

GEORGIAN NATIONAL MUSEUM

INSTITUTE OF PALEOBIOLOGY

Irina Shatilova, Nino Mchedlishvili, Luara Rukhadze, Eliso Kvavadze

THE HISTORY OF THE FLORA AND VEGETATION OF GEORGIA

(South Caucasus)

Tbilisi • 2011

Paleobotanical investigations have been carried out in Georgia (South Caucasus) since the early 20th century. In this work, we bring together the great body of research on fossil material from Georgia's Phanerozoic deposits to provide descriptions of the floras, plant communities and paleogeographic conditions of past geological epochs.

The paleofloras of Western Georgia, from the stratotypical region of Eastern Paratethys, are considered in particular detail as the Black Sea deposits provide a continuous fossil record spanning the entire Neogene and Quaternary. These sediments, dated biostratigaphically using marine fauna, contain rich paleobotanical material of both macrobotanical remains and palynomorphs.

Pollen and spore assemblages from complete sections of various Upper Miocene, Pliocene, Pleistocene and Holocene stages have been interpreted using the landscape-phytocenological method, providing an almost uninterrupted reconstruction of vegetation and climate dynamics in Georgia.

The work also contains complete flora lists of various stratigraphical units, palynological diagrams, maps of fossil localities and paleogeographical maps of Georgia.

Editors: David Lordkipanidze Abesalom Vekua

Reader: Simon E. Connor

ISBN 978-9941-9105-3-1 © Georgian National Museum, 2011

CONTENTS

Introduction	5
THE PALEOZOIC	
The Carboniferous	7
THE MESOZOIC	
The Jurassic	11
The Early Jurassic	11
The Middle Jurassic	13
The Cretaceous	25
THE CENOZOIC	
The Paleogene	
The Eocene	
The Oligocene	
The Neogene	40
The Miocene	41
The Lower Miocene	41
The Middle Miocene	44
The Upper Miocene	53
The Sarmatian	53
The Meotian (Western Georgia)	

The Pliocene and Eopleistocene (Western Georgia) The Pliocene	
The Pontian	80
The Kimmerian	84
The Kuyalnician (Egrissian)	
The Eopleistocene	
The Gurian	
The Pliocene and Eopleistocene (Eastern Georgia)	
The Pliocene	
The Akchagilian	
The Eopleistocene	
The Apsheronian	
The Pleistocene (Western Georgia)	
The Chaudian	119
The Old Euxinian and Uzunlarian	
The Karangatian and New Euxinian	
The Holocene	139
Conclusion	165
რეზიუმე	
References	

INTRODUCTION

Georgia is situated in the central and western parts of the South Caucasus region, between the Black and Caspian Seas. It is a mountainous country with three major orographic systems within its borders: the mountain systems of the Greater and Lesser Caucasus; the intermontane depressions (Colchian, Kartlian and Alazanian); and the South Georgian volcanic highland (Fig.1).

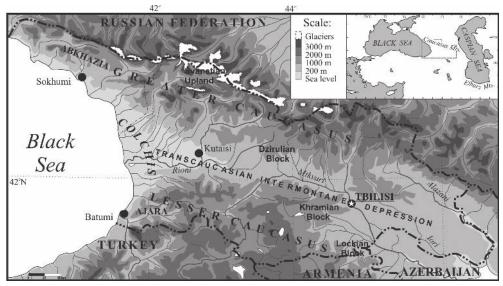


Fig.1. Topographic map of Georgia.

In spite of its diverse natural conditions, Georgia encompasses two principal regions – Western and Eastern – which differ markedly from each other. Western Georgia is characterized by a warm and humid climate, promoting the development of lush forest vegetation. This is the so-called Colchian botanical province, where some relicts of Tertiary floras are preserved even today. Quite a different picture can be seen in Eastern Georgia, where vegetation typical of a more arid, continental climate is distributed over large areas.

In 1990, the N. Ketskhoveli Institute of Botany of the Georgian Academy of Sciences published the "Materials on the History of the Flora and Vegetation of Georgia" (Shatilova, Ramishvili, 1990). This work provides an extensive review of factual data, although, owing to a lack of paleobotanical data, the floras of some stratigraphical units were not described in any great detail.

While subsequent investigations have not managed to fill all of the gaps in knowledge, and, from a paleobotanical point of view, our knowledge of Paleozoic and Paleocene floras is still relatively poor, rich palynological material from the Late Cenozoic has been collected over the last 20 years. These materials were interpreted using the landscape-phytocenological method, which allows the development of the flora and vegetation to be reconstructed. Under the influences of the abiotic and biotic factors, the fossil record indicates that changes in vegetation composition led to the formation of Georgia's current vegetation complex and its high biodiversity.

THE PALEOZOIC

THE CARBONIFEROUS

Within Georgian territory, Janelidze (1942) distinguished the labile folded zones of the Greater Caucasus and the Anticaucasus, separated by a stable zone called the Georgian Block. A scheme of Georgia's tectonic structure is given in Fig. 2.

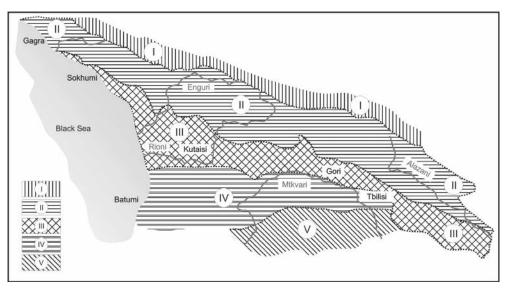


Fig.2. Scheme of tectonic structure of Georgia (after P. Gamkrelidze, 1964) Key: I. The anticlinal Greater Caucasus; II. The folded system of the Greater Caucasus southern slope; III. The Georgian Block (intermontane depression); IV. The Adjara-Trialetian system; V. The Artvino-Bolnisian Block.

According to I. Gamkrelidze (2000), the following systems are found in Georgia: the folded system of the Greater Caucasus (*Kavkasioni*), the Transcaucasian (South Caucasus) intermontane region and the folded system of the Lesser Caucasus (*Antikavkasioni*). In Georgia, sedimentary rocks are widely distributed and span the periods from the Paleozoic to the Holocene (Table I). The oldest deposits are outcrops in the crystalline and metamorphic rocks of the Dzirulian, Khramian and Lokian Blocks, representing a single formation (Fig.3). The lower part of this formation belongs to the Precambrian, while the upper part is Paleozoic (Adamia, 1968).

Ма	Group	System	Division/Stage			
0			Holocene	Modern		
		Quaternary		Upper		
		Quaternary	Pleistocene	Middle		
				Lower		
	Cenozoic		Neegene	Pliocene		
			Neogene	Miocene		
		Tertiary		Oligocene		
			Paleogene	Eocene		
65				Paleocene		
		Cretaceous	Upp	ber		
		Cretaceous	Low	/er		
			Upper -	Malm		
	Mesozoic	Jurassic	Middle -	Dogger		
	Mesozoic		Lower - Lias Upper			
		Triassic	Middle			
225			Lower - S	cythian		
		Permian	Upp	ber		
		Гентнан	Lov	/er		
			Upp	ber		
		Carboniferous	Mid	dle		
			Lov	/er		
			Upp			
		Devonian	Mid	dle		
	Paleozoic		Lov	/er		
	1 dicozoic	Silurian	Upp	ber		
		Shahari	Lower Upper Middle Lower			
		Ordovician				
			Upper			
		Cambrian	Mid	dle		
600			Lower			

Table I. General scheme of stratigraphical division of Phanerozoic

 deposits in Georgia (after Borzenkova, 1992; Harland et al., 1985)

Following long periods of denudation, in which most of the Lower-Middle Paleozoic deposits were washed away, the Dzirulian, Khramian and Lokian blocks became an area of sedimentation. During the Lower and Middle Carboniferous, volcanic-sedimentary rocks accumulated, preserving the remains of plants. The presence of these fossils, along with lenses of reef-derived limestone, indicates the near-shore and continental character of the sediments.

In Georgia the most ancient finds of fossil flora are dated to the Paleozoic. These plant remains from the Lower and Middle Carboniferous deposits of the Khramian Block were identified by Uznadze and Novak (Skhirtladze, 1964; Adamia, 1968).

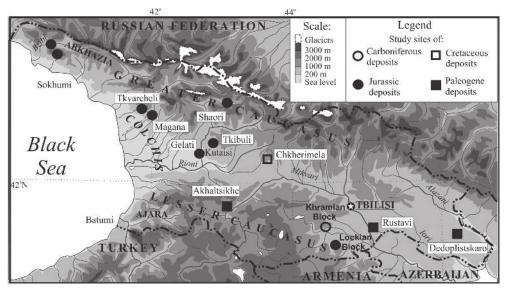


Fig.3. Study sites of Carboniferous, Jurassic, Cretaceous and Paleogene deposits in Georgia

Most of the plants listed in Table II are typical of the Paleozoic and only a few of them persisted through the Permian.

Representatives of the family Lepidodendraceae were large trees up to 40 m high and 2 m in diameter with dichotomous branching. The leaves were narrow and linear. The stele of lepidodendrons was weak and could not serve as the trees' main support. This structural function was instead performed multiple layers of tough bark. An analogous structure can be seen in grasses today, but is never present in modern trees (Davitashvili, 1949).

Class	Family	Species		
		Lepidodendron dichotomum Sternb.		
Isoëtopsida	Lepidodendraceae	Lepidophloios laricinus Sternb.		
		Lepidophloios vsevolodii Zal.		
	Sigillariaceae	Stigmaria ficoides Sternb		
Equisetopsida	Asterocalamitaceae	Asterocalamites scrobiculatus (Schl.) Zeill.		
Lquisetopsida	Calamitaceae	Mesocalamites ramifer (Stur) Hirm.		
Marattiopsida	Asterothecaceae	Asterotheca miltonii (Artis.) Zeill.		
		Lyginopteris bermudensiformis (Schl.) Patt. f.geinitzii Stur		
Lyginopteridopsida	Lyginopteridaceae	Lyginopteris bermudensiformis (Schl.) Patt. f.schlotheimii Stur		
		Lyginopteris fragilis (Schln.) Patt.		
		Lyginopteris hoeninghausii (Brongn.)Patt.		
		Palmatopteris furcata (Brongn.)Pot.		
Cordaitopsida	Cordaitaceae	Cordaites sp.		

Table II. Plants from the Carboniferous deposits in Georgia (by macrofossils)

Representatives of the family Sigillariaceae were tall plants with a straight trunk, the upper part of which was dichotomously branched. They possessed a peculiar root structure called stigmaria and fossil remains of this are described under the name Stigmaria. The morphological function of stigmarias is not entirely clear. They may be considered stilt-roots or rhizophores, which are absent from recent Lycopodiaceae, but present in a more distinct form in the Selaginellaceae (Krishtofovich, 1957). According to Krasilov (1972), the superficial root system of recent hygrophilous trees is similar to Paleozoic stigmaria.

Asterocalamites and calamites were also large plants. Calamites had the capacity to produce secondary xylem. In terms of branching, they varied from abundantly branched to non-branched (Radchenko, 1963).

The genus Lyginopteris includes the seed ferns. These plants had a real seedbuds (ovules) located on the leaves, while the microphylls retained the appearance of sporiferous leaves. The trunk had secondary wood, peculiar for the Cycadales (Krishtofovich, 1957).

Remains of Cordaites were also found in Paleozoic deposits in Georgia. These trees had sturdy trunks, which had the anatomical structure of conifers, araucarioid tracheae and a well developed core (Krishtofovich, 1957).

THE MESOZOIC

THE JURASSIC

Jurassic deposits are distributed rather irregularly over Georgia (Fig.3). They occupy the greatest area in the folded system of the Greater Caucasus, while being poorly represented both in the Transcaucasian intermontane region (the Georgian Block) and the folded system of the Lesser Caucasus (Gamkrelidze, 2000). A scheme of stratigraphical division of Jurassic deposits is given in Table III.

Table III. Stratigraphical division of Jurassic deposits in Georgia (after
Kakhadze, 1947; Topchishvili, 1969; Topchishvili et al., 2006).

Ма	System	Division	Stage		
140		Line of the second	Tithonian		
		Upper - Malm	Kimmeridgian		
		Mairri	Oxfordian		
			Callovian		
	ic.	Middle -	Bathonian		
	Jurassic	Dogger	Bajocian		
	ηſ	nſ	nr		Aalenian
			Toarcian		
		Lower -	Pliensbachian		
		Lias	Sinemurian		
180			Hettangian		

The Early Jurassic

During the Early Jurassic, the greater part of Georgian territory was covered by sea, except for the areas of the ancient blocks (Kakhadze, 1947; Vakhania, 1976).

In Southern Georgia, the Early Jurassic flora was preserved in Hettangian micaceous sandstones. Plant remains from the Dzirulian Block are also connected with "lower tuffites" of the Hettangian stage (Adamia, 1968; Svanidze, 1965, 1971; Svanidze, lakobidze, 1979 Topchishvili, 1969). Lias-aged deposits from several regions of Western Georgia have been studied palynologically (Karashvili, 1973, 1977).

In the Early Jurassic flora (Table IV), calamites were represented by one species: *Neocalamites hoerensis*. In Europe this form is known from Ret-Lias. Its fossils are rare in Georgian deposits and usually represented by stems found in bedding planes or perpendicularly to them (Svanidze, 1996).

Among the Jurassic Equisetopsida, the horsetail was the most widely distributed plant. A comparison of fossil and recent horsetails shows that there is no major difference between them. On this basis, Delle (1967) suggested a relationship between the remains of the Jurassic plant and the modern genus Equisetum. In the Early and Middle Jurassic floras, both small and large horsetail forms are represented. The latter group includes *Equisetum beanii*, the remains of which are rarely found in Jurassic deposits in Georgia, but usually alongside remains of Neocalamites. Both genera were probably plants of swampy terrestrial areas.

In the Early Jurassic paleofloras, ferns are represented by 25 forms, mainly differentiated on palynological grounds. Macroremains belong to the systematically uncertain taxon Cladophlebis, which is connected with the Osmundaceae family. Cladophlebis remains are abundant in Georgian Early Jurassic deposits and are usually well preserved, indicating that this fern's habitat was quite near to the sedimentary basin (Svanidze, 1996).

The Ginkgo genus is represented by two forms in the Early Jurassic: *Ginkgo mziae*, a species characteristic for Georgia, and *Ginkgo* ex gr. *huttonii*, which is known from many Jurassic flora localities. Svanidze avoided definitive identification of the remains of *G. huttonii* in light of taxonomic revisions, according to which, not all leaves described as *G. huttonii* belong to one and the same species (Doludenko, Lebedeva, 1972; Samylina, 1970).

The class Ginkgoopsida includes representatives of the family Czekanowskiaceae. By the Early Mesozoic these plants had already reached a high evolutionary level, with angiosperm-like preservation of the seed (Krasilov, 1968). Czekanowskia dominated in the Siberian Paleofloristic region from the Late Triassic until the Early Cretaceous. They played a lesser role in southern regions and disappeared entirely during the Late Jurassic. In Georgia, Czekanowskia were found in Lower and Middle Jurassic (Bathonian) deposits. As a rule, remains of these plants are very rarely and poorly preserved (Svanidze, 1996).

Jurassic spore-pollen assemblages include pollen of *Eucommidites troedssonii* Erdtman (lakobidze et al., 1983). Initially this form was described by Erdtman from the Lias deposits and was thought to belong to the angiosperms. In 1958 Couper corrected this diagnosis and proved a relationship between *E. troedssonii* and gymnosperms on the basis of statistical analysis of pollen morphological features (Yaroshenko, 1965). Pollen of this species was later observed in gymnosperm seed ovules (Kotova, 1979).

Based on floral composition, Svanidze (1996) drew the conclusion that distinct plant communities existed in different topographic zones during Georgia's Early Jurassic. The climate was warm-temperate in the Middle Lias, after which the temperature fell. These data agree with the inference of a cool, wet Toarcian-Aalenian climate, contrasting starkly with the climates of subsequent stretches of the Jurassic (Yasamanov, 1980, 1985).

The Middle Jurassic

The middle Early Jurassic witnessed some significant downward tectonic movements in Georgia. Nearly all of Western Georgia was covered by sea, which approached the Dzirulian and Lockian Blocks and established shallow marine conditions around their margins. Marine regression took place in the Early Aalenian and, as a result of weak orographic uplift the mountain ranges were formed (Dzotsenidze & Skhirtladze, 1961; Kakhadze, 1947; Topchishvili et al., 2006).

In the Bajocian, the picture changed again. Late Liassic uplift was followed by intensive subsidence and, by the Early Bajocian, most of Georgia's territory was covered by sea. Large-scale subsidence continued during much of the Bajocian and finally came to a halt at the end of this stage, replaced by tectonic movements in the opposite direction. The sea retreated and only parts of Western Georgia remained inundated (Kakhadze, 1947; Vakhania, 1976).

The Late Bajocian regression continued in the Bathonian, when nearly the whole territory of Georgia terrestrialised. According to Adamia (Adamia et al., 1964), various freshwater basins appeared, providing conditions favorable to peat accumulation. Examples include the Tkibulian, Shaorian, Gelatian, Maganian, Tkvarchelian and Bzibian coal basins. On the basis of new data (Topchishvili et al., 2006), it is clear that each of these basins was part of a single, closed freshwater basin that had lost its connection to the sea. Sediments deposited in this basin contain abundant plant remains. Fossil remains have also been identified in Bathonian deposits of the Lockian Block (Svanidze et al., 1983; Zesashvili et al., 1977).

Compared to the Liassic flora, the Bathonian flora is very rich. It can be sup-

posed that several plant communities were present in Georgia during this period, associated with both swampy and dry places:

- 1. Marsh and mangrove vegetation, in which Coniopteris, Pachypteris, Ctenozamites and Ptilophyllum were present.
- 2. Vegetation of swampy plains, in which representatives of the Selaginellaceae, Equisetaceae, Marattiaceae, Osmundaceae, Schizaeaceae, Gleicheniaceae, Hymenopyllaceae, Dicksoniaceae, Cycadaceae and Bennettitaceae were identified.
- 3. Vegetation of dry plains, in which Clathropteris, Matonidium, Pseudocycas, Ginkgoaceae, Podozamites, Podocarpus, Picea and Sciadopitys occurred.
- Vegetation of piedmonts and shaded river gorges, including Dictyophyllum, Czekanowskia, Ginkgoaceae, Brachyphyllum, Classopolis and Pagiophyllum (Shengelia et al., 1987).

We should draw attention here to the question of mangrove fossilization raised by Doludenko (1984). Mangrove is a specific type of past vegetation, analogous to modern mangroves in terms of both systematic composition and specific ecological and morphological features. However, any tree- or shrub-dominated vegetation that grew in the intertidal zone is often attributed to a mangrove community (just as grass vegetation is linked to marsh communities).

This question was resolved by Teslenko (1979), who carried out research in India on the fossilization of various parts of mangrove plants in different sedimentary environments. These investigations showed that, in the intertidal zone inhabited by mangroves, conditions were not suitable for the fossilization of leaves. During high tide they float on the surface and are later carried out to sea by ebb tides. Plant remains caught between the roots of trees tend to be destroyed by wave action. Pollen and spores of mangrove plants are not fossilized in situ because waves and tides remove them from the intertidal zone. The only part of mangrove plants that tends to be fossilized is the root system. The discovery of fossil pneumatophores would enable us to draw important parallels between recent mangroves and the vegetation of past geological epochs.

The climate of Georgia in the Bathonian was humid and tropical. Some cooling took place at the end of the Early Jurassic and the sea temperature rose during the subsequent Bajocian. Similar conditions persisted into the Bathonian, when forests were dominated by Cycadales and Ginkgoales (Yasamanov, 1980).

The Callovian stage is the last part of the Middle Jurassic (Table III). It began with a transgression, the most significant one in the geological history of the Caucasus (Kakhadze, 1947; Topchishvili et al., 2006). Only the Svanetian Upland and

some high places in Southern Georgia remained free of the sea (Vakhania, 1976).

Callovian deposits are rich in floral remains and have a composition quite different from those of the Bathonian (Svanidze, 1970a). Alongside these macrofossils, spore-pollen assemblages indicate the genus Classopolis increased to 40% (Karashvili 1973).

The boundary between Bathonian and Callovian was a time of radical changes in vegetation linked to marine transgression and the appearance of arid climatic zones in large swathes of the Northern Hemisphere. Analyses have revealed that a large number of Cheirolepidiaceae and a high percentage of Classopolis are found in deposits of regions where arid and semi-arid zones persisted into the Mesozoic. Under these conditions, Cheirolepidiaceae became dominant and are thought to have been capable of growing in various habitats, forming open woodlands (Alvin et al., 1978; Meien, 1987; Vakhrameev, 1980; Vakhrameev & Doludenko, 1976).

The boundary between the Bathonian and Callovian was also a turning-point in the development of the Jurassic flora in Georgia. The number of ferns decreased. The family Czekanowskiaceae went completely extinct and the number of genera in the Ginkgoaceae and Cycadaceae families declined. The diverse and luxuriant vegetation of the Bathonian was replaced by homogenous riparian communities. Cheirolepidiaceae became prevalent, indicating a tropical climate with low humidity (Doludenko & Svanidze, 1969).

According to Vakhrameev (1988), two paleofloristic regions existed in Eurasia during the Jurassic: the Siberian region in the north and the Indo-European in the south (the latter has since been renamed the 'Euro-Sinaian' region). The Indo-European region was split into three provinces: Eastern Asian, Central Asian and European, which includes the South Caucasus.

Svanidze (1996) noted that the Early Jurassic flora of Georgia had affinities to both the European and Central Asian provinces and hence avoided assigning Georgia to either of these provinces.

The Bathonian flora of Tkvarcheli was assigned to the European province by Delle (1967). She recognised the Caspian-Black Sea area as a transitional zone, but not as an independent phytogeographical unit. Svanidze, on the other hand, cites the presence of many new species in the Bathonian flora of Georgia as evidence for its independence.

According to Svanidze (1996), the Georgian Callovian flora was of mixed character. She thus proposed a separate province for Georgia, transitional between the European and Central Asian.

Georgia's Jurassic flora is listed in Table IV, based on materials analysed by Delle

(1960, 1960a, 1967); Doludenko (1984); Doludenko and Svanidze (1969), lakobidze (1980, 1981); lakobidze et al. (1983); Karashvili (1973, 1977); Kolakovsky (1973); Loladze (1979); Loladze et al. (1978); Prynada (1933); Shengelia et al. (1987); Svanidze (1960, 1965, 1969, 1970, 1970a, 1971; 1996); Svanidze and lakobidze (1979); Svanidze and Shengelia (1979, 1987); and Svanidze et al. (1983). Taxonomy follows Takhtajan (Takhtajan, 1974; 1986; 1987; Takhtajan et al. 1963; Vakhrameev et al. 1963).

Class	F	Species	Lower	Middle Jurassic	
Class	Family		Jurassic	Bathonian	Callovian
1	2	3	4	5	6
		Lycopodiumsporites pseu- dolaterale Tralau	р		
Lycopodiopsida	Lycopodi- aceae	Lycopodiumsporites subro- tundus (K.M.) Pocock	р		
		Lycopodium sp.	р	р	
Isoëtopsida	Selaginel-	Selaginella rostratus Bura- kowa		m	
	laceae	Selaginella sp.		р	р
		Neocalamites hoerensis (Schimp.) Halle	m	m	
	Sorocaul- aceae	Neocalamites aff.nathorsti Erdtman		р	
		Neocalamites sp.		m	
Equisetopsida	Equiseta- ceae	Equisetum beanii (Bumb.) Harris	m	m	
		Equisetum columnare Brongn.		m	
		Equisetum laterale Phillips		m	
		Equisetum sp.	р	pm	р
		Angiopteris iberica Delle et Dolud.			m
Marattiopsida		Marattia muensterii (Goepp.) Delle		m	
	Maratti- aceae	Marattisporites scabratus Couper	р		
		Marattisporites aff.hoerensis (Schimp.) Thomas		р	р
		Marattisporites sp.	р		р

1	2	3	4	5	6
		Osmunda papillata Bolch.			р
		Osmundacidites wellmanii	n		
	e	Couper	р		
	acea	Osmundacidites sp.		р	
	pul	Osmundopsis prynadae Delle	m	m	
	Osmundaceae	Todites princeps (Presl.)			
	Ő	Goth.		m	
		Todites williamsonii			
		(Brongn.) Sew.		m	
		Klukia exilis (Phill.) Racib.		m	р
	Ceae	Klukia marginata Prynad.		m	
	aead	Klukia sp.		р	
	Schizaeaceae	Klukisporites variegatus	р	р	
	Sc	Couper		•	
	Lygodi-	Klukisporites sp.			р
	aceae	Lygodium sp.			р
	Pteri-	Dtavida and a way in dat			
	daceae	Pteridaceae gen.indet.	р	р	р
	Gleicheni- aceae	Gleichenia delicata Bolch.		р	р
		Gleichenia sphenopteroides		р	
		Brick.		I .	
Polypodiopsida		Gleichenia sp.			р
Polypoulopsiua		Gleicheniidites granulatus Grig.		р	р
		Matonidium goeppertii			
		(Ett.) Schenk.		m	
	ge	Matonisporites phlebopter-	р	р	
	Matoniaceae	oides Couper	Ρ	Υ	
	onia	Matonisporites sp.	р	р	р
	Mat	Phlebopteris exornatus Bolch.	р		
		Phlebopteris polypodioides (Brongn.) Brongn.		m	
		Phlebopteris sp.		р	
		Camptotriletes cerebri-		Ρ	
		formis Naum.			р
		Clathropteris obovata var.	n	n	
		magna TurKet.	р	р	
	e	Clathropteris sp.		m	
	cea	Dictyophyllum nilssonii	m	m	
	rida	(Brongn.) Goepp. Dictyophyllum sp.	2		
	Dipteridaceae	Dictyophyllidites harrisii	р		р
	Ō	Couper	р	р	
		Dictyophyllidites vulgaris			
		(Mal.) Sem.	р		
		Hausmannia sp.	р		р
		Thaumatopteris sp.		m	

1	2	3	4	5	6
		Polypodites cladophle- boides Brick.			р
	Polypodi-	Polypodites harrisii Couper			р
	aceae	Polypodites sp.			р
		Polypodiaceae gen.indet.		р	
		Hymenophyllum densigran- ulatum Vin.	р		
	Hymeno-	Hymenophyllum sp.	р	р	
	phyllaceae	Trichomanes sp.		р	
		Hymenophyllaceae gen. indet.			р
	Thyrsop-	Cibotium junctum KM.	р	р	р
	teridaceae	Cibotium sp.		р	
		Coniopteris angustiloba Brick.		m	
		Coniopteris georgica lakob.		m	
		Coniopteris hymenophyl- loides (Brongn.) Sew.		pm	
Polypodiopsida		Coniopteris murrayana (Brongn.) Brongn.		m	
	iaceae	Coniopteris aff.divaricata (KM.) Bolch.		р	
	Dicksoniaceae	Coniopteris sp.	р	р	р
		Dicksonia densa Bolch.			р
		Dicksonia aff.crocina Bolch.		р	
		Dicksonia sp.	р		р
		Eboracia sp.		р	р
		Gonatosorus lobifolius Bur.		m	
		Lobifolia lobifolia (Phill.)		m	
		Rass.et Lebed.			
		Cyathidites sustralis Couper		р	р
	Cyatheaceae	Cyathidites minor Couper	р	р	р
	eac	Cyathidites remalis Balme		р	
	ath	Cyathidites sp.	р	р	
	C	Hemitelia sp.		р	р
		Cyatheaceae gen.indet.			р
		Calamospora mesozoica Couper			р
		Cladophlebis denticulata (Brongn.) Font.		m	m
The ferns of indeterminate systematical position		Cladophlebis denticulata var.caucasica Prynad.		m	
		Cladophlebis suluktensis Brick.		m	
		Cladophlebis haiburnensis (Lindl.et Hutt.) Goepp.	m		
		Cladophlebis whitbiensis (Brongn.) Brongn.	m	m	
		Cladophlebis williamsonii (Brongn.) Brongn.			m

1	2	3	4	5	6
		Cladophlebis aff.kamenken- sis Thomas		m	
		Cladophlebis sp.	m		
		Raphaelia diamensis Sew.		m	
The ferns of indet		Sphenopteris mokrynskyi Prynad.		m	
systematical posit	.1011	Sphenopteris cf.gracillima Heer		m	
		Sphenopteris sp.			m
		Weichselia reticulata Stok. et Webb.		m	
		Caytonanthus arberi (Thomas) Harris			р
		Caytonia oncodes Harris			р
psida	ae	Caytonipollenites pallidus (Reiss.) Couper		р	р
terido	Caytoniaceae	Sagenopteris colpodes Harris			m
Lygin opteridopsida	Cayto	Sagenopteris heterophylla Dolud.et Svan.		m	m
Ly		Sagenopteris latus lakob.		m	
		Sagenopteris phillipsii (Brongn.) Presl.		m	m
		Sagenopteris sp.			m
		Cycadopteris georgica Dolud.			m
		Cycadopteris jurensis (Kurr) Hirmer (= Pachypteris ben- dukidzeae Dolud.et Svan.)			m
The genera belon	g to	Ctenozamites uznadzeae Dolud.et Svan.			m
Pteridospermae		Pachypteris lanceolata Brongn.		m	m
		Pachypteris multiformis Delle		m	
		Pachypteris aff.speciosa (Ett.) Andrea		m	
		Baiera inaequilobata Delle		m	
Ginkgoopsida		Eratmophyllum tomasii Dolud.et Svan.			m
	Ginkgoaceae	Ginkgo digitata (Brongn.) Heer		m	
loof	goa	Ginkgo mziae Svan.	m		
inkç	ink	Ginkgo katcharavai Svan.		m	
Ū		Ginkgo ex gr.huttonii (Sternb.) Heer	m		
		Ginkgo sp.		m	
		Ginkgocycadophytus sp.	р	р	р

1	2	3	4	5	6
		Phoenicopsis ex	m		
		gr.angustifolia Heer			
		Pseudotorellia cf.pulchella (Heer) Vassil.		m	
		Pseudotorellia sp.			
	eae	Sphenobaiera colchica			m
	oac	(Prynad.) Delle		m	
	Ginkgoaceae	Sphenobaiera samylinae			
	ē	Dolud.et Svan.			m
Ginkgoopsida		Sphenobaiera spectabilis	m		
		(Nath.) Fl.	111		
		Sphenobaiera tsagarelii		m	
		Svan.			
	÷	Czekanowskia latifolia TurKet.		m	
	ows	Czekanowskia setacea Heer	m		
	kanow aceae	Czekanowskia ex gr.rigida			
	Czekanowski- aceae	Heer	m	m	
	0	Czekanowskia sp.	m		
		Brachyphyllum expansum			m
		(Sternb.) Sew.			
		Brachyphyllum aff.expan-			m
		sum (Sternb.) Sew.			
		Brachyphyllum aff.mamil- lare Brongn.		m	m
		Brachyphyllum sp.			m
		Classopolis aff.classoides			
		Pflug.em.Poc.et Jans.		р	р
		Classopolis sp.	р	р	р
		Elatides curvifolia (Dunk.)		m	
		Nath.			
	heirolepidiaceae	Elatides williamsonii (Brongn.) Nath.			р
	diad	Elatides sp.		m	
Pinopsida	lepi	Elatocladus ketovae Dolud.		m	
	eiro	Elatocladus subzamioides			
	Che	(Moell.)TurKet.		m	
		Elatocladus cf.curvifolia (L.et		m	
		H.) Sew.		m	<u> </u>
		Elatocladus cf.indica Feistm.		m	
		Elatocladus sp.		m	m
		Haiburnia setosa (Phill.)			m
		Harris Pagiophyllum astrachan-			
		ense Dolud.		m	m
		Pagiophyllum gracilis Svan.			
		et Sheng.		m	
		Pagiophyllum peregrinum		m	
		(L.et H.) Sew.			

1	2	3	4	5	6
	eae	Pagiophyllum williamsonii (Brongn.) Sew.		m	m
	Cheirolepidiaceae	Pagiophyllum setosa (Phill.) Sew.		m	
	olep	Pagiophyllum sp.		m	
	heir	Tomharrisia sp.			m
	0	Walchites gradatus Bolkh.			р
		Podozamites angustifolius (Eichw.) Heer		m	
	eae	Podozamites eichwaldii Schimp.		m	
	amitac	Podozamites gramineus Heer	m		
	Podozamitaceae	Podozamites lanceolatus (L.et H.) Schimp.	m	m	m
		Podozamites latifolia (Schenk.) Prynad.		m	
		Podozamites sp.	р	р	р
	Palissy-	Stachyotaxus cf.elegans Nath.	m		
	aceae	Stachyotaxus sp.	m		
	Podocar- paceae	Podocarpus sp.			р
Pinopsida	Taxaceae	Taxites sp.		m	
		Araucariodendron angusti- folium Krassil.			m
	eae	Araucarioxylon sp.		m	
	Araucariaceae	Araucarites macropteris Feistm.		m	
	Arau	Araucarites vassilevskiae TurKet.		m	
		Araucariaceae gen.indet.	р	р	р
		Paleopinus sp.	р		
		Picea sp	р	р	
		Piceites latens Bolch.	р		р
		Piceites sp.	р	р	
	ae	Pinus insignis Bolch.			р
	Pinaceae	Pityophyllum latifolium TurKet.	m	m	
		Pityophyllum ex gr. nordenskioldii (Heer) Nat.	m	m	
		Pityostrobus sp.		m	
		Pseudopinus sp.			р
		Tsugaepollenites sp.			р
	Sciadopi-	Sciadopitys mesozoicus (Couper) Zauer et Mtchedl.		р	р
	tyaceae	Sciadopitys sp.	р		р

1	2	3	4	5	6
	Taxodi- aceae	Taxodiaceae gen.indet.			р
Pinopsida	Cupres-	Widdringtonites karatavien- sis TurKet.			m
	saceae	Widdringtonites sp.		m	
		Cupressaceae gen.indet.			р
		Carpolithes aff.minor Prynad.		m	
		Carpolithes sp.		m	
Forma-taxa of conifers		Paleoconiferus asaccatus Bolch.	р		
		Protoconiferus sp.			р
		Xenoxylon latiporosum (Cram.) Goth.		m	
		Anthrophyopsis narulensis Dolud.et Svan.	m		
		Ctenis pontica Delle		m	
		Ctenis sp.		m	
		Cycadites rectangularis Brauns		m	
		Cycadites sp.		m	
		Cycadolepis gracilis lakob.		m	
		Cycadolepis insignis lakob.		m	
		Cycadolepis ovalis Dolud.		m	m
		Cycadolepis rugosa (Halle) Harris		m	m
		Cycadolepis sp.		m	
		Nilssonia grandifolia Delle		m	m
	Cycadaceae	Nilssonia grandifolia Delle f.rarinervis Delle		m	
Cycadopsida	ada	Nilssonia mediana Prynad.		m	
	Cyc	Nilssonia princeps (Oldh.et Morr.) Sew.		m	
		Nilssonia variabilis Prynad.		m	
		Nilssonia vittaeformis Prynad. (=Nilssonia inouyei Yok.)		m	
		Nilssonia cf.kendalli Harris			m
		Nilssonia sp.			m
		Paracycas brevipinnata Delle		m	m
		Paracycas ctenis (Harris) Harris		m	
		Paracycas ctenis (Harris) Harris f.spinulata Dolud.		m	
		Paracycas intermedia Dolud.			m
		Paracycas raripinnata Dolud.			m

1	2	3	4	5	6
		Pseudoctenis barulensis Dolud.			m
		Pseudoctenis latus Dolud.		m	m
		Pseudoctenis magnifolius Dolud.			m
a	υ	Pseudoctenis oleosa Harris			m
Cycadopsida	Cycadaceae	Pseudoctenis weberi (Sew.) Prynad.		m	m
Cycae	Cyca	Pseudoctenis aff.eathiensis (Rich.) Sew.			m
		Pseudoctenis aff.lanei Thomas			m
		Pseudoctenis aff. magnifo- lius Dolud.		m	
		Pseudoctenis sp.			m
	Williamso-	Williamsonia whitbiensis Nath.		m	
	niaceae	Williamsonia sp.		m	
		Anomozamites nitida Harris	m		
		Anomozamites minor (Brongn.) Nath.	m		
		Anomozamites variabilis (Prynad.) lakob.		m	
		Anomozamites sp.		m	
		Bennettites sp.	р		
		Nilssoniopteris angustifolia Dolud.		m	m
		Nilssoniopteris longifolia Dolud.			m
psida		Nilssoniopteris muchlensis Dolud.		m	m
Bennettitopsida	taceae	Nilssoniopteris stenophylla Dolud.			m
Benr	Bennettitaceae	Nilssoniopteris tkibulensis Iakob.		m	
	Bei	Nilssoniopteris vulgaris Dolud.		m	m
		Nilssoniopteris vittata (Brongn.) Fl.		m	m
		Taeniopteris sp.cf.Nilssoni- opteris vittata (Brongn.) Fl.		m	
		Otozamites beanii (L.et H.) Brongn.		m	
		Otozamites caucasicus Iakob.		m	
		Otozamites graphicus (Leck.) Schimp.		m	m
		Otozamites hislopii (Oldh.) Feistm.		m	

1	2	3	4	5	6
		Otozamites latior Sap.		m	
		Otozamites obtusus (L.et H.) Brongn.		m	
		Otozamites sp.		m	m
		Pseudocycas cessiensis Dolud.		m	m
		Pseudocycas cf.saighanensis Jakob. et Shukla		m	
		Pterophyllum aequale (Brongn.) Nath.		m	
		Pterophyllum djanelidzei Svan.	m	m	
		Pterophyllum georgiense Dolud.			m
		Pterophyllum insigne Dolud.			m
		Pterophyllum kakhadzei Svan.		m	
		Pterophyllum magnum Dolud.			m
	Bennettitaceae	Pterophyllum mirabile Dolud.			m
		Pterophyllum narulense Svan.	m		
Bennettitopsida		Pterophyllum papillatum Dolud.			m
		Pterophyllum paradoxum Dolud.			m
		Pterophyllum raripinnatum Dolud.			m
		Pterophyllum rionense Dolud.			m
		Pterophyllum aff.ptilum Harris			m
		Pterophyllum aff.subae- quale Hartz			m
		Pterophyllum cf.andreanum Schimp.	m	m	
		Pterophyllum sp.	m	m	m
		Ptilophyllum acutifolium Morr.		m	
		Ptilophyllum acutifolium Morr. f.latum Delle		m	
		Ptilophyllum caucasicum Dolud. et Svan.		m	m
		Ptilophyllum cutchense Morr.		m	
		Ptilophyllum longifolium Iakob.		m	

1	2	3	4	5	6
Bennettitopsida		Ptilophyllum okribense Dolud. et Svan.		m	
	f.ratch	Ptilophyllum okribense f.ratchense Dolud. et Svan.			m
		Ptilophyllum vachrameevii (Dolud.) Dolud.			m
	Ber	Ptilophyllum cf.caucasicum Dolud. et Svan.	m		
	Za	Zamites sp.		m	

THE CRETACEOUS

Deposits from the Cretaceous system are widely distributed in Georgia and divided into two parts – lower and upper (Table V).

In the Early Cretaceous there were three main sedimentary basins in Georgia: 1. a flysch basin, deposits of which now occur on the southern slope of the Greater Caucasus; 2. an epicontinental basin with carbonaceous deposits, which now outcrops in the Gagra-Djavian zone and in the Transcaucasian intermontane depression (Georgian Block); 3. a basin of synclinal type that developed at the end of the Early Cretaceous and was strongly affected by volcanic activity during the Albian. Deposits of the latter are found in the Adjara-Trialetian system.

By the end of the Jurassic, the Georgian Block (South Caucasian intermontane region) was transformed into dry land with low, but not fully peneplanated, relief. Higher elevations were to be found in the Kelasuri and Gumista basins, as well as on the Dzirulian Block.

A transgression over the syncline of the southern slope of the Greater Caucasus took place during the second part of the Kimmeridgian, reaching the Georgian Block in the Berriassian. By the middle Albian, this transgression had mostly receded. The Early Cretaceous ended with the Albian regression, which continued until the Cenomanian in some regions. On the Dzirulian Block, the Albian regression was interrupted by subsequent transgression (Eristavi, 1952; Kotetishvili, 1986).

Table V. Stratigraphical division of Cretaceous deposits in Georgia
(after Gambashidze, 1984; Kotetishvili, 1986).

Ма	Division	Stage
65		Maastrichtian
		Campanian
	Upper	Santonian
	Cretaceous	Coniacian
		Turonian
		Cenomanian
		Albian
		Aptian
	Lower	Barremian
	Cretaceous	Hauterivian
		Valanginian
144		Berriassian

Paleobotanical material is known only from Aptian and Albian deposits in Georgia (Fig.3), the first data being contributed by Palibin (1940) and Mchedlishvili (1949). Later, Cretaceous paleobotanical material was studied by Svanidze (Svanidze & Sharikadze, 1973) and Loladze (1979; Loladze et al., 1978). Their findings are listed in Table VI.

Table VI. Plants from the Cretaceous deposits in Georgia (by macrofossils)

Class	Family	Species	
	Matoniaceae	Phlebopteris rarinerve Lol.	
		Gonatosorus dzirulensis Lol.	
		Gonatosorus lobifolium Bur.	
Polypodiopsida		Gonatosorus sp.	
Polypodiopsida	Dicksoniaceae	Lobifolia lobifolia (Phill.) Rass.et Lebed.	
		Lobifolia novopokrovskii (Pryn.) Rass.et	
		Lebed.	
		Lobifolia sp.	
		Cladophlebis whitbiensis (Brongn.) Brongn.	
The ferns of une	stablished systematical	Cladophlebis aff.suluctensis Brick.	
positions		Cladophlebis sp.	
Lucinontori		Sagenopteris colpodes Harris	
Lyginopteri- dopsida	Caytoniaceae	Sagenopteris heterophylla Dolud.et Svan.	
uopsiud		Sagenopteris sp.	

Class	Family	Species
		Elatides curvifolia (Dunk.) Nath.
		Elatides sp.
	Chairalanidiacaaa	Haiburnia setosa (Phill.) Harris
	Cheirolepidiaceae	Pagiophyllum bellum Lol.
		Pagiophyllum stenocaulum Lol.
		Pagiophyllum setosum (Phill.) Sew.
		Araucarites charatishvilii Lol.
		Araucarites densicaulus Lol.
	Araucariaceae	Araucarites heterocaulus Lol.
	Araucariaceae	Araucarites latus Lol.
		Araucarites vassilevskiae TurKet.
Pinopsida		Araucarites sp.
Fillopsida	Taxodiaceae	Glyptostrobus stenocaulus Lol.
		Glyptostrobus aff.groenlandicus Heer
		Glyptostrobus vulgaris Lol.
		Glyptostrobus sp.
		Sequoia caucasica Lol.
		Sequoia colchica Lol.
		Sequoia delicate Lol.
		Sequoia sp.
		Thuites sp.
	C	Widdringtonites georgiense Lol.
	Cupressaceae	Widdringtonites karataviensis TurKet.
		Widdringtonites aff.subtilis Heer.
Bennettitopsida	Bennettitaceae	Pterophyllum magnum Dolud.

Compared to the Jurassic, the Early Cretaceous had much lower diversity in the Caytoniaceae, Cheirolepidiaceae, Cycadaceae and Bennettitaceae. On the other hand, the role of the Araucariaceae and Taxodiaceae increased.

According to Loladze (1979), Early Cretaceous Georgia was covered in forests with a predominance of the Araucarites and Pagiophyllum, which indicate a climate of low humidity. Nevertheless, changes in floral composition (i.e. an increase in fern and Taxodiaceae remains, the absence of the genus Brachyphyllum and declining species diversity in the genus Pagiophyllum) allow us to conclude that the climate of second half of the Lower Cretaceous was more humid than the Callovian, but with lower temperatures. Representatives of the genera Araucarites and Pagiophyllum occupied dry slopes, while ferns and Taxodiaceae grew in more humid habitats.

The two Early Cretaceous paleofloristic regions – the Siberian-Canadian and the European-Sinaian – are further divided into provinces: the Potomacian, Central Asian, Eastern Asian and European. The latter was characterized by the com-

plete absence of Podozamitaceae and Czekanowskiaceae and the minor role of Ginkgoaceae in the flora. Arid and semi-arid conditions prevailed throughout the European province, which was reflected in xeromorphy and changing taxonomic composition (Meien, 1987). Vakhrameev (1988) included the Early Cretaceous flora of Georgia in the European province, while Loladze highlighted its strong affinities with the floras of both the European and Central Asian provinces.

The Aptian and Albian were times of major reorganization in the world's vegetation as angiosperms rapidly expanded their distribution. New coniferous forms also appeared at this time, including the Pinaceae, which were adapted to intense sunlight and dry conditions. The diversity of Ginkgoaceae decreased and Czekanowskia almost vanished. Dominants of Mesozoic forests such as Podozamites and Ptilophyllum became extinct; all Bennettitaceae and many Cycadaceae disappeared; the composition of fern assemblages changed significantly and Coniopteris was altogether absent; while the distribution of Gleicheniaceae and Schizaeaceae increased (Sinizin, 1980).

Data on the Late Cretaceous flora of Georgia are absent. Plant remains from Cenomanian deposits in the southeast of the South Caucasus region were described by Palibin (1930, 1935). The same collection was revised subsequently by Takhtajan (1966). The prevalence of Sequoia, Comptonia, Platanus and the presence of Fagaceae and Lauraceae was also noted by him.

Analysis of paleobotanical material from various Mesozoic deposits in Georgia shows that all forms in the Jurassic and Cretaceous floras can be split into two groups:

- 1. Genera that were vegetation dominants during the Jurassic. Only some persisted into the Early Cretaceous, after which most Mesozoic plants became extinct.
- 2. Plants with living relatives in various regions of the world. In the Mesozoic these taxa were subordinate, but progressive, elements of the flora, flour-ishing only later during the Cenozoic and becoming dominant in many Tertiary vegetation communities in Georgia alongside numerous angiosperms. Relict plants of this second group still survive in the flora of Colchis today.

THE CENOZOIC

THE PALEOGENE

Paleogene deposits are widely distributed in Georgia and are represented by various facies. Based on nummulites, planktonic foraminifers, nannoplankton and molluska, the Paleogene is subdivided into three epochs: the Paleocene, Eocene and Oligocene (Table VII). Each of these is divided into separate stages and horizons correlated with synchronous deposits in Southern Russia and Western Europe (I. Kacharava, 1964; M. Kacharava, 1977; Z. Kacharava, 2007; Kazachashvili, 1984; Salukvadze, 2000).

Ма	Division	Stage	Layers
23.8	Miocene	Akvitanian	Uplistsikhian
		Chattian	
			Lignitiferous multicoloured suite
	Oligocono	Meskhetian	Lower Corbulian
	Oligocene	Meskietan	(Tori and Tsruta-Tsakhana sections)
			Solenoe
33.7		Chadumian	Karatubani
		Priabonian	
	Eocene	Biarrician	
	Eocene	Lutetian	
54.9		Ypresian	
		llerdian	
	Paleocene	Thanetian	
65.0		Monian	

Table VII. Stratigraphical division of Paleogene deposits in Georgia(after I.Kacharava, 1964 and Kazachashvili, 1984).

At the beginning of the Tertiary, the Caucasus formed part of the Tethys Sea (Alpine-Mediterranean orogenic region), which occupied a vast area from Gibraltar to the Himalayas. This huge synclinal basin, corresponing to the future Alpine folded zone, was characterized by a complex, rugged and changeable coastline. Numerous islands, the future mountains of the Alpine system, divided the Tethys into more-orless distinct basins (Khain, 1984). The water of this great sea was warm, as indicated by coral reefs and thick deposits of nummulitic limestone. Water temperature had a profound influence on the plant life of coastlines and islands, especially during the Paleocene–Eocene. Branches of the Tethys later became the folded systems of the Greater and Lesser Caucasus, developing semi-independently under the influence of common orogenic phases. The most interesting Paleogene deposits are those of the Adjara-Trialetian zone, the southern part of which (Akhaltsikhian depression) includes the main Palaeogene flora localities (Fig.3).

The Paleogene was a critical period in the Cenozoic history of flora, forming a link between the ancient flora of the Mesozoic and the floras of the Neogene. Most of the ancient angiosperms went extinct to be replaced by new, progressive forms. By the end of Paleogene, vegetation communities similar to their Neogene counterparts had formed and geological processes, especially around the boundary of the Eocene and Oligocene, led to increasing floral differentiation. Distinct geobotanical provinces began to take shape within Eurasia's palaeofloristc regions, provinces that would anticipate their modern equivalents in several respects.

The Eocene

In Georgia, the most ancient Tertiary (Palaeogene and Neogene) deposits containing plants remains are the Eocene layers of the Akhaltsikhian depression. Data from Uznadze (1967) shows the fossil material to comprise mainly of leathery angiosperm leaf-imprints, amongst which the large, thick-veined leaves of *Artocarpidium latifolium* Uzn. are the most frequent. The presence of Rhizophora, Elaeodendron, Sapotacites and Artocarpidium, as well as the leathery structure of the fossil leaves, indicates evergreen vegetation growing in warm, humid conditions.

Eocene flora near the town of Akhaltsikhe was studied by Avakov (1989; 2010). Plant remains are preserved in sediment lenses dated Upper Eocene by nummulites and molluscs (Kacharava 2007; Kazachashvili, 1984).

Avakov (1989) grouped all of the Eocene taxa into genetic classes. One group was composed of forms characteristic of the Eocene, including plants that probably continued from the Palaeocene, but absent from younger floras. The next group was composed of forms that were judged to be more widespread on the basis of systematics and abudance: Myricaceae, Fagaceae and Juglandaceae. These taxa were present in the Oligocene and persisted as relicts in Neogene floras. The Eocene flora also includes the ancestors of plants that make up the modern relict flora of Georgia. During the Tertiary they may have developed and changed their ecological tolerances, but the fact that the representatives of these taxa still exist today suggests that the vegetation complex that evolved during the Eocene would carry through the Neogene until the present.

The Middle and Upper Eocene deposits of the Akhaltsikhian depression have also been studied palynologically (Panova et al., 1984). Eocene deposits from boreholes in Eastern Georgia (Kakheti) were analyzed by Purtseladze (1988) and Shatilova & Mchedlishvili (2011).

In these pollen spectra, the dominant fern genera were Gleichenia, Anemia and Lygodium. Pteris and Polypodium, the characteristic components of Neogene floras, occur only as single spores. Conifers had a minor role, but were relatively diverse from a systematic point of view. Ginkgo, Pinus, Podocarpus, Dacrydium, Cedrus and Keteleeria pollen occured frequently, while taxa characteristic of a temperate climate – Picea, Tsuga, Abies – were relatively few.

The hallmark of spore-pollen assemblages in Georgia's Eocene deposits is the predominance of angiosperms over conifers and cryptogams. In Eocene deposits in Kakheti, 66% of the palynomorphs came from angiosperms, 25% from conifers and 9% from cryptogams (Fig. 4). This composition is typical of Paleogene palyno-complexes (Zaklinskaya, 1970).

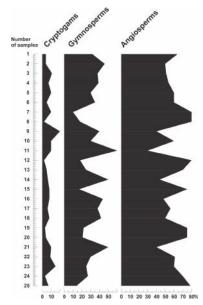


Fig. 4. Percentages of angiosperm, gymnosperm and cryptogam palynomorphs in spore-pollen assemblages of Eocene deposits in Eastern Georgia

It is quite difficult to reconstruct the type and structure of Eocene vegetation. Since the leaf imprints and pollen grains belong mainly to trees, the existence of forests as the main type of vegetation is beyond doubt. By drawing comparisons with modern altitudinal zonation in tropical and subtropical regions, Avakov (1989) suggested the following vegetation zones: 1) a zone of tropical (or subtropical) deciduous forest with some sclerophyll elements from the Myrtaceae and Myricaceae; 2) a zone of evergreen laurel rainforest; and 3) a zone of temperate climate with deciduous and coniferous forests.

According to Avakov, the first zone was made up of both monsoonal deciduous forests and sclerophyllous forests. Monsoon forests included *Celtis* sp., *Ailanthus gigas, Cedrela caucasica, Meliosma* sp., *Ziziphus paradisiacus* and others. Sclerophyll forests were composed of *Myrica bancksiaefolia, M. lignitum, M. longifolia, M. ungeri* and *Echitonum sophiae*.

Laurel rainforests of Podocarpus isonervis, Engelhardia macroptera, Dryophyllum curticellense, Castanopsis decheni, Daphnogene sezannensis, Laurophyllum achalcichensis, Phoeba cf. pallida and Cinnamomum scheuchzeri grew above the tropical deciduous-sclerophyllous zone.

The highest elevations were occupied by temperate deciduous and coniferous plants: Pinus, Picea, Abies, Keteleeria, Sciadopitys, Cedrus, Betula, Corylus, Cornus, Tilia and Acer. The forest understory was clothed mainly in ferns – Cyatheaceae, Schizaeaceae, Anemiaceae, Lygodiaceae and Gleicheniaceae.

The Oligocene

The modern relief of the Caucasus began to take shape during the Oligocene, when synclines began to form in folded systems. The Georgian Block, transformed into an intermontane depression, was covered by sea, in which the dark, non-carbonate Maikopian clays, often void of organic remains, accumulated. The Greater and Lesser Caucasus became erosional systems and basins of semi-marine or lagoon type remained only in some places. One such basin was the Akhaltsikhian depression (Adjara-Trialetian zone), where a full series of Paleogene deposits dated by fauna is represented. According to Kazachashvili (1984), they should be considered stratotypical (Table VII).

