PerLNet: Learning to Localize Multiple
Periodic Activities in Real-World Videos

Giorgos Karvounas

Thesis submitted in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science and Engineering

University of Crete
School of Sciences and Engineering
Computer Science Department
Voutes University Campus, 700 13 Heraklion, Crete, Greece

Thesis Advisor: Professor Antonis A. Argyros

This work has been performed at the University of Crete, School of Sciences and Engineering,
Computer Science Department.

The work has been supported by the Foundation for Research and Technology - Hellas
(FORTH), Institute of Computer Science (ICS).






UNIVERSITY OF CRETE
COMPUTER SCIENCE DEPARTMENT

PerLNet: Learning to Localize Multiple Periodic Activities in
Real-World Videos

Thesis submitted by

Giorgos Karvounas
in partial fulfillment of the requirements for the
Masters’ of Science degree in Computer Science

Author: 3

Giorgos Karvounas

-~

//

Committee approvals:

Antonis Aréyros
fessor, Thesis Supervisor

A oo

174 G
Panos Trahanias
Professor, Committee Member

0

Anastassios Roussos
Principal Researcher, Committee Member
A

Departmental approval:

Antonis Argyros
Professor, Director of Graduate Studies

Heraklion, February 2019






PerLNet: Learning to Localize Multiple Periodic
Activities in Real-World Videos

Abstract

This thesis addresses the problem of temporal periodicity localization, i.e., the
problem of identifying all segments of a video that contain some sort of peri-
odic or repetitive motion. To do so, the proposed method represents a video by
the matrix of pairwise frame distances. These distances are computed on frame
representations obtained with a convolutional neural network. On top of this rep-
resentation, we design, implement and evaluate PerLNet, a convolutional neural
network that is able to classify a given frame as belonging (or not) to a periodic
video segment. An important characteristic of the employed representation is that
it permits the handling of videos and periodic segments of arbitrary number and
duration. Furthermore, the proposed training process requires a relatively small
number of annotated videos. The proposed method drops several of the limiting
assumptions of existing approaches regarding the contents of the video and the
types of the observed periodic actions. Experimental results on recent, publicly
available datasets validate our design choices, verify the generalization potential of
PerLNet and demonstrate its superior performance in comparison to the current
state of the art.






PerLNet: Evtonioudc IToAanAdv ITegrodixmy
Apooctnelotitey ot Ilpayuatixd Bivteo
ne Xenon Teyvixov Mdaddnong

Ilepirndn

Avuti n epyaota acyoheital e To TEOBANUL TOU YpOoVIXO0V EVIOTIGUO) TEQLOBXOT-
Tag, ONAAOY UE TO TEOBANUN TNG AVAYVORIONE OAWMY TOV TUNUATWY EVOS Bivieo mou
TepLEoLY xdmolo eldog TeplodixAc 1) emavahauBovouevne xivione. T va yiver owto,
1 mpotewouevy uédodog Boaoiletan otny encéepyasio Tov Tvoxa AmOCTICEWY OAWY
TV (EUYOV TV EXOVWY Tou Bivieo. Autég ol anoctdoelg utohoyilovton peTal o-
VOTORUO TAGEWY EXOVWY TOU UTOAOYILOVToL OO €VoL GUVEMXTIXG VEURGVIXO B{XTUO.
Extoc and autrv tny napdotaor, oyedidlouye, bhomololue xou agloloyolue to PerL-
Net, éva 0e0Tepo GUVEAIXTING VELPWWIXOG BiXTUO oL Efvor Ge VEon VoL xaTUTAOEL Lol
exodva evoc Bivieo g mpog To xatd nécov auTh avixel oe Teptodixd () Oyt) Tuua
Tou Bivteo. 'Eva onuavtixd yopaxtneloTixd Tne avanopdo Taong Tou TRoTelveTol lvol
OTL EMITEENEL TOV EVTOTULOUO TEPLOBXADY TUNUAT®Y aveldpTnTa and To TAY0g Toug xou
N Sdpxetd toug. Emmiéov, 1 mpotewouevn diadxaota exnaidevong amoutel oyeTIXd
o apriud Pivteo exmaideuone. H mpotewvouevn pédodog aipel opxetéc and Tig u-
TOVECELS TV VPLOTAUEVODY TPOCEYYIOEWY GYETIXA UE TO TEPLEYOUEVO TOU Bivieo xou
TOUC TUTOUS TWV TURATNEOUUEVWY TEPLOOIX®Y dpac Tnetothtwy. To mocotixd anote-
AéouaTo amd TNV TELRAUTIXY ATOTUNCT TNE TREOTEWOUEVNE HEYOD0U ETXULHOVOLY TIC
EMAOYES OYEBLAOUOU pag, emBeBonwvouy Tn duvatdTnTa Yevixeuong tou PerLNet xou
eMBEXVOOLY TNV UTEQOY Y| TOU G GUYXELON UE TIC BEATIOTEC UPLO TAUEVES TPOCEYYIOELS
0TO TEOBANUAL.
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Chapter 1

Introduction

Periodic patterns are ubiquitous in both natural and man-made environments.
Common human motions and activities such as walking, running, hand waving,
breathing, etc, give rise to periodic patterns. Detecting such patterns is both
effortless and useful for humans [30] who use visual, aural and tactile signals as
the primary sources of sensory information to solve this task.

The period of a signal is the smallest value T, for which this signal repeats itself.
The mathematical definition of a periodic signal is described by the equation:

X(t) = X(t +Tp),Vt, (1.1)

where X is a periodic function over the free variable . A periodic signal, that is
described by the equation:
z(t) = sin(27 ft) (1.2)

is illustrated in Figure 1.1. For any signal, we also define its self- similarity matrix,
that is the square matrix representing the similarity in any pair of samples of the
signal. For such a signal, methods such as the Fast Fourier transform can be
used to estimate their frequency and, thus, their period. This is because no noise
contaminates the amplitude or the phase of the signal. However, in the real world
we deal with more complex types of signals where the equation 1.1 does not hold
in the strict sense. As an example, Figure 1.2 illustrates the signal

z(t) = e 'sin(27 f1). (1.3)

In this case, it is not clear where the periodic part fades-out. In this case, methods
based on peak detection [60] can still detect the periodic part, but in more complex
cases will fail. Recent research has led to the development of algorithms that can
tolerate such cases. The answer of localizing the periodicity in such signals usually
depends on the application.

