Voluntary Investigation and Remediation Plan

PREPARED FOR

Former Macon 2 MGP Facility Macon, Georgia HSI #10692

PREPARED BY

Geotechnical & Environmental Consultants, Inc. 514 Hillcrest Industrial Boulevard Macon, Georgia 31204-3472 (478) 757-1606

ISSUE DATE

February 11, 2015

Thomas E. Shim

Thomas E. Driver, P.E. President GA Reg. #17394

TABLE OF CONTENTS

1.0	INTI	RODUCTI	ION		1	
	1.1	PURPO	DSE		1	
	1.2	QUALI	FYING PRO	OPERTIES & PARTICIPANT ELIGIBILITY	2	
2.0	SITE BACKGROUND AND HISTORY					
	2.1 MANUFACTURED GAS PLANT SITE HISTORY					
	2.2	SOURCES OF RELEASE				
	2.3	REGULATORY HISTORY				
		2.3.1	Summar	y of Previous Investigations	3	
		2.3	3.1.1	Law Environmental Studies	3	
		2.3	3.1.2	Williams Environmental	3	
3.0	CON	CEPTUA	L SITE MO	DEL	3	
	3.1	GEOLO	DGY		4	
		3.1.1	Regiona	l Geology	4 5	
	3.1.2 Site Geology					
	3.2	SITE HYDROLOGY & HYDROGEOLOGY				
	3.3	EXPOS	SURE ASSE	SSMENT	7	
		3.3.1	Potentia	l Receptors	7	
		3.3.2	-	e Media and Potential Exposure Pathways	7	
			3.3.2.1	Surface Soil	7	
			3.3.2.2		7	
				Groundwater	7	
			3.3.2.4	Indoor Air	8	
4.0	PI		INVESTIG		8 8	
	4.1 SOIL SAMPLING					
				ER SAMPLING	10	
		4.3 VAP	OR INTRUS	SION	10	
5.0	T	TYPE 1 RISK REDUCTION STANDARDS				
6.0	PROJECT SCHEDULE					
7.0	RI	EFEREN	CES		11	

APPENDICES

- A VRP APPLICATION AND CHECKLIST
- B WARRANTY DEEDS
- C FIGURE 1 Site Location Map
 FIGURE 2 GEC Proposed Soil Sampling Location Plan
 Sampling Results from Williams Environmental Services, Inc. CSR dated
 June 17, 2002, Revised September 5, 2003.
- D Compliance Status Investigation Report, Dated June 17, 2002, Revised September 5, 2003 by Williams Environmental Services, Inc.

1.0 INTRODUCTION

1.1 **PURPOSE**

The Macon 2 M GP which is owned by Macon-Bibb County (County) was previously listed on the Hazardous Site Inventory (HSI) as Site #10692. The site was investigated and a Compliance Status Report (CSR) was approved on 12/19/2003 certifying compliance with Type 4 Risk Reduction Standards (RRS) for soil. Groundwater was certified as compliant with Type 1 RRS. EPD also approved a Corrective Action Plan (CAP) for the Macon 2 MGP on January 4, 2006 which required a deed notice on the property. In order to comply with the CAP, a "R estrictive Covenant" was executed to prevent placing, permitting or approving any residential purpose on the Site. The "Site" is defined as the area shown within the polygon shaped area depicted on Figure 2 (Appendix C).

The Site consists of 15 parcels and portions of three right-of-ways; however only three parcels and three right-of-ways are subject to the Type 4 RRS and consequently restricted to nonresidential uses. These parcels are:

Parcel No. OC-98-5J Parcel No. OC-99-4A Parcel No. OC-99-9-4AB Portions of Right-of-Way of Norfolk Southern Railroad Portions of Right-of-Way of Willow Street Portions of Right-of-Way of Spring Street Lane

Macon-Bibb County now wishes to modify the current site restrictions to allow residential use of the entire property in order to provide more opportunities for redevelopment while maintaining important limitations in some areas. The extent of contamination has been defined both horizontally and vertically; however Macon-Bibb County is submitting this Voluntary Remediation Program (VRP) Application to describe additional investigation and possible corrective action that will be needed in order to demonstrate the Site's suitability for residential development to a depth of fifteen feet and provide the basis for changing the current property use restrictions.

This VRP application is not designed to revisit the basis for the delisting or previously approved CSR, only to further characterize contamination in the upper fifteen feet of the Site in order to enable a corrective action plan to be developed that will result in remediation to Residential Risk Reduction Standards within these depths at the site.

1.2 QUALIFYING PROPERTIES & PARTICIPANT ELIGIBILITY

The site meets the eligibility criteria for the VRP. The qualifying properties included in the VRP application are provided on Figure 2 (Appendix C). The properties are all owned by Macon-Bibb County.

The property is not listed on the National Priorities List (NPL), is not currently undergoing response activities required by an order of the Regional Administrator of the United States Environmental Protection Agency (USEPA), or is a facility required to have a permit under Official Code of Georgia (O.C.G.A) Section 12-8-66. There are currently no outstanding liens filed against the property pursuant to O.C.G.A Sections 12-8-96 and 12-13-12. Qualifying the property under the VRP would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or by similar authorization from the USEPA. In addition, qualification of the indicated property would not violate any order, judgment, statute, rule or regulation subject to the enforcement authority of the Director of the EPD. In the event additional affected properties are identified, Macon-Bibb County will notify EPD and revise the VIRP accordingly.

2.0 SITE BACKGROUND AND HISTORY

2.1 MANUFACTURED GAS PLANT SITE DESCRIPTION

The former Macon 2 MGP facility is located to the north of the intersection of Spring Street Lane and Willow Street (Figure 1). The site description and location was addressed in the approved CSR for the site and will not be addressed herein. For the purpose of this evaluation, the VIRP is focused on the upper 15 feet of fill above the former MGP site and the properties included in the CSR.

2.2 SOURCES OF RELEASE

Sources which potentially have or are contributing to a release of a hazardous constituent or substance at the former MGP facility were defined during several investigations at the site and were addressed in the CSR.

As stated in the CSR, in addition to the former MGP structures, fill material used to develop the property may be a potential source of regulated substances. The former MGP facility and surrounding properties were backfilled on several occasions to reach the current topography. Fill thickness ranges from 4.5 feet to the west of the former MGP facility to approximately 36 feet on the eastern

portion and to the southeast of the former MGP facility. The fill material consists of silts, sands, and clays consistent with the area lithology and construction debris including brick, concrete, glass, and asphalt. The upper fifteen feet of this fill material will be the subject of this investigation.

2.3 REGULATORY HISTORY

2.3.1 Summary of Previous Investigations

2.3.1.1 Law Environmental Studies

Law Environmental, Inc. (LAW) conducted a Preliminary Assessment (PA) of the Site in 1991 which included a review of available file material, on-site and off-site reconnaissance, review of historical property ownership and a limited pathway survey. No sampling or analysis was conducted during the PA.

2.3.1.2 Williams Environmental Services Studies

The Compliance Status Investigation Report (CSR) for the site was initiated by Williams Environmental Services in June of 2002 and the Revised CSR was submitted on S eptember 5, 2003. A ccording to the CSR, thirty-five HSRA regulated substances were detected in soil or groundwater at the site.

The soil contaminates encountered during the site investigation and shown to be within the area of non-residential RRS were compared to Type 1 and/or Type 2 RRS. Type 1 or 2 RRS for soils at the site were exceeded by two semi-volatile organic compounds: benzo(a)pyrene and dibenzo(a,h)anthracene. Type 1 or 2 RRS for soils were exceeded by two inorganics: arsenic and lead.

The area in which residential RRS are exceeded in soil are shown on Figure 2.

The groundwater contaminates encountered at the site were compared to Type 1 RRS. N one of the constituents encountered in the groundwater sampling performed at the site were above Type 1 RRS.

3.0 CONCEPTUAL SITE MODEL

A Conceptual Site Model (CSM) will be developed based on the data obtained during the implementation of the VIRP and prior data obtained during historic documentation from previous reports. The objective of the CSM will be to illustrate current site conditions and describe the processes that control the transport,

migration, and possible impacts to potential human ecological receptors. A discussion of the various components to be included in the CSM are included in the sections below.

3.1 GEOLOGY

3.1.1 Regional Geology

The southern part of Macon, Bibb County, Georgia, is located in the Atlantic Coastal Plain Physiographic province and the northern part is in the Piedmont province. The Fall Line is defined as an arbitrary line that separates the two physiographic regions and is why this region is sometimes referred to as the Fall Line District. The Coastal Plain province in Bibb County is characterized by distinctive light-colored sandy hills of Cretaceous age that slope gently towards the southeast. The Piedmont province is characterized by a rolling to hilly upland area of moderate relief that slopes gently to the south.

The former Macon 2 MGP facility is located in the vicinity of the Fall Line between the Atlantic Coastal Plain and the Piedmont Province, approximately 200 feet southwest of the Ocmulgee River. Elevations in the investigation area range from approximately 300 to 320 feet above mean sea level (USGS Topographic Map Macon .West and Macon East, Georgia; Figure 1). The area is underlain by Pleistocene- to recent-age alluvial deposits up to 40 feet thick. These alluvial deposits are described as unsorted sand, gravel and clay (LeGrand, 1962). Below the alluvial deposits, the Late Eocene upper sand member of the Barnwell Formation, if present, lies unconformably above the Cretaceous-age Tuscaloosa Formation, if present. The upper sand of the Barnwell Formation is described as deep red clayey sand (LeGrand and others, 1956). The Tuscaloosa Formation consists of fine to coarse, subangular, micaceous, arkosic sands that are interbedded with gray to green, locally ironstained kaolinitic, micaceous sandy clays (Herrick and Vorhis, 1963). The base of the Tuscaloosa in this area dips slightly to the southeast at approximately 30 feet per mile and lies unconformably above the much older crystalline rocks below. The Paleozoic and older igneous and metamorphic rock lie at a depth of approximately 50 feet bgs (LeGrand, 1962).

According to the City of Macon Water Department, the Ocmulgee River is the only source of drinking water in the Macon water system. The intake is located on the Ocmulgee River approximately three miles upstream from the former Macon 2 MGP facility (Figure 5). Towards the south and west there is an increase in well usage; the Tuscaloosa sands gradually increase in thickness allowing for more availability of water from wells. Recharge to the Tuscaloosa occurs in outcrop areas west of the Ocnmlgee River. Natural discharge from the Tuscaloosa is into the Flint and Ocmulgee Rivers and smaller streams crossing the outcrop area (Pollard and Vorhis, 1980).

3.1.2 Site Geology

The geology encountered during the CSI consisted of unconsolidated alluvial clays, sands, gravels, and clays, saprolite (a clayey silt to fine sand), and a mafic to felsic gneiss bedrock (Figure 6). Cross sections A-A' through C-C' (Figures 7, 8, and 9) were prepared to illustrate the Site geology. Fill material consisting of sand, silt, clay, gravel, construction debris and asphalt was encountered from the ground surface to depths ranging from approximately 0.5 to 36 feet bgs. The fill material is thicker on the northern and eastern portions of the Site, where the 20 foot embankment was previously located (see 1889 Sanborn Fire Insurance map). Underlying the fill material across most of the Site is an alluvial deposit that consists primarily of micaceous silts and clays with some fine to coarse sand and gravel in scattered lenses. The alluvium also contains some deposited organic matter such as leaves and wood fragments. Alluvium was not encountered in borings installed to the south and southwest of the property or on the southwest corner of the property in the vicinity of Gas Holder No. 1. The alluvial deposit, where encountered, ranges in thickness from 5 to 35 feet at the Site and is encountered at the surface in borings (SB-30 through SB-31) installed along the west side of the Ocmulgee River. The alluvial deposit lies unconformably above the saprolite. The saprolite in the area of the Site is generally a micaceous silt and very fine sand that is characterized by relic foliation and other structures associated with igneous and metamorphic rock. Saprolite was encountered at depths ranging from 4.5 feet (in SB-36, located southwest of the former MGP property) to 61 feet bgs. The depth at which saprolite is encountered increases towards the river and was not observed to a total depth of 64 feet in boring SB-43 located southeast of the former MGP property. Where encountered, the thickness of the saprolite ranges from a few inches to four feet thick and is thickest on the south and southwest portions of the Site. The underlying bedrock consists of a mafic to felsic gneiss and, where encountered, ranges in depth from six feet to 62 feet bgs. The bedrock appears to slope to the east and northeast of the Site towards the Ocmulgee River.

3.2 SITE HYDROLOGY AND HYDROGEOLOGY

Figure 5 (Site Map and Surface/Storm Water Flow Path) identifies the flow paths of surface water at the Site and surrounding areas. Storm water at the former MGP property flows to various storm drains located at the facility (Figure 3) or as a sheet flow over the embankment located on the eastern boundary of the property. Storm water that flows towards the embankment accumulates in standing pools on the western side of the Norfolk Southern Railway and eventually seeps through the railway gravel bed and to the Ocmulgee River. Stormwater which falls on upgradient properties including the Exxon station, Pizza Hut restaurant, Burger King

restaurant, and Conoco Station, flows into either storm drains that feed into storm drains located at the facility, as surface flow over the embankment previously mentioned, or into a drainage located on the southwestern side of the Spring Street bridge. Storm water that flows into the drainage located on the southwestern side of the Spring Street Bridge empties into the Ocmulgee River at a point on the southeastern side of the bridge (Figure 5).

Hydrogeology at the Site was evaluated by the use of six monitoring wells (this includes four installed during the SI and two installed during the CSI). The uppermost portion of the surficial aquifer is located in fill material across the Site. Cross-sections A-A', B-B', and C-C' (Figures 7, 8, and 9) indicate the relationship of the top of groundwater with geologic units at the Site. Monitoring wells MW-1 through MW-5 are all screened within the fill material. Monitoring well MW-6 is screened within the alluvium. The fill material consists of clays and silty clays with abundant debris including concrete, brick, and asphalt. The matrix of the fill material does not appear very porous; however, due to the abundance of debris that creates void spaces within the fill material, wells screened within the fill material exhibited high conductivity values (see Section 5.Ll.2). The base of the alluvium in locations of the eastern area of the Site contains an alluvial clay which in some areas lies directly above the saprolite; this and the underlying saprolite appear to serve as an aquitard consisting of clays, silty clays, and clayey silts. A mafic to felsic gneiss bedrock underlies the saprolite. Based on water level measurements obtained on March 29, 2001, the top of the water table ranges from 9.5 (MW-01) to 25.61 feet bgs (MW-04). Water level measurements obtained from MW-06 were not used in determining the water table elevations due to the fact that it is screened below the top of groundwater. In addition, the proximity of MW-04 to MW-06 and their relative water levels indicate a downward flow gradient with the upper water bearing zone (see Section 5.2.3). Groundwater under the former MOP facility has a horizontal flow to the east and northeast. Three surface water bodies are located near the facility. The first is a drainage ditch located to the northwest of the former MOP property that feeds into the Ocmulgee River in the vicinity of the Spring Street bridge. Another drainage ditch is located approximately 130 feet southeast of the former MOP property and feeds into a drainage on the west side of the Norfolk Southern Railway. Based on field observations made during a period of heavy rainfall, the railway drainage has no obvious flow direction but most likely seeps through the railroad base material and into the Ocmulgee River. The third is the Ocmulgee River which is located approximately 250 feet to the east/northeast of the facility and appears to be a gaining water body.

3.3 EXPOSURE ASSESSMENT

The former CSR addressed the risk at the site for non-residential use. The investigation and subsequent VRP application will address the potential for residential use on the property. Therefore, the potential exposure will be to a resident living on the property. The investigation to be performed will be on the upper 15 feet of soil at the site to determine the potential for residential use.

3.3.1 Potential Receptors

The potential receptors are future residents residing on the property.

3.3.2 Exposure Media and Potential Exposure Pathways

This section identifies the potential exposure pathways and exposure routes (ingestion, dermal contact, inhalation) for COIs for the property, if applicable, and associated potential receptors.

3.3.2.1 Surface Soil

Incidental ingestion and dermal contact with surface soil (i.e., the upper 2 feet of soil) are considered potentially complete pathways for receptors in areas where COIs are present in surface soil.

The potential receptors are future residents on the property.

3.3.2.2 Subsurface Soil

The potential receptors are future residents on the property.

3.3.2.3 Groundwater

The prior CSR performed at the site confirmed that the Groundwater meets Type I RRS. No actions or investigations relative to groundwater at the site are proposed.

3.3.2.4 Indoor Air

The former Macon 2 MGP site is identified to have a low potential for VI. It is recognized that EPD requires consideration of the VI pathway for VRP sites. A technical evaluation of the VI pathway will be performed using approved VI modeling techniques, the results of which will be included in the VRP application.

4.0 PLANNED INVESTIGATIONS

The following Sections describe planned investigations to fulfill VRP requirements.

4.1 Soil Sampling

As discussed, the goal of the VRP is to allow for the development of the site for residential use. To that end, the soil sampling plan is focused on the upper fifteen feet of soil at the site. Based on the CSR (samples shown as SB-xx) reports, the only samples above the highest Residential RRS for the particular constituents at the site include the following:

SB-14 16-20' Benzo(a)pyrene at 6.8 mg/kg, Dibenzo(a,h)anthracene at 3.5 mg/kg SB-14 24-28' Benzo(a)pyrene at 10.0 mg/kg, Dibenzo(a,h)anthracene at 4.2 mg/kg SB-17 16-20' Benzo(a)pyrene at 5.0 mg/kg, Dibenzo(a,h)anthracene at 2.3 mg/kg SB-24 2-4' Benzo(a)pyrene at 2.9 mg/kg SB-25 2-4' Benzo(a)pyrene at 11.0 mg/kg SB-41 19-24' Benzo(a)pyrene at 2.2 mg/kg SB-42 2-4' Benzo(a)pyrene at 5.6 mg/kg SB-20 0-2' Arsenic at 31.5 mg/kg SB-23 14-19 Lead at 298 mg/kg SB-24 8-12' Lead at 338 mg/kg SB-27 8-12' Lead at 634 mg/kg SB-41 24-29' Lead at 484 mg/kg SB-45 10-12' Lead at 425 mg/kg SB-45 15-17' Lead at 1070 mg/kg

The test locations are shown on the attached Figure 2 in Appendix C.

Based on our review of the CSR report, and in consideration of the above, the following sampling locations are proposed (see attached Figure 2 in Appendix C for test locations):

GB-1	0-0.5', 0.5'-2'
GB-2	0-0.5', 0.5'-2'
GB-3	0-0.5', 0.5'-2', 8-10', 13-15'
GB-4	0-0.5', 0.5'-2'
GB-5	0-0.5', 0.5'-2'
GB-6	0-0.5', 0.5'-2'
GB-7	0-0.5', 0.5'-2'
GB-8	0-0.5', 0.5'-2'
GB-9	0-0.5', 0.5'-2', 8-10', 13-15'
GB-10	0-0.5', 0.5'-2'
GB-11	0-0.5', 0.5'-2', 3-5', 8-10', 13-15'
GB-12	0-0.5', 0.5'-2'
GB-13	0-0.5', 0.5'-2'
GB-14	0-0.5', 0.5'-2', 3-5', 8-10', 13-15'
GB-15	0-0.5', 0.5'-2'
GB-16	0-0.5', 0.5'-2'
GB-17	0-0.5', 0.5'-2'
GB-18	0-0.5', 0.5'-2'
GB-19	0-0.5', 0.5'-2', 8-10', 13-15'
GB-20	0-0.5', 0.5'-2'
GB-21	0-0.5', 0.5'-2', 8-10', 13-15'
GB-22	0-0.5', 0.5'-2'
GB-23	0-0.5', 0.5'-2'
GB-24	0-0.5', 0.5'-2'
GB-25	0-0.5', 0.5'-2'
GB-26	0-0.5', 0.5'-2'
GB-27	0-0.5', 0.5'-2', 3-5', 8-10', 13-15'
GB-28	2-4', 8-10', 13-15'
SB-17	8-10', 13-15'
SB-20	0-2', 2-4'
SB-24	2-4'. 4-6', 8-10', 13-15'
SB-25	0-2', 2-4', 4-6', 8-10', 13-15'
SB-4 1	4-6', 8-10', 13-15'
SB-42	2-4', 4-6', 8-10, 13-15

All samples will be tested for SVOC's and RCRA metals. Since no VOC's were noted above the Residential RRS, sampling for VOC's will not be performed.

All soil samples will be collected with a skid steer mounted Geoprobe rig. All downhole equipment will be decontaminated prior to use and between sampling locations. All samples will be collected by on site environmental professionals using approved sampling methods and procedures and shipped using proper protocols. All analysis will be performed by a laboratory certified in the State of Georgia.

4.2 Groundwater Sampling

Since no groundwater contamination has been encountered above Type 1 RRS, no additional groundwater sampling is proposed or will be performed.

4.3 Vapor Intrusion

Vapor intrusion studies will be performed using the sampling data obtained during the onsite investigations. The vapor evaluation will be performed using the Johnson & Ettinger (1991) Model (JEM) for Subsurface Vapor Intrusion into buildings to assess the potential vapor risk. The JEM estimates indoor air concentrations and associated health risks associated with vapor intrusion based on site specific characteristics. Due to no s tructures being present on site, no on site testing is proposed at this time.

5.0 Type I Risk Reduction Standards

The following Type I Risk Reduction Standards in soil are proposed for delineation of contamination at the site. Remediation standards will be proposed in future correspondence.

Constituent	Type 1 RRS (mg/kg)
Inorganics	
Arsenic	20
Barium	1,000
Beryllium	2
Cadmium	2
Chromium	100
Copper	100
Lead	75
Mercury	0.5
Nickel	50
Vanadium	100
Zinc	100
Total Cyanide	20

Constituent	Type 1 RRS (mg/kg)
VOC's	
Benzene	0.5
Ethylbenzene	70
Toluene	100
Xylenes	1000
Carbon Disulfide	400
Methylene chloride	0.5
SVOC's	
Acenaphthene	300
Acenaphthylene	130
Acetophenone	400
Anthracene	500
Benzo(a)anthracene	5
Benzo(a)pyrene	1.64
Benzo(b)fluoranthene	5
Benzo(k)fluoranthene	5
Benzo(g,h,i)perylene	500
Chrysene	5
Dibenz(a,h)Anthracene	2
Fluoranthene	500
Fluorene	360
Indeno(1,2,3-cd)pyrene	5
Naphthalene	100
Phenanthrene	110
Phenol	400
Pyrene	500

6.0 **PROJECT SCHEDULE**

The site investigation for the Site will be completed within 90 days acceptance into the VRP Program. Corrective action, if necessary, will be completed and the Site will be certified as meeting Risk Reduction Standards within five years of acceptance into the VRP Program.

7.0 **REFERENCES**

Compliance Status Investigation Report, Former Macon 2 MGP Facility, Macon, Ga. W illiams Environmental Services, Inc. Preparation Date June 17, 2003, Revised September 5, 2003.

APPENDICES

APPENDIX A

Voluntary Investigation and Remediation Plan Application Form and Checklist

VRP APPLICANT INFORMATION							
COMPANY NAME	Macon-Bibb County	Macon-Bibb County					
CONTACT PERSON/TITLE	Mayor Robert Reichert						
ADDRESS	700 Poplar Street, P.O. Be	ox 247, Maco	n Georgia. 31202-024	47			
PHONE	478-751-7170	FAX	478-751-7931	E-MAIL			3
GEORGIA CER	TIFIED PROFESSION	IAL GEOL	OGIST OR PROF	ESSIONAL	ENGINEER	R OVER	SEEING CLEANUP
NAME	Thomas E. Driver			GA PE/PG N	UMBER	PE1739	94
COMPANY	Geotechnical & Environm	ental Consult	ants, Inc.				
ADDRESS	514 Hillcrest Industrial Bo	ulevard, Mac	on Georgia. 31204-34	172			
PHONE	478-757-1606	FAX		E-MAIL	tdriver@geo	consultan	ts.com
		APPL	ICANT'S CERTIF	ICATION			
In order to be considered a qu	alifying property for the VR	P:					
 (1) The property must have a release of regulated substances into the environment; (2) The property shall not be: (A) Listed on the federal National Priorities List pursuant to the federal Comprehensive Environmental Response, Compensation, and Liability Act, 42 U.S.C. Section 9601. (B) Currently undergoing response activities required by an order of the regional administrator of the federal Environmental Protection Agency; or (C) A facility required to have a permit under Code Section 12-8-66. (3) Qualifying the property under this part would not violate the terms and conditions under which the division operates and administers remedial programs by delegation or similar authorization from the United States Environmental Protection Agency. (4) Any lien filed under subsection (e) of Code Section 12-8-96 or subsection (b) of Code Section 12-13-12 against the property shall be satisfied or settled and released by the director pursuant to Code Section 12-8-94 or Code Section 12-13-6. 							
In order to be considered a pa (1) The participant must (2) The participant must		e voluntary re rder, judgmei	mediation property or nt, statute, rule, or reg	have express p ulation subject	ermission to e to the enforc	enter anoti ement au	her's property to perform corrective action. thority of the director.
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.							
I also certify that this property is eligible for the Voluntary Remediation Program (VRP) as defined in Code Section 12-8-105 and I am eligible as a participant as defined in Code Section 12-8-106.							
APPLICANT'S SIGNATURE	Robuta. B. Neichert						
APPLICANT'S NAME/TITLE (PRINT)	Ма	ayor - Ma	acon-Bibb Coun	ty	DAT	ſE	

QUALIFYING F	PROPERTY INFORMATION (For additional qua		last page of application	form)
		ORY INFORMATION (if applicable)		
HSI Number	Former HSI Site # 10692	Date HSI Site listed	January 5, 2001 221210	
HSI Facility Name	Former Macon 2 MGP Facility	er Macon 2 MGP Facility NAICS CODE		
		Y INFORMATION		
TAX PARCEL ID	OC-98-5J; OC-99-4A; OC-99-9-4AB; Portions of Norfolk Southern Railroad ROW; Portions of Willow St, ROW	7.03		
PROPERTY ADDRESS	Intersection of Spring Street Lane and Willow S	Street, Macon Georgia	·	
CITY	Macon	COUNTY	Bibb	
STATE	Georgia	ZIPCODE	31201	
LATITUDE (decimal format)	32.842402700	LONGITUDE (decimal format)	-83.628753000	
, , ,	PROPERTY OV			
PROPERTY OWNER(S)	Macon-Bibb County	PHONE # 478-751-7170		
MAILING ADDRESS	700 Poplar Street, PO Box 274	· · · · · · · · · · · · ·	1	
CITY	Macon	STATE/ZIPCODE	Georgia/31202-0247	
ITEM #	DESCRIPTION OF RE	+	Location in VRP (i.e. pg., Table #, Figure #, etc.)	For EPD Comment Only (Leave Blank)
1.	\$5,000 APPLICATION FEE IN THE FORM OF A CHECK PAYABLE TO THE GEORGIA DEPARTMENT OF NATURAL RESOURCES. (PLEASE LIST CHECK DATE AND CHECK NUMBER IN COLUMN TITLED "LOCATION IN VRP." PLEASE DO NOT INCLUDE A SCANNED COPY OF CHECK IN ELECTRONIC COPY OF APPLICATION.)			
2.	WARRANTY DEED(S) FOR QUALIFYING PRO	OPERTY.	Appendix B	
3.	TAX PLAT OR OTHER FIGURE INCLUDING C BOUNDARIES, ABUTTING PROPERTIES, AN NUMBER(S).	Appendix B		
4.	ONE (1) PAPER COPY AND TWO (2) COMPA VOLUNTARY REMEDIATION PLAN IN A SEAT FORMAT (PDF).		Enclosed	
5.	The VRP participant's initial plan and applic reasonably available current information to application, a graphic three-dimensional pr (CSM) including a preliminary remediation standards, brief supporting text, charts, and total) that illustrates the site's surface and s suspected source(s) of contamination, how the environment, the potential human healt complete or incomplete exposure pathways preliminary CSM must be updated as the ir progresses and an up-to-date CSM must b status report submitted to the director by th	Section 4, page 7-8 & Appendix C, Figure 2 Section 5, page 9 Section 6, page 10		

	MILESTONE SCHEDULE for investigation and remediation of the site, and	
	after enrollment as a participant, must update the schedule in each semi-	
	annual status report to the director describing implementation of the plan	
	during the preceding period. A Gantt chart format is preferred for the	
	milestone schedule.	
	The following four (4) generic milestones are required in all initial plans with	
	the results reported in the participant's next applicable semi-annual reports to	
	the director. The director may extend the time for or waive these or other	
	milestones in the participant's plan where the director determines, based on a	
	showing by the participant, that a longer time period is reasonably necessary:	
5 -	Within the first 12 months after enrollment, the participant must complete	
5.a.	horizontal delineation of the release and associated constituents of concern	
	on property where access is available at the time of enrollment;	
	Within the first 24 months after enrollment, the participant must complete	
5.b.	horizontal delineation of the release and associated constituents of concern	
	extending onto property for which access was not available at the time of	
	enrollment;	
	Within 30 months after enrollment, the participant must update the site CSM	
5.c.	to include vertical delineation, finalize the remediation plan and provide a	
	preliminary cost estimate for implementation of remediation and associated continuing actions; and	
5.d.	Within 60 months after enrollment, the participant must submit the compliance status report required under the VRP, including the requisite	
5.u.	certifications.	
	SIGNED AND SEALED PE/PG CERTIFICATION AND SUPPORTING	
	DOCUMENTATION:	
	"I certify under penalty of law that this report and all attachments were prepared by me or under my direct supervision in accordance with the Voluntary Remediation Program Act (O.C.G.A. Section 12-8-101, et seq.). I am a	
	professional engineer/professional geologist who is registered with the Georgia State Board of Registration for	
	Professional Engineers and Land Surveyors/Georgia State Board of Registration for Professional Geologists and I	
	have the necessary experience and am in charge of the investigation and remediation of this release of regulated substances.	
	Furthermore, to document my direct oversight of the Voluntary Remediation Plan development, implementation of corrective action, and long term monitoring. I have attached a monthly summary of hours invoiced and description of	
6.	services provided by me to the Voluntary Remediation Program participant since the previous submittal to the	
0.	Georgia Environmental Protection Division.	
	The information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that	
	there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations."	
	Printed Name and GA PE/PG Number Date	
	Signature and Stamp	

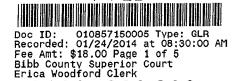
ADDITIONAL QUALIFYING PROPERTIES (COPY THIS PAGE AS NEEDED)

PROPERTY INFORMATION					
TAX PARCEL ID	OC-98-5J	PROPERTY SIZE (ACRES)	2.55		
PROPERTY ADDRESS	801 Riverside Drive				
CITY	Macon	COUNTY	Bibb		
STATE	Georgia	ZIPCODE	31201		
LATITUDE (decimal format)	32.842402700	LONGITUDE (decimal format)	-83.628753000		
	PROPERTY OV	VNER INFORMATION			
PROPERTY OWNER(S)	City of Macon	PHONE #	478-751-7110		
MAILING ADDRESS 700 Poplar Street					
CITY	Macon	STATE/ZIPCODE	GA/31202		

PROPERTY INFORMATION					
TAX PARCEL ID	OC-99-4A	PROPERTY SIZE (ACRES)	1.457		
PROPERTY ADDRESS	725 Riverside Drive				
CITY	Macon	COUNTY	Bibb		
STATE	GA	ZIPCODE	31201		
LATITUDE (decimal format)	32.841814400	LONGITUDE (decimal format)	-83.627843900		
	PROPERTY OW	NER INFORMATION			
PROPERTY OWNER(S)	City of Macon	PHONE #	478-751-7110		
MAILING ADDRESS	700 Poplar Street				
CITY	Macon	STATE/ZIPCODE	GA/31202		

PROPERTY INFORMATION					
TAX PARCEL ID	OC-99-4AB	PROPERTY SIZE (ACRES)	2.9		
PROPERTY ADDRESS	815 Riverside Drive				
CITY	Macon	COUNTY	Bibb		
STATE	GA	ZIPCODE	31202		
LATITUDE (decimal format)	32.842655000	LONGITUDE (decimal format)	-83.627763000		
	PROPERTY OW	/NER INFORMATION			
PROPERTY OWNER(S)	City of Macon	PHONE #	478-751-7110		
MAILING ADDRESS 700 Poplar Street					
CITY	Macon	STATE/ZIPCODE	GA/31201		

PROPERTY INFORMATION					
TAX PARCEL ID	R-O-W Norfolk Southern	PROPERTY SIZE (ACRES)	.034		
PROPERTY ADDRESS	N/A				
CITY	Macon	COUNTY	Bibb		
STATE	GA	ZIPCODE	31202		
LATITUDE (decimal format)	32.841814400	LONGITUDE (decimal format)	-83.627843900		
	PROPERTY OW	/NER INFORMATION			
PROPERTY OWNER(S)	City of Macon	PHONE #	478-751-7110		
MAILING ADDRESS	700 Poplar Street				
CITY	Macon	STATE/ZIPCODE	GA/31202		


PROPERTY INFORMATION					
TAX PARCEL ID	R-O-W Willow Street	PROPERTY SIZE (ACRES)	.09		
PROPERTY ADDRESS	0863 Willow Street				
CITY	Macon	COUNTY	Bibb		
STATE	GA	ZIPCODE	31201		
LATITUDE (decimal format)	32.841814400	LONGITUDE (decimal format)	-83.628753000		
PROPERTY OWNER INFORMATION					
PROPERTY OWNER(S)	City of Macon	PHONE #	478-751-7110		
MAILING ADDRESS 700 Poplar Street					
CITY	Macon	STATE/ZIPCODE	GA/31202		

PROPERTY INFORMATION					
TAX PARCEL ID	R-O-W Spring Street Lane	PROPERTY SIZE (ACRES)	.0027		
PROPERTY ADDRESS					
CITY	Macon	COUNTY	Bibb		
STATE	GA	ZIPCODE	31201		
LATITUDE (decimal format)	32.841814400	LONGITUDE (decimal format)	-83.627843900		
PROPERTY OWNER INFORMATION					
PROPERTY OWNER(S)	City of Macon	PHONE #	478-751-7110		
MAILING ADDRESS	700 Poplar Street				
CITY	Macon	STATE/ZIPCODE	GA/31202		

APPENDIX B

Cross-reference: Deed book 8919 Page 115-117

BK 9180 PG 322-326

Return to: Blake C. Sharpton, Peck, Shaffer & Williams, LLP, 435 2nd Street, Suite 204, Macon, GA 31201 (478) 803-8051

QUITCLAIM DEED

BIBB COUNTY, GEORGIA

THIS INDENTURE is made as of December 4, 2013, by and between MACON-BIBB COUNTY URBAN DEVELOPMENT AUTHORITY ("Grantor"), and CITY OF MACON ("Grantee").

