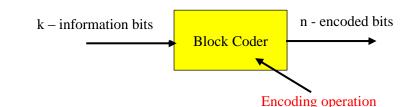
Linear Block codes

(n, k) Block codes



n-digit codeword made up of k-information digits and (n-k) redundant parity check digits. The rate or efficiency for this code is k/n.

Code efficiency $r = \frac{k}{n} = \frac{Number \ of \ information \ bits}{Total \ number \ of \ bits \ in \ codeword}$

Note: unlike source coding, in which data is compressed, here redundancy is deliberately added, to achieve error detection.

SYSTEMATIC BLOCK CODES

A systematic block code consists of vectors whose 1^{st} k elements (or last k-elements) are identical to the message bits, the remaining (n-k) elements being check bits. A code vector then takes the form:

 $\mathbf{X} = (\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_{k-1}, \mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{n-k})$

Or

 $\mathbf{X} = (\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_{n-k}, \mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_{k-1})$

Systematic code: information digits are explicitly transmitted together with the parity check bits. For the code to be systematic, the k-information bits must be transmitted contiguously as a block, with the parity check bits making up the code word as another contiguous block.

Information bits Parity bits

A systematic linear block code will have a generator matrix of the form:

$\mathbf{G} = [\mathbf{P} \mid \mathbf{I}_k]$

Systematic codewords are sometimes written so that the message bits occupy the left-hand portion of the codeword and the parity bits occupy the right-hand portion.

Parity check matrix (H)

www.EngineersTutor.com

Will enable us to decode the received vectors. For each (kxn) generator matrix G, there exists an (n-k)xn matrix H, such that rows of G are orthogonal to rows of H i.e., $GH^T = 0$, where H^T is the transpose of H. to fulfil the orthogonal requirements for a systematic code, the components of H matrix are written as:

$\mathbf{H} = [\mathbf{I}_{n-k} \mid \mathbf{P}^{\mathrm{T}}]$

In a systematic code, the 1^{st} k-digits of a code word are the data message bits and last (n-k) digits are the parity check bits, formed by linear combinations of message bits $m_0, m_1, m_2, \ldots, m_{k-1}$

It can be shown that performance of systematic block codes is identical to that of non-systematic block codes.

A codeword (X) consists of n digits x_0 , x_1 , x_2 ,, x_{n-1} and a data word (message word) consists of k digits m_0 , m_1 , m_2 ,...., m_{k-1}

For the general case of linear block codes, all the n digits of X are formed by linear combinations (modulo-2 additions) of k message bits. A special case, where $x_0 = m_0$, $x_1 = m_1$, $x_2 = m_2$... $x_{k-1} = mk-1$ and the remaining digits from x_{k+1} to x_n are linear combinations of m_0 , m_1 , m_2 , ..., m_{k-1} is known as a systematic code.

The codes described in this chapter are binary codes, for which the alphabet consists of symbols 0 and 1 only. The encoding and decoding functions involve the binary arithmetic operations of modulo-2 addition and multiplication.

Matrix representation of Block codes

- An (n, k) block code consists of n-bit vectors
- Each vector corresponding to a unique block of k-message bits
- There are 2^k different k-bit message blocks & 2ⁿ possible n-bit vectors
- The fundamental strategy of block coding is to choose the 2^k code vectors such that the minimum distance is as large as possible. In error correction, distance of two words (of same length) plays a fundamental role.

Block codes in which the message bits are transmitted in unaltered form are called systematic code.

Linearity property

www.EngineersTutor.com

Linear means sum of any 2 codewords yields another codeword

A binary code is linear if and only if the modulo-2 sum of 2 codewords is also a codeword. One can check that the sum of any 2 codewords in this code is also a codeword. A desirable structure for a block code to possess is linearity, which greatly reduces the encoding complexity.

A code is said to be linear if any two codewords in the code can be added in modulo-2 arithmetic to produce a 3^{rd} codeword in the code.

A linear block code is said to be linear provided that the sum of arbitrary two codewords is a codeword. We speak about binary coding if the code alphabet has two symbols 8421 (BCD code) is a non-linear code. The binary arithmetic has 2 operation: **addition** and **multiplication**. The arithmetic operations of addition and multiplication are defined by the conventions of algebraic field. For example, in a binary field, the rules of addition and multiplication are as follows:

Mod-2 addition table

$0 \bigoplus 0 = 0$	А	В	$A \bigoplus B = \overline{A} B + A \overline{B}$
$0 \bigoplus 1 = 1$	0	0	0
$1 \oplus 0 = 1$	0	1	1
$1 \bigoplus 1 = 0$	1	0	1
	1	1	0

Ex-OR Logic

Α	В	$A \oplus B = \overline{A}B + A\overline{B}$		
0	0	0		
0	1	1		
1	0	1		
1	1	0		
If both the inputs are same, $output = 0$				

> The addition operation designated with \oplus is same as mod-2 operation.

 \blacktriangleright \oplus represents Mod – 2 addition

- \blacktriangleright \oplus also represents Ex OR logic
- > Addition and subtraction have same meaning in modulo-2 arithmetic

modulo - $2 = \mod - 2$

Mod-2 subtraction table

0 - 0 = 0
0 - 1 = 1
1 - 0 = 1
1 - 1 = 0

Multiplication in modulo-2 algebra

0.0 = 0	
0.1=1	
1.0=1	
1.1=0	

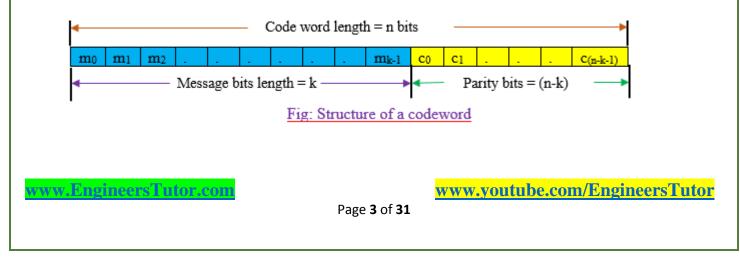
Linear block codes are a class of parity check codes that can be characterised by the (n, k) notation. The encoder transforms a block of k-message digits (a message vector) into a longer block of n codeword digits (a code vector) constructed from a given alphabet of elements. When the alphabet consists of 2 elements (0 and 1), the code is a binary code.

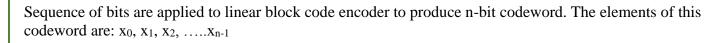
k-bit messages from 2^k distinct message sequences, referred to as k-tuples (sequence of k digits). The n-bit blocks can form as many as 2^n distinct sequences referred to as n-tuples. A block code represents a one-to-one assignment.

Mathematical expressions related to block codes:

(n, k) linear block code
n = number of bits in code word
k = number of message bits
(n-k) = number of parity bits or parity check bits

N.B. parity bits are computed from message bits according to encoding rule. Encoding rule decides mathematical structure of the code.





(n-k) parity bits are linear sums of k-message bits

The code vector can be mathematically represented as:

X = [M : C] where M = k number of message vectors

Where M = k-message vectors C = (n-k) parity vectors

A block code generator generates the parity vectors (or parity bits) which are added to message bits to generate the codewords. Thus, code vector X can also be represented as....

