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Abstract
This paper presents a tool that enables automatic recognition of patterns in historical satellite telemetry datasets.  

This tool uses pattern-matching techniques to identify substantially similar patterns to a user selected interval within  
a time series. In this sense, the software serves as a powerful data exploration tool for datasets which are too large for  
manual  inspection.  The system is  designed  to  be  robust  to  signal  types,  incomplete  coverage,  and  inconsistent 
sampling, which are common issues with telemetry data. In detail, three distance-based algorithms, namely, Discrete  
Wavelet Transform, Dynamic Time Warping, and Adaptive Piecewise Constant Approximation, two probabilistic 
algorithms,  namely,  Gaussian  Mixture  Model,  Hidden  Markov  Model,  as  well  as  an  ensemble  approach  are 
implemented to cover and explore a wide variety of different pattern detection techniques. The system is evaluated  
on real satellite data and on the UCR (University of California, Riverside) Time Series Classification Archive.
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Nomenclature
A = set of all possible compact subsets of a time series
Al = subset of length l
Ap = set of all compact subsets in A of duration p
D = time series, tuple (xi,ti)
Δ = similarity measures
ηΔ = quality mapping
ℒ2 = Euclidean distance
Q = query
S = sequence
t = time values
τ = quality threshold
x = value measurements

Acronyms/Abbreviations
Area Under ROC (AUROC),
Adaptive Piecewise Constant Approximation (APCA),
Deutsches Zentrum für Luft- und Raumfahrt / German Aerospace Center (DLR),
Discrete Fourier Transformation (DFT),
Discrete Wavelet Transform (DWT),
Dynamic Time Warping (DTW),
Gaussian Mixture Model (GMM),
German Space Operations Center (GSOC),
Hidden Markov Model (HMM),
Receiver Operating Characteristic (ROC),
University of California, Riverside (UCR),
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1. Introduction
Nowadays, modern satellites are equipped with more and more sensors to keep track of satellites system status. 

For example, the two GRACE Follow-On satellites, operated by the German Space Operations Center (GSOC) at the  
German Aerospace Center (DLR), each collects about  80,000 housekeeping parameters many of which have to be 
inspected by the system engineers on a regular basis. Seeking for novel or specific behavioral patterns in these time 
series is a common task of system engineers. Based on these patterns, the engineers can evaluate the health status of  
the satellite, detect anomalies in its telemetry data, conduct predictive analyses, and investigate errors and system  
failures. Often, operational decisions are derived from these analyses and may result in changes in the scheduled 
routine  of  the  satellite  operations.  The  automatic  identification  of  previous  occurrences  of  a  specific  event  or 
anomaly, through the recognition of the same pattern in the telemetry data, is essential to improve the efficiency of 
such analyses and speed up the workflow of satellite operations.

 This paper presents a tool that uses pattern-matching techniques to identify substantially similar patterns to a  
user selected interval within a time series. In this sense, the software serves as a powerful data exploration tool for 
datasets which are too large for manual inspection. To present the system engineers with one generic tool that can be  
used on a wide variety of  inhomogeneous telemetry data,  five unique algorithms for  pattern matching and one 
ensemble approach are included. In detail,  three distance-based algorithms, namely, Discrete Wavelet  Transform 
(DWT), Dynamic Time Warping (DTW), and Adaptive Piecewise Constant Approximation (APCA), as well as two 
probabilistic  algorithms,  namely,  Gaussian  Mixture  Model  (GMM),  Hidden  Markov  Model  (HMM),  are 
implemented  to  cover  and  explore  a  wide  variety  of  different  pattern  detection  techniques.  Distance-based 
approaches include methods such as subsampling/filtering and comparing the Euclidean distance as well as more 
complex routines such as DTW or comparing distance in a Wavelet subspace. Probabilistic approaches represent the 
pattern as a model and measure the likelihood of a given test time-range coming from the same model. For the 
ensemble approach, the DTW, APCA, and GMM implementations, based on their promising and complementary 
performance on the test datasets, are combined.

The final evaluation of the system took place in two stages: first, a parametric study on the UCR (University of  
California,  Riverside)  Time  Series  Classification  Archive  [3] was  conducted  to  test  different  settings  for  each 
algorithm. With this analysis, a set of optimal parameters was identified for each algorithm and insight into how to  
improve the algorithms and approaches was gained. Second, the algorithms were applied to satellite data to evaluate  
their performance and demonstrate the suitability of the tool for daily use.

In the future, this tool will be included into ViDA, the web-based platform for telemetry visualization and data 
analysis developed at GSOC.

This paper is structured as follows: Section 1 is this introduction. Section 2 is devoted as well to the analysis of 
the requirements for the software tool as to the formalization of the pattern recognition problem. Section 3 describes 
the initial statistical data exploration phase, followed by Section 4 with the literature review. Next section, Section 5, 
introduces the pattern matching workflow that  is  used by the software tool.  Within Section  6,  we evaluate our 
software tool and describe the results in Section 7. Section 8 is a conclusion and an outlook on future work.

