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ANTIPERIODIC SOLUTIONS FOR nTH-ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

SUZETE M. AFONSO, ANDRE L. FURTADO

ABSTRACT. In this work, we establish the existence and uniqueness of antiperi-
odic solution for a class of nth-order functional differential equations with in-
finite delay. The main tool in our study is the coincidence degree theory. An
example is presented to illustrate the results obtained.

1. INTRODUCTION

Given a positive number 7', we say that a continuous function z : R — R is
T-antiperiodic on R if

z(t+T)==x(t) and z(t+ g) = —z(t) forallteR.

In this work, we consider the nth-order functional differential equation with
infinite delay

(™ (t) = f(t, x§"‘1),z§"‘2), . ,z;,xt>, t eR, (1.1)

where
* f is continuous and real defined on R x Cp((—00,0],R) x --- x Cp((—00,0],R),

n times
and T-periodic in the first argument, where Cg((—00,0],R) represents the space

of the bounded continuous functions ¢ : (—c0,0] — R endowed with the norm
[lloo = SUPre(—o0,0 [€(T);

* x4 denotes the mapping z; : (—00,0] — R defined by z:(7) = z(t + 7) for
T € (—00,0], where t € R;

* f(t + %, —P1, — P2, ..., —<pn) = —f(t,gol,goQ7 .. .,gan)7 for ¢; € Cp((—00,0],R),
1=1,...,n; ‘
*] x; is the derivative of the unknown function z; and xij ) is the derivative of

jth-order of x4, 7 =2,...,n— 1.

Functional differential equations with delay have an important role in modelling
of natural processes in those which is necessary to consider the influence of past
effects for a better understanding of their evolution. For example, in population
dynamics, the gestation times is a natural source of delays, since present birth rates
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is strongly dependent on the number of individuals at fecundation (see [I8], 20, 25]).
In classical physics, realistic models must take in account the time-delays due to the
finite propagation speed of the classical fields (see [17, 26]). More examples of real
phenomena with delay effects in physiology, epidemiology, engineering, economics,
neural networks, automatic control, etc, can be found in [12, 16, 27]. Further-
more of importance in applications, the functional differential equations with delay
have several distinct mathematical properties of ordinary and partial differential
equations, which also provides them with a purely mathematical interest.

Arising from problems in applied sciences, antiperiodic problems of nonlinear
differential equations have been extensively studied by many authors during the
past twenty years. We can cite [I]-[6], [8, 10, 15, [19] and references therein.

To the best of our knowledge there is not none work dedicated to study of the
existence and uniqueness of antiperiodic solution for nth-order functional differen-
tial equations with infinite delay with level of generality of equation . We will
obtain sufficient and necessary conditions for the existence and uniqueness of an
antiperiodic solution on R of equation via the coincidence degree theory.

This article is organized as follows. In Section 2 we obtain results ensuring exis-
tence and uniqueness of a T-antiperiodic solution for equation . An illustrative
example is given in Section 3.

2. EXISTENCE AND UNIQUENESS OF ANTIPERIODIC SOLUTION

We adopt the following notation:
Ck = {z € C¥(R,R); x is T-periodic}, ke {0,1,2,...},
T 1/2
fale = ( [ laPdt) ", ol = ma fo(0)], for a € CF,
0 te[0,T]

e lloe = max 20 (loc,  for = € O

Definition 2.1. A function z : R — R is said to be a T-antiperiodic solution of
equation (1.1)) if the following conditions are fulfilled:

(1) z™(t) = f(t,x§”‘”,x§"‘2>, .. ,x;,xt) for each t € R;
(ii) « is T-antiperiodic on R.
We use the following assumption:

i
(H1) There are positive constants a, ..., a, such that > ", a; (%) <1, and

[(tprse s on) = FE$1,- o 8n)| <D aslei(0) = 15(0)],
i=1

for each t € R and ¢;,1; € Cp((—o00,0,R), i =1,...,n.
In the next lines, our goal is to prove the following result.

Theorem 2.2. If (H1) holds, then (L.1) has at least one T-antiperiodic solution.

To prove Theorem we start by recalling some concepts in the next lemma,
which is crucial in the arguments of this section. Let X and Y be real normed
vector spaces. A linear operator L : DomL C X — Y is a Fredholm operator if
ker L and Y \ Img L are finite-dimensional and Img L is closed in Y. The indez of
L is defined by dimker L — codim Img L. If L is a Fredholm operator of index zero,
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it is possible to prove (see [28]) that if L is a Fredholm operator of index zero, then
there exist continuous linear and idempotent operators P: X — X and Q) : Y — Y
such that

ker L =ImgP and ImglL = kerQ. (2.1)

The first equality in implies that the restriction of L to Dom L N ker P,
which we will denote by L p, is an isomorphism onto its image. Indeed, by supposing
ker L = Img P and taking z € Dom L Nker P such that Lp(x) = 0, we have that
x € Img P, that is, there exists y € X such that Py = z. Since P is idempotent
and x € ker P, the last equality implies x = Py = Pz = 0.

