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Abstract

In this paper, we provide tools for integrating machine planning
and manufacturing. Specifically, we show how assembly trees can be
coded into operators for machine planners and how machine planners
can represent flow-lines, assembly, and job-shop choices. We provide
a polynomial-time algorithm for succinctly combining multiple plans;

the resulting plan can be expressed as four matrices that are equivalent
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to a Petri Net. We also provide a dynamic supervisory controller which
can execute a single plan or switch between multiple plans as real-time

conditions change.



1 Introduction

Machine planning is a very active subfield of Artificial Intelligence.
Planning researchers hope to produce an agent which does not need
a human to provide step-by-step direction of the agent’s actions. In-
stead, the agent uses its own knowledge about a particular domain to
solve the problems it encounters.

While machine planners have been used in a few “real world” ap-
plications (Wilkins 1990, Currie & Tate 1991, Russel & Norvig 1995,
Tate 1977), machine planning has not been widely adopted outside the
research lab. One difficulty lies in using the planner as one component
of a real-time manufacturing system. Ideally, a manufacturer should
be able to use existing documentation—such as an assembly tree—
to directly program the planner. Ideally, a planner should impose
only the minimum constraints needed to solve a particular problem; it
should allow the partial ordering of jobs and work in conjunction with
existing techniques for resource assignment. Finally, an ideal planner
should output a structure which could be used directly by schedulers
and dispatchers to control the manufacturing process on line.

This paper presents an on-line method of using machine planners

to achieve this ideal. In particular, we demonstrate how to:

e use a manufacturing bill of materials or assembly tree to form



the operators for a machine planner,

e use the idea of “generic resources” to separate job sequencing

from resource assignment,

e convert the planner’s output to a matrix representation down-
loadable to a supervisory rule-based controller, which can se-
quence jobs and assign resources in real time depending on the

actual system’s status, and

e dynamically switch between multiple stored plans in real time as

conditions and available resources change.

In addition, we illustrate how traditional manufacturing concepts
such as flow-lines and job shops can be represented and manipulated
by our machine planning system. Our notation can compactly repre-
sent alternate plans. We give an algorithm for finding a minimal ma-
trix representation for multiple plans. Finally, we describe a matrix-
based supervisory controller which can switch between strategies in
real-time.

Section 2 describes intelligent control architectures and describes
the representation used for assembly trees. Section 3 provides an
overview of machine planning, with an emphasis on HTN planning.
Section 3 also reviews Petri Nets. In Section 4, we demonstrate how

assembly trees can be easily converted into plan operators. Section



5 shows how flow-lines, assembly, and job-shop scheduling appear in
assembly trees, in HT'N operators and in the resulting plan. In Section
6, we detail our matrix representation for task sequencing, introduce
the notion of generic resources, and add resource assignment to our
plan notation. Section 7 describes how alternate plans can be com-
bined into a single system and presents a polynomial algorithm for
finding a minimal representation for multiple plans. Finally, Section
8 shows that the matrices produced by the planner can be used in
a decision-making supervisory controller that operates the manufac-
turing process on-line in real time, sequencing the jobs and assigning

available resources as the status of the process changes.

2 Manufacturing Background

In this section, we describe how our planning system can serve as one
component of an intelligent control system. We define manufacturing
terms and describe manufacturing assembly trees, which we will use

to form the operators for our planner.

2.1 Introduction to Manufacturing

To meet competition in a global marketplace and provide flexible

manufacturing in a high-mix low-volume manufacturing environment,



manufacturing systems have moved away from fixed-hardware sequen-
tial assembly lines with dedicated workstations. The trend for several
years has been toward flezible manufacturing systems (FMS), which

have four major components (Buzacott & Yao 1986):

1. A set of machines or workstations.

2. An automated material handling system allowing flexible job

routing.
3. Distributed buffer storage sites.

4. A computer-based supervisory controller which monitors the sta-

tus of jobs and directs part routing and machine job selections.

By selecting different supervisory control strategies, the same FMS
can perform different functions to produce different products. Types
of manufacturing systems are defined according to the information and
part flow protocols in the FMS. In the general job shop neither the
sequence of jobs nor the assignment of resources to jobs is fixed. The
effect of a job shop is that part routing decisions must be made during
processing; a router must decide the order in which jobs are performed
for a particular part. In the flow line with deterministic routing, the
sequence of jobs for each part type is fixed and the assignment of
resources to the jobs is fixed. A flow line may have assembly opera-

tions in which two or more parts are combined to yield one part or



subassembly. The result of a flow line is that each part of the same
type visits the resource pools in the same sequence, although different
part types may have different sequences. If the same resource is used
for more than one task, then a controller must perform dispatching
to determine on which part the resource will operate at a given time.
In addition to optimizing some performance measure (such as maxi-
mizing throughput or machine utilization), the dispatcher must avoid
deadlock. In a deadlocked system, some resource is being held pending
an event which will never occur. Thus, the deadlocked resource will

never again become available.

2.2 Planning and Intelligent Control

While many different structures have been proposed for “intelligent
control architectures” (Antsaklis & Passino 1992), these structures
are actually very similar; the major differences are due to focusing
on different aspects of intelligent control or different levels of abstrac-
tion. We will use a very general architecture shown in Figure 1. This
architecture, based on work by Saridis, focuses on the principle of
decreasing precision with increasing abstraction.

Components located in the organization level function as man-
agers; these components schedule tasks, perform task decomposition,

and determine the resources needed for each task. Our work on plan-
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Figure 1: Three-Level Intelligent Control Architecture

ning and resource assignment fits into this part of Saridis’s hierarchy.

Components in the Coordination Level perform the prescribed job
sequencing, supervise and coordinate the work-cell agents or resources,
and perform dispatching and conflict resolution to manage shared re-
sources. Our supervisory controller performs these functions. The
agents or resources of the work-cell include robot manipulators, grip-
pers and tools, conveyors and part feeders, sensors (e.g. cameras),
mobile robots, and so on.

