
A “Loop and Zhang” Reader for
Stereo Rectification

Avinash Kak

Purdue University

October 17, 2023

8:02pm

An RVL Tutorial Presentation

Originally presented in Fall 2020. Corrections and code included in Fall 2022. Minor edits in May

and October 2023.

©2023 Avinash Kak, Purdue University

CONTENTS

Section Title Page

1 What is a “Reader”? 3

2 Why the Loop and Zhang Algorithm Merits a Reader 4

3 Epipolar Geometry 6

4 The Need for Stereo Rectification 10

5 Properties of Rectifying Homographies 14

6 The Loop and Zhang Algorithm – In a Nutshell 25

7 Computing the Purely Projective Components of H 31
and H ′

8 Computing the Similarity Components of H and H ′ 44

9 Computing the Shearing Components of H and H ′ 51

10 A C++ Implementation of the Algorithm by Álvarez 58
and Garćıa

2

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

1: What is a “Reader”?

• One of the less commonly known meanings of the word “reader”

is that it is a book (in these days a PDF document) that is

meant to serve as an instructional aid in learning from the

published literature on a subject.

• The purpose of this document is to serve as a “Reader” for the

stereo rectification algorithm by Loop and Zhang.

• This Reader is meant to serve as a handout for Lecture 24 of

my class on Computer Vision at Purdue University. Here is a

link to the course website so that you can see for yourself where

this lecture belongs in an overall organization of the course:

https://engineering.purdue.edu/kak/ComputerVision

3

https://engineering.purdue.edu/kak/ComputerVision

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

2: Why the Loop and Zhang Algorithm
Merits a Reader

• When I first sat down to look over the paper by Loop and

Zhang, I gave myself an hour to understand the algorithm and

to write notes on it so that I could explain it well in my class.

But, as it turned out, it took considerably longer and the

end-result is the document you are looking at.

• The Loop and Zhang algorithm for stereo rectification is one

of the most beautiful algorithms I have encountered in my

years of research. The algorithm has more “moving parts”

than is commonly the case with computer vision algorithms.

And there is a certain harmony to how the parts meld

together in the final solution.

• Most people develop an imagistic understanding of an algorithm

especially when geometry is involved. The Loop and Zhang

algorithm provides a rich tableau of such imagery. It has

elements that send image points off to infinity where they can

be dealt with more easily than at the finite. In addition, much

of the reasoning power in Loop and Zhang is based on giving

separate geometrical interpretations to the different rows of the

main transformation matrices — which is rather unusual in and

4

Stereo Rectification An RVL Tutorial by Avi Kak

of itself. Operations involving matrix rows are therefore

evocative of mental imagery of moving parts in a complex

system that must work together in order to achieve the desired

goal. A good thing about such imagery is that it makes you

think more clearly about future possibilities associated with this

class of algorithms.

• What I personally find magical about stereo rectification with

Loop and Zhang type of algorithms is that all they need for

rectifying a given pair of stereo images of a scene is the 3× 3

Fundamental Matrix for the images. That is, you do NOT

need any calibration information for the cameras — at least

that’s the case in principle. Therefore, as far as the theory is

concerned, there is sufficient geometrical structure encoded in

the Fundamental Matrix in order to alter the two images

through a combination of nonlinear and linear transformations

for the purpose of rectifying them. The main challenge then

becomes one of teasing out of the Fundamental Matrix the

information needed to construct these transformations.

• Here is a link to the paper by Loop and Zhang:

Charles Loop and Zhengyou Zhang, “Computing rectifying

homographies for stereo vision” CVPR 1999.

https://ieeexplore.ieee.org/abstract/document/786928

http://www.charlesloop.com/tr99-21.pdf

5

https://ieeexplore.ieee.org/abstract/document/786928
http://www.charlesloop.com/tr99-21.pdf

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

3: Epipolar Geometry

• As explained in the Lecture 23 scroll, the epipolar geometry is

the geometry of stereo imaging with two pin-hole cameras.

Typically, the principal axes (the same thing as the pointing

angles) of the two cameras intersect somewhere in the scene of

interest. This is done so that the viewpoint coverage of the

scene and the quality of the focus are more or less the same in

both images. We will use the notation I and I ′ to refer to the

two images of a stereo pair.

• As shown in Figure 1, for any given world point X, the plane

passing through X and the two camera centers C and C ′ is

known as the epipolar plane. This plane intersects the two

image planes in two lines, typically denoted l and l ′, that are

known as the epipolar lines. It is implied by the geometry of

pin-hole imaging that all the epipolar lines in each image will

pass through a distinguished point in that image that is known

as the epipole. Figure 1 shows the epipoles e and e′ in the two

images. The epipole in each image is the projection of the

camera center for the other camera. That is, e is the projection

in the image I of the camera center C ′. Similarly, e′ is the

projection in I ′ of the camera center C. A unique straight line

passes through all four points, C, e, e′, and C ′. The portion of

6

Stereo Rectification An RVL Tutorial by Avi Kak

this line from C to C ′ is called the baseline for a given stereo

rig.

Figure 1: Epipolar Geometry

• As mentioned in my Lecture 23 scroll, the epipolar geometry for

a given stereo rig is represented algebraically by the

Fundamental Matrix – a 3× 3 matrix of rank 2. Denoting this

matrix by F , the two corresponding pixels x and x′ that are the

camera projections of the same world point X, are related to

each other by the following constraint based on F :

x′TFx = 0 (1)

It is important to remember that it is only a necessary

constraint on the pair of pixels (x,x′) to be each other’s

corresponding pixels, but not a sufficient constraint. That is, if

(x,x′) are truly each other’s corresponding pixels, they will

7

Stereo Rectification An RVL Tutorial by Avi Kak

indeed satisfy the constraint shown above. However, for, say, a

given pixel x in image I , there will be many pixels x′ in image

I ′ that will satisfy the relationship. In general, for a given pixel

x in I , all the pixels in I ′ that will satisfy the above relationship

will form the epipolar line l ′ in I ′ that is given by

l ′ = Fx (2)

• Along the same lines, for a given pixel x′ in I ′, all the pixels in

I that satisfy the constraint in Eq. (1) will fall on the line l

given by

l = F Tx′ (3)

Figure 2: Epipolar Lines

• For every one of the pixels on the line l in I , its matching pixel

will be on the line l ′ in I ′ and vice versa. We can therefore to

8

Stereo Rectification An RVL Tutorial by Avi Kak

the lines l and l ′ in the two images as being in epipolar

correspondence.

• Figure 2 emphasizes the fact that all epipolar lines in the two

images must pass through the respective epipoles in the images,

9

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

4: The Need for Image Rectification

• A most important goal of stereo imaging is 3D scene

reconstruction. That frequently requires that we scan one of the

two images of a stair pair – we will refer to that image by I and

the other image by I ′ — pixel by pixel and, for each pixel

x ∈ I , we find its corresponding pixel x′ ∈ I ′. From the pixel

correspondences (x,x′) thus constructed we compute the

coordinates of the world points X according to the method

described in the Lecture 24 scroll. The world points defined by

the 3D coordinates thus estimated would then constitute a

point-cloud as obtained from the (I , I ′) stereo pair. A point

cloud thus created would normally be converted to a DSM

(Digital Surface Map). If you are able to record stereo images

from multiple directions, you could either try to aggregate all

the pairwise point clouds together and then create a fuller DSM

or first create pair-wise DSMs and then fuse them together

subsequently.

• The scene reconstruction process outlined above would not work

unless you have a good approach in place for constructing a

dense set of pixel correspondences represented by (x,x′).

• Based on the ideas presented in the previous section, in order to

10

Stereo Rectification An RVL Tutorial by Avi Kak

find the corresponding pixel x′ in I ′ for a given pixel x in I , you

will have to search along the epipolar line given by l ′ = Fx in

I ′. So for every pixel x in I , you would construct a line like the

ones shown in Figure 2 and search along such a line for the best

matching pixel. There are several shortcomings associated with

this approach to searching for the corresponding pixels: (1)

Since several pixels in I will have the same l ′ associated with

them, you would be wasting computational effort. (2) Searching

along the epipolar lines of the sort shown in Figure 2 makes it

more difficult to invoke heuristics to help out with the search for

correspondences.

• The difficulties of solving the correspondence problem

mentioned above can be alleviated if we first rectify the two

images. Figure 3 provides a visual explanation of the idea of

stereo rectification.

