

Topical and spatial repellents: where are we?

5th Outdoor Malaria Transmission Work Stream Meeting Wednesday 30th January 2013 13:00-15:00

Sarah J Moore, LSHTM and Ifakara Health Institute

BILL& MELINDA GATES foundation

Benefits of outdoor and early evening feeding when people have intra-domicillary control tools

Inter-specific larval competition

1

Endophilic mosquitoes die Exophagic / exophilic mosquitoes survive

SOUTH AMERICA

Country	Vector	% biting outside	% biting	Sampling	Ref
		of sleeping nour	outdoors	method	
Belize	An. albimanus	20.83	79.47	HLC	(52)
Delize	An. darlingi	15.25	82.57		
Belize	An. darlingi	-	49.08	HLC	(53)
Belize	An. albimanus	-	24.47		
Bolivia	An. darlingi	83.0	-	HLC	(54)
Brazil	An. darlingi	57.21	73.74	HLC	(55)
Drazii	An. darlingi	-	75.77	HLC	(56)
Dominican republic	An. albimanus	85.3	77.3	HLC	(59)
French Guiana	An. darlingi	-	68.88	HLC	(57)
Suriname	An. <u>darlingi</u>	13	62.86	HLC	(58)

Average 45.8% biting before bed-time

Average 66% outdoor feeding

Vector		Country	% hiting before 21.00h	indexe: outdoor biting	Ref	
An dirus complex	Subspecies not identified	Myanmar	7.1%	-	[1]	
(Peyton and Harrison,		Thailand	20.7%	Sec. 1	[2, 11]	
1979)		Lao PDR		1.1	[4]	
		Lao PDR		0.67	[12]	
		Cambodia		2.00	[13]	
		Lao PDR	19.0	÷	[7]	
		Thailand	6.3%		[15]	
	An dirus (species A)	SE Asia		0.32-1.3	[3, 16]	
	NOR CHARTER	Thailand	23.8%		[15]	
	An. cracens (Species B)	Thailand	50.8%		[15]	
	An. scanioni (Species C)	Thailand	76.1%		[15]	
An maculature (Theobal)	d, 1901)	Malaysia		0.37	[6]	
		Philippines		Alloutdoors	[8]	
		Cambodia		0.29	[13]	
		Lao PDR	53.3%	1	[7]	
		Philippines	30.6%	0.39	[23]	
		SE Asia		0.08-0.19	[3]	
		Lao PDR		0.26	[4]	
		Myanmar	38.8%		[1]	
		Thailand	64.1%		[2, 11]	
		Malaysia		88.9%	[25]	
An minimus group	Subspecies not identified	Lao PDR		0.54	[4]	
		Lao PDR		0.50	[12]	
		Cambodia		1.21	[13]	
		Myanmar	26.2%		[1]	
		Lao PDR	23.5-45.8		[7]	
		Thailand	15.7%		[2, 11]	
		Thailand	Peak 18.00- 21.00	Higher outdoor	(28)	
		Vietnam		0.82	[29]	
	An minimus A	SE Asia		0.62-7.95	[3,16]	
		Thailand		0.19	[30]	
	An minimus C	SE Asia	-	0.35	[3]	
		Thailand		0.19	[31]	
An sinensis		Myanmar	69.8%		[1]	
		SE Asia		0.17-0.88	[3]	
	Malaysia		0.36	[6]		
An stephensi (Liston, 19	01)	Myanmar	50.0%		[1]	
An sundaigus (Rodenwa	ldr. 1925)	SE Asia		1.27	[3.16]	
		Myanmar	49.1%		[1]	

MEKONG REGION

Average 38.5% biting before bed-time

Average indoor : outdoor ratio 0.9 and 0.6 if you exclude An. minimus A

Occupational exposure

Transient non-immunes

Vectorial capacity: a means of conceptualising the impact and mode of action of an intervention

Disease	Intervention	Design
malaria	repellent	Trial
OR	OR	OR
dengue	DEET	Community
OR	OR	OR
leishmaniasis	clothing	"Case control"
	OR	OR
	coil	Questionnaire
	OR	OR
	metofluthrin	"Cross sectional"
	OR	OR
	transfluthrin	"Cohort study"
		OR
		military

•RCTs >Cohort and case control trials >cross-sectional and observational studies with local populations > cross-sectional and observational of travellers.

