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SECOND-ORDER COMPLEX LINEAR DIFFERENTIAL
EQUATIONS WITH SPECIAL FUNCTIONS OR EXTREMAL

FUNCTIONS AS COEFFICIENTS

XIUBI WU, JIANREN LONG, JANNE HEITTOKANGAS, KE-E QIU

Abstract. The classical problem of finding conditions on the entire coeffi-

cients A(z) and B(z) guaranteeing that all nontrivial solutions of f ′′+A(z)f ′+
B(z)f = 0 are of infinite order is discussed. Two distinct approaches are used.

In the first approach the coefficient A(z) itself is a solution of a differential

equation w′′ + P (z)w = 0, where P (z) is a polynomial. This assumption
yields stability on the behavior of A(z) via Hille’s classical method on asymp-

totic integration. In this case A(z) is a special function of which the Airy

integral is one example. The second approach involves extremal functions. It
is assumed that either A(z) is extremal for Yang’s inequality or B(z) is ex-

tremal for Denjoy’s conjecture. A combination of these two approaches is also

discussed.

1. Introduction and main results

It is well known that if A(z) is an entire function, B(z) 6≡ 0 is a transcendental
entire function, and f1, f2 are two linearly independent solutions of the equation

f ′′ +A(z)f ′ +B(z)f = 0, (1.1)

then at least one of f1, f2 must have infinite order. Hence, “most” solutions of
(1.1) have infinite order. On the other hand, there are equations of the form (1.1)
that possess a nontrivial solution of finite order; for example, f(z) = ez satisfies
f ′′+ e−zf ′− (e−z + 1)f = 0. Thus a natural question is: What conditions on A(z)
and B(z) will guarantee that every nontrivial solution of (1.1) has infinite order?

We denote the order and the lower order of an entire function f by ρ(f) and
µ(f), respectively. The standard notation and basic results in Nevanlinna theory
of meromorphic functions can be found in [10, 14, 24].

From the work by Gundersen [8], Hellerstein, Miles and Rossi [11], and Ozawa
[18], we know that if A(z) and B(z) are entire functions with ρ(A) < ρ(B); or
A(z) is a polynomial and B(z) is transcendental; or ρ(B) < ρ(A) ≤ 1

2 , then every
nontrivial solution of (1.1) has infinite order. Therefore, the main problem left
to consider is that whether every nontrivial solution of (1.1) has infinite order if
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ρ(A) = ρ(B) or if ρ(A) > 1
2 , ρ(B) < ρ(A). In general, the conclusions are false for

these situations. For example, f(z) = exp(P (z)) satisfies the equation

f ′′ +A(z)f ′ + (−P ′′ − (P ′)2 −A(z)P ′)f = 0, (1.2)

where A(z) is an entire function and P (z) is a nonconstant polynomial. For the
case of ρ(B) < ρ(A), there are also some examples [8] showing that a nontrivial
solution of (1.1) has finite order.

The problem of finding conditions on A(z) and B(z) under which all nontrivial
solutions of (1.1) are of infinite order has raised considerable interest, see, for
example, [14]. Recently, this problem was studied by using a new idea that a
coefficient of (1.1) is a solution of another equation.

Theorem 1.1 ([21]). Let A(z) be a nontrivial solution of w′′ + P (z)w = 0, where
P (z) = anz

n + · · ·+ a0, an 6= 0. Let B(z) be a transcendental entire function with
ρ(B) < 1

2 . Then every nontrivial solution of (1.1) is of infinite order.

From Bank and Laine’s result [2, Theorem 1], we known that ρ(A) = n+2
2 , and

hence ρ(A) > ρ(B) in Theorem 1.1. On the other hand, we known that every
nontrivial solution of (1.1) is of infinite order when ρ(A) < ρ(B) by Gundersen’s
result [8, Theorem 2]. The fact that A(z) solves an equation of the form w′′ +
P (z)w = 0 makes A(z) a special function. In the particular cases when P (z) = −z
or P (z) = −zn, the solution A(z) is known as the Airy integral or a generalization of
the Airy integral [9]. Another special case is the Weber-Hermite function, which is a
solution in the case P (z) = ν+ 1

2−
z2

4 , where ν is a constant. In the case when P (z)
is an arbitrary polynomial, Hille’s classical method on asymptotic integration will
become available. The consequences are summarized in Lemma 2.1 below. This
background motivated the second and the fourth author to prove the following
result.

Theorem 1.2 ([16]). Let A(z) be given as in Theorem 1.1, and let B(z) be a tran-
scendental entire function with µ(B) < 1

2 and ρ(A) 6= ρ(B). Then every nontrivial
solution of (1.1) is of infinite order.

Theorem 1.2 is proved by using the cosπρ theorem due to Barry [3], which
does not work for entire functions with lower order (or order) not less than 1/2.
Thus we need new ideas when the lower order (or order) of the coefficients is not
less than 1/2. In the present paper, we will prove the following improvement of
Theorem 1.2 by using a modification of the Phragmén-Lindelöf principle, as well as
Hille’s classical results on asymptotic integration.

