Fisheries Research Branch Technical Report FRB 88/04

EOF-F00029

29 Cile. Phoeste

By-catch from the central Queensland prawn fisheries: part I. The prawn fisheries, species composition and site associations from the by-catch.

M. C. L. Dredge

March 1988 (Revised April, 1989)

A report to the Great Barrier Reef Marine Park Authority

Fisheries Research Station, Burnett Heads Department of Primary Industries, Queensland Government

CONTENTS

1

Summary

ł

Introduction	Υ.		1
Methods The fishery By-catch composition			2 2 2
Results The fishery Characteristics of sites smapled in 1985			3 3 4
By-catch Species taken By-catch weight Relationship between trawled & reefal fish Relationship between trawled & reefal echinoderms Community assemblages from trawl samples Faunal assemblages and fishing effort			4 4 5 5 5 6
Discussion			6
Acknowledgements			7
References			7
Tables 1 to 11			9
Figures 1 to 8			17
Appendix 1. Checklist of taxa and their rank of abundance			33

SUMMARY

A study of trawl fisheries between 18°S and 19°S has shown that three fisheries for penaeid prawns, separable on the basis of species composition and geographic distribution, can be described. More than 300 trawlers operate in these fisheries, which have generated landings in excess of 2000 tonnes of prawns per year in the past two years.

The fisheries also take a considerable quantity of by-catch, little of which is of commercial value. In a two year study of by-catch fauna, 477 taxa were identified. The trawl by-catch was dominated by Crustacea and Osteichthyes (bony fish) in terms of numbers and weight taken. The Osteichthyes were the most diverse group, with more than 50% of species coming from this Class.

The by-catch was dynamic in nature, with relatively few species being present throughout the year, and dominant species changing over time. There were, however, characteristic faunal assemblages which appeared to be associated with coastal, near-reef and inshore waters. The coastal fauna was markedly different to the near-reef and inshore faunas, and the transition between the two occurred over a distance of less than 5 km. There was no such clear boundary between the near-reef and inshore faunas, the fauna of some sites grouping with near-reef fauna on some sampling occasions and with inshore fauna on others.

Preliminary comparisons of the faunas from trawl grounds and the reef environment showed marked differences between them. Few species were common to the reef environment and to trawl grounds, and families which were dominant on trawl grounds were relatively less abundant in near-reef environments.

INTRODUCTION

Valuable trawl fisheries for penaeid prawns, bay lobsters (Scyllaridae) and scallops (Amusidae) exist on Queensland's continental shelf between 18°S and 21°S (Robertson and Dredge 1986). These fisheries take place in waters of the Great Barrier Reef Lagoon and their geographic distribution overlaps with areas under the control of the Great Barrier Reef Marine Park Authority (GBRMPA).

Implicit in GBRMPA's current zonation system for resource users in the Marine Park is a concern that trawling may have some effect on the Reef ecosystem. Some 23% of the 80 000 km² Central Section of the Great Barrier Reef Marine Park was zoned to preclude trawling in a draft plan. A recent study by Poiner and Harris (1986) offers some evidence that trawl fisheries alter the faunal communities in their immediate vicinity. But there is no published data on the effects that trawling may have upon nearby coral reefs and their associated fauna. Cannon *et al* (1987) pointed out that the inter-reef fauna in the vicinity of the Great Barrier Reef is virtually undescribed. No comparative discussion on the faunas from these two environments can be justified until this deficiency is corrected.

A two-year study of the prawn fisheries between 18°S and 21°S was initially designed to describe the fishery and biology of one of the major target species, *Penaeus longistylus* Kubo (Red spot king prawn). The study was extended to include a detailed description and analysis of by-catch taken in trawl fisheries which exist in this area. By-catch has been examined to give a checklist of species and records of their relative abundance over space and time. Descriptions of faunal associations have been made from these data. These, in turn, have been related to substrate composition, hydrographic conditions, distance from shore, depth and fishing effort.

The study was designed to supply both an historic record of the trawlable inter-reef fauna and a database which could be used as a basis for discussion on the extent of interaction between the interreef fauna affected by trawl fisheries and reef-associated fauna. In Part 1 of the study, trawl fisheries between 18°S and 21°S are described, by-catch species are documented, and faunal associations which occur between the coast and inter-reef areas are described. Part 2 of the study, which is reported separately, deals with year-to-year variation in faunal associations and with faunal associations found in a near-reef to off-reef transect. The study was not designed to describe the effects of trawling upon the reef ecosystem. Jones and Derbyshire (in press) have described the by-catch composition in terms of species composition and abundance. Watson and Goeden (in press) analysed by-catch from the first twelve months of data collection in terms of site associations. Parts of this report are based upon their findings.¹

METHODS

The Fishery

Catch rates, species composition and effort distribution in the trawl fisheries between 18°S and 21°S were monitored through a logbook programme. Some 50 fishermen, most of whom were based at Townsville, kept shot-by-shot records of catches taken in 6 by 6 nautical mile grids. Penaeid prawns were monitored as species complexes. Fishermen do not distinguish between the bi-specific tiger (*Penaeus esculentus*, *P. semisulcatus*), king (*P. longistylus*, *P. latisulcatus*) and endeavour (*Metapenaeus ensis*, *M. endeavouri*) prawns when sorting. Depth, trawl duration and marketable by-catch were recorded. The logbook programme was voluntary and may not provide complete records of each vessel's fishing activities.

Logbook records were collected by a local contractor and forwarded to the Burnett Heads Fisheries Laboratory. Data from each day's fishing were summarised to give a single line, and loaded onto a random access file in a microcomputer. Summaries of the data, including average catch rate for each species complex, effort distribution and allocation, and individual boat summaries were obtained using a set of custom written BASIC programmes.

Total catch in the fisheries was estimated using two independent sources of information. Processors' buy-in records were collected at six- to12-month intervals and used as one estimate of total catch. Estimates of total effort expended in the fisheries were made by counting the number of trawlers visible on radar during sampling nights (see below) and by obtaining word of mouth estimates of boat nights fished from both fishermen and processors. These estimates of total effort were corrected, averaged, and multiplied by estimates of average monthly catch rates (kg prawn day⁻¹) obtained from logbook data to give estimates of total monthly catch. Neither estimate of total catch was error free. The buy-in figures supplied by processors were incomplete as many boats in the area have dry freezing facilities, and some fishermen export product directly from their vessels. Likewise, estimates of total fishing effort in the fishery suffer from a range of error sources. Estimates of total landings, whilst the best available, should be taken as order of magnitude estimates.

By-catch Composition

In the period between January 1985 and December 1986, a monthly sampling and monitoring programme was carried out from the F.R.V. 'Gwendoline May', at 24 sites between 18°S and 19°30'S. Twenty sites were sampled in 1985 and 12 in 1986. Eight of the sites were common to both years of sampling (Figure 1). Sample sites were selected on the basis of being on main fishing grounds, on transects between the coast and the Great Barrier Reef and on a near-reef to off-reef transect. This report deals largely with by-catch taken from sites sampled in 1985. These were sited on the main fishing grounds and on the transects between the coast and the Great Barrier Reef.

