

RoadMap to Achieve the (Renewable) H2 Economy

June 3, 2019

Copyright © Iwatani Corporation. All rights reserved.

Key Factors Required for a Renewable Hydrogen Economy

- Achieving Scale and a Roadmap to Value Chain Profitability
- A Level Paying Field relative to other forms of Alternative Energy
- Global Collaboration between Public and Private Sectors
- A Predictable and Sustained Commitment from Governments

2050 Hydrogen Vision

Source: Hydrogen Council

Ministry of Economy, Trade and Industry

Japan's Responsibility for Energy Transition

- Energy trilemma:
- ✓ Energy Security
- Environment (Sustainability)
- ✓ Economic Affordability (Cost)

3 "E" + Safety

	METI Headquarters	1-3-1 <u>Kasumigaseki, Chiyoda-</u> <u>ku, Tokyo</u> 100-8901, <u>Japan</u>
	Minister Responsible	• <u>Hiroshige Sekō, Minister of</u> Economy, Trade and Industry

- Established May 5, 1930
- Consolidated Net Sales: ¥ 670.7B / \$6.7B (FY 2017)
- Employees: 9,453 (3/2018)
- CEO: Akiji Makino

Iwatani's Commitment to Hydrogen in Japan

- Leading Market Position
- Vertically Integrated Supply Chain
- Significant Focus on Safety
- Extensive Investment in R&D