2. Requirements Analysis and Problem Formalization
The goal of this project is a proof-of-concept prototype which enables the system engineers to more efficiently 

perform the aforementioned duties, specifically by providing a system which enables automatic recognition of events  
in the historical dataset which are substantially similar to a manually selected event.

2.1 Requirements Analysis
During the collection of the requirements for the pattern matching system, the following key challenges have  

been identified.
First, the large number of parameters: each satellite may provide tens of thousands of different time series data 

streams. Moreover, each parameter from a satellite may have different sampling rates, resolutions, types, or other  
characteristics. Additionally, different satellites may have a different set of parameters; and satellites reporting the 
same parameters may do so inconsistently (i.e., the resolution and sampling rate of parameter α from Satellite A is 
not, in general, the resolution and sampling rate of parameter α from Satellite B).

Second, the satellites have to deal with an inhomogeneous operating environment: the satellites experience a wide 
variety of conditions–there are regular periodic and diurnal variations as well as irregular variations due to solar 
activity, weather, sensor and power conditions, and other factors. There may also be updates to the system firmware,  
software, and operating modes over time. In practice this means that each period in the database matching a novel  
period λ may have different sampling rates, data representations, noise characteristics, bias, and coverage (data may 
be incomplete).
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With these challenges in mind, the requirements of the pattern matching system are as follows:
 Input: a period of data of a user selected duration from a single parameter (i.e., the origin time series), the 

start time and end time of the period determined by the user (i.e., the origin pattern).
 Output: based upon the input novel period, a list of periods which are similar to this novel period based on 

some metrics. The returned periods should be identifiably similar to the input period by human inspection.
 Users: technically proficient personnel, therefore, the system’s methods should be understandable to such a  

userbase and not appear to said personnel as a black box.
 Resulting system: it is targeting future adoption into our DLR workflow which has an existing UI, plotting 

system, and database access systems.

2.2 Formal Statement of Problem
The problem to find (all) occurrences of a selected pattern in a time series, is formalized as follows: Given a  

sequence  of  N value  measurements  {x1,x2,…,xn}  ∈ ℝN and  an  associated  sequence  of  N strictly  monotonically 
increasing  time values  {t1,t2,…,tn},  the  sequence  of  N tuples  D := {(ti,  xi)} is  called  a  time series and  can  be 
partitioned into (potentially overlapping) compact  subsets  arbitrarily.  This set  of all  possible compact  subsets  is 
called A.

Furthermore, we define Ap as the set of all compact subsets in A of duration p. The most general problem is, given 
a user-selected query subset Q ∈ A, to find the most similar matching subsets from A, where similarity is best defined 
by human intuition considering the question “are these two sequences similar?”.

The time series is consistently sampled if tk+1-tk is constant ∀k ∈ [1, N], and inconsistently sampled otherwise. 
Moreover, the time series has incomplete coverage if it is otherwise consistently sampled but is missing periods of 
data.  In  general,  data  from  satellites  may  be  consistent-  or  inconsistently  sampled;  and  often  has  incomplete  
coverage.

Though some intuition of a similar pattern would allow patterns to be stretched or squeezed to different durations, 
we will only investigate strict-duration queries, in which we attempt to match regions of the same duration as the  
query. That is to say: Given a subset  Q  ∈ A of length  l, we perform a strict-duration query if we seek matching 
subsets only in Al, that is, in regions of equal length to the query Q.

2.2.1 Similarity
We wish to return the most-similar regions from our database to a query sequence  Q.  What makes a region 

similar? Is a region I similar to query Q? Similarity can mean different things to different people, or even to the same 
person at different times, and we must remain aware of these facts as we attempt to define some measures Δ such that 
a sequence S is similar to Q if Δ(Q⃗ , S⃗)<ε for some ε .

The challenge here is twofold: We must determine what an appropriate measure is  Δ, and in addition we must 
have a match quality in order to rank the matches; allowing the return of only the most-similar matches. This match 
quality of (Q, S) is the result of a function ηΔ(Q, S) ∈ [0, 1] which should have the following properties:

 ηΔ(Q, Q) ≈ 1
 ηΔ(Q, S) > ηΔ(Q, T) if Q is more similar to S than it is to T

We must determine the appropriate  and quality mapping  ηΔ for measure  Δ such that  only intuitively similar 
sequences achieve a high match quality. First, we will discuss similarity measures Δ.

2.2.2 Similarity Measures
In general, we have two types of similarity measures to consider:  ℒp-type distance measures and probabilistic 

measures.
ℒp-type Distance Measures: A common measure of the distance (or inversely, similarity) between two signals is 

an ℒp norm:

Δℒ p
( x⃗ , y⃗)=(∑

i=1

N

|x i− y i|
p
)

1
p                  (1)

Though there is potential value to using a  ℒ1 norm for robustness against impulsive noise, the  ℒ2 Euclidean 
distance is optimal for Gaussian, independent and identically distributed measurement error [1]. Given the popularity 
of  the  Euclidean  distance  in  time  series  matching  literature  and  provided  its  optimality,  we  selected  to  use  it 
throughout our distance-based approaches. We consider in all cases a bias-compensated Euclidean distance, in which 
we compare the query (Q) and sequence in question (S) after compensating each by their mean values:
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~Δ(Q ,S )=Δx (Q−Qavg , S−S avg)                  (2)
with

Qavg=
1
n∑i=1

N

Qi , Savg=
1
n∑i=1

N

Si                  (3)

and Qi, Si the ith component of Q and S, respectively.
Match Quality: The bias compensated ℒ2 measure provides an unbounded measure of dissimilarity. Practically, 

we wish to work with a metric which has been normalized into a perfect score (1.0) for perfectly similar signals and 
a  0-score for completely non-matching signals. We have designed a mapping from Euclidean Distance to Match 
Quality which captures the intent of our solution.

