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Sudden cardiac arrest remains a leading cause of pre-
hospital and in-hospital death.1 Efforts to resuscitate 
patients after cardiac arrest have preoccupied scien-

tists and clinicians for decades.1,2 However, the majority 
of patients are never successfully resuscitated.1,3–5 Based 
on the published reports, the overall survival rates after 
cardiac arrest are grim, ranging from 1% to <20% for out-
of-hospital nontraumatic cardiac arrest and <40% for in-
hospital cardiac arrest.1,6 Of these, 10% to 50% have poor 
neurological function.1,7 Surprisingly, the physiologic 
principles that underlie the life-saving process of car-
diopulmonary resuscitation (CPR) remain only partially 
understood and are often controversial.1,8 Some would 
argue that current approaches to cardiac arrest are fatally 
flawed, and that is why the overall survival rates have 
hovered around 7% for out-of-hospital cardiac arrest and 
<30% for in-hospital cardiac arrest nationwide for a half 
a century.9

This review article is primarily focused on recent advances 
in the field of CPR, with primary focus on new ways to pro-
mote better perfusion to the heart and brain. There have been 
significant advances in our understanding of the physiology 
of resuscitation over the past 2 decades, with new insights 
into the physiologic mechanisms that regulate blood flow to 
the vital organs, common errors in the delivery of CPR that 
often reduce its effectiveness, ways to enhance circulation 

during CPR, and new approaches to reduce injury associ-
ated with reperfusion.3,5–8,10–48 Given the debate surrounding 
what is known, what we think we know, and what remains 
unknown about resuscitation science, this article also pro-
vides some contrarian and nihilistic points of view.

When the cause of the arrest is reversible, the primary 
treatment goal of sudden cardiac arrest is to fully restore 
cardiac and brain function. The leading causes of cardiac 
arrest, such as a primary or ischemia-induced arrhythmia, 
pulmonary emboli, hemorrhage, trauma, or medication/
drug overdose, all require emergent efforts to increase car-
diocerebral circulation.1,8 The critical first step to successful 
resuscitation is restoring blood flow with sufficient aortic 
pressure. Understanding the complex physiology of cardio-
cerebral perfusion during CPR is crucial to reducing mor-
bidity and mortality after cardiac arrest. Vital organ flow 
enhancement is critical, but often by itself insufficient, to 
fully restore life after cardiac arrest.

There are multiple areas in resuscitation science where 
significant knowledge gaps and unmet needs limit our abil-
ity to consistently restore full life after cardiac arrest. First 
is the need for greater blood flow than the minimal amount 
produced by conventional closed chest cardiac massage, the 
most commonly used method of CPR that has not changed 
for over a half a century.3,49,50 Second is the need for tools 
that help provide better quality CPR.51–54 Third is the need 
to reduce the potential for brain injury associated with the 
simultaneous arterial and venous pressure compression 
waves focused toward the brain each time the chest is com-
pressed.14 Fourth is to prevent reperfusion injury in the first 
seconds and minutes of reperfusion, especially after pro-
longed periods of no flow.37–43 The fifth large area where 
there are unmet clinical needs is in postresuscitation care, 
which is beyond the scope of this review.15–20,55–57

In what follows, we try to highlight some recent 
advances in resuscitation science aimed at addressing these 
unmet needs and to discuss why some with doubts believe 
that there is a lack of progress.9 We leave it to the reader 
to decide whether progress is being made, whether we are 
simply treading water, or whether the science of resuscita-
tion is actually regressing.

Outcomes after cardiac arrest remain poor more than a half a century after closed chest 
cardiopulmonary resuscitation (CPR) was first described. This review article is focused on 
recent insights into the physiology of blood flow to the heart and brain during CPR. Over the 
past 20 years, a greater understanding of heart–brain–lung interactions has resulted in novel 
resuscitation methods and technologies that significantly improve outcomes from cardiac 
arrest. This article highlights the importance of attention to CPR quality, recent approaches 
to regulate intrathoracic pressure to improve cerebral and systemic perfusion, and ongo-
ing research related to the ways to mitigate reperfusion injury during CPR. Taken together, 
these new approaches in adult and pediatric patients provide an innovative, physiologically 
based road map to increase survival and quality of life after cardiac arrest.  (Anesth Analg 
2016;122:767–83)
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CONVENTIONAL CPR PHYSIOLOGY
The Compression Phase
Conventional or standard (S)-CPR is performed with a pair 
of hands.1,49 With each chest compression, intrathoracic pres-
sure is increased, and the heart is squeezed between the ster-
num and the spine.49,58–62 With each compression, both the 
aortic and the right atrial pressures increase, with right atrial 
pressure similar to, or sometimes higher than, left-sided pres-
sures.63–65 Blood is propelled forward from the nonbeating 
heart toward the brain, coronary arteries, and the rest of the 
body because of the presence of the 1-way valves within the 
heart and pressure differences between the thorax and the 
nonthoracic regions.58,61,66 Within the past decade, there has 
been renewed interest in the effect of increased intrathoracic 
pressure on intracranial pressure (ICP) during the compres-
sion phase.4,67–69 During this phase, ICP is increased, which 
in turn increases resistance to cerebral perfusion.14,67 It is 
speculated that the increase and decrease of ICP during CPR 
is secondary to changes in intrathoracic pressure transduced 
through the paravertebral venous/epidural plexus and spi-
nal fluid to the intracranial compartment.68 ICP increases 
with each positive pressure ventilation.67,68 The increase in 
ICP and the simultaneous decrease in the calculated cere-
bral perfusion pressure (CerPP) are shown in Figure  1 (0° 
supine tracings). Right atrial, right ventricular, and pulmo-
nary artery pressures increase in parallel with each compres-
sion.65 During CPR, the coronary artery perfusion pressure is 
generally calculated as the difference between the aortic and 
the right-sided pressures.70 Thus, high right-sided pressures 
during S-CPR also limit coronary perfusion pressures. The 
authors speculate that one of the reasons patient outcomes 
with some methods of CPR, including S-CPR, are so poor is 

that not enough attention is focused on understanding the 
interactions among the changes in right-side cardiac pres-
sures, ICP, and the resultant cerebral and coronary perfusion 
pressures.