Theorem 1.3. Let A(z) be given as in Theorem 1.1, and let B(z) be a transcenden-
tal entire function with µ(B) < 1

2 + 1
2(n+1) and ρ(A) 6= ρ(B). Then every nontrivial

solution of (1.1) is of infinite order.

In 1988, Gundersen proved the following result.

Theorem 1.4 ([8]). Let {φk} and {θk} be two finite collections of real numbers
that satisfy φ1 < θ1 < φ2 < θ2 < · · · < φn < θn < φn+1 where φn+1 = φ1 + 2π, and
set ν = max1≤k≤n{φk+1 − θk}. Suppose that A(z) and B(z) are entire functions
such that for some constant α > 0,

|A(z)| = O(|z|α) (1.3)
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as z →∞ in φk ≤ arg z ≤ θk for k = 1, 2, . . . , n, and where B(z) is transcendental
with ρ(B) < π/ν. Then every nontrivial solution of (1.1) is of infinite order.

The usual order ρ(B) in Theorem 1.4 can be replaced with the lower order
µ(B)(≤ ρ(B)).

Theorem 1.5. Let {φk}, {θk}, ν and A(z) be given as in Theorem 1.4, and let
B(z) be transcendental with µ(B) < π/ν. Then every nontrivial solution of (1.1)
is of infinite order.

The proof of Theorem 1.5 deviates from that of Theorem 1.4 in the sense that we
require a modification of the Phragmén-Lindelöf principle, see Lemma 3.2 below.
In addition, we make use of the cosπρ theorem, which is not needed in proving
Theorem 1.4.

We proceed to consider conditions on the coefficients A(z) and B(z) involving
value distribution instead of just growth. We begin by recalling a conjecture due
to Denjoy [4] from 1907, verified by Ahlfors [1] in 1930.

Denjoy’s Conjecture. Let f be an entire function of finite order ρ. If f has k
distinct finite asymptotic values, then k ≤ 2ρ.

An entire function f is called extremal for Denjoy’s conjecture if it is of finite
order ρ and has k = 2ρ distinct finite asymptotic values. These functions are
investigated by Ahlfors [1], Drasin [5], Kennedy [13] and Zhang [27], to mention a
few. An example of a function extremal for Denjoy’s conjecture is

f(z) =
∫ z

0

sin tq

tq
dt, (1.4)

where q > 0 is an integer. We know that the order of f equals to q, and f has 2q
distinct finite asymptotic values

al = e
lπi
q

∫ ∞
0

sin rq

rq
dr,

where l = 1, 2, . . . , 2q, see [28, p. 210].

Theorem 1.6. Let A(z) be given as in Theorem 1.1, and let B(z) be a function
extremal for Denjoy’s conjecture and ρ(A) 6= ρ(B). Then every nontrivial solution
of (1.1) is of infinite order.

We recall the definition of Borel direction as follows [25].

Definition 1.7. Let f be a meromorphic function in the finite complex plane C
with 0 < µ(f) < ∞. A ray arg z = θ ∈ [0, 2π) from the origin is called a Borel
direction of order ≥ µ(f) of f , if for any positive number ε > 0 and for any complex
number a ∈ C

⋃
{∞}, possibly with two exceptions, the following inequality holds

lim sup
r→∞

log n(S(θ − ε, θ + ε, r), a, f)
log r

≥ µ(f), (1.5)

where n(S(θ−ε, θ+ε, r), a, f) denotes the number of zeros, counting the multiplic-
ities, of f − a in the region S(θ − ε, θ + ε, r) = {z : θ − ε < arg z < θ + ε, |z| < r}.

The definition of Borel direction of order ρ(f) of f can be found in [28, p. 78], it
is defined similarly with the only exception that “≥ µ(f)” in (1.5) is to be replaced
with “= ρ(f)”.

In the sequel we will require the following result, known as Yang’s inequality, on
general value distribution theory.
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Theorem 1.8 ([25]). Suppose that f is an entire function of finite lower order
µ > 0. Let q < ∞ denote the number of Borel directions of order ≥ µ, and let p
denote the number of finite deficient values of f . Then p ≤ q/2.

An entire function f is called extremal for Yang’s inequality if f satisfies the
assumptions of Theorem 1.8 with p = q

2 . These functions were introduced in [23].
The simplest entire function extremal for Yang’s inequality is ez. A slightly more
complicated example is f(z) =

∫ z
0
e−t

n

dt, n ≥ 2 is teger, which has n deficient
values

al = ei
2πl
n

∫ ∞
0

e−t
n

dt, l = 1, 2, . . . , n,

and q = 2n Borel directions arg z = 2k−1
2n π, k = 1, 2, . . . , 2n, see [24, pp. 210-211]

for more details.

Theorem 1.9 ([15]). Let A(z) be an entire function extremal for Yang’s inequality,
and let B(z) be a transcendental entire function such that ρ(B) 6= ρ(A). Then every
nontrivial solution of (1.1) is of infinite order.

