

→ 3rd ADVANCED COURSE ON RADAR POLARIMETRY

SAOCOM-CS Mission and ESA Airborne Campaign Data

Malcolm Davidson

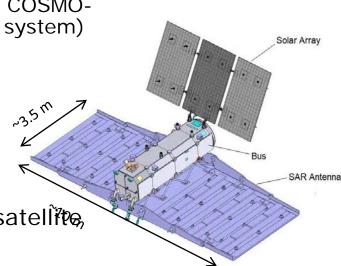
Head of the EOP Campaign Section

Malcolm.Davidson@esa.int

Objectives of presentation

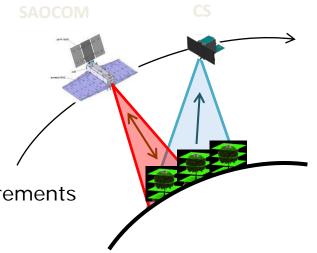
- Introduce a new type of ESA SAR mission with Polarimetrice, Interferometric and Bistatic measurement capabilities
- Present ESA airborne SAR campaigns which provide a useful source of data for SAR training and new science development

Overview



- SAOCOM Companion Satellite Mission (a new type of SAR mission)
 - Background
 - Mission Capabilities
 - Mission Science
- ESA airborne campaigns
 - Background and objectives of campaigns
 - Example SAR campaigns
 - Access to Data

The SAOCOM Mission


- The Argentinian Space Agency CONAE with contributions from ASI
 is developing an L-band SAR mission
- 2 satellites SAOCOM-1A/1B flying in constellation with COSMO-SkyMed (forming toegther the SIASGE L+X-band SAR system)
 - √ 619.6 km altitude, incidence angle range 17.5⁰ 50⁰
 - ✓ L-band SAR at 1275 MHz, bandwidth up to 50 MHz
 - ✓ peak RF transmit power 3.1 kW
 - ✓ antenna dimensions 10 m x 3.5 m
 - √ fully polarimetric, interferometric capabilities
 - ✓ multiple modes (Strip, TOPS)
- In 2013, CONAE offered ESA to launch a small satellite, together with SAOCOM 1B
- ESA, together with European experts and CONAE have assessed the feasibility to fly a passive add-on satellite in formation with SAOCOM to enhance the science return (condition for cooperation from CONAE)

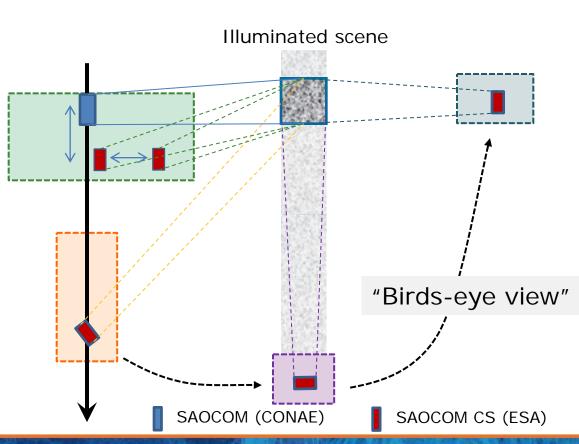
SAOCOM-CS Description

- "Companion Satellite" ("SAOCOM-CS")
 - ✓ receive-only, dual-pol L-band SAR satellite
 - √ (close) formation with SAOCOM
 - ✓ SAOCOM as illuminator.
- Complement science return of SAOCOM
 - ✓ New radar science: tomography, bistatic measurements
 - ✓ mapping of biomass and structure of boreal forests by SAR tomography (mission driver)
 - ✓ several imaging geometries (baselines and angles) for experimental applications
 - ✓ Detailed studies by POLIMI, DLR and CSL to confirm mission science program
- <u>Launcher & schedule constraints</u>
 - ✓ Falcon-9, available volume: cylinder, 1.5 m diameter x 1.4 m height.
 - √ max. total launch mass: ca. 400 kg
 - √ tight schedule imposes maximum reuse of existing equipment / high TRL

Science and Observation Geometry

- Four configurations w.r.t baselines and viewing geometry
- Three science mission phases: tomographic, bistatic, specular

Tomographic phase

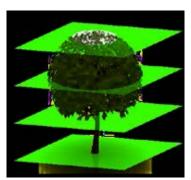

- √ AT baseline < 6 km
 </p>
- √ XT baseline varies ~1–6 km
- √ Science mission driver
- ✓ Duration ~2.5 years

