


# ADDITIONAL PLEISTOCENE MOLLUSKS OF VIRGINIA<sup>1</sup>

Horace G. Richards<sup>2</sup> and Lyle Campbell<sup>3</sup>

# INTRODUCTION

Marine Pleistocene mollusks have been known for many years from numerous localities of southeastern Virginia, probably the first specimens having been obtained from excavations for the Dismal Swamp Canal. Some 36 species of Gastropoda (snails) and 43 of Pelecypoda (clams) have been listed in two technical publications of the senior author and were summarized and figured in two previous issues of Virginia Minerals (Richards, 1936, 1952, 1966, 1967).

Recently, the junior author, being stationed with the U. S. Navy at Virginia Beach, Virginia, had the opportunity to resume the collecting of fossils from several localities in the Norfolk-Virginia Beach area, which was begun while at William and Mary College, Williamsburg, Virginia. The principal localities studied are the following:

- Womack Pit, 0.25 mile southeast of the intersection of Kempsville and Indian River Roads, Virginia Beach, Virginia.
- (2) E. V. Williams-Pavab pit, North Witch Duck Road,

- <sup>2</sup> Academy of Natural Sciences, Philadelphia, Pennsylvania 19103.
- <sup>3</sup> Formerly William and Mary College, Williamsburg, Virginia and Franklin and Marshall College, Lancaster, Pennsylvania; now in the U. S. Navy.

behind Zayre's Department store, Virginia Beach, Virginia.

(3) Beach replenishment dredgings from Owl Creek Marina, found on beach near 17th Street, Virginia Beach, Virginia.

The specimens were sent to the Academy of Natural Sciences, Philadelphia, Pennsylvania, for checking, and a representative set is deposited in that museum. The two authors also spent several days in the field in September, 1971.

In addition to the species collected by the two authors, additional new records for the Virginia Pleistocene are listed from the collections of Old Dominion University, Norfolk, Virginia, made by Dr. Randall Spencer and his students (indicated by ODU in the text). Certain microgastropods are omitted from this article, or referred only to genus.

The result has been the addition of 33 species to the known Pleistocene mollusk fauna of Virginia. Some of these records have little significance, since they have been reported from localities both north and south of the State. Other species have special significance, and will be discussed in the concluding section of this paper.

The localities studied in this survey have previously been referred to the Pamlico Formation by Richards, and were referred to the Norfolk Formation by Oaks and Coch (1963). In any case, they probably date from the Sangamon interglacial stage. Appreciation is expressed to Richard White for photographing the fossils.

<sup>&</sup>lt;sup>1</sup> Aided by a grant from the Penrose Fund of the American Philosophical Society.

# LOCALITY DESCRIPTIONS

The list of the additional species of Pleistocene mollusks not previously reported in Virginia follows. The locality description, distribution during Pleistocene time, and the present distribution is given for each species.

## Gastropoda

Epitonium angulatum (Say)

Figure 16

Womack pit; southeast wall below worm-rock reef Pleistocene distribution: Maryland, South Carolina Recent distribution: Connecticut to Texas

Epitonium humphryesii (Kiener)

Not figured

Womack pit; north wall, channel in worm-rock reef Pleistocene distribution: New Jersey, Maryland, North Carolina, South Carolina

Recent distribution: Massachusetts to Texas

## Epitonium multistriatum (Say)

Not figured

Womack pit; north wall, channel in worm-rock reef Pleistocene distribution: Maryland, North Carolina, South Carolina

Recent distribution: Massachusetts to Florida

## Epitonium candeanum d'Orbigny

Figure 17

Womack pit; north wall below worm-rock reef Pleistocene distribution: Previously unreported Recent distribution: North Carolina to West Indies

Pyramidella crenulata (Holmes)

Not figured

Womack pit; below reef (ODU)

Pleistocene distribution: North Carolina, South Carolina

Recent distribution: South Carolina to West Indies

. Turbonilla interrupta Totten

Not figured

Womack pit; north wall, channel in worm-rock reef Pleistocene distribution: Massachusetts to South Carolina