A situation that is quite common in practice is when a periodic signal appears
between a non periodic prefix and suffix, as illustrated in Figure 1.3. In such a
case, peak detection algorithms will fail to detect the periodic segment. Fourier
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Figure 1.1: A sinusoidal signal (left) and its self-similarity matrix (right).

Figure 1.2: The signal produced by the equation 1.3 is on the left, with the self-
similarity matrix on the right.

transform also fails to detect the frequency of the periodic part of the signal.
This happens because of the noise that surrounds the signal. Such cases are very
common in both natural and man-made environments and diverse settings. As an
example, imagine the situation of a periodic fitness exercise that occurs between
other non-periodic human activities.

We are interested in developing methods for the automatic segmentation of
periodic parts of signals. Specifically, this work deals with the problem of peri-
odicity localization, that is, the identification of all periodic segments in a video.
Given an input video, our goal is to identify all the frames of the video where a
repetitive, periodic motion is observed. Consider, as an example, the situation
shown in Figure 1.4. In this example, a man starts by talking to the camera
(non-periodic motion), followed by doing crunches (periodic motion), then stands
up (non-periodic), performs some kicks (periodic), and finally again talks to the
camera. The desired output is color-coded as red for non-periodic video segments,



and green for periodic ones. Given this identification of periodic segments, a po-
tential next goal is periodicity characterization, i.e., the estimation of the length
of the period of the periodic motion in each segment. Periodicity characterization
is out of the scope of this work. However, a solution to the periodicity localization
problem simplifies the problem of periodicity characterization.

From a practical point of view, many real-world applications like classifica-
tion [44, 22, 3, 55], 3D reconstruction [5] and camera calibration [27] as well as
medical assessment [52] and rehabilitation are applications that can benefit and
make use of the periodicity as a useful building block. Work has also been carried
out in industrial inspection with minimal prior knowledge [31]. Additionally, algo-
rithms for solving the problem of human action and motion detection can benefit
by knowing the location of the periodicity and the period length. In both cases,
periodicity, can also give significant cues of the action that is performed. Studies
have shown that every human has different gait cycle [11, 68]. Therefore in classi-
fication, periodicity detection is useful for human (re-)identification based on their
gait cycle. In a broader view, periodicity detection is also useful in the area of
chaotic systems [51, 58, 12]. In dynamic systems, detecting unstable periodic or-
bits can aid to modelling many complex phenomena concerning geophysics, space
physics and fluid dynamics.

Periodicity detection and characterization using visual input form a category of
problems that has been widely studied [43, 66], and is still of significant interest to
the community of computer vision [48, 57]. Many different approaches have been
proposed to tackle periodicity localization and related problems. The mathemati-
cal tools that have been mainly used is spectral analysis and the Fourier transform.
Such approaches exhibit varying levels of computational complexity, leaning to-
wards low computational cost. On the other hand, their main drawback is their
strong assumption about an almost perfectly stationary input signal. Formally,
stationary signals exhibit constant statistical properties over time as in Figure 1.1.
This is the class of signals that are usually termed periodic. Real-world signals
deviate from being stationary and truly better resembling the one in Figure 1.2.
Repeated actions may differ in their duration (thus, the period of the action is not
constant) and/or in their actual execution. These actions produce non-stationary
signals. Non-stationarity can be generally considered as another source of noise or
contamination to a periodic signal, but it is usually expressed in specific manners.
Such a common manner is the repetition of roughly the same pattern at slightly
different time intervals. Therefore, successful periodicity localization methods that
deal with these types of non-stationarity have to address significant challenges.

Other approaches have been based on heuristics to match repetitive patterns.
Such approaches usually have a larger tolerance to input noise, or other kinds of
input corruption, according to the target of the adopted heuristic. The relevant
methods also need to address a number of challenges. To begin with, the amount
of data contained in a regular video stream is big, even for the standards of modern
hardware. Further complicating factors include camera motion, sensor noise and
the non-stationarity of the observed motion. In a video where the camera is
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moving, the observed appearance of the scene can change drastically, making the
detection of the periodic pattern extremely challenging. Main research topics in
the area include the development of methods that are tolerant to sensor noise and
non-stationary input signals.

In this thesis we propose a learning-based method for periodicity localization in
videos. Our contributions are many-fold. First, we propose a representation of the
input video that makes it possible to train convolutional neural networks to solve
the problem. Based on this representation, it is possible to develop CNNs that
generalize well based on a relatively small training dataset. Second, within the
proposed video representation, we design and propose a deep convolutional neural
network to detect and localize multiple periodic patterns. Third, we give a solution
to training with unbalanced samples using single model. Finally, the experimental
evaluation on existing benchmark datasets showing that the proposed approach
achieves state-of-the-art performance.
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Figure 1.3: In the upper left plot we visualize a periodic signal between random
noise, with red bars that signify the start and stop of the periodic part. In the
upper right we visualize the self similarity of the signal. With the red rectangle we
highlight the periodic part. The bottom figure plots the Fast Fourier Transform
(FFT) of the signal in the upper right plot. The red circle corresponds to the
ground truth regarding the signal.
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Figure 1.4: We address the problem of classifying parts of an input video as
periodic or non-periodic. Still frames of an example video are shown, with the time
running from left to right and from top to bottom. In the video, a man starts by
talking to the camera (non-periodic action), followed by doing crunches (periodic
action). Then he stands up (non-periodic), performs some kicks (periodic) and
finally again talks to the camera (non-periodic). The output of the proposed
method is color-coded as red for non-periodic parts, and green for periodic ones.



Chapter 2

Related Work

The tasks of detection and analysis of periodic patterns have received the attention
of researchers from various computer science fields [2, 54, 16, 53]|. Problems in this
category include the detection of repeating patterns within a video [54, 53] or a
database [2, 16, 17] as well as the exploitation of the periodicity as a basis for
solving a number of other problems [5, 27]. Recent advances in machine learning
and in particular deep learning have revolutionized many disciplines, including
machine vision. We argue in this work that periodicity localization can benefit
from these advances.