Samples taken at each site were obtained by towing two 12 m head rope Florida Flyer trawls for a duration of 30 min at a speed of approximately 1.85 m sec⁻¹. During each trawl shot, each net swept an area of approximately 27 000 m². One net, made of 50 mm mesh was typical of trawl gear used in the fishery. The other, made of 40 mm mesh, was designed to take small prawns. By-catch samples were normally taken from the 50 mm mesh net whenever possible, but on 12 occasions were taken from the 40 mm mesh net after the 50 mm net failed to fish. Sampling took place over a two- to four-night period at or around the time of new moon unless weather conditions caused delays in sampling. Bottom salinity and water temperature were measured at each site, each month. Substrates of all sites were sampled with a Smith-MacIntyre grab in November 1985 and July 1986. Substrate samples were washed, sieved and weighed to give sediment fractions following Morgans (1956).

1 Material contained in this report should not be quoted without the prior approval of the author.

Total by-catch from the larger mesh net was weighed after large sponges, rays and sharks were noted and removed, and a 10 kg subsample was taken. The remainder of the by-catch was then examined for previously unrecorded species. The by-catch subsample was frozen and returned to the laboratory for examination. All specimens were identified to specific or generic level, counted and weighed. Records of species' identity and abundance were entered onto a computerized data base and subsequently examined for presence/absence, abundance and species associations.

Preliminary analyses which involved the calculation of all species' frequency of occurrence and overall abundance were carried out using the SPSS package. Species which occurred in fewer than 5% of samples or whose identification was doubtful were omitted from further analysis. Species associations over space and time were examined using the package "CLUSTAN". Raw data on species abundances were log transformed (log n+1) to suppress dominance of the data set by the relatively few species which made up more than 50% of by-catch. Site and time assemblages were then derived using a classification analysis which took into account the conjoint occurrence and abundance, or conjoint absence of species. Site or time assemblages were characterised both by associated species which were conspicuously absent while abundant elsewhere, and by species and species associations which were abundant while rare or absent in other assemblages. Technical details of analytical techniques used to develop site associations are given in Watson and Goeden (in press).

RESULTS

The Fishery

The continental shelf between 18°S and 21°S supports three clearly identifiable trawl fisheries. These are:

- 1. A near-reef fishery for two species of king prawn, red spot kings (*P. longistylus*) and blue legged kings (*P. latisulcatus*). These species are taken in near reef waters in what is a predominantly winter and spring fishery. Endeavour prawns (*M. endeavouri*) make up a small component of total catch in this fishery.
- 2. A coastal night-time fishery for tiger (*P. esculentus* and *P. semisulcatus*) and endeavour (*Metapenaeus endeavouri, M. ensis*) prawns. Catch rates in the fishery peak in March-April. In recent years the very high prices paid for tiger prawns have resulted in the fishery persisting through the winter months.
- 3. A coastal daytime fishery for banana prawns, *Penaeus merguiensis*. Banana prawns are typically taken in the period between March and June, although later catches have been recorded. Landings from this fishery are characterised by their irregularity, and a strong correlation between magnitude of landings and rainfall could be expected (Staples 1985).

Bay lobsters (*Thenus* spp) and scallops (*Amusium* spp) are taken as by-catch in all these fisheries, and occasionally targeted.

Proportions of the major species groups in the total annual prawn landings, taken from processors' data are given in Table 1. The king prawn fishery has been the most valuable component between 1984 and 1987. Total king prawn landings can be estimated from two data sources. In the period between 1977 and 1984, virtually all landings were received by three processors and their records provide the best estimate of annual catch. Since then, the number of processors has increased, and the increased usage of on-board dry freezing of product has lead to greater leakage of product from local markets. The available processors' records therefore under-estimate total landings. A second estimate of total landings can be made by multiplying estimated total effort by average catch rate. These estimates of annual king prawn catch have been combined in Table 2.

In waters between about 18°S and 19°S the two fisheries for king prawns and tiger-endeavour prawns were almost completely segregated spatially. Further south, the extent of overlap between the two fisheries was greater (Figure 2 a,b,c). Tiger prawn grounds tended to be discrete, with most effort concentrated in areas near Lucinda and the Palm Islands, off Magnetic Island, seawards of Cape Bowling Green and Cape Upstart, and off Bowen. King prawns were taken over much greater areas off the

western face of the Great Barrier Reef and in the inter-reef areas. There has been some year-to-year variation in the spatial distribution of effort aimed at king prawns in the period 1985-87. This variation may be attributable to variation in spatial recruitment patterns.

Relative effort directed at king and tiger-endeavour stocks over time is shown in Fig. 3 a,b. The pulsed nature of the winter king prawn fishery and less concentrated distribution of effort in the tiger/ endeavour fishery are shown. The March-May catch of king prawns may have been *P. latisulcatus*, taken in coastal areas as they emigrated from estuarine nursery areas. There are no restrictions on the transfer of fishing effort from one stock to another. Many boats which trawl for tiger prawns in the early part of the year fish on the near-reef king prawn grounds in winter. The major source of effort directed at the king prawn stocks comes from vessels which fish in the area only during winter, moving to other grounds for the remainder of the year. At the peak of the king prawn season, more than 300 trawlers may work in the fishery.

Daily catch rates for 1985-87, which are shown as a function of time of year in Figure 4 a to f, show a marked peak at the beginning of each fishing season, and then a decline as the stock is exploited more rapidly than recruits become available. The effect of the lunar cycle on catch rates can also be seen in these figures.

Characteristics of sites sampled in 1985

Depth and substrate composition of the 20 sites sampled in 1985 are given in Table 3. The shallower inshore sites (1, 2 and 15) had high clay and silt fractions, presumably of terrigenous origins. The mid Great Barrier Reef and near Reef sites were located in areas with predominantly calcareous sand substrates, possibly of biogenic origins.

BY-CATCH

Species taken

A total of 477 taxa of animals was identified from the 378 samples taken throughout the entire 1985-6 sampling programme. A full list of these taxa is given in Appendix 1. The 200 species which were selected for further analysis and their rank in order of numerical abundance in the 1985 sampling programme are also shown in Appendix 1. Trawl catches were dominated by the Crustacea (42% of all individuals identified) and bony fish (37% of all individuals). Fish dominated the by-catch in terms of species diversity (Table 4). Fewer than 3% of species were of commercial value. The distribution of species abundance is skewed (Figure 5), with the most abundant five species comprising 50.4 % of the total number of animals recorded.

By-catch weight

During the first 12 months of sampling at the 20 sites, 217 of a projected 240 samples were collected. Bycatch from these samples weighed 6.2 tonnes. A summary of by-catch weight as a function of month and site is given in Table 5. A two-way analysis of variance tested whether by-catch was significantly affected by site or time. The analysis of both times and sites against by-catch weight gave significant results (F_{10} =12.85, P<.01 and F_{19} =10.41, P<.01 respectively). The null hypotheses that by-catch weights were not significantly affected by site or time were rejected. Data summaries (Table 5) show a decrease in by-catch weight through winter and spring and an increase to a late autumn maximum. Changes in by-catch weight as a function of site were more subtle. Variation in by-catch weight could not be associated with clines in proximity to the coast, depth or any of the other physical parameters which were recorded.

.

Relationship between trawled and reefal fish

Eighty-two families were represented in the 272 species of Pisces collected in 1985-6. The 10 richest families, in terms of numbers of species identified, are shown in Table 6. Species which were common to this study and Russell's (1983) checklist of fish from the Capricorn-Bunker Group are also given in this table. Russell's checklist is heavily biased towards species occurring in the reefal environment and generally identifies those species which were taken in trawl samples from non-reef areas (Russell, pers com). Fewer than 5% of species were common to the inter-reef - near-reef - coastal trawl grounds between 18°S and 21°S and the reefal environment of the Capricorn-Bunker Group between 22°30'S and 24°S. Of the 10 most species-diverse families from the reefal environment of the Capricorn-Bunker Group, only two (Apongonidae and Serranidae) appear in the most species-diverse families from the trawl samples. Their ranks, in terms of species abundance from trawl samples was 1 and 9 respectively, and 5 and 6 from Russell's (1983) survey of reef fishes. Several of the most diverse families recorded by Russell (1983) were rare or absent in the trawl by-catch.

