
Lecture 26

Radiation Fields

Figure 26.1: (a) Electric field around a time-oscillating dipole (courtesy of physics stack
exchange). (b) Equi-potential lines aroud a moving charge that gives rise Cherenkov radiation
(courtesy of J.D. Jackson [48]). We will not study Cherenkov (Cerenkov) radiation in this
course, but it is written up in [48] and [32]. Its was a Nobel Prize winning discovery.

The reason why charges radiate is because they move or accelerate. In the case of a dipole
antenna, the charges move back and forth between poles of the antenna. Near to the dipole
source, quasi-static physics prevails, and the field resembles that of a static dipole. If the
dipole is flipping sign constantly due to the change in the direction of the current flow, the
field would also have to flip sign constantly. But electromagnetic wave travels with a finite
velocity. The field from the source ultimately cannot keep up with the sign change of the
source field: it has to be ‘torn’ away from the source field and radiate. Another interesting
radiation is the Cherenkov radiation. It is due to a charge moving faster than the velocity of
light. As an electron cannot move faster than the speed of light in a vacuum, this can only
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284 Electromagnetic Field Theory

happen in the material media or plasma, where the velocity of the electron can be faster than
the group velocity of wave in the medium. Ultimately, the electric field from the particle is
‘torn’ off from the charge and radiate. These two kinds of radiation are shown in the Figure
26.1.

We have shown how to connect the vector and scalar potentials to the sources J and %
of an electromagnetic system. This is a very important connection: it implies that once we
know the sources, we know how to find the fields. But the relation between the fields and
the sources are in general rather complex. In this lecture, we will simplify this relation by
making a radiation field or far-field approximation by assuming that the point where the field
is observed is very far from the source location in terms of wavelegth. This approximation
is very useful for understanding the physics of the radiation field from a source such as an
antenna. It is also important for understanding the far field of an optical system. As shall
be shown, this radiation field carries the energy generated by the sources to infinity.

26.1 Radiation Fields or Far-Field Approximation

Figure 26.2: The relation of the observation point located a r to the source location at r′.
The distance of the observation point r to the source location r′ is |r− r′|.

In the previous lecture, we have derived the relation of the vector and scalar potentials to the
sources J and % as shown in (23.2.29) and (23.2.30)1 They are given by

A(r) = µ

�
V

dr′J(r′)
e−jβ|r−r

′|

4π|r− r′|
(26.1.1)

Φ(r) =
1

ε

�
V

dr′%(r′)
e−jβ|r−r

′|

4π|r− r′|
(26.1.2)

1This topic is found in many standard textbooks in electromagnetics [32, 47, 54]. They are also found in
lecture notes [44, 139].
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where β = ω
√
µε = ω/c is the wavenumber. The integrals in (26.1.1) and (26.1.2) are

normally untenable, but when the observation point is far from the source, approximation to
the integrals can be made giving them a nice physical interpretation.

Figure 26.3: The relation between |r| and |r−r′| using the parallax method, or that |r−r′| ≈
|r| − r′ · r̂. It is assumed that r is almost parallel to r− r′.

26.1.1 Far-Field Approximation

When |r| � |r′|, then |r − r′| ≈ r − r′ · r̂, where r = |r| . This approximation can be
shown algebraically or by geometrical argument as shown in Figure 26.3. Thus (26.1.1) above
becomes

A(r) ≈ µ

4π

�
V

dr′
J(r′)

r − r′ · r̂
e−jβr+jβr

′·r̂ ≈ µe−jβr

4πr

�
V

dr′J(r′)ejβr
′·r̂ (26.1.3)

In the above, r′ · r̂ is small compared to r. Hence, we have made use of that 1/(1 −∆) ≈ 1
when ∆ is small, so that 1/(r − r′ · r̂) can be approximate by 1/r. Also, we assume that the
frequency is sufficiently high such that βr′ · r̂ is not necessarily small. Thus, ejβr

′·r̂ 6= 1, unless
βr′ · r̂ � 1. Hence, we keep the exponential term in (26.1.3) but simplify the denominator to
arrive at the last expression above.

If we let βββ = βr̂, which is the β vector (or k vector in optics), and r′ = x̂x′ + ŷy′ + ẑz′,
then

ejβr
′·r̂ = ejβββ·r

′
= ejβxx

′+jβyy
′+jβzz

′
(26.1.4)

Therefore (26.1.3) resembles a 3D Fourier transform integral,2 namely, the above integral

2Except that the vector β is of fixed length.
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becomes

A(r) ≈ µe−jβr

4πr

�
V

dr′J(r′)ejβ·r
′

(26.1.5)

and (26.1.5) can be rewritten as

A(r) ∼=
µe−jβr

4πr
F(βββ) (26.1.6)

where

F(βββ) =

�
V

dr′J(r′)ejβ·r
′

(26.1.7)

is the 3D Fourier transform of J(r′) with the Fourier transform variable β = r̂β.
It is to be noted that this is not a normal 3D Fourier transform because |β|2 = βx

2 +βy
2 +

βz
2 = β2 which is a constant for a fixed frequency. In other words, the length of the vector β

is fixed to be β, whereas in a normal 3D Fourier transform, βx, βy, and βz are independent
variables, each with values in the range [−∞,∞]. Or the value of βx

2 +βy
2 +βz

2 ranges from
zero to infinity.

