FORAGE SUITABILITY GROUP

Sandy Over Loamy Soils on Rises, Knolls, and Ridges of Mesic Uplands

FSG No.: G152AA221FL

Major Land Resource Area (MLRA 152A):

Eastern Gulf Coast Flatwoods

Map Unit List

Fuquay loamy fine sand Fuquay loamy sand, 0 to 5 percent slopes Shadeville fine sand, 0 to 5 percent slopes

Adapted Species List

The native forage species listed are considered adapted to grow on the soils in this group at their natural pH levels. All introduced grass and legume species will need the pH level raised to min. 5.5 (unless noted) for best production. Irrigation is not recommended in these soils, and all forages listed are adapted to dryland conditions. Consult with state extension service for current cultivar or germplasm recommendations

(http://agronomy.ifas.ufl.edu/foragesofflorida/).

Perennial Species:

Grasses

Warm season (Introduced)

- Bahiagrass (Paspalum notatum; pH 5.0-6.5)
- Bermudagrass (Cynodon dactylon)

Warm season (Native)

- Chalky Bluestem (Andropogon virginicus var. glaucus)
- Big Bluestem (Andropogon gerardii)
- Splitbeard Bluestem (Andropogon ternarius)
- Yellow Indiangrass (Sorghastrum nutans)
- Switchgrass (Panicum virgatum)

Legumes

Warm season (Introduced)

Rhizoma Perennial Peanut (Arachis glabrata; pH 5.8-7.0)

Annual Species:

Grasses

Warm season (Introduced)

- Browntop Millet (Urochloa ramosa; =Panicum ramosum)
- Pearl Millet (Pennisetum glaucum)

Sorghum (Sorghum bicolor; includes forage sorghums, sudangrass, and their hybrids)

Cool season

- Oat (Avena sativa)
- Rye (Secale cereale)
- Wheat (Triticum aestivum)
- Triticale (x Triticosecale)

Legumes

Warm season (Introduced)

- Alyceclover (Alysicarpus vaginalis)
- Cowpea (Vigna unquiculata)
- Hairy Indigo (Indigofera hirsuta)

Cool season

- White Clover (*Trifolium repens*, pH 6.0-7.5)
- Red Clover (*Trifolium pratense*, pH 6.0 8.0)
- Crimson Clover (Trifolium incarnatum)
- Arrowleaf Clover (Trifolium vesiculosum)
- Austrian Winter Pea (Pisum sativum)
- Hairy Vetch (Vicia villosa)
- Medics (Medicago spp.)

Seasonal and Total Production Estimates

Seasonal and total forage production is expected to be less variable than FSG G152AA121FL because finer textures soils are closer to the surface, which will improve water holding capacity. This will decrease drought effects, but total annual production still is driven largely by rainfall. Yields can increase by > 1,000 lbs/acre in years with above average rainfall. However greatly reduced production and even stand loss associated with over grazing can occur in years with below average rainfall. Irrigation is not recommended for these soils due to poor water holding capacity. Establishment of both annual and perennial warm season forages maybe delayed due to limited rainfall in the spring and short term drought periods in the summer months. Total production of all forage species is expected to be higher than FSG G152AA121FL but less than other groups, with a general growth curve still weighted more towards the later part of the growing season.

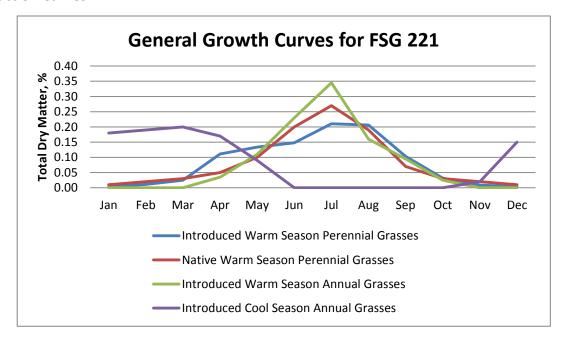
Due to more regular winter rainfall, dryland cool season forage production is recommended for this FSG in this MLRA although production will be less than G152AA321FL. Productivity of cool season annuals under dryland conditions will most commonly be at the lower

> **FL NRCS** December 2012

range listed due to poor water holding capacity of the soils in this FSG. If irrigation is available, see FSG G152AA321FL for production information.

When legumes are planted grazing management and fertilization need to favor the legume component for persistence, productivity, and seed production when natural reseeding of annual species is desired. White clover and red clover are short term perennial species in Florida, but function more like annuals. Other species, like crimson clover, may reseed well if they are managed properly. Due to bloat issue, clovers should be used only in mixtures with cool season grasses, overseeded on bahiagrass pastures, or when a bloat preventative supplement is fed.