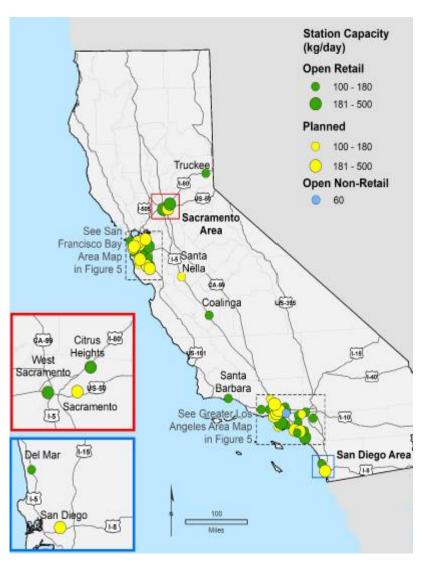
Manufacturing Plants

Distribution Equipment

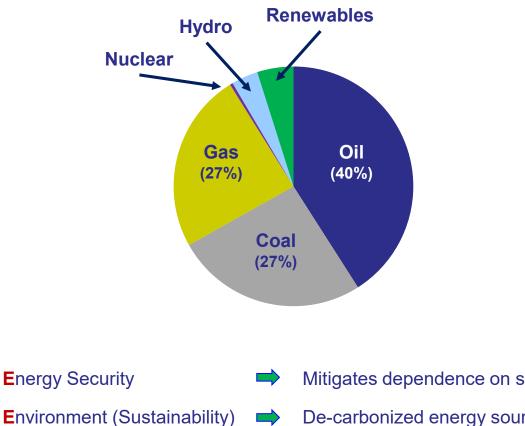
27 Fueling Stations

Entering the Light Duty Hydrogen Fueling Station Market in California

Future Opportunities


Renewable Energy Production

Renewable Hydrogen Production


Medium & Heavy Duty ZEV Fueling

Source : California Energy Commission

Japan's Sources of Energy: 2016

Economic Affordability (Cost) \checkmark

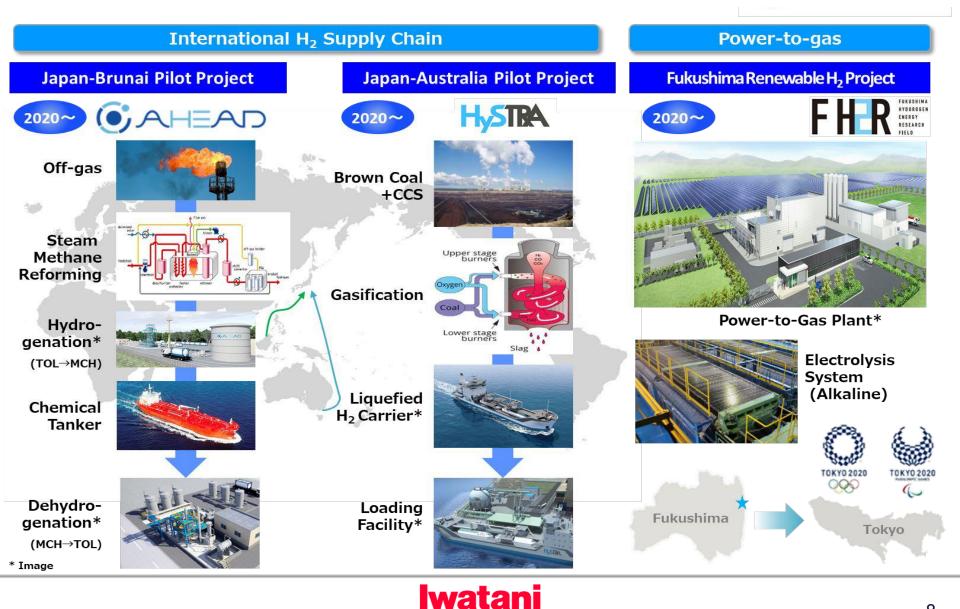
 \checkmark

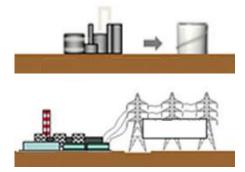
 \checkmark

- Mitigates dependence on specific countries
- De-carbonized energy source
 - High priority: Access to low-cost feedstock

Japan's "Basic Hydrogen Strategy"

Essential Enablers


- Achieve Scale across the entire Supply Chain
- Leverage untapped resources
- Encourage / Incentivize Mass Adoption
 - > Mobility
 - Power Generation


Prime Minister Abe's H2 Initiatives

- Establish World's 1st National H2 Strategy
- 2050 Vision: Position H2 as a new energy option
- Affordable H2
 - > \$3/kg by 2020
 - > \$2/kg by 2050

Tokyo Statement Agenda Outcomes

- Harmonization of Regulation, Codes and Standards
- International Joint R&D emphasizing Safety
- Study and evaluate Hydrogen's Potential
- Communication, Education and Outreach

H2 Production Processes

- Reforming (SMR)
- Gasification
- Electrolysis

Feedstock Options

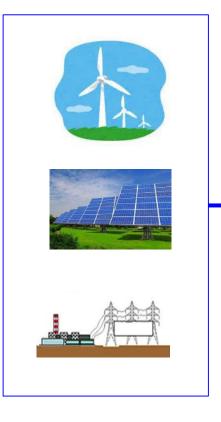
- Natural Gas
- Chemical
- Biomass
- Coal (w/ sequestration)
- Water
- Nuclear
- Residuals
- Others

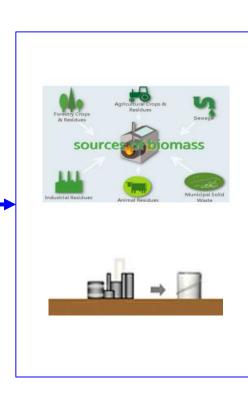
H2 Conversion/Handling

- Liquefaction
- Compression

Nvalani

H2 Distribution


- Liquid Trailer
 - Tube Trailer (Gas)


H2 Dispensing

- Vaporized Liquid
- Compressed Gas

Anticipated Future State Hydrogen Supply Chain: Gaps / Challenges

- Gap: Significant Increase in Liquid H2 Production & Transport Equipment Required
- Challenge: Timing of Capital Investment with Demand Realization

- Gap: Increased Reliance on Renewable Power Generation
- Challenge: Price of Power / Timing of Investments
- Gap: Significant % H2 Feedstock Required to be Derived from Renewable Sources / Low Carbon Intensity Pathways
- Challenge: Significant Cost Reduction Required; Definitions / Incentive Programs & Capital

- Gap: Cost Parity of H2 at Dispenser with Gasoline
- Challenge: Upstream H2 Capital Investment will likely require ROI / T&C's to compensate for Downstream Risks