Also here the usual order ρ(B) can be replaced with the lower order µ(B).

Theorem 1.10. Let A(z) be an entire function extremal for Yang’s inequality, and
let B(z) be a transcendental entire function such that µ(B) 6= ρ(A). Then every
nontrivial solution of (1.1) is of infinite order.

Let λ(A) be the converge exponent of the zero sequence of A(z). By Lemma 2.1
below and by similar reasoning used in proving Theorems 1.9 and 1.10, we can
easily obtain the following result.

Theorem 1.11. Let A(z) be given as in Theorem 1.1 with λ(A) < ρ(A), and let
B(z) be a transcendental entire function satisfying one of the following conditions.

(1) ρ(B) 6= ρ(A),
(2) µ(B) 6= ρ(A).

Then every nontrivial solution of (1.1) is of infinite order.

2. Auxiliary results

Let α < β be such that β − α < 2π, and let r > 0. Denote

S(α, β) = {z : α < arg z < β},
S(α, β, r) = {z : α < arg z < β} ∩ {z : |z| < r}.

Let F denote the closure of F . Let f be an entire function of order ρ(f) ∈ (0,∞).
For simplicity, set ρ = ρ(f) and S = S(α, β). We say that f blows up exponentially
in S if for any θ ∈ (α, β)

lim
r→∞

log log |f(reiθ)|
log r

= ρ (2.1)

holds. We also say that f decays to zero exponentially in S if for any θ ∈ (α, β)

lim
r→∞

log log |f(reiθ)|−1

log r
= ρ (2.2)

holds.
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The following lemma, originally due to Hille [12, Chapter 7.4], see also [6, 19],
plays an important role in proving our results. The method used in proving the
lemma is typically referred to as the method of asymptotic integration.

Lemma 2.1. Let f be a nontrivial solution of f ′′ + P (z)f = 0, where P (z) =
anz

n + · · · + a0, an 6= 0. Set θj = 2jπ−arg(an)
n+2 and Sj = S(θj , θj+1), where j =

0, 1, 2, . . . , n+ 1 and θn+2 = θ0 + 2π. Then f has the following properties.
(1) In each sector Sj, f either blows up or decays to zero exponentially.
(2) If, for some j, f decays to zero in Sj, then it must blow up in Sj−1 and

Sj+1. However, it is possible for f to blow up in many adjacent sectors.
(3) If f decays to zero in Sj, then f has at most finitely many zeros in any

closed sub-sector within Sj−1 ∪ Sj ∪ Sj+1.
(4) If f blows up in Sj−1 and Sj, then for each ε > 0, f has infinitely many

zeros in each sector S(θj − ε, θj + ε), and furthermore, as r →∞,

n(S(θj − ε, θj + ε, r), 0, f) = (1 + o(1))
2
√
|an|

π(n+ 2)
r
n+2

2 ,

where n(S(θj − ε, θj + ε, r), 0, f) is the number of zeros of f in the region
S(θj − ε, θj + ε, r).

The Lebesgue linear measure of a set E ⊂ [0,∞) is m(E) =
∫
E
dt, and the

logarithmic measure of a set F ⊂ [1,∞) is ml(F ) =
∫
F
dt
t . The upper and lower

logarithmic densities of F ⊂ [1,∞) are given, respectively, by

log dens(F ) = lim sup
r→∞

ml(F ∩ [1, r])
log r

,

log dens(F ) = lim inf
r→∞

ml(F ∩ [1, r])
log r

.

A lemma on logarithmic derivatives due to Gundersen [7] plays an important
role in proving our results.

Lemma 2.2. Let f be a transcendental meromorphic function of finite order ρ(f).
Let ε > 0 be a given real constant, and let k and j be integers such that k >
j ≥ 0. Then there exists a set E ⊂ [0, 2π) of linear measure zero, such that if
ψ0 ∈ [0, 2π) − E, then there is a constant R0 = R0(ψ0) > 0 such that for all z
satisfying arg z = ψ0 and |z| ≥ R0, we have∣∣∣f (k)(z)

f (j)(z)

∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε). (2.3)

The following result is due to Barry [3].

Lemma 2.3. Let f be an entire function with 0 ≤ µ(f) < 1. Then, for every
α ∈ (µ(f), 1), logdens({r ∈ [1,∞) : m(r) > M(r) cosπα}) ≥ 1 − µ(f)

α , where
m(r) = inf |z|=r log |f(z)|, and M(r) = sup|z|=r log |f(z)|.

The following result was proved in [8].

Lemma 2.4. Let A(z) and B(z) 6≡ 0 be two entire functions such that for real
constants α, β, θ1, θ2, where α > 0, β > 0 and θ1 < θ2, we have

|A(z)| ≥ exp{(1 + o(1))α|z|β}, (2.4)
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|B(z)| ≤ exp{o(1)|z|β} (2.5)

as z →∞ in S(θ1, θ2) = {z : θ1 ≤ arg z ≤ θ2}. Let ε > 0 be a given small constant,
and let S(θ1 + ε, θ2 − ε) = {z : θ1 + ε ≤ arg z ≤ θ2 − ε}.