 Outcomes - parasite rates of disease measured by standard methodology e.g. blood smears or rapid diagnostic tests for malaria.

 Risk of bias and confounding: design, recruitment methodology, generation of treatment allocation, randomization of treatments, allocation concealment, blinding, implementation of study and reporting of results

New infections in person years

Topical repellents

	Repe	llent	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Chen-Hussey 2012	36	88508	38	87516	17.9%	0.94 [0.59, 1.48]	
Deressa 2010	44	19192	36	18180	18.2%	1.16 [0.75, 1.80]	
Hill 2007a	2	30824	40	29872	6.3%	0.05 [0.01, 0.20]	
McGready 2001	48	8082	66	8064	19.3%	0.72 [0.50, 1.05]	
Onyango 2013	122	101504	138	101660	21.2%	0.89 [0.69, 1.13]	
Rowland 2004	23	14832	47	12720	17.2%	0.42 [0.25, 0.69]	
Total (95% CI)		262942		258012	100.0%	0.66 [0.44, 1.00]	
Total events	275		365				
Heterogeneity: Tau ² =	0.20; Ch	$ni^2 = 26.4$	4, df = 5	(P < 0.00)	001); I ² =	81%	
Test for overall effect:	Z = 1.94	(P = 0.0)	5)			Fa	avours [experimental] Favours [control]

	Repe	llent	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Chen-Hussey 2012	36	88508	38	87516	21.9%	0.94 [0.59, 1.48]	
Deressa 2010	44	19192	36	18180	0.0%	1.16 [0.75, 1.80]	
Hill 2007a	2	30824	40	29872	8.2%	0.05 [0.01, 0.20]	5
McGready 2001	48	8082	66	8064	23.4%	0.72 [0.50, 1.05]	
Onyango 2013	122	101504	138	101660	25.4%	0.89 [0.69, 1.13]	-
Rowland 2004	23	14832	47	12720	21.1%	0.42 [0.25, 0.69]	
Total (95% CI)		243750		239832	100.0%	0.58 [0.35, 0.94]	
Total events	231		329				
Heterogeneity: Tau ² =	0.23; Cł	$ni^2 = 23.2$	1, df = 4	(P = 0.00)	$(001); I^2 =$	83%	
Test for overall effect:	Z = 2.23	(P = 0.0)	3)			F	avours [experimental] Favours [control]

			TOF	PICAL REPELLENTS	3		
Trial	Intervention	EPI effect size (odds ratio)	VEC effect size	Primary Vector	Vector feeding behaviour	Compliance	Other points
Chen Hussey 2012 [11]	15% DEET lotion in addition to <u>Remanet</u> . 2.0 LLINs	0.94 (0.59- 1.48)	98.9% protection for 5 hours in field tests	Anopheles dirus, An. <u>minimus</u> and An. <u>maculatus</u>	20 – 50% of biting before 10 pm [12]	About 50%	
Deressa 2010 [13]	Buzz off repellent plus Rermanet LLIN	1.16 (0.75 – 1.80)	> 80% effective against An. gambiag.for 8 hours in laboratory tests	An. arabiensis	70% before 10pm [14]	No measured	Repellent arm had more malaria to begin with. Effect size calculated by study, accounting for imbalance was 0.57 (0.35 – 0.94) p=0.028
Hill 2007a [15]	30% PMD lotion in addition to 25mg/m ² deltamethrin impregnated bednet.	0.05 (0.01- 0.20)	Repellent provided 97% protection from An. dadingi (gr.4 hours [16]	An. dadiogi.	48% of biting before 21.00hrs [17]	>90% (per protocol analysis)	
McGready, 2001 [18]	Repellent lotion containing 20% DEET and thanaka (<i>Limonia</i> acidissima)	0.72 (0.50 – 1.05)	repellent provided 65% reduction in exposure to An. minimus and 85% reduction in exposure to An maculatus.[19]	An. minimus and An. maculatus	An. minimus 22% and An. maculatus 62% before bed time	Compliance actively detected at 84.6%	
Qoyango 2013 Not published	15% DEET lotion in addition to Olyset LLINs	0.89 (0.69 – 1.13)	repellent prevented >80% bites from An. arabiensis over 4 hours	An. arabiensis	30% before 10pm~	>90% (per protocol analysis) but application not adequately measured	
Rowland 2004 [20]	20% DEET and 0.5% permethrin soap	0.42 (0.25 - 0.69)	An. stephensi and An. culicifacies density- repellent prevented 100% bites over the whole night	100% effective	80% of anopheline biting before midnight	Self-reported compliance >95%	