WITNESSETH:

For and in consideration of Ten and 00/100 Dollars (\$10.00) and other good and valuable considerations, the receipt and sufficiency whereof are hereby acknowledged, Grantor has this day bargained, sold and does by these presents bargain, sell, remise, release and forever quitclaim to Grantee, and the heirs, successors, executors, administrators and assigns of Grantee, that certain real property lying and being in Bibb County, Georgia, more particularly described in <u>EXHIBIT "A"</u> attached hereto and made a part hereof by reference (the "Property").

Notwithstanding anything herein to the contrary, this conveyance is expressly made subject to those certain matters set forth in <u>EXHIBIT "B</u>" attached hereto and made a part hereof by reference.

This deed is given for the purpose of forever releasing and quit-claiming any interest the Grantor has now or ever had in the Property.

TO HAVE AND TO HOLD the said described premises unto Grantee, its successors, successors-in-title and assigns, so that neither the Grantor nor any person or persons claiming under Grantor shall at any time, claim or demand any right, title or interest to the Property or its appurtenances.

[EXECUTION APPEARS ON FOLLOWING PAGE]

IN WITNESS WHEREOF, Grantor has hereunto set its hand and affixed its seal as of the day and year above written.

Signed, sealed and delivered in the presence of:

Upofficial Witness

Blake & Stapt

Notary Public

[NOTARY SEAL]

MACON-BIBB COUNTY URBAN DEVELOPMENT AUTHORITY, a public body corporate and politic

SIL By:

Typed Name: Kathryn Gerhardt

Office: Vice - Chair

[CORPORATE SEAL]

EXHIBIT "A"

LEGAL DESCRIPTION

All that tract or parcel of land situate, lying and being in Square 98 and Square 99 of Old City, Macon, Bibb County, Georgia, and Portions of closed streets therein, said property being more particularly described according to a plat prepared by Joe A. Witherington, City Engineer, dated September 15, 1977, revised January 1978 and recorded in Deed Book 1320, Page 820, Clerk's Office, Bibb Superior Court.

This is the same parcel that was conveyed to the MACON-BIBB COUNTY URBAN DEVELOPMENT AUTHORITY by Quitclaim Deed from the CITY OF MACON dated January 24, 2013 and recorded in deed book 8919, page 115-117, Clerk's Office, Bibb Superior Court.

The Property is known by the current system of street numbering as 801 Riverside Drive, was formerly known as 861 Willow Street, and is commonly referred to as the "Central Services Tract."

EXHIBIT "B"

EXCEPTIONS

LESS and except those parcels conveyed to Georgia Power Company as described in deed book 6698, page 352, and Atlanta Gas Light Company as described in deed book 6698, page 336, Clerk's Office, Bibb Superior Court.

(Page 1 of 3) BOOX 4142PAGE 344 1:08874 ASCEIVED , MERK'S OFFICE 1999 HAR 30 FH 4: 21 SUTERICR COURT OF 2:62 COUNTY, CEORGIA WARRANTY DEED EXUPAID RETURN TO SELL & MELTON . (LL) P. U. 80X 229 A1005 / MACON, GA 31297-2898 STATE OF GEORGIA, COUNTY OF BIBB. THIS INDENTURE, made this 30th day of March in the year JANES L. BROWN of the State of Georgia and County of Bibb, hereinafter called the "First Party," and MACON-BIBB COUNTY URBAN DEVELOPMENT AUTHORITY of the State of Georgia and County of Bibb, hereinafter called the "Second Party," WITNESSETH: That the First Party, for and in consideration of the sum of One Hundred Dollars (\$100.00) and other valuable considerations, cash in hand paid at and before the scaling and delivery of these presents, the receipt whereof is hereby acknowledged, does by these presents, grant, sell, convey and confirm unto the Second Party, all of the following described property. Togethe following described property, to-wit: ALL THAT TRACT OR PARCEL OF LAND situate, lying and being in the City of Macon, Bibb County, Georgia, being known as all of Lot 3 and part of Lots 4, 5 and 6 in Square 99 of the Old City as more particularly shown on a plat recorded in Plat Book 54, Page 75, Clerk's Office, Bibb Superior Court and also an encroachment into Riverside Drive and a portion of allows religent the sold described loss portion of alleys adjacent to said described lots portion of alleys adjacent to said described lots. Said property is more particularly described as follows: BEGINNING at an iron pin at the southeasterly corner of Lot 6 in Square 99 where the same is intersected by the northwesterly side of a 10-foot alley and the northeasterly side of a 20-foot alley as shown on the original plats of the whole city, thence south 54 degrees 00 minutes east, a distance of 5.0 feet to the center line of a 10-foot alley; thence south 36 degrees 00 minutes west a distance of 267.3 feet to an iron pin on the northeasterly right of way of Riverside Drive as extended by an encroachment: thence north 54 degrees extended by an encroachment; thence north 54 degrees 57 minutes west along the northeasterly side of Riverside Drive a distance of 167.5 feet to a point, thence north 36 degrees 00 minutes east a distance minutes east a distance of 162.5 feet to an iron -Page 1

Ż

(Page 2 of 3)

ł

SELL & MELTON, LLP, 1430 Church Maccul (2013) P.O. Bon 209 Macos, UR 31202 (2023) 912-746-8531 Fax 513/745-4432

BOUK 4142PAGE 345

۰.

State of the second second

pin, thence south 36 degrees 00 minutes west a distance of 157.5 feet to an iron pin and the point of beginning.

LESS AND EXCEPT: All that tract or parcel of land situate, lying and being in Square 99 of Old City, Macon, Bibb County, Georgia, being more particularly described as follows: BEGINNING at a railroad iron located at a point where the northeasterly line of the original 20-foot alley through Square 98 intersects with the southeasterly line of the original 10-foot alley running through said Square 98; and from said beginning point running south 36 degrees 00 minutes west, a distance of 57.2 feet; there angle left and run north 71 degrees 45 minutes 34 seconds east a distance of 215.48 feet, thence angle right and run south 54 degrees 00 minutes east a distance of 248.60 feet to the FOINT OF BEGINNING, thence continue running south 54 degrees 00 minutes east a distance of 17.0 feet, thence angle right and run south 36 degrees 00 minutes west a distance of 387.32 feet, thence angle right and run north 54 degrees 00 minutes west a distance of 387.60 feet to the FOINT 05 Seginning fight and run south 36 degrees 00 minutes west a distance of 387.32 feet, thence angle right and run north 54 degrees 57 minutes west a distance of 17.0 feet, thence angle right and run north 36 degrees 00 minutes east a distance of 387.60 feet to the POINT OF BEGINNING, all according to a plat recorded in Plat Book 74, page 38, Clerk's Office, Bibb Superior Court.

Said property is known as 725 Riverside Drive, Macon, GA. This is the same property described in a Warranty Deed dated November 26, 1996, from Empire Financial Services, Inc. to James L. Brown, recorded in Deed Book 2977, Page 76, Said Clerk's Office.

TO HAVE AND TO HOLD the said bargained premises, together with all and singular the rights, members and appurtenances theremuto belonging or in any wise appertaining to every proper use, benefit and behoof of the Second Party, its heirs, executors, administrators and assigns in FEE SIMPLE;

And the First Party, its heirs, executors, and administrators, will warrant and forever defend the right and title to the above-described property unto the Second Party, its heirs, executors, administrators and assigns, against the lawful claims and demands of all persons whomsoever.

Page 2

(Page 3 of 3)

BOOK 4142PAGE 346 IN WITNESS WHEREOF, the First Party has signed, sealed and delivered these presents, the day and year first above written. Z. (SEAL) AHEY L. BROWN Signed, sealed and delivared in the presence of: 37 PERE \sim UNIOF NOTARY PUBLI My commission expires:_ (AFFIX NOTARY SEAL HERE) E PER ED 9, SELL IN Notary Public STATE OF GEORGIA My Comm. Exp. 5/31/99 (szal) GEORGIA, BES County, Clar's Office Superior Court 5000 C FROM OF FRECOS MAR 3 0 19981 4:21 PM MAR 3 1 1998 Dop. Chark Reported SELL & MELTON, LL.P. 1403 Charter Medicat Boty P.O. Box 222 Macros, CA 31202-0229 912-749-6521 FAx \$12/745-6425 Page 3

.

APR 2 1921 -8 20 AM

TROPER

Bill City of Macon Fit but to James Ellest GC mis B

446260

800*1403 PAGE 286 LIMITED WARRANTY DEED STATE OF GEORGIA

COUNTY OF BIBB

IN CONSIDERATION of Ten and 00/100 (\$10.00) Dollars and other valuable consideration, to Grantor paid, the receipt of which is hereby acknowledged MACON-BIBE COUNTY URBAN DEVELOPMENT AUTHORITY of Bibb County, Georgia, hereinafter referred to as Grantor, has this day bargained and sold, and does hereby transfer and convey unto the CITY OF MACON, GEORGIA, its successors or assigns, hereinafter referred to as Grantee, the following described property, to-wit:

> All that tract or parcel of land situate, lying and being in Square 98 and Square 99 of Old City, Macon, Bibb County, Georgia, and portions of closed streets therein, said property being more particularly described as follows:

Beginning at a railroad iron located at a point where the northeasterly line of original 20 foot alley to Square 98 intersects with the southeasterly line of original 10 foot alley running through said Square 98 and from said beginning point running south 36 degrees 00 minutes west a distance of 57.2 feet to the point of beginning; thence running porth 71 degrees 45 minutes 34 seconds east a distance of 215.48 feet to a point; thence running south 54 degrees 00 minutes east a distance of 248.60 feet to a point; thence running south 36 degrees 00 minutes west a distance of 387.60 feet to a point; thence running north 54 degrees 57 minutes west a distance of 104.50 feet to a point; thence running north 54 degrees 46 minutes west a distance of 170.70 feet to a point; thence running north 36 degrees 00 minutes east distance of 68.47 feet to a point; thence running north 54 degrees 00 minutes west a distance of 99.00 feet to a point; thence running north 36 degrees 00 minutes east a distance of 148.30 feet to the point of beginning.

All according to a plat prepared by Joe A. Witherington, City Engineer, dated March 20th, 1981, a copy of said plat being attached to and made a part of this instrument.

Said Grantee, and the successors, heirs, executors, administrators and assigns of said Grantee to have and to hold said lot of land and its appurtenances forever, in Fee Simple.

Each of the undersigned warrants the title to said . described premises unto the said Grantee, and the successors,

300-14.13 PAG 287

heirs, executors, administrators, and assigns of Grantee, against the claims of Grantor, its successors, transferees, or assigns, or any person claiming thereunder.

Wherever the words "Grantor" and "Grantee" are used herein the same shall be construed to include, when appropriate, either gender and both singular and plural, and the grammatical construction of sentences shall conform thereto.

WITNESS the hand and seal of Grantor, this <u>31</u> day of <u>MARCA</u>, 1981.

MACON-BIBB COUNTY, URBAN DEVELOPMENT AUTHORITY BY: ATTEST: *D*ir Title

Signed, sealed and delivered in the presence of:

My Commission Expires April 2, 1982

Public

Ċ

GEORGIA, Bibb County, Clerk's O//ice Superior Court Filed for Record APR 2 1921, 8:30 a.m. Recorded APR 3 1981

...Dep. Clark

book 1308 page 308		200	JAmerican Fe	1
State of Georgia.	352393 BIBB	County	50-72 3	

2

In Consideration of \$10.00 and other valuable considerations.

. 1

of

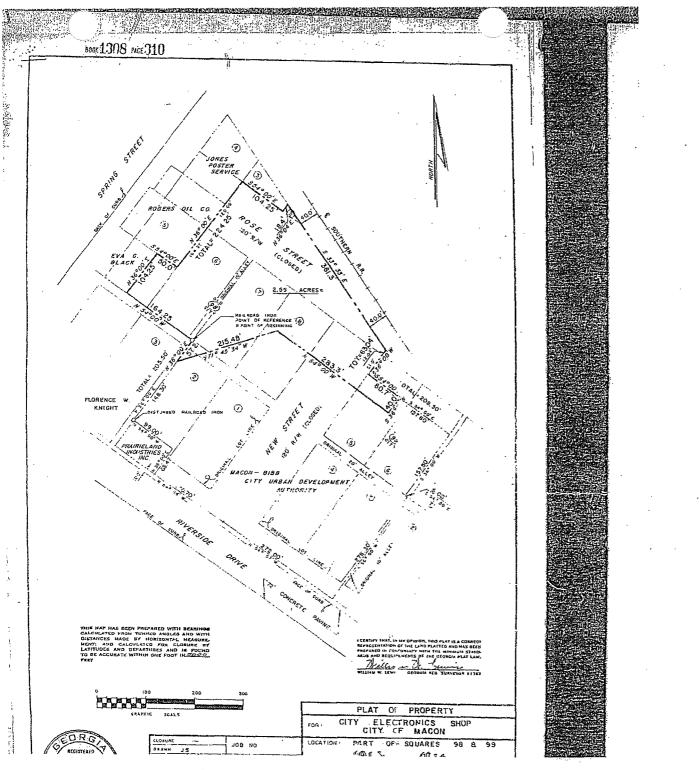
Dollars, to Grantor paid, receipt of which is hereby acknowledged,
MACON-BIBB COUNTY URBAN DEVELOPMENT AUTHORITY
ofBibb_County,_Georgiahereinafter referred
to as Grantor, has this day bargained and sold, and does hereby transfer and convey, unto
CITY OF MACON, GEORGIA

its. successors, han executer administration assigns, hereinafter referred to as Grantee, the following described property, to-wit:

All that tract or parcel of land situate, lying and being in Square 98 and Square 99 of Old City, Macon, Bibb County, Georgia, and Portions of closed Streets therein, said property being more particularly described as follows:

Beginning at a railroad iron located at a point where the northeasterly line of original 20' Alley through Square 98 intersects with the southeasterly line of original 10' Alley running through said 3quare 98, and from said beginning point running along said northeasterly line of said original 20' Alley a distance of 164.25 feet; thence running N 36° 00' E a distance of 104.25 feet; thence running S 54° 00' E a distance of 50 feet to a point; thence N 36° 00' E a distance of 224.25 feet to a point; thence N 36° 00' E a distance of 104.25 feet to a point; thence N 36° 00' E a distance of 104.25 feet to a point; thence N 36° 04' E a distance of 18.4 feet, more or less, to the right of way of Southern Railroad Company property; thence running S 33° 33' E along the right of way of Southern Railroad Company property a distance of 361.3 feet; thence running S 36° 00' W a distance of 63.04 feet; thence running S 54° 00' E a distance of 80.70 feet; thence running S 54° 00' E a distance of 80.70 feet; thence running S 54° 00' E a distance of 80.70 feet; thence running S 54° 00' E a distance of 80.70 feet; thence running S 10° X3 feet; thence running S 10° 45' 34" W a distance of 215.48 feet to the southeasterly side of said original 10' Alley; thence running N 36° 00' E along the southeasterly side of said original 10' Alley to the point of beginning.

All according to a plat prepared by Joe A. Witherington, City Engineer, dated September 15, 1977, as a plat of City Electronics Shop, City of Macon. A copy of said plat being attached to and made a part of a deed from Georgia Bank & Trust Company to Macon-Bibb County Urban Development Authority.


<u></u>	GUF	GEORGIA, Bibb County, Clerk's Office Superior Court
Z	UNT CEOI	GEORGIA, BIBB County, Clerks Strict 1997 Att 1997 Filed for Record CT 191977
တ	G.	
 }	DUN	Recorded. 001 20 1977 Dep. Clerk
3	4	
	PM I	PH I COUNT OL

Said: Grantee, and the successors, heirs, executors, administrators and assigns of said Grantee to have and to hold said lot of land and its appurtenances forever, in Fee Simple.

Each of the undersigned warrants the title to said described premises unto the said Grantee, and the successors, heirs, executors, administrators, and assigns of Grantee, against the Executors, administrators, its successors, transferees, or assigns, or any person claiming the feunder.

Wherever the words "Grantor" and "Grantee" are used herein the same shall be construed to include, when appropriate, either gender and both singular and plural, and the grammatical construction of sentences shall conform thereto.

increto.	ki sta
Witness the hand and seal of Grantor, this $\frac{e}{2}$	day of October, 1977
Signed, sealed and delivered in the presence of:	, MACON-BIBB COUNTY URBAN DEVELOPMENT
Euclin & Rallin	AUTHORITY (IL S.)
Jean Potreso	By THECKER
Notary Public, My commission expires JANUARY. 12. 1980	By: Delores Orhillet, Serietarys,
	MCKISL&G/500/REV 4.76/F6A1854

APPENDIX C

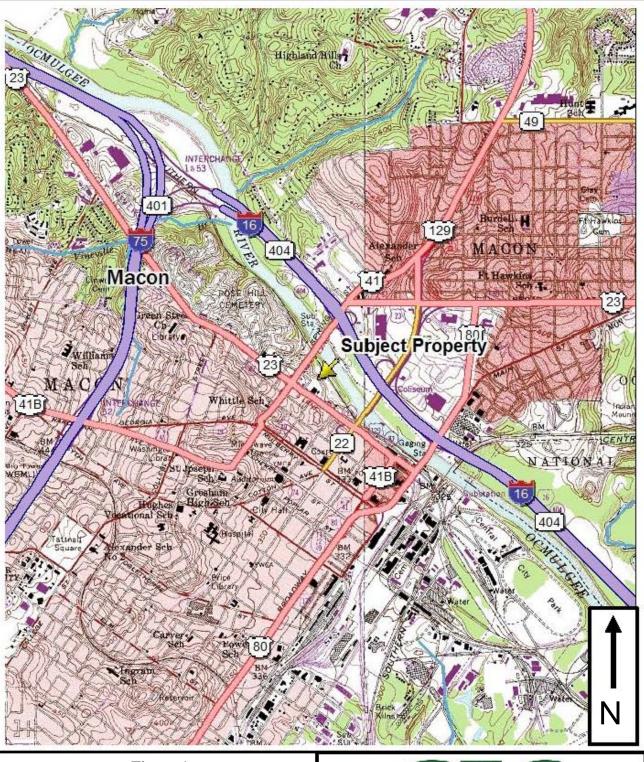
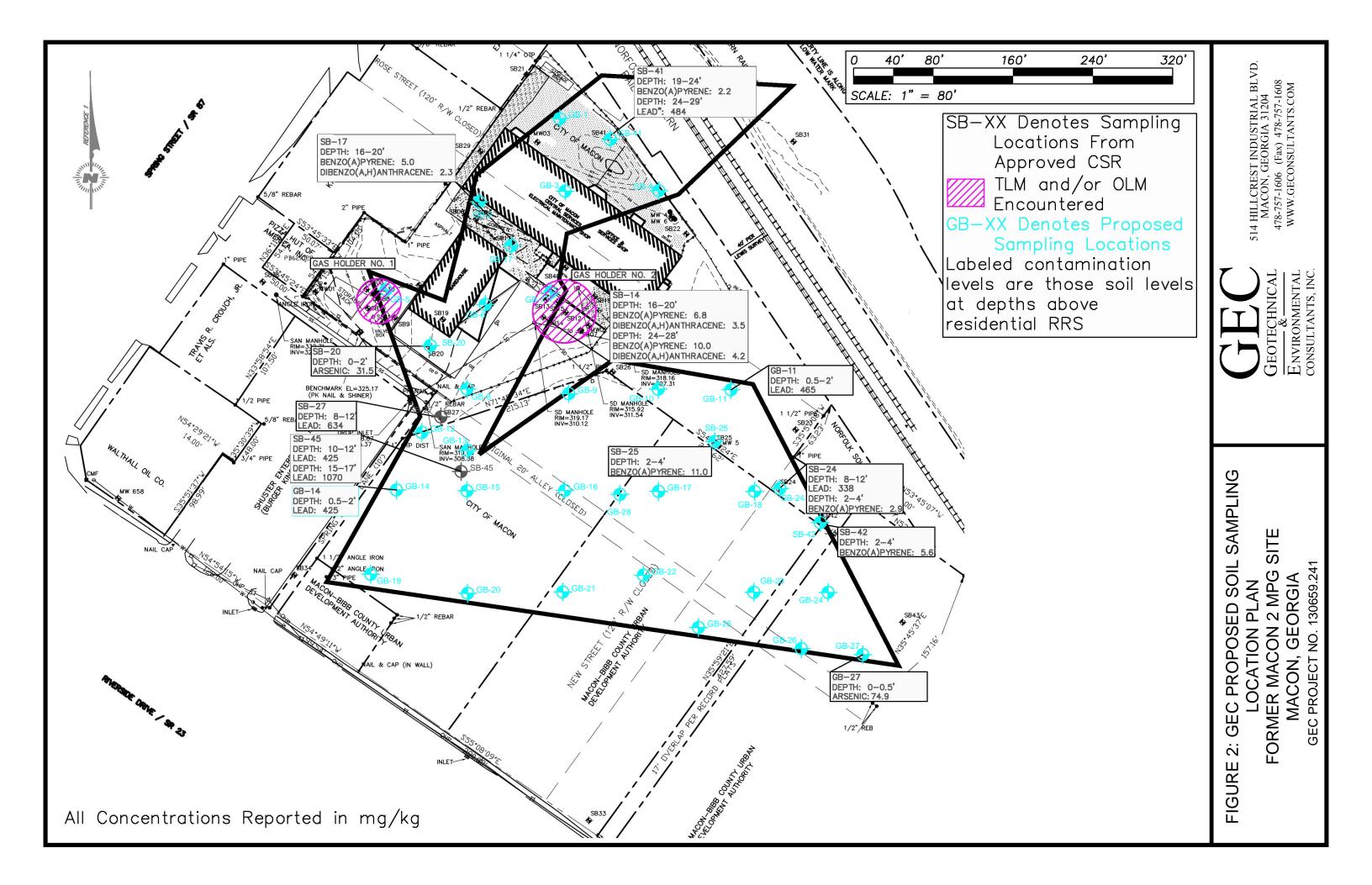



Figure 1 Site Location Map Former Macon 2 MGP Facility Macon, Bibb County, Georgia GEC Project No. 130659.241 Approximate Scale: 1" = 2,000' Source: Macon West, GA Quadrangle (1985)

5031 Milgen Court, Columbus, GA 31907 • Phone: (706) 569-0008 • Fax: (706) 569-0940

VOLATILE ORGANIC COMPOUNDS SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

л Э	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chioride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material		N	DL	DL	DL	DL	DL	DL	
UBL - Nat. Soils			DL	DL	. DL	DL	DL	DL	
SB-14-0.5-2	U	Fill	5.8U	5.8U	. 5.8U	230	5.8U	5.8U	· 0
SB-14-16-20	U	FN	5.10	5.10	5.10	200	. 5.10	5.1U	0
SB-14-24-28	S	Fill	國行為 1493	8.2U	8.2U	33U	8.2U	8.2U	9.3
SB-15-4-8	U	Fill .	4.2U	4.2U		17U	4.2U	4.2U	. 0
SB-15-36-41	S	Fill	5.1U	17 State	5.1U	20U	5.1U	5.1U	17
SB-16-0.5-2	U	Fill	6U	6U	6U	240	6U	6U	. 0
SB-16-2-4	U	Fill	4.90	4.9U	4.9U	20U	4.9U	4.9U	0
SB-16-19-24	U	Fill	4.9U	4.90	4.9U	20U	4.9U	4.9U	0
SB-16-24-29	S	Fill -	6,6U	王王 经济行利用4	6.6U	26U	6.6U	6.6U	14
SB-16-29-34	S	Nat. Soil	70	70	70	28U	70	7U	. 0
SB-16-34-37	S	Nat. Soil	5.6U	5.6U	5.6U	- 22U	5.6U	5.6U	0
SB-17-0,5-2	U	Fill	6.1U	6.1U	6.1U	24U	6.1U	6.1U	Ó
SB-17-2-4	U	Fill	· 4.4U	4.4U	4,4U	18U	4.4U	4.4U	0
SB-17-16-20	U	Fill	50	管理说明的 8	5Ú	200	5U	5U	5.3
SB-17-24-28	S	Fill	, 5.1 U	5.1U	5.1U	200	5.1U	5.1U	0
SB-17-29-33	S	Fill	从11 00000000000000000000000000000000000	6.3U	6.3Ú	25U	6.3U	6.3U	13
SB-17-44-49	S	Nat. Soil	(1) State 5100	6.9U	國家自治	280			5300
SB-17-49-51	S.	Nat. Soil	主義的常義主要10	50	-5U	20U	5U	50	10
SB-17-54-59	S	Nat. Soil	机构运行16	· 4.9U	4.90	200	4.9U	4.9U	15
SB-18-0.5-2	U	Fài	5.6U	5.6U	5.6U	220	5.6U	5.6U	0
SB-18-2-4	U	Fill	5,10	5.1U	5.1U	200	5.1U	5.1U	- 0
SB-18-16-18	U	FIII	5.20	5.20	5.2U	21U	5.20	5.2U	. 0
SB-18-28-32	14	Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-18-32-36	-	Nat. Soil	1. 计算错的	5.7U	Control Toxy & add - rd. Front Eac.		20%23 - \$196	Carl and a	160
SB-18-56-60	S	Nat. Soil	6.5U	6.5U	6.5U	26U	6.50	6.5U	0
SB-19-0.5-2	U	Fill	4.4U	4.4U	4.40	18U	4.4U	4.4U	.0
SB-19-2-4		Fill	5.10	· 5.1U		200	5.1U	5.1U	0
DUP032101A		Fill	4.8U	4.8U	4.8U	. 19U	4.8U	4.8U	0
SB-19-4-8		Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-19-8-11	-	Nat. Soil	5.20	5.20	5.20	21U	5.2U	5.2U	0
SB-20-0-2		Fill	5.8U	5.8U	5.8U	23U	5.8U	5.8U	0
DUP031501B		Fill	5.3U	5.3U	5.3U	210	5.3U	5.3U	0
SB-20-2-4		FNI -	4.3U	4.3U	4.3U	. 170	4.3U	4.3U	0
SB-20-4-8		Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	0
SB-20-9-13		Nat. Soil	5.5U	5.5U	5.5U	22U	5.5U	5.50	0
SB-21-0-2		Fill 🔗	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
DUP030601A		Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	0
SB-21-2-4		Fill	7.1U	7.10	7.10	290	7.1U	7.1U	0
SB-21-12-16		Fill	4,90	4.9U	4.9U	20Ü	同時 的過去。	4.9U	6.7
B-21-16-20		Fill	5.4U	5.4U	5.4U	22U	5.4U	5.4U	0
3B-21-28-30		Fill	5.3U	的影响的有些	5.3U	21U	5.3U	5.3U	10
SB-21-44-48	S	Nat. Soil	5U	5U	. 5U	200	5U	5U	0
SB-21-60-64	S	Nat, Soil	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0

.1 of 17

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	genzene Benzene	Carbon Disutfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material		L	DL	DL.	DL	DL	DL	DL	1
UBL - Nat. Soils			DL	DĹ	ĎL.	DL	DL	DL	
SB-22-2-4	υ	Fill	3.6U	3.6U	3.6U	15U	3.60	3.60	
SB-22-19-24	U	Fill	3.8U	3.8U	3.8U	15U	3.8U	3.8U	······
SB-22-24-29	S	Nat, Soil	4.5U	4.5U	4.50	18U	4.50	4.5U	
SB-22-59-62	S	Nat, Soil	5.1U	5.1U	5.10	21U	. 5.10	5.1U	1 IV
SB-23-0-2	U	Fill	5.6U	5.6U	5.6U	22U	5.6U	5.6U	
DUP032201B	U	FIII	5,50	5.5U	5.5U	22U	5.5U	5.6U	
SB-23-2-4	U	Fill	3.8U	3.8U	3.8U	15U	3.8U	3.8U	
SB-23-14-19	U	Fill	5,20	5.2U	5.2U	210	5.2U	5.2U	
SB-23-24-29	S	Fill	5.9U	5.9U	5.9U	23U	5.9U	5.9U	
SB-23-59-62	S	Nat. Soil	6.2U	6.2U	6.2U	250	6.20	6.2U	
SB-24-0-2	U	Fill	4.1U	4.1U	4.1U	16U	4.1U	4.10	(
SB-24-2-4	U	Fill	3.5U	3.5U	· 3.5U	14U	3.50	3.5U	
SB-24-8-12	U	Fill	4.8U	at 194	4.8U	. 19U	4.8U	4.8U	5.4
SB-24-32-34	S	Fill	5.4U	美国和 相	5.4U	22U	5.4U	5.4	. 1
SB-24-40-42	S	Nat. Soil	5.60	5.6U	5.6Ü	22U	5.6Ú	5.6U	(
SB-24-44-48	S	Nat. Soil	5.3U	5.3U	5.3U	210	5.3U	5.3U	(
DUP030101A	S	Nat. Soil	4.5U	4.5U	4.5U	180	4.5U	4.5U	1
SB-24-52-56	S	Nat. Soil	4,9U	4,90	4.9U	190	4.90	4.9U	(
SB-25-0,5-2	U	Fil	4.4U	4.4U	4.4U	180	4.40	4.4U	. (
SB-25-2-4	U	FII	4.7U	4.7U	4.7U	19U	4.7U	4.7U	(
SB-25-16-20		Fill	3.7U	3.7U	3.7U	15U	3.70	3.7U	. (
SB-25-28-32	S	FIII	5U	50	50	20U	50	5U	(
SB-25-44-48	S	Nat. Soil	5.1U	5.10	5.1U	21U	5.1U	5.1U	(
SB-25-56-60	S.	Nat. Soil	4.4U	4.4U	4.4U	17U	4.4U	- 4.4U	(
SB-25-60-61	S	Nat. Soil	6U	6U	6U	24U	6U	6U	(
SB-26-0.5-2		Fill	4.7U	4.7U	4.7U	19U	4.7U	4.70	(
SB-26-2-4		Fill	4.1U		4.1U	-16U	4.10		
SB-26-8-12	_	Fill	50	· 5U	5U	200	50	50	(
DUP030201A	_	Fill	· · · 3;9U	. 3.90	÷ 3.9U	16U	3.90	3.9U	
SB-26-20-24		Fill	3.50	3.5U	3.5U	14U	3.50	3.5U	(
SB-26-32-36	-	Fill	5.20	. 5.2U	5.2U	210	5.2U	5.2U	(
SB-26-48-51		Nat. Soll	6.8U	6.8U	6.8U	27U	6.8U	6.8U	. (
SB-26-51-52		Nat. Soil	5.90	5.9U	5.9U	24U	5.9U	5.9U	(
SB-27-0.5-1.5		Fill	5.4U	· 5.4U	. 5.4U	210	5.4U	5.4U	(
SB-27-2-4		Fill	4.5U	4.5U	. 4.5U	18U	4.5U	4.5U	
SB-27-8-12		Fill		. 5.4U	5.4U	22U		655	43
SB-27-16-20	-	Nat. Soil	4.80	4.8U	4.8U	190	4.8U	4.8U	. (
SB-27-20-21		Nat. Soil	4.90	4.9U	4.90	190	4,90	4.9U	(
SB-28-0.5-2		Fil	5.4U	5.4U	· 5.4U	210	5.4U	5.4U	
SB-28-2-4	and and the set	Fill	4.5U	4.5U	4.50	18U	4.5U	4.5U	
SB-28-4-8	-	FIII			4.8U	190	4,8U	4.8U	5.
SB-28-8-9.5	- 10° - 11	Nat. Soll	5.3U	5.3U	5.3U	21U	5.30	5.3U	
SB-29-0,5-2	U	Fill	5U	5U	5U	. 200	50	5U[