Oligocene deposits in Georgia rarely preserve fossil macrofloras. The most interesting is the Middle Oligocene flora of Corbulian layers near Tori village (Borjomi region). This flora was first discovered by Kozlovsky and kept in the Botanical Institute of the Russian Academy of Sciences. Later this collection was studied by Mchedlishvili (1949a), who suggested that this unique flora represented the vegetation of a recent tropical xerophytic kingdom. Mchedlishvili's collection was subsequently revised by Avakov (1989), who distinguished *Dryophyllum curticellense* (Wat.) Sap., as the most interesting form.

Later the locality of Tori was re-investigated. Molluscs, confirming the Middle Oligocene age of the deposits, were studied, as well as imprints of leaves, pollen and spores (Kazakhashvili et al., 1983). Macroremains are composed of narrow and broad leathery leaves. On the whole, the macroflora and spore-pollen assemblages, as well as the presence of coal layers, indicate the existence of evergreen forests characteristic of a humid, subtropical climate.

Avakov (1989) also collected new material near Tori village, the most part of which was leaf impressions of *Dryophyllum curticellense* and a few fruit imprints of Leguminosae (Fabaceae).

Oligocene deposits of the Akhaltsikhian depression have been studied palynologically. In a section on the Abastumani River, the Upper Eocene is covered by sediments with molluska of Lower Oligocene age (Panova et al., 1984). A rich spore-pollen assemblage, transitional between the Eocene and Oligocene, was discovered in the lower part of this section. Among conifers the Pinaceae (Cedrus, Picea and Pinus) were predominant. Pollen grains of Taxodiaceae, Podocarpus and Ephedra were infrequent. As in the Eocene, the greater part of the assemblage was taken up by angiosperms.

Quite different spore-pollen assemblages characterize the upper layers of the section, where conifers are more prevalent – Pinus, Picea, Keteleeria, Cedrus and Taxodiaceae, with a small representation of Ginkgo and Podocarpus. Angiosperms are few, but diverse: Myrica, Platycarya, Quercus, Castanea and Castanopsis are represented by several species. Typical Oligocene taxa appear in this section, including *Carya* aff. *exelsa* Pan. and *Juglans compacta* Pan. Pollen grains of the former genera occur in low proportions. This assemblage dates to the Lower Oligocene. Subsequent layers are much poorer in floral remains and give little impression of the vegetation.

Pollen analysis was also carried out on Lower Oligocene deposits found near the villages of Ani and Karatubani. The section begins by yellow-gray sandstones with fauna characteristic of the Karatubani horizon, in which pollen and spores were not seen. Rich assemblages were discovered in overlying clay deposits. The palynoflora has an abundance of conifers and a diversity of angiosperms, mainly subtropical forms such as Comptonia, Platycarya, Engelhardia, *Castanopsis pseu*- docingulum, Quercus gracillis, Liquidambar, Rhus, Nyssa, Myrtaceae, Sapindaceae, Sterculiaceae, Bombacaceae, Buxus, Oleaceae and Arecaceae. Another hallmark of these assemblages is the prominent role of warm-temperate plants, including Platanus, Corylopsis, Alnus, Carpinus, Juglans, Acer, Tilia, Ulmus and Fraxinus.

In the upper layers of this section, coniferous taxa are predominant in pollen spectra. Among angiosperms represented by great number of forms, the role of Juglans and Carya (especially *C. spackmaniana*) increases, while pollen of sub-tropical elements remains stable. The increasing role of spores is also notewor-thy, among which the representatives of families Polypodiaceae, Pteridaceae predominate; Selaginella, Lycopodium, Cyathea, Gleichenia, Osmunda appear in fewer number.

Quite a different complex was found in the lower Corbulian sandstones of Tsruta-Tsakhana, dated to the Middle Oligocene. Among conifers, the pollen grains of Taxodiaceae dominate, while Pinaceae, Podocarpus, Cupressaceae and Ephedra also occur. Among angiosperms, the Juglandaceae (Platycarya, Carya, Engelhardia and Juglans) prevailed. Ulmus pollen was found in less abundance and both subtropical and warm-temperate plants were represented: Comptonia, Myrica, Salix, Ostrya, Acer, Tilia, Rhamnaceae, Sapindaceae, Sapotaceae and Corylopsis.

In this section, the upper part of the Middle Oligocene is represented by a multicoloured lignitiferous suite, dominated by conifer pollen. The assemblage of subtropical and warm-temperate plants is rich and diverse. The upper layers of multicolored suit are thick and homogenous, indicating the rapid growth of lush vegetation (Gamkrelidze, 1949).

Climatic changes on the boundary of the Eocene and Oligocene can be gauged from faunistic data. As a result of tectonic movements at the terminal Eocene, the sea basin was isolated from Tethys and later connected with the boreal province. With the commencement of the Oligocene transgression, Late Eocene thermophilous ecosystems were replaced by Early Oligocene boreal communities lacking large foraminifera (Kazachashvili, 1984). These data agree with palynological results that indicate an increasing role of conifers in Lower Oligocene deposits.

Pollen data indicate that the character of the flora changed after the Eocene. During the Oligocene, the number of conifers increased and the composition of warm-temperate plants became more diverse. These phenomena were probably linked to paleogeographical changes taking place in the Caucasus at the time, especially Early Oligocene orogenesis in the Greater and Lesser Caucasus. Mountain-building created bioclimatic conditions favorable to the development of temperate and warm-temperate vegetation. A list of the Eocene and Oligocene floras is given below (Table VIII).

Table VIII. Plants from Eocene and Oligocene deposits in GeorgiaKey: m – macrofossils; p – pollen

Class	ass Family Species		Eocene	Oligocene
1	2	3	4	5
Bryopsida	Sphagnaceae	Sphagnum sp.	р	
Lycopodiop- sida	Lycopodiaceae	Lycopodium sp.	р	р
Isoëtopsida	Selaginellaceae	Selaginella sp.		р
	Osmundaceae	Osmunda sp.		р
	c. L.	Ruffordia subcretacea (Sap.)Barth.	m	
	Schizaeaceae	Schizaeaceae gen.indet.	р	
	Anemiaceae	Anemia sp.	p	
	Lygodiaceae	Lygodium sp.	р	р
		Pteris sp.	р	р
Polypodiopsida	Pteridaceae	Polypodiaceoisporites potonie W.Kr. (Pteris)	р	
sdo		Pteridaceae gen.indet.		р
jodi	Gleicheniaceae	Gleichenia sp.	р	р
lyp		Polypodium sp.	р	р
2	Polypodiaceae	Polypodiisporites sellarius W.Kr. (Polypodium)	р	
		Polypodiisporites cf.tenella W.Kr. (Polypodium)	р	
		Polypodiaceae gen.indet.		р
	Dicksoniaceae	Dicksonia sp.	р	
	Cyatheaceae	Cyathea sp.	р	р
		Cyatheaceae gen.indet.	р	
Ginkgoopsida	Ginkgoaceae	Ginkgo sp.	р	р
		Dacrydium sp.	р	
	Podocarpaceae	Podocarpus isonervis Avak.	m	
		Podocarpus sp.	р	
	Araucariaceae	Araucaria sp.	р	
		Abies sp.	р	р
Pinopsida		Cedrus sp.	mp	р
		Keteleeria sp.	р	р
	Pinaceae	Picea sp.	mp	р
		Pinus sp.	mp	р
		Tsuga sp.	р	
		Pinaceae gen.indet.	р	р
	Taxodiacoac	Sciadopitys sp.	р	р
		Taxodiaceae gen.indet.	р	р

1	2	3	4	5
	Enhadrassa	Ephedrites sotzkianus Ung.	m	
Gnetopsida	Ephedraceae	Ephedra sp.	р	р
	Gnetaceae	Gnetaceoipollenites sp.	р	
	Casuarinaceae	Casuarinidites cainosoicus Cook. et Pike	р	
		Casuarinidites sp.	р	
		Comptonia acutiloba Brongn.		m
		Comptonia sp.	р	р
		Myrica acuminata Ung.	m	
		Myrica banksiaefolia Ung.	m	m
		Myrica esculentiformis Gladk.	р	
		Myrica hakeaefolia (Ung.) Sap.	m	
		Myrica lignitum (Ung.) Sap.	m	m
	Myricaceae	Myrica longifolia Ung.	m	m
		Myrica pseudogranulata Gladk.	р	
		Myrica ungeri Heer	m	
		Myrica cf.carolinensis Gladk.	р	
		Myrica sp.	mp	р
		Myricacites sp.	p	· · ·
		Momipites sp. (Myricaceae)		р
		Myricaceae gen.indet.	р	•
		Carya spackmaniana Trav.		р
eae		Carya cf.exilis Pan.		p
one		Carya sp.	р	p
Dicotyledoneae		Subtriporopollenites constans Pfl. (Carya)	р	P P
Dio		Engelhardia macroptera (Brong.) Ung.	m	
		Engelhardia quieta (R.Pot.) Elsik	р	
		Engelhardia sp.		р
		Juglans acuminata A.Br.	m	
	Juglandaceae	Juglans compacta Pan.		р
		Juglans polyporata Vojc.	р	
		Juglans sp.	р	р
		Platycarya sp.	р	р
		Platycaryapollenites sp.	р	
		Pterocarya sp.	р	
		Momipites sp. (Juglandaceae)	р	р
		Plicatopollis plicatus (Pfl.)W.Kr. (Juglandaceae)	р	
		Juglandaceae gen.indet.	р	
		Populus mutabilis Heer, var.lanci- folia A.Br.	m	
	Salicaceae	Populus sp.	m	
		Salix haidingeri Ett.	m	
		Salix varians Goepp.	m	

1	2	3	4	5
		Alnus sp.	р	р
		Betula subpubescens Goepp.	m	
	Betulaceae	Carpinus sp.	р	р
		Corylus sp.	р	
		Ostrya sp.		р
		Castanea crenataeformis Samig.	р	
		Castanea sp.	р	
		Castanopsis decheni (O.Web.) Kr. et Wld.	m	
		Castanopsis pseudocingulum (R.Pot.) Boitz.	р	р
		Castanopsis cf.tribuloides ADC	m	
		Castanopsis sp.		р
		Dryophyllum curticellense (Wat.) Sap.	m	m
		Dryophyllum dewalquei Sap.	m	
		Fagus sp.	р	
	Fagaceae	Pasania sp.		р
	lagaceae	Quercus gracilis Boitz.	р	р
		Quercus lonchitis Ung.		m
υ		Quercus mauritanica Sap. et Mar.	m	
Jea		Quercus neriifolia A.Br.		m
юра		Quercus sp.	р	
tyle		Quercoides inamoenus Fred.	р	
Dicotyledoneae		Tricolpopollenites liblarensis (R.Pot.) Pfl. (Fagaceae, Quercus?)	р	
		Tricolpopollenites sp. (Fagaceae?)		р
		Tricolporopollenites henrici (R.Pot.) Pfl. (Quercus)		р
		Tricolporopollenites sp. (Fagace- ae?)		р
		Celtis sp.	m	
		Ulmus sp.	mp	
	Ulmaceae	Ulmaceae gen.indet.	р	
		Ulmoideipites planeraeformis Anders.	р	
	Moraceae	Artocarpidium latifolium Uzn.	m	
	moraceae	Moraceae gen.indet.	р	
	Chenopodi- aceae	Chenopodiaceae gen.indet.	р	
		Liriodendron sp.	р	р
	Magnoliaceae	Magnolia aff.megafigurata (W.Kr.) Ram.	р	
		Magnolia sp.	р	
	Lauraceae	Cinnamomum cinnamomeum (Rossm.) Holl.	m	
	Lauraceae	Cinnamomum scheuchzerii Heer	m	

1	2	3	4	5
		Cinnamomum sp.	m	m
		Daphnogene sezannensis Wat.	m	
		Laurophyllum achalcichensis Avak.	m	
	Lauraceae	Lindera antiqua (Heer) Lamotte		m
		Phoebe cf.pallida Nees	m	
		Lauraceae gen.indet.	р	
	Trochoden- draceae	Trochodendron sp.	р	р
	Nymphaeaceae	Nelumbo sp.		р
	Platanaceae	Platanus sp.	mp	р
		Corylopsis sp.	р	р
	Hamameli-	Hamamelis sp.	р	р
	daceae	Liquidambar sp.	р	р
	Rosaceae	Rosaceae gen.indet.	р	
	Fabaceae	Leguminosites cf. Brachiystegia eurycoma Harms.	m	
		Ailanthus gigas Ung.	m	
	Simarubaceae	Ailanthus sp.	m	
	Meliaceae	Cedrela caucasica Kutuzk.	m	
	Anacardiaceae	Rhus sp.	р	
	Sapindaceae	Sapindaceae gen.indet.	р	
ae	Sabiaceae	Meliosma sp.	m	
one	Mimosaceae	Mimosites haeringiana Ett.		m
Dicotyledoneae	Linaceae	Linum sp.		р
oty	Aceraceae	Acer sp.		р
Dic	Aquifoliaceae	llex sp.	р	p
	Proteaceae	Proteacidites crassiporus subsp. pachysexinus Samoil.	р	
		Proteaceae gen.indet.	р	
	Celastraceae	Elaeodendron obovatifolium Engelh.	m	
	Olacaceae	Anacolosidites sp.	р	
		Ceanothus cf.americanus L.	m	
	Rhamnaceae	Zizyphus paradisiacus (Ung.) Heer	m	
		Zizyphus zizyphoides (Ung.) Heer	m	
	Melastomaceae	Astronia cf.cumingiana Vidal	m	
	Vitaceae	Parthenocissus sp.	р	р
	Tiliaceae	Tilia sp.	р	р
	Bombacaceae	Bombacaceae gen.indet.	р	р
	Rhizophorace- ae	Rhizophora thinophylla Ett.	m	
	Sterculiaceae	Sterculiaceae gen.indet.		р
	Buxaceae	Buxus sp.		р
	Elaeagnaceae	Elaeagnus sp.		p
		Callistemophyllum speciosum Ett.		m
	Myrtaceae	Eucalyptus oceanica Ung.		m
		Myrtaceae gen.indet.	р	р

1	2	3	4	5
	Alangiaceae	Alangium sp.		р
	Nyssaceae	Nyssa sp.	р	р
	Cornaceae	Cornus cf.platyphylla Sap.	m	
	Araliaceae	Araliaceae gen.indet.	р	р
	Comoto cono	Chrisophyllum juglandoides Wat.	m	
	Sapotaceae	Sapotaceae gen.indet.	р	р
g	Loranthaceae	Loranthaceae gen.indet.	р	
Dicotyledoneae	Symplocaceae	Symplocos sp.	р	
edo	Rubiaceae	Cephalanthus sp.	р	
otyl	Oleaceae	Fraxinus sp.		р
Dice	Oleaceae	Oleaceae gen.indet.	р	р
		Acerates veterana Heer		m
		Apocynophyllum achalcichensis Avak.	m	
	Apocynaceae	cf. Aspidodperma anomalum Muell.	m	
		Echitonium sophiae Web.	m	
	Asteraceae	Asteraceae gen.indet.		р
	Potamogeton- aceae	Potamogeton sp.		р
	Poaceae	Phragmites provincialis Sap.	m	
		Nipa sp.	р	
		Sabal sp.	р	
ge		Arecaceae (Phoenix sp.)	р	
one		Arecipites convexus (Thierg.) W.Kr.	р	
Monocotyledoneae	Arecaceae	Arecipites cf.brandenburgensis W.Kr.	р	
000	Alcoucac	Palmaepollenites tranquilus R.Pot.	р	
Mon		Monocolpopollenites dorogensis (R.Pot.) Pf. (Sabal)	р	
		Monocolpopollenites cf.magnus Pf. (Arecaceae)	р	
		Arecaceae gen.indet.		р
	Smilacaceae	Smilax sagittifera Heer	m	
	Sparganiaceae	Sparganium sp.		р
		Leiotriletes sp.	р	
		Neogenisporites sp.	р	
		Trilites asolidus W.Kr.	р	
		Extratriporopollenites sp.	р	
The forms of ir	ndeterminate	Fupingopollenites wackersdorfen- sis (Thiele-Pfeiffer) Liu Geng-wu.	р	
taxonimical po	osition	Interpollis supplingensis W.Kr.	р	
		Nudopollis thiergarti (R.Pot.) Pfl.	р	
		Oculopollis sp.	р	
		Pollenites cingulum R.Pot.	р	
		Pollenites liblarensis Thoms.	р	
		Retitricolpites sp.	р	

1	2	3	4	5
		Retitricolporopollenites sp.		р
		Rhoipites granulatus (Fred.) Boitz.	р	
		Rhoipites sp.	р	р
		Spinozonocolpites prominatus Kedv.	р	
		Subtrudopollis sp.	р	
		Triatriopollenites maculates Pfl.	р	
The forms of ir taxonimical pc		Triatriopollenites sp.	р	
	51000	Triporopollenites sp.	р	
		Trudopollis menneri (Mart.) Zakl.	р	
		Trudopollis pompeckji (R.Pot.) Pfl.	р	
		Trudopollis sp.	р	
		Verrutricolporites cf.tenuicrassus Pokrovskaja		р
		Verrutricolporites sp.	р	

THE NEOGENE

Neogene deposits are widely distributed in Georgia, their stratigraphical subdivision based on rich paleontological material. Most fossil floras are associated with faunal remains that provide the age of the sedimentary material. In our work, paleobotanical material from Neogene deposits is described in accordance with schemes devised for Georgia (Ananiashvili et al., 2000; Badzoshvili, 1986; Buleishvili, 1960; Chelidze, 1974; Taktakishvili, 1984).

In some of these schemes, the boundaries of regional stages conflict with those of the Neogene stratigraphic scheme for the Eastern Paratethys. Mainly it concerns the boundaries of Sarmatian. In particular, the Volkhinian substage and lower part of Bessarabian are put in Middle Miocene. Also the position of Pontian is changed, big part of which is put in Upper Miocene (Nevesskaya et al., 2003; Semenenko et al., 2009).

Lists of Neogene floras are given separately for every stretches of the Miocene and Pliocene. During our work we took into account changes in plant taxonomy after a revision of the fossil material (Takhtajan 1974).

THE MIOCENE

The Lower Miocene

Two areas of dry land existed in Georgia through most of the Miocene – the northern part and the southern part, including the small islands of the South Caucasus intermontane depression, which was mostly covered by sea (Fig. 5).

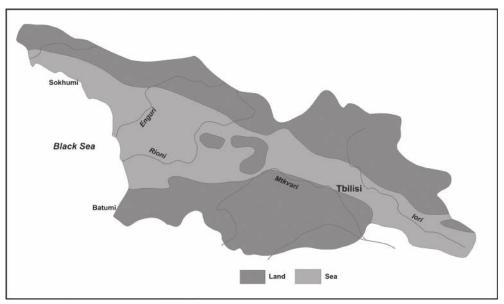


Fig. 5. Schematic paleogeographical map of Georgia during the Miocene (except the Late Sarmatian).

Clays containing foraminifers typical of the Lower Miocene accumulated in the deeper parts of this depression. Around the periphery, these clays are replaced by sandstones, which contain a rich fauna of mollusks (Adamia et al., 1964). In the Gori-Caspi region this fauna was studied by Davitashvili (1933, 1934), who distinguished two stratigraphical units – the Sakaraulian and Kotsakhurian (Table IX).

Table IX. Stratigraphical division of the Miocene deposits in Georgia(after Badzoshvili, 1986; Buleishvili, 1986; Ananiashvili et al., 2000;Nevesskaya et al., 2003; Semenenko et al., 2009; Zhgenti, 1981)

Ма	Division	Reg	jional stage	Substage
7.1			Meotian	Akmanaian
0.5	Upper Miocene		Meotian	Bagerovian
9.5				Khersonian
	mocene	9	Sarmatian	Bessarabian
13.0	12.0			Volhynian
15.0			Konkian	
		Karthvelian Karaganian		
	Middle Miocene			
	Miocerie	Ts	chokrakian	
17.0		Tł	narkhanian	
17.0			Kotsakhurian	
	Lower	Maikopian	Sakaraulian	
	Miocene	series	Uplistsikhian	
23.8			(Akvitanian)	

Deposits with rich assemblage of stenohaline mollusks of the Mediterranean type were found near the village of Uplistsikhe (Gori region) below Sakaraulian levels. These deposits are considered equivalent to the Akvitanian of Eastern Paratethys and, on the basis of their fauna, are classed as an "Uplitsikhian stage" (Ananiashvili et al., 2000; Kurtskhalia et al., 1972).

A list of flora from Kotsakhurian deposits was published by Mchedlishvili (1955). In his opinion, the assemblages indicate hot and dry climatic conditions. According to Uznadze (1965), however, not all plants from this list are xerophytes, especially the various Lauraceae.

The Lower Miocene flora was studied in detail by Djaparidze (1982). All of the sites studied (Fig.6) were between Akvitanian (Uplistsikhian) and Sakaraulian deposits, dated by fauna and containing conifer needles, leaf imprints and seeds. The prevalence of narrow-leaved forms with leathery texture, which often obscures the details of fine venation, is a characteristic feature of this macroflora.

Most of the Early Miocene flora is composed of subtropical plants typical of dry sclerophyll forests. Leaf imprints of these plants have a xeromorphic appearance, distinguished by small leaf surfaces and a rough texture. The collections contain a large number of leathery leaves of the "Leguminosae" type, which was impossible to determine to greater taxonomic precision. Their presence, however, is indicative of a xeromorphic flora.

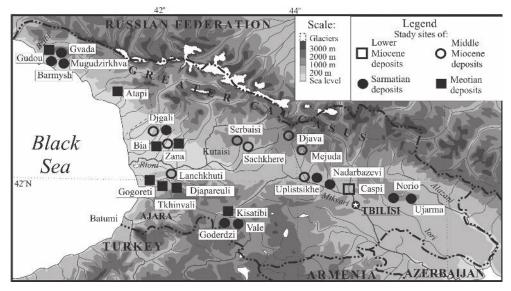
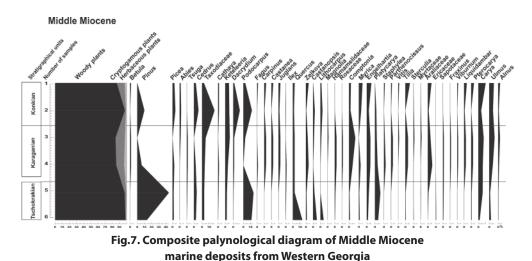


Fig.6. Study sites of Miocene deposits in Georgia

The laurels, evergreen Fagaceae and other thermophilous plants that formed moist subtropical Paleogene forests persisted in Eastern Georgia under conditions of low humidity. The fossil material indicates that they adapted to the arid climate and formed components of sclerophyll vegetation.


Riparian forests occurred in moist, poorly-drained areas and included species such as *Quercus neriifolia, Myrica lignitum* and *Pinus taedaeformis*. Plants of temperate climates occupied the upper mountain zones. This formation is rarely represented in macrofloras since its distribution was situated far from accumulation basins. Eastern Georgia's climate was subtropical during the whole Early Miocene, with a dry summer and a mild winter that did not interrupt the growing season (Djaparidze, 1982).

The Middle Miocene

At the beginning of the Middle Miocene (Table IX), the Greater and Lesser Caucasus formed into mountain systems. The Georgian Block subsided and slowly became the intermontane molassic depression.

From a paleobotanical point of view, the first half of Middle Miocene is poorly studied. Only a few lauraceous leaf imprints and leathery leaves of indeterminable evergreen dicotyledonous plants were found in Western Georgian Tschokrakian deposits (Uznadze, 1965). Floras of the Karaganian, Karthvelian and Konkian regional stages are much better studied. Plant macroremains (leaf imprints, seeds and flower parts) from the northern part of Kartli and some regions of Western Georgia (Fig.6) were described by Avakov (1967; 1979; 2008; 2010).

Middle Miocene deposits of Western Georgia have been studied by palynological methods (Ananiashvili & Purtseladze, 1976; Ramishvili, 1982). The spore-pollen assemblage reflects forest vegetation composed of deciduous warm-temperate and subtropical plants, as well as ferns (Fig.7).

An abundance of ferns, their varied composition and their similarity with extinct taxa characteristic for the Paleogene and Early Miocene, give the Middle Miocene flora a somewhat ancient appearance. Some of them were determined by morphological system: *Toroisporites lusaticus, Clavifera triplex, Leiotriletes miocaenicus, L. wolffi, Divisiosporites* and others. A distinct group comprised ferns that were widely distributed in the past, but now have a narrow, relict area. Such include Anemia, Lygodium, Gleichenia, Hymenophyllum, Dicksonia, Cyathea and others.

The majority of gymnosperms were plants characteristic of subtropical mountain forests: Ginkgo, Podocarpus, Dacrydium, Cathaya, Pseudolarix, Keteleeria and Cedrus. Pinus pollen occurs in large quantities. As concerns Abies, Picea and Tsuga, plants typical of younger floras, their role in spore-pollen assemblages is quite small. Pollen of Sequoia, Cryptomeria and Taxodium numbers about the same as pollen from saccate conifers, however their macrofossil remains have not been found.

Angiosperms are distinguished by great systematic and ecological diversity. Pollen assemblages often include small, tricolporate grains of the "castanoid" type. Many of them are indeterminable, excluding grains of Castanea, Lithocarpus and Castanopsis. In some cases, "castanoid" pollen is referred to the forma-taxon *Tricolporopollenites cingulum*. Some pollen grains of the Fagaceae are similar to modern *Quercus*, but others probably belong to extinct oaks. They have been described as *Tricolporopollenites microhenrici* and *T. henrici*, characteristic taxa for Miocene pollen assemblages in the whole Mediterranean region.

The Middle Miocene flora of Georgia is distinguished by the occurrence of Myricaceae and Juglandaceae, both as macroremains and pollen. The genus Comptonia was represented by four species, of which three are morphologically similar to Comptonia pollen identified in Paleogene deposits in Siberia and Hungary (Gladkova, 1965; Kedves, 1974), i.e. *Comptonia grandis, C. imperfecta* and *C. pseudogranulata*. It would seem that these species were widely distributed during the Paleogene. Engelhardia and Platycarya are also very characteristic components, their pollen appearing in nearly in all outcrops of Middle Miocene deposits. Small grains are referred to as *Engelhardia wallichiana* and larger grains to the forma-taxa *Momipites punctatus* and *Triatriopollenites coryphaeus*.

Macrofossils and pollen indicate the existence of altitudinal vegetation zones with different climatic characteristics during the Middle Miocene. The coastal zone and the lower and middle mountain belts were covered by humid subtropical forests composed of Sterculiaceae, Araliaceae, Moraceae, Lauraceae, evergreen Fagaceae, Sapotaceae, Symplocaceae, Sycopsis, Mastixia, Magnolia, numerous Lauraceae, Engelhardia, Sapindus and Combretum. Arborescent ferns were represented, including Cyathea, Dicksonia and also Lygodium, Anemia, Hymenophyllum, some Polypodium and Pteris. The abundance of Myricaceae macrofossils in deposits of the Middle Miocene suggests that they grew along rivers, constituting the dominant species in riparian vegetation. Sclerophyll formation included myrtle, acacia, some species of oaks (*Quercus lonchites* and *Q. drymeja*), plants with narrow leaves of the Myrica- and Myrtus-type and lianas typical of humid subtropical climates, such as Smilax and Sabia (Avakov, 1967).

Deciduous warm-temperate and temperate communities were distributed at higher altitudes, comprised of Platanus, Comptonia, Juglans, Pterocarya, Platycarya, Castanea and Parthenocissus. Higher still, temperate cold-resistant plants like Betula, Carpinus, Fagus, Acer, Tilia and Ulmus were to be found. Broad-leaved species were intermixed with conifers: Dacrydium, Podocarpus, Cathaya, Keteleeria, and probably Abies, Picea and Tsuga.

The Middle Miocene climate throughout Georgia was subtropical and humid, as indicated by the abundance of Taxodiaceae in deposits of both western and eastern areas.

Comparing the Middle Miocene flora of Georgia with floras from adjacent regions (the flora of the eastern part of the South Caucasus and areas to the north of the Greater Caucasus) seem to have been poorer in ferns and thermophilous evergreen trees, with a lower diversity of conifers and broad-leaved trees (Ananova, 1974; Djabarova, 1976; Manukian, 1978).

The Middle Miocene flora of Georgia and contemporaneous floras of the Mediterranean developed evenly without major perturbations, especially during the Early and Middle Miocene (Nagy, 1985; 1992). Their development was not as monotonous as during the Paleogene, but more homogeneous than the floras of the periods to follow, when increasing differentiation led to the formation of separate phytogeographical provinces.

A list of Lower and Middle Miocene floras is given below (Table X).

Class	Family		Lower Miocene	Middle Miocene
1	2	3	4	5
Lycopodiopsida	Lycopodiaceae	Lycopodium sp.		р
		Selaginella fusca N.Mtchedl.		р
Isoëtopsida	Selaginellaceae	Selaginella sp.		р
isoetopsida	Selaginellaceae	Echinatisporites miocaenicus W.Kr. (Selaginella sp.)		р
Ophioglossop- sida	Ophioglossaceae	Ophioglossum sp.		р

Table X. Plants from Lower and Middle Miocene depositsin Georgia Key: m – macrofossils; p – pollen

1	2	3	4	5
	Osmundaceae	Osmunda heeri Gaud.	m	
		Osmunda sp.		р
		Anemia cf.hirta (L.) Swartz.		m
	Anemiaceae	Anemia cf.mexicana Klatsch		m
	Allelliaceae	Anemia sp.		р
		Mohria sp.		р
		Lygodium digitatum Presl.		р
	Lygodiaceae	Lygodium multivallatum (W.Kr.) Ram.		р
		Lygodium sp.		р
		Toroisporites lusaticus W.Kr.		р
		Pteris cretica L.		р
		Pteris parschlugiana Ung.		m
		Pteris sp.		р
	e	Polypodiaceosporites gracil- limus Nagy		р
	Pteridaceae	Polypodiaceosporites helveti- cus W.Kr.		р
	Pter	Polypodiaceosporites lusaticus W.Kr.		р
a		Polypodiaceosporites mi- croverrucosus W.Kr.		р
Polypodiopsida		Polypodiaceosporites triangu- lus W.Kr.		р
bod	Adiantaceae	Anogramma sp.		р
oly		Onychium sp.		р
ш.		Clavifera triplex Bolch.		р
	Gleicheniaceae	Gleichenia angulata Naum.		р
		Gleichenia sp.		р
		Polypodium verrucatum Ram.		р
		Polypodium sp.		р
	Сеае	Polypodiisporites potoniei Nagy		р
	ypodiaceae	Verrucatosporites alienus (R.Pot.) Th.et Pfl.		р
	Poly	Verrucatosporites favus (R.Pot.) Th.et Pfl.		р
		Verrucatosporites histiopteroi- des W.Kr.		р
	Hymenophyl-	Hymenophyllum rotundum N.Mtchedl.		р
	laceae	Hymenophyllum sp.		р
	Thyrsopterida- ceae	Cibotium guriensis Purc.		р
		Dicksonia antarctica A.Br.		р
	Dislosuri	Dicksonia reticulata Purc.		p
	Dicksoniaceae	Dicksonia unitotuberata Purc.		p
		Dicksonia sp		p

1	2	3	4	5
		Cyathea sp.		р
		Divisisporites sp.		р
	Cyatheaceae	Leiotriletes miocenicus Nagy		р
		Leiotriletes wolfii W.Kr.		р
opsida	Aspleniaceae	Asplenium wegmanni A.Brongn.		m
Polypodiopsida		Cyclosorus stiriacus (Ung.) Ch- ing et Takht.	m	
Pol	Aspidiaceae	Cystopteris sp.		р
		Lastrea (Cyclosorus) fischeri Heer		m
	Blechnaceae	Woodwardia roessneriana (Ung.) Heer		m
Ginkgoopsida	Ginkgoaceae	Ginkgo sp.		р
	Padacarpacaa	Dacrydium sp.		р
	Podocarpaceae	Podocarpus sp.		р
		Abies sp.		р
		Cathaya sp.		р
		Cedrus sauerae N.Mtchedl.		р
		Cedrus sp.		р
		Keteleeria caucasica Ram.		p
	Pinaceae	Picea metechensis Charat.	m	
		Picea sp.		р
		Pinus nikitini Budant.		m
_	<u>م</u>	Pinus taedaeformis (Ung.) Heer	m	
sida		Pinus cf.engelhardti Menz.		m
Pinopsida		Pinus sp.	m	mp
Pin		Pseudolarix aff.kaemferi Gord.		р
		Tsuga diversifolia (Maxim.) Mast.		р
		Cryptomeria japonica Don		р
	L D	Cryptomeria sp.		р
	Taxodiaceae	Glytostrobus europaeus (Brongn.) Heer	m	
	axo	Sequoia sp.		р
	-	Taxodium dubium (Sternb.) Heer	m	
		Taxodium sp.		р
	Cupressaceae	Libocedrus salicornioides (Ung.) Heer	m	m
Gnetopsida	Ephedraceae	Ephedra sp.		р
		Comptonia aborigena Glad.		р
eae	۵.	Comptonia acutiloba Brongn.	m	
oné	Ceae	Comptonia grandis Glad.		р
vled	icac	Comptonia imperfecta Glad.		р
Dicotyledoneae	Myricaceae	Comptonia sp.		р
Dĭć	_	Myrica acuminata Ung.		m
		Myrica intermedia Glad.		р

1	2	3	4	5
		Myrica laevigata (Heer) Sap.		m
	ae	Myrica lignitum (Ung.) Sap.	m	
	acei	Myrica longifolia Ung.	m	
	Myricaceae	Myrica pseudogranulata Glad.		р
	Ŵ	Myrica swanteviti (Ung.) Avakov		m
		Myrica ungeri Heer		m
		Carya sp.		р
		Cyclocarya sp.		p
		Engelhardia brongniartii Sap.	m	m
		Engelhardia gorensis Djap.	m	
		Engelhardia schlickumi Wey- land		m
	ае	Engelhardia wallichiana Lindl.		р
	JCeć	Engelhardia sp.		р
	Juglandaceae	Juglans regia L.		p
	ıgla	Juglans sp.		p
		Momipites punctatus Nagy (Engelhardia sp.)		р
		Platycarya miocenicus (Nagy) Ram.		р
		Platycarya sp.		р
Dicotyledoneae		Triatriopollenites coryphaeus (R.Pot.) Th.et Pfl.		р
ledo	Salica- ceae	Populus latior A.Br.		m
otyl		Populus sp.		m
Dia	S O	Salix angusta A.Br.		m
		Alnus sp.		р
		Betula sp.		р
	e	Carpinus betulus L.		р
	ICea	Carpinus grandis Ung.	m	
	Betulaceae	Carpinus neilreichii Kov.		m
	Be	Carpinus sp.		mp
		Corylus sp.		р
		Ostrya sp.		р
		Castanea sp.		р
		Castanopsis decheni (O.Web.) Kr.et Wld.		m
		Castanopsis cf.echidnocarpa A.DC		m
	ae	Castanopsis brevicuspis Miq.		m
	Fagaceae	Castanopsis sp.		р
	Fag	Lithocarpus sp.		р
		Fagus sp.		р
		Quercus accutissima Carruth.		m
		Quercus drymeja Ung.		m
		Quercus furcinervis (Rossm.) Heer		m

1	2	3	4	5
		Quercus lonchitis Ung.		m
		Quercus neriifolia A.Br.	m	m
	-	Quercus sp.		mp
	Fagaceae	Tricolporopollenites cingulum (R.Pot.) Th.et Pfl.		р
	Fac	Tricolporopollenites henrici (R.Pot.) Th.et Pfl.		р
		Tricolporopollenites micro- henrici (R.Pot.)Th.et Pfl.		р
		Ulmus minuta Goepp.		m
	Ulmaceae	Ulmus pyramidalis Goepp.		m
	Umaceae	Ulmus sp.		р
		Zelkova sp.		р
		Ficus sp.		р
	Moraceae	Moraceae gen.indet.		р
	Loranthaceae	Viscum caucasicum Djap.	m	
		Magnolia attenuata Web.		m
		Magnolia dianae Ung.		m
		Magnolia dzundzeana (Pal.)		
	Magnaliasaaa	Takht.		m
ae	Magnoliaceae	Magnolia megafigurata (Krutsch) Ram.		р
Dicotyledoneae		Magnolia neogenica (W.Kr.) Ram.		р
tyle		Magnolia sp.	m	m
Dico		Cinnamomum lanceolatum (Ung.) Heer	m	m
		Cinnamomum polymorphum Heer		m
	0	Cinnamomum scheuchzeri Heer		m
	eae	Laurus agatophyllum Ung.	m	
	Lauraceae	Lindera antiqua (Heer) Lamotte	m	
	Laı	Litsea primigenia (Ung.) Takht.	m	
		Ocotea heeri (Gaud.) Takht.	m	
		Ocotea kolakovskyi Harut.	m	
		Ocotea cf.pulchella Mart.		m
		Persea braunii Heer	m	
		Lauraceae gen.indet.		m
	Nymphacaccac	1 1		
	Nymphaeaceae	Nuphar sp. Ternstroemia mocanerifolia		р
	Theaceae	Kol.		m
	Platanaceae	Platanus cf.orientalis L.		m
		Liquidambar europaeum A.Br.		m
	Hamamelidaceae	Liquidambar orientalis L.		р
		Liquidambar styraciflua L.		р
		Sycopsis colchica Ram.		р
	Rosaceae	Rosa sp.	m	

1	2	3	4	5
	Pacacaaa	Sorbus sp.	m	
	Rosaceae	Rosaceae gen.indet.		р
		Acacia colchica Avakov		m
	e	Dalbergia bella Heer	m	
	Icea	Dalbergia sp.	m	
	Fabaceae	Wisteria fallax (Nath.) Tanai et Onoe	m	
		Leguminosites sp	m	
	Caesalpiniaceae	Podogonium oehningense (Koen.) Kirch.	m	
	Meliaceae	Cedrela denticulata Djap.	m	
	MellaCeae	Cedrela dorofeevi Djap.	m	
	Euphorbiaceae	Euphorbiaceae gen.indet.		р
		Cotinus cf.coggygria Scop.		m
	Anacardiaceae	Cotinus sp.	m	
	Anacarciaceae	Rhus meriani Heer		m
		Rhus sp.	m	
		Cupania japonica Tanai	m	
	Sapindaceae	Sapindus bilinicus Ett.	m	
		Sapindus cupanoides Ett.		m
		Sapindus densifolius Heer		m
eae		Sapindus falcifolius (A.Br.) Heer	m	
Dicotyledoneae		Sapindus cf.inaequilatera Rus- by		m
otyl	Sabiaceae	Sabia cf.parvifolia Wall.		m
Dice		llex cf.opaca Ait.		m
	Aquifoliaceae	Ilex sp.		р
	Staphyleaceae	Staphylea sp.		р
	Rhamnaceae	Berchemia multinervis (A.Br.) Heer		m
		Frangula cf.alnus Mill.		m
	Vitaceae	Parthenocissus quinquefoli- iformis Lub.		р
		Vitis sp		р
	Tiliaceae	Tilia sp.		mp
	Sterculiaceae	Sterculia sp.		р
	Elaeagnaceae	Elaeagnus sp.		р
		Eugenia haeringiana Ung.	m	
	e	Myrtophyllum armazii Avakov		m
	Icea	Myrtophyllum sp.		m
	Myrtaceae	Myrtus rectinervis Sap.		m
	Σ	Daplopollis mirtoides W.Kr.		р
		Myrtaceae gen.indet.		р
	Combretaceae	Combretum caucasicum Ava- kov		m
	Melastomaceae	Meriania vsatii Avakov		m
	Mastixiaceae	Mastixia sp.		р

1	2	3	4	5
	6	Aucuba cf.japonica Thunb.		m
	Cornaceae	Cornus cf.capitata Wall.		m
		Brassaiopsis sp.		р
	Araliaceae	Araliaceae gen.indet.		р
	Arallaceae	Tricolpopollenites edmundi (R.Pot.) Th.et Pf.		р
	Apiaceae	Apiaceae gen.indet.		р
	Clethraceae	Clethra iberica Djap.	m	
	Clethraceae	Clethra maximoviczii Nat.	m	
	Myrsinaceae	Rapanea iberica Avakov		m
		Bumelia oblongifolia Ett.	m	
	Sapotação	Sapotaceae gen.indet.		р
	Sapotaceae	Sapotacepodaepollenites ob- scurus (Th.et Pf.) Nagy		р
eae	Symplocaceae	Symplocos paniculata Wall.		р
one	Periplocaceae	Periploca sp.	m	
/led		Allamanda uacilai Avakov		m
Dicotyledoneae	Apocynaceae	Apocynophyllum helveticum Heer		m
		Apocynophyllum sp.	m	
		Plumiera caucasica Avakov		m
	Apod	Tabernaemontana telaginensis Avakov		m
		Apocynaceae gen.indet.		m
		Phyllites sp. (Apocynaceae?)		m
	Oloacoao	Fraxinus sp.		mp
	Oleaceae	Syringa cf.vulgaris L.		m
	Caprifoliacoao	Lonicera sp.		m
	Caprifoliaceae	Viburnum sp.		mp
	Lamiaceae	Lamiaceae gen.indet.		р
	Plantaginaceae	Plantago sp.		р
	Asteraceae	Artemisia sp.		р
	Asteraceae	Asteraceae gen.indet.		р
		Smilax minuta Djap.	m	
eae	Liliaceae	Smilax usanetensis Avakov		m
Monocotyledoneae		Liliaceae gen.indet.		mp
ylec	Poaceae	Poaceae gen.indet.		р
cot	Arecaceae	Arecipites monosulcoides W.Kr.		р
ouc		Arecaceae gen.indet.		р
Wc	Sparganiaceae	Sparganium sp.		р
	Typhaceae	Typha sp.		р

The Upper Miocene

In this section we provide an overview of the history of flora and vegetation during the Sarmatian and Meotian based on plant macroremains and palynological data. Palynological data were interpreted using the landscape-phytocenological method, which has as its foundation the zonal distribution of plant communities (Borzenkova, 1992). While this method does not provide exact paleoclimatic parameters, it reconstructs changes in landscape and vegetation zones effectively, making it a useful tool in palynological investigations. Paleoclimatic reconstructions were undertaken separately for each zone, depending on the paleovegetation (Shatilova et al., 2004a).

The same landscape-phytocenological method was applied to interpret sporepollen assemblages for the remainder of the Cenozoic. Hence a continuous history of climate and vegetation, from the Sarmatian until the end of the Holocene, can be traced, characterized by several major stages of development (I-XIII).

The Sarmatian

Sarmatian deposits are found in the Transcaucasus intermontane depression and are divided into three substages: the Volhynian (Lower), the Bessarabian (Middle) and the Khersonian (Upper; see Table IX). Marine facies of the Lower and Middle Sarmatian are distributed throughout Georgia. Upper Sarmatian marine sediments have a much more limited distribution, especially in Eastern Georgia, where they are described from only one region of Kakheti (river Iori) as "marine strata" (Buleishvili, 1960; Grusinskaya et al., 1986).

Sarmatian leaf imprints from Western Georgia were researched by Uznadze (1965). Later, Kolakovsky (Kolakovsky & Shakryl, 1976) studied the rich Sarmatian floras of Abkhazia, near the villages Gvada, Mugudzirkhva and Barmish, and Ratiani (1972) investigated the small fossil locality near the village of Djirkhva (Fig.6). Sarmatian floras of Abkhazia are distinguished by systematic diversity, an abundance of subtropical plants and their unusual composition.

The remains of some conifers are found as lignitiferous phytolemma, which allowed the epidermis to be studied in detail, especially the stomatal structure. These observations indicated the presence of several taxa previously unknown in the palaeoflora of Georgia: the genus Colchidia and species *Sequoia corniculata, Cathaya europaea* and *C. abchasica* (Kolakovsky, 1970; Kolakovsky & Shakryl, 1968, 1974; Sveshnikova, 1964).

During the Sarmatian, the lower mountain belts in Abkhazia were clothed in evergreen subtropical forests with a predominance of Lauraceae and Myrsinaceae, the latter indicated in fossil material by the leathery leaves of Rapanea. A large area was covered by thermophilous deciduous plants: Ocotea, Persea and others, which now occur in Central and Southern America, the Mediterranean region and Southeast Asia. Warm-temperate and temperate plants occurred in varied assemblages. These plants were distributed on elevated dry land and possibly in cold valleys as well. Carpinus, Castanea, Fagus, Cryptomerya, Abies, Cathaya, and Colchidia were typical species. Hemixerophytes seem to have had a minor role and included Arbutus elegans f. andrachne, Celtis magnifica, Smilax aspera, Thelycrania sanguinea, Quercus pseudorobur and probably Pinus paraeuxina. The presence of subtropical and, in some cases, tropical plants in the Sarmatian flora of Abkhazia made it similar to the Oligocene-Miocene floras of Europe. This indicates a wide zonal distribution of some subtropical genera and species during the Neogene, which are now preserved only in disjunct botanical provinces. Mastixia, for example, as well as some other plants, are still to be found in the mountains of Malaya (Kolakovsky, Shakryl, 1976).

Rich macrofossil material from Lower-Middle Sarmatian deposits was collected by Chelidze (1972, 1979, 1987) near the town of Kaspi, Metekhi station, and Djava and Norio villages in Eastern Georgia. Her data (1979) indicate that Magnolia, Lauraceae, Podogonium, Myrtus and Apocynophyllum were prevalent in the Sarmatian flora of Kartli (Eastern Georgia). Sarmatian deposits of Kakheti (Norio village) contained at least 25 species, including one fern, two conifers and a large number of angiosperms. On the whole, the Sarmatian flora of Norio is subtropical. Eastern- and Southern-Asian and Atlantic elements from the Lauraceae and Myrsinaceae formed part of this composition (Chelidze, 1972).

The flora of Goderdzi deserves special mention because of its richness and diversity. Fossil material from this locality was studied by many paleobotanists, especially Uznadze. Nevertheless, the unique composition of Goderdzian flora is yet to be fully revealed (Uznadze & Tsagareli, 1979).

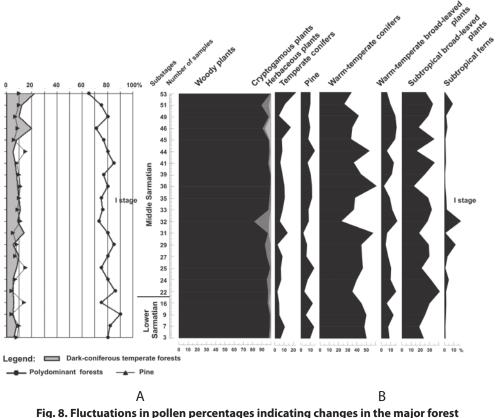
The fossil material is represented by wood and leaf imprints. The good preservation of leaves suggests that their fossilization occurred in situ during the accumulation of volcanic material. Study of fossilized wood supplemented the lists of flora with conifers and representatives of the lcacinaceae, leaves of which were absent (Shilkina, 1958).

Some ecological elements are distinguished in the composition of this flora: 1) a subtropical element, which comprised most of the fossil material; 2) a warm-

temperate element - 17%; and 3) a temperate element - 15%.

Remains of subtropical plants are represented in great number and high diversity. The abundance of the family Lauraceae indicates a wide distribution of laurel forests, in which the other evergreen plants with laurel-like leaves also occurred.

The modern counterparts of plants of the Goderdzian flora are now distributed in SE Asia, NE India, N America, the Antilles, Canary Islands, Mediterranean and Caucasus (Uznadze & Tsagareli, 1979).


Plant remains from the lower part of the Goderdzi suite, found in limnic deposits near the village of Vale, were studied by Chelidze (1970). Warm-temperate deciduous plants were dominant in this flora; subtropical plants were represented by shrubs. The main feature of this flora was the prevalence of plants typical of dry, sunny slopes.

The Goderdzian suite was dated to the Upper Miocene (Sarmatian-Meotian) based on a petrographic analysis of fossil ash (Skhirtladze, 1958). The same conclusion was drawn later on the basis of hipparion faunal remains (Gabunia & Lasarashvili, 1962).

Until recently, most of our knowledge about the Sarmatian flora and vegetation was based on macrobotanical remains. Only some core samples from central Eastern Georgia were studied palynologically (P.Mchedlishvili & N.Mchedlishvili, 1953). These spore-pollen assemblages contained 28 identifiable forms, 3 of which were of cryptogamous plants, 7 of conifers and 18 of angiosperms.

Recent palynological studies of Sarmatian deposits in both Western and Eastern Georgia have greatly enriched our knowledge of this fossil flora (Kokolashvili & Shatilova, 2009; Maissuradze et al., 2008; Shatilova et al., 1999; 2004; 2004a; 2008; 2009; 2010). The pollen studies have revealed a suite of new taxa, especially ferns and conifers, for which palynomorphs fossilize better than macroremains.

Pollen and spore assemblages from Sarmatian deposits in Western and Eastern Georgia were interpreted using the landscape-phytocenological method. For every region, separate diagrams were constructed (Figs.8, 9). The curves on the left (A) correspond to the two major zonal vegetation formations of the Sarmatian: 1) polydominant forests of the plains, piedmonts and middle mountain belts, composed of subtropical and warm-temperate conifers, broadleafed plants and ferns; and 2) temperate forests of the upper mountain belt, composed of conifers. The curve of pine, an intrazonal plant indicative of humidity, is provided separately on these diagrams. The right-hand side of the diagrams (B) reflects plant-functional types of the Sarmatian in Western and Eastern Georgia.

formations (A) and plant-functional types (B) of the Sarmatian in Western Georgia.

For Western Georgia, both parts of diagram (Fig.8: A, B) reflect a relatively stable development of vegetation and climate. Polydominant forest was the main formation, covering greater areas than coniferous communities. Only in the upper part of Middle Sarmatian, polydominant forests declined somewhat while dark coniferous communities expanded, a shift probably linked to paleogeographical changes at the boundary of the Middle and Upper Sarmatian. The role of herbaceous plants during whole Sarmatian was very small.

Vegetation dynamics in Eastern Georgia were quite different (Fig. 9: A, B). Lower-Middle Sarmatian palynological assemblages reflect variations in the distribution of polydominant and pine forests, probably as a result of humidity fluctuations. This process is especially pronounced during the Late Sarmatian, when herbaceous communities expanded on the plains. Woody plants probably formed riparian forests and open woodlands composed of warm-temperate and subtropical plants. Some of them probably occurred as shrubs. Pine dominated in the upper mountain belts. The Late Sarmatian forests saw a substantial decline in subtropical ferns compared to preceding periods. This suggests that one of the main factors in the development of Eastern Georgia's flora during this period was xerophytization. This is confirmed by pollen data and mammal assemblages from Upper Sarmatian and Post-Sarmatian deposits in Eastern Georgia (P.Mchedlishvili & N.Mchedlishvili, 1953; Meladze, 1967).

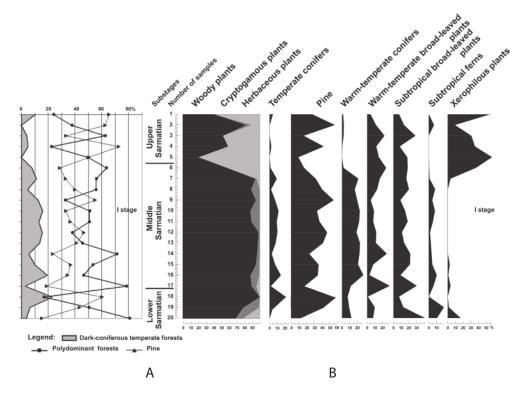


Fig. 9. Fluctuations in pollen percentages indicating changes in the major forest formations (A) and plant-functional types (B) of the Sarmatian in Eastern Georgia.

The end of the Middle Sarmatian was a turning-point in the geological history of the Caucasus. As a consequence of crustal movements, the Trancaucasian intermontane depression transformed into dry land, split into two sections (W and E) by the Dzirulian Block (Fig. 10). The Western part was linked with the Black Sea Basin, the so-called Rionian Bay, where marine deposits continued to accumulate until the end of the Pleistocene. The territory adjoing the Rionian Bay, hemmed in by high mountains, became isolated from the rest of the South Caucasus. A warm, humid climate prevailed here, helping to preserve rich forest vegetation. Thus, from the end of the Middle Sarmatian, the Colchis refuge took shape. Many Tertiary species still survive there today.

Eastward of the Dzirulian Block, the Kurian Bay formed. In Late Sarmatian the territory of Georgia adjoing this bay became dry land with landscapes typical of a continental climate.

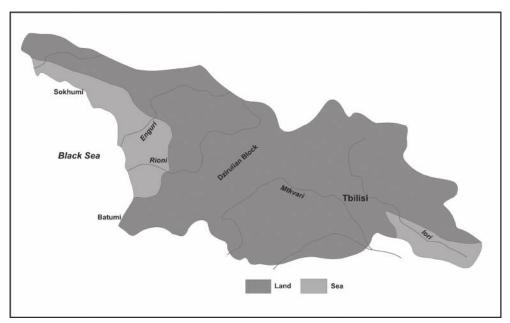


Fig. 10. Schematic paleogeographical map of Georgia during the Late Sarmatian.

So, from the Middle Sarmatian onwards, the vegetation of Western and Eastern Georgia developed along independent lines under the influence of quite different climatic conditions.

