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Abstract Deep-sea anglerfishes are relatively abundant and diverse, but their luminescent

bacterial symbionts remain enigmatic. The genomes of two symbiont species have qualities

common to vertically transmitted, host-dependent bacteria. However, a number of traits suggest

that these symbionts may be environmentally acquired. To determine how anglerfish symbionts are

transmitted, we analyzed bacteria-host codivergence across six diverse anglerfish genera. Most of

the anglerfish species surveyed shared a common species of symbiont. Only one other symbiont

species was found, which had a specific relationship with one anglerfish species, Cryptopsaras

couesii. Host and symbiont phylogenies lacked congruence, and there was no statistical support for

codivergence broadly. We also recovered symbiont-specific gene sequences from water collected

near hosts, suggesting environmental persistence of symbionts. Based on these results we

conclude that diverse anglerfishes share symbionts that are acquired from the environment, and

that these bacteria have undergone extreme genome reduction although they are not vertically

transmitted.

DOI: https://doi.org/10.7554/eLife.47606.001

Introduction
Symbiosis between animals and bacteria can enable both organisms to adapt to harsh environments

or expand into new habitats, which impacts the ecology and evolution of both bacterial and host lin-

eages (McFall-Ngai et al., 2013; Moran, 2007; Moya et al., 2008). Symbiosis with luminescent bac-

teria has evolved independently multiple times in diverse squid and fish species (Davis et al., 2016;

Dunlap and Urbanczyk, 2013) and has been correlated with host diversification (Davis et al., 2016;

Ellis and Oakley, 2016). Bioluminescence is considered an adaptive phenotype across multiple taxa

and a ubiquitous function in the largest habitat on the planet, the bathypelagic biome (ocean’s mid-

waters below 1000 m) (Martini and Haddock, 2017). Four genera of bacteria in the family Vibriona-

ceae engage in luminescent symbiosis (Dunlap and Urbanczyk, 2013; Hendry et al., 2018;

Schaechter, 2009), including the model species Aliivibrio fischeri, but comparatively little is known

about the bioluminescent symbionts of deep-sea anglerfishes. Ceratioid anglerfishes (suborder Cera-

tioidei) consist of 167 species from 11 families (Froese and Pauly, 2018) and are the most speciose

fish suborder in the bathypelagic zone (Pietsch, 2009). Most female ceratioid anglerfishes host

extracellular luminous symbiotic bacteria in a lure-like projection (esca) above the animal’s head

(Munk, 1999). The genera Cryptopsaras and Ceratias harbor bacterial symbionts in additional
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pouch-like symbiont-filled protuberances anterior to the dorsal fin, known as caruncles. Biolumines-

cent symbiosis is thought to be essential to the survival of adult anglerfishes, although the exact

function has not been observed. The lure has been proposed to attract prey, confound predators, or

signal mates (Pietsch, 2009). Recent research by Hendry et al. (2018) investigated symbiont

genomes from two commonly collected anglerfish species, Cryptopsaras couesii and Melanocetus

johnsonii, host lineages that diverged approximately 100 million years ago (Miya et al., 2010;

Pietsch, 2009). Each host harbored a distinct species of bacterial symbiont: C. couesii hosts ‘Candi-

datus Enterovibrio luxaltus’ and M. johnsonii hosts ‘Candidatus Enterovibrio escacola,’ referred to

here as E. luxaltus and E. escacola for ease (Hendry et al., 2018).

Most luminescent bacterial symbionts are facultatively symbiotic, have genome sizes typical of

nonsymbiotic, free-living relatives, and are acquired by hosts from environmental populations

(Bongrand et al., 2016; Bright and Bulgheresi, 2010; Dunlap et al., 2012; Dunlap and Urbanczyk,

2013; Ruby et al., 2005; Urbanczyk et al., 2011). In contrast, anglerfish symbiont genomes are

reduced ~50% relative to closely related free-living bacteria, a pattern more commonly seen in intra-

cellular, obligate symbiosis (Fisher et al., 2017; Kuwahara et al., 2007; Manzano-Marı́n and

Latorre, 2016; Shigenobu et al., 2000). Anglerfish symbionts, which have not been successfully cul-

tured (Haygood et al., 1984), appear to be obligately dependent on their hosts for growth, as the

metabolic capacity to use carbon sources other than glucose are absent from the genome and glu-

cose is an extremely limited resource in the deep sea (Hansell, 2013; Hendry et al., 2018). Genomic

degeneration in obligate symbionts is thought to occur as a result of relaxed purifying selection on

genes that are unnecessary within the host habitat (Bright and Bulgheresi, 2010; Kenyon and Sab-

ree, 2014; Fisher et al., 2017; Sachs et al., 2011). This process may be mediated in part by relaxed

regulation of transposable elements (TEs) (McCutcheon and Moran, 2011), which was observed for

both E. escacola and E. luxaltus genomes (Hendry et al., 2018). Transposon expansions and pseu-

dogenization were evident in both symbionts, with TE pseudogenes making up about 30% of each

bacterial genome (Hendry et al., 2018). Phylogenetic investigation of transposon families found

eLife digest The deep sea is home to many different species of anglerfish, a group of animals in

which females often display a dangling lure on the top of their heads. This organ shelters bacteria

that make light, a partnership (known as symbiosis) that benefits both parties. The bacteria get a

safe environment in which to grow, while the animal may use the light to confuse predators as well

as attract prey and mates.

The genetic information of these bacteria has changed since they became associated with their

host. Their genomes have become smaller and more specialized, limiting their ability to survive

outside of the fish. This phenomenon is also observed in other symbiotic bacteria, but mostly in

microorganisms that are directly transmitted from parent to offspring, never having to live on their

own. Yet, some evidence suggests that the bacteria in the lure of anglerfish may be spending time

in the water until they find a new host, crossing thousands of meters of ocean in the process.