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

tă Şe	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Materia		. Э	<u> </u>	DL	<u>ш</u> DL	0. · · · · · · · · · · · · · · · · · · ·	⊢ DL	- X DL	- F
UBL - Nat. Soils	1	<u>85</u>	DL		DL		DL	DL	
SB-29-2-4	10	Fill	4.70	4.70	4.7U	190	4.7U	4.70	0
SB-29-20-24		FIII	3.50	3.50	3.50	190	3.50	3.5U	0
SB-29-28-32	s	Fill	4,8U	4.8U	4.8U	. 190	4.80	4.8U	0
SB-29-48-52	- S	Nat. Soil	4,80 7U	4.80 7U	4.60 7U	28U	4.80 7U	4.80 - 7U	0
SB-29-52-53	- s			4.6U	4.60	280 18U	4.60	4.60	
SB-29-52-53 SB-30-0-2		Nat. Soil	4.6U	4.60 5.8U	4.6U 5.8U	23U	4.6U 5.8U	4.60	0
DUP041201A		Nat. Soil	5,8U			23U 24U	1	6.1U	
SB-30-2-4	- U	Nat. Soil	6,1U	6.1U	6.1U	240	6.1U	6.1U 6.9U	0
	<u>U</u>	Nat. Soil	6.9U	6.9U	6.9U 6.8U		6.9U 6.8U		0
SB-30-8-12	<u> </u>	Nat. Soll			2	27U 22U		6.8U	
SB-30-16-20	<u> </u>	Nat. Soil	5.50	5.5U	5.5U		5.50	5.5U	0
SB-31-0-2		Nat. Soil	6.9U	6.9U	6.90	28U	6.9U	6.9U	0
SB-31-2-4	U	Nat. Soll	70	7U	7U:	280	70	70	· 0
SB-31-4-8	U	Nat. Soil	6.3U	6.3U	6.3U	25U	6.3U	6,3U	0.
SB-31-8-12	U	Nat. Soil	6.7U	6.7U	6.7U	270	6,7U	6.7U	. 0
SB-31-16-20	S	Nat. Soil	6.4U	6.4U	6.4U	26U	6.4U	6.4U	0
SB-32-0-2	U	Nat. Soil	7.3U	7.3U	7.3U	29U	7.3U	7.3U	0
SB-32-2-4	U	Nat. Soil	. 5.8U	5.8U	5.8U	23U	5.8U	5.8U	0
SB-32-4-8	U	Nat. Soil	6,4U	6.4U	6.4U	26U	6.4U	6.4U	, 0
SB-32-16-20		Nat. Soll	6U	6U	6U	24U	6U	6U	0
SB-33-0.5-2		Fill	· 4.2U	4.2U	4.2U	17U	4.2U	4.2U	0
SB-33-2-4		Fill	4.6U	4.6U	4.6U	19U	4.6U	4.6U	0
SB-33-8-10	·U	Fill 🕤	5.3U	5.3U	5,3U	21U	5.3U	5.3U	0
SB-33-10-14	2	Nat. Soil	4.7U	4.7U	4.7U	19U	4.7U	4.7U	0
SB-34-0.5-2		Fill	4.7U	4.7U	. 4.7U	19Ù	4.7U	4,7U	. 0
SB-34-2-4	21	Fill	4.7U	4.70	4.7U	· 19U	4.7U	4.7U	0
SB-34-4-8	and the second second	Fill		4.1U	4.1U	17U	4.1U	4.10	5.7
SB-34-8-10		Nat. Soli	7.3U		- 7.3U	290	7.3U	7.3U	0
SB-36-0.5-2		Fill	5.4U	5.40	5.4U	210	5.4U	5.4U	· 0
SB-36-2-4		Fill	6.6U	. 6.6U	6.6U	2617	6.6U	6,6U	0
SB-36-4-6		Nat. Soli	8.5U	8.5U	8.50	34U	8.5U	8.5U	0
SB-38-0-2		Fill	5.7U	5.7U	5.7U	23U	5.7U	5.70	0
DUP041201B		Fill	5.6U	5.6U	5.6U	23U	5.6U	5.6U	0
SB-38-2-4		FIII	5.5U	5.5U	5.5U	22U	5.5U	5.5U	0
SB-38-4-6.5		Fill	6,1U	6.1U	6.1U	24U	-6.1U	6.1U	1 0
SB-38-14-19		Nat. Soil	6.6U	6.6U	6.6U	26U	6.6U	- 6.6U	0
SB-38-34-38		Nat. Soll	14 1 5 12	6.8U	6.8U	27U	6.8U	6.8U	62
SB-39-0.5-2		Fill	6.1U	6.10	6.1U	24U	6,1U	6.1U	0
SB-39-4-8	U	Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-39-8-12.5	ΤŪ	Fill	4.5U	4.5U	- 4.5U	18U	4.50	4.5U	0
SB-40-0.5-2	U	Fill	- 6U	6U	6U	24U	6U	U8	· 0
SB-40-2-4	U	Fill	.5.1U	5.1U	5.1U	20U	5.1U	5.1U	0
SB-40-16-20	U	Fill	4.7U	4.7U	4.7U	190	4.7U	4.7U	0
SB-40-24-28	, S	Fill	4.6U	4.6U	4.60	18U	4.6U	4.6U	0
SB-40-40-44	S	Nat. Soil	567 State 1933	4.5U	4.5U	18U	4.5U	4.5U	33

VOLATILE ORGANIC COMPOUNDS SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

				2000	5 (Art)	5		10 N	102
	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material	(22)	- M.	· DĿ	DL	DL	DL	DL	DL	
UBL - Nat. Soils			DL	DL	DL	DL	DĻ	DL	
DUP032001A	S	Nat. Soil	通行前 64	6.1U	6.1U	24U	6.1U	6.1U	64
SB-40-56-58	S	Nat. Soil	4.9U	4.9U	4.9U	20U	4.9U	4.9U	0
SB-41-0-2	U	Fill	7.9U	7.9U	7.9U	320	7.9U	7.90	0
SB-41-2-4	U	Fill	5.1U	5.1U	5.10	20U	5.1U	5.1U	0
SB-41-19-24	U	Fill	4.5U	e e 12	4.5U	18U	4.5U	4.5U	12
SB-41-24-29	S	Fill	8.3U	等起等的第15	8.3U	33U	8.3U	8.3U	15
SB-41-54-59	S	Nat. Soil	4.9U	4.9U	4.90	20U	4.9U	4.9U	0
MW-6-34-39	S	Nat. Soil	6.1U	6.1U	6.1U	25U	6.1U	6.1U	Ó
MW-6-44-49	. \$	Nat. Soil	6.3U	6.3U	6.3U	25U	6.3U	6.3U	Ó
DUP032701A	S	Nat. Soil	5.6U	5.6U	5.6U	22U	. 5.6U	5.6U	0
GH-2-41	S	Fill	7.5U	7.5U	7.5U	30U	7.50	7.5U	0.

Revised September 5, 2003

SEMI-VOLATILE ORGANIC COMPOUNDS SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

.

SB-14-16-20 U Fill S2230 STOU SEP 400 SEP 400<					·	<i>i</i>			1	200							00 <u> </u>					
UBL UBL DL DL DL S60 F01 F00 DL DL <t< th=""><th>14 2005</th><th>Saturated/Unsaturated</th><th>Unit</th><th>Acenaphthene</th><th>Acenaphthylene</th><th>Anthracene</th><th>Benzo(a)anthracene</th><th>Benzo(a)pyrene</th><th>10</th><th>10</th><th>Benzo(k)fluoranthene</th><th>Chrysene</th><th>Dibenzo(a,b)anthracene</th><th>Fluoranthene</th><th>Fluorene</th><th>Indeno(1,2,3-cd)pyrene</th><th>Naphthalene</th><th>Phenanthrene</th><th>Phenol</th><th>Pyrene</th><th>Total Detected SVOCs Exceeding Background</th><th>Total Detected SVOCs</th></t<>	14 2005	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	10	10	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,b)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
SB-14-05-22 U Fill 420U 420U 420U 420U <	UBL - Fill Mater	ial	10	DL	DL	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	DL	920		
SB14.4 L Fill S223 S70U S400 S200 S400	UBL - Nat. Soils	5 5		DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL.	DL	**	••
BB-14-24-26 F< F< F< F< F< F< F< F< F< F<< F< F<< F< </td <td>SB-14-0.5-2</td> <td>U</td> <td>Fill</td> <td>420U</td> <td></td> <td></td> <td>420U</td> <td>420U</td> <td>420U</td> <td>420U</td> <td>0</td> <td>0</td>	SB-14-0.5-2	U	Fill	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U			420U	420U	420U	420U	0	0
BB-14-24-26 Fill MODE MARKED	SB-14-16-20	U.			370U	Saxuo	£6 600	6 800	5,600	5.000	6.5 800	6,000			0,2,300	5:6:400	2100	13,000	370U	11,000	94,000	94,000
SB-15-4-8. U Fill 410U 410U <	SB-14-24-28	S	Fill	32,000	4000	4000	013,9000	10:000	7,8,900	18,500	16 900	9600	4 200	1,20,000		突了:100	A41800	16,900	400U	45,000	130,000	130,000
SB-16.0-5-2 U Fill 450U	SB-15-4-8	U	Fill	410U	410U	410U	410U	4100	410U	410U	410U		410U	410U	410U		410U	410U	410U	410U	0	0
SB-16-24 U Fill 370U	SB-15-36-41	S	Fill	380U	380U	SE 550	制約100	1 200	FF 100	#1.00D	薪粮720		12,390	1 600	380U	121870	380U	2 00	- 380U	2300	15,000	15,000
SB-16-19-24 U Fill 380U 410U	SB-16-0.5-2	Ų	Fill	450U	450U	450U	450U	450U	450U	450Ú	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	0	0
SB-16-24-29 S Fill 410U	SB-16-2-4	U	Fill	370U	370U	370U	370U	370U	370U	370U	3700	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	. 0
SB-16-29-34 S Nat. Soil 460U 460U </td <td>SB-16-19-24</td> <td>U</td> <td>Fill</td> <td>380U</td> <td>380U</td> <td>380U</td> <td>第4670</td> <td>740</td> <td>690</td> <td>380Ŭ</td> <td>700</td> <td>680</td> <td>380U</td> <td>¥-1.500</td> <td>380U</td> <td>380U</td> <td>380U</td> <td>12000</td> <td>380U</td> <td>980</td> <td>6,200</td> <td>6,900</td>	SB-16-19-24	U	Fill	380U	380U	380U	第4670	740	690	380Ŭ	700	680	380U	¥ - 1.500	380U	380U	380U	12000	380U	980	6,200	6,900
SB-16-34-37 S Nat. Soil 410U 410U </td <td>SB-16-24-29</td> <td>S</td> <td>Fill</td> <td>410U</td> <td>0</td> <td>0</td>	SB-16-24-29	S	Fill	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-17-0.5-2 U Fill 390U	SB-16-29-34	S	Nat. Soil	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	0	0
SB-17-2-4 U Fill 410U	SB-16-34-37	S	Nat. Soil	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-17-16-20 U Fill HIGD 400U 52:00 400U 52:00 400U	SB-17-0.5-2	U	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	3900	390U	390U	390U	390U	390U	390U	0	0
SB-17-24-28 S Fill 400U	SB-17-2-4	U	Fili	410U	410U	410U	4100	410U	410U	410U	410U	410U	410U	410U	410U		410U	410U	410U	410U	0	0
SB-17-29-33 S Fill 420U	SB-17-16-20	U	Fill	1Y500	400U	2,000	%5 ⁻ 300	26,000	4,500	14,900	33,900	#5100	42,300	\$111.000	1 1300	4 700	400U	1,7,500	400U	7400	67,000	67,000
SB-17-44-49 S Nat, Soil 480U 400U 400U 400U 400U </td <td>SB-17-24-28</td> <td>S</td> <td>Fill</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>4000</td> <td>4000</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>400U</td> <td>4000</td> <td>400U</td> <td>0</td> <td>0</td>	SB-17-24-28	S	Fill	400U	400U	400U	400U	4000	4000	400U	400U	400U	400U	400U	400U	400U	400U	400U	4000	400U	0	0
SB-17-49-51 S Nat, Soil 400U 400U </td <td>SB-17-29-33</td> <td>S</td> <td>FNI</td> <td>420U</td> <td>排版470</td> <td>420U</td> <td>÷:1870</td> <td>3 - 9 - 0</td> <td>680</td> <td>WH SCO</td> <td>1940</td> <td>經際900</td> <td>420U</td> <td>60046</td> <td>420U</td> <td>334849</td> <td>420U</td> <td>1-2,600</td> <td>420U</td> <td>3.909</td> <td>16,000</td> <td>16,000</td>	SB-17-29-33	S	FNI	420U	排版4 70	420U	÷:1870	3 - 9 - 0	680	WH SCO	1 940	經際900	420U	60046	420U	334849	420U	1-2,600	420U	3.909	16,000	16,000
SB-17-54-59 S Nat. Soil 400U 400U </td <td>SB-17-44-49</td> <td>S</td> <td>Nat, Soil</td> <td>480U</td> <td>0</td> <td>0</td>	SB-17-44-49	S	Nat, Soil	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	0	0
SB-18-0.5-2 U Fill 380U 370U	SB-17-49-51	S	Nat. Soil	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	4000	400U	400U	400U	400U	400U	0	0
SB-18-2-4 U Fill 370U	SB-17-54-59	S	Nat. Soil	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	-400U	400U	Ó	0
SB-18-16-18 U Fill 370U	SB-18-0.5-2	U	Fill	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0	0
SB-18-28-32 S Fill 420U	SB-18-2-4	U	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	. 0
SB-18-32-36 S Nat. Soil 420U 440U 440U </td <td>SB-18-16-18</td> <td>U</td> <td>Fill</td> <td>370U</td> <td>3700</td> <td>370U</td> <td>370U</td> <td>370U</td> <td>370U</td> <td>0</td> <td>0</td>	SB-18-16-18	U	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	3700	370U	370U	370U	370U	0	0
SB-18-56-60 S Nat. Soil 440U 0 0 0 SB-19-0.5-2 U Fill 410U 0 0 0	SB-18-28-32	S	Fill	420U	420U	420U	420U	2	420U	420U	420U	420U	420U	420U	420U	420U	420U	4200	420U	420U	0	0
SB-19-0.5-2 U Fill 410U 410U 410U 410U 410U 410U 410U 410U	SB-18-32-36	S	Nat. Soil	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	4200	4200	420U	420U	420U	420U	0	0
	SB-18-56-60		American and a second	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	4400	440U	440U	440U	440U	440U	0	0
SB-19-2-4 U Fill 380U 380U 380U 380U 380U 380U 380U 380U	SB-19-0.5-2	U	Fill	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
	SB-19-2-4	U	Fill	380U	380U	380U	380U	3800	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0	0

5 of 17

. 1

Revised September 5, 2003

1. . .

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Велzо(а)ругепе	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Materi	al	G	DL	DL	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	DL	920		
UBL - Nat. Soils	ē	85	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	-	
DUP032101A	U	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	- 0	0
SB-19-4-8	U	Fill	3700	370U	370U	370U	370U	370U	370Ú	370U	370U	370U	370U	· 370U	370U	370U	370U	370U	370U	0	0
SB-19-8-11	U	Nat. Soil	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360Ú	360U	·360U	360U	360U	360U	360U	0	Ó
SB-20-0-2	U	Fill	420U	420U	420U	420U	420U	420U	420U	420U	420U	.420U	420U	420U	420Ü	420U	420U	420U	420U	Ō	0
DUP031501B	U	Fill	400U	400U	4000	400U	- 400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	٥	0
SB-20-2-4	U	Fill	390U	390U	390U	390U	- 390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	3900	0	0
SB-20-4-8	U	Fill	- 360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	. 0	Ő
SB-20-9-13	U	Nat. Soil	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
SB-21-0-2	U.	Fill	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	. 400U	400U	400U	0	0
DUP030601A	U	Fill	410U	410U	410U	410U	410U	410U	410U	410U)	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-21-2-4	U	Fill	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-21-12-16	Ų	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-21-16-20	U	Fill	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0,	0
SB-21-28-30	S	Fill	400U	400U	.400U	400U	400U	400U	400U	400U	· 400U	400U	400U	400U	400U	400U	400U	400U	400U	0	0
SB-21-44-48	S	Nat, Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-21-60-64	S	Nat. Soil	460U	460U	460U	460U	460U	460U	4600	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	0	0
SB-22-0-2	U	Fill	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	4000	400U	400U	400U	400U	400U	400U	0	0
SB-22-2-4	-	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-22-19-24	U	Fill	通訊420	370U	003010	國的國	新田100	1300	部長980	1.4.000	器引(400	常应进行的	1000	國旗[20]	家!!! 850	#2:300	%2,800	370U	2,300	21,000	21,000
SB-22-24-29	-	Nat. Soil	3900	390U	390U	390U	390U	390U	390U	390U	3900	3900	3900	390U	390U	3900	390U	390U	390U	0	0
SB-22-59-62	-	Nat. Soil	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	3800	380U	380U	380U	380U	3800	_380U	0	0
SB-23-0-2	_	Fill	440U	440U	440U	440U	440U	440U	440U	440U	4400	440U	440U	440U	440U	440U	440U	440U	440U	0	0
DUP032201B	A CONTRACTOR	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	3.700	370U	370U	370U	370U	370U	370U	370U	0	0
SB-23-2-4	_	Fill	360U	360U	360U	360U	360U	360U.	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-23-14-19	-	Fill	360U	360U	3600	360U	360U	360U	360U	360U	360U	360U	510	360Ú	360U	360U	360U	3600	410	0	920
SB-23-24-29	-	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	3900	3900	390U	390U	390U	3900	390U	0	0
SB-23-59-62	S	Nat. Soll	450U	450U	450U	450U	450U	450U	450U	450U	450U	4500	450U	450U	450U	450U	450U	450U	450U	0	0

Revised September 5, 2003

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	Acenaphthene	· Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g, h, i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indenc(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrène	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Materi			DL	DL	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	DL	920	-	
UBL - Nat. Soils	S	lėn.	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL		
SB-24-0-2 SB-24-2-4		Fill Fill	360U 370U	360U 370U	360U	360U	360U	360U	360U	360U	360U	360U 370U	360U	360U	360U	360U	360U	3600	360U	0	0
SB-24-2-4 SB-24-8-12		Fill	3800	3800	380U	2 <u>,500</u> 380U	1/2,900 380U	380U	》的730 380U	2100 380U	380U	3700	41 0	380U	380U	370U 380U	380U	370U 380U	380U	30,000	30,000 410
SB-24-32-34		Fill	440U	4400	4400	4400	440U	4400	4400	440U	440U	440U	410	4400	440U	440U	440U	440U	440U	0	
SB-24-32-34		Nat. Soll	4000	4000	40001	4000	4000	4000	4000	4000	4000	4000	4000	4000	4000	4400	4000	4000	4000	0	
SB-24-44-48	1	Nat. Soil	4300	430U	43001	4300	4300	4300	43001	4300	4300	430U	4300	4300	4300	4300	4300	430U	4300	0	0
DUP030101A		Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	4300	430U	430U	430U	430U	4300	4300	0	0
SB-24-52-56	S	Nat, Soil	360U	360U	360U	360U	3600	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-25-0.5-2	U	FUI	370U	370U	370U	MAX750	19. 740	dee eer	370U	780	2 67/0	370U	1011,500	370U	370U	370U	100	370U	1100	7,400	7,400
SB-25-2-4	Ū	Fill	67.800	360U	122 000	i le soo	11,000	12 000	2500	12,000	19 100	FE 650	hij7.000	Filip70	2 2 6 9 0	25576Q	2.8.600	360U	13,000	100,000	100,000
SB-25-16-20	U	Fill	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0	0
SB-25-28-32	S	Fill	-480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	0	0
SB-25-44-48	S	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	0	0
SB-25-56-60	S	Nat. Soil	450U	450U	450U	450U	450U	450U	450U	· 450U	450U	45 0 U	450U	450U	450U	450U	450U	450U	450U	0	0
SB-25-60-61	S	Nat. Soil	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	4700	470U	470U	470U	470U	470U	0	Ö
SB-26-0.5-2		Fill	370U	370U	370U	370U	370U	370U	3700	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
SB-26-2-4		Fill	370U	370U	370Ú	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
SB-26-8-12		Fill	370U	370U	3700	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	3700	370U	370U	370U	0	0
DUP030201A		Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	3700	370U	370U	370U	370U	0	0
SB-26-20-24	U	Fill	370U	370U	370U	BE 680	610	500	380	2010 S	690	370U	TORS AN AT THE RECEIPTING	370U	370	370U	\$11,200	370U	24,200	5,700	7,500
SB-26-32-36	S	FIII	390U	390U	390U	390U	390U	390U	390U	390U	390U	3900	390U	390U	390U	390U	390U	390U	390U	0	0
SB-26-48-51	S	Nat. Soil	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	4000	400U	400U	400U	400U	400U	400U	0	0
SB-26-51-52		Nat. Soil	420U	420U	420U	420U	420U	420U	- 420U	420U	4200	4200	420U	4200	420U	420U	4200	4200	4200	0	0
SB-27-0.5-1.5	_	Fill	4000	4000	400U	4000	400U	400U	4000	4000	400U	4000	400U	400U	4000	4000	400U	4000	4000	0	0
SB-27-2-4		Fili	3700	370U	370U	450	540	430	3700	500	460	3700	960	3700	370U	370U	Collection Services 1	3700	770	720	4,800
SB-27-8-12 SB-27-16-20		20.000	460U 390U	460U 390U	390U	税。 980 390U	390U	390U	460U 390U	390U	390U	460U 390U	390U	460U 390U	460U	4600	100000000000000000000000000000000000000	460U	2001	11,000	11,000
0D-27-10-20	U	Nat. Soil	2900	2900	2900	3900	3900	3900	2900	2900	2900	2900	1	3900	3900	3900	390U	390U	3900	U	0

Revised September 5, 2003

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

5	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenoi	Pyrene	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Mater	ial		DL	DL	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	DL	920		
UBL - Nat. Soils		- K	DL	DL	DL	DL	· DL	DL	DL	DL	DL	DĹ	DL	DL	DL	DL	DL	DL	DL		
SB-27-20-21	1111100	Nat. Soil	380U	380U	380U	380Ú	380U	380U	380U	380Ú	380U	380U	380U	380U	380U	380U	380U	380U	380Ú	0	0
SB-28-0.5-2	U	a	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	4100	410U	410U	410U	410U		0
SB-28-2-4		Fill.	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	3900	390U	0	0
SB-28-4-8	_	Fill	410U	4100	410U	. 410U	410U	410U	4100	4100	410U	410U	4100	410U	4100	410U	410U	410U	410U	0	0
SB-28-8-9.5		Nat. Soil	. 360U	360U	360U	360U	360U	360U	3600	360U	360U	3600	360U	360U	360U	3600	360U	3600	360U	0	0
SB-29-0.5-2	U	10.10 S	430U	430U	.430U	430U	430U	430U	430U	430U	430U	430U	430U	4300	430U	430U	4300	4300	430U	0	0
DUP030501A		Surface	420U	4200	420U	420U	420U	420U	420U	420U	420U	4200	420U	4200	420U	4200	420U	420U	420U	0	0
SB-29-2-4		Fill	400U	4000	400U 390U	400U	400U 390U	400U 390U	400U 390U	400U 390U	400U 390U	400U 390U	400U 390U	400U 390U	400U 390U	400U .390U	400U 390U	400U 390U	400U 390U	0	0
SB-29-20-24		Fill	390U	390U		390U				1 201202121										0	- 0
SB-29-28-32		FIII	4100	410U	410U	410U	410U	4100	410U 490U	410U 490U	410U 490U	410U 490U	410U 490U	410U 490U	410U 490U	410U 490U	410U 490U	410U 490U	410U 490U	0	520
SB-29-48-52 SB-29-52-53	S	Nat. Soil	490U 390U	490U 390U	490U 390U	490U 390U	390U	490U 390U	4900 390U	4900 390U	4900 390U	390U	4900 390U	4900 390U	390U	4900 390U	390U	4900 390U	4900 390U	0	520
SB-29-52-53 SB-30-0-2	S	Nat. Soil Nat. Soil	3400	3400	3400	3400	340U	3400	3400	340U	3400	340U	340U	3400	3400	3400	3400	340U	3400	0	0
DUP041201A	U	Nat. Soil	3400	3500	3500	350U	3500	3500	3500	3500	3500	3500	3500	3500	3500	350U	3500	3500	3500	0	0
SB-30-2-4	U.	Nat. Soil	. 360U	360U	360U	360U	3600	3600	3600	360U	360U	3600	3600	360U	3600	360U	3600	360U	3600	0	0
SB-30-8-12	S	Nat. Soil	4300	4300	4300	430U	430U	4300	430U	430U	4300	430U	4300	430U	430U	4300	4300	430U	4300	ō	0
SB-30-16-20	S	Nat. Soil	4200	4200	4200	4200	4200	4200	420U	4200	4200	420U	420U	420U	420U	4200	4200	420U	4200	0	0
SB-31-0-2	Ū	Nat. Soil	410U	4100	4100	410U	4100	410U	410U	410U	410U	410U	410	· 410U	4100	4100	410U	410U	410U	0	410
SB-31-2-4	τ <u>υ</u>	Nat. Soil	4100	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	4100	410U	410U	410U	410U	0	0
SB-31-4-8	U	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-31-8-12	U	Nat. Soil	440U	440U	440U	440U	440U	4400	440U	440U	440Ŭ	440U	440U	4400	4400	440U	440U	440U	440U	0	0
SB-31-16-20		Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-32-0-2	1.1	Nat. Soil	400Ü	4000	400U	400U	4000	400U	400U	400U	400U	400U	400U	400U	400U	400U	4000	400U	400U	0	0
SB-32-2-4	U	Nat. Soil	430Ü	430Ŭ	430U	430U	430U	430U	430U	430U	430U	430U	430U	·430U	430U	430U	430U	430U	430U	0	0
SB-32-4-8	U	Nat. Soil	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-32-16-20	S	Nat. Soil	420U	420U	420U	420U	420U	42.0U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	0	0
SB-33-0.5-2	U	Fill	360U	360U	360U	360 <u>U</u>	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

·····												· ·				-				1	
	Saturated/Unsaturate	°	Acenaphthen	Acenapht	Anthra	Benzo(a)anthracene	Benzo(a)pyren	Benzo(b)fluora	Benzo(g,'n,l)perylen	Benzo(k)fluoranthe	. Ch	Dibenzo(a,h)anthra	Fluoranthene	Fl	Indeno(1,2,3-cd)pyre	Napht	Phenanthrene		-	Total Detected SVOCs Exceeding Background	Total Delected S
	ura	6	hthe	phthylen	race	race	руге	nthe	ryle	nthe	hrysene	race	nthe	Fluoren	руге	phthalen	thre	Pheno	Pyren	SVOCs	SVOC
	fed	Unit	me	me	cene	ane	ine	ene	me	sne	aue	ne	ine	ene	ne	me	silie	nol	ne	Ind	Cs
UBL - Fill Mate	erial		DL	DĹ	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	DL	920		
UBL - Nat. Soil	ís		DL	DL	DL	ÐL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL		
SB-33-2-4	U	FIII	3700	20	370U	122,300	第四200	减2,500	影响的就	展2,200	2300	2520	16 200	370U	\$\$00	370U	Sept. 300	370U]	3 3 200	24,000	24,000
SB-33-8-10	Ú	FIL	400U	400U	400U	400U	400U	400U	400U	400Ú	400U	400U	400Ú	400U	400U	400U	4000	400U	400U	0	0 -
SB-33-10-14	U	Nat. Soil	360U	360U	360U	360U	360Ú	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	Ô
SB-33B-2-4	υ		370U	370U	370U	. 490	690	540	690	430	540	370U	970	370U	580	370U	530	370U	850	0	6,310
SB-34-0.5-2	U		350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	0	0
SB-34-2-4	. U	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	610	360U	360U	360U	360U	360U	530	0	1,100
SB-34-4-8	U	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-34-8-10	U		350U	350U	_ 350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	3500	350U	350U	350U	0	0
SB-36-0.5-2	U	Fill	350U	350U	350U	350U	3500	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	0	0
SB-36-2-4	U	Fill	380U	380U	380U	380U	380U	380U	380U	380U	3800	380U	380U	3800	380U	380U	380U	380U	380U	0	· 0
SB-36-4-6	U	Nat. Soil	460U	460U	460U	460U	460U	460U	460U	460U	4600	460U	460U	460U	460U	460U	460U	460U	460U	0	0
SB-38-0-2	U		3700	370U	3700	470	450	590	540	370U	490	370U	1,000	3700	380	370U	480	3700	920	0	5,300
DUP041201B	L L	(c) 5255452	370U	370U	370U	370U	420	420	440	370U	370	370U	870	370U	370U	370U	總許670	370U	670	670	3,900
SB-38-2-4	- 0	(c.), (c.)	3700	370U	370U	560	590	610	370U	570	680	370U	1,200	370U	370U	- 370U	560	3700	900	0	5,700
SB-38-4-6.5	0	G MANN	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	4000	400U	400U	400U	0	0
SB-38-14-19	S		430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	.430U	430Ü	430U	430U	430U	0	0
SB-38-34-38	S		450U	· 450U	450U	. 450U	450U	4500	450U	450U	4500	450U	450U	450U	450U	450U	450U	450U	450U	0	0
SB-39-0.5-2	10		430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	4300	430U	4300	430U	0	0
SB-39-4-8	L		380U	380U	380U	380U	3800	3800	380U	3800	380U	380U	380U	380U	380U	3800	3800	380U	380U	0	0
SB-39-8-12.5	14		3900	390U	390U	390U	390U	390U	390U	390Ú	3900	390U	390U	390U	390U	390U	3900	390U	390U	. 0	0
SB-40-0.5-2			410U	410U	4100	4100.	4100	410U	410U	410U	410U	410U	410U	410U	4100	410U	410U	410U	410U	0	0
SB-40-2-4		0.0.0000	3900	390U	3900	3900	3900	3900	3900	3900	3900	390U	390U	390U	390U	390U	390U	3900	3900	0	0
SB-40-16-20			3600	360U	360U	540	550	380	3600	510	570	360U	136619300	360U	360U	360U	如\$960	360U	760	2,300	5,600
SB-40-24-28	S		390U	390U	390U	390U	390U	390U	390U	390U	390U	3900	390U	390U	390U	390U	390U	390U	390U	0	0
SB-40-40-44	S		450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	4500	4500	450U	450U	· 0	0
DUP032001A	5		4300	430U	430U	4300	4300	430U	430U	4300	430U	430U	430U	430U	430U	430U	430U	430U	430U	. 0	0
SB-40-56-58	5	Nat. Soil	4300	4300	430U	430U	430U	430U	430U	430U	430U	430U	· 430U	430U	430U	430U	430U	430U	430U	0	0

Revised September 5, 2003

1000

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,ħ,ī)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracane	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Ругеле	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Mater	ial		DL	DL	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	םנ	920		
UBL - Nat. Soils		17	DL	DL	DL	DĻ	DL	DL	DL	DL	DL	DL	DL	, DL	DL	DL	DL	DL			
SB-41-0-2	U	Fill	390U	-390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-41-2-4	υ	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360Ú	360U	360U	3600	360U	360U	360U	360U	0	0
SB-41-19-24	U	Fill	建物530	380U	1300	2,300	12,200	#2200	630	11700	\$2,100	380U	4,800	影前690	支援 至10	380U	174100	380U	3,600	26,000	27,000
SB-41-24-29	S	FIII	550U	550Ú	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U		550U	550U	550U	550U	0	0
SB-41-54-59	S	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	4300	430U	0	0
SB-42-2-4	U	Fill ,	是1100	370U	2018/10	7 ⁸ 6,100	35,600	14,900	74200	124 600	6,100	371,500	12,000	200	3 700	\$1,800	009,900	370U	6 900	71,000	71,000
SB-43-2-4	U	Fill	350U	350U	350U	350U	350U	390	350U	350U	350U	350U	690	350U	350U	350U	ومستعدان والمتحصفات عقدوا	3500	560	. 0	2,100
MW-6-34-39	S	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	0	· 0
MW-6-44-49	S	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	4400	440U	0	0
DUP032701A	S	Nat. Soll	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	4600	460U	Ũ	0
GH-2-41	S٠	· Fill	6400	434400	002275	10000	46200	1997 APR	6,708	10.000	111000	\$\$570	\$237.000	741,000	間9/000	24,000	\$55;000	530Ú	47.000	270,000	270,000