The Execution Level contains a closed-loop controller for each
agent that is responsible for the real-time performance of that re-
source, including trajectory generation, motion and force feedback
servo-level control, and so on. Some permanent built-in motion se-
quencing may be included (e.g. stop robot motion prior to opening

the gripper).



Each level of the hierarchical IC architecture may have several
components; for example, the Execution Level has one real-time con-
troller per work-cell agent. A supervisory controller in the Coordina-
tion Level may coordinate several agents to sequence the jobs needed
for a given task. Each system must sense the current conditions, make
decisions, and give commands or status reports to other systems.

Our planner functions at the Organization Level of Saridis’s hier-
archy. We will show that a task plan is equivalent to four matrices;
these matrices may be passed to a supervisory controller in the Coor-

dination level which sequences jobs and assigns resources.

2.3 Assembly Trees

Assembly trees are used in manufacturing to specify a partial order-
ing of jobs required to complete a finished product. An assembly tree
(Wolter, Chakrabarty & Tsao 1992) has a node for each subassem-
bly, and contains information equivalent to the manufacturing bill of
materials (BOM) (Baker 1974). An assembly tree or BOM can be
considered as a matrix for which entry ,j has a value of 1 if job j is
an immediate prerequisite for job i. Neither assembly trees nor BOMs
contain any information about the resources needed for the jobs; they
contain only product-specific job sequencing information.

We represent assembly trees graphically, with an edge for each
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Figure 2: Sample Assembly Tree

manufacturing operation. Nodes in the graph represent parts or sub-
assemblies; the type of the part changes as operations are performed.
Figure 2 shows a sample assembly tree; notice that by drilling part A,
we create part B. Parts C' and D can be assembled to form the single

part D.

3 Machine Planning Background

This section introduces machine planning terms and gives a brief sum-

mary of machine planning research.

3.1 Introduction to Machine Planning

To solve problems in a given domain, a machine planner must have a
domain description and a description of the specific problem to solve.

Operators, a crucial component of a domain description, detail how



the agent can affect the environment. Most planners use a variant of
the operator representation introduced by Fikes, Hart, and Nilson’s
STRIPS planner (Fikes & Nilsson 1971).

STRIPS operators have three components: a precondition list, an
add list, and a delete list. Each list is composed of first order predicate
calculus expressions. The precondition list enumerates the predicates
which must be satisfied for the operator to be applicable. The add
list indicates which previously false predicates will become true after
the operator is applied. The delete list indicates which previously
true predicates will no longer hold after the operator is applied. Pred-
icates which are not mentioned in the add list or in the delete list
do not change their truth value during the operator’s application. In
most planners, the add list and delete list are combined to form the
operator’s effects, or postconditions.

Here is a sample STRIPS-style operator:

Name: Pickup
Parameters: ?BLOCK

Variables: ?BLOCK ?SUPPORT

Delete List: (HAND-EMPTY) (ON ?BLOCK ?SUPPORT)

Add List: (CARRYING ?BLOCK) (CLEAR ?SUPPORT)

Preconditions: (HAND-EMPTY) (CLEAR ?BLOCK) (ON ?BLOCK ?SUPPORT)

This operator allows the robot to pick up blocks. To pick up a



block, the robot must have a free hand, and the block must be clear
(have nothing on top of it). After picking up the block, the robot
no longer has a free hand and the block is no longer on top of its
support. On the other hand, the robot now is carrying a block, and
the block’s previous support is now clear. In general, there are many
ways to divide a domain into operators and many ways to encode each
operator.

In addition to a general domain description, planners require a
specific problem to solve. Problems are normally represented by an
initial state and a goal state. The initial state consists of the set
of predicates completely describing the world’s situation when the
planner begins to plan. The goal state consists of a set of predicates
which should be true when the plan has finished executing. Since
literals not mentioned in the goal state description may be either true
or false, the “goal state” actually describes a set of possible world
states.

Researchers have implemented several extensions to the STRIPS
paradigm, including automatic learning of search-control rules (Minton,
Carbonell, Etzioni, Knoblock & Kuokka 1987), organization of a do-
main description into different levels of abstraction (Yang & Tenenberg
1990), and generation of plans for multiple agents (von Martial 1992).

One extension important for manufacturing is the idea of partial or-
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der planning. Early planning systems output a step-by-step descrip-
tion of how to solve a problem —that is, they output a totally-
ordered sequence of operators. Sacerdoti, however, introduced the
ability to produce plans with only a partially-ordered sequence of
steps(Sacerdoti 1975). In addition to correctly handling interacting
subgoals (Sussman 1973), Sacerdoti’s NOAH gives the executor of the
plan some flexibility in the exact order the steps are followed. In some

cases, two or more steps may be performed simultaneously.

3.2 Hierarchical Task Network Planning

An alternative to traditional planning is hierarchical task network
planning, or HTN planning'. In HTN planning, a planning sys-
tem receives task schemas as well as traditional operator descriptions
(Wilkins 1984). Task schemas provide a method of grouping oper-
ators together to form higher-level operations. For example, Austin
Tate uses this schema in his planner NONLIN (Tate 1977):

(opschema makeclear

:todo (cleartop 7x)

:expansion (
(stepl :goal (cleartop ?7y))
(step2 :action (puton 7y 7z))
)

:orderings ((stepl —> step2))

:conditions (

LOther names for HTN planning include Task Network planning, Task Reduction Plan-

ning, Task-based planning, and Action-based planning.
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:use-when (on 7y 7x) :at step2)
:use-when (cleartop ?z) :at step2)
:use-when (not (equal ?z ?7y)) :at stepl)
:use-when (not (equal ?x 7z)) :at stepl)

:variables (?7x ?y 7z)

)

By using this schema, an HTN planner can discover a plan to
uncover a particular block faster than a conventional planner. A con-
ventional planner trying to clear block X would need to search for all
operators with (cleartop X) as a postcondition. One such operator,
(putdown X), would ultimately need (cleartop X) as its precondition.
Thus, the conventional planner must backtrack until it stumbles upon
(pickup Y) as the correct action to achieve (cleartop X). This particu-
lar schema is short and could be represented as a control rule or learned
by planners using explanation-based learning (Minton et al. 1987). In
general, however, HTN schemas can become quite complex and more

expressive than conventional operator descriptions (Wilkins 1994).

