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Ribosomes in vitreous ice – translational freedom
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J.Frank, Annu. Rev. Biophys. Biomol. Struct. 2002. 31:303–19

Ribosomes in vitreous ice – rotational freedom 
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Leonhard  Euler

http://en.wikipedia.org/wiki/Leonhard_Euler

Euler spent most of his adult life in St.
Petersburg, Russia, and in Berlin,
Prussia. He is the pre-eminent
mathematician of the 18th century, and
one of the greatest mathematicians ever.
his collected works fill 60–80 quarto
volumes

(15 April 1707 – 18 September 1783)
was a pioneering Swiss
mathematician and physicist. He
made important discoveries in fields
as diverse as infinitesimal calculus
and graph theory. He also introduced
much of the modern mathematical
terminology and notation, He is also
renowned for his work in mechanics,
fluid dynamics, optics, and
astronomy.

(IMAGIC)

 - rotation in 
the image plane 
(or around new
Z axis)

 - rotation
around X axis

– rotation 
around old
Z axis)





Methods of orientation determination:

1. Conical Tilt – M.Radermacher, J. Frank
2. Projection Matching – P.Penczek, J.Frank
3. Common Lines in Fourier Space (viruses, 

phage tails) T.Crowther- MRC package + 
numerous modification.  (S. Fuller)

4. Common Lines in real space
Angular Reconstitution 
M. Van Heel

5. Frealign -> projection matching in Fourier 
space
N. Grigorieff

Conical tilt , more effective for negatively stained samples

RADERMACHER M. Three-Dimensional Reconstruction of Single Particles 
From Random and Non random Tilt Series. JOURNAL OF ELECTRON 
MICROSCOPY TECHNIQUE 9:359-394 (1988)





Conical tilt



Projection  Matching

P. Penczek & J. Frank



Projection  Matching

P. Penczek & J. Frank

The section/projection theorem:

F [ g(x,y,z)dx ] = G(0,Y,Z)

USE: 
The Fourier transform of a projection of a 3D object is equal to 
a central section of the 3D Fourier transform of the object.

An electron micrograph is a projection of a 3D object.
Its transform provides one slice of the 3D transform of the 3D 
object.

By combining the transforms of different views, one builds up 
the 3D transform section by section. One then uses the 
Inversed Fourier Ttransform  to convert the 3D transform into a 
3D image.

Common lines in Fourier space Common lines in Fourier space



From S Fuller

Common lines in Fourier space
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Orientations near symmetry axes
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An orientation away from symmetry axes
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From S Fuller

Icosahedral symmetry, 
search for the common lines

Comparison of 
amplitudes and  
phases of radial lines, 
assessment of angles 
between them



Common lines in real space

The angular reconstitution method is 
based on the “common-line projection” 
theorem: 

Any two 2D projections of a 3D object 
have at least ONE common 1D line 
projection
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Common lines in real space Common lines in R/F(ourier) space

Common lines in R/F(ourier) space Common lines in R/F(ourier) space



Common lines in real space
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2D projection2D projection

Sinogram is a set 
of one dimensional 
(line) projections
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Common lines in real space
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Crossinocorrelation function
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Crossinocorrelation function
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Projections 1 and 3

Ribosome
Angular Reconstitution
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Projections 2 and 3

Ribosome
Angular Reconstitution

Common linesCommon lines

ANGULAR RECONSTITUTION

Calcium release channel  RyR1

Crossinocorrelation functionCrossinocorrelation function

Icosahedral symmetry Icosahedral symmetry 

Image 1 Image 2



Icosahedral symmetry - 532
Herpes Simplex Virus, capsid B

Distribution of characteristic views - C6

HSV-1HSV-1 Recommendations!!! 

1. Don’t start from a symmetrical view.
2. Try to start from the general (common) view, then the 

second can be symmetrical.
3. Try to use as many DIFFERENT views as possible, ideally 

perpendicular to each other.
4. Do not use a sequence of similar views, the program will 

be confused!
5. If the standard deviation of peak heights starts to increase, 

it means that the process is starting to diverge.
You will not get a reasonable solution.

6. Keep eye on the program: the long projections should have 
a consistent orientation, the PRINCIPLE of the BRICK can 
not be violated.



FREALIGN
Fourier Reconstruction and ALIGNment

Iterations of alternating 3D reconstruction, using the improved 
alignment parameters, and realignment of the particles based 
on the updated 3D structure, are performed until the alignment 
parameters and 3D structure remain constant.

FREALIGN:  image data (particle image stack, 3D reference
reconstruction) and particle parameters (Euler
angles, x, y translation, magnification, defocus and 
astigmatism, arc cosine of the correlation coefficient).

The algorithms in FREALIGN also introduced an efficient 
procedure for refining 3D structures by working entirely in 
Fourier space.

N. Grigorieff / Journal of Structural Biology 157 (2007) 117–125
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The principle of the BRICK

3D           2D          1D3D           2D          1D

Methods of orientation determination:

1. Conical tilt. It is more efficient for negatively 
stained samples with a preferable orientation.

Missed cone 
Leschziner AE, Nogales E. The orthogonal tilt reconstruction method: 
an approach to generating single-class volumes with no missing cone 
for ab initio reconstruction of asymmetric particles. J Struct Biol. 2006 
Mar;153(3):284-99

2. Angular reconstitution. It requires good signal/noise 
ratio, needs classification

3. Common lines in Fourier space and PFT are mostly 
used at analysis of particles with icosahedral 
symmetry

4. Projection matching, the most popular technique,
requires an initial model.
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