If f is a nontrivial solution of (1.1) with ρ(f) < ∞, then the following conclu-
sions hold:

(1) There exists a constant b(6= 0) such that f(z) → b as z → ∞ in S(θ1 +
ε, θ2 − ε). Furthermore,

|f(z)− b| ≤ exp{−(1 + o(1))α|z|β} (2.6)

as z →∞ in S(θ1 + ε, θ2 − ε).
(2) For each integer k > 1,

|f (k)(z)| ≤ exp{−(1 + o(1))α|z|β}
as z →∞ in S(θ1 + ε, θ2 − ε).

3. Modified Phragmén-Lindelöf principle

We recall a result due to Phragmén and Lindelöf [17, Theorem 7.5].

Lemma 3.1. Let f be an analytic function in D and continuous in D, where
D = S(α, β) ∩ {z : |z| > r0}, and α, β, r0 are constants such that 0 < β − α ≤ 2π
and r0 > 0. Suppose that there exists a constant M > 0 such that |f(z)| ≤ M for
z ∈ ∂D. If

lim inf
r→∞

log logM(r,D, f)
log r

<
π

β − α
,

where M(r,D, f) = max|z|=r
z∈D
|f(z)|, then |f(z)| ≤M for all z ∈ D.

Next we introduce a key lemma in which the Phragmén-Lindelöf principle is
tailored to suit for our purposes.

Lemma 3.2. Let f be an entire function of lower order µ(f) ∈ [ 12 ,∞). Then there
exists a sector S(α, β) = {z : α < arg z < β} with β − α ≥ π

µ(f) , such that

lim sup
r→∞

log log |f(reiθ)|
log r

≥ µ(f)

holds for all the rays arg z = θ ∈ (α, β), where 0 ≤ α < β ≤ 2π.

Proof. Suppose on the contrary to the assertion that any sector S(α, β) with β−α ≥
π

µ(f) there exists at least one ray arg z = ψ1 ∈ (α, β) such that

lim sup
r→∞

log log |f(reiψ1)|
log r

= µ1 < µ(f),

where µ1 is a constant.
Let ψ′1 = ψ1 + π

µ(f) . From our assumption, there exists at least one ray arg z =
ψ2 ∈ (ψ1, ψ

′
1), such that

lim sup
r→∞

log log |f(reiψ2)|
log r

= µ2 < µ(f), (3.1)

where µ2 is a constant. Let η1 = max{µ1, µ2}, and let λ1 ∈ (η1, µ(f)) ∩ Q be a
constant, where Q denotes the set of rational numbers. Suppose that ω0 = zλ1 is
the principal branch of ω = zλ1 . Then S(ψ1, ψ2) is mapped onto a subsector of
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the right half-plane by transformation ζ = eiθ1zλ1 , where θ1 ∈ (0, 2π) is a constant
depending on λ1, ψ1 and ψ2.

Let H(z) = f(z)
exp(eiθ1zλ1 )

. Then we obtain

lim
r→∞

|H(reiψ1)| = lim
r→∞

|H(reiψ2)| = 0 (3.2)

and

lim inf
r→∞

log logM(r, S(ψ1, ψ2), H)
log r

≤ lim inf
r→∞

log logM(r, S(ψ1, ψ2), f)
log r

≤ lim inf
r→∞

log logM(r, f)
log r

= µ(f) <
π

ψ2 − ψ1
.

(3.3)

By Lemma 3.1, there exists a constant M1 > 0 such that

|H(z)| ≤M1

holds for all z ∈ S(ψ1, ψ2); that is,

|f(z)| ≤M1 exp(|z|λ1) (3.4)

holds for all z ∈ S(ψ1, ψ2).
Let ψ′2 = ψ2 + π

µ(f) . From our assumption, there exists at least one ray arg z =
ψ3 ∈ (ψ2, ψ

′
2) such that

lim sup
r→∞

log log |f(reiψ3)|
log r

= µ3 < µ(f),

where µ3 is a constant. Similarly as above, there exist constants M2 > 0, λ2 < µ(f)
and θ2 ∈ (0, 2π) such that

|f(z)| ≤M2 exp(|z|λ2) (3.5)

holds for all z ∈ S(ψ2, ψ3). We proceed in this way until there exists a ray arg z =
ψm such that

lim sup
r→∞

log log |f(reiψm)|
log r

= µm < µ(f) (3.6)

and ψ1 + 2π − ψm < π
µ(f) , where µm is a constant. By the discussion above, there

exist constants Mm−1 > 0, λm−1 < µ(f) and θm−1 ∈ (0, 2π) such that

|f(z)| ≤Mm−1 exp(|z|λm−1) (3.7)

holds for all z ∈ S(ψm−1, ψm). By (3.4), (3.5), (3.7) and Lemma 3.1, we have

|f(z)| ≤M exp(|z|λ) for all z ∈ C, (3.8)

where M = max{M1,M2, . . . ,Mm−1} and λ = max{λ1, λ2, . . . , λm−1} < µ(f). By
(3.8), we obtain

µ(f) = lim inf
r→∞

log logM(r, f)
log r

≤ lim
r→∞

log logM + λ log r
log r

= λ,

which is a contradiction with the fact λ < µ(f). This completes the proof. �
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4. Proofs of Theorems 1.3 and 1.5

We rely heavily on Phragmén-Lindelöf principle and modified Phragmén-Lindelöf
principle.