~

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

	1	·····	r	·····										·
×						8	1 A A	2			43			
	Saturated/Unsaturated	Unit	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	T-Cyanide
UBL - Fill Material			7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soits			DL	275	DL	DL.	52.8	35.7	26.5	DL	29.7	120	80.3	DL
SB-14-0.5-2	U	Fill	6.33U	100	3.16U	3.16U	9.48	海湖派513日	13:0	0.131	6.33U	69.3	47,0	0,959U
SB-14-16-20	Ų	Fill	5.54U	• 104	2.77U	2.77U	11.0	31.7	195	12/2/0/43	5.76	17.5	267	1.090
SB-14-24-28	S	Fill	-5.66U	61.8	2.83U	2.83U	9.68	部計約56泊	83.3	0.147	5.66U	18.1	39.1	0.985U
SB-15-4-8	U	Fill	5.09U	53.1	2,54U	2.54U	7.37	17.1	9,72	0.105U	5.09U	47.6	32.5	1.1U
SB-15-36-41	S	Fill	4.6U	25.6	2.3U	2.3U	4.68	4.43	10.0	0.0957U	4.6U	7.70	11.7	同語語和了
SB-16-0.5-2	U	Fill	6.26U	65.3	3.13U	3.13U	17.2	39.2	10.4	0.124U	6.26U	运动 和15-3	18.8	1.130
SB-16-2-4	U	Fill	4.63U	6.52	2.32U	2.32U	2.77	3.19	7.94	0.288	4.63U	24.6	9.58	0.754U
SB-16-19-24	U	Fill .	5.19U	88.1	2.59U	2.590	14.9	12.3	125	0.202	5.19U	31.5	118	and the second second
SB-16-24-29	S	Fill	5.41U	37.5	2.71U	2.71U	9.28	16.9	62.1	0.299	· 5.41U	19.9	48.4	0.739U
SB-16-29-34	S	Nat. Soll	5.26U	76.0	2.63U	· 2.63U	· 9.88	2.82	16.3	0.131U	5.26U	9.81	14.3	
SB-16-34-37	S	Nat. Soil	4.36U	9.77	2.18U	2.18U	3.73	2.18U	7.69	0.11U	4.36U	5.88	4.98	1.06U
SB-17-0.5-2	U	FOI	6.02U	114	. 3.01U	3.01U	9.93	23.3	. 16.8	0.112	6.28		48.1	1.20
SB-17-2-4	U	Fill	5.16U	80,1	2.58U	2.58U	8.10	.19.8	14.7	0.115U	5.16U	37.4	31.2	and the second s
SB-17-16-20	U	Fill	5.91U	44.2	2.95U	2.950	11.4	.13.2	54.3	0.170	5.91U	14.0	58.3	
SB-17-24-28	S	Fill	4.95U	75.4	2.47U	2.47U	10.5	9.51	41.9	0.223	5.05		40.5	0.833U
SB-17-29-33	S	Fill	5.78	84.4	2.78U	2.78U	10.9	12.2	73.4	0.159	5.57U	21.5	83.5	1.03U
SB-17-44-49	S	Nat. Soll	6.89U	157	3.44U	3.44U	37.1	21.6	16.5	0.128U	13.4	62.1	57.9	1.32U
SB-17-49-51	S	Nat. Soil	5.35U	. 13.4	.2.67U	2.67U	6.44	2.67U	5.35U	0.116U	5.35U	8.64	7.36	0.989U
SB-17-54-59	S	Nat. Soil	5.29U	24.0	2.64U	2.64U	7.35	3.66	5.29U	0.118U	5.290	5.29U	13.2	0,970
SB-18-0.5-2	U	Fitt	5.44U	68.2	2.72U	2.72U	9.84	20.5	24.6	0.135	5.44U	46.1	39.4	1.170
SB-18-2-4	· U	Fill 🔥	3.98U	65.4	1.99U	- 1,99U	10.9		77.1	0,191	4.34	39.8	55,9	1.110
SB-18-16-18	U	Fill	3.61U	59.6	1.81U	1.81U	7.78	12.1	70.6	派的1082年	3.61U	23.6	62.6	0
SB-18-28-32	S	Fill	5.96U	111	2.98U	2.98U	能在影响自然	18.3	14.0	0.0988U	10.1	波波深有5 字	. 44.0	2
SB-18-32-36	S	Nat. Soil	4.82U	74.6	2.41U	2.41U	14.6		14.5	0.111U	5.54	- //kg-2220	23.6	2011年1月8月
SB-18-56-60	S	Nat. Soil	5.78U	68.8	2.89U	· 2.89U	22.7	The second second second	6.91	0.105U	9.04		41.9	1.33U
SB-19-0.5-2	U	Fill	4.810	87.9	2.4U	2.40	11.2	爭戰。第637	13.5	0.105U	6.72	建筑地6 7-0	44.5	1.01U
SB-19-2-4	U	Fili	4.32U	29.9	2.16U	2.16U	8.07	16.4	21.6	0.102	4.32U	. 25.9	16.9	0.96U

11 of 17

12 of 17

Revised September 5, 2003

4 8 1 1 1	Saturated/Unsaturated	Unit	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	- : Vanadium	Zinc	T-Cyanide
UBL - Fill Material		1. F	7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils			DL	275	DL	DL	52.8	35.7	26.5	DL	29,7	120	80.3	PL
DUP032101A	U	Fili	4.79U	29.4	2.4U	· 2.4U	6.75	14.6	. 11.2	0.110	4.790	24.3	11.2	0.873U
SB-19-4-8	U	Fill	4.62U	• 47.6	2.31U	2.310	7.34	11.3	11.1	0.0963U	4.62U	20.8	13.8	1.08U
SB-19-8-11	U	Nat. Soil	4.740	9.42	2.37U	2.37U	4.84	2.37U	4.74U	0,108U	4.74U	9.66	4.74U	10
SB-20-0-2	U	Fill		47.5	2.47U	2.47U	25.0	21.8	117	A 0.825	5.85	50.1	97.2	1.27U
DUP031501B	U ·	Fill	5.3U	88.3	2,65U	2.65U	12.3	36.1	11.3	0.112U	6.74	5.0 9 60.6	39.4	1.22U
SB-20-2-4	U	Fill	4.64U	50.4	2.32U	2.32U	9.05	16.6		國和特征	4.64U	34.9	33.6	1.17U
SB-20-4-8	U	Fill	5.24U	65.4	2.62U	2.62U	12.2	14.3	33.3	0.170	5.25	29.9	45.5	1.1U
SB-20-9-13	U	Nat. Soil	4.15U	8,32	2,07U	2.07U	8.22	-2.98	8.55	0.103U	4.15U	6.97	6.24	1.13U
SB-21-0-2	·U	Fill	5.98U	76.7	2.99U	2.99U	10.6	21.2	. 51.4	0.357	5.98U	40.8	153	0.936U
DUP030601A	U '	Fill	5.69U	60.9	2.85U	2.85U	23.5	19.7	68.6	0.202	5.69Ŭ	和常常	73.8	1.07U
\$B-21-2-4	U	Fill	6.04U	法部金	3.02U	3.02U	7.32	31,4	13.0	0.129	9.09	際裏線加	48.2	0.992U
SB-21-12-16	U	Fill	5.88U	47.8	2.94U	2.94U	13.4	19.3	61.1	0.284	5.88U	25.5	68.8	0.8790
SB-21-16-20	U	Fill	5.56	50.4	2.71U	2.71U	道相影。29:4	14.3	57.8	0.276	5.42U	. 40.1	45.0	1.08U
SB-21-28-30	S	Fill	5,23U	47.4	2.620	2.62U	9.72	17.1	54.6	1381年186	5.23U	20.7	43.2	0.772U
SB-21-44-48	S	Nat. Soll	5.86U	171	· 2.93U	2.93U	37.1	21.6	12.3	0.123U	12.1	69.2	61.9	1.25U
SB-21-60-64	S	Nat. Soil	6.38U	78.9	3.19U	3.19U	18.8	10.1	6.38U	0.131U	6.38U	33.4	32.1	0.886U
SB-22-0-2	U	Fül -	5.56U	92.1	2.78U	2.78U	8.45	18.9	10.3	0.108U	5.56U	50.8	36.4	0.912U
SB-22-2-4	U	Fill	4.55U	52.3	2.27U	2:27U	6.78	11.1	36.7	0.121	4.55U	26.7	43.3	1.03U
SB-22-19-24	U	FBI	5.29U	31.8	2.64U	2.64U	9.38	31.1	Colores experience of the second	0.161	5,290	17.6	62.3	0.8280
SB-22-24-29	S	Nat. Soli	5.77U	33.2	2.89U	2.89U	8.44	5.33	清明的35以	164	5.77U	16.7	30.0	0.734U
SB-22-59-62	S	Nat. Soil	4.020	13.3	2.01U	2.01U	4.51	2.010	4.02U	0.111U	4.02U	5.01	10.9	0.901U
SB-23-0-2	U	Fill	6.58U	80.8	3.29U	3.29U	8.31	14.1	7.82	0.12U	6.58U	48.4	34.0	0.996U
DUP032201B	U	Fill	4.2U	49.0	. 2. 1U	2.10	7.32	18.4	7.20	0.106U	4.2U	39.6	33.5	1.02U
SB-23-2-4	. U	Fill	5.01U	, 50.9	2.5U	2.5U	10.9	9.20		建成10.554	5.01U	19.5	30.1	0.944U
SB-23-14-19	U	Fill	6.81	A 42268	2.42U	2.42U	18.5	37.6	293		10.3	23.6	美洲和 544	10
SB-23-24-29	S	Fill	4.45U	60,7	2.23U	2.23U	13.0	18.2		0.133	4.78	17.9	the second se	0.767U
SB-23-59-62	S	Nat. Soll	6.21U	38.3	3.1U	3.1U	13.3	5.57	6.21U	0.124U	6.21U	25.8	20.7	-0.852U

INORGANIC COMPOUNDS SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

1 million

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

	Saturated/Unsaturated	Unit	Arsenic	Barlum	Beryllium	Cadmium	Chromlum	Copper	Lead	Мегсигу	Nickel	Vanadium	Zinc	T-Cyanide
UBL - Fill Material		-	7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils		1	DL	275	DL	DL	-52.8	35.7	26.5	DL	29.7	120	80.3	DL
SB-24-0-2	U	Fill	5.38U	74.6	2.69U	2.69U	13.5	11.6	151	•**** 0.65 0	5.38Ų	24.7	86,6	0.889U
SB-24-2-4	U	Fill .	5.44U	42.4	2.72U	2.72U	9.63	11.5	80.9	CONTRACTOR OF CONTRACTOR	5.44U	23.9	53.7	0.748U
SB-24-8-12	U	Fill	5.32U		2.66U	2.66U	9.75	13.8	BER 5338	0.412	5.32U	19.3	在1462	1.08U
SB-24-32-34	S	Fill	6.43U	74.5	3.22U	3.22U	15.9	958	152	0.465	6.43U	31.6	106	1.24U
SB-24-40-42	S	Nat. Soil	6.11U	40.1	3.06U	3.06U	7.44	4.36	14.5	0.112U	6.11U	14.4	12.5	0.745U
SB-24-44-48	S	Nat. Soil	6.56U	186	3.28U	3.28U	41.9	21.2	12.1	前於第0月2 月	15.0	72.5	63.0	1.110
DUP030101A	S	Nat. Soil	6.43U	175	3.22U	3.22U	43.2	20.5	13.8	0.126U	14.4	76.2	59.0	0.928U
SB-24-52-56	S	Nat. Soil	5.26Ų	. 134	2.63U	2.63U	29.8	15.2	10.4	0.109U	11.1	55.2	45.3	0.958U
SB-25-0.5-2	U	Fill	5.250	56.9	2.63U	2.63U	10.3	14.6	67.3	0.289	5.25U	28.7	59.1	0.793U
SB-25-2-4	U	Fill	5.40	23.0	2.70	2.70	6.21	9.23	29.5	0.154	5.40	13.1	21.5	0.879U
SB-25-16-20	U	Fill	3.46U	93.6	1.73U	1.730	9.10	10.1	85.3		3.76	22.4	104	0.942U
SB-25-28-32	S	FIL	4.97U	50.5	2.490	2.49U	. 17.2	8.63	20.9	0.454	4.97U	38.3	26.2	1.01U
SB-25-44-48	S	Nat. Soil	5.47U	169 160	2.74U	2.740	· 36.0 31.0	20.7	海湖市 36/3	0.134U	11.7	74.5	61.9	1.320
SB-25-56-60 SB-25-60-61	S	Nat. Soil	6.15U 6.48U	91.9	3.07⊍ 3.24U	3.07U 3.24U	25.6	18.8	10.7	0.1310	10.6	60.8	47.9	0.842U
	S U	Nat. Soll	5.19U	50.1	3.24U 2.6U	3.240 2.6U	25.6	13.4 27:9	,15.7	0.1390	5.190	52.1 43.0	46.3	0.87U 0.999U
SB-26-0.5-2 SB-26-2-4		Fill	5.190	33.8	2.55U	2.60	9.96	14.1	89.3	0.203	5.190	43.0	59.8	0.883U
SB-26-8-12		FII	5.53U	54.2	2.550	2.550	13.3	. 6.60	20.1	0.137	5.530	32.0	24.0	
DUP030201A	U U		5.250	104	2.62U	2.62U	13.3	9.00	59.9	0.125				1.010
SB-26-20-24	U	Fill Fill		42.4	2.62U	2.620	7.86			0.280	6.14	31.8	39.6 41.9	0.823U
SB-26-32-36	S	Fill	5.36U 5.93U	42.4 5.93U	2.660	2.680	9.67	24.7	75.1	0.237	5.36U 5.93U	18.0	41.9 5.93U	1.01U
SB-26-48-51	S	Nat. Soil	5.74U	5.930	2.960	2.960	9.67	6.76	6.87	0.438 0.118U	5.930	29.6	5.930	1.14U 1.03U
SB-26-51-52	S	Nat. Soil	5.90	48.8	2.870	2.870	15.6	3.70		0.1180		29.6	54.6	0.8880
SB-27-0.5-1.5	U	Fill	5.90	53.9	2.950	2.950	10.4	15.7	5.9U	0.1220	11.5 5.6U	33.6	40.5	0.933U
SB-27-2-4	U	Fill	5.30	42.0	2.65U	2.650	11.5		104		5.30	20.5	40.5	0.9350
SB-27-8-12	1 ŭ		5.50	42.0	3.230	3.23U	22.6		104		6.46U	20.5	219	0.9660
SB-27-16-20	10	Nat. Soli	5.93U	44.7	2.96U	2.960	11.8		18.5	The last free states and the states	5.93U	21.1	10.2	0.766U

13 of 17

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

1.0 Part 4			<u>`</u> ı				t	*** ****		*****				
	Saturated/Unsaturated	Unit	. Arsenic	Barlum	Beryllium	Cacimium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	'T-Cyanide
UBL - Fill Material			7.05	115	DL	DL.	28.7	. 43.4	204	0.541	14.4	58.9	257	D
UBL - Nat. Soils	11000		DL	275	DL	DL	52.8	35.7	26.5	DL	29.7	120	80.3	DI
SB-27-20-21	S	Nat. Soil	5.43U	5.43U	2.72Ú	2.72U	9.62	3.55	6.35	0.115U	5.43U	11.0	5.43U	1.041
SB-28-0.5-2	U	Fill	6.13U	· 81.0	3.06U	3.06U	10.0	57.6	12.5	0.115	6.13U	56.0	33.3	1.23
SB-28-2-4	U	Fill .	. 6U	85.4	30	30	8.53	明生,相好	9.52	0.12U	6Ú	48.6	41.1	1.2
SB-28-4-8	U	Fill	6.15U	73.1	3.08U	3,08U	12.6	16.8	76.3	清洁白 814	6.15U	31.9	101	1.25
SB-28-8-9.5	U	Nat. Soil	4.91U	5.88	2.46U	2.46U	5.26	2.46U	6.35	0.105U	'4.91U	9.80	4.91U	1.09
SB-29-0.5-2	U	Fill	4.24U	50.3	2.12U	2.12U	14.7	42.6	11.6	0.126U	4.24U	72,8	17.3	1.13
DUP030501A	U	Fill	6.34U	臺灣美麗的	3.17U	3.17U	11.6	W2+56.9	22.0	0.149	6.34U	CM 60 9	28.8	0.759
SB-29-2-4	U	Fill	4.6U	67.2	2.3U	2.3U	13.2	· 31.7	12.8	0.114U	4.72	44.6	29.6	1.15
SB-29-20-24	U	Fill	5.35U	17.3	2.67U	2.67U	5.78	3.64	14.1	0.134	5.35U	22.1	13.3	0.841
SB-29-28-32	S	Fill	3.65U	72,9	1.83U	1.83U	16.3	4.99	11.0	28 CH 565	4.11	22.7	22.6	1.03
SB-29-48-52	S	Nat. Soll	5.55U	88.0	2.77U	2.77U	21.1	10.5	8.98	0.138U	9.46	35.9	37.4	1.36
SB-29-52-53	S	Nat, Soil	5.07U	9,52	2.53U	2.53U	5.69	2.53U	5.07U	0.11U	5.07U	14.7	17.8	1.04
SB-30-0-2	U	Nat. Soil	2.98U	25.5	1.49U	1.49U	11.1	5.28	7.46	0.0913U	2.98U	12.9	15.2	0.817
DUP041201A	U	Nat. Soil	3.59U	33.5	1.8U	1.8U	10.7	5.67	6.34	0.103U	3.59U	16.5	18.7	0.889
SB-30-2-4	U	Nat, Soil	2.78U	45.7	1.39U	1.39U	13.1	8.69	11.2	0.101U	3.72	21.6	19.8	1.03
SB-30-8-12	S	Nat. Soil	3.83U	128	1.91U	1.91U	30.6	19.7	- 16.3	系印印0月54	11.1	62.8	44.0	1.13
SB-30-16-20	S	Nat. Soil	4.14U	159	5 2 2 1 5	2.07U	40.9	19.6	12.3	0.122U	14.2	72.0	66.6	1.27
SB-31-0-2	U	Nat. Soil	5.03U	102	2.51U	2:51U	18.9	12.9	21.2	0.12U	7.42	35.5	. 51.0	1.17
SB-31-2-4	U	Nat. Soil	5.3U	93.0	2.65U	2.65U	18.8	14.0	23.5	0.125U	6.19	36.7	37.9	0.976
SB-31-4-8	U	Nat. Soil	5.8U	119	2.9U	2.9U	. 26.5	15.8	14.1	0.126U	9.05	54.3	37.1	0.856
SB-31-8-12	U	Nat. Soil	6.55U	40.2	3.28U	3.28U	8.43	4.19	6.55U	0.124U	6.55U	16.7	12.8	0.960
SB-31-16-20	S	Nat. Soil	5.76U	57.2	2.88U	2.88U	15.9	7.29	5.76U	0.125U	5.76U	30.4	24.3	0.718
SB-32-0-2	U	Nat. Soil	5.09U	95.0	2.55U	2.55U	19.5	13.0	20.4	0.12U	6.62	37.2	43.0	0.871
SB-32-2-4	U	Nat. Soil	5.57Ü	85.5	2.79U	2.790	20.1	12.0	43.0	0.121U	6.32	38.2	27.8	0.995
SB-32-4-8	U	Nat. Soil	6.04U	83.5	3.02U	3.02U	18.0	10.1	12.1	0.121U	6.04Ŭ	· 38.8	22.8	0.74
SB-32-16-20	S	Nat. Soil	6.18U	63.5	3.09U	3.09U	20.6	6.00	6.18U	0.126U	6.18U	26.7	22.3	0.941
SB-33-0.5-2	U	Fill	4.4U	99.7	2.2U	2.20	8.10	6.71	32.9	0.174	4.4U	21.7	33.5	0.929

14 of 17

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

	•											3	[
a c	Saturated/Unsaturated	Uhit	Arsenic	Barium	Beryllium	Cadmium	Chromlum	Copper	Lead	Mercury	Nicke	Vanadium	ZInc	'''-Cyanide
UBL - Fill Material	L		7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils			DL	275	· DL	DL	52.8	35.7	26,5	DL	29.7	120	80.3	DL
SB-33-2-4	U	Fill	· 4.58U	81.1	2.29U	2.29U	22.0	43.4	65.8	0.541	- 4.58U	43.4	73.7	1.020
SB-33-8-10	U	FIII	5.67Ú	. 11.1	2.84U	2.84U	28.7	5.74	5.67U	0.247	5.67U	58.9	6.33	1.020
SB-33-10-14	U	Nat. Soil	5.43U	5.43U	2.72U	2.72U	5.58	2.72U	5.43U	0.105U	· 5.43U	10.6	5.43U	0.963
SB-34-0.5-2	U	Fill	4.61U	87.2	2.31U	2.31U	9.40	42.2	149	0.241	8.29	17.3	160	0.820
SB-34-2-4	U	Fill	4.93U	41.5	2.47U	2.47U	12.9	10.8	60.1	0.318	4.930	24.5	58.8	0.870
SB-34-4-8	U	Fill	4.92U	95.7	2.46U	2.46U	14.4	10.8	95.7	0.264	4.920	18.8	85.4	1.080
SB-34-8-10	U	Nat. Soil	5.04U	5.04U	2.52U	2.52U	2.52U	2.52U	5.04U	0.101U	5.04U	5.04U	5.04U	1.03
SB-36-0.5-2	U	Fill	4.23U	24.8	2.12U	2.12U	12.3	8.42	8.98	0.0938U	4.23U	24.7	15.9	1.071
SB-36-2-4	U	Fill	7.05	70.1	2.55U	2.55Ú	46.0	新新新福	加市 1232	0.380	5.1U	建筑前79/3	1. A. B.	0.908
SB-36-4-6	U	Nat. Soil	6.56U	6.56Ú	3.28U	3.28U	5.63	3.28U	6.56U	0.122U	6.56U	14.6	6.56U	1.06L
SB-38-0-2	Ų	Fill	5.69U	54.4	2.84U	-2.84U	11.5	11,9	135	0.248	5.69U	27.8	106	1.14
DUP041201B	U	Fili	5.63U	57.1	2.820	2.82U	8.49	11.6	94.3	0.182	.5.63U	21.9	95.8	1.130
SB-38-2-4	U	Fill	5.55U	63.9	2.77U	2.77U	9.08	12.4	116	0.336	5.55U	20.9	102	1.110
SB-38-4-6.5	U	Fill	6.08U	21.6	3.04U	3.04U	9.68	5.54	18.1	0.117U	6.08U	17.2	15.8	1.221
SB-38-6.5-9	U	Nat. Soil	6.72U	84.1	3.36U	. 3.36U	16.3	9.53	7.88	0.133U	6.72U	33.9	23.8	1.34
SB-38-9-11.5	U	Nat. Soil	6.32U	. 91.5	3.16Ü	3.16U	23.5	11.3	6.33	0.119U	7.62	45.9	38.8	1.26
SB-38-11.5-14	U	Nat. Soil	6.15U	83.4	3.08U	. 3.08U	24.6	11,9	7.47	0.122U	· 8.45	55.0	41.1	1.23
SB-38-14-16.5	Ú	Nat. Soil	6.62U	63.2	3.310	3.31U	17.7	10.1	6.62U	0.126U	8.24	32.8	35.1	1.320
SB-38-16.5-19	U	Nat. Soil	6.65U	· 51.2	3.32U	3.32U	15.5	8.44	6.65U	0.131U	6.65U	32.3	27.7	1.33
SB-38-19-21.5	S	Nat. Soll	6.51U	92.5	3.26U	3.26U	20.0	11.6	6.95	0.121U	6.88	. 36.6	40.2	1.31
SB-38-21.5-24	S	Nat. Soil	6.35U	65.9	3.180	3.18U	15.0	9.66	6.35Ú	0.118U	6.35Ú	34.6	27.0	1.27
SB-38-24-26.5	S	Nat. Soil	6.64U	30,1	3.32U	3.320	7.76	4.02	6.640	0.124U	6.64U	15.9	13.3	1.33
SB-38-26.5-29	S	Nat. Soil	6.53U	110	3.26U	3.26U	24.5	13.8	8.34	0.123U	8.28	48.1	42.5	1.31
SB-38-29-31.5	S	Nat. Soll	6.92U	155	3.46U	3:46U	36.3	23.1	13.6	0.124U	11.1	68.4	57.6	1.38
SB-38-31.5-34	S	Nat. Soil	6.84U	155	3.42U	3.42U	35.3	22.1	14.7	0.125U	10.3	71.9	50.8	1.370
SB-38-34-36	S	Nat. Soil	5.96U	169	2.98U	2.98U	41.4	23.4	15.0	0.136U	15,9	78.3	60.7	0.9910
SB-38-36-38	S	Nat. Soll	6.27U	147	3.14U	3.14U	39.4	19.5	14.6	0.126U	12.1	75.0	46.9	1.20

15 of 17

......

A.

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

			ä											
	Saturated/Unsaturated	Unit	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickei	Vanadium	Zinc	'T-Cyanide
UBL - Fill Material	÷.,		7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils			ÐL	275	DL	DL	52.8	35.7	26.5	DL	29.7	120	80.3	DL
SB-38B-0-2	U	Fill	4.8U	53.8	2.4U	2.4U	10.3	11.6	59.1	0,132	4.8U	23.8	65.2	0.971U
DUP041301A -	U	Fill	5.41U	52.9	2.7U	2.7U	11.2	11.0	72.6	0.156	5.41U	23.6	69.5	0.915U
SB-38B-2-4	U	Fill	4.89U	69.9	2.44U	2.44U	10.2	11.5	164	0.318	4,89U	20.3	145	0.749U
SB-38B-4-6	U	Fill	4.1U	59.4	2.05U	2.05U	11.6	12.3	77.9	0.188	14.4	20.4	76.6	0.881U
SB-38B-6-8	U	Fill	4.54U	63.3	2.270	2.27U	11.6	21.1	65.9	0.385	4.54U	50.1	62.4	0.678U
SB-38B-8-10	U	Fill	4.26U	52.8	2.13U	2.13U	16.0	17.1	73.2	0.329	6.05	19.6	61.7	0.795U
SB-38B-10-12	·U	Fill	4.27U	49.7	2.13U	2.13U	-9.43	- 11.8	75.7	0.293	4.27U	19.0	64.1	0.801U
SB-39-0.5-2	U	Fill	6.3U	53.6	3.15U	3.15U	6.34	XX 前44.5	8.97	0.12U	6.3U	39.0	20.1	1.01U
SB-39-4-8	U	Fill	4.98U	58.0	2.49U	2.49U	12.8	39.8	68.0	0.262	5.70	30.4	32.9	0.958U
SB-39-8-12.5	U	Fill	5.17U	· 42.3	2.59U	2.59U	14.7	27.1	23.1	0.191	5.17U	34.1	21.6	1.03U
SB-40-0.5-2	U	Fill	5.92U	51.2	2.96U	2,96U	. 10.2	18.3	25.7	0.185	5.92U	46.8	43.3	1.06U
SB-40-2-4	U	Fill	5.58U	83.7	2.79U	2.79U	11.8	10,5	135	0.402	5.58U	26.9	136	1.15U
SB-40-16-20	U	Fill · .	5.03U	74.0	2.51U	2.51U	5.83	13.4	140	0.498	5.03U	12.4	105	1.03Ü
SB-40-24-28	S	Fill	4.27U	53.9	2.13U	2.13U	8.94	6.36		0.0996	5.80	13.7	24.0	0.985U
SB-40-40-44	S	Nat. Soil	6:52U	. 119	3.26U	3.26U	27.0	13,7	7.16	.0.118U	10.0	48.4	47.6	0.985U
DUP032001A	S	Nat. Soil	6.45U	104	3.23U	3.23U	24.1	14.2	6.82	0.127U	8.93	45.0	43.1	0.889U
SB-40-56-58	S	Nat. Soil	6.27U	104	3.14U	3.14U	31.3	16.6	10.3	0.108U	10.4	58.9	44.9	0.897U
SB-41-0-2	U	Fill	5.56U	92.0	2.78U	2.78U	12.0	35.2	11.2	0.101U	6.82	59.8	48.5	1.08U
SB-41-2-4	U	Ful	4.75U	63.2	2.37U	2.37U	11.3	12.9	7.25	0.101U	5.45	43.6	37.3	0.878U
SB-41-19-24	U	Fill	4.97U		2.49U	2.490	10.8	9.66	166		· 4.97U	18.5	219	0.961U
SB-41-24-29	·S	Fill	6,39U	和新闻202	3.19U	3.19U	13.0	9.02	17. ASA	133	6.39U	18.6	84.4	0:998U
SB-41-54-59	S	Nat. Soil	5.78U	114	2.89U	2.89U	31.3	17.3		0.1250	10.8	58:1	46.3	1.09Ü
SB-43-2-4	U	Fill	3.79U	69.2	1.9U	1.90	7.01	7.78	166	0.242	3.790	14	96.9	0.854U
SB-43-4-8	U.	Fill	2.98U	70.4	1.49U	1.49U	14.5	11.7	170	0.274	3.1	18.6	124	0.928U
SB-43-8-12	U	Fill	3.86U	13 10 26	1.93U	1.93Ü	9.11	9.22	99.2	0.139	3.86U	28	71.2	1.03U
SB-43-12-16	U	Fill	4.14U	78.6	2.07U	2.07U	16.7	12	113	0.253	4.91	24.6	86.8	0.971U
SB-43-16-20	U.	Fill	3.07U	55.9	1.54U	1.54U	13.90	9.16	51.3	0.134U	3.86	25.3	55.7	1.09U

16 of 17

Revised September 5, 2003

1 .-

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

	<u> </u>											Г	[]	1
a sa sa sa sa	Saturated/Unsaturate	5	Arsenic	Barlun		Cadmium	Chromiun	Сорре	Lead	Mercury	Nicke	Vanadium	Zinc	T-Cyanide
	ed	Unit					-			and the second s			second	
UBL - Fill Material	_		7.05	115	DL.	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils	1.000		DL	275	DL	DL	52.8	35.7	26.5	· DL	29.7	120	80.3	ÐL
SB-43-20-24	0	Fill	4.19	89	1.79Ú	1.79U	17.80	11.1	979	0.184	- 3.58U	16.4	257	1.06U
SB-43-24-28	S	Fill	4.24U	37.1	2.12U	2.120	18.40	7.34	104	0.109U	4.24U	31	69.1	0,706U
SB-43-32-36	S	Fill	- 3.94U	67,7	1.97U	1.97U	12.6	6.3	66.9	0.1140	4.36	16.5	49.8	0.829U
SB-43-36-40	S	Nat. Soll	5,22U	158.0	2.61U	2.61U	31.3	13.8	12.8	0.123U	13	58.9	54.9	1.22U
SB-43-40-44	S	Nat. Soll	5.9U	197	2.95U	2.95U	51.5	26.4	- 17.9	0.130U	15.8	96.6	68.6	0.995U
SB-43-44-48	S	Nat. Soil	10.5U	· · · · · · · · · · · · · · · · · · ·	5.27U	5.27U	说现的11 2	影響機和高度重		0.237U	29.7	略成。162	樂蘇陸的名和	1.81Ú
SB-43-48-52	S	Nat. Soil	4.94U	204	2.47U	2.47U	44.7	. 25.6		0.132U	16.3	88.1	68.3	1.04U
SB-43-52-56	S	Nat. Soil	5.53U	219	2.77U	2.77U	41	24.2		0.131U	14.7	. 75	68	1.23U
SB-43-56-60	S	Nat. Soil	3.77U	116	1.88U	1.88U	29.3	17.7	9.9	0.138U	10.8	59.6	46	1.22U
SB-43-60-64	S	Nat. Soil	4.94U	-50.4	2.47U	2.47U	15.7	7.39		0.139U	5.89	28.4	24.9	1.130
SB-44-0-2	U	Fill	NA	NA	NA	NA	NA	NA	12.1	NA	NA	NA	NA	-NA
SB-44-5-7	U	FII	NA	NA	NA	NA	NA	NA	25.3	NA	NA	NA	NA	NA
SB-44-10-12	U	Fill	NA	NA	NA	NA	NA	NA	181	NA	. NA	NA	NA	NA
SB-44-15-17	U	Nat. Soil	NA	NA	NA	NA	NA	NA	5.53U	NA	NA	NA	NA	NA
SB-44-20-21	U	Nat. Soil	NA	NA	NA	NA	NA	NA	5.54U	NA	NA	NA	NA	NA
SB-45-0-2 SB-45-5-7	U	Fill Fill	NA NA	NA NA	NA NA	NA NA	NA	NA NA	58.5 35,6	NA	NA	NA	NA	NA
	U						NA		tunner and the second	NA	. NA	NA	NA	NA
SB-45-10-12	U	Fill	NA	NA	NA	' NA	NA	. NA	425	NA	NA	NA	NA	NA
SB-45-15-17	U	Fili	NA	NA	NA	NA	NA	NA	1070	NA	NA	NA	NA	NA
SB-45-18.5-20	U	Fill	. NA	NA	NA	NA	NA	· NA	38.6	NA	NA	NA	NA	NA
DUP082003A	U	Fill	NA	NA	NA	NA	NA	NA	37.8	NA	NA	NA	NA	NA
SB-46-0-2	U	Fill	NA	NA	NA	- NA	NA	NA	15.6	NA	NA	NA		NA
SB-46-0-2	U.	FUI	NA	NA	NA	NA	NA	NA	70.6	NA	NA	NA	NA	NA
SB-46-0-2	U	Fill	NA	NA	NA	NA	NA	NA	34.5	NA	. NĂ	· NA	NA	NA
SB-46-0-2	U U	Fill	NA	NA	NA	NA	' NA	NA	20.0	NA	. NA	NA	NA	NA
MW-6-34-39	S	Nat. Soll	6.43U	173	3.21U	3.210	26.7	23.5		0.1250	10.6	68.3	54.5	1.190
MW-6-44-49	S	Nat. Soil	6.36U	. 114	3.18U	3.18U	25.5	14.5	7.52	0.123U	11.6	49.5	46,9	1.14L

17 of 17

Revised September 5, 2003

1

APPENDIX D

COMPLIANCE STATUS INVESTIGATION REPORT

FORMER MACON 2 MGP FACILITY MACON, GEORGIA

> Prepared For: Georgia Power Company Atlanta Gas Light Company and The City of Macon

Prepared By: WILLIAMS ENVIRONMENTAL SERVICES INC. 500 Chase Park South, Suite 150 Birmingham, Alabama 35244

> Preparation Date: June 17, 2002 Revised September 5, 2003

STATEMENT OF FINDINGS

The Compliance Status Investigation (CSI) detailed in this report was performed by Williams Environmental Services, Inc. (Williams) on behalf of the City of Macon, the Georgia Power Company, and Atlanta Gas Light Company. The purpose of the study was to define the properties affected by a release at the former Macon 2 Manufactured Gas Plant (MGP) facility in Macon, Georgia, as well as to determine the compliance status of the properties with regard to Risk Reduction Standards (RRSs) established under the Georgia Hazardous Site Response Act (HSRA). Other objectives of the study were to delineate the extent of constituents of interest (COI) in soil and groundwater, to identify and characterize potential sources, and to identify possible human and environmental receptors potentially exposed to a release.