X = [M:G] where M = k number of message vectors

Where

X = code vector of size 1xn

M = message vector of size $\mathbf{1xk}$

G = Generator matrix of size kxn

X can be represented in matrix form as:

 $[X]_{1xn} = [M]_{1xk} [G]_{kxn}$

The generator matrix is dependent on the type of linear block code used:

 $[G] = [I_k | P]$

Where $I_k = kxk$ identity matrix P = kx(n-k) coefficient matrix

For example, (5,3) code:

n = 5, k = 3(n-k) = (5-3) = 2

vww.EngineersTutor.con

$$I_k = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$P = \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \\ p_{20} & p_{21} \end{bmatrix}$$

www.youtube.com/EngineersTutor

Page **4** of **31**

Now parity vector C can be computed as C = MP

$$C = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} p_{00} & p_{01} \\ p_{10} & p_{11} \\ p_{20} & p_{21} \end{bmatrix}$$

Now solve for $c_0, c_1, c_2... c_{n-k}$

 $c_{0} = m_{0} p_{00} \oplus m_{1} p_{10} \oplus m_{2} p_{20}$ $c_{1} = m_{0} p_{01} \oplus m_{1} p_{11} \oplus m_{2} p_{21}$

Similarly, we can obtain expressions for remaining parity bits if any.

Q. The generator matrix for a (6,3) block code is given below. Find all the code vectors of this code.

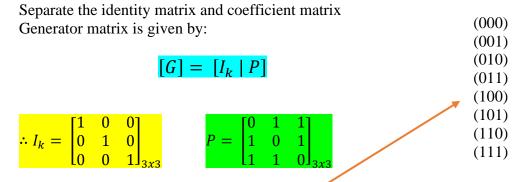
G =	[1	0	0	0	1	1]
G =	0	1	0	1	0	1
	Lo	0	1	1	1	0]

Sol. (n, k) = (6,3)n = 6

$$k = 3$$

n - k = 6 - 3 = 3 number of parity bits.

Step1:



As the size of message block k = 3, there are 8 possible message sequences

Step 2: Obtain parity vector C = MP

$\therefore [C] = [c_0 c_1]$	$c_{2} = \begin{bmatrix} m_{0} & m_{1} & m_{2} \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
$c_0 = (m_0.0) \oplus (m_1.1) \oplus (m_2.1)$	Similarly,
$= 0 \oplus m_1 \oplus m_2$	$c_1 = m_0 \oplus m_2$
$= m_1 \oplus m_2$	$c_2 = m_0 \oplus m_1$
www.EngineersTutor.com	www.youtube.com/EngineersTutor Page 5 of 31

For message word ($m_0 m_1 m_2 = 0 0 0$)

 $c_0 = m_1 \oplus m_2 = 0 \oplus 0 = 0$

 $c_1 = m_0 \oplus m_2 = 0 \oplus 0 = 0$

 $c_2 = m_0 \oplus m_1 = 0 \oplus 0 = 0$

- \blacktriangleright \oplus represents Mod 2 addition
- \succ \oplus also represents Ex OR logic
- > Addition and subtraction have same meaning in modulo-2 arithmetic
- > modulo-2 addition is the EX-OR operation in logic and modulo-2 multiplication is the AND operation.
- Binary matrix multiplication follows the usual rules with mod-2 addition instead of conventional addition.

Binary addition & multiplication:

Mod-2 addition and mod-2 multiplication on binary symbols 0 and 1. Multiplication defined same as for ordinary numbers. But for addition 1 + 1 = 0. This can be interpreted as 1 - 1 = 0 i.e., in binary computations, subtraction coincides with addition.

Mod-2 addition table

$0 \bigoplus 0 = 0$	А	В	$A \bigoplus B = \overline{A} B + A \overline{B}$
$0 \bigoplus 1 = 1$	0	0	0
$1 \oplus 0 = 1$	0	1	1
$1 \bigoplus 1 = 0$	1	0	1
	1	1	0

Ex-OR Logic

Α	В	$A \oplus B = \overline{A}B + A\overline{B}$			
0	0	0			
0	1	1			
1	0	1			
1	1	0			
If bot	If both the inputs are same, $output = 0$				

Mod-2 subtraction table

0 - 0 = 0	_
0 - 1 = 1	
1 - 0 = 1	
1 - 1 = 0	

vww.EngineersTutor.con

Multiplication in modulo-2 algebra

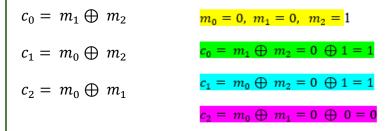
0.0 = 0
0.1=1
1.0=1
1.1=0

Complete codeword for message block (000)

m_0	m_1	m_2	C 0	c ₁	c ₂
0	0	0	0	0	0

Parity bits for message word ($m_0 m_1 m_2 = 0 0 1$)

 $[C] = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$



Complete codeword for message block (001)

m_0	m_1	m_2	c ₀	c ₁	c ₂
0	0	1	1	1	0

Parity bits for message word ($m_0 m_1 m_2 = 0 1 0$)

 $\begin{bmatrix} C \end{bmatrix} = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ $m_0 = 0, \ m_1 = 1, \ m_2 = 0$

 $c_0 = m_1 \oplus m_2 = 1 \oplus 0 = 1$

 $c_1 = m_0 \oplus m_2 = 0 \oplus 0 = 0$

 $c_1 = m_0 \oplus m_2$

 $c_0 = m_1 \oplus m_2$

 $c_2 = m_0 \oplus m_1$

 $c_2 = m_0 \oplus m_1 = 0 \oplus 1 = 1$ Complete codeword for message block (001)

m ₀	m_1	m ₂	c ₀	c ₁	c ₂
0	1	0	1	0	1

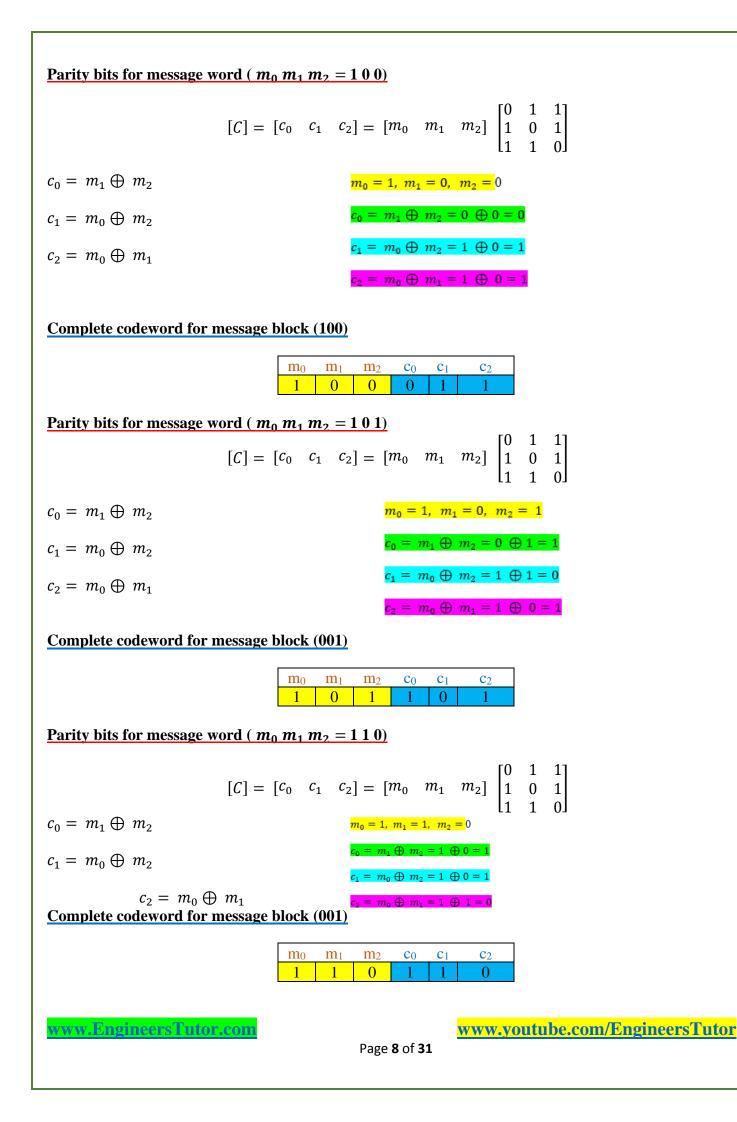
Parity bits for message word ($m_0 m_1 m_2 = 0 1 1$)