The Meotian (Western Georgia)

The Meotian deposits are only known from Western Georgia (Fig.6) and fall into two substages: the Lower or Bagerovian substage and the Upper or Akmanaian substage (Table IX). Data on plant macrofossils from this region have been published by Mchedlishvili (1956), Uznadze (1965), Kolakovsky et al. (1970), Tsagareli (Purtseladze & Tsagareli, 1974) and Chelidze (Chelidze, 1987; Chelidze & Kvavadze, 1983, 1986, 1987). A number of Meotian profiles in Western Georgia (Guria, Abkhazia and Megrelia) were also studied palynologically (Purtseladze, 1977; Purtseladze & Tsagareli, 1974; Shatilova et al., 1999, 2000, 2008a).

From the Kisatibi locality in Southern Georgia, Uznadze (1965) described plant macroremains from the upper levels of the Goderdzian suite, dated to the Meotian. The Kisatibian flora included 22 different forms, such as 3 ferns, 2 monocotyledons and the remainder deciduous trees, except Cinnamomum.

The Meotian flora of Western Georgia is distinguished by diversity amongst the conifers. Compared to the Sarmatian, there is a greater role of conifers ecologically associated with temperate climatic zones (i.e. Abies, Picea and Tsuga). In terms of composition, the subtropical conifers did not change. Podocarpus, Dacrydium, Cathaya, Araucaria, Keteleeria and Phyllocladus continued to occur into the Meotian (Fig.11).

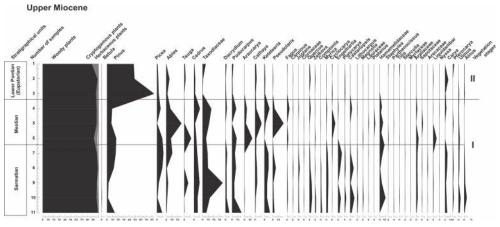


Fig.11. Composite palynological diagram of Upper Miocene (Sarmatian and Meotian) and Lower Pontian (Eupatorian) marine deposits from Western Georgia

In contrast, many of the subtropical angiosperms disappeared after the Sarmatian, especially from the Fagaceae, Lauraceae, Berberidaceae, Caesalpiniaceae, Fabaceae, Anacardiaceae, Sapindaceae, Icacinaceae, Rhamnaceae, Thymelaceae, Myrtaceae, Myrsinaceae, Symplocaceae and Apocynaceae. During the Meotian this group of thermophilous plants remained, however, systematically quite rich and represented mainly by taxa of humid-subtropical and warm-temperate climates (Kolakovsky at al., 1970).

One of the main features of Upper Miocene palynocomplexes in Georgia is a great diversity in the family Hamamelidaceae, represented by 24 forms, 14 genera and 3 subfamilies: Hamamelidoideae, Exbucklandioideae and Altingioideae (Sha-

tilova, Stuchlik, 2001; Shatilova, Mchedlishvili, 2007; 2011a).

Three main stages occurred in the history of this botanical family in Georgia. The initial stage embraced the Eocene, Oligocene and Middle Miocene, when 4 genera are known to have existed: Hamamelis, Corylopsis, Sycopsis and Liquidambar (Ramishvili, 1982; Panova et al., 1984).

The Late Miocene was the second stage, a time when the Hamamelidaceae flourished. During the Sarmatian, Hamamelidaceae played a significant role in plant communities throughout Georgia. The same taxa continued into the Meotian, but the distribution of most genera was much smaller and generally restricted to Western Georgia.

The third stage of development of the Hamamelidaceae family saw their gradual decline and extinction in Eastern Georgia, followed somewhat later in Western Georgia, where the family persisted until the Middle Pleistocene.

Another taxon characteristic of the Sarmatian and Meotian is the genus Fupingopollenites (Shatilova & Mchedlishvili, 2009). This was an unidentified angiosperm that was distributed in Eurasia during the Cenozoic. Its fossil remains are known only from pollen and are often described using different names (Koreneva & Kartashova, 1978; Nagy, 1969, 1985, 1992; Rossignol-Strick, 1973; Shchekina, 1979). Thiele-Pfeiffer (1980) brought the many forms known in the literature together into a single taxon: *Tricolporopollenites wackersdorfensis*. Liu Geng-wu (1985; 1986) established a new genus, Fupingopollenites. In 1992 Nagy reffered the pollen grains of *Alangium sibiricum* Lubom., to the unidentified angiosperm plant and described it as *Tricolporopollenites sibiricum* (Lubom.) Nagy. Now this name is used by palynologists of Europe (Planderova, 1990; Jimenez-Moreno et al., 2007).

According to Liu Geng-wu (1985), the plant that produced the pollen grains of unidentified angiosperm lived in a subtropical, humid climate and was a component of an evergreen formation. The genus originated in the Middle Eocene, when its distribution was restricted to China. It began to spread during the Oligocene and prospered during the Miocene, when its distribution expanded to encompass most of the non-arid parts of Asia.

In Georgia, the genus Fupingopollenites is first known from the Eocene. At its apogee during the Sarmatian, it was represented by two species: *Fupingopollenites wackersdorfensis* Liu Geng-wu and *F. minutus* Liu Geng-wu. The genus Fupingopollenites disappeared from Eastern Georgia after the Middle Sarmatian, when the area of forests declined and vegetation typical of a continental climate became dominant.

In Western Georgia, the climate continued warm and humid well after the

Sarmatian and Fupingopollenites remained in the flora until the end of the Miocene. Along with many other subtropical plants, this genus became extinct on the boundary of the Meotian and Pontian, when conditions in Western Georgia became cooler and drier (Shatilova, Mchedlishvili, 2009).

The dynamics of Meotian vegetation and climate can be reconstructed using the landscape-phytocenological method. The uplift of high mountains toward the end of the Middle Sarmatian encouraged the development of more distinct altitudinal zonality than during previous stretches of the Miocene. While the structure of Meotian vegetation was the same as its Sarmatian counterpart, the distribution of each formation and the vegetation dynamics were different (Fig.12).

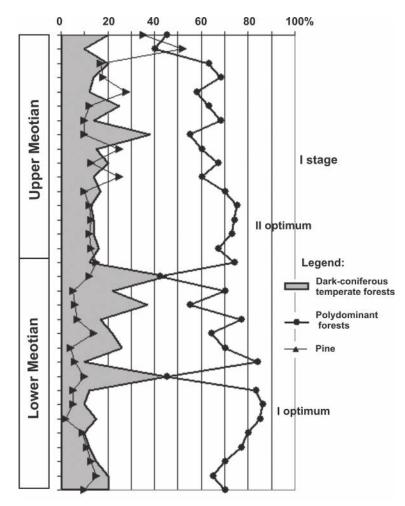


Fig. 12. Fluctuations in pollen percentages of ecological groups indicating changes in major forest types in Western Georgia during the Meotian.

In the Meotian, the dark conifers occupied the upper mountain belt and their area was significantly greater than it was during the Sarmatian.

Middle and lower mountain belts were covered with polydominant forests, which where composed of subtropical and warm-temperate conifers and broad-leaved trees: Podocarpus, Dacrydium, Cedrus, Keteleeria, Cathaya, Taxodiaceae, some species of Carya, Quercus, Fagus, Castanea, Juglans, Platanus, Nyssa and the family Hamamelidaceae. The forest understorey consisted of subtropical ferns such as Dicksonia, Gleichenia, Anemia, Polypodium and Pteris. Semi-hygrophilous broad-leaved forests were relatively widespread, composed of Castanopsis, some species of Carya, Pterocarya and Alnus, as well as *Libocedrus salicornioides* and Lauraceae (Kolakovsky et al., 1970).

As a whole, Meotian polydominant forests were more restricted and unstable compared to the Sarmatian. Conditions similar to those of the Middle Sarmatian occurred at the beginning of the Lower Meotian, when the polydominant forests had the greatest spread. This was probably the first climatic optimum. Changes in vegetation cover occurred during the second half of the Early Meotian, indicating a probable decrease in temperature and humidity.

The beginning of the Late Meotian can be considered as a second climatic optimum, although the area of polydominant forests was not as wide and stable as during the first optimum. By the end of Meotian, the decreasing role of dark conifers and increase of pine forests was brought on by abrupt climatic changes in Early Pontian – Eupatorian times (Fig. 11, 14, 15). According to Chepalyga (1987), the upper part of the Meotian can be correlated with a major regression in the marine basins of Paratethys – the so-called Messinian salinity crisis. According to others (Borzenkova, 1992; Zubakov, 1990), however, this phenomenon is synchronous with the Bosphorian substage of the Pontian.

Like the most epochs transitional between two major divisions in the geological timescale, the Meotian vegetation of Western Georgia preserved strong similarities with the vegetal landscapes of previous stretches of time on one hand, and, on the other, had already begun to assume some of the features typical of the ages to come. As a whole the Sarmatian and Meotian floras can be considered as a common developmental stage for the Upper Miocene vegetation of Georgia (stage I).

A list of Sarmatian and Meotian floras is given below (Table XI).

Class	Family	Species	Sarmatian	Meotian	
1	2	3	4	5	
Bryopsida	Sphag- naceae	Sphagnum sp.	р	р	
		Lycopodium alpinum L.	р		
		Lycopodium annotinum L.		р	
Lycopodi- opsida	Lycopodi- aceae	Lycopodium selago L.		р	
opsida	aceae	Lycopodium serratum Tunb.	р	р	
		Lycopodium sp.	р	р	
		Selaginella atrivirides Spring.	р	р	
		Selaginella fusca N.Mtchedl.	р	р	
lsoëtopsida	Selaginel-	Selaginella selaginoides (L.) Link.		р	
	laceae	Selaginella aff.eggersii Sodiro		p	
		Selaginella sp.	р	р	
Equisetop- sida	Equiseta- ceae	Equisetum sp.	mp		
Ophioglos-	Ophioglos-	Botrychium sp.	mp	р	
sopsida	saceae	Ophioglossum sp.		р	
		Osmunda cinnamomea L.		р	
		Osmunda regalis L.		р	
	Osmun-	Osmunda schlemnitziensis Pettko		m	
	daceae	Osmunda strozzi Gaud.		m	
		Osmunda sp.	mp	р	
	Schizae- aceae	Schizaea sp.	р	р	
	A	Anemia sp.	р	р	
	Anemiaceae	Mohria sp.	р	р	
		Lygodium digitatum Presl.	р	р	
Polypodiopsida		Lygodium japonicum Sw.	р	р	
do	Lygodiaceae	Lygodium aff.multiwallatum (W.Kr.) Ram.	р		
odi		Lygodium sp.	р	р	
lyp		Cryptogramma crispa (L.) Br.		р	
Ъс		Cryptogramma sp.	р	р	
		Pteridacidites boerzoeniensis (Nagy)			
		Shat., Stuch.	р	р	
	eae	(Pteris aff.quadriaurita Retz.)			
	Pteridace	Pteridacidites dentatiformis Shat., Stuch. (Pteris dentata Forsk)		р	
	Pte	Pteridacidites georgiensis Shat., Stuch. (Pteris sp.)		р	
			Pteridacidites grandifoliiformis Shat., Stuch. (Pteris grandifolia L.)	р	р

Table XI. Plants from Sarmatian and Meotian deposits in GeorgiaKey: m – macrofossils; p – pollen

1	2	3	4	5
		Pteridacidites helveticus (Nagy) St.et Sh.	n	
		(Pteris sp.)	р	
		Pteridacidites longifoliiformis Shat., Stuch.		р
		(Pteris longifolia L.)		P
	a,	Pteridacidites remotifolioides Shat., Stuch.		р
	Pteridaceae	(Pteris remotifolia Bak.)		P
	dac	Pteridacidites venustaeformis Shat.,		
	teri	Stuch. (Pteris venusta Kze.)	р	р
		Pteridacidites aff.verus (N.Mtchedl.) Shat.,		
		Stuch.	р	р
		(Pteris aff.crenata Sw.)	F	
		Pteridacidites aff.vittatoides Shat., Stuch.		
		(Pteris vittata L.)	р	
	Marsile-	Marsilea sp.	р	
	aceae		٢	
	U	Adiantum reniforme L.var.foss. Sap.et Mar.	m	
	Adiantaceae	Adiantum sp.	mp	р
	anta	Anogramma sp.	р	р
	Adia	Onychium sp.	р	
		Pityrogramma sp.	р	р
		Clavifera aff.tuberosa Bolch.	р	
da		Clavifera sp.	p	
isdo	Gleicheni-	Gleichenia angulata Naum.		р
Polypodiopsida	aceae	Gleichenia sp.	р	р
lype		Gleicheniaceae gen.indet.	р	р
Ро	Matoni- aceae	Matonia sp.		р
		Polypodium aureum L.	р	р
		Polypodium australe Fee	р	
	ae	Polypodium palaeoserratum Kol.		m
	ace	Polypodium pliocenicum Ram.		р
	Polypodiaceae	Polypodium verrucatum Ram.	р	
	dy	Polypodium sp.	mp	р
	Ро	Verrucatosporites histiopteroides W.Kr.	р	р
		Pyrrosia sp.	р	
		Polypodiaceae gen.indet.	р	р
		Vandenboschia cf.radicans (Swartz) Copel.	m	
	Hymeno- phyllaceae	Vandenboschia fomini (Pal.) Kol.	m	
Th	priyllaceae	Hymenophyllum sp.	р	р
	Thyrsopteri-	Cibotium guriensis Purc.		р
	daceae	Cibotium sp.	р	
		Dicksonia antarctica R.Br.	p	р
		Dicksonia luculenta Purc.		p
	Dicksonia-	Dicksonia reticulata Purc.	р	р
	ceae	Dicksonia spanditocincta Purc.	р	р
		Dicksonia unitotuberata Purc.	р	р
		Dicksonia sp	р	1 .

1	2	3	4	5
	Custheses	Alsophyla sp.	р	р
	Cyatheace- ae	Cyathea sp.	р	р
	ae	Hemitelia sp.	р	
	Dennstaed- tiaceae	Pteridium oeningense (Ung.) Kol.	m	
	Aspleni-	Asplenium wegmanni A.Brongn.		m
	aceae	Asplenium sp.	р	mp
		Aspidium sp.		m
da		Athyrium sp.		р
Polypodiopsida		Cyclosorus stiriacus (Ung.) Ching et Takht.	m	
odic	ae	Cyclosorus sp.		m
урс	Aspidiaceae	Cystopteris sp.	р	р
Pol	ibic	Dryopteris sp.	р	р
	Asl	Lastrea (Cyclosorus) fischeri Heer	m	
		Lastrea sp.	m	
		Polystichum sp.		р
		Woodsia sp.	mp	
	Davalliaceae	Microlepia sp	р	
		Woodwardia roessneriana (Ung.) Heer	m	
	Salviniaceae	i i		р
	Filicales fam.indet.		р	
	Ginkgoace-	Ginkgo biloba L.	p	р
Ginkgoop-		Ginkgo occidentalis Samyl.	m	m
sida	ae	Ginkgo sp.	р	р
		Dacrydium sp.	p	p
	Podocar-	Podocarpus sp. (aff.javanicus Merril.)	m	
	paceae	Podocarpus sp.	р	р
	Phylloclad- aceae	Phyllocladus sp.	р	р
	-	Taxus grandis Kräus.		m
	Тахасеае	Torreya sp.		m
	Araucari- aceae	Araucaria sp.	р	р
Ø		Abies alba Mill.	р	р
		Abies cephalonica Loud.	р	р
Pinopsic		Abies ciliticaeformis N.Mtchedl.	р	р
Pir		Abies nordmanniana (Stev.) Spach.	р	р
		Abies sp. cf.A.firma S. et L.	m	
	ae	Abies sp.	mp	р
	Pinaceae	Cathaya abchasica Sveshn.	m	m
	Pin	Cathaya europaea Sveshn.	m	
		Cathaya aff.argyrophylla C.et K.	р	р
		Cedrus atlantica Manetti	p	p
		Cedrus deodara Loud.	p	p
		Cedrus sauerae N.Mtchedl.	p	р
		Cedrus sp.	mp	r r

1	2	3	4	5
		Colchidia angustissima Kol.et Schak.	m	
		Colchidia longicellulata Kol.et Schak.	m	
		Colchidia (?) ambigua Kol.	m	
		Keteleeria caucasica Ram.	р	р
		Picea complanataeformis N.Mtchedl.	р	р
		Picea minor N.Mtchedl.	р	р
		Picea mioorientalis Uzn.	p	· · ·
		Picea orientalis L.		р
		Picea sp.	mp	р
		Piceoxylon piceoides Schilk.	m	
		Pinus euxina Kol.		m
		Pinus halepensis Mill.		р
		Pinus irinae Kol.et Schak.	m	
		Pinus paraeuxina Kol.	m	
	Pinaceae	Pinus pithyusa Stev.	m	р
	nac	Pinus praepithyusa Palib.		m
	ä	Pinus rjabinini Palib.	m	
		Pinus thomasiana (Goepp.) E.Reich.		m
		Pinus sp.	mp	mp
		Pityoxylon goderzicum Schilk.	m	mp
		Pseudolarix aff.kaemferi Gord.		р
		Pseudolarix sp.	р	
Pinopsida		Pseudotsuga sp.	p p	
dot		Tsuga diversifolia (Maxim.) Mast.		n
Pir		Tsuga canadensis (L.) Carr.	p	p
		Tsuga meierii Mched.	р	p
		Tsuga patens Downie		p
		Tsuga pattoniana Engelm.	n	p
		Tsuga shatilovae Mched.	р	p
		-	mn	р
	Sciedopity	Tsuga sp.	mp	
	Sciadopity- aceae	Sciadopitys sp.	р	mp
		Cryptomeria japonica Don	mp	mp
		Cryptomeria sp.		m
		Cunninghamia sp.	р	
		Glyptostrobus ungeri Heer	m	
		Glytostrobus sp.	mp	р
		Sequoia corniculata Kol.et Schak.	m	
	T	Sequoia langsdorfii (Brongn.) Heer	m	m
	Taxodiaceae	Sequoia sp.	р	mp
		Sequoiadendron sp.	р	р
		Taxodium distichum foss. A.Br.		m
		Taxodium distichum miocenicum Heer	m	
		Taxodium dubium (Sternb.) Heer	m	m
		Taxodium sp.	p	mp
		Taxodiaceae gen.indet.	p p	p p

1	2	3	4	5
		Cupressus palaeosempervirens Kol.et Schak.	m	
		Cupressus sempervirens L. foss.		m
		Cupressus sp.	р	р
D		Helia salicornioides Ung.	m	
Pinopsida	Cupres-	Juniperus sp.	р	
dor	saceae	Libocedrus pliocenica Kink.	m	
Pil		Libocedrus salicornioides (Ung.) Heer		m
		Libocedrus sp.	р	
		Thuja barmyschensis Kol.et Schak.	m	
		Thuja occidentalis L.		m
		Cupressaceae gen.indet.	р	р
		Ephedra distachya L.		р
с. · · і	Ephed-	Ephedra aff.equisetina Bge.		р
Gnetopsida	raceae	Ephedra aff.strobilaceae Bge.		р
		Ephedra sp.	р	р
	Casuari- naceae	Casuarinaceae gen.indet.	р	
		Comptonia sp.	р	mp
		Myrica banksiaefolia Ung.	m	
		Myrica laevigata (Heer) Sap.	m	
	ae	Myrica lignitum (Ung.) Sap.	m	m
	Myricaceae	Myrica palaeogale Pilar.	m	
		Myrica sismondae Mesch.	m	
		Myrica studeri Heer	m	
		Myrica sp. (cf. M.acuminata Ung.)	m	
		Myrica sp.	р	р
		Myricaceae gen.indet.	р	
		Carya aquatica (Michx.) Nutt.	р	р
ae		Carya bilinica Ung.	m	
Dicotyledoneae		Carya cordiformis (Wangh.) C.Koch	р	р
led		Carya denticulata (Web.) Iljinsk.	m	m
toty		Carya ovata (Mill.) C.Koch		р
Die		Carya serraefolia (Kr.) Goepp.	m	
		Carya aff.pecan (March.) Engl.		р
	ae	Carya sp.	р	mp
	ace	Cyclocarya sp.	р	р
	pue	Engelhardia spicata Blume		р
	Juglandaceae	Engelhardia wallichiana Lindl.		р
	Ť	Engelhardia sp.	р	р
		Juglans cinerea L.	р	mp
		Juglans regia L.	р	р
		Juglans zaisanica Iljinsk.	m	m
		Juglans sp.	р	
		Platycarya sp.	р	р
		Pterocarya castaneifolia (Goepp.) Schlecht.	m	

1	2	3	4	5
	ae	Pterocarya paradisiaca (Ung.) Iljinsk.	m	
	Juglandaceae	Pterocarya pterocarpa (Michx.) Kunth.	р	р
	nda	Pterocarya rhoifolia Sieb.et Zucc.		р
	ıgla	Pterocarya stenoptera DC.	р	р
	n۲	Pterocarya sp.	р	р
		Populus balsamoides Goepp.	m	m
		Populus populina (Brongn.) Knobl.	m	
		Populus sp.	m	
	eae	Salix coriacea Uzn.et Tsag.		m
	cace	Salix integra Goepp.	m	
	Salicaceae	Salix macrophylla Heer	m	
	5	Salix media A.Br.	m	
		Salix varians Goepp.	m	m
		Salix sp.	mp	mp
-		Alnus angustifolia Kol.	אייי	m
		Alnus feroniae (Ung.) Czecz.	m	
		Alnus subcordata C.A.M.	m	m
		Alnus sp.	mp	
		Betula caudata Goepp.	m	р
		Betula macrophylla (Goepp.) Heer		m
		Betula sp.	n	
eae		Carpinus betulus L.	p	p
one			p	p
led		Carpinus caucasica Grossh.	p	р
Dicotyledoneae	ae	Carpinus colchica Kol.	m	
Dio	Betulaceae	Carpinus grandis Ung.	m	m
	tul	Carpinus orientalis Mill.	р	р
	Be	Carpinus pliofauriei Rat.		m
		Carpinus subcordata Nath.	m	m
		Carpinus uniserrata (Kol.) Rat.et Kol.	m	m
		Carpinus subyedoensis Konno	m	
		Carpinus sp.	р	р
		Corylus aff.colurna L.		р
		Corylus aff.ferox Wall.		р
		Corylus sp.	р	р
		Ostrya angustifolia Andr.	m	
		Ostrya atlantides Ung.	m	
		Ostrya sp.	р	р
		Castanea atavia Ung.	m	m
		Castanea pliosativa Kol.		m
		Castanea sp.	р	р
	Fagaceae	Castanopsis abchasica Kol.	m	
	Jace	Castanopsis adjarica Kol.	m	
	Fac	Castanopsis bifurcata Kol.	m	
		Castanopsis decheni (O.Web.) Kr.et Wld.	m	
		Castanopsis elisabethae Kol.	m	
		Castanopsis furcinervis (Rossm.) Kr.et Wld.		m

1	2	3	4	5
		Castanopsis guriaca (Ung.) Iljinsk.	m	m
		Castanopsis aff.pavlodarensis Macul.	m	
		Castanopsis sp. (cf. C.echidnocarpa A.DC)	m	
		Castanopsis sp.	р	р
		Lithocarpus longifolia (Kol.) Kol.		m
		Lithocarpus sp.	р	
		Fagus attenuata Goepp.	m	
		Fagus orientalis Lipsky	р	р
		Fagus orientalis Lipsky var.palibinii Iljinsk.	P m	m
		Fagus cf.sylvatica Schilk.	m	
		Fagus sp.		n
	eae	Quercus cerris Kol.	mp	p m
	Fagaceae			m
	Faç	Quercus cruciaca A.Br.	m	
		Quercus drymeja Ung.	m	
		Quercus euboea Palib.	m	
		Quercus ilex L.	m	m
		Quercus kubinyi (Kov.) Cz.	m	
		Quercus lonchitis Ung.	m	
		Quercus neriifolia A.Br.	m	m
		Quercus pseudocastanea Goepp.	m	
ae		Quercus pseudorobur Kov.	m	
one		Quercus sosnowskyi Kol.		m
Dicotyledoneae		Quercus sp.	mp	mp
otyl		Quercinium lithocarpoides Schilk.	m	
Dio		Celtis japetii Ung.	m	
		Celtis magnifica Kol.	m	
		Celtis sp.	р	р
		Ulmus bronii Ung.		m
		Ulmus carpinoides Goepp.	m	
	eae	Ulmus foliacea Gilib.	р	р
	Ulmaceae	Ulmus longifolia Ung.	m	
		Ulmus sp.	р	р
	_	Zelkova carpinifolia (Pall.) Dipp.	mp	р
		Zelkova ungeri Kov.	m	m
		Zelkova zelkovifolia (Ung.) Büzek et Kotlaba	m	m
		Zelkova sp.	р	р
	Eucommi- aceae	Eucommia ulmoides Oliv.	р р	p p
		Ficus insignis Ett.	m	1
	ae	Ficus lanceolata Heer	m	1
	Moraceae	Ficus sp.	р	р
	Aora	Morus sp.	۲	p p
	2	Moraceae gen.indet	n	-
	Canna-		р	р
	Callid-	Cannabis sp.	р	

1	2	3	4	5
	Polygonace-	Polygonum sp.	mp	р
	ae	Polygonaceae gen.indet.	р	
	Caryophyl-	Stellaria sp.		р
	laceae	Caryophyllaceae gen.indet.	р	р
		Atriplex sp.		р
	Chenopodi- aceae	Kochia sp.		р
	aceae	Chenopodiaceae gen.indet.	р	р
		Liriodendron tulipifera L.	р	р
		Magnolia attenuata Web.	m	
		Magnolia dianae Ung.	m	
	eae	Magnolia dzundzeana (Pal.) Takht.	m	
	Magnoliaceae	Magnolia euxina Palib.	m	m
	ouf	Magnolia grandiflora L.		р
	Maç	Magnolia megafigurata (Krutsch) Ram.	р	р
		Magnolia mirabilis Kol.	m	
		Magnolia sinuata Kirchh.		m
		Magnolia sp.	р	mp
	Annonaceae	Annona sp.	р	р
۵		Kadzura irregularinervia Kol.	m	
Jear	Schizan-	Schizandra grossheimii Kol.		m
Dicotyledoneae	draceae	Schizandra sp. cf.S.propinqua Hook et Thoms.	m	
cot		Actinodaphne dolichophylla Takht.	m	m
ē		Appolonias barbusana (Cav.) A.Br.		m
		Apollonias georgica Uzn.et Tsag.	m	
		Cinnamomum cinnamomeum (Rossm.) Holl.	m	m
		Cinnamomum japonicum Kol.et Schak.		m
		Cinnamomum lanceolatum (Ung.) Heer	m	m
		Cinnamomum sp.	р	р
	eae	Cinnamomophyllum cf. lanceolatum (Ung.) Kol.		m
	Lauraceae	Cinnamomophyllum marginatum Kol.et Schak.		m
		Cryptocarya abchasica Schak.	m	
		Daphnogene abchasica Schak.	m	
		Daphnogene cinnamomifolia (Brongn.) Ung.	m	
		Daphnogene kolakovskyi Schak.	m	
		Daphnogene sp.	m	1
		Laurinum cinnamomoides Schilk.	m	1
		Laurinum hufelandioides Schilk.	m	1
		Laurinum goderdzicum Schilk.	m	1

1	2	3	4	5
		Laurophyllum aniboides Kol.et Schak.		m
		Laurophyllum perseoides Kol.et Schak.		m
		Laurophyllum princeps (Heer) Kr.et Wld.	m	
		Laurus lalages Ung.	m	
		Laurus nobilis L.		m
		Laurus pliocenica (Sap.et Mar.) Kol.	m	m
		Laurus sp.	mp	m
		Lindera antiqua (Heer) Lamotte		m
		Lindera neglecta Web.	m	
		Litsea barmyschensis Schak.	m	
		Litsea dermatophyllon Web.	m	
		Litsea magnifica Sap.		m
	υ	Litsea pontica Kol.		m
	Lauraceae	Litsea primigenia (Ung.) Takht.	m	m
	ura	Machilus ugoana Huzioka		m
	La	Neolitsea magnifica (Sap.) Takht.	m	m
		Neolitsea sp.(cf.N.palaeosericea Takht.)	m	m
		Ocotea curviparia Kol.et Schak.	m	
		Ocotea givulescui Kol.et Schak.	m	
0		Ocotea heeri (Gaud.) Takht.	m	m
lea		Ocotea pulchella Mart.		m
dor		Ocotea sp.(cf.O.rhombifolia Kol.)	m	
Dicotyledoneae		Persea colchica Kol.		m
icot		Persea pliocenica (Laur.) Kol.	m	m
		Persea sarmatica Schak.	m	
		Persea schakrylii Kol.	m	
		Persea sp.	р	
		Lauraceae gen.indet.	р	р
		Berberis sp.	m	
	Berberi-	Mahonia marginata (Lesq.) Arnold	m	
	daceae	Mahonia cf.aquifolium Nutt.	m	
		Berberidaceae gen.indet.	р	
	Ranuncu- laceae	Ranunculus sp.	р	р
		Cocculus frangonervis Uzn.et Tsag.	m	
		Cocculus laurifolium DC foss.Uzn.et Tsag.		m
	Menisper-	Cocculus sp.	m	
	maceae	Menispermites sp.		m
		Menispermum sp.	р	р
		Nuphar luteum (L.) Smith	F	р
		Nuphar sp.	р	p p
	Nymphae-	Nymphaea polyrhiza Sap.	m m	٣
	aceae	Nymphaea sp.	р	
		Nymphaeaceae gen.indet.	p p	р

1	2	3	4	5
	Aristolochi-	Aristolochia colchica Kol.		m
	aceae	Aristolochia sp.	m	m
	Thesesse	Camellia abchasica Kol.	m	
	Theaceae	Camellia sp.		р
	Brassicaceae	Brassicaceae gen.indet.	р	
	Papaver- aceae	Papaver sp.	р	
		Platanus aceroides Goepp.		m
	Platanaceae	Platanus lineariloba Kol.	m	m
	i latanaceae	Platanus platanifolia (Ett.) Knobl.	m	
		Platanus sp.	р	р
	Eupteleace- ae	Euptelea sp.	р	р
		Altingia aff.excelsa Nor.		р
		Chunia aff.bucklandoides H.T.Chang	р	р
		Corylopsis aff.cordata Merill et Li	р	р
		Corylopsis aff.pauciflora Sieb.et Zucc.	р	р
		Disanthus aff.cercidifolius Maxim.	р	р
		Disanthus aff.cercidifolius Maxim. var. minor Shat. et Mched.	р	
e		Distylium aff.racemosum Sieb.et Zucc.		р
nea		Distyliopsis aff.dunii (Hamsl.) P.K.Endr.	р	р
Dicotyledoneae		Eustigma aff.oblongifolium Gard.et Champ.	р	р
lico	eae	Fortunearia aff.sinensis Rehd.et Wils.	р	р
	Hamamelidaceae	Fothergilla aff.gardenii Murr.	р	р
	neli	Hamamelis aff.japonica Sieb.et Zucc.	р	р
	nan	Hamamelis meschetiensis Uzn.	m	
	Har	Liquidambar europaea A.Br.	m	m
		Liquidambar formosana Hance	р	р
		Liquidambar orientalis Mill.	р	р
		Liquidambar styraciflua L.	р	р
		Liquidambar aff.turgaica Kupr.	р	р
		Parrotia fagifolia Heer	m	
		Parrotia pristina (Ett.) Stur.		m
		Parrotia aff.persica (DC) C.A.M.	р	р
		Parrotiopsis jaquemontiana (Decne) Rehd.		m
		Sycopsis colchica Ram.	р	р
		Hamamelidaceae gen.indet.	р	р
	Cercidiphyl- laceae	Cercidiphyllum sp.	р	
	Hydran- geaceae	Hydrangea maeotica Tsag.		m
	Saxifra-	Ribes cf.orientalis Desf.	m	
	gaceae	Saxifragaceae gen.indet.		р

1	2	3	4	5
		Amelanchier vulgaris Moench.		m
		Crataegus sp.		m
		Eriobotrya miojaponica Hu et Chaney		m
		Malus parahupensis Hu et Chaney		m
		Malus sp.	m	
		Photinia serrulata Lindl.	m	
		Prunus officinalis (cf.P.laurocerasus) Roem.		m
	ae	Pyracantha coccinea Roem.foss.		m
	Rosaceae	Pyrus malus L.		m
	Ros	Pyrus theobroma Ung.	m	
		Robinia regeli Heer	m	
		Rosa canina L.	m	
		Rosa pimpinellifolia L.	m	
		Rubus sp.		m
		Sorbus aucuparia L.	m	
		Spiraea cf.salicifolia L.	m	
		Rosaceae gen.indet.	mp	mp
		Caesalpinites schaparenkoi Kol.	m	
		Cassiophyllum berenices (Ung.) Kr.	m	m
		Cassiophyllum magnum Kol.	m	
0	ae	Cassiophyllum phaseolites (Ung.) Kol.	m	
leae	ace	Cassia ambigua Ung.	m	
qon	Caesal pinia ceae	Cassia lignitum Ung.	m	
yle	salp	Cassia phaseolites Ung.	m	m
Dicotyledoneae	Cae	Cassia sp.	m	
Δ		Cercis sp.		m
		Podogonium knorrii Heer	m	m
		Caesalpiniaceae gen.indet.	р	
		Acacia sp.	р	
		Dalbergia bella Heer	m	
		Dalbergia derrisaecarpa Kol.	m	
		Dalbergia rectinervis Ett.		m
		Dalbergia sarmatica Kol.	m	
	ae	Dalbergia sp.		m
	Fabacea	Colutea orientalis Mill.	m	
	Fab	Gleditschia allemanica Heer	m	
		Pithecolobiophyllum sarmatica Kol.	m	
		Sophora miojaponica Hu et Chaney	m	
		Sophora europaea Ung.	m	m
		Sophora sarmatica Pimen.	m	
		Fabaceae gen.indet.	mp	р
	Geraniaceae	-	p	p
	Euphorbiaceae	1 1	۳.	m m
	Rutaceae	Rutaceae gen.indet.		m
	Simarou-	Ailanthus dryandroides Heer		m
	baceae	Simaroubaceae gen.indet.	р	

1	2	3	4	5
		Pistacia miocenica Sap.	m	m
		Rhus fatalievii Kol.	m	
	Anacardi-	Rhus herthae Ung.	m	
	aceae	Rhus meriani Heer	m	
		Rhus noeggerathii Web.	m	
		Rhus sp.	р	mp
		Acer integrilobum Web.	m	
		Acer integerrimum (Viv.) Mass.	m	
		Acer laetum C.A.M.		m
		Acer cf.pseudoplatanus L.	m	m
	Aceraceae	Acer santagatae Mass.	m	
		Acer subcampestre Goepp.		m
		Acer trilobatum A.Br.	m	m
		Acer sp.	mp	р
		Sapindus cupanoides Ett.	m	
		Sapindus falcifolius (A.Br.) Heer	m	m
		Sapindus graecus Ung.	m	
	Sapin-	Sapindus heliconius Ung.	m	
	daceae	Sapindus radobojanus Ung.	m	
		Sapindus undulatus Heer	m	
0		Sapindus ungeri Ett.	m	
leae		Sapindus sp.	p	р
don	Sabiaceae	Sabia parvifolia Wall.var.foss.	m	P
tyle	Hippo- castanaceae	Aesculus sp.	р	р
	Cyrillaceae	Cyrilla sp.	р	
F	-)	Ilex colchica Pojark.var.foss.	m	m
	Aquifoli-	Ilex falsani Sap.et Mar.	m	m
	aceae	Ilex simile Kol.		m
		llex sp.	р	р
F		Citronella aff.mucronata D.Don	m	
		Icacinoxylon citronelloides Schilk.	m	
	lcacinaceae	Icacinoxylon goderdzicum Schilk.	m	
		Icacinaceae gen.indet.	p	
-		Celastrus barmischensis Kol.	m	
	Celastraceae		m	
		Euonymus sp.	p	р
-	Staphyleaceae		p p	p p
	Stupityleuceue	Buxus pliocenica Sap.et Mar.	P	m p
	Buxaceae	Buxus sempervirens L.	m	
	Duraceae			р
-			1	
	eae	· · · ·		m
	Jac			m
	me			m
	Rhő			m
_	Rhamnaceae	Buxus sp, Berchemia cuspidata Kol. Berchemia multinervis (A.Br.) Heer Frangula alnus Mill. Hovenia thunbergii (Nath.) Baik. Hovenia sp.	p m m	

1	2	3	4	5
		Paliurus spina-christi Mill.	m	
		Rhamnus deperdita Ung.	m	
		Rhamnus gaudini Heer	m	
		Rhamnus graeffii Heer		m
	sae	Rhamnus mioalaternus Uzn.	m	
	lace	Rhamnus rectinervis Heer	m	
	Rhamnaceae	Rhamnus sp. cf.R.vinogradovii Palib.	m	
	Rha	Rhamnus sp.	р	mp
		Sageretia caucasica Pal.	m	
		Ventilago sp.	m	
		Ziziphus tiliaefolius Heer	m	1
		Zizyphus sp.	m	1
		Cissus sosnowskyi Kol.	m	1
		Parthenocissus quinquefolia (L.) Planch.	р	р
	Vitaceae	Parthenocissus sp.	p	p
	itac	Vitis cf.subintegra Sap.	m	· ·
	>	Vitis teutonica A.Br.	m	
		Vitis sp.	р	р
		Tilia caucasica Rupr.	р	р
	e	Tilia cordata Mill.	р	p
0	Tiliaceae	Tilia aff.platyphyllos Scop.	р	
leae	Tilis	Tilia aff.taquetii C.K.Schneid.	р	р
dor		Tilia sp.	р	p
yle		Hibiscus splendens Baik.	F	m
Dicotyledoneae	Malvaceae	Malvaceae gen.indet.		р
Δ	Sterculi-	Sterculia sp.	р	p
	aceae	Sterculiaceae gen.indet.	р	p
	0	Daphne kimmerica Kol.	F	m
	Thymelaceae	Daphne minima Kol.	m	
	elac	Daphne sp.		р
	Ű,	Pimelia adjarica Palib.	m	P
	부	Pimelia crassipes Heer	m	1
	Elaeagnace-	Elaeagnus argentea Push.		р
	ae	Elaeagnus sp.	р	p
	Violaceae	Viola sp.	р р	٣
	Cucurbita- ceae	Trichosanthes sp.	m	
		Eugenia aizoon Ung.	m	
	٩	Eugenia haeringiana Ung.	m	1
	Myrtaceae	Myrtophyllum warderi Jasq.	m	1
	rta	Myrtophyllum sp.	m	1
	₹ A	Myrtus sp.	mp	р
		Myrtaceae gen.indet.	mp	p
		Epilobium sp.	p	p
	Onagraceae	Onagra sp.	р р	p p
	Punicaceae	Punica granatum L.	٣	m P

1	2	3	4	5
		Alangium aff.kurzii Craib.	р	р
	Alangiaceae	Alangium aff.simplex Nagy		р
		Alangium sp.	р	
	Mastixi-	Mastixia microphylla Kol.	m	
	aceae	Mastixia sp.	р	
		Nyssa disseminata (Ludw.) Kirchh.		m
	Nusanana	Nyssa longifolia Uzn.et Tsag.		m
	Nyssaceae	Nyssa punctata Heer.		m
		Nyssa sp.	р	р
		Cornus sp.		р
	Company	Svida graeffi (Heer) Steph.	m	
	Cornaceae	Thelycrania sanguinea (L.) Fourr.	m	m
		Cornaceae gen.indet.	р	р
		Acanthopanax mirabilis (Kol.) Kol.	m	
		Acanthopanax serratus Kol.	m	
		Acanthopanax sp.	р	р
		Aralia hispida Michx.		р
		Aralia sp.	р	р
		Brassaiopsis sp.	p	
		Dendropanax sp.	p	р
ιD	A	Fatsia sp.	p	
Jear	Araliaceae	Hedera colchica C.Koch, var.foss.	m	
Dicotyledoneae		Hedera sp.	р	р
tyle		Schefflera colchica Kol.	· · ·	m
ico		Schefflera integrifolia Kol.	m	
		Schefflera sarmatica Kol.	m	
		Tricolpopollenites edmundi (R.Pot.) Th. et Pf.	р	
		Araliaceae gen.indet.	р	р
		Bifora sp.		р
		Hydrocotyle reniforma Tsag.		m
	Apiaceae	Turgenia sp.	р	
		Apiaceae gen.indet.	p	р
		Arbutus guriense Uzn.	m	m
		Arbutus elegans Kol.forma andrachne	m	
		Epigaea baikovskaja Iljinsk.		m
		Leucothoe protogaea (Ung.) Schimp.	m	
	Ericaceae	Rhododendron sp.	mp	р
		Vaccinium integerrimus Uzn.et Tsag.	· · ·	m
		Vaccinium longifolium Uzn.		m
		Vaccinium protoarctostaphyllos Kol.	m	
		Ericaceae gen.indet.	p	
		Ardisia snigerevskaiae Takht.	m	
		Myrsine centraurorum Ung.	m	
	Myrsinaceae	Myrsine doryphora Ung.	m	
		Myrsine radobojana Ung.	m	

1	2	3	4	5
		Myrsine spatulata Palib.	m	
	Myrsinaceae	Rapanea caucasica Pashkov	m	
		Rapanea kubanensis Pashkov	m	
		Bumelia minor Ung.	m	
	Sapotaceae	Bumelia cf.lanuginosa (Michx.) Pers.	m	
		Sapotaceae gen.indet.	р	р
		Diospyros anceps Heer	m	
		Diospyros brachysepala A.Br.	m	m
	Ebenaceae	Diospyros colchica Uzn.et Tsag.		m
		Diospyros lotoides Uzn.	m	m
		Diospyros sp.	m	
		Styrax neiburgi (Pal.) Baik.	m	
	Styracaceae	Styrax parrotiaefolia Uzn.	m	
		Styrax pseudoofficinale Baik.		m
		Symplocos bzybica Kol.	m	
		Symplocos palaeotheifolia Kol.	m	
	Symplo-	Symplocos paniculata Wall.		р
	caceae	Symplocos simile Kol.	m	1*
		Symplocos sp.	p	р
	Periplo-	Periploca helenae Kol.	m	۳
Ð	caceae	Periploca sp.	m	
Dicotyledoneae	Verben- aceae	Vitex goderdzica Tsag.	m	
tyle		Apocynophyllum ibericum Palib.	m	
lico		Apocynophyllum linearifolium Kol.	m	m
		Apocynophyllum wrightianum Kol.	m	
	Apocyn-	Apocynophyllum sp.	m	
	aceae	Echitonium sophiae Web.	m	
		Dryoxylon symplocoides Schilk.	m	
		Apocynaceae gen.indet.	р	
		Fraxinus sp.	P	mp
		Jasminum pliocenicum Laur.	F	m
		Ligustrum sp. (cf.L.vulgare L.)	m	
	Oleaceae	Osmanthus kolakovskyi Takht.	m	
		Phillyrea media L.		m
		Oleaceae gen.indet.	р	
	Scrophulari- aceae	Paulownia caucasica Pal.	m	
		Lonicera similifolia Kol.	m	
	Caprifoli-	Lonicera sp.	р	р
	aceae	Viburnum sp.	р	mp
	Lamiaceae	Lamiaceae gen.indet.	P	
	Plantagi- naceae	Plantago sp.	p	
	Valerian- aceae	Valeriana sp.		р

1	2	3	4	5
	Campanu- laceae	Campanulaceae gen.indet.		р
		Cephalaria sp.		р
ae	Dimension	Dipsacus sp.		р
one	Dipsacaceae	Knautia sp.	р	р
lede		Scabiosa sp.	р	р
Dicotyledoneae		Achillea sp.	р	
Dic		Artemisia sp.	mp	р
	Asteraceae	Aster sp.	m	
		Centaurea sp.		р
		Asteraceae gen.indet.	р	р
		Potamogeton crispus L.		р
	Potamoge- tonaceae	Potamogeton pectinatus L.		m
	tonaceae	Potamogeton sp.		р
		Smilax aspera L.	m	
	Liliaceae	Smilax excelsa L.var.foss.		m
		Smilax grandifolia (Ung.) Heer	m	
		Smilax protolancaefolia Kol.	m	
		Smilax sp.	m	
eae		Liliaceae gen.indet.	р	р
Monocotyledoneae		Phragmites oenigensis Heer	m	m
/led	Poaceae	Sasa kodorica Kol.	m	m
coty		Poaceae gen.indet.	р	р
ouo		Livistona palibinii Takht.	m	
Wo	A #0.0000	Nipa sp.	р	р
	Arecaceae	Palmophyllum sp.	m	
		Arecaceae gen.indet.	р	р
	Spargani- aceae	Sparganium sp.	р	р
		Typha latifolia L.		р
	Tuphacaaa	Typha latissima A.Br.	m	m
	Typhaceae	Typha sp.	р	р
	Cyperaceae	Cyperaceae gen.indet.	р	р
	of indetermi-	Fupingopollenites wackersdorfensis (Thiele-Pfeiffer) Liu Geng-wu	р	р
nate system	atical position	Fupingopollenites minutus Liu Geng-wu	р	

THE PLIOCENE AND EOPLEISTOCENE (WESTERN GEORGIA)

The Pliocene

According to the stratigraphic scheme developed for the Black Sea, the Georgian Pliocene stretched from the Pontian to the Kuyalnician stage (Table XII; Taktakishvili, 1984).

Table XII. Stratigraphical division of Pliocene and Eopleistocene deposits in Georgia
(after Buleishvili, 1986a; Nevesskaya et al., 2003;
Semenenko et al., 2009; Taktakishvili, 1984)

Ma	Division	Devientere	Western Georgia		Eastern Georgia	1							
Ма	Division	Regiostage	Horiz	on	Stage								
	Eopleis-	Gurian	Naderba	zetian	Apsheronian								
1.8	tocene		Khvarbe	etian		an							
			Tsikhispe	erdian		Alazanian							
		Kuyalnician (Egrissian)	Etseri	an	Akchagilian	Ala;							
3.4		(Eghissian)	Skurdu	mian									
	пе	Kimmerian	Kamyshburunian		Redwellian suite								
5.3	Pliocene	Kimmenan	Azovi	an	Redweilian suite								
			Б	4	Ы	4	⊒	4		Bospo	rian		
			Portafe	rian									
		Pontian		Odessian	Dushetian (Shirakia	an)							
7.1		Novorossian		Eupatorian	suite								
	Miocene	Meotian	Upp	er									

The Pliocene of Western Georgia is of particular interest because the full spectrum of Pliocene stratigraphical units is represented, containing rich faunal and floral assemblages. The same cannot be said of other parts of the Black Sea region. Hence the biostratigraphical scheme of Pliocene marine deposits in Western Georgia is considerably more detailed.

The Pontian

Pontian deposits are widely distributed throughout Western Georgia. They contain a rich molluscan fauna, which forms the basis for subdividing the Pontian stage into substages and horizons (Table XII).

Plant remains from Pontian deposits were first described by Palibin (1930a) and Mchedlishvili (1954). The fossils were found in Guria (southern part of Western Georgia) and in Abkhazia, around the Bichvinta (Pitsunda) Peninsula. The Bichvinta flora was later studied by Kolakovsky (1962), who also undertook an analysis of a rich Pontian flora locality by the Kodori River (Kolakovsky, 1964), near Meore-Atara village (Fig.13).

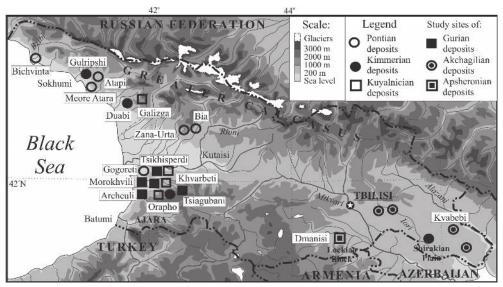


Fig.13. Study sites of Pliocene and Eopleistocene deposits in Georgia

According to Kolakovsky, this Kodorian flora is unique and one of the richest in Eurasia. The subtropical character of the vegetation of its lower mountain belt "confirms the existence in Colchis of a major refugium for Tertiary species that gradually died out" (Kolakovsky, 1964, p.5). The Kodorian flora was mainly composed of subtropical plants (30.5%), especially in riparian forests and lower mountain belt communities. One such community was formed of *Quercus neriifolia, Salix varians, Alnus subcordata* and *Myrica lignitum*. On coastal plains and in river gorges, *Quercus kodorica* and *Carya denticulate* formed another community. Swamp forests were composed of *Alnus subcordata* and *Salix varians*, judging

from the distinct layers of leaves and catkins present in the deposits.

Kolakovsky classified the forests of lower mountain belt into moist forests and hemi-xerophilous woods. The flora of moist subtropical forests was very rich, including *Tectocarya lusatica*, Symplocos, Ocotea, Pasania, Cyclobalanopsis, Castanopsis and members of the Araliaceae. Vast areas were covered by laurel communities. Sclerophyll communities with elements of maquis also grew in the lower mountain belt, while a pine community was restricted to cliffy sites on calcareous ridges.

Pontian deposits were studied palynologically by Ramishvili (1969). She described the pollen complexes of the upper part of the Lower Pontian (Odessian horizon) and of the Bosporian substage. More recently, rich palynological material has been collected from complete Pontian sections (Shatilova et al., 2000; 2001; 2007).

Pollen analysis revealed some clear differences between macrofloras and palynofloras. The macroscopic remains of ferns and herbs found in the Kodorian and Bichvintian floras are almost absent and temperate conifers are represented with much less frequency. Subtropical evergreen taxa, especially the Lauraceae, are better reflected in macrofloras because their pollen grains preserve less well than their leathery leaves. But the major difference between these two paleofloras is in the volume of information. Macroremains were fossilized either in situ or brought into the Rionian Bay from nearby forests. Kolakovsky regarded the Kodorian material as mainly representative of riparian or swamp forests, which, being communities of azonal character, cannot be used as indicators of climatic conditions. Even laurels, the macroremains of which are typical for the Kodorian flora, provide limited palaeoclimatic information and reflect neither tropical climatic conditions nor the existence of evergreen forests over large areas.

Palynological complexes of the Pontian marine deposits contain the pollen production of forests growing on the whole territory of Paleo-Colchis, from the plains to the upper mountain belt. Pollen and spores are preserved in nearly in all layers of Pontian-aged outcrops, allowing us to reconstruct vegetation changes through the whole period of sediment accumulation. The same can be said for subsquent stages in Western Georgia – the Pliocene and Pleistocene – as well.

Lower Pontian deposits are known from Abkhazia, Megrelia and Guria, but only in three localities (on the Atapi and Zana rivers) is the Novorossian substage represented by a full series of sediments (Fig.13). In all other sections the Eupatorian is absent and the Lower Pontian begins with the Odessian horizon (Chelidze, 1974; Shengelia, 1976; Taktakishvili, 1984).

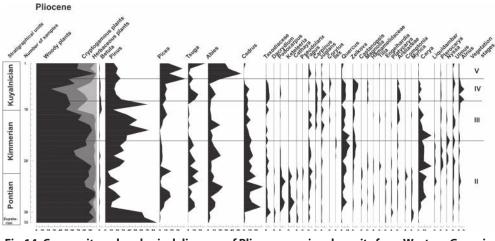


Fig.14. Composite palynological diagram of Pliocene marine deposits from Western Georgia

The analysis of samples from the Atapi and Zana deposits revealed that the changes in pollen assemblages at the boundary of the Miocene and Pliocene were similar at both sites (Fig.11). They show a transition from the rich and diverse pollen flora of the Meotian to poor assemblages with a predominance of pine. In upper part of the Odessian the pine was replaced by dark-conifer communities (Fig. 14, 15), occupying almost all altitudes. This suggests that after the Eupatorian a decrease in temperature took place, possibly linked with Early Pontian cooling around the North Hemisphere (Borzenkova, 1992; Zubakov, 1990).

After the Odessian the climate again became warm and humid, especially during the Middle part of Portaferian, when polydominant forests stabilised. It was probably during this climatic optimum that the Kodorian macroflora accumulated.

The later stretches of the Middle Pontian and the beginning of the Late Pontian were characterized by repeated shifts in forest boundaries. Polydominant formations became predominant toward the end of Late Pontian, probably as a second climatic optimum, corresponding to the accumulation of the Bichvintian flora, took place.

When we compare the Pontian spore-pollen assemblages of Western Georgia with those from synchronous deposits of Northern part of Black Sea coast, the rhythmic changes of epochs with different climates can be traced. However, in Western Georgia the frequency and amplitudes of these changes were weaker. The main difference between the northern Black Sea coast and Western Georgia was in terms of humidity. In the north, the Pontian was a time of declining temperatures and xerophytisation (Shchekina, 1979), while in Colchis precipitation increased side by side with gradually lowering temperatures.

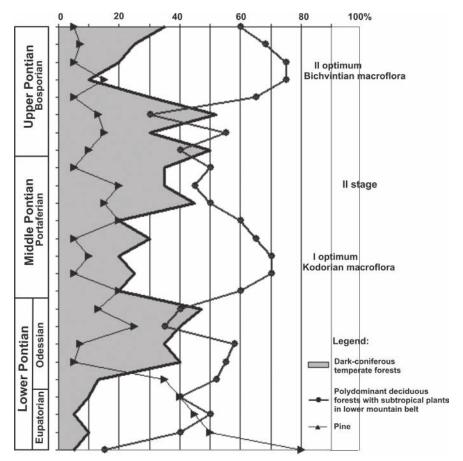


Fig. 15. Percentage fluctuations in palynological groups in Western Georgia during the Pontian, reflecting changes in the distribution of the major forest communities.