Proof of Theorem 1.3. Since the case ρ(A) < ρ(B) is proved in [8], we may assume
ρ(A) > ρ(B). Suppose on the contrary to the assertion that there exists a nontrivial
solution f of (1.1) with ρ(f) <∞. We aim for a contradiction. Set θj = 2jπ−arg(an)

n+2

and Sj = {z : θj < arg z < θj+1}, where j = 0, 1, 2, . . . , n+ 1 and θn+2 = θ0 + 2π.
We consider two cases appearing in Lemma 2.1.
Case 1: Suppose that A(z) blows up exponentially in each sector Sj , where j =
0, 1, . . . , n+ 1; that is, for any θ ∈ (θj , θj+1), we have

lim
r→∞

log log |A(reiθ)|
log r

= ρ(A) =
n+ 2

2
. (4.1)

Then for any given constant ε ∈ (0, π
4ρ(A) ) and η ∈ (0, ρ(A)−ρ(B)

4 ), we have

|A(z)| ≥ exp{(1 + o(1))α|z|
n+2

2 −η}, (4.2)

|B(z)| ≤ exp(|z|ρ(B)+η) ≤ exp(|z|ρ(A)−2η) ≤ exp{o(1)|z|
n+2

2 −η} (4.3)

as z →∞ in Sj(ε) = {z : θj + ε < arg z < θj+1 − ε}, j = 0, 1, . . . , n+ 1, where α is
a positive constant depending on ε. Combining (4.2), (4.3), and Lemma 2.4, there
exist corresponding constants bj 6= 0 such that

|f(z)− bj | ≤ exp{−(1 + o(1))α|z|
n+2

2 −η} (4.4)

as z → ∞ in Sj(2ε), j = 0, 1, . . . , n + 1. Therefore, f is bounded in the whole
complex plane by the Phragmén-Lindelöf principle. So f is a nonzero constant in
the whole complex plane by Liouville’s theorem. This contradicts with the fact
that equation (1.1) doesn’t have nonzero constant solutions.
Case 2: There exists at least one sector of the n+ 2 sectors, such that A(z) decays
to zero exponentially, say Sj0 = {z : θj0 < arg z < θj0+1}, 0 ≤ j0 ≤ n+ 1. That is,
for any θ ∈ (θj0 , θj0+1), we have

lim
r→∞

log log 1
|A(reiθ)|

log r
=
n+ 2

2
. (4.5)

If µ(B) < 1
2 , the assertion follows by Theorem 1.2.

If 1
2 ≤ µ(B) < 1

2 + 1
2(n+1) , then by Lemma 3.2, there exists a sector S(α, β) =

{z : α < arg z < β} with β − α ≥ π
µ(B) >

π
1
2+ 1

2(n+1)
= 2π − 2π

n+2 , such that

lim sup
r→∞

log log |B(reiθ)|
log r

≥ µ(B) (4.6)

holds for any θ ∈ (α, β). Thus, there exists a subsector S(α′, β′), such that for any
θ ∈ (α′, β′) we have (4.5) and (4.6).

By Lemma 2.2, there exists a set E1 ⊂ [0, 2π) of linear measure zero, such that
if ψ0 ∈ [0, 2π) − E1, then there is a constant R0 = R0(ψ0) > 1 such that for all z
satisfying arg z = ψ0 and |z| ≥ R0, we have∣∣∣f (k)(z)

f(z)

∣∣∣ ≤ |z|2ρ(f), k = 1, 2. (4.7)
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Thus, there exists a sequence of points zn = rne
iθ with rn → ∞ as n → ∞ and

θ ∈ (α′, β′)− E1, such that (4.5), (4.6) and (4.7) hold.
Combining (4.5), (4.6), (4.7) and (1.1), for every n > n0, we have

exp(rµ(B)−ε
n ) ≤ |B(rneiθ)|

≤
∣∣∣f ′′(rneiθ)
f(rneiθ)

∣∣∣+ |A(rneiθ)|
∣∣∣f ′(rneiθ)
f(rneiθ)

∣∣∣
≤ r2ρ(f)

n (1 + o(1)).

