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ANTIPERIODIC SOLUTIONS FOR nTH-ORDER FUNCTIONAL
DIFFERENTIAL EQUATIONS WITH INFINITE DELAY

SUZETE M. AFONSO, ANDRÉ L. FURTADO

Abstract. In this work, we establish the existence and uniqueness of antiperi-

odic solution for a class of nth-order functional differential equations with in-
finite delay. The main tool in our study is the coincidence degree theory. An

example is presented to illustrate the results obtained.

1. Introduction

Given a positive number T , we say that a continuous function x : R → R is
T -antiperiodic on R if

x(t+ T ) = x(t) and x
(
t+

T

2
)

= −x(t) for all t ∈ R.

In this work, we consider the nth-order functional differential equation with
infinite delay

x(n)(t) = f
(
t, x

(n−1)
t , x

(n−2)
t , . . . , x′t, xt

)
, t ∈ R, (1.1)

where
? f is continuous and real defined on R × CB((−∞, 0],R)× · · · × CB((−∞, 0],R)︸ ︷︷ ︸

n times

,

and T -periodic in the first argument, where CB((−∞, 0],R) represents the space
of the bounded continuous functions φ : (−∞, 0] → R endowed with the norm
‖φ‖∞ = supτ∈(−∞,0] |φ(τ)|;
? xt denotes the mapping xt : (−∞, 0] → R defined by xt(τ) = x(t + τ) for
τ ∈ (−∞, 0], where t ∈ R;
? f
(
t + T

2 ,−ϕ1,−ϕ2, . . . ,−ϕn
)

= −f
(
t, ϕ1, ϕ2, . . . , ϕn

)
, for ϕi ∈ CB((−∞, 0],R),

i = 1, . . . , n;
?] x′t is the derivative of the unknown function xt and x

(j)
t is the derivative of

jth-order of xt, j = 2, . . . , n− 1.
Functional differential equations with delay have an important role in modelling

of natural processes in those which is necessary to consider the influence of past
effects for a better understanding of their evolution. For example, in population
dynamics, the gestation times is a natural source of delays, since present birth rates
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is strongly dependent on the number of individuals at fecundation (see [18, 20, 25]).
In classical physics, realistic models must take in account the time-delays due to the
finite propagation speed of the classical fields (see [17, 26]). More examples of real
phenomena with delay effects in physiology, epidemiology, engineering, economics,
neural networks, automatic control, etc, can be found in [12, 16, 27]. Further-
more of importance in applications, the functional differential equations with delay
have several distinct mathematical properties of ordinary and partial differential
equations, which also provides them with a purely mathematical interest.

Arising from problems in applied sciences, antiperiodic problems of nonlinear
differential equations have been extensively studied by many authors during the
past twenty years. We can cite [1]-[6], [8, 10, 15, 19] and references therein.

To the best of our knowledge there is not none work dedicated to study of the
existence and uniqueness of antiperiodic solution for nth-order functional differen-
tial equations with infinite delay with level of generality of equation (1.1). We will
obtain sufficient and necessary conditions for the existence and uniqueness of an
antiperiodic solution on R of equation (1.1) via the coincidence degree theory.

This article is organized as follows. In Section 2 we obtain results ensuring exis-
tence and uniqueness of a T -antiperiodic solution for equation (1.1). An illustrative
example is given in Section 3.

2. Existence and uniqueness of antiperiodic solution

We adopt the following notation:

CkT = {x ∈ Ck(R,R);x is T -periodic}, k ∈ {0, 1, 2, . . . },

‖x‖2 =
(∫ T

0

|x(t)|2dt
)1/2

, ‖x‖∞ = max
t∈[0,T ]

|x(t)|, for x ∈ C0
T ,

‖x(k)‖∞ = max
t∈[0,T ]

|x(k)(t)|∞, for x ∈ CkT .

Definition 2.1. A function x : R → R is said to be a T -antiperiodic solution of
equation (1.1) if the following conditions are fulfilled:

(i) x(n)(t) = f
(
t, x

(n−1)
t , x

(n−2)
t , . . . , x′t, xt

)
for each t ∈ R;

(ii) x is T -antiperiodic on R.

We use the following assumption:

(H1) There are positive constants a1, . . . , an such that
∑n
i=1 ai

(
T
2π

)i
< 1, and

|f(t, ϕ1, . . . , ϕn)− f(t, ψ1, . . . , ψn)| ≤
n∑
i=1

ai|ϕi(0)− ψi(0)|,

for each t ∈ R and ϕi, ψi ∈ CB((−∞, 0],R), i = 1, . . . , n.
In the next lines, our goal is to prove the following result.

Theorem 2.2. If (H1) holds, then (1.1) has at least one T -antiperiodic solution.