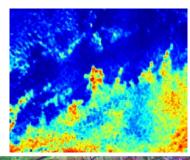
Bistatic 1, Bistatic 2

- √ AT baseline < 250 km
 </p>
- ✓ Small XT baseline (phase 1)
- ✓ Large XT baseline (phase2)
- ✓ Duration ~2 years

Specular phase

- ✓ Experimental
- √ Short duration

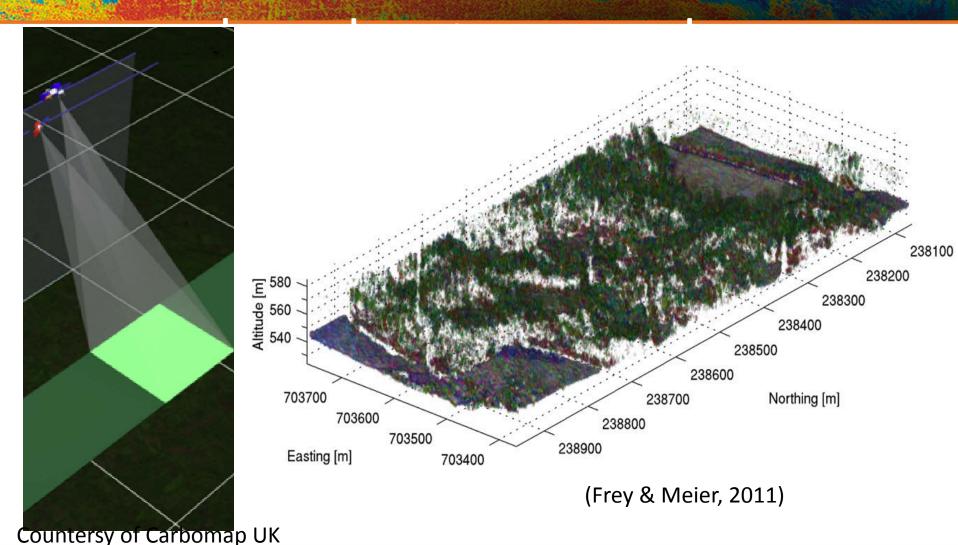

Science objectives



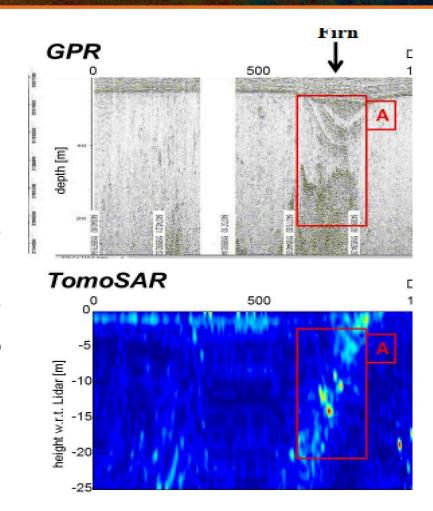
- Tomographic Configuration
 - Boreal forest structure (mission science driver)
 - Tropical forest structure (experiment)
 - Ice subsurface feature mapping (experiment)

- Dense persistent scatterers (PS) for urban environments (demonstration)
- Bistatic interferometry for surface motion and land cover properties (demonstration)
- Soil moisture (experiment)
- Desert subsurface mapping (experiment)
- Specular configuration
 - Soil moisture (experiment)



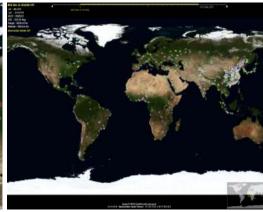


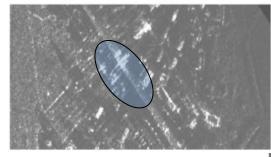
SAOCOM + SAOCOM-CS - 3 independent types of information depending on geometry & baselines


Example forest structure productesa

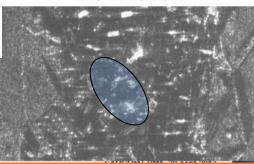
Example ice subsurface productesa

Tabaldini (POLIMI) Nagler (ENVEO)