(4.8)

Obviously, this is a contradiction for sufficiently large n and arbitrary small ε.
Therefore we have ρ(f) =∞ for every nontrivial solution f of (1.1). This completes
the proof. �

Proof of Theorem 1.5. Assume on the contrary to the assertion that there is a non-
trivial solution f of (1.1) with ρ(f) = ρ <∞.
Case 1: Suppose first that µ(B) > 0. By Lemma 2.2, there exists a set E2 ⊂ [0, 2π)
of linear measure zero, such that if ϕ ∈ [φk, θk]−E2 for some k, 1 ≤ k ≤ n, we have∣∣∣f ′(reiϕ)

f(reiϕ)

∣∣∣ = O(rρ),
∣∣∣f ′′(reiϕ)
f(reiϕ)

∣∣∣ = O(r2ρ), (4.9)

as r →∞ along arg z = ϕ. Combining (4.9), (1.1), and our assumption, we have

|B(reiϕ)| ≤
∣∣∣f ′′(reiϕ)
f(reiϕ)

∣∣∣+ |A(reiϕ)|
∣∣∣f ′(reiϕ)
f(reiϕ)

∣∣∣ = O(rσ) (4.10)

in each [φk, θk]− E2, 1 ≤ k ≤ n, as r →∞, where σ = α+ 2ρ.
For any given ε ∈ (0,min{ π

2µ(B) −
ν
2 ,

µ(B)
4 }), for any ϕ′ ∈ (θk − ε, θk) − E2,

ϕ′′ ∈ (φk+1, φk+1 + ε)− E2, k = 1, 2, . . . , n, we obtain

|B(reiϕ
′
)| = O(rσ), |B(reiϕ

′′
)| = O(rσ),

as r →∞.
Similarly as in the proof of Lemma 3.2, let H(z) = B(z)

exp(azλ)
, where λ ∈ (0, µ(B)−

4ε) ∩ Q, Q denotes the set of rational numbers, a = eiτ , τ ∈ (0, 2π) is a constant
depending on λ, ϕ′ and ϕ′′, and zλ denotes the principal branch. Note that

ϕ′′ − ϕ′ < φk+1 − θk + 2ε < ν + 2ε <
π

µ(B)
<
π

λ
.

So, S(ϕ′, ϕ′′) is mapped onto a subsector of the right half-plane by ζ = azλ. Thus,
we obtain

lim
r→∞

|H(reiϕ
′
)| = lim

r→∞
|H(reiϕ

′′
)| = 0

and

lim inf
r→∞

log logM(r, S(ϕ′, ϕ′′), H)
log r

≤ lim inf
r→∞

log logM(r, S(ϕ′, ϕ′′), B)
log r

≤ lim inf
r→∞

log logM(r,B)
log r

= µ(B) <
π

ϕ′′ − ϕ′
.

By Lemma 3.1, there exists a constant M > 0 such that

|H(z)| ≤M
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for all z ∈ S(ϕ′, ϕ′′); that is,

|B(z)| ≤M exp(|z|λ) (4.11)

for all z ∈ S(ϕ′, ϕ′′). So we have (4.11) in each (θk − ε, φk+1 + ε)−E2, 1 ≤ k ≤ n.
By (4.10), (4.11) and Phragmén-Lindelöf principle, we obtain

|B(z)| ≤M exp(|z|λ)

for all z ∈ C. Thus, we have

µ(B) = lim inf
r→∞

log logM(r,B)
log r

≤ lim
r→∞

log logM + λ log r
log r

= λ,

which contradicts with the fact that λ < µ(B).
Case 2: Suppose that µ(B) = 0. By using Lemma 2.3, there exists a set E3 ⊂
[1,∞) with log dens(E3) = 1 such that for all z satisfying |z| = r ∈ E3, we have

log |B(z)| >
√

2
2

logM(r,B), (4.12)

where M(r,B) = max|z|=r |B(z)|.
It follows from (1.1), (1.3), (4.9) and (4.12) that there exists a sequence (Rn)

with Rn →∞ as n→∞, such that

M(Rn, B)
√

2/2 < |B(Rneiϕ)| ≤ R2ρ(f)
n (1 +Rαn), (4.13)

as n→∞, ϕ ∈ ∪nk=1[φk, θk]−E2. However, B(z) is a transcendental entire function,
so that

lim inf
r→∞

logM(r,B)
log r

=∞,

which contradicts with (4.13). This completes the proof. �

5. Proof of Theorem 1.6

We begin by recalling some properties satisfied by entire functions that are ex-
tremal for Denjoy’s conjecture.

Lemma 5.1 ([28, Theorem 4.11]). Let f be an entire function extremal for Denjoy’s
conjecture. Then, for any θ ∈ (0, 2π), either ∆(θ) is a Borel direction of order ρ(f)
of f or there exists a constant σ(0 < σ < π

4 ), such that

lim
|z|→∞

z∈(S(θ−σ,θ+σ)−E)

log log |f(z)|
log r

= ρ(f),

where ∆(θ) is a half-line from the origin, E denotes a subset of S(θ−σ, θ+σ), and
satisfies

lim
r→∞

m(S(θ − σ, θ + σ; r,∞) ∩ E) = 0,

where S(θ − σ, θ + σ; r,∞) = {z : θ − σ < arg z < θ + σ, r < |z| <∞}.