To prove Theorem 2.2, we start by recalling some concepts in the next lemma,
which is crucial in the arguments of this section. Let X and Y be real normed
vector spaces. A linear operator L : DomL ⊂ X → Y is a Fredholm operator if
kerL and Y \ ImgL are finite-dimensional and ImgL is closed in Y . The index of
L is defined by dim kerL− codim ImgL. If L is a Fredholm operator of index zero,
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it is possible to prove (see [28]) that if L is a Fredholm operator of index zero, then
there exist continuous linear and idempotent operators P : X → X and Q : Y → Y
such that

kerL = ImgP and ImgL = kerQ. (2.1)
The first equality in (2.1) implies that the restriction of L to DomL ∩ kerP ,

which we will denote by LP , is an isomorphism onto its image. Indeed, by supposing
kerL = ImgP and taking x ∈ DomL ∩ kerP such that LP (x) = 0, we have that
x ∈ ImgP , that is, there exists y ∈ X such that Py = x. Since P is idempotent
and x ∈ kerP , the last equality implies x = Py = Px = 0.

By assuming that L : DomL ⊂ X → Y is a Fredholm operator of index zero
and P and Q are the aforementioned operators, we say that a continuous operator
N : X → Y is L-compact on Ω, where Ω ⊂ X is open and bounded, if QN(Ω) is
bounded and the operator (LP )−1(I −Q)N : Ω→ X is compact.

To prove Theorem 2.2 we need the following result, whose proof can be found in
[23].

Lemma 2.3. Let X,Y be Banach spaces, Ω ⊂ X a bounded open set symmetric
with 0 ∈ Ω. Suppose L : DomL ⊂ X → Y is a Fredholm operator of index zero with
DomL∩Ω 6= ∅ and N : X → Y is a L-compact operator on Ω. Assume, moreover,
that

Lx−Nx 6= −λ(Lx+N(−x)),
for all x ∈ DomL∩∂Ω and all λ ∈ (0, 1], where ∂Ω is the boundary of Ω with respect
to X. Under these conditions, the equation Lx = Nx has at least one solution on
DomL ∩ Ω.

Next, we construct an equation Lx = Nx that appropriately mirrors problem
(1.1) and so that all the conditions of Lemma 2.3 are fulfilled.

Define the sets

X =
{
x ∈ CnT ;x

(
t+

T

2
)

= −x(t), t ∈ R
}
,

Y =
{
x ∈ Cn−1

T ;x
(
t+

T

2
)

= −x(t), t ∈ R
}
.

By equipping X and Y with the norms

‖x‖X = max{‖x‖∞, ‖x′‖∞, . . . , ‖x(n)‖∞},

‖x‖Y = max{‖x‖∞, ‖x′‖∞, . . . , ‖x(n−1)‖∞},
respectively, we obtain two Banach spaces.

Define the operators L : X → Y and N : X → Y by

Lx(t) = x(n)(t), t ∈ R, (2.2)

Nx(t) = f
(
t, x

(n−1)
t , x

(n−2)
t , . . . , x′t, xt

)
, t ∈ R. (2.3)

To prove Theorem 2.2, it is sufficient to show that condition (H1) implies that
the assumptions of Lemma 2.3 are satisfied when L and N are defined as in (2.2)
and (2.3). It is easy to verify that

kerL = 0 and ImgL = {x ∈ Y ;
∫ T

0

x(s)ds = 0} = Y.

Then dim kerL = 0 = codim ImgL and L is a linear Fredholm operator of index
zero.
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Proposition 2.4. The operator N is L-compact on any bounded open set Ω ⊂ X.

Proof. Let us consider the operators P and Q given by

Px =
1
T

∫ T

0

x(t)dt, x ∈ X and Qy =
1
T

∫ T

0

y(t)dt, y ∈ Y.

Thus ImgP = kerL and kerQ = ImgL. Denoting by L−1
P : ImgL → X ∩ kerP

the inverse of L|X∩kerP , one can observe that L−1
P is a compact operator. Besides,

it is not difficult to show that, for any open bounded set Ω ⊂ X, the set QN(Ω) is
bounded and, using the Arzelà-Ascoli’s Theorem, the operator L−1

P (I−Q)N : Ω→
X is compact. Therefore, N is L-compact on Ω. �

The next lemma will be used later. Its proof can be found in [14].

Lemma 2.5. If v : R→ R is a T -periodic absolutely continuous function such that∫ T
0
v(t)dt = 0 and

∫ T
0
v′(t)2dt ∈ R, then∫ T

0

v(t)2dt ≤ T 2

4π2

∫ T

0

v′(t)2dt.

Proposition 2.6. If condition (H1) holds, then there exists a positive number D,
which does not depend on λ such that, if

Lx−Nx = −λ[Lx+N(−x)], λ ∈ (0, 1], (2.4)

then ‖x‖X ≤ D.