	$[C] = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
$c_0 = m_1 \oplus m_2$	$m_0 = 0, \ m_1 = 1, \ m_2 = 1$
$c_1 = m_0 \oplus m_2$	$c_0 = m_1 \oplus m_2 = 1 \oplus 1 = 0$
$c_2 = m_0 \oplus m_1$	$c_1 = m_0 \oplus m_2 = 0 \oplus 1 = 1$
	$c_2 = m_0 \oplus m_1 = 0 \oplus 1 = 1$

Complete codeword for message block (001)

www.EngineersTutor.con

m_0	m_1	m_2	$c_0 c_1$		c ₂	
0	1	1	0	1	1	



Parity bits for message word ($m_0 m_1 m_2 = 1 1 1$)

	$[C] = \begin{bmatrix} c_0 & c_1 & c_2 \end{bmatrix} = \begin{bmatrix} m_0 & m_1 & m_2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
$c_0 = m_1 \oplus m_2$	$m_0 = 1, \qquad m_1 = 1, \ m_2 = 1$
$c_1 = m_0 \oplus m_2$	$c_0 = m_1 \oplus m_2 = 1 \oplus 1 = 0$
$c_2 = m_0 \oplus m_1$	$c_1 = m_0 \oplus m_2 = 1 \oplus 1 = 0$
	$c_2 = m_0 \oplus m_1 = 1 \oplus 1 = 0$

Complete codeword for message block (111)

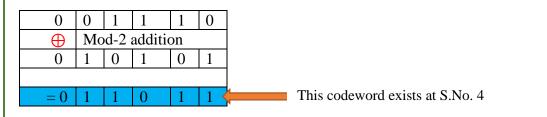
m_0	m_1	m_2	C 0	c ₁	C 2
1	1	1	0	0	0

Code vectors for (6,3) linear block code

S.No.	Message vectors	Parity bits	Code vectors
1	000	000	000000
2	001	110	001110
3	010	101	010101
4	011	011	011011
5	100	011	100011
6	101	101	101101
7	110	110	110110
8	111	000	111000