Initial growth of perennial warm season grasses and legumes or establishment of warm season annual grasses may be delayed in the spring due to low rainfall. Once normal summer rainfall begins, plant production should resume. Warm season legumes such as hairy indigo or alyceclover can be planted in a prepared seedbed. They also can be oversown onto warm season grasses in this forage suitability group, although fertilization (no N fertilizer) and grazing management needs to favor legume establishment and persistence. Additional lime may be needed to maintain a pH of 5.5 to 6.0.


Expected Range in Dry Matter Production and Animal Unit Months (AUM) for Different Forages†							
Forage	Range in Dry m	natter, lbs/acre	Range in AUM/acre‡				
Bahiagrass, Argentine (100-200 lb N/A) ^{4,5,6} #	3,950	10,900	2.5	7.0			
Bahiagrass, Pensacola (100-200 lb /A) ^{4,5,6}	3,700	10,150	2.4	6.5			
Bahiagrass, Tifton 9 (100-200 lb N/A) ^{4,5,6}	6,100	11,500	3.9	7.4			
Bermudagrass, Tifton 85 (100-200 lb N/A) ^{4,5,6}	5,640	11,750	3.6	7.5			
Bermudagrass, Florakirk (100-200 lb N) ^{2,4,5,6}	5,900	11,277	3.8	7.2			
Bermudagrass, Coastal (100-200 lb N/A) ^{4,5,6,7}	3,250	10,800	2.1	6.9			
Big Bluestem (100-300 lb N/acre) ^{4,5,6}	780	1,800	0.5	1.2			
Small Grain Forage (oat, wheat, etc.; 120 lb N/acre) ¹	5,400	7,200	3.5	4.6			
Pearl Millet (200 lb N/acre) ^{4,5,6}	7,200	10,000	4.6	6.4			
Sorghum - Sudangrass (200 lb N/acre) ^{4,5,6}	9,000	11,700	5.8	7.5			
Rhizoma Perennial Peanut ²	3,150	5,670	2.0	3.6			
Cool-Season Clovers, prepared seedbed ^{3,5}	1,200	3,600	0.8	2.3			
Alyceclover ³	1,350	3,150	0.9	2.0			
Hairy Indigo ³	1,800	5,400	1.2	3.5			

[†]Production data based on 10% reduction yield range of FSG G152AA321FL.

[‡]Animal Unit Month based on 50% grazing efficiency and 2.6% intake per day.

[#]Superscript numbers refer to references.

Production Curves:

Dry Matter Production Distribution by Month												
Forage		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Introduced Warm Season Perennial Gra	sses											
Bahiagrass (Pensacola)		0.01	0.03	0.14	0.14	0.17	0.19	0.17	0.14	0.03		
Bahiagrass (Argentine)		0.01	0.04	0.08	0.09	0.18	0.25	0.22	0.11	0.02		
Bermudagrass (Tifton 85)		0.02	0.02	0.13	0.15	0.13	0.21	0.22	0.08	0.03	0.01	0.00
Bermudagrass (Coastal)	0.01	0.01	0.02	0.13	0.14	0.13	0.21	0.22	0.09	0.02	0.01	0.01
Native Warm Season Perennial Grasses												
Native Warm Season Grasses (Generic)	0.01	0.02	0.03	0.05	0.1	0.2	0.27	0.19	0.07	0.03	0.02	0.01
Switchgrass	0.01	0.02	0.03	0.07	0.15	0.19	0.2	0.19	0.09	0.03	0.01	0.01
Legumes or Legume/Grass Combination	Legumes or Legume/Grass Combinations											
Rhizoma Perennial Peanut			0.05	0.15	0.14	0.15	0.20	0.18	0.14			
Cool Season Annual Grasses												
Small Grains (Wheat, Rye, etc.)	0.18	0.2	0.2	0.16	0.08						0.02	0.16
Warm Season Annual Grasses												
Sorghum-Sudangrass					0.07	0.2	0.3	0.25	0.15	0.03		
Millet (Pearl and Browntop)				0.07	0.15	0.26	0.39	0.07	0.04	0.02		

Physiographic Features

Dominantly very deep, nearly level to sloping, moderately well drained or well drained soils formed 20 to 40 inches of sandy marine deposits over loamy marine deposits. These soils occur on summits, shoulders, and back slopes of marine terraces. Diagnostic subsurface horizon is an argillic horizon. The organic matter content of the surface layer is dominantly very low or low. Unless limed, the reaction in the surface layer ranges from very strongly acid to slightly acid.

