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Abstract 
 

Latent representations are critical for disambiguating the sensory world1 and guiding perceptual 
decisions2,3. Visual working memory is often used to study these latent representations, but the 
associated neural activity patterns4,5, their maintenance6–8, and their distribution across the brain9,10, 
remain contentious. One difficulty has come in disambiguating the neural representations underlying 
working memory from confounding variables introduced by the task environment. We therefore 
investigated visual working memory in mice alternating between performing a delayed (non)match-
to-sample working memory task and a simple Pavlovian discrimination task. This experimental design 
isolated visual working memory engagement as the only independent variable, separable from activity 
associated with sensory input, movement, and reward. Transient optogenetic silencing of different 
cortical areas revealed a selective role of highly distributed areas of the neocortex for working 
memory maintenance. Neural population activity in some of these areas, namely higher visual area 
AM and premotor area M2, during the inter-stimulus delay period was dominated by orderly low-
dimensional dynamics11–13, which we found to be completely independent of working memory 
engagement. In contrast, by taking advantage of our alternating task design, we were able to decode a 
high-dimensional population representation of visual working memory14,15, which was (1) present in 
distributed cortical areas, (2) persisted throughout the inter-stimulus delay period, and (3) predicted 
correct responses to the subsequent stimulus during the working memory task. Given the recruitment 
of such distributed neocortical representations during working memory engagement, and having 
observed that silencing any single area disrupted working memory, we hypothesized that these 
representations were instantaneously interdependent (‘bound’) by cortical feedback loops16. We tested 
this hypothesis directly by silencing a source cortical area while recording the feedback it received 
from a reciprocally connected target area. We found that transiently breaking the cortical feedback 
loop at the onset of the working memory delay had little effect on the low-dimensional dynamics, but 
selectively abolished representations of visual working memory. Our findings identify reciprocal 
inter-areal cortical feedback loops as key circuit motifs underlying the maintenance of distributed and 
high-dimensional latent representations of visual working memory. 

 

 

 

 

 

 

 

 

 

 

 

 



Why working memory? 
 

There is a long tradition of investigating working memory in neuroscience, with the focus ranging 
from the use of working memory as a translational marker for various neurological conditions17–19, to 
constraining behavioural models of working memory20,21, or to the physiology of persistent activity in 
the brain6,22,23. In this thesis, we will focus on working memory exclusively as an experimental handle 
on latent representations of the sensory world2,24,25. Latent representations, or internal models, are in a 
generously abstract sense an integral aspect of all animal behaviour – they confer the ability to 
flexibility associate inputs to outputs. In the process of vision, for example, an enormous cache of 
invariances (or heuristics or assumptions) are required to reconstruct a three-dimensional world from 
a sparse two-dimensional activity pattern on the retina16,26. For other ‘basic’ visual functions such as 
object perception, naïve template matching schemes quickly lead to combinatorial explosions and to 
the simplest visual tasks becoming computationally intractable16,26. In laboratory settings and decision 
making paradigms, latent representations are often operationalized as mnemonic task variables (or 
contexts or cues) which constrain Correct task behaviour, and thus serve as the fundamental building 
blocks for models of cognition2. Working memory, in this regard, and for the purposes of this thesis, 
can therefore be provisionally defined as a dynamically deployed internal representation of an 
external variable, which is used for a subsequent perceptual decision. This definition distinguishes 
working memory within the broader class of short-term memory (and functions such as motor 
planning), and is perhaps in its simplest form the perceptual task equivalent of an Exclusive-OR logic 
gate, requiring a bare minimum hierarchy of decisions (two, to be exact) to solve. 

Needless to say, the validity of using working memory as an experimental handle on latent 
representations of the world is a difficult but necessary concept to assert. Does working memory truly 
underlie all aspects of animal cognition? Or is it more simply a useful, maybe even learned, faculty of 
the mind, on the same level as the ability to add numbers? Perhaps more importantly for neuroscience, 
what underlies working memory which does not elude definition across species and decision making 
paradigms27,28? For example, the phonological loop, integral to the now standard psychological 
models of working memory29, is inconspicuously absent from all studies in other animals. Support for 
the central cognitive role of working memory largely comes from a wealth of studies on the 
inseparability of working memory from the earliest of perceptual processese.g., 30–32. 

Many such studies regard working memory as both a mnemonic representation as well as an actor 
in perceptual processing, often either indistinguishable or a fundamental component of ‘attention’, 
which has led to puzzling questions of neural implementation. To illustrate with an example, in one 
early study33, participants were asked to press a button as soon as they detected a previously cued item 
(e.g., an apple), while being presented a series of rapidly flashed images. There were two 
experimental observations; first, whether the cued item was presented as a pixel-perfect match to the 
target image, or simply a word describing it (‘apple’), had no impact on the identification rate or 
reaction time, and second, the performance was stable even if the images were flashed so quickly (125 
ms) that there was no conscious recollection of what the images were of. These two observations 
taken together posed a crucial question, how did arbitrary (or at least cross-modal) internal 
representations match their sensory targets earlier than the precepts were formed? Constraints on 
neuroscientific models for this process is the singular motive for this thesis. 

The neural circuitry underlying latent working memory representations has been the focus of 
investigations for several decades now, but the amount of progress made has been very limited. Even 
a fundamental consensus regarding the potential coding schemes for working memory remains 
elusive4,5. Difficulties in specifying the neural substrates of working memory have come from the 
diversity of behavioural paradigms in which working memory could be engaged (with all of the 



associated behavioural confounds), technological constraints (non-invasive methods incompatible 
with single-cell recordings), and assumptions regarding the role of different brain regions and their 
underlying neural coding schemes (e.g., inter-areal coherence, attractor dynamics, etc.). Nevertheless, 
it is important to review the literature so as to at least identify why certain methodological traditions 
persist, and how to best make use of them going forward. As such, we will review the literature in 
order to assess three of the most common types of assumptions in the field; the preeminence of the 
neocortex, the role of working memory in perceptual decision making, and the analysis methods that 
have been used to identify mnemonic neural representations. Each of these topics deserves a brief 
background which will form Part I of this thesis. Part II will then follow with three separate 
experiments designed to elucidate the neural circuits underlying visual working memory, and a more 
wholistic review of the results, with a particular focus on their impact on interpretations of previous  
studies, will make up a brief Part III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

Part I – Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Essay 1: The crowning achievement of evolution 
 

A common narrative surrounding the neocortex, and the grounds for its appellation which serves 
as the title of this essay34, is that the neocortex underlies the diversity and flexibility of human 
behaviour. As such, the neocortex is perhaps the most studied brain structure in cognitive 
neuroscience, and almost exclusively so in the working memory literature. Over a century of anatomy 
and physiology has spurred countless hypotheses regarding the functional architecture of the 
neocortex, and models of working memory in neuroscience have not escaped being mapped onto its 
biological motifs. In this essay we will outline, in roughly historical order, a small and select subset of 
these findings, with the goal of making the fixation on the neocortex in the study of cognition, and 
more specifically working memory, more tenable. As such, we will focus on three key insights of 
neocortical function, (1) topographic organization, (2) columnar computation, and (3) hierarchical 
integration. 

The neocortex consists of a thin sheet of cells surrounding the cerebrum, and is itself composed of 
a layered structure of stratified cell sizes and densities. The global structure of such ‘lamination’, 
termed cytoarchitecture, and the concomitant parcellation of the neocortex into functional regions, is 
the neocortex’s most defining feature. The discovery of cortical lamination35 led to the first studies of 
its cytoarchitecture, and by the turn of the 20th century cortical ‘organs’, areas with distinct patterns 
of lamination, were being mapped throughout the brains of dozens of species36,37. These areas 
correlated readily with those identified by associating localized lesions with selective losses of 
function38, and further discoveries of topographic organization within identified cytoarchitectonic 
areas (e.g., retinotopy39), firmly cemented mapping of the neocortex as a corollary of mapping 
behavioural diversity (e.g., prefrontal ‘executive function’, ‘what’ and ‘where’ visual streams). 

Meanwhile on the physiology front, shortly following the advent of electrophysiological recording 
from neurons40, topographical maps were reaffirmed with behaviourally localized activity patterns 
(‘receptive fields’) in visual41, somatosensory42, and motor43 areas. Owing in part to the ease with 
which retinal stimulation could be controlled and tracked through to the cortex, the primary visual 
cortex emerged as a model system of study. One important observation was that although the density 
of retinal afferents decreased drastically in the periphery of the retina, thalamic afferents were evenly 
distributed across the primary visual cortex44. This phenomenon, termed cortical magnification, 
coincided precisely with the reduction of visual acuity across visual space45, and could predict the 
cytoarchitectonic boundaries of the primary visual cortex46, suggesting that each fixed surface area of 
cortical surface area ‘processed’ some minimal behavioural function (e.g., 67 µm2 for minimum angle 
of resolution). Concurrently in the somatosensory cortex, topologically organized sub-modality 
representations, termed functional columns, were discovered47. Together, these studies incorporated a 
critical component into future frameworks of neocortical function, wherein the local vertical structure 
(columns) of the neocortex encapsulated the necessary machinery for the processing of its input. 
Finally, in one remarkable study48, it was found that within all of the areas and species examined 
(excluding the primate primary visual cortex), in spite of two- to three-fold differences in cortical 
thickness, the number of neurons in any given column was the same (e.g., 660 neurons under a 67 
µm2). 