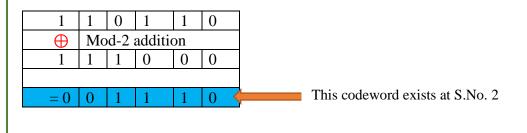
Q. Check linearity of above (6,3) code

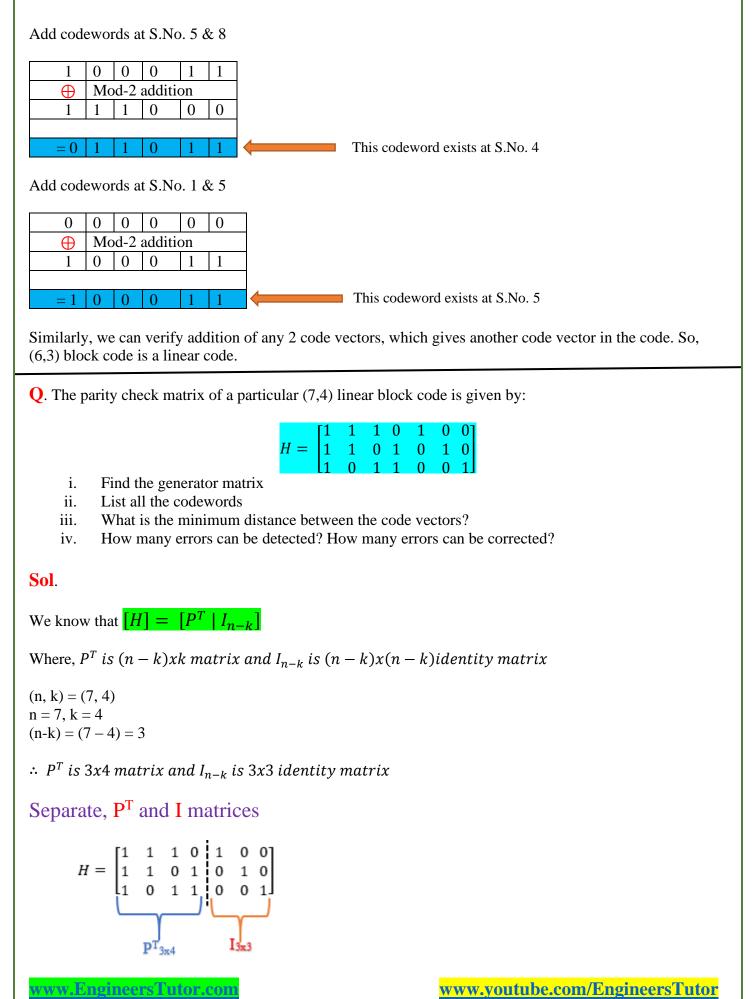
Add codewords at S.No. 2 & 3



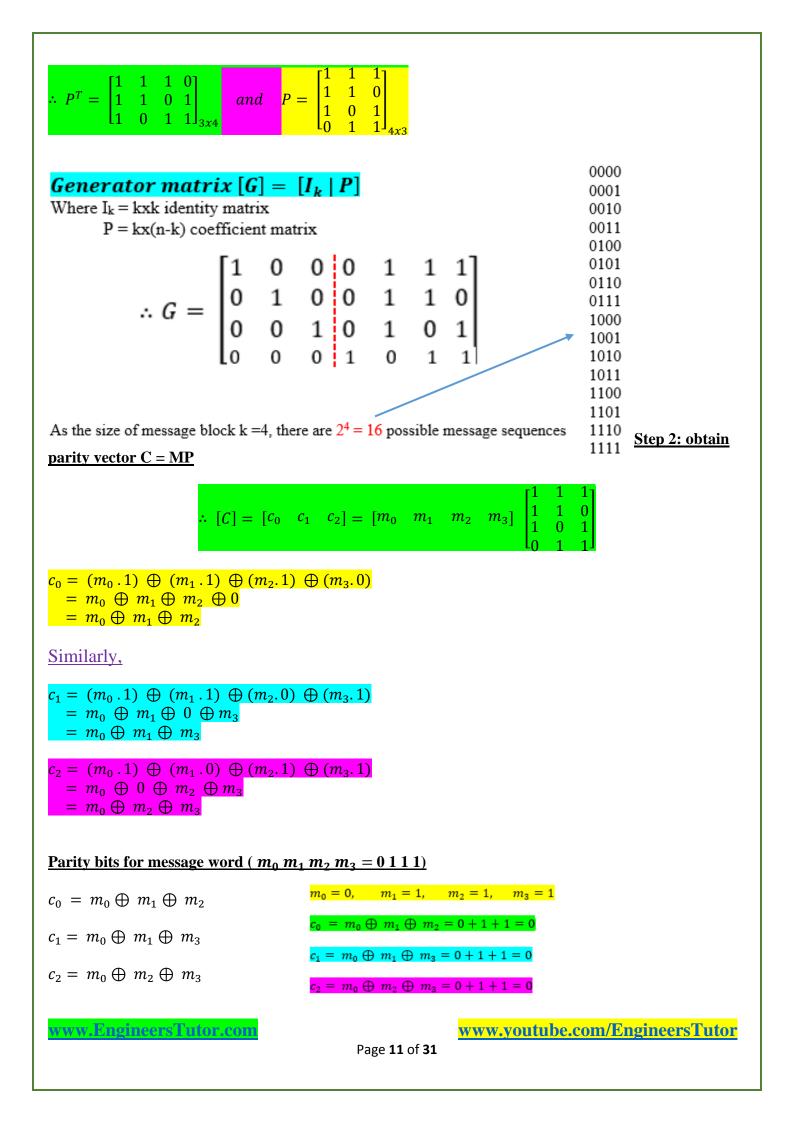
Add codewords at S.No. 7 & 8

www.EngineersTutor.com

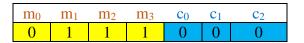




Page **10** of **31**



Complete codeword for message block (001)



Similarly, find all parity vectors. The complete code of (7,4) linear code is given below.

S.No.	Message	Parity bits	Codeword X	Weight of the
	bits			code vector
1	0000	000	000 000	0
2	0001	011	0001 011	3
3	0010	101	0010 101	3
4	0011	110	0011 110	4
5	0100	110	0100 110	3
6	0101	101	0101 101	4
7	0110	011	0110 011	4
8	0111	000	0111 000	3
9	1000	111	1000 111	4
10	1001	100	1001 100	3
11	1010	010	1010 010	3
12	1011	001	1011 001	4
13	1100	001	1100 001	3
14	1101	010	1101 010	4
15	1110	100	1110 100	4
16	1111	111	1111 111	7

(iii). Minimum distance d_{\min} = minimum weight of any non-zero code vector = 3 (see from table) $\therefore d_{\min} = 3$

 d_{min} : Minimum distance of a linear block code = the smallest non-zero vector weight

Number of errors that can be detected

vww.EngineersTutor.con

 $d_{min} \ge s + 1$ $3 \ge s + 1$ $2 \ge s$ $s \le 2$ $\therefore maximum \ errors \ that \ can \ be \ detected = 2$

(iv). Number of errors that can be corrected is given by

$$\begin{array}{l} d_{min} \geq 2t+1 \\ 3 \geq 2t+1 \\ 2 \geq 2t \\ t \leq 1 \end{array}$$

 \therefore maximum errors that can be corrected = 1

 \therefore for (7,4)linear block code, at the most 2 errors can be detected and only 1 error can be corrected.

www.youtube.com/EngineersTutor

Weight of the code vector

0

43

4

4

3

3

3

Page **12** of **31**

Q. For a (6, 3) systematic linear block code, the codeword comprises m0m1m2p0p1p2 where the 3 parity check bits p0p1p2 are formed from the information bits as follows:

 $c_1 = m_0 \oplus m_2$

 $c_0 = m_0 \oplus m_1$

Find

- i. The parity check matrix
- ii. The generator matrix
- iii. All possible codewords
- iv. The minimum weight
- v. Minimum distance
- vi. Error detecting & correcting capability of this code
- vii. If the received sequence is 101000, calculate the syndrome and decode the received sequence

 $c_2 = m_1 \oplus m_2$

Sol.

N	Message bits Parity bits		Codeword X	Weight W(X)			
m_0	m_1	m ₂	\mathbf{p}_0	p 1	p ₂		
0	0	0	0	0	0	00 00 00	0
0	0	1	0	1	1	00 10 11	3
0	1	0	1	0	1	01 01 01	3
0	1	1	1	1	0	01 11 10	4
1	0	0	1	1	0	10 01 10	3
1	0	1	1	0	1	10 11 01	4
1	1	0	0	1	0	11 00 10	4
1	1	1	0	0	0	11 10 00	3

Given parity equations are:

 $c_0 = m_0 \oplus m_1$

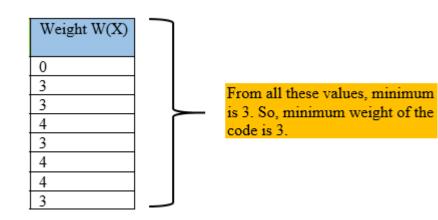
 $c_1 = m_0 \oplus m_2$

$c_2 = m_1 \oplus m_2$

Hence parity vector $C = (c_0, c_1, c_2)$

vww.EngineersTutor.com

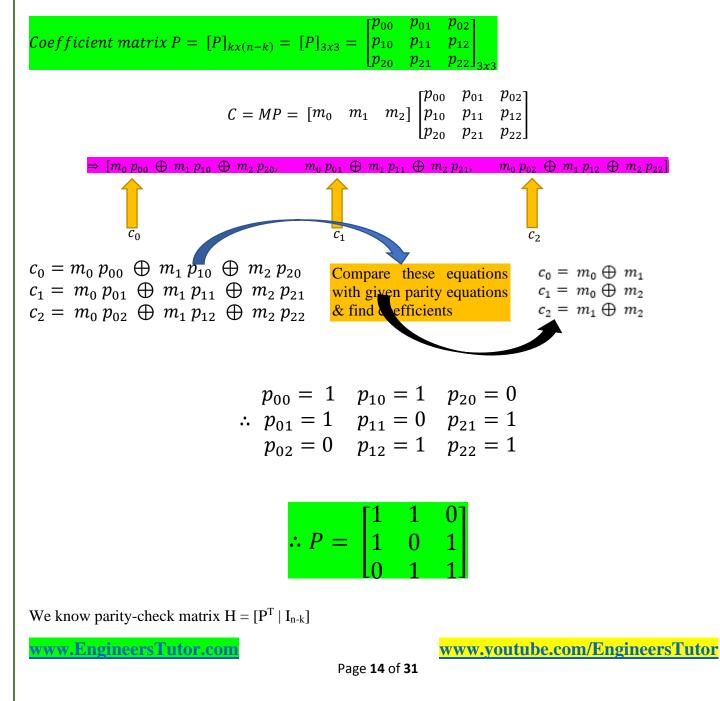
For data word (000) \Rightarrow C = (0 \oplus 0,	0 ⊕ 0,	$0 \oplus 0) = (0 \ 0 \ 0)$
For data word (001) \Rightarrow C = (0 \oplus 0,	0 🕀 1,	$0 \oplus 1) = (0 \ 1 \ 1)$
For data word (010) \Rightarrow C = (0 \oplus 1,	0 🕀 0,	$1 \oplus 0) = (1 \ 0 \ 1)$
For data word (011) \Rightarrow C = (0 \oplus 1,	0 🕀 1,	$1 \oplus 1) = (0 \ 0 \ 0)$
For data word (100) \Rightarrow C = (1 \oplus 0,	1 🕀 0,	$0 \oplus 0) = (1 1 0)$
For data word (101) \Rightarrow C = (1 \oplus 0,	1 🕀 1,	$0 \oplus 1) = (1 \ 0 \ 1)$
For data word (110) \Rightarrow C = (1 \oplus 1,	1 🕀 0,	$1 \oplus 0) = (0 1 1)$
For data word (111) \Rightarrow C = (1 \oplus 1,	1 🕀 1,	$1 \oplus 1) = (0 \ 0 \ 0)$