Relationship between trawled and reefal echinoderms

Mather and Bennett (1978) have given a comprehensive checklist of the Echinodermata recorded from Heron Island, a coral atoll situated at 23°20'S, 151°55'E. Numbers of species from the atoll's lagoon and reef, from the present trawl study, and the number of common species are given in Table 7. Fewer than 10 % of species occurred in both the trawl samples from 18°S-21°S and the reefal area of Heron Island. Many of the common species were reported as coming from inter-reef collections made at Heron Island (Mather and Bennett, 1978).

Community assemblages from trawl samples

Eleven of the 12 monthly sample sets generated very similar aggregations of sites when analysed, March 1985 being the exception (Figure 6). In this month only six of the projected 20 sites were sampled and the data had little meaning. In each of the remaining 11 months, the faunal associations attributed to sites displayed a similar dichotomy of form, with the coastal sites 1, 2 and 15 having faunal characteristics much different to those of the deeper, wider sites. This coastal assemblage has been designated 'A'. A second split in the assemblage appeared at a lower level of dissimilarity, giving assemblages 'B' and 'C' (Figure 6). The two assemblages, 'B' and 'C', were consistently more similar to each other than to assemblage 'A'. Within the two assemblages 'B' and 'C', 13 sites could be said to belong to either 'B' or 'C' if a 70% frequency of occurrence in either assemblage was used as an arbitrary level of occurrence. The remaining four sites (sites 4, 7, 16 and 17) grouped with assemblage 'B' in 45% to 70% of monthly samples and occurred in 'C' on all other occasions (Table 8). The location of site assemblages is shown in Figure 7, with the three clearly segregated site-species assemblages shown as hatched circles. The transition sites are depicted by open circles. Sites which clustered in assemblage 'B' were located in open water in the Great Barrier Reef Lagoon, while those sites in assemblage 'C' occurred in near-reef and inter-reef areas. The transitional sites with weakest site-species assemblage links (sites 4 and 7) are geographically close to coral reefs, unlike the slightly less transitional sites 16 and 17. Sites 18 and 19, which are located as close to coral reefs as sites 4 and 7, clustered in assemblage 'B' in 10 out of the 11 monthly sample sets.

The general distribution of site assemblages roughly parallels both the coastline and depth contours. Sites 1, 2 and 15 (assemblage 'A') make up a coastal grouping, sites 3, 12, 13, 14, 18, and 20 (assemblage 'B') make up an inshore group and sites 5, 6, 8, 9, 10 and 11 (assemblage 'C') make up a near-reef and inter-reef group.

Site assemblages can be characterised by species which were confined to the site group (Table 9) or absent from the site group (Table 10). The frequency with which they appeared in monthly samples may reflect seasonal abundance characteristics for the species.

When sites were associated by substrate characteristics (using cluster analysis), three major groups separated out (Figure 8). There was a 75% coincidence between site groups separated on the basis of sediment characteristics and species presence/abundance (Table 8).

Faunal assemblages and fishing effort

The area between 18°S and 21°S immediately to the west of the Great Barrier Reef has been subject to trawl fisheries since the early 1970s. Coastal areas in these latitudes have been trawled since the late 1950s. Detailed records of areas subjected to trawling and intensity of trawl fishing prior to 1984 do not exist. Logbook data indicate that the areas which included assemblage 'B' (the inshore sites) received more than twice the trawl effort per unit area than the areas which included assemblage 'A' (the coastal sites) and more than eight times that given to the area which included assemblage 'C' (near-reef sites). The transitional sites were subjected to about 80% of the effort given to assemblage 'B' (Table 11). As assemblages 'B' and 'C' are more closely related to each other in terms of faunal composition than each is to assemblage 'A', the difference between 'B' and 'A', and 'B' and 'C' cannot be attributed to the effects of additional trawling effort alone.

DISCUSSION

The area between 18°S and 21°S supports trawl fisheries which can be distinguished by target species, geographic location, depth and diurnality. The major fisheries are for penaeid prawns. Inshore fisheries for tiger and banana prawns are largely segregated from an offshore and near-reef fishery for king prawns which is of greater magnitude and effort than the inshore fishery.

The existence of recognisable faunal associations in areas subject to trawling has been discussed by Pauly (1979), Rainer and Munro (1982) and Rainer (1984). Faunal associations in the south-eastern Gulf of Carpentaria were shown to be linked to depth, distance offshore and substrate composition by Rainer and Munro (1982). The same authors recognised three major faunal associations whose distributions were correlated with distance offshore and depth. Rainer (1984) was able to show seasonal effects upon the faunal associations of the same area. Recently Somers (1987) demonstrated the influence of substrate composition and depth upon the distribution of two commercially valuable penaeid species (*P. semisulcatus, P. esculentus*) which are prominent target and indicator species in the Gulf of Carpentaria. Poiner and Harris (1986) gave evidence that trawling may cause some disturbance to the faunal composition within faunal assemblages. Their analysis again showed the existence of faunal assemblages which appear to be linked to depth-distance from shore.

The present study gives clear evidence for the existence of a coastal, demersal fauna between 18°S and 21°S. This fauna is very dissimilar to those of inshore and near-reef - inter-reef assemblages, which could be differentiated (although at a lower level of dissimilarity) from the coastal assemblage. Some sites had faunal compositions which were transitory between the inshore and near-reef assemblages. They could not be distinguished by proximity to reefs or substrate composition. Faunal site-assemblages could be associated with depth, distance from shore and substrate composition (Watson and Goeden in press).

The assemblages between 18°S and 21°S were dynamic in nature. Most of the species were found in more than one assemblage, although in varying numbers and proportions with total catch. Many species were recorded during only part of the entire year. The seasonal nature of the trawl fisheries is a clear example of the seasonal flux in species availability. Despite the changes that were evident in the species composition, the dominant three assemblages were present throughout the year, and their geographic boundaries did not change greatly, in terms of the sampling programme's month to month resolution. Further data and discussion on the year-to-year constancy of assemblages and on the relationship between proximity to reefs and faunal assemblages will be presented in Part 2 of the report.

The coastal and near-reef trawl fisheries which target on different penaeid species are unlikely to be responsible for the differentiation of faunal assemblages. Identifiable faunas were associated with clines in depth and distance from shore in trawl grounds prior to trawling (Rainer and Munro 1982) and the change in substrate composition between inshore and near-reef waters could also be responsible for the different faunas. Maximum divergence in community structure was not associated with maximal or minimal fishing effort.

Cannon *et al* (1987) have demonstrated the broad scale existence of inshore-offshore demersal communities between 12°S and 24°S along the Queensland continental shelf in both trawled and undisturbed areas. There are no data on the faunal composition of the Great Barrier Reef Lagoon

between 18°S and 21°S prior to the development of trawl fisheries. Poiner and Harris (1986) suggested that some change in faunal structure resulted from trawling in the south east Gulf of Carpentaria. Their data were obtained from adventitious sources rather than from purpose-designed research programmes and include error sources such as sampling gear variation and day-night catchability variation. These error sources mask their results, although their conclusions may well be valid.