Common Errors During Chest Compression
Preclinical and clinical studies support the American Heart 
Association (AHA) recommendation that chest compres-
sions should be 5-cm deep.1,2 When the chest is compressed 
too slowly, too rapidly, too much, or too little, clinical out-
comes are adversely affected.8,71–76 Similarly, interruptions 
in chest compressions are harmful.5,6,71,77 Obviously, with-
out chest compressions, there is no forward blood flow. Too 
often, rescue personnel stop chest compressions for over 
a minute to intubate, feel for pulses, auscultate the chest, 
and/or check the underlying rhythm.78–81 In the heat of 
the moment, rescuers often forget to perform high-quality 
CPR.7,8,74 These common errors significantly and adversely 
affect outcomes.

A recent analysis of CPR quality during a large National 
Institutes of Health Resuscitation Outcomes Consortium 
Prehospital Resuscitation using an IMpedance valve and 
Early versus Delayed (ROC PRIMED) trial demonstrated 
that these errors were common and harmful. Nearly half 
of the time, compressions were performed at rates and 
depths outside of the recommended range of the AHA 
guidelines.7,8,74 At least one-third of the subjects had com-
pression rates in excess of 120 per minute,8,74 and survival 
rates were poorer at these higher rates.8,30,a,74 We speculate 
that at higher rates of compression, diastolic filling times 

Figure 1. Representative pressure curve during 0° supine cardiopulmonary resuscitation (CPR), 30° head-up CPR, and −30° head-down CPR 
showing aortic pressure (Ao), right atrial pressure (RA), intracranial pressure (ICP), and cerebral perfusion pressure (CerPP). Pressure curves 
from a representative animal study in the experiments described by Debaty et al.14

aAdditional analyses of the ROC PRIMED study for this review (reference 30) 
were performed by Drs. Yannopoulos and Duval.
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may be too short, and compression depth and full recoil 
may not be achieved. Most importantly, lack of compli-
ance with study performance protocols and AHA guide-
lines in this trial was associated with worse outcomes 
(Fig. 2).7,8

The Chest Decompression Phase
The physiology of the decompression, or chest recoil, phase 
of CPR is complex: Its importance during CPR has been only 
recently better understood.3,22,23,25,82,83 During the decom-
pression phase, the heart is refilled after it has emptied from 
the previous chest compression.82–87 This refilling process is 
extremely inefficient during CPR, especially during S-CPR 
when passive chest wall recoil provides the only force able to 
draw blood back into the right side of the heart. This effect may 
be even more accentuated in individuals in whom chest recoil 
is impaired, including patients with broken ribs. In addition to 
enhancing venous return to the heart, ICP is reduced during 
the decompression phase.88 Each time the chest wall recoils, 
ICP decreases based on the same pressure transference mecha-
nisms that increase ICP during the compression phase.88,89 This 
is shown in Figure 1 (0° supine tracings). These changes in ICP 
during the compression and decompression phases help to 
determine the level of cerebral perfusion during CPR.14,69

Common Errors During Chest Decompression
The slight vacuum generated inside the thorax during pas-
sive chest recoil draws some blood back into the heart and 
some air into the lungs.24 This in turn draws blood from the 
extrathoracic to the intrathoracic space and partially refills 
the heart before the next compression. If rescue personnel 
inadvertently lean on the chest, preventing it from fully 
recoiling after each compression, then intrathoracic pres-
sure remains greater than atmospheric pressure.5,10,87,90,91 
This common error reduces the refilling of the heart and 
the reduction in ICP that occurs with full chest wall recoil.5 
Studies in animals have shown that incomplete chest recoil, 
or leaning on the chest after the chest compression motion is 
complete, markedly reduces perfusion pressures to the brain 
and myocardium.5 Similarly, compressing and decompress-
ing the chest too rapidly (>120/minute) reduces the venous 

return time below what is needed to refill the heart.92 These 
errors in technique adversely affect survival rates.8

Positive Pressure Ventilation During CPR
During CPR, each positive pressure breath inflates the lungs, 
facilitates O2 delivery, and opens up the pulmonary arterial 
and venous vasculature, allowing for respiration and trans-
pulmonary circulation.11,93,94 Each of these functions is critical. 
As well described by West,95 too little positive pressure (low 
rates and/or tidal volume) will not provide adequate blood 
oxygenation and too much (excessive rates and/or tidal vol-
umes) may increase pulmonary vascular resistance. The inter-
actions among the heart, lungs, and brain during positive 
pressure ventilation (PPV) are complex.11 A positive pressure 
breath increases intrathoracic pressure, which reduces venous 
return to the right side of the heart.6 The increase in intratho-
racic pressure also momentarily increases right ventricular 
afterload. The end result is a decrease in right ventricular pre-
load and an apparent increase in afterload. At the same time, 
the positive pressure breath increases the volume of West Zone 
I and decreases the volume of West Zone III, which effectively 
“squeezes” pulmonary venous blood into the left side of the 
heart.96 Thus, each positive pressure breath results in a tem-
porary increase in left ventricular stroke volume through the 
Starling mechanism during normal cardiac function.97