2.1 Deep Learning and Deep Architectures

Deep learning is part of machine learning and includes algorithms that are in-
spired by the structure and function of the brain, called deep neural networks.
Deep neural networks(DNNs) are the evolution of the traditional artificial neural
networks(ANNs) [23]. The differences between ANNs and DNNs is that the DNNs
can have more than three hidden layers and that the DNNs can extract their own
features specifically for the training set that is used. In computer vision, the con-
volutional neural networks (CNNs), are widely used for many tasks like image
classification [15]. CNNs also belong the family of DNNs and were introduced by
LeCun et al [36]. This first CNN was designed to recognise [36] hand-written ZIP
code numbers using back-propagation to learn the convolution kernel coefficients
(or weights) directly from images of hand-written numbers.

One disadvantage of CNNs is that they require large computational capability
and memory capacity. For this reason algorithms like LeNet-5 proposed by Le-
Cun et al [37] were difficult to implement until 2010. LeNet-5 was introduced to
automatically classify hand-written digits on bank cheques in the United States.
This network has only 7 layers, among them 2 convolution layers, 2 sub-sampling
layers, 2 fully connected layers, and an output layer with Gaussian connection.
Krizhevesky et al. [32] proposed a CNN for image classification and won the Im-
ageNet LSVRC-2010 challenge [14]. This network was wider and deeper than

7
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LeNet-5. With AlexNet [32], the Local Response Normalization (LRN) was also
introduced. The idea behind LRN is to simulate lateral inhibition and boost the
neurons with relatively larger activations. Simonyan et al. [62] show in their work
the importance of depth in CNNs. With their three proposed architectures,VGG-
11,VGG-16, and VGG-19, they won the ImageNet LSVRC-2014 challenge [14].
The proposed architectures had 11,16 and 19 layers respectively. The design of
the VGG architecture is built around the repeated use of two convolutional layers
that both use the ReLu(Rectified Linear Unit) [21] activation function, that are
followed by a max pooling layer. At the end, they use several fully connected
layers also using as activation function the ReLu [21].

Another type of neural network is the residual neural network architecture.
Residual neural networks are using skip connections or short-cuts to skip over
one or more layers. He et al. [24] they introduced the residual CNNs(ResNet).
ResNet was the winner of the ImageNet LSVRC-2015 challenge [14]. In their work
they proposed 5 different networks with 34, 500, 101, 152 and 1202 layers. At
the output of every convolution layer the employ Batch Normalization [28]. The
intuition behind using skip connections is to address with the problem of vanishing
gradient by feature reusing.

Autoencoders are another type of ANN architrecture and in contrast to the
previous mentioned models, can be used to learn from unlabeled examples. This
strategy for learning is called unsupervised learning. Autoencoders consist of two
stages, the encoder and the decoder. The encoder stage takes the input data
and maps them to feature representations. The decoder does the opposite work,
taking the feature representations and translating them to the initial data. The
first autoencoder was introduced by Rumelhart et al. [56] and trained using back-
propagation. Using the autoencoder they also gave the first solution based on
ANNSs for the XOR problem. The first deep autoencoder was introduced by Hin-
ton et al. [26] and also featured a weight initialization for tackling high dimen-
sional data. They also prove that their deep autoencoder worked better than
Principal Component Analysis. Image denoising is another problem that can be
addressed by deep autoencoders. Vincent et al. [65] introduced a stacked ar-
chitecture with autoencoders to tackle the problem. Recently many computer
vision problems are addressed by convolutional autoencoders. Convolutional au-
toencoders use the same pattern with ANN-based autoencoders with encoding and
decoding using convolution and deconvolution or down-sampling and up-sampling.
Masci et al. [45] introduced the first convolutional autoencoder for feature extrac-
tion. Convolutional autoencoders are performing equaly well to other approaches
in problems like clustering [20], 3D object recognition [38] and 3D human face
reconstruction [63].
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2.2  Periodicity Localization and Characterization

The problems of periodicity localization and characterization can be defined in
the temporal and spatial domains [13] but also in several others that involve ei-
ther 1D signals [44, 16, 8] or multidimensional signal representations. Naturally,
Fourier transform and, more generally, spectral analysis tools have been employed
by many methods [54, 13, 52]. This approach yields satisfactory results in clean,
1D signals, but fails in the presence of large amounts of noise or other sources
of signal corruption that invalidate the assumption of signal stationarity. Special
care must then be taken to preprocess the input appropriately so that the resulting
signal(s) meet the requirements imposed by the selected spectrum analysis tool.

The work by Lu et al. [44] tackles the problem of segmenting and classifying
repetitive motion events using visual input. The method decomposes the input
video into motion primitives using a multidimensional signal segmentation algo-
rithm and then uses these primitives to segment and classify repetitive motion.
Burghouts and Geusebroek [8] propose a method to detect and characterize peri-
odic motion. A spatiotemporal filtering approach is adopted, yielding localization
of the observed periodic events. The method of Tong et al. [64] operates on local
motion (optical flow) information [6] computed in videos. Periodicity detection
and characterization is performed by estimating statistics of the autocorrelation
computed over this motion representation. Albu et al. [3] use silhouettes as the
main visual cue. They focus on human silhouettes to obtain 1D signals repre-
senting motion trajectories of body parts. These signals are then processed to
detect their periodic parts, with a final step of the method fusing these detections
into a single coherent estimation of the periodic parts of the input. The authors
show experimental results of their method on repetitive activities such as aerobic
exercises and walking.