To explore this paradox, Baker et al. looked into the type of bacteria carried by different groups

of anglerfish. If each type of fish has its own kind of bacteria, this would suggest that the

microorganisms are passed from one generation to the next, and are evolving with their hosts. On

the other hand, if the same sort of bacteria can be found in different anglerfish species, this would

imply that the bacteria pass from host to host and evolve independently from the fish.

Genetic data analysis showed that amongst six groups of anglerfishes, one species of bacteria is

shared across five groups while another is specific to one type of fish. The analyses also revealed

that anglerfish and their bacteria are most likely not evolving together. This means that the bacteria

must make the difficult journey from host to host by persisting in the deep sea, which was confirmed

by finding the genetic information of these bacteria in the water near the fish.

Anglerfish and the bacteria that light up their lure are hard to study, as they live so deep in the

ocean. In fact, many symbiotic relationships are equally difficult to investigate. Examining genetic

information can help to give an insight into how hosts and bacteria interact across the tree of life.

DOI: https://doi.org/10.7554/eLife.47606.002
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independent expansions within each symbiont species, suggesting that genome reduction may have

occurred independently within each lineage (Hendry et al., 2018).

Although the aforementioned evolutionary patterns tend to result from physical restriction to

hosts and vertical transmission between host generations (Bright and Bulgheresi, 2010;

McCutcheon and Moran, 2011; Moran, 1996), several characteristics of anglerfish and their sym-

bionts suggest that these bacteria may be environmentally acquired. The anglerfish symbiont

genomes retain genes predicted to be under selection outside the host, such as genes involved in

cell wall synthesis and complete motility and chemotaxis pathways. Symbionts are also capable of

producing polyhydroxybutyrate (PHB), a carbon storage molecule that is hypothesized to aid in envi-

ronmental persistence until colonizing suitable hosts (Haygood, 1993; Hendry et al., 2018;

Hendry et al., 2016). Furthermore, anglerfish life history traits could preclude the possibility of verti-

cal transmission. Anglerfishes reproduce through the production of an ‘egg raft’ or ‘veil’ that delivers

eggs to the surface. Juvenile anglerfishes do not have lures; as anglerfishes near sexual maturity

they descend to bathypelagic depths and develop their lure (Pietsch, 2009). This developmental

process and the anglerfish’s poor swimming abilities, coupled with differences in surface and deep-

sea currents (Etter and Bower, 2015; Pazos and Lumpkin R, 2007; Pietsch, 2009), likely result in

generations separated by several kilometers of ocean, making it unlikely that juveniles acquire sym-

bionts from their parents in the deep sea. It also appears unlikely that anglerfishes acquire symbionts

from their egg raft, as juveniles have not been found with symbiotic bacteria in their developing

lures (Freed et al., 2019; Munk, 1999).

An alternative hypothesis to vertical transmission is that anglerfishes acquire bacterial symbionts

from persistent environmental populations despite the limited metabolic capacity of symbionts.

Fishes known to harbor luminous bacteria regularly release symbionts into the environment (Hay-

good, 1993). In ceratioid anglerfishes, the extracellular symbiotic bacteria are likely released from

the host via a small opening in the lure (Haygood et al., 1984; Munk, 1999). Environmental samples

of bacteria taken concurrently with anglerfish collections in the Gulf of Mexico found 16S rDNA

sequences resembling symbionts (Freed et al., 2019), which suggests that anglerfish symbionts

could be environmentally acquired. Symbiont transmission between host generations via environ-

mental populations, referred to here as environmental acquisition, is not uncommon in the deep sea;

for instance, it occurs in the symbiosis of tubeworms (Feldman et al., 1997; Nussbaumer et al.,

2006) and mussels (Won et al., 2008; Won et al., 2003) with their chemosynthetic bacteria. How-

ever, these bacteria have genome sizes typical of free-living relatives and lack signatures of reduc-

tion (Kleiner et al., 2012; Li et al., 2018; Ponnudurai et al., 2017). Marine symbionts with reduced

genomes have been found, such as the symbionts of deep-sea clams in the genus Calyptogena

(Kuwahara et al., 2007; Newton et al., 2007) or the luminous symbionts of anomalopid flashlight

fishes (Hendry et al., 2016; Hendry et al., 2014). However, these symbionts are characterized as

having vertical (Goffredi et al., 2003; Hurtado et al., 2003) and possibly pseudovertical transmis-

sion (Hendry and Dunlap, 2014).

Because strictly vertically transmitted symbionts will codiverge with their hosts (Bright and Bul-

gheresi, 2010; Clark et al., 2000; Jousselin et al., 2009; Zhang et al., 2018), we assessed the likeli-

hood of hypothesized transmission modes of anglerfish symbionts by testing for symbiont-host

codivergence. This analysis included multiple specimens of the previously studied host species C.

couesii and M. johnsonii, as well as less common genera of anglerfishes, including Ceratias, Chaeno-

phryne, Linophryne, and Oneirodes. The geographic distribution of these genera is poorly known,

but based on collection data the rarest species in our study (Linophryne maderensis), has only four

documented museum samples (Pietsch, 2009). These host species originate from four of the eleven

families of ceratioid anglerfishes and span much of the phylogenetic diversity of the suborder Cera-

tioidei. We hypothesized that a high degree of congruence between host and symbiont phylogenies

will indicate codivergence due to vertical transmission. Additionally, codivergence could result in

diverse symbiont species associated with diverse host lineages. Alternatively, if symbiont and host

phylogenies lack congruence and different host species share symbionts, this indicates likely acquisi-

tion of symbionts from environmental populations.
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Results

Anglerfish species host only two distinct symbiont species
Contigs closely matching genome sequences of the previously reported luminous symbionts E. esca-

cola or E. luxaltus were found in all samples. These symbiont species were never recovered together

and no additional luminescence genes from other taxa were found in any assemblies, confirming

prior findings that individual anglerfish host a single species of symbiont (Hendry et al., 2018). Addi-

tionally, hosts for which both esca and caruncle samples were available (Cryptopsaras) hosted the

same symbiont species in both light organs (Table 1). Phylogenetic analysis of conserved house-

keeping genes confirmed that all new symbiont samples in this study are closely related to previ-

ously documented species (Hendry et al., 2018) (Figure 1). Short or nonexistent branch lengths

within each symbiont species clade suggest that there are few genetic differences between samples,

which was supported by ANI values (Table 1). Within a species there was greater than 99% ANI to

the previously identified symbiont species (Hendry et al., 2018) and the between symbiont species

ANI was less than 74%. All genomes had an average coverage depth of 15x or greater.