In addition, PPV affects ICP and CerPP. Each positive pres-
sure breath instantly increases ICP, thus generating increased 
resistance to forward brain flow.5,88,98 A second and less under-
stood impact of PPV is the effect on CO2 exchange. Etco2 values 
during CPR are believed to reflect circulation.99 Hypoventilation 
results in decreased CO2 clearance.100,101 Studies in animals sug-
gest that high Paco2 levels during CPR are detrimental.100 In the 
absence of autoregulation, less is known about the role of Pco2 
in regulating cerebral perfusion during CPR.102

The net effect of these changes during CPR after car-
diac arrest is less well characterized; however, the balance 
between circulation and respiration during CPR is obvi-
ously critical. There may not be a one-size-fits-all ventilation 
strategy for all patients or for the many different methods of 
CPR. Unfortunately, it is difficult to obtain prospective clini-
cal data related to this issue in the setting of cardiac arrest.

Figure 2. Relationship between chest compression depth and rate and the probability of survival to hospital discharge in the National 
Institutes of Health Resuscitation Outcomes Consortium PRIMED study.7,8
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Over the past 20 years, PPV, essential for providing O2 and 
removing CO2, has proven to be important, but not as essential 
as chest compression, during CPR.6,11 Some have promoted the 
performance of chest compressions only, with no ventilations, 
for the first several minutes of CPR.103,104 Compressions only, 
rather than compressions and mouth-to-mouth rescue breath-
ing, are easier for a 911-dispatcher to teach and a lay rescuer 
to effectively perform.103 However, there are no prospective 
randomized studies in support of the chest compression-only 
approach, which was, in part, a backlash to the excessive ven-
tilation rates observed clinically.6 As described further below, 
excessive ventilation rates were found to be harmful in ani-
mals.6 Based on the animal data and a consensus of experts, 
the AHA recommends a compression:ventilation ratio of 30:2 
for basic life support and continuous chest compressions at a 
rate of 100 with asynchronous ventilations every 10 compres-
sions for advanced life support.105,106 The ventilation tidal vol-
ume should be approximately 600 mL, which, for most adults, 
is approximately 8 mL/kg, so as to minimize CPR-induced 
ventilation perfusion mismatch.105

Common Errors During Ventilation
Both excessive ventilation and hypoventilation can be harm-
ful during CPR.6,11,12 After observing that patients in out-of-
hospital cardiac arrest were ventilated on average at 37 times 
per minute in a clinical CPR device trial,6 animal studies 
were performed, which demonstrated that excessive ventila-
tion rates were associated with a marked decrease in cerebral 
and myocardial perfusion pressures and markedly increased 
mortality.6 Similarly, after the first few minutes of CPR, the 
absence of periodic PPV reduces blood flow through the 
lungs secondary to collapse of both the bronchioles and the 

pulmonary vasculature.11 This can cause a profound decrease 
in cerebral oxygenation and perfusion.11,12 A correct balance 
between too little and too much ventilation is critical to neu-
rologically favorable survival after cardiac arrest.6

Gasping and Coughing During CPR
Gasping occurs in some patients during CPR, especially 
if the medullary brainstem is perfused sufficiently to trig-
ger the gasping reflex.107 Gasping during CPR is associ-
ated with more favorable outcomes.108,109 The so-called 
last gasp is associated with the development of negative 
intrathoracic pressure that in turn causes inspiration of 
air, enhances venous return to the heart, and decreases 
ICP, facilitating increased cerebral perfusion.109–111 Figure 3 
demonstrates, in a pig model, the affect of gasping of car-
diac arrest. In this example, a pig was being treated with 
active compression decompression (ACD) CPR and an 
impedance threshold device (ITD) when it began to gasp 
spontaneously during CPR. As shown, each gasp decreased 
intrathoracic pressure; decreased ICP; and increased carotid 
blood flow, aortic pressure, and the calculated CerPP.109 By 
contrast, PPV increased ICP.6 In these studies, right atrial 
pressure was measured, but flow back to the right heart 
was not measured. This figure helps to demonstrate how 
gasping increases CerPP by harnessing the thoracic pump 
to increase perfusion. The physiologic mechanism of benefit 
associated with gasping is somewhat similar to the physi-
ology of cough CPR.112,113 Both work on a similar principle 
during the inspiratory portion of the cough as intrathoracic 
pressures are decreased.109,112 During the expiratory portion 
of a cough, intrathoracic pressures increase before the open-
ing of the glottis. Cough CPR has been reported to maintain 

Figure 3. Representation of the 
effect of gasping during active 
compression decompression 
cardiopulmonary resuscita-
tion plus impedance threshold 
device (on intrathoracic pres-
sure (ITP), carotid artery blood 
flow (Flow), aortic pressure 
(Ao), right atrial pressure (RA), 
intracranial pressure (ICP), and 
cerebral perfusion pressure 
(CerPP). (Pressure curves from 
a representative animal study 
performed in the authors’ labo-
ratory during a CPR study.)
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circulation and consciousness in patients in ventricular 
fibrillation for many minutes.112,114

Limitations of Conventional CPR
Under the best of clinical prehospital and in-hospital set-
tings, the rate of survival with favorable neurological 
function after a cardiac arrest is <20% and <40%, respec-
tively.1,25,115–118 The average rate of survival with good brain 
function is only approximately 6% in those North American 
cities that study outcomes.3,29 As described earlier, the com-
plex physiology of conventional S-CPR can be challeng-
ing to implement, but without the correct compression 
rate, compression depth, full chest recoil, lack of interrup-
tions in CPR, and proper ventilation technique, outcomes 
are worse.5,6,12 Some of these challenges can be overcome 
with automated mechanical devices that have been shown 
to provide chest compressions that are at least equivalent 
to high-quality conventional manual CPR.119–121 By them-
selves, however, the use of automated CPR devices has not 
been shown to improve survival rates.119–121