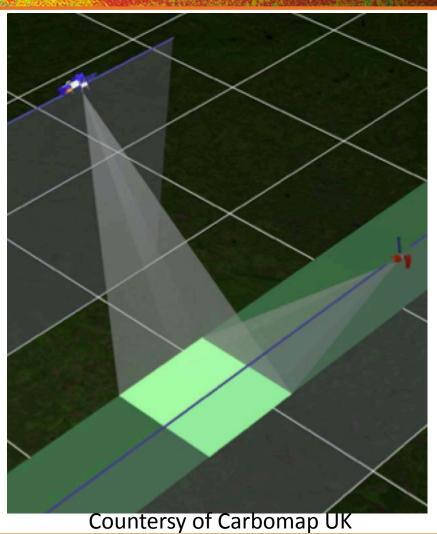

Example bistatic product

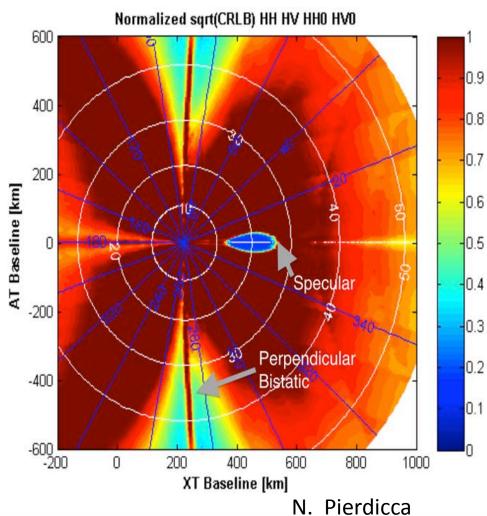

- Urban interferometric applications based on persistent scatterers or PSs
- Phase-changes in PSs are related to movement of buildings and ground beneath (e.g. subsidence)
- Bistatic measurements improve density of PSs and urban motion estimates because:
 - Remove spatial saturation due to dihedral & trihedral scatterers
 - Allow identification of additional PS sources (i.e. fill in gaps)

Major Urban Centres (Europe/World)

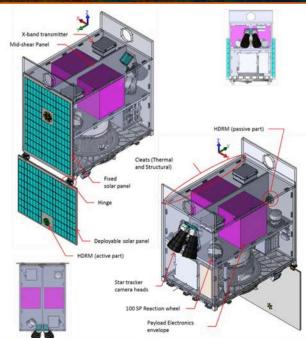


MONOSTATIC



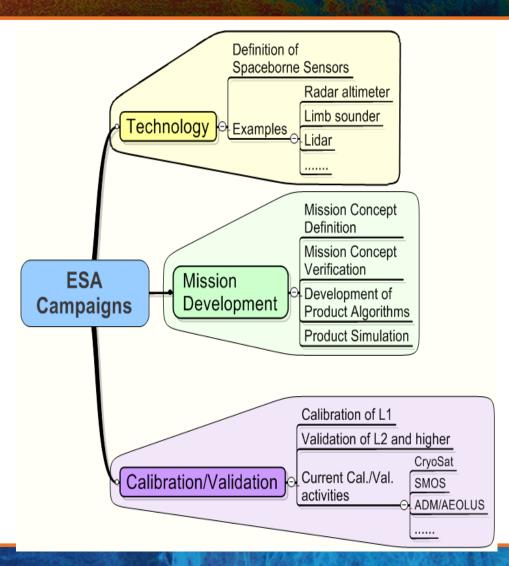

BISTATIC 700

Example specular product esa

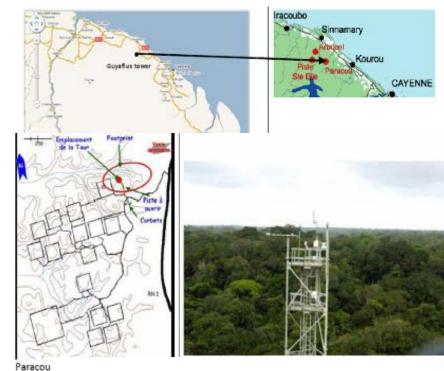


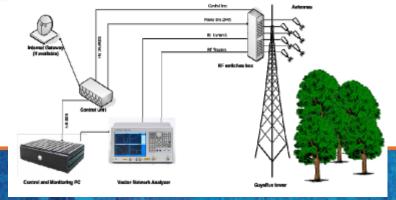
Mission Implementation

- SAOCOM-CS mission characteristics
 - √ 5m resolution/6 minutes of operation per orbit
 - 3 x 1m antenna
 - Formation flying with 3 main geometries (tomographic, bistatic and specular)
 - √ 400kg wet mass
 - Launch as co-passenger on Falcon-9
- Ground Segment
 - Mission Control Centre (core of flight operations segment)
 - Two X-band ground stations for science data downlink
 - A (distributed) PDGS for science data processing
- Short development schedule (ready for launch by 2nd half 2018)