Recent distribution: Maine to West Indies

## Odostomia sp. Not figured

Womack pit

Rissoina sp. Not figured Womack pit; channel in worm-rock reef

Triphora nigrocincta (Adams)

Not figured Womack pit; southeast wall below worm-rock reef Pleistocene distribution: New Jersey, Maryland Recent distribution: Massachusetts to Florida

Cerithiopsis greeni (Adams) Not figured

Womack pit; north wall channel in worm-rock reef Pleistocene distribution: Massachusetts Recent distribution: Cape Cod to Florida

Trophon clathratus (Linné)

Not figured Womack pit; below reef (ODU)

Pleistocene distribution: Quebec, Massachusetts

Recent distribution: Nova Scotia to Hatteras (deep 'water)

Columbella (Anachis) translirata Ravenel Figure 18

Womack pit; north and south walls below worm-rock reef

Pleistocene distribution: Previously unreported Recent distribution: North Carolina to Florida

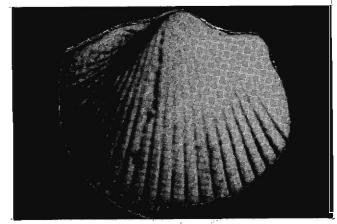
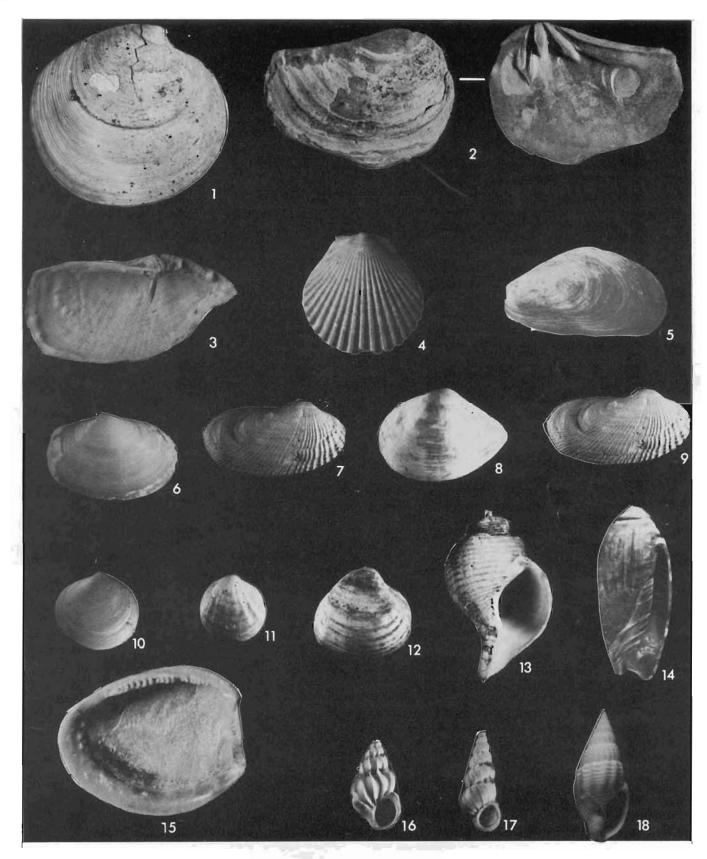



Figure 1. Dinocardium robustum (Solander) X 2

## **EXPLANATION OF PLATE 1**


#### Figure

- 1. Dosina discus (Reeve) X 1
- 2. Pandora gouldiana Dall X 2
- 3. Barnea truncata (Say)
- 4 Argopecten gibbus (Linne)
- 5 Modiolus americanus (Leach)
- 6 Periploma laenum Conrad X 2
- 7, 9 Petricola pholadiformis Lamarck X 2
- 8 Macoma constricta Bruguiere X 0.67
- 10 Diplodonta punctata (Say) X 2

- 11 Lucina amiantus Dall X 2
- 12 Polymesoda caroliniana (Bosc) X 1.5
- 13 Colus stonei (Pilsbury)
- 14 Oliva sayana Ravenel X 2 1/3
- 15 Nucula major Richards
- 16 Epitonium angulatum (Say) X 2
- 17 Epitonium candanum d'Orbigny X 2
- 18 Columbella (Anachis) translirata Ravenel X 2

All specimens figured are Pleistocene and natural size unless otherwise indicated.