We wish that a perfect signal–one identical to the query–equals 1.0 (ηℒ 2
(Q ,Q)=1.0) . The Euclidean distance 

between these signals is 0 (Δℒ 2
=0) , therefore it is suggested to have a mapping of the form

f (Q)−Δℒ2

f (Q )
                 (4)

with  f(Q) being some arbitrary function–examples may be the maximum or mean functions. We can select the 
most appropriate function using the knowledge of our end-use case.

There is in general no bound to the amount of distance a signal can be from the query signal, given that each 
signal has a different value range we cannot make assumptions about the maximum and minimum values of a signal.  
However, it is not required that a 0.0 be assigned only to the worst possible match; only that any match with a 0.0 
would under no conditions be considered similar by a ground engineer. Phrasing that in a manner which we can  
translate to our mapping defines f(Q) to be the norm of Q, and the final quality metric is:

(∑ |Qi|
2
)

1
2
−(∑|Qi−Si|

2
)

1
2

(∑|Qi|
2
)

1
2

                 (5)

This quality metric operates nicely in that it scales appropriately with signals of differing ranges. It is a measure  
of how much error between signals there is in relation to how large the signal itself is.

Probabilistic Distance: In general, we introduce how probabilistic models work in 5.2.2. Nevertheless, we will 
introduce the similarity context in probabilistic terms. Assume we have two realizations which are drawn from a 
probabilistic model. We fit a model for one of these realizations with the maximum likelihood method. From this we  
get an estimation of the hyperparameters for the assumed probabilistic model.

Next, we wish to check whether the underlying model is also appropriate for other realizations. Typically, this is 
done with a likelihood ratio test, but due to its complexity and computational cost we implemented a different but  
similar method.

In [2], the authors fit several models and calculate the respective likelihoods for queried time series. Afterwards,  
they decide based on the likelihood of the fit model whether it is appropriate or not. In our case, we calculate the 
likelihood for the second realization (region of interest) based on the query’s underlying model. Now we compare the 
ratio of likelihoods determine if the assumption (that both realizations rely on the same underlying model) is true or  
not. This ratio of the likelihoods gives us a measure of similarity. If this ratio is large than the model represents the  
second realization very well. If it is small the model fitted for the first realization does not represent the one in  
question.

Match Quality: This ratio is used directly as the match quality. The quality could exceed 1 since it is possible that 
the second realization is represented better by the model than the first one which only indicates that the realization is 
represented very well by this underlying probabilistic model. We ultimately use as a match quality the maximum of 
the described ratio or 1.0.

3. Statistical Data Exploration
Before  researching  applicable  algorithms  and  evaluating  benchmarks,  we  selected  representative  parameters 

highlighting the broad range of behaviors satellite telemetry can show. In an initial statistical data exploration phase, 
we familiarized ourselves with the data and distilled the key challenges it poses w.r.t. pattern matching approaches. 
This phase concluded with the description of various test cases used to evaluation.

In addition to  these parameters,  a  publicly available dataset  [3] of  labeled time series  data was utilized for 
parametric  optimization of  the algorithms. This dataset  will  not  be described in this section, see  [3] for details 
regarding this dataset. The subset of classified data used from this dataset were EGC200, ECGFiveDays, FordA, 
OliveOil, PowerConds, and Computers.
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Table 1. Statistics over analyzed parameters.

Name Duration Unique Values Max Min Std Mean Mean Frequency
Param. 1 250 days 333 2457.00 0.00 139.29 277.47 1.01Hz
Param. 2 250 days 116 2457.00 0.00 10.28 324.25 1.01Hz
Param. 3 346 days 1296 1715.00 259.00 97.92 838.60 0.02Hz
Param. 4 393 days 2836122 3.26 -3.14 1.81 -0.00 0.10Hz
Param. 5 348 days 29946733 2.14e+09 -2.14e+09 1.07e+09 3.41e+04 1.00Hz
Param. 6 806 days 692 -5.00 -2806.00 37.09 -929.82 1.00Hz
Param. 7 366 days 150 346.00 31.00 118.74 152.38 0.65Hz
Param. 8 826 days 151 2865.00 2715.00 24.99 2788.57 0.14Hz
Param. 9 826 days 2 120.00 30.00 18.40 116.07 0.33Hz
Param. 10 365 days 1489 2584.00 1092.00 165.10 1799.98 1.00Hz
Param. 11 365 days 79 1.41e+09 5.78e+08 2.68e+07 1.19e+09 1.00Hz
Param. 12 365 days 11 20.00 0.00 0.39 17.00 1.19Hz

3.1 Data Acquisition
In total, twelve telemetry parameters from one of GSOCs active missions were chosen for further analysis and 

evaluation of the pattern detection methods. The time series for each parameter include both high frequent telemetry  
acquired  during ground station contacts  as  well  as  lower  frequent  data  from processed  dumps.  The parameters  
include, e.g. pressure and reaction wheel friction sensors, voltages, temperatures as well as mode and status flags. In 
total, the time series combined duration is over 5,500 days containing more than 300,000,000 data points.

