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Abstract 22 

The dichotomy between smooth and striated myocytes is fundamental for bilaterian 23 

musculature, but its evolutionary origin is unsolved. In particular, 24 

interrelationships of visceral smooth muscles remain unclear. Absent in fly and 25 

nematode, they have not yet been characterized molecularly outside vertebrates. 26 

Here, we characterize expression profile, ultrastructure, contractility and 27 

innervation of the musculature in the marine annelid Platynereis dumerilii and 28 

identify smooth muscles around the midgut, hindgut and heart that resemble their 29 

vertebrate counterparts in molecular fingerprint, contraction speed, and nervous 30 

control. Our data suggest that both visceral smooth and somatic striated myocytes 31 

were present in the protostome-deuterostome ancestor, and that smooth myocytes 32 

later co-opted the striated contractile module repeatedly – for example in vertebrate 33 

heart evolution. During these smooth-to-striated myocyte conversions the core 34 

regulatory complex of transcription factors conveying myocyte identity remained 35 

unchanged, reflecting a general principle in cell type evolution.  36 

 37 

38 



 

Introduction 39 

Musculature is composed of myocytes that are specialized for active contraction 40 

(Schmidt-Rhaesa, 2007). Their contractile apparatus centers on actomyosin, a contractile 41 

module that dates back to stem eukaryotes (Brunet and Arendt, 2016a) and incorporated 42 

accessory proteins of pre-metazoan origin (Steinmetz et al., 2012). Two fundamentally 43 

distinct types of myocytes are distinguished based on ultrastructural appearance. In 44 

striated myocytes, actomyosin myofibrils are organized in aligned repeated units 45 

(sarcomeres) separated by transverse ‘Z discs’, while in smooth myocytes adjacent 46 

myofibrils show no clear alignment and are separated by scattered “dense bodies” (Figure 47 

1A). In vertebrates, striated myocytes are found in voluntary skeletal muscles, but also at 48 

the anterior and posterior extremities of the digestive tract (anterior esophagus muscles 49 

and external anal sphincter), and in the muscular layer of the heart; smooth myocytes are 50 

found in involuntary visceral musculature that ensures slow, long-range deformation of 51 

internal organs. This includes the posterior esophagus and the rest of the gut, but also 52 

blood vessels, and most of the urogenital system. In stark contrast, in the fruit fly 53 

Drosophila virtually all muscles are striated, including gut visceral muscles (Anderson 54 

and Ellis, 1967; Goldstein and Burdette, 1971; Paniagua et al., 1996); the only exception 55 

are little-characterized multinucleated smooth muscles around the testes (Susic-Jung et 56 

al., 2012). Also, in the nematode Caenorhabditis, somatic muscles are striated, while the 57 

short intestine and rectum visceral myocytes are only one sarcomere-long and thus hard 58 

to classify (Corsi et al., 2000; White, 1988).  59 



 

The evolutionary origin of smooth versus striated myocytes in bilaterians accordingly 60 

remains unsolved. Ultrastructural studies have consistently documented the presence of 61 

striated somatic myocytes in virtually every bilaterian group (Schmidt-Rhaesa, 2007) and 62 

in line with this, the comparison of Z-disc proteins supports homology of striated 63 

myocytes across bilaterians (Steinmetz et al., 2012). The origin of smooth myocyte types 64 

however is less clear. Given the absence of smooth muscles from fly and nematode, it has 65 

been proposed that visceral smooth myocytes represent a vertebrate novelty, which 66 

evolved independently from non-muscle cells in the vertebrate stem line (Goodson and 67 

Spudich, 1993; OOta and Saitou, 1999). However, smooth muscles are present in many 68 

other bilaterian groups, suggesting instead their possible presence in urbilaterians and 69 

secondary loss in arthropods and nematodes. Complicating the matter further, 70 

intermediate ultrastructures between smooth and striated myocytes have been reported, 71 

suggesting interconversions (reviewed in (Schmidt-Rhaesa, 2007)). 72 

Besides ultrastructure, the comparative molecular characterization of cell types can be 73 

used to build cell type trees (Arendt, 2003, 2008; Musser and Wagner, 2015; Wagner, 74 

2014). Cell type identity is established via the activity of transcription factors acting as 75 

terminal selectors (Hobert, 2016) and forming “core regulatory complexes” (CRCs; 76 

(Arendt et al., 2016; Wagner, 2014)), which directly activate downstream effector genes. 77 

This is exemplified for vertebrate myocytes in Figure 1B. In all vertebrate myocytes, 78 

transcription factors of the Myocardin family (MASTR in skeletal muscles, Myocardin in 79 

smooth and cardiac muscles) directly activate effector genes encoding contractility 80 

proteins (Fig. 1B) (Creemers et al., 2006; Meadows et al., 2008; Wang and Olson, 2004; 81 

Wang et al., 2003). They heterodimerize with MADS-domain factors of the Myocyte 82 



 

Enhancer Factor-2 (Mef2) (Black and Olson, 1998; Blais et al., 2005; Molkentin et al., 83 

1995; Wales et al., 2014) and Serum Response Factor (SRF) families (Carson et al., 84 

1996; Nishida et al., 2002). Other myogenic transcription factors are specific for different 85 

types of striated and smooth myocytes. Myogenic Regulatory Factors (MRF) family 86 

members, including MyoD and its paralogs Myf5, Myogenin, and Mrf4/Myf6 (Shi and 87 

Garry, 2006), directly control contractility effector genes in skeletal (and esophageal) 88 

striated myocytes, cooperatively with Mef2 (Blais et al., 2005; Molkentin et al., 1995) – 89 

but are absent from smooth and cardiac muscles. In smooth and cardiac myocytes, this 90 

function is ensured by NK transcription factors (Nkx3.2/Bapx and Nkx2.5/Tinman, 91 

respectively), GATA4/5/6, and Fox transcription factors (FoxF1 and FoxC1, 92 

respectively), which bind to SRF and Mef2 to form CRCs directly activating contractility 93 

effector genes (Durocher et al., 1997; Hoggatt et al., 2013; Lee et al., 1998; Morin et al., 94 

2000; Nishida et al., 2002; Phiel et al., 2001) (Figure 1B).  95 

Regarding effector proteins (Figure 1B) (Kierszenbaum and Tres, 2015), all myocytes 96 

express distinct isoforms of the myosin heavy chain: the striated myosin heavy chain ST-97 

MHC (which duplicated into cardiac, fast skeletal, and slow skeletal isoforms in 98 

vertebrates) and the smooth/non-muscle myosin heavy chain SM-MHC (which duplicated 99 

in vertebrates into smooth myh10, myh11 and myh14, and non-muscle myh9) (Steinmetz 100 

et al., 2012). The different contraction speeds of smooth and striated muscles are due to 101 

the distinct kinetic properties of these molecular motors (Bárány, 1967). In both myocyte 102 

types, contraction occurs in response to calcium, but the responsive proteins differ 103 

(Alberts et al., 2014): the Troponin complex (composed of Troponin C, Troponin T and 104 

Troponin I) for striated muscles, Calponin and Caldesmon for smooth muscles. In both 105 



 

myocyte types, calcium also activates the Calmodulin/Myosin Light Chain Kinase 106 

pathway (Kamm and Stull, 1985; Sweeney et al., 1993). Striation itself is implemented 107 

by specific effectors, including the long elastic protein Titin (Labeit and Kolmerer, 1995) 108 

(which spans the entire sarcomere and confers it elasticity and resistance) and 109 

ZASP/LBD3 (Z-band Alternatively Spliced PDZ Motif/LIM-Binding Domain 3), which 110 

binds actin and stabilizes sarcomeres during contraction (Au et al., 2004; Zhou et al., 111 

2001). The molecular study of Drosophila and Caenorhabditis striated myocytes 112 

revealed important commonalities with their vertebrate counterparts, including the 113 

Troponin complex (Beall and Fyrberg, 1991; Fyrberg et al., 1994, 1990; Marín et al., 114 

2004; Myers et al., 1996), and a conserved role for Titin (Zhang et al., 2000) and 115 

ZASP/LBD3 (Katzemich et al., 2011; McKeown et al., 2006) in the striated architecture.  116 

Finally, smooth and striated myocytes also differ physiologically. All known striated 117 

myocyte types (apart from the myocardium) strictly depend on nervous stimulations for 118 

contraction, exerted by innervating motor neurons. In contrast, gut smooth myocytes are 119 

able to generate and propagate automatic (or “myogenic”) contraction waves responsible 120 

for digestive peristalsis in the absence of nervous inputs (Faussone‐Pellegrini and 121 