# PLATE 1



Colus stonei (Pilsbry)

(Neptunea stonei)

Figure 13

- Womack pit; north and southeast wall; E. V. Williams pit
- Pleistocene distribution: Massachusetts, Long Island, New Jersey; North Carolina (regarded as probably dating from the Wisconsin glacial stage)

Recent distribution: extinct

Oliva sayana Ravenel

Figure 14

Dredged from Owl Creek for beach replenishment

Pleistocene distribution: North Carolina, South Carolina

Recent distribution: North Carolina to Florida

#### Pelecypoda

Nucula major Richards

Figure 15

On beach near 17th Street, Virginia Beach in material pumped from Owl Creek for beach replenishment

Pleistocene distribution: New Jersey

Recent distribution: extinct

- (Previously known only from a broken specimen from excavations for the Cape May Canal, New Jersey. Closely related to N. shaleri from the Miocene or
- Pliocene of Marthas Vineyard, Massachusetts)

Argopecten gibbus (Linné)

Figure 4

- North wall Womack pit; channel in worm-rock reef
- Pleistocene distribution: New York to Florida
- Recent distribution: Nova Scotia to Texas and West Indies

Mytilus edulis (Linné)

Not figured

Womack pit; below reef (ODU)

Pleistocene distribution: Artic to South Carolina Recent distribution: Greenland to Carolinas

## Modiolus americanus (Leach)

Figure 5

North wall, Womack pit; pairs common in very top of worm-rock reef

Pleistocene distribution: Previously unreported Recent distribution: North Carolina to West Indies

Pandora gouldiana Dall

Figure 2

North wall Womack pit; top of worm-rock reef; rare Pleistocene distribution: Massachusetts, New Jersey, Marvland

Recent distribution: Gulf of St. Lawrence to North Carolina

Periploma laenum Conrad

Figure 6

North wall Womack pit; channel in worm-rock reef E. V. Williams-Pavab pit; fragments rare

Pleistocene distribution: Previously unreported

Recent distribution: Nova Scotia to off North Carolina

Polymesoda caroliniana (Bosc)

Figure 12

Spoil pile at Womack pit; possibly recent

Pleistocene distribution: North Carolina, South Carolina Recent distribution: Virginia to northern Florida and Texas

Diplodonta punctata (Say) Figure 10 E. V. Williams-Pavab pit Pleistocene distribution: New Jersey to South Carolina Recent distribution: North Carolina to Brazil Lucina amiantus Dall. Figure 11 North wall Womack pit; channel in worm-rock reef Pleistocene distribution: North Carolina, South Carolina Recent distribution: North Carolina to West Indies Mysella planulata (Stimpson) Not figured E. V. Williams-Pavab pit Pleistocene distribution: Maryland, North Carolina to Florida Recent distribution: Massachusetts to North Carolina Dinocardium robustum (Solander) Text Figure 1 E. V. Williams pit; fragments rare Pleistocene distribution: North Carolina to Florida Recent distribution: Virginia to northern Florida Aligena elevata (Stimpson) Not figured E. V. Williams-Pavab pit Pleistocene distribution: New Jersey, South Carolina Recent distribution: Massachusetts to North Carolina Dosinia discus (Reeve) Figure 1 Southeast wall Womack pit; fossiliferous sand below worm-rock reef Pleistocene distribution: North Carolina to Florida and Texas Recent distribution: Virginia to Gulf of Mexico, Bahamas Macrocallista nimbosa Lightfoot Not figured Womack pit (one juvenile specimen) Pleistocene distribution: North Carolina, Texas Recent distribution: North Carolina to Gulf of Mexico Petricola pholadiformis Lamarck Figures 7, 9 Womack pit; top of worm-rock reef; rare Pleistocene distribution: Massachusetts to Georgia Recent distribution: Gulf of St. Lawrence to Gulf of Mexico and southward Tellina alternata Say Not figured 0.5 mile east of intersection Holland and Kempsville Road (ODU) Pleistocene distribution: North Carolina, Florida Recent distribution: North Carolina to Gulf of Mexico Macoma constricta (Bruguière) Figure 8 Southeast wall Womack pit; fossiliferous sand below worm-rock reef; E. V. Williams-Ferrell Farm pit in fossiliferous silt Pleistocene distribution: South Carolina