Over the past several decades, study of the physiology 
of S-CPR has uncovered a number of inherent limitations, 
even when S-CPR is performed correctly.5,6,50,82 Recent prog-
ress has focused on ways to enhance the refilling of the heart 
after each compression, because S-CPR itself provides only 
15% to 25% of normal cardiac output when performed per-
fectly.50,82,83 Understanding some of the limitations of S-CPR 
has resulted in several discoveries that hold promise of sig-
nificantly enhancing cardiocerebral circulation during car-
diac arrest.

BEYOND CONVENTIONAL S-CPR
Studies on CPR physiology have resulted in several fun-
damentally new approaches to improve outcomes after 
cardiac arrest. These include ways to harness the tho-
racic pump to enhance circulation to the heart and brain 
by transforming the thorax into an active pump to cir-
culate more blood.21–24 The newly appreciated concept 
of intrathoracic pressure regulation (IPR) has resulted 
in innovative technologies and approaches to enhance 
perfusion, decrease ICP, and improve cardiac arrest 
outcomes.3,4,12,25,26,30,67,69,88,115,122–141

Additional discoveries associated with cardiac arrest 
include ways to reduce the potential for reperfusion injury, 
new insight into the potential importance of the position of 
the head during CPR, and methods to improve postresusci-
tation care. Essential for all of these potential advances is the 
need for the delivery of high-quality CPR in accordance to 
AHA guidelines.1 There has also been significant progress in 
incorporating multiple advances in the care of cardiac patients 
into a bundled approach to care. This has also resulted in a 
significant improvement in clinical outcomes.19,106,115

Intrathoracic Pressure Regulation Therapy
The concept of IPR is embodied in a number of noninvasive 
devices developed to regulate changes in intrathoracic pres-
sure and to provide greater circulatory support than can be 
generated by S-CPR itself.12–14,67,82,83,115 IPR was inspired by 
the successful use of a household plunger, instead of a pair 
of hands, by someone attempting to resuscitate a family 

member in cardiac arrest.21 This index case resulted in a new 
method of CPR called ACD CPR.21 By repetitively pulling 
upward and pushing downward on the chest with a suc-
tion device, intrathoracic pressures increase and decrease, 
promoting greater ventilation and circulation than with 
S-CPR.21 Studies in animal showed that ACD CPR increased 
circulation during CPR but was insufficient by itself to 
maintain adequate ventilation.22,142,143

Further study of ACD CPR resulted in a discovery of 
the inspiratory ITD.23,24 By transiently impeding airflow 
into the lungs during the chest wall recoil or decompres-
sion phase of CPR, use of the ITD results in a significant 
reduction in intrathoracic pressure during S-CPR and ACD 
CPR.83,144 These mechanisms of action are shown schemati-
cally in Figure 4. By this means, the ITD significantly aug-
ments blood flow to the heart and brain during S-CPR, 
ACD CPR, and when used during CPR with automated dev
ices.12,23,28,31–33,67,70,82,83,86,89,145–150 By transiently impeding gas 
flow into the lungs during the decompression phase of CPR, 
IPR therapy brings more blood back to the right heart and 
decreases ICP by decreasing intrathoracic pressure during 
the decompression phase of CPR.23,148 In this manner, use of 
the ITD during CPR mimics the gasping reflex as described 
earlier. Importantly, periodic PPV is required with the ITD, 
which can be attached to a facemask or advanced airway.

Over the past 2 decades, use of the ITD has been shown 
to significantly augment cerebral and myocardial perfusion 
in animals in cardiac arrest during S-CPR and ACD CPR 
and to improve hemodynamics in humans during S-CPR 
or ACD CPR.12,23,28,31,32,67,70,82,83,86,89,145–150 Further IPR research 
led to the development of a device able to provide a con-
tinuous negative intrathoracic pressure after each PPV.26,27 
This more advanced active IPR approach has been used in 
animals and patients in cardiac arrest and noncardiac arrest 
shock states.4,26,27,69,123,128,136,138,140,141,151

Conventional or Standard CPR and the 
Impedance Threshold Device
The ITD has been tested in animals and human subjects 
during S-CPR.28,31,83,86,106,115,147,149 The animal studies showed 
that the ITD increased blood flow to the heart and brain 
and improved survival with favorable neurological func-
tion.31,83,86,147,149 Subsequent testing in humans was also 
done.20,25,28,83,115,152 Most human trials showed a benefit of 
the ITD with S-CPR in terms of blood pressure or survival. 
However, the largest human trial, the National Institutes 
of Health Resuscitation Outcomes Consortium (ROC) 
Prehospital Resuscitation Impedance Valve and Early Versus 
Delayed Analysis (PRIMED) study compared a sham versus 
active ITD and early versus late analysis and defibrillation. 
The investigators reported no benefit of the ITD.29 In that 
trial, either a sham or active ITD, each with timing lights that 
flash 10 times/minute to guide ventilation rate, was tested 
in >8000 patients with out-of-hospital cardiac arrest treated 
with S-CPR.29 The sham device was designed to look, feel, 
and flash like the active ITD, but it did not impede the flow 
of respiratory gases into the lungs when the pressure in the 
thorax was subatmospheric. Only after the neutral results 
were published did the ROC PRIMED investigators report 
that there was a large variation in the compression rate and 
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depth during the study.7,8 A third analysis by ROC inves-
tigators demonstrated that there was a statistically signifi-
cant interaction between the quality of CPR delivered in the 
ROC PRIMED study and the effectiveness of the sham and 
active ITD.74 A subsequent independent reanalysis of the 
ROC PRIMED study similarly showed that the effectiveness 

of the active ITD was highly dependent on the quality of the 
S-CPR delivered.7,8,30,74