From these observations it followed that the cytoarchitectonic differences between cortical areas, 
and the corresponding functional consequences, resulted from differences in the local laminar 
structure and connectivity motifs (microcircuits). As such, subsequent anatomical mappings of 
cortical microcircuits catalysed seminal insights regarding corticocortical communication49,50, where 
interareal connectivity patterns were grouped into feedforward, feedback, and lateral motifs based on 
where in the laminar structures the source afferents terminated. This all came to a head in one seminal 
study51 which mapped 25 cortical areas into a hierarchy of visual processing in the macaque brain, 



and revealed two primary features of corticocortical connectivity. First, despite the existence of 
multiple functional streams each with multiple stages of processing, the overall network was 
surprisingly densely interconnected (and subsequent work in mice underscores this point52). Second, 
all (but one) of the connections studied were reciprocal – if one cortical area projected to another, then 
it, in turn, received feedback projections from it. 

The resulting view of the neocortex, as a densely and reciprocally interconnected web of 
functionally distinct areas, each with their own levels of abstraction (or modalities), and 
topographically organized columnar processing units, was readily appropriated by cognitive scientists 
within connectionist models for inferential processing16,53–55. Fundamentally, as we will discuss in the 
next essay, these models stressed the interdependent nature of distributed latent representations in the 
neocortex.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Essay 2: Perception is inference 
 

At the heart of our perceptual abilities is the immediacy with which we disambiguate incoming 
sensory inputs, an idea which was first formalized by Helmholtz with the theory of unconscious 
inference1. It is easy to imagine that no two sensory inputs are ever really the same, even if they are of 
the same percept – our eyes are constantly moving around a three dimensional world, rotating (i.e., 
head tilt), and coming closer and further from the things we wish to see. From a sensory input 
perspective, no two objects are more different than a single object simply projected onto two different 
locations on the retina. Our ability to withstand such heterogeneity, at least for simpler features (e.g., 
translations, lighting conditions), is often termed perceptual invariance or perceptual constancy56, and 
is rooted in an enormous amount of prior knowledge that we use in generating our precepts. Illusions 
may be thought of as the other side of the coin in the use of prior knowledge, wherein false percepts 
of colour, motion, size, etc., reveal the inner workings of our perceptual mechanisms when faced with 
unusual sensory input. The difficulty in visual processing thus lies in the need to both generalize over 
as many possible ways of seeing something without losing sight of what it is that is being seen. 

Human-engineered solutions for visual processing exist, most often in the form of vast statistical 
models which learn to extract progressively more invariant features from huge repositories of sensory 
experience (data), and can even generalize sufficiently to achieve near-human-level object recognition 
performance. Natural vision extends beyond simply invariance, however, as we are constantly 
contextualization our perceptual processes to serve behavioural needs – we can identify things we’ve 
never seen (and recognize them as such), see compositional variations (leg of a chair vs. the chair 
itself), and give appropriate valence to identical input (e.g., your own hand waved in front of your 
face vs. someone else’s), among many others. As such, dynamic contextual control of vision (often 
subsumed into ‘attention’) forms a core principle of biological models of vision57,58. This need to 
contextualize our visual processing parallels the more restrictive definition of working memory we 
laid our earlier. 

The cognitive sciences have taken up the challenge of dissociating and studying such latent 
influences on perception through multiple experimental paradigms. Examples include mental 
imagery59, attention60, illusions61, and biases62. Accordingly many computational (often non-
mechanistic) models have been proposed for how perceptual processing organizes dynamic 
representations under the influence of latent variablese.g., 54,63,64, and although many of these models do 
not strictly identify a form of working memory, their operations are often the focus of working 
memory studies which try to experimentally isolate a contextually ‘primed’ state of vision during an 
inter-stimulus delay. 

A common thread within these models is some form of feedback. This is not feedback in the 
anatomical sense of back-projecting axons, but as a resonating signal (or message passing, or particle 
filtering, etc), which is iteratively updated to constrain a local sensory state within a global (latent) 
state (most often in the form of a fixed point or an energy minimum, if the iterations are formalized as 
dynamical systems). More simply, and when meshed within the biological mappings proposed by 
these models, what one area tells another depends on what the other area tells it in turn. If this was not 
true, there would be no way to communicate anything meaningful (high dimensional enough) across 
levels abstraction – put yet another (final) way, a combinatorial explosion occurs if you try to map 
everything you can see to every way that you can see it. As discussed in the previous essay, this ties in 
nicely within the anatomy of the neocortex, where computational modules at different levels of 
abstraction communicate reciprocally and form hierarchies of abstraction. The question of whether 
feedback representations of working memory are continuously interdependent on feedforward 
representations we be a key question explored in this thesis. 



Many studies have sought to understand the role of working memory in perceptual decision 
making, a classic example being those which employ a visual delayed-match-to-sample 
paradigm22,23,65,66. Such studies have often used the observed neural correlates during the inter-
stimulus delay periods to constrain the possible neural implementations of latent contextual influences 
on perception. However, the diversity of possible behavioural confounds and analysis methods has 
limited the progress which has been made. Tasks which are referred to as working memory range 
broadly from change detection to delayed choice to simply alternating running patterns. Perhaps the 
biggest obstacle is in the choice of neural representation to analyse, which is often not specified by 
any theoretical models (are nodes in a graph neurons? Is communication achieved by 
synchronization? Plasticity? Resonating activity patterns?). These issues will be discussed in the next 
section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Essay 3: Attractive dynamics 
 

The first studies which investigated correlations between short-term memory and the activities of 
single cells22,23,66 identified clear persistent responses during the inter-stimulus delay periods. These 
responses were found in several regions, namely the parietal and prefrontal cortex of macaque 
monkeys, which were previously identified to support cognitive function by lesion studies. 
Observations of persistent delay activity have since been made in multiple task contexts, such as 
parametric working memory67 and change detection, and in many distributed areas of the neocortex68. 
Such single cell neural correlations have since come under scrutiny, however, due to the limitations of 
sampling only the most active cells in extracellular electrophysiology experiments, and the trial-
averaging approaches used to observe such trends. In particular, recent single-trial analyses have 
reported the mnemonic neural correlates are best explained by sharp bursts of increased activity in 
individual trials, with highly variable onsets during the delay, which only appear as uniform persistent 
activity when averaged together14,69. This has led to considerable debate regarding the neural 
implementation of working memory by persistent activity in the neocortex4,70.  

One solution to such ambiguities has been to correlate task variables with the activity of 
populations of many cells (i.e., state space analyses). In such approaches, with limited temporal 
smoothing, the stochasticity of single cell responses disappears, and clear, correlated modes of 
activity within the population are uncovered71,72. Nevertheless, such approaches when applied to the 
identification of mnemonic delay presentations, often employing tools and terminology from the 
analysis of dynamical systems, have come with their own limitations. Perhaps most importantly, 
whether or not the correlated modes of activity among cells are a relevant property of the recorded 
population (i.e., are involved with maintaining some mnemonic representation), or are simply a by-
product having shared external input, is difficult to ascertain. This problem is simply due to the fact 
that the dynamical regime of a system is determined by the input it is receiving, and if only one part of 
a larger recurrent system is being measured (i.e., the local activity patterns), one has to effectively 
assume that no input is being received during the delay. As such, difficulties have emerged in 
applying these methods even during behaviours with clear dynamical readouts (movement), and have 
found mixed interpretations for motor planning representations73,74. Nevertheless, due to their 
analytical tractability, several low-dimensional population-level models of persistent dynamics have 
identified novel mechanisms for working memory maintenenace7,75,76. 

Several of the above issues have motivated studies in which mnemonic representations are 
contrasted across tasks77 and across different epochs within multi-stage decision making paradigms78. 
Such studies have found evidence for distinct dynamical regimes, wherein low-dimensional dynamics 
are accentuated when a motor-contingency is applied to ‘entangled’ latent sensory representations. 
The experimental designs of this thesis may be thought of extensions of such work. 

 

 

 

 

 



 
 
 
 
 

Part II – Experiments 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experiment 1 
Maintenance of visual working memory by distributed cortical networks 

 

Background 

When working memory is studied experimentally within a decision making framework, it is never 
the only behavioural variable active in the task environment – at the very least, reward expectation 
and motor planning are necessarily involved and recruit their own neural processes. There is 
considerable uncertainty in the literature regarding the significance of such variables and the 
conclusions which may be drawn from experimental observations of delay-related activity4, but 
perhaps more fundamentally there is a question whether such variables constitute experimental 
confounds or are simply tandem aspects of working memory. A broad range of tasks with motor 
preparatory confounds, such as oculomotor delayed response66 or spatial navigation79,80, are often used 
to assess working memory. The key inadequacy of such tasks is that during the delay, the animals 
already know the decision which needs to be made, and the solution to each task could potentially be 
reduced to simply delaying actions without the need to maintain internal sensory representations. 
Recently, a significant amount of work has gone into dissociating the neural strategies implemented 
during mixed motor and sensory representations77,78,81. This untangling process is itself complicated 
by the numerous working memory paradigms used across multiple species. In rodents, for example, 
T-maze arm-alternation tasks with no mnemonic sensory component at all have been used to evaluate 
working memory representations80, and studies employing ‘virtual reality’ often link confounding 
sensory stimulation to movement readouts of behaviour12,82. Even in non-human primates, where tasks 
of sufficient complexity have been able to control for movement and reward contingencies, 
microsaccades during the working memory delay have been found to encode subsequent saccades83, 
and even the sensory cues themselves9. In general, however, it has been observed that eliminating 
early knowledge of motor or reward contingencies results in the sparsening of representations 
underlying latent sensory variables both in primates14,15, and in the few recent studies in mice which 
assess working memory with tasks that require mnemonic sensory representations84–86. 