Climatic Features

Freeze-free period (>28° F 9 years in 10 at least): averages 268 d (range 243-295 d)

Length of growing season (>32° F 9 years in 10 at least): averages 235 d (range 206-267 d)

Annual minimum temperature (° F in month of January): averages 53.7 (range 49.0-64.5)

USDA Plant Hardiness Zone:

8b (15-20° F, Tallahassee) 9a (20-25° F, Gainesville)

Mean annual precipitation (inches):

averages 60.77 (range 52.83-69.20)

Soil Properties

Percent Slope: Dominantly 0 to 8 percent, but ranges to 10 percent

Surface Texture: Fine sand, sand, Loamy fine sand, loamy sand, coarse sand

Sand Content of Surface Layer: 82 to 95 percent

Clay Content of Surface Layer: 1 to 7 percent

Organic Matter Content of Surface Layer: 0.5 to 4.0

Cation Exchange Capacity of Surface Layer (meq/100g): 0.3 to 4.8

Effective Cation Exchange Capacity of Surface Layer (meq/100g): 0.2 to 3.1

Bulk Density of Surface Layer (g/cc): 1.38 to 1.65

Saturated Hydraulic Conductivity of Surface Layer: Rap-

Soil Reaction of Surface Layer: 4.5 to 6.5 (unless limed)

Available Water Capacity (0 to 30 inches): 0.3 to 2.0

inch per inch

Depth to Finer Textured: 20 to 40 inches

Depth to Bedrock: Greater than 80 inches. A few members have bedrock between 40 and 80 inches.

Drainage Class (Agronomic): Moderately well, well

Depth to Seasonal High Water Table (during wet periods): 3.0 to 5.0 feet below the surface

Flooding: None. A few members are rarely or very rarely

flooded with brief duration.

Ponding: None

Monthly precipitation (inches) and temperature (F):

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Precip avg	5.25	4.28	5.67	3.52	3.78	6.20	7.82	7.44	5.82	3.46	3.54	3.75
Avg Min	40.5	43.0	48.9	83.7	62.0	66.9	71.6	71.4	68.1	57.1	49.0	43.2
Avg Temp	53.7	56.7	62.7	68.1	75.3	80.8	82.6	82.3	79.4	70.6	62.6	55.8
Avg Max	64.1	67.3	73.3	79.1	85.6	90.1	91.3	90.9	88.3	81.2	73.3	66.2

Climate Station Locations (averages from 1971 to 2000; see Appendix 1)

FL NRCS December 2012

FSG Documentation

Inventory Data References:

- Barnett, R.D., D.L. Wright, A.R. Soffes Blount, and R.L. Stanley. 1997. Small grain production recommendations for the 1997-98 growing season. Gainesville, FL, USA: University of Florida, Institute of Food and Agricultural Sciences, Florida Cooperative Extension Service, SS-AGR-46.
- Dunavin, L.S. 1996. Fertility trials with Florakirk bermudagrass and chicory and harvest date trial with
 Florigraze rhizoma peanut. Gainesville, FL, USA: University of Florida, Institute of Food and Agricultural
 Sciences, Agriculture Experiment Station, West Florida Research and Education Center Research Report,
 WF96-4.
- ------, and C.G. Chambliss. 2000. Cool-season forage variety trials, WFREC, Jay, FL 1999-2000. Gainesville, FL, USA: University of Florida, Institute of Food and Agricultural Sciences, Agriculture Experiment Station, SS-AGR-85.
- ------, and D.W. Gorbet. 2000. Variety and Other Trials of several forage grasses and legumes, temperate corn and grain sorghum. Gainesville, FL, USA: University of Florida, Institute of Food and Agricultural Sciences, Agriculture Experiment Station, West Florida Research and Education Center Research Report, WF00-03.

- ------. 2001. Variety and other trials of several forage grasses and legumes, temperate corn and grain sorghum. Gainesville, FL, USA: University of Florida, Institute of Food and Agricultural Sciences, Agriculture Experiment Station, West Florida Research and Education Center Research Report, WF01-03.
- ------ 2002. Variety and other trials of several forage grasses and legumes and grain sorghum. Gainesville, FL, USA: University of Florida, Institute of Food and Agricultural Sciences, Agriculture Experiment Station, West Florida Research and Education Center Research Report, WF02-03.
- 7. Rhoads, F.M., and R.L. Stanley, Jr. 1989. Coastal bermudagrass yield, soil-pH, and ammonium sulfatenitrate rates. Gainesville, FL, USA: University of Florida, Institute of Food and Agricultural Sciences, Agriculture Experiment Station, North Florida Research and Education Center-Quincy Research Report 89-9

State Correlation: (NA)

Forage Suitability Group Approval:

Gy 1 Jenchuls)

Greg Hendricks, State Resource Conservationist

Tom Weber, State Soil Scientist

10m Weber

Appendix 1: Climate Station Locations							
COOP ID (FL=08)	Location	County					
3230	Fountain	Bay					
6842	Panama City	Bay					
2008	Cross City	Dixie					
3855	Pensacola Sherman NAS	Escambia					
6997	Pensacola Regional Air.	Escambia					
211	Apalachicola	Franklin					
9566	Wewahitchka	Gulf					
5539	Mayo	LaFayette					
8758	Tallahassee Mun. Air.	Leon					
9120	Usher Tower	Levy					
5275	Madison	Madison					
6240	Niceville	Okaloosa					
3841	Whiting Field NAS	Santa Rosa					
5099	Live Oak	Suwannee					
7025	Perry	Taylor					
8565	Steinhatchee	Taylor					