Programmatic Background


- Programme started in 1981
 - 100+ campaigns as of 2015
 - 5-6 campaigns/year
- Strategic objectives:
 - 1) Support to EO programs
 - Improved access to airborne instrumentation and data in Europe
 - Partnerships with national and international organisation ESA Campaigns Programme addresses all phases of ESA missions
- Campaign activities address three main areas: technology, mission development and calibration/validation



ESA airborne SAR campaigns - overview

- 1. ESA airborne campaign activities addressing forest biomass generally executed in framework of future mission concepts
 - a. TerraSAR-L (up to 2004)
 - b. EE7 BIOMASS (2005 to present)
- 2. In addition we address PolInSAR workshop recommendations where possible
- 3. Main campaign datasets to date
 - a. Indonesian Radar Experiment (Indrex-2) over tropical forests in Borneo in 2004 with DLR
 - b. BioSAR-1,-2 and -3 over boreal forests in Sweden (DLR, ONERA)
 - c. TropiSAR 2009 over tropical forest in French Guyana (ONERA)
 - d. TropiScat scatterometer measurements in French Guyana (CESBIO, ONERA, POLIMI)
- 4. Campaign datasets generally include well-documented airborne and ancillary data (e.g. lidar, ground biomass estimates, tree height data)

Example campaign: TropiSAR 2009

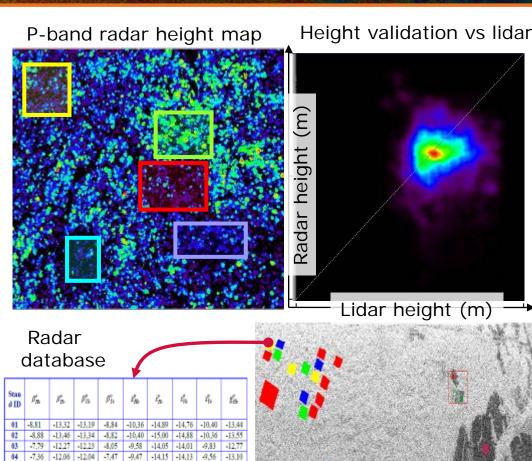
Aims

- Support BIOMASS Phase-A
- Collect reference radar at Pand L-band over tropical forests
- Quantify temporal decorrelation to support mission orbit selection
- Provide basis for forest biomass retrieval algorithm
- Assess product validation methodology

Experiment details

- Collaboration with CNES and French national programmes (GUYAFOR) in French Guyana
- Airborne acquisitions using SETHI and Falcon-20 (ONERA)
- Coincident ground and laser altimeter measurements

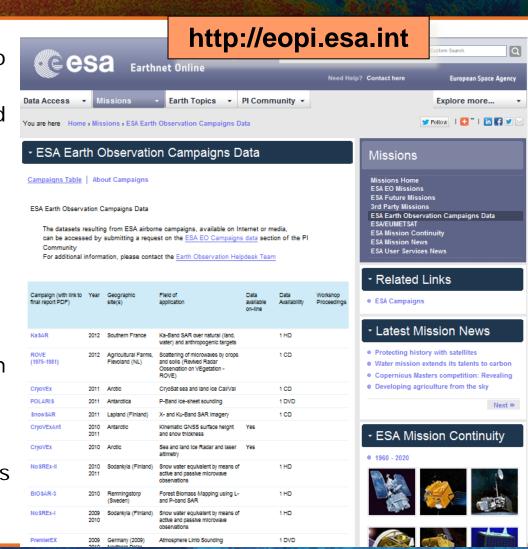
Example campaign: TropiSAR 2009


(2)

-10.35 -5.80

-8,60 -13,01 -12,88 -8,36

3. Outcome


- Development of airborne SAR processing chain (capacity building)
- 60 acquisitions processed and delivered in Q1/11
- Data analysis indicates:
 - moderate temporal decorrelation at P-band over tropical forests
 - Feasibility of forest height retrieval in tropics
 - Importance of terrain correction
 - Consolidated dataset input to BIOMASS scientific support/End-to-end studies

Access to ESA Campaign Data

- ESA campaign data available to interested PIs
 - Formatted and documented datasets
 - Data Inventory
 - Final report with full description of campaign activity and analyses
- Final report accessible directly through web
- Access to datasets provided through Category 1 mechanism (short proposal incl. identification of desired datasets)
- Currently 56 campaign datasets available

Conclusions

- SAOCOM-CS a small satellite SAR mission with highly innovative measurements from space (example of R & D satellite)
- ESA has organised a number of airborne SAR campaigns in past 15 years in support of spaceborne missions (BIOMASS, SAOCOM-CS, TerraSAR-L, Sentinel-1)
- A number of airborne SAR datasets available to the science community via campaign database