Thuneberg, 1999; Sanders et al., 2006). These autonomous contraction waves are 122 

modulated by the autonomic nervous system (Silverthorn, 2015). Regarding overall 123 

contraction speed, striated myocytes have been measured to contract 10 to 100 times 124 

faster than their smooth counterparts (Bárány, 1967). 125 

 126 

To elucidate the evolutionary origin and diversification of bilaterian smooth and striated 127 

myocytes, we provide an in-depth ultrastructural, molecular and functional 128 



 

characterization of the myocyte complement in the marine annelid Platynereis dumerilii, 129 

which belongs to the Lophotrochozoa. Strikingly, as of now, no invertebrate smooth 130 

visceral muscle has been investigated on a molecular level (Hooper and Thuma, 2005; 131 

Hooper et al., 2008). Platynereis has retained more ancestral features than flies or 132 

nematodes and is thus especially suited for long-range comparisons (Denes et al., 2007; 133 

Raible et al., 2005). Also, other annelids such as earthworms have been reported to 134 

possess both striated somatic and midgut smooth visceral myocytes based on electron 135 

microscopy (Anderson and Ellis, 1967). Our study reveals the parallel presence of 136 

smooth myocytes in the musculature of midgut, hindgut, and pulsatile dorsal vessel and 137 

of striated myocytes in the somatic musculature and the foregut. Platynereis smooth and 138 

striated myocytes closely parallel their vertebrate counterparts in ultrastructure, molecular 139 

profile, contraction speed, and reliance on nervous inputs, thus supporting the ancient 140 

existence of a smooth-striated duality in protostome/deuterostome ancestors.  141 

 142 

 143 

Results 144 

Platynereis midgut and hindgut muscles are smooth, while foregut and somatic muscles 145 

are striated 146 

Differentiation of the Platynereis somatic musculature has been documented in much 147 

detail (Fischer et al., 2010) and, in five days post-fertilization (dpf) young worms, 148 

consists of ventral and dorsal longitudinal muscles, oblique and parapodial muscles, head 149 

muscles and the axochord (Lauri et al., 2014). At this stage, the first Platynereis visceral 150 

myocytes become detectable around the developing tripartite gut, which is subdivided 151 



 

into foregut, midgut and hindgut (based on the conserved regional expression of foxA, 152 

brachyury and hnf4 gut specification factors (Martín-Durán and Hejnol, 2015); Figure 153 

2—figure supplement 1). At 7 dpf, visceral myocytes form circular myofibres around the 154 

foregut, and scattered longitudinal and circular fibres around midgut and hindgut (Figure 155 

2A, Figure 2—figure supplement 2A), which expand by continuous addition of circular 156 

and longitudinal fibres to completely cover the dorsal midgut at 11dpf (Figure 2A, Figure 157 

2—figure supplement 2B) and finally form a continuous muscular orthogon around the 158 

entire midgut and hindgut in the 1.5 months-old juvenile (Figure 2A, Figure 2—figure 159 

supplement 2C). 160 

We then proceeded to characterize the ultrastructure of Platynereis visceral and somatic 161 

musculature by transmission electron microscopy (Figure 2C-M). All somatic muscles 162 

and anterior foregut muscles display prominent oblique striation with discontinuous Z-163 

elements (Figure 2C-H; compare Figure 1A), as typical for protostomes (Burr and Gans, 164 

1998; Mill and Knapp, 1970; Rosenbluth, 1972). To the contrary, visceral muscles of the 165 

posterior foregut, midgut and hindgut are smooth with scattered dense bodies (Figure 2I-166 

M). The visceral muscular orthogon is partitioned into an external longitudinal layer and 167 

an internal circular layer (Figure 2J), as in vertebrates (Marieb and Hoehn, 2015) and 168 

arthropods (Lee et al., 2006). Thus, according to ultrastructural appearance, Platynereis 169 

has both somatic (and anterior foregut) striated muscles and visceral smooth muscles. 170 

The molecular profile of smooth and striated myocytes 171 

We then set out to molecularly characterize annelid smooth and striated myocytes via a 172 

candidate gene approach. As a starting point, we investigated, in the Platynereis genome, 173 

the presence of regulatory and effector genes specific for smooth and/or striated 174 



 

myocytes in the vertebrates. We found striated muscle-specific and smooth muscle/non-175 

muscle isoforms of both myosin heavy chain (consistently with published phylogenies 176 

(Steinmetz et al., 2012)) and myosin regulatory light chain. We also identified homologs 177 

of genes encoding calcium transducers (calponin for smooth muscles; troponin I and 178 

troponin T for striated muscles), striation structural proteins (zasp/lbd3 and titin), and 179 

terminal selectors for the smooth (foxF, and gata456) and striated phenotypes (myoD). 180 

We investigated expression of these markers by whole-mount in situ hybridization 181 

(WMISH). Striated effectors are expressed in both somatic and foregut musculature 182 

(Figure 3A,C; Figure 3—figure supplement 1). Expression of all striated effectors was 183 

observed in every somatic myocyte group by confocal imaging with cellular resolution 184 

(Figure 3—figure supplement 2). Interestingly, myoD is exclusively expressed in 185 

longitudinal striated muscles, but not in other muscle groups (Figure 3—figure 186 

supplement 2). 187 

The expression of smooth markers is first detectable at 3 dpf in a small triangle-shaped 188 

group of mesodermal cells posteriorly abutting the macromeres (which will form the 189 

future gut) (Figure 3B, Figure 3—figure supplement 3A-C). At this stage, smooth 190 

markers are also expressed in the foregut mesoderm (Figure 3B, Figure 3—figure 191 

supplement 3A-C, yellow arrows). At 6 dpf, expression of all smooth markers is 192 

maintained in the midgut and hindgut differentiating myocytes (Figure 3D, Figure 3—193 

figure supplement 3D-G, Figure 3—figure supplement 4A-E) but smooth effectors 194 

disappear from the foregut, which turns on striated markers instead (Figure 3—figure 195 

supplement 1R-W) – reminiscent of the replacement of smooth fibres by striated fibres 196 

during development of the vertebrate anterior esophageal muscles (Gopalakrishnan et al., 197 



 

2015). Finally, in 2 months-old juvenile worms, smooth markers are also detected in the 198 

dorsal pulsatile vessel (Figure 3—figure supplement 3H-M) – considered equivalent to 199 

the vertebrate heart (Saudemont et al., 2008) but, importantly, of smooth ultrastructure in 200 

polychaetes (Jensen, 1974; Spies, 1973). None of the striated markers is expressed 201 

around the midgut or the hindgut (Figure 3—figure supplement 4F-K), or in the dorsal 202 

vessel (Figure 3—figure supplement 3L). Taken together, these results strongly support 203 

conservation of the molecular fingerprint of both smooth and striated myocytes between 204 

annelids and vertebrates. 205 

We finally investigated general muscle markers that are shared between smooth and 206 

striated muscles. These include actin, mef2 and myocardin – which duplicated into 207 

muscle type-specific paralogs in vertebrates, but are still present as single-copy genes in 208 

Platynereis. We found them to be expressed in the forming musculature throughout larval 209 

development (Figure 3—figure supplement 5A-F), and confocal imaging at 6 dpf 210 

confirmed expression of all 3 markers in both visceral (Figure 3—figure supplement 5G-211 

L) and somatic muscles (Figure 3—figure supplement 5M). 212 

Smooth and striated muscles differ in contraction speed 213 

We then characterized the contraction speed of the two myocyte types in Platynereis by 214 

measuring myofibre length before and after contraction. Live confocal imaging of 215 

contractions in Platynereis larvae with fluorescently labeled musculature (Movie 1, 216 

Movie 2) gave a striated contraction rate of 0.55±0.27 s-1 (Figure 4A-E) and a smooth 217 

myocyte contraction rate of 0.07±0.05 s-1 (Figure 4G). As in vertebrates, annelid striated 218 

myocytes thus contract nearly one order of magnitude faster than smooth myocytes 219 

(Figure 4F). 220 



 

Striated, but not smooth, muscle contraction depends on nervous inputs 221 

Finally, we investigated the nervous control of contraction of both types of muscle cells. 222 

In vertebrates, somatic muscle contraction is strictly dependent on neuronal inputs. By 223 

contrast, gut peristalsis is automatic (or myogenic – i.e., does not require nervous inputs) 224 

in vertebrates, cockroaches (Nagai and Brown, 1969), squids (Wood, 1969), snails 225 

(Roach, 1968), holothurians, and sea urchins (Prosser et al., 1965). The only exceptions 226 

appear to be bivalves and malacostracans (crabs, lobster and crayfish), in which gut 227 

motility is neurogenic (Prosser et al., 1965). Regardless of the existence of an automatic 228 

component, the gut is usually innervated by nervous fibres modulating peristalsis 229 

movements (Wood, 1969; Wu, 1939). 230 

Gut peristalsis takes place in Platynereis larvae and juveniles from 6 dpf onwards (Movie 231 