The above is the 3D “Fourier transform” of the current source J(r′) with Fourier variables,
βx, βy, βz restricted to lying on a sphere of radius β and βββ = βr̂. This spherical surface in
the Fourier space is also called the Ewald sphere.

26.1.2 Locally Plane Wave Approximation

We can write r̂ or βββ in terms of direction cosines in spherical coordinates or that

r̂ = x̂ cosφ sin θ + ŷ sinφ sin θ + ẑ cos θ (26.1.8)

Hence,

F(βββ) = F(βr̂) = F(β, θ, φ) (26.1.9)

It is not truly a 3D function, since β, the length of the vector β, is fixed. It is a 3D Fourier
transform with data restricted on a spherical surface.

Also in (26.1.6), when r � r′ · r̂, and when the frequency is high or β is large, e−jβr is
now a rapidly varying function of r while, F(βββ) is only a slowly varying function of r̂ or of θ
and φ, the observation angles. In other words, the prefactor in (26.1.6), exp(−jβr)/r, can be
thought of as resembling a spherical wave. Hence, if one follows a ray of this spherical wave
and moves in the r direction, the predominant variation of the field is due to e−jβr, whereas
the direction of the vector β changes little, and hence, F(β) changes little. Furthermore, r′

in (26.1.7) are restricted to small or finite number, making F(β) a weak function of β (see
Figure 26.4).

The above shows that in the far field, the wave radiated by a finite source resembles a
spherical wave. Moreover, a spherical wave resembles a plane wave when one is sufficiently
far from the source such that βr � 1, or 2πr/λ � 1. Or r is many wavelengths away from
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the source. Hence, we can write e−jβr = e−jβββ·r where βββ = r̂β and r = r̂r so that a spherical
wave resembles a plane wave locally. This phenomenon is shown in Figure 26.4 and Figure
26.5

Figure 26.4: A source radiates a field that resembles a spherical wave. In the vicinity of
the observation point r, when β is large, the field is strongly dependent on r via exp(−jβr)
but weakly dependent on β (beta hardly changes direction in the vicinity of the observation
point). Hence, the field becomes locally a plane wave in the far field.
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Figure 26.5: (a) A leaky hole in a waveguide leaks a spherical (courtesy of MEEP, MIT). (b)
A point source radiates a spherical wave (courtesy of ME513, Purdue Engineering). Most of
these simulations are done with FDTD (finite-difference time-domain) method that we will
learn later in the course. When the wavelength is short, or the frequency high, a spherical
wave front looks locally plane. This is similar to the notion that as humans, who are short,
think that the earth is flat around us. Up to this day, some people still believe that the earth
is flat:)

Then, it is clear that with the local plane-wave approximation, ∇ → −jβββ = −jβr̂, we
have

H =
1

µ
∇×A ≈ −j β

µ
r̂ × (θ̂Aθ + φ̂Aφ) = j

β

µ
(θ̂Aφ − φ̂Aθ) (26.1.10)

Similarly [44,139],

E =
1

jωε
∇×H ∼= −j

β

ωε
r̂ ×H ∼= −jω(θ̂Aθ + φ̂Aφ) (26.1.11)

Notice that β = βr̂, the direction of propagation of the local plane wave, is orthogonal to E
and H in the far field, a property of a plane wave since the wave is locally a plane wave.

Moreover, there are more than one way to derive the electric field E. For instance, using
(26.1.10) for the magnetic field, the electric field can also be written as

E =
1

jωµε
∇×∇×A (26.1.12)

Using the formula for the double-curl operator, the above can be rewritten as

E =
1

jωµε

(
∇∇ ·A−∇2A

) ∼= 1

jωµε

(
−ββ + β2I

)
·A (26.1.13)
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where we have used that ∇ ∼= −jβ and ∇2A = −β2A.3 Alternatively, we can factor β2 =
ω2µε out of the parenthesis, and rewrite the above as

E ∼= −jω
(
−β̂β̂ + I

)
·A = −jω

(
−r̂r̂ + I

)
·A (26.1.14)

Since I = r̂r̂ + θ̂θ̂ + φ̂φ̂, then the above becomes

E ∼= −jω
(
θ̂θ̂ + φ̂φ̂

)
·A = −jω(θ̂Aθ + φ̂Aφ) (26.1.15)

which is the same as previously derived. It also shows that the electric field is transverse to
the β vector.4

Furthermore, it can be shown that in the far field, using the local plane-wave approxima-
tion,

|E|/|H| ≈ η (26.1.16)

where η is the intrinsic impedance of free space, which is a property of a plane wave. Moreover,
one can show that the time average Poynting’s vector, or the power density flow, in the far
field is

