
1

 EECS 6083
Intro to Parsing

Context Free Grammars

Based on slides from text web site: Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights
reserved.

2

Parsing

Check the syntax (structure) of a program and create a
tree representation of the program
Programming languages have non-regular constructs.

Nesting
Recursion

Context-Free Grammars are used to express the syntax
for programming languages

sequence of tokens syntax treeparser

3

Syntax vs. Semantics
Syntax – structure of the program, expressed with
grammatical rules.

Typically a Context Free Grammar (CFG) in Backus-Naur
form (BNF) or Exteneded Backus-Naur form (EBNF).

Semantics – meaning of the program, expressed with
descriptive text or with inference rules
Consider the following English sentences:

I fed the elephant.

subject verb object

I fed the brick wall.

subject verb object

Both are syntactically
correct, but the second is
not semantically
reasonable.

4

Context Free Grammars
Comprised of:

a set of tokens or terminal symbols
a set of non-terminal symbols
a set of rules or productions which express the
legal relationships between the symbols
A start or goal symbol

Example:
(1) expr expr - digit
(2) expr expr + digit
(3) expr digit
(4) digit 0|1|2|…|9

Terminals: -,+, 0,1,2,…,9
Nonterminals: expr, digit
Start symbol: expr

5

Some Example CFGs
Palindromes over the alphabet {a, b, c}:

(a palindrome is a word that has the same spelling
backwards as forwards)
aabcbaa

6

Some Example CFGs (continued)
Palindromes over the alphabet {a, b, c}:

(a palindrome is a word that has the same spelling
backwards as forwards)
abba, c, abbcbcbba

CFG for Palindromes
SaSa
SbSb terminal symbols: {a, b, c}
ScSc non-terminal symbols: {S}
Sa Goal symbol: S
Sb
Sc
S

7

Some Example CFGs (continued)
Balanced Parenthesis and Square Brackets

E.g.

8

Some Example CFGs (continued)
Balanced Parenthesis and Square Brackets

E.g.
The CFG:

| [B]
| BB
|

9

Checking for correct Syntax

Given a grammar for a language and a program
how do you know if the syntax of the program is
legal?
A legal program can be derived from the start
symbol of the grammar.

10

Deriving a string

(1) expr -> expr - digit
(2) expr ->expr + digit
(3) expr -> digit
(4) digit -> 0|1|2|…|9

Example Input:

3 + 8 – 2

expr expr – digit expr – 2 expr + digit - 2

 expr + 8 –2 digit + 8 – 2 3 + 8 – 2

•The derivation begins with the start symbol
•At each step of a derivation the right hand side of a grammar rule is
used to replace a non-terminal symbol.
•Continue replacing non-terminals until only terminal symbols remain

Rule (1) Rule (4) Rule (2)

Rule (4) Rule (3) Rule (4)

11

Rightmost and leftmost derivations

In a rightmost derivation the rightmost non-terminal is
replaced at each step.

expr expr – digit expr – 2 expr + digit – 2 expr + 8 – 2
 digit + 8 – 2 3 + 8 – 2
corresponds to a postorder numbering in reverse of the
internal nodes of the parse tree

In a leftmost derivation the leftmost non-terminal is replaced
at each step.

expr expr – digit expr + digit – digit digit + digit – digit
 3 + digit –digit 3 + 8 – digit 3 + 8 – 2
corresponds to a preorder numbering of the nodes of a parse
tree.

12

Parse tree

(1) expr -> expr - digit
(2) expr ->expr + digit
(3) expr -> digit
(4) digit -> 0|1|2|…|9

Example Input:
3 + 8 – 2

expr

expr digit

expr digit

digit

3

8

2

-

+

Leaves of parse tree
are terminal symbols
(tokens)

Interior nodes are
non-terminals

Root is the
start symbol

13

A More Useful Grammar
To explore the uses of CFGs,we need a more complex grammar

Such a sequence of rewrites is called a derivation
Process of discovering a derivation is called parsing

We denote this derivation: Expr * id – num * id

14

The Two Derivations for x – 2 * y

In both cases, Expr * id – num * id
The two derivations produce different parse trees
The parse trees imply different evaluation orders!