3.3 Plan Representation

Planners offer various extensions to the STRIPS paradigm and thus
use different internal representations for their plans. However, each
representation has a notion of “primitive” actions which are directly
executable by an agent and a notion of ordering constraints specifying

that one operation must complete before another can begin. Figure

12
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Figure 3: Sample Plan

3 shows a sample plan. The plan says that A must be drilled and B
must be obtained before the agent can execute the operation “(Attach
B C),” but these two steps can be executed in either order, or executed

simultaneously.

3.4 Petri Nets

Section 5 describes how we convert plans into a set of matrices suitable
for a rule-based controller. We begin the process by converting the

plan into a Petri net. A Petri net can be represented by several sets

(Dessochers 1987):

e P, a set of places. Initially, each place represents a particular
action of our plan. Later, we add places to represent resources
needed by plan actions. Each place can hold one or more tokens.
Tokens residing in an action place mean that the action has been

performed on one or more parts. Tokens residing in a resource

13



place indicate that one or more instances of that resource are

available for consumption.

T, a set of transitions. Each transition indicates the cessation
of one action and the initiation of another action, and the corre-
sponding release of one resource and the acquisition of another

resource.

I, an “Input Set” mapping places to transitions. When transition
T; fires, tokens are removed from each place P; for which (P}, T;)

is an element of I.

0O, an “Output Set” mapping transitions to places. When tran-
sition T; fires, tokens are inserted into each place P; for which

(T, P;) is an element of O.

Figure 4 shows a sample Petri Net. This Petri Net shows that both

(Drill A) and (Obtain B) must be complete (have tokens in them)

before transition X4 can fire, but the two tasks may be completed in

either order or simultaneously. When X} fires, the action (Attach B

C) is performed.

Petri Nets provide a graphical, intuitive representation for the

analysis and design of manufacturing systems and supervisory con-

trollers. Manufacturing researchers have studied Petri Nets exten-

sively (Desrochers 1990, Jeng & DiCesare 1992, Murata, Komoda,

14
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X1 -> (Cbtain A
X2 -> (Qbtain B)
X3 -> (Drill A
X4 -> (Attach B ©

Figure 4: A Sample Petri Net

Matsumoto & Haruna 1986, Zhou & DiCesare 1993); job sequencing
controller design, deadlock avoidance, reachability analysis, and sys-
tem liveness tests have all been investigated. In this paper, we focus
on a matrix-based controller derived from an automatically generated
plan. The supervisory controller is easy to implement on actual work-
cells, and can also be used to derive the Petri-Net representation of
the workcell so that Petri-Net techniques can be used for analysis and

design.
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4 Forming HTN Operators from As-

sembly Trees

HTN operators are defined in terms of actions achieved by other op-
erators. Assembly trees, in which a desired part can be constructed
by altering or assembling existing parts, can be easily expressed as
HTN operators, as we show in this section. HT'N operators, however,
are more general than assembly trees; HTN operators can be com-
bined in different ways to represent multiple methods of building a
particular part. We choose HTN planners over conventional planners
because HTN operators can represent known ordering constraints; this
allows the planner to construct a plan faster than an ordinary planner
which must search among several possible orderings. However, this
method can be easily modified to generate more conventional plan-
ning operators. We used UM-Nonlin (Ghosh, Hendler, Kambhampati
& Kettler 1992) to implement the operators described in this paper.
Figure 5 shows two sample assembly trees. The left tree indicates
that part B can be constructed by drilling part A. The right tree
indicates that part Z can be constructed by assembling parts X and
Y. Figure 6 lists the HTN operators associated with each tree; Build-
B corresponds to the root node of the left assembly tree and Build-Z

corresponds to the root node of the right assembly tree.
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Drill

Figure 5: Sample Assembly Trees

Assenbl e

An arbitrary node from an assembly tree can be easily converted
into an HTN operator. The node’s label (naming the part produced)
becomes the :todo and :effects of the HTN operator. Each of the
node’s children becomes a subgoal of the planner (as (Assembled A),
(Assembled X), and (Assembled Y) became subgoals for our sample
trees). The action needed to produce the part becomes a primitive
(directly executable) action for our planner (drilling and assembling
for our sample trees). The operator is completed by specifying that
the primitive action accomplishes the operator’s goal. The ordering
constraints are formed by specifying that each subgoal must be ac-
complished before the primitive action can be performed (for example,
(Assembled X) and (Assembled Y) must be accomplished before the
step (Attach X Y)).

Thus, each interior node of an assembly tree can be converted
into an HTN operator with subgoals. Leaf nodes for an assembly

tree, corresponding to incoming parts, can be converted into HTN

17



(actschenma Buil d-B
:todo (Assenbl ed B)
:expansion ( (stepl :goal (Assenbled A))
(step2 :primtive (Drill A)))
.effects ( (step2 :assert (Assenbled B)))
corderings ((stepl -> step2)))

(actschena Build-Zz
:todo (Assenbled 2)
:expansion ( (stepl :goal (Assenbled X))
(step2 :goal (Assenbled Y))
(step3 :printive (Attach X YVY)))
.effects ( (step3 :assert (Assenbled 2)))
:orderings ((stepl -> step3) (step2 -> step3)))

Figure 6: Operator Descriptions

(actschena Prepare-A
:todo (Assenbled A

:expansion ( (stepl :primtive (PutOn A Pallet)))
ceffects ( (stepl :assert (Assenbled A))))

Figure 7: Handling Product-Ins

operators with no subgoals. For example, if part A of Figure 5 is
not constructed locally, the HTN operator shown in Figure 7 will
“assemble” it without forming subgoals. Figure 8 summarizes our

method of converting assembly trees into plan operators.