The Kimmerian

The area of Western Georgia under the sea became considerably smaller during the Kimmerian. Sea-level fluctuations also occurred on top of this overall regression in the Rionian Bay, leading to the bedding unconformity of the Kimmerian over more ancient deposits (Chelidze, 1964). Kimmerian deposits are distributed in same regions of Western Georgia as the Pontian, but occupied a comparably smaller area (Fig.13). The primary difference between these two stages is in the character of the facies: Kimmerian deposits are usually shallow-water facies that indicate marine regression and the expansion of terrestrial areas (Taktakishvili, 1984).

There are two main schemes for the subdivision of Kimmerian deposits. Davitashvili (1933) identified three horizons: the Azovian, Ampilacian and Panticapeian. This division was later adopted by Gabunia (1953), although the original horizon names were not retained. Taktakishvili (1984) changed the scheme and divided the Kimmerian into two parts – the Azovian and Kamyshburunian – the later stage combining Davitashvili's Ampilacian and Panticapeian horizons (Table XII).

Palibin (1930a), Mchedlishvili (1949a) and Uznadze (1965) were the first researchers to describe the plant remains of Kimmerian deposits. A rich location of Kimmerian fossil flora was found by the Duabi River and dated using fauna to the Kamishburunian (Taktakishvili, 1984). Contemporaneous with the Duabian flora is the flora of Gulripsh (Fig.13); both locations were described by Kolakovsky (Kolakovsky, 1956, 1958; Kolakovsky & Shakryl, 1978). Mchedlishvili (1963) first investigated Kimmerian deposits using palynological methods and, during recent years, a large body of rich palynological material has been collected from Kimmerian deposits in Abkhazia, Guria and Megrelia (Shatilova et al., 2000; 2002; Shatilova & Mchedlishvili, 2007a).

This palynological material was analyzed by the landscape-phytocenological method to trace the dynamics of climate and vegetation during the Kimmerian (Fig. 16).

The warmest climate, close to subtropical, occurred at the end of the Azovian and beginning of the Kamyshburunian. Data from this period indicate a decreasing role for conifer forests, which came to be dominated by Abies, Tsuga and Cedrus. This indicates a temperature rise during these stretches of the Kimmerian, agreeing with the proposition of a global Pliocene optimum in the Azovian-Kamyshburunian interval (Zubakov, 1990; Borzenkova, 1992). This period saw the accumulation of the Duabian flora in Western Georgia, an assemblage with poorer taxonomic diversity compared to the Kodorian flora. Cooling climates during the upper part of the Portaferian and the beginning of the Bosphorian, which led to the extinction of a large number of angiosperms from the plains and lower mountain belt, may explain the depauperate composition of the Duabian flora. The number of genera making up the Fagaceae, Lauraceae, Berberidaceae, Aristolochiaceae, Hamamelidaceae, Araliaceae, Fabaceae, Anacardiaceae, Aquifoliaceae and Arecaceae decreased. In spite of this, Kolakovsky (Kolakovsky & Shakryl, 1978) states that evergreen plants still occupied first place in Kimmerian landscapes. This conclusion was made on the basis of macrofossils and interpreted as reflecting a climatic optimum. On the whole it is possible to suppose that pol-

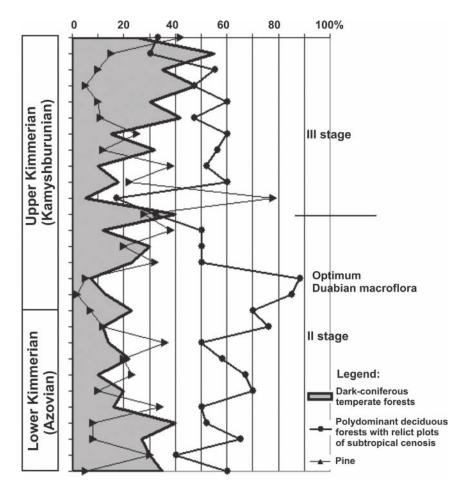


Fig. 16. Percentage fluctuations in palynological groups in Western Georgia during the Kimmerian, reflecting changes in the distribution of the main forest formations.

ydominant deciduous forests existed on the plains and in the lower mountain belt, with relict subtropical communities in refugia, the area of which changed depending on climatic conditions. According to Kolakovsky (1956), the composition of these forests was very variable. He distinguished three groups of plants: 1) those of a humid monsoonal climate; 2) hygrophilous plants with ecological similarities to species of Atlantic North American lowland and riparian forests; and 3) sclerophyllous, cold-hardy species, tolerant of high summer temperatures and with ecological similarities to components of sub-xerophilous Mediterranean forests. At higher elevations, warm-temperate forests were replaced by temperate broadleaf and coniferous formations.

The subsequent stretch of the Kamyshburunian had a cooler, drier climate and pine became dominant in the vegetation cover. The end of Kamyshburunian was warm, but distinguished by a floral composition nearly devoid of subtropical elements and with periodic shifts in dark-coniferous and pine forest areas.

Hence the floras of the Pontian, Azovian and lower part of Kamyshburunian may be combined into a single stage (II) of development in Western Georgian vegetation, although the vegetation complex of the Pontian reflects cooler conditions than the beginning of the Kimmerian. The upper part of Kamyshburunian and the lower part of subsequent Kuyalnician stage (Scurdumian horizon) have fossil floras of somewhat different character and can be combined into stage III.

Kimmerian-aged deposits also occur in Eastern Georgia, where the Shirakian suite contains 34 angiosperm forms. The taxa indicate a riparian forest community, including *Alnus hoernesi*, *Populus populina*, *Acer saliense*, *Ulmus carpinoides* and *Zelkova ungeri*. Vegetation of dry plains and slopes was represented by maquis, shibliak and open woodlands composed of evergreen and deciduous plants: laurels, sclerophyllous and saxicolous oaks, Phillyrea, Viburnum, pistachio, storax, nettle tree, etc.

On the Shiraki plain (Eastern Georgia's Kakheti region) in the Pliocene occurrence of two different types of vegetation (riparian forests and an arid formation) with a prevalence of microphyllous plants indicates the presence of a hot, dry season, characteristic of a Mediterranean climate (Kolakovsky & Ratiani, 1967).

A list of Pontian and Kimmerian floras is given below (Table XIII).

Class	Family	Species	Pontian	Kimmerian
1	2	3	4	5
Bryopsida	Sphagnaceae	Sphagnum sp.	р	р
_		Lycopodium alpinum L.	р	р
Lycopodiopsida	Lycopodiaceae	Lycopodium annotinum L.	р	р
diop	diac	Lycopodium clavatum L.	р	р
odc	obc	Lycopodium densum Sw.		р
Lyce	Lyc	Lycopodium selago L.	р	p
		Lycopodium serratum Tunb.	р	р
_	ae	Selaginella atrivirides Spring.	р	р
Isoëtopsida	Selaginellaceae	Selaginella fusca N.Mtchedl.	p	p
j do	llar	Selaginella pliocenica Dorof.	m	m
soët	agii	Selaginella selaginoides (L.) Link.	р	р
	Sel	Selaginella sp.		p
Equisetopsida	Equisetaceae	Equisetum sp.		p
		Botrychium sp.	р	p
Ophioglossop-	Ophioglos-	Ophioglossum lusitanicum L.	р	
sida	saceae	Ophioglossum sp	P	р
	Osmundaceae	Osmunda cinnamomea L.	р	<u>г</u>
		Osmunda claytoniana L	۲ ا	р
		Osmunda heeri Gaud.		m
		Osmunda regalis L.	р	p
		Todea sp.	p p	p p
	Schizaeaceae	Schizaea sp.	<u>г</u>	р
	Anemiaceae	Anemia	р	
		Lygodium japonicum Sw.	p	р
	Lygodiaceae	Lygodium sp.	р	
IJ		Cryptogramma acrostichoides	р	
bisid		R.Br.		
dip		Cryptogramma crispa (L.)R.Br.	р	p
bod		Cryptogramma sp.	р	р
Polypodiopsida		Pteridacidites boerzoenyensis (Nagy) St., Sh. (Pteris aff.quadriaurita Retz.)	р	р
	Pteridaceae	Pteridacidites dentatiformis Sh., St. (Pteris dentata Forsk)	р	р
		Pteridacidites grandifoliiformis St., Sh. (Pteris grandifolia L.)	р	р
		Pteridacidites guriensis Sh., St. (Pteris aff.togoensis Hieron)	р	р
		Pteridacidites kimmeriensis Sh., St. (Pteris sp.)	р	р

Table XIII. Plants from Pontian and Kimmerian deposits in GeorgiaKey: m – macrofossils; p – pollen

1	2	3	4	5
		Pteridacidites longifoliiformis Sh., St.	р	р
		(Pteris longifolia L.) Pteridacidites rarotuberculatum Sh., St. (Pteris sp.)		р
		Pteridacidites remotifolioides Sh., St. (Pteris remotifolia Bak.)	р	р
	Pteridaceae	Pteridacidites spiniverrucatum St., Sh. (Pteris pellucida Pr.)		р
	Pteri	Pteridacidites variabilis St.et Sh. (Pteris cretica L.)	р	р
		Pteridacidites venustaeformis St., Sh. (Pteris venusta Kze.)	р	р
		Pteridacidites verus (N.Mtchedl.) Sh., St. (Pteris aff.crenata Sw.)	р	р
		Pteridacidites vittatoides Sh., St. (Pteris vittata L.)		р
	Parkeriaceae	Ceratopteris duabensis Kol.		m
5	Adiantaceae	Anogramma sp.	р	р
Polypodiopsida	Aulantaceae	Pityrogramma sp.	р	р
liop		Gleichenia angulata Naum.	р	
poc	Gleicheniaceae	Gleichenia sp.		р
olyı		Polypodium aureum L.	р	р
۵.		Polypodium palaeopectinatum Kol.	m	
		Polypodium palaeoserratum Kol.	m	
		Polypodium pliocenicum Ram.	р	р
	Polypodiaceae	Polypodium serratum (Wild.) Futo (=P.australe Fee)		р
	odi	Polypodium verrucatum Ram.	р	р
	Polyp	Polypodium tuberculatum N.Mtchedl.		р
		Polypodium vulgare L.	р	р
		Polypodium sp.	р	р
		Verrucatosporites histiopteroides W.Kr.	р	р
		Pyrrosia sp.	р	р
	Hymenophyl- laceae	Hymenophyllum rotundum N.Mtchedl.	р	р
		Hymenophyllum sp.	р	
	Thyrsopteri-	Cibotium glaucum (Sw.) Hr.et Arn.	р	
	daceae	Cibotium sp.	р	
		Dicksonia antarctica R.Br.	р	р
	Dicksoniaceae	Dicksonia luculenta Purc.	р	р
		Dicksonia reticulata Purc.	р	р

1	2	3	4	5
	Diekeeniegeee	Dicksonia unitotuberata Purc.	р	р
	Dicksoniaceae	Dicksonia aff. fibrosa Col.		р
	Countly and and a	Alsophylla sp.	р	р
	Cyatheaceae	Cyathea sp.	р	р
	Aspleniaceae	Asplenium sp.		р
		Athyrium sp.	р	р
		Cyclophorus sp.		р
		Cyclosorus (Lastrea) fischeri Heer	m	<u> </u>
D		Cystopteris sp.	р	р
sid		Dryopteris sp.	р	р
liop	Aspidiaceae	Gymnocarpium sp.		р
boc		Lastrea sp.		m
Polypodiopsida		Struthiopteris filicastrum All.		m
<u>d</u>		Woodsia alpina (Bolton) S.F.Gray		р
		Woodsia sp.	р	
		Woodwardia radicans (L.) Smith.	р	1
	Diashuasaa	Woodwardia roessneriana (Ung.)		
	Blechnaceae	Heer	m	
		Woodwardia sp.	m	р
		Azolla sp.		р
	Salviniaceae	Salvinia palaeopilosa Shap.	m	
		Salvinia sp.		р
Cinkgoonsida	Cinkgoocooo	Ginkgo biloba L.	р	р
Ginkgoopsida	Ginkgoaceae	Ginkgo occidentalis Samyl.	m	m
	Dedecarrage	Dacrydium sp.	р	р
	Podocarpaceae	Podocarpus sp.	р	mp
	Phyllocladaceae	Phyllocladus sp.	р	
		Cephalotaxux sp.		р
	Тахасааа	Taxus sp.	р	р
	Тахасеае	Torreya nucifera Sieb.et Zucc. foss. Kink.	m	
	Araucariaceae	Araucaria sp.	р	р
		Abies alba Mill.	р	р
		Abies cephalonica Loud.	mp	р
iida		Abies ciliticaeformis N.Mtchedl.	р	р
Pinopsida		Abies nordmanniana (Stev.) Spach.	р	р
<u> </u>		Abies sp. cf. A. protofirma Tanai		m
	ae	Abies sp.	mp	m
	Pinaceae	Cathaya abchasica Sveshn.		m
	Pin	Cathaya argyrophylla C. et K.	р	р
		Cathaya sp.	р	
		Cedrus atlantica Manetti	р	р
		Cedrus deodara Loud.	p	р
		Cedrus libani Laws.	p	р
		Cedrus sauerae N.Mtchedl.	p	p
		Keteleeria caucasica Ram.	p	p

1	2	3	4	5
		Picea complanataeformis N.Mtchedl.	р	р
		Picea minor N.Mtchedl.	р	р
		Picea orientalis L.	р	р
		Picea sp.	р	mp
		Pinus euxina Kol.	m	m
		Pinus geanthracis (Goep.) E.Reich.	m	
		Pinus hordaceae (Rossm.) Engelm. et Menzel.	m	
		Pinus longisquama Kol.	m	
		Pinus palaeopentaphylla Tanai et Onoe	m	
		Pinus pithyusa Stev.	р	
	a	Pinus pontica Kol.	m	
	cea	Pinus sp.	mp	mp
	Pinaceae	Pseudolarix sp.	p	<u>р</u>
		Pseudotsuga sp.	р	p
		Tsuga aculeata Anan.	р	p
		Tsuga canadensis (L.) Carr.	р	p
		Tsuga diversifolia (Maxim.) Mast.	р	p
		Tsuga inordinata Mched.	٣	p
		Tsuga korenevae Mched.		p
da		Tsuga meierii Mched.	р	p
psic		Tsuga patens Downie	р	p
Pinopsida		Tsuga pattoniana Engelm.	<u>р</u>	p
<u>C</u>		Tsuga shatilovae Mched.	<u>р</u>	p
		Tsuga sivakii Mched.	٣	p p
		Tsuga tortuosa Mched.	р	p
		Tsuga aff. blaringhemi Flous	Υ	p
	Sciadopityaceae	Sciadopitys sp.	р	p
	Jeludopitydeede	Cryptomeria japonica Don	mp	mp
		Cunninghamia sp.	тр	p p
		Glyptostrobus europaeus (Brongn.) Heer	m	m
		Glyptostrobus sp.	р	р
	Taxodiaceae	Metasequoia sp.	p	p
	laxoulaceae	Sequoia sp.	mp	p
		Sequoiadendron sp.	р	F
		Taxodium distichum foss. A.Br.	m	
		Taxodium sp.	р	р
		Taxodiaceae gen. indet.	p	p
		Cupressus cf.sempervirens L.	m	
		Libocedrus salicornioides (Ung.) Heer	m	m
	Cupressaceae	Juniperus sp.	р	р
		Thuja cf.occidentalis L.	 m	٣
		Cupressaceae gen. indet.	р	р

1	2	3	4	5
Gnetopsida	Ephedraceae	Ephedra sp.	р	р
		Comptonia sp.	р	р
	e	Myrica carolinensis Mill.	p	p
	Myricaceae	Myrica lignitum (Ung.) Sap.	m	
	rica	Myrica palaeogale Pilar.		m
	My	Myrica salicina Ung.		m
		Myrica sp.	р	р
		Alfaroa sp.	<u>р</u>	p p
		Carya aquatica (Michx.) Nutt.	<u>р</u>	p p
		Carya bilinica Ung.	P m	P
		Carya cordiformis (Wangh.) C.Koch	р	р
		Carya denticulata (Web.) Iljinsk.	m	
		Carya minor Sap.et Mar.	m	
		Carya mirabilis Kol.	m	
		Carya ovata (Mill.) C. Koch	р	р
		Carya serraefolia (Goepp.) Krausel	P 	m
	υ	Carya aff. glabra (Mill.) Sweet.		р
	сеа	Carya aff. pecan (Marh.) Engl.		р
	lda	Carya sp.	р	р р
	Juglandaceae	Cyclocarya aff. paliurus (Batalin) Iljinsk.	P	р
leae		Engelhardia sp.	р	р
dor		Platycarya sp.	p	p
Dicotyledoneae		Pterocarya pterocarpa (Michx.) Kunth.	p	mp
Ō		Pterocarya rhoifolia Sieb. et Zucc.	р	р
		Pterocarya stenoptera DC	р	р
		Juglans cinerea L.	р	mp
		Juglans colchica Kol.	m	
		Juglans regia L.	р	р
		Juglans zaisanica Iljinsk.	m	m
		Populus balsamoides Goepp.	m	m
		Populus leucophylla Ung.		m
	eae	Populus populina (Brongn.) Knob.	m	m
	Salicaceae	Salix cinerea L.		m
	Sali	Salix integra Goepp.	m	m
		Salix varians Goepp.	m	m
		Salix sp.	р	р
		Alnus angustifolia Kol.		m
		Alnus hoernesi Stur		m
	g	Alnus cordata Desf.	m	
	Betulaceae	Alnus subcordata C.A.May	m	m
	tule	Alnus ducalis (Gaudin) Knob.		m
	Be	Alnus aff. barbata C.A.May		m
		Alnus sp.	р	mp
		Betula pubescens Ehrh.	р	р

1	2	3	4	5
	Be	Betula subpubescens Goepp.	m	
		Betula sp.	р	mp
		Carpinus betulus L.	р	р
		Carpinus caucasica Grossh.	р	р
		Carpinus cuspidens (Sap.)Kol. var. breviserrata Kol.	m	
		Carpinus grandis Ung.	m	m
	ae	Carpinus duabensis Dorof.		m
	Betulaceae	Carpinus orientalis Mill.	р	р
	tul	Carpinus pliofauriei Rat.	m	
	Be	Carpinus uniserrata (Kol.) Rat. et Kol.	m	m
		Carpinus sp.	р	р
		Corylus avellana L.	mp	р
		Corylus protocolchica Kol.	m	
		Corylus sp.	р	р
		Ostrya angustifolia Andrean.	m	m
		Ostrya sp.	р	р
		Castanea atavia Ung.	m	m
		Castanea pliosativa Kol.	m	
		Castanea sativa Mill.	р	р
eae		Castanopsis bifurcata Kol.	m	
don		Castanopsis elisabethae Kol.	m	m
Dicotyledoneae		Castanopsis decheni (O.Web.) Kr. et Wld.		m
Di		Castanopsis furcinervis (Rossm.) Kr. et Wld.	m	m
		Castanopsis sp.	р	р
		Cyclobalanopsis kryshtofovichii Kol.	m	
	e	Lithocarpus palaeouncinata (Kol.) Kol.	m	
	aces	Lithocarpus sp.	р	
	Fagaceae	Fagus attenuata Goepp.	m	m
		Fagus orientalis Lipsky	р	mp
		Fagus orientalis Lipsky var. palibini Iljinsk.	m	m
		Quercus castaneifolia C.A.M.	m	
		Quercus cerrisicarpa Kol.	m	
		Quercus iberica Stev.	m	
		Quercus kodorica Kol.	m	m
		Quercus kubinyi (Kol.) Cz.	m	
		Quercus microcerrisicarpa Kol.	m	
		Quercus neriifolia A.Br.	m	m
		Quercus pliovariabilis Kol.	m	
		Quercus pseudocastanea Goepp.	m	m
		Quercus sosnowskyi Kol.	m	m

1	2	3	4	5
	Fagaceae	Quercus sp.	р	р
		Celtis magnifica Kol.	m	
		Celtis japetii Ung.	m	
		Celtis sp.	р	р
		Ulmus carpinoides Goepp.	m	m
		Ulmus foliacea Gilib.	р	р
	U	Ulmus laevis Pall.		p
	Ulmaceae	Ulmus longifolia Ung.	m	m
	ma	Ulmus paralaciniata Hu et Chaney		m
	5	Ulmus sp.	р	р
		Zelkova carpinifolia (Pall.) Dipp.	р	р
		Zelkova ungeri Kov.	m	
		Zelkova zelkovifolia (Ung.) Buzek et Kotlaba		m
		Zelkova sp.	р	р
	Eucommiaceae	Eucommia ulmoides Oliv.	mp	р
		Artocarpus kimmerica Kol.	m	
	eae	Ficus kolakovskyi Dorof. et Negru		m
	Moraceae	Ficus sp.	р	р
	Mo	Morus alba L.	р	р
		Moraceae gen.indet.	р	р
eae	Connolson	Cannabis sp.		р
lon	Cannabaceae	Humulus lupulus L.	р	
Dicotyledoneae	Delveraneces	Polygonum lapathifolium L.		m
cot	Polygonaceae	Polygonum sp.	р	р
Di	Comiconde illo con o	Stellaria sp.	р	
	Caryophyllaceae	Caryophyllaceae gen.indet.	р	р
	Chenopodi- aceae	Chenopodiaceae gen.indet.	р	р
		Liriodendron tulipifera L.	р	р
		Magnolia denudata Desr.	р	р
	e	Magnolia georgica Kol.	m	m
	liaceae	Magnolia grandiflora L.	р	р
	olia	Magnolia kobus DC		m
	Magr	Magnolia mirabilis Kol.	m	
	Σ	Magnolia vittae Kol.	m	
		Magnolia cf.accuminata L.	р	
		Magnolia sp.	р	mp
	Calaina a dua ana a	Kadsura palaeojaponica Kol.	m	
	Schizandraceae	Schizandra grossheimii Kol.	m	m
		Aniba longifolia Kol. et Schak.		m
	eae	Cinnamomophyllum cinnamome- um (Rossm.) Kol.	m	m
	Lauraceae	Cinnamomophyllum lanceolatum (Ung.) Kol.	m	m
		Cinnamomophyllum radoboja- num (Ung.)Kol.	m	

1	2	3	4	5
		Cinnamomophyllum	m	
		cf.Cinnamomum loureieii Nees		
		Cinnamomum japonicum Kol.et Schak.	m	
		Cinnamomum sp.	р	р
		Daphnogene buchii (Heer) Kol. et Schak.	m	m
		Daphnogene marginatum (Kol. et Schak.) Kol. et Schak.	m	m
		Daphnogene polymorpha (A.Br.) Etting.		m
		Daphnogene sp.		m
		Laurophyllum abchasicum Kol. et Schak.		m
		Laurophyllum duabense Kol. et Schak.		m
		Laurophyllum nobile Kol.et Schak.	m	
		Laurophyllum ocoteafolium (Ett.) Kol.	m	
		Laurophyllum pithyusum Kol.et Schak.	m	
0	Lauraceae	Laurophyllum ponticum Kol.et Schak.	m	
Jea	Lau	Laurophyllum simile Kol. et Schak.		m
Dicotyledoneae		Laurophyllum primigenia (Ung.) Kol.	m	m
icot		Laurophyllum sp.	m	
Δ		Laurus pliocenica (Sap.et Mar.) Kol.	m	
		Laurus sp.	р	р
		Lindera antiqua (Heer) Lamotte	m	
		Lindera ovata Kol.	m	
		Litsea magnifica Sap.	m	m
		Litsea pontica Kol.	m	
		Nectandra euxina Kol.	m	
		Nectandra sp.	m	
		Oreodaphne heeri Gaud.	m	
		Oreodaphne rhombifolia Kol.	m	
		Persea braunii Heer		m
		Persea colchica Kol.	m	
		Persea pliocenica (Laur.) Kol.	m	
		Persea styracifolia (Weber) Kol.		m
		Persea sp. aff. P. superta Sap.		m
		Persea sp.	р	p
	Saxifragaceae	Saxifragaceae gen.indet.	р	p
		Ranunculus reidii Szafer	F	m P
	Ranunculaceae	Ranunculus sp.	р	mp
		Mahonia heterophylla Kol.	m	
	Berberidaceae	Mahonia spinulosa Kol.	m	

1	2	3	4	5
	Monispor	Menispermum sp.	р	р
	Menisper- maceae	Sinomenium cantalense (E.M. Reid) Dorof.		m
		Nelumbo sp.	р	р
	Nymphaeaceae	Nuphar luteum (L.) Smith	р	р
		Nymphaea sp.	р	р
	Ceratophyl- laceae	Ceratophyllum cf.demersum L.	m	
		Aristolochia africanii Kol.	m	
	Aristolochiaceae	Aristolochia colchica Kol.	m	
		Aristolochia sp.	m	
	A atividia and a	Actinidia arguta (S. et Z.) Planch.		m
	Actinidiaceae	Actinidia faveolata C. et E.M. Reid		m
		Camellia abchasica (Kol.) Kol.	m	
	Th	Eurya cf. japonica Thunb.		m
	Theaceae	Schima wallichii (DC) Choisy		m
		Ternstroemia mocanerifolia Kol.	m	
	Hypericaceae	Hypericum sp.		m
		Platanus aceroides Goepp.	m	
		Platanus linearifoba Kol.	m	
	Platanaceae	Platanus orientalis L.		р
ae		Platanus platanifolia (Ett.) Knob.		m
one		Corylopsis aff.cordata Merrill et Li	р	р
Dicotyledoneae		Fortunearia colchica Kol.	m	
oty		Fothergilla aff.gardenii Murr.	р	р
Dic		Hamamelis cachetica Kol.		m
	e	Hamamelis miomollis Hu et		
	Icea	Chaney		m
	Hamamelidaceae	Parrotia pristina (Ett.) Stur	m	
	me	Sycopsis colchica Ram.	р	р
	ama	Altingia aff.excelsa Nor.	р	р
	Ë H	Liquidambar europaea A.Br.	m	m
		Liquidambar formosana Hance	р	р
		Liquidambar orientalis Mill.	р	mp
		Liquidambar styraciflua L.	р	р
		Liquidambar aff.turgaica Kupr.	р	
	Cercidiphyl- laceae	Cercidiphyllum sp.	р	
		Cerasus sp.	m	
		Cotoneaster palaeobacillaris Kol.	m	
		Crataegus sp.		m
	ae	Laurocerasus pliocenicum Kol.	m	
	Rosaceae	Photinia kodorica Kol.	m	
	Ros	Photinia cf.integrifolia Lindl.	m	
		Rosa sp.		р
		Rubus kodorica Kol.	m	
		Rubus meriani (Heer) Kol.	m	

1	2	3	4	5
		Rubus sp.		m
	Rosaceae	Spiraea salicifolia L.	m	
		Rosaceae gen. indet.	р	р
		Caesalpinia macrophylloides Kol.	m	
	Caesalpiniaceae	Cassiophyllum berenices (Ung.) Kr.		m
		Ceratonia emarginata A.Br.	m	
		Acacia sp.		р
		Dalbergia bella Heer	m	
		Dalbergia derrisaecarpa Kol.	m	
		Dalbergia rectinervis Ett.	m	
		Desmodium maximum (Ung.) Kol.	m	
		Gleditchia allemanica Heer	m	
	Fabaceae	Gymnocladus meoreatharica Kol.	m	
		Pithecolobiophyllum abchasica Kol.	m	
		Sophora europaea Ung.	m	
		Sophora miojaponica Hu et Chang	m	
	Geraniaceae	Geranium sp.	р	р
	Euphorbiaceae	Croton ratianii Kol.	P m	<u>Р</u>
	Luphorbiaceae	Phellodendron amurense Rupr.		mp
ae	Rutaceae	Phellodendron sp.	р	
nea	Simaroubaceae	Ailanthus sp.	PP	m
Dicotyledoneae		Cedrela sarmatica Kov.	m	m
otyl	Meliaceae	Melia sp.		p
Dic		Cotinus coggygria (L.) Scop.	m	P
		Pistacia miochinensis Hu et Chang	m	
		Pistacia terebinthus L.	m	
		Pistacia sp.		р
	Anacardiaceae	Rhus cf.rhomboidalis Sap.	m	P
		Rhus sp. cf.R.chinensis Mill.	m	
		Rhus sp.	р	р
		Toxicodendron quercifolia	٣	P
		(Michx.) Greene		m
		Acer integerrimum (Viv.) Mass.		m
		Acer laetum CAM pliocenicum Sap.et Mar.	m	
	Aceraceae	Acer pseudomonospessulanum Ung.		m
		Acer trilobatum (Sterb.) A.Br.		m
		Acer sp.	mp	mp
	Sapindaceae	Sapindus falcifolium (A.Br.) Heer	m	
		Meliosma caucasica Dorof.		m
	Sabiaceae	Meliosma kimmerica Kol.		m
		Ilex cassineformis Kol.	m	
	Aquifoliaceae	Ilex colchica Pojark.	р	
		Ilex falsani Sap.et Mar.	m	

1	2	3	4	5
		llex georgica Kol.	m	
		llex gracilis Kol.	m	
		Ilex horrida Sap.	m	
	sae	Ilex microcassine Kol.	m	
	Aquifoliaceae	llex palaeotriflora Kol.	m	
	ifol	Ilex (?) parschlugiana Ung.	m	
	Aqu	llex raridentata Kol.	m	
		Ilex simile Kol.	m	
		Ilex cf.diplosperma Hu Shiu Ying	m	
		llex sp.	р	р
		Celastrus curvinervia (Kol.) Kol.	m	1-
	Celastraceae	Euonymus sp.	р	р
		Staphylea colchica Stev.	mp	p p
	Staphyleaceae	Staphylea protocolchica Kol.	m	<u>Р</u>
		Buxus sempervirens L. foss. Englh.		
	Buxaceae	et Kinkelin		m
	Duraceae	Buxus sp.	р	
		Berchemia multinervis (A.Br.) Heer	m	
		Ceanothus abchasica Kol.	m	
	ae	Ceanothus ebuloides O.Weber	m	m
	Rhamnaceae	Ceanothus tiliaefolium Ung.	m	
e	l ü	Ceanothus sp.		m
nea	khai	Frangula rectinervis (Heer) Kol.	m	
opa	Ľ.	Hovenia dulcis Thunb.	m	
Dicotyledoneae		Rhamnus sp.	р	р
Dicc		Ampelopsis abchasica Kol.	<u>р</u> т	
		Ampelopsis abchasica Roi. Ampelopsis europaea Dorof.	111	m
		Ampelopsis ludwigii (A.Br.) Dorof.		
	sae	Cissus sp. cf. C. adnata Plench.		m
	Vitaceae	Parthenocissus quinquefolia (L.) Planch.	р	p m
		Vitis subintegra Sap.	m	
		Vitis sp.	р	р
	Leeaceae	Leea vladimerii (Kol.) Kol.	m	۳
		Elaeocarpus palaeolanceolata Kol.	m	
	Elaeocarpaceae	Elaeocarpus palaeolittoralis Kol.	m	
		Tilia caucasica Rupr.	р	р
		Tilia cordata Mill.	р р	p p
	eae	Tilia platyphyllos Scop.	р	p p
	liliaceae	Tilia aff. taqueti C. Schneid.		
	Ē	Tilia tomentosa Moench.	p p	р
		Tilia sp.	p p	
	Malvacaaa		p	р
	Malvaceae	Malva sp.	р	
	Change dis a second	Sterculia ramesiana Sap.	w -	m
	Sterculiaceae	Sterculia rarinervis Kol.	m	
	1	Sterculia sp.	р	р

1	2	3	4	5
	Thurselle see a	Daphne odora Thunb.	m	
	Thymellaceae	Daphne cf. pontica L.		m
	Elaeagnaceae	Elaeagnus sp.	р	
	Violaceae	Viola sp.	m	
		Trichosanthes fragilis Reid.		m
	Cucurbitaceae	Trichosanthes kodorica Kol.		m
	Trapaceae	Trapa sp.		m
	Haloragaceae	Myriophyllum sp.	m	
		Myrtus rectinervis Sap.	m	
	Myrtaceae	Myrtaceae gen.indet.	р	р
		Chamaenerium sp.		р
		Epilobium sp.	р	F
	Onagraceae	Ludwigia sp.	F	р
		Onagra sp.	р	p
	Alangiaceae	Alangium aff. kurzii Craib.	<u>р</u>	<u>р</u>
	Juccuc	Nyssa dissemonata (Ludw.) Kirchh.	r	m
		Nyssa europaea Ung.	m	
	Nyssaceae	Nyssa sylvatica L.	р	р
		Nyssa sp.	е р	p
		Bothrocaryum controversum	٣	<u>Р</u>
		(Hemsl.) Pojark.		m
Dicotyledoneae	Cornaceae	Cornus sp.	р	р
lon		Thelycrania sanguinea (L.) Fourr.	m	m
yled		Thelycrania lusatica Kirchh		m
cot		Acanthopanax mirabilis (Kol.)		
ē		comb. nov.		m
		Acanthopanax kimmericus Kol.		m
		Acanthopanax sp.	р	р
		Aralia cf. hispida Michx.		mp
		Aralia cf. continentalis Katagawa		m
		Aralia cf. cordata Thunb.		m
		Aralia cf. hypoleuca Presl.		m
		Aralia (Brassaiopsis) abchasica Kol.	m	
	ae	Aralia (Brassaiopsis) angustiloba Kol.	m	
	iace	Aralia sp.	р	р
	Araliacea	Boerlagiodendron grandiden- tatum Kol.	m	
		Brassaiopsis mirabilis Kol.	m	
		Brassaiopsis sp. cf. B. glomeratula (Bl.) Regel.		m
		Brassaiopsis sp.	р	р
		Dendropanax sp.	p	р
		Hedera multinervis Kol.		m
		Hedera sp.	р	p
		Fatsia sp.	е р	p p
		Pentapanax fibriatum Kol.	m	1 I ²

1	2	3	4	5
		Pentapanax simile Kol.		m
	Araliaceae	Schefflera colchica Kol.	m	
	iace	Schefflera integrifolia Kol.	m	
	Aral	Schefflera pontica Kol.	m	
		Araliaceae gen.indet.		р
		Caucalis sp.	р	p
	Apiaceae	Heracleocarpum protoponticum Kol.	F	m
	Apia	Turgenia latifolia Hostm.	р	р
		Apiaceae gen. indet.	р	р
		Arbutus elegans Kol.	m	L L
		Rhododendron sp.	p	р
	ae	Vaccinium minimum Kol.	m	<u>г</u>
	Ericaceae	Vaccinium protoarctostaphyllos Kol.	m	
		Vaccinium raridentatum Sap.		m
		Ericaceae gen. indet.	р	р
		Myrsine colchica Kol.	m	<u>Р</u>
	Myrsinaceae	Rapanea kubanensis Pashkov		m
		Bumelia minor Ung.	m	
	Sapotaceae	Sapotaceae gen.indet.		n
ae		Diospyros anceps Heer.	p	р
ne	Ebenaceae		m	
edc		Diospyros brachysepala A.Br.	m	
Dicotyledoneae	a	Halesia crassa (C. et E.M.Reid) Kirchh.		m
Oice	Styracaceae	Halesia aff. diptera Ellis		m
	aca	Halesia kodorica Kol.	m	
	tyr	Styrax raridentata Kol.		m
	S	Styrax aff. japonica S. et L.		m
				m
		Symplocos abchasica Kol.		m
	eae	Symplocos antiqua Kol.		m
	Symplocaceae	Symplocos kimmerica Kol.	m	
	old	Symplocos lidiae Kol.	m	
	E N	Symplocos paniculata Wall.	р	р
	S	Symplocos tinctoria (L.) L. Her	р	р
		Symplocos sp.	р	р
	Periplocaceae	Periploca graeca L.	m	
		Apocynophyllum apocynophyl- lum (Web.)Wld.	m	
	aceae	Apocynophyllum decheni (Web.) Wld.	m	
	Apocynaceae	Apocynophyllum kimmericum Kol.		m
	A A	Apocynophyllum linearifolium Kol.	m	
		Apocynophyllum sp.	m	
	Oleaceae	Forsythia cf.viridissima Lindl.	m	

1	2	3	4	5
		Fraxinus sp.	р	р
	Oleaceae	Ligustrum vulgare L.	mp	
		Phillyrea media L.	m	
	Convolvulaceae	Convolvulus sp.	р	
	Callitrichaceae	Callitriche sp. cf.C.verna L.	m	
		Lonicera sp.	m	р
		Viburnum lantana L.		m
	aceae	Viburnum pliocenicum (Sap. et Mar.) Kol.	m	m
	Caprifoliaceae	Viburnum tenuilobatum (Sap.) Kol.		m
eae	Ca	Viburnum sp.	р	р
qon		Sambucus ebulus L.		m
Dicotyledoneae		Sambucus sp.		m
icot		Ajuga antiqua C.et E.M.Reid		m
D	Lamiaceae	Lycopus sp.		р
		Lamiaceae gen. indet.		р
	Solanaceae	Solanum sp.		m
		Cephalaria sp.	р	р
	D.	Dipsacus sp.		р
	Dipsacaceae	Knautia sp.	р	р
		Scabiosa sp.	р	р
	Plantaginaceae	Plantago sp.	р	р
	Campanulaceae	Campanulaceae gen.indet.	р	
	A store soo	Artemisia sp.	р	р
	Asteraceae	Asteraceae gen.indet.	р	р
		Potamogeton crispus L.	m	
	Potamogeton-	Potamogeton pectinatus L.		m
	aceae	Potamogeton sp.		m
		Ruppia maritima L.		m
	1.11	Smilax aspera L.	m	
	Liliaceae	Smilax minima Kol.	m	
ae		Phragmites oeningensis Heer	m	
oneae	Poaceae	Sasa kodorica Kol.	m	
		Poaceae gen. indet.	р	р
Monocotyled		Chamaerops humilis L.	m	
noo	Arecaceae	Nipa sp.	р	
Mo		Arecaceae gen.indet.	p	р
	c .	Sparganium nanum Dorof.		m
	Sparganiaceae	Sparganium sp.	р	р
	T 1	Typha latifolia L.	р	p
	Typhaceae	Typha latissima A.Br.	· ·	m
	C	Cladium mariscus (L.) R.Br.	m	m
	Cyperaceae	Cyperaceae gen. indet.		р

The Kuyalnician (Egrissian)

Kuyalnician deposits in Western Georgia are considerably thicker than their counterparts in the type locality near Odessa, Ukraine. On the basis of this, the Kuyalnician of Western Georgia was distinguished by Taktakishvili (1978; 1978a) as a separate stratigraphical unit named the "Egrissian stage" and divided into three horizons: the Scurdumian, Etserian and Tsikhisperdian (Table XII). Most of what we know of the Egrissian flora is based on pollen data (Shatilova, 1967, 1984; Shatilova et al., 1998; 2005).

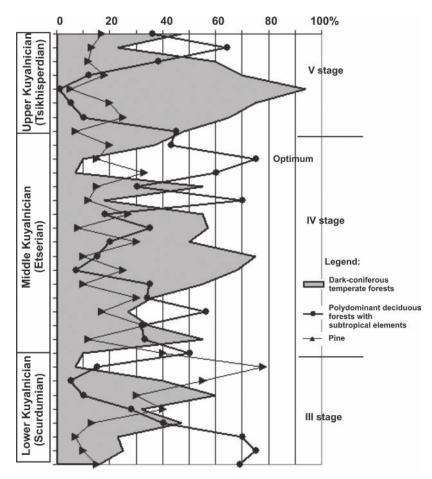


Fig. 17. Percentage fluctuations in palynological groups in Western Georgia during the Kuyalnician, reflecting changes in the distribution of the main forest formations.

The reconstruction of Kuyalnician palynological assemblages through the landscape-phytocenological method shows how the vegetation and climate de-

veloped during the Egrissian. The flora of the beginning of the Scurdumian retained some features of the Upper Kimmerian flora, following a wave of dry climate when the bulk of subtropical elements died out. The next dry period took place in the upper part of the Scurdumian, leading to the disappearance of evergreen forest communities altogether. Pine pollen was dominant in the Kamyshburunian (following the Duabian optimum) and in the upper part of Scurdumian (Fig.14, 16, 17). This indicates that humidity was lower than in previous and subsequent stretches of the Pliocene. Several authors (Milanovsky, 1968; Tsagareli & Astakhov, 1971) have suggested that the peneplanation of the Greater and Lesser Caucasus took place around this time. These events could have modified regional climatic patterns such that the unique bioclimatic characteristics of Colchis were lost, resulting in a mass extinction of drought- and cold-sensitive subtropical plants. Polydominant forests through the remainder of the Upper Pliocene were composed of deciduous trees, although subtropical relicts of the ancient floras continued to be constituents of this flora. According to palynological data the boundary between the Kimmerian and Egrissian sits above the Skurdumian, since the upper Kamyshburunian and lower Egrissian reflect a common stage (III) in the development of Western Georgian flora. Such a position for the Kimmerian-Kuyalnician boundary was proposed by Davitashvili (1933).

Climatic conditions again changed in the Middle Egrissian (Etserian time). Humidity increased and the temperature regime became more unstable (stage IV). This was reflected in successive changes from periods dominated by dark-conifer forest to periods dominated by polydominant communities. This phenomenon became especially apparent in the middle Etserian when the distribution area of dark conifers exceeded that of previous stretches of the Pliocene. The main components of these dark-conifer forests were Picea, Abies and Tsuga. There were many reasons for this change, but two of them stand out. The first relates to orogenic movements taking place at the end of the Neogene (Antonov et al., 1977; Kogoshvili, 1977; Milanovsky, 1977; Tsagareli, 1980). Uplift favored the wide distribution of dark conifers, which today develop most fully in a temperate and humid zone from 1400 to 1900 m in elevation. The second reason was a widespread fall in temperatures and increasing humidity, allowing dark-conifer forest to expand in the middle and even lower mountain belts. Abies and Picea have considerable ecological plasticity and it is possible that, in the past, their populations could easily have migrated up and down (Dolukhanov, 1989).

By the upper Etserian the temperature had risen and conditions became favourable for wide distribution of warm-temperate forests. Polydominant communities occupied the whole middle and lower mountain belts during what was probably a climatic optimum. These communities contained Taxodiaceae, Fagus, Quercus, Zelkova, Carya and Carpinus. The role of Cedrus, so characteristic of Kimmerian and Pontian vegetation, decreased and cedar occurred only in admixture among coniferous and broad-leaved forests. The role of other thermophilous conifers - Podocarpus, Dacrydium and Keteleeria - was also minor. Riparian and swamp forests included Carya, Taxodium, Pterocarya, Ulmus and Alnus, while Nyssa and Liquidambar were very infrequent.

The vegetation of Upper Egrissian (Tsikhisperdian) time was quite different as the area of broadleafed plants shrank and dark-conifer forests rose to prominence, continuing to dominate until the Early Gurian (stage V).

Hence we can conclude that the vegetation of the Egrissian differed significantly from that of previous Pliocene epochs, both in the absence of evergreen communities and in the frequency and amplitude of climatic fluctuations. During the Middle Kuyalnician, climate change related to both increasing humidity and lowering temperatures. The first evidence for this comes from the beginning of Etserian time (stage IV), but it was not so strong and long as the second wave of cold, humid climate that embraced the whole Upper Kuyalnician and lower Early Gurian. For this reason we join these two stretches of time into one stage (V) and relate it tentatively to the Danube glaciations in Europe during the Upper Pliocene (Venzo, 1964).

THE EOPLEISTOCENE

The Gurian

Outcrops of the Gurian horizon are known only from the region of the same name in SW Georgia (Fig.13). The so-called Gurian beds encompass two suites, the Khvarbetian and Naderbazetian (Ilijn, 1930). The stratigraphical scheme of the Gurian was often changed by later authors (Kitovani, 1976; Kitovani et al., 1991). Taktakishvili (1984) found it expedient to retain the original two-part division (Table XII).

The Khvarbetian suite (or Pirgulian-Micromelanian beds) are usually conformably bedded on the Tsikhisperdian horizon (Upper Egrissian) and are represented by a thick clayey-sandstone series with Pyrgula and Micromelania. The Khvarbetian suite is distributed only in southern Guria and is conformably overlapped by the Naderbazetian, known throughout Guria. Knowledge about the Gurian flora is based on palynological data (Shatilova, 1967, 1974; 1984; Shatilova et al., 2002a). In terms of composition, it is the same as the Egrissian flora (Table XIV); the main difference was in the character of vegetation, specifically the increasing representation of mesophytes.

In the first half of the Early Gurian, dark-conifers had a wide distribution and occupied the upper and probably middle mountain belts. The area of warm-temperate forest was reduced. Spore-pollen assemblages from the beginning of the Gurian reflect the same stage (V) of development of vegetation as Upper Kuyalnician assemblages, which were probably related to the Danube glaciation (Fig. 14, 18, 19).

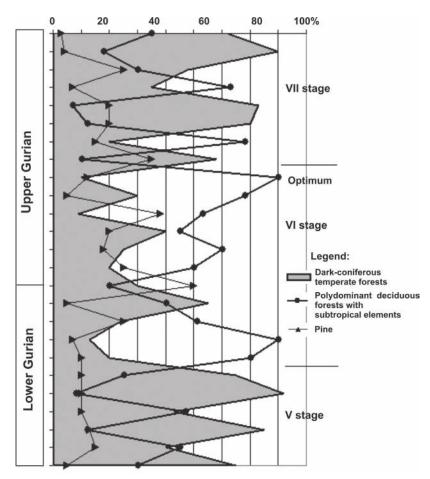


Fig. 18. Percentage fluctuations of palynological groups in Western Georgia during the Gurian, reflecting changes in the distribution of the main forest formations.

The second half of the Early Gurian and beginning of Late Gurian (stage VI) were characterized by repeated shifts in two main formations – warm-temperate polydominant communities and dark-coniferous temperate forests. Conditions were more stable during the first half of the Late Gurian, which was characterized by polydominant forests, including Fagus, Quercus, Carya, Juglans, subtropical plants such as Liquidambar, Aralia, Engelhardia, Platycarya, Eucommia, Magno-lia, Alangium, Symplocos and Fortunearia, conifers including Tsuga, Abies, Picea, Sciadopitys, Taxodiaceae, Cupressaceae, Podocarpus, Dacrydium and Phyllocladus. This period can be considered a climatic optimum.

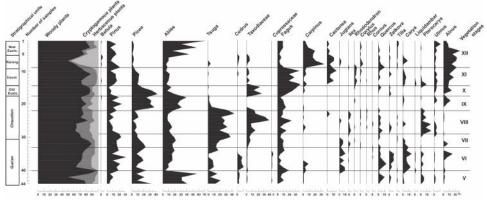


Fig.19. Composite palynological diagram of Eopleistocene and Pleistocene marine deposits from Western Georgia

In general, the climate of stage VI, from the upper Early Gurian to the beginning of the Late Gurian, was warm-temperate and humid, suggesting that it was synchronous with the Danube-Günz interglacial.

This picture changed at the end of the Late Gurian (stage VII), when the area of dark-coniferous forest increased. Among broadleafed trees, a dominant position was occupied by Fagus and Juglans. The expansion of temperate plants indicated cooling climatic conditions, probably connected with the Günz glaciation.

Climatic fluctuations at the end of Gurian were probably responsible for major changes in floral composition. Amongst the ferns, conifers and angiosperms, many Pliocene relicts disappeared. During the Late Gurian, radical changes also occurred in vegetation structure and zonal communities took on an appearance resembling their modern equivalents. Polydominant warm-temperate deciduous forests of rich floristic composition were distributed across the lower mountain belts and the plains. The middle mountain belt was occupied by beech, which began to form separate communities from the end of the Gurian. Abies, Picea and Tsuga formed forest communities in the upper mountain belts.

A list of the Kuyalnician (Egrissian) and Gurian floras is given in Table XIV.