We therefore designed a behavioural task which could isolate the engagement of working memory 
as an independent variable, and allow us to assess the representations of working memory agnostic to 
potential behavioural confounds. We used a Go/No-Go delayed (non)match-to-sample task to engage 
working memory representations of visual cues. Similar tasks have been previously used for visual 
working memory in non-human primates87. The primary innovation in this experiment was that we 
further contrasted this Working Memory task, in alternating blocks of several hundred trials within the 
same session, with a simpler Discrimination task which did not require working memory. Both tasks 
were performed by head-fixed mice with simple oriented bar stimuli in order to constrain as much as 
possible any movement or visual stimulation differences between the tasks. 

The final goal of this experiment was to use this task to identify just how distributed working 
memory representations are in the neocortex. Given the complex association of working memory with 
other behavioural variables, identifying an area or network involved with working memory has been 
difficult. Although most studies of working memory have focused on the parietal and prefrontal 
cortices, recent studies mapping distributed area of the brain have found neural signatures of working 
memory in most regions studied68. In studies employing optogenetic silencing in mice the results have 
been less clear81,84, however, potentially due to silencing induced disruptions of movement planning, 
or to the robustness of delay-related representations to silencing masking any effects of transient 
disruptions88. As such, in addition to isolating working memory engagement with our task, we 
developed an optogenetic silencing design which not only targeted multiple areas of the neocortex, 
but also at different epochs within each trial. Such a design allowed us to assess both the distribution 



of working memory in the neocortex as well as dissociate the movement and mnemonic effects of 
silencing. 

 

Methods 

Animals, ethics, and surgical procedures 

All experiments were conducted in accordance with institutional animal welfare guidelines and 
licensed by the UK Home Office. A total of 9 PV-Cre × Ai32 (LSL-ChR2) mice were used for this 
experiment. Mice were of either sex and were between 8 and 16 weeks old at the start of their 
experiments. 

Surgical procedures 

Prior to all surgeries, the mice were injected with an analgesic (carprofen 5 mg kg−1). General 
anaesthesia was induced with 3% isoflurane which was then reduced to maintain a breathing rate of 
around 1 Hz. A custom-designed stainless steel headplate was attached to the skull using dental 
cement (C&B Super Bond). In some of the older mice, the dorsal surface of the skull was carefully 
thinned with a dental drill. The exposed skull was then sealed with a thin layer of light-curing dental 
composite (Tetric EvoFlow). 

Intrinsic imaging 

We used intrinsic signal imaging of the dorsal cortex to identify the locations of cortical areas V1 
and AM. Intrinsic imaging was performed on awake mice while they were head-fixed on top of a 
freely rotating Styrofoam cylinder. The visual cortex was illuminated with 700-nm light, a 
macroscope was focused 500 µm below the cortical surface, and the collected light was bandpass 
filtered centred at 700 nm (10 nm bandwidth; 67905, Edmund Optics). The images were acquired at a 
rate of 6.25 Hz with a 12-bit CCD camera (1300QF, VDS Vosskühler), an image acquisition board 
(PCI-1422, National Instruments), and custom software written in LabVIEW (National Instruments). 
The visual stimuli, presented on a display 22.5 cm away from the left eye, were generated using 
Psychophysics Toolbox running in Matlab (MathWorks), and consisted of square-wave gratings, 
covering 40° visual angle, 0.08 cycles/degrees, drifting at 4 Hz in 8 random directions, presented on a 
grey background for 2 seconds, with 18 second interstimulus intervals. The gratings were presented 
alternatively at two positions, at 15° elevation and either 20° or 80° azimuth. Response maps to the 
grating patches at either position were used to identify the centres of V1 and AM, using a previously 
published reference map89. 

Behavioural training and task design 

Mice were trained for 2-6 weeks prior to the initiation of data acquisition. Mice were food 
restricted throughout the full experiment, with no scheduled breaks. The maximum weight loss was 
restricted to 20% of their initial body weight. Food restriction began at least 3 days following their 
headplate implantation surgery. The mice were trained for approximately 2 hours every day, once a 
day, and data acquisition days lasted approximately 3 hours each, occurring on average every 2 days. 
For the first few days of training the mice were handled on a cloth and iteratively fed Ensure Plus 
strawberry milkshake (Abbott Laboratories) through a syringe in order to acclimate them to the 
behavioural training environment. Over the next few days, the mice were trained to run on a freely 
rotating Styrofoam cylinder, while head-fixed, in front of the visual stimulation display (Dell U2415, 
60 Hz), placed 22.5 cm away from their left eye. 

Once the mice were running freely, they were trained to perform a simple visual detection task, 
where the onset of a visual stimulus was associated with reward. Visual stimuli consisted of large 



drifting square-wave gratings presented at 100% contrast, 0.025 cycles per degree, covering 60° 
degrees of the mice’ visual field, centred at 15° elevation and 45° azimuth, presented on an 
isoluminant grey background. The luminance of the monitor was set at 0 cd/m2, 22.5 cd/m2, and 45 
cd/m2, at black, grey, and white values, respectively. The grating stimuli were cycling in closed loop 
with the mouse running for the first 1-2 weeks of training, and were then fixed at 3.5 Hz for the 
remainder of the experiment. The mouse running speed was recorded with a rotary encoder 
(05.2400.1122.1000, Kübler), and the mice had to run a specified distance between rewards. This 
distance was set so that the mice received roughly 1 reward per minute. A reward delivery spout was 
positioned under the snout of the mice from which a drop of Ensure Plus was delivered when 
triggered by licking of the spout during a response window of 1 second following stimulus onset. If 
the mice failed to lick in response to the stimulus, an automatic reward was delivered at the end of the 
response window. Licks were detected with a piezo disc sensor placed under the spout. The detection 
of licks, reward delivery, recording of data, and the presentation of visual stimuli were controlled by a 
custom LabVIEW code (National Instruments), the custom stimulus presentation software was written 
in the Unity engine (Unity Technologies), and hardware interfacing was achieved with a data 
acquisition board (PCIe-6321, National Instruments).  

Once the animals were running and licking in response to the presentation of grating stimuli, the 
task parameters were changed in order to begin training either the Discrimination or Working 
Memory tasks (with the order varying between mice). The orientation of the stimuli now classified 
them as either Go or No-go (see Figure 1). If mice licked the spout during a 1 second response 
window from the onset of the Go stimulus, trials were classified as hit trials, otherwise they were 
classified as miss trials. In the miss trials, the mice received an automatic reward at the end of the 
response window. The same response window was used to classify No-go trials into false alarm or 
correct rejection trials. Licking to the No-go visual stimulus (False Alarms) was not punished. Both 
tasks consisted of a series of alternating stimulus (grating) and delay (grey background) periods. 
Delay durations were sampled from an exponential distribution with a mean of 800 ms, and then had 
800 ms added (i.e., a 800 ms offset/minimum duration). Sample durations were capped at 4000 ms, 
and when the cap was reached the delay duration was resampled uniformly from between 3600 ms 
and 4000 ms in order to minimally change the average delay durations. The resulting average delay 
duration was 1600 ms. The stimulus duration was determined by the mouse running speed, and set to 
either 100 cm or 80 cm depending on their running speed, such that the stimuli took a similar time to 
traverse if the mouse did not stop running. The average stimulus duration was 1967 ms. This 
promoted constant running in mice over each sessions which in turn ensured stereotyped movement 
between mice and within the delay periods. The stimuli presented were either Cues (80% of trials), 
Probes (10%), or Targets (10%), and were sampled randomly, with the exception that after a Probe or 
a Target stimulus, a Cue stimulus was mandatory (100% probability). As such, Cues were only 
switched following Targets (in the Working Memory task; in the Discrimination task the Cues were 
always the same), and the majority of trials were consecutive Cues of the same stimulus/orientation. 
The only difference between the Discrimination and Working Memory tasks was therefore that the 
Cues were always 0° gratings in the Discrimination task, and of a flipped orientation to the Targets in 
the Working Memory task. Once the mice were performing both tasks well, the blocked task structure 
was introduced, which alternated blocks of 415 trials of both tasks through each session. Mice 
performed between 4 and 7 task blocks per session. Mice switched task blocks quickly (a few trials), 
as the presence or absence of the Discrimination task Cue stimulus (0° grating) was informative of the 
task block. 