Leftmost derivation Rightmost derivation

15

Derivations and Parse Trees

Leftmost derivation
G

x

E

E Op

–

2

E

E

E

y

Op

*
This evaluates as x – (2 * y)

16

Derivations and Parse Trees

Rightmost derivation

x 2

G

E

Op EE

E Op E y

–

*

This evaluates as (x – 2) * y

17

Derivations and Precedence

These two derivations point out a problem with the grammar:
It has no notion of precedence, or implied order of evaluation

To add precedence
Create a non-terminal for each level of precedence
Isolate the corresponding part of the grammar
Force the parser to recognize high precedence subexpressions first

For algebraic expressions
Multiplication and division, first (level one)
Subtraction and addition, next (level two)

18

Derivations and Precedence

Adding the standard algebraic precedence produces:

This grammar is slightly larger
• Takes more rewriting to reach
 some of the terminal symbols
• Encodes expected precedence
• Produces same parse tree
 under leftmost & rightmost
 derivations

Let’s see how it parses x - 2 * y

level
one

level
two

19

Derivations and Precedence

The rightmost derivation

This produces x – (2 * y), along with an appropriate parse tree.
Both the leftmost and rightmost derivations give the same expression, because
the grammar directly encodes the desired precedence.

G

E

–E

T

F

<id,x>

T

T

F

F*

<num,2>

<id,y>

Its parse tree

20

Ambiguous Grammars
Our original expression grammar had other problems

This grammar allows multiple leftmost derivations for x - 2 * y
Hard to automate derivation if > 1 choice
The grammar is ambiguous

different choice
than the first time

21

Two Leftmost Derivations for x – 2 * y
The Difference:

Different productions chosen on the second step

Both derivations succeed in producing x - 2 * y
Original choice New choice

22

Ambiguous Grammars
Definitions

If a grammar has more than one leftmost derivation for a single
sentential form, the grammar is ambiguous
If a grammar has more than one rightmost derivation for a single
sentential form, the grammar is ambiguous
The leftmost and rightmost derivations for a sentential form may
differ, even in an unambiguous grammar

Classic example — the if-then-else problem

Stmt if Expr then Stmt
 | if Expr then Stmt else Stmt
 | … other stmts …

This ambiguity is entirely grammatical in nature

23

Ambiguity: Dangling Else example

stmt if expr then stmt
| if expr then stmt else stmt
| other

Two parse trees for the legal sentence:
if E1 then if E2 then S1 else S2

24

Ambiguity: Dangling Else example
(continued)

if E1 then (if E2 then S1 else S2)

stmt

if Expr (E1) then

else

stmt

if Expr (E2) then Stmt (S1) Stmt (S2)

25

Ambiguity: Dangling Else example
(continued)

if E1 then (if E2 then S1) else S2

stmt

if Expr (E2) then

else

stmt

if Expr (E1) then stmt (S2)

stmt (s1)

26

Deeper Ambiguity
Ambiguity usually refers to confusion in the CFG

Overloading can create deeper ambiguity
a = f(17)

In many Algol-like languages, f could be either a function or a
subscripted variable

Disambiguating this one requires context
Need values of declarations
Really an issue of type, not context-free syntax
Requires an extra-grammatical solution (not in CFG)
Must handle these with a different mechanism

Step outside grammar rather than use a more complex grammar

27

Ambiguity - the Final Word
Ambiguity arises from two distinct sources

Confusion in the context-free syntax (if-then-else)
Confusion that requires context to resolve (overloading)

Resolving ambiguity
To remove context-free ambiguity, rewrite the grammar
To handle context-sensitive ambiguity takes cooperation

Knowledge of declarations, types, …
Accept a superset of L(G) & check it by other means†

This is a language design problem

Sometimes, the compiler writer accepts an ambiguous grammar
Parsing techniques that “do the right thing”
i.e., always select the same derivation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