(i). Parity check matrix H

(6,3) code given. \therefore n = 6, k = 3 and (n - k) = 3

Mesage vector $M = [M]_{1x3} = [m_0 \ m_1 \ m_2]_{1x3}$



 P^{T} = transpose of matrix $P = [P^{T}]_{(n-k)xk}$

$$\therefore P^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad \& \quad I_{n-k} = [I]_{(n-k)x(n-k)} = [I]_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\therefore \text{ parity} - \text{check matrix H} = \begin{bmatrix} P^T \mid I_{n-k} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

<u>(ii)</u>.

Generaotor matrix
$$G = [I | P] = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

(iii). All possible codewords

Μ	Message bits Parity bits		Codeword X	Weight W(X)			
m_0	m_1	m_2	p ₀	p 1	p ₂		
0	0	0	0	0	0	00 00 00	0
0	0	1	0	1	1	00 10 11	3
0	1	0	1	0	1	01 01 01	3
0	1	1	1	1	0	01 11 10	4
1	0	0	1	1	0	10 01 10	3
1	0	1	1	0	1	10 11 01	4
1	1	0	0	1	0	11 00 10	4
1	1	1	0	0	0	11 10 00	3

(iv). Minimum weight & Minimum distance d_{min} = 3 (See from above table)

 d_{min} : Minimum distance of a linear block code = the smallest non-zero vector weight

(vi). Error detecting & correcting capability of this code

Error detection: s = number of errors that can be detected

 $d_{min} \ge s+1 \Rightarrow 3 \ge s+1 \Rightarrow 2 \ge s \Rightarrow s \le 2$

Error correction: t = number of errors that can be corrected

 $d_{min} \ge 2t + 1 \Rightarrow 3 \ge 2t + 1 \Rightarrow 2t \le 2 \Rightarrow t \le 1$

Comment: Double error correction and single error detection

www.EngineersTutor.com

vii. If the received sequence is 101000, calculate the syndrome and decode the received sequence



For (101) syndrome, error pattern E = 010000 (see from look-up decoding table)

(6,3) decoding look-up table

To find syndrome, we need to find Error vector (E). now write various error vectors. Various error vectors with single bit errors are shown below:

S. No.	Error vector	Bit in Error	Syndrome vector (S)
1	1 0 0 0 0 0	1 st	1 1 0
2	010000	2^{nd}	1 0 1
3	001000	3 rd	Similarly, find
4	000 1 00	4 th	remaining syndromes
5	0 0 0 0 1 0	5 th	
6	000001	6 th	

For (6,3) code, n = 6, k = 3 and (n - k) = 3

Now find syndrome corresponding to each error vector

$$[S_1] = EH^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$$

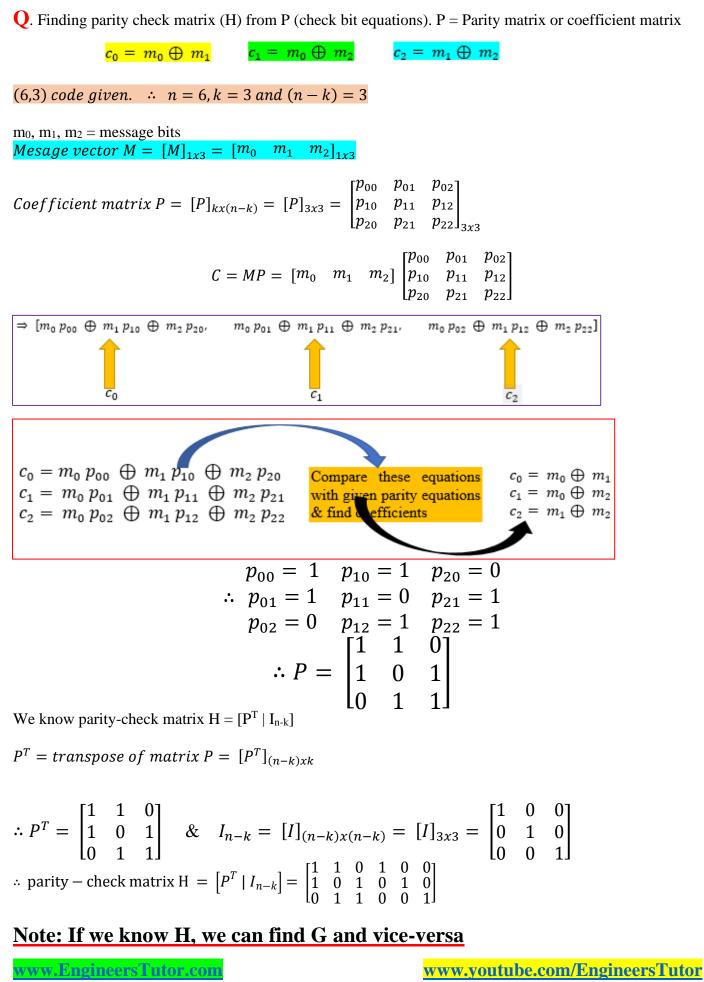
 \Rightarrow this is the syndrome for the first bit in error

$$[S_2] = EH^T = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

www.EngineersTutor.com

 \Rightarrow this is the syndrome for the 2nd bit in error

We know that $X = Y \oplus E \Rightarrow 101\ 000 \oplus 010\ 000 = 111\ 000$ X = transmitted codeword



Page **17** of **31**

Hamming codes

Binary single error correcting perfect codes are called Hamming codes. Consider (n, k) linear block code that has following parameters:

- Block length $n = 2^q 1$
- Number of message bits $k = 2^q q 1$
- Number of parity bits q = (n-k)
- Where $q \ge 3$. This code is called Hamming code.