÷

	PERMETHRIN TREATED CLOTHING							
Trial	Intervention	EPI effect size (odds ratio)	VEC effect size	Primary Vector	Vector feeding behaviour	Compliance	Other points	
Eamsila 1994 [21]	Treated uniform with 2g Permethrin per uniform once every 6 months	0.96 (0.71 – 1.29)	100% effective for 3 months, 84.45% effective up to 6 months	An. dinus	Not measured	100% compliance although it is not known if the uniforms were worn "correctly"		
Kimani 2006 [22]	Clothing treated with 0.37% Permethrin – retreated every three weeks	0.56 (0.36 - 0.86)	41% reduction in blood fed mosquitoes in users' houses and 41% increase in fed mosquitoes in non-users' houses	An. arabiensis	Not measured	oot, mentioned (assume all clothes were treated)	Reported odds of malaria in treatment group is 0.314 p=0.0002	
Rowland1999 [20]	1g/m2 permethrin treated chaddars.	0.55(0.38 - 0.78)	reduced feeding success of An. oigerrimus, An stephensi and An. subpictus by 0-60%	An stephensi	80% of anopheline biting before midnight	oot, measured		
Soto 1995 [23]	Treated uniform with 600-712mg/m2 permethrin	0.24(0.07- 0.87)	not measured	An. darlingi	001 measured	00t measured		

	Experim	ental	Cont	rol		Odds Ratio	Odd	s Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	CI M-H, Rand	lom, 95% Cl	
Eamsila 1994	68	5976	118	9936	33.1%	0.96 [0.71, 1.29)] -	-	
Kimani 2006	34	1080	60	1092	27.8%	0.56 [0.36, 0.86	5] —		
Rowland 1999	51	7008	82	6192	31.0%	0.55 [0.38, 0.78	3] —		
Soto 1995	3	344	12	344	8.1%	0.24 [0.07, 0.87	']		
Total (95% CI)		14408		17564	100.0%	0.62 [0.41, 0.93		•	
Total events	156		272						
Heterogeneity: Tau ² =	0.11; Ch	$i^2 = 9.7$	8, df = 3	(P = 0.0)	02); I ² = 6	9%	0.01 0.1	1 10	100
Test for overall effect:	Z = 2.31	(P = 0.0)	02)				Favours [experimental]	Favours [control]	100

SPATIALLY ACTIVE VOLATILE PYRETHROIDS						
Trial	Intervention	EPI effect size (odds ratio)	VEC effect size	Primary Vector	Vector feeding behaviour	Compliance
Syafruddin 2012 [7]	4 x 0.00975 metofluthrin coils per house per night	0.39 (0.24-0.62)	32.9% reduction in mosquito landings by HLC	An. sundaicus.	33% of biting before 10pm [8]	Nightly
Hill 2007 [9]	2 x 0.03 %transfluthrin coils per house per night	0.22 (0.13-0.39)	88% reduction in indoor mosquito densities by CDCLT	An. sinensis	47% of biting before 10pm [10]	>90%