Iwatani's Vision: To Create a Global Scale CO₂-Free H₂ Supply Chain

 Renewable Energy
& H2 Production
 Ocean
Transport
 Import & Distribute
H2Throughout Japan

 Import & Distribute
H2Throughout Japan
 Import & Distribute
H2Throughout Japan

Solar, Wind, Hydro, Bio-Waste Recovery & Others

Electrolyzer & Other Renewable Hydrogen Sources

- Hydrogen FC Vehicles
- Turbines for Power Generation
- Back-up Power Generation
- Fuel Cell Powered Equipment

CA H2 Supply Chain Challenge: Scale Alone Might not be Enough

Renewable Power Generation & Grid kWh Cost

- \$/kWh Grid Price puts Electrolizers at a disadvantage in many markets
- Scale projects have likelihood of proceeding where new Utility Islands can be created utilizing Hydro, Solar and Wind Power Generation (i.e., Canada)

Expanding Liquid H2 Supply

- World Class Plant: 30 TPD / \$125 MM+
- To achieve Long Term CA LD Goals could require 20+ New LH2 Plants, massive increases in storage capacity and Significant investment in new Distribution Equipment
- Building Standalone Merchant LH2 Plants are Speculative Investments and present Supply Agreements reflect this reality
- Unlike gasoline, there are no LH2 Racks today and H2 Costs are relatively less transparent

Shift to Renewable H2 Sources

- Visibility into timing of capacity additions, potential for grid integration, reliability enhancements, proximity and Gov't policy/commitment are key factors
- Regulatory Agency Commitment to Definitions of Renewable Pathways are essential to De-Risk Project Investments

Achieving Cost Parity at the Pump for Drivers

- \$3.50/gasoline gallon / 27 MPG = \$0.13/Mile*
- Today \$14/Kg H2 / 66 MKg = \$0.21/Mile*
- Cost Parity would require roughly \$8/Kg H2*
- How long will Automobile OEM's subsidize fuel purchases?
- Positive NPV at LT Target H2 Cost at Dispenser requires subsidies
- Vertically Integrated Competitors will likely have a significant advantage

*Source: CEC & CARB Staff Report on AB8

Innovation is Driving Demand for H2...But it is a Long Term Play

Copyright © Iwatani Corporation. All rights reserved.

Support from Government & Public Sectors is Essential

- Achieving Scale leads to a *Sustainable* Industry
 - Harmonization of Codes & Standards enables economies of scale via equipment procurement savings, station design and inter-operability across national boundaries
 - Promote Development of Light AND Heavy-Duty ZEV Infrastructure
 - Support Transportation Initiatives: Maritime, Bridges & Tunnel Crossings
 - Encourage All Forms of Renewable Hydrogen Production
- Create a Level Playing Field Across All Alternative Fuel Modes
- Support Programs that Encourage Collaboration between Public and Private Sectors (e.g. Japan & California Model)
- Predictable and Sustained Commitment Allows for Long-Term Investment, Planning and De-Risks Projects

Many Challenges...but Japan and California are Two Bright Spots

- Significant Government Agency Support & Constructive Engagement and Financial Commitment
 - CEC, CARB, BAAQMD, SCAQMD, GO-Biz, DOT, DOE, NREL, SANDIA, Local Municipalities & Others
 - METI, New Energy and Industrial Technology Development Organization (NEDO) and Japan External Trade Organization (JETRO)
- High Private Industry Commitment and Investment
 - Automobile OEM's, Industrial Gas & Energy Company's, Capital Equipment Suppliers and Entrepreneurs
- Trade Organizations creating platforms for constructive collaboration and overcoming the chicken and egg dilemma
 - Hydrogen Council, JHyM, California Fuel Cell Partnership, CHBC & Others
- University Support and Talent Pipeline

Hydrogen on a World Platform: G20 Ministerial Meeting

Energy Transitions & Global Environment for Sustainable Growth

- June 15 & 16, 2019
- Karuizawa, Japan
- Anticipated Outcome:
 - Communique
 - Action Plan

Thank you