• As illustrated pictorially in Figure 3, image rectification means

that you apply appropriate homographies to the original image

pair (I , I ′) in order to obtain the image pair (̂I , Î ′) shown in the

figure. We refer to the images Î and Î ′ as the rectified images.

• Let’s now focus on what makes the rectified pair (̂I , Î ′) so

special with regard to solving the stereo correspondence

problem:

11

Stereo Rectification An RVL Tutorial by Avi Kak

Figure 3: Stereo Rectification: The original image pair in the bubble:

(I, I ′) and the rectified image pair (Î , Î ′)

12

Stereo Rectification An RVL Tutorial by Avi Kak

– Without question, the most important property of the rectified
images that the epipolar lines, which originally formed a star shaped

pattern as shown in Figure 2, are now parallel.

– The second most important property of the rectified images is that
the corresponding pair of epipolar lines are characterized by the
same row index in the two images.

– For another property — although it is less a property and more a

convention — we assume that after rectification that the world
coordinate frame becomes congruent with the the Î image, meaning
that the world origin is at the camera center for the rectified image

Î , and that the world X̂ axis is along the rows in the images as
shown.

• The goal of stereo rectification is to come up with the

homographies H and H ′ for I and I ′, respectively, so that

H : I → Î (4)

H ′ : I ′ → Î ′ (5)

with the condition that the rectified images Î and Î ′ would look

like as shown in Figure 3.

13

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

5: Properties of Rectifying Homographies

As mentioned in the previous section, we use H and H ′ to

represent the rectifying 3× 3 homographies for the original images

I and I ′ In other words, H is meant for the image I and H ′ for I ′.

Property 1: Interpreting the three rows of H and H ′ as

homogeneous representations of lines in the respective image

planes, we can show that the lines corresponding to the second

and the third rows of the homographies contain the epipole in

the image planes. That is, the epipole e is on the two lines

represented by the second and the third rows of H. Similarly,

the epipole e′ is on the two lines represented by the second and

the third rows of e′.

Proof: Regardless of where the epipoles e and e′ are actually

located in their respective image planes, in order to transform

the original images into the images in their target configuration

shown in Figure 3, the following must be true:

He =





1
0
0



 (6)

H ′e′ =





1

0
0



 (7)

14

Stereo Rectification An RVL Tutorial by Avi Kak

We will now express the homographies H and H ′ in terms of

their row vectors:

H =





uT

vT

wT



 =





ua ub uc

va vb vc
wa wb wc



 (8)

H ′ =







u′T

v′T

w′T






=





u′
a u′

b u′
c

v′a v′b v′c
w′

a w′
b w′

c



 (9)

The symbols u, v and w stand for the vectors that represent

the rows of the 3× 3 homography H. Similarly, u′, v′ and w′

stand for the vectors of the homography H ′. Obviously, then,

we can write

He =





uTe
vTe
wTe



 =





1
0
0



 (10)

H ′e′ =







u′Te′

v′Te′

w′Te′






=





1

0
0



 (11)

Now recall that the condition for a point x to be on a line l is

that lTx = 0. Therefore, the following two equations that are

implied by Eq. (10)

vTe = 0 (12)

wTe = 0 (13)

15

Stereo Rectification An RVL Tutorial by Avi Kak

tell us that if we choose to interpret the 3-vectors v and w as

lines in the plane of the image I , both these two lines pass

through image epipole e. Similarly, the following two equations

implied by Eq. (11)

v′Te′ = 0 (14)

w′Te′ = 0 (15)

that the lines v′ and w′ in the plane of the image I ′ pass

through the epipole e′.

So we have proved that the second and the third rows of the

homography H, when interpreted as lines in the plane of the

image I , pass through the epipole e in I . Likewise, we have

proved that the second and the third rows of the homography

H ′, when interpreted as lines in the plane of the image I ′, pass

through the epipole e′.

Property 2: All three rows of the homographies H and H ′ are

linearly independent. This follows from the fact that by

definition a homography must be non-singular. As a

consequence of this independence, the row vectors v and w

mentioned in the previous property represent two different lines

in the plane of the image I . That implies that the lines v and

w must intersect at the epipole e in the image I . Similar facts

hold in the image I ′. That is, the lines v′ and w′ from the

homography H ′ intersect at the epipole e′ in I ′.

16

Stereo Rectification An RVL Tutorial by Avi Kak

Property 3: We are free to choose whatever we wish for the first

rows of the homographies H and H ′ for these transformations

to provide the “basic” image rectification action: sending the

epipoles to infinity along the world X-axis and aligning the

epipolar lines row-wise in the two images. However, as

implied by the arguments in the following proof, while the

second and the third rows of the two homographics will send

epipoles to infinity (a necessary condition that must be

satisfied) along the world X axis, it is not sufficient to achieve a

distortion free rectification of the two stereo images. What’s

shown below is a proof of the assertion that the relationship

between the pre- and the post-rectification forms of the

fundamental matrix are independent of the first rows of the

rectifying homographies.

Proof: As shown on page 4 of my Lecture 23 scroll, when the

same camera is used for both images, the Fundamental Matrix

for the rectified images (̂I , Î ′) is given by:

F̂ = [ê′]× (16)

=





1

0
0





×

(17)

=





0 0 0
0 0 −1

0 1 0



 (18)

where [1 0 0]T represents a point at infinity on the world X-axis

17

Stereo Rectification An RVL Tutorial by Avi Kak

and the notation [.]× means the cross-product representation of

a 3-vector as a 3× 3 matrix. The algebraic constraint satisfied

by the corresponding pixels (x̂, x̂′) in the rectified images

vis-a-vis the Fundamental Matrix F̂ is:

x̂′T F̂ x̂ = 0 (19)

However,

x̂ = Hx (20)

x̂′ = H ′x′ (21)

Substituting these in Eq. (19) yields:

x′TH ′T F̂Hx = 0 (22)

which implies that the Fundamental Matrix, F , for the original

image pair (I , I ′) is related to the post-rectification

Fundamental Matrix F̂ by

F = H ′T F̂H (23)

= H ′T





0 0 0

0 0 −1
0 1 0



H (24)

=





u′
a u′

b u′
c

v′a v′b v′c
w′

a w′
b w′

c





T 



0 0 0
0 0 −1
0 1 0









ua ub uc

va vb vc
wa wb wc



 (25)

18

Stereo Rectification An RVL Tutorial by Avi Kak

=





u′
a v′a w′

a

u′
b v′b w′

b

u′
c v′c w′

c









0 0 0
0 0 −1

0 1 0









ua ub uc

va vb vc
wa wb wc



 (26)

=





u′
a v′a w′

a

u′
b v′b w′

b

u′
c v′c w′

c









0 0 0

−wa −wb −wc

va vb vc



 (27)

=





−v′awa + w′
ava −v′awb + w′

avb −v′awc + w′
avc

−v′bwa + w′
bva −v′bwb + w′

bvb −v′bwc + w′
bvc

−v′cwa + w′
cva −v′cwb + w′

cvb −v′cwc + w′
cvc



(28)

As you can see, the first-row elements of the rectifying

homographies H and H ′ do not enter the above final matrix

shown for F . So, regardless of how we set the first rows of H

and H ′, the target Fundamental Matrix will have the desired

form shown in Eq. (18) as long as we get the other two rows of

the rectifying homographies right. If we wanted to, we could

even set the first rows to the line at infinity (as long as we are

giving line interpretations to the different rows of the

homographies). If we did that, the first rows of both H and H ′

would be set to [0 0 1]. But, as you will see, this freedom in

setting the first rows of the two homographies is illusory on

account of our need to control the distortion in the target

images (̂I , Î ′).

Property 4: With H and H ′ expressed as shown in Eqs. (8) and

(9), the inverses of these homographies can be expressed as

19

Stereo Rectification An RVL Tutorial by Avi Kak

H−1 = [v ×w w × u u× v] (29)

H ′−1
= [v′ ×w′ w′ × u′ u′ × v′] (30)

Proof: The proof that follows is for H−1. That for H ′−1 has

similar steps.

HH−1 =





uT

vT

wT



 [v ×w w × u u× v] (31)

=





uT (v ×w) uT (w × u) uT (u× v)
vT (v ×w) vT (w × u) vT (u× v)

wT (v×w) wT (w × u) wT (u× v)



 (32)

=





u · (v×w) u · (w × u) u · (u× v)
v · (v ×w) v · (w × u) v · (u× v)

w · (v ×w) w · (w × u) w · (u× v)



 (33)

=





u · (v ×w) 0 0
0 v · (w × u) 0
0 0 w · (u× v)



 (34)

=





1 0 0

0 1 0
0 0 1



 (35)

where the last equality follows from the fact that the value

returned by a scalar triple product is unchanged under a

circular shift of its three operands and fact that we are dealing

with homogeneous objects.