Host-specificity and codivergence
Comparison of the host and symbiont phylogenies showed very little congruence, suggesting that

neither symbiont species has co-diverged with their host (Figure 2). A symbiont phylogeny was con-

structed using 205 single-copy protein-coding genes shared by anglerfish symbionts and closely-

related free-living bacteria. The construction of a protein-coding phylogeny was employed to get

higher-resolution of the relationship between symbionts relative to the house keeping phylogeny.

Both analyses showed similar relationships between symbionts (Figure 2). This symbiont topology

Table 1. Statistics for symbiont genome sequences analyzed in this study.

Samples that are unique to this study are bolded. For binned genomes, the average nucleotide identity (ANI) of the genome com-

pared to the reference sequence is shown. For E. luxaltus the reference was the CC26 symbiont and E. escacola was the MJ02 symbi-

ont previously documented (Hendry et al., 2018). Results indicating similar species using ANI are bolded. Samples that could not be

successfully binned and were not included in the ANI and completeness analysis are marked with a ‘–‘. Samples when compared to

themselves are marked with ‘NA’. Statistics for total length and GC content were generated using OrthoANU, the percent complete-

ness was generated using checkM, and the coverage was generated using BBmap. Sample location is denoted with a ¤ for those

from the Northern Atlantic and without notation for those from the Gulf of Mexico.

Sample FishID
Light
organ Accession #

E. escacola
ANI

E. luxaltus
ANI

Length
(Mb)

GC
content (%) Complete (%) Ave coverage

CC26E Cryptopsaras couesii esca GCA002300443.1 73.7 NA 2.14 37.7 91.3 25

CC32E Cryptopsaras couesii esca SRR8206628 – – – – – 23

CC81C Cryptopsaras couesii caruncle SRR8206630 – – – – – 19

CCS1E ¤ Cryptopsaras couesii esca RPOE00000000 73.6 99.9 2.14 37.7 90.8 567

CCS2C¤ Cryptopsaras couesii caruncle RPOF00000000 73.7 99.9 2.20 37.6 90.3 313

CC62E Cryptopsaras couesii esca SRR8206629 – – – – – 19

Csp75C Ceratias uranoscopus caruncle RPGC00000000 99.9 73.8 2.73 39.8 91.0 1600

CspS10C ¤ Ceratias sp. caruncle RPGB00000000 99.2 73.6 2.72 39.8 91.1 99

CspS9C ¤ Ceratias sp. caruncle RPGE00000000 99.1 73.8 2.69 39.8 89.3 26

CU44E Ceratias uranoscopus esca RPGD00000000 99.1 74.0 3.04 39.8 88.3 15

CLS4E ¤ Chaenophryne longceps esca RPGF00000000 99.9 73.7 2.73 39.8 90.4 330

CDS3E ¤ Chaeonophryne sp. esca RPGG00000000 99.9 73.6 2.73 39.8 89.3 291

LMS8E ¤ Linophryne maderensis esca RPGH00000000 99.8 73.8 3.40 40.0 88.8 1

MJ02E Melanocetus johnsoni esca GCA002381345.1 NA 73.7 2.65 39.8 89.9 766

MJS5x ¤ Melanocetus johnsoni esca RPGI00000000 99.9 73.8 3.09 39.8 91.1 321

DP02E Oneirodes sp. esca RPGJ00000000 100.0 73.7 2.68 39.8 89.3 910

DOI: https://doi.org/10.7554/eLife.47606.004
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was compared to a host phylogeny constructed using mitochondrial genes, which matches previous

analysis of anglerfish evolutionary relationships (Miya et al., 2010) (Figure 2). Comparison of host

and symbiont phylogenies found E. luxaltus was only associated with the fish species C. couesii, and

that all fish in this clade hosted the same species of symbiont, indicating that E. luxaltus and C. coue-

sii may have a specific interaction. In contrast, E. escacola was the symbiont associated with every

other anglerfish sample evaluated. These other fish samples cover much of the diversity in the subor-

der, including four of the 11 ceratioid families distributed across the phylogeny. These diverse

anglerfishes all hosted very genetically similar symbiont lineages that are polyphyletic with respect

to host identity.

0.07

symbiont LMS8E 

symbiont MJS5E 

symbiont CDS3E 

symbiont CC81C

symbiont CLS4E 

symbiont CCS2C 
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Figure 1. Maximum likelihood phylogenetic tree of bacterial symbionts from conserved housekeeping genes: 16S rDNA, atpA, gapA, gyrB, rpoA, and

topA. General time reversible was selected by modelfinder and a tree was constructed using IQ-TREE with 1000 bootstrap replicates. Those samples

unique to this study are bolded, with samples from the Northern Atlantic denoted with ¤, and the bootstrap values over 60 are listed at tree nodes.
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None of the symbiont phylogenies, including those constructed with single-copy protein-coding

genes and conserved housekeeping genes (Figure 3), resulted in significant congruence of E. esca-

cola and host phylogeny after statistical testing for symbiont-host codivergence using Procrustean

superposition of the symbiont phylogeny. This is not surprising as E. escacola symbionts from the

same genus of host did not form monophyletic groups in any analysis. In the analysis of conserved

single-copy protein-coding genes, only two of the Atlantic samples of E. luxaltus (symbiont CC32E