3.2 Data Preprocessing
In the scope of this project, the conscious decision to not apply any preprocessing in the form of cleaning or  

filtering the data was taken. The unmodified data best fits the end use case as the researched methods should be  
useable by ground engineers. Not only do engineers also work on unfiltered raw data most of the time, but problems 
in the data might very well describe the pattern which they are looking for.

3.3 Statistical Data Exploration
Before looking for suitable algorithms, the key features and difficulties stemming from the heterogenous data 

typical in our field were analyzed. An overview is given in Table 1, showing the wide range of used parameters. Both 
high and low precision float parameters, e.g.  Param. 4 and  Param. 7 as well as parameters representing discrete 
entities such as status flags or booleans, e.g. Param. 9 and Param. 12, are present.

In addition, another important aspect of telemetry is the irregular sampling rate. The decimal values of the mean 
frequency in  Table 1 hints at this feature. For low earth orbit satellites, the sampling rate can change over time 
depending on e.g. the mission phase, planned tasks and whether there is a contact or not. For some algorithms, an  
irregular sampling rate can pose tremendous challenges as  they are dependent on equidistant data points as their 
input.

3.4 Identified Challenges
Overall, the analysis of the time series led to the identification of six key challenges algorithms will face when  

recognizing patterns in satellite telemetry described in Table 2. In addition to the statistical analysis, the identified 
challenges also stem from the envisioned use case. Optimally, engineers should be able to find any kind of pattern in 
past telemetry, no matter the shape, duration or type of telemetry parameter.

Table 2. Identified challenges.

Inconsistent sampling Variable pattern duration

Instantaneous events Low Pattern-to-noise-ratio

Discrete or continuous signals Patterns characterized by frequency variation
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3.5 Testcase Definition
After a qualitative exploration of the data, a labelled dataset is required in order to evaluate the performance and  

quality of each algorithm and compare various implementations. The labelled dataset was manually crafted using a 
custom tool specifically developed for this purpose. It allows us to label various patterns in our sample data and at  
the same time evaluate the performance of the implemented algorithms w.r.t. the labelled patterns. Based on the 
aforementioned challenges, and using the developed framework, we labeled  776 regions over  26 testcase patterns 
from the 12 telemetry parameters.

4. Literature Review
From literature review, there are three different pattern matching approaches that have to fulfill our requirements,  

discussed in Section 2:
 Distance-based approaches, and would include basic methods as subsampling/filtering and comparing the 

Euclidean distance as well as more complex routines such as Dynamic Time Warping  [4] or comparing 
distance in a Wavelet subspace [5].

 Probabilistic approaches, which represent the pattern as a model and measure the likelihood a given test 
range comes from the same model (such as Hidden Markov Models [6] or Gaussian Mixture Models [7]

 Symbolic approaches, which transform the time series to a string of symbols and compare string similarity 
to measure distance. These are frequently used in bioinformatics, language processing, and streaming and 
can be very fast given some prior knowledge of the dataset at hand  [8],  [9],  [10]. Because we desire a 
robust, general matching system without prior training, we did not pursue symbolic approaches in this work.

We will discuss in further detail Dynamic Time Warping, Probabilistic Methods, and the APCA algorithm (see  
Section 5.2). First, we may further decompose a time series matching workflow (including any of the aforementioned 
algorithms) into a set of tasks. Though not a perfect taxonomy, it serves as a useful framework for both discussing 
the following work and for structuring the software module.

5. Pattern Matching Workflow
An overview of the time series pattern matching workflow is shown in Fig. 1; with a few examples for each task 

of the process. The Acquisition task is outside the scope of this work and may differ from project to project. For our  
purposes, data is contained in simple text-files, each containing a duration of data on the order of 1-2 years. The 
preprocessing, scanning, measuring, and postprocessing are now discussed.

The characterization of the different types of time series matching algorithms is mainly based on the different  
measures of similarity. The main idea is to take a suitable measure for the representation of the time series. The 
overview of time series matching workflow shows clearly that different tasks can be combined in several ways, i.e.  
use  a  wavelet  decomposition before apply a  probabilistic  algorithm. This  gives  the  user  several  possibilities  to 
customize the algorithms.

One may notice that we neglected advanced machine learning methods like deep learning. We want to have a  
high explainability of the model which is not guaranteed in advanced methods. Approaches such as deep learning 
would have offered a bunch of new possibilities and can be studied in a separate project.