When chest compressions were delivered according to 
the recommendation of the AHA guidelines, then survival 
with favorable neurological function was significantly 
higher with the active ITD compared with the sham30 

Figure 4. A, With conventional cardiopulmonary resuscitation (CPR), compressing the mid-sternum increases the pressure inside the thorax, 
and blood is propelled out of the heart to the brain. Compressions also force respiratory gases from the lungs, as shown by the yellow arrow. 
Active compression decompression (ACD) CPR + the impedance threshold device (ITD) work the same way during the compression phase. 
Compressions increase intrathoracic pressure, cause forward blood flow to the heart and brain, and force respiratory gases from the lungs. 
There is minimal expiratory resistance from the ITD. B, During the decompression phase, the heart is refilled with blood. With conventional 
CPR, the chest wall recoils passively. With each chest recoil, the slight vacuum generated within the thorax draws air into the lungs, shown by 
the yellow arrow, and draws some blood into the heart. The reduction of pressure inside the thorax is depicted in the airway pressure curve 
on the right, which is a surrogate for intrathoracic pressure. During the recoil phase of standard CPR, the level of intrathoracic vacuum varies 
because of the intrinsic elastic chest recoil. With each compression–decompression cycle, the amount of blood that propelled out of the heart 
with active compressions is greater than the amount that refills the heart with passive recoil. Over time, cardiac output further decreases. 
By contrast, after compressing the chest with the ACD CPR, the rescuer actively pulls upward on the chest with ACD CPR. The ITD simultane-
ously impedes air from entering into the lungs during chest wall recoil after each positive pressure ventilation, as shown in the graph on the 
lower right. This results in an immediate and significant decrease in intrathoracic pressure.23 This critical vacuum draws more blood back 
into the heart, refilling the ventricles for the next compression.23 The reduction in intrathoracic pressure results in an immediate reduction in 
intracranial pressure (ICP), which causes lower cerebral resistance and thus greater cerebral perfusion.67 The rescuer must deliver a positive 
pressure breath periodically to provide oxygen to the patient and keep the lungs inflated. With each active compression–decompression cycle 
with the ITD, circulation is markedly increased to the heart and brain compared with conventional CPR.23,148
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(Table  1). Taken together, these studies showed that there 
was a significant interaction between S-CPR quality metrics 
and the ITD.7,8,74

With excessive chest compression rates or inadequate 
chest compression depth, the ITD was not effective.30 
Conversely, when S-CPR was delivered according to 
the AHA recommendations, there was a significant 50% 
increase in the number of survivors with favorable neu-
rological function30 (Table 1). Figure 5 demonstrates the 
importance of compliance with AHA guidelines and ITD 
effectiveness. The highest rates of survival with favor-
able neurological function were observed with compres-
sions performed at rates around 100 per minute, a depth 
of 5 cm, and use of the active ITD.30 From a physiologic 
perspective, the discovery of these critical interactions 
among chest compression rate, depth, and inspiratory 
impedance helps to emphasize the potential benefit of 
IPR.30,153 These findings also highlight how critically 
important it is to remain compliant with CPR guidelines 
when performing CPR.

Active Compression Decompression CPR and the 
Impedance Threshold Device
The ITD was also assessed during ACD CPR in ani-
mals23,31,70,145,147,148 and in patients as the focus of 5 prospec-
tive randomized clinical trials.3,32–35 This device combination 
was shown to increase blood flow to the heart and brain and 
to improve survival with favorable neurological function. 
In the largest clinical trial, >2700 patients were randomly 
assigned to receive either S-CPR or the ITD + ACD CPR.3,36 
Patient survival to hospital discharge with favorable neuro-
logic outcome, the primary study end point, was approxi-
mately 50% higher with the ITD + ACD CPR combination 
for patients with a cardiac arrest of presumed cardiac etiol-
ogy3 (Table 2). Approximately 50% survival benefit relative 
to S-CPR was sustained for at least a year.3,36 Based on this 
trial, the combination of ACD CPR and the ITD was recently 
approved by the US Food and Drug Administration as the 
first CPR adjunct to increase the likelihood of survival after 
nontraumatic cardiac arrest.155

Table 1.  Survival for Patients Receiving Acceptable Quality of CPR (Rate 80–120 per min, Depth 4–6 cm, 
Fraction ≥50%a) in the National Institutes of Health Resuscitation Outcomes Consortium PRIMED Study

Sham  
(n = 827), n (%)

Active  
(n = 848), n (%) P

Relative  
Increase (%)

Survival to hospital discharge 53/827 (6.4) 81/848 (9.6) 0.018 50
Discharge alive with mRS ≤3 34/827 (4.1) 61/484 (7.2) 0.0064 76
Witnessed arrest and discharge 

alive with mRS ≤3
25/421 (5.9) 50/419 (11.9) 0.0024 102

Chest compressions performed without interruptions for at least 50% of every minute.
CPR = cardiopulmonary resuscitation; mRS = modified Rankin scale.
aThe compression fraction is the percentage of time the chest compressions are delivered continuously each minute.