Briassouli and Ahuja [7] propose a method to extract multiple periodic mo-
tions in a video sequence. They propose the use of Short Term Fourier Transform
(STFT) on the volume of the input video. This approach allows for the simul-
taneous detection and characterization of periodic activities. Pogalin et al. [53]
define 10 different classes of periodic motions, and build a system to detect and
classify them. To do so, they begin by tracking all the objects in the input stream.
This is followed by probabilistic PCA of the resulting tracks, and spectral analysis
for detecting and characterizing periodic motion. Azy and Ahuja [4] propose a
method to detect and segment objects that move in a periodic manner using a
maximum likelihood estimation of the period to characterize the motion. Image
segmentation is performed using correlation of image segments over the estimated
period. Taking the inverse approach, Gaojian Li et al. [40] first localize the target
object in a region of interest and then characterize its periodic motion. Motions
with mild non-stationary components are shown to be handled effectively. Kar-
vounas et al. [31] detect and characterize the periodic part of an input video by
formulating the task as an optimization problem. This work assumes that only one
periodic activity exists per video. In the case that this assumption does not hold,
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only one of the periodic activities will be detected, or the method may completely
fail to detect and characterize a periodic action. Panagiotakis et al. [48] treat the
detection of multiple periodic actions as a problem of video co-segmentation. More
specifically, they capitalize on a method [49] that co-segments all common actions
of two videos, in an unsupervised manner. By co-segmenting actions in a single
video, the proposed work manages to identify periodic motions.

2.3 Exploiting Periodicity

The cue of repetitive motion is very strong and can be used to detect events in
a video [44, 34]. In a work demonstrating the power of the periodicity cue using
visual input [59], Sarel and Irani show that it is possible to separate two super-
imposed layers in a video, under the assumption that one of the layers exhibits
repetitive motion dynamics. As an example, a man performing jumping jacks is
filmed through a glass door that reflects moving people on the other side of the
door. The proposed method separates correctly the two scenes by assuming that
periodic motion occurs in one of the two layers. Another work where periodicity
serves as a strong cue to detect and segment motions is presented by Laptev et
al. [34]. In that work, the authors start by observing that corresponding time
instances in successive periods of a periodic activity serve as approximate stereo
pairs. This observation is then exploited to segment and characterize periodic ac-
tivities using space-time correspondences across different periods of the observed
motion. Goldenberg et al. [22] propose the use of the sequence of silhouettes of a
periodically moving object such as a walking dog as a basis for the representation
and analysis of the motion towards action classification. The authors propose the
eigen-decomposition of this set of silhouettes as a means to extract an interme-
diate representation. The authors proceed to show how this representation can
efficiently solve the task of object and action classification. Xiu Li et al. [42] ex-
ploit periodicity to develop a method for non-rigid structure from motion. The
input to the method is a monocular video of a non-rigid object undergoing a possi-
bly repetitive dynamic motion. The authors observe that many deforming shapes
tend to repeat themselves in time, a property termed “shape recurrency”. Based
on this property, the authors apply standard, rigid structure-from-motion tools on
this problem. Xiaoxiao Li et al. [41] develop the Repetitive Motion Estimation
Network (RMEN) for recovering cardiac and respiratory signals. The input of the
network is a video of cardiac activity and the output is a sinusoidal signal. Based
on the output signal they perform a peak detection algorithm to finally recover
cardiac/respiratory signals. Nevertheless the method is performing well but is only
tested in very constrained videos.
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2.4 Repetition Counting

Levy and Wolf [39] propose a method that tackles the problem of repetition count-
ing. They use a CNN on windows of the input stream to detect and characterize
periodic activities. Based on this output, they proceed to estimate the number
of repetitions in the input video stream. The recent method by Runia et al. [57]
for repetition counting analyzes the different possible viewpoints of a periodic mo-
tion with respect to the dominant orientation of motion in 3D. Then, the method
selects the viewpoint with the best signal, estimating the length and period of
motion. This, in turn, yields an estimation of the repetition count, the end goal
of this work. This method only tackles the problem of counting the repetitions of
a single action, so it cannot handle two or more different periodic activities in a
video.

2.5 Data Mining

In data mining, detecting periodic patterns can aid in detecting trends in time
series. This is currently a very important task since temporal data are increasing
constantly [18]. Elfeky et al. [16] proposed the WARP algorithm for the detec-
tion of reoccurring, same or similar transactions in databases. Lahiri and Wolf
[33] propose a single-pass, polynomial time, algorithm for finding periodic graphs
and subgraphs in a social network. It is well known that in social networks it
is computantional costly to mine periodic interaction patterns. Periodic patterns
could also be minned from social media users. Yuan et al. [69] propose a Bayesian
model, called Periodic REgion Detection (PRED). This method discovers periodic
mobility patterns by jointly modeling geographical and temporal information. A
useful property of PRED is that it is non-parametric.

2.6 Motif Detection

The detection of motifs in time series, is another problem relevant to periodicity
detection. Works on motif detection are focused on time series resulting from
financial data, biosequences and other areas. Chiu et al. [9] proposed a probabilis-
tic method to detect motifs in the presence of noise. Gao and Lin [19] introduce
an approximate algorithm called Hierarchlcal based Motif Enumeration (HIME)
to detect variable-length motifs with a large enumeration range in million-scale
time series. Mueen and Keogh [46] introduced an algorithm that monitors and
maintains motifs exactly in real time over the most recent history of a stream.
The algorithm has an update time linear to the window size in which the algo-
rithm searches for motifs. Serra and Arcos [61] propose the SWARMMOTIF, an
algorithm based on Particle Swarm Optimization for finding motifs. The SWAR-
MMOTIF algorithm can find only a predefined number of motifs with a prefix
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dissimilarity.

2.7 Our Contribution

The overview of the relevant literature indicates that, with the exception of [48], no
method can tackle the problem of detecting and localizing the periodic segments
of a real world input video in its full generality. Existing methods make restrictive
assumptions regarding the stationarity of the observed signals. For example, they
consider strictly periodic signals with almost constant period and very similar
execution of actions in the different periods. Others, assume that a single periodic
action is executed in a video and, therefore, cannot localize several of them if they
exist. Finally, others are tied to specific (and thus, limiting) settings and video
content representations. For example, certain methods assume a static camera.
Others operate on representations of the human body, thus they may deal only
with periodic patterns of human motion. In our work, we present a deep learning
method that does not suffer from the above limitations.