5.1 Workflow Tasks
In  this  section,  we will  introduce the workflow of  the  time-series  pattern matching that  is  followed by our 

software tool. The single tasks will be discussed in detail.
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5.1.1 Preprocessing
We  consider  preprocessing  to  include  not  only  traditional  data  cleaning  operations  but  also  fundamental 

transformation  to  the  data,  and  therefore  part  of  the  matching  algorithm  as  a  whole.  Besides  well-known 
preprocessing methods such as normalizing and standardizing, the transformation to a new representation such as the  
Discrete Wavelet Transformation (DWT) or Discrete Fourier Transformation (DFT) are included in the preprocessing 
task.  The mapping to  a  representation as  a  probabilistic  model  is  also contained  here and it  demonstrates  that  
different approaches (like DTW and a probabilistic method) can be combined using our multi-task approach.

5.1.2 Scanning and Measuring
There are two fundamental ways in which one can search through a time series data set to evaluate quality of  

each potential matching subset. First, let us define our terminology for this section.
Given the set of Ap compact subsets of length A from time series D := (ti, xi) (see Section 2.2), it is obvious to 

assert that each subset of Ap may be uniquely identified (indexed) by its lowest contained timestamp ti and that we 
may sort them to be in monotonically increasing order in time:

∀ a j , ak∈A p j , k∈ℕ
+ j<k :mint ia j<mint iak

Note that this is not true for Ap in general, wherein elements must be identified by at least two components, for  
example starting time and length. This is a simplification made possible by restricting to a strict-duration query. 
Given strict-duration query we say that we search for matches to query Q in Al if we evaluate the match quality of at 
least  a substantial  subset of  Al against  Q.  We seek for matches in  Al if we systematically evaluate  ηΔ (Q ,a j) in 
monotonically increasing order – ηΔ(Q ,a j+1) is evaluated after ηΔ(Q ,a j) .

A seek can be performed in reverse order (newest timestamps to oldest) or trivially parallelised by partitioning 
the series into non-overlapping sections.

To note a few important distinctions: Seeking is clearly a type of search, and is the type utilized throughout this  
project. Promising methods of search that are not seeking take advantage of efficient datastructures (often trees or 
tree-like structures) and to allow faster retrieval of a match than a seek. A notable example are F-Trees, a type of R*-
tree populated wherein levels are built based on the proximity of the subsets Fourier coefficients  [11]. These are 
applicable in cases where we search many same-length patterns on one dataset; this is not our use case.

In general, we don’t seek every possible region of length l in the time series (see Section 6.1). Instead, we seek 
through the time series at a stride that is some fraction of the initial query length. This stride length is a parameter  
that can be adjusted. When this stride is fixed, we refer to it as a fixed-walk.

A smart-walk (see Algorithm 1) proceeds as a fixed-walk except after evaluations where ηΔ>thresh, wherein the 
stride length for the next evaluation increases to some value nx.

After seeking through the time series, the similarity of the potential matches has to be measured. The different  
types of time series matching algorithms with their different measures of similarity, will be discussed in Section 5.2.

Algorithm 1. Smart-walk

Input: Q query, D := di data in closed subranges of length len(Q)
Parameter: X fixed stride length, Y stepover length, τ Quality Threshold
Output: Vector of match qualities η⃗

1: η⃗←list

2:    do

3: i ← 1

4: if ηΔ(Q,di) > τ then

5: η⃗ .append (η Δ(Q ,di))

6:    i ← 1 + Y

7: else

8:    i ← 1 + X

9:    while Not at the end of time series

10:   return η⃗
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5.1.3 Postprocessing
After a  query has been performed, the result  is  a  list  of tuples,  each tuple containing the range of a match  

exceeding the threshold and the quality of that match, ηΔ. The amount of these matches and the distribution can be a 
challenge for end users – it may not be useful to return 10 matches all overlapping the same pattern; the goal of the 
system is to use a single region tuple to alert the user to a single matching pattern.

This goal is complicated by the interplay in a variety of parameters: Lowering the match quality threshold will  
increase the number of regions returned; raising it  may cause false negatives.  Decreasing the stride length will 
increase the number of matches returned and result in many overlapping matches on a single pattern (especially for a 
time-scaling measure such as DTW), increasing it introduces the risk that a pattern is missed because it doesn’t align 
well in time with the stride period.

In an attempt to improve the user experience, we have designed two postprocessing routines and included them in 
our parametric studies of algorithm performance. In the first, best-in-group postprocessing, every contiguous set of 
matches (those whose endpoint overlaps the following startpoint) is reduced by selecting only the best match in that 
set. In the case that a single pattern of interest truly exists in that group, the best match should be the most accurate 
pattern overlap.

The second method is Combine-group postprocessing, in which each contiguous group is reduced to a single 
match with a range starting at the minimum startpoint of the group and ending at the maximum endpoint of the 
group. The quality in this case is inherited from the best match within the group.

Finally, postprocessing of the type none is self-explanatory – the raw list of returned regions from the algorithms 
is maintained.

5.2 Implementation
Five algorithms were selected to be implemented and evaluated, with three as the focus. The algorithms were 

selected based on a desire for both variety (in strengths and weaknesses, as well as in fundamental method of use)  
and a high likelihood of success on pattern matching the supplied datasets. These algorithms include three from a 
distance category, and two from the probabilistic category.