3), and we set out to test whether nervous inputs were necessary for it to take place. We 232 

treated 2 months-old juveniles with 180 μM Brefeldin A, an inhibitor of vesicular traffic 233 

which prevents polarized secretion (Misumi et al., 1986) and interferes with 234 

neurotransmission (Malo et al., 2000). Treatment stopped locomotion in all treated 235 

individuals, confirming that neurotransmitter release by motor neurons is required for 236 

somatic muscles contraction, while DMSO-treated controls were unaffected. On the other 237 

hand, vigorous gut peristalsis movements were maintained in Brefeldin A-treated animals 238 

(Movie 4). Quantification of the propagation speed of the peristalsis wave (Figure 5A-D; 239 

see Material and Methods) indicated that contractions propagated significantly faster in 240 

Brefeldin A-treated individuals than in controls. The frequency of wave initiation and 241 

their recurrence (the number of repeated contraction waves occurring in one 242 

uninterrupted sequence) did not differ significantly in Brefeldin A-treated animals 243 



 

(Figure 5E,F). These results indicate that, as in vertebrates, visceral smooth muscle 244 

contraction and gut peristalsis do not require nervous (or secretory) inputs in Platynereis. 245 

An enteric nervous system is present in Platynereis 246 

In vertebrates, peristaltic contraction waves are initiated by self-excitable myocytes 247 

(Interstitial Cajal Cells) and propagate across other smooth muscles by gap junctions 248 

ensuring direct electrical coupling (Faussone‐Pellegrini and Thuneberg, 1999; Sanders et 249 

al., 2006). We tested the role of gap junctions in Platynereis gut peristalsis by treating 250 

animals with 2.5 mM 2-octanol, which inhibits gap junction function in both insects 251 

(Bohrmann and Haas-Assenbaum, 1993; Gho, 1994) and vertebrates (Finkbeiner, 1992). 252 

2-octanol abolishes gut peristalsis, both in the absence and in the presence of Brefeldin A 253 

(Figure 5G), indicating that propagation of the peristalsis wave relies on direct coupling 254 

between smooth myocytes via gap junctions. 255 

The acceleration of peristalsis upon Brefeldin A treatment indicates that gut peristalsis is 256 

modulated by secreted signals (neurotransmitters, hormones or neurohormones) whose 257 

net combined effect in normal, resting conditions is to slow down the self-generated 258 

peristaltic waves. This is consistent with the existence of neurotransmitters that inhibit 259 

visceral muscle contraction in other bilaterians such as vertebrates (adrenaline 260 

(Burnstock, 1958)) and squids (acetylcholine (Wood, 1969))..To gain insights into the 261 

nature of these secreted signals, we investigated the innervation of the Platynereis gut. 262 

Immunostainings of juvenile worms for acetylated tubulin revealed a dense, near-263 

orthogonal nerve net around the entire gut (Figure 6A), which is tightly apposed to the 264 

visceral muscle layer (Figure 6C) and includes serotonergic neurites (Figure 6B,C) and 265 



 

cell bodies (Figure 6D). Interestingly, some enteric serotonergic cell bodies are devoid of 266 

neurites, thus resembling the vertebrate (non-neuronal) enterochromaffine cells – 267 

endocrine serotonergic cells residing around the gut and activating gut peristalsis by 268 

direct serotonin secretion upon mechanical stretch (Bulbring and Crema, 1959).  269 

Discussion 270 

Smooth and striated myocyte coexisted in bilaterian ancestors 271 

Our study represents the first molecular characterization of protostome visceral smooth 272 

musculature (Hooper and Thuma, 2005; Hooper et al., 2008). The conservation of 273 

molecular signatures for both smooth and striated myocytes indicates that a dual 274 

musculature already existed in bilaterian ancestors: a fast striated somatic musculature 275 

(possibly also present around the foregut – as in Platynereis, vertebrates (Gopalakrishnan 276 

et al., 2015) and sea urchins (Andrikou et al., 2013; Burke, 1981)), under strict nervous 277 

control; and a slow smooth visceral musculature around the midgut and hindgut, able to 278 

undergo automatic peristalsis due to self-excitable myocytes directly coupled by gap 279 

junctions. In striated myocytes, a core regulatory complex (CRC) involving Mef2 and 280 

Myocardin directly activated striated contractile effector genes such as ST-MHC, ST-281 

MRLC and the Troponin genes (Figure 7—figure supplement 1). Notably, myoD might 282 

have been part of the CRC in only part of the striated myocytes, as it is only detected in 283 

longitudinal muscles in Platynereis. The absence of myoD expression in other annelid 284 

muscle groups is in line with the “chordate bottleneck” concept (Thor and Thomas, 285 

2002), according to which specialization for undulatory swimming during early chordate 286 

evolution would have fostered exclusive reliance on trunk longitudinal muscles, and loss 287 



 

of other (myoD-negative) muscle types. In smooth myocytes, a CRC composed of NK3, 288 

FoxF and GATA4/5/6 together with Mef2 and Myocardin activated the smooth 289 

contractile effectors SM-MHC, SM-MRLC and calponin (Figure 7—figure supplement 1). 290 

In spite of their absence in flies and nematodes, gut myocytes of smooth ultrastructure are 291 

widespread in other bilaterians, and an ancestral state reconstruction retrieves them as 292 

present in the last common protostome/deuterostome ancestor with high confidence 293 

(Figure 7—figure supplement 2), supporting our homology hypothesis. Our results are 294 

consistent with previous reports of Calponin immunoreactivity in intestinal muscles of 295 

earthworms (Royuela et al., 1997) and snails (which also lack immunoreactivity for 296 

Troponin T) (Royuela et al., 2000). 297 

 298 

Origin of the enteric nervous system and enterochromaffine cells 299 

In both Platynereis and vertebrates, visceral smooth mycoytes are able to contract 300 

automatically but undergo modulation by secretory cells that form an enteric nerve 301 

plexus. Interestingly, an enteric nervous system has been found in most bilaterians 302 

investigated, including Platynereis (this study), earthworms ((Barna et al., 2001; Csoknya 303 

et al., 1991; Telkes et al., 1996), snails (Furukawa et al., 2001), insects (Copenhaver and 304 

Taghert, 1989), nematodes (Brownlee et al., 1994), and echinoderms (García-Arrarás et 305 

al., 1991, 2001). This suggests that the urbilaterian ancestor already possessed enteric 306 

neurons. In vertebrates, the enteric nervous system is entirely produced by the neural 307 

crest (Le Douarin and Teillet, 1973), a specialized migratory embryonic lineage which is 308 

a vertebrate innovation (Shimeld and Holland, 2000). This suggests that the neural crest 309 

“took over” the production of the pre-existing enteric neurons (as it did with pharyngeal 310 



 

cartilage, of endomesodermal origin in stem-chordates (Meulemans and Bronner-Fraser, 311 

2007), but produced by the neural crest in amniotes (Lièvre and Le Douarin, 1975; Sefton 312 

et al., 2015)). Alternatively, the ancient enteric neurons could have been lost in stem-313 

vertebrates and later replaced by a novel, neural-crest derived population. A careful 314 

comparison of the molecular fingerprints of invertebrate and vertebrate enteric neurons 315 

will be required to distinguish between these competing hypotheses. Alongside the 316 

enteric nervous system (which includes serotonergic neurons in both vertebrates and 317 

annelids) the gut wall of both Platynereis and vertebrates also harbors non-neuronal, 318 

paracrine serotonergic cells (or enterochromaffine cells) – which are, unlike enteric 319 

neurons, of endodermal origin in vertebrates (Andrew, 1974; Fontaine and Le Douarin, 320 

1977), and potentially represent another ancient bilaterian cell type modulating gut 321 

peristalsis. 322 

 323 

 324 

Origin of smooth and striated myocytes by cell type individuation 325 

How did smooth and striated myocytes diverge in evolution? Figure 7 presents a 326 

comprehensive cell type tree for the evolution of myocytes, with a focus on Bilateria. 327 

This tree illustrates the divergence of the two muscle cell types by progressive 328 

partitioning of genetic information in evolution – a process called individuation (Arendt 329 

et al., 2016; Wagner, 2014). The individuation of fast and slow contractile cells involved 330 

two complementary processes: (1) changes in CRC (black circles, Figure 7) and 331 



 

(2) emergence of novel genes encoding new cellular modules, or apomeres (Arendt et al., 332 

2016) (grey squares, Figure 7).  333 

Around a common core formed by the Myocardin:Mef2 complex (both representing 334 

transcription factors of pre-metazoan ancestry (Steinmetz et al., 2012)), smooth and 335 

striated CRCs incorporated different transcription factors implementing the expression of 336 

distinct effectors (Figure 1B; Figure 7—figure supplement 1) – notably the bilaterian-337 

specific bHLH factor MyoD (Steinmetz et al., 2012) and GATA4/5/6, which arose by 338 

bilaterian-specific duplication of a single ancient pan-endomesodermal GATA 339 

transcription factor (Leininger et al., 2014; Martindale et al., 2004).  340 

Regarding the evolution of myocyte-specific apomeres, one prominent mechanism of 341 

divergence has been gene duplications. While the MHC duplication predated metazoans, 342 

other smooth and striated-specific paralogs only diverged in bilaterians. Smooth and 343 

striated MRLC most likely arose by gene duplication in the bilaterian stem-line 344 