Assenbly Tree Node HTN Oper at or

Node Label ] :t0do & :effects

Children’s Node Label s —— subgoal s

Arc Label ———{ primtive action

Figure 8: Converting Assembly Trees into HTN Operators
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Once we have converted each node of our assembly tree into an
HTN operator, we can ask our planner to form plans corresponding to
different portions of our assembly trees. For example, suppose we ask
our planner to accomplish (Assembled B). Using the operator descrip-
tions in Figure 6 and Figure 7, our planner will tentatively decide that
the Build-B operator should be used. This operator has the subgoal
(Assembled A). The planner will look for a way to accomplish this
goal. One possibility (in fact, the only possibility for this domain)
is to use the Prepare-A operator. This operator does not add any
new subgoals, so we are finished. Figure 9 shows the resulting two-
step plan. The link in the graph specifies that (Puton A Pallet) must
be performed before (Drill A). Notice that the plan nodes show the
primitive actions performed and not the subgoals considered by the
planner.

Plan operators have several advantages over conventional assem-
bly tree representations. It is easier to change one or two operators
in isolation than it is to change an entire tree. By adding new op-
erators, we can easily accommodate products which used to be pur-
chased but which are now produced locally. These operator changes
will propagate to every product using these parts. In addition, as will
be described in Section 7, plan operators can easily represent alternate

means of constructing a particular part.
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(PutOn A Pallet)

Figure 9: Plan to Assemble B

5 Flow-Lines, Assembly, and Job-Shop

Scheduling

Our planner can form plans corresponding to flow-lines, assembly, and
job-shop scheduling. This section presents assembly trees and HTN
operators (for UM-Nonlin) for each construct and introduces a sample

plan resulting from the operators.

5.1 Flow-lines

Manufacturing flow-lines are represented as assembly trees containing
a sequence of nodes with only one child each. HTN operators rep-
resent flow-lines with operators having only a single sub-goal. The
resulting plan contains a totally-ordered sequence of steps. The pre-
vious section had an example of a very short flow line; the plan in

Figure 9 corresponds to a two-step flow line.
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5.2 Assembly

Manufacturing assembly operations are represented as assembly trees
containing a node with more than one child. The corresponding HTN
operators have more than one subgoal, and the plans are partially
ordered instead of totally ordered. In particular, the plan has two or
more separate “strands” that eventually merge. Figure 10 expands our
earlier assembly example to form a complete plan?®. The plan indicates
that before (Attach X Y) is performed, both (PutOn X Pallet) and
(PutOn Y Pallet) must be completed, but the two PutOn steps may

be performed in any order, or performed simultaneously.

5.3 Job Shops

There is no standard method of representing general job-shop choices
as assembly trees. Figure 11a shows two possible representations; the
left tree uses an action which actually combines two steps and the
right tree shows two closely related trees explicitly showing the two
total orderings. In either case, different HTN operators are used for
the different actions; unlike assembly steps, the HTN operators for
job-shops work on the same part. The resulting plan thus splits into

two different sections and then rejoins. The plan says that part A

2Most partial-order planners use artificial “start” and “end” nodes which are not shown.
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Assenbl e

(actschema Build-Z
:todo (Assenbl ed 2)
:expansion ( (stepl :goal (Assenbled X))
(step2 :goal (Assenbled Y))
(step3 :primative (Attach X Y)))
ceffects ( (step3 :assert (Assenbled 2)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschenma Prepare-X
:todo (Assenbl ed X)
cexpansion ( (stepl :primtive (PutOn X Pallet)))
.effects ( (stepl :assert (Assenbled X))))

(actschenma Prepare-Y
:todo (Assenbled V)
:expansion ( (stepl :primtive (PutOn Y Pallet)))
ceffects ( (stepl :assert (Assenbled Y))))

(PutOn X Pallet)
(PutOn Y Pallet)

Figure 10: Representing Assembly
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must be drilled and sanded before it can be cleaned, but the drill and
sand operations may take place in either order (or even simultaneously,
given a capable machine).

Thus, HTN operators can represent all information stored in an
assembly tree and can also represent job-shop scheduling choices that
are difficult to represent in assembly trees. We will later show in
Section 7 that a planner can also consider alternate methods of con-
structing parts (corresponding to multiple assembly trees). The next
section introduces a method of converting our plans into a matrix rep-
resentation suitable for a controller and demonstrates how our system

manages resources.

6 Matrix Representation of a Plan

In this section, we show that a plan can be represented by four ma-
trices. Two matrices, F, and S,, describe the sequence of jobs to be
performed and two others, F;. and S,, describe the resources that are

needed to perform the jobs.

6.1 Matrix Representation of Job Sequences

Consider the plan shown in Figure 12, which includes assembly and

routing alternatives. In particular, to complete the plan, an agent
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Drill & Sand Sand Drill

Drill Sand

(actschema Buil d-C

:todo (Assenbled C
:expansion ( (stepl :goal (Drilled A))

(step2 :goal (Sanded A))

(step3 :prinmtive (Cean A))
:orderings ((stepl -> step3) (step2 -> step3l))

(actschma Drill-A
:todo (Drilled A
B) :expansion ( (stepl :goal (Assenbled A))

(step2 :primtive (Drill A)))
.effects ( (step2 :assert (Drilled A)))
corderings ((stepl -> step2)))

(actschma Sand- A
:todo (Sanded A)
:expansion ( (stepl :goal (Assenbled A))
(step2 :primtive (Sand A)))
ceffects ( (step2 :assert (Sanded A)))
:orderings ((stepl -> step2)))

(actschema Prepare-A
:todo (Assnebl ed A)
cexpansion ( (stepl :primtive (PutOn A Pallet)))

.effects (stepl :assert (Assenbled A)))
(PutOn A Pallet)

C)

Figure 11: Repré¢nting Job-Shops



must perform both step F' and step G, but the agent may perform
these two steps in either order. This plan can be converted into the
Petri-Net shown in Figure 13, in which the possible routing sequences
have been explicitly enumerated. The agent can either perform steps
F'1 and G1, meaning the agent performs step F’ first, or the agent can
perform steps G2 and F'2, meaning the agent performs step G first.
Each alternative is given a unique label to prevent the alternatives
from being merged by our algorithm for combining multiple plans
(described in Section 7).