and CC62E) were significantly congruent with C. couesii hosts. Analysis using the housekeeping

gene phylogeny resulted in significant congruence with only some host-symbiont pairs, specifically

symbionts CC26E, CCS1E, and CCS2E, suggesting that any significant congruence in this clade is

not robust. Symbiont and host phylogenies had limited congruence across the anglerfish suborder,

and we found no reliable signals of codivergence which might indicate vertical transmission.
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Figure 2. Symbiont phylogeny (left) constructed using single-copy protein-coding genes compared to the host phylogeny constructed using

mitochondrial genes (right). Bolded samples are unique to this study. Samples from the Northern Atlantic denoted with ¤, and the bootstrap values

over 60 are listed at tree nodes. Linkages between symbionts and their hosts are shown with dotted lines that differentiate between symbiont species.
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Symbiont-specific DNA found in environmental samples
In order to further evaluate the possibility of anglerfish symbionts persisting environmentally, we

attempted to amplify DNA from environmental samples with symbiont-specific primers. We used a

PCR assay for a highly conserved and species specific 198-basepair portion of the cheA locus from

each symbiont on seawater bacterial samples. This locus was successfully amplified and sequenced

from a subset of the samples, with sequences identified as E. luxaltus and E. escacola found in dis-

tinct environmental samples. Four samples (8% of those evaluated) were confirmed to contain the E.

luxaltus cheA gene (Supplementary file 6). These nucleotide sequences were 99–100% similar to

the cheA locus in all E. luxaltus genomes available (Hendry et al., 2018; this study). The amplicon

sequences do not appear to be from other known bacteria, such as closely related Enterovibrio. The

most similar match to the environmental sequences in GenBank databases (non-redundant, Refseq

genome, and whole genome shotgun) with >60% coverage shared only 80% nucleotide identity.

Four different samples (8% of those evaluated) were identified as E. escacola. Sequences of E. esca-

cola cheA from the environment did not have significant matches in GenBank databases, but were

99% similar to the E. escacola locus from available genomes (Hendry et al., 2018; this study). The

amplified cheA region is only 78% similar between E. escacola and E. luxaltus and phylogenetic anal-

ysis confirmed that the environmental sequences clustered with E. escacola and E. luxaltus sequen-

ces rather than cheA orthologs from the highest non-symbiont BLAST matches in GenBank

(Figure 4). This phylogenetic clustering and high nucleotide identity suggest that the cheA locus is

highly conserved within each species and distinctive from closely related bacteria, so we conclude

that successful amplifications from seawater indicate that the symbionts were present in the

environment.
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species). The squared residuals below the median squared residual value (dotted line) are significantly codiverging with the host phylogenies (marked

with an asterisk). Sample IDs from the Northern Atlantic are marked with a ¤ and those from the Gulf of Mexico are unmarked.
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Within a symbiont species, samples differed by SNPs
There was very little genetic diversity within both E. escacola and E. luxaltus at the loci analyzed

above, which could possibly obscure codivergence between symbionts and hosts. To investigate this

possibility, as well as any geographic patterns in symbiont distribution, phylogenies were con-

structed using more data in the form of genome-wide single nucleotide polymorphisms (SNPs)
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Figure 4. Maximum likelihood phylogenetic tree of cheAfrom environmental samples (bolded) compared to sequences from symbiont genomes
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(Figure 5A B). Fewer SNPs present across samples were found in E. luxaltus genomes (2252) com-

pared to E. escacola genomes (15272). The E. luxaltus SNP phylogeny does further differentiate

between samples with high support (Figure 5A). Specifically, a host esca (E) and caruncle (C) from

the North Atlantic were divergent from those collected in the Gulf of Mexico. However, with the lim-

ited number of available samples, we are not able to fully investigate if this is due to geographic pat-

terns or the substantial time between sampling (~20 years) (Supplementary file 1). However,

samples collected from the same location from different months (with a maximum difference in col-

lection time of 12 months) did not form distinct clades. The SNP phylogeny constructed for E. esca-

cola also showed more divergence than phylogenies from conserved genes, but samples did not

form distinct clades by location or collection date (Figure 5B). Consistent with other analyses, E.

escacola samples isolated from the same host genera were polyphyletic and there was often greater

variation between symbionts isolated from the same anglerfish genus than between symbionts from

different host genera. Some Ceratias symbiont samples did form a long branch that was distinct

from all other E. escacola lineages, with the exception of a single Ceratias sample (Csp75C). To con-

firm a lack of codivergence with improved phylogenetic resolution, we performed the Procrustean

analysis using the SNP phylogenies, but neither symbiont was significantly codiverging with their

hosts (p>0.05) in this analysis.

Discussion
Within the broad phylogenetic spectrum of ceratioid anglerfishes sampled in this study we identified

only two symbiont species, E. luxaltus and E. escacola. These symbiont species were previously

described as the symbionts of two commonly collected anglerfish species, Cryptopsaras couesii and

Melanocetus johnsonii. The fact that sampling from four additional anglerfish genera from two differ-

ent ocean basins did not uncover more symbiont diversity suggests that there are a low number of

luminescent symbiont species that can associate with deep-sea anglerfishes. However, it should be

noted that this study was not all-inclusive, particularly since new anglerfish species are still being
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described (Pietsch and Sutton, 2015), and further sampling could reveal more symbiont diversity. In

addition to the lack of species-level diversity, the low intra-specific diversity in each symbiont species

was notable. Similar trends have been found in other obligate symbionts, such as the aphid endo-

symbiont Buchnera and in the obligate luminous symbionts of flashlight fishes (Hendry et al., 2014),

but not in facultative luminous symbionts (Abbot and Moran, 2002; Funk et al., 2001;

Hendry et al., 2014). Host population bottlenecks may lead to low genetic diversity within Buchnera