(Supplementary File 1). Myosin essential light chain, actin and myocardin paralogs split 345 

even later, in the vertebrate stem-line (Figure 7). Similarly, smooth and non-muscle mhc 346 

and mrlc paralogs only diverged in vertebrates. The calponin-encoding gene underwent 347 

parallel duplication and subfunctionalization in both annelids and chordates, giving rise 348 

to both specialized smooth muscle paralogs and more broadly expressed copies with a 349 

different domain structure (Figure 7—figure supplement 3). This slow and stepwise 350 

nature of the individuation process is consistent with studies showing that recently 351 

evolved paralogs can acquire differential expression between tissues that diverged long 352 

before in evolution (Force et al., 1999; Lan and Pritchard, 2016). 353 



 

Complementing gene duplication, the evolution and selective expression of entirely new 354 

apomeres also supported individuation: for example, Titin and all components of the 355 

Troponin complex are bilaterian novelties (Steinmetz et al., 2012). In vertebrates, the new 356 

gene caldesmon was incorporated in the smooth contractile module (Steinmetz et al., 357 

2012). 358 

 359 

 360 

Smooth to striated myocyte conversion 361 

Strikingly, visceral smooth myocytes were previously assumed to be a vertebrate 362 

innovation, as they are absent in fruit flies and nematodes (two groups which are in fact 363 

exceptions in this respect, at least from ultrastructural criteria (Figure 7—figure 364 

supplement 2A)). This view received apparent support from the fact that the vertebrate 365 

smooth and non-muscle myosin heavy chains (MHC) arose by vertebrate-specific 366 

duplication of a unique ancestral bilaterian gene, orthologous to Drosophila non-muscle 367 

MHC (Goodson and Spudich, 1993) – which our results suggest reflects instead gradual 368 

individuation of pre-existing cell types (see above). Strikingly, the striated gut muscles of 369 

Drosophila resemble vertebrate and annelid smooth gut muscles by transcription factors 370 

(nk3/bagpipe (Azpiazu and Frasch, 1993), foxF/biniou (Jakobsen et al., 2007; Zaffran et 371 

al., 2001)), even though they express the fast/striated contractility module (Fyrberg et al., 372 

1994, 1990; Marín et al., 2004). If smooth gut muscles are ancestral for protostomes, as 373 

our results indicate, this suggests that the smooth contractile module was replaced by the 374 

fast/striated module in visceral myocytes during insect evolution. Interestingly, chromatin 375 



 

immunoprecipitation assays (Jakobsen et al., 2007)  show that the conserved visceral 376 

transcription factors foxF/biniou and nk3/bagpipe do not directly control contractility 377 

genes in Drosophila gut muscles (which are downstream mef2 instead), but establish the 378 

morphogenesis and innervation of the visceral muscles, and control non-contractile 379 

effectors such as gap junctions – which are the properties these muscles seem to have 380 

conserved from their smooth ancestors. The striated gut myocytes of insects would thus 381 

represent a case of co-option of an effector module from another cell type, which 382 

happened at an unknown time during ecdysozoan evolution (Figure 7; Figure 7—figure 383 

supplement 1).  384 

Another likely example of co-option is the vertebrate heart: vertebrate cardiomyocytes 385 

are striated and express fast myosin and troponin, but resemble smooth myocytes by 386 

developmental origin (from the splanchnopleura), function (automatic contraction and 387 

coupling by gap junctions) and terminal selector profile (Figure 1B). These similarities 388 

suggest that cardiomyocytes might stem from smooth myocytes that likewise co-opted 389 

the fast/striation module. Indicative of this possible ancestral state, the Platynereis dorsal 390 

pulsatile vessel (considered homologous to the vertebrate heart based on comparative 391 

anatomy and shared expression of NK4/tinman (Saudemont et al., 2008)) expresses the 392 

smooth, but not the striated, myosin heavy chain (Figure 3—figure supplement 3H-M). 393 

An ancestral state reconstruction based on ultrastructural data further supports the notion 394 

that heart myocytes were smooth in the last common protostome/deuterostome ancestor, 395 

and independently acquired striation in at least 5 descendant lineages (Figure 7—figure 396 

supplement 2B) – usually in species with large body size and/or fast metabolism.  397 

 398 



 

Striated to smooth conversions 399 

Smooth somatic muscles are occasionally found in bilaterians with slow or sessile 400 

lifestyles – for example in the snail foot (Faccioni-Heuser et al., 1999; Rogers, 1969), the 401 

ascidian siphon (Meedel and Hastings, 1993), and the sea cucumber body wall (Kawaguti 402 

and Ikemoto, 1965). As an extreme (and isolated) example, flatworms lost striated 403 

muscles altogether, and their body wall musculature is entirely smooth (Rieger et al., 404 

1991). Interestingly, in all cases that have been molecularly characterized, smooth 405 

somatic muscles express the same fast contractility module as their striated counterparts, 406 

including ST-MHC and the Troponin complex – in ascidians (Endo and Obinata, 1981; 407 

Obinata et al., 1983), flatworms (Kobayashi et al., 1998; Sulbarán et al., 2015; Witchley 408 

et al., 2013), and the smooth myofibres of the bivalve catch muscle (Nyitray et al., 1994; 409 

Ojima and Nishita, 1986). (It is unknown whether these also express zasp and titin in 410 

spite of the lack of striation). This suggests that these are somatic muscles having 411 

secondarily lost striation (in line with the sessile lifestyle of ascidians and bivalves, and 412 

with the complete loss of striated muscles in flatworms). Alternatively, they might 413 

represent remnants of ancestral smooth somatic fibres that would have coexisted 414 

alongside striated somatic fibres in the last common protostome/deuterostome ancestor. 415 

Interestingly, the fast contractile module is also expressed in acoel body wall smooth 416 

muscles (Chiodin et al., 2011); since acoels belong to a clade that might have branched 417 

off before all other bilaterians (Cannon et al., 2016) (though a position within 418 

deuterostomes has also been envisioned (Bourlat et al., 2003, 2006; Philippe et al., 419 

2011)), these could represent fast-contracting myocytes that never evolved striation in the 420 

first place, similar to those found in cnidarians. In all cases, the fast contractility module 421 



 

appears to represent a consistent synexpression group (i.e. its components are reliably 422 

expressed together), and a stable molecular profile of all bilaterian somatic muscles, 423 

regardless of the presence of morphologically overt striation. This confirms the notion 424 

that, even in cases of ambiguous morphology or ultrastructure, the molecular fingerprint 425 

of cell types holds clue to their evolutionary affinities. 426 

Implications for cell type evolution 427 

In the above, genetically well-documented cases of cell type conversion (smooth to 428 

striated conversion in insect visceral myocytes and vertebrate cardiomyocytes), cells kept 429 

their ancestral CRC of terminal selector transcription factors, while changing the 430 

downstream effector modules.  This supports the recent notion that CRCs confer an 431 

abstract identity to cell types, which remains stable in spite of turnover in downstream 432 

effectors (Wagner, 2014) – just as hox genes impart conserved abstract identity to 433 

segments of vastly diverging morphologies (Deutsch, 2005). Tracking cell type-specific 434 

CRCs through animal phylogeny thus represents a powerful means to decipher the 435 

evolution of cell types. 436 

Pre-bilaterian origins 437 

If the existence of fast-contracting striated and slow-contracting smooth myocytes 438 

predated bilaterians – when and how did these cell types first split in evolution? The first 439 

evolutionary event that paved the way for the diversification of the smooth and striated 440 

contractility modules was the duplication of the striated myosin heavy chain-encoding 441 

gene into the striated isoform ST-MHC and the smooth/non-muscle isoform SM-MHC. 442 

This duplication occurred in single-celled ancestors of animals, before the divergence of 443 



 

filastereans and choanoflagellates (Steinmetz et al., 2012). Consistently, both sm-mhc and 444 

st-mhc are present in the genome of the filasterean Ministeria (though st-mhc was lost in 445 

other single-celled holozoans) (Sebé-Pedrós et al., 2014). Interestingly, st-mhc and sm-446 

mhc expression appears to be segregated into distinct cell types in sponges, cnidarians 447 