Class	Family	Species	Kuyalnician	Gurian
1	2	3	4	5
Bryopsida	Sphagnaceae	Sphagnum aff.cuspidatum Ehrh. et Hoffm.		р
		Sphagnum sp.		р
		Lycopodium alpinum L.	р	р
		Lycopodium annotinum L.	р	р
Lycopodiop- sida	Lycopodiaceae	Lycopodium clavatum L.	р	р
5100		Lycopodium selago L.	р	р
		Lycopodium serratum Tunb.	р	р
		Selaginella fusca N.Mtchedl.	р	р
Isoëtopsida	Selaginellaceae	Selaginella sanguinolenta (L.) Spring.	р	
isoetopsida	Selaginellaceae	Selaginella selaginoides (L.) Link.	р	р
		Selaginella aff.sibirica (Milde) Hi- eron		р
Ophioglossop-	Ophioglossaceae	Botrychium sp.	р	р
sida	Ophioglossaceae	Ophioglossum sp	р	р
	Osmundaceae	Osmunda cinnamomea L.	р	р
		Osmunda aff.claytoniana L	р	р
		Osmunda regalis L.	р	р
		Cryptogramma arctostichoides R.Br.	р	р
		Cryptogramma crispa (L.) R.Br.	р	р
		Cryptogramma sp.	р	р
psida		Pteridacidites boerzoenyensis (Nagy) St., Sh. (Pteris aff.quadriaurita Retz.)	р	р
Polypodiopsida	сеае	Pteridacidites dentatiformis Sh., St. (Pteris dentata Forsk)	р	
Poly	Pteridaceae	Pteridacidites grandifoliiformis St., Sh. (Pteris grandifolia L.)	р	
		Pteridacidites guriensis Sh., St. (Pteris aff.togoensis Hieron)	р	р
		Pteridacidites kimmeriensis Sh.,St. (Pteris sp.)	р	
		Pteridacidites longifoliiformis Sh., St. (Pteris longifolia L.)	р	

Table XIV. Plants from Kuyalnician (Egrissian) and Gurian deposits in Georgia Key: m – macrofossils; p – pollen

1	2	3	4	5
		Pteridacidites rarotuberculatum Sh., St. (Pteris sp.)	р	
		Pteridacidites remotifolioides Sh., St. (Pteris sp.)	р	р
	сеае	Pteridacidites spiniverrucatum St., Sh. (Pteris pellucida Pr.)	р	
	Pteridaceae	Pteridacidites variabilis St., Sh. (Pteris cretica L.)	р	р
	<u>č</u>	Pteridacidites venustaeformis St., Sh. (Pteris venusta Kze.)	р	р
		Pteridacidites verus (N.Mtchedl.) Sh., St. (Pteris aff.crenata Sw.)	р	р
		Pteridacidites vittatoides Sh., St. (Pteris vittata L.)	р	р
	Adiantaceae	Anogramma sp.	р	р
		Pityrogramma sp.	р	
a	Polypodiaceae	Polypodium aureum L.	р	р
Polypodiopsida		Polypodium australe Fee.	р	р
diop		Polypodium pliocenicum Ram.	р	р
,pod		Polypodium verrucatum Ram.	р	р
loc	od/	Polypodium vulgare L.	р	р
-	Poly	Polypodium sp.	р	р
		Verrucatosporites histiopteroides W.Kr.	р	р
	Hymenophyl- laceae	Hymenophyllum sp.		р
		Dicksonia antarctica R.Br.	р	
		Dicksonia reticulata Purc.	р	р
	Dicksoniaceae	Dicksonia unitotuberata Purc.	р	р
		Dicksonia aff. fibrosa Kol.	р	
		Dicksonia sp.	р	р
	Cyatheaceae	Cyathea sp.	р	р
	Thelypteraceae	Thelypteris sp.	р	р
	Aspleniaceae	Asplenium sp.	р	р
		Athyrium sp.	р	р
	υ	Cystopteris sp.	р	р
	Aspidiaceae	Dryopteris sp.	р	р
	dia	Gymnocarpium sp.	р	р
	Aspi	Polystichum sp.		р
		Woodsia alpina (Bolton) S.F.Gray	р	р
		Woodsia aff.polystichoides Eaton.	р	

1	2	3	4	5
	Dedecarpaceae	Dacrydium sp.	р	р
Pinopsida	Podocarpaceae	Podocarpus sp.	р	р
	Phyllocladaceae	Phyllocladus sp.	р	р
		Abies alba Mill.	р	р
		Abies aff.cephalonica Loud.	р	р
		Abies ciliticaeformis N.Mtchedl.	р	р
		Abies nordmanniana (Stev.) Spach.	р	р
		Cedrus deodara Loud.	р	р
		Cedrus aff.libani Laws.	р	
		Cedrus sauerae N.Mtchedl.	р	р
		Keteleeria caucasica Ram.	p	р
		Picea complanataeformis		
		N.Mtchedl.	р	р
		Picea minor N.Mtchedl.	р	р
		Picea orientalis L.	р	р
		Picea aff.schrenkiana F.et M.	р	р
		Pinus sp.	р	р
	Pinaceae	Pseudotsuga sp.	р	р
		Tsuga aculeata Anan.	р	р
		Tsuga canadensis (L.) Carr.	р	р
		Tsuga diversifolia (Maxim.) Mast.	р	р
sida		Tsuga inordinata Mched.	р	р
Polypodiopsida		Tsuga korenevae Mched.	р	р
poc		Tsuga meierii Mched.	p	р
olyp		Tsuga patens Downie	p	р
Å		Tsuga pattoniana Engelm.	p	p .
		Tsuga shatilovae Mched.	p	р
		Tsuga sivakii Mched.	p	p .
		Tsuga tortuosa Mched.	p	p
		Tsuga aff. blaringhemi Flous	p	p
		Tsuga aff.yunnanensis Mast.	р	р
	Sciadopityaceae	Sciadopitys verticillatiformis Scht. et Ram.	р	р
		Cryptomeria japonica Don	р	р
		Cunninghamia sp.	·	р
		Glyptostrobus sp.		р
	Taxodiaceae	Metasequoia sp.	р	р
		Sequoia sp.	p	р
		Taxodium sp.	p	р
		Taxodiaceae gen. indet.	р	р
		Juniperus sp.	· ·	р
	Cupressaceae	Libocedrus sp.		р
		Cupressaceae gen. indet.	р	р
		Ephedra distachya L.	p	р
Gnetopsida	Ephedraceae	Ephedra sp.	р	p

1	2	3	4	5
		Comptonia sp.	р	
	Myricaceae	Myrica sp.	р	р
		Carya aquatica (Michx.) Nutt.	р	р
		Carya cordiformis (Wangh.) C.Koch	р	р
		Carya ovata (Mill.) C.Koch	р	р
		Carya aff. glabra (Mill.) Sweet.	р	р
		Carya aff.texana DC		р
		Carya sp.	р	р
		Cyclocarya aff. paliurus (Batalin) Iljinsk.	р	р
	eae	Engelhardia sp.	р	р
	Juglandaceae	Juglans cinerea L.	р	р
	lan	Juglans nigra L.	р	р
	bnf	Juglans regia L.	р	p
		Juglans aff.rupestris Engelm.		р
		Platycarya sp.	р	p
		Pterocarya pterocarpa (Michx.) Kunth.	p	p
		Pterocarya aff.rhoifolia Sieb. et Zucc.	р	р
		Pterocarya aff.stenoptera DC	р	р
Dicotyledoneae		Pterocarya sp.	р	р
lon	Salicaceae	Salix sp.	р	р
yled		Alnus sp.	р	р
cot		Betula sp.	р	р
Ō	eae	Carpinus betulus L.	р	р
	Betulaceae	Carpinus caucasica Grossh.	р	р
	3ett.	Carpinus orientalis Mill.	р	р
		Corylis avellana L.	р	р
		Corylus sp.	р	p
		Castanea sativa Mill.	р	p
	Fagaceae	Fagus orientalis Lipsky	p	p
		Quercus sp.	p	p
		Celtis sp.	p	p
		Ulmus foliacea Gilib.	р	p
	υ	Ulmus laevis Pall.	р	p
	Ulmaceae	Ulmus propinqua Koidz.		p
	a J	Ulmus sp.	р	p
	5	Zelkova carpinifolia (Pall.) Dipp.	p	p
		Zelkova serrata (Thunb.) Macino	р	1
		Zelkova sp.	p	р
	Eucommiaceae	Eucommia aff.ulmoides Oliv.	r	р
	Moraceae	Morus alba L.	р	р
		Polygonum persicaria L.	p	р
	Polygonaceae	Polygonum sp.	р	p p
	Caryophyllaceae	Caryophyllaceae gen.indet.	р	р р

1	2	3	4	5
	Chenopodiaceae	Chenopodiaceae gen.indet.	р	р
		Liriodendron tulipifera L.	р	р
	Magnoliaceae	Magnolia denudata Desr.	р	р
	Magnonaceae	Magnolia grandiflora L.	р	р
		Magnolia sp.	р	р
	Annonaceae	Annona sp.	р	р
	Ranunculaceae	Helleborus sp.		р
	Menispermaceae	Menispermum sp.	р	
	Nymphaeaceae	Nymphaeaceae gen.indet.		р
	Platanaceae	Platanus orientalis L.	р	р
		Altingia aff.excelsa Nor.		р
		Fortunearia aff.sinensis Reid.et		n
	Hamamelidaceae	Wils.		р
	Tiamamenuaceae	Liquidambar formosana Hance	р	р
		Liquidambar styraciflua L.	р	р
		Parrotia persica (DC) C.A.M.		р
	Rosaceae	Kerria sp.	р	
	NOSacede	Rosaceae gen. indet.	р	р
	Geraniaceae	Geraniaceae gen.indet.	р	р
	Anacardiaceae	Rhus toxicodendron L.	р	р
eae	Anacarulaceae	Rhus sp.	р	р
one	Aceraceae	Acer aff.platanoides L.	р	р
Dicotyledoneae	Aquifoliaceae	llex sp.	р	р
cot	Celastraceae	Euonymus sp.	р	р
Die	Staphyleaceae	Staphylea colchica Stev.	р	р
	Vitaceae	Parthenocissus quinquefolia (L.) Planch.		р
		Vitis aff.forestalensis Trav.		р
		Tilia caucasica Rupr.	р	р
		Tilia cordata Mill.	р	р
	ae	Tilia ledebourii Borb.		р
	Tiliaceae	Tilia platyphyllos Scop.	р	р
		Tilia tomentosa Moench.	р	р
		Tilia aff.grandipollinia Trav.	р	р
		Tilia aff. taqueti C. Schneid.	р	р
	Elaeagnaceae	Elaeagnus sp.	р	
	Onagraceae	Epilobium sp.	р	р
	Alangiaceae	Alangium aff. kurzii Craib.	р	р
		Nyssa sylvatica L.	р	
	Nyssaceae	Nyssa aff.ingentipollinia Trav.		р
		Nyssa sp.	р	р
	Cornaceae	Cornus sp.	p	p
		Aralia aff.hispida Michx.	p	p
	Araliaceae	Hedera colchica C.Koch.		p
		Fatsia sp.		p

1	2	3	4	5
	A	Turgenia latifolia Hoffm.		р
	Apiaceae	Apiaceae gen. indet.	р	р
	Ericaceae	Rhododendron sp.	р	р
		Symplocos cf.paniculata Wall.	р	р
	Symplocaceae	Symplocos cf.tinctoria (L.) L'Her	р	р
		Symplocos sp.	р	р
a	Oleaceae	Fraxinus sp.	р	р
Dicotyledoneae	Oleaceae	Ligustrum vulgare L.		р
opa	Convolvulaceae	Convolvulus sp.		р
tyle	Caprifoliaceae	Lonicera sp.	р	р
Dico		Viburnum sp.	р	
	Lamiaceae	Lamiaceae gen. indet.		р
	Plantaginaceae	Plantago sp.	р	р
		Cephalaria sp.	р	р
	Dipsacaceae	Knautia sp.	р	р
		Scabiosa sp.	р	р
	Asteraceae	Artemisia sp.	р	р
	Asteraceae	Asteraceae gen.indet.	р	р
	Liliaceae	Liliaceae gen.indet.		р
Monocotyle-	Poaceae	Poaceae gen. indet.	р	р
doneae	Sparganiaceae	Sparganium sp.	р	р
	Typhaceae	Typha latifolia L.	р	р

THE PLIOCENE AND EOPLEISTOCENE (EASTERN GEORGIA)

THE PLIOCENE

The Akchagilian

During the majority of the Pliocene, Eastern Georgia was dry land and thick continental sediments accumulated. These facies have great geographic variability, and therefore the same-aged sediments of different regions are often described using different names. Meotian-Pontian deposits in Kartli are referred to as the Dushetian suite, which changes to the east into the freshwater-continental Shirakian suite. Around the lori River the Shirakian suite is overlapped by deposits of Akchagilian and Apsheronian stages (Table XII). They are represented by marine facies and the continental Alazanian series, composed primarily of conglomerate (Buleishvili, 1960). Akchagilian deposits in Eastern Georgia are distributed mainly on the lori Upland and are represented by shallow-water sediments with fossilized mollusks, plants and terrestrial vertebrates (Fig.13). They are divided into three parts on the basis of faunal stratigraphy. The Lower Akchagilian contains a monotonous fauna, becoming rich and diverse in the Middle Akchagilian and changing to indicate shallowing of the basin during the Upper Akchagilian (Djikia, 1977).

The first data on the Akchagilian flora was provided by Palibin (Palibin & Tsyrina, 1934; Palibin et al., 1934). Later, macroremains of plants from some localities were described by Uznadze (1965), Ratiani (1972a) and Dolidze (1970, 1999).

According to Ratiani, the number of Mediterranean elements increased significantly in the Akchagilian flora. Xerophytisation, which began in the Upper Miocene, intensified in the Pliocene and the vegetation took on characteristic Mediterranean features.

In the work of Dolidze (1999), devoted to the general characteristics of Akchagilian flora, a list of fossil plants is given. In Eastern Georgia these plants are thought to have formed several communities: riparian forests; mesophilous formations on the plains; a subtropical xerophilous formation of steppes and open woodlands; broadleaved forests of the lower and middle belts; and conifer forests, the composition of which was determined through palynological analysis by Kvavadze (Dolidze, 1999).

Relicts of ancient floras are still to be observed in the Lower Akchagilian, e.g. *Cyclosorus fisherii, Tsuga* sp., *Alnus ducalis, Cinnamomum cinnamomeum, Liquid-ambar europea,* Hamamelidaceae gen. indet., *Ilex horrida, Acer saliens* and *A. decipiens*. In the Upper Akchagilian, however, these relicts are entirely absent.

Akchagilian deposits of the Iori Upland were studied palynologically (Vekua & Kvavadze, 1981; Kvavadze & Vekua, 1993). Samples were collected from Middle Akchagilian deposits linked to the Kvabebi locality of vertebrate fauna.

The pollen data indicate that during the Middle Akchagilian the greater part of the lori Upland was covered by forest-steppe vegetation like savanna. Herb steppe was distributed mainly on the plains, while forests spread along the rivers and large areas were covered by Alnus and Platanus. Beech, oak and walnut occurred on drier soils. These forests had rich shrub layer of Ilex, Rhododendron, *Carpinus orientalis* and others. The presence of pollen grains of Betula and conifers such as Pinus, Cedrus, Abies, Sequoia and Picea provides some indication of the vegetation of the middle and upper mountain belts.

The climate of the Middle Akchagilian was close to Mediterranean, with a mild, humid winter and hot, dry summer (Vekua & Kvavadze, 1981).

THE EOPLEISTOCENE

The Apsheronian

The distribution of Apsheronian deposits is confined to the east part of Kakheti, where they are conformably bedded on the Akchagilian (Buleishvili, 1960). Plant macroremains were described by Uznadze (1965) and includes a list of 12 elements, amongst which only *Acer pseudomonospessulanum* Ung. is no longer represented in the modern flora of Georgia.

Most of what we know about the Apsheronian flora and vegetation is based on palynological data. Coprolites from the bone-beds of Dmanisi (Fig.13), which contain hominid remains dated 1.8 Ma (in the Black Sea region this corresponds to the lower boundary of the Gurian stage), were studied by Kvavadze (Kvavadze & Vekua, 1993).

Pollen spectra from these hyena coprolites are characterized by a large number of taxa belonging to quite different ecological groups. Herbaceous pollen is predominant (60-52%), while arboreal pollen makes up 32-38% and has no particular dominant taxon. Pinus, Alnus and Fagus are the principal arboreal types, occurring in more-or-less equal abundance. Pollen of Castanea, Tilia and Carpinus is found in relatively high quantities, along with single grains of Ulmus and Salix. Among shrubs, the pollen of Rhododendron, Corylus and Vaccinium is prevalent. The herbaceous group is represented by Chenopodiaceae, Asteraceae, Poaceae, Cyperaceae, Artemisia, Fabaceae, Caryophyllaceae, Polygonaceae, Plumbaginaceae, Ranunculus, Onagraceae and Geraniaceae.

Taxa representing sporiferous plants are unusually abundant and diverse. Monolete spores without perisporium are predominant, but there are also many spores with preserved ectexine, allowing determination to genus level, e.g. Asplenium, Athyrium, Blechnum, Dryopteris and Polystichum. Club mosses were also significant, including *Lycopodium alpinum*, *L. clavatum*, *L. selago* and *Lycopodium* sp. Spores of *Botrychium* sp., *Selaginella selaginoides* and *Sphagnum* sp. were also identified.

Ecological analysis of the palynological data indicates the presence of several vegetation formations in different altitudinal zones. The presence of elements such as *Selaginella selaginoides, Lycopodium alpinum* and Botrychium suggests the existence of alpine, and possibly subnival, vegetation belts. Montane forests consisted mainly of Abies, Betula and Pinus with some admixture of Fagus. The middle mountains were covered by broad-leaved forests of Fagus, Carpinus and

Ulmus. In the lower mountain belt, Castanea, Tilia and Quercus were prevalent. All these communities could have occurred along the ridges of the Javakheti Range and on the Dmanisi Plateau, while meadow-steppe vegetation probably grew at lower altitudes on the adjacent plains.

The pollen data permit the conclusion that the climate of the southern part of Eastern Georgia in Apsheronian time was rather mild and warm, with high rainfall in the mountains and very dry conditions in the lowlands (Kvavadze & Vekua, 1993; Kvavadze, 1997).

A list of Akchagilian and Apsheronian floras is given in Table XV.

Class	Family	Species	Akchagilian	Apsheronian
1	2	3	4	5
Bryopsida	Sphagnaceae	Sphagnum sp.	m	р
Lycopodiopsida		Lycopodium alpinum L.		р
		Lycopodium aquifolium Scop.	m	
		Lycopodium clavatum L.		р
ida	ae	Lycopodium selago L.		р
sdo	Lycopodiaceae	Lycopodium serratum Tunb.		р
odi	ipod	Lycopodium sp.		р
do	CO CO	Selaginella fusca N.Mtchedl.		р
۲۸	ک	Selaginella selaginoides (L.) Link.		р
		Selaginella aff.sibirica (Milde) Hieron	m	
		Selaginella sp.	m	
Ophioglos- sopsida	Ophioglos- saceae	Bothrychium sp.		р
	Pteridaceae	Pteris sp.		р
	Polypodiaceae	Polypodiaceae gen.indet.	mp	р
	Dennstaedti-	Pteridium aquilinum (L.) Kuhn.	m	
	aceae	Pteridium sp.	m	р
<u>a</u> _	Aspleniaceae	Asplenium sp.		р
osid		Athyrium sp.		р
Polypodiopsida	Aspidiaceae	Cyclosorus (Lastrea) fischeri (Heer) Kol.	m	
olyp	diac	Dryopteris mediterranea Fomin	m	
Ро	spic	Dryopteris sp.		р
	◄	Polystichum sp.		р
		Woodsia aff.polystichoides Eaton		р
	Blechnaceae	Blechnum spicata With.	m	
	Diechnaceae	Blechnum sp.		р

Table XV. List of plants from the Akchagilian and Apsheronian deposits in GeorgiaKey: m – macrofossils; p – pollen

1	2	3	4	5
		Abies sp.	m	р
Pinopsida		Cedrus sp.	mp	р
			mp	m
	ae	Picea sp.	mp	р
	Pinaceae	Pinus eldarica Medw.	m	
	Pin	Pinus pithyusa Stev.	m	
		Pinus sp.	mp	р
Pine		Pseudotsuga sp.		p
Pir		Tsuga sp.	mp	·
	Taxodiaceae	Sequoia langsdorfii (Brongn.) Heer	m	
		Juniperus sp.	mp	р
	Cupressaceae	Cupressaceae gen. indet.	mp	·
Gnetopsida	Ephedraceae	Ephedra sp.	mp	
· · ·	Myricaceae	Myricaceae gen.indet.	mp	
		Carya sp.	mp	
		Juglans acuminata A.Br.	m	
	eae	Juglans regia L.	m	mp
	dac	Juglans sp.	m	p
	Juglandaceae	Pterocarya paradisiaca (Ung.) Iljinsk.	m	·
		Pterocarya pterocarpa (Michx.) Kunth.	m	m
		Populus alba L.	m	-
		Populus nigra L.	m	
		Populus populina (Brongn.) Knobl.	m	
		Populus tremula L.	m	m
a		Salix alba L.	m	
nea	u	Salix apoda Trautv.	m	
opa	cea	Salix caprea L.	m	
Dicotyledoneae	Salicaceae	Salix caucasica L.	m	
Dicc	Sa	Salix cinerea L.		m
		Salix integra Goepp.	m	
		Salix pentandra L.	m	
		Salix purpurea L.	m	
		Salix triandra L.	m	
		Salix varians Goepp.	m	
		Salix sp.	m	р
		Alnus ducalis (Gaud.) Knobl.	m	-
		Alnus glutinosa (L.) Gaerth.	m	
	ge	Alnus hoernesi Stur	m	
	Betulaceae	Alnus subcordata C.A.M.		m
	tul	Alnus sp.	р	р
	Be	Betula alba L.	m	-
		Betula raddeana Trautv.	m	
		Betula sp.	р	р

1	2	3	4	5
		Carpinus grandis Ung.	m	
		Carpinus caucasica Grossh.	р	р
	Betulaceae	Carpinus orientalis Mill.	mp	р
	llac	Corylis avellana L.	m	m
	ßetu	Corylus colurna L.		m
		Corylus sp.	mp	р
		Ostrya carpinifolia Scop.	m	
		Castanea sativa Mill.	m	
		Castanea sp.	р	р
		Fagus orientalis Lipsky	mp	р
		Fagus orientalis Lipsky var. pali- bini Iljinsk.	m	m
		Fagus sp.	m	
	Fagaceae	Quercus cerris L.	m	
		Quercus iberica Stev.	m	
		Quercus pseudocastanea Goepp.	m	
		Quercus robur L.	m	
		Quercus sosnowskyi Kol.	m	
		Quercus sp.	mp	
		Celtis sp.	m	р
ae		Ulmus campestris L.	m	
Dicotyledoneae		Ulmus foliacea Gilib.	m	
edc		Ulmus longifolia Ung.	m	
otyl	Ulmaceae	Ulmus suberosa Moench.	mp	
Dia	UIIIaceae	Ulmus sp.		р
		Zelkova carpinifolia (Pall.) Dipp.	m	
		Zelkova crenata Spath.	m	m
		Zelkova zelkovifolia (Ung.) Buzek et Kotlaba	m	
		Morus alba L.	m	
	Moraceae	Morus andrussowii Palib.et Zyr.	m	
		Moraceae gen.indet.	m	
	Urticaceae	Urtica sp.		р
	Debreeneese	Polygonum persicaria L.	mp	р
	Polygonaceae	Polygonaceae gen.indet.	m	р
	Plumbagi- naceae	Plumbago sp.		р
	Caryophyl- laceae	Caryophyllaceae gen.indet.	mp	mp
	Chenopodi-	Chenopodium sp.	р	р
	aceae	Chenopodiaceae gen.indet.	mp	mp
	Lauraceae	Cinnamomum cinnamomeum (Rossm.) Holl.	m	
	Ranuncu- laceae	Ranunculaceae gen.indet.		р
	Platanaceae	Platanus sp.	mp	р

1	2	3	4	5
		Liquidambar europaea A.Br.	m	
	Hamameli-	Liquidambar sp.	m	
	daceae	Hamamelidaceae gen.indet.	m	
		Amelanchier vulgaris Moench.	m	
		Cotoneaster racemiflora (Desf.) C.Koch	m	
		Crataegus sp.	m	
		Laurocerasus officinalis Roem.	m	
		Laurocerasus pliocenica (Laur.) Kol.	m	
	ae	Rosa sp.	m	
	Rosaceae	Prunus mahaleb L.	m	
	Ros	Prunus persica S.et L.	m	
		Prunus spinosa L.	m	
		Pyracantha coccinea Roem.	m	
		Pyrus caucasica Fed.	m	
		Pyrus communis L.	m	m
		Sorbus caucasigena Kom.	m	
		Spiraea salicifolia L.	m	
		Rosaceae gen. indet.		р
a	Geraniaceae	Geraniaceae gen.indet.		р
Dicotyledoneae	Caesalpini- aceae	Cercis siliquastrum L.	m	
yle		Gleditschia caspica Desf.	m	
icot	Fabaceae	Lespedeza bicolor Trun.	m	
Ω	FaDaceae	Onobrychis radiata N.B.	m	
		Fabaceae gen.indet.	m	р
		Cotinus coggygria (L.) Scop.	m	
	Anacardiaceae	Pistacia lentiscus L.	m	
		Pistacia terebinthus L.	m	
		Acer decipiens A.Br.	m	
		Acer ibericum N.B.		m
	Aceraceae	Acer insigne Boiss.et Buhse	m	
		Acer saliense (Andr.) Kol.et Rat.	m	
		Acer tataricum L.	m	m
	Aquifoliaceae	Ilex horrida Sap.	m	
	Calastinasa	Euonymus latifolia Scop.	m	
	Celastraceae	Euonymus sp.	m	
		Frangula alnus Mill.	m	
	ae	Frangula grandifolia (F.etM.) Grub.	m	
	ace	Paliurus aculeatus LAM.	m	
	Rhamnaceae	Rhamnus cathartica L.	m	
	Sha	Rhamnus microcarpa Boiss.	m	
		Ziziphus jujuba Mill.	m	
		Ziziphus sp.	m	

1	2	3	4	5
	Vitaceae	Vitis silvestris Gmel.	m	
		Tilia caucasica Rupr.	р	р
	Tiliaceae	Tilia platyphyllos Scop.	m	
		Tilia sp.	mp	р
	Elaeagnaceae	Hippophaë sp.	m	
	Onagraceae	Onagraceae gen.indet.	m	р
	Punicaceae	Punica granatum L.	m	
	Composed	Cornus mas L.	m	
	Cornaceae	Cornus sp.		р
	Araliaceae	Hedera colchica C.Koch.	m	
	Apiaceae	Apiaceae gen. indet.	р	
		Rhododendron sp.	mp	р
	Ericaceae	Vaccinium sp.		р
ē		Ericaceae gen.indet.	m	
nea	Myrsinaceae	Myrsinaceae gen.indet.	m	
opa	Ebenaceae	Diospyros lotus L.	m	
otyle	Periplocaceae	Periploca graeca L.	m	
Dicotyledoneae	Oleaceae	Fraxinus excelsior L.	m	
		Ligustrum vulgare L.	m	
	Caprifoliaceae	Sambucus racemosa L.	m	
		Viburnum orientalis Pall.	m	
		Viburnum opulus L.	m	
		Caprifoliaceae gen.indet.	m	
	Lamiaceae	Lamiaceae gen. indet.	mp	р
	Scrophulari- aceae	Linaria sp.	m	
	Plantagi- naceae	Plantago sp.	mp	р
		Valeriana sp.	m	
	Valerianaceae	Valerianaceae gen.indet.	m	
	A	Artemisia sp.	mp	р
	Asteraceae	Asteraceae gen.indet.	mp	р
	Deserves	Phragmites communis Trin.	m	
	Poaceae	Poaceae gen. indet.	mp	р
Monocotyle- doneae	Typhaceae	Typha latifolia L.	m	
uuneae	Company	Carex sp.	mp	
	Cyperaceae	Cyperaceae gen.indet.	mp	р

THE PLEISTOCENE (WESTERN GEORGIA)

The Pleistocene marine deposits are known only from Western Georgia and are divided into the following stratigraphical units based on faunal stratigraphy: Chaudian, Old Euxinian, Uzunlarian, Karangatian and New Euxinian (Table XVI).

Ма	Division	Regiostage	Layers
0.01		New Euxinian	
			Upper
0.1	ne	Karangatian	Lower
	o ce	Uzunlarian	
	Pleisto	Old Euxinian	Omparetian
0.4	ole	Old Euxinian	Urekian
			Tsvermagalian
0.9		Chaudian	Natanebian

Table XVI. Stratigraphical division scheme for Pleistocene deposits in Georgia(after Kitovani et al., 1991)

The most outstanding and characteristic feature of the Pleistocene was repeated glaciation. Ideas about the number of glaciations in the Caucasus are somewhat inconsistent, however. According to Maruashvili (Maruashvili et al., 1991), traces of Riss (Middle Pleistocene) and Wurm (Upper Pleistocene) are most evident, while Tsereteli (1966, 1977) considered the moraines of three glaciations beginning from the Mindelian to be part of the same cycle of glaciations as those of the Russian Plain, but not fully synchronous.

The Chaudian

In Western Georgia the Chaudian basin was of similar size to the Gurian basin and somewhat more extensive than modern Black Sea; its coastline lay 2 km from the current one. Chaudian outcrops are distributed throughout Guria and in the Colchis depression they can reach great depth (Imnadze, 1975; Kitovani & Imnadze, 1986; Tsereteli, 1966). The Chaudian horizon is divided on the basis of fauna into the Lower Chaudian (Natanebian) and Upper Chaudian (Tsvermagalian) layers (Kitovani et al., 1982; 1991).

Palibin collected the first material on the Chaudian flora (1930a, 1931) and the

fossil flora was described by Kara-Mursa (1941). Of the 21 plants identified, only *Acer velutinum* is absent from the modern flora of Western Georgia. At present two main localities (Fig.20) are known – from the Chakhvata River and near Khvarbeti village – and both were described by Chochieva (1965, 1975, 1985).

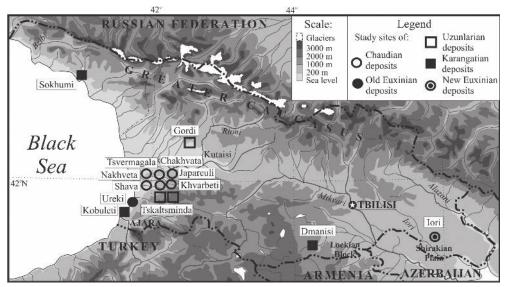
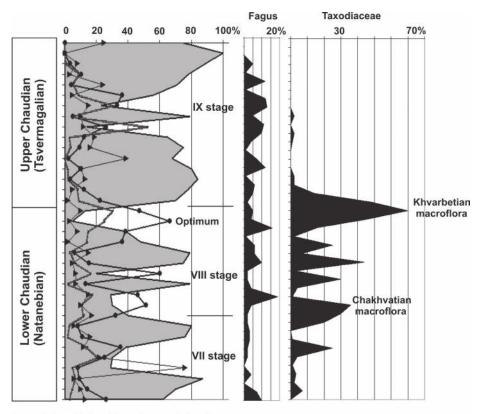


Fig.20. Study sites of Pleistocene deposits in Georgia


Chaudian deposits are very rich in pollen and spores. Nearly all outcrops, as well as borehole samples from the Colchian plain, have been studied palynologically (Mamatsashvili, 1975; Mchedlishvili, 1984; Shatilova, 1967, 1974; Shatilova & Mchedlishvili, 1980; Shatilova et al., 2006). The Chaudian has been reconstructed using landscape-phytocenological analysis and three main stages in its climatic and vegetational history elucidated (Fig. 21).

In the Late Gurian and beginning of the Early Chaudian (Fig.18, 19, 21), the dominant plant community was dark-conifer forest with Tsuga, Abies and Picea. The climate in their distributional area was temperate and humid. The area of warm temperate and beech forest was less (stage VII).

By the upper part of the Early Chaudian, the character of vegetation had changed somewhat (stage VIII). The middle mountain belt was covered by beech forests, which had begun to form in the Late Gurian as new ecological niches appeared as a result of tectonic uplift (Kogoshvili, 1977; Tsagareli, 1980). The long-term development of beech forests was rather sporadic. At the beginning of the Chaudian (stage VII), beech was a component of dark-coniferous or coniferous-

broadleaved forests. Later (stage VIII), it formed a distinct community, but its area was changeable. We suppose that the reduction of beech forests was caused mainly by cooling, since today the upper boundary of *Fagus orientalis* is determined by temperature and winter precipitation. Oriental beech forests achieve maximum productivity when the temperature of the warmest month is 17-20^oC and annual precipitation is not less than 700-1400 mm (Dolukhanov, 1989). Similar conditions accompanied the maximum development of beech communities during the Chaudian.

The Taxodiaceae family reached great abundance during stage VIII. They occupied a large and stable area at the time when the Chakhvatian and Khverbetian floras were laid down. The Khvarbetian can be considered as a climatic optimum, as also indicated by the presence of some subtropical Pliocene relicts in this macroflora (Chochieva, 1975, 1985).

Legend: Dark-coniferous temperate forests

- Mixed warm-temperate forests with Pliocene relicts

Swamp forests

Fig. 21. Percentage fluctuations of palynological groups in Western Georgia during the Chaudian, reflecting changes in the distribution of the main forest formations.

According to Dolukhanov (1989), Taxodiaceae were pushed down nearly to sea level by cooling temperatures at the time of the Khvarbetian flora. However, we think that the main reason was orogenic movements, which created habitats favorable for beech forest in the middle mountain belt. Beech forced Taxodiaceae and other thermophilous plants down into the lower mountain belt, where they formed mixed communities made up of Juglans, Quercus, Zelkova, Acer, Tilia and Pliocene relicts such as Myrica, Platycarya, Engelhardia, Magnolia, Nyssa, Liquidambar, Symplocos and Carya.

During the Late Chaudian (stage IX), significant changes in the composition of flora and character of the vegetation took place. The number of Pliocene relicts and the diversity of the Taxodiaceae family and genus Tsuga decreased and their dominant role in coniferous forests was lost. Broadleafed plants remained only at lower altitudes, while other elevations were covered by coniferous forests in which Abies and Picea prevailed.

The Chaudian climate was temperate in the upper and middle forest belts, and warm-temperate in the lower. Humidity was generally high. The Early Chaudian climate was warmer and altitudinal zonation more distinct than in the Late Chaudian, which appears to have been temperate at most elevations.

Connections between the Chaudian and the Pleistocene glaciations have been considered by many researchers (Fedorov, 1978; Tsereteli, 1966; Zubakov, 1986). According to Borzenkova (1992), the Early Pleistocene included the classic Günz and Mindel glaciations, separated by the Günz-Mindelian interglacial.

On the basis of our data, we can relate stage VII (upper part of Gurian and lower part of the Early Chaudian) to the Günz glaciations, stage VIII (the upper part of Lower Chaudian - the warmest period) to the Günz-Mindelian interglacial, and stage IX (the whole Upper Chaudian or Tsvermagalian layers) to the Mindelian glaciation.

A list of plant remains from Chaudian floras is given in Table XVII.

Class	Family	Species	Lower Chaudian	Upper Chaudian
1	2	3	4	5
		Lycopodium clavatum L.	р	р
Lycopodiopsida	Lycopodiaceae	Lycopodium selago L.	р	р
		Lycopodium sp.	р	

Table XVII. Plants from Chaudian deposits in Georgia Key: m – macrofossils; p – pollen

1	2	3	4	5
		Selaginella fusca N.Mtchedl.	р	
lsoëtopsida	Selaginellaceae	Selaginella selaginoides (L.) Link.	р	
		Selaginella sp.	р	
Ophiaglassansida	Ophiaglassasaa	Bothrychium sp.	р	р
Ophioglossopsida	Ophioglossaceae	Ophioglossum sp	р	
	Osmundaceae	Osmunda cinnamomea L.	р	р
	Osmunuaceae	Osmunda regalis L.	р	р
		Cryptogramma arctostichoides R.Br.	р	
	Pteridaceae	Cryptogramma crispa (L.) R.Br.	р	р
<u>a</u>		Pteris cretica L. (Pteridacidites variabilis St.et Sh.)	р	р
oisc		Polypodium aureum L.	р	
Polypodiopsida	Polypodiaceae	Polypodium australe Fee.	р	р
, pod	Polypoulaceae	Polypodium vulgare L.	р	р
ylo		Polypodium sp.	р	
	Cyatheaceae	Cyathea sp.	р	
	Thelypteridaceae	Thelypteris sp.	р	
	Aspleniaceae	Asplenium sp.	р	
		Athyrium sp.	р	
		Cystopteris fragilis (L.) Bernh.	р	
	Aspidiaceae	Dryopteris sp.	p	
		Gymnocarpium sp.	p	
		Polystichum sp.	p	
	Podocarpaceae	Podocarpus sp.	p	
	Тахасеае	Taxus sp.	mp	
		Abies aff.cephalonica Loud.	p	р
		Abies ciliticaeformis N.Mtchedl.	р	р
		Abies nordmanniana (Stev.) Spach.	mp	р
		Cedrus deodara Loud.	р	р
e		Cedrus sauerae N.Mtchedl.	р	
Pinopsida	U	Picea minor N.Mtchedl.	р	
ino	Pinaceae	Picea orientalis L.	mp	р
۵.	ina	Pinus sosnowskyi Nakai	р	
		Pinus sp.	р	р
		Pseudotsuga sp.	р	
		Tsuga aculeata Anan.	р	
		Tsuga canadensis (L.) Carr.	mp	р
		Tsuga diversifolia (Maxim.) Mast.	mp	р
		Tsuga europaea (Menzel) Szafer	m	

1	2	3	4	5
		Tsuga inordinata Mched.	р	
		Tsuga korenevae Mched.	р	р
		Tsuga meierii Mched.	р	р
	υ	Tsuga patens Downie	р	р
	Pinaceae	Tsuga shatilovae Mched.	р	р
	ina	Tsuga sivakii Mched.	р	
		Tsuga tortuosa Mched.	р	
		Tsuga aff. blaringhemi Flous	р	
		Tsuga aff.yunnanensis (Frangh.) Mast.	р	
		Athrotaxis annae Choch.	m	
		Athrotaxis sp.	m	
		Cryptomeria japonica Don	р	р
		Cryptomeria sp.	mp	
		Cunninghamia sp.	p	
ae	Taxodiaceae	Metasequoia cf.glyptostroboides Hu et Cheng	m	
Pinaceae	Dox	Metasequoia sp.	mp	
Pin	Ta	Sequoia langsdorfii (Brongn.) Heer	m	
		Sequoia cf.sempervirens (Lamb.) Endl.	m	
		Sequoia sp.	mp	р
		Sequoiadendron sp.	mp	
		Taxodium sp.	р	р
		Cupressus cf.sempervirens L.	m	
		Cupressus sp.	mp	
		Chamaecyparis obtusa Sieb. et Zucc.	m	
	Cupressaceae	Chamaecyparis cf.pisifera Sieb.et Zucc.	m	
	upres	Chamaecyparis nootkatensis (Lamb.) Spach	m	
		Chamaecyparis sp.	m	
		Juniperus sp.	mp	
		Libocedrus sp.	р	
		Thuja occidentalis L.	m	
Gnetopsida	Ephedraceae	Ephedra distachya L.	р	
Checopsida	Epicalaceae	Ephedra sp.	р	р
	Myricaceae	Myrica sp.	р	
eae		Carya aquatica (Michx.) Nutt.	р	р
Dycotyledoneae	Juglandaceae	Carya aff.texana DC	р	
ylec	dac	Carya sp.	mp	
coty	llan	Engelhardia sp.	р	
D	5nr	Juglans cinerea L.	mp	
		Juglans nigra L.	р	

1	2	3	4	5
		Juglans regia L.	р	р
		Platycarya sp.	р	
	Juglandaceae	Pterocarya pterocarpa (Michx.) Kunth.	mp	р
	uglan	Pterocarya rhoifolia Sieb. et Zucc.	р	
		Pterocarya stenoptera DC	р	
		Pterocarya sp.	р	
		Populus tremula L.	m	
	Salicaceae	Salix caprea L.	m	
		Salix sp.	р	
		Alnus glutinosa (L.) Gaerth.	m	
		Alnus sp.	mp	р
		Betula sp.	mp	р
	0	Carpinus betulus L.	m	
	Betulaceae	Carpinus caucasica Grossh.	р	р
	ulac	Carpinus orientalis Mill.	mp	р
	Beti	Carpinus sp.	m	
		Corylis avellana L.	mp	р
		Corylus cf.colurna L.	m	
a,		Corylus aff.maxima Mill.	р	
Jear		Ostrya carpinifolia Scop.	m	
qor		Castanea sativa Mill.	mp	
tyle		Fagus orientalis Lipsky	р	р
Dycotyledoneae		Fagus orientalis Lipsky var. palibini Iljinsk.	m	
		Quercus cerris L.	m	
	eae	Quercus hartwissiana Stev.	m	
	Fagaceae	Quercus aff.castaneifolia C.A.Mey	р	
		Quercus aff.petraea Liebl.	р	
		Quercus aff.pontica C.Koch	р	
		Quercus aff.pseudorobur Kov.	m	
		Quercus sp.	mp	р
		Ulmus foliacea Gilib.	mp	
	ae	Ulmus laevis Pall.	р	
	Ulmaceae	Zelkova carpinifolia (Pall.) Dipp.	р	р
		Zelkova serrata (Thunb.) Macino	р	
	Moraçoas	Ficus sp.	р	
	Moraceae	Morus alba L.	р	
	Delvaensesse	Polygonum sp.	mp	
	Polygonaceae	Rumex sp.	m	
	Convorbillesse	Stellaria sp.	р	
	Caryophyllaceae	Caryophyllaceae gen.indet.	р	

1	2	3	4	5
	Chenopodiaceae	Chenopodiaceae gen.indet.	р	
	Magnaliacaaa	Magnolia denudata Desr.	р	
	Magnoliaceae	Magnolia aff.acuminata L.	р	
	Ranunculaceae	Ranunculus sp.	mp	
	NationCulaceae	Thalictrum sp.	р	
	Nymphaeaceae	Euryale ferox Salisb.	m	
	Пупрпаеасеае	Nuphar sp.	р	
	Theaceae	Eurya cf.stigmosa (Ludw.) Mai	m	
		Stuartia emarginata Choch.	m	
	Papaveraceae	Papaver sp.	m	
	Hypericaceae	Hypericum sp.	m	
	Platanaceae	Platanus orientalis L.	р	
	Hamamelidaceae	Liquidambar styraciflua L.	р	
		Laurocerasus officinalis (L.) Roem.	m	
	U	Prunus sp.	m	
	Rosaceae	Rosa canina L.	р	
	osa	Rosa sp.	р	
	<u>د</u>	Rubus cf.idaeus L.	m	
ae		Rubus sp.	m	
ne		Sanguisorba sp.	р	
edc	Geraniaceae	Geranium sp.	р	р
Dycotyledoneae	Rutaceae	Phellodendron aff.amurense Rupr.	р	
	Anacardiaceae	Rhus sp.	р	
		Acer campestre L.	m	
	a)	Acer ibericum M.B.	m	
	Aceraceae	Acer polymorphum pliocenicum Sap.	m	
	Ace	Acer pseudoplatanus L.	m	
		Acer cf.velutinum Boiss.	m	
		Acer sp.	mp	
	Hippocastanaceae	Aesculus hippocastanum L.	mp	
		llex colchica Pojark,	р	р
	Aquifoliaceae	llex cf.aquifolium L.	m	
		llex sp.	р	
	Celastraceae	Euonymus sp.	р	
	Staphyleaceae	Staphylea colchica Stev.	р	
	Buxaceae	Buxus sempervirens L.	m	
	Vitaceae	Parthenocissus quinquefolia (L.) Planch.	р	
		Vitis silvesrtis Gmel.	m	
		Tilia caucasica Rupr.	р	р
	Tiliaceae	Tilia cordata Mill.	mp	
		Tilia ledebouri Borb.	р	

1	2	3	4	5
		Tilia platyphyllos Scop.	р	
	Tiliaceae	Tilia tomentosa Moench.	р	
		Tilia aff.grandipollinia Trav.	р	
	Violaceae	Viola sp.	р	
		Epilobium sp.	p	
	Onagraceae	Chamaenerium aff.	· · ·	1
	-	angustifolium (L.) Scop.	р	
	T	Trapa lydiae Choch.	m	
	Trapaceae	Trapa sp.	m	
	Nyssaceae	Nyssa sp.	р	
	Cornaceae	Cornus sp.	р	
		Hedera colchica C.Koch.	mp	
	A 1.	Hedera helix L.	mp	
	Araliaceae	Fatsia aff.japonica (Thunb.)		
		Decne et Planch.	р	
		Bifora sp.	m	
		Heracleum guriensis Choch.	m	
	Apiaceae	Heracleum sp,	m	
		Turgenia latifolia Hoffm.	р	1
		Rhododendron ponticum L.	m	
ae	Ericaceae	Vaccinium sp.	р	
one	Ebenaceae	Diospyros lotus L.	m	
led		Symplocos chvarbetica		
oty	ae	Choch.	m	
Dycotyledoneae	Symplocaceae	Symplocos cf.paniculata	2	
_	00	Wall.	р	
	du	Symplocos cf.tinctoria (L.)	р	
	Sy	L'Her	Ρ	
		Symplocos sp.	р	
		Fraxinus oxycarpa Willd.	р	
	Oleaceae	Fraxinus sp.	р	
		Ligustrum vulgare L.	р	
	Convolvulaceae	Convolvulus sp.	р	
		Lycopus europaeus L.	m	
	Lamiaceae	Lycopus exaltatus L.	m	
		Lycopus sp.	р	
	Plantaginaceae	Plantago sp.	р	р
		Lonicera sp.	р	
	Caprifoliaceae	Sambucus sp.	m	
	Valerianaceae	Valeriana sp.	р	р
		Cephalaria sp.	p	p
	Dipsacaceae	Knautia sp.	p	р
		Scabiosa sp.	р	p
		Artemisia sp.	p	р
	Asteraceae	Eupatorium cannabinum L.	<u>P</u> m	۳ ا

1	2	3	4	5
	Najadaceae	Najas marina L.	m	
	Liliaceae	Liliaceae gen.indet.	р	р
	Iridaceae	Iris sp.	р	р
	Descase	Phragmites communis Trin.	m	
	Poaceae	Poaceae gen. indet.	р	р
Manacatuladanaaa	Sparganiaceae	Sparganium sp.	р	р
Monocotyledoneae	Typhaceae	Typha latifolia L.	р	
		Carex cf.riparia Currtt.	m	
	Ceat	Carex sp.	m	
	erac	Dulichium spathaceum Pers.	m	
	Cyperaceae	Dulichium vespiforme Reid.	m	
	Ŭ	Scirpus sp.		р

The Old Euxinian and Uzunlarian

The Upper Chaudian (Tsvermagalian) deposits of Western Georgia are overlapped by Old Euxinian layers on marine terraces, in natural outcrops and in boreholes from the Colchis plain (Fedorov, 1978; Imnadze, 1975; Imnadze et al., 1975; Kitovani et al., 1982, 1991; Laliev, 1957; Mamaladze, 1975; Tsereteli, 1966).

Data on the flora of the Old Euxinian is based on palynological analysis (Chochieva & Mamatsashvili, 1977, 1991; Chochieva et al., 1982; Mamatsashvili, 1975; Shatilova, 1974; Shatilova & Mchedlishvili, 1980; Shatilova & Ramishvili, 1990; Shatilova et al., 2010a). In borehole records and natural outcrops (Fig.20), Old Euxinian deposits contain high percentages of Picea, Abies and Taxodiaceae pollen, the latter comprising only three genera that remained after the Chaudian: Taxodium, Cryptomeria and Sequoia. Among broadleafed trees, Fagus and Alnus were predominant (Fig.19).

Old Euxinian deposits are overlapped by Uzunlarian layers. The flora of Uzunlarian was studied from both macroremains and pollen (Chochieva, 1980; Shatilova, 1982; Shatilova & Mchedlishvili, 1980). Uzunlarian palynological assemblages differ from those of the Old Euxinian in the small number of Taxodiaceae pollen, the high percentage of broad-leaved deciduous plants and in the increasing representation of Pliocene relicts, i.e. Cedrus, Tsuga, Carya, Liquidambar and Magnolia (Fig.19).

A Middle Pleistocene vegetation reconstruction using the landscape-phytocenological method is given in Figure 22 and indicates a two-stage development in the vegetation: the Old Euxinian (X) and the Uzunlarian (XI).

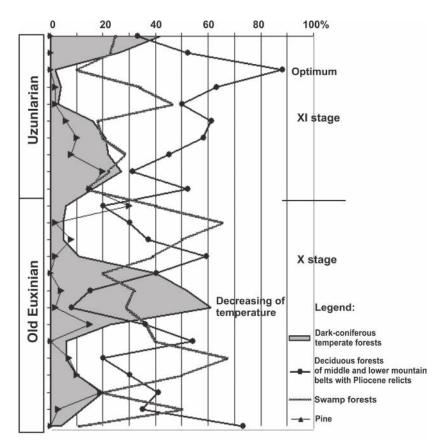


Fig. 22. Percentage fluctuations of palynological groups in Western Georgia during the Middle Pleistocene, reflecting changes in the distribution of the main forest formations.

The great prevalence of Taxodium pollen in Old Euxinian deposits (Fig.19) is indicative of the extensive riparian and swamp forests that occurred along the sea shore (Mamatsashvili, 1975; Shatilova, 1974). Alnus, Pterocarya and Ulmus were also to be found in these forests. Mixed coniferous-broadleaved communities were distributed through the lower mountain belt and included Sequoia and Cryptomeria as their main components. The majority of the middle belt was occupied by monodominant beech forests, indicated by a high percentage of Fagus pollen grains in palynological assemblages. In the upper mountain belt, dark coniferous forests of Picea and Abies predominated. Tsuga was also present in this community, as indicated by single pollen grains. The middle stretches of the Old Euxinian were distinguished by the expansion of dark-coniferous forests, probably as a result of temperature reductions.

In the Uzunlarian, the character of vegetation again changed (Fig. 19, 22). Among broadleaved plants, *Fagus orientalis, Castanea sativa, Carpinus caucasica*

and Alnus were most prevalent, the latter forming the main component of riparian and swamp forests. The area of mixed coniferous-broadleaved forests declined and Taxodiaceae decreased, yet on the whole Uzunlarian forests were much more diverse than those of the Old Euxinian.

In general the climate of the Middle Pleistocene was warm and humid. The Old Euxinian was rather cold compared to the climatic optimum of the Uzunlarian. The two stages correspond to the Mindel-Riss interglacial (stage X) and the Riss-Wurmian interglacial (stage XI), respectively.

Lacustrine deposits near Gordi village, dated to the Middle Pleistocene, also contain Taxodiaceae pollen grains (Maruashvili et al., 1975; 1991). A list of the Old Euxinian and Uzunlarian floras is given in Table XVIII.

The Karangatian and New Euxinian

The Karangatian and New Euxinian horizons are represented by deep-water deposits and marine terraces.

The Karangatian flora was studied from plant macroremains (Ratiani, 1979) and palynological complexes (Arslanov et al., 1976; Cherniuk, 1986; Kvavadze & Rukhadze, 1999; Shatilova & Badzoshvili, 1966; Shatilova 1974).

After the Uzunlarian, the number of Tertiary-relict taxa declined so that by the Karangatian they are represented only by a handful of species: *Cedrus deodara, Carya aquatica, Parrotia pristina* and Taxodiaceae, macroremains of which were preserved in Karangatian peat on the Colchis plain (Sluka, 1978). Following the Karangatian, the Taxodiaceae family disappeared from Georgia and the whole Black Sea region (Koreneva & Kartashova, 1978).

In the Early Karangatian, the upper mountain belt was occupied by darkconiferous forests of Abies and Picea (Fig.19, 23). Beech forests were distributed through the middle mountain belt, grading into mixed broadleaved communities at lower altitudes. Swamp forests with *Alnus barbata, A. hoernesi, A. glutinosa, Pterocarya pterocarpa, Ulmus foliacea, U. scabra* and some Taxodiaceae occurred in the coastal lowlands.

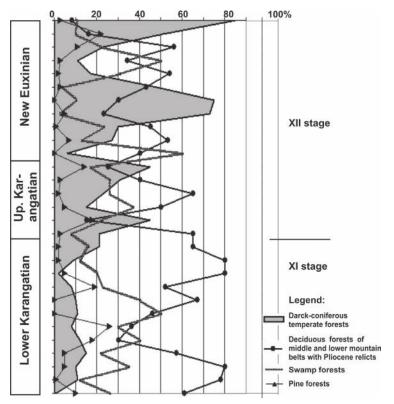


Fig. 23. Percentage fluctuations of palynological grounps in Western Georgia during the Late Pleistocene, reflecting changes in the distribution of the main forest formations.

The Early Karangatian, as well as the Uzunlarian, correlates with the Riss-Wurmian interglacial (stage XI), characterized by a warm climate with low humidity (Maruashvili et al., 1991).

By the Late Karangatian the situation had changed somewhat, as dark-coniferous forests began to migrate to lower elevations. Probably these were the first effects of the Wurm glaciation, which was followed by three stages of decreasing temperatures in the New Euxinian (stage XII).

Evidence for lower temperatures during the New Euxinian comes from palynological analyses of sediments from the Black Sea floor. New Euxinian assemblages contain a high percentage of Chenopodiaceae and Artemisia pollen grains (Neishtadt et al., 1965). The presence of these taxa in the Black Sea region during the Late Pleistocene indicates cold climatic conditions and glacial activity. During periods of extensive glaciations, the sea level fell, allowing the former sea bed to be colonised by halophytes.

Neishtadt's data are in accordance with materials analysed by Koreneva (1980;

1983). In her opinion, Pleistocene regressions in the Black Sea were mainly triggered by glaciations. The reduction in the Black Sea's area resulted in changes to the regional climate system, leading to low atmospheric humidity and low temperatures. These conditions promoted a particular type of periglacial vegetation dominated by Chenopodiaceae and Artemisia. Decreasing temperatures in the New Euxinian were also noted by Sluka (1978).

The large extent of climatic changes during the New Euxinian is confirmed by palynological analysis of limnic-alluvial deposits found on the terraces of the lori River in Eastern Georgia (Tumajanov & Gogichaishvili, 1969). Spore-pollen assemblages dated to the Late Pleistocene (Wurm) indicate cold forest-steppe communities and treeless areas. These cold climatic conditions are further suggested by archeological and lithological data (Tsereteli & Maisuradze, 1980).

On the basis of new data and published materials, it can be concluded that the climate of Georgia during the second half of the Late Pleistocene was colder than during previous stretches of the Quaternary. According to Velichko (1973), a particular type of treeless landscape originated during the New Euxinian in response to dry and cold climatic conditions and spread over vast areas, including to the Black Sea region. In Georgia such a type of vegetation appeared only in the eastern part. In Colchis, where temperature and humidity were higher, the colder climate manifested as a downward migration of dark-coniferous forests, while broadleaved plants sought refuge in warm gorges. In the favorable conditions of interstadials, broadleaved species expanded and deciduous forests occupied areas left after glacial retreat.

In the history of development of Western Georgia's vegetation during the Middle and Upper Pleistocene, three stages can be distinguished (X-XII). These stages differed mainly in terms of temperature, as the global climate oscillated between interglacials and glacials. The warm stages, X and XI, correspond to the Old Euxinian, Uzunlarian and Lower Karangatian, and are chronologically linked to the Mindel-Riss and Riss-Wurm interglacials. The colder stage, XII, from the Upper Karangatian and whole New Euxinian, is linked to the Wurm glacial. Fossil traces of the flora of the Riss glaciation in Western Georgia have not been found.

A list of floras is given in Table XVIII.