There were gross dissimilarities between the trawlable fish faunas caught in the region 18°S to 21°S and the reef fauna of 23°S to 24°S documented by Russell (1983), which is the only comprehensive check list available for comparative examination. Fewer than 5% of species were common to the reefal environment of the Capricorn-Bunker Group addressed in Russell's (1983) study and to the trawl grounds in the central Barrier Reef region. The dominant families of the reef fish community were poorly represented in trawl catches, and the most species-rich families taken from the trawl fauna were, for the most part, poorly represented on the reef environment. Likewise, more than 90 % of the Echinodermata which were sampled by trawl between 18°S and 20°S have not been recorded during extensive surveys of a coral reef and lagoon at 23°20'S (Mather and Bennett 1978). Latitudinal variation and differences in collecting techniques are unlikely to be responsible for these differences. There are no comprehensive data on the faunal assemblages of the reefs between 18°S and 21°S, but studies conducted on the more noticeable groups (for example, Williams 1986) suggest that the dominant groups of the reef assemblages are isolated from the near-reef, open water and coastal assemblages described in this report. The fauna of the inter-reef areas and of the Great Barrier Reef Lagoon appear to be characteristic of fine sand and mud substrates, and are markedly different to those of the reef proper.

ACKNOWLEDGEMENTS

Much of the material contained in this report is based upon, or taken directly from manuscripts written by Reg Watson, Gerry Goeden, Clive Jones and Kurt Derbyshire from the Northern Fisheries Research Centre, Cairns. Their courtesy in giving access to these as yet unpublished manuscripts is greatly appreciated. The sampling programme upon which this report was based was conducted as an adjunct to research on red spot king prawns funded by the Fishing Industry Research Trust Account (FIRTA). Costs of the present project were minimised by using boat time made available under the auspices of the FIRTA grant. The financial support of the GBRMPA for the by-catch study is gratefully acknowledged.

REFERENCES

- Cannon, L. R. G., Goeden, G. B. & Campbell, P. (1987), Community patterns revealed by trawling in the inter-reef regions of the Great Barrier Reef, *Memoirs of the Queensland Museum* **25**(1), 45-70.
- Jones, C. & Derbyshire, K. (in press), Sampling the demersal fauna from a commercial penaeid prawn fishery off the central Queensland coast, *Memoirs of the Queensland Museum*.
- Mather, P. & Mather, I., (Editors) (1978), A coral reef handbook. A guide to the fauna, flora and geology of Heron Island and adjacent reefs and cays, Great Barrier Reef Committee Handbook no. 1, Brisbane.
- Morgans, J. F. C. (1956), Notes on the analysis of shallow-water soft substrates, *Journal of Animal Ecology* **25**, 367-87.
- Pauly, D. (1979), Theory and management of tropical multispecies stocks; a review, with emphasis on the South-East Asian demersal fisheries, ICLARM Study Review 1, 1-35.
- Poiner, I. R. & Harris, A. (1986), The effects of commercial prawn trawling on the demersal fish communities of the south eastern Gulf of Carpentaria. in Haines, A. K., Williams, G. C. & Coates, D. (eds) *Torres Strait Fisheries Seminar, Port Moresby*. Australian Government Printing Service, 239-59.

- Rainer, S. F. (1984), Temporal changes in a demersal fish and cephalopod community of an unexploited coastal environment in northern Australia, *Australian Journal of Marine and Freshwater Research* 35, 747-768.
- Rainer, S. F. & Munro, I. R. S. (1982), Temporal changes in a demersal and cephalopod community of an unexploited coastal environment in northern Australia, *Australian Journal of Marine and Freshwater Research* **33**, 1039-55.
- Robertson, J. & Dredge, M. C. L. (1986), Red spot king prawn research off central Queensland, *Australian Fisheries,* June 1986, 18-20.
- Russell, B. C. (1983), Annotated checklist of the coral reef fishes in the Capricorn-Bunker Group Great Barrier Reef Australia, Great Barrier Reef Marine Park Authority, Townsville.
- Staples, D. (1986), Modelling the recruitment process of the banana prawn *Penaeus merguiensis* in the southern Gulf of Carpentaria, in Rothlisberg, P.C., Hill, B. J. & Staples, D. (eds) *Second Australian National Prawn Seminar NPS2, Cleveland, Australia.*
- Somers, I. R. (1987), Sediment type as a factor in the distribution of commercial prawn species in the western Gulf of Carpentaria, *Australia, Australian Journal of Marine and Freshwater Research* **38**, 133-149

TABLE 1. Proportion (%) of total prawns by species complex received by buyers between Lucinda and Bowen.

Species	1984	1985	1986	1987
Kings P. latisulcatus P. longistylus	65.7	72.3	54.3	54.2
Tigers <i>P. esculentus</i> <i>P. semisulcatus</i>	20.2	16.4	26.1	35.4
Endeavours M. endeavouri M. ensis	5.9	4.9	5.3	5.2
Banana P. merguiensis	7.5	5.3	13.6	5.1
Corals Metapenaeopsis, Trachypenaeus	0.8	0.1	0.2	0.7

TABLE 2. Average catch rates and estimates of total landings from the central Queensland king prawn fishery.

	1981	1982	1983	1984	1985	1986	1987
Catch rate (kg/hour)	-	-	-	-	9.82	11.07	10.61
Catch (tonnes)	200	750	250	650	650	1800	2000

 Table 3. Characteristics of sites sampled in 1985.

Site	Location	Depth(m)	Gravel(%)	Sand(%)	Silt(%)	Clay(%)	Median(O)
1	18 27.5S	17	0.0	6.8	59.3	33.9	7.5
2	146 22.5E 18 27S	23	7.8	61.1	20.0	11.2	1.4
3	18 23S	34	4.1	88.6	3.1	4.2	0.6
4	18 20.5S	42	8.1	84.7	4.6	2.7	0.5
5	18 17.5S 146 42F	53	3.6	75.2	15.8	5.3	2.6
6	18 25.5S 146 48F	53	3.6	82.3	14.1	0.0	3.1
7	18 33.5S 146 58 5E	49	4.5	84.3	8.1	3.0	2.3
8	18 35.5S 147 07.5F	56	3.6	77.7	16.7	2.0	3.1
9	18 36S 147 16F	53	3.8	78.6	14.7	2.9	2.6
10	18 30S 147 18E	62	6.1	85.1	7.9	0.8	2.2
11	18 41.5S 147 25.5E	54	1.9	78.9	15.4	1.9	2.7
12	18 54.5S 147 29.5E	49	3.2	85.3	7.5	4.0	1.1
13	19 02.5S 147 27.5E	39	6.7	8 <mark>5</mark> .4	4.7	3.1	2.1
14	19 08.5S 147 22.5E	30	2.6	87.7	5.4	1.4	1.2
15	19 15S 147 18.0E	15	0.0	14.9	46.2	38.9	8.2
16	19 02S 147 38E	51	5.8	87.6	5.0	1.6	1.0
17	18 52.5S 147 24.5E	46	5.3	87.4	4.5	2.7	2.1
18	18 46.0S 147 11.5E	42	3.9	88.0	5.7	2.4	2.2
19	18 43S 147 03E	42	5.0	90.0	2.6	2.5	1.5
20	18 40.5S 146 52.5E	41	2.9	84.9	9.3	2.9	1.6

Phylum	Class	Number of species	Abundance Estimated of individuals biomass		
		Number %	%	%	
Chordata	Ascidiacea	2.4			
	Chondricythes Osteichthyes Reptilia	5 1.0) 267 56.0) 5 1.0)	38	75	
Crustacea	Malacostraca	91 19.1	42	20	
Echinodermata	Crinoidea Asteroidea Ophiuroidea Echinoidea Holothuroidea	3 0.6) 21 4.4) 6 1.3) 8 1.8) 12 2.5)	16	2	
Mollusca Cephalopoda	Gastropoda Bivalvia 10 2.1)	31 6.5) 8 1.8)	4	1	
Porifera		1*			
Cnidaria		3*			
Sipuncula		1*			
Annelida		2*			
Bryozoa		1*			
Total		477 98.5	100	98	

Table 4. Abundance and biomass of major taxonomic groups.