(Abbot and Moran, 2002; Funk et al., 2001), but this seems unlikely to account for low diversity in

obligate symbionts of fishes. It is unclear why anglerfish symbionts, even from distinct hosts and geo-

graphic locations, are so genetically similar. It is possible that although the hosts are separated by

ocean basins, low mutation rates and long doubling times have resulted in a fairly stable and wide-

spread symbiont population. Anglerfish symbionts lack many DNA repair pathways (Hendry et al.,

2018), which has been implicated in increased mutation rates in obligate symbionts (Lind and

Andersson, 2008), but the connection between the loss of these pathways and genomic evolution is

not always clear (Tamas et al., 2002). Our finding of low genetic diversity in anglerfish symbionts

supports the idea that a loss of DNA repair mechanisms does not necessarily lead to high mutation

rates in bacteria. We speculate that anglerfish symbionts may instead have long doubling times, as

this adaptation is common for bacteria surviving in the low-nutrient, high-hydrostatic pressure of the

deep sea (Lauro and Bartlett, 2008; Wirsen and Molyneaux, 1999). Lowered metabolic rates are

also common for cooperative symbionts (An et al., 2014). Collectively these factors may have led to

the bacterial genomes being relatively static when free-living and resulted in the limited diversity

observed in this study.

Although some obligate bacteria show low genetic diversity within a host species, obligate sym-

bionts from different host species are often distinct due to codivergence with their hosts

(Clark et al., 2000; Jousselin et al., 2009). This pattern has been found in numerous symbionts that

are known to be vertically transmitted and often results in phylogenetic congruence between distinct

host and symbiont taxa (Fisher et al., 2017; Sachs et al., 2011), as has been documented in the

bacterial symbionts of insects (Dale and Moran, 2006; Moran et al., 2008) and deep-sea clams

(Goffredi et al., 2003; Hurtado et al., 2003). Within vertically transmitted symbionts, symbiont

replacements or horizontal transfers can often be observed in specific lineages where congruence

breaks down (Bright and Bulgheresi, 2010), as has been observed in Wolbachia-harboring insects

(Kikuchi and Fukatsu, 2003; Lefoulon et al., 2016), bacterial symbionts of marine worms

(Blazejak et al., 2006), and Prochloron associated with sea-squirts (Münchhoff et al., 2007). Neither

of these patterns is seen in our data. Anglerfish symbionts and their hosts lack consistently congru-

ent phylogenies and it does not seem likely that congruence is being obscured by symbiont replace-

ments or transfers, since very diverse host species all share low diversity symbionts. These results

support the hypothesis that anglerfish symbionts are not codiverging with their host species. This

conclusion is robust for E. escacola and associated hosts, but we may not have enough samples, and

genetic diversity within those samples, to rule out the possibility that E. luxaltus and C. couesii could

be codiverging due to vertical transmission. An alternative hypothesis is that C. couesii and E. luxal-

tus have a specific interaction, and that either the host or the bacterium excludes the other symbiont

species (Bongrand and Ruby, 2019; Koch et al., 2014).

A lack of robust and statistically significant codivergence between hosts and symbionts contra-

dicts the hypothesis that either symbiont species is vertically transmitted. This is consistent with pre-

vious studies of the luminous symbionts of squid and fish hosts, as they show no congruence

between host and symbiont species (Dunlap et al., 2007). The most likely conclusion based on these

data is that anglerfishes acquire their bacteria from an environmental symbiont pool that interacts

with diverse anglerfish species. However, anglerfish symbiont genomes resemble vertically transmit-

ted symbionts in multiple ways, including having extreme gene loss, expansion of transposable ele-

ments, and limited metabolic capacity (Hendry et al., 2018). Similar genomic patterns are seen in

‘Candidatus Photodesmus’ species, the luminous symbiont of anomalopid flashlight fishes

(Hendry et al., 2016; Hendry et al., 2014). Both anglerfish and anomalopid symbionts have evaded

culturing efforts and are divergent from known species of luminous bacteria in the Vibrionaceae

(Haygood et al., 1992; Haygood and Distel, 1993; Hendry et al., 2018; Hendry and Dunlap,

2011). However, anglerfishes do not appear to school, nor do they exhibit diurnal cave dwelling,

that is hypothesized to assist in pseudovertical transmission of Photodesmus species to flashlight

fishes (Hendry et al., 2016; Hendry et al., 2014). Flashlight fishes and their symbionts lack sufficient
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sampling to test for codivergence, but symbiont sequencing from four fish species found high symbi-

ont-host specificity (Hendry et al., 2014), a distinct pattern from the results presented here for E.

escacola and six host species. We are not aware of other bacterial symbionts that have undergone

extensive, degenerative genome reduction while maintaining environmental populations and associ-

ations with diverse and widespread hosts, as is seen with deep-sea anglerfish symbionts (For an

overview of transmission modes and evolutionary patterns in symbionts, see Table 2).

Based on catch rates and limited observation, anglerfishes are thought to be relatively solitary,

and different life stages are separated by hundreds to thousands of meters of ocean (Pietsch, 2009).

Anglerfishes are unlikely to encounter environmental symbionts regularly, as symbionts are unlikely

to establish widespread populations due to their limited metabolic capabilities (Hendry et al.,

2018). Other environmentally transmitted luminescent symbionts have much higher host densities to

enrich populations in the local environment (Nealson and Hastings, 1991). Anglerfishes may have

evolved mechanisms to similarly increase the concentration of symbionts in their local environment.

A small pore in the lure is likely seeding the environment with symbiotic bacteria (Munk, 1999), but

the caruncles on Ceratias and Cryptopsaras species are also a likely source of symbiotic bacteria.

The caruncle is not externally luminescent and its function for the fish is not established

(Pietsch, 2009). Although it is not connected to the esca, the caruncle does connect to the sur-

rounding water through a small distal pore (Pietsch, 2009). The conclusion that anglerfishes must

acquire their symbionts from potentially sparse environmental populations leads us to propose that

the caruncle evolved as a mechanism to increase the concentration of symbiotic bacteria in the envi-

ronment, thereby increasing the likelihood of symbionts being transmitted to new fish generations.