We first employ a generic video-content representation on which we show that
periodicity localization can be learned. We also propose PerLNet, a specific deep
learning architecture to solve this problem. We show that, based on the employed
representation, PerLNet learns to localize periodicity on the basis of a relatively
small training dataset. Finally, we evaluate PerLNet quantitatively on existing
public datasets and in comparison with existing approaches. The experimental
results show that the proposed approach outperforms the current state of the art.
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Exploiting Periodicity

The proposed approach operates in two main steps. In the first step the input
video is processed to compute an intermediate representation that captures the
temporal context of each video frame. This representation is then used in the next
step to characterize a frame of the video as periodic or not.We first represent each
frame of a video as a vector of deep features that encode high-level information for
that frame. Based on this frame representation, we compute a matrix M of the
pairwise distances of all video frames. The existence of periodic actions in a video
gives rise to distance matrices with a particular block diagonal structure. Based on
this observation, we proceed to train a neural network that classifies square blocks
on the main diagonal of M into two classes (periodic / non-periodic). Figure 3.1
gives an example of a distance matrix of a video showing two periodic actions
among other, non-periodic parts.

3.1 Data Representation

We approach the problem of localizing periodic segments building upon the idea of
a distance matrix which has been adopted also by other works in video analysis [13,
50, 48]. Specifically, assuming that the input is a video of N frames, we construct
an N x N matrix M. Each entry m;; of M quantifies the distance between frames 7
and j. Assuming that some temporally periodic pattern is present in the observed
video, the matrix exhibits particular structures. For example, it may contain sub-
diagonals that are parallel to the main diagonal with low distance values, capturing
the periodic nature of the observations.

The similarity between two frames can be quantified in many ways. Firstly,
a convention must be established, regarding the use of metrics that quantify sim-
ilarity, or alternatively distance. In the first case, higher values denote higher
similarity, while in the second case, higher (distance) values denote lower similar-
ity. In our experiments we followed the convention of distance values, since this
is exactly what we computed: the Euclidean distance between feature vectors.

13
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Figure 3.1: Top: The distance matrix M of a video that contains two periodic
activities. Warm (cold) colors indicate larger (smaller) distance between frame de-
scriptors. Bottom: 1D ground truth on periodicity localization (red: non-periodic,
green: periodic).

This design choice has almost no practical impact on the design of the next steps,
apart from the need to appropriately handle the values according to the chosen
convention.

An intermediate representation for each frame of the input video is useful for
the task of computing the entries of matrix M. The representation of a frame can,
in principle, be anything that captures visual content, disentangling it from signal-
specific and periodicity-irrelevant details. The description of two such alternative
representations follows below. The first is the representation as employed in the
work by Panagiotakis et al. [48], and the second is the adopted approach that
employs features based on deep learning.

3.1.1 Features based on IDT

Panagiotakis et al. [48] opted for the use of tracklets, short sequences of optical
flow trajectories. This method starts with the extraction of IDT(Improved Dense
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Trajectories) for a sequence X of N frame. Then for each of the descriptors of
Improved Dense Trajectories (IDT, HOF, HOG, MBHx, MBHy) we build a visual
vocabulary of K (fixed) number of visual words. We select a temporal window of
length 2w, where w is the number of frames we look before and after the selected
frame, and for each frame ¢;, i=[0,N) of the sequence X, we center the window on
t;, we calculate a histogram of size k, encoding the distances of the trajectories
in the frames of the temporal window to the clusters’ centers (visual words). The
resulting normalized (L1 or L2) histogram Hi of length k (k bins) serves as a
partial feature vector F; of frame ¢;. Finally we concatenate all partial feature
vector histograms Hi(idt), Hi(hof), Hi(hog), Hi(mbh) of each frame ¢; to form a
large feature vector F; for frame ¢;. Having calculated the feature vectors 7T; for
all N frames, a self-similarity matrix of dimensions N x N is calculated among all
feature vectors using Euclidean distance. This approach can successfully separate
appearance from motion, but is prone to tracking failures because the objects
might move arbitrarily fast so that IDT fails.

3.1.2 Features based on Deep Learning

In this work we propose the use of features that are computed by a deep convo-
lutional neural network. Specifically, the activation features of the VGG19 net-
work [62] pre-trained on ImageNet [14] at the 15th layer are computed for each
frame of the input video. This particular layer has been selected as it strikes a
good balance between the required level of feature abstraction and the need to
keep features in spatial relation with the input. Then, for each pair ¢ and j of
frames of the video, the Euclidean distance of their precomputed feature vectors
is computed as the value m;; of M. An example of such a matrix is visualized in
Figure 3.1.

3.2 Data Preparation

Since we use self-similarity matrices to encode the videos, two similar frames will
have a small pairwise distance. On the other hand, frames that are very different,
will have unboundedly high pairwise distances. Training with unnormalized data
we observed that the network is very sensitive to the magnitude of the the input,
often completely failing to converge. For this reason we normalize our data to
the range [0,1]. For the normalization we divide each element of a matrix by its
highest value.

3.3 Ground Truth Annotation

Having computed the distance matrix M based on the input video, our next task is
to denote each frame of the video as part of a periodic pattern or not. We assume
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Figure 3.2: A distance matrix M (left) and the corresponding binary ground truth
matrix A (right). Two different sub-blocks are also shown in purple color (see text
for details).

that there is ground truth annotation for a number of input videos. Specifically,
the annotation for a video is a list of pairs of frames of the form (s;, ¢;), where s;
is the frame count of the start of the i-th periodic segment, and e; is the ending
frame of that segment.

It is not practical to train a neural network directly on the ground truth repre-
sented in the form of periodic segments (s;, €;).There are several reasons why this
is the case. Firstly, the input size of the image sequence (or periodic part of it) can
be arbitrarily large. This would make the resulting network prohibitively large for
practical use on current hardware. A solution to the arbitrary input size is the use
of recurrent neural networks. We do not adopt this design choice because of the
additional complexity to fine-tune a recurrent neural network. Another reason is
that this strategy has no clear way of representing multiple periodic segments that
may exist in a video. Experience has also shown that, whenever possible, tasks to
be solved using machine learning should be formulated as classification problems
instead of regression ones [35]. In order to address these issues, we adopt a rep-
resentation that is efficient with respect to input size, and represents the target
output in a way that is compatible with a fully convolutional architecture.