(Steinmetz et al., 2012), and ctenophores (Dayraud et al., 2012), suggesting that a cell 448 

type split between slow and fast contractile cells is a common feature across early-449 

branching metazoans (Figure 7). Given the possibility of MHC isoform co-option (as 450 

outlined above), it is yet unclear whether this split happened once or several times. The 451 

affinities of bilaterians and non-bilaterians contractile cells remain to be tested from data 452 

on the CRCs establishing contractile cell types in non-bilaterians.  453 

 454 

Conclusions 455 

Our results indicate that the split between visceral smooth myocytes and somatic striated 456 

myocytes is the result of a long individuation process, initiated before the last common 457 

protostome/deuterostome ancestor. Fast- and slow-contracting cells expressing distinct 458 

variants of myosin II heavy chain (ST-MHC versus SM-MHC) acquired increasingly 459 

contrasted molecular profiles in a gradual fashion – and this divergence process continues 460 

to this day in individual bilaterian phyla. Blurring this picture of divergence, co-option 461 

events have led to the occasional replacement of the slow contractile module by the fast 462 

one, leading to smooth-to-striated myocyte conversions. Our study showcases the power 463 

of molecular fingerprint comparisons centering on effector and selector genes to 464 

reconstruct cell type evolution (Arendt, 2008). In the bifurcating phylogenetic tree of 465 

animal cell types (Liang et al., 2015), it remains an open question how the two types of 466 



 

contractile cells relate to other cell types, such as neurons (Mackie, 1970) or cartilage 467 

(Brunet and Arendt, 2016b; Lauri et al., 2014; Tarazona et al., 2016). 468 

 469 

Material and Methods 470 

 471 

Immunostainings and in situ hybridizations 472 

Immunostaining, rhodamine-phalloidin staining, and WMISH were performed according 473 

to previously published protocols (Lauri et al., 2014). Antibodies against acetylated 474 

tubulin and serotonin were respectively purchased from Sigma Aldrich 475 

(RRID:AB_477585) and ImmunoStar (RRID:AB_572263). Rhodamine-phalloidin was 476 

purchased from ThermoFischer Scientific (RRID:AB_2572408) For all stainings not 477 

involving phalloidin, animals were mounted in 97% TDE/3% PTw for imaging following 478 

(Asadulina et al., 2012). Phalloidin-stained larvae were mounted in 1% DABCO/glycerol 479 

instead, as TDE was found to quickly disrupt phalloidin binding to F-actin. Confocal 480 

imaging of stained larvae was performed using a Leica SPE and a Leica SP8 microscope. 481 

Stacks were visualized and processed with ImageJ 1.49v (RRID:SCR_003070). 3D 482 

renderings were performed with Imaris 8.1 (RRID:SCR_007370). Bright field Nomarski 483 

microscopy was performed on a Zeiss M1 microscope. Z-projections of Nomarski stacks 484 

were performed using Helicon Focus 6.7.1 (RRID:SCR_014462).  485  486 

Transmission electron microscopy 487 

TEM was performed as previously published (Lauri et al., 2014). 488 

 489 



 

Pharmacological treatments 490 

Brefeldin A was purchased from Sigma Aldrich (B7561) and dissolved in DMSO to a 491 

final concentration of 5 mg/mL. Animals were treated with 50 μg/mL Brefeldin A in 6-492 

well plates filled with 5 mL filtered natural sea water (FNSW). Controls were treated 493 

with 1% DMSO (which is compatible with Platynereis development and survival without 494 

noticeable effect). Other neurotransmission inhibitors were found to be ineffective on 495 

Platynereis (as they elicited no impairment of locomotion): tetanus toxin (Sigma Aldrich 496 

T3194; 100 μg/mL stock in distilled water) up to 5 μg/mL; TTX (Latoxan, L8503; 1 mM 497 

stock) up to 10 μM; Myobloc (rimabotulinum toxin B; Solstice Neurosciences) up to 1%; 498 

saxitoxin 2 HCl (Sigma Aldrich NRCCRMSTXF) up to 1%; and neosaxitoxin HCl 499 

(Sigma Aldrich NRCCRMNEOC) up to 1%. (±)-2-Octanol was purchased from Sigma 500 

Aldrich and diluted to a final concentration of 2.5 mM (2 μL in 5 mL FNSW). (±)-2-501 

Octanol treatment inhibited both locomotion and gut peristalsis, in line with the 502 

importance of gap junctions in motor neural circuits (Kawano et al., 2011; Kiehn and 503 

Tresch, 2002). No sample size was computed before the experiments. At least 2 technical 504 

replicates were performed for each assay, with at least 5 biological replicates per sample 505 

per technical replicate. A technical replicate is a batch of treated individuals (together 506 

with their control siblings), and a biological replicate is a treated (or control sibling) 507 

individual. 508 

 509 

Live imaging of contractions 510 

Animals were mounted in 3% low melting point agarose in FNSW (2-511 

Hydroxyethylagarose, Sigma Aldrich A9414) between a slide and a cover slip (using 5 512 



 

layers of adhesive tape for spacing) and imaged with a Leica SP8 confocal microscope. 513 

Fluorescent labeling of musculature was achieved either by microinjection of mRNAs 514 

encoding GCaMP6s, LifeAct-EGFP or H2B-RFP, or by incubation in 3 μM 0.1% FM-515 

464FX (ThermoFisher Scientific, F34653). Contraction speed was calculated as (l2-516 

l1)/(l1*t), where l1 is the initial length, l2 the length after contraction, and t the duration 517 

of the contraction. Kymographs and wave speed quantifications were performed with the 518 

ImageJ Kymograph plugin: http://www.embl.de/eamnet/html/kymograph.html No sample 519 

size was computed before the experiments. At least 2 technical replicates were performed 520 

for each assay, with at least 2 biological replicates per sample per technical replicate. A 521 

technical replicate is a batch of treated individuals (together with their control siblings), 522 

and a biological replicate is a treated (or control sibling) individual. 523 

 524 

Ancestral state reconstruction 525 

Ancestral state reconstructions were performed with Mesquite 3.04 using the Maximum 526 

Likelihood and Parsimony methods. 527 

 528 

Cloning 529 

The following primers were used for cloning Platynereis genes using a mixed stages 530 

Platynereis cDNA library (obtained from 1, 2, 3, 5, 6, 10, and 14-days old larvae) and 531 

either the HotStart Taq Polymerase from Qiagen or the Phusion polymerase from New 532 

England BioLabs (for GC-rich primers): 533  534  535  536 



 

Gene name Forward primer Reverse primer 
foxF CCCAGTGTCTGCATCCTTGT CATGGGCATTGAAGGGGAGT
zasp CATACCAGCCATCCCGTCC AAATCAGCGAACTCCAGCGT 
troponin T TTCTGCAGGGCGCAAAGTCA CGCTGCTGTTCCTTGAAGCG
SM-MRLC TGGTGTTTGCAGGGCGGTCA GGTCCATACCGTTACGGAAGCTTTT
calponin ACGTGCGGTTTACGATTGGA GCTGGCTCCTTGGTTTGTTC 
transgelin1 GCTGCCAAGGGAGCTGACGC ACAAAGAGCTTGTACCACCTCACCC
myocardin GACACCAGTCCGAAGCTTGA CGTGGTAGTAGTCGTGGTCG 537  538 

The following genes were retrieved from an EST plasmid stock: SM-MHC (as two 539 

independent clones that gave identical expression patterns) and ST-MRLC. Gene 540 

orthology (Supplementary fils 1) was determined by phylogenetic analysis using 541 

MrBayes (RRID:SCR_012067) or PhyML (Guindon et al., 2010) run from 542 

http://www.atgc-montpellier.fr/phyml/ (RRID:SCR_014629). 543 

Other genes were previously published: actin and ST-MHC (under the name mhc1-4) 544 

(Lauri et al., 2014) and GATA456 (Gillis et al., 2007). 545 
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Figure 1. Ultrastructure and core regulatory complexes of myocyte types. 983 

(A) Schematic smooth and striated ultrastructures. Electron-dense granules called “dense 984 

bodies” separate adjacent myofibrils. Dense bodies are scattered in smooth muscles, but 985 

aligned in striated muscles to form Z lines. (B-D) Core regulatory complexes (CRC) of 986 

transcription factors for the differentiation of different types of myocytes in vertebrates. 987 

Complexes composition from (Creemers et al., 2006; Meadows et al., 2008; Molkentin et 988 

al., 1995) for skeletal myocytes, (Hoggatt et al., 2013; Nishida et al., 2002; Phiel et al., 989 

2001) for smooth myocytes, and (Durocher et al., 1997; Lee et al., 1998) for 990 

cardiomyocytes. Target genes from (Blais et al., 2005) for skeletal myocytes, (Nishida et 991 

al., 2002) from smooth myocytes, and (Schlesinger et al., 2011) for cardiomyocytes.  992 
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Figure 2. Development and ultrastructure of visceral and somatic musculature in 994 

Platynereis larvae and juveniles. (A) Development of visceral musculature. All panels 995 

are 3D renderings of rhodamine-phalloidin staining imaged by confocal microscopy. 996 

Visceral muscles have been manually colored green and somatic muscle red. Scale bar: 997 