* Species not separated or identified

Time						Weight	(kg)								
Site		J	FI	M	A 1	M .	J	J	4 8	S (1 C	N [- 	Vean	SE
1 2 3 4 5 6 7 8 9 10 11 23 14 15 16 17 18 19 20														12.8 15.6 54.1 31.6 24.9 19.4 38.1 25.4 30.7 17.9 28.6 29.4 31.8 47.2 18.8 23.0 37.3 28.1 24.7 44.9	$\begin{array}{c} .83\\ .50\\ 1.52\\ 1.12\\ .94\\ .92\\ 1.31\\ 1.23\\ 1.11\\ .71\\ 1.17\\ .99\\ 1.20\\ 1.25\\ .82\\ .87\\ 1.20\\ 1.24\\ 1.26\\ 1.13\end{array}$
Mean (kg)		31.1	30.9	28.2	37.6	49.6	27.9	32.4	27.1	23.4	19.1	18.7	24.8		
S.E.		.72	.84	1.94	.92	1.15	.95	.80	.84	.84	.59	.70	.83		

Table 5. By-catch weight (kg) related to site (station number) and time from 1985 monthly samples.

Table 6. Number of species in 10 most species-rich families from trawl grounds between 18°S-21°S compared with numbers of species from these families occurring in Russell's (1983) Capricorn-Bunker checklist.

Family	Number of species 18º-21º (trawl)	Number of species (Russell, 1983)	Number of common species	Common species taken by trawl (Russell,1983)
Apogonidae	17	33	2	0
Scorpaenidae	16	21	2	1
Carangidae	16	21	4	1
Platycephalidae	14	4	1	0
Tetraodontidae	12	11	2	0
Nemipteridae	11	9	3	2
Monacanthidae	8	13	3	3
Leiognathidae	8	0	0	0
Serranidae	8	32	3	0
Synodontidae	8	8	1	0
Total	118	152	21	7

Table 7. Numbers of species of Echinodermata from Heron Island reef (Mather and Bennett, 1978) from trawl grounds between 18°S and 19°30'S, and common species.

Class	Number of species recorded at Heron Is. (Mather and Bennett, 1978)	Number of spec taken by trawl	ies	Common species			
Crinoidea	26	3		1 *			
Asteroidea	31	21		6 **			
Ophiuroidea	ı 17	6		1*			
Echinoidea	16	8		1			
Holothuroid	ea 29	13		1			

Not all species identified from trawl samples

** - Three species from Heron Island noted as having inter-reef distribution

Table 8.Classification of sample sites into site-assemblages. Monthly, total and overall classification
are shown. Transitional sites are shown as B/C. Site assemblage classification based on substrate
analysis are also shown (from Watson and Goeden, in press).

Site	Month JFMAMJJASOND	Tota clas "A"	l san sifiec "B"	nples 1 as "C"	Overall classification group	Sediment
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	AAAAAAAAAAAA BBBBBBBBBBBB BBCBBCBCCBC C-CCCCCCCCCC	12 12 0	$\begin{array}{c} 0 \\ 0 \\ 12 \\ 7 \\ 0 \\ 1 \\ 5 \\ 0 \\ 3 \\ 1 \\ 11 \\ 11 \\ 11 \\ 17 \\ 7 \\ 8 \\ 8 \\ 8 \\ 8 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 5 \\ 11 \\ 11 \\ 6 \\ 11 \\ 8 \\ 11 \\ 9 \\ 0 \\ 0 \\ 1 \\ 3 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	A B B/C C C B/C C C C C B B B B B B B B B	B B C C C C C C C C C C C C C C C C C C

Table 9.Species found only in single site assemblages during monthly sampling. The number inbrackets refers to the number of months in which the species appeared (Watson and Goeden, in press).

		Assemblage	
	"A"	"B"	"C"
An	nusium	Portunus	Portunus
pleurc	onectes(9)	rubromarginatus(11)	argentatus(9)
Cha	arybdis	Hypodyte	Nemipterus
trur	ncata(9	carinatus(9)	celebicus(9)
Aj	oogon	Parapercis	Saurida
peocil	opterus(7)	nebulosa(9)	undosquamis(7)
Repoi	muscenus	Engyprosopon	Trachinocephalus
bel	cheri(7)	grandisquama(8)	myops(7)
Pc	ortunus	Paramonacanthus	<i>Upenaeus</i> sp 1(5)
pela	gicus(6)	japonicus(6)	
Metap paln	enaeopsis nensis(5)	<i>Sepia</i> spp(6)	
Ner	mipterus	Dactyloptena	
hex	adon(5)	papilio(5)	

Table 10. Species absent from site assemblages. Numbers in brackets show number of months in which the species was absent from the site assemblage (Watson and Goeden, in press).

	Assemblage		
"A"	"B"	"C"	
Upeneus sp 1 (12)	Amusium pleuronectes(9)	Dactylopus dactylopus(7)	
Penaeus	Charybdis	Amusium	
longistylus(11)	truncata(7)	pleuronectes(5)	
Trachinocephalus	Priacanthus	Apogon	
myops(11)	tayenus(6)	peocilopterus(5)	
Synodus	Arnoglossus	Charybdis	
similis(10)	waitei(5)	jaubertensis(5)	
Maretia	Nemipterus	Lethrinus	
planulata(9)	hexodon(5)	nematacanthus(5)	
Sorsogonia	Penaeus	Metapenaeopsis	
tuberculata(9)	semisulcatus(5)	lamellata(5)	

 Table 11.
 Fishing effort (trawl hours monitored) in 6 by 6 nautical mile grids which included sample sites, by site assemblage.

			Fishi	ng Effort (Tra	awl hours)	
Site Assemblage	Number of sites	1985	1986	1987	Total	Average effort/ grid
Coastal(A) Inshore(B) Inter-reef(C) Transitional	3 7 6 4	45 869 152 303	56 150 50 169	423 1583 47 714	524 2602 249 1186	58.2 123.9 14.8 98.8

Figure 1. Sample sites

Figure 2 a. Geographic catch distribution of the central Queensland king ((()) and tiger-endeavour (()) prawn fisheries-1985

Figure 2 b. Geographic catch distribution of the central Queensland king () and tiger-endeavour () prawn fisheries-1986

Figure 2 c. Geographic catch distribution of the central Queensland king ((()) and tiger-endeavour (()) prawn fisheries-1987

Figure 3 a. Monitored effort directed at king prawn stocks between 1984 and 1987

page 22

Catch Rate per Day Fished (1985)

Catch Rate (kg per hour fished)

Figure 4 a. Daily catch rates in the king prawn fishery-1985

KINGS

Catch Rate per Day Fished (1986)

Catch Rate (kg per hour fished)

Figure 4 b. Daily catch rates in the king prawn fishery-1986

KINGS

Catch Rate (kg per hour fished)

page 25

Figure 4 c. Daily catch rates in the king prawn fishery-1987

Catch Rate (kg per hour fished)

Catch Rate per Day Fished (1986)

Catch Rate (kg per hour fished)

Figure 4 e. Daily catch rates in the tiger prawn fishery-1986

Catch Rate per Day Fished (1987)

TIGERS

Catch Rate (kg per hour fished)

Figure 4 f. Daily catch rates in the tiger prawn fishery-1987

page 29

Site assemblages: 'A'- coastal (stripes), 'B'- inshore 'C'- inter-reef (large dots). (From Watson and Goeden, the ordinate. (small dots), m/s)

(B)- small dots, Inter-reef (C)- large dots. (From Watson and Goeden, m/s)

APPENDIX 1. Checklist of the 477 species taken by trawl in 1985-86 and rank of numerical abundance for the 200 taxa used in community structure and assemblage analysis.