Table XVIII. Plants from Old Euxinian, Uzunlarian, Karangatian and New Euxinian deposits in Georgia Key: m – macrofossils; p – pollen

Class	Family	Species	Old Euxinian	Uzun- larian	Karan- gatian.	New Euxin- ian
1	2	3	4	5	6	7
Bryopsida	Sphagnaceae	Sphagnum sp.			р	
Lycopodiop-	Luconodia anno	Lycopodium clava- tum L.	р	р	р	р
sida	Lycopodiaceae	Lycopodium selago L.	р	р	р	р
		Lycopodium sp.		р		
Isoëtopsida	Selaginellaceae	Selaginella fusca N.Mtchedl.		р		
isoetopsida	Selaginenaceae	Selaginella selagi- noides (L.) Link.	р	р	р	р
Ophioglos-	Ophioglos-	Bothrychium sp.	р	р	р	р
sopsida	saceae	Ophioglossum sp.		р	р	р
	Osmundaceae	Osmunda cin- namomea L.		р		
		Osmunda regalis L.	р	р	р	р
		Cryptogramma crispa (L.)R.Br.		р	р	р
	Pteridaceae	Pteris cretica L. (Pteri- dacidites variabilis St., Sh.)	р	р	р	р
		Polypodium australe Fee.	р	р	р	р
		Polypodium plioceni- cum Ram.		р		
da	Polypodiaceae	Polypodium vulgare L.	р		р	р
isdo		Polypodium sp.	р	р	р	
Polypodiopsida		Polypodiaceae gen. indet.			р	
Pol	Dennstaedti- aceae	Pteridium sp.		р	р	
	Thelypteri- daceae	Thelypteris sp.		р	р	р
		Asplenium tricho- manes L.			р	
	Aspleniaceae	Asplenium sp.	р			
		Onoclea sp.	р			
		Athyrium filix femina (L.) Röth	р	р		
	Aspidiaceae	Cystopteris sp.	р			
	Aspialaceae	Dryopteris filix-mas (L.) Schott			р	
		Dryopteris sp.	р			

1	2	3	4	5	6	7
Polypodiop-		Woodsia aff.alpina (Bolt.) Grey		р		
sida	Aspidiaceae	Woodsia glabella R.Br.		р		
	Тахасеае	Taxus sp.	р			
		Abies cephalonica Loud.	<u> </u>		mp	р
		Abies ciliticaeformis N.Mtchedl.	р	р		
		Abies nordmanniana (Stev.) Spach.	р	р	m	
		Cedrus deodara Loud.	р	р	р	
	Pinaceae	Picea orientalis L.	р	р	р	р
		Picea sp.		m		
a		Pinus sosnowskyi Nakai			mp	
psic		Pinus sp.	р	р	р	р
Pinopsida		Tsuga diversifolia (Maxim.) Mast.	р	р		
		Tsuga shatilovae Mched.	р	р		
	Taxodiaceae	Cryptomeria japonica Don	р	р		
		Glyptostrobus sp.		р		
		Sequoia sp.	р	р		
		Taxodium sp.	р	р	р	
		Taxodiaceae gen. indet			р	
		Juniperus sp.	р			
	Cupressaceae	Cupressaceae gen. indet.	р	р		
Gnetopsida	Ephedraceae	Ephedra sp.	р	р	р	р
		Carya aquatica (Michx.) Nutt.	р	р	р	
	Juglandaceae	Carya aff.texana DC		р		
	Jugianuaceae	Juglans regia L.		р	р	р
ae		Pterocarya pterocar- pa (Michx.) Kunth.	р	р	mp	р
one		Populus tremula L.	m		m	
led		Salix alba L.	m		m	
Dicotyledoneae	Salicaceae	Salix caprea L.			m	
Dic		Salix triandra L.			р	
		Salix sp.	р	р	р	
		Alnus barbata C.A.M.		mp	mp	
	Betulaceae	Alnus glutinosa (L.) Gaerth.			р	р
		Alnus hoernesi Stur			m	

1	2	3	4	5	6	7
		Betula pubescens Ehrh,		р		
		Betula litwinowii A.Dol.		m	m	
		Betula cf. verrucosa Ehrh.		m		
		Betula sp.	р	р	р	р
		Carpinus betulus L.			m	
	Betulaceae	Carpinus caucasica Grossh.		m	р	р
		Carpinus orientalis Mill.	р	mp	р	р
		Corylus avellana L.	р	mp	р	р
		Corylus colchica Alb.		m		
		Corylus sp.			р	
		Ostrya carpinifolia Scop.			m	
		Castanea atavia Ung.			m	
		Castanea pliosativa Kol.	m			
		Castanea sativa Mill.	р	mp		р
eae		Fagus antipovii Heer			m	
ledon		Fagus orientalis Lipsky		р	mp	р
Dicotyledoneae		Fagus orientalis Lipsky var. palibini Iljinsk.	m			
	Fagaceae	Quercus aff.hartwissi- ana Stev.	р			
		Quercus aff.iberica Stev.	р		р	р
		Quercus aff.pontica C.Koch		р	р	р
		Quercus pseudor- obur Kov.			m	
		Quercus sp. (cf.Q.sosnowskyi Kol.)		m		
		Quercus sp.	р	р		
		Ulmus foliacea Gilib.	р	р	mp	р
		Ulmus scabra Mill.	р		р	р
	Ulmaceae	Ulmus sp.		m	р	
		Zelkova carpinifolia (Pall.) Dipp.	р	р	р	р
		Ficus sp.			р	
	Moraceae	Morus alba L.	р	р	р	р
		Moraceae gen.indet.			р	
	Urticaceae	Urtica sp.	р	р	р	

2	3	4	5	6	7
	Polygonum persi- caria L.		р	р	р
Polygonaceae	Polygonum vivipa- rum L.	р	р	р	р
	Polygonum sp.			р	
Caryophyllaceae	Caryophyllaceae gen. indet.	р	р	р	р
Chenopodi- aceae	Chenopodiaceae gen.indet.	р	р	р	р
Magnoliaceae	Magnolia sp.		mp		
Ranunculaceae	Ranunculaceae gen. indet.			р	
	Laurus nobilis L.			m	
Lauraceae	Laurus sp.		m		
	Nuphar luteum L.			р	р
Nymphaeaceae	Nuphar sp.		р		
	Nymphaeaceae gen. indet.			р	
Papaveraceae	Papaveraceae gen. indet.			р	
Brassicaceae	Brassicaceae gen. indet.		р		
Hypericaceae	Hypericum inodorum Willd.			р	
Platanaceae	Platanus sp.			р	
Llomonoli	Corylopsis aff.cordata Merrill et Li		р		
daceae	Liquidambar styraci- flua L.		р		
	Parrotia pristina Ett.			m	
	Pyracantha coccinea Roem.	m		m	
	Rosa canina L.		р		
g	Rosa sp.	р	р	р	
acea	Rubus sp		m		
Sosa	Sanguisorba sp.		р	р	р
				m	
	Sorbus subfusca (Ledeb.) Boiss.			m	
	Sorbus sp.	р		р	
Fabaceae	Fabaceae gen.indet.	р	р	р	
Geraniaceae	Geranium sp.	р	р	р	р
Anacardiaceae	Rhus toxicodendron L.		р		
	Rhus sp.	р	р	р	р
Aceraceae	Acer laetum CAM pliocenicum Sap.et Mar			m	
	Polygonaceae Caryophyllaceae Chenopodi- aceae Magnoliaceae Ranunculaceae Lauraceae Lauraceae Brassicaceae Hypericaceae Hypericaceae Hamameli- daceae Hamameli- daceae	PolygonaceaePolygonum persicaria L.Polygonum viviparum L.Polygonum sp.CaryophyllaceaeCaryophyllaceae gen. indet.Chenopodiaceaegen.indet.AgnoliaceaeMagnolia sp.RanunculaceaeRanunculaceae gen. indet.LauraceaeLaurus nobilis L. Laurus sp.NymphaeaceaeNuphar luteum L.NymphaeaceaePapaveraceae gen. indet.PapaveraceaePapaveraceae gen. indet.HypericaceaeParasciaceae gen. indet.HypericaceaePlatanus sp.Hamameli- daceaeCorylopsis aff.cordata Merrill et Li Liquidambar styraci- flua L.Parotia pristina Ett.Pyracantha coccinea Roem.Rosa canina L.Sorbus subfusca (Ledeb.) Boiss.Sorbus subfusca (Ledeb.) Boiss.Sorbus subfusca (Ledeb.) Boiss.FabaceaeGeranium sp.FabaceaeFabaceae gen.indet.AnacardiaceaeFabaceae gen.indet.Rosa sp.Sorbus subfusca (Ledeb.) Boiss.FabaceaeFabaceae gen.indet.Sorbus sp.Sanguisorba sp.Sorbus sp.Sanguisorba sp.Sorbus sp.Sorbus sp.FabaceaeFabaceae gen.indet.GeraniaceaeGeranium sp.Rhus toxicodendron L.Rhus sp.Rhus sp.Saceae gen.indet.	PolygonaceaePolygonum persicaria L.Polygonum viviparum L.PPolygonum sp.PCaryophyllaceaeCaryophyllaceae gen. indet.PChenopodiaceae aceaegen.indet.PMagnoliaceaeMagnolia sp.PRanunculaceaeRanunculaceae gen. indet.PLauraceaeLaurus nobilis L. Laurus sp.PNymphaeaceaeNuphar luteum L. Nuphar sp.Nuphar sp.NymphaeaceaePapaveraceae gen. indet.PBrassicaceaeParasciaceae gen. indet.PHypericaceaePapaveraceae gen. indet.PHypericaceaePapaveraceae gen. indet.PHypericaceaeParostia pristina Ett.PParrotia pristina Ett.PPyracantha coccinea Roem.mRosa sp.pRubus sp.Sanguisorba sp. Sorbus aucuparia L. Sorbus subfusca (Ledeb.) Boiss.Sorbus subfusca (Ledeb.) Boiss.pFabaceaeGeraniaceaeRaus sp.pFabaceaeGeranium sp.AnacardiaceaeFabaceae gen.indet.Rhus sp.pAcer laetum CAM pliocenicum Sap.etp	PolygonaceaePolygonum persicaria L.pPolygonum viviparum L.PPPolygonum sp.PCaryophyllaceaeCaryophyllaceae gen. indet.pCaryophyllaceaeChenopodiaceae gen.indet.PAgnoliaceaeMagnolia sp.mpRanunculaceaeRanunculaceae gen. indet.PLauraceaeLaurus nobilis L. Laurus sp.MNymphaeaceaeNuphar luteum L. Nuphar sp.MPapaveraceaePapaveraceae gen. indet.PHypericaceaeBrassicaceae gen. indet.PHypericaceaePapaveraceae gen. indet.PHypericaceaePlatanus sp.PHypericaceaePlatanus sp.PHypericaceaePlatanus sp.PParotil et Li Liquidambar styraci- flua L.PParrotia pristina Ett.PParotia sp.pParotia sp.pParotia sp.pParotia sp.pParotia sp.pParotia sp.pParotia pristina Ett.pParotia sp.pParotia sp.pParotia sp.pParotia sp.pParotia sp.pParotia sp.pParotia sp.pParotia coccinea Roem.mRoea canina L.pSorbus subfusca (Ledeb) Boiss.pSorbus sp.pFabaceaeFabaceae gen.indet.ParaceaeFabaceae gen.indet.<	PolygonaceaePolygonum persicaria L.PPPolygonum viviparum L.PPPPolygonum sp.PPPCaryophyllaceaeCaryophyllaceae gen. indet.PPChenopodi- aceaeChenopodiaceae gen. indet.PPMagnoliaceaeMagnolia sp.mpPRanunculaceaeRanunculaceae gen. indet.mPLauraceaeLaurus nobilis L.mmLauraceaeNuphar luteum L.PPNymphaeaceaePapaveraceae gen. indet.pPPapaveraceaeBrassicaceae gen. indet.pPHypericaceaePapaveraceae gen. indet.pPHypericaceaePistanus sp.ppHupericaceaePistanus sp.ppParotia pistina Ett.pPParotia pistina Ett.mmRosa canina L.pPParota suisorba sp.ppSorbus subfusca (Ledeb) Boiss.mSorbus subfusca (Ledeb) Boiss.mSorbus subfusca (Ledeb) Boiss.ppFabaceaeFabaceae gen.indet.ppFabaceaeGeranium sp.ppParotia pistina Ett.mmRosa sp.pppRosa sp.pppSorbus subfusca (Ledeb) Boiss.mmSorbus subfusca (Ledeb) Boiss.ppParaceaeFabaceae gen.indet.p

1	2	3	4	5	6	7
		Acer trautvetteri Medw.			m	
	Aceraceae	Acer aff.platanoides L.			р	р
		Acer sp.	р	р	р	
	A	Ilex colchica Pojark.	р	р	р	р
	Aquifoliaceae	llex sp.	р	р		
	Celastraceae	Euonymus sp.	р	р	р	р
	Staphyleaceae	Staphylea sp.	р	р	р	
	Buxaceae	Buxus colchica A.Pojark.			m	
		Buxus sp.	р	р		
	Rhamnaceae	Frangula cf.alnus Mull.		m		
		Rhamnus sp.		р	р	
		Tilia caucasica Rupr.	р	р	р	р
		Tilia cordata Mill.	р			
	eae	Tilia ledebouri Borb.			р	р
	Tiliaceae	Tilia platyphyllos Scop.	р	р		
Dicotyledoneae		Tilia tomentosa Moench.		р		
led	Thymellaceae	Daphne sp.			р	
oty	Violaceae	Viola sp.		р	р	
Dic	Malvaceae	Malva sp.			р	р
	Elaeagnaceae	Elaeagnus sp.			р	р
	Onagraceae	Epilobium sp.	р	р	р	р
		Trapa lydiae Choch.				
	Trapaceae	Trapa cf.colchica N.Alb.			р	р
	Cornaceae	Cornus sp.		р	р	р
	ae	Hedera colchica C.Koch.		mp	mp	
	ace	Hedera sp.	р	р		
	Araliaceae	Fatsia aff.japonica (Thunb.) Decne et Planch.	р			
	Apiaceae	Turgenia latifolia Hostm.	р	р	р	р
		Apiaceae gen.indet.	р	р	р	р
	ae	Rhododendron pon- ticum L.	р	р		
	Ericaceae	Rhododendron sp.			р	р
	Eric	Vaccinium sp.	р			
		Ericaceae gen.indet.			р	

1	2	3	4	5	6	7
		Fraxinus ornus L.		р		
	Oleaceae	Fraxinus oxycarpa Willd.		р		
		Fraxinus sp.	р	р	р	
		Ligustrum sp.			р	
	Convolvulaceae	Convolvulus sp.		р		
	Plantaginaceae	Plantago sp.	р	р	р	р
	Caprifoliaceae	Lonicera sp.			р	
eae	Capillollaceae	Viburnum sp.		р		
one		Lycopus sp.	р	р		
Dicotyledoneae	Lamiaceae	Lamiaceae gen. indet.	р	р	р	р
Dic	Valerianaceae	Valeriana sp.	р	р	р	р
	Dipsacaceae	Cephalaria sp.	р	р	р	р
		Dipsacus sp.	р	р		
		Knautia sp.	р	р	р	р
		Dipsacaceae gen. indet.			р	
		Achillea sp.			р	
	Asteraceae	Artemisia sp.	р	р	р	р
		Asteraceae gen.indet.	р	р	р	р
		Smilax excelsa L.			m	
e e	Liliaceae	Liliaceae gen.indet.	р	р	р	р
nea	Iridaceae	Iris sp.		р		
ope	Descese	Arundo sp.		m		
Monocotyledoneae	Poaceae	Poaceae gen. indet.	р	р	р	р
000	Sparganiaceae	Sparganium sp.	р	р		
lon	Typhaceae	Typha latifolia L.		р		
2	Cyperaceae	Cyperaceae gen. indet.			р	

THE HOLOCENE

Palynological studies of marine, lagoon, alluvial and bog sediments from the Black Sea coastline of Georgia include 26 profiles of Holocene sediments (Fig.24). Analysis and synthesis of pollen diagrams allowed us to make a stratigraphic subdivision of Holocene sediments and reveal climatic fluctuations for the last 11 500 years.

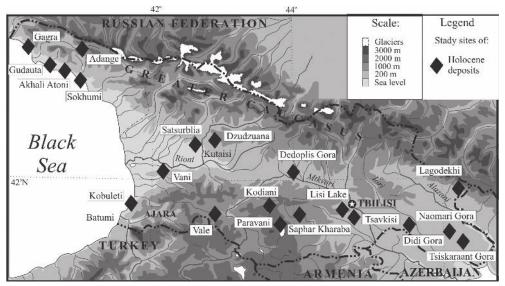


Fig.24. Locations of the profiles and archaeological sites studied from Georgia

In Georgia, palynological study of Holocene marine sediments began in the early 1970s (Shatilova, 1974). Extensive drilling of the Black Sea shelf and estuarine sediments was performed as part of engineering-geological surveys near coastal resorts and sanatoriums (Fig.24). Drilling was performed from the scientific ship "Geochimik" and during 1978-1984 a substantial body of core material was collected and studied using many methods of the natural sciences, including palaeogeographical, paleontological, geomorphological, geochronological and climatostratigraphical methods (Ostrovsky et al., 1977; Balabanov et al., 1981; Balabanov & Gei, 1981; Kvavadze & Dzheiranashvili, 1985; Balabanov& Kvavadze, 1985; Fedorov, 1988).

Palynological and sedimentological results showed that the Black Sea reached its lowest level 18 – 17 thousand years BP. During this regression, correspond-

ing to the last phase of the Würm Ice Age, the sea level was some 120m lower than today. Cooling was followed by intensive warming, glaciers began to melt and the New Black Sea transgression began. By the onset of the Holocene (11.5 thousand years ago) the sea-level rose by nearly 70 m (Tvalchrelidze et al., 2004). Subsequent sea-level changes, the climate of each of the Holocene transgression phases and human activity throughout the Holocene have all been topics for recent research in Georgia. The Caucasus, and Georgia in particular, is a region in which the manufacturing economy that forms the basis of modern civilization originated during the first stages of the Holocene (Trifonov & Karakhanyan, 2004). According to radiocarbon dates, early agricultural settlements in the southern part of Georgia date to the early 6th millennium B.C. (Hansen et al., 2007).

The Black Sea shelf sediments studied comprise mostly fine grained sands, silt and clay (Kvavadze & Rukhadze, 1989). The depth of Holocene sediments in the region varies from 17 m (borehole 120) to 27.8 (borehole 511). Material from 26 boreholes was studied palynologically: 7 of these were located in the Gagra area (boreholes 603, 607, 609, 613, 424 and Gagra-1), while borehole 471 was drilled nearby in the continental zone (Table XIX).

To the south-west of Gagra lies the Gudauta shelf zone, where boreholes 120 and 521 were drilled to a depth of 9.5 and 31.8 m respectively.

In the Akhali Atoni area, borehole 511 (at a depth of 21.1 m) was collected. Boreholes 55, 39, 182, 128 and 149 were drilled nearby on the alluvial-marine terrace.

Boreholes 732 and 721 come from the Sokhumi coastal area, at a depth of 9.8 and 14.9 m on the shelf, where Holocene sediments are represented most completely. Borehole 36 was drilled here in the continental part near the shelf (Table XIX).

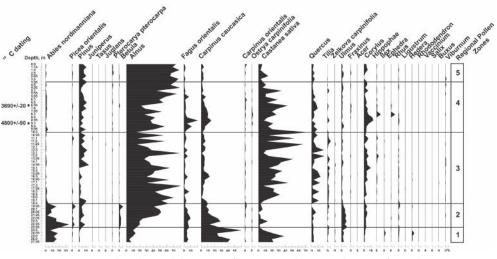
Profile name	Date and sampling frequency	Lower depth of profiles	Number of samples	Sediment type
Gagra area:				
Gagra-603	1981, every 50 cm	25.5m	5	Marine
Gagra-1	1971, every 10 cm	70cm	10	Marine + peat
Gagra-607	1981, every 50 cm	37m	12	Marine
Gagra-609	1981, every 50 cm	15m	12	Marine
Gagra-613	1981, every 50 cm	32m	9	Marine
Gagra-424	1978, every 50 cm	12m	5	Marine
Gagra-471	1978, every 10 cm	28m	66	Peat

Table XIX. Database of Holocene profiles studied

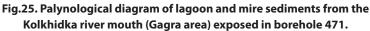
Gudauta area:				
Gudauta-120	1983, every 50 cm	9.5m	17	Marine
Gudauta-521	1983, every 50 cm	31.8m	20	Marine
Akhali Atoni area:				
Akhali Atoni-511	1984, every 10 cm	21.1m	35	Marine
Akhali Atoni-55	1982, every 50 cm	24m	12	Alluvial
Akhali Atoni-128	1983, every 50 cm	9m	6	Alluvial
Akhali Atoni-182	1983, every 50 cm	16m	7	Alluvial
Akhali Atoni - 49	1983, every 50 cm	17m	4	Alluvial
Akhali Atoni -39	1983, every 50 cm	12.5m	8	Alluvial
Sokhumi area:				
Sokhumi-721	1980, every 10 cm	21m	60	Marine
Sokhumi-723	1980, every 10 cm	26m	50	Marine
Sokhumi-36	1980, every 10 cm	45m	120	Alluvial + peat
Kobuleti area:				
Kobuleti-22	1984, every 10 cm	22.6m	99	Marine
Kobuleti-35	1984, every 10 cm	120m	120	Alluvial + peat
Kobuleti-39	1984, every 10 cm	27m	25	Alluvial + peat
Ispani II	2003, every 10 cm	9.5m	47	Peat
Supsa-1	1972, every 20 cm	6.5m	33	Alluvial + lake
Supsa-2	1972, every 20 cm	7.8m	42	Alluvial + lake
Supsa-3	1972, every 20 cm	3m	17	Alluvual
Supsa-4	1972, every 20 cm	2.1m	17	Alluvial

The Kobuleti area lies on the southernmost sector of the Georgian coastline. Here borehole 22 was drilled between the Choloki and Kintrishi river mouths at a depth of 7.3 m on the shelf. Boreholes 35 and 39 come from the continental area. Profiles Ispani II, Supsa 1, 2, 3, 4 were also studied in this area.

Table XX provides the results of radiocarbon dating of organic remains found in these marine and continental sediments (Uncalibrated age, ¹⁴C yr. BP).


Table XX. Radiocarbon dating of borehole sediments on the shelf
of the Black Sea (eastern part)

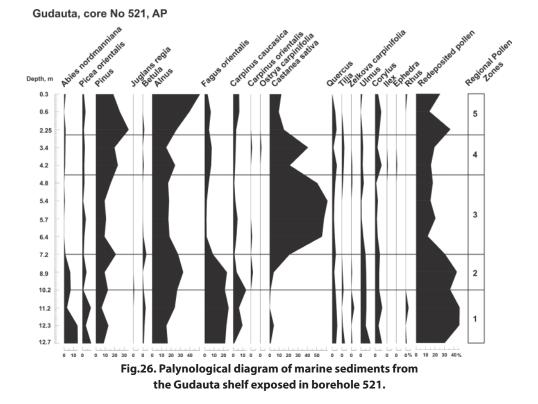
Borehole	Core depth (m)	Material analyzed	Age (¹⁴ C yr _{BP}
Gagra-416	4.5	Peat	2450±80
Sokhumi-723	6.4	Shell	3335±50
Sokhumi-723	7.5	Archaeolog.	3500±50
Gagra-1	6.5	Peat	3690±120
Gagra-609	24.4	Shell	4000±140
Gagra-607	21.1	Shell	4140±160
Akhali Atoni-55	15	Shell	5200±80
Gagra-607	34.5	Shell	5410±320
Sokhumi-723	11.2	Shell	5540±60
Akhali Atoni-55	23	Shell	6780±120


Sokhumi-723	14	Shell	7630±250
Sokhumi-723	20.1	Shell	8690±300
Sokhumi-722	26	Peat	9310±80
Gudauta-120	17	Shell	11000±150
Supsa-1	2.20	Wood	1260±120
Ispani-II	5.20	Wood	1940±40
Ispani-II	6.95	Wood	4060±40
Ispani-II	9.45	Wood	4900±40

Palynological analysis of Holocene sediments in 5 study areas showed that, in the more complete pollen diagrams, 5 regional palynozones can be distinguished (Fig. 25, 26, 27, 28). Palynozone I is assigned to the Pre-Boreal period, palynozone II to the Boreal period, palynozone III to the Atlantic period, palynozone IV to the Sub-Boreal period and palynozone V covers the Subatlantic period.

Palynozone I differs from the underlying Younger Dryas sediments its greater representation of thermophilous arboreal taxa such as chestnut and oak (Fig.25). The zone itself is indicated by a Fagus-Carpinus-Abies association. Note, for comparison, that during the Younger Dryas only high-mountain vegetation elements prevailed. Palynozone I is divided into two subzones, the first reflecting more arid climatic conditions compared to the second. Redeposited pollen is found in significantly less quantity (up to 25 - 27% of the total pollen) in Pre-Boreal strata compared to the Younger Dryas (up to 46%).

Gagra, core No 471, AP

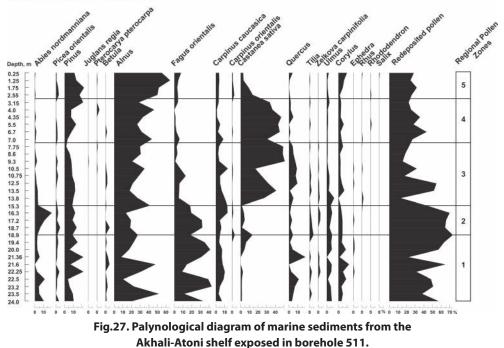

Palynozone II covers the Boreal period and is indicated by an Abies-Fagus-Picea association. In all diagrams, pollen representing piedmont forest elements decreases, while high mountain forest indicators increase. In the Gagra area, where high mountains front the coast, subalpine vegetation (e.g. birch) is also clearly reflected in the spectra. This is the "coldest" palynozone, and is divided into three subzones. The first and the third subzone exhibit stronger climatic aridity than the second subzone. It should be mentioned that in this palynozone redeposited pollen reaches maximum values – up to 60-62% of the total pollen sum.

Palynozone III reflects radical changes in pollen assemblages and corresponds to the Atlantic period. In almost all the study area, pollen diagrams show a prevalence of chestnut and oak pollen. This zone is indicated by Castanea-Alnus-Quercus throughout Georgia. The occurrence of thermophile species, such as *Pterocarya pterocarpa, Juglans regia, Tilia caucasica* and *Zelkova carpinifolia*, increases significantly. This palynozone is divided into three subzones, the second exhibiting some climatic cooling represented in the diagrams by an increase in high mountain forest elements (fir, beech and spruce). As a whole, the Atlantic period was the warmest and most humid period during the Holocene in this region. Maximum warmth and humidity occurred during its second half. The amount of redeposited pollen in sediments of the Atlantic period decreases significantly (<20%).

Palynozone IV in the study area has no equivalent in the Blytt-Sernander terminology. This may be explained by a stronger anthropogenic effect with spatially variable impact. Nevertheless, the diagrams clearly show an increase in the pollen of cold-tolerant vegetation components and a decrease in the pollen of thermophilous species. The spectra also suggest an increase in aridity. Alnus pollen becomes dominant along the coast, which together with an increasing role of *Pteridium aqulinum* and *Rhododendron luteum*, indicates forest felling and swamp drainage. Subdominants include beech and fir, while pine is also prevalent. The climate of the first half of the Sub-Boreal period on the Black Sea coast of Georgia was more arid compared both to the previous and subsequent periods. The palynozone is divided into two subzones in some diagrams, where the first half is distinguished by higher aridity than the other. Rredeposited pollen occurs up to 45%.

Palynozone V corresponds to the Subatlantic period. It is indicated by an Alnus-Pinus-Castanea association in the northern part and Pinus-Alnus-Castanea in the southern part (Kobuleti area). High mountain vegetation indicators decrease to minimum values in palynozone V. Fir, spruce and birch pollen is found only as single grains. In the Gagra area, which has been more thoroughly investigated, palynozone V is divided into three subzones, the second reflecting warmer and more humid climatic conditions. *Pterocarya pterocarpa* pollen content increases rather significantly and redeposited pollen are few throughout the whole palynozone (up to 20%).

The occurrence of distinct palynozones is due to vegetation and climate dynamics in the eastern part of the Black Sea coast during the Holocene. The close proximity of mountain ranges facilitated a detailed and clear reflection of change in all the altitudinal vegetation belts of the region. This is explained by the specific character of pollen spectra of marine sediments in which regional vegetation is more clearly reflected compared to spectra from continental deposits.

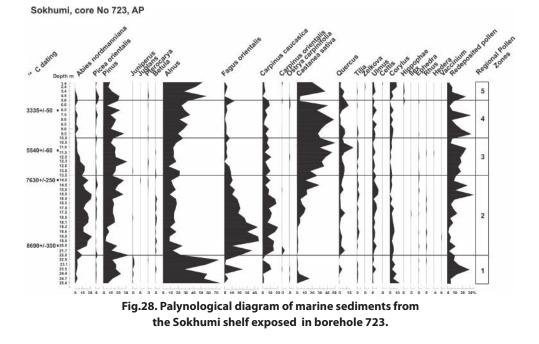

Regional paleozones derived from analysis of marine, lagoon and alluvial sediments represent the major events in the Holocene development of vegetation in the Caucasus region. Marine sediments, in particular, show major shifts in species dominance that reflect changes in vegetation in all altitudinal belts, thanks to the proximity of mountain ranges to the Black Sea. In this case the Black Sea can be regarded as a natural pollen trap in which pollen accumulated for the last ten thousand radiocarbon years. Importantly, there are no gaps in the record and therefore we have a complete and detailed picture of palaeoecological events. Statistical processing of the palynological material using the software "Paleoclimate 1" (Bukreeva, 1990) allowed us to reconstruct quantitative indices of the climate and to reconstruct oscillations of the upper tree limit in response to climatic fluctuations (Kvavadze et al. 1992, 1994). In addition to marine palynospectra, palaeoecological reconstruction also incorporates pollen data from alluvial and lagoon sediments along the coastline and from the high mountains of Abkhasia (Kvavadze et al., 1992).

In the first stage, very early in the Holocene, sedimentological data (Tvalchrelidze et al., 2004) indicate that the Black Sea level was 50-60 m lower than nowadays. The timberline was 800-850 m lower than now (Kvavadze & Connor, 2005). Comparing the earliest Holocene pollen spectra with those of the Younger Dryas, it is clear that broad-leaved forests of hornbeam, oak, chestnut and wingnut expanded. This process was due to warmer, wetter climatic conditions. During the Younger Dryas, July mean temperature on the coast was reconstructed as 18.3°C, while in the Preboreal it rose to 23.3°C.

The second stage of landscape development corresponds to the Boreal period when the long-term process of warming was interrupted by short-term cooling. The sea-level lowered by approximately 1-1.5 m. The timberline also descended significantly. Forests of beech and fir broadened. Reconstructed temperatures on the coastline were 19.4°C in July and 3.3°C in January (mean annual temperature 10.7°C). Precipitation was about 1827 mm per year.

The third stage occurred during the warming of the Atlantic period. This stage was quite long and resulted in rather substantial changes in altitudinal vegetation zones. Rapid ascent of all vegetation belts began during this stage. Upper mountain belts of dark coniferous forests migrated upslope and narrowed in their altitudinal range. At the same time, the area of broad-leaved chestnut, oak, wing-nut and zelkova forests expanded substantially (Kvavadze & Connor, 2005). Paludification of the coastline led to the expansion of boggy areas. Temperatures and humidity increased, reaching maximum 6000-5500 years ago. Compared with the Boreal, winter temperatures on the coastline nearly doubled and reached 6-6.5°C. In mountains far from the sea, climatic warming was particularly intensive. In Ab-khazia, Adjara and Svaneti, the timberline ascended 300 m during the peak of the Holocene climatic optimum (Kvavadze & Rukhadze, 1989; Connor et al., 2007; Margalitadze, 1995), while in the mountains of the South Georgian Upland it ascended no less than 400-500 m.

Akhali Athoni, core No 511, AP



The sea level during the Atlantic period rose rapidly and, between 6000-5500 years, exceeded its present-day level by some meters (Tvalchrelidze et al., 2004).

It was under the warm and humid conditions of the Atlantic period that the first early agricultural settlements appeared in the south-east of Georgia. Palynological studies of cultural layers in the settlement mounds of Gadachrili Gora and Arukhlo, dated to the 6th-5th millennia B. C., indicated a warmer, more humid climate. In place of present-day steppes there grew forests of alder, wing-nut, hornbeam and oak (Gogichaishvili, 1984; 1990). Humans, besides grain-growing, were engaged in viticulture. In the lower layers of Gadachrili Gora, a piece of loom-woven flax fabric was found and imprints of hand-knitted flax fabric were discovered in ceramic vessels. These finds, as well as macroremains of toadflax seeds (Rusishvili, 1990), suggest the existence of local weaving. Toadflax, *Linum usitatisimum*, grows only under humid climatic conditions (Zohary & Hopf, 1993). Microremains of numerous flax fibres and woollen fabric, including coloured fibres, were also revealed during palynological study of material (cultural layers and pot contents) from Neolithic layers at these sites. Pollen analysis of organic material found in ceramic vessels provides evidence of beekeeping.

Data from the investigation of archaeological monuments in the South Geor-

gian Uplands are also very interesting. Material from the Early Kurgan epoch of Javakheti (beginning of the third millennium B.C.) shows the existence of agriculture at an altitude of 2000-2800 m. In this period forest vegetation with oak and lime occurred at these altitudes (Kvavadze et al., 2007), whereas today these forests occur at lower altitudes: 1700-1800 m (Dolukhanov, 1989; Nakhutsrishvili, 1999).

During the Atlantic period, the process of warming was interrupted twice by mild, short-lived cooling. This process is seen in the curves of both timberline oscillations and Black Sea fluctuations (Kvavadze et al., 1992; Tvalchrelidze et al., 2004).

The fourth stage in landscape development is characterised by significant climate cooling, causing the Phanagorian regression in the Black Sea. In the Subboreal period, erosion processes accelerated, indicated by the increase in redeposited pollen in marine sediments. This increased erosion is explained by base-level lowering in Colchic river systems.

This period witnessed a lowering of zonal vegetation belts. The timberline was 600-550 m lower than nowadays. At the same time, the area of chestnut and other thermophilous species decreased, as indicated in all pollen diagrams. Cooling was accompanied by a moderate decrease in humidity.

In the second half of the Subboreal period, between 3800-2500, a change in

climatic conditions is observed. The Black Sea rose to levels somewhat higher than today. This warming manifested itself clearly, not only in the lowland territories adjacent to the sea (Kvavadze & Connor, 2005; Connor et al., 2007, 2007a; Arabuli et al., 2007), but also on the mountain plateaux of Southern Georgia. Palynological studies of archaeological sites (Safar-Kharaba and Imera burials) indicate that, during the 15th-14th centuries B.C., agriculture, horticulture and viticulture were practised at an altitude of 1700-1800 m. Forests comprised oak, lime, zelkova and other species (Kvavadze et al., 2007). Here, for the first time, cotton fabric and fibres were discovered, indicating a well-developed trade between India and the Caucasus (Kvavadze & Narimanishvili, 2006, 2006a). In Colchis and regions more remote from the Black Sea, signs of forest destruction can be observed in this stage (Connor et al., 2007).

The fifth stage coincides with the Subatlantic period. Around 2500 years ago, a short-term, but pronounced, cooling took place, resulting in a Black Sea regression. The sea-level lowered nearly 20 m compared to the end of the Subboreal. In high mountain areas, agriculture was replaced by stock-breeding. Viticulture went into decline at high altitudes and was not even developed in the middle mountains (Bieniek & Licheli, 2007). The timberline descended nearly 350-400 m compared to the present-day level. Then, five centuries later (2000 years ago), significant climate warming occurred, resulting in the Nymphaean transgression in the Black Sea. The sea-level again rose some metres higher than nowadays. Climate warming was accompanied by an increase in humidity on the Black Sea coast. In antiquity, according to palynological and palaeoethnobotanical studies of cultural layers in the Eshera and Nokalakevi settlements, flax-growing was very intensively developed (Rukhadze et al., 1988; Bokeria et al., 2009). Moreover, the population of Colchis of the time was engaged in grain-growing, gardening and viticulture. Cultivation of olives imported from Greece began.

Intensive deforestation took place as agriculture developed on the coastal lowlands and in the piedmonts of Colchis. This process is indicated in palynological spectra by the increasing role of pollen from secondary vegetation.

The 3th - 4th centuries A.D. were rather cool, followed by a period of warming from the 7th to 11th centuries. At that time, human population density increased in the high mountains and agriculture, including viticulture, occupied a prominent place in the economy (Kvavadze et al., 2007, 2007a; Arabuli et al., 2008). Areas under olive plantation increased, as indicated by the pollen record (Connor & Kvavadze, 2005).

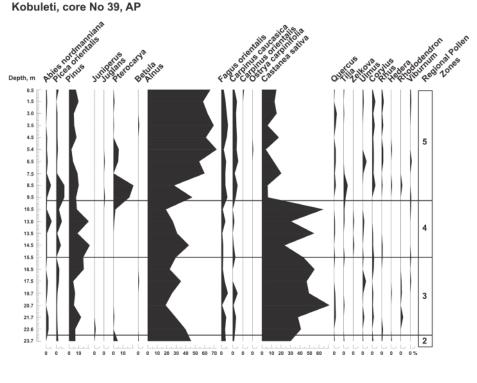


Fig.29. Palynological diagram of marine sediments from the Kobuleti shelf exposed in borehole 39.

During the 12th-14th centuries, climatic conditions again deteriorated, but switched back during the 15th-16th centuries, according to palynological data. Viticulture and wine-making developed intensively in the mountains of Southern Georgia. A palynological study of material from cultural layers and vessels from the Atskuri settlement at 1200 m altitude showed that, here, besides the vine, olives were also cultivated (Kvavadze & Licheli, 2009). According to historical documents, olive plantations were also to be found in the gorge of the Khrami River, in its headwaters, and in many places in the Colchis lowlands (Ketskhoveli, 1959).

This rather significant and long-term warming lasted nearly 200 years. In the second half of the 17th century, the short-term, but very strong, global cooling of the Little Ice Age took place. Though it lasted perhaps only 40 years (1675 – 1715) (Grove, 1997), it exerted a strong influence on landscapes. Since that time, in Atskuri and in other mountains settlements, viticulture was no longer practised (Kvavadze & Licheli, 2009). Olive plantations were completely destroyed by frost everywhere in Georgia (Ketskhoveli, 1959).

The comparison of our scheme of Holocene climate changes with similar

schemes from mountainous territories in southern Europe and the Near East shows a very good agreement, especially for the second half of the Holocene (Le Roy Ladurie, 1971; Grove, 1997; Ramezani et al., 2008). It demonstrates the global character of climatic fluctuations that had feedback effects on sea-levels in Southern Europe, including the Black Sea (Fig.30).

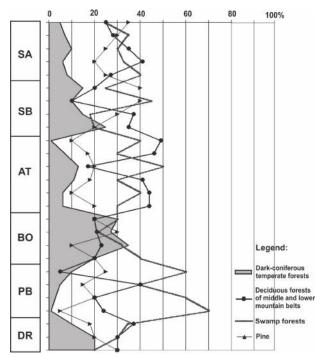


Fig.30. Percentage fluctuations in palynological groups in Western Georgia during the Holocene, reflecting changes in the distribution of the main forest formations.

The palynological study of numerous profiles of Holocene sediments at different altitudes in the Georgian mountains, as well as the study of cultural layers of archaeological monuments, indicated the occurrence of six major climatic optima during the Holocene. The three most significant were the Atlantic optimum, Subboreal optimum and the Medieval optimum. The Atlantic optimum lasted between 6000 and 5500 Cal. yr BP. In Western Georgia, the upper tree line was elevated by as much as 300 m above its present-day level. In the South Georgian Uplands the tree line may have been 500-600 m higher (Kvavadze et al., 2007). The contrasting topography of this area, from the extensive volcanic plains to the abrupt craters and cones of the ranges, allows both climate and human impact to be reconstructed, since the plains were the main loci of human activity, while the peaks were left relatively undisturbed. In pollen diagrams, human impact does not suppress the climatic signals, but, on the contrary, it enhances them. At that time both grain farming and gardening, including wine-growing, were developed on high mountain plateaux. Intensive agricultural development here was facilitated not only by climatic warming, but also by fertile mountain soils formed over volcanic alkaline rocks. Anthropogenic indicator pollen types increased during this period, including Cerealia, *Juglans regia*, Corylus and *Vitis vinifera*. This feature manifests most vividly in material from archaeological sites of the Early Bronze Age (Kura-Araxes culture) at altitudes of 1450-1800m. The combination of maximum Juglans-Corylus-Vitis pollen coincides witha *Quercus iberica* maximum, indicating a relatively warm climate in this area.

A second significant optimum is recorded in Late Holocene pollen spectra dating to 3800-2500 Cal. yr BP (Subboreal). In Western Georgia the area of chestnut forests increased, whereas in Eastern Georgia Zelkova and oak forests expanded. Humans again engaged in high mountain agricultureand agriculture, viticulture, horticulture and apiculture developed in the mountains at altitudes of 1600-1700 m. Mountain forest patches existed side-by-side with human settlements.

The latest significant optimum is recorded around 1350-800 Cal. yr BP and the impact of human activity on vegetation becomes more perceptible at this time. Deforestation took place not only on the plains and lowlands, but also on steeper mountain slopes. During this period semi-forested landscapes appear in many areas, which, during the past few centuries, were converted into completely deforested cultural landscapes (Connor & Kvavadze, 2008).

A list of the Holocene flora of Georgia is given in Table XXI.

Class	Family	Species	W.Georgia	E.Georgia
1	2	3	4	5
Bryopsida	Sphagnaceae	Sphagnum sp.	р	р
		Lycopodium alpinum L.	р	р
		Lycopodium annotinum L.	р	р
Lycopodiop-	Lyconodiacoao	Lycopodium clavatum L.	р	р
sida	Lycopodiaceae	Lycopodium innundatum L.	р	р
		Lycopodium selago L.	р	р
		Lycopodium sp.	р	р
le e l'éte ve stale	Cologinallacada	Selaginella helvetica (L.) Link.	р	р
Isoëtopsida	Selaginellaceae	Selaginella selaginoides (L.) Link.	р	р

Table XXI. Plants from Holocene deposits in GeorgiaKey: m – macrofossils; p – pollen

1	2	3	4	5
Equisetop- sida	Equisetaceae	Equisetum sp.		р
		Bothrychium lunaria (L.) Sw.	р	р
Ophioglos-	Onhierlessesse	Bothrychium sp.		р
sopsida	Ophioglossaceae	Ophioglossum vulgatum L.	р	р
		Ophioglossum sp.	р	р
	Osmundaceae	Osmunda regalis L.	р	р
		Cryptogramma crispa (L.) R.Br.		р
	Pteridaceae	Cryptogramma sp.	р	
		Pteris cretica L.	р	
	Adiantaceae	Adiantum sp.	р	р
	Aulantaceae	Anogramma sp.	р	
		Blechnum sp.		р
		Polypodium serratum (Willd.) Futo	р	
da	Polypodiaceae	Polypodium vulgare L.	р	р
Polypodiopsida		Polypodium sp.	р	р
dio		Polypodiaceae gen.indet.		р
уро		Pteridium aquilinum (L.) Ruhn.	р	р
Pol	Dennstaedtiaceae	Pteridium sp.	р	р
	Aspleniaceae	Asplenium sp.	р	р
		Athyrium filix femina (L.) Röth	р	р
		Athyrium sp.		р
		Cystopteris sp.		р
	A	Dryopteris filix –mas (L.) Schott.		р
	Aspidiaceae	Dryopteris thelypteris L.	р	
		Dryopteris sp.		р
		Polystichum sp.	р	р
		Woodsia sp.	р	
	-	Taxus baccata L.	mp	р
	Тахасеае	Taxus sp.		р
		Abies nordmanniana (Stev.) Spach.	р	р
		Abies sp.		р
		Cedrus libani Laws.		р
da		Cedrus sp.		р
Pinopsida	Pinaceae	Picea orientalis L.	р	
Pinc		Picea sp.		р
—		Pinus kochiana Klotzsch.	р	
		Pinus pithyusa Strangw.	р	
		Pinus sp.		р
		Juniperus communis L.	р	р
	Cupressaceae	Juniperus sp.		р
		Cupressaceae gen.indet.	р	

1	2	3	4	5
	1	Ephedra distachia L.		Р
Gnetopsida	Ephedraceae	Ephedra procera Fisch. et Mey		р
-		Ephedra sp.	р	р
		Juglans regia L.	mp	р
		Juglans sp.	р	
	Juglandaceae	Pterocarya pterocarpa (Michx.) Kunth.	mp	р
		Pterocarya sp.	р	р
		Populus sp.		р
	Salicaceae	Salix sp.	mp	р
		Salicaceae gen.indet.	р	
		Alnus barbata C.A.M.	mp	р
		Alnus incana (L.) Moench.	р	
		Alnus sp.	mp	р
		Betula sp.	р	р
	0	Carpinus betulus L.		р
	eae	Carpinus caucasica Grossh.	mp	р
	llac	Carpinus orientalis Mill.	mp	р
	Betulaceae	Corylus avellana L.	mp	
		Corylus colurna L.	р	
0		Corylus iberica Wittm.et Ket Nath.	р	
leae		Corylus sp.	р	р
Dicotyledoneae		Ostrya carpinifolia Scop.	р	р
yle		Castanea sativa Mill.	р	р
icot	U	Castanea sp.	р	р
Ω	Fagaceae	Fagus orientalis Lipsky	mp	р
	aga	Fagus sp.		р
	L L L	Quercus hartwissiana Stev.	m	
		Quercus sp.	р	р
		Celtis caucasica Willd.	р	
	Ulmaceae	Celtis sp.		р
	Jace	Ulmus sp.	р	р
	n n	Zelkova carpinifolia (Pall.) Dipp.	р	р
		Zelkova sp.	р	
		Ficus carica L.	mp	
	Moraceae	Morus alba L.	m	р
		Morus sp.	р	р
	Cannaha	Cannabis sp.		р
	Cannabaceae	Humulus sp.	р	
		Parietaria sp.		р
	Urticaceae	Urtica sp.	р	p
		Urticaceae gen.indet.	p	
	Laurath	Viscum sp.	p	
	Loranthaceae	Loranthaceae gen.indet.	p	

1	2	3	4	5
		Fagopirum sp.		р
		Oxyria sp.	р	
		Polygonum alpestre C.A.Mey		р
		Polygonum amphibium L.	р	р
		Polygonum aviculare l.	m	
		Polygonum bistorta L.		р
		Polygonum convolvulus L.		р
		Polygonum hydropiper L.	m	
	Daharana	Polygonum lapathifolium L.	m	
	Polygonaceae	Polygonum minus Huds.	m	
		Polygonum persicaria L.	m	р
		Polygonum viviparum L.		р
		Polygonum sp.	р	р
		Rumex alpestris Jacq.	m	
		Rumex crispus L.	m	
		Rumex obtusifolium L.	m	
		Rumex sp.	р	р
		Polygonaceae gen.indet.	р	р
	Portulacaceae	Portulaca oleracea L.	m	
ē		Agrostemma githago L.		р
Dicotyledoneae		Agrostemma sp.		р
edo		Arenaria serpillifolia L.		m
otyle		Cerastium sp.		р
Dicc		Dianthus sp.		Р
		Gypsophila sp.		Р
		Herniaria sp.		р
	Caryophyllaceae	Moehringia trinervia (L.) Clairv.	m	
		Saponaria officinalis L.	m	
		Silene italica (L.) Pers.	m	р
		Silene sp.	р	
		Spergularia campestris (L.) Aschers		m
		Stellaria nemorum L.	m	р
		Caryophyllaceae gen.indet.	mp	р
		Chenopodium album L.	m	
		Chenopodium polyspermum L	m	
		Chenopodium sp.		р
	Chenopodiaceae	Kochia sp.		р
		Salsola sp.	р	
		Chenopodiaceae gen.indet.	р	р
	A	Amaranthus retroflexus L.	m	m
	Amaranthaceae	Amaranthus sp.	р	
	1	Laurus sp.	р	
	Lauraceae	Lauraceae gen.indet.	р	

1	2	3	4	5
		Adonis vernalis L.		Р
		Adonis aestivalis L.		Р
		Anemone sp.		р
		Aconitum sp.		Р
		Caltha sp.	р	р
		Ranunculus acer L.	m	
		Ranunculus arvensis L.	m	р
		Ranunculus bulbosus L.	m	m
	Ranunculaceae	Ranunculus chius DC	m	
	Ranunculaceae	Ranunculus lingua L.	m	
		Ranunculus repens L.	m	
		Ranunculus sceleratus L.	m	
		Ranunculus subtilis Trautv.	m	
		Ranunculus sp.	р	р
		Thalictrum minus L.		m
		Thalictrum sp.	р	р
		Trollius sp.		р
		Ranunculaceae gen.indet.	р	р
		Chrysosplenium sp.		р
		Parnassia palustris L.		р
Ð	Saxifragaceae	Ribes sp.		р
nea		Saxifraga folia L.		р
Dicotyledoneae		Saxifragaceae gen.indet.		р
tyle		Sedum sp.		р
Dico	Crassulaceae	Crassulaceae gen.indet.		р
	Deule e ui de ere e	Berberis cf. vulgaris L.		m
	Berberidaceae	Berberis sp.	mp	р
		Nuphar sp.	р	
	N	Nymphaea alba L.		р
	Nymphaeaceae	Nymphaea sp.	р	
		Nymphaeaceae gen.indet.	р	
	Aristolochiaceae	Asarum caucasicum (Ducharte) Kolak.	m	
	Ceratophyllaceae	Ceratophyllum sp.	m	
		Chelidonium sp.		Р
		Corydalis sp.		Р
		Fumaria officinalis L.		m
	Papaveraceae	Glaucium sp.		р
		Papaver dubium L.		m
		Papaver sp.		р
		Papaveraceae gen.indet.	р	
		Alyssum parvifolium M.B.		m
		Camelina sp.		р
	Brassicaceae	Neslia paniculata (L.) Desv.		m
		Sinapis sp.	р	р
		Brassicaceae gen.indet.	p	р

1	2	3	4	5
		Hypericum caucasicum (Woron.) Goraschk.	m	
	Hypericaceae	Hypericum perforatum L.		р
		Hypericum sp.		P
	Platanaceae	Platanus sp.		р
		Agrimonia eupatoria I.	m	p
		Alchemilla caucasica Bus.	m	
		Alchemilla sericea Willd.	m	
		Alchemilla sp.		р
		Cerasus avium (L.) Moench.	m	
		Cerasus vulgaris Mill.	m	
		Crataegus microphylla C.Koch.	m	
		Crataegus pentagyna Wald. et Kit.	m	m
		Crataegus sp.	р	n
		Filipendula sp.	<u>р</u> р	p p
		Fragaria sp.	٢	p p
		Geum sp.		p p
		Malus orientalis Uglitzk.	m	<u>Р</u>
		Malus silvestris Mill.	р	
		Potentilla anserina L.	Ρ	m
eae		Potentilla brachypetala Fisch.	m	
one		Potentilla crantzii (Crantz) Beck.	m	
Dicotyledoneae		Potentilla elatior Willd.ex		
coty	ae	Schlecht.	m	
Di	aces	Potentilla erecta (L.) Hampe	m	m
	Rosaceae	Potentilla micrantha Ramond.	m	
		Potentilla ruprechtii Boiss.	m	
		Potentilla sp.	р	р
		Prunus divaricata Lebed.	m	
		Prunus spinosa L.	m	
		Prunus sp.		р
		Pyrus caucasica Fed.	m	
		Pyrus sp.		р
		Rosa canina L.	m	
		Rosa sp.		р
		Rubus anatolicus Focke	m	
		Rubus arcticus L.		Р
		Rubus caesius L.	m	
		Rubus candicans Weiche	m	
		Rubus caucasica Focke	m	
		Rubus saxatilis L.	m	
		Rubus sp.	р	р
		Sanguisorba officinalis L.		р
		Spiraea sp.		P
		Sorbus sp.	m	р

1	2	3	4	5
	Rosaceae	Rosaceae gen.indet.	р	р
		Astragalus stevenianum DC		р
		Lathyrus hirsutus L.	m	
		Lathyrus pratensis L.	m	
		Lathyrus sativus L.	m	
		Lens culinaris Medik	m	
		Lotus sp.	m	р
		Medicago arabica (L.) Hudson	m	
		Medicago minima Grufberg	m	
		Medicago sativa l.	m	
		Onobrychis viciifolia Scop.		m
	ae	Onobrychis sp.	р	р
	Fabaceae	Pisum sativum L.	m	
	Fab	Serratula sp,		Р
		Trifolium campestre Schreb.		m
		Trifolium pratense L.	р	р
		Trifolium repens L.	р	р
		Trifolium sp.	F	p
		Vicia ervilia (L.) Willd.	m	
		Vicia faba L.	m	
ae		Vicia hirsuta (L.) S.F.Gray	m	
bne		Vicia tetrasperma (L.) Moench.	m	
Dicotyledoneae		Vicia sp.	р	р
otyl		Fabaceae gen.indet.	mp	p
Dia		Geranium sp.	•	p
	Geraniaceae	Geraniaceae gen.indet.	р	
		Linum bienne Mill.	m	
		Linum catharticum L.		m
	Linaceae	Linum sp.		р
		Radiola sp.		р
	Zygophyllaceae	Tribulus terrestris L.	mp	m
		Euphorbia helioscopia L.	m	
		Euphorbia nutans Lag.	m	
		Euphorbia oblongifolia C.Koch.	m	m
	Euphorbiaceae	Euphorbia platyphyllos L.	m	m
		Mercurialis sp.	р	р
		Euphorbiaceae gen.indet.	р	
		Cothinus sp.		р
	Anacardiaceae	Pistacia sp.		р
		Rhus sp.	р	p
		Acer campestre L.	m	· ·
	Aceraceae	Acer sp.	р	р
		llex colchica Pojark,	m	· ·
	Aquifoliaceae	llex sp.	р	р
	Celastraceae	Euonymus sp.	p	р

1	2	3	4	5
	Staphyleaceae	Staphylea colchica Stev.	m	
	Buxaceae	Buxus colchica A.Pojark.	mp	р
		Buxus sp.	р	р
		Frangula alnus Mill.	mp	р
		Frangula sp.		р
	Rhamnaceae	Paliurus spina-Christi Mill.		р
		Rhamnus imeretina Booth.	m	
		Rhamnus sp.	р	р
		Vitis sylvestris Gmel.	m	
	Vitaceae	Vitis vinifera L.	mp	р
		Vitis sp.	р	р
		Tilia caucasica Rupr.	mp	
	Tiliaceae	Tilia sp.	р	р
		Daphne sp.	р	
	Thumpels and a	Thymelaea passerina (L.) Coss.		
	Thymelaeaceae	et Germ.		р
		Thymelaea sp.		р
		Viola alba L.	m	
		Viola arvensis Murr.		р
		Viola biflora L.	m	
		Viola canina L.	m	
ae	Violaceae	Viola palustris L.		р
one		Viola reichenbachiana Jord.	m	
Dicotyledoneae		Viola sp.		р
otyl		Violaceae gen.indet	р	р
Dic		Trichosantes sp.	m	
	Cucurbitaceae	Cucurbitaceae gen.indet.	m	р
		Abutilon theophrasti Medic.	m	
		Althea officinalis L.	m	
	Malvaceae	Lavatera sp.		р
		Malva sp.		р
		Elaeagnus sp.	р	р
	Elaeagnaceae	Hippophaë rhamnoides L.	p	
		Hippophaë sp.	p	р
	Cistaceae	Helianthemum sp.	•	p
	Resedaceae	Reseda sp.		p
		Myricaria sp.		p
	Tamaricaceae	Tamarix sp.	р	
	Lythraceae	Lythrum sp.	m	р
		Chamaenerium sp.	р	
		Epilobium algidum M.B.	m	
	Onagraceae	Epilobium sp.		р
		Ludwigia sp.	р	
		Onagraceae gen.indet.	<u>р</u>	
		Trapa colchica Albov	<u>р</u>	
	Trapaceae	Trapa natans L.	р	
	Haloragaceae	Myriophyllum sp.	<u>р</u>	р