Preistocene distribution: South Carolina

Recent distribution: North Carolina to West Indies

Mya arenaria Linné Not figured Womack pit; southeast wall, below worm-rock reef Pleistocene distribution: Hudson Bay to South Carolina Recent distribution: Arctic to Florida

Barnea truncata (Say)

Figure 3

- North wall Womack pit; channel in worm-rock reef; found in living position with periostracum and accessory plate
- Pleistocene distribution: New Jersey, Maryland, South Carolina, Florida

Recent distribution: Maine to Gulf of Mexico

## DISCUSSION

As a whole, the additional records from the Virginia Pleistocene suggest a warm sea as was indicated by the species previously reported from the Norfolk (or Pamlico) Formation of the State. Species which are especially significant because their present range is only south of Virginia are Modiolus americanus, Lucina amiantus, Macrocallista nimbosa, Macoma constricta, Tellina alternata, Diplodonta punctata, Epitonium candeanum, Columbella translirata, Oliva sayana, and Pyramidella crenulata.

A few species, such as Nucula major, Colus stonei, and Trophon clathratus, indicate cooler

父

water, and seem out of line with the rest of the fauna. They could be slightly younger, suggesting the beginning of the Wisconsin glacial stage. In this connection, it might be interesting to note that some authors have suggested that there was a rapid rise in sea level at the end of the Sangamon interglacial, or at the beginning of the Wisconsin glacial stage, caused by a great surging of the Antarctic ice (Hollin, 1970). This might account for the presence of the cold water species in the Norfolk (or Pamlico) Formation.

## REFERENCES

- Hollin, J. T., 1970, Antartic ice surges: Antarctic Jour. of the U. S., vol. 5, p. 155-156.
- Oaks, R. Q., Jr., and Coch, N. K., 1963, Pleistocene sea levels, southeastern Virginia: Science, vol. 140, p. 979-983.
- Richards, H. G., 1936, Fauna of the Pleistocene Pamlico Formation of the southern Atlantic Coastal Plain: Geol. Soc. America Bull., vol. 47, p. 1611-1656.

- ——1967, Pleistocene Gastropoda of Virginia: Virginia Minerals, vol. 13, p. 15-19.

<u>%</u>

父

# ×

# OIL AND GAS DEVELOPMENT IN VIRGINIA DURING 1971

×

#### David M. Young<sup>1</sup>

A total of 2,632,976 Mcf (thousand cubic feet) of natural gas was produced in Virginia during 1971, which was a decrease of about 236.126 Mcf from 1970 production. Reported production was from four southwestern Virginia counties: Buchanan County, 702,711 Mcf; Dickenson County, 410,745 Mcf; Tazewell County, 1,510.940 Mcf; and Wise County, 8580 Mcf. Oil production from Lee County totaled 594 barrels from three wells.

Development and exploratory drilling by the Columbia Gas Transmission Corporation (formerly United Fuel Gas Company), which was started in 1970, continued during 1971 with the drilling of 13 wells having a combined total footage of 57,769 feet. Additionally, two wells were drilled by other operators bringing the total footage drilled during 1971 to more than 64,000 feet. The 13 wells drilled by Columbia Gas Transmission had a combined total openflow after fracture of more than 21,000 Mcf in the Berea and Maxon sands and Big Lime (Greenbrier). An important deep test was drilled to "basement" in Accomack County to a total depth of 6272 feet.