Optogenetic silencing 

To silence neuronal activity, we optogenetically activated ChR2-expressing parvalbumin-positive 
neurons using a 473 nm laser (OBIS 473 nm LX 75 mW, Coherent) with a galvometer-scanning 
photostimulation macroscope90. Briefly, laser light was deflected off of two galvometer scanning 



mirrors, which targeted the light, expanded by two lenses (5x; plano-convex lenses LA1951-A and 
LA1384-A, Thorlabs), and then focused onto the brain with a 200 mm focal length lens (AC508-200-
A, Thorlabs). A polarizing beamsplitter was placed in the light path and allowed us simultaneously 
image the surface of the skull in order to identify and select silencing locations. The photostimulation 
and image acquisition was controlled by custom LabVIEW code and a data acquisition card (PCIe 
6321 ; National Instruments). The laser light was pulsed at 50 Hz, with a 50% duty cycle. The laser 
power was 3 mW for the first 400 ms of stimulation and then linearly tapered off to 0 mW over 200 
ms in order to minimize rebound effects. The propagation of reflected light to the eye was blocked 
either by a cement wall around the exposed skull or a custom 3D-printed plastic lightshield implanted 
during the headplate surgery. Silencing occurred in 12% of trials, at onsets of either the delay onset, 
delay end (600 ms before stimulus onset), or stimulus onset. Because delay end silencing was difficult 
to interpret, as the mice could use the silencing to predict the stimulus onset and respond 
preemptively, we discarded those trials. The silenced areas were chosen randomly trial-to-trial, with 
the constraint of no two silencing trials in a row, and were either chosen by coordinates relative to 
bregma (areas M2 and S1), or intrinsic imaging (areas V1 and AM). A bright 473 nm masking light 
was flashed onto the mouse from an LED-coupled optical fibre (400 µm diameter), on each trial and 
at one of three onset times (chosen randomly), but always concomitant with the laser (i.e., matched 
onset to the laser light on silencing trials). This masking light thus had the same dynamics as the laser 
light, and was used to both mask the laser light and as a negative control for light onset induced 
behavioural changes. 

Data processing 

A total of 241,748 trials were collected from 9 mice. Trials during which mice stopped running 
during the delay, trials following either Targets or Probes (i.e., the trials which were fixed to always 
be Cues, see task design above), and trials when the silencing onset was at the end of the delay were 
excluded from the analyses.  

Results 

A behavioural task to isolate visual working memory in head-fixed mice. 

Mice were required to switch between performing the Discrimination and Working Memory tasks 
in blocks of 415 trials (Fig. 1a). In both task blocks, the probability of the rewarded stimulus (Target) 
was 10%, and the length of the inter-stimulus grey-screen delay period was sampled from an 
exponential distribution ranging from 800 ms to 4,000 ms. The exponential distribution ensured a flat 
hazard rate for the stimulus onset and minimized expectation-based preemptive responses by the 
mice91. In order to gauge any potential experimentally uncontrolled differences in task engagement, 
impulsiveness, or reward expectation between the Discrimination and Working Memory tasks, we 
introduced a common Probe stimulus in both task blocks with the same probability as the Targets 
(10%). During the Working Memory task, mice performed equally well following either of the two 
possible Cues (n = 9 mice, p = 0.65, signed-rank test; Fig. 1b).  



 

Mouse running speeds during the delay was stable, and the average running speed was not 
significantly different between the two tasks (Fig. 2a). Halting rates during the inter-stimulus delay 
period were not significantly different between the tasks, and early responses during the delay were 
very rare (fewer than 5% of trials for each mouse), and slightly higher in the Discrimination task (n = 
9 mice, p = 0.16, p = 0.16, and p < 0.01, respectively, sign-rank tests; Fig. 2b) 

 

The primary behavioural difference between the two tasks was that the ability for mice to correctly 
discriminate the correct stimulus strongly depended on the inter-stimulus delay duration only when 
they were performing the Working Memory task (Fig. 3a). Specifically, the false alarm rate to the Cue 
stimulus in the Working Memory task increased as a function of the preceding delay length (n = 9 
mice, p < 0.05, t-test for the significance of the response-delay length slopes; Fig. 3c). Note that 
chance performance corresponds to when the false alarm rate curves and hit rate curves cross. The 
specificity of this delay length dependent impairment of performance to false alarms, not hits, is 
indicative of a positive bias for responding, likely due to the a lack of punishment for false alarms. 
Individual mouse performances, as measured by d’, and the variations between binned delay length 
intervals, is shown in Fig. 3d.  



Responses to the Probe stimuli were very rare in both tasks, and did not show any delay length 
dependence in either task (Fig. 3b). As any task-agnostic influence of delay length on response 
probability (‘fidgetiness’) would have resulted in increased responses to the Probe stimuli, but the 
delay duration effects on performance were restricted to the working memory dependant stimuli (i.e., 
Cue-Target discrimination in the Working Memory task), we concluded that this delay length effect 
reflects the time-dependent disruption (e.g., decay23 or interference92) of a working memory trace.  

 

We next investigated whether using latent representations of the Cue to infer the meaning of the 
stimulus during the Working Memory task corresponded to an added cost in decision making time. In 
agreement with this hypothesis, reaction times to the stimuli were longer in the Working Memory task 
to both Targets (Hits; n = 9; 304 ms and 374 ms inflection points for responses in the Discrimination 
and Memory tasks, respectively; p < 0.05, signed-rank test; Fig. 4b) and Cues (False Alarms; 135 ms 
and 298 ms; p < 0.001, signed-rank test, Fig. 4a). This was also true for the respective modes of the 
reaction times (Fig. 4c-d). Importantly, responses were delayed by the Working Memory task 
irrespective of whether they were more frequent (False Alarms) or less frequent (Hits) than in the 
Discrimination task, indicating that these delayed response times were resulting from systematic 
delays in the decision making process. 



 

In our task design the non-Target stimuli automatically served as Cues for the subsequent trials, 
effectively removing inter-trial intervals and allowing us to analyse continuous sequences of delay-
stimulus pairs (i.e., trials) under the conditions of differential working memory engagement. An 
analysis of inter-trial history effects found an impairing effect of the Target switch (i.e., in trials 
immediately following a Target) which was only present in the Working Memory task (although 
mouse performance was above chance in both tasks even immediately after a Target; Fig. 5a). Over 
the course of longer sequences of Cues, performance remained stable, and this was equally true when 
removing all trials following at least one false alarm subsequent to the most recent Target (Fig. 5b). 
This indicated that (1) the mice were constantly updating their working memory with each Cue, and 
(2) the mice were not using response contingency to do this (i.e, not inferring the stimulus meaning 
from a lack of reward to a False Alarm) – the mice were relying solely on visual input to update their 
working memory representations over minutes-long timescales.  

 



 

Optogenetic dissociation of cortical substrates of visual working memory. 

We next investigated which cortical areas supported visual working memory by contrasting the 
effects that optogenetic silencing had on the Discrimination and Working Memory tasks. To address 
both the necessity of cortical areas as well as to dissociate their role in working memory (i.e., delay 
maintenance or decision), we silenced one of six different areas of the dorsal cortex at either the onset 
of the delay or at the onset of the stimulus. The areas silenced were, on the hemisphere contralateral to 
the visual stimulus, V1, AM, S1, and M2, and ipsilateral AM and M2 (Fig. 6a). Area AM corresponds 
to a higher visual area putatively homologous to the primate parietal cortex and area M2 to either the 
premotor or prefrontal cortex93–95. The silencing itself was transient (400 ms followed by a 200 ms 
ramp down) and occurred in only 12% of trials. A bright masking light of matched wavelength near 
the mice was concomitant with the optogenetic silencing light. The masking light alone, with the same 
onset windows as the silencing light, had no effect on running speed or responses (Fig. 6b). Although 
cortical silencing slightly slowed the mouse running speeds, there was no interaction of this effect 
with the task that the mice were performing (Fig. 6b). Importantly, the delay onset silencing occurred 
outside of the earliest possible stimulus onset and response time (the delay duration minimum was 
800 ms). 

 

In all six cortical areas that we tested, and in both of the onset windows, silencing during the 
Working Memory task reduced the performance more so than in the Discrimination task (Fig. 6c). 
Silencing at the onset of the delay, in particular, had no significance effect whatsoever on the 
Discrimination task performance, in any area. We summarize all of the silencing effects in Fig. 7, 
simply by averaging the proportion of incorrect responses during the silencing trials relative to trials 
with no silencing, split by area silenced, silencing epoch, task, and the stimulus type (i.e., false alarms 
to Cues and Probes, and misses to Targets). 

 



Looking further into the types of errors introduced by silencing, we found that for all of the areas 
we tested except area S1, silencing at the onset of the delay led to a significant increase in incorrect 
responses only when the mice were performing the Working Memory task (all p < adjusted α, see Fig. 
7 legend; fisher exact test; no effect during the Discrimination task, all p < adjusted α). Importantly, 
only the incorrect responses which depended on the delay duration, i.e., false alarms to Cues in the 
Working Memory task, were increased by the silencing, and there was no effect on responses to the 
Probe stimuli in either task (all p > adjusted α). We therefore interpreted these effects as highly 
selective disruptions of the visual working memory trace. 

 

The effects of silencing at the stimulus onset were dissociated by cortical area and, surprisingly, by 
the task. Silencing the visual cortex (areas AM and V1) contralateral to the stimulus led to (1) an 
increase in misses to the Targets in both tasks, with a stronger effect in the Working Memory task, (2) 
an increase in incorrect responses (false alarms) to the Cues in the Discrimination task, and (3) a 



paradoxical decrease in incorrect responses to the Cues in the Working Memory task. The overall 
performance reduction was nevertheless higher in the Working Memory task, but this result suggested 
a strong divergence of the role of cortical sensory processing as a function of working memory 
engagement. In contrast, silencing anterior and ipsilateral cortical areas (contra- and ipsi-lateral M2, 
ipsilateral AM, and contralateral S1) did not significantly affect the miss rates but simply increased 
incorrect responses to the Cues, more so when the mice were performing the Working Memory task 
compared to the Discrimination task. Was the task-mediated dissociation of the effect of silencing the 
contralateral visual cortex during the stimulus a property of the different baseline response rates in the 
Working Memory task? We analysed this by looking at the temporal structure of responses in the two 
tasks (i.e., cumulative reaction times) over the course of the stimulus with and without silencing. 
Surprisingly, we found that not only were responses inhibited during the Working Memory task, but 
they were actually lower than the responses during the Discrimination task. This indicates that the 
contralateral visual cortex controls the motor component of responses selectively when the mice are 
engaging in a visual working memory task. 