By assuming that L : DomL C X — Y is a Fredholm operator of index zero
and P and @) are the aforementioned operators, we say that a continuous operator
N : X — Y is L-compact on Q, where 2 C X is open and bounded, if QN () is
bounded and the operator (Lp)~'(I — Q)N : Q — X is compact.

To prove Theorem we need the following result, whose proof can be found in
[23].

Lemma 2.3. Let X,Y be Banach spaces, 8 C X a bounded open set symmetric
with 0 € Q). Suppose L : Dom L C X — Y is a Fredholm operator of index zero with
DomLNQ#Q and N : X — Y is a L-compact operator on Q. Assume, moreover,
that

Lx — Nz # —\(Lz + N(—x)),
for allx € Dom LNOQ and all X € (0, 1], where O is the boundary of Q@ with respect

to X. Under these conditions, the equation Lz = Nx has at least one solution on
Dom L N ).

Next, we construct an equation Lz = Nz that appropriately mirrors problem
(1.1) and so that all the conditions of Lemma [2.3] are fulfilled.
Define the sets

X={zeCta(t+ %) = —x(t),t € R},

T
Y={ze Cr it + 5) = —x(t),t € R}.
By equipping X and Y with the norms
||$HX = max{”x”mv ”x/”OOa R Hl'(n)Hoo},

lzlly = max{llz]oo, 12 llocs - - 123,

respectively, we obtain two Banach spaces.
Define the operators L: X — Y and N : X — Y by

La(t) = 2 (1), teR, (2.2)
Nz(t) = f(t, xﬁnfl), x§"*2), ey Ty xt), teR. (2.3)

To prove Theorem [2.2] it is sufficient to show that condition (H1) implies that
the assumptions of Lemma are satisfied when L and N are defined as in (2.2)
and (2.3)). It is easy to verify that

T
ker L =0 and ImgL:{xEY;/ z(s)ds =0} =Y.
0

Then dimker L = 0 = codim Img L and L is a linear Fredholm operator of index
Zero.
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Proposition 2.4. The operator N is L-compact on any bounded open set  C X.
Proof. Let us consider the operators P and @ given by

1 T
7/ t)dt, v € X and Qy—f/ y(t)dt, y € Y.
0

Thus Img P = ker L and ker @ = Img L. Denoting by L;,l :Img L — X Nker P
the inverse of L|xnyer p, One can observe that L;l is a compact operator. Besides,
it is not difficult to show that, for any open bounded set Q C X, the set QN (Q) is
bounded and, using the Arzela-Ascoli’s Theorem, the operator L;l(I —Q)N:Q —
X is compact. Therefore, N is L-compact on €. O

The next lemma will be used later. Its proof can be found in [14].

Lemma 2.5. Ifv:R — R is a T-periodic absolutely continuous function such that
f v(t)dt =0 and f t)2dt € R, then

T T2 T
/0 v(t)?dt < e, v (t)2dt.

Proposition 2.6. If condition (H1) holds, then there exists a positive number D,
which does not depend on A such that, if

Lz — Nz = —\Lz + N(-z)], A€ (0,1], (2.4)
then ||z||x < D.

Proof. Assume (H1) and that x G X satisﬁes (2.4). Then, by using the definitions
of operators L and N, given in ) and (| , respectively, we obtain

(¢ 1+A ( (1) (=) ..,xi,xt)
f(t —x(n D ,—xin_z),...,—x;,—xt).

n—1 n—2
Flt 2", e

+

Thereby, considering F(¢,x) =
1 A

o F(t.a) — —2 F(t. —a).

0= T3 Flbm) = st =)

Multiplying both sides of this equality by z(™)(t) and subsequently integrating it
from 0 to T" and using the triangle inequality, we obtain

Ty xt), we have

1 T T
e < o | 1F@ @Ol T [ 1FE =l @
71 ! (n) g (n)
< _ n n
= IH[/O |F(t,x) — F(t,0)|lx (t)\dt+/0 |F(t,0)|z (t)|dt}
A ’ (n) ! (n)
+ 5l / F(t, —z) — F(t,0)[2™ (t)]dt + /O 1B (6,0) ) 1) ]

Therefore,

T
[l S/O max{|F(t,z) — F(t,0)], |F(t,—z) = F(t,0)[}" (¢)|dt
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T
+ / |F(t,0)]|z™ (t)|dt.
0
This, assumption (H1), Lemma and Holder inequality, imply
213 < a2 alle D > + a2 + .