A Site, as defined in the report, includes all properties affected by a release of a reportable quantity of a regulated substance at or from the former MGP operations. The properties defined as part of this Site include the parcel on which the former MGP facility was located, some of the adjacent and nearby parcels, and portions of street and railroad rights-of-way near the former MGP facility.

The study includes field investigations conducted by Williams to sample soil, sediment, and groundwater at the Site, to verify the location of former MGP structures and characterize their contents, to determine background concentrations of the COI in soil and groundwater and to determine the leaching potential for COI in soil to reach groundwater. Also incorporated into this report are the results of previous investigations (Preliminary Assessment and Site Inspection) conducted by Law Environmental, Inc. (LAW).

Known and potential sources of the regulated substances identified at the Site include the former MGP structures (two gas holders, oil tanks, purifier room, condensers, and coal storage area and areas of former MGP operations). Minor amounts of tar-like and oil-like material and other by-products of the MGP processes, including slag-like material and coal fines, were found in and around remnants of the structures and former areas of MGP operations.

The COI analyzed in the soil and groundwater samples collected during the CSI included semivolatile organic compounds (SVOCs), volatile organic compounds (VOCs), and inorganics (metals and cyanide) that are commonly associated with former MGP facilities.

The extent of COI associated with the former MGP operations in soils and groundwater have been defined in all directions. The area of soils and groundwater impacts include the majority of the former MGP facility and nearby parcels to the northeast, east, and southeast.

The former MGP facility is presently secured by fencing and according to water well surveys performed, no water wells are located within a three mile-radius of the property. Potential exposure points on the property are limited to those areas where construction or excavation activities may allow potential receptors such as workers to come in contact with COI in soils or groundwater.

Types 1 through 4 RRSs for soil and groundwater were developed from the results of the background study, laboratory detection limits, and default assumptions set forth by the Georgia Environmental Protection Division. Type 4 RRSs in soil were refined based on results of a leaching potential study, default assumptions for surface soils, and construction worker exposure assumptions for subsurface soils. The Site was evaluated for compliance with HSRA Types 1 through 4 RRSs. All COI in soil at the Site are in compliance with Type 4 RRSs. All COI in groundwater at the Site are in compliance with Type 1 RRSs.

CERTIFICATION OF COMPLIANCE WITH RISK REDUCTION STANDARDS

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk-reduction standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the following properties (identified by Bibb County, Georgia, Tax Parcel ID numbers, if applicable, and as outlined in this report) are in compliance with Type 1 risk reduction standards for soil and groundwater:

Parcel No. OC-98-5A Parcel No. OC-98-5C Parcel No. OC-98-5D Parcel No. OC-98-5G Parcel No. OC-98-5H Parcel No. OC-98-5I Parcel No. OC-98-5JA Parcel No. OC-98-4F Parcel No. OC-98-4H Parcel No. OC-98-3A(3B) Parcel No. OC-98-3D Parcel No. OC-98-2A(2B)

The following properties are in compliance with Type 4 risk reduction standards for soil and Type 1 risk reduction standards for groundwater:

Parcel No. OC-98-5J Parcel No. OC-99-4A Parcel No. OC-99-4AB Portions of Right-of-Way of Norfolk Southern Railroad Portions of Right-of-Way of Willow Street Portions of Right-of-Way of Spring Street Lane

Certified by:

Ralph Cleveland, Vice President of Engineering & Construction Atlanta Gas Light Company ·Date:

5/03

CERTIFICATION OF COMPLIANCE WITH RISK REDUCTION STANDARDS

I certify under penalty of law that this report and all attachments were prepared under my direction in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Based on my review of the findings of this report with respect to the risk-reduction standards of the Rules for Hazardous Site Response, Rule 391-3-19-.07, I have determined that the following properties (identified by Bibb County, Georgia, Tax Parcel ID numbers, if applicable, and as outlined in this report) are in compliance with Type 1 risk reduction standards for soil and groundwater:

Parcel No. OC-98-5A Parcel No. OC-98-5C Parcel No. OC-98-5D Parcel No. OC-98-5G Parcel No. OC-98-5H Parcel No. OC-98-5I Parcel No. OC-98-5JA Parcel No. OC-98-4F Parcel No. OC-98-4H Parcel No. OC-98-3A(3B) Parcel No. OC-98-3D Parcel No. OC-98-2A(2B)

The following properties are in compliance with Type 4 risk reduction standards for soil and Type 1 risk reduction standards for groundwater:

Parcel No. OC-98-5J Parcel No. OC-99-4A Parcel No. OC-99-4AB Portions of Right-of-Way of Norfolk Southern Railroad Portions of Right-of-Way of Willow Street Portions of Right-of-Way of Spring Street Lane

Certified by:

Date:

Honorable C. Jack Ellis, Mayor City of Macon

GROUNDWATER SCIENTIST STATEMENT

I certify that I am a qualified ground-water scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering, and have sufficient training and experience in ground-water hydrology and related fields, as demonstrated by state registration and completion of accredited university courses, that enable me to make sound professional judgments regarding ground-water monitoring and contaminant fate and transport. I further certify that revisions to this report (Compliance Status Investigation Report, revised September 5, 2003 completed for the City of Macon, the Georgia Power Company, and Atlanta Gas Light Company, Former Macon 2 MGP Facility -Macon, Georgia) were prepared by appropriate qualified subordinates working under my direction.

Jeffrey D. Snell, P.G. Professional Geologist Certification Number 1630

02 5

Date

COMPLIANCE STATUS REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

TABLE OF CONTENTS

PAGE

SECTION	I 1 INTRODUCTION	1
SECTION	I 2 SITE BACKGROUND	2
2.1 Si	e Description	2
	story of the Former MGP Facility	
2.3 Pr	evious Investigations	4
2.4 Si	e-Specific Constituents of Interest	
2.5 Po	tential Sources	
2.5.1	Potential Sources on the Former MGP Facility	
2.5.2	Database Search	
2.5.3	Surrounding Land Use	
SECTION	I 3 SCOPE OF COMPLIANCE STATUS INVESTIGATION AI	
	ENVIRONMENTAL SETTING	
3.1 Ge	eneral Scope of Compliance Status Investigation	
3.2 Er	wironmental Setting	12
3.2.1	Regional Geology and Hydrogeology	17
3.2.2	Site Geology	
3.2.2	Site Hydrology and Hydrogeology	
SECTION	I 4 SOIL INVESTIGATION	
4.1 Ge	eneral Approach and Rationale	15
4.2 Sa	mpling and Analysis Methods	
4.2.1	mpling and Analysis Methods Sampling Methods	
4.2.2	Field Screening.	
4.2.3	Sample Handling and Preservation Techniques	
4.2.4	Decontamination Procedures	
4.2.5	Laboratory Methods	
4.3 Ba	ckground Concentration Study	
4.4 He	prizontal Extent of Constituents of Interest in Soils	
4.4.1	Visual Indications of Tar-Like Material and Oil-Like Material	
4.4.2	Volatile Organic Compounds.	
4.4.3	Semivolatile Organic Compounds	
4.4.4	Inorganics	
4.5 Ve	ertical Extent of Constituents of Interest in Soils	
FORMER MA	E STATUS REPORT - Revised September 5, 2003 CON 2 MGP FACILITY, MACON, GEORGIA COJECT NO. 1100-2990	Page I

SECTION	ON 5 GROUNDWATER INVESTIGATION	24
5.1	General Approach and Rationale	2
5.2	Site Hydrogeology	
5.2.1	General	
5.2.2	Hydrogeologic Characteristics	
5.2	2.2.1 Hydraulic Conductivity	
	2.2.2 Physical Soil Testing	
5.2.3		
5.3	Groundwater Monitoring Well Installation and Rationale	
5.4	Sampling and Analysis	
5.4.1		
5.4.2		
5.4.3		
5.4.4		
5.5	Background Concentrations	3
	Horizontal and Vertical Extent of Constituents of Interest in Groundwater	
5.6.1	Horizontal Extent of Volatile Organic Compounds in Groundwater	
5.6.2		
5.6.3	Horizontal Extent of Inorganics in Groundwater	
5.6.4	Natural Attenuation Parameters	
SECTIO	ON 6 INVESTIGATION OF NONAQUEOUS PHASE LIQUIDS	
6.1	General Observations	
6.2	Soil Borings	
6.3	Monitoring Wells	
SECTIO	ON 7 SEDIMENTS INVESTIGATION	3
SECTIO	ON 8 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE AND C	THER
	POTENTIALLY RESPONSIBLE PARTIES	3
8.1	Properties Potentially Affected by a Release	
8.2	Other Potentially Responsible Parties	
	ON 9 POTENTIAL RECEPTOR STUDY AND RISK REDUCTION STAND	ARDS?
SECTIO		
	Chemical Source and Release Mechanisms	
9.1	Chemical Source and Release Mechanisms	•••••
9.1 9.2	Chemical Source and Release Mechanisms Environmental Transport Media	
9.1 9.2 9.2.1	Chemical Source and Release Mcchanisms Environmental Transport Media Persistence of Constituents of Interest	
9.1 9.2 9.2.1 9.2.2	Chemical Source and Release Mechanisms Environmental Transport Media Persistence of Constituents of Interest Potential Routes of Migration	
9.1 9.2 9.2.1 9.2.2 9.2.2	Chemical Source and Release Mechanisms Environmental Transport Media Persistence of Constituents of Interest Potential Routes of Migration	

•

9.2.2.1.2 Water Table 40 9.2.2.1.3 Base of Alluvium 40 9.2.2.1.4 Base of Alluvium 40 9.2.2.2 Groundwater 40 9.3 Potential Receptors at Exposure Points 40 9.3.1 Water Weils 41 9.3.2 Surface Water 41 9.3.3 Fotential Receptors at Exposure Points 41 9.3.4 Environmental Receptors 41 9.3.5 HSRA Evaluation 42 9.5.1 Solits 42 9.5.1.2 Leiculation of Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soits 51 10.3 Groundwater 51 10.4 Correcetive Action 51	9.2.2.1.1 Surface Topography	
9.2.2.1.4 Base of Alluvium 40 9.2.2.2 Groundwater 40 9.3 Potential Receptors at Exposure Points 40 9.3.1 Water Wells 41 9.3.2 Surface Water 41 9.3.3 Surface Water 41 9.3.4 Environmental Receptors 41 9.3.4 Environmental Receptors 42 9.5.1 Soils 42 9.5.1 Calculation of Risk Reduction Standards 42 9.5.1.2 Lactuation of Risk Reduction Standards 42 9.5.1.2 Lactuation of Risk Reduction Standards 43 9.5.1.2 Semivolatile Organic Compounds 46 9.5.1.2 Semivolatile Organic Compounds 46 9.5.1.3 Connudwater 47 9.5.2 Groundwater 47 9.5.2 Groundwater 47 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.1.3 Connudwater 51 10.1 Potential Source Material 51 10.2 Soils 51 10.		
9.2.2.2 Groundwater 40 9.3 Potential Receptors at Exposure Points 40 9.3.1 Water Wells 41 9.3.2 Surface Water 41 9.3.3 Crops and Hunting 41 9.3.4 Environmental Receptors 41 9.4 Exposure Routes 42 9.5 HSRA Evaluation 42 9.5.1.1 Calculation of Risk Reduction Standards 42 9.5.1.2.1 Leaching Potential Study 44 9.5.1.2.1 Leading Potential Study 44 9.5.1.2 Senivolatile Organic Compounds 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soits 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.5 Section 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks	9.2.2.1.3 Base of the Fill Material	
9.3 Potential Receptors at Exposure Points 40 9.3.1 Water Wells 41 9.3.2 Surface Water 41 9.3.4 Environmental Receptors 41 9.3.4 Environmental Receptors 42 9.5 HSRA Evaluation 42 9.5.1 Soils 42 9.5.1 Calculation of Risk Reduction Standards 42 9.5.1.2 Laching Potential Study 44 9.5.1.2 Leaning Potential Study 44 9.5.1.2 Compliance With Risk Reduction Standards 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 51 10.1 Potential Source Material 51 10.2 Suils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.5 Section 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 12.5 Field Operatious Quality Assurance/Quality Control Checks 52 12.6 Fiel	9.2.2.1.4 Base of Alluvium	
9.3.1 Water Wells 41 9.3.2 Surface Water 41 9.3.3 Crops and Illurting 41 9.3.4 Environmental Receptors 41 9.3.4 Environmental Receptors 42 9.5 HSRA Evaluation 42 9.5.1 Soils 42 9.5.1.2 Calculation of Risk Reduction Standards 42 9.5.1.2 Laching Potential Study 44 9.5.1.2.1 Lead 45 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.2.5 Groundwater 46 9.5.2 Groundwater 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.5 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Co	9.2.2.2 Groundwater	
9.3.1 Water Wells 41 9.3.2 Surface Water 41 9.3.3 Crops and Illurting 41 9.3.4 Environmental Receptors 41 9.3.4 Environmental Receptors 42 9.5 HSRA Evaluation 42 9.5.1 Soils 42 9.5.1.2 Calculation of Risk Reduction Standards 42 9.5.1.2 Laching Potential Study 44 9.5.1.2.1 Lead 45 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.2.5 Groundwater 46 9.5.2 Groundwater 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.5 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Co	·	
9.3.2 Surface Water 41 9.3.3 Crops and Hunting 41 9.3.4 Environmental Receptors 41 9.3.4 Environmental Receptors 41 9.4 Exposure Routes 42 9.5 HSRA Evaluation 42 9.5.1 Soils 42 9.5.1 Leaching Potential Study 44 9.5.1.2.1 Leaching Potential Study 44 9.5.1.2.1 Leading Potential Study 44 9.5.1.2.1 Leading Potential Study 44 9.5.1.2.2 Groundwater 45 9.5.1.2 Leading Potential Study 44 9.5.2 Groundwater 45 9.5.2 Groundwater 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.5 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Qu	9.3 Potential Receptors at Exposure Points	
9.3.3 Crops and Hunting 41 9.3.4 Environmental Receptors 41 9.4 Environmental Receptors 42 9.5 HSRA Evaluation 42 9.5.1 Solia 42 9.5.1.2 Leaching Potential Study 42 9.5.1.2 Leaching Potential Study 44 9.5.1.2.1 Lead 45 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.5 Section 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 Section 12 REFERENCES 54 LIST OF TABLES VATER LEVEL DEPTHS AND ELEVATIONS IN SOIL <td>9.3.1 Water Wells</td> <td></td>	9.3.1 Water Wells	
9.3.4 Environmental Receptors 41 9.4 Exposure Routes 42 9.5 HSRA Evaluation 42 9.5.1 Soils 42 9.5.1.2 Leaching Potential Study 44 9.5.1.2 Calculation of Risk Reduction Standards 45 9.5.1.2 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.5 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES		
9.3.4 Environmental Receptors 41 9.4 Exposure Routes 42 9.5 HSRA Evaluation 42 9.5.1 Soils 42 9.5.1.2 Leaching Potential Study 44 9.5.1.2 Calculation of Risk Reduction Standards 45 9.5.1.2 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.5 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES	9.3.3 Crops and Hunting	
9.5 HSRA Evaluation 42 9.5.1 Soils 42 9.5.1.2 Soils 42 9.5.1.2 Leaching Potential Study 44 9.5.1.2.1 Lead 45 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.3.2 Semivolatile Organic Compounds 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 11 Laboratory Quality Assurance/Quality Control Checks 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES SUMMARY OF HYDRAULC CONDUCTIVITY DATA		
9.5.1 Soils 42 9.5.1.1 Calculation of Risk Reduction Standards 42 9.5.1.2 Leaching Potential Study 44 9.5.1.2.1 Lead 44 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 UKST OF TABLES SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI	9.4 Exposure Routes	
9.5.1 Soils 42 9.5.1.1 Calculation of Risk Reduction Standards 42 9.5.1.2 Leaching Potential Study 44 9.5.1.2.1 Lead 44 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 UKST OF TABLES SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI	A B USD A Fundation	47
9.5.1.1 Calculation of Risk Reduction Standards		
9.5.1.2 Leaching Potential Study 44 9.5.1.2.1 Lead 45 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.5 Groundwater 51 10.4 Corrective Action 51 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES SUMMARY OF HYSICAL SOL TESTS CONDUCTED DURING THE SI TABLE 5.1 SUMMARY OF PHYSICAL SOL TESTS CONDUCTED DURING THE SI <td></td> <td></td>		
9.5.1.2.1 Lead 45 9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.2.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL List of TABLES 11.1 Laboratory Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 14 LIST OF TABLES TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.1 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL		
9.5.1.2.2 Semivolatile Organic Compounds 46 9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 LIST OF TABLES 54 LIST OF TABLES 54 LIST OF TABLES 54 LIST OF Hyper Constituents of INTEREST 54 TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS IN SOIL TABLE 5.2 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI		
9.5.1.3 Compliance With Risk Reduction Standards 47 9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 55 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTIVITY DATA TABLE 5.1 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI		
9.5.2 Groundwater 48 SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 LIST OF HORAULIC CONDUCTIVITY DATA 54 TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4		
SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION 51 10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 3.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TA	•	
10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 LIST OF TABLES 54 TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	9,J.2 Orounuwater	***************************************
10.1 Potential Source Material 51 10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 LIST OF TABLES 54 TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS		<i>د</i> غ
10.2 Soils 51 10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 LIST OF TABLES 54 TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS IN SOIL TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	SECTION TO CORRECTIVE ACTION FEASIBILITY INFORMATION	
10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	10.1 Potential Source Material	
10.3 Groundwater 51 10.4 Corrective Action 51 10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS		
10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 3.1 CACULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	10.2 Soils	
10.4 Corrective Action 51 SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 3.1 CACULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	10.2 Charmedrates	E1
SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL 52 11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 3.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	10.3 Groundwater	
11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	10.4 Corrective Action	
11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS		
11.1 Laboratory Quality Assurance/Quality Control Checks 52 11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL	
11.2 Field Operations Quality Assurance/Quality Control Checks 52 SECTION 12 REFERENCES 54 LIST OF TABLES 54 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS		
SECTION 12 REFERENCES 54 LIST OF TABLES	11.1 Laboratory Quality Assurance/Quality Control Checks	
SECTION 12 REFERENCES 54 LIST OF TABLES		
LIST OF TABLESTABLE 2.1SITE-SPECIFIC CONSTITUENTS OF INTERESTTABLE 4.1CALCULATED BACKGROUND CONCENTRATIONS IN SOILTABLE 5.1WATER LEVEL DEPTHS AND ELEVATIONSTABLE 5.2SUMMARY OF HYDRAULIC CONDUCTIVITY DATATABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	11.2 Field Operations Quality Assurance/Quality Control Checks	
LIST OF TABLESTABLE 2.1SITE-SPECIFIC CONSTITUENTS OF INTERESTTABLE 4.1CALCULATED BACKGROUND CONCENTRATIONS IN SOILTABLE 5.1WATER LEVEL DEPTHS AND ELEVATIONSTABLE 5.2SUMMARY OF HYDRAULIC CONDUCTIVITY DATATABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS		
LIST OF TABLESTABLE 2.1SITE-SPECIFIC CONSTITUENTS OF INTERESTTABLE 4.1CALCULATED BACKGROUND CONCENTRATIONS IN SOILTABLE 5.1WATER LEVEL DEPTHS AND ELEVATIONSTABLE 5.2SUMMARY OF HYDRAULIC CONDUCTIVITY DATATABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	SECTION 12 REFERENCES	54
 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS 		
 TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI TABLE 5.4 GRAIN SIZE DISTRIBUTION TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS 		
TABLE 4.1CALCULATED BACKGROUND CONCENTRATIONS IN SOILTABLE 5.1WATER LEVEL DEPTHS AND ELEVATIONSTABLE 5.2SUMMARY OF HYDRAULIC CONDUCTIVITY DATATABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	LIST OF TABLES	
TABLE 4.1CALCULATED BACKGROUND CONCENTRATIONS IN SOILTABLE 5.1WATER LEVEL DEPTHS AND ELEVATIONSTABLE 5.2SUMMARY OF HYDRAULIC CONDUCTIVITY DATATABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS		
TABLE 5.1WATER LEVEL DEPTHS AND ELEVATIONSTABLE 5.2SUMMARY OF HYDRAULIC CONDUCTIVITY DATATABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST	·
TABLE 5.2SUMMARY OF HYDRAULIC CONDUCTIVITY DATATABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL	
TABLE 5.3SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SITABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS	
TABLE 5.4GRAIN SIZE DISTRIBUTIONTABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA	
TABLE 5.5SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSITABLE 5.6SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATIONTABLE 5.7ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI	
TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	TABLE 5.4 GRAIN SIZE DISTRIBUTION	· · · · · ·
TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	•	
TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	TABLE 5.6 SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION	·
	TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS	

- TABLE 5.8 CALCULATED BACKGROUND CONCENTRATIONS
- TABLE 8.1 OWNERS OF POTENTIALLY AFFECTED PROPERTIES
- TABLE 9.1 PHYSICAL AND CHEMICAL CHARACTERISTICS OF SELECT CONSTITUENTS OF INTEREST
- TABLE 9.2 RISK REDUCTION STANDARDS FOR SOIL AND METHODS USED IN CALCULATIONS
- TABLE 9.3 CALCULTATION OF SITE-SPECIFIC DILUTION ATTENUATION FACTOR
- TABLE 9.4 CALCULATION OF SOIL SCREENING LEVELS
- TABLE 9.5 RISK REDUCTION STANDARD EXCEEDANCES IN SOIL
- TABLE 9.6 RISK REDUCTION STANDARDS FOR GROUNDWATER AND METHODS USED IN CALCULATIONS
- TABLE 9.7 RISK REDUCTION EXCEEDANCES IN GROUNDWATER AUGUST 2003 SAMPLING EVENT

LIST OF FIGURES-

- 1 LOCATION MAP
- 2 OWNERSHIP MAP
- 3 SITE MAP
- 4 MANUFACTURED GAS PROCESS AND GENERATED RESIDUALS
- 5 SURFACE/STORM WATER FLOW PATH
- 6 GENERALIZED STRATIGRAPHIC SECTION
- 7 CROSS-SECTION A-A
- 8 CROSS-SECTION B-B'
- 9 CROSS-SECTION C-C'
- 10 UPPER BACKGROUND LIMIT CALCULATION FLOW CHART
- 11 VISUAL INDICATIONS OF TLM AND OLM IN SOILS
- 12 TOTAL DETECTED BENZENE AND VOCs IN SOILS
- 13 TOTAL DETECTED NAPHTHALENE AND SVOCs IN SOILS
- 14 BARIUM AND VANADIUM IN SOILS
- 15 LEAD AND MERCURY IN SOILS
- 16 ARSENIC, COPPER, AND ZINC IN SOILS
- 17 CHROMIUM AND CYANIDE IN SOILS
- 18 ESTIMATED TOP OF GROUNDWATER (08/20/03)
- 19 TOTAL DETECTED ACENAPHTHENE, CYANIDE, AND BARIUM IN GROUNDWATER (AUGUST 2003)
- 20 AREAS EXCEEDING RISK REDUCTION STANDARDS IN SOIL

Figures 2, 3, 7 through 9, and 11 through 20 are oversized drawings bound separately from the text.

LIST OF APPENDICES

- A SANBORN FIRE INSURANCE MAPS AND AERIAL PHOTOGRAPHS
- B SOIL ANALYTICAL DATA
 - B-1 SITE INSPECTION
 - B-2 COMPLIANCE STATUS INVESTIGATION
- C GROUNDWATER ANALYTICAL DATA
 - C-1 SITE INSPECTION
 - C-2 COMPLIANCE STATUS INVESTIGATION
 - BORING LOGS

D

- D-1 SITE INSPECTION
- D-2 COMPLIANCE STATUS INVESTIGATION

- D-3 RIVER INVESTIGATION
- E EDR DATABASE SEARCH REPORT
- F QUALITY ASSURANCE/QUALITY CONTROL SAMPLES
- G DATA VALIDATION AND QUALITY ASSURANCE/QUALITY CONTROL REPORTS
 - G-1 DATA VALIDATION REPORT
 - G-2 WILLIAMS LABORATORY QA/QC REPORTS
 - G-3 FIELD OPERATIONS SYSTEM AUDIT CHECKLIST
- H BACKGROUND CALCULATIONS FOR SOIL
- I SLUG TEST DATA
- J PHYSICAL SOIL TEST REPORTS
- K WELL CONSTRUCTION FORMS
- L WATER QUALITY SAMPLING FORMS
- M POTENTIAL RECEPTOR STUDY

LIST OF ATTACHMENTS-

ATTACHMENT A

ANALYTICAL DATA REPORTS

COMPLINACE STATUS INVESTIGATION REPORT FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

PARAMATIC AND A STATE OF A DATA OF A DATA OF A DATA

6

13

SECTION 1 INTRODUCTION

State of the state of the state of the

The second strength

110

and a set of a set of the set of

CARNER STREET

SECTION 1 INTRODUCTION

Georgia Power Company, Atlanta Gas Light Company, and the City of Macon (Parties) retained Williams Environmental Services, Inc. (Williams) to conduct a Compliance Status Investigation (CSI) of a former manufactured gas plant (MGP) facility at the intersection of Spring Street Lane and Willow Street, Macon, Bibb County, Georgia (Georgia Hazardous Site Response Act [HSRA] Site Number 10692). The facility is designated as "Macon 2" to distinguish it from another former MGP facility (Macon 1) located at 137 Mulberry Street, Macon, Georgia. The CSI was conducted in a manner to meet the requirements of the Georgia HSRA regulations and included the following tasks:

- Identified locations and dimensions of former MGP structures still existing on Site;
- Chemically characterized (fingerprinted) potential by-product-like material and impacted soil from former MGP sources;
- Identified and chemically characterized (fingerprinted) non-MGP sources that may have contributed to soil
 or groundwater impacts at the Site;
- · Established background concentrations of constituents of interest (COI) for soils and groundwater;
- Completely delineated COI related to the former MGP operations in soils, horizontally and vertically, at the Site;
- Completely delineated COI related to the former MGP operations in groundwater at the Site;
- Conducted assessment of potential impacts to sediments;
- Acquired data regarding physical properties of soil including porosity, hydraulic conductivity, grain-size distribution, and other relevant properties;
- Acquired data regarding aquifer characteristics;
- Evaluated potential human or environmental receptors that may be exposed to a release from the Site;
- Developed risk reduction standards (RRS) for COI (included evaluation of leaching characteristics); and
- Identified all properties which have been affected by a release from the Site.

The data collected during the CSI have been used in conjunction with data collected during the Preliminary Assessment (PA) and Site Investigation (SI) performed by Law Engineering and Environmental Services, Inc. (LAW) in 1991 and 1992, respectively, to prepare a compliance status report (CSR) as set forth by HSRA regulations in Section 391-3-19-06(3).

COMPLINACE STATUS INVESTIGATION REPORT FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

WAY OF THE REAL PROPERTY OF

Free and the second of the second second

SECTION 2 SITE BACKGROUND

SECTION 2 SITE BACKGROUND

2.1 SITE DESCRIPTION

The former Macon 2 MGP facility is located to the north of the intersection of Spring Street Lane and Willow Street (Figure 1). The term "Site" in this CSI Report refers to those parcels potentially affected by a release from the former Macon 2 MGP operations. Therefore, based on the data presented in this CSR, the Site includes the property where the former MGP facility was located and certain surrounding parcels and street rights-of-way (Figure 2). The property where the former Macon 2 MGP facility was located is currently owned by the City of Macon and is used by the City of Macon Central Services. Facilities at the property include a combined office/service shop building, a canopied equipment storage area, a warehouse and an employee parking lot (Figure 3). Most of the property is covered with asphalt paving although several areas are paved with concrete including the loading dock area to the southwest of the office/service shop and a concrete area between the equipment storage area and service shop. Grassy areas are located southwest of the office/service shop and near the southeastern property boundary. According to the topographic map of the area, elevations at the property generally range from 300 to 320 feet above mean sea level (Figure 1).

The surrounding properties are primarily commercial and include the Macon Transit Authority (bus garage) to the south, restaurants and a filling station to the west, and a filling station to the northwest. The Ocmulgee River and the Norfolk Southern Railroad are located to the east and northeast of the facility.

2.2 HISTORY OF THE FORMER MGP FACILITY

From the mid-1800's until the 1950's, MGPs in general were widely used for producing gas from coal, coke, or oil. The gas was primarily used for lighting and heating. Most of the manufactured gas was generated by one of the following processes:

- Coal gas;
- Water gas/carburetted gas; or
- Oil gas,

The coal gas process involved the carbonization of coal in retorts (ovens) which produced gas consisting of hydrocarbon elements of the coal. The water gas process involved heating coke or coal in a generator, and subsequently injecting steam into the heated vessel, which produced gas consisting of hydrogen and carbon monoxide. The carburetting process further included the injection and cracking of oil, creating a gas with hydrocarbon elements and a higher BTU content. The oil gas process involved injecting oil into a heated vessel, producing a gas consisting of the hydrocarbon elements of the oil. In all of the processes, the resultant gas was cooled and purified before distribution. As a result, various process residuals such as tars, liquors, and sludges were produced by MGP operations. A generic process flow sheet for MGP operations is presented on Figure 4.

Williams reviewed Sanborn Fire Insurance maps (1889, 1895, 1908, 1924, 1951, 1960 and 1969; included in Appendix A) and aerial photographs (1938, 1958, 1966, 1972, and 1990; included in Appendix A). Williams used this information to identify the approximate former locations of purifier boxes, condensers, a coal storage area, two oil tanks, and two gas holders. Based on the information provided on the Sanborn Fire Insurance Maps, the Mácon 2 MGP facility operated prior to 1889 to no later than 1908. During this time, the gas holders were decommissioned prior to 1895.