20

Stereo Rectification An RVL Tutorial by Avi Kak

Property 5: Continuing with our interpretation of the rows of H

and H ′ as lines in the original images I and I ′, respectively, we

now claim the following property for the lines v and w in I

vis-a-vis the lines v′ and w′ in I ′: The pair of lines (v,v′) are

in epipolar correspondence, as are the pair of lines (w,w′). This

property points to a strong linkage between the homography H

for the image I and the homography H ′ for the image I ′.

Proof: The starting point for this proof is the relationship

between F and F̂ shown in Eq. (23). It follows from that

relationship that

FH−1 = H ′T F̂ (36)

In what follows, I’ll first simplify the left-hand-side expression

FH−1 and then I’ll do the same for the right-hand-side

expression H ′T F̂ .

Substituting for H−1 from Eq. (29), we can write

FH−1 = F [v ×w w × u u× v] (37)

It was stated earlier in Property 1 that both the lines v and w

contain the epipole e. We also know that v and w are

independent vectors, as stated in Property 2. Therefore, the

epipole e in I is the only point that is common to the lines v

and w. That is, the lines v and w in I must intersect at e.

That implies

v ×w = e (38)

21

Stereo Rectification An RVL Tutorial by Avi Kak

We will now define two putative points in the plane of the I

image:

y = v × u (39)

z = w × u (40)

The vector y represents a point at the intersection of the lines v

and u in the plane of the image I . By the same token, z is a

point at the intersection of the lines w and u, also in I . What

will be important to us going forward is that the point y is on

line v and the point z is on line w in the image I . Substituting

these in Eq. (37), we get

FH−1 = F [e z − y] (41)

From Lecture 23 scroll, the epipole e is the right null-vector of

F :

Fe = 0 (42)

Therefore, the result in Eq. (41) further simplifies to

FH−1 = [0 Fz − Fy] (43)

That’s it for the simplification of the left-hand side of Eq. (36).

Let’s now work on the right-hand side of Eq. (36). Using the

form shown in Eq. (9) for H ′, we can write the following:

22

Stereo Rectification An RVL Tutorial by Avi Kak

H ′F̂ = [u′ v′ w′]





0 0 0
0 0 −1

0 1 0



 (44)

= [0 w′ − v′] (45)

Substituting the RHS’s in Eqs. (43) and (45) in Eq. (36), we get

[0 Fz − Fy] = [0 w′ − v′] (46)

Recall from the comment in red just after Eq. (40), z is a point

on line w in image I , and y is a point on line v in the same

image. What the above equation tells is that w′ is the epipolar

line in image I ′ for the point z in image I . Similarly, v′ is the

epipolar line in image I ′ for the point y in I . [Recall that when the

fundamental matrix multiplies a point in the left image, you get the epipolar line in the right image for that

point.]

So we conclude that the last row w′ of the rectifying

homography H ′ for image I ′ is the epipolar line in I ′ for the

point z in image I . And that the second row v′ of the same

rectifying homography for image I ′ is the epipolar line in I ′ for

the point y in image I .

Note that by Property 3 we are free to choose any vectors for

the line u in I . Therefore, since z is at the intersection of the

lines u and w in I (see Eq. (39)), we can consider z to be an

arbitrary point on line w. Along the same lines, through Eq.

(40), we can consider y to be an arbitrary point on line v in I.

23

Stereo Rectification An RVL Tutorial by Avi Kak

Since for every position of point z on line w in I we end up

with the same epipolar line w′ in I ′, it must be the case that

the lines (w,w′) in the two images are in epipolar

correspondence with each other.

Along the same lines as above, since for every position of point

y on line v in I we end up with the same epipolar line v′ in I ′,

it must be the case that the lines (v,v′) in the two images are

in epipolar correspondence with each other.

To summarize, we can claim that the pair of lines (w,w′) in the

two images are in epipolar correspondence with each other, as

are the pair of lines (v,v′).

That ends the presentation of the section on The Properties of

the Rectifying Homographies.

In the rest of this Reader, I’ll first summarize the key steps of

the Loop and Zhang algorithm in the section that follows. In

subsequent sections, I’ll invoke the properties you now

understand for a more detailed presentation of the algorithm.

24

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

6: The Loop and Zhang Algorithm – In a
Nutshell

• The Loop and Zhang algorithm decomposes the rectifying

homographies H and H ′ as follows:

H = HshHsimHp (47)

H ′ = H ′
shH

′
simH

′
p (48)

where

– Hp and H ′
p are purely projective homographies whose

purpose is to send the epipoles e and e′ to infinity in the

respective image planes. An important question in specifying

Hp and H ′
p is the choice of the direction in which the

epipoles should go to infinity. We want to choose that

direction which causes minimal distortion to the images.

As you would expect, pure projectivity can be highly

distorting in general. One manifestation of projective

distortion is that the scene lines that are parallel in the

original image would appear to converge or diverge after the

image is transformed with a projective homography.

– Hsim and H ′
sim are similarity homographies. A similarity

homography can only rotate, translate, and uniformly scale

25

Stereo Rectification An RVL Tutorial by Avi Kak

an image. Apart from the scale change, it cannot distort the

image. The task assigned to the two similarity homographies

is to rotate the epipoles, that are at infinity after the

application of the projective homographies, so they are on

the world-X axis.

– Hsh and H ′
sh are shearing homographies. To appreciate the

need for these homographies, note that after the application

of HsimHp to I and the application of H ′
simH

′
p to I ′ we

have a pair images with epipolar lines that are parallel and

that are oriented along the world-X axis. Nonetheless, it

remains that, in general, a nonlinear distortion of the two

images caused by projective homography CANNOT be

undone by any affine homography — for the simple reason

that similarity transformations are a strict subgroup of the

projective transformations in the hierarchy of

transformations. Therefore, in general, it would be

theoretically impossible for the nonlinear distortion of the

images caused by Hp and H ′
p to be undone by any choices

for Hsim and H ′
sim. Consequently, the best we can hope to

do is to REDUCE as much as possible this distortion by

introducing additional degrees of freedom into the overall

rectification transformation. As you will see later in this

report, that is what is accomplished by the shearing

transforms Hsh and H ′
sh.

• In order to separate the distortion inducing transformations and

26

Stereo Rectification An RVL Tutorial by Avi Kak

what can only be approximate attempts at reducing the

distortions, it is useful to rewrite the homography

decompositions shown in Eqs. (47) and (48) as follows:

H = HaHp (49)

H ′ = H ′
aH

′
p (50)

which shows that fundamentally any rectification homography

must be a product of an affine part and a projective part, with

the latter needed for sending the epipoles to infinity and the

former needed primarily for mitigating the distortions caused by

the latter.

• Since Hp and H ′
p are pure projective, we can express them as

follows:

Hp =





1 0 0
0 1 0
wa wb 1



 (51)

H ′
p =





1 0 0
0 1 0
w′

a w′
b 1



 (52)

• By inspection, we can write the following for the inverses of the

projective homographies:

27

Stereo Rectification An RVL Tutorial by Avi Kak

Hp
−1 =





1 0 0
0 1 0

−wa −wb 1



 (53)

H ′
p
−1

=





1 0 0
0 1 0

−w′
a −w′

b 1



 (54)

• The inverses shown above allow us to write the following for the

affine parts of the rectification homographies as shown in Eqs.

(49) and (50):

Ha = HHp
−1 (55)

H ′
a = H ′H ′

p
−1

(56)

• Going forward, we will use the following forms for H and H ′ in

which we have set the the elements wc and w′
c in the last rows

to 1.

H =





uT

vT

wT



 =





ua ub uc

va vb vc
wa wb 1



 (57)

H ′ =







u′T

v′T

w′T






=





u′
a u′

b u′
c

v′a v′b v′c
w′

a w′
b 1



 (58)

28

Stereo Rectification An RVL Tutorial by Avi Kak

• Regarding explicitly setting wc and w′
c to 1 should not, in

general, cause a problem for us since H and H ′ are

homogeneous. However, as described in my Lecture 11 scroll,

setting, say, wc to 1 will prevent sending the origin in the

image I to infinity. That could become an issue for us if the

epipole in I were located at the origin of the coordinate frame

used for I . Typically, a corner of the sensor array is used as the

image origin and the likelihood of the epipole coinciding with

such an origin are rather slim. The two cameras would need to

be angled sharply toward each other for that to be the case —

not a typical camera configuration for stereo imaging.