Table 2. A summary of modes of symbiont transmission, examples of some bacterial species and the functions they perform for

animal hosts, and trends in the reduction of symbiont genomes.

Transmission Description Symbiont and function Host Genome References

Environmental Acquired from
free-living
bacteria

Luminescence
Aliivibrio fischeri
Photobacterium leiognathi
Photobacterium kishitanii
Nutrition
"Candidatus Endoriftia
persephone"
Various Gammaproteobacteria
Burkholderia spp.

Fish and
squid
Fish
Fish

Tubeworms
Mussels
Insects

Comprable to
free-living
relatives

Dunlap and Urbanczyk, 2013;
Gyllborg et al., 2012
Urbanczyk et al., 2011; Ast et al., 2007
Li et al., 2018; Kleiner et al., 2012
Ponnudurai et al., 2017
Kikuchi et al., 2005; Kikuchi et al., 2007

Proposed
Environmental

Environmentally
persistant cells

Luminescence
"Candidatus Enterovibrio
escacola"
"Candidatus Enterovibrio
luxaltus"

Anglerfish
Anglerfish

Ongoing
reduction Hendry et al., 2018

Hendry et al., 2018

Mixed Pseudovertical
or surface
transmission

Luminescence
"Candidatus Photodesmus
blepharus"
"Candidatus Photodesmus
katoptron"
Nutrition
Various Gammaproteobacteria
“Candidatus Ishikawaella
capsulata”

Flashlight
fish
Flashlight
fish

Clams
Stink bug

Moderate to
extreme
reduction

Hendry et al., 2014; Hendry and
Dunlap, 2014
Hendry et al., 2014; Hendry and
Dunlap, 2014

Kuwahara et al., 2007

Inherited Direct passage
from parent to
offspring on
egg or sperm

Nutrition
Buchnera aphidicola
Carsonella ruddii
Portiera aleyrodidarum
Varied
"Candidatus Synechococcus
spongiarum"

Aphids
Psyllids
Whiteflies

Sponges

Greatly
reduced Moran et al., 2008; Fisher et al., 2017

Moran et al., 2008; Fisher et al., 2017
Moran et al., 2008; Fisher et al., 2017

Gao et al., 2014; Burgsdorf et al., 2015
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Low host densities could also drive bacterial evolution in this system. Although M. johnsonii is rel-

atively abundant among anglerfishes, as is C. couesii, all other anglerfish genera investigated in this

study are less prevalent than the most common species (Pietsch, 2009). With extremely low host

densities, E. escacola may remain a viable symbiont for diverse anglerfish species due to selection

against host specificity. The lack of apparent host specificity in this symbiont may increase the likeli-

hood that these bacteria in the environment will encounter a permissive host before losing viability.

In the case of E. luxaltus, this symbiont may encounter sufficient abundances of C. couesii individuals

to allow for host specificity, either as a result of selection or by chance. For example, E. luxaltus and

E. escacola differ in the genes present in the structural symbiosis polysaccharide (syp) pathway, the

regulation of which influences host specificity in the luminous symbiont A. fischeri (Mandel et al.,

2009). Both sypF and sypG are exclusive to E. luxaltus, that is neither gene is present in annotations

and cannot be found in a BLAST search of any E. escacola genome. In A. fischeri, SypF is predicted

to be a sensor kinase that regulates biofilm formation (Darnell et al., 2008; Thompson et al., 2018)

and SypG is a response regulator that directly activates the syp locus (Hussa et al., 2008;

Thompson et al., 2018; Yip et al., 2005). Although both symbionts maintain genes in the syp path-

way, the loss of these regulatory genes in E. escacola could facilitate their colonization of a greater

diversity of hosts.

The finding that anglerfish symbionts are likely environmentally transmitted further supports the

hypothesis that the limited functional capacity of anglerfish luminous symbionts is sufficient to persist

in the deep sea before contacting a new host. Motile symbionts capable of chemotaxis may be able

to out-compete other non-motile deep-sea bacteria for access to the high nutrient environment of

the host esca (DeLong et al., 2006). Additionally, polyhydroxybutyrate (PHB) may be a sufficient car-

bon source to sustain the symbiont before it arrives at a new host (Hendry et al., 2018). PHB has

been estimated to sustain rhizobia for years, and may assist these microbes to survive thousands of

years in a dormant state (Johnson et al., 2007; Muller and Denison, 2018); we hypothesize that

PHB should function similarly for flashlight fish and anglerfish symbionts. Environmental samples of

free-living bacteria collected by the DEEPEND Consortium taken concurrently with anglerfish collec-

tion found multiple samples containing 16S rDNA matching anglerfish symbionts, at various depths,

and from multiple sampling efforts (Freed et al., 2019). Our characterization of symbionts using a

portion of the chemotaxis protein cheA found multiple environmental samples containing either E.

luxaltus or E. escacola. This result confirms previous reports that the symbiont persists in the water

column (Freed et al., 2019), and further supports our conclusion that symbionts are acquired from

environmental populations.

The low genetic diversity within the anglerfish symbionts made it difficult to determine if symbi-

ont distribution was impacted by geographic origin or host identity. Using SNPs we were able to dis-

cern differences between E. luxaltus samples collected from different times at different locations,

however, this result was limited to a single C. couesii individual from the North Atlantic, with esca

and caruncle sampled (symbiont CCS1E and CCS2C). A subset of the E. escacola hosted by Ceratias

formed a distinct clade and included two of the Northern Atlantic samples and a sample from the

Gulf of Mexico. This confounding result suggests that further sampling of Ceratias may provide

more insight into how location and time impact the diversity of E. escacola. Alternatively, it is possi-

ble that because the two collection sites are connected by deep-sea currents (Loop Current/Gulf

Stream system), that symbionts were acquired by fishes in a similar location although they were col-

lected hundreds of kilometers apart.