50 μm. (B) Schematic of the musculature of a late nectochaete (6 dpf) larva. Body outline 998 

modified from (Fischer et al., 2010). Ventral view, anterior is up. (C-M) Electron 999 

micrographs of the main muscle groups depicted in B. Each muscle group is shown 1000 

sectioned parallel to its long axis, so in the plane of its myofilaments. Scale bar: 2 μm. 1001 

(C’,E’) are schematic drawings of the cells shown in (C,E). The Z-lines are made of 1002 

aligned dense bodies (in black), myofilaments are in red, cytoplasm is in yellow and 1003 

plasma membrane in grey. Attachment points of myofilaments on the dense bodies are 1004 

represented with dotted lines when they are outside of the plane of section in the electron 1005 

micrograph. Zoom panel in C’ shows oblique striation with a 5° angle between 1006 

myofilaments and Z-lines (compare to Figure 1A). (H) shows another cross-section in the 1007 

stomodeum of the individual shown in G, in the region encased by the yellow box, and 1008 

observed at a higher magnification. (J) shows the dorsal midgut in cross-section, dorsal 1009 

side up. 1010 
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Figure 2—figure supplement 1. Gut patterning in Platynereis 6 dpf larvae. (A) 6 dpf 1012 

Platynereis larva stained with phalloidin and DAPI to show tripartite gut organization. 1013 

Maximal Z-projection of a confocal stack, ventral view, anterior side up. The plane of the 1014 

cross-sections of Figure 2—figure supplement 2 (in slightly older individuals of 1015 

otherwise similar morphology) is indicated by the dotted line. (B-E) WMISH for gut 1016 

markers. (B) Ventral view, anterior is up. (C-E) Left lateral views, anterior is up, ventral 1017 

is right. (F) Schematic of gut patterning in Platynereis late nectochaete larvae. Asterisk is 1018 

the mouth on all panels. Scale bar: 50 μm. 1019 
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Figure 2—figure supplement 2. Formation of the visceral musculature observed in 1021 

cross-section. (A-C) Virtual cross-sections of confocal Z-stacks of Platynereis larvae 1022 

stained with DAPI and phalloidin. Dorsal side up. (A’-C’) Schematic drawings of the 1023 

same individuals. Note the progressive formation of internal circular fibres around the 1024 

gut, followed by the formation of external longitudinal fibres. Due to the complex three-1025 

dimensional organization of the somatic musculature, different subsets of somatic 1026 

bundles are observed at different cross-sectional levels within a segment (compare with 1027 

Figure 2B). The orientation of somatic myofibres is represented based on information 1028 

from 3D reconstructions (Figure 2B) and TEM (Figure 2C-M). Note the progressive 1029 

appearance of endodermal nuclei, indicating stepwise cellularization of the midgut from 1030 

the macromeres. The outline of the endodermal epithelium could be visualized by 1031 

enhancing the intensity of the green (phalloidin) channel and was drawn from that 1032 

information in panels (A’-C’). gm: gut muscles, im: intrinsic muscles, vlm: ventral 1033 

longitudinal muscles, ppm: parapodial muscles, vom: ventral oblique muscles, ach: 1034 

axochord, dlm: dorsal longitudinal muscles, ch: chaetal sac. 1035 
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Figure 3. Expression of smooth and striated muscle markers in Platynereis larvae. 1038 

Animals have been stained by WMISH and observed in bright field Nomarski 1039 

microscopy. Ventral views, anterior side up. Scale bar: 25 μm. (A-D) Expression patterns 1040 

of the striated marker ST-MHC and the smooth marker SM-MHC. These expression 1041 

patterns are representative of the entire striated and smooth effector module (see Figure 1042 

2—figure supplement 1 and Figure 2—figure supplement 3). Note that SM-MHC (panel 1043 

B) is expressed around the forming midgut and hindgut (dotted white line) as well as in 1044 

the stomodeal sheath (white arrows) and in lateral cells in the parapodia. The identity of 1045 

these cells is unknown, but preliminary observations suggest they will become part of the 1046 

nephridial tubule/nephridiopore complex that opens at the base of the parapodia in 1047 

annelids. Asterisk: stomodeum. (E) Table summarizing the expression patterns of smooth 1048 

and striated markers in Platynereis and vertebrate muscles. (*) indicates that Platynereis 1049 

and vertebrate Calponin are mutually most resembling by domain structure, but not one-1050 

to-one orthologs, as independent duplications in both lineages have given rise to more 1051 

broadly expressed paralogs with a different domain structure (Figure 7—figure 1052 

supplement 3). 1053 
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Figure 3—figure supplement 1. Expression of striated muscle markers in Platynereis 1056 

larvae. (A-O) Larvae stained by WMISH and observed in bright field Nomarski 1057 

microscopy. Ventral views, anterior side up. Scale bar is 20 μm for 48 hpf and 25 μm for 1058 

the two other stages. (P) Foregut musculature visualized by rhodamine-phalloidin 1059 

fluorescent staining. Z-projection of confocal planes. Ventral view, anterior side up. 1060 

Scale bar: 20 μm. (Q) TEM micrograph of a cross-section of the foregut. Foregut muscles 1061 

are colored green, axochord orange, ventral oblique muscles pink, ventral nerve cord 1062 

yellow. Inset: zoom on the area in the red dashed box with enhanced contrast to visualize 1063 

oblique striation. Scale bar: 10 μm. (R-W) WMISH for striated muscle markers 1064 

expression in the foregut observed in Nomarski bright field microscopy, ventral views, 1065 

anterior side up. Scale bar: 20 μm. 1066 
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Figure 3—figure supplement 2. Expression of striated muscle markers in the 6 dpf 1069 

Platynereis larva. Animals have been stained by WMISH and observed by confocal 1070 

microscopy (DAPI fluorescence and NBT/BCIP 633 nm reflection). All striated effector 1071 

genes are expressed in all somatic muscles examined. The transcription factor myoD is 1072 

detectable in the axochord and in ventral longitudinal muscles, but not in other muscles. 1073 
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Figure 3—figure supplement 3. Expression of smooth muscle markers in Platynereis 1076 

larvae. (A-F) Animals are stained by WMISH and observed by Nomarski bright field 1077 

microscopy. Ventral views, anterior side up. Yellow arrows: expression in the foregut 1078 

mesoderm. White dashed lines: outline of the midgut and hindgut (or their anlage at 3 1079 

dpf). Asterisk: stomodeum. (G) Schematic drawing of a 6 dpf larva (ventral view, 1080 

anterior is up) representing gene expression in the forming tripartite gut (compare to 1081 

Figure 2—figure supplement 1). (H-M) Molecular profile of the pulsatile dorsal vessel. 1082 

All panels show 2 months-old juvenile worms. (H,I) Maximal Z-projections of confocal 1083 

stacks. Dorsal view, anterior is up. (H) Dorsal musculature of a juvenile Platynereis 1084 

dumerilii individual visualized by phalloidin-rhodamine (green) together with nuclear 1085 

(DAPI, blue) and membrane (FM-464FX, red) stainings. The heart tube lies on the dorsal 1086 

side, bordered by the somatic dorsal longitudinal muscles (dlm). (I) Expression of SM-1087 

MHC in the heart tube visualized by WMISH. (J) Virtual cross-section of the individual 1088 

shown in A. Dorsal side up. Note the continuity of the muscular heart tube with gut 1089 

musculature. dlm: dorsal longitudinal muscles. (K) Virtual cross-section of the individual 1090 

shown in B, showing continuous expression of SM-MHC in the heart and the midgut 1091 

smooth musculature. Note the similarity to the NK4/tinman expression pattern 1092 

documented in (Saudemont et al., 2008). (L) Virtual cross-section on an individual 1093 

stained by WMISH for ST-MHC expression. Note the lack of expression in the heart, 1094 

while expression is detected in intrinsic muscles that cross the internal cavity. 1095 

(M) Schematic cross-section of a juvenile worm (dorsal side up) showing the shape, 1096 

connections and molecular profile of the main muscle groups. Scale bar: 30 μm in all 1097 

panels.  1098 



 

Figure 3—figure supplement 4. Molecular profile of midgut muscles in the 6 dpf 1099 

larva. All panels are Z-projections of confocal planes, ventral views, anterior side up. 1100 

Blue: DAPI, red: NBT/BCIP precipitate. White dashed line: midgut/hindgut, yellow 1101 

dashed ellipse: stomodeum. (A-E) Smooth markers expression. White arrows indicate 1102 

somatic expression of GATA456 in the ventral oblique muscles. (F-K) Striated markers 1103 

expression; none of them is detected in any gut cell. White arrows: somatic expression. 1104 

Scale bar: 20 μm in all panels. 1105 
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Figure 3—figure supplement 5. General muscle markers are expressed in both 1108 

smooth and striated muscles. All panels show gene expression visualized by WMISH. 1109 