Four operators in Buchanan County produced 702,711 Mcf of gas: Ashland Oil, Incorporated, 529,845 Mcf; Cabot Corporation, 37,663 Mcf; Columbia Gas Transmission Corporation, 88,252 Mcf; and P & S Oil and Gas Corporation, 46,951 Mcf.

Eleven wells were drilled in Buchanan County during 1971 by the Columbia Gas Transmission Corporation with a combined total openflow after induced fracturing of 20,196 Mcf from the Berea and Maxon sands and Big Lime. Footage drilled totaled 47,712 feet.

In Dickenson County the Clinchfield Coal Company delivered 403,035 Mcf of gas to the Kentucky-West Virginia Gas Company and used 7710

13

<sup>&</sup>lt;sup>1</sup> Chief geologist, Clinchfield Coal Company, a division of The Pittston Company. Everett J. Dishman, Jr., Virginia Division of Mines and Quarries and Marshall Miller, Virginia Division of Mineral Resources furnished production and drilling data.

Mcf in field operations for production of 410,745 Mcf.

One new well was completed in Dickenson County by the Columbia Gas Transmission Corporation with an openflow of 933 Mcf after induced fracturing of the Berea sandstone. Total depth of the well was 4379 feet.

In Lee County oil production in the Ben Hur and Rose Hill fields declined to 594 barrels in 1971. This small production was from one well in the Ben Hur field and two in the Rose Hill field.

There was no drilling or workover activity in Lee County during 1971, although a few wells are still waiting on stimulation attempts or plugging.

Tazewell County continued as the leading gas producer in southwestern Virginia for 1971 with a total of 1,510,940 Mcf as reported by two operators: Consol-Ray, 996,529 Mcf, and Columbia Gas Transmission Corporation, 514,411 Mcf.

One well was drilled by the Columbia Gas Transmission Corporation in Tazewell County to a total depth of 5678 feet The well was fractured and as of March 15, 1972 was being swabbed and tested, after having an initial openflow of 660 Mcf in the Berea sandstone.

The Westmoreland Coal and Coke Company produced 8580 Mcf of gas for local use from two wells in Wise County. There was no drilling activity during the year.

The J & J Enterprises Inc. E. G. Taylor No. 1-G was completed in May, 1971 near Temperanceville about 8 miles south of the Virginia-Maryland boundary. The well was drilled to a total depth of 6272 feet in the "basement" complex after penetrating the entire section of Coastal Plain sediments and more than 100 feet of Triassic "red beds." A detailed description was published in *Virginia Minerals*, volume 18, number 1, February, 1972.

Late in 1971, Ernest Lippert started drilling the Clarence D. Gaddy No. 1 in Charles City County southeast of Richmond. It has been reported that the well is one of several shallow tests planned for the area.