 

In summary, we were able to identify clear psychometric differences between mice when they 
were engaging in a Working Memory task versus a working memory independent Discrimination 
task, namely the dependence of performance on the inter-stimulus delay duration, reaction times, and 
trial history effects – all processes which are expected to underlie working memory maintenance. 
Using this task, we were then able to identify a distributed role of multiple cortical regions, at the 
onset of the delay period, which was highly selective to working memory maintenance, and a more 
complex, dissociated role of the neocortex during stimulus processing. 

 

 

 

 

 

 
 

 



Experiment 2 
High-dimensional neural representations of visual working memory 

 

Background 

We next set out to identify the neural activity patterns underlying visual working memory. Taking 
a lead from the optogenetic silencing experiments, we chose to record from multiple cortical areas, 
specifically focusing on areas AM and M2, contralateral to the visual stimulus presentation, 
hypothesizing that they may have contrasting functions in supporting visual working memory. Of 
particular interest was the representation of visual working memory during the inter-stimulus delay 
period, as multiple previous studies have described persistent modes of activity during the delays of 
working memory tasks in the primate homologue regionse.g., 67,76. 

Although the blocked task design of our experiments allowed us to simply contrast the activity 
patterns of the same populations of cells between the Discrimination and Working Memory tasks 
during the delay periods, the fact that different stimuli served as Cues in the two tasks could 
potentially introduce confounds of sensory input or sensory history to the neural data. To circumvent 
this problem we introduced a second blocked trial structure, which ran in parallel to the task blocks 
used for Experiment 1, which simply involved rotating the stimuli back and forth (details will be 
described in the methods and results sections). This final control allowed us to evaluate the neural 
activity differences between the two tasks under the same sensory input, and roughly corresponds to 
the use of spatial location in some visual working memory studies in non-human primates to 
differentiate mnemonic and purely sensory responses in neurons with spatially localized receptive 
fields (often termed attention-in and attention-out trials)e.g., 96. 

We used two separate approaches to identify the neural representations underlying visual working 
memory. First, we looked for low-dimensional dynamical modes of activity within the neural 
populations of areas AM and M2, either through the selection of delay- or stimulus-responsive 
cells23,67 or through dimensionality reduction methods76,78. Such methods are common, often 
characterize neural activity patterns as isolated dynamical systems, and have generated significant 
experimental evidence for the use of persistent delay activity in the mechanistic modelling of working 
memory5–7. As an alternative, we used a decoding approach in which we trained a linear model to 
predict the current task that the mouse was performing from the population activity, which would 
identify a population subspace that represents the activity added (or removed) by working memory 
engagement. Importantly, this latter method is not available without the two-task approach used in our 
experiments, and is therefore more limited in identifying working memory dynamics purely from the 
neuronal data (i.e., if only given the Working Memory task activity). 

 

Methods 

Animals and ethics 

All experiments were carried out in accordance with institutional animal welfare guidelines and 
licensed by the UK Home Office. A total of 3 Ai-148 × Cux-creER (GCaMP6f expressed in most 
excitatory layer 2/3 cells) and 3 Ai-148 (cre-dependant GCaMP6f in all cortical cells) were used for 
these experiments. Mice were of either sex and were between 8 and 16 weeks old at the start of their 
experiments. 



Surgical procedures 

Prior to all surgeries, mice were injected with dexamethasone (2–3 mg kg−1) and an analgesic 
(carprofen 5 mg kg−1). General anaesthesia was induced with 3% isoflurane which was then reduced 
to maintain a breathing rate of around 1 Hz. A first surgery to implant a custom-designed stainless 
steel headplate was performed. The headplate was attached to the skull using dental cement (C&B 
Super Bond). The exposed skull was then sealed with a thin layer of light-curing dental composite 
(Tetric EvoFlow). Following a minimum recovery time of 3 days and intrinsic imaging (as in 
Experiment 1) to identify area AM, a second surgery was performed to make a cranial window over 
areas AM and M2. A 5 mm craniotomy was made over the dorsal surface of the skull and a 300 µm 
thick, 5 mm diameter glass window was implanted. In the 3 Ai-148 mice, a 50 nl viral injection of 
[AAV9.hSyn.Cre.WPRE.hGH] diluted to a low titre (5E11 vg/ml) in cortex buffer was made into AM 
and M2. 

Behavioural task 

The behavioural training and task were similar to that described in Experiment 1. The key 
difference was that the oriented Cue/Target gratings were ±30° instead of ±45°, and the rotation 
blocks were introduced. The rotation blocks did not require training, and consisted of blocks of trials 
during which all gratings (except for the 90° oriented Probes) were rotated 15° clockwise or counter-
clockwise. In the transitions between rotation blocks, the grating angles were changed slowly 
(averaging 10 minutes for a full 30° rotation). The final stimulus orientations were -45°, -15°, and 
+15°, and -15°, +15°, and +45°, for the Cues and Targets in the clockwise and counter-clockwise 
rotation blocks, respectively. A typical session, therefore, involved alternating task block switches and 
rotation block switches such that both of the -15° and +15° oriented stimuli had paired Discrimination 
and Working Memory task identities across rotation blocks. All other aspects of visual stimulation 
were the same as in Experiment 1.  

Imaging 

We imaged calcium transients in layer 2/3 cells of areas AM and M2 simultaneously using a wide 
field of view two-photon microscope97. The surface blood vessel pattern above the imaging sites was 
compared with the blood vessel pattern from the intrinsic signal imaging maps to confirm the location 
of area AM. Field of views over each area were 600 µm × 600 µm and spread over four axial planes 
50 µm apart. Frames from all 8 fields of view were acquired at 4.68 Hz. The image acquisition 
software was ScanImage98. Two small cameras (22BUC03, ImagingSource) were positioned to 
acquire greyscale videos of the body and left pupil at 30 Hz. 

Data analysis 

The imaging data was pre-processed using modified CaImAn software99. Briefly, cell masks were 
identified as point-seeds at individual cell locations by the experimenter, using the registered mean 
frame image as well as a pixel-surround correlation image. The CaImAn cell segmentation and 
neuropil demixing algorithms (based on constrained non-negative matrix factorization) were the 
applied to the seeds to define the mask boundaries and extract the calcium time series. A second 
round of experimenter-mediated curation was performed on these masks. The calcium traces were 
then detrended, normalized (ΔF/F0), and deconvolved using the standard CaImAn algorithms 
(FOOPSI100).  

For all data where ΔF/F0 activity is shown (Figures 11-13), the underlying statistical analyses (e.g., 
estimating the latencies of delay responses) were done on the deconvolved timeseries. For all 
subsequent statistical modelling and population analyses (e.g., PCA, WMCD), only deconvolved 
calcium activity was used. Imaging frames with low correlations to the average image (putative 
movement artefacts), or significant pupil movements (greater than 5 standard deviations from the 



mean), were discarded. Individual cells were further curated following timeseries extraction using (1) 
spatial neuropil correlations, (2) SNR (see CaImAn documentation), and number of event (activity) 
restrictions. For analyses limited to delay or stimulus responsive cells (Figure 11-13), we defined 
responsiveness with an effect size threshold (0.2 deconvolved ΔF/F0 difference post-pre delay or 
stimulus) and a paired sample t-test (α = 0.01). Although the inter-stimulus delay periods range from 0 
to 4,000 ms as in Experiment 1, the fewer number of trials available for analysis within each 
individual imaging session led to too few long duration trials (due to the exponential distribution of 
delay durations), and as such all analyses were limited to trials with delay lengths ranging from 0 to 
3,200 ms. For all decoding analyses (i.e., the WMCD), the model was 5-fold cross validated and all 
reported classification accuracies are of the left-out (test) data. The model was identified by linear 
discriminant analysis, but other linear methods achieved very similar results (e.g., logistic regression). 

 

Results 

Low dimensional dynamics did not discriminate working memory engagement. 

In order to examine differences between the Discrimination and Working Memory tasks in the 
activities of individual cells within the same session without stimulus orientation specific response 
and adaptation confounds, we introduced a second block structure into both tasks. The orientations of 
Cue and Target stimuli were rotated in blocks of several hundred trials, in parallel but out of phase to 
blocks of the Discrimination and Working Memory task trials, with at least 2 blocks being completed 
per session. The rotations were of +15° and -15°, such that the Cue stimuli in the Discrimination task 
were of the identical orientation to one of the Cue stimuli in the Working Memory task. Accordingly, 
for all further analyses we were able to contrast the neural activity with and without working memory 
engagement in response to sequences of visually identical delay-stimulus pairs (Fig. 9a). We further 
constrained our analysis to trials (i.e., delay-stimulus pairs) following a common Cue stimulus (i.e., 
not following a Target or Probe). In order to simplify the analyses, if a single session consisted of at 
least one Working Memory block and one Discrimination block in both Rotation blocks, we treated 
the two available pairs of matched Cue task blocks as separate experiments.  