The two matrices shown in Figure 14 are equivalent to the Petri-
Net shown in Figure 13. The F, matrix maps actions to transitions
and corresponds to the I set of the Petri-Net; a 1 in location %, j
means that transition X; cannot fire until action A; completes. The
Sy matrix maps transitions into actions and corresponds to the O
set of the Petri-Net; a 1 in location 4,5 of this matrix means that
when transition X fires, action A; is started. Assembly operations
are signaled by two or more 1s in a single row of F,,. In our example
D is the action of assembling the parts produced by B and C; the
X4 transition has two 1s indicating the assembly step. The start of
a routing decision is signaled by having more than one 1 in a column
of Fy; in our example, E can enable either Xg or X7. The end of a

routing decision is signaled by two or more 1s in the same row of S;
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Figure 13: Petri Net Representation of Plan

action H will be started after either X9 or X7 fires.

6.2 Resource Usage and Generic Resources

To actually perform the actions suggested by our planner, we will need
to use some resources. For example, if action C corresponds to “Paint
the Block” then we must reserve some type of painting tool before
we can start action C (i.e. before we can fire transition X3). The F,
and S, matrices represent the resources needed by the actions; a 1 in
position 4, j of the F;. matrix means that resource R; must be secured

before transition X; can fire. A 1 in position 7,j in the S, matrix
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Figure 14: F), and S, Matrices
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means that when transition X; fires, resource R; is released.

Initially, we assume that every action has its own dedicated re-
source. That is, if a transition starts action A;, it will also reserve
resource R; and if the completion of action Aj causes a transition to
fire, then the transition will also release resource Rj. Figure 15 shows
the Petri Net corresponding to these resources. Notice that except for
directionality, this Petri Net is identical to the one shown in Figure 13.
Because of this similarity, our initial resource matrices can be quickly
computed:

E, = ST with the product-out column(s) removed.

S, = FT, with the product-in row(s) removed.

Figure 16 shows the resulting matrices.

6.3 Resource Assignment

Our initial matrices assume that each action has a dedicated resource.
In most cases, this assumption is unrealistic. If actions A, D, and
E all involve drilling something but we only have one machine that
can drill, then the single resource must be shared among the three
actions. This sharing of resources can be represented by a resource
assignment matrix, F,. A 1 in position %, j of F, means that the actual
resource R; will be used to perform the functions of our dedicated

resource R;. If a column 7 has two or more 1s in it, then the actual
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Pi n,

Pin

Figure 15: Petri Net for Generic Resources

resource I; is performing the functions of more than one dedicated
resource and is thus being shared among two or more actions. Figure
17 shows a resource assignment matrix with two shared resources; a
single resource ade will perform the functions of the generic resources
a, d, and é (and thus be shared among actions A, D, and E) and a
single resource f will perform the functions of generic resources f1
and f2 (and thus be shared among actions F1 and F2).

We can use the resource assignment matrix to easily adjust our

generic resource usage matrices into actual resource usage matrices:

F.=F,. xF,
Sr:FCLT*ST
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Figure 17: F, Assigns Resources

Matrix F; has been called the resource requirements matrix (Kusiak
1992). A 1 in position %, j of F, means that resource j is needed to
perform job ¢. If a column j has more than one 1, then resource j is
being shared by more than one job.

One problem can result from our notation. Consider the actual re-
source ade. Originally, transition X5 reserved resource é and released
resource d. Now, transition X5 reserves resource ade and releases the
same resource ade. This behavior is not correct; intuitively, it means
that at the instant Xj fires, two uses of resource ade are held. We elim-
inate this self-loop by finding 7, j pairs such that F,.[i,j] = S;[4,i] =1
and changing both values to 0. This operation corresponds to the three
matrix equations, in which “&” represents an element-by-element log-

ical AND operation and “-” represents ordinary matrix subtraction:
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T, = F,.&ST

Frnew = Frold - TS
— T
S”'new - S”'old - TS

The completed F, and S, matrices for our sample problem are
shown in Figure 18. These matrices correspond to the complete Petri
Net shown in Figure 19. Note that places from the F}, and S, matrices
describe actions and places from the F, and S, matrices describe re-
sources. When one action completes and when the resource needed for
the next action becomes available, our controller will fire the appro-
priate transition to start a new action and release the resource used

by the old action.

7 Multiple Plans; One Controller

So far, we have shown that an assembly tree can be converted into a set
of HTN operators and that a machine planner can use these operators
to form a plan which in turn can be converted into four matrices. In
this section, we show how multiple assembly trees can result in more
than one possible plan; these plans can be combined into a single set
of matrices. In Section 7.2, we present a polynomial-time algorithm

for combining the plans into a minimal matrix representation.
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Figure 19: Our Completed Petri Net

7.1 Forming more than one Plan

Figure 20 shows two possible assembly trees for constructing an Sy
part. In (GraCanin, Srinivasan & Valavanis 1994), Gratanin uses a
parameterized Petri net to represent the alternate means of assembling
an Sy. Our system can incorporate the alternatives into a matrix
notation, which is computationally easier to manipulate.