The deep sea is the earth’s largest and most understudied ecosystem, where studying symbiosis

is both challenging and costly. In this study we use genomic analysis on rare samples of one of the

deep sea’s most prominent symbioses to answer an outstanding question, how are deep-sea angler-

fish symbionts transmitted between generations? Our findings demonstrate the value of studying

relatively rare organisms in this ecosystem, as we can uncover new findings that may contrast with

model systems. Bioluminescent symbiosis in anglerfishes breaks with several expectations from well-

studied symbioses; symbionts that leave the host and establish environmental populations typically

do not undergo genome degeneration. Yet, here we show that a luminous bacterial symbiont with

an extremely reduced genome is able to traverse the low-nutrient, high-pressure environment of the

deep sea to establish a symbiosis with a dispersed and relatively rare host. As samples of these

fishes and symbionts become available, we may be able to address additional outstanding
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questions, such as the lack of diversity in anglerfish symbionts and their biogeographic population

structure.

Materials and methods

Genome sequencing, assembly, and annotation
Anglerfish samples were collected in the Gulf of Mexico by the DEEPEND Consortium and from east

of the Cape Verde Islands by Spencer Nyholm and Peter Herring on the RRS Discovery expedition

D243 (sample information in Supplementary file 1). Morphological identification was done on ship

by Tracey Sutton (DEEPEND) or Spencer Nyholm and Peter Herring. Molecular genetic confirmation

of morphological identification is discussed below. Samples were named according to: initial mor-

phological identification, order collected, and anglerfish light organ sampled–either esca (E) or car-

uncles (C). Lures were collected immediately after identification using a sterile scalpel and stored in

ethanol or RNAlater (Qiagen, Hilden, Germany) at �80˚C until processing. DNA extraction from sam-

ples collected in the Gulf of Mexico was performed at the Marine Microbiology and Genetics Labo-

ratory at Nova Southeastern University’s Halmos College of Natural Sciences and Oceanography

using the PowerLyzer PowerSoil kit (MoBio) as is described in Hendry et al. (2018) Samples col-

lected in the Northern Atlantic were extracted using the DNeasy Blood and Tissue Kit (Qiagen).

Paired-end 250 base pair Illumina sequence libraries were prepared using the Nextera kit (Illumina,

San Diego, CA) and sequenced using HiSeq2500 at the Cornell University Institute of Biotechnology

Resource Center Genomics Facility. Contigs were assembled using DISCOVAR de novo and binned

and assessed for quality using multiple approaches which are detailed in the Supplementary Informa-

tion. Binned symbiont genomes and sequences mapped to the reference genomes for E. luxaltus

and E. escacola (GCA_002381345.1 and GCA_002300443.1) were submitted to NCBI

(Supplementary file 1).

Genome assembly and validation
High concentrations of an evident monoculture of symbionts within anglerfish escae enable assembly

and study of symbiont genomes from samples that are technically metagenomic, as they include

symbiont and host DNA as well as DNA from contaminant bacteria likely on the surface of the light

organ (Hendry et al., 2018). After assembly using DISCOVAR de novo, bacterial genomes were

binned using metabat2, which bins similar contigs according to tetranucleotide frequency and

sequencing depth (Kang et al., 2015). Sequences that failed to bin using metabat2 were binned

using the Pathosystems Resource Integration Center (PATRIC 3.5.23) (Wattam et al., 2014). Three

C. couesii-associated samples were not successfully binned using metabat2 or PATRIC; these sample

assemblies were processed as is outlined, with the exception of finding average nucleotide identity

or annotating gene content. Binned contigs were evaluated through a local BLAST search for genes

within the luciferase operon (luxA, luxB, and luxC) and contigs in the resulting bin were input into

the NCBI BLAST database to confirm symbiont identification. The average genome coverage depth

was calculated using BBmap (Bushnell, 2014). Genome completeness was evaluated using checkM

(Parks et al., 2015), which previously estimated for E. luxaltus and E. escacola as only nearing 90%

completion due to genome reduction (Hendry et al., 2018). The quality of the genome assemblies

unique to this study are similar to previously documented anglerfish symbionts. Contig bins which

had approximately 90% genomic completion, lux luminescence genes, and high BLAST similarity to

previously sequenced anglerfish symbiont genomes were consider complete symbiont genome

sequences and were submitted to Rapid Annotation using Subsystem Technology (RAST) for annota-

tion. All other bins generated by metabat2 and PATRIC did not contain luciferase genes nor did

they have sequences that closely resembled symbiont housekeeping genes.

Anglerfish host evolution
Anglerfish morphological identification and evolutionary relationships among samples were evalu-

ated using mitochondrial genes. Similar methods and comparison species are discussed in

Miya et al. (2010). Anglerfish mitochondrial sequences were identified using a local BLAST search

of the unbinned contigs and deposited in GenBank (accession numbers MK118159-MK118174). Ref-

erence mitochondrial sequences were selected based on initial morphological identifications and
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supplemented with sequences of nearest neighbors present in GenBank and Miya et al., 2010

(Supplementary file 2). Mitochondrial sequences were aligned using MAFFT and a phylogenetic

tree was assembled using IQ-TREE (Katoh et al., 2002; Nguyen et al., 2015). Within IQ-TREE mod-

elfinder selects a phylogenetic model using a model-selection method that concurrently searches

model and tree space to increase the accuracy of phylogenetic estimates (Kalyaanamoorthy et al.,

2017). A consensus tree was constructed using the general time reversible model with empirical

base frequencies, allowing for invariable sites, and four rate categories (GTR+F+I+G4) and 1000

bootstrap replicates. Based on phylogenetic analysis, samples were assigned to a species if they fell

within the same clade as multiple representatives of the same species or by morphological species

identification if sequences from representative species were not available for comparison. Samples

were identified to a genus if there was an indeterminate species designation. The genetic identifica-

tion of a single sample contradicted morphological identification, was reevaluated morphologically,

and found to confirm the mitochondrial identification.