The Sanborn Fire Insurance map dated 1889 (Appendix A) shows a main building containing purifying boxes and condensers located near the center of the property along what is now referred to as Willow Street. A motor room was located on the northwest corner of this building adjacent to the purifying boxes. Two gasometers existed on the property. The gasometer located on the northwest side of the main building had a capacity of 40,000 cubic feet and will be referred to as Gas Holder No. 1. The gasometer located east of the main building had a capacity of 60,000 cubic feet, and will be referred to as Gas Holder No. 2. Two oil tanks were located to the northeast of the main building and each had a capacity of 8,000 gallons. The property was bounded to the southwest by an alley (now Willow Street), to the northwest by Spring Street, and to the southeast by New Street. An embankment of approximately 20 feet in height was located between the main building and Gas Holder No. 2 with the area to the south and west being of the higher elevation. The surrounding property was primarily residential.

The 1895 Sanborn Fire Insurance map (Appendix A) indicates the configuration of the property boundaries as well as the development of the surrounding properties remained unchanged since 1889 with few exceptions. The 8,000 gallon oil tanks are no longer pictured on the 1895 Sanborn Fire Insurance Map. A coal house was added to the north end of main building. Rose Street is shown bounding the property to the northeast and is depicted as not graded.

The Sanborn Fire Insurance map dated 1908 (Appendix A) indicates that between 1895 and 1908 the facility was abandoned and structures were vacant and not used. The property boundaries as well as the development of the surrounding properties appear to have remained unchanged since 1895. The alley located to the southwest of the property is referred to as Willow Street on the 1908 Sanborn Fire Insurance Map. The embankment dividing the property is no longer identified.

The Sanborn Fire Insurance map dated 1924 (Appendix A) indicates that, at that time, the gas holders and the facility were still abandoned and vacant. The main building is no longer identified. Surrounding property usage appears unchanged between 1889 and 1924. The Norfolk Southern Railway and Ocmulgee River are identified to the northeast of the property. Rose Street is no longer identified as bounding the property to the northeast.

The Sanborn Fire Insurance map dated 1951 (Appendix A) indicates that between 1924 and 1951 the property was cleared of all surficial MGP structures. A gas regulator station located on the southwest property boundary at the corner of Willow Street and Spring Street Lane is the only structure identified on the property. The 1951 Map indicates that in 1950, the parcel to the south of the property was developed and operated by the Bibb Transit Company. This property included a machine shop with tire and parts storage areas and a separate building that included a filling station. The property located to the west of the former MGP facility, on the corner of Ocmulgee (now Riverside Drive) and Spring Street, had been developed into a filling station by 1951. It appears that the southwestern portion of the former

MGP property, adjacent to Willow Street, was used for bus parking by the Bibb Transit Company during this time. The property located to the west of the Bibb Transit Company was developed into a Baptist Church by 1951.

The Sanborn Fire Insurance map dated 1960 (Appendix A) indicates that between 1951 and 1960, the property located to the south of the former MGP facility (west of the Bibb Transit Company) included the development of a paint shop just northeast of the former Baptist Church. The property located across Riverside Drive, south of the former MGP facility, on the corner of Riverside Drive and New Street, was developed into a paint and plate glass company by 1960. A restaurant was built on the property located on the southwest corner of Riverside Drive and Spring Street between 1951 and 1960. All other adjacent properties appeared relatively unchanged between 1951 and 1960.

The Sanborn Fire Insurance map dated 1969 (Appendix A) indicates that between 1960 and 1969, the property located to the southwest of the former MGP property on the corner of Spring Street Lane and Riverside Drive was developed into a radio station. The property located immediately southwest of the former MGP facility, across Willow Street had been developed into a restaurant. A filling station was built on the property located to the north of the former MGP facility between 1960 and 1969.

Historical aerial photographs were obtained for 1938, 1958, 1966, 1972, and 1990. The aerial photograph from 1938 indicated that the facility had been cleared of all building structures by this time. Due to the quality of the 1938 photograph, locations of the former Gas Holders were indistinguishable. The 1958 aerial photograph shows that the buildings associated with the Bibb Transit Company had been constructed and the parcel to the north of property had been cleared by this time. The 1958 aerial photograph also shows the location of Gas Holder No. 1. Based on the aerial photographs, between 1958 and 1966 the eastern and southern portion of the property had been filled. Between 1966 and 1972, additional fill material was placed on the north and northwestern portions of the property. In addition, the property to the southwest of the former MGP facility appears to have been cleared and/or filled between 1966 and 1972. The remaining structure of Gas Holder No. 1 is visible on aerial photographs from 1966 and 1972 but was apparently covered with fill and/or pavement by 1990. Between 1972 and 1990, the current structures on the former MGP facility property, including the office building and canopied storage area, were constructed. By 1990, most of the property is covered by buildings, asphalt, or concrete.

2.3 PREVIOUS INVESTIGATIONS

Law Environmental, Inc. (LAW) conducted a Preliminary Assessment (PA) of the Site in 1991 which included a review of available file material, on-site and off-site reconnaissance, review of historical property ownership and a limited pathway survey. No sampling or analysis was conducted during the PA.

In February and March, 1992, LAW conducted a Site Inspection (SI) which included exploration of subsurface soils, collection and analysis of subsurface soil and groundwater samples, evaluation of soil and groundwater samples, evaluation of soil physical characteristics, ambient air monitoring and review of literature. The following activities were conducted during the SI:

- Seven exploratory soil borings (SB-1 to SB-7) were drilled to collect subsurface soil samples for a preliminary determination of the vertical and horizontal extent of impacted soils;
- Four monitoring wells were installed and screened across the water table (MW-01 to MW-04);
- Selected soil and groundwater samples were analyzed for the Target Compound List (TCL) and Target Analyte List (TAL) constituents using Contract Laboratory Program (CLP) protocol;
- One undisturbed soil sample was collected from soil boring SB-2 for physical parameter analyses including
 porosity, water content, dry density, hydraulic conductivity, total organic carbon, and organic content; and
- Slug tests were performed in the four monitoring wells (MW-01 through MW-04).

The sampling locations from the SI are provided in Figure 3. Analytical results from soil samples collected during the SI are included in Appendix B-1 and Appendix C-1 includes a summary of the groundwater analytical data collected during the SI.

SACAL Environmental & Management Co. submitted to the EPD a release notification on November 3, 2000, on behalf of the City of Macon. The EPD subsequently listed the Site on the Hazardous Site Inventory on January 5, 2001 (HSI Site No. 10692).

2.4 SITE-SPECIFIC CONSTITUENTS OF INTEREST

The materials of interest at MGP sites include tar, oil, and associated sludges that are complex mixtures of different polynuclear aromatic hydrocarbons (PAHs), lesser amounts of phenolics and volatile organic compounds (VOCs), and some inorganics such as various metals and cyanide. The Gas Research Institute (Management of Manufactured Gas Plant Sites, Volume I, Wastes and Constituents of Interest, October 1987 and later revisions) identifies a list of chemicals present at most MGP sites. Analytical data presented by LAW indicates that some of those chemicals on the list are present at the former MGP facility.

A list of constituents of interest (COI) for the Site was prepared based on the Gas Research Institute list plus those compounds detected in the SI above the HSRA notification concentration (NC) in soils or above background levels in groundwater. The Site-specific COI are listed in Table 2.1.

	ECIFIC CONSTITUENTS (
Semivolatiles	Volatiles	Inorganics	
Acenaphthene	Benzene	Arsenic	
Acenaphthylene	Carbon Disulfide	Barium	
Anthracene	Ethylbenzene	Beryllium	
Benzo(a)anthracene	Methylene Chloride	Cadmium	
Benzo(a)pyrene	Toluene	Chromium	
Benzo(b)fluoranthene	Total Xylenes	Copper	
Benzo(g,h,i)perylene	1	Lead	
Benzo(k)fluoranthene	ł	Mercury	
Chrysene		Nickel	
Dibenzo(a,h)anthracene		Vanadium	
Fluoranthene		Zinc	
Fluorene		Total Cyanide	
Indeno(1,2,3-cd)pyrene			İ
Naphthalene			
Phenanthrene	1		ľ
Phenol			
Pyrene			

TABLE 2.1 SITE-SPECIFIC CONSTITUENTS OF INTEREST

2.5 POTENTIAL SOURCES

Sources which potentially have or are contributing to a release of a hazardous constituent or substance at the former MGP facility were defined during the PA, SI and CSI. The potential sources include former MGP structures which continue to exist today in whole or in part, former MGP structures or equipment which have been removed, areas where by-products of the process were stored and/or placed, and other potential sources not located on the former MGP property. These potential sources are described in greater detail in Sections 2.5.1 and 2.5.2. The quantity and chemical composition of releases (if any) associated with the identified potential sources are not known. However, based on literature and experience, VOCs and semivolatile organic compounds (SVOCs), including PAHs, are usually associated with sources where tar was accumulated (such as holders) or processed (tar separators). The manufacturing of coal gas potentially produced phenols which may be associated with sources where tar was accumulated. PAHs are also associated with oils. Trace metals and SVOCs may be associated with coal or coke storage areas or fill material containing coal fines, ash or clinkers. Cyanides are often associated with purifier operations.

2.5.1 Potential Sources on the Former MGP Facility

Former MGP structures with remaining subsurface remnants were identified during the CSI. The structures and associated sampling points are indicated on Figure 3 and are described below. As-built construction diagrams are not available.

- Gas Holder No. 1 This structure is located at the southwest corner of the warehouse between the warehouse and the pole storage rack. Gas Holder No. 1 was decommissioned prior to 1908 and was abandoned by 1924 according to the Sanborn Fire Insurance maps. The Sanborn Fire Insurance map indicates that the gas holder was 40 feet in diameter with a capacity of 40,000 gallons. Samples were described from four soil borings performed within the structure during the CSI (SB-9 through SB-11, and SB-39). Probe refusal was encountered from 12 to 13 feet below ground surface (bgs). Additional borings (no IDs) were performed to locate the extent of the foundation which was marked on the surface and surveyed. Coal-like material (CLM) and slag-like material (SLM) were observed within the structure and a small quantity (less than one-inch lens) of oil-like material (OLM), and tar-like material (TLM) were observed at the base of two of the borings (SB-11 and SB-39). Boring logs are included in Appendix D.
- Gas Holder No. 2 This structure is located east of the current canopied equipment storage area and warehouse and was used at one time to store the final gas product. According to the Sanborn Fire Insurance maps the structure was decommissioned and abandoned around the same time as Gas Holder No. 1. The Sanborn Fire Insurance maps indicate that the gas holder was 60 feet in diameter with a capacity of 60,000 gallons. Based on historical aerial photographs and current Site conditions, the Gas Holder was backfilled prior to 1938 and additional fill was later placed over the structure. The holder was identified in the field by several soil borings. Samples were described from four soil borings performed within the structure during the CSI (SB-12 through SB-15). Additional soil borings (no IDs) were performed to delineate the extent of

the foundation of Gas Holder No. 2. The extent was marked on the surface and later surveyed. Probe refusal was encountered within the holder from 38 to 41 feet bgs. Coal-like material, SLM, OLM, and TLM were observed in borings performed in the structure (see boring logs in Appendix D). The OLM and TLM were observed at the very base of the structure in a highly viscous, black, tarry layer of no more than one inch in thickness.

- Purifying Room/Condensers/Motor Room According to the Sanborn Fire Insurance maps from 1889, 1895, and 1908, this building was near the intersection of Willow Street and Spring Street Lane and would have been located at the southwest corner of the warehouse currently on the property and extending to Willow Street. Two soil borings (SB-19 and SB-20) were advanced in the general vicinity of this building to assess the potential release of COI from this structure.
- Oil Tanks The 1889 Sanborn Fire Insurance map indicates the presence of two 8,000-gallon underground oil tanks that were located northwest of Gas Holder No. 2. Based on current property conditions, the oil tanks would have been located on the northeast and northwest corners of the current warehouse. Two soil borings (SB-16 and SB-17) were advanced between the warehouse and the maintenance shop to assess the potential release of COI from the oil tanks.

All of the potential sources listed could have contributed to the release of regulated substances but it is not known if each potential source actually was a contributor. A biased sampling approach was used during the CSI to address all known potential source areas. Continuous sampling combined with field-screening methods were employed to identify impacted strata. The sampling approach is discussed more fully in Section 4.

In addition to the former MGP structures, fill material used to develop the property and surrounding properties may be a potential source of regulated substances. The former MGP facility and surrounding properties were backfilled on several occasions to reach the current topography. Fill thickness ranges from 4.5 feet to the west of the former MGP facility to approximately 36 feet on the eastern portion and to the southeast of the former MGP facility. The fill material consists of silts, sands, and clays consistent with the area lithology and construction debris including brick, concrete, glass and asphalt. Fill material within the former MGP property boundaries and fill material beyond the former MGP property boundaries appears to be from similar sources based on visual observation.

2.5.2 Database Search

A database search was performed prior to the CSI to determine the presence of facilities listed on environmental databases in the area surrounding the former Macon 2 MGP property. A report provided by Environmental Data Resources Inc. (EDR), at the request of Williams, included a listing of such facilities within a one-eighth mile, one-quarter mile, one-half mile, and in some instances a one-mile radius of the former MGP facility. The search was centered from the intersection of Spring Street Lane and Willow Street, which is the approximate location of the target property.

Facilities listed within a one-eighth mile radius of the former MGP Site include five sites found on both the Leaking Underground Storage Tank (LUST) and Underground Storage Tank (UST) databases. These facilities include Conoco #10045 (Jet #10045, EDR Report), located west-northwest of the property; Greyhound Bus Terminal, located west-southwest of the property; BP/Bucks Service Station located west-southwest of the property; Spring and Riverside Exxon (former Chevron Fac ID 40452), located southwest of the property; and the Macon-Bibb County Transit Authority, located south of the property. Morgan Tire and Auto Incorporated and Spectrum #76 are also found within one-eighth mile of the property and are listed on the LUST and UST databases, respectively.

Facilities located between one-eighth and one-quarter mile from the former MGP facility include Nationwide Printing Corporation, found on the Resource Conservation and Recovery Information Systems-Small Quantity Generator (RCRIS-SQG) list. This list includes sites that generate, store, treat or dispose of hazardous waste as defined by the RCRA. This facility is located west-southwest of the Site. Three UST sites (WC&M Incorporated, Land-O-Sun, and the Radisson Hotel-Macon) and one Georgia Non-hazardous Site Inventory site (Riverside Drive Property) are also located between one-eighth and one-quarter mile from the former MGP facility.

Facilities listed on environmental databases within one-quarter and one-half mile of the Macon 2 former MGP facility include four LUST sites: the Downtown Chevron Service Center, located south of the property; AT&T, located west-southwest of the property; BST/Macon Main/R2110, located south-southwest of the property; and Paul's Fina/Paul's Service, located northeast of the property.

The Macon 1 former MGP Site, located south-southeast of the property, was listed in the Georgia State Hazardous Waste Sites records (the state's equivalent to the U. S. EPA's Comprehensive Environmental Response, Compensation and Liability Information System) and EDR's proprietary database Former Manufactured Gas (Coal Gas) Sites. This site is found within a one-half and one-mile radius of the Macon 2 former MGP facility. Also listed on the Former Manufactured Gas (Coal Gas) Sites database is the Macon 2 MGP property itself. A copy of EDR's report is included in Appendix E.

Based on information presented in EDR's database search report and a Site reconnaissance by Williams, Kemron Environmental Services (Kemron), at the request of Georgia Power, conducted a technical file review of surrounding facilities with the greatest potential of impacting the Macon 2 former MGP property. File reviews were conducted on six facilities listed in LUST and UST databases and include Spring and Riverside Exxon (Fac ID 9000192; former Chevron Fac ID 40452), Greyhound Bus Terminal (Fac ID 4110182); Conoco #10045 (JET #10045, EDR Report; Fac ID 4110086), BP/Buck's Service Station (Fac ID 4110275), Macon-Bibb Transit Authority (Fac ID 9011141), and Spectrum #76 (Fac ID 4110210). A summary of each file review follows.

Spring and Riverside Exxon (Fac ID 9000192; former Chevron Fac ID 40452), located at 893 Riverside Drive, registered five USTs in March 1986. The USTs consisted of two 10,000-gallon gasoline USTs, two 3,000-gallon gasoline USTs and one 550-gallon used oil UST. On February 2, 1989, a suspected release was reported due to gasoline vapors in the soil and groundwater. A Phase II Environmental Site Assessment was conducted and a report submitted to EPD in February 1989. Four groundwater monitoring wells were installed and sampled during the site assessment. The

maximum benzene concentration in groundwater was reported at 24,503 μ g/L and total benzene, toluene, ethyl-benzene, and total xylenes (BTEX) was reported at 238,393 ug/L, indicative of free phase product. A "trace" amount of free phase product was found on the water table at the site. Groundwater flow was radial to the northeast, east and southeast.

Remedial activities at the Spring and Riverside Exxon included the removal of all UST system components and 200 tons of soil in March 1989. A new facility was constructed in August 1989 and a soil venting pilot study was conducted in October 1989 removing 1,212 pounds of volatile organic compounds (VOCs) from the soil. A Confirmatory Soil Sampling Report received by EPD on August 26, 1991, reported total petroleum hydrocarbons (TPH) and BTEX levels at 1,460 mg/Kg and 218 mg/Kg respectively, both above Corrective Action Plan (CAP) objectives. Reinstallation of the soil vapor extraction system was proposed. A letter dated January 27, 1994, was received by the EPD from the law offices of Anderson, Walker and Reichert, who were writing on behalf of the City of Macon. The letter suggests the City's property (Macon 2 former MGP property) may have been impacted by a release originating from the former Chevron property. An up-gradient baseline monitoring well placed on the City's property adjacent to the former Chevron property contained 1,300 ug/L benzene. Based on the location of the source of contamination. A CAP Part A was received by EPD on January 9, 1996, but has not yet been reviewed. Additional wells, including a deep well, were installed in 1994. A CAP Part B is proposed by Chevron along with three additional wells. The site has not been delineated and remains a candidate for impacting the Macon 2 former MGP property.

The Greyhound Bus Terminal (Facility ID 4110182) registered one 10,000-gallon diesel UST in April 1986. In April of 1992, a TPH concentration of 9,100 mg/Kg was reported from a soil sample taken from the piping trench. Three wells were installed and sampled. The maximum BTEX concentration in soil was 0.297 mg/Kg. The maximum TPH concentration in soil was 77 mg/Kg. The maximum benzene concentration found in groundwater was 8,100 ug/L. Due to the high concentration of benzene and given the fact the Greyhound Bus Terminal never operated a gasoline UST, the contamination was concluded to be from another source. A Site Characterization Report (prepared by Engineering-Science, Inc.) including this information was received in August 1992. The UST was removed in January 1992. Subsequent monitoring events were conducted and reports submitted to the EPD to solidify the argument that , benzene contamination was from an up-gradient petroleum source. No free phase product was found. EPD issued a letter on June 24, 1994, indicating no further action required. Monitoring wells used in the diesel UST investigation have been decommissioned.

Conoco #10045 (Facility ID 4110086; Jet #10045, EDR Report) reported a release in October 1995 due to a failed line tightness test. EPD requested a site check on October 27, 1995. The leak was verified and soil samples were collected. A CAP Part A was received by the EPD on October 26, 1996. A CAP Part B was received August 4, 1997. The maximum concentration of benzene in groundwater was reported as 2,000 ug/L and a model was prepared to justify an alternative concentration level (ACL) of over 20,000 ug/L. Remediation by natural attenuation with annual monitoring was proposed. A Groundwater Monitoring report received by the EPD in May 1999 reported maximum concentrations of benzene in groundwater at 970 ug/L. Groundwater flow at the site was determined to be east-northeast. Two additional wells were installed down gradient to achieve delineation. Free product has been measured

several times in the well on that site designated MW-1. High vacuum recovery was approved by the EPD on January 10, 2001, to recover the free phase product. Monitoring wells near the site boundary show minimal impact; however, the contaminant plume has the potential to impact the northeast corner of the Macon 2 Former MGP property.

BP/Buck's Service Station (Facility ID 4110275) issued an Initial Site Characterization Report to the EPD on June 8, 1993. Three 8,000-gallon USTs and one 4,000-gallon UST were reported on site. Seven soil borings were installed with one sample containing detectable benzene at 1.5 mg/Kg. Benzene concentrations in groundwater were found at 24,543 ug/L and total BTEX concentrations were indicative of free phase product. EPD requested a CAP on July 26, 1993. A UST Closure Assessment Report was received by the EPD November 30, 1993. Seven tanks were closed and fourteen soil samples were collected. The highest detected total BTEX concentration was 467 mg/Kg in the soil samples. A total of 470 tons of contaminated soil were disposed of. EPD requested a CAP part A which was received in March of 1998. No free product was found at that time. The maximum benzene concentration in groundwater was 3,240 ug/L. Semi-annual monitoring was proposed. A CAP Part B is pending. This site is considered a candidate for a potential source of contamination at the Macon 2 facility; however, the groundwater flow is not directly towards the Site. Free product has recently (June 2000) been discovered in one of the wells.

Macon-Bibb County Transit Authority (Fac ID 9011141) submitted a UST Closure Report that was received by the EPD on February 10, 2000. The submittal reported the results of the closure of two 12,000-gallon diesel USTs and one 300-gallon waste oil UST. TPH and BTEX were found in several soil samples and some results exceeded applicable soil threshold levels (STLs). The maximum BTEX and TPH concentrations in the soil were reported at 11.32 mg/Kg and 480 mg/Kg, respectively. EPD requested a CAP Part A on April 10, 2000. On July 21, 2000, a letter submitted by Dobbs Environmental was received by the EPD requesting no further action. Subsequently, an additional soil boring was installed to the top of bedrock (groundwater was not encountered). The sample collected just above the bedrock contained a concentration of 0.83 mg/Kg benzene.

Spectrum #76 (Fac ID 4110210) does not appear to be a potential source of impacts to the Macon 2 Site. A Closure Report was received by EPD on January 6, 1997, after one 1,000-gallon UST was removed in November 1996. Piping was replaced to six active tanks and a report was submitted on January 28, 1998. BTEX, gasoline range organics ' (GRO), diesel range organics (DRO), and PAHs were all below detectable limits. A "No Further Action Requested" status was issued by the EPD on June 5, 1998. No release has been reported.

2.5.3 Surrounding Land Use

According to Sanborn Fire Insurance maps the area surrounding the former MGP facility has been historically developed for commercial, industrial and residential purposes. The properties located immediately northwest of the facility, northwest across Willow Street, and west and south across Willow Street were listed as a residential (dwellings) from 1889 through 1924. Properties to the north and east were not depicted on the Sanborn maps until 1924 which shows the Norfolk Southern Railway and Ocmulgee River running on the east side of the facility. The Bibb Transit Company, a filling station, and a Baptist church occupied the property to the south by 1951. The church property was a paint shop and office in 1960 and a radio station and paint shop in 1969. Properties to the northwest and west remained

residential until at least 1960. By 1960 a plate glass company occupied the property the south of the facility across Riverside Drive on the corner of New Street and Riverside Drive. The 1969 Sanborn map shows that a restaurant and filling station occupied part of the property to the west and northwest and a filling station occupied the property immediately northwest of the facility.

Currently, the property south of the former MGP facility is occupied by the City of Macon Transit Authority Bus Garage. West of the facility is a fast food establishment, restaurant, and filling station. Another filling station is located northwest of the facility. The Norfolk Southern Railway and Ocmulgee River bound the property to the east.

ş

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 3 SCOPE OF COMPLIANCE STATUS INVESTIGATION AND ENVIRONMENTAL SETTING

C

SECTION 3 SCOPE OF COMPLIANCE STATUS INVESTIGATION AND ENVIRONMENTAL SETTING

3.1 GENERAL SCOPE OF COMPLIANCE STATUS INVESTIGATION

The CSI field work was performed from February 2001 to May 2001 with a second event occurring in August 2003. The primary objective of the investigation was to define the horizontal and vertical extent of COI related to the former MGP operations in soil and groundwater. Other tasks included determining the presence of potential NAPL in source structures, aquifer characterization, physical testing of soil samples, collection of corrective action feasibility information, characterization of material in source areas for possible remedial alternatives, a Site survey, and an evaluation of sediments in the Ocmulgee River. Soil samples were collected for analysis from a total of 35 soil borings performed during the CSI. Three monitoring wells were installed during the CSI, and groundwater samples were collected for analysis from a total of seven monitoring wells (including four installed by LAW during the SI). In addition, 21 sediment borings were performed in the Ocmulgee River during the CSI for visual observation of potential impact from former MGP operations. Sediment samples were not analyzed and sediment sample locations were not surveyed during the CSI. After completion of the investigation, a Site survey, including new soil borings and wells and property boundaries, was performed by a surveyor certified by the State of Georgia (Donaldson, Garrett, & Associates, Inc.). Williams performed the survey during the August 2003 field event.

3.2 ENVIRONMENTAL SETTING

3.2.1 Regional Geology and Hydrogeology

The southern part of Macon, Bibb County, Georgia, is located in the Atlantic Coastal Plain Physiographic province and the northern part is in the Piedmont province. The Fall Line is defined as an arbitrary line that separates the two physiographic regions and is why this region is sometimes referred to as the Fall Line District. The Coastal Plain province in Bibb County is characterized by distinctive light-colored sandy hills of Cretaceous age that slope gently towards the southeast. The Piedmont province is characterized by a rolling to hilly upland area of moderate relief that slopes gently to the south.

The former Macon 2 MGP facility is located in the vicinity of the Fall Line between the Atlantic Coastal Plain and the Piedmont Province, approximately 200 feet southwest of the Ocmulgee River. Elevations in the investigation area range from approximately 300 to 320 feet above mean sea level (USGS Topographic Map Macon West and Macon East, Georgia; Figure 1). The area is underlain by Pleistocene- to recent-age alluvial deposits up to 40 feet thick. These alluvial deposits are described as unsorted sand, gravel and clay (LeGrand, 1962). Below the alluvial deposits, the Late Eocene upper sand member of the Barnwell Formation, if present, lies unconformably above the Cretaceous-age Tuscaloosa Formation, if present. The upper sand of the Barnwell Formation is described as a deep red clayey sand (LeGrand and others, 1956). The Tuscaloosa Formation consists of fine to coarse, subangular, micaceous, arkosic sands that are interbedded with gray to green, locally iron-stained kaolinitic, micaceous sandy clays (Herrick and Vorhis, 1963). The base of the Tuscaloosa in this area dips slightly to the southeast at approximately 30 feet per mile and lies unconformably above the much older crystalline rocks below. The Paleozoic and older igneous and metamorphic rock lie at a depth of approximately 50 feet bgs (LeGrand, 1962).

According to the City of Macon Water Department, the Ocmulgee River is the only source of drinking water in the Macon water system. The intake is located on the Ocmulgee River approximately three miles upstream from the former Macon 2 MGP facility (Figure 5). Towards the south and west there is an increase in well usage; the Tuscaloosa sands gradually increase in thickness allowing for more availability of water from wells. Recharge to the Tuscaloosa occurs in outcrop areas west of the Ocmulgee River. Natural discharge from the Tuscaloosa is into the Flint and Ocmulgee Rivers and smaller streams crossing the outcrop area (Pollard and Vorhis, 1980).

3.2.2 Site Geology

The geology encountered during the CSI consisted of unconsolidated alluvial clays, sands, gravels, and clays, saprolite (a clayey silt to fine sand), and a mafic to felsic gneiss bedrock (Figure 6). Cross sections A-A' through C-C' (Figures 7, 8, and 9) were prepared to illustrate the Site geology. Fill material consisting of sand, silt, clay, gravel, construction debris and asphalt was encountered from the ground surface to depths ranging from approximately 0.5 to 36 feet bgs. The fill material is thicker on the northern and eastern portions of the Site, where the 20 foot embankment was previously located (see 1889 Sanborn Fire Insurance map). Underlying the fill material across most of the Site is an alluvial deposit that consists primarily of micaceous silts and clays with some fine to coarse sand and gravel in scattered lenses. The alluvium also contains some deposited organic matter such as leaves and wood fragments. Alluvium was not encountered in borings installed to the south and southwest of the property or on the southwest corner of the property in the vicinity of Gas Holder No. 1. The alluvial deposit, where encountered, ranges in thickness from 5 to 35 feet at the Site and is encountered at the surface in borings (SB-30 through SB-31) installed along the west side of the Ocmulgee River. The alluvial deposit lies unconformably above the saprolite. The saprolite in the area of the Site is generally a micaceous silt and very fine sand that is characterized by relic foliation and other structures associated with igneous and metamorphic rock. Saprolite was encountered at depths ranging from 4.5 feet (in SB-36, located southwest of the former MGP property) to 61 feet bgs. The depth at which saprolite is encountered increases towards the river and was not observed to a total depth of 64 feet in boring SB-43 located southeast of the former MGP property. Where encountered, the thickness of the saprolite ranges from a few inches to four feet thick and is thickest on the south and southwest portions of the Site. The underlying bedrock consists of a mafic to felsic gneiss and, where encountered, ranges in depth from six feet to 62 feet bgs. The bedrock appears to slope to the east and northeast of the Site towards the Ocmulgee River.

3.2.3 Site Hydrology and Hydrogeology

Figure 5 (Site Map and Surface/Storm Water Flow Path) identifies the flow paths of surface water at the Site and surrounding areas. Storm water at the former MGP property flows to various storm drains located at the facility (Figure 3) or as a sheet flow over the embankment located on the eastern boundary of the property. Storm water that flows

towards the embankment accumulates in standing pools on the western side of the Norfolk Southern Railway and eventually sceps through the railway gravel bed and to the Ocmulgee River. Stormwater which falls on up-gradient properties including the Exxon station, Pizza Hut restaurant, Burger King restaurant, and Conoco station, flows into either storm drains that feed into storm drains located at the facility, as surface flow over the embankment previously mentioned, or into a drainage located on the southwestern side of the Spring Street bridge. Storm water that flows into the drainage located on the southwestern side of the Spring Street bridge empties into the Ocmulgce River at a point on the southeastern side of the bridge (Figure 5).

Hydrogeology at the Site was evaluated by the use of seven monitoring wells (this includes four installed during the SI and three installed during the CSI). The uppermost portion of the surficial aquifer is located in fill material across the Site. Cross-sections A-A', B-B', and C-C' (Figures 7, 8, and 9) indicate the relationship of the top of groundwater with geologic units at the Site. Monitoring well MW-1 is screened within the saprolite and monitoring wells MW-2 through MW-5 and MW-7 are all screened within the fill material with some extending into the alluvium. Monitoring well MW-6 is screened within the alluvium. The fill material consists of clays and silty clays with abundant debris including concrete, brick, and asphalt. The matrix of the fill material does not appear very porous; however, due to the abundance of debris that creates void spaces within the fill material, wells screened within the fill material exhibited high conductivity values (see Section 5.1.1.2). The base of the alluvium in locations of the eastern area of the Site contains an alluvial clay which in some areas lies directly above the saprolite; this and the underlying saprolite appear to serve as an aquitard consisting of clays, silty clays, and clayey silts. A mafic to felsic gneiss bedrock underlies the saprolite. Based on water level measurements obtained on August 20, 2003, the top of the water table ranges from 7.32 (MW-01) to 22.75 feet bgs (MW-04). Water level measurements obtained from MW-06 were not used in determining the water table elevations due to the fact that it is screened below the top of groundwater. In addition, the proximity of MW-04 to MW-06 and their relative water levels indicate a downward flow gradient with the upper water bearing zone (see Section 5.2.3). Groundwater under the former MGP facility has a horizontal flow to the east and northeast. Three surface water bodies are located near the facility. The first is a drainage ditch located to the northwest of the former MGP property that feeds into the Ocmulgee River in the vicinity of the Spring Street bridge. Another drainage ditch is located approximately 130 feet southeast of the former MGP property and feeds into a drainage on the west side of the Norfolk Southern Railway. Based on field observations made during a period of heavy rainfall, the railway drainage has no obvious flow direction but most likely seeps through the railroad base material and into the Ocmulgee River. The third is the Ocmulgee River which is located approximately 250 feet to the east/northeast of the facility and appears to be a gaining water body.

CONTRACTOR OF STREET

A STATE OF A DECK

E.C.

C:

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 4 SOIL INVESTIGATION

SECTION 4 SOIL INVESTIGATION

4.1 GENERAL APPROACH AND RATIONALE

Soil samples were collected at various locations to define the extent of the COI related to the former MGP operations, determine background concentrations, and evaluate potential pathways for migration of the COI. The majority of soil samples collected from soil borings performed during the CSI field work were obtained with direct-push technology (DPT) samplers equipped with liners. Where DPT was not feasible, soil samples were collected by either split-spoon samplers used in conjunction with hollow-stem augering (HSA) techniques or with hand-driven DPT.

A general sampling rationale was developed in the Work Plan (Williams, 2001) to select soil samples for laboratory analysis from geologic unit contacts and subsurface key horizons where the COI could potentially migrate. During the CSI, soil samples were field-screened to aid in the selection of soil samples for off-site laboratory analysis. Continuous sampling on four- to five-foot intervals (with two-foot, four-foot, and five-foot sampling spoons) was attempted to ensure that adequate soil samples were obtained at and between the key horizons. Field-screening using closed headspace procedures with a photoionization detector (PID) was used to determine if samples potentially contained volatile organic compounds.