• Using the forms for H and H ′ shown in Eqs. (55) and (56) and

using for inverse projectivity the forms shown in Eqs. (53) and

(54), we get the following result for the affine components of the

rectification homographies:

Ha =





ua − ucwa ub − ucwb uc

va − vcwa vb − vcwb vc
0 0 1



 (59)

H ′
a =





u′
a − u′

cw
′
a u′

b − u′
cw

′
b u′

c

v′a − v′cw
′
a v′b − v′cw

′
b v′c

0 0 1



 (60)

• The rest of this Reader discusses how to make the best possible

choices for the individual transformations in the decompositions

29

Stereo Rectification An RVL Tutorial by Avi Kak

of the rectification homographies as shown on the right hand

side in Eqs. (47) and (48).

• Our first order of business is obviously to send the epipoles e in

I and e′ in I ′ to infinity. That’s what we will start with in the

next section.

30

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

7: Computing the Purely Projective
Components of H and H ′

• As you know well by this time, the purpose of the projective

components Hp of H and H ′
p of H

′ is send the epipoles in the

respective planes to infinity. The question then is: In what

direction should the epipoles be sent to infinity?

• One might think that the answer to the question posed above

should be obvious from the lower part of Figure 3 that shows

the epipolar lines in the rectified images to be aligned with the

world-X axis, which requires that both the epipoles be at

infinity on the world-X axis.

• If you use Figure 3 to directly set Hp and H ′
p, that is likely to

distort the images I and I ′ to such an extent that, in general, it

may not be possible “fix” the images sufficiently with

subsequent affine homographies for a good solution to the stereo

correspondence problem.

• The approach taken in Loop and Zhang is to consider all

possible directions for sending the epipoles to infinity and

then use the direction that results in the least distortion to

31

Stereo Rectification An RVL Tutorial by Avi Kak

the images.

• In the discussion that follows, we will focus on the image I for

finding the best direction in which to send its epipole e to

infinity. Because the homographies for I and I ′ are coupled

(See Property 5 in Section 5), that discussion will also throw up

the best projective homography for the other image I ′.

• For finding the best direction for I in which to send its epipole

to infinity, we define a epipolar line selector vector z [As to why we

call z the epipolar line selector vector will soon be clear.] and parameterize it by

z =





λ

µ
0



 (61)

The point z, being an Ideal Point since it is on the line l∞ in I ,

serves as a direction vector in the plane of the image.

• IMPORTANT: The definition of z above is not to be confused

with the definition of the same symbol in Eq. (40). There we

defined z as the intersection of the two lines in I , one standing

for the first row of the rectifying homography H and the second

for the third row. On the other hand, here, while the point z

will continue to be on the line standing for the third row of H

as shown below, its precise definition will be different. Note that

as shown by Eqs. (51) and (57), the third rows of H and Hp are

identical.

32

Stereo Rectification An RVL Tutorial by Avi Kak

• We now set the last row of Hp, as given by the row vector w, to

the line passing through the epipole e and the ideal point given

by our epipolar line selector z:

w = e× z (62)

That is, w is to be thought of as a line that passes through the

epipole e and the ideal point z.

• On the basis of Property 5 in Section 5, with the third row of

Hp set as above, the third row of H ′ must be given by

w′ = Fz (63)

since by Eq. (62) the point z is on line w and since the lines

(w,w′) must be in epipolar correspondence.

• For each choice for the epipolar-line selector vector z in the I

image, we will end up with different values for (w,w′) for the

last rows of the projective homographies Hp and H ′
p. Stated

equivalently, by choosing different values for the direction

parameters λ and µ in Eq. (61), we steer the epipolar line w

around the epipole w in image I .

• We now say that the best choice for z in I is one that causes

the least projective distortion to the image I — with the

expectation that that the resulting w′ will also imply the least

distortion for the image I ′.

33

Stereo Rectification An RVL Tutorial by Avi Kak

• That begs the question: How to measure the distortion caused

by the different choices for the selector vector z. That issue is

addressed in what follows.

• To explain how the projective distortion can be measured, let’s

say that we have chosen a set of pixels {p1,p1, . . .pn} for

monitoring the projective distortion as I is subject to the

homography Hp. Focusing on just one of these pixels for a

moment, let the location of the pixel pi be given by

pi =





pi,u
pi,v
1



 (64)

• When I undergoes the transformation given by Hp as defined in

Eq. (51), the point pi will move to

Hppi =





1 0 0

0 1 0
wa wb 1









pi,u
pi,v
1



 (65)

=





pi,u
pi,v
wi



 (66)

where the last coordinate wi is given by

wi = wTpi (67)

34

Stereo Rectification An RVL Tutorial by Avi Kak

• What that means is that the physical coordinates of the pixel pi

after it goes through the projective transformation Hp will be

(

pi,u
wi

,
pi,v
wi

)

(68)

As you would expect with a projective effect, on account of the

value of the normalizer wi shown in Eq. (67), the extent of

movement of a pixel depends on where the pixel is located in

the image. The greater this variability in pixel movement

across the image I , the greater the distortion of the image.

The projective effect depends on value of the vector w, whose

value is set by the epipolar-line selector z through Eq. (62).

Therefore, our goal must be to use that value for the selector

z which gives rise the smallest variability in the

projectivity-induced pixel movements.

• The variability in the pixel movements can be estimated from

the movements at all the pixels in the set {p1,p1, . . .pn} that

was defined earlier and comparing those movements with a

hypothetical pixel whose coordinates are at the average of the

pixels. For our set of pixels, the average pixel will have the

coordinates:

pc =
n
∑

i=1

pi (69)

35

Stereo Rectification An RVL Tutorial by Avi Kak

• It follows from Eq. (67) that the normalizing weight for the

hypothetical pixel pc will be given by

wc = wTpc (70)

• Now we can write the following as a measure of how

non-uniform the normalizing weights are across the image I :

n
∑

i=1

(

wi − wc

wc

)2

(71)

Substituting in the above measure the expression for wi from

Eq. (67) and for wc from Eq. (70), we can write for our

distortion measure:

n
∑

i=1

(

wT (pi − pc)

wTpc

)2

(72)

which can be expressed more compactly as shown below

projectivity induced distortion in image I =
wTPP Tw

wTpcpc
Tw

(73)

where P is the 3× n matrix:

P =





p1,u − pc,u p2,u − pc,u . . . pn,u − pc,u
p1,v − pc,v p2,v − pc,v . . . pn,v − pc,v

0 0 . . . 0



 (74)

The reason for the last row to be all zeros is that the third

coordinates for both pi and pc are the same — they are both

set to 1.

36

Stereo Rectification An RVL Tutorial by Avi Kak

• Next we need a formula like the one shown in Eq. (73) for the

other image of the stereo pair — the image I ′. Recall what w

is for image I w′ is for image I ′. But we must keep in the mind

the relationship between w and w′ as they are in epipolar

correspondence with each other. See the comment just after

Eq. (63). Shown below is the version of Eq. (73) for image I ′:

projectivity induced distortion in image I ′ =
w′TP ′P ′Tw′

w′Tp′
cp

′
c
Tw′

(75)

• Combining the distortion measures shown in Eq. (73) and (75),

we can write for the overall distortion caused by the projective

transformation of the two images:

Total projectivity distortion =
wTPP Tw

wTpcpc
Tw

+
w′TP ′P ′Tw′

w′Tp′
cp

′
c
Tw′

(76)

• It’s time to revisit our main goal in this section: To find the

value for the epipolar-line selector vector z in image I that

minimizes the total projective distortion in both the images I

and I ′. That’s going to require that we cast the above

equation in terms of the selector vector z. The relationship

between w and z in the first term shown above is given by Eq.

(62) and the relationship between w′ and z in the second term

shown above is given by Eq. (63). Substituting these in the

above form, we get:

37

Stereo Rectification An RVL Tutorial by Avi Kak

DT =
zT [e]T×PP T [e]×z

zT [e]T×pcpT
c [e]×z

+
zTF TP ′P ′TFz

zTF Tp′
cp

′T
c Fz

(77)

where [e]× stands for the cross-product representation of a

vector as a 3× 3 matrix of its elements and where DT stands

for the total distortion in the two images.