 

Rotations of the stimuli did not interact with performance, which was similar across rotation 
blocks for both the Working Memory and Discrimination tasks (Fig. 9b). Importantly, running speed 



(Fig. 10a) and other task-extrinsic arousal related variables, measured experimentally by pupil 
diameter101, were not significantly different between the tasks (Fig. 10b). 

 

In both areas AM and M2, single cell responses during to the delay were at least as common as 
responses to the stimuli, but had more variable phases of onset and dynamics (Fig. 11a). Interestingly, 
none of the delay-responsive cells were clearly responsive to the stimulus, and they were present with 
and without working memory engagement. In fact, although the average activity of single cells was 
often slightly biased to one of the tasks, on average, the trial-to-trial variability in their peak activity 
levels far too great to be able to clearly distinguish the tasks from single cells. Both of these 
observations have been described in non-human primate visual delayed-match-to-sample tasks14,15, 
and contrast to observations from vibrotactile parametric working memory tasks67. 

 

 



Strikingly, averaging the activity of all delay- or stimulus- responsive cells together revealed that 
the overall average neural activity, with and without working memory engagement, was nearly 
identical (Fig. 11b). Furthermore, although delay-responsive cells exhibited diverse dynamics, 
primarily in the latency at which they fired from the delay onset, on the population level the delay 
activity was persistent throughout the delay, including during the Discrimination task. 

To get a better handle on how the dynamics of single cells changed as a function of working 
memory engagement, we fit gaussian distributions to their delay-triggered responses, sorted the cells 
by the means of these distributions (i.e., the latencies of the fit responses), and then plotted the sorted 
cells with their trial-averaged activities split by task (Fig 12). We found that the activities of delay-
responsive cells had an almost evenly staggered distribution of onset times, effectively leading to a 
tiling the full delay period as a population. The latencies were fit and plotted from separate trials (see 
figure legend), and were therefore reliable from trial-to-trial, and not simply a by-product of 
overfitting.  

 

The calculated onset latencies were not significantly different between the Discrimination and 
Working Memory tasks (Fig. 13a). To visualize this, we plotted all cells separately for both tasks, this 
time sorting them by their responses in the opposing task (Fig. 13c), and found a similar pattern of 
sequential activity as before. Areas AM and M2 exhibited similar but significantly different 
proportions of ramping responses (Fig. 13b). These analysis demonstrated that at least among delay-
responsive cells, the average activities and dynamics were agnostic of task, and that persistent delay 
activity was being driven by visual working memory. Such delay activity could nevertheless be 
related to variables such as motor planning or reward expectation, which are essential to decision 
making tasks.  

 



 

A common, more wholistic approach to neural population analysis is to reduce the dimensionality 
of the full population of recorded cells while maintaining as much of the variance as possible. To do 
this, we performed PCA on the trial-averaged activity patterns identified during the delay and 
stimulus epochs. This effectively leads  to ‘pseudo-simultaneous’ neural activity patterns which can 
be pooled across experiments, and sacrifices the ability to capture trial-to-trial variability in favour of 
a more robust measure of trial-averaged neural dynamics75,102. Consistent with previous reports of 
low-dimensional activity modes in cortical populations72, we captured a large amount of trial-
averaged activity variance within only the first three PCs (83% in AM and 78% in M2). To visualize 
the data we projected different groupings of trials onto the identified PCs, grouped by task and three 
equal bins of the delay durations (Figure 14). The resulting trajectories were strikingly similar 
between tasks, with longer delays simply extending a ‘rotational’ mode of activity. We generated a 
null distributed of the Euclidean distance between these trajectories by simply shuffling the task 
identities of individual trials, and found that the true Euclidean distances between the Working 
Memory and Discrimination task trajectories were not significantly different from each other (p > 
0.01 for all times during the delay and stimulus, adjusted α = 0.002). These results indicate that the 
strongest dynamical modes (e.g., the tiling of offsets throughout the delay) of the full populations, in 
both areas AM and M2, were not related to whether or not the mice were maintaining a working 
memory trace. On the whole, these observations surprised us, as the removal of these activity patterns 
by optogenetic inhibition had such drastically divergent effects on behaviour depending on working 
memory engagement, in some cases even in the opposite directions (i.e., when silencing area AM 
during the Cue).  



 

Decoding a high-dimensional representation of working memory 

Although single cells were not reliably more active with or without working memory engagement  
(Fig. 11), they often did show a slight bias in the trial-averaged peak (i.e., not phase) that their activity 
reached during the delay period. We therefore hypothesized that these slight fluctuations around the 
mean activity within each delay period could result in clear separation of the representations of the 
Discrimination and Working Memory tasks if summed across the full population of recorded cells. 
First, we analysed whether these single cell biases were significantly more distributed then would be 
expected by chance by plotting trial and delay averaged activities of all cells in both tasks against each 
other (Fig 15). Although there were no clear subpopulations of cells which were task modulated, their 
spread was greater than would be expected from a null distribution (r = 0.85 vs. rnoise = 0.97 for area 
AM, and r = 0.86 vs. rnoise = 0.96 for area M2). Importantly, we generated the null distributions by 
shifting the task identities of each trial half-way into the next task block, which allowed us to preserve 
in the null distribution any slow temporal activity drift (e.g., fluorophore bleaching or axial brain 
movement) which could confound measures of activity across trial blocks103. Having observed that the 
population activity was significantly biased, we next trained a linear decoder using the delay activity 
of individual trials to predict which task the animal was performing on any given trial, and were able 
to achieve a surprisingly high decoding accuracy (92% of trials had their task correctly classified for 
area AM, and 88% for area M2). 

 



 

How is this representation of visual working memory embedded in the neural state space? We 
approached this question by titrating the neural activity available to the decoder and observing the 
effects on task classification accuracy. Importantly, as classification accuracy was of data left out for 
training (i.e., the model was cross-validated), it is not necessarily true that classification accuracy 
would always increase with more data75,102, both due to overfitting as well as the possibility that trial-
to-trial variability was unrelated to the decoded variable of interest (‘noise’). First, we randomly 
sampled cells and added them to the decoder, and found that roughly 100 cells were necessary to 
approach the full population decoding accuracy (Figure 16a). Then, we did the same procedure with 
the top PCs of the raw population activity (i.e., not the trial-averaged PCs as in Figure 14), and found 
that as many as 20 principle components were needed to approach the same classification accuracy 
(Fig. 16b). The fact that the variance explained by the first 20 principle components was significantly 
greater than the variance explained by 100 randomly sampled cells, but the classification accuracy 
was similar, suggested that the low-dimensional modes of activity in the neural population were not 
selectively modified by working memory engagement, and that the trial-to-trial variability of single 
cells, at least with respect to working memory encoding, was limiting the information available in the 
population (i.e., was not correlated104). To confirm this observation, we titrated the exclusion of the 
top (highest variance explained) PCs, and found that the decoding accuracy was strikingly robust to 
the removal of the majority of the variance of the population activity, as long as a sufficiently high 
dimensional representation was preserved (Fig 16c). Taken together these results indicated that the 
representation of visual working memory was embedded in a high-dimensional neural state space – 
many neurons encode visual working memory unreliably, but do not share a single (or some low 
number of) correlated modes for this encoding. We termed the high-dimensional subspace identified 
by the decoder as the Working Memory Coding Dimension (WMCD), and focus on it for later 
analyses.  



 

It is important to note that the WMCD is related to the coding dimension that separates Cue 
identify (i.e., the preceding stimulus orientation) during the Working Memory task, which is a 
subspace commonly used in the delayed-match-to-sample literature. Essentially, instead of contrasting 
the +15° or -15° Cues with the -45° and +45° Cues, we contrast them with the working memory 
independent representations of the ‘neutral’ Cue in the Discrimination task, but the direction (in 
perceptual orientation space) of contrast remains the same. The WMCD has the advantage that the 
Cue identify coding dimension comes with potential sensory confounds of different feedforward 
activity (e.g., orientation specific offset responses at the onset of the delay period). As the WMCD is 
defined across blocks of trials at different times within each recording session, and could therefore 
identify confounding slow temporal drifts of activity (e.g., fluorophore bleaching or axial movement), 
we performed another control (in line with the shifted-trial control in Fig. 15) in which we used the 
WMCD to try to classify trials which occurred either early or late in any given task block (Fig. 17a). 
We found that the WMCD was able to discriminate between trials early and late in each block above 
chance only in a small fraction of blocks, indicating that slow temporal drifts n activity were not a 
significant factor in defining the WMCD. 

 

We next investigated the single-trial dynamics of the neural population activity projected onto the 
WMCD. Generally, we observed that on single trials the WMCD activity persisted throughout the 
delay. We quantified this by first limiting our analysis to trials with sufficiently long delays (greater 
than 3,200 ms), and then comparing the WMCD activity in the first and second half of this period. 



The relationship between the two halves of the delay was significantly more robust when the mice 
were performing the Working Memory task as compared to when they were performing the 
Discrimination task, both in measures of the slope of the relationship and the regression coefficients 
(Figure 18). These differences were completely masked by the dominant trial-averaged modes of 
neural population activity, highlighting the importance of single-trial analysis70. Such an increase in 
the robustness of delay related activity along the WMCD during working memory engagement is 
indicative with line attractor dynamics previously suggested by recurrent neural network 
modelling7,75.  

 

A key property that a population code which captures the latent representations of working 
memory should have is the ability to predict lapses or errors in working memory encoding. We found 
that the delay activity prior to an incorrect response to the subsequent Cue had an on average weaker 
projection onto the WMCD (Fig 19). Although the ability of the WMCD to predict correct 
behavioural responses was present in almost all experiments, it was not able to predict the majority of 
incorrect responses, suggesting that mechanisms other than working memory encoding could also 
underlie incorrect responses (e.g., exploration).  