Lemma 5.2. Let f be an entire function of order ρ ∈ (0,∞), and let S(φ1, φ2) =
{z : φ1 < arg z < φ2} be a sector with φ2−φ1 <

π
ρ . If there exists a Borel direction

of order ρ of f in S(φ1, φ2), then for at least one of the two rays Lj : arg z = φj(j =
1, 2), say L2, we have

lim sup
r→∞

log log |f(reiφ2)|
log r

= ρ.
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Lemma 5.2 is [26, Lemma 1], which can be proved by using a result in [20, pp.
119-120].

We may assume ρ(A) > ρ(B) due to Gundersen’s result [8, Theorem 2]. If A(z)
blows up exponentially in each sector Sj , j = 0, 1, . . . , n + 1, then the assertion
follows by the proof of Theorem 1.3. Suppose there exists at least one sector of the
n + 2 sectors, such that A(z) decays to zero exponentially, say Sj0 = {z : θj0 <
arg z < θj0+1}, 0 ≤ j0 ≤ n+ 1. That is, for any θ ∈ (θj0 , θj0+1), we have

lim
r→∞

log log 1
|A(reiθ)|

log r
=
n+ 2

2
.

Suppose on the contrary to the assertion that there is a nontrivial solution f
of (1.1) with ρ(f) < ∞. By Lemma 2.2, there exists a set E1 ⊂ [0, 2π) of linear
measure zero, such that if ψ0 ∈ [0, 2π)−E1, then there is a constant R0 = R0(ψ0) >
1 such that for all z satisfying arg z = ψ0 and |z| ≥ R0, we have (4.7). Next we
consider the two cases appearing in Lemma 5.1.

Case 1: Suppose that the ray arg z = θ is a Borel direction of order ρ(B) of B(z),
where θj0 < θ < θj0+1. Choose φ1 ∈ (θj0 , θ) − E1 and φ2 ∈ (θ, θj0+1) − E1. Then
φ2−φ1 <

π
ρ(A) <

π
ρ(B) . By Lemma 5.2, at least one of two rays L1 : arg z = φ1 and

L2 : arg z = φ2, say L1, satisfies

lim sup
r→∞

log log |B(reiφ1)|
log r

= ρ(B).

Thus, there exists a sequence of points zn = rne
iφ1 with rn → ∞ as n → ∞, such

that

lim
n→∞

log log |B(rneiφ1)|
log rn

= ρ(B), (5.1)

lim
n→∞

log log 1
|A(rneiφ1 )|

log rn
=
n+ 2

2
, (5.2)∣∣∣f (k)(rneiφ1)

f(rneiφ1)

∣∣∣ ≤ r2ρ(f)
n , k = 1, 2. (5.3)

Combining (5.1)-(5.3) and (1.1), we arrive at a contradiction as in the proof of
Theorem 1.3. Thus, we have that every nontrivial solution f of (1.1) satisfies
ρ(f) =∞.

Case 2: Suppose that the ray arg z = θ is not a Borel direction of order ρ(B)
of B(z), where θj0 < θ < θj0+1. By Lemma 5.1, there exists a constant σ ∈(
0,min{ θ−θj02 ,

θj0+1−θ
2 , π4 }

)
, such that

lim
|z|→∞

z∈(S(θ−σ,θ+σ)−E2)

log log |B(z)|
log r

= ρ(B), (5.4)

where E2 denotes a subset of S(θ − σ, θ + σ), and satisfies

lim
r→∞

m(S(θ − σ, θ + σ; r,∞) ∩ E2) = 0.

Let ∆ = {z : arg z = ψ,ψ ∈ E1}. We can easily see that there exists a sequence of
points zn with zn →∞ as n→∞, {zn} ⊂ (S(θ− σ, θ+ σ)−E2)∩ (Sj0 −∆), such
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that

lim
n→∞

log log |B(zn)|
log |zn|

= ρ(B), (5.5)

lim
n→∞

log log 1
|A(zn)|

log |zn|
=
n+ 2

2
, (5.6)∣∣∣f (k)(zn)

f(zn)

∣∣∣ ≤ |zn|2ρ(f), k = 1, 2. (5.7)

Combining (5.5)-(5.7) and (1.1), we arrive at a contradiction as in the proof of
Theorem 1.3. Thus, we have ρ(f) = ∞ for every nontrivial solution f of (1.1).
This completes the proof.

6. Proof of Theorem 1.10

We begin by recalling some basic properties satisfied by entire functions that are
extremal for Yang’s inequality. To this end, if A is a function extremal for Yang’s
inequality, then the rays arg z = θk, denote the q distinct Borel directions of order
≥ µ(A) of A, where k = 1, 2, . . . , q and 0 ≤ θ1 < θ2 < · · · < θq < θq+1 = θ1 + 2π.