• In the expression shown above, except for the unknown z, all

other items are known. The epipole e in image I is simply the

right null vector of the Fundamental Matrix F that is assumed

to be known; the matrix P the actual coordinates of the pixels

chosen for monitoring the distortion error in I ; and the pixel pc

the point that is the average of all the pixels in P . The matrix

P ′ and the pixel p′
c are for I

′ what P and pc are for I . We now

define the following four variables to capture all the quantities

that are known:

A = [e]T×PP T [e]× (78)

B = [e]T×pcp
T
c [e]× (79)

A′ = F TP ′P ′TF (80)

B′ = F Tp′
cp

′T
c F (81)

• In terms of the new variables defined above, the projectivity

induced distortion in the two images can be expressed as

38

Stereo Rectification An RVL Tutorial by Avi Kak

DT =
zTAz

zTBz
+

zTA′z

zTB′z
(82)

• For its numerical minimization, the expression for the total

distortion shown above lends itself to the following two

simplifications:

Simplification 1: We can take advantage of the fact that z as specified

by Eq. (61) is an ideal point and, therefore, has its third coordinate
set to 0. This implies that we need to use only the upper-left 2× 2

blocks of the four matrices A, B, A′ and B′ for the needed
minimization. We will represent these blocks by A2×2, B2×2, A

′
2×2

and B′
2×2.

Simplification 2: The bullet for Eq. (64) mentions using a select set
of n pixels for monitoring the projective distortion. As it turns out,

if you use all the pixels in I and I ′ for measuring the projective
distortion, you end up with a simple formula for the product PP T .
Let’s say our images are of size M ×N and let’s assume that both

M and N are even (as they normally are). For the reference pixel
pc, let’s use the pixel at the coordinates M/2, N/2. (Strictly

speaking, the reference pixel can be anywhere in the images. That
is, it does NOT have to be at the dead center.) For this case, the

matrix P shown in Eq. (74) becomes

P =





−M
2

. . . M−2
2

−N
2 . . . N−2

2

0 . . . 0



 (83)

and, for the upper-left 2× 2 block of the PP T product:

PP T
∣

∣

∣

2×2
=

MN

12

[

N2 − 1 0

0 M2 − 1

]

(84)

39

Stereo Rectification An RVL Tutorial by Avi Kak

The product PP T involves the sum of squares like

12 + 22 + 32 + . . .+ k2 of the first k integers for some k. By
Faulhaber’s formula, such a sum is given by k(k+1)(2k+1)

6 . The factor
12 that you see in Eq. (84) arises from the fact that summing the

squares over the range (−M
2 ,

M−2
2) is the same as summing the

squares over the range (1,M) and dividing the result by 2.

Finally, regarding the terms pcpc
T p′

cp
′
c
T in the denominators in

Eq. (77), in line with the comment that introduces Simplification 2,
we have

pcpc
T =





M
2
N
2

1





[

M

2

N

2
1

]

(85)

=





M2

4
MN
4

M
2

MN
4

N2

4
N
2

M
2

N
2

1



 (86)

For its upper-left 2× 2 block that we are interested in, we can write

pcpc
T
∣

∣

∣

2×2
=

1

4

[

M2 MN
MN N2

]

(87)

• Using Simplification 1 described above and also using Eq. (61),

we express the result in Eq. (82) in the following form:

40

Stereo Rectification An RVL Tutorial by Avi Kak

f(λ, µ) =

(λ µ)TA2×2

(

λ
µ

)

(λ µ)TB2×2

(

λ
µ

) +

(λ µ)TA′

2×2

(

λ
µ

)

(λ µ)TB′
2×2

(

λ
µ

)

=
A11λ

2 + (A12 + A21)λµ+ A22µ
2

B11λ2 + (B12 +B21)λµ+B22µ2
+

A′

11λ
2 + (A′

12 + A′

21)λµ+ A′

22µ
2

B′
11λ2 + (B′

12 +B′
21)λµ+B′

22µ2

(88)

• At its minimum, the partial derivatives of f(λ, µ) with respect

to λ and µ would be zero. If you were to take the partial

derivative of the right hand side in Eq. (88) with respect to λ

and set it to zero, you end up with a polynomial of degree 7 in

λ. That indicates that the function f(λ, µ) is likely to posses a

global minimum along with several multiple local minima. This

suggests an iterative approach for the needed minimization in

which we start with a good guess for the solution. Loop and

Zhang have discovered that a good starting guess for the

parameter λ is given by:

λstarting guess = λg1 + λg2 (89)

where λg1 is the λ value that minimizes just the first term in

Eq. (88) and λg2 is the λ value that minimizes just the second

term in the same equation. What is interesting is that

minimizing the individual terms in Eq. (88) is a simpler

problem comparing minimizing both at the same time since the

former involves only a cubic polynomial in λ.

41

Stereo Rectification An RVL Tutorial by Avi Kak

• The rest of this section presents a fast numerical approach for

calculating the guess zg1 = (λg1, µg1)
T for both the parameters at

the same time. The same logic would apply for generating the

guess zg2 = (λg2, µg2)
T .

• We first convert the minimization problem

min
λ

zTAz

zTBz
(90)

into the maximization problem

max
λ

zTBz

zTAz
(91)

• We take advantage of the fact that the matrix A is symmetric

and positive-definite. Any such matrix can be expressed as a

product of a nonsingular matrix M and its transpose:

A = MMT (92)

• We now introduce a new variable y:

y = Mz (93)

• Substituting z = M−1y in Eq. (91), we end up with:

max
yTM−TBM−1y

yTy
(94)

42

Stereo Rectification An RVL Tutorial by Avi Kak

• Recall that we started with z = (λ, µ, 0)T in Eq. (61) which is

invariant to any scale change. In our 2D version of the problem

starting with “Simplification 1” and Eq. (88), we use

z = (λ, µ)T , the solution provided by which is again invariant to

scale change in the 2D vector z. What that implies is that the

solution provided by the maximization in Eq. (94) is only

defined up to a scale factor. So we are allowed to set

||y|| = 1 (95)

• Subject to the above constraint, the solution to the

maximization in Eq. (94) is given by

y = M−TBM (96)

43

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

8: Computing the Similarity Components of
H and H ′

• This section shows how to compute the similarity components

of the rectification homographies shown in Eqs. (47) and (48).

• However, before getting down to the task of deriving the forms

for Hsim and H ′
sim, we need to express the individual elements

of the rectification homographies as expressions directly

involving the elements of the Fundamental Matrix. Recall that

the Loop and Zhang algorithm is predicated on you having

previously estimated the Fundamental Matrix for your stereo

images. Toward that end, we revisit the form of the

Fundamental Matrix shown in Eq. (28) under the assumptions

that wc = w′
c = 1 (see a discussion related to this assumption

in the bullet that follows Eq. (58)):

F =





w′
ava − v′awa w′

avb − v′awb vcw
′
a − v′a

w′
bva − v′bwa w′

bvb − v′bwb vcw
′
b − v′b

va − v′cwa vb − v′cwb vc − v′c



 (97)

• To make explicit the fact that we are already in possession of

the value for the elements of F , let’s display this matrix as

44

Stereo Rectification An RVL Tutorial by Avi Kak

F =





F00 F01 F02

F10 F11 F12

F20 F21 F22



 (98)

• Comparing the Eq. (97) with (98), we get the following for some

of the elements of the two rectification homographies H and H ′:

F20 = va − v′cwa (99)

F21 = vb − v′cwb (100)

F22 = vc − v′c (101)

F02 = vcw
′
a − v′a (102)

F12 = vcw
′
b − v′b (103)

• The above equalities yield the following expressions for the

middle row of the H homography and the first two element of

the middle row of the homography H ′:

va = F20 + v′cwa (104)

vb = F21 + v′cwb (105)

vc = F22 + v′c (106)

v′a = − F02 + vcw
′
a (107)

v′b = − F12 + vcw
′
b (108)

We will find these useful when we derive the final results for the

the similarity homographies Hsim and H ′
sim.

45

Stereo Rectification An RVL Tutorial by Avi Kak

• We are now all set to calculate the similarity homographies

Hsim and H ′
sim. We start with the fact that after we have

specified the projective components as shown in Eqs. (51) and

(52), the remaining affine components (which are products of

shearing and similarity homographies) are given by Eqs. (59)

and (60).

• As stated in Section 6, the main job of the similarity

components Hsim and H ′
sim of Ha and H ′

a, respectively, is to

rotate the epipoles at infinity so they are along the world-X

axis. Recall that the principal responsibility of the projective

homographies we covered in the last section was to send the

epipoles to infinity. Subsequently, this epipole must be rotated

so that it is the ideal point on the world-X axis. A similarity

homography is ideally set up for this rotation because the action

of such homographies is limited to rotation, translation, and

uniform scale change.