Hamming codes are linear block codes. The (n, k) hamming codes for $q \ge 3$ is defined as

$$n = 2^{q} - 1$$

$$k = 2^{q} - q - 1$$

$$p = (n - k) = q, where q \ge 3 i.e., minimum number of parity bits = 3$$

$$d_{min} = minimum distance = 3$$

$$code rate or code efficiency, r = \frac{k}{n} = \frac{2^{q} - q - 1}{2^{q} - 1} = 1 - \frac{q}{2^{q} - 1}$$
error correction capability, t = 1
$$n = 2^{q} - 1$$

$$k = 2^{q} - q - 1$$

$$q = (n - k)$$
Message bits length = k
Parity bits = (n-k)
$$Message bits length = k$$

$$Structure of a codeword$$

 $n = codeword \ length$

k = message bits

q = number of parity bits

vww.EngineersTutor.com

Hamming codes have a minimum distance of 3 and hence are capable of correcting ingle errors. Hamming codes are perfect codes and can be easily decoded using a table look-up scheme. Hamming codes have been widely used for error control in digital communications and data storage systems over the years owing to their high rates and decoding simplicity.

Error control capability: perfect codes for correcting **<u>single</u>** errors. Note that single errors are more probable than double errors

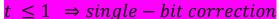
- In error correction, distance of two words (of same length) plays a fundamental role.
- Hamming codes are single error correcting binary perfect codes. A code corrects t errors if and only if its minimum distance (d_{min}) is greater than 2t.
- Error correction is more demanding than error detection. For example, a code with $d_{min} = 4$ corrects single errors only, but it detects triple errors.

A Hamming code is an (n, k) linear block code with $q \ge 3$ parity bits (check bits) and $n = 2^{q}-1$, $k = (n-q) = 2^{q}-1-q$

Code rate, $r = \frac{k}{n} r \cong 1$, if $q \gg 1$

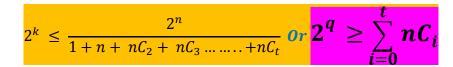
Independent of q, the minimum distance is fixed at $d_{min} = 3$. So, a Hamming code can be used for single-error correction or double error detection.

- 1. Detects **S** errors if and only if its minimum weight $d_{\min} \ge s + 1 \implies 3 \ge s + 1$ $s \le 2 \implies Double \ error \ detection$
- 2. Corrects t errors if and only if its minimum weight $d_{\min} \ge 2t + 1 \Rightarrow 3 \ge 2t + 1$ a. $\Rightarrow 2 \ge 2t$ 2. $\Rightarrow 1 \ge t$



Hamming bound

Let n & k has actual meaning and having error correcting capability t. there is an upper bound on the performance of block codes which is given by:



Perfect codes

Hamming bound: $2^q \geq \sum_{i=0}^t nC_i$

q = (n-k) = number of parity check bits

www.EngineersTutor.com

A code for which the inequalities in above equation become equalities is known as the perfect code.

$$2^{q} = \sum_{i=0}^{r} nC_{i}$$

The above inequality is known as Hamming bound. It is necessary, but not sufficient condition to construct **t**-error correcting code of n-digits. For single-error correcting codes, it is necessary and sufficient condition.

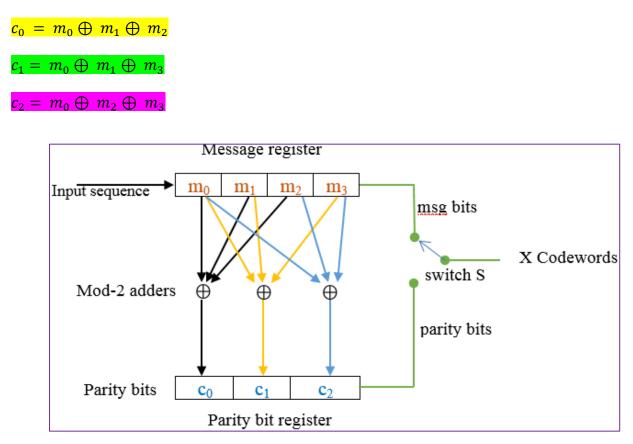
Single error correcting codes, t = 1 ex. (3, 1) and (4, 1)

double error correcting codes, t = 2 ex. (10, 4) and (15, 8)

triple error correcting codes, t = 3 ex. (10, 2) and (15, 5)

Encoder for (7, 4) linear block code

Parity bit equations for (7,4) Hamming code can be obtained as follows:



Depicts an encoder that carries out the check bit calculations for (7,4) Hamming code. Each block of message bits is loaded into a message register. The cells of message register are connected to Ex-OR gates, whose output equal the check bits. The check bits are stored in another register and shifted out to the transmitter; the cycle then repeats with the next block of message bits.

The parity bits are obtained from message bits by means of mod-2 adders. The output switch S is connected to message register to transmit all the message bits in a codeword. Then it is connected to parity register to transmit the corresponding parity bits. Thus, we get 7-bit codeword at the output of the switch.

Decoding of Block codes

Syndrome

An important piece of information about the error pattern which we can derive directly from the received word is the syndrome.

The generator matrix G is used in the encoding operation at the transmitter. On the other hand, parity-check matrix H is used in the decoding operation at the receiver.

E = error vector = Error pattern

• Syndrome depends only on the error pattern and not on the transmitted codeword.

• $\mathbf{S} = \mathbf{E}\mathbf{H}^{\mathrm{T}}$

- The minimum distance d_{min} of a linear block code is defined as the smallest Hamming distance between any pair of code vectors in the code.
- The sum (or difference) of 2 code vectors is another code vector
- Minimum distance of a linear block code is the smallest Hamming weight of the non-zero code vectors in the code.
- d_{min} is an important parameter of the code. It determines the error correcting capabilities of the code.

Q. Syndrome calculation

The parity check matrix of a (7, 4) Hamming code is as under. Calculate syndrome vector for single bit errors.

	1	1	0	1	1	0	0
H =	1	1	1	0	0	1	0
	1	0	1	1	0	0	1

<u>Sol</u>.

Syndrome vector $[S] = [E]_{1x7}[H^T]_{7x3}$

www.EngineersTutor.com

 \therefore size of syndrome vector = 1x3 \Rightarrow [S]_{1x3}

To find syndrome, we need to find Error vector (E). now write various error vectors. Various error vectors with single bit errors are shown below:

S. No.	Error vector	Bit in Error	Syndrome vector (S)
1	1000000	1 st	1 1 1
2	010000	2^{nd}	1 0 0
3	0010000	3 rd	1 1 0
4	0001000	4 th	1 0 1
5	0000 1 00	5 th	0 1 1
6	00000 1 0	6 th	1 0 0
7	0000001	7 th	0 1 1

Now find syndrome corresponding to each error vector

$$[S_1] = EH^T = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

 \Rightarrow this is the syndrome for the first bit in error

$$[S_2] = EH^T = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

 \Rightarrow this is the syndrome for the 2nd bit in error

$$[S_3] = EH^T = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$$

 \Rightarrow this is the syndrome for the 3rd bit in error

$$[S_4] = EH^T = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$

 \Rightarrow this is the syndrome for the 4th bit in error

$$[S_5] = EH^T = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$

 \Rightarrow this is the syndrome for the 5th bit in error

www.EngineersTutor.com

\

$$[S_{6}] = EH^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow this is the syndrome for the 6th bit in error$$

$$[S_{7}] = EH^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$$

$$\Rightarrow this is the syndrome for the 7th bit in error$$

Syndrome decoding of block codes

We have seen encoder for block codes. Now we can look into decoder. Two important functions of decoder are:

- Error detection in received codeword
- Error correction

The decoding of linear block codes is done by using a special technique called syndrome decoding. This kind reduces the memory requirement of the decoder to a great extent.