Lemma 6.1 ([23]). Suppose that A is a function extremal for Yang’s inequality.
Then µ(A) = ρ(A). Moreover, for every deficient value ai, i = 1, 2, . . . , p, there
exists a corresponding sector domain S(θki , θki+1) = {z : θki < arg z < θki+1} such
that for every ε > 0 the inequality

log
1

|A(z)− ai|
> C(θki , θki+1, ε, δ(ai, A))T (|z|, A) (6.1)

holds for z ∈ S(θki + ε, θki+1 − ε; r,+∞) = {z : θki + ε < arg z < θki+1 − ε, r <
|z| < ∞}, where C(θki , θki+1, ε, δ(ai, A)) is a positive constant depending only on
θki , θki+1, ε and δ(ai, A).

In the sequel, we shall say that A decays to ai exponentially in S(θki , θki+1),
if (6.1) holds in S(θki , θki+1). Note that if A is a function extremal for Yang’s
inequality, then µ(A) = ρ(A). Thus, for these functions, we need only to consider
the Borel directions of order ρ(A).

Lemma 6.2 ([15]). Let A be an entire function extremal for Yang’s inequality.
Suppose that there exists arg z = θ with θj < θ < θj+1, 1 ≤ j ≤ q, such that

lim sup
r→∞

log log |A(reiθ)|
log r

= ρ(A). (6.2)

Then θj+1 − θj = π
ρ(A) .

We state one more auxiliary result that covers one particular case of the proof
of Theorem 1.10.

Lemma 6.3 ([22]). Let A(z) be a finite order entire function having a finite defi-
cient value, and let B(z) be a transcendental entire function with µ(B) < 1

2 . Then
every nontrivial solution of (1.1) is of infinite order.

By [8, Theorem 2] and Lemma 6.3, we just need prove the case 1/2 ≤ µ(B) <
ρ(A). Suppose on the contrary to the assertion that there is a nontrivial solution
f of (1.1) with ρ(f) = ρ <∞. We aim for a contradiction.
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Suppose that ai, i = 1, 2, . . . , p, are all the finite deficient values of A(z). Thus
we have 2p sectors Sj = {z|θj < arg z < θj+1}, j = 1, 2, . . . , 2p, such that A(z) has
the following properties. In each sector Sj , either there exists some ai such that

log
1

|A(z)− ai|
> C(θj , θj+1, ε, δ(ai, A))T (|z|, A) (6.3)

holds for z ∈ S(θj + ε, θj+1 − ε; r,+∞), where C(θj , θj+1, ε, δ(ai, A)) is a positive
constant depending only on θj , θj+1, ε and δ(ai, A), or there exists arg z = θ ∈
(θj , θj+1) such that

lim sup
r→∞

log log |A(reiθ)|
log r

= ρ(A) . (6.4)

For the sake of simplicity, in the sequel we use C to represent C(θj , θj+1, ε, δ(ai, A)).
Note that if there exists some ai such that (6.3) holds in Sj , then there exists
arg z = θ such that (6.4) holds in Sj−1 and Sj+1. If there exists θ ∈ (θj , θj+1) such
that (6.4) holds, then there are ai (ai′) such that (6.3) holds in Sj−1 and Sj+1,
respectively.

Without loss of generality, we assume that there is a ray arg z = θ in S1 such
that (6.4) holds. Therefore, there exists a ray in each sector S3, S5, . . . , S2p−1, such
that (6.4) holds. By using Lemma 6.2, we know that all the sectors have the same
magnitude π

ρ(A) .
Note that B(z) is an entire function of lower order 1/2 ≤ µ(B) < ρ(A). By

Lemma 3.2 we see that there exists a sector S(α, β) with β − α ≥ π
µ(B) , 0 ≤ α <

β ≤ 2π, such that for all the rays arg z = θ ∈ (α, β) we have

lim sup
r→∞

log log |B(reiθ)|
log r

≥ µ(B). (6.5)

Note that ρ(A) > µ(B). It is not hard to see that there exists a sector S(α′, β′),
where α < α′ < β′ < β, such that there is an aj0 such that

log
1

|A(reiθ)− aj0 |
> CT (r,A) (6.6)

holds for all θ ∈ [α′, β′]. By using Lemma 2.2, there exists a θ0 ∈ [α′, β′] and R > 1
such that for k = 1, 2, ∣∣∣f (k)(reiθ0)

f(reiθ0)

∣∣∣ ≤ r2ρ(f) (6.7)

holds for all r > R. Note that (6.5) holds for θ = θ0. Thus there is a sequence (rn)
with rn →∞ as n→∞, such that

|B(rneiθ0)| ≥ exp(rµ(B)−ε
n ) (6.8)

holds for every ε ∈ (0, µ(B)). Therefore, we deduce from (6.6)-(6.8) that

exp(rµ(B)−ε
n ) ≤ |B(rneiθ0)|

≤
∣∣∣f ′′(rneiθ0)
f(rneiθ0)

∣∣∣+
∣∣∣f ′(rneiθ0)
f(rneiθ0)

∣∣∣(|A(rneiθ0)− aj0 |+ |aj0 |)

≤ r2ρ(f)
n (1 + |aj0 |+ exp(−CT (rn, A)))

holds for all sufficiently large n. Obviously, this is a contradiction. Hence Theo-
rem 1.10 holds.
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