 



Our results from Experiment 2 demonstrated that although the low-dimensional modes of delay 
activity were omni-present in both areas AM and M2 and exhibited strong persistent dynamics, they 
were completely agnostic of working memory engagement, which was instead supported by 
representations which were embedded in a highly variable, high-dimensional subspace of the neural 
population. This high-dimensional representation had the necessary properties of a latent mnemonic 
representation, it persisted throughout the delay it predicted the behaviour. Our observations regarding 
the trial-to-trial variability and dynamical structure of the WMCD has significant implications for 
mechanistic models of working memory4,70, which will be discussed in Part III of this thesis. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Experiment 3 
Maintenance of visual working memory by cortical feedback loops 

 

Background 

In the first two experiments of this thesis we observed that distributed regions of the neocortex 
support visual working memory, and that in at least two of these regions, AM and M2, there exists a 
high-dimensional population code underlying working memory. If these representations are as 
distributed as they are (i.e., redundant), why does silencing any single region lead to a disruption of 
the working memory trace? Theoretical work regarding how latent representations are maintained in 
the brain in cohesive states (recall Essay 2) has shown that they need not only to be distributed, but 
more importantly interdependent. Intuitively, any meaningful (e.g., invariant) influence that one area 
exerts on another, requires that they are constantly aware of what the other is doing. This is perhaps 
more a principle of feedback control in general, but is omnipresent in most instantiations of 
biologically plausible inference algorithms58,105. We therefore hypothesized that silencing one area 
locally (the ‘feedforward’ area) while imaging the feedback it receives from a reciprocally connected 
area, would selectively abolish the representation of working memory in the feedback. An alternative 
hypothesis exists, wherein the distributed brain regions operate completely independently, and 
contribute individual parts of the ‘correct’ task behaviour in parallel, and therefore have no influence 
on the other areas’ representation of working memory. 

Previous literature regarding the influence of feedback on representations of working memory is 
divergent, and largely suffers from the indetermination of working memory representations, as 
discussed in the introduction. For example, feedback has been implicated in the synchronization of 
distributed areas106, modulatory influences on lateral intarecations107, predictive processing108, and 
learning109,110. Notable recent studies in mouse motor planning have identified a role for trans-colossal 
feedback in the maintenance of persistent activity during the delay88, but whether such findings 
translate to working memory and other corticocortical connections in unknown. 

 

Method 

Animals and ethics 

All experiments were carried out in accordance with institutional animal welfare guidelines and 
licensed by the UK Home Office. A total of 7 PV-cre mice of either sex were used. Mice were 
between 8 and 16 weeks old at the start of their experiments. 

Surgical procedures 

Prior to all surgeries, the mice were injected with dexamethasone (2–3 mg kg−1) and an analgesic 
(carprofen 5 mg kg−1). General anaesthesia was induced with 3% isoflurane which was then reduced 
to maintain a breathing rate of around 1 Hz. A first surgery to implant a custom stainless steel 
headplate was performed. The headplate was attached to the skull using dental cement (C&B Super 
Bond). The exposed skull was then sealed with a thin layer of light-curing dental composite (Tetric 
EvoFlow). Following a minimum recovery time of 3 days and intrinsic imaging to identify area AM 
(same as in Experiment 1), a second surgery was performed to make a cranial window over either area 
AM or M2 and perform viral injections. In 3 mice, a 3 mm diameter craniotomy was made centred 
around area AM, and a smaller <1 mm diameter craniotomy was made over area M2 (identified with 
coordinates relative to bregma; 0.5 mm lateral, 2.5 mm anterior). 100 nl viral injections of 
[rAAV1/Syn-Flex-ChrimsonR-tdT] and [AAV1/Syn-jGCaMP7b-WPRE], diluted in cortex buffer, 



were then made into areas AM and M2, respectively, with a Nanoject III microinjector (Drummond 
Scientific). Immediately afterwards, the larger area AM craniotomy was sealed with a 3 mm glass 
window. In the other 4 mice, the same procedure was done but with areas AM and M2 reversed. 

Optogenetic silencing 

The behavioural training and task methods were identical to those described in Experiment 2. In 
15% of trials, we optogenetically silenced either area AM (n = 4) or M2 (n = 3). Optogenetic silencing 
was achieved by stimulating the PV/ChrimsonR+ cells immediately underneath the imaging site. A 
637 nm laser (OBIS, Coherent) was relayed via a 400 µm diameter optical fibre to a 100 mm focal 
length lens which then focused the light onto the back aperture of the objective. The laser power was 
6 mW for 400 ms immediately following the onset of the silencing delay period and then ramped 
down linearly to 0 mW over the next 200 ms. The stimulation light was pulsed at 60 Hz. The 
optogenetic laser and the visual stimulation display were blanked (turned off) in counter-phase with 
the resonant scanner turnaround times (12 kHz), so as to avoid light spill-through during ongoing 
imaging frame acquisition. 

Imaging 

The 2-photon imaging of axonal calcium signals was done on a custom-built microscope 
(SpectraPhysics MaiTai DeepSee at 930 nm, Nikon 16x objective). We acquired two planes 25 µm 
apart in layer 1, with a field of view of 400 × 400 µm at a frame rate of 22.78 Hz. Two cameras 
(22BUC03, ImagingSource) were used to record the pupil and body positions at 30 Hz. For each 
imaging site, we also recorded a volumetric image stack to confirm the location of tdTomato-
ChrimsonR transfected PV+ cells immediately underneath the recorded axons. 

Data analysis 

The imaging data was first registered and pre-processed using a modified Suite2p pipeline111. The 
data was registered, boutons masks were extracted, and their calcium traces were baseline-subtracted. 
F0 normalization was not performed due to the very low baseline fluorescence levels. Frames with 
low correlations to the registered average image or frames with significant eye movements were 
discarded as in Experiment 2. The boutons’ time series data was then clustered into putative axons 
using custom scripts written in Matlab (MathWorks). Briefly, we used independent component 
analysis to extract a 40-dimensional temporal feature space from the full dimensional timeseries. The 
activity of all boutons, projected into this feature space, was then clustered using a Gaussian mixture 
model. The number of clusters was chosen by minimizing an adjusted Akaike information criterion 
error. Boutons with significant distances from their allocated cluster centre (less than 0.95 of their 
posterior probability given the cluster) were not clustered, and all others were clustered together by 
simply averaging their signals. This clustering procedure was then iterated a second time for all of the 
unclustered boutons. This clustering analysis returned the timeseries of putative axons, each averaged 
from roughly 10 boutons. We restricted all further analyses to axons which had a significant amount 
of delay-evoked activity, defined as 0.2 z-scored ΔF more in any one second of the delay than the last 
second of the preceding stimulus (i.e., post-pre) with a 0.01 α significance difference. 

 

Results 

In order to examine the role of feedback in maintaining working memory representations, we 
imaged the axons of area AM or M2, that projected to the reciprocally connected area (M2 or AM), 
while silencing the target area. This experiment identifies the representational component within the 
feedback connection which is contributed to by the target area’s activity, although it does not 
distinguish whether the target area’s influence arrives through corticocortical connections or not. We 



chose to silence at the onset of the delay period, for a brief window of time (400 ms plus a 200 ms 
ramp down, as in Experiment 1), because it had a highly selective effect on the Working Memory task 
(i.e., no effect on behaviour in the Discrimination task in Experiment 1), and would allow us to 
examine the dynamics of persistent activity following the silencing. Importantly, running speeds and 
pupil diameters were similar between the Discrimination and Working Memory tasks (as in 
Experiments 1 and 2; Fig. 20a-b), and the optogenetic silencing had no significant effects on either 
running speed or pupil diameter in either task, with no significant interaction effects (Fig. 20c-d). 

 

Agnostic of the task that the mice were engaged in, our silencing paradigm had diverse effects on 
individual delay responsive axons, with roughly equal amounts of inhibition and excitation (Fig. 21a). 
Compared to a null distribution identified by bootstrapping the control trials, we found that 26% of 
area AM axons were significantly influenced by silencing area M2, and 28% of area M2 axons by 
silencing area AM. The total net influence was neither inhibitory nor excitatory (Fig. 21b), as perhaps 
expected from previous reports of ‘modulatory’ feedback influences and in vitro physiological 
characterizations112. Furthermore, the magnitudes of these effects were similar across tasks, 
suggesting at the ‘functional connectivity’ level there was no strong influence of working memory 
engagement. 



 

We then identified the WMCD of the population activity in the feedback axons in the same manner 
as in Experiment 2, and projected the delay responses onto it. In accordance to our hypothesis, this 
high-dimensional representation of working memory engagement was selectively inhibited by 
disrupting the cortical feedback (Fig. 21c). For the WMCD activity in area M2 axons, this selective 
silencing effect occurred both during the Discrimination and Working Memory tasks, but in the area 
AM axons it was significantly stronger in the Working Memory task. This suggested that the two 
areas, although sharing very similar representations (as identified in Experiment 2), may have 
functionally distinct roles in working memory maintenance. 