(A-F) actin expression. (A-B) bright field micrographs in Nomarski optics. (A) is an 1110 

apical view, (B) is a ventral view. Abbreviations: dlm, dorsal longitudinal muscles; vc, 1111 

ventral mesodermal cells, likely representing future ventral musculature. (C-F) 3D 1112 

rendering of confocal imaging of NBT/BCIP precipitate. (C,E) ventral views, anterior 1113 

side up. (D,F) ventrolateral views, anterior side up. Abbreviations are as in Figure 1. (G-1114 

M) Z-projections of confocal stacks. Blue is DAPI, red is reflection signal of NBT/BCIP 1115 

precipitate. (G-L) Ventral views, anterior side up. White dashed line: midgut, yellow 1116 

ellipse: foregut. White arrows: somatic muscle expression. Abbreviations: f.m.: foregut 1117 

muscles; r.a.: reflection artifact. (M) Expression in individual somatic muscles. Scale bar: 1118 

20 μm in all panels. 1119 
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Figure 4. Contraction speed quantifications of smooth and striated muscles. (A-1122 

B) Snapshots of a time lapse live confocal imaging of a late nectochaete larva expressing 1123 

fluorescent markers. Ventral view of the 2 posterior-most segments, anterior is up. 1124 

(C) Snapshots of a time lapse live confocal imaging of a 3 dpf larva expressing 1125 

GCaMP6s. Dorsal view, anterior is up. (D-E) Two consecutive snapshots on the left 1126 

dorsal longitudinal muscle of the larva shown in C, showing muscle contraction. 1127 

(F) Quantification of smooth and striated muscle contraction speeds (see Experimental 1128 

procedures and Figure 4-Source data 1), p-value by Mann-Whitney’s U test. Each point 1129 

represents a biological replicate (see Material and Methods). (G) Snapshot of a time lapse 1130 

live confocal imaging of a late nectochaete larva. Ventral view, anterior is up. Optical 1131 

longitudinal section at the midgut level. 1132 
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Figure 5. Platynereis gut peristalsis is independent of nervous inputs and dependent 1135 

on gap junctions. (A) 2 months-old juvenile mounted in 3% low-melting point (LMP) 1136 

agarose for live imaging. (B) Snapshots of a confocal live time lapse imaging of the 1137 

animal shown in A. Gut is observed by detecting fluorescence of the vital membrane dye 1138 

FM-464FX. (C) Kymograph of gut peristalsis along the line of interest in (B). 1139 

Contraction waves appear as dark stripes. A series of consecutive contraction waves is 1140 

called a contraction event: here, two contraction waves are visible, which make up one 1141 

contraction event with a recurrence of 2. (D) Quantification of the propagation speed of 1142 

peristaltic contraction waves in mock (DMSO)-treated individuals and Brefeldin A-1143 

treated individuals (inhibiting neurotransmission). Speed is calculated from kymographs 1144 

(see Material and Methods and Figure 5-source data 1), p-value by Mann-Whitney’s U 1145 

test. Each point represents a contraction wave. 5 biological replicates for each category 1146 

(see Material and Methods). (E,F) Same as in E, but showing respectively the frequency 1147 

of initiation and the recurrence of contraction events. Each point represents a biological 1148 

replicate (see Material and Methods). (G) Representative kymographs of controls, 1149 

animals treated with Brefeldin A (inhibiting neurotransmission), animals treated with 2-1150 

octanol (inhibiting gap junctions), and animals treated with both (N=10 for each 1151 

condition). 2-octanol entirely abolishes peristaltic waves with or without Brefeldin A. 1152 
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Figure 6. The enteric nerve net of Platynereis. (A) Immunostaining for acetylated 1155 

tubulin, visualizing neurites of the enteric nerve plexus. Z-projection of a confocal stack 1156 

at the level of the midgut. Anterior side up. (B) Same individual as in A, immunostaining 1157 

for serotonin (5-HT). Note serotonergic neurites (double arrow), serotonergic neuronal 1158 

cell bodies (arrow, see D), and serotonergic cell bodies without neurites (arrowhead). 1159 

(C) Same individual as in A showing both acetylated tubulin and 5-HT immunostainings. 1160 

Snapshot in the top right corner: same individual, showing both neurites (acetylated 1161 

tubulin, yellow) and visceral myofibres (rhodamine-phalloidin, red). The acetylated 1162 

tubulin appears yellow due to fluorescence leaking in the rhodamine channel. (D) 3D 1163 

rendering of the serotonergic neuron shown by arrow in B.  1164 
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Figure 7. The evolutionary tree of animal contractile cell types. Bilaterian smooth and 1167 

striated muscles split before the last common protostome/deuterostome ancestor. 1168 

Bilaterian myocytes are split into two monophyletic cell type clades: an ancestrally SM-1169 

MHC+ slow-contracting clade (green) and an ancestrally ST-MHC+ fast-contracting 1170 

clade (orange). Hypothetical relationships of the bilaterian myocytes to the SM-MHC+ 1171 

and ST-MHC+ contractile cells of non-bilaterians are indicated by dotted lines (Steinmetz 1172 

et al., 2012). Apomere: derived set of effector genes common to a monophyletic group of 1173 

cell types (Arendt et al., 2016). Note that ultrastructure only partially reflects 1174 

evolutionary relationships, as striation can evolve convergently (as in medusozoans), be 1175 

co-opted (as in insect gut myocytes or in vertebrate and insect cardiomyocytes), be 1176 

blurred, or be lost (as in planarians). Conversion of smooth to striated myocytes took 1177 

place by co-option of striation proteins (Titin, Zasp/LDB3) and of the fast contractile 1178 

module (ST-MHC, ST-MRLC, Troponin complex) in insect cardiomyocytes and gut 1179 

myocytes, as well as in vertebrate cardiomyocytes. Nodes can either represent cell type 1180 

duplications (indicated by two partly overlapping circles) or speciation events, as typical 1181 

for a cell type tree (Arendt, 2008; Serb and Oakley, 2005). 1182 
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Figure 7—figure supplement 1. Evolution of myogenic Core Regulatory Complexes 1185 

(CRC) in Bilateria. Transcription factor families are depicted as in Figure 1. Direct 1186 

contact indicates proven binding. Co-option of the fast/striated module happened on three 1187 

occasions: in Drosophila gut myocytes, and in cardiomyocytes of both vertebrates and 1188 

Drosophila. Note that in both cases, composition of the CRC was maintained in spite of 1189 

change in the effector module. In insect gut myocytes, replacement of the smooth by the 1190 

striated module entailed a split of the CRC, with the ancient smooth CRC still controlling 1191 

conserved differentiation genes (involved in adhesion, morphogenesis, axonal guidance, 1192 

or formation of innexin gap junctions), while the striated contractile cassette is 1193 

downstream Mef2 alone (Jakobsen et al., 2007). It is less clear whether a similar split of 1194 

CRC took place in striated cardiomyocytes. In the striated myocyte line, it is unclear 1195 

whether MyoD was part of the ancestral CRC of all striated myocytes (as in vertebrates) 1196 

or just of a subset (as in Platynereis). In Drosophila, the myoD ortholog nautilus has been 1197 

reported to be only necessary for the formation of a subset of somatic muscles – DA3 and 1198 

DO4 (Balagopalan et al., 2001) – though other reports suggest that in nautilus null 1199 

mutants, other somatic muscles might be lacking (with low penetrance) (Wei et al., 2007) 1200 

or be present but underdeveloped (Enriquez et al., 2012). 1201 
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Figure 7—figure supplement 2. Ancestral state reconstructions of the ultrastructure 1204 

of midgut/hindgut and heart myocytes. (A) Distribution, and ancestral state 1205 

reconstruction, of midgut smooth muscles in Bilateria. Ancestral states were inferred 1206 

using Parsimony and Maximum Likelihood (ML) (posterior probabilities indicated on 1207 

nodes). Character states from: Chordata (Marieb and Hoehn, 2015), Echinodermata 1208 

(Feral and Massin, 1982), Chaetognatha (Duvert and Salat, 1995), Mollusca (Royuela et 1209 

al., 2000), Annelida (Anderson and Ellis, 1967), Priapulida (Carnevali and Ferraguti, 1210 

1979), Nematoda (White, 1988), Arthropoda (Goldstein and Burdette, 1971), and 1211 

Tardigrada (Shaw, 1974). (B) Distribution, and ancestral state reconstruction, of 1212 

cardiomyocyte ultrastructure in Bilateria. Ancestral states were inferred using Parsimony 1213 

and ML (posterior probabilities indicated on nodes). Note that, due to the widespread 1214 

presence of striated cardiomyocytes in bilaterians, the support value for an ancestral 1215 

smooth ultrastructure in the ML method remain modest (0.56). This hypothesis receives 1216 

independent support from the comparison of CRCs (Figure 1B, Figure 7—figure 1217 

supplement 1) and developmental data (see Discussion). Character states follow the 1218 

review by Martynova (Martynova, 1995, 2004) and additional references for Siboglinum 1219 