	Volatile pyrethro	olatile pyrethroid coils No Intervention			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Random, 95% CI
Hill 2007	15	36152	68	36424	46.3%	0.22 [0.13, 0.39]
Syafruddin 2012	25	1381	59	1296	53.7%	0.39 [0.24, 0.62] — —
Total (95% CI)		37533		37720	100.0%	0.30 [0.17, 0.52	
l otal events	40		127				
Heterogeneity: Tau ² =	0.09; Chi ² = 2.22,	, df = 1 (P	r = 0.14; I	$^{2} = 55\%$			0.01 0.1 1 10 100
Test for overall effect:	Z = 4.35 (P < 0.00)	001)					Favours [experimental] Favours [control]

Repellency is used as a general term to refer to a range of insect behaviours induced by chemicals that result in a reduction in human-vector contact.

1. movement away from a chemical stimulus

- 2. interference with host detection (attractioninhibition)
- 3. interference with feeding response
 - 4. incapacitation

POINT SOURCE

BUBBLE

Transfluthrin coil as a "point source"

Point source reduced *Anopheles gambiae* s.s. bites to between 30% and 47% up to 10 metres from the source

Transfluthrin coil as a "bubble"

Bubble effect reduced *Anopheles gambiae* s. s. bites by more than 90% up to 10m from the source

Proportion and 95% CI of Anopheles gambiae s. s. mosquitoes that fed after exposure to gold standard mosquito coils

19

SHORT REPORT

Spatial repellency of transfluthrin-treated hessian strips against laboratory-reared *Anopheles arabiensis* mosquitoes in a semi-field tunnel cage

Sheila B Ogoma^{1,2*}, Hassan Ngonyani¹, Emmanuel T Simfukwe¹, Anthony Mseka¹, Jason Moore^{1,2} and Gerry F Killeen^{1,3}

Ogoma et al. Parasites & Vectors 2012, 5:54 http://www.parasitesandvectors.com/content/5/1/54

Functional agonism of insect odorant receptor ion channels

Patrick L. Jones^{a,1}, Gregory M. Pask^{a,1}, David C. Rinker^b, and Laurence J. Zwiebel^{a,b,c,2}

BEHAVIOURAL NEUROBIOLOGY

The treacherous scent of a human

Walter S. Leal

Mosquitoes' odorant receptors help the insects to find humans and, inadvertently, to transmit malaria. The identification of the odorants that bind to these receptors opens up ways of reducing mosquito biting.

Ultra-prolonged activation of CO₂-sensing neurons disorients mosquitoes

Stephanie Lynn Turner¹*, Nan Li²*, Tom Guda³, John Githure³, Ring T. Cardé² & Anandasankar Ray^{1,2}

Personal protective efficacy of vector control interventions against Anopheles arabiensis - data from the IHI team

Okumu *et al* Comparative evaluation of combinations of long lasting insecticidal nets and indoor residual spraying, relative to the use of either method alone, for malaria vector control in an area dominated by *Anopheles arabiensis. Accepted- Malaria Journal*

Malaria transmission

23

Can you have community protection without killing mosquitoes?

Source reduction of mosquito larval habitats has unexpected consequences on malaria transmission

Weidong Gu*⁺, James L. Regens[‡], John C. Beier[§], and Robert J. Novak*

*Illinois Natural History Survey, Champaign, IL 61820; [‡]Department of Occupational and Environmental Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and ⁵Department of Epidemiology and Public Health, University of Miami, Miami, FL 33177

Table 1. Duration (in days) of the gonotrophic cycle as a function of the availability of aquatic habitats and the flight ability of mosquitoes

Proportion of	Duration of gonotrophic cycle					
grids in the landscape, %	Poor searcher (250 m/day)	Good searcher (500 m/day)				
2.5	13.6	7.7				
5	7.6	4.7				
7.5	5.6	3.8				
10	4.7	3.3				
12.5	4.1	3.0				

Fig. 1. Basic reproductive rate R_0 predicted by the traditional model, which assumes a fixed (3 days) duration of the gonotrophic cycle, and our behavior model of the gonotrophic cycle for various scenarios of proportions of oviposition grids and flight ability.

Lifetime fecundity

Why not use repellents in situation-appropriate format for public health?