HTN operators corresponding to the two assembly trees are shown
in Figure 21. The planner has more than one sequence of steps which
can solve the goal corresponding to Sy. If we can determine in ad-

vance the conditions under which one sequence of steps will be “bet-



/s<
A/S\{B/t/%D /\%C

A B

Figure 20: Alternate Assembly Trees

ter”, then we can encode this information into the planner (possibly
adding subgoals not shown in the assembly tree) and allow our plan-
ner to determine the best plan based on relatively static information.
Alternatively, we can have the planner generate all possible plans and
allow a lower-level dispatcher to switch between them based on real-
time (dynamic) conditions.

Figure 22 shows the two possible plans for assembling an Sy part.
Next, we convert each plan into matrices as described in Section 5.
Figure 23 shows the two Petri Nets for this problem, and Figure 24

shows the corresponding pairs of matrices.

7.2 Combining Multiple Plans

In this section, we present a polynomial-time algorithm for finding a
minimum matrix representation for multiple plans. We use F,_  and
Sy, to accumulate a matrix combining the alternatives described by
each plan. We initialize F,, to the F, matrix of our first plan and we

initialize S, to the S, matrix of our first plan. We call our algorithm
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(actschenma Buil d-s4-with-s2
:todo (Assenbl ed s4)
:expansion ( (stepl :goal (Assenbled sl))
(step2 :goal (Assenbled s2))
(step3 :prinmtive (Attach sl s2)))
ceffects ( (step3 :assert (Assenbled s4)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschema Build-s4-with-D
:todo (Assenbl ed s4)
:expansion ( (stepl :goal (Assenbled s3))
(step2 :goal (Assenbled D))
(step3 :primtive (Attach s3 D)))
:effects ( (step3 :assert (Assenbled s4)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschema Build-sl1
:todo (Assenbled sl)
:expansion ( (stepl :goal (Assenbled A))
(step2 :goal (Assenbled B))
(step3 :primtive (Attach A B)))
ceffects ( (step3 :assert (Assenbled sl)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschenma Buil d-s2
:todo (Assenbl ed s2)
:expansion ( (stepl :goal (Assenbled Q)
(step2 :goal (Assenbled D))
(step3 :prinitive (Attach CD)))
ceffects ( (step3 :assert (Assenbled s2)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschema Buil d-s3
:todo (Assenbl ed s3)
:expansion ( (stepl :goal (Assenbled sl))
(step2 :goal (Assenbled Q)
(step3 :primtive (Attach s1 C)))
ceffects ( (step3 :assert (Assenbled s3)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschema Prepare-A
:todo (Assenbled A
rexpansion ( (stepl :primtve (Collect A)))
effects ( (stepl :assert (Assenbled A))))

(act schena Prepare-B
:todo (Assenbl ed B)
rexpansion ( (stepl :primtve (Collect B)))
ceffects ( (stepl :assert (Assenbled B))))

(actschema Prepare-C
:todo (Assenbled C
:expansion ( (stepl :primtive (Collect Q)))
ceffects ( (stepl :assert (Assenbled Q))))
(actschema Prepare-D
:todo (Assenbled D
:expansion ( (stepl :primtive (Collect D)))
effects ( (stepl :assert (Assenbled D))))

Figure 21: HTN Operators for Figure 16

36



Figure 22: Multiple Plans for Assembling an S; Part
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Figure 23: Multiple Petri Nets for Assembling an S, Part
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Figure 24: Multiple Matrices for Assembling an S, Part
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once for each alternate plan; after we have finished, F,, and S,, contain
information on all possible plans. We can now form generic resources
and assign actual resources as described in Section 6.

Our algorithm relies on two crucial assumptions:

1. Parts with the same label on two different assembly trees are the

same part.

2. The uses of a part are independent of the method used to con-

struct the part.

Without assumption 1, made implicitly in (Grac¢anin et al. 1994), it
would be extremely difficult to combine multiple assembly trees at all.
Assumption 2 is crucial; it means that if two nodes in different plans
have the same node labels, then they are identical nodes. Without
this assumption, combining plans becomes an instance of subgraph
isomorphism, an NP-Complete problem (Garey & Johnson 1979). As-
sumption 2 is reasonable for manufacturing operators; the results of
the action “Drill C to produce D” do not normally depend on which
previous actions we used to produce the C part.

Our algorithm, shown in Figure 25, has two major steps. First, it
associates each place in our new Petri Net with a (possibly new) place
in our old Petri Net. Second, it examines each transition in the new

Petri Net and decides if that transition should be added to our old
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Combi neMat ri X(':VO| d S/ol dr FVnew’S/new)

For each place in Funew

Does the place exist in K, ?

If so: E
Associate the place with the correct place of Voad
Associate the corresponding place of §, wth S

If not:

Create a new place in R, and g
Associ ate the place in lf\),new with the new place in Rt o
Associ ate the corresponding place of S, with the new place inS,,

old

new

For each transition i nFy,.. S
Does the corresponding transition exist in Riord, o1 a?
If so:
(Do not hi ng)
If not:
Create the transition

Figure 25: Combining Multiple Plans

Petri Net. We describe these steps in detail in the next two sections.

7.2.1 Step 1: Examining Places

Each row of S, and the corresponding column of F,, refers to a place
in a Petri-Net corresponding to a primitive action. Our algorithm
begins by associating each place in our new matrix pair with a (possi-
bly new) place in our accumulating matrix pair. If our current place
has a label identical to a place in our old matrices, then we can as-
sociate the current place with the matching place in the old matrix
pair (using Assumption 2 above). Otherwise, we create a new place

with that node label and associate the current place with the newly
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Figure 26: Intermediate Results: Combining Places from Multiple Plans

created place. Initially, new places are formed without any incoming
or outgoing transitions; the newly created rows of S, and columns of
F, are initialized to zero. Figure 26 shows the associations formed by
this phase of our algorithm. Rows and columns in italics are newly

added places.