1	2	3	4	5
		Cornus mas L.	m	р
	Cornaceae	Cornus sp.	р	
		Swida australis (C.A.M.) Pojark.	m	
		Hedera colchica C.Koch.	р	
	Araliaceae	Hedera helix L.	m	
		Hedera sp.	р	P P <td< td=""></td<>
		Aegopodium podagraria L.		· ·
		Aethusa cynapium I.	m	
		Ammi sp.		р
		Anethum graveolens L.	m	
		Antriscum sp.		Р
		Astrantia maxima Pall.		Р
		Astrantia sp.	р	q
		Bupleurum sp.	р	
		Chaerophyllum sp.	F	
		Daucus sp.		
		Eryngium campestre L.		
	Apiaceae	Eryngium sp.	р	
		Falcaria sp.	р	
		Heracleum apiifolium Boiss.	m	
		Heracleum sp.	р	Р
ae		Peucedanum palustre (L.)	P	
one		Moench.		р
Dicotyledoneae		Peucedanum sp.	р	р
oty		Petroselinum crispum (Mill.)		
Dic		Nym.		m
		Pimpinella sp.	р	Р
		Smirnium sp.		р
		Apiaceae gen.indet.	р	Р
		Calluna vulgaris (L.) Hill.	р	
		Erica sp.	р	
		Rhododendron caucasicum Pall.	р	р
	Ericaceae	Rhododendron luteum Sweet.	р	
	Elicaceae	Rhododendron ponticum L.	р	
		Rhododendron sp.	р	р
		Vaccinium sp.	р	р
		Ericaceae gen.indet.		р
	Phytolaccaceae	Phytolacca americana L.	m	
		Androsace septentrionalis L.		m
		Cortusa sp.		Р
		Glaux maritima L.		Р
		Lysimachia vulgaris L.		р
	Primulaceae	Primula farinosa L.	р	р
		Primula veris L.	-	р
		Primula sp.	р	р
		Samolus sp.		р
		Soldanella sp.		P

1	2	3	4	5
	Primulaceae	Primulaceae gen.indet.	р	
		Armeria sp.		р
	Dlumbaginacoao	Limonium vulgare L.		Р
	Plumbaginaceae	Plumbago sp.		р
		Plumbaginaceae gen.indet.	р	р
		Verbena officinalis L.		m
	Verbenaceae	Verbena sp.		р
	Apocinaceae	Apocinum sp.	р	
		Gentiana campestris L.		р
	Gentianaceae	Gentiana detonsa Rottb.		р
		Centaurium sp.		р
		Fraxinus sp.	р	p
		Jasminum sp.	p	· ·
	Oleaceae	Ligustrum vulgaris L.		р
		Ligustrum sp.	р	р
		Olea cf.europaea L.	р	p
		Galium aparine L.	m	- r
		Galium palustre L.		m
	Rubiaceae	Galium sp.	р	mp
		Rubiaceae gen.indet.	p	
	Boraginaceae	Echium vulgare L.	F	m
ae		Echium sp.		p
nea		Heliotropium suaveolens M.B.		m
edo		Lappula echinata Gilib.		m
Dicotyledoneae		Nonea versicolor (Stev.) Sweet.		p
Dice		Pulmonaria sp.	р	р
_		Symphytum sp.	р	р
		Boraginaceae gen.indet.	<u>р</u>	<u>р</u>
		Datura stramonium L.	m m	
		Hiosciamus niger L.		р
		Physalis alkekengi L.	m	
	Solanaceae	Solanum nigrum L.	m	n
		Solanum persicum Willd.	m	р
		Solanaceae gen.indet.	p	
		Digitalis purpurea L.		n
		Digitalis sp.	р	p p
		Melampirum pratense L.		
		Melampirum sp.		P P
	Scrophulariaceae	Pedicularis sp.	n	
		Scrophularia sp.	р	p
				р
		Veronica sp.	m	p
		Scrophulariaceae gen.indet.	р	р
	Camuah	Calystegia sepium (L.) R.Br.	m	
	Convolvulaceae	Convolvulus arvensis L.	m	р
		Convolvulus sp.		р
	Cuscutaceae	Cuscuta sp.		р
	Polemoniaceae	Polemonium sp.		р

1	2	3	4	5
		Plantago lanceolata L.	р	р
		Plantago major L.	m	р
	Diantaginacaaa	Plantago maritima L.	р	р
	Plantaginaceae	Plantago media L.		р
		Plantago sp.	р	
		Plantaginaceae gen.indet.	р	
	Lentibulariaceae	Pinguicula sp.		р
	Lentipulariaceae	Urticularia sp.	р	р
		Lonicera sp.	р	р
		Viburnum lantana L.	m	р
	Constitution	Viburnum sp.	р	р
	Caprifoliaceae	Sambucus ebulus L.	mp	
		Sambucus nigra L.	mp	р
		Caprifoliaceae gen.indet.	р	
	Adoxaceae	Adoxa sp.		р
		Ajuga chia Schreb.	m	m
		Ajuga reptans L.	m	m
		Galeopsis bifida Boenn.	m	
		Lycopus europaeus L.	m	m
		Marrubium sp.	р	Р
	Lamiaceae	Mentha sp.	р	р
ae		Prunella vulgaris L.		m
one		Prunella sp.		р
Dicotyledoneae		Salvia aethiopis L.	m	
oty		Salvia nutans L.	m	
Dia		Salvia verticillata L.	m	
		Scutellaria sp.		р
		Sideritis sp.		р
		Stachys annua L.	m	m
		Stachys silvatica L.	m	р
		Stachys sp.		р
		Theucrium sp.	р	р
		Thymus caucasicus Willd.	m	
		Lamiaceae gen. indet.	р	р
		Valeriana sp.	р	р
	Valerianaceae	Valerianaceae gen.indet.	р	
		Cephalaria sp.	р	
		Dipsacus sp.		р
	Dipsacaceae	Knautia sp.	р	р
		Scabiosa sp.	р	p
		Dipsacaceae gen.indet.	p	p
	Callitrichaceae	Callitriche polymorpha Lönr.	·	p
		Campanula sp.	mp	p
	Campanulaceae	Phyteuma sp.		р
		Achillea sp.	р	р
	Asteraceae	Ambrosia sp.	P	p
		Anthemis sp.	Р	p

1	2	3	4	5
		Arctium sp.		р
		Artemisia sp.	Р	
		Aster sp.	Р	
		Carduus sp.	р	mp
		Centaurea cyanus L.		р
		Centaurea phrigia L.		p
		Centaurea scabiosa L.		P
		Centaurea solstitialis L.	р	р
		Centaurea sp.		p
0		Cichorium sp.	р	р
lea	e	Cirsium vulgare (Savi) Ten.		р
dor	Asteraceae	Cirsium sp.	р	p
iyle	tera	Echinops sp.		р
Dicotyledoneae	As	Grossheimia sp.		p
Δ		Jurinea sp.		p
		Lapsana communis L.		m
		Rhinanthus sp.	р	
		Serratula sp.	· ·	р
		Siegesbeckia orientalis L.	m	p
		Taraxacum sp.		p
		Xanthium strumarium L.	m	
		Xanthium cf.spinosum L.		m
		Xanthium sp.	р	р
		Asteraceae gen.indet.	p	p
		Alisma plantago-aquatica L.		р
	Alismataceae	Alisma sp.	р	p
		Alismataceae gen.indet.	p	
		Butomus sp.	· · ·	р
	Butomaceae	Butomaceae gen.indet.	р	
	Hydrocharitaceae	Hydrocharitaceae gen.indet.	p	
		Juncus filiformis L.	m	
c)	Juncaceae	Juncus effusus L.	m	
Jear		Juncus sp.	mp	
dor		Potamogeton natans L.	m	
tyle	Potamogetonaceae	Potamogeton sp.	р	р
000		Ruppia sp.		р
Monocotyledoneae		Allium sp.		p
Σ		Colchicum speciosum Stew.		р
		Lilium sp.		p
	ae	Gagea sp.		р
	Liliaceae	Ornithogalum pyrenaicum L.		m
		Tulipa silvestris L.		р
		Smilax excelsa L.	m	
		Smilax sp.		р
		Liliaceae gen.indet.	р	p

1	2	3	4	5
	Amaryllidaceae	Amaryllidaceae gen.indet.	р	
	1	Iris pseudacorus L.	mp	
	Iridaceae	Iridaceae gen.indet.	р	р
		Avena fatua L.		m
		Avena sp.		р
		Deschampsia caespinosa	m	
		Digitaria sanguinalis (L.) Scop.	m	
		Echinochloa crus-galli (L.) R.et Sch.	m	
		Echinochloa frumentacea (Roxb.) Link.	m	
		Eleusine indica (L.) Gaertn.	m	
		Hordeum distichum L.	m	
		Hordeum sp.		р
		Lolium remosum Schrenk.	m	
		Panicum cappilare L.	m	
		Panicum miliaceum L.	m	
		Panicum sp.	р	р
	eae	Paspalum paspaloides (Michx.) Scribn.	m	
eae	Poaceae	Phragmites sp.		р
Monocotyledoneae		Poa nemoralis L.		m
		Secale cereale L.		р
		Secale sp.		р
ouc		Setaria glauca (L.) Beauv.	m	
Ň		Setaria italica (L.) Beauv.	m	
		Setaria verticillata (L.) Beauv.		m
		Setaria viridis (L.) Beauv.	m	
		Setaria sp.	р	р
		Sorghum halepense (L.) Pers.		m
		Tragus racemosa (L.) Desf.		m
		Triticum aestivum s.l.	m	
		Triticum dicoccum Shubl.	m	
		Triticum monococcum L.	m	
		Triticum sp.	mp	р
		Zea mays L.		р
		Poaceae gen. indet.	р	р
		Sparganium neglectum Beeby.	m	
	Sparganiaceae	Sparganium sp.		р
		Sparganiaceae gen.indet.		р
		Typha angustifolia L.		р
	Typhaceae	Typha latifolia L.	mp	р
		Typha sp.	m	р
	Cuporacaaa	Carex acutiformis Ehrh.	m	
	Cyperaceae	Carex canescens L.	m	

1	2	3	4	5
	Cyperaceae	Carex capitellata Boiss.et Bal.ex Boiss.	m	
		Carex dacica Heuff.	m	
		Carex elongata L.	m	
		Carex inflata Huds.	m	
		Carex leporina L.	m	
ae		Carex micropodioides V.Krecz.	m	
one		Carex oreophila C.A.M.	m	
Monocotyledoneae		Carex pallescens L.	m	
coty	per	Carex panicea L.	m	
роп	Ś	Carex remota L.	m	
Mo		Carex vesicaria L.	m	
		Carex sp.1, sp.2	m	
		Dichostylis micheliana (L.) Nees.		m
		Scirpus lacustris L.	m	
		Scirpus tabernaemontani C.C.Gmel.	m	
		Cyperaceae gen.indet.	р	р

CONCLUSION

In Georgia, the most ancient finds of fossil flora date back to the Palaeozoic. Lower and Middle Carboniferous deposits of the Khramian block contain the remains of 13 plant taxa.

Among Mesozoic deposits, Jurassic sediments are the richest archives from a paleobotanical viewpoint. Application of various methods of study has allowed the rich composition of the flora to be reconstructed, with three main stages of development.

By the Early Jurassic, almost all of Georgian territory was covered by sea except for the ancient blocks. Various vegetation formations grew on these elevated areas, composed mainly of ferns and conifers.

In the Middle Jurassic (Bathonian), the recession of the sea, rising temperatures and increasing humidity provided favorable conditions for the expansion of lush, diverse vegetation consisting mainly of ferns, Caytoniales, Cycadales, Bennettitales and conifers.

In upper part of the Middle Jurassic (Callovian), the vegetation cover changed conspicuously in response to widespread aridification in Eurasia. A great number of ferns, conifers, Cycadales and Bennettitales disappeared. The rich vegetation of the Bathonian was replaced by a community of relatively low species diversity, dominated by Cheirolepidiaceae.

In the Early Cretaceous (Aptian, Albian), a great mass of Jurassic ferns disappeared and the systematic diversity of Caytoniales, Cheirolepidiaceae, Bennettitales and others declined, while the role of Araucaria and Taxodiaceae increased. Data on the subsequent Late Cretaceous vegetation of Georgia are absent thus far.

Eocene deposits constitute Georgia's most ancient Tertiary sediments containing fossil plant remains. The flora of this time was dominated by angio-sperms, especially Myricaceae, Juglandaceae and evergreen Fagaceae. Ferns and conifers occupied a subordinate place.

During the Oligocene, the uplift of mountain chains led to fundamental changes in the character of the vegetation: conifers increased and the group of subtropical and warm-temperate plants became more variable.

The majority of plant macroremains from the Early Miocene can be attributed to angiosperms, predominantly Myricaceae, Juglandaceae and Lauraceae.

Evergreen Fagaceae, Lauraceae and other thermophilous plants that made up the moist-subtropical forest communities of the Paleogene continued to exist under the drier conditions of the Early Miocene. They were part of a sclerophyll community that grew in close proximity to the depositional basin.

Paleobotanically, the Karaganian, Konkian and Kartvelian deposits are studied in detail. They include abundant plant macrofossils as well as pollen and spores. The ferns are mainly of taxa now extinct. It is notable that Pinus and Taxodiaceae were the most prevalent conifers at that time, while others typical of younger floras, such as spruce and fir, were hardly represented. Angiosperms were distinguished by particular systematic and ecological diversity. The vegetation of the Middle Miocene throughout Georgia was more or less homogenous, dominated by elements characteristic of subtropical climates with high humidity.

Sarmatian deposits in various regions of Georgia contain rich paleobotanical material, both as plant macroremains and palynomorphs. Macrofloras in Western Georgia reflect the existence of a Lauraceae-dominated evergreen community on the plains and in the lower mountain belt. The role of hemixerophilous elements was minor. Macroremains from Eastern Georgia suggest that both sclerophyllous and moist-subtropical communities were broadly distributed.

In Southern Georgia, plant remains were identified in the Goderdzi suite, the greatest part of which dates to the Sarmatian. The Goderdzi flora contains a great abundance and variety of well-preserved fossils and indicates hygrophilous evergreen and deciduous forests. These communities occupied different areas of relief with distinct microclimatic conditions. The fossil flora of Vale was found in the lower part of the Goderdzian suite and was predominantly made up of plant remains indicative of a subtropical or warm-temperate climate. Subtropical plants are represented mainly by shrubs, while the Lauraceae occur as narrow-leaved xerophilous forms.

In recent years, a rich body of palynological material has been collected from Upper Cenozoic deposits in Georgia. The interpretation of this data using landscape-phytocenological analysis provides new insights into the history of vegetation and climate in Georgia and distinguishes 13 (I-XIII) stages of development (Table XXII).

			Weste	rn Georgia			Eastern	
Ma		Stratigraphical un	its	Probable correlation with climatic phenomena	Vegetation stages			
Holocene o	Upper		Subatlantic			Subatlantic		
			Subboreal	XIII		Subboreal		
	Middle		Atlantic			Atlantic		
			Boreal			Boreal		
			Preboreal			Preboreal		
0.01	0.01	New Euxinian		Wurm glaciation	XII			
		K	Upper			3		
	ne	Karangatian	Lower	Riss-Wurm interglacial				
0.1	oce	Uzunlarian		Optimum	XI			
Pleistocene 7.0	Old Euxinian		Decreasing of temperature Mindel-Riss interglacial	Х				
0.4	0.4	Chaudian	Upper	Mindelian glaciation	IX	2		
			Lower	Günz-Mindelian interglacial, optimum	VIII			
0.9	Eopleis- tocene	Gurian		Günz glaciation	VII			
			Upper	Danube-Günz interglacial,	VI		Apsheronian flor Akchagilian flor	
			Lower	optimum	VI			
1.8		Kuyalnician (Egrissian)	Upper	Danube glaciation	V			
			Middle	Optimum Increasing of humidity and fall of temperature	IV			
3.4	Ð		Lower	Decreasing of temperature				
3.4	Pliocene	Kimmerian	Upper	and humidity Optimum (Duabian flora)				
-	ii		Lower	optimum (Buablan hora)		1		
5.3		Pontian	Upper	Optimum (Bichvintian flora)			Dushetian (Shirakian) suit Natskhorian (Eldarian) suite	
			Middle	Optimum (Kodorian flora)				
7.1			Lower	Decreasing of humidity and temperature				
		Meotian	Upper	Optimum		I		
	9.5 Mocene		Lower	Decreasing of temperature Optimum	I			
9.5			Upper]				
MIX	Sarmatian	Middle	Optimum					
13.0			Lower					

Table XXII. Climatic events during the Upper Neogene,Pleistocene and Holocene in Georgia

The details of each of these stages are clearly portrayed in the landscape-phytocenological diagrams for separate geological epochs. Even so, there are a number of turning points worth mentioning for their profound influence on the composition of the flora and dynamics of the vegetation. Palynological assemblages from Lower and Middle Sarmatian deposits in Western Georgia indicate a prevalence of polydominant forests with subtropical and warm-temperate elements. The territory occupied by conifers was much smaller. The distribution of polydominant forests remained stable, indicating a climate with no or muted fluctuations. Similar forest communities occurred in Eastern Georgia, but their vegetation dynamics were quite different on account of unstable climatic conditions. This difference became even more acute after the Middle Sarmatian, when orogenic movements transformed the Transcaucasian intermontane depression into dry land with two regions – Western and Eastern – separated by the Dzirulian Block. The western territory adjoining the Black Sea, the so-called Colchian refugium, became geographically isolated and its warm, humid climate favoured the development of lush forests. At the same time, Eastern Georgia saw the development of vegetation typical of a dry climate. The Sarmatian therefore was the period in which the vegetation of Western and Eastern Georgia began to develop independently under the influence of different climate conditions.

The history of subsequent geological epochs is reconstructed from materials from Western Georgia. Today this is the stratotypical region of Eastern Paratethys, where all the stratigraphical units of the Neogene and Pleistocene are represented by a full series of deposits with rich assemblages of fauna and flora.

Evidence for the Pliocene flora of Eastern Georgia is restricted to Akchagilian and Apsheronian time, when marine transgressions covered the region and laid down the deposits that contain plant remains.

After the Sarmatian, the first turning-point in Western Georgia's vegetation history occurred at the boundary between the Miocene and Pliocene (between stages I - II), when a sharp fluctuation of climate occurred in Western Georgia during whole Lower Pontian time. The result was a mass extinction of many thermophilic plants and changes to Western Georgia's vegetation dynamics. Nevertheless, the main part of the Pontian and Kimmerian flora continued to be subtropical and warmtemperate. In terms of climate, the Kimmerian was somewhat warmer than the Pontian, under the influence of a global Pliocene optimum.

The second turning-point occurred from the upper part of the Kimmerian until the end of the Lower Kuyalnician (stage III). It began and ended with the domination of pine, indicating a decrease in humidity and probably temperature. It is likely that these changes related to the lowering elevation of the Greater and Lesser Caucasus suggested by many researchers. This phenomenon could explain the reduced isolation of Colchis and related changes in climatic conditions, which caused the mass extinction of subtropical plants and the demise of evergreen communities. After stage III, subtropical communities disappeared from Western Georgia as independent vegetation units.

The third turning-point corresponds to the boundary between the Lower and Middle Kuyalnician (between stages III - IV), when climatic trends in Western Georgia reversed, resulting in increased humidity. Fluctuations in temperature were taking place alongside this phenomenon, as a consequence of orogenic movements that led to Colchis again being transformed into an isolated region, as well as the global climatic fluctuations of the Upper Pliocene.

The forth turning-point came in the Late Gurian and Early Chaudian (stage VII), when a large number of Pliocene relicts became extinct in Western Georgia. Only a few of them went on to appear in the floras of the Pleistocene. Radical changes in vegetation structure also took place during the Late Gurian. Once the Greater and Lesser Caucasus had formed into huge mountain ranges, conditions became favorable for temperate and warm-temperate plants. They were distributed in altitudinal zones and gradually produced a new vegetation structure close to the modern one. Three forest belts with different climatic conditions appeared: an upper belt with dark-coniferous forest, a middle belt occupied by beech forest and a lower belt with mixed forest containing more thermophilous plants.

After the forth turning-point the evolution of flora in Western Georgia continued with a gradual extinction of Pliocene relicts, a process that continued through the Pleistocene. As for vegetation dynamics, the migration of vegetation zones under the influences of glacial and interglacial periods is evident from glaciations from the Günz to the Wurm, while evidence for the Riss has yet to be seen in fossil floras from Georgia.

During the Holocene, according to palynological data, Black Sea transgressive phases can be clearly identified by the combination of a vast number of pollen of thermophilous arboreal species and low values of redeposited pollen in shelf sediments. Conversely, during Black Sea regressions, the role of thermophilous elements decreases and there is a sharp increase in the quantity of redeposited pollen due to enhanced erosion from base-level lowering.

Holocene transgressive phases with warm climatic conditions lasted longer than regressive phases. The most significant warming and sea transgression took place in the Atlantic period, lasting nearly three millennia (8000-5500 BP). The climatic trend was toward increased temperatures and precipitation. This process reached its peak 6000-5500 years ago, when the sea-level in Colchis exceeded its present-day level by several meters for the first time for the whole post-glacial period.

At the beginning of the Atlantic period, with the establishment of humid, warm

conditions, the first Neolithic agricultural settlements appeared on the alluvial plains of Southern Georgia, where, besides grain-growing, horticulture, viticulture, apiculture and weaving developed. During the Eneolithic period, this warming process continued and mild climatic conditions facilitated the rise of new cultures and allowed agriculture to penetrate into mountainous areas.

A second significant ingression of the Black Sea took place at the end of the Subboreal period (3800 -2400 years ago), also due to climate warming. The sea level was again higher than nowadays. Broad-leaved forests with chestnut, lime, wing-nut and zelkova expanded. In the high mountains, traditional stock-breeding was replaced by agriculture, viticulture and horticulture. Trade may have developed at this time, judging by the presence of traded goods, such as cotton, in archaeological material from the 15-14th centuries B.C.

The last 2000 geological years are characterized by more frequent transgressions and climatic fluctuations, among which the rather long climatic optimum of the Middle Ages (7th-11th centuries) is noteworthy. The last warming and significant transgression of the Black Sea lasted for 200 years and occurred during the 15th and 16th centuries.

Human impact on landscape development in Georgia can be observed from as early as the Subboreal period, when deforestation is evident not only on the Colchis lowland, but also in the mountains of Western and Southern Georgia.

The comparison of our scheme of climatic changes with similar schemes from mountain territories in Southern Europe and the Near East shows a strong correspondence, explained by the global character of these palaeoclimatic events.

As a whole, the history of vegetation development during the Late Cenozoic can be divided into three main intervals (Table XXII).

The first interval is characterized by a prevalence of subtropical forest vegetation. In Eastern Georgia this formation existed only through the Early and Middle Sarmatian, whereas in Western Georgia it persisted during the Sarmatian, Meotian, Pontian and the main part of the Kimmerian (stages I-II).

The second interval covers a transitional period (stages III-VI), when the vegetation retained many old features but also obtained new ones. At this time the division of broadleaved and coniferous polydominant forests as separate entities began and they came to be distributed according to altitudinal zonality.

The third interval (stages VII-XIII) was a time when a vegetation structure of modern character arose. During this interval, the extinction of Tertiary-relict taxa was completed, with the exception of a handful of ancient species that still grow in Western Georgia and other Caucasian refugia today.

ირინე შატილოვა, ნინო მჭედლიშვილი, ლუარა რუხაძე, ელისო ყვავაძე

ᲡᲐᲥᲐᲠᲗᲕᲔᲚᲝᲡ ᲤᲚᲝᲠᲘᲡᲐ ᲓᲐ ᲛᲪᲔᲜᲐᲠᲔᲣᲚᲝᲑᲘᲡ ᲘᲡᲢᲝᲠᲘᲐ

რეზიუმე

1990 წელს საქართველოს მეცნიერებათა აკადემიის ნ. კეცხოველის სახ. ბოტანიკის ინსტიტუტის მიერ გამოიცა ი.შატილოვასა და ი.რამიშვილის ნაშრომი – "მასალები საქართველოს ფლორისა და მცენარეულობის ისტორიის შესახებ". წიგნში წარმოდგენილია მდიდარი ფაქტიური მასალა, თუმცა არასაკმარისი მონაცემების გამო ყველა სტრატიგრაფიული ერთეულის ფლორა დეტალურად არ არის განხილული. სამწუხაროდ, ყველა ამ ხარვეზის შევსება ვერც შემდგომში მოხერხდა, რადგან პალეოზოური და პალეოცენური ფლორები ჯერ კიდევ არ არის სრულად გამოკვლეული. ბოლო 20 წლის განმავლობაში მდიდარი პალინოლოგიური მასალა იქნა მოპოვებული ნეოგენური და პლეისტოცენური ნალექებიდან. ამ მასალის ინტერპრეტაციამ ლანდშაფტურ-ფიტოცენოლოგიური მეთოდის გამოყენებით საშუალება მოგვცა აღგვედგინა ფლორისა და მცენარეულობის განვითარების თითქმის უწყვეტი პროცესი. დადგინდა ბიოტური და აბიოტური ფაქტორების შედეგად გამოწვეული მნიშვნელოვანი ცვლილებები, რომლებმაც გავლენა იქონია საქართველოს თანამედროვე მცენარეულობის ფორმირებაზე.

საქართველოში ნამარხი ფლორის უძველესი ნაშთები პალეოზოურით თარიღდება. ხრამის მასივის ქვედა და შუა ქვანახშირის ნალექებიდან განსაზღვრულია მცენარეთა 13 ტაქსონი.

მეზოზოურიდან, პალეობოტანიკური თვალსაზრისით, ყველაზე მდიდარი იურული ნალექებია. ამ ნალექებიდან, კვლევის სხვადასხვა მეთოდების გამოყენებით, აღწერილია მდიდარი ფლორა, რომლის ევოლუციაში სამი მთავარი ეტაპია გამოყოფილი. ადრე იურულში საქართველოს თითქმის მთელი ტერიტორია, გარდა ლოქის, ხრამისა და ძირულის უძველესი მასივებისა, ზღვით იყო დაფარული. რელიეფის ამ ამაღლებულ უბნებზე ხარობდა მრავალფეროვანი ტყეები, რომელთა კომპონენტებს გვიმრები და წიწვოვნები შეადგენდნენ. შუა იურულში (ბათური) ხმელეთის გაფართოებამ, აგრეთვე ტემპერატურისა და ტენიანობის მატებამ განაპირობა მდიდარი და მრავალფეროვანი მცენარეულობის ფართოდ გავრცელება. ფლორის უმთავრესი კომპონენტები იყო გვიმრები, Caytoniales, Cycadales, Bennettitales და წიწვოვნები. ზედა იურულში (კალოვიური) მოხდა მცენარეული საფარის მკვეთრი ცვლილება, რაც გამოწვეული იყო ევრაზიის ტერიტორიაზე არიდული ჰავის ზონის წარმოქმნით. გვიმრების, Caytoniales, Cycadales, Bennettitales-ისა და წიწვოვნების უმეტესობა მოისპო. ბათურის მდიდარი მცენარეულობა შეიცვალა ერთფეროვანი ასოციაციებით, სადაც დომინირებდა Cheirolepidiaceae.

ადრე ცარცულში (აპტური, ალბური) იურული გვიმრების უდიდესი ნაწილი გადაშენდა; Caytoniales, Cheirolepidiaceae, Bennettitales-თა და სხვათა სისტემატიკური მრავალფეროვნება მოისპო. საქართველოს გვიანცარცული მცენარეულობის შესახებ მონაცემები არ მოგვეპოვება.

ეოცენური ნალექები მესამეული ასაკის ყველაზე ძველი შრეებია საქართველოში, რომლებიც მცენარეულ ნაშთებს შეიცავს. ამ დროის ფლორა ღარიბია გვიმრებითა და წიწვოვნებით; დომინანტური პოზიცია უჭირავს ფარულთესლიან მცენარეებს, განსაკუთრებით, Myicaceae, Juglandaceae და მარადმწვანე Fagaceae-ს.

ოლიგოცენურში რელიეფის ამაღლებამ გამოიწვია მცენარეულობის შემადგენლობის ცვლილება, კერძოდ, მოიმატა წიწვოვანთა რაოდენობამ, ხოლო სითბოს მოყვარულ მცენარეთა ჯგუფი უფრო მრავალფეროვანი გახდა.

ადრემიოცენური ფლორის უმეტესი ნაწილი, რომელიც მცენარეთა მსხვილინაშთებით არის შესწავლილი, წარმოდგენილია ფარულთესლიანებით. მათ შორის დომინირებს Myricaceae, Juglandaceae, ასევე Lauraceae. თერმოფილური ჯიშები, რომლებიც პალეოგენურში ნოტიო სუბტროპიკულ ტყეებს ქმნიდნენ, ადრე მიოცენურშიც განაგრძობდნენ არსებობას შედარებით დაბალი ტენიანობის პირობებში. ისინი შედიოდნენ ხეშეშფოთლიანი ფორმაციების შემადგენლობაში, რომლებიც გავრცელებული იყო ნალექდაგროვების აუზის სიახლოვეს.

კარაგანული, კონკური და ქართველური შრეები დაწვრილებით არის შესწავლილი პალეობოტანიკური თვალსაზრისით. ამ შრეებში უხვად მოიპოვება მცენარეთა როგორც მსხვილი ნაშთები, ასევე მტვრის მარცვლები და სპორები. გვიმრები ძირითადად გადაშენებული ტაქსონებითაა წარმოდგენილი. წიწვოვნებს შორის დომინირებს ფიჭვი და Taxodiaceae– ს ოჯახის წარმომადგენლები, რაც შეეხება ნაძვს, სოჭსა და ცუგას, რომლებიც უფრო ახალგაზრდა ფლორებისთვისაა დამახასიათებელი, მათი როლი კომპლექსებში უმნიშვნელოა. ფარულთესლიანები გამოირჩევიან სისტემატიკური და ეკოლოგიური მრავალფეროვნებით. ზოგადად, საქართველოს ტერიტორიაზე შუამიოცენური მცენარეულობა მეტ-ნაკლებად ერთფეროვანი იყო და სუბტროპიკული და ტენიანი ჰავის ელემენტების სიჭარბით ხასიათდებოდა.

სარმატული ნალექები შეიცავს მდიდარ პალეობოტანიკურ მასალას, რომელიც წარმოდგენილია როგორც მცენარეთა მსხვილი ნაშთების, ასევე პალინომორფების სახით. დასავლეთ საქართველოს მაკროფლორები ასახავს დაბლობისა და მთის ქვედა სარტყლის მარადმწვანე ფორმაციების არსებობას, დაფნისებრთა დომინირებით; ჰემიქსეროფილური ელემენტების როლი უმნიშვნელოა. აღმოსავლეთ საქართველოს ტერიტორიაზე, როგორც მცენარეთა მსხვილი ნაშთები გვიჩვენებს, ფართოდ იყო გავრცელებული ორივე ფორმაცია – ტენიანი სუბტროპიკულიც და სკლეროფილურიც.

სამხრეთ საქართველოში მცენარეთა მაკრონაშთებს შეიცავს გოდერძის წყება, რომლის უმეტესი ნაწილი სარმატულად თარიღდება. გოდერძის ფლორა გამოირჩევა კარგი დაცულობის ნამარხი მასალის სიუხვითა და მრავალფეროვნებით. იგი ჰიგროფილური მარადმწვანე და ფოთოლმცვენი ტყეების არსებობას ასახავს. ამ ფორმაციებს ეკავათ რელიეფის სხვადასხვა დონეები, რომლებიც ერთმანეთისაგან მიკროკლიმატური პირობებით განსხვავდებოდა. გოდერძის წყების ქვედა ნაწილს შეესაბამება ვალეს ფლორა, რომლის გაბატონებული ელემენტებია სუბტროპიკული და ზომიერად თბილი ჰავის მცენარეები. სუბტროპიკული მცენარეები ძირითადად ბუჩქებითაა წარმოდგენილი, ხოლო დაფნისებრნი – წვრილფოთლიანი ქსეროფილური ფორმებით.

უკანასკნელ წლებში მდიდარი პალინოლოგიური მასალა იქნა მოპოვებული საქართველოს ზედაკაინოზოური ნალექებიდან. მისი ინტერპრეტაცია ლანდშაფტურ-ფიტოცენოლოგიური მეთოდის გამოყენებით ახლებურად აშუქებს საქართველოს მცენარეულობისა და ჰავის ისტორიას და საშუალებას გვაძლევს გამოვყოთ განვითარების 13 ეტაპი (გვ 167, Table XXII). ჩვენ ამ ეტაპებს დაწვრილებით არ განვიხილავთ, რადგან ისინი დატანილია დიაგრამებზე, რომლებიც ცალკეული გეოლოგიური სართულების მცენარეულობის აღწერას ახლავს თან. აქ ჩვენ შევეხებით, მხოლოდ გარდატეხის იმ ძირითად მომენტებს, რომლებმაც ზეგავლენა მოახდინა საქართველოს ფლორასა და მცენარეულობაზე.

დასავლეთ საქართველოს ქვედა- და შუასარმატული ნალექების პალი-

ნოსპექტრები გვიჩვენებს პოლიდომინანტური სუბტროპიკული და ზომიერად თბილი ჰავის ტყეების ბატონობას. წიწვოვნებით დაკავებული ფართობი გაცილებით მცირეა. პოლიდომინანტური ტყეების არეალი თითქმის უცვლელია, რაც ერთგვაროვანი კლიმატური პირობების არსებობაზე მიუთითებს. მსგავსი შემადგენლობის ტყეები აღმოსავლეთ საქართველოშიც ხარობდა, მაგრამ მცენარეულობის დინამიკა იქ სრულიად განსხვავებული იყო. აღმოსავლეთ საქართველოს ქვედა- და შუასარმატული ნალექების პალინოსპექტრები არასტაბილური კლიმატური პირობების არსებობაზე მეტყველებს. მცენარეულობის დინამიკამ უფრო მკვეთრი ხასიათი მიიღო შუა სარმატულის შემდეგ, როდესაც ოროგენული მოვლენების შედეგად ამიერკავკასიის მთათაშუა დეპრესია ხმელეთად გადაიქცა. ეს ხმელეთი ძირულის მასივით დასავლეთისა და აღმოსავლეთის რეგიონებად გაიყო. დასავლეთით შავი ზღვის მიმდებარე ტერიტორია ჩამოყალიბდა იზოლირებული რეგიონად – ე.წ. კოლხეთის რეფუგიუმად, სადაც თბილი და ნოტიო ჰავა ხელს უწყობდა მდიდარი ტყის მცენარეულობის განვითარებას. სულ სხვაგვარი პირობები იყო აღმოსავლეთ საქართველოს ტერიტორიაზე, სადაც შუა სარმატულის შემდეგ დაიწყო მშრალი ჰავის მცენარეულობის გაბატონება. ამგვარად, სარმატულის შემდეგ დასავლეთ და აღმოსავლეთ საქართველოს მცენარეულობა, სხვადასხვა კლიმატური პირობების ზეგავლენით, ერთმანეთისაგან დამოუკიდებლად ვითარდებოდა.

გეოლოგიური დროის შემდგომი მონაკვეთების ისტორია აღდგენილია დასავლეთ საქართველოდან მოპოვებული მასალის მიხედვით. როგორც ცნობილია, დასავლეთ საქართველო აღმოსავლეთ პარატეთისის სტრატოტიპული რეგიონია. აქ ნეოგენურისა და პლეისტოცენურის ყველა სტრატიგრაფიული ერთეული წარმოდგენილია ნალექების სრული სერიით, რომლებიც ფაუნისა და ფლორის მდიდარი კომპლექსებით ხასიათდება.

აღმოსავლეთ საქართველოს პლიოცენური ფლორის შესახებ არსებული მონაცემები შემოისაზღვრება მხოლოდ აღჩაგილური და აფშერონული დროით, როდესაც მიმდინარეობდა ზღვის ტრანსგრესია და მცენარეთა ნაშთების შემცველი შრეების აკუმულირება.

დასავლეთ საქართველოს მცენარეულობის განვითარების პროცესში, სარმატულის შემდეგ, გარდატეხის პირველი მომენტი შეესაბამება მიოცენურისა და პლიოცენურის საზღვარს (I და II ეტაპების საზღვარი), როდესაც მოხდა თერმოფილურ მცენარეთა მასობრივი გადაშენება. მიუხედავად ამისა, პონტური და კიმერიული ფლორის უდიდესი ნაწილი კვლავ სუბტროპიკული და სითბოს მოყვარული ფორმებისაგან შედგებოდა, რაც ამ რეგიონში მაღალ ტემპერატურასა და ტენიანობაზე მიუთითებს.

გარდატეხის მეორე მომენტი შეესაბამება დროის ინტერვალს კიმერიულის ზედა ნაწილიდან სკურდუმულის (ქვედაკუიალნიკური) ბოლომდე (III ეტაპი). მცენარეულობის განვითარების ეს ეტაპი იწყება და მთავრდება ფიჭვის დომინირებით, რომელიც ტენიანობისა და, შესაძლოა, ტემპერატურის შემცირების მაჩვენებელიც იყოს. მკვლევართა ვარაუდით, ეს ცვლილებები დიდი და მცირე კავკასიონის რელიეფის პენეპლენიზაციაზე მიუთითებს. ეს მოვლენა, სავარაუდოდ, კოლხეთის იზოლაციის დარღვევისა და კლიმატური პირობების შეცვლის მიზეზს წარმოადგენდა, რამაც, თავის მხრივ, სუბტროპიკულ მცენარეთა მასობრივი გადაშენება გამოიწვია. III ეტაპის შემდეგ დასავლეთ საქართველოს მცენარეულობაში სუბტროპიკული ცენოზები, როგორც დამოუკიდებელი ერთეული, აღარ არსებობდა. შემდეგი IV ეტაპის (შუაკუიალნიკური) პოლიდომინანტური ტყეები უკვე ფოთოლმცვენი ჯიშებისაგან იყო აგებული, თუმცა მათ შორის ჯერ კიდევ გვხვდებოდა უძველესი ფლორების რელიქტები.

გარდატეხის მესამე მომენტი, სავარაუდოდ, შეესაბამება ქვედა და შუა კუიალნიკურის საზღვარს (III და IV ეტაპების საზღვარი), როდესაც დასავლეთ საქართველოს ტერიტორიაზე კლიმატის ევოლუციამ მიმართულება შეიცვალა, რაც ტენიანობის შემცირებაში გამოიხატებოდა; ამავე დროს აღინიშნებოდა ტემპერატურის ფლუქტუაციაც. ეს ცვლილებები ძირითადად გამოწვეული იყო ახალი ოროგენული მოვლენებით, რომლებმაც კოლხეთი კვლავ იზოლირებულ ოლქად გადააქცია, ხოლო ზედა პლეისტოცენურის ჰავაზე მკვეთრი ზეგავლენა მოახდინა.

გარდატეხის მეოთხე მომენტი შეესაბამება გვიან გურიულს და ადრე ჩაუდურს (VII ეტაპი), როდესაც დასავლეთ საქართველოს ტერიტორიაზე პლიოცენური რელიქტების უდიდესი რაოდენობა გადაშენდა. მხოლოდ რამდენიმე რელიქტური სახეობა იყო შემორჩენილი გვიანპლეისტოცენურ ფლორაში. გვიან გურიულში რადიკალური ცვლილება მოხდა მცენარეულობაშიც. მცირე და დიდი კავკასიონის მაღალ მთებად ფორმირების შემდეგ ჩამოყალიბდა ხელშემწყობი პირობები ზომიერი და სითბოზომიერი ჰავის მცენარეებისათვის. ისინი რელიეფის მაღალ დონეებზე ხარობდნენ და თანდათანობით მცენარეულობის ახალ, თანამედროვე ტიპის, სტრუქტურას ქმნიდნენ. წარმოიქმნა განსხვავებული კლიმატური პირობების მქონე ტყის სამი სარტყელი: ზედა — მუქწიწვოვანი ტყეების სარტყელი, შუა სარტყელი, რომელიც წიფლის ტყეებს ეკავა, და ქვედა შერეული ტყის სარტყელი, რომელშიც შემორჩენილი იყო თერმოფილური მცენარეები. გარდატეხის მესამე მომენტის შემდეგ (V—XII ეტაპები), რომელიც შეესაბამება დროის ინტერვალს ქვედა კუიალნიკურიდან პლეისტოცენურის ბოლომდე, დასავლეთ საქართველოს მცენარეულობის განვითარების ძირითადი განმსაზღვრელი ფაქტორი იყო ტემპერატურა. მის ცვლილებას, სავარაუდოდ, განაპირობებდა გამყინვარებებისა და გამყინვარებათშორისი პერიოდების მონაცვლეობა გიუნცურიდან ვიურმულამდე; გამონაკლისს წარმოადგენს რისული გამყინვარება, რომლის აშკარა კვალი ვერ იქნა ნაპოვნი საქართველოს ნამარხ ფლორაში.

ჰოლოცენური დროის განმავლობაში (ეტაპი XIII), პალინოლოგიური მონაცემების თანახმად, შავი ზღვის ტრანსგრესიული ფაზები თანხვდებოდა შელფურ ნალექებში თერმოფილური ხე-მცენარეების მტვრის რაოდენობის მატებას და გადალექილი მტვრის მარცვლების მცირე შემცველობას. რეგრესიული ფაზების დროს კი პირიქით, თერმოფილური ელემენტების როლი მცირდებოდა და მკვეთრად მატულობდა გადალექილი მტვრის მარცვლების რაოდენობა. ეს მიუთითებს ზღვის დონის დაწევასთან დაკავშირებულ ეროზიულ პროცესებზე. ტრანსგრესიული ფაზები თბილი კლიმატური პირობებით უფრო ხანგრძლივი იყო, ვიდრე რეგრესიული. ტრანსგრესიასთან დაკავშირებული ყველაზე მნიშვნელოვანი დათბობა მოხდა ატლანტიკურ პერიოდში და დაახლოებით 3 მილიონ წელს გასტანა (8000-5500 BP). კლიმატური ტრენდი მიმართული იყო ტემპერატურისა და ნალექების მატებისაკენ. ამ პროცესმა მაქსიმუმს მიაღწია 6000-5500 წლის წინ, როდესაც გამყინვარების შემდგომ პერიოდში კოლხეთში ზღვის დონემ პირველად გადააჭარბა თანამედროვეს რამდენიმე მეტრით.

ატლანტიკური პერიოდის დასაწყისში ნოტიო და თბილი ჰავის ჩამოყალიბებისთანავე, სამხრეთ ქართლის ალუვიურ დაბლობებზე პირველი ნეოლითური სასოფლო-სამეურნეო დასახლებები გაჩნდა. აქ მემარცვლეობის გარდა, განვითარებული იყო მებაღეობა, მევენახეობა, მეფუტკრეობა და ფეიქრობა. დათბობის პროცესი ენეოლითის განმავლობაშიც გრძელდებოდა. თბილი ჰავა ხელს უწყობდა ახალი კულტურების წარმოქმნას და სოფლის მეურნეობის განვითარებას მთიან ოლქებში.

შავი ზღვის მეორე მნიშვნელოვანი ინსგრესია მოხდა სუბბორეალური პერიოდის ბოლოს (3800-2400 წლის წინ), რაც ასევე ჰავის დათბობასთან იყო დაკავშირებული. ზღვის დონე თანამედროვეზე მაღალი იყო. გაიზარდა ფოთლოვანი ტყეების არეალი, სადაც წაბლი, ლაფანი და ძელქვა ხარობდა. მაღალ მთებში ტრადიციული მეცხოველეობა მევენახეობით და მებაღეობით შეიცვალა. ამ დროს განვითარებული უნდა ყოფილიყო ხელოსნობაც, რაზეც მიუთითებს ძვ.წ. მე-15-14 საუკუნეების არქეოლოგიურ მასალაში ბამბის ბოჭკოების აღმოჩენა.

ბოლო 2000 წელი უფრო ხშირი ტრანსგრესიებით და კლიმატური ფლუქტუაციებით ხასიათდება, რომელთა შორის ყველაზე ხანგრძლივი კლიმატური ოპტიმუმი შუა საუკუნეებზე (მე-7-11 სს.) მოდის. ყველაზე დიდი დათბობა და შავი ზღვის დიდი ტრანსგრესია აღინიშნებოდა მე-15-16 საუკუნეებში და 200 წელს გრძელდებოდა.

ადამიანის მოღვაწეობის ზემოქმედება ლანდშაფტის განვითარებაზე ნათლად ჩანს სუბბორეალურ პერიოდში, როდესაც გაუტყეურდა არა მარტო კოლხეთის დაბლობი, არამედ დასავლეთ და სამხრეთ საქართველოც. კლიმატური ცვლილებები გარკვეულ მსგავსებას იჩენს სამხრეთ ევროპისა და ახლო აღმოსავლეთის მთიანი ტერიტორიების ჰავასთან, რაც ზემოაღწერილი პალეოკლიმატური მოვლენების გლობალური ხასიათით აიხსნება.

ამგვარად, გვიანკაინოზოური მცენარეულობის განვითარების ისტორია შეიძლება სამ ძირითად ნაწილად გაიყოს:

პირველი ინტერვალი ხასიათდება სუბტროპიკული მცენარეულობის დომინირებით. აღმოსავლეთ საქართველოში ეს ფორმაცია არსებობდა მხოლოდ ადრეულ და შუა სარმატულში. დასავლეთ საქართველოში იგი შენარჩუნებული იყო სარმატულ, მეოტურ, პონტურ საუკუნეებსა და კიმერიულის უმეტეს ნაწილში (I—II ეტაპები).

მეორე ინტერვალი მოიცავს გარდამავალ პერიოდს (III—VI ეტაპები), როდესაც მცენარეულობა ჯერ კიდევ ინარჩუნებდა ძველ თვისებებს, მაგრამ უკვე იძენდა ახალს. ამ დროს დაიწყო ფოთლოვანი და წიწვოვანი პოლიდომინანტური ტყის ცალკეულ ცენოზებად დაყოფა და მათი გავრცელება რელიეფის შესაბამისად.

მესამე ინტერვალში (VII—XIII ეტაპები) დომინირებდა ისეთი მცენარეულობა, რომლის სტრუქტურა დღემდე შენარჩუნებულია. დროის ამ პერიოდში ძირითადად დამთავრდა მესამეული რელიქტების გადაშენების პროცესი, თუმცა ზოგიერთი რელიქტური სახეობა დღემდე განაგრძობს არსებობას დასავლეთ საქართველოს თანამედროვე ფლორაში.

REFERENCES

- Adamia Sh.A. 1968. The Pre-Jurassic formations of Caucasus. "Metsniereba" Publ.House, Tbilisi :291 p. (in Russian).
- Adamia Sh.A., Bendukidze N.S., Buleishvili D.A. Gamkrelidze P.D., Zesashvili V.I., Kacharava
 I.V., Laliev A.G., Nutsubidze K.Sh., Tsagareli A.L., Chelidze G.F., Chikovani A.A., Eristavi M.S. 1964. The history of geological development. In: The Geology of USSR.
 Vol..X, Georgia. "Nedra" Publ.House, Moscow :503-559 (in Russian).
- Alvin K.L., Spicer R.A., Watson J. 1978. A Classopollis-containing male cone associated with Pseudofrenelopsis. Paleontology, Vol.21, Part 4 :847-856.
- Ananiashvili G.D., Purtseladze Kh.N. 1976. The palynological characteristic of the Tarkhanian deposits of Western Georgia (Racha-Lechkhumian syncline). Bull.Acad. Sc.GSSR, 82,#2, Tbilisi :421-423 (in Russian).
- Ananiashvili G., Ananiashvili L., Japaridze I., Minashvili Ts., Sakhelashvili Z. 2000. Biostratigraphy of the Upper Part of Maikopian series of Georgia. Proceed.Georgian Acad. Sci.A.Janelidze Geolog.Inst., New Ser., Vol.115, Tbilisi :110-120 (in Russian).
- Ananova E.N. 1974. The pollen in the Neogene deposits of Southern Part of Russian Plain. Publ.House of University of Leningrad : 196 p. (in Russian).
- Antonov V.A., Astakhov N.E., Balijan S.P., Budagov B.A., Dumitrashko N.V., Milanovsky E.E, Musaibov M.A., Safronov I.N., Tsereteli D.V., Shirinov N.Sh. 1977. The main pecularity and the stages of development of the relief of Caucasus (Pleistocene). For X Congress of INQUA, Birmingham. Publ.H.Acad.Sci.Arm.SSR, Yerevan : 50-61 (in Russian).
- Arabuli G., Connor S., Kvavadze E. 2007. *Calluna vulgaris* and *Spiranthes amoena* in the Colchis mire flora: weeds or relict? Acta Palaeobot. 47(2):469-478.
- Arabuli G., Kvavadze El., Kikodze D., Connor S., Kvavadze Er., Bagaturi N., Murvanidze M., Arabuli T. 2008. The krummholz beech woods of Mt.Tavkvetili (Javakheti Plateu, Southern Georgia) – a relict ecosystem. Proceed.of Institute of Zoology,vol. XXIII:194-213.

- Arslanov Kh.A., Gey N.A., Soloviev B.A. 1976. To the paleogeography and geochronology of the Late Pleistocene of Abkhazia. Proceed. Acad.Sc.USSR, ser.Geology, #6 :125-129 (in Russian).
- Avakov G.S. 1967. A new data about the flora and climate of Konkian time. Reports Ac.Sc. USSR, Vol.176, #2 : 395-398 (in Russian).
- Avakov G.S. 1979. The Miocene flora of Mejuda. "Metsniereba" Publ.House, Tbilisi :106 p. (in Russian).
- Avakov G.S. 1989. The Eocene flora of Akhaltsikhe. "Metsniereba" Publ.House, Tbilisi :58 p. (in Russian).
- Avakov G.S. 2008. The Miocene flora of the basin of Quirila-river, Western Georgia. In: Problems of Paleobiology. Tbilisi, Vol.III : 35-38 (in Russian).
- Avakov G.S. 2010. The representatives of family Apocynaceae in the Tertiary of Georgia. Georgian National Museum. Proceed.of the Natural and Prehistorie Section, Tbilisi, #2,: 119-127 (in Russian).
- Badzoshvili Ts.I. 1986. The marine gastropod mollusks of Meotian, evolution and stratigraphic significance. "Metsniereba" Publ.H., Tbilisi :64 p. (in Russian).
- Balabanov I.P., Gey N.A. 1981. The history of development of lagoon of Bitchvinta in Middle and Upper Holocene. In: The Palynology of Pleistocene and Holocene. Publish. House of Leningrad University :78-87 (in Russian).
- Balabanov I.P., Kvirkveliya B.D., Ostrovsky A.B. 1981. The new history of formation of engineer-geological conditions and the long-term prognosis of development of coastal zone of peninsula of Bitchvinta. Metsniereba, Tbilisi (in Russian).
- Balabanov I.P., Kvavadze E.V. 1985. The dependence of character of development of seaside places Gagrian coast little rivers from oscillation of sea level in Holocene. Proceed.Ac.Scien.Georg.SSR, vol.118, 3 :553-556 (in Russian).
- Bieniek A., Licheli W. 2007. Archaeobotanical studies at the Atyskouri settlement (SE Georgia, 1-st Mill.Bc) – preliminary results. Abst.of 14-th Simposiu, of the International Work Group for Paleoetnobotany. Krakow, Poland :120.
- Bokeria M., Ruchadze L., Ammann B. et al. 2009. Archaeobotanical evidence from West Georgia (South Caucasusus). Geordian National Museum Bulletin, Natural Sciences and Prehistory Section 1:140-150.
- Borzenkova I.I. 1992. The changes of climate in Cenozoic. Publ.H."Gidrometeoizdat", Saint-Petersburg :421 p. (in Russian).

- Bukreeva G.F. 1990. Reconstruction of the Holocene palaeoclimate according to the data of mathematical methods. Doctoral thesis, Novosibirsk (in Russian).
- Buleishvili D.A. 1960. Geology and oil-and-gas content of intermontane depression of Eastern Georgia. "Gostoptekhizdat" Publ.House, Leningrad :238 p. (in Russian).
- Buleishvili D.A. 1986. The Miocene. In: The Neogene system. Semi-volum I, Moscow :205-239 (in Russian).
- Buleishvili D.A. 1986a. The Upper part of Upper Miocene Lower Pliocene. In: The Neogene system. Semi-volum I, Moscow :218-222 (in Russian).
- Chelidze G.F. 1964. The Western Zone of Georgian Block's Depression and the Gurian Subzone of Adjara-Trialetian Folded System. In: The Geology of USSR. Vol..X, Georgia. "Nedra" Publ.House, Moscow :308-324 (in Russian).
- Chelidze G.F. 1974. The Marine Pontian of Georgia. Transact.Geolog.Inst.Acad.Sci.of Georgia, New ser., Fasc.48, "Metsniereba" Publ.House, Tbilisi :216 p. (in Russian).
- Chelidze L.T. 1970. The flora of tuffogenic deposits of Vale. "Metsniereba" Publ.House, Tbilisi :99 p. (in Russian).
- Chelidze L.T. 1972. The Sarmatian flora of Kakheti. Bull.Georgian Acad.Sci., Vol.67 #2, Tbilisi :501-503 (in Russian).
- Chelidze L.T. 1979. The Sarmatian flora of Kartli. Bull.Georgian Acad.Sci., Vol.95, #2, Tbilisi :473-475 (in Russian).
- Chelidze L.T. 1987. The Late Miocene flora and vegetation of Transcaucasus. "Metsniereba" Publ.H., Tbilisi :112p. (in Russian).
- Chelidze L.T., Kvavadze E.V. 1983. A new data about Meotian flora of Guria. Bull.Georg. Acad.Scien., Vol. 110, #3, Tbilisi :641-643 (in Russian).
- Chelidze L.T., Kvavadze E.V. 1986. The fossil plants of Meotian deposits of Abkhazia. Bull. Georg.Acad.Scien., Vol.122, #1, Tbilisi :177-180 (in Russian).
- Chelidze L.T., Kvavadze E.V. 1987. The family Taxodiaceae in Meotian flora of Western Georgia. Bull.Georg.Acad.Scien., 125, #2, Tbilisi :426-427 (in Russian).
- Chepalyga A.L. 1987. The climatic events in Cenozoic of Paratethys. In: The climates of World in Geological Past, "Nauka" Publ.H., Moskow : 204-214 (in Russian).
- Cherniuk A.V. 1986. The spore-pollen assemblages from deposits of lower terraces of river Kodori. Transact.of Sukhumian Bot.garden, Vol.XXX :166-178 (in Russian).