We next analysed the ability of these feedback population representations of working memory to 
recover, over the course of the delay, following the optogenetic silencing of their targets, by 
comparing the activity in the first and second halves of the delay period of sufficiently long delay 
duration trials. We found that area AM silencing induced a reduction in the WMCD activity which 
remained relatively unchanged over the duration of the delay (did not recover), while area M2 
silencing recovered within roughly 1 second following the offset of the silencing (Fig. 22a,c).  

 



 

We hypothesized that this difference between areas AM and M2 in the robustness of the WMCD 
would be reflected in behavioural recovery to such perturbation over the course of the delay. For this 
analysis, due to limitations of statistical power for assessing response differences following silencing, 
we pooled together silencing data from Experiment 1, and found that such differences existed. While 
silencing area AM at the onset of the delay led to an increase in incorrect responses to the subsequent 
Cue (Fig. 22c), even if the delay duration lasted for up to 3,200 ms, silencing area M2 had a more 
transient behavioural effect, with the performance going back to baseline levels if the delay duration 



was sufficiently long (Fig. 22d). Note that the behavioural effect of area M2 silencing not a motor-
related effect, the increase in incorrect responses was still restricted to Cues in the Working Memory 
task, and responses to the Probes in the Working Memory task likewise did not increase (Experiment 
1). We defined a recovery index for both the behavioural response differences induces by silencing as 
well as the neural representations of the WMCD, and summarized these results in Fig 22e – feedback 
representations of working memory and behavioural readouts of working memory were not robust to 
(i.e., did not recover from) area AM silencing, and the opposite was true for area M2 silencing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 
 

Part III – Discussion 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Cognition in mice 

We found that mice could readily switch between performing a simple visual discrimination task 
and a working memory dependent delayed-(non)match-to-sample task. A very important observation 
which augments the interpretation of our experiments was that several task-extrinsic variables, such as 
movement and arousal (proxied by pupil dilation), were not significantly different between the two 
tasks. This demonstrates that the relatively straightforward controls of having equal reward 
probabilities and delay-stimulus timings (specifically flat hazard rate delay durations) are sufficient to 
constrain behaviours such as motor planning and reward expectation. This is critical, as such factors 
have previously been shown to have enormous impacts on neural activity113,114, and could potentially 
mask any finer psychometric readouts of behaviour91. Once these variables have been controlled, we 
were able to identify clear psychometric differences between the two tasks, which had clear 
interpretations. First and foremost, there was a linear inter-stimulus delay length effect for memory-
guided responses (to Cues in the Working Memory task), which was completely absent for Probes in 
the same task. Previous literature of visual working memory retention duration for stimulus 
orientation has reported similar linear relationships and times115,116, suggesting that a common 
mechanism may support working memory traces in mice and humans. We also observed small but 
systematic reaction time increases as a result of working memory engagement. Unfortunately similar 
dual-task studies have not been carried out in humans for comparison. There are likely a large number 
of psychometric differences which we have not yet analysed, specifically regarding the upkeep of 
working memory by the presentation of variable numbers of repeated Cues, and the disrupting effects 
of Probes, which are beyond the scope of this thesis. A final interesting behavioural observation in 
Experiments 2 and 3 was the ease with which mice could adjust to rotations of the stimuli with no 
prior training. This underscores the fact that sensory systems do not rely on simple stimulus-response 
associations to carry out perceptual decisions. 

 

Necessity of distributed cortical areas for visual working memory 

Transient optogenetic silencing at the onset of the delay revealed a very selective role of 
distributed cortical regions in maintaining the working memory trace, as the silencing had no effect 
when the mouse was doing the simple discrimination task, and had no effect on the responses to the 
Probe stimulus. This is likely due to the fact that the silencing window was outside of any possible 
response window (i.e., earlier than the minimum delay duration), and therefore did not interfere with 
neural processes associated with motor planning. Silencing during the stimulus found relatively 
straightforward effects when the mice were performing the simple discrimination task, contralateral 
visual cortex silencing increased misses and false alarms, as expected from producing some form of 
visual scotoma. When the mice were engaged in a working memory task, however, we not only 
observed a greater increase in the miss rate, but also a paradoxical decrease in false alarm rate. This 
observation does not lead to simple explanations, and has not been reported previously – it simply 
seems that the functional role of the contralateral visual cortex changes to be more motor oriented 
during working memory engagement. Or, conversely, subcortical visual areas, such as the optic 
tectum, may support motor responses only during the simple discrimination task. This finding should 
be investigated further with simultaneous recordings of cortical and subcortical visual areas. 

 

Representation of visual working memory 

One immediate result from our imaging experiments was that the neural activity patterns in areas 
AM and M2 were strikingly similar. Both regions had substantial populations of delay onset and 
stimulus onset locked single cell responses, and neither region had cells which were clearly locked to 
both onsets. This is different to studies in the primate prefrontal or parietal cortices which often find 



mixed tuning cells that respond to both the delay and stimulus onsets, at least in parametric working 
memory tasks67, but could potentially be reconciled by the fact the majority of all cells we recorded 
were neither clearly delay nor stimulus locked. Such cells were no less useful for decoding the task, 
and were analysed through dimensionality reduction or decoding. Other properties of this ‘non-
triggerable’ population will require significantly more sophisticated analyses in the future in order to 
identify their dynamics. 

The most surprising result from our experiments was that for many measures of low-dimensional 
neural activity patterns, in both areas AM and M2, there was no detectable relationship with working 
memory engagement, even during the delay period. These measures included average activity levels, 
sequential activity patterns, and the trial-averaged dynamics explaining roughly 80% of the variance. 
These activity patterns could still be related to motor planning or reward expectation, which were 
present in both of our tasks (and, importantly, all other decision making tasks). This result warrants a 
critical reevaluation of three types of studies. First, many earlier studies in head-fixed mice which 
studied short term memory, in Go/No-go or two-alternative-choice tasks, that didn’t necessitate 
mnemonic stimulus representations (i.e., could be solved by motor planning), have often ascribed to 
sequential or low-dimensional dynamics mnemonic roles11,12,81,117,118. These functions should be re-
evaluated as movement or reward related. Furthermore, several studies have used such ‘delayed-
response’ designs in mice as models of working memory13,80; the validity of their results for working 
memory are questionable. Second, in population analyses of neural activity it is sometimes assumed 
that low-dimensional projections of neural activity, specifically when capturing dynamical modes 
which carry the most variance, aid in ‘de-noising’ the underlying activity patterns75,102, and that these 
modes carry the relevant task information76. Such methods, when applied to our data, led to the 
selective elimination of working memory information, and should therefore be more substantiated. 
Finally, optogenetic silencing is often used to assert that the neural representations under question are 
necessary for the behavioural effects of silencing. Our results from Experiments 1 and 3, at least for 
the delay onset silencing, are clear examples of when the removal of the dominant dynamical mode of 
activity is not the effect leading to any behavioural changes. At least in our case, off-target (i.e., inter-
areal) effects on high-dimensional representations were driving the changes we saw in behaviour (see 
next section). 

The distributed high-dimensional representations we observed for working memory are consistent 
with some recent findings in the primate literature of sparse, highly variable activity patterns 
underlying working memory14,15. These studies have led to significant debates on the role of persistent 
low-dimensional activity for working memory4,5. Although our findings clearly support one side of 
this debate, our observation of more robust delay activity patterns along the working memory coding 
dimension during the Working Memory task does imply that some dynamical modes (suggested from 
our data to be line attractors aligned to the working memory coding dimension) do carry working 
memory information, and are simply masked by much more dominant, working memory independent, 
‘rotational’ modes of activity.  

The key limitation of our experiments and analyses relative to those in the primate delayed-match-
to-sample literature is that we used a decoding approach to identify our working memory 
representations – we needed ‘labelled’ data of task-isolated working memory (i.e., the Discrimination 
task as a control) in order to identify our working memory representations. The development of future 
analyses to identify whether there are any differences in the dynamics of the population activity with 
and without working memory engagement, potentially building off of our observations of the 
difference in robustness of the coding dimension delay activity, would enable clearer characterization 
of working memory representations in tasks without such careful motor planning and reward controls. 



Robustness of neural representations to feedback silencing 

Using a combination of optical tools available in mice, namely optogenetic silencing and axonal 
recordings, we provided some of the first evidence for a previously hypothesized circuit motif 
underlying the maintenance of latent visual working memory representations. The fact that dominant, 
cell-averaged persistent activity modes were not clearly inhibited or excited suggests that their 
function could be more modular within the neocortex. One of the few differences between areas AM 
and M2 which we observed was in their robustness to neural perturbation. Recent studies have 
investigated the robustness of premotor circuits to unilateral optogenetic inhibition and found that 
trans-colossal input allows for such population dynamics to recover. This is a perfectly reasonable 
hypothesis for our results as well, and our data further suggests that such a mechanism is weaker, or 
different, in posterior areas of the neocortex. Importantly, because we were recording axonal signals 
of a distal cortical area, we can further identify that it is not a property of the dynamics of the area 
being silenced that lead to robustness per se (i.e., it was area AM representations which were robust to 
area M2 silencing), but solely a property of the silenced area’s physiology. 

 

Concluding remarks 

We found a few unexpected results which we have ignored in order to answer more immediate 
questions regarding the maintenance of working memory, and they should be investigated further. 
Namely, the dissociated function of the visual cortex during working memory guided action, evidence 
for a distinct dynamical regime for working memory coding representations, and the differences in 
robustness of areas AM and M2. As our experiments were not targeted to explore these phenomena, 
further investigations will need to be carried out in order to get a closer mechanistic understanding of 
working memory. 
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