Evaluation of symbiont genomes
Similarity among symbiont genomes isolated from individual anglerfish samples was evaluated using

average nucleotide identity (ANI), housekeeping genes, and conserved single-copy protein-coding

genes. ANI, a measure of nucleotide-level genomic similarity, was found using orthoANIu

(Yoon et al., 2017); comparisons greater than 95% ANI considered the same species

(Konstantinidis and Tiedje, 2005). Bacterial species trees were created using conserved housekeep-

ing genes (16S rRNA gene, atpA, gapA, gyrB, pyrH, rpoA, topA) from both symbiont contigs and

closely related bacterial genomes downloaded from NCBI (Supplementary file 3). Genes were

aligned using MAFFT and a tree was constructed from the concatenated alignments in IQ-TREE as

described above (GTR+F+I+G4 with 1000 bootstrap replicates). Single-copy protein-coding genes

shared by bacterial symbionts and whole genome sequences of closely related free-living bacteria

(Supplementary file 4) were found by inputting RAST protein annotations into PhyloPhLan. DNA

sequence of shared proteins were then extracted from RAST annotations and used to construct a

phylogenomic tree by aligning individual genes in MAFFT. The 205 shared genes were

concatenated, and a tree was constructed from 331103 positions using the GTR+F+I+G4 model

selected by modelfinder and using 1000 bootstrap replicates in IQ-TREE.

Evaluating codivergence between anglerfish and bacterial symbionts
Host-symbiont codivergence was evaluated using Procrustean Approach to Cophylogeny (PACo) as

implemented in R (Balbuena et al., 2013; R Development Core Team, 2012). PACo is a global fit

method that does not require fully resolved phylogenies to evaluate if the symbiont has evolved as a

result of codivergence with the host species. In PACo, Procrustes superposition manipulates the

symbiont genetic distance matrix to fit the host matrix, to evaluate the congruence of the symbiont

to the host tree. Anglerfish phylogenies input into PACo were constructed as described above for

mitochondrial sequences. Various bacterial phylogenies were analyzed in PACo, including the con-

served housekeeping gene phylogeny, genome-wide SNP phylogenies (described below), and the

conserved single-copy protein-coding gene (identified by PhyloPhLan) phylogeny (Segata et al.,

2013). Symbiont and bacterial ultrametic trees were input into PACo as distance matrices, and 104

iterations were performed for significance testing. The contribution of each bacterial symbiont to

the overall global codivergence was evaluated using jackknife estimation of the relative squared

residuals; codivergence was indicated in those samples that have a significantly smaller fraction of

the sum of squares.

Evaluating presence/absence of bacterial symbiont DNA in water
samples
The 16S rDNA sequences matching anglerfish symbionts were previously found in environmental

samples taken concurrently with anglerfish collections (Freed et al., 2019), suggesting that sym-

bionts persist outside the host. To confirm that anglerfish symbionts can persist in the environment,

symbiont species-specific primers were developed from whole genomes to amplify multicopy loci of

a conserved chemotaxis protein cheA, which should be relatively more abundant than single copy

loci in low density samples. We performed PCR assays on DNA extracted from environmental

Baker et al. eLife 2019;8:e47606. DOI: https://doi.org/10.7554/eLife.47606 14 of 21

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.47606


bacteria in 52 samples taken concurrently with anglerfish collections during DEEPEND consortium

cruises (D01-D04) in the Gulf of Mexico. The filtering and extraction protocol used, as well as the

16S rDNA composition of a subset of these samples is described in Easson et al. (Easson and Lopez,

2019). Primers for cheA specific to each symbiont were designed by importing symbiont and closely

related sequences found using the BLAST genome searches into DECIPHER (Wright et al., 2012)

(Supplementary file 5). Sequences were amplified using nested PCR primers and the New England

Biolabs standard taq polymerase kit (NE Biolabs, Ipswich, MA, USA) using the recommended proto-

col for amplifications under 500 base pairs. Reactions were prepared in a UV sterilized biosafety cab-

inet with surface sterilized implements. Negative controls prepared with sterile water were included

in each round of PCR. No negative controls resulted in visible amplification. Amplifications were gel

extracted using the Qiaquick gel extraction kit (Qiagen, Venlo, Netherlands) and Sanger Sequenced

(Genewiz, New Jersey, USA). Sequence identity was evaluated using blastx and blastn searching and

a phylogenetic tree was constructed using MAFFT and IQ-TREE (GTR+F+I+G4 and 1000 bootstrap

replicates) from environmental amplifications and cheA sequences annotated from genomes avail-

able in RAST (Supplementary file 6).

Evaluation of symbiont diversity within a species using SNPs
Evolution within each symbiont species was evaluated using genome-wide SNPs. Bacteria were

grouped into different species based on the result of ANI and the conserved housekeeping gene

phylogeny. SNPs were identified using snippy v.4.0-dev, which implements bwa mem and freebayes

to compare reads from haploid genomes to a reference genome (Garrison and Marth, 2012;

Li, 2013; R Development Core Team, 2012; Seemann, 2015). The reference genome was selected

from the previously characterized anglerfish symbionts described in Hendry et al. (2018). SNPs

were identified in sequence reads and snippy-core was used to generate a core alignment of SNPs

common to all samples. A phylogenetic tree was constructed using this core alignment in IQ-TREE

for each symbiont species with 1000 bootstrap replicates, with the models selected for by model-

finder. The E. luxaltus SNPs phylogeny was constructed using the Kimura 3-parameter and ascertain-

ment bias correction model (K3P+ASC) and the E. escacola SNPs phylogeny was constructed using

the symmetric model with unequal rates and an ascertainment bias correction model (SYM+ASC).
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