109

P. MOLLUSCA C. GASTROPODA SC.PROSOBRANCHIA O. ARCHEOGASTROPODA F. FISSURELLIDAE Scutus unguis O. MESOGASTROPODA F. XENOPHORIDAE Xenophora sp.1 F. STROMBIDAE Strombus dilatatus Strombus vittatus Terebellum terebellum F. CYMATIIDAE Distorsio reticulata F. BURSIDAE Bursa sp.1 F. CASSIDAE Phalium bisulcatum Phalium glabratum angasi F. TONNIDAE Tonna cerevisina Tonna tetracotula Tonna sp.1 F. CYPRAEIDAE Cypraea sp.1 F. OVULIDAE Volva volva F. NATACIDAE Polinices sp.1 O. NEOGASTROPODA F. MURICIDAE Bedeva c.f. paivae Chicoreus banksii Chicoreus sp.1 Murex nigrospinosus Rapana rapiformis F. FASCIOLARIIDAE Pleuroploca sp.1 F. HARPIDAE Harpa articularis F. VOLUTIDAE Melo sp.1 Volutoconus grossi mcmichaeli F. VASIDAE Tudicula armigera SC. OPISTOBRANCHIA **O. ANASPIDIA** F. APLYSIIDAE Aplysia sp.1 Dolabella auriculana **O.NOTASPIDIA** F. PLEUROBRANCHIDAE Pleurobranchidae sp.1 **O. NUDIBRANCHIA** F. DORIDIDAE Dorididae sp.1

F. CHROMODORIDIDAE	
Armina sp.1	
C. BIVALVIA	
SC. LAMELLIBRANCHIA	
O. TOXODONTA	
F. ARCIDAE	
O ANISOMYARIA	
F. PECTINIDAE	
Chlamys leopardus	103
Chlamys sp.1	
F. AMUSIIDAE	8
Amusium pleuronectes	45
F. SPONDYLIDAE	
Spondylus wrightianus	
O. HETERODONTA	
F. CARDIIDAE	
F. TELLINIDAL Tellinidae sp.1	
C. CEPHALOPODA	
SC. COLEOIDEA	
O. SEPIOIDEA	
F. SEPIIDAE	
Senia ellintica	25
Sepia plangon	20
Sepiadarium kochi	
F. SEPIOLIDAE	
Euprymna sp.1	
Sepioloidea lineolata	
F. LOLIGINIDAE	
Loligo chinensis	118
<i>Loligo</i> sp.1	
Loliolus sp.1	
P. OCTOPODIDAE	
P. CRUSTACEA	
C. MALACOSTRACA	
SC. HOPLOCARIDA	•
F. GONODAG I YLIDAE Gonodactylus graphurus	102
F. HARPIOSQUILLIDAE	152
Harpiosquilla harpax	
Harpiosquilla melanoura	
F. SQUILLIDAE	
Squilla anomala	134
Squilla COSIAIA Squilla multicarinata	125
Squilla nepa	125
Squilla quinquedentata	
Squilla woodmasoni	148
Squilla sp.1	

page 34

<i>Squilla</i> sp.2	
SC. PERACARDIA	
O. ISOPODA	
Calcipila cornuta	
Creniola saurida	
SC. EUCARIDA	
Solenocera australiana	
Solenocera sp.1	101
Solenocera sp.2	
F. PENAEIDAE	
Atypopenaeus stenodactylus	
Metapenaeopsis spp	1
Metapenaeopsis lamellata	49
Metapenaeopsis mogiensis	
Metapenaeopsis palmensis	61
Metapenaeopsis rosea	
Metapenaeus endeavouri	42
Metapenaeus ensis	28
Parapenaeopsis cornuta	
Penaeus canaliculatus	
Penaeus esculentus	69
Penaeus latisulcatus	33
Penaeus Iongistylus	13
Penaeus merguiensis	
Penaeus monodon	57
Trophyponaous anchoralis	57
	٨
Trachypenaeus granulosus	4
Trachypenaeus fulvus	
E SICYONIDAE	
Sicvonia cristata	66
F. ALPHIIDAE	
Alpheus sp.1	
F. PALINURIDAE	
Panulirus ornatus	
F. SCYLLARIDAE	
Scyllarus demani	81
Scyllarus rugosus	95
Scyllarus martensii	
Thenus orientalis	35
<i>Thenus</i> sp.1	
F. PAGURIDAE	
Paguridae spp.	
F. GALATHEIDAE	
Galatheidae sp.1	
F. DROMIDAE	
Dromidia sp. i Dromidianaia australianaia	
Dromidiopsis australiensis	
Dorinne frascone	
E LEUCOSIIDAE	
Arcania elongata	
Ixa inermis	
F. MAJIDAE	
Austrolobinia capricornesis	
Hyastenus campbelli	181

,	Livestonus discentifica		
	Navoides taurus		
	Phalanginus australiensis	191	
	F PARTHENOPIDAE	101	
	Cryptopoida sp.1		
	Parthenope contrarius		
	Parthenope longimanus		
	Zebrida adamsi		
	F. CORYSTIDAE		
	Jonas luteanus		
	Notopus dorsipes		
	F. PORTUNIDAE		
	Charybdis anisodon		
	Charybdis calianassa		
	Charybdis cruciata		
	Charybdis jaubertensis	63	
	Charybdis natator	159	
	Charybdis truncata	26	
	Lupocyclus philippinesis	07	
	Lupocyclus rotundatus	97	
	Podopninaimus vigii	4.4	
	Portunus argeniaius	00	
	Portunus gracilinarius	121	
	Portunus pelagicus	89	
	Portunus rubromarginatus	- q -	
	Portunus sanquinolentus	0	
	Portunus tenuines	5	
	Portunus tuberculosis	•	
	Thalamita parvidens		
	Thalamita sima		
	Thalamita sp.1		
	F. XANTHIDAE		
	Actumnus pugilator		
	Demania macnielli		
	Demania c.f. splendida		
	Eucrate dorsalis		
	Liagore rubromaculata		
	Neoxanthias michelae		
	Pilumnus ?longicornis		
	Pilumnus nigrispinifer		
	Thacanophrys longispinus		
	l richia dromiaetormis		
P. ECHINODERMATA			
C. CRINOIDEA			
50. ARTIC			
0.00			
	Comanthina schlegeli		
	Pterometra venusta		
	Comatulid spp	71	
C ASTEROIDEA	oomatana opp		
0. Pl	HANEROZONIA		
0.11	F. LUIDIIDAE		
	Luiidia maculata	154	
	F. ASTROPECTINIDAE		
	Astropecten zebra	180	
	F. GONIASTRIDAE		
	Anthenea sp.1		