Proof. Assume (H1) and that x ∈ X satisfies (2.4). Then, by using the definitions
of operators L and N , given in (2.2) and (2.3), respectively, we obtain

x(n)(t) =
1

1 + λ
f
(
t, x

(n−1)
t , x

(n−2)
t , . . . , x′t, xt

)
− λ

1 + λ
f
(
t,−x(n−1)

t ,−x(n−2)
t , . . . ,−x′t,−xt

)
.

Thereby, considering F (t, x) = f
(
t, x

(n−1)
t , x

(n−2)
t , . . . , x′t, xt

)
, we have

x(n)(t) =
1

1 + λ
F (t, x)− λ

1 + λ
F (t,−x).

Multiplying both sides of this equality by x(n)(t) and subsequently integrating it
from 0 to T and using the triangle inequality, we obtain

‖x(n)‖22 ≤
1

1 + λ

∫ T

0

|F (t, x)‖x(n)(t)|dt+
λ

1 + λ

∫ T

0

|F (t,−x)‖x(n)(t)|dt

≤ 1
1 + λ

[ ∫ T

0

|F (t, x)− F (t, 0)‖x(n)(t)|dt+
∫ T

0

|F (t, 0)‖x(n)(t)|dt
]

+
λ

1 + λ

[ ∫ T

0

|F (t,−x)− F (t, 0)‖x(n)(t)|dt+
∫ T

0

|F (t, 0)‖x(n)(t)|dt
]
.

Therefore,

‖x(n)‖22 ≤
∫ T

0

max{|F (t, x)− F (t, 0)|, |F (t,−x)− F (t, 0)|}|x(n)(t)|dt
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+
∫ T

0

|F (t, 0)‖x(n)(t)|dt.

This, assumption (H1), Lemma 2.5 and Hölder inequality, imply

‖x(n)‖22 ≤ a1‖x(n)‖2‖x(n−1)‖2 + a2‖x(n)‖2‖x(n−2)‖2 + . . .

+ an‖x(n)‖2‖x‖2 +R
√
T‖x(n)‖2,

≤ a1
T

2π
‖x(n)‖22 + a2

( T
2π

)2

‖x(n)‖22 + · · ·+ an

( T
2π

)n
‖x(n)‖22

+R
√
T‖x(n)‖2,

where R = maxt∈[0,T ] |F (t, 0)|. Thus we obtain

‖x(n)‖2 ≤ K, where K =
R
√
T

1−
∑n
i=1 ai

(
T
2π

)i , (2.5)

since, by hypothesis (H1),
∑n
i=1 ai

(
T
2π

)i
< 1. Then the inequalities

‖x(j)‖2 ≤ K
( T

2π

)n−j
, j = 1, . . . , n, (2.6)

follow from (2.5) and Lemma 2.5.
On the other hand, by mean value theorem for integrals we conclude that, for

each j = 0, . . . , n − 1, there exists τj ∈ [0, T ] such that x(j)(τj) = 0, because∫ T
0
x(j)(t)dt = 0. Hence, by Hölder inequality, for each j = 0, . . . , n− 1, we have

|x(j)(t)| =
∣∣∣ ∫ t

τj

x(j+1)(s)ds
∣∣∣ ≤ ∫ T

0

|x(j+1)(s)ds| ≤
√
T‖x(j+1)‖2, t ∈ [0, T ].

Consequently, ‖x(j)‖∞ ≤
√
T‖x(j+1)‖2 for j = 0, . . . , n− 1. Now inequalities (2.6)

imply
‖x‖X = max

0≤j≤n−1
‖x(j)‖∞ ≤ D, (2.7)

where D = K
√
T max1≤j≤n

(
T
2π

)n−j
and the statement follows. �

Proposition 2.7. If condition (H1) is satisfied, then there is a bounded open set
Ω ⊂ X such that

Lx−Nx 6= −λ(Lx+N(−x)), (2.8)

for all x ∈ ∂Ω and all λ ∈ (0, 1].

Proof. By (H1) and Proposition 2.6 there exists a positive constant D, which does
not depend on λ such that, if x satisfies the equality Lx−Nx = −λ(Lx+N(−x)),
λ ∈ (0, 1], then ‖x‖X ≤ D. Thus, if

Ω = {x ∈ X; ‖x‖X < M}, (2.9)

where M > D, we conclude that

Lx−Nx 6= −λ(Lx−N(−x)),

for every x ∈ ∂Ω = {x ∈ X; ‖x‖X = M} and λ ∈ (0, 1]. �
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Proof of Theorem 2.2. By (H1), clearly, the set Ω defined in (2.9) is symmetric,
0 ∈ Ω and X ∩ Ω = Ω 6= ∅. Furthermore, it follows from Proposition 2.7 that if
condition (H1) is fulfilled then

Lx−Nx 6= −λ[Lx−N(−x)],

for all x ∈ X ∩ ∂Ω = ∂Ω and all λ ∈ (0, 1]. This together with Lemma 2.3 imply
that equation (1.1) has at least one T -antiperiodic solution. �

Our purpose now is to show the following result.