Figure 5. Rate of survival to hospital discharge with good neurologic function, defined as modified Rankin scale (mRS) score ≤3, based on 
the compression rate and compression depth for patients receiving an active (A) or sham (B) impedance threshold device (ITD). Data were 
analyzed by Yannopoulos et al.30 using the National Institutes of Health Resuscitation Outcomes Consortium PRIMED study database. The 
mRS is a recovery score from 0 to 6, where 0 is asymptomatic, 1 is no significant disability, 2 is slight disability, 3 is moderate disability, 4 is 
moderately severe disability, 5 is severe disability, and 6 is death.154
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Advanced Intrathoracic Pressure Regulation
The concept of push–pull ventilation has been adopted to 
enhance circulation and used for the treatment of cardiac arrest 
and shock.4,26,27,69,123,128,136,138,140,141,151,156 A series of devices have 
been designed to harness the changes in intrathoracic pres-
sure to enhance venous return to the heart and circulate more 
blood to the brain and heart.4,26,27,69,123,124,127,128,133,136,138,140,141,151 
They work as follows: After a positive pressure breath, respira-
tory gases are actively withdrawn from the lungs to generate 
negative intrathoracic pressure during the entire expiratory  
phase.4,26,27,69,123,124,127,128,133,136,138,140,141,151 The airway pressure 
curve and associated hemodynamics with this technology 
in a porcine preparation with hypovolemic shock are shown 
in Figure 6A and in cardiac arrest are shown in Figure 6B.157 
This approach has been assessed in animals in cardiac arrest26 
and in patients.27 When this approach is combined with 
S-CPR or ACD CPR, blood flow to the heart and brain is  
enhanced.26,27,151,157

A device that provides this kind of IPR therapy, called 
the intrathoracic pressure regulator device (ITPR), has been 
approved for use in hypotensive patients by the Food and 
Drug Administration to enhance circulatory adequacy.4,27,156 
In animals, brain blood flow is increased by approximately 
50% with ACD + ITPR versus ACD + ITD.26 In humans, the 
use of S-CPR plus the ITPR significantly enhances circula-
tion as measured by etco2 during CPR and significantly 
increases the likelihood of successful resuscitation from 46% 
to 73%.27 However, research with this new approach is in its 
infancy. Further studies are needed to determine whether 
the use of the ITPR and similar devices that enhance venous 
return during the expiratory phase of CPR will result in 
improved long-term survival rates after cardiac arrest.

Head-Up CPR
By convention, CPR has been performed for over a half 
a century with the patient in the supine position with 

Figure 6. Representative tracings of tracheal, aortic, and intracranial pressures before and during the use of intrathoracic pressure regulation 
(IPR) therapy during a porcine model of hypovolemic shock (A) and cardiac arrest (B). Pressure curves from a representative animal study in 
experiments described by Debaty et al.157 ACD = active compression decompression; Ao = aortic pressure; CPR = cardiopulmonary resuscita-
tion; ITD = impedance threshold device; ITP = intrathoracic pressure; ITPR = intrathoracic pressure regulator device; RA = right atrial pressure.

Table 2.  One-Year Survival with Good Neurologic Function, Defined as CPC ≤ 2, for All Patients in the 
ResQTrial3

S-CPR, n (%) ACD + ITD, n (%) P Relative Increase (%)
mITT (n = 1655) 48/794 (6.0) 74/822 (9.0) 0.030 49
ITT (n = 2470) 68/1171 (5.8) 96/1233 (7.8) 0.062 34

ACD active compression decompression; ITD = impedance threshold device; CPC = cerebral performance category; ITT = intention-to-treat population: patients 
met initial inclusion criteria for the study; mITT= modified intention-to-treat population: patients met initial and final inclusion criteria for the study including arrest 
of presumed cardiac etiology; S-CPR = standard cardiopulmonary resuscitation.
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the entire body on the same plane horizontal to the floor. 
Recent studies on the position of the head and body during 
CPR in pigs have demonstrated that elevation of the head 
during CPR has a profound beneficial effect on ICP, CerPP, 
and brain blood flow when compared with the traditional 
supine horizontal position.14 With the body supine and hor-
izontal, each compression is associated with the generation 
of arterial and venous pressure waves that deliver a simul-
taneous high-pressure compression wave to the brain. With 
a patient’s head up, gravity drains venous blood from the 
brain back to the heart, resulting in a greater refilling of the 
heart after each compression, a lower compression phase 
ICP, and a substantial decrease in ICP, thereby reducing 
impedance to forward brain flow.14 By contrast, CPR with 
the patient’s feet up and head down resulted in a marked 
decrease in CerPP with a simultaneous increase in ICP14 
(Fig. 1). As shown in cardiac arrest studies in pigs, eleva-
tion of the head results in an immediate decrease in ICP 
and an increase in CerPP.14 The effect of changing from the 
0° horizontal to a 30° head up on key hemodynamic param-
eters during ACD + ITD is shown in Figure 1.14 Head-up 
CPR is ultimately dependent on the ability to maintain 
adequate forward flow. These benefits are realized only 
when an ITD is present; when the ITD is removed from the 
airway in these studies, systolic blood pressure and coro-
nary and CerPP decrease rapidly.14 Currently, clinical stud-
ies are lacking. However, the new insight gained by these 
provocative animal studies suggest that elevation of the 
head during CPR may provide better cerebral protection 
and perfusion.