• Our task, therefore, boils down to carving out similarity

homographies with the desired behavior from the affine

homographies shown in Eqs. (59) and (60).

• Let’s say the best choice for the selector vector z in the previous

section sent the epipole e in image I to ê and the epipole e′ in

image I ′ to ê′. We want the overall action of the affine

homographies Ha and H ′
a shown in Eqs. (59) and (60) to

46

Stereo Rectification An RVL Tutorial by Avi Kak

accomplish the following





ua − ucwa ub − ucwb uc

va − vcwa vb − vcwb vc
0 0 1









êu
êv
0



 =





1

0
0



 (109)





u′
a − u′

cw
′
a u′

b − u′
cw

′
b u′

c

v′a − v′cw
′
a v′b − v′cw

′
b v′c

0 0 1











ê′u
ê′v
0






=





1

0
0



 (110)

Note that we set the third coordinates of the transformed

epipoles ê and ê′ to 0 since, on the basis of the discussion in the

previous section, those epipoles are guaranteed to be at infinity.

• Looking at the left hand side in Eq. (109), in the three inner

products of the rows of the 3× 3 matrix with the column vector

in the matrix-vector product shown there, the last one is

trivially satisfied. The same thing applies to Eq. (110). And,

for carving out Hsim and H ′
sim from Ha and H ′

a we are not so

interested in the first inner-product either because, according to

Property 3 in Section 5, the first rows of the rectification

homographies are not so important from the standpoint of

transforming the epipoles in the manner desired for rectification.

That leaves only the following inner products as the most

important:

47

Stereo Rectification An RVL Tutorial by Avi Kak

[va − vcwa vb − vcwb vc]





êu
êv
0



 = 0

[v′a − v′cw
′
a v′b − v′cw

′
b v′c]







ê′u
ê′v
0






= 0 (111)

• This suggests using the row “va − vcwa vb − vcwb vc” of Ha

as a seed for generating a 3× 3 similarity homography Hsim

and the row “v′a − v′cw
′
a v′b − v′cw

′
b v′c” of H

′
a as the seed

for specifying the similarity homography H ′
sim. As it turns out,

these seeds are sufficient for the task at hand on account of the

fact that similarity homographies are affine and and their

upper-left 2× 2 block must be orthogonal. We can use the

orthogonality property to set the first row from the seed and the

affine property to set the last row as shown below

Hsim =





vb − vcwb vcwa − va 0

va − vcwa vb − vcwb vc
0 0 1



 (112)

H ′
sim =





v′b − v′cw
′
b v′cw

′
a − v′a 0

v′a − v′cw
′
a v′b − v′cw

′
b v′c

0 0 1



 (113)

Obviously, only the first two elements of the first rows of Hsim

and H ′
sim are specified by the orthogonality of the upper-left

2× 2 blocks of the matrices. So, at this point in time, we do not

48

Stereo Rectification An RVL Tutorial by Avi Kak

have sufficient information to set the last element of the first

row in these homographies. So by appealing to Property 1 in

Section 5 we arbitrarily set that element to 0. Substituting from

Eq. (104) through (106) in Eq. (112), we can write Hsim in the

following form:

Hsim =





F21 + v′cwb − vcwb (F22 + v′c)wa − F20 − v′cwa 0
F20 + v′cwa − vcwa F21 + v′cwb − vcwb vc

0 1





=





F21 − wbF22 waF22 − F20 0
F20 − waF22 F21 − wbF22 F22 + v′c

0 0 1



 (114)

Note that, from Eq. (106) we have vc − v′c = F22. This identity

was used in simplifying the first element of the first row and all

of the elements in the second row. At this point, the only

unknown in the similarity homography Hsim shown above is v′c.

• Along the same lines, substituting from Eqs. (106) through

(108) in Eq. (113) gives us

H ′
sim =





vcw
′
b − F12 − v′cw

′
b v′cw

′
a + F02 − vcw

′
a 0

vcw
′
a − F02 − v′cw

′
a vcw

′
b − F12 − v′cw

′
b 0

0 1





=





F12 − w′
bF22 w′

aF22 − F02 0
F02 − w′

aF22 F12 − w′
bF22 v′c

0 0 1



 (115)

49

Stereo Rectification An RVL Tutorial by Avi Kak

As is the case with the result shown for Hsim in Eq. (114), at

this point, everything except for the element v′c is known in the

result for H ′
sim above.

• As already mentioned, in the similarity homographies in Eqs.

(114) and (115), the only quantity that has yet to be specified is

the element v′c in the second row of the homography H ′. The

value of this element controls the vertical translation (meaning

the translation along the world-Y direction in Figure 3 between

the two images after rectification. In order to bring the rectified

images into row-wise correspondence for the epipolar lines we

set v′c so that the smallest value of the v coordinate for the

pixels is 0 in both images.

50

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

9: Computing the Shearing Components of
H and H ′

• If the goal of stereo rectification were only to make the epipolar

lines row-wise parallel and congruent in the two images (and

doing so by moving the epipoles to infinity along the world-X

direction), all we would need to do would be to apply to the

images the homographies presented in the previous two sections.

The projective homography of Section 7 takes care of sending

the epipoles to infinity and the similarity homography of

Section 8 takes care of rotating the epipoles at infinity in order

to line them up with the world-X axis while at the same

aligning the two images row-wise.

• Unfortunately, the story of image rectification does not end

there. The reason for that is fundamental: In the hierarchy of

transformations, projective transformations are at the root of

the hierarchy and the other types of transformations are

subgroups of the group of projective transformations. What

that implies is that, in general, it would be theoretically

impossible for the nonlinear distortion (meaning the distortion

in which the different pixels in the original images move by

different amounts) caused by projective imaging to be

completely undone by any non-projective transformation. In

51

Stereo Rectification An RVL Tutorial by Avi Kak

particular, any similarity transformation of the sort presented in

the previous section cannot be expected to undo the nonlinear

distortion caused by the projective homography of Section 7.

• Fortunately, we have not yet pinned down all of the degrees of

freedom available in the rectification homographies H and H ′.

The third row in both these homographies took care of the

projective transformations of Section 7 and the second row the

requirements of the similarity transformations in Section 8. Yes,

the upper-left 2× 2 block orthogonality requirements of the

similarity transformation did generate values for the first row in

H and H ′, but those values were in service of the constraints

created by the second row in these mappings. It would

therefore be accurate to say that the first rows in H and H ′

have not yet been fully specified.

• The goal of this section to pin down the first rows in H and H ′

homographies by doing the best that is possible with regard to

the mitigation of the projective distortion caused by the

component Hp of H and the component Hp′ of H
′. If this

distortion were to be left unaddressed, that would make it

harder to carry out dense stereo matching that is the next step

after rectification in a scene reconstruction pipeline. In the

presence of distortion, it would be more difficult to find the

matching pixels in the other image as a reference image is

scanned pixel by pixel.

52

Stereo Rectification An RVL Tutorial by Avi Kak

• The distortion mitigation in Loop and Zhang is carried out by

specifying shearing homographies for the two images as follows:

Hsh =





sa sb 0
0 1 0
0 0 1



 (116)

H ′
sh =





s′a s′b 0
0 1 0

0 0 1



 (117)

• As to why these transforms are referred to as shearing

transforms and also to see that such affine transformations can

be used to cause nonlinear movements of pixels (meaning that

the movements at different pixels are different), just try

applying a homography like
[

1 2 0

0 1 0

0 0 1

]

to a square pattern whose

four corners are at the points [(1, 1), (1, 2), (2, 1), (2, 2)].

However, unlike projective mappings, the nonlinear affects

achieved by an affine homography are of a special kind: the

parallel lines stay parallel.

• In case you are wondering why we set to zero the last element in

the first rows in Hsh and H ′
sh, that element merely causes a

translation of the output pattern for a given input pattern. We

are not interested in such translations.

• In the rest of this section, we will focus on calculating the

53

Stereo Rectification An RVL Tutorial by Avi Kak

shearing homography for just the image I. Calculating the

same for I ′ proceeds in exactly the same fashion.

• In Loop and Zhang, the specification of the shearing

homographies is based on compensating for the distorting

effects of the combination HsimHp on the original image I . This

distortion is estimated by measuring the consequences of

HsimHp on the four points a, b, c and d at the midpoints of

the four edges of I as shown in Figure 4. Toward that end, we

define two vectors by

x = b − d

y = a − c (118)

• If the image I is of size M ×N with even values for M and N ,

we can define the four points a, b, c and d by

a =





M

2
− 1
0
1



 b =





0
N

2
− 1
1



 c =





M

2
− 1

N − 1
1



 d =





M − 1
N

2
− 1
1



 (119)

• Let â, b̂, ĉ and d̂ denote the locations of the four pixels after

they are subject to the combined effect of HsimHp. And let x̂

and ŷ be the vectors that correspond to x and y defined in Eq.