Samples from the following intervals were analyzed for COI at most locations advanced:

- 0 to 2 feet bgs;
- Base of the fill;
- Top of the groundwater;
- Base of the alluvium;
- Deepest interval; and
- The soil sample with the highest PID reading.

The water table encountered during the CSI within soil borings ranged from approximately eight feet to approximately 26 feet bgs. Soil samples collected in some locations intersected the water table. If a soil sample was <50% saturated, the interval was considered part of the vadose (unsaturated) zone. If a soil sample exhibited >50% saturation, the sample was considered to be from the saturated zone.

4.2 SAMPLING AND ANALYSIS METHODS

4.2.1 Sampling Methods

Direct-push technology sampling methods were utilized to collect the majority of the soil samples to minimize CSI-derived waste. The method also allows sampling of discrete intervals with minimal interference from flowing sands and/or cave-ins that sometimes occur during augering operations. The method involves pushing a closed two-, three-, or

four-foot sampling spoon with a liner to the desired depth, unlocking the spoon tip, and pushing the spoon through the sampling interval.

Hollow-stem augering techniques in conjunction with split-spoon sampling were utilized to advance selected borings where DPT was limited by depth. In those borings, five-foot long split-spoons were advanced with the augers for sample collection and description.

The soil borings installed during the CSI were labeled with the prefix "SB" followed by the appropriate sample location number. Some soil borings were denoted with the suffix "B" to denote a soil boring adjacent to previous soil boring locations advanced during the CSI. The locations of soil borings are shown on Figure 3.

A boring log was maintained for each soil boring installed during the CSI. Each log contains general Site information and specific information about each boring including: date sampled, sampling method, sampler, sample identification number, sample interval, time sampled, moisture content, field-screening, a complete lithologic description, and comments. Boring logs are included in Appendix D.

Soil samples were collected according to the general rationale described in this section and according to the CSI Work Plan (Williams, 2001). During field sampling, the center portion of the sample interval was collected for field-screening with a PID. Field-screening samples were placed into sealable plastic bags. A portion of the center of the interval was also collected for possible laboratory analysis of volatile organic compounds (VOCs). Each VOC sample was collected in a 4-ounce glass jar for analysis of percent solids and high-level VOCs and two five-gram aliquots of soil were also placed into two pre-weighed vials containing a five-milliliter solution of sodium bisulfate for low-level analysis of VOCs. Samples for VOC analysis and field-screening were not homogenized before they were placed into the appropriate containers. Samples for possible analysis of SVOCs and inorganics were collected over the entire interval, thoroughly homogenized on heavy duty aluminum foil (on glass during the August 2003 sampling event), and placed in laboratory-provided containers.

Sample jars filled for possible laboratory analysis were immediately labeled, placed into sealable plastic bags, and stored on ice in a cooler. Samples for field-screening were labeled and allowed to warm in the sun for a minimum of 30 minutes to allow the volatilization of organic compounds.

One soil sample containing potential OLM (GH-2-41) was collected from the base of Gas Holder No. 2 for analysis of VOCs, SVOCs, synthetic precipitation leachability procedure (SPLP) VOCs and SPLP SVOCs. This sample was collected in a 4-ounce glass jar, placed in a sealable plastic bag and stored on ice in a separate cooler to prevent cross contamination to other soil samples. This sample was shipped under chain-of-custody as part of a SDG.

Four soil samples indicated elevated lead concentrations (above the Type 3 Risk Reduction Standard of 400 mg/Kg). Upon receipt of the analytical results, three of these samples were also run for SPLP lead to determine the potential for the lead to leach into groundwater above RRSs.

Four undisturbed (UD) soil samples were collected during the CSI with Shelby tube samplers using HSA techniques for the analysis of physical characteristics of the soil (Section 5.2).

Following completion of the CSI field work, surveys were performed by a surveyor certified by the State of Georgia (Donaldson, Garrett, & Associates, Inc.) to locate the soil borings (soil borings performed in August 2003 were surveyed by Williams). The surveys were tied into the previous Site survey conducted during the SI.

4.2.2 Field Screening

Field-screening performed during the CSI was conducted utilizing closed headspace procedures by placing a portion of the sample into a sealable plastic bag. The sample was placed in the sun and allowed to warm. After sufficient time was allowed for organic compounds to volatilize (a minimum of 30 minutes), the sample was screened with a PID. The PID probe tip was inserted through the bag opening into the headspace of each container and the maximum reading was recorded. The PID was calibrated at the beginning and end of each day of use with isobutylene and zero gas. The PID reading of each sample is noted on the boring logs (Appendix D).

4.2.3 Sample Handling and Preservation Techniques

Soil samples collected during the CSI were placed in ice-filled coolers which were temporarily stored in a locked office until a determination of samples to be analyzed was made. Soil samples selected for laboratory analysis were recorded on chain-of-custody forms. Those samples selected for analysis were organized into sample delivery groups (SDGs) which were secured in ice-filled coolers and shipped or courriered to Analytical Environmental Services, Inc. (AES) in Atlanta, Georgia for analysis. Chain-of-custody documents accompanied each shipment. In general, a trip blank, field blank, rinsate, and duplicate sample were included with each SDG. One rinsate sample was collected each day or for each SDG from decontaminated or new sampling equipment. A sample was collected from the potable water supply used for decontamination procedures for analysis for the COI. The results of analysis of QA/QC samples are summarized in Appendix F.

4.2.4 Decontamination Procedures

Nondisposable sampling equipment was decontaminated before and between each sample by washing with phosphate-free detergent and water and rinsing with tap water, deionized water, isopropanol, and organic-free water. Equipment transported to a sampling point from the decontamination area was wrapped in aluminum foil. Large equipment, such as the drilling rig and ancillary tools, was decontaminated at the beginning of each day and between boreholes. Decontamination water was collected and placed into a wastewater tank and/or drums on the City of Macon property until it could be characterized for disposal.

4.2.5 Laboratory Methods

Analyses were performed according to current approved EPA methods. Volatile organic compounds were analyzed using SW-846 Method 8260 and SVOCs were analyzed using SW-846 Method 8270A. Soil samples collected for VOC analysis during CSI field work were collected and analyzed using the up-dated SW-846 Method 5035. Most inorganic compounds were analyzed using SW-846 Method 6010 except mercury (SW-846 Method 7471) and total cyanide (SW-846 Method 9010A). The Contract Required Quantitation Limit (CRQL) for each compound was based on

the laboratory's self-determined Practical Quantitation Limit (PQL). Summaries of analytical data for the CSI are contained in Appendix C-2. Attachment A of this CSR contains copies of analytical data collected during the CSI.

A complete Contract Laboratory Program (CLP) like data package was prepared by AES for one SDG containing soil samples collected during the CSI. The data package was submitted to Southern Company Chemical Services, Norcross, Georgia, for data validation using USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, 1994, and Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, 1994. Southern Company Chemical Services indicated that all laboratory data for the soil samples were acceptable. Southern Company Chemical Services also reviewed the laboratory data for precision, accuracy, representativeness, compatibility and completeness (PARCC) parameters. Southern Company Chemical Services found the PARCC parameters acceptable. A copy of Southern Company Chemical Services' report is included in Appendix G-1. Laboratory reports for other SDGs were reviewed by Williams for QA/QC measurements and the Williams QA/QC reports are included in Appendix G-2.

4.3 BACKGROUND CONCENTRATION STUDY

The lithology beneath the Site was divided into two units (fill material and natural soils) for the purpose of establishing upper-background limits (UBLs) and delineation. The background study included the collection of soil samples from areas topographically and hydrogeologically up-gradient or cross-gradient from the former MGP facility operations. Background borings included SB-33, SB-34, SB-36, SB-38, SB-38B, and SB-43. The data set for the fill material UBLs include 25 samples and 23 samples composed the data set for the natural soils. Table 4.1 lists the calculated UBLs for the COI with respect to units. Background concentrations for VOCs are determined to be the detection limit.

The background soil data were statistically evaluated to determine the UBL for each analyte for each unit. A flow-chart for the method described below is presented in Figure 10. First, the data were evaluated to determine the percentage of detected values. If the percentage of detects was less than 85 percent and the data set contained at least one detected value, a Nonparametric UBL was calculated. The Nonparametric UBL equaled the greatest detected value. If there were no detected values, the UBL was determined to be the detection limit.

If the percentage of detects was 85 percent or more, nondetect values were substituted with one-half the detection limit. Next, the underlying distributional assumption was tested using the Shapiro-Wilk Test. Then, the data was tested for outliers by calculating the 99% confidence outlier value. If a value in the data set was greater than the 99% confidence outlier value, an outlier was suspected. To be conservative, suspect outliers were removed from the initial run. If the data were determined, by the Shapiro-Wilk Test, to be normally distributed with no outliers, the UBL was calculated as the mean plus two standard deviations. If the data set was determined not to be normally distributed with no outliers, a Nonparametric UBL was calculated. If the original data set was determined to contain a suspect outlier, the outlier was removed and the modified data set was re-evaluated. If the modified data set contained another suspect outlier and/or was not normally distributed, a Nonparametric UBL was determined based on the modified data set. The data set and calculations for background concentrations are detailed in Appendix H.

4.4 HORIZONTAL EXTENT OF CONSTITUENTS OF INTEREST IN SOILS

Cross-sections A-A' through C-C' (Figures 7 through 9) depict the relationship of the COI distribution to the Site soils and show the horizontal and vertical extent of the COI as well as visual identification of TLM and OLM in soil intervals. Visual identification of TLM and OLM in soil is also noted in plan view on Figure 11. Isoconcentration maps (Figures 12 through 17) were prepared for various COI in soil. Data from the CSI and the SI were used in the evaluation of the extent of the COI in soil. Analytical results of the COI for all soil samples collected during the SI and CSI are summarized in Appendix B-1 and Appendix B-2, respectively.

Samples from background borings which exceeded calculated background concentrations were not included in the contours (except for the VOCs delineation) since, by definition, they are background samples. A background calculation based on the mean plus two standard deviations corresponds to a 97.7% confidence level of the distribution. Therefore, it is expected that a portion of the background samples will exceed the calculated background levels. For data sets of these sizes, it is typical that one sample will exceed the UBL. Additionally, to be conservative, suspect outliers from the UBL data set were removed for calculations of UBLs.

FILL MATERIAL	а,			
SVOCs				
ANALYTE	RANGE (mg/Kg)	%NONDETECTS	STATISTICAL METHOD	UPPER BACKGROUND LIMIT (mg/Kg)
Acenaphthene	<0.35 -<0.40	0%	Detection Limit	DL
Acenaphthylene	<0.35 - <0.40	0%	Detection Limit	DL
Anthracene	<0.35 - <0.40	0%	Detection Limit	DL.
Benzo(a)anthracene	<0.35 - 0.56	25%	Nonparametric 85% Prediction Limit	0.56
Benzo(a)pyrene	<0.35 - 0.69	25%	Nonparametric 85% Prediction Limit	0.69
Benzo(b)fluoranthene	<0,35 - 0.61	33%	Nonparametric 85% Prediction Limit	0.61
Benzo(g,h,i)pyrene	<0.35 - 0.69	17%	Nonparametric 85% Prediction Limit	0.69
Benzo(k)fluoranthene	<0.35 - 0.57	17%	Nonparametric 85% Prediction Limit	0,57
Chrysene	<0,35 - 0.68	25%	Nonparametric 85% Prediction Limit	0.68
Dibenzo(a,h)anthracene	<0.35 - <0.40	D%	Detection Limit	DL
Fluoranthene	< 0.35 - 0.12	42%	Nonparametric 85% Prediction Limit	1.2
Fluorene	<0,35 -<0.40	0%	Detection Limit	DL
Indeno(1,2,3-cd)pyrene	<0.35 - 0.58	17%	Nonparametric 85% Prediction Limit	0.58
Naphthalene .	<0.35 -<0.40	0%	Detection Limit	DL
Phenanthrene	<0.35 - 0.56	33%	Nonparametric 85% Prediction Limit	0,56
Phenol	<0.35 -<0.40	0%	Detection Limit	ĎL.
Pyrene	<0.35 -0.92	42%	Nonparametric 85% Prediction Limit	0.92

TABLE 4.1 CALCULATED BACKGROUND CONCENTRATIONS IN SOIL

ANALYTE	RANGE (mg/Kg)	%NONDETECTS	STATISTICAL METHOD	UPPER BACKGROUND LIMIT (mg/Kg)
Arsenic (As)	<.2.98 - 7.05	8%	Nonparametric 85% Prediction Limit	7.05
Barium (Ba)	11.1 - 126	100%	Mean + 2 SDs	115
Beryllium (Be)	<1.49 - <3.04	0%	Detection Limit	DL
Cadmium (Cd)	<1.49 - <3.04	0%	Detection Limit	DL
Chromium (Cr)	7.01 - 46.3*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	28.7
Copper (Cu)	5.54 - 74.9*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	43.4
Lead (Pb)	<5.67 - 379*	96%	Mean + 2 SDs (Outlier Removed)	204
Mercury (Hg)	<0.0938 - 0.541	80%	Nonparametric 85% Prediction Limit	0.541
Nickel (Ni)	3.10 - 14.4	28%	Nonparametric 85% Prediction Limit	14.4
Vanadium (V)	14.0 - 79.3*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	58.9
Zinc (Zn)	6.33 - 339*	100%	Nonparametric 85% Prediction Limit (Outlier Removed)	257
Cyanide (CN)	<0.678 -<1.22	0%	Detection Limit	DL
ANALYTE				UPPER
· · · · · · · · · · · · · · · · · · ·	RANGE (mg/Kg)	%NONDETECTS	STATISTICAL METHOD	BACKGROUND LIMIT (mg/Kg)
<u> </u>	RANGE (mg/Kg)	% NONDETECTS	STATISTICAL METHOD Detection Limit	
Arsenic (As) Barium (Ba)				LIMIT (mg/Kg)
Arsenic (As)	<3.77 - <10.5	0%	Detection Limit	LIMIT (mg/Kg) DL
Arsenic (As) Barium (Ba)	<3.77 - <10.5 <5.04 - 338	0% 87%	Detection Limit Mean + 2 SDs	LIMIT (mg/Kg) DL 275
Arsenic (As) Barium (Ba) Beryllium (Be)	<3.77 - <10.5 <5.04 - 338 <1.88 - <5.27	0% 87% 0%	Detection Limit Mean + 2 SDs Detection Limit	LIMIT (mg/Kg) DL 275 DL
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd)	<3.77 - <10.5 <5.04 - 338 <1.88 - <5.27 <1.88 - <5.77	0% 87% 0% 0%	Detection Limit Mean + 2 SDs Detection Limit Detection Limit	LIMIT (mg/Kg) DL 275 DL DL DL
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium	<3.77 - <10.5 <5.04 - 338 <1.88 - <5.27 <1.88 - <5.77 <2.52 - 87.2*	0% 87% 0% 0% 96%	Detection Limit Mean + 2 SDs Detection Limit Detection Limit Mean + 2 SDs (Outlier Removed)	LIMIT (mg/Kg) DL 275 DL DL 52.8
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium Copper	<pre><3.77 - <10.5 <5.04 - 338 <1.88 - <5.27 <1.88 - <5.77 <2.52 - 87.2* <2.52 - 45.5</pre>	0% 87% 0% 0% 96% 87%	Detection Limit Mean + 2 SDs Detection Limit Detection Limit Mean + 2 SDs (Outlier Removed) Mean + 2 SDs	LIMIT (mg/Kg) DL 275 DL DL 52.8 35.7
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium Copper Lead	<pre><3.77 - <10.5 <5.04 - 338 <1.88 - <5.27 <1.88 - <5.77 <2.52 - 87.2* <2.52 - 45.5 <4.94 - 26.5</pre>	0% 87% 0% 0% 96% 87% 65%	Detection Limit Mean + 2 SDs Detection Limit Detection Limit Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit	LIMIT (mg/Kg) DL 275 DL DL 52.8 35.7 26.5
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium Copper Lead Mercury (Hg)	<3.77 - <10.5 <5.04 - 338 <1.88 - <5.27 <1.88 - <5.77 <2.52 - 87.2* <2.52 - 45.5 <4.94 - 26.5 <0.101 - <0.237	0% 87% 0% 0% 96% 87% 65% 0%	Detection Limit Mean + 2 SDs Detection Limit Detection Limit Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit Detection Limit Nonparametric 85% Prediction Limit Mean + 2 SDs	LIMIT (mg/Kg) DL 275 DL DL 52.8 35.7 26.5 DL
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium Copper Lead Mercury (Hg) Nickel (Ni) Vanadium (V) Zinc (Zn)	<3.77 - <10.5 <5.04 - 338 <1.88 - <5.27 <1.88 - <5.77 <2.52 - 87.2* <2.52 - 45.5 <4.94 - 26.5 <0.101 - <0.237 <5.04 - 29.7	O% 87% O% O% S7% S6% 87% 65% O% O% O%	Detection Limit Mean + 2 SDs Detection Limit Detection Limit Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit Detection Limit Nonparametric 85% Prediction Limit	LIMIT (mg/Kg) DL 275 DL DL 52.8 35.7 26.5 DL 29.7 120 80.3
Arsenic (As) Barium (Ba) Beryllium (Be) Cadmium (Cd) Chromium Copper Lead Mercury (Hg) Nickel (Ni) Vanadium (V)	$\begin{array}{r} <3.77 - <10.5 \\ <5.04 - 338 \\ <1.88 - <5.27 \\ <1.88 - <5.77 \\ <2.52 - 87.2^{*} \\ <2.52 - 45.5 \\ <4.94 - 26.5 \\ <0.101 - <0.237 \\ <5.04 - 29.7 \\ <5.04 - 152 \end{array}$	0% 87% 0% 0% 96% 87% 65% 0% 70% 96%	Detection Limit Mean + 2 SDs Detection Limit Detection Limit Mean + 2 SDs (Outlier Removed) Mean + 2 SDs Nonparametric 85% Prediction Limit Detection Limit Nonparametric 85% Prediction Limit Mean + 2 SDs	LIMIT (mg/Kg) DL 275 DL DL 52.8 35.7 26.5 DL 29.7 120

TABLE 4.1 (CONTINUED) ALCULATED BACKGROUND CONCENTRATIONS IN SOIL

Samples were typically collected in two-foot or four-foot intervals which sometimes resulted in samples selected across a lithologic contact. If this occurred, the lithologic unit for the sample would be classified by what the majority of the sample was composed of.

4.4.1 Visual Indications of Tar-Like Material and Oil-Like Material

TLM and OLM were observed in soil borings (SB-11 and SB-39) advanced within Gas Holder No. 1 and soil borings (SB-12, SB-13 and SB-15) advanced within Gas Holder No. 2. The TLM and OLM were observed at the base of Gas Holder No. 1 at a depth of approximately 12.5 feet bgs and in Gas Holder No. 2 at a depth of approximately 41 feet bgs. In both gas holders, the TLM/OLM was a very high viscosity, black material and was observed in less than a one-inch layer or in tarry globules existing in less than a one-inch intervals.

4.4.2 Volatile Organic Compounds

Upper background limits (UBLs) for VOCs in the soils are determined to be the detection limit. Figure 12 is a contour map of the horizontal extent of total detected benzene and total VOCs in soils. The horizontal extent of benzene in soil is defined to the north by soil samples from borings SB-03, SB-04, and SB-41. Benzene was detected in soil from boring SB-38 at a concentration of 0.062 mg/Kg. Based on the fact that benzene was not detected in soil samples collected from soil boring SB-21 (between the former MGP property and soil boring SB-38) the benzene concentration detected in SB-38 is most likely related to an off-property source. Soil borings SB-27 and SB-34 contain benzene concentrations in soil of 0.031 mg/Kg and 0.0057 mg/Kg, respectively. These borings are located up-gradient of the former MGP operations and these concentrations are most likely related to off-property sources. Benzene in soil is horizontally defined to the east by soil borings SB-02, SB-04, SB-22 and SB-26. To the west benzene in soil is horizontally defined by soil borings SB-16, SB-19, SB-20, and SB-28.

Total VOCs in soil are defined in all directions. To the north, the limits of VOCs in soil are defined by samples collected from soil borings SB-30, SB-31, and SB-38. The VOC concentrations detected in soil borings SB-34 and SB-38 consisted only of benzene and as described above, are likely related to off-property sources. To the east, the horizontal extent of total VOCs is defined by samples collected from soil borings SB-22, SB-23, SB-26, and SB-32. The only detected VOC in soil from SB-23 and SB-24 was carbon disulfide. This area is separated from the remaining VOC plume and is defined in all directions. The horizontal extent of VOCs is defined to the south by samples collected from soil borings SB-33 and SB-34 and to the west by samples collected from soil borings SB-29 and SB-36.

4.4.3 Semivolatile Organic Compounds

The background limits for SVOCs are presented in Table 4.1 and on Figure 13. Figure 13 is a contour map of the horizontal extent of naphthalene detected in soils and total SVOC concentrations above background limits in soils. The horizontal limits of naphthalene in soil are defined in all directions. Three areas of naphthalene concentrations in soil are located at the Site and include an area northeast of the office and service shop, an area in the vicinity of Gas Holder No. 2, and an area along the southeastern property boundary. These are defined to the north by samples collected from soil borings SB-23, SB-31, and SB-41; to the east by samples from borings SB-32 and SB-43; to the south by samples from borings SB-26, SB-27, and SB-33; and to the west by samples from borings SB-19, SB-20, and SB-40.

The horizontal extent of total SVOCs in soil above UBLs is defined in all directions. The horizontal extent is defined to the north by samples from soil borings SB-23, SB-30, and SB-31. To the east the extent is defined by soil samples collected from borings SB-32 and SB-43. To the south, the horizontal limits of SVOCs above UBLs are defined by samples from soil borings SB-33/33B and SB-34 and to the west the extent is defined by samples collected from soil borings SB-34 and to the west the extent is defined by samples collected from soil borings SB-34 and to the west the extent is defined by samples collected from soil borings SB-36.

The soil sample initially collected from soil boring SB-33 at a depth of two to four feet bgs indicated a total SVOC concentration of 23.7 mg/Kg. A second sample was collected (SB-33B-2-4) from a boring adjacent to SB-33 and analyzed for SVOCs. The analytical results from this sample indicated a total SVOC concentration of 6.3 mg/Kg. Based on these results, the concentrations reported in the original sample collected from SB-33 are likely to have been a result of the presence of asphalt in the sample.

4.4.4 Inorganics

Figure 14 is a map of the horizontal extent of barium and vanadium concentrations in soil above the UBLs. This map indicates that the horizontal extents of barium and vanadium are defined in all directions. The horizontal extent of barium in soil is defined to the north by samples from borings SB-04, SB-22, SB-30, and SB-38; to the east by SB-32 and SB-43 (background soil boring); to the south by SB-33 and SB-34; and to the west by SB-06, SB-19, and SB-20. The horizontal extent of vanadium in soil is defined to the north by samples from borings SB-04, SB-34; and to the west by SB-30 and SB-38; to the east by SB-20. The horizontal extent of vanadium in soil is defined to the north by samples from borings SB-30 and SB-38; to the east by SB-02, SB-04, and SB-22; to the south by SB-27; and to the west by SB-06, SB-28, and SB-39.

Figure 15 illustrates the horizontal delineation of lead and mercury concentrations above UBLs in soils. The horizontal extents of lead and mercury in soil above the UBL are defined in all directions. The horizontal extent of lead in soil is defined to the north by samples from borings SB-21, SB-30, and SB-31; to the east by SB-43 (background soil boring); to the south by SB-33 and SB-34; and to the west by SB-06, SB-19, SB-20, SB-29 and SB-44. The highest concentration of lead detected in soils is from a sample (SB-45-15-17; 1,070 mg/Kg) collected from fill material on a property that is located up-/cross-gradient and to the south of the former MGP operations. Lead associated with this sample is highly unlikely to be related to the former MGP operations, and is more likely related to fill material. Lead at this location is delineated to the UBLs in all directions. The sample collected from SB-32 (located east of the former MGP facility along the Ocmulgee River) at two to four feet bgs contained a lead concentration of 43 mg/Kg in natural soils. This result is likely related to river deposition since no direct route of migration exists between SB-32 and the former MGP property. Also, concentrations of lead above the UBL from soil borings (SB-23 and SB-24) located on the MGP property occurred in the fill material and not in natural soils. No other COI was detected above a UBL in SB-32. Mercury concentrations in soil above the UBL are horizontally defined in all directions at the Site. The horizontal extent of mercury in soils is defined to the north by samples collected from soil borings SB-31 and SB-38; to the east by samples from borings SB-32 and SB-43; to the south by samples from borings SB-33 and SB-34; and to the west by samples from boring SB-36. Mercury was detected in soil boring SB-30 (located to the north of the former MGP facility, in the direction of the Ocmulgee River) at a depth of 8 to 12 feet bgs, at a concentration of 0.154 mg/Kg. The mercury UBL concentration for natural soils is the detection limit which is 0.129 mg/Kg. As with the lead UBL exceedance in

soil boring SB-32, the mercury exceedance in SB-30 is in natural soils and is likely related to river depositions. Other than beryllium, mercury was the only COI exceeding background in SB-30 and beryllium was not detected above the UBL anywhere else on the Site.

Figure 16 is a contour map of sample locations with arsenic, copper and zinc concentrations in soil above the UBLs. The horizontal extents of arsenic, copper and zinc in soil exceeding the UBL are defined in all directions. The horizontal extent of arsenic in soil is defined to the north by samples from boring SB-14; to the east by SB-25; to the south by SB-34; and to the west by SB-39. The horizontal extent of copper in soil is defined to the north by samples from borings SB-02; SB-03, SB-06, SB-07, SB-23, SB-25, and SB-26; to the east by SB-32 and SB-43 (background soil boring); to the south by SB-33 and SB-34; and to the west by SB-36 (background soil boring) and SB-38. The horizontal extent of zinc in soil is defined to the north by samples from borings SB-15 and SB-22; to the east by SB-32 and SB-43 (background soil boring); to the south by SB-33; and to the west by SB-19 and SB-20.

Figure 17 illustrates the horizontal delineations of chromium and cyanide concentrations above the UBLs. The horizontal extents of chromium and cyanide concentrations exceeding the UBL are defined in all directions. Chromium was present in two areas of the Site. The horizontal extent of chromium in soil in the first area is defined to the north by samples from borings SB-38B; to the east by SB-41; and to the south by SB-29. The second areas is defined by SB-04 to the north; SB-22 to the east; SB-02 to the south; and SB-15 and SB-40 to the west. The horizontal extent of cyanide in soil is defined to the north by samples from borings SB-21, SB-31, and SB-41; to the east by SB-22 and SB-25; to the south by SB-33 and SB-34; and to the west by SB-29 and SB-36 (background soil boring).

Cadmium and nickel were not detected above their respective UBLs in any samples collected during the SI and CSI.

4.5 VERTICAL EXTENT OF CONSTITUENTS OF INTEREST IN SOILS

The vertical extent of COI in soils exceeding the UBL is defined at the Site by one of three methods, including:

- The deepest samples in a given soil boring are below the UBL (e.g., in SB-27 the soil sample collected from 8 to 12 feet bgs had a lead concentration of 634 mg/Kg but the sample collected from 20 to 21 feet bgs had a lead concentration of 6.35 mg/Kg);
- A sample collected at a deeper depth from a near by boring exhibited concentrations below the UBL (e.g., samples collected from SB-04 at 21.5 to 23.5 feet bgs had SVOC concentrations above the UBL but samples collected during the installation of MW-6 at a depth of 34 to 39 feet bgs were below detection limits for all analyzed SVOCs); and
- The deepest sample in the boring is immediately above competent rock (e.g., the sample collected from SB-38 at a depth of 34 to 38 feet bgs had a benzene concentration of 0.062 mg/Kg and auger refusal was encountered at 38 feet bgs).

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 5 GROUNDWATER INVESTIGATION

SECTION 5 GROUNDWATER INVESTIGATION

5.1 GENERAL APPROACH AND RATIONALE

Groundwater at the Site was evaluated by the use of seven permanent monitoring wells (four installed during the SI and three installed during the CSI). All seven monitoring wells (MW-01 through MW-07) were constructed as Type II (single-cased) monitoring wells. The objectives of the study were to define the horizontal and vertical extents of dissolved COI related to the former MGP operations, to collect data in regard to aquifer characterization, and to obtain data concerning natural attenuation parameters. The locations of the sampling points were determined by the presence of existing monitoring wells, historical information, and information gathered during the CSI. Each of the monitoring wells was designated by MW-#. After completion of the field work, surveys were conducted of sampling points by a surveyor certified by the State of Georgia (Donaldson, Garrett, & Associates, Inc.). Williams performed the survey of MW-07. The surveys referenced the previous Site survey conducted during the SI.

5.2 SITE HYDROGEOLOGY

5.2.1 General

The most recent water level measurements were collected at each of the monitoring wells (MW-01 through MW-07) on August 20, 2003 between 7:15 a.m. to 9:00 a.m., utilizing an electronic water level indicator. Depth to water in each well was measured from the northern side on the top of each casing. Elevations of top of casings and ground elevations for each monitoring well are listed on Figure 3. Depth to top of groundwater measured in the monitoring wells ranged from 7.32 feet to 22.75 feet below top of casing on August 20, 2003 (excludes MW-06 as this is a deep monitoring well). Table 5.1 summarizes the historical depths to water and elevations for the monitoring wells.

5.2.2 Hydrogeologic Characteristics

5.2.2.1 Hydraulic Conductivity

Hydraulic conductivity was estimated through slug tests conducted in monitoring wells during the SI and the CSI. LAW performed slug tests in 1992, during the SI, in monitoring wells MW-01, MW-02, MW-03, and MW-04. Slug tests were performed during the CSI on April 12 and 13, 2001, in monitoring wells MW-01 through MW-06 (data collected from MW-03 were not usable).

The following methods were utilized during slug tests performed during the CSI. Slug-in tests were performed by lowering a weighted, five-foot long PVC pipe into the water column in each of the tested wells to cause an instantaneous water level change in the well. Slug-out tests were performed by withdrawing the PVC slug and recording head changes versus time. The changes in head with respect to time were recorded with a pressure transducer and data logger. The data from all of the slug tests were analyzed using the Bouwer and Rice (1976) analytical method for estimating

hydraulic conductivity of unconfined aquifers or leaky confined aquifers. The computer program AQTESOLV (Geraghty and Miller, 1991) was used to calculate the hydraulic conductivity and prepare graphs of the data.

		Top of		
Weij		Casing	Depth to	Water Table
ID#	Date Gauged	Elevation*	Groundwater	Elevation*
MW-01	March 11, 1992	325.84	7.85	317.99
	March 12, 2001		10.42	315.42
	March 29, 2001		9.50	316.34
	August 20, 2003		7.32	318.52
MW-02	March 11, 1992	317.87	20.14	297.73
į.	March 12, 2001		20.61	297.26
	March 29, 2001		19.99	297.88
	August 20, 2003		18.23	299.64
MW-03	March 11, 1992	317.09	23.47	293.62
	March 12, 2001		22.36	294.73
	March 29, 2001		23.22	293.87
	August 20, 2003		22.00	295.09
MW-04	March 11, 1992	318.42	24.77	293.65
	March 12, 2001		25.40	293.02
	March 29, 2001		25.61	292.81
	August 20, 2003		22.75	295.67
MW-05	March 11, 1992	316.62	NA	NA
	March 12, 2001	•	NA .	NA
	March 29, 2001		22.32	294.30
	August 20, 2003		<u> </u>	297.45
MW-06	March 11, 1992	318.41	NA	NA
	March 12, 2001		NA	<u>NA'</u>
	March 29, 2001		32.31	286.10
	August 20, 2003		35.28	283.13
MW-07	March 11, 1992	318.07	NA	NA
ſ	March 12, 2001	,	NA	NA
	March 29, 2001		<u>NA</u>	NA
	August 20, 2003		18,95	299.12
*in feet above	mean sea level (MS	SL)		
<u>NA – Not Ava</u>	ilable (well not const	tructed)		•

TABLE 5.1 WATER LEVEL DEPTHS AND ELEVATIONS

The average hydraulic conductivity for wells (MW-02, MW-04, and MW-05) screened in the fill material was determined to be 1.73 E-02 feet per minute (ft/min). The average hydraulic conductivity for the well screened in the saprolite (MW-01) and the well screened in the alluvium (MW-06) was determined to be 3.77 E-04 ft/min and 3.60 E-04 ft/min, respectively. Table 5.2 summarizes the results of slug tests performed both during the SI and the CSI and indicates the depth each well was screened. Appendix I includes the time and head data, input parameters, and graphs from the slug tests performed during the CSI.