| Operator                               | Lease                | Well No. | Total Depth<br>(feet)                    | Status                           |  |
|----------------------------------------|----------------------|----------|------------------------------------------|----------------------------------|--|
| Accomack County                        |                      |          |                                          |                                  |  |
| J and J Enterprises                    |                      |          |                                          |                                  |  |
| Inc.                                   | E. G. Taylor         | 1-G      | 6,272                                    | Plugged and abandoned            |  |
| Buchanan County<br>Columbia Gas Trans- | · .                  |          | · , , ,                                  |                                  |  |
| mission Corp.                          | G. T. Ramey Heirs    | 9515     | 3,840                                    | Gas well*                        |  |
| »»                                     | R. C. and D. H. Bell | 9633     | 4,564                                    | Gas well                         |  |
| 73                                     | The Pittston Company | 9634     | 4,615                                    | Gas well                         |  |
|                                        | The Pittston Company | 9635     | 4,588                                    | Gas well                         |  |
| **                                     | R. C. and D. H. Bell | 9636     | 4,184                                    | Gas well*                        |  |
| 23                                     | The Pittston Company | 9637     | 4,340                                    | Gas well*                        |  |
| **                                     | Lynn Camp Coal Corp. | 9639     | 4,328                                    | Gas well*                        |  |
| 39                                     | Lynn Camp Coal Corp. | 9640     | 4,213                                    | Gas well*                        |  |
| 22                                     | Bull Creek Coal Co.  | 9641     | 3,995                                    | Gas well*                        |  |
| **                                     | The Pittston Company | 9643     | 4,472                                    | Gas well                         |  |
| **                                     | The Pittston Company | 9645     | 4,573                                    | Gas well*                        |  |
| Charles City County                    |                      |          | -                                        |                                  |  |
| Ernest Lippert                         | Clarence D. Gaddy    | 1        |                                          | (Incomplete)                     |  |
| Dickenson County                       |                      |          |                                          | (                                |  |
| Columbia Gas Trans-                    |                      |          | 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 |                                  |  |
| mission Corp.                          | The Pittston Company | 9642     | 4,379                                    | Gas well                         |  |
|                                        | The Proson Company   | 0012     | *,010                                    | das wen                          |  |
| Tazewell County                        |                      |          |                                          |                                  |  |
| Columbia Gas Trans-                    | New River and        |          |                                          |                                  |  |
| mission Corp.                          | Pocahontas Consoli-  |          |                                          |                                  |  |
|                                        | dation Coal Co.      | 9632     | K 670                                    | Testing often functions          |  |
| -                                      | danon Coal Co.       | 2052     | 5,678                                    | Testing after fracture (3-15-72) |  |
| 2                                      |                      | `        | · .                                      | (0-10-12)                        |  |
| *Wells completed in early              | y 1972.              |          |                                          |                                  |  |

## Table 1.-Summary of Virginia drilling during 1971.

Vol. 18

## No. 2

# THE MINERAL INDUSTRY IN VIRGINIA IN 1971<sup>1</sup>

## PRELIMINARY DATA

Total value of mineral output in 1971 in Virginia was \$348.1 million, a decline of \$26.2 million according to estimates by the Bureau of Mines, United States Department of the Interior. The value was 7 percent less than the \$374.3 million reported in 1970. The decline was due principally to a 44-day bituminous coal strike during October and November.

The production of bituminous coal, the leading commodity in terms of both tonnage and value, was 4 million tons and \$20.1 million less than in 1970. Production of natural gas declined slightly, while petroleum output was unchanged.

<sup>1</sup> Prepared by Leonard W. Westerstrom, U. S. Bureau of Mines.

Table 2.-Mineral production in Virginia.<sup>1</sup>

Production of stone, next to coal in importance to the mineral economy of Virginia, declined slightly. Crushed stone comprised virtually all of the total output. Sand and gravel, compared with 1970, was 4.0 percent higher in production and value. Production of portland cement was lower in 1971, but its value increased slightly, while masonry cement increased substantially both in production and value.

Lead production totaled 3350 tons in 1971, down only 6 tons from the 1970 output; its value, however, declined 11.7 percent. Production of zinc was 638 tons less than in 1970, but its total value increased 1.4 percent. Production of titanium concentrate fell sharply. Ilmenite was the only titanium mineral produced, and its output was used primarily in the manufacture of pigments.