(118). Obviously,

54

Stereo Rectification An RVL Tutorial by Avi Kak

Figure 4: Defining the “a-c” and “b-d” vectors for the Shearing Ho-

mography

55

Stereo Rectification An RVL Tutorial by Avi Kak

x̂ = b̂ − d̂

ŷ = â − ĉ (120)

• Assume that the shearing homography Hsh when applied to the

output of HsimHp takes the points (â, b̂, ĉ, d̂) to the points

(ˆ̂a, ˆ̂b, ˆ̂c, ˆ̂d). The vectors x̂ and ŷ will therefore transform into ˆ̂x

and ˆ̂y.

ˆ̂x = Hshx̂

ˆ̂y = Hshŷ (121)

• The extent of the correction provided by Hsh can now be

measured by the degree to which the output vectors ˆ̂x and ˆ̂y

are perpendicular and the degree to which the ratio of their

magnitudes corresponds to the aspect ratio of the original image

I . That is, we want to set the elements of Hsh so that

(Hshx̂)
T (Hshŷ) = 0 (122)

(Hshx̂)
T (Hshx̂)

(Hshŷ)T (Hshŷ)
=

M2

N2
(123)

• Eqs. (122) and (123) give us two quadratic forms that can be

solved for the two unknowns in the definition of Hsh in Eq.

(116). The solution up to a sign is given by

56

Stereo Rectification An RVL Tutorial by Avi Kak

sa =
M2x2

v +N2y2v
MN(xvyu − xuyv)

(124)

sb =
M2xuxv +N2yuyv
MN(xuyv − xvyu)

(125)

where xu and xv represent the horizontal and the vertical

coordinates of the vector x̂ and yu and yv the same for the

vector ŷ.

• Loop and Zhang say that the combined transform

H = HshHsimHp for the image I and H ′ = H ′
shH

′
simH

′
p for

image I ′ will rectify the images with minimal distortion.

However, the two images thus transformed may NOT be of

appropriate size and may also have undergone undesirable

translational shifts along the “vertical” direction. That is, while

the images will be row-wise aligned, they may both appear

displaced vertically. Note that any translations along the

world-X are of no consequence. They say that it may therefore

be necessary to apply additional uniform scaling and vertical

translation to the images.

57

Stereo Rectification An RVL Tutorial by Avi Kak

Back to TOC

10: A C++ Implementation of the

Algorithm by Álvarez and Garćıa

• GitHub has a great C++ implementation of the Loop and

Zhang algorithm by Antonio Álvarez and Alejandro Garćıa:

https://github.com/agarciamontoro/image-rectification

• In order to get the code to run with the latest version of

OpenCV, Fangda Li in my lab (RVL) had to make changes to

the file util.cpp in the src directory of the repository.

• Shown in Figure 5 are the results obtained with the algorithm

on a pair of images I recorded with my cellphone camera in my

work area in RVL. The lines superimposed on the images are

the epipolar lines. After you have estimated the fundamental

matrix F , for a given keypoint x in, say, the left image, its

epipolar line in the right image would be given by l = F · x. It

is these lines that are drawn superimposed on the images.

• Note that it is entirely possible that the algorithm would fail to

rectify a pair of stereo images if they were taken from two

58

https://github.com/agarciamontoro/image-rectification

Stereo Rectification An RVL Tutorial by Avi Kak

Original Images Rectified Images

Figure 5: The pre- and post-rectification results for two stereo

images recorded with my cellphone in my RVL work area.

viewpoints that are much too converging. In such cases, the

background in the two images may be so different that the

algorithm does not find a sufficient number of matchable

keypoints for estimating the Fundamental Matrix F . When

that happens, the algorithm is likely to fail with an error report

that may look like “Floating exception (core dumped)”. Shown

in Figure 6 is a pair of images of roughly the same scene in my

RVL work area but with the optic axes of the cameras

subtending an angle of approximately 45◦. In this case the

algorithm failed.

• In the rest of this section, I’ll present my annotated version of

the file main.cpp that you will find in the src directory of the

GitHub repository. My annotations will show the connections

59

Stereo Rectification An RVL Tutorial by Avi Kak

Left Image Right Image

Figure 6: The two images for which the algorithm fails.

between the equations in this Reader and the statements in the

code.

• As you will notice, the Álvarez and Garćıa implementation uses

the cv::Mat class for constructing the containers needed for the

arrays (and matrices). For example, in Lines (3) and (4) in the

code shown below, the instances constructed from this C++

class are used to directly store the two images in the form of

their array representations. In Line (5), the same container type

is used to initialize a 3× 3 array for holding the Fundamental

Matrix.

• Line (6) declares a 3-vector for holding the epipole of the left

60

Stereo Rectification An RVL Tutorial by Avi Kak

camera.

• Line (7) declares two vector containers for holding the epipolar

lines in the two images. And Line (8) declares another type of a

vector container for holding the 2D points matched between

the two images for estimating the Fundamental matrix.

• The call to computeEpiLines() code in Lines (9) through (12)

is for estimating the epipolar geometry for the two images. The

implementation code for this function is in the file util.cpp in

the same src directory that has the main.cpp file. That call

detects the keypoints in the two images, finds the best matching

tie-points, and uses them for estimating the Fundamental

Matrix.

• About the “.at()” syntax you see in Lines (21) through (42),

that is used by the container instances constructed from the

cv::Mat class to return references to the elements stored in the

containers. If you are not familiar with the cv::Mat class in

OpenCV, here is a link to the reference manual:

https://docs.opencv.org/4.x/d3/d63/classcv_1_1Mat.html

• For the code lines beyond Line (12) and up to Line (48), I have

indicated in my annotations as to which equation in the Reader

is relevant to the line in question.

61

https://docs.opencv.org/4.x/d3/d63/classcv_1_1Mat.html

Stereo Rectification An RVL Tutorial by Avi Kak

// This code file is my annotated version of the "main.cpp" in the
// GitHub repository created by Antonio Álvarez and Alejandro
// Garcı́a. Here is the link to their GitHub page:
//
// https://github.com/agarciamontoro/image-rectification

// My goal here is to establish connections between statements in the
// code shown below and the equation numbers in my "Loop and Zhang"
// Reader. The right-most comment, when it is there, will point to
// the relevant equation in the Reader.
//
// The first 48 lines of the code are for estimating the rectifying
// homographies for the two images of a stereo paper. The rest of
// the code is for applying the estimated homographies to the images
// and displaying the epipolar lines before and after rectification.
//
// The annotation at the right end of each of the first 48 statements
// starts with a statement number followed by the equation number in
// the Reader that is relevant to that statement. I have numbered
// the statements for convenience in referring to them should there
// be any questions about my comment that follows.

// Code Authors: Antonio Álvarez and Alejandro Garcı́a
// Annotations by Avi Kak (kak@purdue.edu)
// Date: November 15, 2022

#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>

#include "util.hpp"

#include <iostream>
#include <cctype>

using namespace cv;
using namespace std;

int main(){ // (1)

/****************** EPIPOLAR GEOMETRY **************************/
printf("OpenCV: %s", getBuildInformation().c_str()); // (2)

Mat img_1 = imread("../img/perra_7.jpg"); // (3)
Mat img_2 = imread("../img/perra_8.jpg"); // (4)

// Mat img_1 = imread("../img/madera_1.jpg"); // (3)
// Mat img_2 = imread("../img/madera_2.jpg"); // (4)

// Mat img_1 = imread("../img_avi/left_test.jpg"); // (3)
// Mat img_2 = imread("../img_avi/right_test.jpg"); // (4)

Mat fund_mat = Mat::zeros(3,3,CV_64F); // (5)

Vec3d epipole; // (6) left camera epipole

vector<Vec3d> lines_1, lines_2; // (7) epilines in img 1,2
vector<Point2d> good_matches_1, good_matches_2; // (8)

// Get epipolar geometry
computeEpiLines(img_1, img_2, // (9)

epipole, fund_mat, // (10)
lines_1, lines_2, // (11)
good_matches_1, good_matches_2); // (12)

Mat A, B, Ap, Bp; // (13) Eqs. 78 -- 81

Mat e_x = crossProductMatrix(epipole); // (14) left camera epipole
// in cross-product rep