(Jensen and Myklebust, 1975), chordates (Hirakow, 1985), Peripatopsis (Nylund et al., 1220 

1988), arthropods (Tjønneland et al., 1987), Meiomenia (Reynolds et al., 1993), and 1221 

Lepidopleurus (Økland, 1980). In Peripatopsis and Lepidopleurus, some degree of 1222 

alignment of dense bodies was detected (without being considered regular enough to 1223 

constitute striation), suggesting these might represent intermediate configurations. 1224 
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Figure 7—figure supplement 3. Domain structure, phylogeny and expression 1226 

patterns of members of the calponin gene family. (A) Domain structure of calponin-1227 

related proteins in bilaterians. Calponin is characterized by a Calponin Homology (CH) 1228 

domain with several calponin repeats, while Transgelin is characterized by a CH domain 1229 

and a single calponin repeat. In vertebrates, Calponin proteins are specific smooth muscle 1230 

markers, and the presence of multiple CH repeats allows them to stabilize actomyosin 1231 

(Gimona et al., 2003). Transgelins, with a single calponin repeat, destabilize actomyosin 1232 

(Gimona et al., 2003), and are expressed in other cell types such as podocytes (Gimona et 1233 

al., 2003), lymphocytes (Francés et al., 2006), and striated muscles (transiently in mice 1234 

(Li et al., 1996) and permanently in fruit flies (Ayme-Southgate et al., 1989)). 1235 

(B) Maximum Likelihood phylogeny of the calponin/transgelin family based on 1236 

alignment of the CH domain. Paralogs with calponin and transgelin structures evolved 1237 

independently in vertebrates and Platynereis (Pdu, in red squares). (C) Expression 1238 

patterns of Pdu-transgelin1. Scale bar: 25 μm. As in vertebrates and insects, transgelin1 1239 

is not smooth myocyte-specific, but also detected in striated myocytes. 1240 

 1241 

  1242 



 

Supplementary File 1. Phylogenetic trees of the markers investigated. (A) Simplified 1243 

Maximum Likelihood (ML) tree for Myosin Regulatory Light Chain (full tree in panel 1244 

M), rooted with Calmodulin, which shares an EF-hand calcium-binding domain with 1245 

MRLC. (B) ML tree for FoxF, rooted with FoxQ1, the probable closest relative of the 1246 

FoxF family (Shimeld et al., 2010). (C) MrBayes tree for bilaterian ZASP/LBD3, rooted 1247 

with the cnidarian ortholog (Steinmetz et al., 2012). (D) ML tree for bilaterian Myosin 1248 

Heavy Chain, rooted at the (pre-bilaterian) duplication between smooth and striated MHC 1249 

(Steinmetz et al., 2012). (E) MrBayes tree for Mef2, rooted by the first splice isoform of 1250 

the cnidarian ortholog (Genikhovich and Technau, 2011). (F) MrBayes tree for Titin, 1251 

rooted at the protostome/deuterostome bifurcation (Titin is a bilaterian novelty). (G) 1252 

MrBayes tree for Troponin T, rooted at the protostome/deuterostome bifurcation 1253 

(Troponin T is a bilaterian novelty). (H) MrBayes tree for Troponin I, rooted by the 1254 

Calponin/Transgelin family, which shares an EF-hand calcium-binding domain with 1255 

Troponin I. (I) MrBayes tree for MyoD, rooted at the protostome/deuterostome 1256 

bifurcation (MyoD is a bilaterian novelty). (J) MrBayes tree for Myocardin, rooted at the 1257 

protostome/deuterostome bifurcation (the Drosophila myocardin ortholog is established 1258 

(Han et al., 2004)). (K) Complete MRLC tree. 1259 

Species names abbreviations: Pdu: Platynereis dumerilii; Xenla: Xenopus laevis; Mus: 1260 

Mus musculus; Hsa: Homo sapiens; Dre: Danio rerio; Gga: Gallus gallus; Dme: 1261 

Drosophila melanogaster; Cte: Capitella teleta; Patvu: Patella vulgata; Brafl: 1262 

Branchiostoma floridae; Nve or Nemv: Nematostella vectensis; Acdi: Acropora 1263 

digitifera; Expal: Exaiptasia pallida; Rat: Rattus norvegicus; Sko: Saccoglossus 1264 

kowalevskii; Limu or Lpo: Limulus polyphemus; Trib or Trca: Tribolium castaneum; 1265 



 

Daph: Daphnia pulex; Prcau: Priapulus caudatus; Cgi or Cgig: Crassostrea gigas; Ling 1266 

or Linan: Lingula anatina; Hdiv: Haliotis diversicolor; Apcal or Aca: Aplysia 1267 

californica; Spu: Strongylocentrotus purpuratus; Poli or Polis: Polistes dominula; Cin or 1268 

Cint: Ciona intestinalis; Hro: Helobdella robusta; Bos: Bos taurus; Capsa: Capsaspora 1269 

owczarzaki; Thtr: Thecamonas trahens; Lpo: ; Bga: Biomphalaria glabrata; Cel: 1270 

Caenorhabditis elegans; Tt: Terebratalia transversa; Octo: Octopus vulgaris; Sma: 1271 

Schmidtea mediterranea; Bbe: Branchiostoma belcheri, Batden: Batrachochytrium 1272 

dendrobaditis; Monve: Mortierella verticillata; Alloma: Allomyces macrogynus; Salpun: 1273 

Spizellomyces punctatus; Mucor: Mucor racemosus; Lichco: Lichtheimia corymbifera; 1274 

Ephmu: Ephydatia muelleri; Sycon: Sycon ciliatum; Amqu: Amphimedon queenslandica; 1275 

Osc: Oscarella lobularis; Metse: Metridium senile; Pfu: Pinctada fucata; Rypa: Riftia 1276 

pachyptila; Plma: Placopecten magellanicus; Air: Argopecten irradians; Scolop: 1277 

Scolopendra gigantea; Artfra: Artemia franciscana; Bmor: Bombyx mori; Loa: Loa loa; 1278 

Necator-am: Necator americanus; Trichi: Trichinella spiralis; Asc: Ascaris lumbricoides; 1279 

Wuch: Wucheria bancrofti; Ancy: Ancylostoma duodenale; Callorinc: Callorhinchus 1280 

milii; Dana: Danaus plexippus; Anop: Anopheles gambiae; Asty: Astyanax mexicanus; 1281 

Oreo: Oreochromis niloticus; Icta: Ictalurus punctatus. 1282 
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Movie 1. Live imaging of somatic muscle contraction visualized by GCaMP6s. 1285 

Dorsal view of a 3 dpf Platynereis larva injected (at the zygote stage) with a mRNA 1286 

encoding GCaMP6s and mounted in 3% LMP agar between a slide and a cover slip. 1287 

Anterior side is up. Left side is the red (GCaMP6s) fluorescence channel, right side 1288 

shows overlay of transmitted light and red fluorescence channel. Time step between two 1289 

frames: 0.436 s. 1290 

 1291 

Movie 2. Live imaging of visceral muscle contraction visualized by FM-464FX. 1292 

Ventral view of a 6 dpf Platynereis larva stained with the vital dye FM-464FX and 1293 

mounted in 3% LMP agar between a slide and a cover slip. Red fluorescence signal is 1294 

shown. Anterior side is up. Time step between two frames: 1.29s. 1295 

 1296 

Movie 3. Live imaging of gut peristalsis in a control 2 months-old juvenile worm. 1297 

Lateral view of an individual stained with FM-464FX and mounted in 3% LMP agar 1298 

between a slide and a cover slip. Left side is the transmitted light signal and right side is 1299 

the red fluorescence channel. Note the peristalsis waves travelling along the gut, 1300 

interrupted with rest periods. 1301 

 1302 

Movie 4. Live imaging of gut peristalsis in a Brefeldin A-treated 2 months-old 1303 

juvenile worm. Lateral view of an individual treated with 180 μM Brefeldin-A, stained 1304 

with FM-464FX (not shown) and mounted in 3% LMP agar between a slide and a cover 1305 

slip. Transmitted light signal is shown. Note the vigorous and constant gut peristalsis 1306 



 

waves travelling along the gut. The straight posture of the animal (compare with its bent 1307 

control sibling in Movie 3) is typical of somatic muscle inhibition by Brefeldin A. 1308 

 1309 

Figure 4—source data 1. Contraction speed values measured for somatic and 1310 

visceral muscles. 1311 

 1312 

Figure 5—source data 1. Peristalsis waves quantifications in control and Brefeldin 1313 

A-treated worms. Control and treated animals are respectively numbered Ctrl1, Ctrl2, … 1314 

etc. and BfdA1, BfdA2, … etc. Contraction events are named e1, e2, … etc. Numbers in 1315 

columns B and E are the speed of individual contraction waves as defined in Figure 5C. 1316 

Contraction events and the recurrence of contraction events are defined in the legend of 1317 

Figure 5. 1318 
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