5.2.1 Distance
Wavelet matching is implemented in a straightforward manner. The preprocessing task consists of a Discrete  

Wavelet Transform using Haar wavelets at a depth of  4 levels. This results in a set of coefficients in a generated 
wavelet basis. The measure is directly the Euclidean distance between these coefficients – that is, we measure the 
proximity in the decomposed wavelet basis, rather than reconstructing the time series from the truncated wavelet  
representation. This results in an algorithm with fast performance as it has vastly decreased length in search space.  
The scan method is selectable between a fixed-stride walk and a smart walk through the time series. Postprocessing  
may be selected from any of the previously described postprocessing routines.

Dynamic Time Warping (DTW) is a popular time series matching procedure in which the query may be mapped 
surjectively to the search subset, effectively pairing each query sample to one or more search samples. Taking the  
optimal mapping (the mapping which results in the lowest Euclidean distance) under some restrictions (endpoint 
continuity, maximum time scaling limits) performs a nonlinear scaling of time within the search sequence. This 
agrees well with intuitive ideas of similarity, in which a peak of the same size and shape, but a few samples further in 
time than expected, is considered by a human observer a very similar sequence. In comparison, a direct Euclidean 
distance sample-by-sample produces a significant penalty on small temporal deviations. The dynamic time warping 
routine used is a mature implementation by the authors of [12], and described therein.

Adaptive Piecewise Constant Approximation (APCA) [13] is an approximation of a time series that partitions 
it into n (a hyperparameter) segments of variable length. Each of these segments is represented by the mean of the 
data points it contains. The lengths of the individual segments are chosen in such a way as to achieve the most  
accurate approximation of the time series under the limitation of n segments. This is achieved by a discrete Haar 
wavelet transformation in which the largest coefficients are retained. This results in an approximation that preserves  
the essential structural properties, but on the other hand abandons non-essential structures such as noise. During a 
seek operation a region is transformed into an APCA representation by partitioning it into n segments, same as the  
query, with segment starting points in the same relative locations. Euclidean distance is measured between these two 
low-dimensional representations. Since these are relatively inexpensive operations, an APCA matching algorithm is  
performant with respect to runtime. Furthermore, APCA is particularly suitable for the approximation of time series  
with sharp edges. But less for natural or sinusoidal signals.
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5.2.2 Probabilistic
At a  first  glance,  it  may seem unintuitive  that  we use  probabilistic  models  to  compare  time series.  In  this  

approach, we consider the time series as a realization of the probabilistic model by representing the observed time  
series by an underlying model. The main structure of the time series is reflected in this model, where the next point 
in the time series is expected probabilistically.

As preprocessing, we must transform the time series into a probabilistic model. To get such a model, the observed 
time series is fit with an Expectation-Maximization-Algorithm generating hyperparameters of our underlying model.  
Knowing these parameters, one can calculate the likelihood prior, if the model is correct, for the realized time series. 
We evaluate this likelihood on the query range, and then by any chosen scan method compare the likelihood of each  
subset  of interest. The measure is a ratio of the query likelihood and the subset  of interest  likelihood. One can 
compare it to the likelihood ratio which is used in statistical tests to accept or reject a hypothesis. This procedure 
stays the same for all probabilistic models. In the following, we will consider two of them. It has to be stressed that it  
is not the same as the likelihood ratio test and does not have the statistical properties of a likelihood ratio test.  
Nevertheless, it fits our needs in terms of comparing the similarity.

Gaussian  Mixture  Model  (GMM) is  essentially  the  mixture  of  several  Gaussian  distributions.  One 
hyperparameter is the number of Gaussian models one wants to include in the GMM. The different unique Gaussian  
distributions will be weighted. In particular, the number of Gaussian models represents the different states of our  
observed time series. Each different state of the time series can be characterized by a different Gaussian distribution, 
i.e.  the plateaus which can be represented by different means of the Gaussian distribution or the  increase of the 
variation which can be represented through a higher variance.

Hidden Markov Model (HMM) is a more sophisticated probabilistic model. HMMs have two components. On 
the one hand are the observed emissions and on the other hand the hidden states. The connection between both is the 
emission probability. Every hidden state has a distribution for the emission probability and they form a Markov chain 
of  different  transition  probabilities.  This  is  applied  to  a  time series  in  a  manner  analogous  to  the  GMM. The  
characteristics of the observed values are modeled through the probabilistic model (in this case, a HMM). The HMM, 
in comparison to GMM, additionally takes the transition between states into account capturing these transitions into 
the model. Through the additional information the complexity rises and also the computational cost for this model.

5.2.3 Ensemble
We found each algorithm to have strengths and weaknesses in regards to patterns that are reliably matched. A 

natural extension was to combine the algorithms in an ensemble approach. This is common in time series forecasting 
work as it decreases the variance and often leads to better results than the singular algorithms.