3.4 Learnable Periodicity Representations

To tackle the issues above, we resort to a binary, square matrix A with the same
dimensions as M. We adopt the convention that a value a;; of A is equal to 1
if both frames 7 and j belong to the same periodic segment. Otherwise, a;; = 0.
Figure 3.2 shows a distance matrix M (left) and the corresponding binary matrix
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Figure 3.3: The building blocks of the architecture of PerLNet, the proposed CNN
for periodicity localization. The colors denote layer types. Orange: convolution
and non-linearity, red: max-pooling, blue: upsampling. The count of feature maps
is shown under each convolution layer, and the size of the resulting feature maps
is shown diagonally to the right of the layer (also visually as the size of the block).
Finally, the blue sphere denotes addition.

A (right). Given the annotation information as described is Section 3.3, it is
straightforward to compute the respective matrix A.

Representing the input video content using the matrix M, and the ground
truth annotation as the matrix A, we propose to train a network on fixed-size
sub-blocks of these matrices. Since the information regarding the periodicity is
encoded around the main diagonal of the matrix M, any square block of the
matrix M that is centered on the main diagonal of M can be used as a training
sample. The corresponding block of the matrix A can then serve as the ground
truth annotation for this training sample.

Given this information, we proceed to train a deep neural network on such
training samples. Overall, the training samples are corresponding pairs of sub-
blocks of the matrix M and A. It is fine to select sub-blocks of M that have
large overlap since this will essentially result in data augmentation that trains the
network to be translation invariant. This process is repeated for all matrices M;
coming from input videos V; in the training set, resulting in thousands of training
sub-blocks given a few input videos.

Figure 3.2 shows two example training sub-blocks (purple squares) superim-
posed on a distance matrix M (left) and on the respective ground truth annotation
matrix A (right).

3.5 Data Augmentation

In the case of a network that accepts visual input such as a regular color image,
it is common practice to apply data augmentation in the form of geometric and
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intensity transformations [32] so as to force the neural network to become invari-
ant to such transformations. Our case is different, since the goal is to learn the
patterns generated from repetitive, periodic motion. The only useful form of data
augmentation applicable to our input data is one that achieves temporal scale in-
variance. This is effectively achieved by varying the size of the sub-blocks used
during training. Extreme cases where the scale is twice the original size network
lead to misclassification of negative examples. Therefore we limit the range of
augmentation to 50% of the length of small videos (less than 250 frames). The
highlighted sub-blocks in Figure 3.2 are of different size, following this data aug-
mentation approach.

3.6 PerLNet: Periodicity Localization Network

PerLNet Architecture: Given the defined input and target output, we train a
convolutional neural network to learn this mapping. The employed architecture is
a stack of hourglass modules [47], that are essentially autoencoders [25] with skip
connections [24]. The architecture consists of three stacked autoencoders. The
reason we adopted an autoencoder-like network is because we are targeting an
output with the same size as the input. Furthermore, the autoencoder architecture
offers good generalization by squeezing the information through the (spatially)
low-resolution intermediate layers.

The proposed neural network is built using copies of two basic building blocks,
an encoder part, and a decoder part. This architecture is shown in Figure 3.3. The
encoder first applies 16 convolution filters of dimension 11 x 11. This is a rather
large spatial dimension, however it is justified because the patterns we are looking
for are rather large-scale and noisy. The encoder then contains a ReLu activation
layer, followed by a batch normalization layer [28]. Another set of convolution,
activation, and batch-norm layers follow in the original input dimension, and then
a max pooling layer halves the resolution in each of the two spatial dimensions
of the input. Two more sets of convolution, activation, and batch normalization
follow, and in parallel to these layers, an identity residual connection [24] is also
used. The skip connection is added to the result of the other branch, and a
last max-pooling layer halves again the spatial resolution. In total, the encoder
applies 5 different convolution layers and two max pooling operations, resulting
in a output spatial resolution that is 1/4 of the input resolution in each spatial
dimension. The decoder follows essentially the mirrored connectivity pattern of
the encoder, upsampling its input by a factor of 4 for each input spatial dimension.
There are again 5 layers applying a convolution operation, and a skip connection
runs parallel to a group of two such convolutions.
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3.7 Loss Function

We build a classifier with two output classes so it is natural to use binary cross
entropy (BCE) [29] as the loss function for training:

E(y,p) = —(ylogp + (1 —y) log(1 — p)). (3.1)

In Eq.(3.1), y € {0,1} is the ground truth class annotation, and p € [0, 1] is the
real-valued prediction of the network for this frame. In practice, we noticed that
there is an imbalance between positive and negative examples in our training data.
Specifically, our training set contains more periodic segments than non-periodic
ones. This, in turn, had an impact on the discriminative power of the trained
models. Specifically, the trained models exhibited a bias, tending to predict most
input as positive samples. To alleviate this problem, we used the weighted binary
cross entropy, a straightforward extension of the BCE loss:

E(y,p) = —(wylogp + (1 — w)(1 —y)log(1 — p)). (3.2)

In Eq.(3.2), y and p are as in Eq.(3.1), and w is a weight term balancing the two
classes.

3.8 Weighted Intermediate Supervision

Supervising the network end-to-end, leads to poor true positive predictions. To
deal with this problem we supervised the network at the end of every autoencoder.
Using the WBCE we had to select the best weight scheme to suit our needs. For
this reason we tune the weight for the first autoencoder to be more sensitive to
positive examples, the second to treat the positive and negative examples equally,
and the last to be more sensitive to negative examples. By using this training
scheme we achieve a balanced response in positive and negative test samples. We
tried to avoid more complex architectures like siamese networks. In that case we
would have to define a loss function for matching the unbalanced nature of the
dataset.

3.9 Testing

At run-time, we adopt a sliding window approach. More specifically, given an
input video, the distance matrix M is formed. Then, a square window is centered
around each point of its diagonal. The corresponding information is fed to PerLNet
which returns a square window of the same size with real-valued predictions. This
sliding window approach results in multiple (ny) predictions p;, 1 < i < ny per
frame f, each in the range [0, 1], for the overlapping frames of consecutive windows.
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A frame f is declared as being periodic if the sum of all the different predictions
for exceed a predefined threshold T

ng
p=S"2-r (3.3)

n
i—1

In Eq.(3.3), T was set to 0.5 in all experiments.
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Experimental Evaluation

The experimental evaluation of the proposed periodicity localization method was
performed on two recent relevant datasets. A first category of experiments assessed
the adopted design choices in an ablation study. Furthermore, the localization
accuracy of PerLNet was compared to the current state of the art, for different
choices of employed features. We also assessed the cross-dataset generalization of
PerLNet by training our network on a dataset and testing it on another.

