leydig cell lines express a huge variety of 

endogenous enzymes able to convert many steroids. It is of great relevance to fully understand 

the diversity of endogenous enzymes expressed in the applied cell system. Enzyme-linked 

immunosorbent assays (ELISA) are regularly used as a standard method to measure steroids in 

cell supernatants. In my opinion, based on the evidence in this project, only liquid 

chromatography-mass spectrometry (LC-MS) or gas chromatography-mass spectrometry (GC-

MS) methods should be used for the detection of steroids in cell supernatants. This is due to the 

questionable specificity of antibodies used in commercially available ELISA kits.  

Furthermore, Hsd17b3 regulation studies could not be carried out in MA-10, BLTK, or TM3 cells 

due to a lack of endogenous expression of the enzyme. However, potential xenobiotics that 

interfere with human 17β-HSD3 can be examined using transfected HEK-293 cells (intact cells and 

lysates). In a recently initiated study we used several nonsteroidal 17β-HSD3 inhibitors as query 
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molecules for a 2D similarity-based search of an environmental chemical database. Several hits 

will be further tested in a newly established activity assay using HEK-293 cell lysates transfected 

with human 17β-HSD3 expression plasmids. Additionally, it would also be possible to use the 

established 17β-HSD3 homology model to support the 2D similarity-based approach. 

Unfortunately, the previously created ligand based pharmacophore 17β-HSD3 model by Daniela 

Schuster did not perform well. All hits identified by this pharmacophore model were inactive 

(Figure 2 Appendix). However, this model and the established lysate 17β-HSD3 assay allows us to 

screen and test a huge number of chemicals in a short period of time (high throughput) and at 

relatively low costs. We are confident that further research and further rounds of improvement 

of the available pharmacophore models will lead to the identification of chemicals interfering 

with the activity of the enzyme 17β-HSD3. Positive hits can then further be used to validate the 

applied models. The ultimate goal is to establishing a model with a high positive hit rate that can 

help in the prediction of toxicologically relevant effects due to the inhibition of 17β-HSD3.  
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Figure 1. Real-time PCR results on Hsd17b3 levels after 8-Br-cAMP (cAMP) stimulation in MA-10 cells. 

N.d = not detected  
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Figure 2: Testosterone formation in cells transfected with human 17β-HSD3 expression plasmids. Tested 

compounds were identified by the 17β-HSD3 pharmacophore model as potential inhibitors. 
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