For our ensemble approach, we utilized the DTW, APCA, and GMM implementation, based on their promising 
and complementary performance on the test datasets. Details of this study, showing the relative performance of each 
algorithm across  datasets,  are found in Section  6.2.  In  the ensemble approach,  each algorithm is  independently 
executed.  If  any  algorithm  considers  the  region  as  a  match  it  is  considered  as  an  ensemble  match  (an  OR 
ensembleing process).  More sophisticated ensemble procedures are conceivable.  Since we want to find a robust  

SpaceOps-2021,5,x1248 Page 9 of 14

Fig. 2.Screenshot of the prototype GUI, developed for interactively finding matched patterns of interest.



16th International Conference on Space Operations, Cape Town, South Africa – 3 - 5 May 2021.
Copyright ©2021 by Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR). Published by the IAF, with permission and released to the IAF to

publish in all forms.

algorithm against several challenges we relied on the simplest ensembling rule to avoid overfitting for certain test 
cases.

A challenging detail in the assembling is determining a match quality [0, 1] based upon the independent match 
qualities returned from each algorithm. Ultimately, the qualities are scaled uniformly and summed to generate an 
overall ensemble quality measure from each independent algorithm.

5.2.4 Prototype GUI
In addition to the label tooling described in Section  3.5, we developed a pattern-matching GUI which may be 

used immediately by the system engineers to select regions of interest from arbitrary time series, and explore the 
patterns matching this selected region as returned by various algorithms. Within the GUI (see Fig. 2), the prototype 
allows selection of a region of interest (marked in blue) and returns color-coded matches (red-green mapping low-
quality to high-quality matches). The algorithm to use is selected in the right-hand-side dialog box.

6. Evaluation

6.1 Performance Evaluation
Investigations into the appropriate performance metrics to evaluate our system yielded a single most-popular 

measure: The receiver operating characteristic (ROC), and to summarize into a single value from [0, 1], the area-
under this curve (AUROC) [14]. This measure indicates how successful a binary classifier is by plotting the true-
positive rate against the false-positive rate. A perfect classifier in this space appears as a step function to 1, a random 
classifier is represented by the diagonal.

We have implemented our own version of this routine. We consider a return a true positive if it overlaps a labeled  
range at least 40%, and a false positive if it does not. A false negative is represented by any labeled pattern that is not 
found by the algorithm. For the number of true negatives, we must determine the total population of possible regions  
in our time series – that is: how large is the strict-duration sets Al?

A lower bound would be every subset we explicitly evaluated by the scan method, however this is inappropriate  
because our measure would then be very sensitive to changes in step size and stepover size. More intuitively, taking 
large steps does not remove regions from  Al,  it only pre-emptively assigns a negative response by the classifier. 
Therefore, these should be included in the total population.

An upper bound for the total population is infinite – we can check a region infinitesimally close to the last region; 
but this is also inappropriate. Assuming for simplicity of discussion a fixed sampling rate, it is tempting to use as a 
total population the set of every range of length l starting from a unique sample. This is not fundamentally better than 
the continuous case; and would clearly result in near-zero false positive rates, as the number of true negatives dwarfs  
the possible number of matching regions.

To resolve this and allow ourselves to use the ROC tool, we again must turn to the user experience (and to the 
ultimate goal of the project): At what distance would regions be spaced such that a user would identify any closed  
region as belonging to the same pattern region, and any further spacing as belonging to a different possible pattern  
region? Human pattern perception is relative; as a result we suggest using a fraction of the query pattern length as the 
effective spacing to determine a total population. By intuition we suggest this value is somewhere in the range of 1/8

Algorithm 2. ROC performance measure

Data: ResultMatches, LabeledMatches
Result: Percent of matches for x% of matches

1: Sort ResultMatches descending by quality and add midpoint

2: Add midpoint to ManualLabels

3: usedMatches = 0

4: for Each ResultMatch  ResultMatches∈  do

5: usedMatches + = 1

6: Find closest LabeledMatch  LabeledMatches∈
7: Get overlap of ResultMatch and LabeledMatches

8: if Overlap is at least 40% then

9: if overlappedLabels >= x  Length(LabeledMatches)∗  then

10: return int(x  Length(LabeledMatches)/usedMatches∗
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to  1/4 of  the  query  length,  and  conservatively  choose  1/8.  Therefore,  we assume the  total  population  (for  the 
purposes of ROC plotting) as:

8∗TotalTimeseriesDuration
QueryDuration

                 (6)

6.2 Computational Experiments
The final evaluation of the system took place in two stages: first, a parametric study on the UCR data afforded a  

view into the pareto-front of settings for each algorithm. This allows us to make suggestions on optimal parameters 
for each algorithm; affords insight into how to improve the algorithms and approaches; and indicates the relative 
value of each component of our pipeline.

We also apply the two best performing algorithms to the satellite test data to evaluate performance.

6.2.1 Parameter Study
There are a number of parameters for each algorithm to vary – examples are the bounds for time-scaling limits in 

DTW; the number of segments in APCA; an appropriate depth for Wavelet decomposition; and the number of hidden 
states in a HMM. Conservative selections for these parameters were used, based on experimentation and existing 
values used in literature.