Reperfusion Injury Protection
Although nascent, the concept of postconditioning, or reper-
fusion injury protection, during CPR promises to provide 
additional benefit by reducing the potential for unintended 
damage in the first seconds to minutes of reperfusion after a 
prolonged ischemic insult.13,37,40,41,158,159

It is well established that reperfusion injury can cause 
microvascular and endothelial dysfunction, reduce blood 
flow, and lead to end-organ metabolic dysfunction, cellu-
lar necrosis, and apoptosis.37,41,158–162 In a general sense, this 
concept also known as “postconditioning” can be defined as 
brief periods of reperfusion alternating with intentional reoc-
clusion applied during the first minutes of reperfusion.37,158–160 
This strategy need not be limited to mechanical alterations in 
hydrodynamics and may include pharmacological measures 
to accomplish similar objectives.13,37–43,163 Early animal studies 
are supportive of the importance of preventing reperfusion 
injury after prolonged cardiac arrest.37,157–159,161

There are multiple ways to reduce or prevent reperfu-
sion injury based on the putative mechanisms of action, 
which include ischemic postconditioning with intentional 
short periods of no flow after reflow, and pharmacologic 
agents, which activate reperfusion injury salvage kinase 
pathways or inhibit the opening of mitochondrial perme-
ability transition pores.37 It is now clear that in the setting 
of a prolonged cardiac arrest, at least in pigs, reperfusion 
injury amelioration confers a significant benefit by preserv-
ing mitochondrial function.161

More recent studies suggest that with reperfusion injury 
protection, the brain may be able to survive for well >15 
minutes in the absence of any perfusion.39 Bartos et al.43 
used multiple simultaneous interventions hypothesized to 
improve flow, reduce reperfusion injury, and accelerate cel-
lular and vital organ recovery. Enhanced flow was provided 
with ACD + ITD CPR. Postconditioning was provided 
by 3 short intentional 20-second pauses and administra-
tion of sevoflurane, as reported previously by the same 
group to preserve mitochondrial respiration after pro-
longed ischemia and reperfusion.161,162 In addition, a syn-
thetic surfactant, poloxamer 188 was administered to help 
seal nanosized holes in and between cells.163–168 Poloxamer 
188 has been assessed previously in animals and humans 
to treat acute myocardial infarction and, more recently, in 

Figure 7. Representative tracings show-
ing the effect of intentional pauses during 
active compression decompression car-
diopulmonary resuscitation plus imped-
ance threshold device (Stutter ACD CPR 
+ ITD) combined with the administration 
of sevoflurane (Sevo) and poloxamer 188 
(P188) on aortic pressure (Ao) and intra-
thoracic pressure (Resp) after 17 minutes 
of untreated ventricular fibrillation cardiac 
arrest. Pressure curves from a represen-
tative animal study in experiments were 
described by Bartos et al.43 VF = ventricular 
fibrillation; Epi = epinephrine; Defib = defi-
brillation delivered.
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animals in cardiac arrest.43,167,168 Figure 7 demonstrates the 
impact of these multiple interventions on aortic pressure 
in a representative animal from that study.43 The authors 
found that more than half of the animals treated with this 
unique bundle were awake, alert, and functionally normal 
48 hours after cardiac arrest. None of the control animals 
survived.43 These kinds of preclinical studies demonstrate 
the potential of these new approaches to markedly improve 
the likelihood of survival after cardiac arrest. Clinical stud-
ies are now needed to determine the potential added value 
of reperfusion injury protection after prolonged untreated 
cardiac arrest.

The Resuscitation Bundle
One lesson from the hundreds of different CPR studies 
that began in the early 1960s is that multiple treatments are 
needed for success in the chain-of-survival approach to the 
treatment of cardiac arrest.19,106,115 The most effective strat-
egies have optimized circulation during CPR and reduced 
postresuscitation injury.19,106,115 The most effective resuscita-
tion bundles to date include efforts to promote widespread 
use of bystander CPR, public access defibrillation, high-
quality CPR by first responders and advanced life support 
providers, use of adjuncts that lower negative intrathoracic 
pressure during the decompression phase of CPR, and 
strategies that include postresuscitation revascularization 
and therapeutic hypothermia, or at least the prevention of 
fever.19,106,115 Such system-based approaches to resuscitation 
are based on a multipronged biophysical approach to sig-
nificantly improve the likelihood for survival with restora-
tion of neurological function after cardiac arrest.19,106,115,122,169

Currently, the bundled approach to prehospital care has 
significantly improved survival with good neurological func-
tion for all patients to as high as 20% in some cities and coun-
ties.19,115,118 Care is provided by highly trained prehospital 
personnel and specialized resuscitation hospitals.19,106,115 The 
greatest improvement has been in those patients who present 
with ventricular tachycardia where survival with restoration 
of neurological function is approximately 50%.19 These data 
are supportive of the progress in the field to date; they also 
reflect the challenges that persist for the 80% of patients who 
never wake up despite receiving conventional CPR.1,2,15,17–20,118

IS CPR OF BENEFIT AT ALL?
Given that survival rates after cardiac arrest have not 
changed much over the past half century since close chest 
manual CPR was first described, it is reasonable to ask 
whether CPR is really of benefit. This question was asked by 
Bardy,9 an expert in cardiac electrophysiology, who believes 
that early and effective defibrillation, and not CPR, is what 
important. There is no doubt that defibrillators are impor-
tant for resuscitating some patients in cardiac arrest who 
present with a rhythm that can be defibrillated. However, 
the incidence rate of ventricular fibrillation has been declin-
ing for the past 20 years170,171 and now is reported as the 
presenting rhythm for only between 20% and 35% of all out-
of-hospital cardiac arrest.3,29 Given that the average cardiac 
arrest survival rate nationwide is <10%, one could argue 
that efforts to resuscitate patients in cardiac arrest are largely 
futile and that the millions of dollars spent on education and 