4.1 Training Details

We implemented PerLNet using the Keras framework [10] on top of tensorflow [1].
The Adam optimizer was used to train it for 3 epochs, with a learning rate value
of 0.002. For training, we employed an Nvidia GTX 1070 Ti GPU. On that
machine, each epoch took 70 seconds. The chosen range of sub-block sizes for data
augmentation (see Section 3.5) was between 100 and 200, with all the sub-blocks
resized to 140 x 140 using Lanczos resampling.

4.2 Datasets

For the evaluation of the proposed methodology, we use the PERTUBE [48] and
the QUVA [57] datasets (see Fig. 4.1).

4.2.1 The PERTUBE Dataset

This dataset! [48] contains a set of videos depicting repetitive motions (human
activities, object motions, etc) that were obtained from YouTube. There is a total
of 50 annotated videos in the dataset. The videos are selected in a way that
camera motion and non stationary motion is present. Each frame of every video is
annotated with information that denotes whether it belongs to a periodic segment

! Available online at https://www.ics.forth.gr/cvrl/pd/

21
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or not. Each video consists of 143 to 2307 frames. The videos contain a total
of 200 segments, 75 of which are periodic. Each video has from 1 to 4 periodic
segments and each segment consists of 30 to 1037 frames. In total PERTUBE has
40307 frames.

4.2.2 The QUVA Dataset

This dataset? [57] is compiled for the related problem of repetition counting. It
contains 100 videos depicting human activities. Each video is appropriately anno-
tated for repetition detection. Additionally to this information, specific frames are
denoted as the starting frames of a new repetition, making the annotation useful
for the task of repetition counting. We disregard this information, retaining only
the periodic/non-periodic annotation per frame.

4.3 Monte-Carlo Cross Validation

Neither dataset has a train/test split. Moreover the PERTUBE dataset has 40307
frames, rendering it a rather a small dataset in comparison to datasets that contain
millions of frames. For this reason we adopt the Monte-Carlo Cross Validation.
In Monte-Carlo Cross Validation we randomly split the dataset in half, 50% for
training and 50% for testing and we cross validate the model. This process is
repeated for 5 times. The performance of the model is computed as the average
of these 5 cross validations.

4.4 Evaluation Metrics

We view periodicity localization as a classification problem. Thus, to evaluate the
obtained results, we use the standard metrics of recall R, precision P, F} score and
Overlap O. In our problem, precision quantifies how many of the frames that were
classified as belonging to a periodic segment are truly such. Recall quantifies the
percentage of frames that actually belong to periodic segments and were correctly
classified by a method.

4.5 Ablative Study

In a first set of experiments, we justified specific design choices of PerLNet based
on the PERTUBE dataset. The results of these experiments are presented in Ta-
ble 4.1. In each column, the best result is highlighted with bold. The results were
obtained as described above in Section 4.3 by performing five randomized repeti-
tions with half the videos of the dataset used as training and the other half as test.
Then, the reported value is the average of the performance on the test set in the

2 Available online at http://tomrunia.github.io/projects/repetition/
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Table 4.1: Meta-parameter study of the proposed neural network.

| Configurations | R(%) | P(%) | Fu(%) | O(%) |
PerLNet (proposed) 87.6 | 8.1 | 85.8 | 75.5
Init. filter size 5x5 86.6 85.2 85.3 75.6
Single autoencoder 80.7 84.0 81.6 69.5
Without skip conn. 84.6 83.7 83.6 73.0
Without interm. supervision | 84.2 | 86.5 85.3 75.0

Table 4.2: Comparative evaluation of PerLNet with [48] on the PERTUBE dataset
with CNN-based (VGG19) and hand-crafted (IDT) features. Training of the pro-
posed method has been performed on the PERTUBE dataset.

| Method | Features | R(%) | P(%) | F1(%) | O(%) |

48] IDT 841 | 75.7 | 770 | 67.7
PerLNet | IDT 871 | 786 | 820 | 71.9
[43] VGG19 | 792 | 681 | 711 | 61.8
PerLNet | VGGI9 | 87.6 | 85.1 | 85.8 | 75.0

five randomized repetitions. The first line of Table 4.1 refers to the architecture
as this has been described in Section 3.6. The experiment “Initial filter size 5 X
5” tests a smaller size of the first convolutional layer of the network, compared to
the 11 x 11 of the proposed method. The “Single autoencoder” experiment uses
a single autoencoder instead of the three stacked autoencoders of the proposed
method. The experiment “Without skip connection” disables the ResNet-like skip
connections of the proposed method. Finally, the “Without intermediate super-
vision” experiment explores the idea of removing the two extra terms in the loss
function of the network, at the end of each autoencoder in the stack. The target is
the same for all three loss terms, the ground truth classification of the sub-block.
Evidently, the proposed method outperforms all other network variants. In the
following, unless otherwise stated, PerLNet and the term “proposed method” re-

fer to the architecture presented in Section 3.6 and evaluated in the first row of
Table 4.1.

4.6 Comparison to SoA & the Impact of Features

The recent method by Panagiotakis et al. [48] solves the problem of periodicity
localization. It does so, using a distance matrix computed on an Improved Dense
Trajectories (IDT) [67] representation of each frame of the sequence. This distance
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matrix is then appropriately manipulated to extract the periodic parts of the video.
We note that both the method in [48] and the proposed method consist of a first
phase that builds a distance matrix based on some feature representation of the
frames of a video (IDT features for [48], VGG19 features for us) and a second phase
that localizes periodicity on this distance matrix (hand-crafted filtering process
followed by Discrete Time Warping for [48], PerLNet for us). It is therefore possible
to interchange parts of the two methodologies, assessing the impact of deep neural
networks on the proposed approach in a total of 4 different experiments.

In Figure 4.2, we give an example of the difference between the two feature
extraction methods. It is clear that the IDT fails to detect the movement of the
scene. On the other hand the matrix that has been computed by the deep features,
exhibits rectangular patterns. Training the network with distance matrices that
contain uninformative features with respect to the depicted periodic motions leads
to poor network performance.