/****************** PROJECTIVE **************************/ // Section 7, page 31

// Get A,B matrix for minimizing z
obtainAB(img_1, e_x, A, B); // (15) Eqs, 78, 79
obtainAB(img_2, fund_mat, Ap, Bp); // (16) Eqs. 80, 81

62

Stereo Rectification An RVL Tutorial by Avi Kak

// Get initial guess for z
Vec3d z = getInitialGuess(A, B, Ap, Bp); // (17) top of page 42

// Optimizes the z solution
optimizeRoot(A, B, Ap, Bp, z); // (18) Eqs. 90 -- 96

// Get w
Mat w = e_x * Mat(z); // (19) Eq. (62) with sol for z
Mat wp = fund_mat * Mat(z); // (20) Eq. (63) with sol for z

w /= w.at<double>(2,0); // (21) Eq. (51), norm.: w_2 = 1
wp /= wp.at<double>(2,0); // (22) Eq. (52), norm.: w’_2 = 1

// In these statements, w is a
// 3-ele col vector being stored
// as (3,0) cv::Mat matrix object

// Get final H_p and Hp_p matrix for projection
Mat H_p = Mat::eye(3, 3, CV_64F); // (23) Eq. (51) initialzation
H_p.at<double>(2,0) = w.at<double>(0,0); // (24) Eq. (51)
H_p.at<double>(2,1) = w.at<double>(1,0); // (25) Eq. (51)

Mat Hp_p = Mat::eye(3, 3, CV_64F); // (26) Eq. (52) initialization
Hp_p.at<double>(2,0) = wp.at<double>(0,0); // (27) Eq. (52)
Hp_p.at<double>(2,1) = wp.at<double>(1,0); // (28) Eq. (52)

/****************** SIMILARITY **************************/ // Section 8, page 44

// Get the translation term
double vp_c = getTranslationTerm(img_1, img_2, H_p, Hp_p); // (29) See last bullet on page 50

// vp_c here is the same as v’_c

// Get the H_r and Hp_r matrix directly
Mat H_r = Mat::zeros(3, 3, CV_64F); // (30) initialization

// H_r here is the same as H_sim
// Hp_r here is the same as H’_sim
// The job of H_r is to rotate the z-vec
// so that it coincides with World-X

H_r.at<double>(0,0) = fund_mat.at<double>(2,1) - w.at<double>(1,0) * fund_mat.at<double>(2,2); // (31) Eq. (114)
H_r.at<double>(1,0) = fund_mat.at<double>(2,0) - w.at<double>(0,0) * fund_mat.at<double>(2,2); // (32) Eq. (114)

H_r.at<double>(0,1) = w.at<double>(0,0) * fund_mat.at<double>(2,2) - fund_mat.at<double>(2,0); // (33) Eq. (114)
H_r.at<double>(1,1) = H_r.at<double>(0,0); // (33) Eq. (114)

H_r.at<double>(1,2) = fund_mat.at<double>(2,2) + vp_c; // (34) Eq. (114)
H_r.at<double>(2,2) = 1.0; // (35) Eq. (114)

Mat Hp_r = Mat::zeros(3, 3, CV_64F); // (36) Hp_r is the same as H’_sim

Hp_r.at<double>(0,0) = wp.at<double>(1,0) * fund_mat.at<double>(2,2) - fund_mat.at<double>(1,2); // (37) // Eq. (115)
Hp_r.at<double>(1,0) = wp.at<double>(0,0) * fund_mat.at<double>(2,2) - fund_mat.at<double>(0,2); // (38) // Eq. (115)

Hp_r.at<double>(0,1) = fund_mat.at<double>(0,2) - wp.at<double>(0,0) * fund_mat.at<double>(2,2); // (39) // Eq. (115)
Hp_r.at<double>(1,1) = Hp_r.at<double>(0,0); // (40) // Eq. (115)

Hp_r.at<double>(1,2) = vp_c; // (41) // Eq. (115)
Hp_r.at<double>(2,2) = 1.0; // (42) // Eq. (115)

/******************* SHEARING ***************************/ // Section 9, page 51

Mat H_1 = H_r*H_p; // (43) combining prev 2 homographies
Mat H_2 = Hp_r*Hp_p; // (44) combining prev 2 homographies

Mat H_s, Hp_s; // (45) the shear homographies

// Get shearing transforms with the method described on the paper
getShearingTransforms(img_1, img_2, H_1, H_2, H_s, Hp_s); // (46) Eqs. (116) -- (125)

63

Stereo Rectification An RVL Tutorial by Avi Kak

/****************** RECTIFY IMAGES **********************/

Mat H = H_s * H_r * H_p; // (47) Eq. (47)
Mat Hp = Hp_s * Hp_r * Hp_p; // (48) Eq. (48)

// Get homography image of the corner coordinates from all the images
vector<Point2d> corners_all(4), corners_all_t(4);
double min_x, min_y, max_x, max_y;
min_x = min_y = +INF;
max_x = max_y = -INF;

corners_all[0] = Point2d(0,0);
corners_all[1] = Point2d(img_1.cols,0);
corners_all[2] = Point2d(img_1.cols,img_1.rows);
corners_all[3] = Point2d(0,img_1.rows);

perspectiveTransform(corners_all, corners_all_t, H);

for (int j = 0; j < 4; j++) {
min_x = min(corners_all_t[j].x, min_x);
max_x = max(corners_all_t[j].x, max_x);

min_y = min(corners_all_t[j].y, min_y);
max_y = max(corners_all_t[j].y, max_y);

}

int img_1_cols = max_x - min_x;
int img_1_rows = max_y - min_y;

// Get homography image of the corner coordinates from all the images
min_x = min_y = +INF;
max_x = max_y = -INF;

corners_all[0] = Point2d(0,0);
corners_all[1] = Point2d(img_2.cols,0);
corners_all[2] = Point2d(img_2.cols,img_2.rows);
corners_all[3] = Point2d(0,img_2.rows);

perspectiveTransform(corners_all, corners_all_t, Hp);

for (int j = 0; j < 4; j++) {
min_x = min(corners_all_t[j].x, min_x);
max_x = max(corners_all_t[j].x, max_x);

min_y = min(corners_all_t[j].y, min_y);
max_y = max(corners_all_t[j].y, max_y);

}

int img_2_cols = max_x - min_x;
int img_2_rows = max_y - min_y;

// Apply homographies
Mat img_1_dst(img_1_rows, img_1_cols, CV_64F);
Mat img_2_dst(img_2_rows, img_2_cols, CV_64F);

warpPerspective(img_1, img_1_dst, H, img_1_dst.size());
warpPerspective(img_2, img_2_dst, Hp, img_2_dst.size());

Vec3d epipole_dst;

vector<Vec3d> lines_1_dst, lines_2_dst;
vector<Point2d> good_matches_1_dst, good_matches_2_dst;

perspectiveTransform(good_matches_1, good_matches_1_dst, H);
perspectiveTransform(good_matches_2, good_matches_2_dst, Hp);

// Get epipolar geometry and draw epilines
computeEpiLines(img_1_dst, img_2_dst, epipole_dst, fund_mat, lines_1_dst, lines_2_dst, good_matches_1_dst, good_matches_2_dst);

drawEpilines(img_1, img_2, lines_1, lines_2, good_matches_1, good_matches_2, 150);

64

Stereo Rectification An RVL Tutorial by Avi Kak

drawEpilines(img_1_dst, img_2_dst, lines_1_dst, lines_2_dst, good_matches_1_dst, good_matches_2_dst, 150);

cout << "\nH = " << H << "\nHp = " << Hp << endl;

cout << "\nEpipolo antes: " << epipole/epipole[2] << "\nEpipolo después: " << epipole_dst << endl;

draw(img_1, "1");
draw(img_1_dst, "1 rectificada");

char c = ’a’;

draw(img_2, "2");
draw(img_2_dst, "2 rectificada");

c = ’a’;

while (tolower(c) != ’q’)
c = waitKey();

destroyAllWindows();

}

65

	What is a ``Reader''?
	Why the Loop and Zhang Algorithm Merits a Reader
	Epipolar Geometry
	The Need for Image Rectification
	Properties of Rectifying Homographies
	The Loop and Zhang Algorithm – In a Nutshell
	Computing the Purely Projective Components of H and H'
	Computing the Similarity Components of H and H'
	Computing the Shearing Components of H and H'
	A C++ Implementation of the Algorithm by Álvarez and García