Theorem 2.8. If (H1) holds, then (1.1) has at most one T -antiperiodic solution.

Proof. Assume (H1) and that x and y are T -antiperiodic solutions of (1.1). To
obtain the result, we show that the function z = x − y is identically zero. Then,
whereas x and y are T -periodic, it is sufficient to prove that z(t) = 0 for all t ∈ [0, T ].

Since x and y are solutions of equation (1.1),

z(n)(t) = f(t, x(n−1)
t , x

(n−2)
t , . . . , x′t, xt)− f(t, y(n−1)

t , y
(n−2)
t , . . . , y′t, yt). (2.10)

Multiplying both sides of (2.10) by z(n)(t), integrating it from 0 to T , using (H1)
and Hölder inequality, we obtain

‖z(n)‖22 =
∫ T

0

|z(n)(t)‖f(t, x(n−1)
t , x

(n−2)
t , . . . , x′t, xt)

− f(t, y(n−1)
t , y

(n−2)
t , . . . , y′t, yt)|dt

≤ a1

∫ T

0

|z(n)(t)‖z(n−1)(t)|dt+ · · ·+ an

∫ T

0

|z(n)(t)‖z(t)|dt

≤ a1‖z(n)‖2‖z(n−1)‖2 + · · ·+ an‖z(n)‖2‖z‖2
= ‖z(n)‖2(a1‖z(n−1)‖2 + · · ·+ an‖z‖2).

(2.11)

On the other hand, by Lemma 2.5,

‖z(n−j)‖2 ≤
( T

2π

)j
‖z(n)‖2, j = 1, . . . , n.

From this and (2.11), we obtain

‖z(n)‖22 ≤ ‖z(n)‖22
[
a1

( T
2π
)

+ · · ·+ an

( T
2π

)n]
.

Then, since
∑n
i=1 ai

(
T
2π

)i
< 1, we conclude that z(n) ≡ 0 and consequently z(n−1)

is a constant function. Let us see now that z(n−1) is identically zero. Indeed,
since z(n−2)(0) = z(n−2)(T ) then, by Mean Value Theorem, it follows that there is
τ ∈ [0, T ] such that z(n−1)(τ) = 0. Repeating this argument n − 1 times, we can
conclude that z ≡ 0 and the proof is complete. �

Finally, we present the main result of this work.

Theorem 2.9. If (H1) holds, then (1.1) has a unique T -antiperiodic solution.

The above theorem follows immediately from Theorems 2.2 and 2.8.
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3. Example

Set T = 2π. Let us consider the equation

x′′′(t) = f(t, x′′t , x
′
t, xt), t ∈ R, (3.1)

where f : R×CB((−∞, 0],R)×CB((−∞, 0],R)×CB((−∞, 0],R)→ R is given by

f(t, ϕ1, ϕ2, ϕ3) =
sin4 t

28
ϕ1(0) +

cos2 t
10

ϕ2(0) +
1
4
ϕ3(0),

for t ∈ [0,+∞) and ϕ1, ϕ2, ϕ3 ∈ CB((−∞, 0],R). Clearly, f is continuous and

f(t+ π,−ϕ1,−ϕ2,−ϕ3) = −f(t, ϕ1, ϕ2, ϕ3).

Furthermore, condition (H1) is satisfied with a1 = 1
28 , a2 = 1

10 and a3 = 1
4 . Indeed,

if t ∈ R and ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3 ∈ CB((−∞, 0],R), we have

|f(t, ϕ1, ϕ2, ϕ3)− f(t, ψ1, ψ2, ψ3)|

=
∣∣ sin4 t

28
(ϕ1(0)− ψ1(0)) +

cos2 t
10

(ϕ2(0)− ψ2(0)) +
1
4

(ϕ3(0)− ψ3(0))
∣∣

≤ sin4 t

28
|ϕ1(0)− ψ1(0)|+ cos2 t

10
|ϕ2(0)− ψ2(0)|+ 1

4
|ϕ3(0)− ψ3(0)|

≤ 1
28
|ϕ1(0)− ψ1(0)|+ 1

10
|ϕ2(0)− ψ2(0)|+ 1

4
|ϕ3(0)− ψ3(0)|.

Then, by Theorem 2.9, equation (3.1) has precisely one T -antiperiodic solution on
R.
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André L. Furtado
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