Table 4.2 presents the results we obtained with the 4 different variants on
the PERTUBE dataset. The first column regards the employed method ([48] and
PerLNet). The second column regards the employed features (Improved Dense
Trajectories [67] suggested by [48], VGG19 features [32] suggested in this work).

For the approach in [48], the results were obtained by a single run over the
whole dataset, using the publicly available implementation provided by the au-
thors of that work3. For our approach, the values were estimated with the same
methodology described above, using five repetitions with randomized training and
test sets. For each of the employed metrics, the best result is highlighted in bold.
It can be verified that the proposed approach achieves the best results compared
to all the other possible configurations. Interestingly, the worst of our two vari-
ants performs better than the best of the variants of [48], that is, regardless of
whether we use IDT or VGG19 features. Thus, the quality of the obtained results
is attributed mostly to the method itself and to a lesser extend to the employed
features.

4.7 Cross-dataset Validation

We performed a set of experiments to investigate how PerLNet generalizes across
datasets. In a first experiment we trained the proposed method on the PER-
TUBE dataset, and assessed its performance on the QUVA dataset. In a second
experiment, we swapped the training and test sets.

4.7.1 Training on QUVA, Testing on PERTUBE

Table 4.3 shows the performance of PerLNet when trained on QUVA and tested on
PERTUBE. The obtained results demonstrate that there is a small performance

3The implementation of the method in [48] is available at https://sites.google.com/site/
costaspanagiotakis/research/pd
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Table 4.3: Cross-dataset evaluation: The proposed method, PerLNet, was trained
on QUVA and evaluated on PERTUBE.

| Methods | Features | R(%) | P(%) | FA(%) | O(%) |
| PerLNet | VGG19 | 89.8 | 74.0 | 80.8 | 674 |

Table 4.4: Cross-dataset evaluation: The proposed method was trained on PER-
TUBE and evaluated on QUVA. The method in [48] requires no training.

| Methods | Features | R(%) | P(%) | FA(%) | O(%) |

PerLNet | VGG19 | 92.1 | 98.5 | 95.1 | 90.9
[48] VGG19 | 83.8 | 80.6 83.1 72.8

drop compared to training on PERTUBE and testing on PERTUBE (comparison
with the fourth line of Table 4.2). The performance drop is attributed to the
smaller diversity of QUVA compared to PERTUBE. Still, the proposed approach
generalizes well.

4.7.2 Training on PERTUBE, Testing on QUVA

The results of this experiment are shown in Table 4.4. When training on PER-
TUBE, the results of testing on QUVA are better than those of testing on PER-
TUBE (Table 4.2, fourth row). Given that training involved the same subset of
PERTUBE in both cases, this serves as a further indication that PERTUBE is
more diverse than QUVA (see previous paragraph). For comparison, the second
row of Table 4.4 shows the performance of the method by Panagiotakis et al. [48]
on the QUVA dataset using our proposed deep features. It can be verified that
the proposed approach outperforms [48] in all performance metrics and that there
is a 18% increase in overlap O.

4.8 Qualitative Results

Figure 4.3 and 4.4 shows the distance matrices, the periodicity localization estima-
tion (1st green/red bar) and the ground truth (2nd green/red bar) for six sequences
of the PERTUBE (top three rows) and the QUVA (bottom row) datasets. More
sequences have been selected from the PERTUBE dataset because it contains more
complex scenarios of multiple periodic segments per video.
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Figure 4.1: Video frames from the (a) PERTUBE and (b) QUVA datasets.
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Figure 4.2: In the upper left plot we visualize the distance matrix computed with
IDTs. In the upper right we visualize the distance matrix computed using deep
features. The bottom plot visualizes the ground truth. With white we denote the
periodic region and with black the non-periodic.
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Figure 4.3: The distance matrices, the periodicity localization estimation (1st
green/red bar) and the ground truth (2nd green/red bar) for six sequences of the
PERTUBE dataset.
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Figure 4.4: The distance matrices, the periodicity localization estimation (1st
green/red bar) and the ground truth (2nd green/red bar) of the QUVA dataset.
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Chapter 5

Discussion

5.1 Summary

We presented a novel method for the temporal localization of periodic segments
within a video. In each frame of the video, the method extracts features using a
deep neural network and then estimates a matrix of pairwise distances between
video frames. Then, PerLNet, a specially designed convolutional neural network
classifies the frames of the video as belonging to periodic segments or not. Exten-
sive experiments backed the design choices behind the proposed method, verified
the use of the employed features, compared the approach to a state of the art
method and assessed the generalization potential across datasets. We also present
a method for training the network for unbalanced datasets, using different weights
for every autoencoder. This training scheme was formulated to avoid introducing
a bias for the most represented class. In conclusion, using (a) an abstract repre-
sentation of a video that reduced the camera effects and other sources of noise,
and (b) the stacked autoencoders architecture that is trained with the proposed
training scheme, we outperformed the state-of-the-art in periodicity detection and
we achieved generalization, as shown by the results of the performed cross-dataset
experiments.

5.2 Future Work

Although the proposed approach has several advantages, it also has a few short-
comings. The first issue regards the training of the CNN estimator on square
sub-blocks. This approach leaves room for failure in the case of very small sub-
block size compared to the period length, that can potentially lead to insufficient
representation of the periodic features. For this reason we use a sufficiently large
block size at prediction time and multiscale data augmentation during training.
From a computational point of view, a shortcoming of the proposed method is
that the current feature extraction method prevents its use in real-time or online
applications. The current feature extraction method requires the entire video to
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compute the distance matrix. Future plans include the investigation of alternatives
that may allow online or even real-time operation. Tasks like industrial inspection
will benefit from an extension like this.

Another extension, given the existing framework, is to tackle the problem of
periodicity characterization. Then we can use it as a cue for non model based
tracking of complex scenes that exhibit periodic activities, human or otherwise.

Another goal is to investigate other feature extraction algorithms that will allow
for better representation of complex periodic actions. In this work we used deep
features for tackling the problem of drastic scene changes. The problem with this
method is that the employed VGG19 network is trained in 1000 classes, setting a
limit to how well a scene can be represented. Further research is needed to explore
other, potentially more powerful scene representations.
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