- Chochieva K.I. 1965. The flora and vegetation of the Chaudian horizon of Guria. "Metsniereba" Publ.H., Tbilisi :149 p. (in Russian).
- Chochieva K.I. 1975. The Khvarbetian fossil forest. "Metsniereba" Publ.H., Tbilisi :184 p. (in Russian).
- Chochieva K.I. 1980. The Uzunlarian flora of Tskhaltsminda. "Metsniereba" Publ.H., Tbilisi :95p. (in Russian).
- Chochieva K.I. 1985. The fossil Taxodiaceae in Colchis "Metsniereba" Publ.H., Tbilisi,: 93p. (in Russian).
- Chochieva K.I., Mamatsashvili N.S. 1977. The data of spore-pollen analysis about Old Euxinian flora. Reports Ac.Sc.USSR, Vol.235, #5 : 1148-1152 (in Russian).
- Chochieva K.I., Mamatsashvili N.S., Imnadze Z.A., Kitovani T.G. 1982. About fauna and flora of Old Euxinian deposits of Guria (Western Georgia). Bull.Georgian Acad.Sci., Vol.106, #3, Tbilisi : 641-644 (in Russian).
- Chochieva K.I., Mamatsashvili N.S. 1991. The history of flora and vegetation. Chapt.IV. In: Georgia in the Anthropogene, Publ.H. "Sakartvelo", Tbilisi :223-291 (in Russian).
- Connor S., Kvavadze E. 2005. Climatic and human influences on vegatation dynamics around Tbilisi over the past 6000. Proccedings of the Georgian Academy of Sciences, Bilogical series B, vol.3, 4:64-76.
- Connor S.E., Thomas I., Kvavadze E.V. 2007. A 5600-year history of changing vegetation, sea levels and human impacts from the Black Sea coast of Georgia. The Holocene 17, 1: 25-36.
- Connor S., Kvavadze E., Thomas I. 2007a. Holocene vegetation changes in the Caucasus Mountains: climate or humans? Quaternary International Supplement 167-8 :76.
- Connor S., Kvavadze E. 2008. Modelling Late Quaternary changes in plant distribution, vegetation and climate using pollen data from Georgia, Caucasus. Journal of Biogeography 36: 529-545.
- Davitashvili L.Sh. 1933. The review of mollusks of Tertiary and Post-Tertiary deposits of Crimea-Caucasus oil province. "Gosnefttekhisdat" Publ.H., Moskow :167p. (in Russian).
- Davitashvili L.Sh. 1934. About the stratigrafical position of Kotsakhurian layers. Informat. collection of Oil exploration Geolog.Instit, #4:90-97 (in Russian).
- Davitashvili L.Sh. 1949. The Course of Paleontology. "Gosgeoltekhisdat" Publ.H., Moskow-Leningrad :834p. (in Russian).

- Delle V.G. 1960. Ginkgoales from Jurassic deposits of Tkvarchelian coal basin in Transcaucasus. Botanic.Journ., #1:87-91(in Russian).
- Delle V.G. 1960a. The new data about the Jurassic flora of Tkvarcheli. Reports Ac.Sc.USSR, Vol.133 :1150-1153 (in Russian).
- Delle V.G. 1967. The Middle Jurassic flora of Tkvarchelian coal basin (Transcaucasus). In: Paleobotany , "Nauka" Publ.H., Leningrad :51-132 (in Russian).
- Djabarova Kh.S. 1976. The study of development of Upper Paleogene and Neogene floras of Azerbaijan. In: The Palynology of USSR, "Nauka" Publ.House, Moscow :105-108 (in Russian).
- Djaparidze I.N. 1982. The Early Miocene flora of Eastern Georgia. "Metsniereba" Publ.H., Tbilisi :118p. (in Russian).
- Djikia N.P. 1977. The evolution of the Akchagilian molluskian fauna of Eastern Georgia. Publ.H. "Metsniereba", Tbilisi :144 (in Russian).
- Dolidze Zh.Sh. 1970. About the flora of Akchagilian Age. In: The fauna of Mesozoic and Cenozoic of Georgia and its geohistorical significance. Transact.Inst.of Paleobiology of Georg. Acad.Sc. "Metsniereba" Publ.H., Tbilisi : 98-116 (in Russian).
- Dolidze Zh.Sh. 1999. For studying of Akchagilian flora. In: Problems of Paleobiology. Tbilisi, Vol.I : 45-57 (in Russian).
- Doludenko M.P. 1984. The Late Jurassic flora of South-Western Eurasia. "Nauka" Publ. House, Moscow :103 p. (in Russian).
- Doludenko M.P., Svanidze Ts.I. 1969. The Late Jurassic flora of Georgia. Transact.Geolog. Inst. Acad.Sc.USSR, vol.178, "Nauka" Publ.House, Moscow :117p. (in Russian).
- Doludenko M.P., Lebedeva E.L. 1972. *Ginkgoites sibirica* and *G.huttoni* of Eastern Siberia. In: The Mesozoic plants of Eastern Siberia. "Nauka" Publ.House, Moscow : 82-102 (in Russian).
- Dolukhanov A.G. 1989. The vegetation of Georgia. Vol.I, "Metsniereba" Publ.H. Tbilisi :235p. (in Russian).
- Dzotsenidze G.S., Skhirtladze N.I. 1961. The lithology and paleogeography of the Middle Jurassic coal-bearing deposits of Western Georgia. Publ.House of Georgian Acad. Scien., Tbilisi :110p. (in Russian).
- Eristavi M.S. 1952. The Georgian Block in Early Cretaceous Time. Transact.Geolog.Inst.of Georgia, Ser.Geology,XVI(XI), Tbilisi :138-210 (in Russian).

- Fedorov P.V. 1978. The Pleistocene of Ponto-Caspian. "Nauka" Publ.House, Moscow : 160p. (in Russian).
- Fedorov P.V. 1988. The problem of changes in the level of the Black Sea during the Pleistocene. International Geology Review 30:635-641.
- Gabunia L.K. 1953. For studying of the mollusks of Middle Pliocene deposits of Western Georgia. Transact.of Sector of Paleobiology, Vol.1, Tbilisi : 159p. (in Russian).
- Gabunia L.K., Lasarashvili T.N. 1962. The new data about tuffogenic deposits of South Georgia. Bull.Georgian Acad.Sci., Vol.28, #1, Tbilisi : 53-57 (in Russian).
- Gambashidze R.A. 1984. The history of development of Georgia in Late Cretaceous time. "Metsniereba" Publ.H. Tbilisi : 111p. (in Russian).
- Gamkrelidze I.P. 2000. Once more of the tectonic zonning of the territory of Georgia. Proceed.Georg.Acad.Sci. A.Janelidze Geolog.Inst., New Ser., Vol.115, Tbilisi :204-208 (in Russian).
- Gamkrelidze P.D. 1949. The geological structure of Adjara-Trialetian Folded System. Tbilisi :507p. (in Russian).
- Gamkrelidze P.D. 1964. The Tectonics. In:The Geology of USSR, vol.X, Georgia, "Nedra" Publ. House, Moscow :453-489(in Russian).
- Gladkova A.N. 1965. The fossil Myricaceae of Western Siberia. The Paleophytological Collection. The Transact.of WNIGNI, 239 :121-142 (in Russian).
- Gogichaishvili L.K. 1984. Vegetational and climatic history of the western part of the Kura River basin. In: Paleoclimates, paleoenvironments and human communities in the Eastern Mediterranean region in later prehistory. B.A.R. International Series, Oxford : 325-341.
- Gogichaishvili L.K. 1990. Vegetation and human occupation in the lowlands and foothills of Eastern Georgia in the Middle Holocene. In: Man's role in the shaping of the Eastern Mediterranean landscape. A.A. Balkema Rotterdam : 265-269.
- Grove J.M. 1997. The spatial and temporal variations of glaciers during the Holocene in the Alps,Pyrenees,Tatra and Caucasus. In: Paleoklimaforschung/Palaeoclimate Research, Gustav Fischer Verlag.Stuttgart-Jena-Lubeck-Ulm, :95-103.
- Gruzinskaya K.F., Imnadze Z.A., Kadjaia L.G. 1986. About stratigraphy and facies of Sarmatian of Georgia. In: Stratigraphy and Correlation of Sarmatian and Meotian deposits of South USSR, Publ.H.of Saratov Univers. :178-157 (in Russian).

- Hansen S., Mirtskhulava G., Baster-Lamprichs K. 2007. Aruchlo: A Neolitic Settlement Mound in the Caucasus. Neo-Lithics 1/07. The Newsletter of Southwest Asian Neolithic Research. :13-19.
- Harland U.B., Cocs A.B., Llevelin P.G., Pikton K.A.G., Smith A.G., Walters P. 1985. The Geological time-scale. "Mir" Publ.House, Moscow :138p. (in Russian).
- lakobidze E.B. 1980. The new data about flora of Bathonian deposis of Western Georgia. Bull.Georgian Acad.Sci., Vol.99, # 2, Tbilisi :393-396 (in Russian).
- lakobidze E.B. 1981. The new data about flora and vegetation of Bathonian deposis of Western Georgia. Bull.Georgian.Acad.Sci., Vol.104, # 2, Tbilisi :397-400 (in Russian).
- lakobidze E.B., Karashvili B.D., Svanidze Ts.I. 1983. The new data about macroflora and spore-pollen assemblages of Bajocian deposits of Western Georgia. Bull.Georgian Acad.Sci., Vol.110, # 3, Tbilisi :545-548 (in Russian).
- Ilijn S.I. 1930. The new data about the Pliocene of Guria. Proceed.of Main Geol- Exploration Department, Vol.49, #4 :463-471 (in Russian).
- Imnadze Z.A. 1975. To the microfaunistical characteristic of the Chaudian and Old Euxinian deposits of Western Georgia. In:The materials about Geology and oil-gas-bearing of Georgia, Transact.of WNIGNI, Vol.158, Tbilisi :129-154 (in Russian).
- Imnadze Z.A., Kitovani T.G., Torosov R.I. 1975. The Chaudian and Post-Chaudian deposits of Tsvermagala-Ureki vicinity (Western Georgia). Bull.Georgian Acad.Sci., Vol.79, # 2, Tbilisi :378-380 (in Russian).
- Janelidze A.I. 1942. The problem of Georgian Block. Bull.Georgian Acad.Sci., Vol.3, #2, Tbilisi : 137-143 (in Russian).
- Jimenez-Moreno G., Abdul Aziz H., Rodriguez-Tovar F.J., Pardo-Iguzquiza E., Suc J.-P. 2007, Palynological evidence for astronomical forcing in Early Miocene lacustrine deposits from Rubielos de Mora Basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 252:601-616.
- Kacharava I.V. 1964. The Paleogene. In: The Geology of USSR, vol.X, Georgia, "Nedra" Publ. House, Moscow :182-213 (in Russian).
- Kacharava M.V. 1977. The stratigraphy of Paleogene deposits of Adjara-Trialetian Folded System. "Metsniereba" Publ.H., Tbilisi :357p. (in Russian).
- Kacharava Z. 2007. The pecularities of development of the Late Eocene marine fauna (foraminifera, nannoplankton, molluska, fishes) in Georgia. In: Problems of Paleobiology, V.II, Georg.Nat.Museum, Inst.of Paleobiology, Tbilisi :74-79 (in Georgian).

- Kakhadze I.R. 1947. The Georgia in Jurassic Time. Transact.Inst.Geology of Georgia, Ser. Geology, Vol.III(VIII), Tbilisi :371p. (in Russian).
- Kara-Mursa E.N. 1941. The plant remains from Chaudian deposits of South-Western Georgia. Transact.of Botan.Inst.of Acad.Sc.of USSR, Ser.I, #5 :35-63 (in Russian).
- Karashvili B.D. 1973. The palynological characteristic of Jurassic deposits of Abkhazia. In: The palynlogical method in stratigraphy, Transact.of VSEGEI, New ser., Vol.195 :60-72 (in Russian).
- Karashvili B.D. 1977. The sporo-pollen assemblages of Lower Jurassic deposits of Western Georgia. In: Palynological investigations in Georgia, "Metsniereba" Publ.H., Tbilisi :69-77 (in Russian).
- Kazachashvili Zh.R. 1984. Paleobiological history of the mollusk fauna of the Solenoe Horizon of Georgia. "Metsniereba" Publ.H., Tbilisi :104 p. (in Russian).
- Kasachashvili Zh.R., Djaparidze I.N., Purtseladze Kh.N. 1983. About a new locality of Solenoe Horizon in Georgia. Bull.Georgian Acad.Sci., Vol.111, # 2, Tbilisi :325-328 (in Russian).
- Kedves M. 1974. Paleogene fossil sporomorphs of the Bakony Mountains. Part II, Studia Biologica Hungarica, 13, Budapest :124p.
- Ketskhoveli N. 1959. The vegetation covers of Georgia. Georg.SSR Academy Scienc Press, Tbilisi.
- Khain V.E. 1984. The regional geotectonic. "Nedra" Publ. House, Moscow :341 p. (in Russian).
- Kitovani T.G. 1976. The geochronological significance of Late Pliocene and Early Pleistocene Cardiidae of Western Georgia. Transact.of VNIGNI, Tbilisi, Vol.206 :154p. (in Russian).
- Kitovani T.G., Kitovani Sh.K., Imnadze Z.A., Torozov R.I. 1982. The new data about the stratigraphy of Chaudian and more ancient deposits of Guria (Western Georgia). In: Quaternary System of Georgia. To the XI Intern.Congress of INQUA in Moscow, "Metsniereba" Publ.H., Tbilisi :27-39 (in Russian).
- Kitovani T.G., Imnadze Z.A. 1986. The Chaudian. In: The Neogene System, Semi-vollum I, Moscow :204-205 (in Russian).
- Kitovani T.G., Imnadze Z.A., Torozov R.I. 1991. The stratigraphy of Anthropogene deposits. The marine deposits. In: Georgia in the Anthropogene. Publ.H. "Sakartvelo", Tbilisi :10-58 (in Russian).

- Kogoshvili L.V. 1977. About the development of neotectogenic relief of Georgia. Publ.H. "Metsniereba", Tbilisi :306 (in Russian).
- Kokolashvili I., Shatilova I. 2009. The preliminary results of palynological investigations of Lower Sarmatian deposits of Kakheti. Proceed.Acad.Sci.of Georgia, Biol.Ser.B, Vo.7, #1-2, Tbilisi :85-89.
- Kolakovsky A.A. 1956. The Pliocene Flora of Duabi. Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.IX : 211-311 (Russian).
- Kolakovsky A.A. 1958. The first addition to Duabian flora. Transact.of Sukhumian Bot. Garden, Sukhumi, Vol.XI :311-390 (in Russian).
- Kolakovsky A.A. 1962. The Pontian flora of Pitsunda. Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.XIV :39-59 (in Russian).
- Kolakovsky A.A. 1964. The Pliocene flora of Kodori. Publ.House of Acad.Sci.of Georgia, Sukhumi : 209 p. (in Russian).
- Kolakovsky A.A. 1970. The new species of Pinus and *Cathaya europaea* Sveshn. from Tertiary floras of Georgia. Journ.of Botany, Vol.55, #6 :847-851 (in Russian).
- Kolakovsky A.A. 1973. The Catalogue of fossil plants of Caucasus. Vol.I, II, "Metsniereba" Publ.H., Tbilisi :315 p. (in Russian).
- Kolakovsky A.A., Ratiani N.K. 1967. The Pliocene flora of Minor Shiraki. Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.XVI :30-72 (in Russian).
- Kolakovsky A.A., Shakryl A.K. 1968. Colchidia a new genus of Pinaceae from the Sarmatian of Abkhazia. Journal of Paleontology , #4 :66-70 (in Russian).
- Kolakovsky A.A., Rukhadze L.P., Shakryl A.K. 1970. The Meotian flora of Kodori. Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.XVII :89-119(in Russian).
- Kolakovsky A.A., Shakryl A.K. 1974. The gymnosperms from Sarmatian of Abkhazia. Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.XIX :143-162 (in Russian).
- Kolakovsky A.A., Shakryl A.K. 1976. The Sarmatian floras of Abkhazia. Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.XXII :98-148 (in Russian).
- Kolakovsky A.A., Shakryl A.K. 1978. The Kimmerian flora of Gulripsh (Bogazhishta). Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.XXIV :134-156 (in Russian).
- Koreneva E.V. 1980. The palynological investigations of Late Cenozoic deposits . In: The geological history of Black Sea. "Nauka" Publ.House, Moscow :65-71 (in Russian).

- Koreneva E.V. 1983. The climates of the territories around Black Sea during the Pleistocene. Bull.of investigations of Quaternary Period, #52 :147-150 (in Russian).
- Koreneva E.V., Kartashova G.G. 1978. Initial Report of the Deep Sea Drilling Project, 42 (2) :951-992.
- Kotetishvili E.V. 1986. The zonal stratigraphy of Lower Cretaceous deposits of Georgia and paleozoogeography of Early Cretaceous basins of Mediterranean region. Transact. of Geol.Inst.of Georgia, New ser., Vol.91, Tbilisi :160p. (in Russian).
- Kotova I.Z. 1979. The pollen of ancient angiosperms from Lower Cretaceous deposits of the Pri-Caspian depression. Journ.of Paleontology, #2 :115-123 (in Russian).
- Krasilov V.A. 1968. The new group of Mesozoic Czekanowskiales. Proceed.Acad.Sci.USSR, Vol.178, #4 :942-945 (in Russian).
- Krasilov V.A. 1972. The paleoecology of terrestrial plants. Vladivostok :207 p. (in Russian).
- Krishtofovich A.N. 1957. The Paleobotany. Leningrad :658 p. (in Russian).
- Kurtskhalia T.A., Buleishvili D.A., Papava D.Y. 1972. The presence of Akvitanian stage in Georgia. Bull.Georgian Acad.Scin., Vol.68, #2 :369-372 (in Russian).
- Kvavadze E.V. 1997. The representative of the coprolitical study of mammals by pollen analysis for solution of paleoecological and ethnological problems. Actes du Congres Biochrom'97. Mem.Trav.E.P.H.E., Inst.Montpellier, 21 :121-128.
- Kvavadze E.V., Aslanishvili P.L., Djeiranashvili V.G. 1984. The palynological characteristic of Upper Pleistocene and Holocene deposits of Sukhumi. Reports of Acad.Sci. of Georgia, Vol.115, # 3, Tbilisi :657-660 (in Russian).
- Kvavadze E.V., Dzheiranashvili V.G. 1985. Evolution of the vegetation of the Gagra Ridge and its foothills in the Holocene. In: Problems of geology of Holocene. Publish. house of Acad.Scienc. of Armenian SSR, Erevan :103-109 (in Russian).
- Kvavadze E.V., Rukhadze L.P. 1989. Vegetation and climate of the Holocene in Abkhazia. "Metsniereba" Publ.H., Tbilisi :136 p. (in Russian).
- Kvavadze E.V., Bukreeva G.F., Rukhadze L.P. 1992. Reconstruction of palaeogeographycal conditions in the mountains based on computer calculations (for example of Holocene in Abkhasia). Metsniereba, Tbilisi (in Russian).
- Kvavadze E.V., Vekua A.K. 1993. Vegetation and climate of the Dmanisi Man Period (East Georgia) from palynological data. Acta Paleobotanica, Warszawa-Krakow, 33/(2) :343-355.

- Kvavadze E.V., Rukhadze L.P., Bukreeva G.F. 1994. General characteristics of vegetation distribution in Abkhazia in connection with heat- and water supply of the climate in the Holocene (from the palynological data on the deposits of the coastal lowland and shelf). Bull.the Georgian Academy Scienc.vol.150, 2:364-374 (in Russian).
- Kvavadze E.V., Rukhadze L.P. 1999. The palynostratigraphy of Early Karangatian deposits of Abkhazia. In: Stratigraphy and Geological Correlation, Vol.7, #1, Moscow :99-109 (in Russian).
- Kvavadze E.V., Connor S.E. 2005. *Zelkova carpinifolia* (Pallas) K.Koch in Holocene sediments of Georgia – an indicator of climatic optima. Review of Palaeobotany & Palynology, 133: 69-89.
- Kvavadze E., Narimanishvili G. 2006. An experimental approach to the palynology of remains from Middle Bronze Age burials in Saphar-Kharaba (southern Georgia). Abstr.of 7-th European Palaeobotany-Palynology Conference, Prague : 77-78.
- Kvavadze E., Narimanishvili G. 2006a. The remains of Gossipium, Linum and sheep hairs as textile fibers of cotton, flax and wool in palynological material from Bronze Age burials. Palyno-Bulletin, vol.4,1-4: 34-37.
- Kvavadze E.V., Connor S.V., Narimanishvili G.K. 2007. Late Pleistocene and Holocene history of landscapes of the Tsalka Plateau (Southern Georgia) based on palynological analysis of lake and soil formations. In: Problems of Palaeobiology, vol.II. Georgian National Muzeum, Tbilisi : 12-23 (in Russian).
- Kvavadze E., Kachiani K., Pataridze N., Connor S. 2007a. The results of palynological investigation of Paravani kurgan. Proceed. Georgian Acad. Scienc. B., vol.5,2 :97-107.
- Kvavadze E., Licheli V. 2009. The palaeocology and economics of Atskuri in Medieval Period. Bull. of Georgian National Museum, Natural Sciences and Prehistory Section 1:68-76.
- Laliev A.G. 1957. About the question of geotectonical nature and the history of geological development of Colchian Plain. Proceed.Inst.Geology of Georgian Acad.Sci., Vol.X(XV): 99-137 (in Russian).
- Le Roy Ladurie E.1971. The History of climate from 1000 year. "Gidrometeoizdat "Publ.H., Leningrad (in Russian).
- Liu Geng-wu. 1985. Fupingopollenites gen.nov. and its distribution. Acta Paleontologica Sinica, 24, 1:64-70.

- Liu Geng-wu. 1986. A Late Tertiary palynological assemblage from the Yaoshan formation of Shanwang, Linju County, Shendong. Acta Palaeobot.Palynol. Sinica, I: 65-84.
- Loladze E.M. 1979. The new data about Late Jurassic and Early Cretaceous flora of Abkhazia and Dzirulian Block. Bull.Georgian Acad.Sci., Vol.94, # 2, Tbilisi :385-388 (in Russian).
- Loladze E.M., Svanidze Ts.I., lakobidze E.B. 1978. The gymnosperms of Mesozoic of Georgia. Transact.of Polytechnic.Inst.of Georgia, #4 (205), Tbilisi :39-42 (in Russian).
- Mamatsashvili N.S. 1975. The palynological characteristic of Quaternary continental deposits of Colchis. "Metsniereba "Publ.H., Tbilisi : 114 p. (in Russian).
- Maissuradze L., Koiava K., Spezzaferri S., Shatilova I., , Mchedlishvili N., Shubitidze L., Strasser A. 2008. The microfaunistical and palynological characteristic of Middle Sarmatian deposits of Eastern Georgia (Kartli). Proceed.Georgian Acad.Sci., Boil.Ser.,B, Vol.6, # 1-2, Tbilisi :57-71.
- Manukian L.K. 1978. The flora and vegetation of Octomberian depression (South-Western of Armenia) by data of palynology. Synopsis of Thesis, Yerevan :33 p. (in Russian).
- Margalitadze N.A. 1995. The history of Holocene vegetation of Georgia. "Metsniereba " Publ.H., Tbilisi (in Russian).
- Maruashvili L.I., Mamatsashvili N.S., Khazaradze R.D. 1975. The Pleistocene lake of Gordi. Bull.Georgian Acad.Sci., Vol.79, # 3, Tbilisi :621-624 (in Russian).
- Maruashvili L.I., Mamatsashvili N.S., Chochieva K.I., Vekua A.K., Khazaradze R.D. 1991. The paleogeographical reconstructions. In: Georgia in the Anthropogene. Publ.H. "Sakartvelo", Tbilisi : 460-527 (in Russian).
- Mchedlishvili N.D. 1963. The flora and vegetation of Kimmerian Age according the data of palynological analysis. The Press of Acad.Scien.of Georgia, Tbilisi :169p. (in Russian).
- Mchedlishvili N.Sh. 1984. The genus Tsuga Carr. in the Pliocene and Pleistocene of the Western Georgia. "Metsniereba" Publ.H., Tbilisi :80p. (in Russian).
- Mchedlishvili P.A. 1949. About the Cretaceous flora of Western Georgia. Bull.Georgian Acad.Sci., Vol.X, # 6, Tbilisi :346-349 (in Russian).
- Mchedlishvili P.A. 1949a. The analogy of Er-oilan-duzian flora on Caucasus. Bull.Georgian Acad.Sci., Vol.X, # 9, Tbilisi :527-532 (in Russian).
- Mchedlishvili P.A. 1954. The new data about the Pontian remains of plants in Georgia. Reports of Acad.Sci.USSR, Vol.96, # 1 :185-187 (in Russian).

- Mchedlishvili P.A. 1955. The new data about flora of Kotsakhurian horizon. Reports of Acad.Sci.USSR, Vol.100, # 3 : 537-539 (in Russian).
- Mchedlishvili P.A. 1956. The new data about the Meotian flora of Western Georgia. Reports of Acad.Sci.USSR, 107, #6:888-890 (in Russian).
- Mchedlishvili P.A., Mcheldishvili N.D. 1953. The stages of development of Sarmatian flora in Eastern Georgia by data of palynological analysis. Reports of Acad.Sci.USSR, Vol. XCI, # 3 : 621-623 (in Russian).
- Meien S.V. 1987. The bases of paleobotany. "Nedra" Publ.House, Moscow :402 p. (in Russian).
- Meladze G.K. 1967. Hipparion faunas of Arknethi and Bazalethi. "Metsniereba" Publ.H., Tbilisi : 160p. (in Russian).
- Milanovsky E.E. 1968. The new tectonic of Caucasus. "Nedra" Publ.House, Moscow :482 p. (in Russian).
- Milanovsky E.E. 1977. The neotectonic and the newest volcanism of Caucasus. In: Geology of the Quaternary Period (Pleistocene). For X Congress of INQUA, Birmingham. Publ.H. Acad.Sci.Arm.SSR, Yerevan :35-43 (in Russian).
- Nagy E. 1969. Palynological elaboration the Miocene layers of the Mecsek Mountains. Annals of Hungarian Geological Institute, 52(2), Budapest : 417p..
- Nagy E. 1985. Sporomorphs of the Neogene in Hungary. Geologica Hungarica, Ser. Palaeontologica, 47, Budapest : 471p.
- Nagy E. 1992. A comprehensive study of Neogene sporomorphs in Hungary. Geologica Hungarica, Ser.Palaeontologica, 53, Budapest : 379p.
- Nakhutsrishvili G.S. 1999. The vegetation of Georgia (Caucasus). Braun-Blanquetia, 15:1-68.
- Neishtadt M.I., Khotinsky N.A., Devirts A.L., Markova N.G. 1965. The Imnatian Lake. In: Paleogeography and chronology of Upper Pleistocene and Holocene. "Nauka" Publ. House, Moscow :105-112 (in Russian).
- Nevesskaya L.A., Goncharova I.A., Ilijna L.B., Paramonova N.P., Khondkarian S.O. 2003. The stratigraphic scheme of the Neogene of Eastern Paratethys. In: Stratigraphy. Geological correlation, Vol.11, #2, Moscow :3-26 (in Russian).
- Ostrovsky A.B., Izmailov Y.A., Balabanov I.P. et al. 1977. A new data about Paleogeographic regime of Black Sea in Upper Pleistocene and Holocene. In: Paleogeography and Sediments of Eouthern Seas of SSSR. "Nauka" Publ.House, Moscow :131-140.

- Palibin I.V. 1930. The Upper Cretaceous floras of South-Eastern Transcaucasus. Transact.of main Administrat.of Geological-Exploration, XLIX, #2 :905-911(in Russian).
- Palibin I.V. 1930a. The exploration works of field parties of Oil Geological-Exploration Institute on 1928/29 years. The addition to #3 of Journal "Oil Economy" :53 (in Russian).
- Palibin I.V. 1931. The report about state of activity NGRI for 1930 year. Moscow-Leningrad :29-30 (in Russian).
- Palibin I.V. 1935. The stages of development of floras of Pri-Caspian countries beginning from Cretaceous. In: Soviet Botany, #3 :10-50 (in Russian).
- Palibin I.V. 1940. The discovery of fossil Cretaceous flora in Western Georgia. Bull.of Georgian Branch of Acad, Sci. USSR, Vol. I, #6, Tbilisi :435-438 (in Russian).
- Palibin I.V, Tsyrina T.S. 1934. The plant remains from Akchagilian deposits of Southern Kakheti. Transact.of Oil Geological-Exploration Institute, Ser.A, Vol.29 :3-11 (in Russian).
- Palibin I.V, Petrova L.S., Tsyrina T.S. 1934. The plant remains from Akchagilian deposits of Kila –Kuprovian oil region of Southern Kakheti. Transact.of Oil Geological-Exploration Institute, Ser.A, Vol.29 :16-34 (in Russian).
- Panova L.A., Maligonova E.Y., Tabachnikova I.P. 1984. The miospores and nannoplankton of Eocene-Oligocene deposits of Northern slope of Akhaltsikhian depression. In: Spores and pollen in deposits of Phanerozoic. Transact.of VSEGEI, New ser., 327 : 74-95 (in Russian).
- Planderova E. 1990. Miocene microflora of Slovak Central Paratethys and its biostratigraphical significance. Dionyz Stur Inst.Geology, p.145.
- Prynada V.D. 1933. The Jurassic plants from Tkvarcheli coal basin in Transcaucasus. Transact.of Soviet Geolog.-Survey Union NKPT, Vol.261 :37 (in Russian).
- Purtseladze Kh.N. 1977. The palynological characteristic of Meotian deposits of Western Georgia. In: Palynological Investigations in Georgia. "Metsniereba" Publ.House, Tbilisi : 79-94 (in Russian).
- Purtseladze Kh.N. 1988. Palynological characteristic of Eocene deposits of Eastern Georgia (Tbilisian region). The report of A.Janelidze Geol.Inst., Georgian Acad.Sci. (unpublished), Tbilisi :42p. (in Russian).
- Purtseladze Kh.N., Tsagareli E.A. 1974. The Meotian flora of South-Western Georgia. "Metsniereba" Publ.House, Tbilisi :173 (in Russian).

- Radchenko G.P. 1963. Family Equisetaceae Rich., 1803. In: The Bases of Paleontology, Moscow :519-521(in Russian).
- Ramezani E., Mohamad R., Mohadjer M., Knapp H.-D., Ahmadi H., Joosten H. 2008. The Late-Holocene vegetation history of the Central Caspian (Hyrcanian) forest of northern Iran. The Holocene, 18, 2:307-321.
- Ramishvili I.Sh. 1969. The Pontian flora of Western Georgia by data of palynological analysis. "Metsniereba" Publ.House, Tbilisi : 132 p. (in Russian).
- Ramishvili I.Sh. 1982. The Middle Miocene flora of Georgia by data of palynological analysis. "Metsniereba" Publ.House, Tbilisi : 138 p. (in Russian).
- Ratiani N.K. 1972. The Miocene flora of v.Djirkhva. Transact.of Sukhumian Bot.Garden, Sukhumi, Vol.XVIII: 128-144 (in Russian).
- Ratiani N.K. 1972a. Some data about Akchagilian flora of the Lesser Shiraki. Reports of Acad.Sci.of GSSR, VI.68, #1, Tbilisi :241-244 (in Russian).
- Ratiani N.K. 1979. The Pliocene and Pleistocene floras of Western Georgia and their connection with modern flora. "Metsniereba" Publ.House, Tbilisi :236 (in Russian).
- Rossignol-Strick M. 1973. Pollen analysis of some sapropelic layers from the Deep-Sea floor of the Eastern Mediterranean. Initial Report of the Deep Sea Drilling Project, 13 (2) : 971-975.
- Rukhadze L.P., Kvavadze E.V., Shamba G.K. 1988. Dynamics of the vegetation of the environs of Esheri settlement (Abkhasia). Proceed. Acad. Sci. GSSR, ser.Biol., v.14, 6: 406-411 (in Russian).
- Rusishvili N. 1990. Cultivated plants from early settlements of Georgia according to palaeoetnobotanical investigations. Ph.D.thesis, Kishiniov. (in Russian).
- Salukvadze N.Sh. 2000. On the stratigraphy of the Middle Eocene of the Caucasus and Crimea. Proceed.Georgian Acad.Sci. A.Janelidze Geolog.Inst., New Ser., Vol.115, Tbilisi :71-75 (in Russian).
- Samylina V.A. 1970. Ginkgoaceae and Chekanowskia (some results and problems of investigations). Journal of Paleontology, #3 :114-123 (in Russian).
- Semenenko V.N., Andreeva-Grigorovich A.S., Maslun N.B., Luilieva S.A. 2009. The correlation of Neogene of Eastern Paratethys with the International Ocean Scale by the planktonic microfossils. Geological Journal, Nat.Acad.Sci.of Ukraine, #4 : 9-27 (in Russian).

- Shatilova I.I. 1967. The palynological characteristic of Kuyalnician, Gurian and Chaudian deposits of Guria. "Metsniereba" Publ.House, Tbilisi :113p. (in Russian).
- Shatilova I.I. 1974. The palynological basis of the geochronology of Upper Pliocene and Pleistocene of Western Georgia. "Metsniereba" Publ.House, Tbilisi :193p. (in Russian).
- Shatilova I.I. 1982. The palynological assemblages of Uzunlarian deposits of Guria (Western Georgia). In: The Quaternary System of Georgia. "Metsniereba" Publ.House, Tbilisi :88-107 (in Russian).
- Shatilova I.I. 1984. The history of development of Late Pliocene vegetation of Western Georgia. "Metsniereba" Publ.House, Tbilisi :57p. (in Russian).
- Shatilova I.I., Badzoshvili Ts.I. 1966. The new data about Karangatian deposits of Western Georgia. Bull.Georg.Acad.Sci., V.43,# 2, Tbilisi :405-408 (in Russian).
- Shatilova I.I., Mchedlishvili N.Sh. 1980. Palynological complexes of the Tshaudian deposits of Western Georgia and their geochronological significance. "Metsniereba" Publ. House, Tbilisi : 93p. (in Russian).
- Shatilova I.I., Ramishvili I.Sh. 1990. The materials on the history of flora and vegetation of Georgia. "Metsniereba" Publ.House, Tbilisi :232p. (in Russian).
- Shatilova I., Rukhadze L., Mchedlishvili N. 1998. The Palynostratigraphy of Egrissian (Kuyalnician) stage of Western Georgia. Bull.Georgian Acad. of Sci. 157, 2 : 339-342.
- Shatilova I., Rukhadze L., Mchedlishvili N. 1999. The main stages of development of vegetation and climate of Western Georgia in the Late Miocene. In: Problems of paleobiology, Vol.I. Transact.Inst.Paleobiology of Georgian Acad.Sci., Tbilisi .:27-44 (in Russian).
- Shatilova I.I., Rukhadze L.P., Mchedlishvili N.Sh., Makharadze N. V., Kipiani M.G. 2000. The Mio-Pliocene climate and vegetation of Western Georgia. Proceed.Georgian Acad. Sci.A.Janelidze Geolog.Inst., New Ser., Vol.115, Tbilisi :181-187 (in Russian).
- Shatilova I., Stuchlik L. 2001. On the history of the development of the family Hamamelidaceae in Eurasia. Paleontographica, Abt.B, Bd.259 : 235-244.
- Shatilova I., Rukhadze L., Mchedlishvili N., Kipiani M. 2001. On stratigraphical subdivision of Middle Pontian deposits of Western Georgia based on the pollen data. Bull.Georgian Acad.Sci., 163, 1 : 189-191.

- Shatilova I.I, Rukhadze L.P., Mchedlishvili N.Sh., Makharadze N.V. 2002. The main stages of development of the Western Georgia vegetation and climate during the Kimmerian Age on the basis of pollen data. Bull.Georg.Acad.Sci., Vol.165, # 1, Tbilisi :172-174.
- Shatilova I., Rukhadze L., Mchedlishvili N. Makharadze N. 2002a. The main stages of the development of vegetation and climate of Western Georgia during the Gurian (Eopleistocene) time by the pollen records. Bull.Georg.Acad.Sci., Vol.166, # 3, Tbilisi: 171-175.
- Shatilova I., Rukhadze L., Mchedlishvili N. 2004. The flora, vegetation and climate of the Sarmatian age of Western Georgia. Bull.Georgian Acad.Sci., Vol.169, #2, Tbilisi :417-419.
- Shatilova I., Rukhadze L., Mchedlishvili N. 2004a. On the use of landscape-phytocenological method for the restoration of vegetation and climate of mountain regions (on the example of Colchis). Bull.Georgian Acad.Sci., Vol.169, # 3, Tbilisi :623-625.
- Shatilova I.I, Rukhadze L.P., Mchedlishvili N.Sh., Makharadze N.V. 2004b. The results of paleobotanical investigations of Sarmatian deposits of Western Georgia. Transact.of Georg.Acad.Sci. A.Janelidze Geolog.Inst., New.Ser., Vol.119, Tbilisi :391-399.
- Shatilova I.I, Rukhadze L.P., Mchedlishvili N.Sh., Makharadze N.V. 2005. The vegetation and climate of Western Georgia in Egrissian (Late Pliocene) time. Bull.Georg.Acad.Sci., Vol.171,#1, Tbilisi :171-175.
- Shatilova I., Rukhadze L., Mchedlishvili N. 2006. The vegetation and climate of Chaudian Age of Western Georgia. Proceed.Georg.Acad.Sci. Inst.of Geograghy, New Ser. 1(80), Tbilisi :132-141.
- Shatilova I.I, Rukhadze L.P., Mchedlishvili N.Sh. 2007. Pontian flora, vegetation and climate of Western Georgia. In: Problems of Paleobiology, V.II, Georg.Nat.Museum, Inst.of Paleobiology, Tbilisi :24-36.
- Shatilova I., Mchedlishvili N. 2007. The representatives of family Hamamelidaceae from Cenozoic flora of Georgia. Proceed.Georg.Acad.Scien., Biol.Ser.B, Vol.5, #.2, Tbilisi :79-96.
- Shatilova I., Mchedlishvili N. 2007a. The paleobotanical characteristic of Kimmerian deposits of Western Georgia. Proceed.Georgian Acad.Sci., Biol.Ser.B, Vol.5, # 3-4, Tbilisi :66-79.
- Shatilova I., Maissuradze L., Koiava K., Mchedlishvili N., Rukhadze L., Spezzaferri S., Strasser A. 2008. Foraminifers and palynomorphs in the Sarmatian deposits of Kartli

(Eastern Georgia): stratigraphical and paleoclimatological implications. Proceed. Georgian Acad.Sci., Biol.Ser.,B, Vol.6, #3-4, Tbilisi :65-76.

- Shatilova I., Rukhadze L., Mchedlishvili N. 2008a. The results of paleobotanical investigations of Meotian deposits of Western Georgia. In: Problems of Paleobiology, Vol.III. Georg.Nat.Museum, Inst.of Paleobiology, Tbilisi :23-34.
- Shatilova I., Maissuradze L., Rukhadze L., Mchedlishvili N., Koiava K., Spezzaferri S., Strasser A. 2009. Bioevents of the territory of Georgia during the Late Cenozoic as evidenced by foraminifers and palynomorphs. Proceed.Georg.Acad.Scienc., Biol.Ser.B, Vol.7,No1-2, Tbilisi : 90-109.
- Shatilova I., Mchedlishvili N. 2009. The pollen of genus Fupingopollenites in the Cenozoic deposits of Georgia. Bull.Georg.Acad.Sci., Vol.3, # 3, Tbilisi : 153-157.
- Shatilova I., Mchedlishvili N., Kokolashvili I. 2010. Palynological investigations of Sarmatian Deposits of Mtskheta District (Kartli, Eastern Georgia). Bull.Georg.Acad.Sci., Vol.4 ,#2, Tbilisi :165-171.
- Shatilova I., Rukhadze L., Mchedlishvili N. 2010a. The stages of development of vegetation and climate of Eastern Georgia during the Middle and Late Pleistocene. Georgian National Museum. Proceed.of the Natural and Prehistoric Section, Tbilisi, #2,: 75-81.
- Shatilova I., Mchedlishvili N. 2011. The results of paleobotanical investigation of Eocene deposits of Georgia. Georgian National Museum. Proceed.of the Natural and Prehistoric Section, Tbilisi, #3 (in press).
- Shatilova I., Mchedlishvili N. 2011a. The Pollen of Genus Disanthus (Hamamelidaceae) from Sarmatian and Meotian Deposits of Georgia. Bull.Georg.Acad.Sci., Tbilisi (in press).
- Shchekina N.A. 1979. The history of flora and vegetation of south of Europian Part of USSR in Late Miocene- Early Pliocene. "Naukova Dumka" Publ.House, Kiev :197 p. (in Russian).
- Shengelia F.K. 1976. About a new locality of deposits of Eupatorian horizon of Western Georgia. Reports of Acad.Sci.Georg.SSR, Vol.81, #3, Tbilisi :733-736 (in Russian).
- Shengelia F.K., Karashvili B.D., Svanidze Ts.I. 1987. The complex investigation of macro- and microfloras of coal suit of Tkibuli. Bull.Georg.Acad.Sci., Vol.125, #1, Tbilisi :77-80 (in Russian).
- Shilkina I.A. 1958. The fossil woods of Goderdzian Pass. In: Paleobotany. Vol.III :127-179 (in Russian).

- Sinizin V.M. 1980. The natural conditions and climate on territory of USSR in Early and Middle Cenozoic. Publ.H.of Univers.of Leningrad :103 p. (in Russian).
- Skhirtladze N.I. 1958. The Post-Paleogene effusive volcanism of Georgia. Transact.Geologic.Inst.of Acad.Sci.Georgian SSR, # 8, Tbilisi : 368p. (in Russian).
- Skhirtladze N.I. 1964. The Arthvino-Bolnisian Block. In:"Geology of USSR" Vol.X, Tbilisi : 42-43 (in Russian).
- Sluka V.P. 1978. The peat formation and its role in correlation of Holocene deposits. In: Lithology and useful minerals, # 5 :123-127(in Russian).
- Svanidze Ts.I. 1960. About age of fossil flora of paper shale and coal-bearing suit of Okriba. Bull.Georg.Acad.Sci., Vol.XXV, #5, Tbilisi :561-565 (in Russian).
- Svanidze Ts.I. 1965. The fossil flora of Lower Jurassic deposits near v.Shroma (Western Georgia). Proceed.of Geological Society of Georgia, Vol.IV, # 2, Tbilisi :26-38 (in Russian).
- Svanidze Ts.I. 1969. Lycopsida, Sphenopsida and Pteropsida from Middle Jurassic deposits of Georgia. Bull.Georg.Acad.Sci., Vol.54, #2, Tbilisi :373-377 (in Russian).
- Svanidze Ts.I. 1970. New data about Upper Jurassic flora of Georgia. Bull.Georg.Acad.Sci., Vol.59, #2, Tbilisi :373-375 (in Russian).
- Svanidze Ts.I. 1970a. New data about Middle Jurassic flora of Georgia. Bull.Georg.Acad.Sci., Vol.60, #3, Tbilisi :625-627 (in Russian).
- Svanidze Ts.I. 1971. About age of Lower Jurassic floristic deposits of Dzirulian and Lokian Blocks. Transact.of Univers.of Tbilisi, A-2(141) :165-169 (in Russian).
- Svanidze Ts.I. 1996. The Early Jurassic flora of Georgia and its place among the synchronous floras of Eurasia. Publ.H.of Tbilisi State Univer., Tbilisi :247 p. (in Russian).
- Svanidze Ts.I., Sharikadze M.Z. 1973. New data about Lower Cretaceous flora of Southern and South-Eastern periphery of Dzirulian Block. Bull.Georg.Acad.Sci., Vol.70, #2, Tbilisi :325-326 (in Russian).
- Svanidze Ts.I., lakobidze E.B. 1979. New data about Jurassic floras of Georgia and the question of their division. Bull.Georg.Acad.Sci., Vol.95, #1, Tbilisi :109-112 (in Russian).
- Svanidze Ts.I., Shengelia F.K. 1979. New data about flora and vegetation of Middle Jurassic deposits of river Magana. Bull.Georg.Acad.Sci., Vol.93, #3, Tbilisi :625-628 (in Russian).

- Svanidze Ts.I., Vashakidze I.G., lakobidze E.B. 1983. New data about the Bathonian flora of Georgia. Bull.Georg.Acad.Sci., Vol.111, #1, Tbilisi :87-88 (in Russian).
- Svanidze Ts.I., Shengelia F.K. 1987. The investigation of flora of analcime horizon near town Kutaisi. Bull.Georg.Acad.Sci., Vol.125, #1, Tbilisi :73-76 (in Russian).
- Sveshnikova I.N. 1964. The representatives of genus Cathaya from the Pliocene of Abkhazia. Journal of Paleontology, # 2:125-131 (in Russian).
- Takhtajan A.L. 1966. The main phytokhories of the Late Cretaceous and Paleogene on territory of USSR and contiguous to it countries. Botan.Journ., Vol.51, #9 :1217-1230 (in Russian).
- Takhtajan A.L. 1974. The fossil flowering plants of USSR. Vol.I. Magnoliaceae-Eucommiaceae "Nauka" Publ.House, Leningrad : 188 p. (in Russian).
- Takhtajan A.L. 1986. The highest taxa of vascular plants except flowering plants. In: Problems of Paleobotany, "Nauka" Publ. House, Leningrad : 135-143 (in Russian).
- Takhtajan A.L. 1987. The system of Magnoliophytorum. "Nauka" Pub.House, Leningrad : 439p. (in Russian).
- Takhtajan A.L., Vakhrameev V.V., Radchenko G.P. 1963. The Bases of Paleontology. Gymnosperms and Angiosperms. Publ.H.of Scientif.and Technic.liter.of geology and protection of mineral resources. Moscow :743 p. (in Russian).
- Taktakishvili I.G. 1978. the stratigraphycal division of Egrissian Stage. Bull.Georg.Acad.Sci., Vol.91, #2, Tbilisi : 497-504 (in Russian).
- Taktakishvili I.G. 1978a. The Egrissian Stage a new stratigraphycal unit of Pliocene of Western Georgia. Bull.Georg.Acad.Sci., Vol.91, #3, Tbilisi : 737-740 (in Russian).
- Taktakishvili I.G. 1984. The biostratigraphy of the Pliocene of Western Georgia. "Metsniereba" Publ.House, Tbilisi : 135p. (in Russian).
- Thiele-Pfeiffer H. 1980. Die Miozäne Mikroflora aus dem Braunkohlentagebau Oder bei Wackersdorf/Oberpfaiz. Palaeontographica, Abt.B, 174 : 95-224.
- Teslenko Y.V. 1979. About the taphonomic investigations of paleobotanists of Ukraine and India. Journ.of Geology, Vol.39, # 6 : 123-127(in Russian).
- Topchishvili M.V. 1969. The stratigraphy and fauna of Lower Jurassic deposits of Dzirulian Block. "Metsniereba" Publ.House, Tbilisi : 110p. (in Russian).

- Topchishvili M., Lominadze T., Tsereteli I., Todria V., Nadareishvili G. 2006. Stratigraphy of the Jurassic deposits of Georgia. Inst.of Geology of Georg.Acad.Sc., "Polygraphist" Publ.H., Tbilisi :450p.
- Trifonov V.G., Karakhanian A.S., 2004. Geodinamics and history of civilization. "Nauka" Publ.H., Moskow (in Russian).
- Tsagareli A.L. 1980. About the age of relief of Caucasus. In: The Quaternary Geology and Geomorphology. The remote sensing. Internat.Geolog.Congress, XXVI Sess., Moscow :91-94 (in Russian).
- Tsagareli A.L., Astakhov N.E. 1971. The geological history and development of relief. In: Geomorphology of Georgia. "Metsniereba" Publ.H., Tbilisi :541-544 (in Russian).
- Tsereteli D.V. 1966. The Pleistocene deposits of Georgia. "Metsniereba" Publ.H., Tbilisi :582 p. (in Russian).
- Tsereteli D.V. 1977. The Pleistocene deposits of Georgia and the problems for its further investigations. In: Geology of the Quaternary Period (Pleistocene). For X Congress of INQUA, Birmingham. Publ.H.Acad.Sci.Arm.SSR, Yerevan : 17-25 (in Russian).
- Tsereteli D.V., Maisuradze G.M. 1980. To the paleogeography of Upper Pleistocene of Georgia. Bull.Comission of investage of Quaternary Period., # 50 :116-122 (in Russian).
- Tumajanov I.I., Gogichaishvili L.K. 1969. The main stages of Post-Khvalynian history of vegetation of Iorian plain (Eastern Georgia). In: Holocene, XVII Congress INQUA, "Nauka"Publ.House, Moscow : 183-195 (in Russian).
- Tvalchrelidze M., Lebanidze Z., Jaoshvili G. 2004. Eustatics of the Black Sea and sedimentation peculiarities during the last 20 000 years (Georgian sector of the Black Sea). Proceed.of Geological Institute, Georgian Academy of Sciences, new series 119: 656-670.
- Uznadze M.D. 1965. The Neogene Flora of Georgia. "Metsniereba" Publ.house, Tbilisi :180 p. (in Russian).
- Uznadze M.D. 1967. Some data about Eocene flora in the vicinity of town Akhaltsikhe (Georgia). Bull.Georg.Acad.Sci., Vol.46, N1, Tbilisi :131-134 (in Russian).
- Uznadze M.D., Tsagareli E.A. 1979. The Sarmatian Flora of gorge of river Dzindza. "Metsniereba" Publ.House, Tbilisi : 112 p. (in Russian).
- Vakhania E.K. 1976. The Jurassic deposits of Georgia. Transact.of VNIGNI, the Georgian department, Vol.207, Tbilisi :411 p. (in Russian).

- Vakhrameev V.A. 1980. The pollen of Classopolis as the indicator of Jurassic and Cretaceous climates. Soviet Geology, #8:48-56 (in Russian).
- Vakhrameev V.A. 1988. The Jurassic and Cretaceous floras and climates of World. "Nauka"Publ.House, Moscow : 209 p. (in Russian).
- Vakhrameev V.A., Radchenko G.P., Takhtajan A.L. 1963. Algae, Briophyta, Lycopodiopsida, Arthrophyta, Polypodiphyta. In: The Bases of Paleontology, Moscow :698 p.(in Russian).
- Vakhrameev V.A., Doludenko M.P. 1976. The boundary between Middle and Late Jurassic
 the main level in history of development of climate and vegetation of Northern Hemisphere. Soviet Geology, # 4:12-25 (in Russian).
- Vekua A.K., Kvavadze E.V. 1981. The palynological characteristic of Pliocene bone-bearing deposits of Iorian Plateau. Bull.Georg.Acad.Sci., Vol.104, #3, Tbilisi :741-745 (in Russian).
- Velichko A.A. 1973. The natural process in Pleistocene. "Nauka"Publ.House, Moscow : 255 p. (in Russian).
- Venzo S. 1964. The boundary between Pliocene and Pleistocene in Italy. Bull.Commit.Invest.of Quaternary Period, #29 : 15-34.
- Yaroshenko O.P. 1965. The spore-pollen assemblages of Jurassic and Lower Cretaceous deposits of North Caucasus and its stratigraphical significance. "Nauka" Publ. House, Moscow : 108 p. (in Russian).
- Yasamanov N.A. 1980. The paleothermometry of Jurassic, Cretaceuos and Paleogene Periods of some regions of USSR. Bull.of MIOP, Sec.Geology, Vol.5 :117-125 (in Russian).
- Yasamanov N.A. 1985. The ancient climates of Earth. "Gidrometizdat" Publ.House, Leningrad :293 p. (in Russian).
- Zaklinskaya E.D. 1970. The Late Cretaceous and Early Paleogene floras. In: The Paleozoic and Cenozoic floras in Eurasia and phytogeography of this time. "Nauka"Publ. House, Moscow : 302-332 (in Russian).
- Zesashvili V.I., Laliev A.G., Papava D.Y., Paichadze T.A., Tskvitinidze R.K. 1977. The Bathonian deposits of Lockian Block (Southern Georgia). Bull.Georg.Acad.Sci., Vol.88, #1, Tbilisi :117-119 (in Russian).
- Zhgenti E.M. 1981. The evolution and stratigraphical significance of some Middle Miocene Gastropods. "Metsniereba" Publ.House, Tbilisi : 197 p. (in Russian).

- Zohary D., Hopf M. 1993. Domestication of Plants in the Old World. Oxford, Clarendon Press.
- Zubakov V.A. 1986. The global climatic evidents of Pleistocene. "Gidrometeoizdat" Publ.H., Leningrad :286 p. (in Russian).
- Zubakov V.A., 1990. The global climatic evidents of Neogene. "Gidrometeoizdat" Publ.H., Leningrad :223 p. (in Russian).
- Zubakov V.A., Borzenkova I.I. 1983. The paleoclimats of Late Cenozoic. "Gidrometeoizdat" Publ.H., Leningrad :214 p. (in Russian).