7.2.2 Step 2: Examining Transitions

After adding new places as needed, our algorithm examines each tran-

sition in our new plan. Our algorithm examines our accumulated plan
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to decide whether the transition already exists based on the associ-
ated nodes of our accumulated plan. Thus, our algorithm is judging
transitions based on the node labels of the places the transitions link
rather than on the place numbering used by our new matrices. For
example, transition X, of the new matrix set links PinD and (Prepare
D). Our old matrix set has an existing link (by coincidence also X4)
which links its copy of PinD and (Prepare D), so our algorithm does
nothing for this transition. In contrast, transition X7 of the new ma-
trix set links (Attach A B) and (Attach C sl) to (Attach D s3). No
existing transition in our old set makes this connection, so we create
a new transition Xio incorporating this link.

Figure 27 shows the final F,,, and S,, matrices. Transitions in the
new matrix set which do not have corresponding transitions in the
old set are marked with a *, and the newly created transitions are in
and S

italic type. The single set of matrices F), vorq NOW Tepresent

old

two different methods of producing Sy parts. Figure 28 shows the

combined Petri Net.

7.3 Complexity Analysis

Suppose we have m plans and, after converting the plan to a Petri
Net, each plan has an average of n steps. The number of transitions

is 8(n) (We prove this in the Appendix).
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Figure 28: Combined Petri Net
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We will call our algorithm m — 1 times. The algorithm will trace
through n places and 6(n) transitions. We can create a place or
transition in amortized constant time. The amount of time to de-
cide whether a place or transition exits depends on the number of
places/transitions we have accumulated so far.

One (unlikely) possibility is that each plan is completely different
from every other plan and thus our final matrix will accumulate O(m *
n) places. In this case (assuming linear-time search), it will take O(m*
n) time to decide whether a given place or transition exists in our
matrix, for a total of m x n * O(m * n) or O(m? x n?) time.

A more likely possibility is that most plans are nearly identical
and that a given pass through our algorithm adds only a constant
number of places, giving a final total of O(n + m) places. This gives
(still assuming linear-time search) O(m + n) time to decide whether
or not a given place or transition exists in our matrix, for a total of

m xn * O(m +n) = O(nm? + mn?) time.

8 Dynamic Supervisory Controller from

Task Matrices

Our machine planner corresponds to the “Organization Level” of Fig-

ure 1. This planner gives us four Task Plan Matrices (F,, Sy, Fr, Sr),
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with which we can directly implement a supervisory job coordina-
tor that performs dynamic on-line decision-making control, detailed
sequencing and routing of jobs, and final dispatching assignment of
shared resources. The supervisory controller performs the tasks of the
“Coordination Level” of Figure 1. This matrix rule-based controller
provides a framework for rigorous analysis of the system including
its structure and protocols, complexity, circular waits, siphons, and
deadlock. The controller is illustrated in Fig. 29 and described by the

following equations:

Matrix Controller State Equation

T = F,0. + F,7. + Fyu + Fpup (1)

Job Start Equation

vs = Sy (2)

Resource Release Equation

rs = Spx (3)

Task Complete Equation

Yy = SyT (4)

All matrix operations are defined to be in the or/and algebra, where

“+” denotes logical or and “x” denotes logical and. The overbar in
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(1) denotes logical negation (e.g. so that jobs complete are denoted by
0). Thus, equation (1) amounts to and operations (for assignment of
resources) while equations (2)-(4) amount to or operations (for release
of resources). In Petri-Net parlance, the controller state equation (1)
is responsible for firing the transitions; the controller state vector x
is isomorphic to the vector of Petri-Net transitions. These are logical
equations, and so form a rule base. The coefficient matrices are sparse,
so that real-time computations are easy even for large interconnected
systems; the rules can be fired using efficient algorithms such as the
Rete algorithm.

The matrix formulation allows: (1) computer simulation and (2)
computer implementation of the controller on an actual work-cell. In-
put u represents raw parts entering the cell and y represents completed
tasks or products leaving the cell. The controller, shown in Fig. 29,
observes the status outputs of the system or work-cell, namely, job
vector v., whose entries of ‘1’ represent ‘completed jobs’ and resource
vector 7., whose entries of ‘1’ represent ‘resources currently available’.
The vector [v 7] is isomorphic to the Petri Net place vector. (Sub-
script ‘¢’ denotes ‘complete’ or ‘available’ status, while subscript ‘s’
denotes ‘start’ or ‘release’ commands.) The controller state equation
(1) checks the conditions required for performing the next jobs in

the system. Based on these conditions, stored in the logical vector
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z, the job start equation (2) computes which jobs are activated and
may be started, and the resource release equation (3) computes which
resources should be released (due to completed jobs). Then, the con-
troller sends commands to the system, namely, vector vy, whose ‘1’
entries denote which jobs are to be started, and vector r;, whose ‘1’
entries denote which resources are to be released. Completed tasks
are given by (4).

The matrix-based logical controller has the multiloop feedback con-
trol structure shown in Fig. 29, with inner loops where there are no
shared resources, and outer loops containing shared resources where
dispatching and/or routing decisions are needed to determine up,
which is a conflict resolution input that selects which jobs to initi-
ate when there are simultaneous requests involving shared resources.
This dispatching input is selected in higher-level control loops using
priority assignment techniques (e.g. (Panwalker & Iskander 1977)) in
accordance with prescribed performance objectives such as minimum
resource idle time, task priority orderings, task due dates, minimum
time of task accomplishment, and so on as prescribed by the user.

The Ty, T, T, and T,, matrices shown in Figure 29 describe the
job durations and resource set-up times. These matrices are described
in (Tacconi & Lewis 1997).