〈S〉 =
1

2
<e (E×H∗) ≈ 1

2η
|E|2r̂ = 〈Sr〉r̂ (26.1.17)

which resembles also the property of a plane wave.5 Since the radiated field is a spherical
wave, the Poynting’s vector is radial. Therefore,

〈S〉 = r̂〈Sr(θ, φ)〉, where 〈Sr(θ, φ)〉 =
1

2η
|E|2 (26.1.18)

and 〈Sr〉 is the time-average radial power density. The plot of |E(θ, φ)| is termed the far-field
pattern or the radiation pattern of an antenna or the source, while the plot of |E(θ, φ)|2 is its
far-field power pattern.

26.1.3 Directive Gain Pattern Revisited

We have defined the directive gain pattern for a Hertzian dipole before in Section 25.3. But
this concept can be applied to a general radiating source or antenna. Once the far-field
radiation power pattern or the radial power density 〈Sr〉 is known, the total power radiated
by the antenna in the far field can be found by integrating over all angles, viz.,

PT =

� π

0

� 2π

0

r2 sin θdθdφ〈Sr(θ, φ)〉 (26.1.19)

3Note that ∇ ·A 6= 0 here.
4We can also arrive at the above by letting E = −jωA −∇Φ, and using the appropriate formula for the

scalar potential. There is more than one road that lead to Rome!
5To avoid confusion, we will use S to denote instantaneous Poynting’s vector and S˜ to denote complex

Poynting’s vector (see 10.3.1).
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The above evaluates to a constant independent of r due to energy conservation. Now assume
that this same antenna is radiating isotropically in all directions, then the average power
density of this fictitious isotropic radiator as r →∞ is

〈Sav〉 =
PT

4πr2
(26.1.20)

A dimensionless directive gain pattern can be defined as before in Section 25.3 such that
[32,139]

G(θ, φ) =
〈Sr(θ, φ)〉
〈Sav〉

=
4πr2〈Sr(θ, φ)〉

PT
(26.1.21)

This directive gain pattern is a measure of the radiation power pattern of the antenna or
source compared to when it radiates isotropically. The above function is independent of r in
the far field since Sr ∼ 1/r2 in the far field. As in the Hertzian dipole case, the directivity of
an antenna D = max(G(θ, φ)), is the maximum value of the directive gain. It is to be noted
that by its mere definition,

�
dΩG(θ, φ) = 4π (26.1.22)

where
�
dΩ =

� 2π

0

� π
0

sin θdθdφ. It is seen that since the directive gain pattern is normalized,
when the radiation power is directed to the main lobe of the antenna, the corresponding side
lobes and back lobes will be diminished.

An antenna also has an effective area or aperture Ae, such that if a plane wave carrying
power density denoted by 〈Sinc〉 impinges on the antenna, then the power received by the
antenna, Preceived is given by

Preceived = 〈Sinc〉Ae (26.1.23)

Here, the transmit antenna and the receive antenna are in the far field of each other. Hence,
we can approximate the field from the transmit antenna to be a plane wave when it reaches
the receive antenna. If the receive antenna is made of PEC, induced current will form on the
receive antenna so as to generated a field that will cancel the incident field on the PEC surface.
This induced current generates a voltage at the receiver load, and hence power received by
the antenna.

A wonderful relationship exists between the directive gain pattern G(θ, φ) and the effective
aperture, namely that6

Ae =
λ2

4π
G(θ, φ) (26.1.24)

Therefore, the effective aperture of an antenna is also direction dependent. The above im-
plies that the radiation property of an antenna is related to its receiving property. This is a

6The proof of this formula is beyond the scope of this lecture, but we will elaborate on it when we discuss
reciprocity theorem.
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beautiful consequence of reciprocity theorem that we will study later! The constant of pro-
portionality, λ2/(4π) is a universal constant that is valid for all antennas satisfying reciprocity
theorem. The derivation of this constant for a Hertzian dipole is given in Kong [32], or using
blackbody radiation law [139,140].

The directivity and the effective aperture can be enhanced by designing antennas with
different gain patterns. When the radiative power of the antenna can be directed to be in a
certain direction, then the directive gain and the effective aperture (for that given direction)
of the antenna is improved. This is shown in Figure 26.6. Such focussing of the radiation fields
of the antenna can be achieved using reflector antennas or array antennas. Array antennas,
as shall be shown, work by constructive and destructive wave field of the antenna.

Being able to do point-to-point communications at high data rate is an important modern
application of antenna array. Figure 26.7 shows the gain pattern of a sophisticated antenna
array design for 5G applications.

Figure 26.6: The directive gain pattern of an array antenna. The directivity is increased by
constructive interference (courtesy of Wikepedia).
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Figure 26.7: The directive gain pattern of a sophisticated array antenna for 5G applications
(courtesy of Ozeninc.com).