|                                                                                                                     | 1970     |                      | Preliminary 1971 |                      |
|---------------------------------------------------------------------------------------------------------------------|----------|----------------------|------------------|----------------------|
| Mineral .                                                                                                           | Quantity | Value<br>(thousands) | Quantity         | Value<br>(thousands) |
| Clays thousand short tons                                                                                           | 1,633    | \$ 1,672             | 1,874            | \$ 2,061             |
| Coal (bituminous) do                                                                                                | 35,016   | 246,181              | 80,967           | 226,059              |
| Gem stones                                                                                                          | NA       | . 7                  | NA               | 7                    |
| Lead (recoverable content of ores, etc.) short tons                                                                 | 3,356    | 1,048                | 3,350            | 925                  |
| Lime thousand short tons                                                                                            | 1,046    | 14,090               | 835              | 11,251               |
| Natural gas million cubic feet                                                                                      | 2,805    | . 864                | 2,800            | 862                  |
| Petroleum (crude) thousand 42-gallon barrels                                                                        | 1        | Ŵ                    | 1                | Ŵ                    |
| Sand and gravel thousand short tons                                                                                 | 11,126   | 15,229               | 11,569           | 15,837               |
| Soapstone short tons                                                                                                | 3,760    | 9                    | W                | w                    |
| Stone thousand short tons                                                                                           | 35,415   | 60,477               | 33,290           | 58,058               |
| Zinc <sup>2</sup> (recoverable content of ores, etc.) short tons<br>Value of items that cannot be disclosed:        | 18,063   | 5,534                | 17,425           | 5,611                |
| Aplite, cement (portland and masonry), feldspar, gyp-<br>sum, iron oxides (pigment material), kyanite, salt, titan- |          |                      |                  |                      |
| ium concentrate, and values indicated by symbol W                                                                   |          | 29,210               | —                | 27,404               |
| Total                                                                                                               |          | \$374,321            |                  | \$348,075            |

NA Not available. W Withheld to avoid disclosing individual company confidential data.

Ŷ

<sup>1</sup> Production as measured by mine shipments, sales, or marketable production (including consumption by producers).

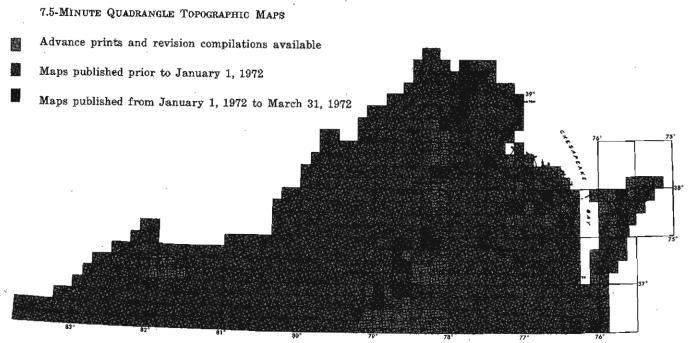
<sup>2</sup> Recoverable zinc valued at the yearly average price of prime western slab zinc, East St. Louis market. Value established after transportation, smelting, and manufacturing charges have been added to the value of ore at the mine.

<u></u>

A new List of Publications of the Division of Mineral Resources is available. This up-to-date

listing includes the Division's publications and geologic maps, the availability of topographic quadrangle maps in Virginia, and an index. The List of Publications is available free of charge.

X


父

Virginia Division of Mineral Resources Box 3667

Charlottesville, VA 22903

# **Return Postage Guaranteed**

# TOPOGRAPHIC MAPS



# Maps published from January 1, 1972 through March 31, 1972

Abilene Accomac Andersonville Ashby Gap Aylett Beulahville Bluemont \*Charlestown \*Creeds Cumberland Drakes Branch Drewrys Bluff Dunnsville \*Fredericksburg Gold Hill Gordonsville Halifax Haynesville Hillcrest Holiday Lake Ingram \*Lake Drummond SE Lincoln Madisonville Marshall Massies Corner Nathalie Oraange Orlean Pamplin Purcellville Rectortown \*Rockville Round Hill Saxe Saxis Waterford

\*Updated map

# ADVANCE PRINTS AND REVISION COMPILATIONS

Advance prints and copies of revision compilations are available at 50 cents each from the U. S. Geological Survey, Topographic Division, 1109 N. Highland St., Arlington, VA 22210.

Virginia Minerals

Vol. 18, No. 2, May, 1972

# PUBLISHED MAPS

State index is available free. Updated maps, on which recent cultural changes are indicated, are now available for certain areas of industrial, residential, or commercial growth. Published maps are available at 50 cents each from the Virginia Division of Mineral Resources, Box 3667, Charlottesville, VA 22903.