In addition to these parameters, there are a number of parameters which affect all algorithms; these parameters 
were used for an optimization study on the UCR dataset utilizing a compute cluster. These parameters are:

Analysis of the performance at each of these iterations is performed using the AUC metric.  For brevity and 
effective visualization, this document will present the results in aggregate: at each combination of parameters, the 
sum of all AUC scores across test cases is used as the final score. For 14 test cases, this would result in a perfect 
classifier having a score of 14. A classifier with random (coin-flip) classification on every test case would score a 7.

Table 3. This parameter study results in a total of over 6000 pattern matching searches.

Symbol Description range

τ Quality measure threshold, below which a potential match is discarded 0.1 − 0.75

α Step size fraction. The fraction of the query length (in time) which is used 
as the stride for a seek

1, 1/2, 1/4, 1/8

β Stepover fraction. The fraction of the query length to step over in the case 
of a smart walk. β = 0 is defined to be a fixed-walk

off, 1, 1/2

P Postprocessing method none, best, combine

6.2.2 Performance Study
For the performance study, we conducted a simplified representative study with the most promising algorithms 

from the UCR study (GMM and APCA) at a low match threshold (0.01) with a fixed-walk at 1/8 query length. This 
provides the purest result for a AUROC curve and indicates the general performance of these two algorithms on the 
our dataset (see Section 3.1).

7. Results and Discussion
A sampling of the results from the parameter study are presented in  Fig. 3,  Fig. 4, and  Fig. 5. Representative 

results from the performance study are found in Fig. 6.
Fig. 3 shows the aggregate sum on AUC scores on each of the 14 UCR testcases. We note that the baseline  

Wavelet approach is a poor classifier. In general for all algorithms a finer stepsize (α = 8 results in a step 1/8 the 
query length) provides better results; likewise, a lower threshold results in more effective classification. These points  
must be balanced with runtime since the runtime scales linearly with the stepsize. Increasing the threshold improves  
runtime as well, but to a lesser extent than the stepsize (any item below the threshold is discarded from memory).

Better performance is observed with no postprocessing (see Fig. 4) than with the post-processing routines. Here 
we observe limitations with AUROC as the metric for our performance. A greater number of false positives has a less 
pronounced effect on the AUROC measure than it does on user experience: a user may tolerate only a certain number  
of  false  positives  before  discarding  the  tool.  As  the  postprocessing  routines  were  added  to  improve  this  user-
experience, it is unsurprising to see them have a negative effect on the AUROC score.
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In general, the algorithms perform satisfactory on the classification problems. In most cases the primary problem 
resulting in a low AUC score is that not all labeled patterns are identified by the algorithms, no matter how low the  
threshold is set. Two reasons appear for this. The first is that we do not perform a complete scan through the time 
series in infinitesimally small strides – some pattern regions may not align with the scan stride, resulting in a failure 
to classify this region. Increasing to a finer and finer scan increases computation time and introduces the additional 
issues with user experience regarding overlapping regions.

The second problem reflects the nature of the work and was indicated in our introduction: what a similar pattern  
is  determined  by  human  intuition.  As  a  result,  any  metric  may  fail  to  correlate  with  human  judgement;  and 
furthermore labeled datasets may not be precise and free of errors.
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We may gain additional insight by reviewing two reasonable, but not best-case, parameterizations in the original 
ROC space. The first, Fig. 5 shows the performance of each algorithm at matching each of the 14 test cases in our 
UCR dataset. Here we see again the singular AUROC score may not reflect the user experience – the GMM method 
often scores well on AUROC, but its precision over the first 10% of matches has many more false positives than the 
equivalent APCA, which has excellent performance with its first matches. In all three plots most test cases terminate 
around the same TPR – note the green test case. Perhaps in this case the human who labeled the testcase did so with a 
different eye for similarity than the Euclidean norm, DTW distance, or likelihood ratio do.

The same comparison between APCA and GMM translates to the satellite telemetry dataset (Fig. 6). APCA, when 
effective, generally returns reliable matches as the highest scoring regions. GMM, while often reaching  100% of 
matches ultimately, return many false positives to the user as the highest quality regions.

8. Conclusions and Future Work
In summary, we have successfully developed a software suite which gives a technical user the ability to easily 

label new signal datasets for testing; incorporate new matching algorithms; evaluate the performance of algorithms; 
implement new performance measures; and most importantly gives a nontechnical user the ability to, through a GUI, 
select a range of time containing a pattern of interest be presented a set of reasonable-quality matching regions in the 
signal’s history. The goals of the project as it was presented (and summarized in the Introduction chapter) have been  
achieved.
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Furthermore, the software has a practical, professional design and will serve as a strong foundation for future 
work in this area at the at mission operations at GSOC. Six functional pattern-matching algorithms are included in  
the software  – one of which (DTW) is the direct application of an existing library for this purpose  [4]. Algorithm 
performance is challenging to measure; however the initial results are promising. Already the tool provides a useful  
set of results – further optimization of algorithm parameters should be undertaken.

A valuable exploration in the immediate future would be into evaluation of the software from a user perspective.  
Though AUROC results are higher at low thresholds and step sizes; human preferences for performant software and 
a clean set of results may encourage other parameterization realizations.
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