Step1:

Practical assumptions:

Let X = transmitted codeword Y = received codeword If X = Y, no errors in the received signal if $X \neq Y$, then some errors are present.

The decoder detects or corrects errors in Y by looking at stored information about the code. Information about the code are stored in Look-up table.

A direct way of performing error detection is to compare Y with every vector in the code. This method requires storing all 2^k code vectors at the receiver and performing up to 2^k comparisons. Note that efficient codes generally have large value of k, which implies expensive decoding hardware.

Ex: To get code efficiency $r \ge 0.8$, we need $q \ge 5$ (with Hamming code)

Then r = k/n $q = 5, n = 2^5 - 1 = 31$ $k = 2^5 - 5 - 1 = 26$

www.EngineersTutor.com

 $\therefore 2^k = 2^{26}$ code vectors to be stored at receiver, which is 10^9 bits approximately.

www.youtube.com/EngineersTutor

Page 23 of 31

Step 2: Detection of errors

(i). We know H = Parity check matrix

We know that $[H] = [P^T | I_{n-k}]$

Where, P^T is (n-k)xk matrix and I_{n-k} is (n-k)x(n-k) identity matrix

P = Coefficient matrix

(ii). Transpose of H exhibits a very important property:

 $XH^T = (000 \dots .0)$

i.e., product of any code vector X and the transpose of the parity check matrix will always be zero. We shall use this property for the detection of errors in the received codeword as under:

if $YH^T = (000 \dots 0)$, the Y = X i.e., there is no error

But, $XY \neq (000 \dots .0)$, then $Y \neq X$ i.e., error exists in the received codeword.

Step 3: Dyndrome & its use for Error Detection

Syndrome is represented by

www.EngineersTutor.con

$S = YH^T$ or $[S]_{1x(n-k)} = [Y]_{1xn} [H^T]_{nx(n-k)}$

The syndrome is defined as the non-zero output of the product YH^T. Thus, the non-zero syndrome represents the presence of errors in the received codeword.

- All zero elements of syndrome represent there is no error
- Now zero value of an element in syndrome represents the presence of error
- Non-zero value of an element in syndrome represents the presence of error.

Note: Sometimes, even if all the syndrome elements have zero value, the error exists.

Step 4:

Let X and Y are transmitted and received codewords respectively. Let us define n-bit error vector E such that its non-zero elements represent the location of errors in the received codeword Y as shown below:

Transmitted Code word X	0 0 1 1 1 1 0
Received Code word Y	Bits in red color represent Errors101010
Error vector E	1 0 1 0 1 0 0
Non-zero elements of E vector repr	esent the locations of errors in the received codeword Y.

www.youtube.com/EngineersTutor

Page **24** of **31**

The elements in the code vector Y can be obtained as follows:

 $Y = X \oplus E \Rightarrow X Ex - OR E \Rightarrow X mod - 2 E$

 $\therefore Y = X \oplus E = [0 \oplus 1, 0 \oplus 0, 1 \oplus 1, 1 \oplus 0, 1 \oplus 1, 1 \oplus 0, 0 \oplus 0]$

= [1, 0, 0, 1, 0, 1, 0]

The principle of mod-2 addition can be applied in a slightly different way

 $X = Y \bigoplus E \Rightarrow X = [0, 0, 1, 1, 1, 1, 0]$

For a valid codeword, the product

Relation between syndrome (S) & Error vector €

We know $S = YH^T$ & $Y = X \bigoplus E$ = $(X \bigoplus E)H^T$ = $XH^T + EH^T$ since $XH^T = 0$ = $0 \bigoplus EH^T$ = EH^T

$$\therefore S = EH$$

Q. For a code vector X = (0111000) and the parity check matrix given below prove that $XH^T = (0,0,0....0)$

H =	[1	1	1	0	1	0	0]
H =	1	1	0	1	0	1	1
	l 1	0	1	1	0	0	1

Sol.

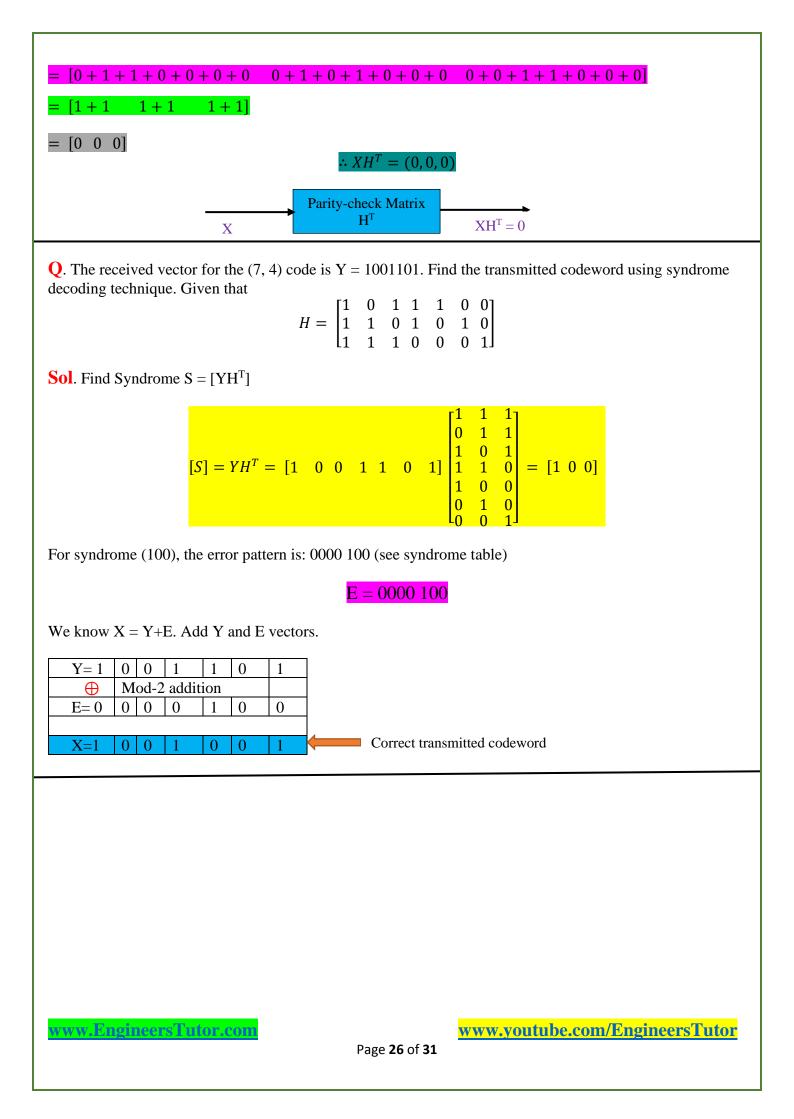
 $XH^T = [000]$

$$XH^T = (0,0,0)$$

$$H^{T} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

					<u>1</u>	1	ן1
$XH^T = [0]$					1	1	0
					1	0	1
$XH^T = [0]$	1 1	10	0	0]	0	1	1
					1	0	0
					0	1	0
					L ₀	1	1

 $= [0.1 + 1.1 + 1.1 + 1.0 + 0.1 + 0.0 + 0.0 \quad 0.1 + 1.1 + 1.0 + 1.1 + 0.0 + 0.1 + 0.1 - 0.1 + 1.0 + 1.1 + 1.1 + 0.0 + 0.0 + 0.1]$ www.EngineersTutor.com
www.EngineersTutor.com

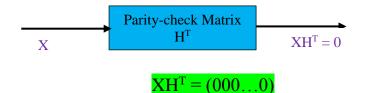


Note on Syndrome decoding

More practical decoding methods for codes with larger k involve parity decoding information derived from the code's P sub-matrix.