+anf|e™ |lof|zll2 + RVT |22,

T n T 2 n T " n
<arg -l + a2 (5 ) ™I+ +an(52) 1ol
+ RVT |22,
where R = max;¢[o, 1) |F'(£,0)]. Thus we obtain

T
2™y < K, where K = RVT : (2.5)

1= a (%)

i
since, by hypothesis (H1), 7, a; (%) < 1. Then the inequalities

, T \n—i
||x(7)||2§K(—) Coi=1,....n, (2.6)

2
follow from (2.5) and Lemma

On the other hand, by mean value theorem for integrals we conclude that, for
each j = 0,...,n — 1, there exists 7; € [0,T] such that 2\)(r;) = 0, because
fOT ) (t)dt = 0. Hence, by Holder inequality, for each j =0,...,n — 1, we have

t T
) (8)] = ]/ 20D (s)ds| < / 2D (s)ds| < V|20 ||z, ¢ € [0,T).
Tj 0
Consequently, |2 ||o < VT ||zUFY ||y for j = 0,...,n — 1. Now inequalities (2.6))
imply

|zlx = max |z <D, (2.7)
0<j<n-1
n—j
where D = KT maxi<;<n (%) and the statement follows. O

Proposition 2.7. If condition (H1) is satisfied, then there is a bounded open set
Q C X such that

Lz — Nz # —\(Lz + N(—1)), (2.8)
for all x € 09 and all X € (0,1].

Proof. By (H1) and Proposition there exists a positive constant D, which does
not depend on A such that, if z satisfies the equality Lz — No = —A(Lz + N(—zx)),
A € (0,1], then ||z||x < D. Thus, if

Q= {x € X: allx < M}, (2.9)
where M > D, we conclude that
Lz — Nz # —\(Lz — N(—x)),
for every x € 00 = {z € X;||z||x = M} and A € (0,1]. O
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Proof of Theorem[2.3 By (H1), clearly, the set Q defined in (2.9) is symmetric,
0€Qand XNQ =Q # (. Furthermore, it follows from Proposition that if
condition (H1) is fulfilled then

Lz — Nz # —\[Lz — N(—x)],

for all z € X N9 = 9N and all A € (0,1]. This together with Lemma imply
that equation (1.1]) has at least one T-antiperiodic solution. (I

Our purpose now is to show the following result.
Theorem 2.8. If (H1) holds, then (1.1 has at most one T-antiperiodic solution.

Proof. Assume (H1) and that « and y are T-antiperiodic solutions of . To

obtain the result, we show that the function z = x — y is identically zero. Then,

whereas x and y are T-periodic, it is sufficient to prove that z(¢) = 0 for all ¢t € [0, T.
Since z and y are solutions of equation (1.1,

Z(n) (t) = f(t7 xgn_1)7 x]En_2)’ A 7$;7 xt) - f(t7 y]gn_l)7 yt(n_2)7 R 7y£’ yt)' (2'10)

Multiplying both sides of ([2.10]) by z(™)(t), integrating it from 0 to 7', using (H1)
and Holder inequality, we obtain

T
20 = [ @0l )
0
— e T g ldt
T T
§a1/ \z(”)(t)\|z("—1>(t)|dt+-~-+an/ |2 (1) 2(¢)|dt
0 0

< a2l V2 + -+ a2 2122

= [l Izl Iz + -+ anll2]l2)-

(2.11)

On the other hand, by Lemma [2.5

» TN\J ;
12Dl < (57) 12l =10,

From this and (2.11f), we obtain

T T\
()2 < <n>2[ NI (7) }
1211z < 11221z a1(27r)+ +an{5-

Then, since Z?:l ai(%)i < 1, we conclude that 2™ = 0 and consequently z("~1

is a constant function. Let us see now that z(™ 1) is identically zero. Indeed,

since 2("=2)(0) = 2("=2)(T) then, by Mean Value Theorem, it follows that there is
7 € [0,T] such that 2(*~Y(7) = 0. Repeating this argument n — 1 times, we can
conclude that z = 0 and the proof is complete. d

Finally, we present the main result of this work.
Theorem 2.9. If (H1) holds, then (L.1) has a unique T-antiperiodic solution.
The above theorem follows immediately from Theorems and
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3. EXAMPLE
Set T' = 2m. Let us consider the equation
() = f(t, ), 2}, x1), t ER, (3.1)
where f: R x Cp((—00,0],R) x Cp((—o0,0],R) x Cp((—00,0],R) — R is given by

. 4 2
sin” ¢ cos“t 1
23 ©1(0) + 10 ©2(0) + 1903(0)7

for t € [0,400) and ¢1, 2, p3 € Cp((—o0, 0], R). Clearly, f is continuous and

f(t7 ©1, P2, 4103) =

f(t + ™, —P1, —P2, _903) = _f(t7 Y1, P2, 303)
Furthermore, condition (H1) is satisfied with a; = %, ag = %0 and az = i. Indeed,
if t € R and @1, 2, ¥3, %1, Y2, Y3 € Cp((—o0,0],R), we have

|f(t79017§021903) - f(ta 1/117’@[}271/}3”

sin cos2
= 205 (1(0) — 1 (0)) + 2L (22(0) — 2(0)) + § (5(0) — ¥s(0) |
sin® ¢ cos? t

<

211 0) — 1 (0)] 4“2 (0) — 2(0)] + 7lis(0) 5 (0)

< 351910) 0 O+ 5120) = V(0] + gles(©) ~ 50}

Then, by Theorem equation (3.1]) has precisely one T-antiperiodic solution on
R.
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