Goniasteridae sp.1 Goniodiscaster australiae		
Iconaster longimanus Iconaster sp.1	175	
Stellaster equestris	38	
F. ORIAS I ERIDAE Asterodiscus elegans		
Culcita novaeguinea		
Pentaceraster gracilis	155	
Pentaceraster regulus Pentaceraster sp.1		
Poraster superbus		
F. OPHIDIASTERIDAE		
Nardoa sp.1		
l amaria fusca Tamaria magalanlar		
Metrodira subulata	142	
O. SPINULOSIDA		
F. ACANTHASTERIDAE		
Acanthaster brevispinus		
Furetaster insignis		
C. OPHIUROIDEA		
O. PHRYNOPHIURIDA		
F. EURYALIDAE	160	
O. GNATHOPHIURIDA	100	
F. OPHIOTRICHIDAE		
Ophiomaza cacaotica	193	
E OPHIODERMATIDAE		
Ophiarachnella gorgonia		
Ophiochasma stellatum	171	
Ophiuroid spp	140	
C. ECHINOIDEA		
O. CIDAROIDA E. CIDARIDAE		
Prionocidaris bispinosa	100	
O. CENTRECHINOIDA		
F. DIADEMATIDAE		
	72	
F. TEMNOPLEURIDAE Salmaciella dusumieri	68	
Temnotrema bothrvoides	91	
Temnotrema sp.1	177	
Temnotrema spp		
Peronella leseuri	114	
Peronella orbicularis	92	
F. SPATANGIDAE		
Maretia planulata	2	
F. CUCUMARIIDAE		
Pentacta ancens		

Pentacta crassa Pentacta quadrangularis Psuedoclolochirus axiologus F. PHYLLOPHORIDAE Actinocucumis typicus Phyllophorus (Urodemella) holothuroides O. ASPIDOCHIROTIDA F. HOLOTHURIIDAE 52 Holothurian spp Actinopyga echinites 1 Bohadschia sp.1 Holothuria (Mertensiothuria) sp.1 Holothuria (Metriatyla) ocellata Holothuria (Metriatyla) martensi F. STICHOPODIDAE Stichopus variegatus P. CHORDATA C. ASCIDIACEA 43 Zooanthus sp.1 62 Ascidian spp C. CHONDRICHTHYES SC. ELASMOBRANCHI O. SELACHII F. ORECTOLOBIDAE Orectolobus sp.1 F. HEMISCYLIDAE Chiloscyllium punctatum O. BATOIDEA F. RHYNCHOBATIDAE Rhynchobatus sp.1 F. DASYATIDAE 184 Dasyatis kuhlii Himantura sp.1 C. OSTEICHTHYES SC. ACTINOPTERYGEI **O. CLUPEIFORMES** F. CLUPEIDAE Amblygaster sirm Sardinella fimbriata ? /S. albella F. ENGRAULIDAE Thryssa hamiltonii Thryssa setirostris Stolephorus devisi = Encrasicholina devisi O. ANGUILLIFORMES F. MURAENIDAE Gymnothorax reticularis Gymnothorax undulatus F. MURAENOSCIDAE Muraenesox bagio Muraenosox cinereus F. NETTASTOMATIDAE Nettastomatidae sp.1 **O. SILURIFORMES** F. PLOTOSIDAE Euristhmus lepturus Euristhmus nudiceps Plotosus anguillaris

	O. MYCTOPHIFORMES		
	F. SYNODONTIDAE		
	Saurida micropectoralis		
	Saurida tumbil	76	
	Saurida undosquamis	18	
	Saurida sp.1 (juvenile)		
	Synodus sageneus	55	
	Synodus similis	22	
	Synodus sp 1		
	Trachinocenhalus myons	16	
		10	
	F. BATRACHOIDIDAE	146	
		140	
	O. LOPHIFORMES		
	F. ANTENNARIIDAE		
	Antennarius commersoni	100	
	Antennarius hispidus	162	
	Antennarius nummifer		
	Antennarius striatus	143	
	Antennarius sp	149	
	Tathicarpus butleri	122	
	F. TETRABRACHIIDAE		
	Tetrabrachium ocellatum		
	O OPHIDIIFOBMES		
	E OPHIDIDAE		
	Sirembo ierdoni	166	
	Sirembo jeruoni Sirembo imborbio	100	
	F. CARAPIDAE		
	Carapus c.r. nomer		
	Jordanicus gracilis		
	O. GADIFORMES		
	F. BREGMACEROTIDAE		
	Bregmaceros c.f. nectabanus	:	
	O. BELONIFORMES		
	F. BELONIDAE		
	?Ablennes hians (juv)		
	F. EXOCOETIDAE		
	<i>Cypselurus</i> sp.1		
	F. HEMIRAMPHIDAE		
	Fuleptorhamphus viridis		
÷	O BEBYCIEOBMES		
		105	
		105	
	F. SOLENICHTHYIDAE		
	Solenostomus sp.1		
	F. SYNGNATHIDAE		
	Halicampus grayi		
	Hippocampus whitei		
	Solegnathus lettiensis	98	
	F. FISTULARIIDAE		
	Fistularia commersoni	99	
	or F. petimba. See Russell (1	983) p. 3	32
	F. CENTRISCIDAE		
	Centriscus scutatus	34	
	O SCOBPAENIFORMES		
	F SCORPAENIDAE		
	Cottanietus cottoides		
	Dondrophirup brachunterus		
	Dendrochinus Drachypierus		

Erosa erosa	38
Hypodytes carinatus	14
Inimicus caledonicus	60
Liocranium praepositum	
Minous trachycephalus	80
Minous versicolor	107
Paracentropogan longispinus	
Parascorpaena pictus	186
Peristrominous dolosus	133
Pterois volitans	131
Scorpaenopsis cirrhosa	107
Scorpaenopsis sp.1	18/
Tetraroge leucogaster	87
F. TRIGILIDAE	10
Lepidotrigia calodactyla	10
F. APLOACTINIDAE	100
Aploactis aspera	106
Adventor elongatus	
Kanekonia c.t. queensiandica	
Paraploactis c.f. obbesi	
Parapioactis sp.1	
F. PLATYCEPHALIDAE	107
Elates ransonneti	137
Inegocia Isacantnus	48
Onigocia macrolepis	
Onigocia spinosus	
Onigocia sp. 1	
Unigocia sp.2	
Papilloculiceps	almuo
(Cymbacephalus) nemalophina Dietwoenholus ondrochtonsis	annus
Platycephalus endrachiensis	105
Rogadius asper	105
Sorsogona luberculata	15
Suggrundus macracantnus	21
Suggrundus sp.2	108
	120
P. DAGTTEOFTERIDAL	110
Dactyloptena oneniaio	20
	20
E PEGASIDAE	
Pegasus draconis	
O PERCIFORMES	
E SEBBANIDAE	
Centrogenys vaigiensis	188
Cenhalopholis boenack	100
Cromilentes altivelis	
Eninephelus areolatus	
Epinephelus quovanus	
Epinephelus sexfasciatus	112
Epinephelus tauvina	
Plectropomus maculatus	
F. PSEUDOCHROMIDAE	
Pseudochromis quinquedentat	us
F. PLESIOPIDAE	
Fraudella carasiops	
F. TERAPONIDAE	
Pelates quadrilineatus	145
Pelates sexlineatus	161