- H = parity-check matrix
- P = Coefficient matrix (submatrix) $[H] = [P^T | I_{n-k}]$
- P^{T} = transpose of P matrix

Relative to error detection, the parity check matrix has the crucial property



Provided that X belongs to the set of code vectors. However, when Y is not a code vector, the product YH^{T} contains at least one non-zero element.

Therefore, given H^T and received vector Y, error detection can be based on $S = YH^T$, where S = syndrome vector

If all the elements of S = 0, then Y = X and there are no transmission errors. Errors are indicated by the presence of non-zero elements in S.

vww.EngineersTutor.con

Q1. For a (6, 3) code, the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$. For all possible 8 data words, find the corresponding codewords and verify that this code is a single error correcting code.

Q2. The generator matrix for (7, 4) Hamming code is given below:

∴ G =	[1	1	0	1	0	0	0]
	0	1	1	0	1	0	0
	1	1	1	0	0	1	0
	1	0	1	0	0	0	1

Find codewords and weight of all the codewords.

Q3. If G and H are generator and parity-check matrices, show that $GH^{T} = 0$.

Q4. given a generator matrix $G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$, construct a (3,1) code. How many errors can this code correct? Find the codeword for data vectors d = 0 and d = 1. Comment.

Q5. $G = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$. This gives a (5,1) code. Repeat above question.

Q6. Consider a generator matrix $G = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$ for a non-systematic (6, 3) code. Construct the code for this G and show that d_{\min} between codewords is 3, consequently this code can correct at least one error.

Q7. Find a generator matrix G for a (15,11) single-error correcting linear block code. Find the codeword for the data vector 1 0 1 1 1 0 1 0 1 0 1.

Q8. Find out whether or not the following binary linear code is systematic?

 $G = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$

Q9. Find a generator matrix of a binary code with the following parity-check matrix:

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Q10. Consider a systematic (6, 3) block code generated by sub-matrix $P = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$. Write the check-bit equations and tabulate the codewords and their weights to show that $d_{\min} = 3$.

Q11. For a (6, 3) block code, the generator matrix G is given by:

www.EngineersTutor.com

www.youtube.com/EngineersTutor

Page 28 of 31

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

i. Realize an encoder for this code

ii. Verify that this code is a single-error correcting code

iii. If the received codeword is 100011, find the syndrome

Q12. given a (7, 4) linear block code whose generator matrix is given by:

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

i. Find all the codewords

ii. Find the parity-check matrix

Q13. An error control code has the following parity check matrix

H =	[1	0	1	1	0	0]
H =	1	1	0	0	1	0
	LO	1	1	0	0	1]

- i. Determine the generator matrix G
- ii. Find the codeword that begins with 101....
- iii. Decode the received codeword 110110. Comment on error detecting capability of this code.

Q14. Consider a systematic (8,4) code whose parity check equations are:

 $c_0 = m_1 \oplus m_2 \oplus m_3$ $c_1 = m_0 \oplus m_1 \oplus m_2$ $c_2 = m_0 \oplus m_1 \oplus m_3$ $c_3 = m_0 \oplus m_2 \oplus m_3$ Where m_0 , m_1 , m_2 , m_3 are message bits and c_0 , c_1 , c_2 , c_3 are parity-check bits. Find the generator and parity-check matrices for this code. Show analytically that the minimum distance of this code is 4.

Q15. The generator matrix for linear block code is

	[0]	0	1	1	1	0	1]
<i>G</i> =	0	1	0	0	1	1	1
	1	0	0	1	1	1	0

- i. Express G in systematic [I | P] form
- ii. Determine the parity check matrix H for this code
- iii. Construct the table of syndromes for the code
- iv. Determine the minimum distance of the code
- v. Demonstrate that the code word corresponding to the information sequence 101 is orthogonal to H

Q16. Consider a 127, 92) linear code capable of triple error corrections.

Q17. Consider a (7, 4) code whose generator matrix is:

www.EngineersTutor.com

www.youtube.com/EngineersTutor

Page 29 of 31

$$G = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

i. Find all the codewords of the code

- ii. Find H, the parity-check matrix of the code
- iii. Compute the syndrome for the received vector 1101101. Is this a valid code vector?
- iv. What is the error correcting capability of the code?
- v. What is the error detecting capability of the code?

Q18. Is a (7,3) code a perfect code? Is a (7,4)? Is a (15, 11)? Justify your answer?

Q19. Consider a systematic block code, whose parity-check equations are:

 $c_0 = m_0 \oplus m_1 \oplus m_3$

 $c_1 = m_0 \oplus m_2 \oplus m_3$

 $c_2 = m_0 \oplus m_1 \oplus m_2$

 $c_3 = m_1 \oplus m_2 \oplus m_3$

www.EngineersTutor.con

Where m_i are message digits and c_j are check digits.

- i. Find G and H for this code
- ii. How many errors can the code correct?
- iii. Is the vector 10101010 a codeword?
- iv. Is the vector 01011100 a codeword?

Q20. The minimum Hamming distance of a block code is dmin = 11. Determine the error correction and detection capability of this code.

Q21. A linear block code has the following generator matrix in systematic form:

i. Find the parity-check matrix H and write down the parity-check equations

ii. Find the minimum Hamming distance of the code

Q22. The generator matrix of a binary linear block code is given below:

 $G = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$

- i. Write down the parity-check equations for the code
- ii. Determine the code rate and minimum Hamming distance

Q23. Given a generator matrix $G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$. Construct a (3, 1) code. How many errors can this code correct? Find the codeword for the data vectors (0) and (a). comment.

www.youtube.com/EngineersTutor

Page **30** of **31**

Q24. Repeat above for $G = [1 \ 1 \ 1 \ 1 \ 1]$. This gives a (5, 1) code.

Q25. Consider a generator matrix $G = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$. Construct the code for this G and show that

dmin, the minimum distance between codewords is 3. Consequently, this code can correct at least one error.

Q26. For a (6, 3) systematic linear block code, the 3-parity check digits c4, c5, c6 are:

 $\begin{array}{l} c_4 = d_1 + d_2 + d_3 \\ c_5 = d_1 + d_2 \\ c_6 = d_1 + d_3 \end{array}$

ww.EngineersTutor.cor

- i. Construct the appropriate G for this code
- ii. Construct the code generated by this matrix
- iii. Determine error correcting capabilities of this code
- iv. Prepare a suitable decoding table
- v. Decode the following received words: 101100, 000110, 101010

Q27. Consider a (6, 2) code generated by the matrix $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$. Construct the code table for this code and determine the minimum distance between codewords.