It is easy to show that a Petri Net description can be derived from
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the matrices. In fact, we define the activity completion matriz F and

the activity start matriz S as

FZ[F,, Fr]’ S = S . (5)

We define transition vector X as the set of elements of controller state
vector z, and place vector A (activities) as the set of elements of the
job and resource vectors v and 7. Then (4, X, F, ST) is a Petri-Net.
The new matrix model overcomes one of the prime deficiencies
of Petri-Net theory— it provides rigorous computational techniques
for dynamic systems. It has been shown (in (Tacconi & Lewis 1997)
and (Lewis, Huang, Fierro & Tacconi 1995)) that one may compute
directly in terms of F,,, F}., S,, S, all the resource loops (p-invariants),
all the circular waits of resources, and give algorithms for dispatching

shared resources with guaranteed avoidance of deadlock.

9 Conclusion

In this paper we have shown how machine planners can be integrated
with a real-time intelligent control system. Planners can use exist-
ing documentation (assembly trees) to form their operators. We have
demonstrated how machine planners can represent flow-lines, assem-

bly operations, and routing choices. The output of a planner can
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be converted into a set of matrices which in turn can be executed
by a matrix-based controller. We have given a polynomial-time al-
gorithm for combining multiple plans into a single minimal matrix
set. Our method of combining multiple plans into a single frame-
work simplifies re-planning, and we hope to produce a general-purpose
planner which can combine alternatives. However, our method does
not handle partial ordering choices ideally and our assumption that
identically-worded operators can be combined may not be realistic for
other domains. We also hope to exploit the power of machine plan-
ning in other parts of the manufacturing process; perhaps a planner
can assist with dispatching or can form plans even in the absence of

assembly tree information.

51



A Proving a Bound on the Number of

Transitions

Our complexity analysis uses the fact that a plan that has n steps (af-
ter partial-ordering choices are explicitly enumerated) will have 6(n)
transitions. We now prove this. First, we will define the different
types of transitions and places used in our plans. We establish a lower
bound on the number of transitions by showing that at least half of
all places will have at least one succeeding transition. We elaborate
on the role of job-shop begin and job-shop end places. Next, we will
assign each transition to an “owning” place. We establish an upper
bound on the number of transitions by proving that no place will own
more than two transitions. Throughout this section, we consider only
“action” nodes — that is, our Petri Net does not contain any places
corresponding to generic or actual resources. In addition, we assume
that the maximum number of parts assembled in any assembly oper-

ation is bounded by a constant.

A.1 Types of Transitions and Places

Section 5 describes how Flow-Lines, Assembly, and routing choices are
represented in our Petri Nets. More formally, we categorize the types

of each transition and place:
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Figure 30: Types of Transitions and Places

Assembly A transition that has more than one input place is an
assembly transition. Note that because we do not yet consider
resource information, each transition will have only a single out-

put place. In this case, the output place is an assembly place.

Flow-line If a transition has a single input place, and if the output
place is not also an output place for another transition, then
the transition is a flow-line transition. The output place is a

flow-line place.

Job-shop End A transition with a single input place, but whose
output place is also the output place of other transitions is part

of a set of job-shop end transitions. The output place for these
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transitions is a job-shop end place.

Job-shop Begin A place with more than one succeeding transition
(that is, a place which is the input place for more than one
transition) is a job-shop begin place. Note that each job-shop
begin place will also have another type. That is, each job-shop
begin place will also be an assembly place, a product-in, a flow-

line place, or a job-shop end place.

Product-in A place which has no preceding transition (that is, no

transition uses the place as an output place) is a product-in place.

Product-out A place that has no succeeding transitions (that is,
no transition uses the place as an input place) is a product-out
place. Like job-shop begin places, a product-out place will also
have another type, but Product-out places will not also be job-

shop begin places.

A.2 Bounding the Number of Product-out Places

Our Petri Net will perform operations on one or more input products
to produce one or more output products. In particular, each output
product will be the result of at least one operation applied to one or
more input products—after all, if an output product were identical to

some input product, the output product could be entirely replaced by
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the input product and not included in our Petri Net. This means that
for each product-out place, there is at least one interior place used to
form that product. Thus, an n-place Petri Net will have at most n/2
product-out places, leaving a minimum of n/2 interior places. Every
place other than a product-out place will have at least one succeeding
transition. Thus, our Petri Net will have a minimum of n/2 or Q(n)

transitions.

A.3 Forming Job-shop Begin and Job-shop End
Places

In our original plan, some steps were only partially ordered. When a
Petri-Net corresponds to a single plan, a job-shop begin node indicates
a choice of possible strategies. Each strategy will have one or more op-
erations (corresponding to flow-line places or assembly places). Since
the different strategies represent equivalent solutions, eventually the
strategies will achieve the common result, corresponding to a job-shop
end node. Thus, for our Petri-Nets, at least one flow-line place or as-
sembly place will occur on each branch between a job-shop begin place
and a job-shop end place. In particular, each job-shop end transition

is preceded either by an assembly place or by a flow-line place.
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A.4 Finding a Transition’s Owner

Each transition is a flow-line transition, an assembly transition, or one
of a set of job-shop end transitions. The owner of a flow-line transition
is the relevant flow-line place. The owner of an assembly transition is
the relevant assembly operation. The job-shop end transitions are not
owned by the job-shop end place; rather, each job-shop end transition
is owned by the preceding place. From above, this place will be either
an assembly place or a flow-line place.

We now enumerate the possible numbers of transitions owned by
each type of place. Assembly places and Flow-line places will own
two transitions if they are succeeded by a job-shop end node; these
places will own one transition otherwise. Product-in and job-shop end
places will own no transitions. The number of transitions owned by a
job-shop begin or product-out place depends on the type of the place—
that is, a job-shop begin place which is also a product-in place will
own no transitions and a product-out place which is also an assembly
place will own one transition.

Thus, no place owns more than 2 transitions and a Petri-Net with
n places will have a maximum of 2n transitions or O(n) transitions.
Since we have proven that a Petri-Net formed by our planner has O(n)

and (n) transitions, it has #(n) transitions.
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