Terapon jarbua	136
Terapon puta	
Terapon theraps	73
F. PRIACANTHIDAE	
Priacanthus macracanthus	96
Priacanthus tayenus	93
F. APOGONIDAE	
Apogon aureus	
Apogon brevicaudatus	00
Apogon ellioti	30
Apogon c.t. tasciata	130
Apogon nigripinnis	50
Apogon poecilopterus	50
Apogon quadritasciatus	64
Apogon semiineatus	77
Apogon septemstriatus	11
Apogon sp. 1	
Apogon sp.2 (juvenile)	
Apogon sp.3	
Apogoniciunys sp. 1	
Archamia tucata	
Siphamia iuscolineata	
Sipnamia sp.1 (juvenile)	
F. SILLAGANIDAE	104
Sillago maculata burrus	104
	152
F. RACHYCENTRIDAE	
F. ECHENEIDIDAE	170
	179
F. CARANGIDAE	
Alectis indicus	
Alepes apercha	
	147
	147
Carangoldes C.I. Ull	
Decapterus macrosoma	
Cnathanadan anaciasus	
Solar boons	
Selar DOOPS	
Serialina nigrofacciata	170
	172
Uraenie uraenie	
Parastromateus niger	100
F I FIOGNATHIDAE	100
Gazza minuta	
Leioanathus bindus	150
Leiognathus decorus	
Leiognathus elongatus	46
Leiognathus equulus	176
Leioanathus moretoniensis	127
Leioanathus splendens	23
Secutor ruconius	
F. GERREIDAE	
Gerres filamentosus	170

Gerres sp.1	
Gerres sp.2	
Pentaprion longimanus	164
F. LUTJANIDAE	
Lutjanus c.f. amabilis?=L. ade	tii?
Lutianus carponotatus	196
Lutianus erythropterus	1/3
Lutianus maiabaricus	116
Luijanus russelli Lutianus sehae	139
Lutjanus sebae	105
F. CAESIONIDAE	
Pterocaesio sp.1	
Pterocaesio sp.2	
F. NEMIPTERIDAE	
Nemipterus furcosus	47
Nemipterus hexodon	84
Nemipterus c.f. marginatus	12
Nemipterus celebicus	
Nemipterus metopias=N. zysr	on
Nemipterus tolu=N. peronii	86
<i>Nemipterus</i> sp.1	0.4
Pentapodus paradiseus	94
Pentapodus sp. 1	
Scolopsis monogramma	126
Scolopsis monogramma	120
Diagramma pictum	135
Pomadasvs maculatum	90
Pomadasys trifasciata	78
F. LETHRINIDAE	
Gymnocranius bitorquatus	
Lethrinus haemopterus	195
Lethrinus nematacanthus	53
F. SPARIDAE	
Argyrops spinifer	
F. SCIAENIDAE	107
Jonnius ambiycephaius	197
	144
F. MULLIDAE	
l Ineneus sulnhureus	24
Upeneus suphareus	70
Upeneus c.f. traqula	59
Upeneus sp.1	7
F. PEMPHERIDIDAE	
Parapriacanthus ransonneti	
F. EPHIPPIDAE	
Drepane punctata	
Platax teira	138
Zabidius novemaculeatus	
F. CHAETODONTIDAE	
Heniochus acuminatus	100
	182
r. rumauan inibat Chaptodontoplus dubouloui	
Pristotis ierdoni	19
F. CIRRHITIDAE	

	Cirrhitichthys aprinus	
	F. CEPOLIDAE	
	Acanthocepola abbreviata	
	F. SPHYRAENIDAE	
	F. POLYNEMIDAE	
	Choerodon centralotes	1/1
	Choerodon monostiama	163
	Choerodon vitta	167
	Choerodon cauteroma	54
	Choerodon sugillatum	04
	E OPISTOGNATHIDAE	
	Onistognathus latitabunda	
	Parapercis diplospilus	
	Parapercis nebulosa	29
	E LIBANOSCOPIDAE	
	Ichthyoscopus fasciatus	
	Uranoscopus sp 1	
	Meiacanthus geminatus	115
	Xinhasia setifer	
•	E CALLIONYMIDAE	
	Callionymus grossi	21
	Callionymus japonicus	
	Dactylopus dactylopus	56
	Callionymus belcheri	58
	Callionymus limiceps	•••
	Svnchiropus rameus	31
	F. GOBIIDAE	
	Gobiidae sp.1	
	Yongeichthys criniger	
	F. SIGANIDAE	
	Siganus fuscescens	151
	F. TRICHIURIDAE	
	Trichiurus lepturus	
O. PL	EURONECTIFORMES	
	F. PSETTODIDAE	
	Psettodes erumei	119
	F. BOTHIDAE	
	Pseudorhombus argus	124
	Pseudorhombus arsius	120
	Pseudorhombus diplospilus	79
	Pseudorhombus	
	dupliciocellatus	39
	Pseudorhombus elevatus	74
	Pseudorhombus spinosus	30
	Pseudorhombus sp.1	
	Arnoglossus intermedius	40
	Arnoglossus waitei	65
	Botnus sp.1	0
	Engyprosopon grandisquama	3
	Engyprosopon sp.1	75
	Grammatobothus	15
	Grammalopolinus	05
	polyophinalmus	co

	IRONECTIDAE	
1.1 LL0	Samaris cristatus	102
F SOL	FIDAE	
1.002	Aesonia cornuta	169
	Dexillichthys muelleri	
Ā	Pardachirus pavoninus	189
	Soleichthys sp.1	
	Strabozebrias cancellatus	153
	Zebrias craticula	158
F. CYN	OGLOSSIDAE	
(Cvnoalossus sp.1	67
	Cvnoalossus sp.2	129
O. TETRAOD	ONTIFORMES	
F. TET	RAODONTIDAE	
	Amblyrhynchotes spinosissimus	5
	Anchisomus multistriatus	156
	Arothron immaculatus	
	Arothron stellatus	
(Canthigaster rivulata	
	Chelonodon patoca	
L	agocephalus scleratus	41
L	agocephalus wheeleri	
-	Torquigener brevipinnis	
-	Torquigener parcuspinus	
-	Torquigener tuberculiferus	17
	Torquigener whitleyi	108
F. TRIA	CANTHIDAE	
-	Triacanthus biaculeatus	174
	Trixiphichthys weberi	165
F. BAL	ISTIDAE	
	Abalistes stellaris	
F. MON	IACANTHIDAE	
/	Alutera monoceros	
	Anacanthus barbatus	
, E	Brachaluteres taylori	
(Chaetoderma penicilligera	
I	Paramonacanthus japonicus	6
	Paramonacanthus filicauda	
	Paramonacanthus sp.1	
I	Pseudomonacanthus peroni	
F. DIOI	DONTIDAE	
	Tragulichthys jaculiferus	117
F. OST	RACIIDAE	
	actoria cornuta	132
	Rhyncostracion nasus	82
	Tetrosomus gibbosus	123
C. REPTILIA		
SC. LEPIDOSAURI	A	
O. SQUAMA	ГА	
F. HYD	ROPHIIDAE	
	Acalyptophis peronii	
	Aipysurus duboisii	
	Aipysurus laevis	
1	Hydrophis ornatus	
I	<i>Hydrophiidae</i> spp.	
RIFERA		
	several spp.	
IIDARIA		
	longronophthia ch 1	

P. PORIFERA

P. CNIDARIA

Dendronephthia sp.1 Dendronephthia sp.2

	Cnidaria spp.
P. SIPUNCULA	several spp.
P. ANNELIDA	<i>Chloea</i> sp. Annelid spp.
B. BRYOZOA	several spp.