treatment strategies should be spent elsewhere. We will not 
settle that debate here, but this kind of challenge from Bardy9 
and others is provocative and helps to stimulate potential 
breakthroughs. We believe that the early work described in 
this review on new ways to reduce reperfusion injury, new 
ways to protect the brain with head-up CPR, and aggressive 
postresuscitation care, including acute revascularization 
for patients in refractory ventricular fibrillation, are steps 
in the right direction.14,39,40 We speculate that over the next 
50 years, these new ideas will be translated to meaningful 
changes in care and drive survival rates to higher levels than 
have been reported previously. Time will tell. Meanwhile, 
multiple emergency medical service (EMS) systems have 
already reported that by combining rapid and early defibril-
lation with high-quality CPR, ITD use, reperfusion injury 
protection strategies, and therapeutic hypothermia, overall 
survival rates with favorable neurological function can reach 
approximately 20% today and those with ventricular fibril-
lation are upward of 50%.19,115 In-hospital survival rates with 
favorable neurological function have been reported upward 
of 35%, and this includes patients with ventricular fibrilla-
tion, pulseless electrical activity, and asystole.122

PEDIATRIC CONSIDERATIONS
Cardiac arrest in the pediatric population presents some 
different challenges. Unlike in adults, common causes of 
pediatric cardiac arrest include respiratory arrest or drown-
ing-induced asphyxia, prolonged shock from any cause, 
including trauma, and pre-existing cardiac disease that is 
usually congenital in nature.172

Severe bradycardia or asystole is the usual heart rhythm 
aberration to be dealt with. Ventricular arrhythmias are 
much less common (<10%) than in the adult population 
(>25%) and usually because of prolonged myocardial 
hypoxia.172 As with the adult population, survival from out-
of-hospital cardiac arrest is significantly worse than in the 
in-hospital setting.122,172,173

To date, the experience with pediatric and adult rapid 
response teams on in-hospital CPR survival rates to dis-
charge with good neurologic function has been mixed.174–176 
Although the concept is appealing, a significant improve-
ment in outcomes has not been demonstrated. Simulation 
experience supplemented by just-in-time and just-in-place 
training also hold promise to enhance outcomes even fur-
ther, but to date, no definitive studies have shown a survival 
benefit.177–179 By consensus, the AHA child CPR guidelines 
apply to children from 1 year of age until puberty.180 For 
most pediatric patients, the age of 8 years correlates with 
a close approximation to the adult, from an anatomic and 
likely CPR physiologic perspective. In the younger patient, 
survival to discharge rates of in-hospital CPR are better 
than in those who are of school age or older.181–183

Several factors may be responsible for this, although it 
is postulated to be because of better CPR-induced blood 
flow, secondary to greater thoracic cage compliance.184 In 
addition, because most pediatric cardiac arrests are asphyx-
ial/hypoxic in origin, rescue breathing with avoidance of 
hyperventilation and excessive positive airway pressure, in 
addition to prompt and uninterrupted chest compressions, 
is essential.44,45 As with the adult, open chest CPR provides 
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about twice as much blood flow than S-CPR, but its use is 
almost always implemented when a thoracotomy of some 
kind is already performed, as in the operating room or pedi-
atric intensive care unit postoperatively.185 Similar to adults, 
a pediatric resuscitation bundle is often used.186

As in adults, the use of post-CPR hypothermia is increas-
ing, but its recommended duration and overall efficacy are 
somewhat controversial for all pediatric age groups.187,188 
Studies have not unequivocally supported its use in the 
pediatric population. However, as with adults, most experts 
agree that hyperthermia, which is common in the pediat-
ric post-CPR patient, must be avoided or managed aggres-
sively when present.46,189

Use of venoarterial extracorporeal membrane oxygen-
ation as a rescue therapy in the pediatric population for treat-
ment of prolonged cardiac arrest has been demonstrated to 
be useful in some patients, in particular in the postoperative 
cardiac surgical pediatric patient, when reversible cardiac 
dysfunction is present.47,48 However, as with adults, rigor-
ous studies in this area are understandably lacking.47,48

CLINICAL IMPLICATIONS AND THE FUTURE
We remain in our infancy in understanding the complex 
physiology of cardiac arrest and CPR. However, similar to 
the treatment of other complex disease states, such as HIV 
infection, leukemia, or heart failure, we believe that we 
need to abandon the idea that there is a single “silver bul-
let” for the treatment of cardiac arrest, including defibril-
lation. In the case of HIV, 3 drugs found to be ineffective 
alone were shown to be highly effective when combined.190 
We speculate that consistent and definitive advances in the 
treatment of cardiac arrest will require the synergy between 
multiple interventions in a bundle-of-care approach to this 
multifactorial disease state. Some of these potential inter-
ventions are summarized in Table 3.

Within the past decade, it has become clear, as we have said 
that there is no single magic bullet for patients in cardiac arrest. 
Cardiac arrest is best treated with a multipronged approach 
based on the physiologic and biochemical first principles. 
These include optimization of circulation and postresuscitation 
organ recovery and minimization of reperfusion injury and 
common errors during CPR delivery. The recognition that com-
mon errors in CPR delivery are prevalent and often lethal has 
results in a “back-to-basics” approach to education and deliv-
ery of basic CPR. The frequency of errors during CPR has also 
resulted in a better understanding of the needs for and benefits 
of feedback tools and automated CPR devices to assure that 
correct rate, depth, and full recoil are achieved.119–121,191 None of 

these new approaches is exceptionally difficult to implement. 
We anticipate that once many of them have been scientifically 
verified and combined with current system-based approach to 
care, the potential to successfully and fully resuscitate many 
patients who we cannot help with current management seems 
to be well within our reach. E
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