		Well Depth	Water Level	Screened Interval		Hydraulic Conductivity
Well ID	Test Date	(ft. BTOC)	(ft. BTOC)	(ft. BTOC)	Test Type	(ft/min)
Saprolite				· · · · · · · · · · · · · · · · · · ·		
LAW DATA (from	SI)					
MW-01	03/13/92	18	8.9	8-18	Slug-out	4.8 E-05
WILLIAMS DATA	(from CSI)					
MW-01	04/13/01	18	9.15	<u>8-18</u>	Slug-out	7.05 E-04
AVERAGE (Law a	nd Williams Da	ta)				3,77 E-04
Fill						
LAW DATA (from	SI)					
MW-02	03/12/92	28	19.96	18.28	Slug-out	1.1 E-03
MW-04	03/12/92	33	24.78	23-33	Slug-out	2.1 E-02
WILLIAMS DATA	(from CSI)					
MW-02	04/13/01	28	19.83	18-28	Slug-out	1.61 E-03
MW-04	04/13/01	33	24.30	23-33	Slug-out	5.89 E-02
MW-05	06/07/01	30	21.81	15-30	Slug-out	3.79 E-03
AVERAGE (Law a	nd Williams Da	ita)				1.73 E-02
Alluvium						
MW-06	06/07/01	50	33.69	40-50	Slug-in	3.95 E-04
					Slug-out	3.24 E-04
AVERAGE						3.60 E-04
BTOC below top	of casing.					······································
ft. – feet.	•	,				
ft/min – feet per m	inute.					

TABLE 5.2 SUMMARY OF HYDRAULIC CONDUCTIVITY DATA

5.2.2.2 Physical Soil Testing

Physical soil testing was performed during the SI on one soil sample collected from the boring associated with the installation of monitoring well MW-02. The sample was analyzed for total porosity, water content, dry density, hydraulic conductivity, total organic carbon, and organic content. Four soil samples were collected during the CSI from the boring associated with the installation of monitoring well MW-05 to determine grain size distribution, specific gravity, permeability, porosity, and percent moisture for the soils encountered across the area.

The samples collected during the CSI were analyzed by Southern Company Central Laboratory. Laboratory results for the physical soil tests from both the SI and CSI are shown in Tables 5.3, 5.4, and 5.5. Laboratory reports for samples collected during the CSI are included as Appendix J.

	CONDUCTED DURING THE SI						
Sample ID	Water Content (%)	Porosity (%)	Vertical Permeability cm/sec	TOC (mg/Kg)	Organic Content (%)	Dry Unit Weight (pci)	
ASB-02 (24-26)*	22.4	36.3	1.9 E-06	3,400	1.4	105.4	
cm/sec centimete mg/Kg milligrams PCF Pounds per TOC Total organ * approximate dept	per kilogram cubic foot ic carbon						

TABLE 5.3 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE SI

Sample ID	% Gravel	% Sand	% Silt/Clay
Fill			
ST-1-4-6.5	6.4	57.5	36.1
ST-1-12-14.5	1.9	60.3	37.8
ST-1-20-22.5	0.3	58.3	41.4
ST-1-28-30,5	1.2	64.1	34.7

TABLE 5.4 GRAIN SIZE DISTRIBUTION

TABLE 5.5 SUMMARY OF PHYSICAL SOIL TESTS CONDUCTED DURING THE CSI

Sample ID	Water Content (%)	Porosity (%)	Vertical Permeability (cm/sec)	Specific Gravity	Wet Unit Weight (PCF)	Dry Unit Weight (pcf)
ST-1-4-6.5	17.7	37.4	4.9 E-05	2.64	121.3	103.1
ST-1-12-14.5	17.1	38.1	2.3 E-05	2.65	119.8	102.3
ST-1-20-22.5	17.3	33.5	8.6 E-07	2.65	129.1	110.1
ST-1-28-30,5	21.0	35.4	5.2 E-05	2.65	129.3	106.9
cm/sec – centime PCF – Pounds p	•	1	•	· · · · · · · · · · · · · · · · · · ·		

5.2.3 Groundwater Flow

Figure 18 is a map showing the configuration of the top of the water table on August 20, 2003. Depth to top of groundwater ranged from 7.32 feet below top of casing (MW-01) to 22.75 feet below top of casing (MW-04). Due to the proximity of MW-06 to MW-04, and the difference in water table elevations between these two wells, MW-06 was not used in determining groundwater flow direction or gradient in the upper water bearing zone. However, the relationship of these two wells provides data to determine the general vertical flow characteristics at the Site. The higher groundwater elevation measured in MW-04 (295.67), which is screened across the water table (295.38 to 285.38), versus the potentiometric head measured in MW-06 (283.13), which is screened below the water table (278.76 to 268.76), indicates a downward flow regime. The horizontal flow pattern for groundwater in the soils under the former MGP facility is generally to the east at an average gradient of 0.086 ft/ft (Figure 18).

The groundwater flow velocity or seepage velocity (V) can be determined using the horizontal hydraulic conductivity, hydraulic gradient, and effective porosity. Site values for horizontal hydraulic conductivity and hydraulic gradient were determined from the data collected during the SI and CSI. Effective porosity can be estimated from published literature based on the presence of fine sand/clayey sand. The groundwater flow velocity was calculated separately for groundwater within the saprolite (from monitoring well MW-01), fill material (from monitoring wells MW-02, MW-04, MW-05, and MW-07) and alluvium (from monitoring well MW-06).

The groundwater flow velocity is calculated from the equation:

V=k*<mark>i</mark>

Where:

- k = hydraulic conductivity = 3.7 E-04 ft/min. for saprolite, 1.73 E-02 ft/min. for fill material, and 3.60 E-04 ft/min for alluvium (average from slug tests);
- i = hydraulic gradient = 0.086 (from Figure 18); and
- $n_e = effective porosity = 0.20$ for saprolite and fill material (silt), and 0.33 for alluvium (fine sand); from Groundwater Hydrology and Hydraulics, D. B. McWhorter and D. K. Sunada, 1977).

Using the assumptions listed above, the average groundwater flow velocity at the Site is approximately 0.23 ft/day or 84 ft/year for groundwater flow in the saprolite, 10.7 ft/day or 3,900 ft/year for groundwater flow within the fill material, and 0.14 ft/day or 200 ft/year for groundwater flow within the alluvium. However, due to adsorption and degradation, the COI are expected to migrate at a slower rate.

5.3 GROUNDWATER MONITORING WELL INSTALLATION AND RATIONALE

Descriptions of the installation and rationale of monitoring wells MW-01 through MW-04 can be found in the SI Report by LAW.

Monitoring wells MW-05, MW-06, and MW-07 were installed during the CSI. Monitoring wells MW-05 and MW-07 were installed to define the horizontal extent of COI related to the former MGP operations in groundwater. Monitoring well MW-06 was installed adjacent to MW-04 and approximately 16 feet deeper to insure vertical delineation of COI related to the former MGP operations in groundwater.

Soil borings for the Type II monitoring wells installed during the CSI were advanced with 6.25-inch outsidediameter (OD) HSAs. The soil borings for monitoring wells MW-05 and MW-07 were advanced to 30 feet bgs and 32.5 feet bgs, respectively. Monitoring wells MW-05 and MW-07 were constructed with 15 feet of two-inch diameter, 0.010inch slotted schedule 40 PVC screen and 15 feet of two-inch diameter schedule 40 PVC riser. Following installation of the well screen and riser, a sand pack was placed in the annulus from the total depth to a point approximately two feet above the top of the screen. Approximately two feet of bentonite were placed in the annulus above the sand pack to effect a seal. Grout was placed in the annulus from the top of the seal to ground level.

Monitoring well MW-06 was constructed with 10 feet of pre-packed well screen and 40 feet of PVC riser. The pre-packed screen consisted of 10-feet of an inner two-inch diameter, 0.010-inch slot, schedule 40 PVC screen and an outer 3.5-inch diameter, 0.010-inch slot schedule 40 PVC screen. The annular space between the screens was filled with sand pack material prior to installation. Following installation of the well screen and riser, a sand pack was placed in the annulus between the borehole and well construction material from the total depth to a point approximately two feet above the top of the screen. Approximately two feet of bentonite were placed in the annulus above the sand pack to effect a seal. Grout was placed in the annulus from the top of the seal to ground level. Each well was finished at the surface with a flush-mounted metal well guard.

More detailed information concerning well construction for all of the monitoring wells at the Site are summarized on Table 5.6. Monitoring well construction diagrams are included in Appendix K.

Each of the new and existing monitoring wells was developed, or redeveloped, respectively, by pumping with a submersible pump until the water was relatively free of suspended solids. The water removed from the wells was pumped into a waste water tank or drums located at the Site.

		•	SCREENED INTERVALS		
Well ID #	Ground Surface Elevation *	Top of Casing Elevation*	Elevation (MSL)	Feet bgs	
MW-01	326.45	325.84	314.95-304.95	11.5-21.5	
MW-02	318.34	317.87	300.84-290.34	18-28	
MW-03	317.55	317.09	297.05-287.05	20.5-30.5	
MW-04	318.88	318.42	295.38-285.38	23.5-33,5	
MW-05	316.99	316.62	301.99-286.99	15-30	
MW-06	318.76	318.41	278.76-268.76	40-50	
MW-07	318.33	318.07	300.83-285.83	17.5-32.5	

TABLE 5.6
SUMMARY OF MONITORING WELL CONSTRUCTION INFORMATION

5.4 SAMPLING AND ANALYSIS

Two rounds of groundwater sampling were performed as part of the CSI. The first sampling event occurred during March 2001 and the second event occurred during August 2003. Groundwater analytical data were obtained through groundwater samples collected from the monitoring wells. The groundwater samples were analyzed by Analytical Environmental Services, Inc. (AES) for the COI. Groundwater samples collected for natural attenuation parameters during the March 2001 sampling event were analyzed by Microseeps in Pittsburgh, Pennsylvania. Appendix C-2 contains summary tables of the analytical reports. Attachment A of this CSR contain copies of analytical data collected during the CSI.

5.4.1 Sampling Methods

Depths to groundwater were measured in the monitoring wells using a water level indicator. Depths to water, well diameter and well depths from the monitoring wells were used to calculate well volumes. Purging was accomplished using a peristaltic pump and dedicated polyethylene tubing. A minimum of three well volumes of water was removed from each well during purging. Temperature, pH, specific conductivity, dissolved oxygen, turbidity, and oxidation/reduction potential were measured during purging. The wells were purged until these field parameters had equilibrated and turbidity was less than 5 NTUs. Measurements were recorded on water quality sampling forms found in Appendix L. Groundwater samples collected during the March 2001 sampling event for VOCs and SVOCs were collected immediately following purging. Samples for analyses of inorganic COI were collected within 24 hours of purge completion using quiescent sampling techniques. For the August 2003 sampling event, samples were collected

immediately following purging with the exception of the sample from MW-01 which was allowed to recharge overnight after the well went dry. Purge water was collected and transported to the waste water tank or drums.

Groundwater samples were also collected during the March 2001 sampling event from each monitoring well for natural attenuation parameters which included ammonia as nitrogen, ferrous iron, nitrate, sulfate, sulfide, iron, manganese, dissolved manganese, carbon dioxide, methane, nitrogen, and oxygen. Natural attenuation parameters in groundwater were analyzed to determine the applicability of biodegradation of COI in groundwater for the purposes of remediation if necessary.

5.4.2 Sample Handling and Preservation Techniques

Groundwater samples collected for COI related to former MGP operations from the monitoring wells were analyzed for VOCs, SVOCs, metals, and cyanide. The samples were collected in the following order: 1) VOCs; 2) SVOCs; and 3) inorganic compounds. The samples were placed in the appropriate containers with the appropriate preservatives prescribed by the Work Plan. The samples were designated by the well number and identified by attaching sample labels with the required information completed. The sample containers were sealed in plastic bags, placed in a trash bag and sealed in a cooler with plastic bubble wrap and ice. Chain-of-custody forms were completed for each SDG and shipped with the samples. Each shipment of samples was assigned a SDG number. Equipment rinse blanks and field duplicate samples were included in the SDGs and were analyzed for the COI. Trip blanks and field blanks were included in the SDGs and analyzed for VOCs only.

Groundwater samples collected for natural attenuation parameters were placed in appropriate containers with the appropriate preservative as prescribed by the Work Plan. The sample containers were sealed in plastic bags, placed in a trash bag and sealed in a cooler with plastic bubble wrap and ice. Chain-of-custody documentation accompanied each shipment. All samples sent for natural attenuation parameters were shipped overnight via Federal Express.

5.4.3 Decontamination Procedures

Decontamination procedures were followed according to the Work Plan. All reusable down-hole equipment, consisting of the water level indicator, pressure transducer, and tape measure was decontaminated prior to entering the well. Decontamination was performed by washing the equipment in a solution of tap water and Liquinox, and rinsing with deionized water, isopropanol and organic-free water. Throughout the sampling and decontamination procedures, new disposable gloves were worn when equipment was handled.

5.4.4 Laboratory Methods

Groundwater samples for COI analyses were shipped to AES, via Federal Express Priority Overnight. Samples were analyzed for VOCs and methyl-tert-butyl-ether (MTBE; only during the March 2001 sampling event) according to SW-846 Method 8260, SVOCs according to SW-846 Method 8270A, and inorganic constituents using SW-846 Method 6010 except for mercury and total cyanide which were analyzed using SW-846 Method 7471 and SW-846 Method 9010, respectively. The CRQLs were based on the laboratory's self-determined PQL.

Groundwater samples collected for natural attenuation parameters were shipped to Microseeps, via Federal Express Priority Overnight. Table 5.7 lists the methods numbers for each parameter analyzed.

Parameter	Method
Ammonia as Nitrogen	EPA Method 350.2
Ferrous Iron	Modified SW-846 Method 7199
Nitrate, Nitrite, Sulfate	SW-846 Method 9056
Sulfide	EPA Method 376.1
Iron, Manganese, Dissolved Manganese	SW-846 Method 6010
Carbon Dioxide, Nitrogen, Oxygen	AM 15*
Methane	AM 18*
eeps Method	

TABLE 5.7 ANALYTICAL METHODS FOR NATURAL ATTENUATION PARAMETERS

A complete CLP-like data package was prepared by AES for one water SDG. The data package was submitted to Southern Company Chemical Services for data validation using USEPA SMO Data Validation Functional Guidelines. All laboratory data were considered by Southern Company Chemical Services to be acceptable. Southern Company Chemical Services also reviewed the laboratory data for PARCC parameters. Southern Company Chemical Services found the PARCC parameters acceptable (Appendix G-1). The laboratory packages for the remaining SDGs were reviewed and qualified by Williams for quality assurance/quality control measurements and results are included in Appendix G-2.

5.5 BACKGROUND CONCENTRATIONS

Background concentrations of the COI for groundwater were determined from the groundwater samples collected from monitoring well MW-01 for inorganic compounds. This well is located up-gradient from any known MGP source area (Figure 18). Table 5.8 lists the background concentrations for the inorganic COI in groundwater. The UBLs for VOCs and SVOCs were assumed to be the detection limit.

CONCENTRATIONS GROUNDWATER				
INORGANICS				
ANALYTE	UPPER BACKGROUND LIMIT (mg/L)			
Arsenic (As)	Detection Limit			
Barium (Ba)	Detection Limit			
Beryllium (Be)	Detection Limit			
Cadmium (Cd)	Detection Limit			
Chromium (Cr)	Detection Limit			
Copper (Cu)	Detection Limit			
Lead (Pb)	Detection Limit			
Mercury (Hg)	Detection Limit			
Nickel (Ni)	Detection Limit			
Zinc (Zn)	0.029			
Cyanide (CN)	Detection Limit			

TABLE 5.8 CALCULATED BACKGROUND CONCENTRATIONS

5.6 HORIZONTAL AND VERTICAL EXTENT OF CONSTITUENTS OF INTEREST IN GROUNDWATER

Analytical results of the COI for all groundwater samples collected during the CSI are summarized in Appendix C-2. Cross-sections A-A' through C-C' (Figures 7 through 9) show the horizontal and vertical extent of the COI in groundwater samples collected during the CSI sampling event. An isoconcentration map (Figure 19) was also prepared for various COI detected in the groundwater from monitoring wells sampled during the August 2003 CSI field sampling event. In addition to the previously listed COI, MTBE analyses were conducted on collected groundwater samples during the March 2001 for the purpose of fingerprinting possible impacts and determining potential off-property sources.

5.6.1 Horizontal Extent of Volatile Organic Compounds in Groundwater

Groundwater samples collected during the August 2003 sampling event did not contain any detectable concentrations of VOCs. The groundwater sample collected from monitoring well MW-01 (up-gradient of the former MGP facility) during the March 2001 sampling event contained benzene at a concentration of 9.1 µg/L (duplicate sample Dup031201A collected from MW-01 did not contain a detectable concentration of benzene). This was the only groundwater sample collected during the CSI that contained benzene and MW-01 is located immediately down-gradient of a known off-Site UST related release and cross-gradient of another off-Site UST release (these plumes are presented on Figure 19). Therefore, the benzene concentration detected in MW-01 during the March 2001 sampling event is not related to the former MGP facility.

MTBE was detected in groundwater samples collected from MW-02 and MW-04 at 8.5 μ g/L and 18 μ g/L, respectively during the March 2001 sampling event. As MTBE is a synthetic compound developed in the 1970's, and MGP operations ceased in the early 1900's, it can be assumed that the concentrations of MTBE in groundwater at the Site are representative of off-site sources (likely related to the up-gradient USTs).

5.6.2 Horizontal Extent of Semivolatile Organic Compounds in Groundwater

Detectable SVOC concentrations were reported in only two groundwater samples collected during the August 2003 CSI sampling event (MW-02 and MW-05; Figure 19). Analytical results indicated the presence of acenaphthene at concentrations of 12 μ g/L and 14 μ g/L slightly above the detection limit of 10 μ g/L in MW-02 and MW-05, respectively. No other SVOCs were detected in groundwater samples collected during the August 2003 sampling event.

5.6.3 Horizontal Extent of Inorganics in Groundwater

The horizontal extents of inorganic constituents detected in groundwater above the background limits are defined at the Site (Figure 19). Concentrations of all inorganic COI, with the exception of barium and cyanide, were below the laboratory detection limit in the groundwater samples collected during the August 2003 sampling event. Barium was detected in monitoring wells MW-02 through MW-07. The background monitoring well (MW-01) did not contain detectable levels of barium. When evaluated independently, the chemical data suggests that there has been a barium release to groundwater that is not defined. However, when the data is evaluated in combination with geologic units and background soil chemical analysis, the data suggests the barium present in the groundwater at the Site is related to alluvial soils and fill material. This is based on the fact that the background well (MW-01) is the only well that is screened within the saprolite and the remaining wells are screened within fill material and/or alluvium. Specifically, MW-03, MW-05, and MW-07 are screened completely in the fill material, MW-02 and MW-06 are screened completely in the alluvium, and MW-04 is screened across the fill material and alluvium contact. An evaluation of barium in soil from the background soil borings shows that barium is not present above the detection limit in the saprolite background soil samples, however, barium is present in the fill material and alluvium background soil samples at concentrations ranging from 11.1 mg/kg to 126 mg/kg and 30.1 mg/kg to 338 mg/kg, respectively. Additionally, barium is not present in soils at the locations of former MGP operations at concentrations exceeding the soil background concentrations, demonstrating that a release of barium has not occurred at the MGP facility. Therefore, the barium present in the groundwater is directly related to the barium present in the fill material and alluvium, and not the former MGP operations. Cyanide was detected in monitoring well MW-02 at a concentration of 0.048 mg/L (Figure 19) and is defined in all directions by MW-01, MW-04, MW-05, and MW-07 (MW-07 is a new well that was installed to define the cyanide present in MW-02).

5.6.4 Natural Attenuation Parameters

Groundwater samples were collected from all monitoring wells (MW-01 through MW-06) during the March 2001 sampling event and analyzed for natural attenuation parameters. Based on analytical results of COI in groundwater, further study of the results from the natural attenuation parameter analysis is not warranted at this time.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 6 INVESTIGATION OF NONAQUEOUS PHASE LIQUIDS

SECTION 6 INVESTIGATION OF NONAQUEOUS PHASE LIQUIDS

6.1 GENERAL OBSERVATIONS

Non-aqueous phase liquids (NAPL) were not identified at the Site during the CSI. Williams advanced borings in the vicinity of former structures where NAPL could potentially be encountered in the subsurface.

6.2 SOIL BORINGS

During the CSI, borings were advanced in areas where structures appear to have been located according to the Sanborn maps. A minimal amount of TLM and/or OLM was observed in two borings (SB-11 and SB-39) installed within Gas Holder No. 1 and three borings (SB-12, SB-13, and SB-15) installed within Gas Holder No. 2. In SB-11 and SB-39, the TLM and/or OLM were observed at the base of the gas holder at a depth of approximately 12.5 feet bgs in less than one-inch lens. The TLM and/or OLM were observed at the base of Gas Holder No. 2 at a depth of approximately 41 feet bgs in a less than one-inch layer.

6.3 MONITORING WELLS

No measurable thickness of light non-aqueous phase liquid (LNAPL) or dense non-aqueous phase liquid (DNAPL) was observed during the CSI in any of the monitoring wells.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 7 SEDIMENTS INVESTIGATION

SECTION 7 SEDIMENTS INVESTIGATION

The CSI assessed the potential impact of the COI on sediments in the Ocmulgee River. The river is located approximately 200 feet northeast of the former MGP facility.

Williams performed an investigation of the sediments of the Ocmulgee River on April 11, 2001. Sediment samples were collected using hand DPT for visual observation only to determine if sediments had been impacted by former MGP operations. Sediment samples were collected at approximately 100 foot intervals along the western bank of the river beginning at the Spring Street bridge and extending approximately 700 feet south of the bridge. At each interval, samples were collected from 0-2 feet and 2-4 feet below the top of the sediment at approximately three feet and 13 feet from the edge of the river bank. Depth to the top of the sediment from the water level was measured for each location and is recorded on boring logs included in Appendix D-3. The boring logs also include a lithologic description and any observation of visible staining, if present. Additional sediment samples were collected for visual observation at the culvert located on the south side of the bridge (Figure 3).

A hydrocarbon-like staining and odor (possibly diesel fuel in nature) were noted in four sediment samples (SD-D-30, SD-D-40, SD-E-3, and SD-E-8) collected in the vicinity of the culvert. Due to the large drainage basin that includes several other potential sources (several UST facilities, manufacturing facilities, commercial area and roadways) associated with this culvert, the lack of a direct hydraulic connection with the former MGP facility and the fact that the hydrocarbon-like odor resembled that of diesel fuel, it does not appear likely this is associated with the former MGP operations (see Figure 5). Minor amounts of coal-like material were observed in the sediment sample (SD-D-20) collected approximately 20 feet outward from the culvert and one piece of slag-like material was observed in the sample collected approximately 20 feet downstream and approximately three feet from the edge of the bank (SD-E-3). None of the sediment samples collected indicated the presence of TLM or OLM semi-volatile organic compounds.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 8 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE AND OTHER POTENTIALLY RESPONSIBLE PARTIES

SECTION 8 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE AND OTHER POTENTIALLY RESPONSIBLE PARTIES

8.1 PROPERTIES POTENTIALLY AFFECTED BY A RELEASE

As defined by the CSI, the properties potentially affected by a release from the former MPG facility are shown on Figure 2 and include the following owners and/or occupants listed in Table 8.1.

Affected Parcel	Parcel Address	Parcel Owner	Address and Telephone Number
OC-98-51	32 Spring Street	Eagle West, LLC	Outdoor West
5 <u>6</u>	Macon, Georgia	(4)	8976 N. Expressway
	52.0	1	Griffin, GA 30223
		· · · ·	Phone: 770-227-2060
OC-98-5C	40 Spring Street	Kayo Oil Company	Kayo Oil Company
OC-98-5D	40 Spring Street	AA 52 FAAN	c/o Conoco
OC-98-5G	40 Spring Street	a (P.O. Box 1039
OC-98-5H	36 Spring Street		Wilmington, GE 19899
			Phone: 770-425-2507
OC-98-5A	44 Spring Street	Pizza Hut of America, Inc.	66 Frank Street
		•	Macon, GA 31201
1.1.8T			Phone: 912-741-2525
OC-98-4F	66 Spring Street	Travis R. Crouch, Jr. et Al.	Jeanette C. Miller
		(i+)	P.O. Box 35370
5		12	Louisville, KY 40232
			Phone: Not Available
OC-98-3A	856 Riverside Drive	Schuster Enterprises, Inc.	Schuster Enterprises, Inc.
OC-98-3B	855 Riverside Drive		P.O. Box 12029
OC-98-3D	856 Riverside Drive	12 C	Columbus, GA 31917
OC-98-4H	886 Willow Street		Phone: 706-563-3066
OC-99-4AB	815 Riverside Drive	City of Macon, Transit Authority	City Hall
	Macon, Georgia		700 Poplar Street
	281		Macon, GA 31201
			Phone: 478-751-7110
OC-98-2A	847 Riverside Drive	Roscoe Douglas, Jr.	P.O. Box 2823
OC-98-2B	839 Riverside Drive	4	Macon, GA 31203
	1		Phone: 478-475-9555
OC-98-5J	801 Riverside Drive	City of Macon Central Services	801 Riverside Drive
	4		Macon, GA 31201
	· · · · · · · · · · · · · · · · · · ·		478-751-9147
OC-99-4A	725 Riverside Drive	Macon-Bibb County	305 Coliseum Drive
	*	Urban Development Authority	Macon, GA 31201
- 4 1.47			Phone: 478-741-8000
R-O-W Norfolk Southern	NA .	Norfolk Southern Corporation	Three Commercial Place
\$		1995	Norfolk, VA 23510-9227
			757-629-2600

TABLE 8.1 OWNERS OF POTENTIALLY AFFECTED PROPERTIES

8.2 OTHER POTENTIALLY RESPONSIBLE PARTIES

HSRA regulations, by which this report is being prepared, require the name, address, and telephone number of any other person who may be a responsible party for the Site and a description of the type and amount of regulated substances such party may have contributed to a release.

The following potentially responsible parties have been identified at this time:

The City of Macon 700 Poplar street Macon, Georgia

Georgia Power Company 241 Ralph McGill Boulevard, NE Atlanta, GA 30308

Atlanta Gas Light Company 10 Peachtree Place Atlanta, GA 30309 COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 9 POTENTIAL RECEPTOR STUDY AND RISK REDUCTION STANDARDS

SECTION 9 POTENTIAL RECEPTOR STUDY AND RISK REDUCTION STANDARDS

This section evaluates the potential for exposure of human populations to COI detected in soil and groundwater at the Site. For exposure to occur a contaminant has to reach a receptor. Movement of a substance through the environment from a source, to a point of contact with an individual is defined as exposure pathway. A complete exposure pathway consists of four elements: 1) chemical source and release mechanisms, 2) environmental transport media, 3) a receptor at the exposure point, and 4) an exposure route at the exposure point. Without all four elements, an exposure pathway is incomplete, and consequently, no exposure could occur. Each of the elements as they exists at the Site are described below.

9.1 CHEMICAL SOURCE AND RELEASE MECHANISMS

At the Macon 2 former MGP facility, MGP constituents appear to have potentially been released from more than one source involved in the manufacture or storage of gas or its by-products. Section 2.5 lists known and potential sources of the COI and a general description of each identified potential source. The actual mechanism for release of COI from each source is not known; however, releases likely occurred due to spillage or leakage during the gas manufacturing process or leakage during storage of MGP by-products.

9.2 ENVIRONMENTAL TRANSPORT MEDIA

9.2.1 Persistence of Constituents of Interest

The primary MGP constituents detected in soil and groundwater at the Site are PAHs, VOCs, metals, and cyanide. The physical and chemical characteristics of these compounds vary widely which causes differences in the behavior of movement of each compound in the environment. Table 9.1 lists physical and chemical characteristics for select COI found at the Site that determine their fate and transport in environmental media.

Water Solubility (ppm)	Vapor Pressure (torr)	Henry's Law Constant	Koc Water/Carbon (ml/g)
1.8E+03	9.5E+01	5.6E-03	5.51E+01
1.63E-03	5.5E-09	1.1E-06	7.91E+05
3.1E+01	8.5E-02	4.8E-04	1.76E+03
1.4E-00	4.6E-06	1.1E-05	6.56E+04
	0.00E+0		
	(ppm) 1.8E+03 1.63E-03 3.1E+01	(ppm) (torr) 1.8E+03 9.5E+01 1.63E-03 5.5E-09 3.1E+01 8.5E-02 1.4E-00 4.6E-06	(ppm) (torr) Constant 1.8E+03 9.5E+01 5.6E-03 1.63E-03 5.5E-09 1.1E-06 3.1E+01 8.5E-02 4.8E-04 1.4E-00 4.6E-06 1.1E-05

TABLE 9.1 PHYSICAL AND CHEMICAL CHARACTERISTICS OF SELECT CONSTITUENTS OF INTEREST

Those chemicals with higher water solubility values, such as benzene, are more likely to be dissolved into groundwater and be potentially transported from the Site. Those with high water/carbon partitioning coefficients (such as benzo(a)pyrene) are much more likely to become bound to the organic fraction of soils. Chemicals with high vapor pressures such as benzene are likely to volatilize when in contact with air.

In general, PAH compounds tend to have a high affinity for organic compounds and low solubility in water. Therefore, in soils and sediments, PAH compounds tend to be bound to the soil particles and dissolve slowly. Volatilization of some lighter end PAH compounds may occur although most volatilize slowly due to their low vapor pressures. Biodegradation is an important process in that microorganisms are capable of breaking down PAH compounds. According to the Gas Research Institute (Management of Manufactured Gas Plant Sites, 1988) the half-life of most PAH compounds in soil varies from 140 to 480 days under good conditions. The rate of biodegradation is highly dependent upon the availability of oxygen and nutrients in the subsurface and other soil conditions.

Benzene and other VOCs tend to dissolve in groundwater and volatilize in air much more easily than PAH compounds. Therefore, they do not usually last for long periods at the surface but may be persistent in groundwater.

Metals and ferrocyanide, usually the dominant form of cyanide at MGP Sites (Management of Manufactured Gas Plant Sites, 1988), are relatively insoluble and tend to be persistent in soil. They are usually closely bound to particulate matter and may be transported in soil eroded by wind or rain. Over time, oxidation and biological action may cause reaction of sulfur and cyanide compounds to form thiocyanates which are very soluble in water.

9.2.2 Potential Routes of Migration

9.2.2.1 Soils

Surface and subsurface soils at or near identified sources appear to be the first media impacted by the release of MGP constituents. The primary route of migration of MGP-related constituents is movement through subsurface soils by the percolation of rainwater through the vadose zone to the water table. The migration of the COI occurs along preferential pathways where changes in permeability occur. Several key horizons were identified during the CSI which appear to be possible migration pathways including the ground surface, the water table, the base of fill material, the alluvial sands, and the base of alluvium. Constituents can also be moved from place to place on the surface by the erosion of impacted surface soils. Transport of COI from the Site as a result of surface soil erosion is not likely to occur because buildings, asphalt and concrete cover all but approximately 500 square feet (covered by grass) of the former MGP facility, as show in Figure 3.

9.2.2.1.1 Surface Topography

Surface topography at the Site slopes to the northeast and east. Surface soils at the property contain COI exceeding background concentrations. Surface water runoff would follow surface topography, as discussed in Section 2, to one of the two drainages discussed in Sections 3.2.3 and 9.3.2. However, as mentioned in the previous Section, COIs are not likely to be found in surface water runoff because there are no exposed surface soils at the Site. Therefore, the migration of MGP-related constituents from eroded surface soils or former MGP operations in surface water runoff is not considered to be the potential path of contaminant migration from the Site.

9.2.2.1.2 Water Table

As soil saturation increases near the water table, permeability to fluids other than water decreases. The result is a vertical change in the conductivity of the soil. Therefore, some migration may be expected to have occurred in a downgradient direction along the water table. Figure 18 is a map depicting the elevation of the water table.

9.2.2.1.3 Base of the Fill Material

The clays, sands and gravels of the fill material exhibit a higher conductivity than the underlying clays and silts of the alluvium and saprolite. Therefore, the base of the fill material may be a preferential flow pathway.

9.2.2.1.4 Base of Alluvium

The medium to coarse sands and gravels observed in the alluvium at the Site has a higher conductivity than the underlying silts and fine sands of the saprolite or of the gneissic bedrock. Therefore, the contact between the base of the alluvium and the underlying saprolite or bedrock could represent a preferential flow pathway.

9.2.2.2 Groundwater

Groundwater may be impacted by COI when residual MGP constituents in subsurface soil come in contact with the groundwater or when percolating rainwater leaches the COI into the groundwater. The migration of MGP constituents that have been dissolved into the groundwater is directly controlled by the flow direction and flow rate of the groundwater. The distributions of the COI in groundwater are shown in Figure 19.

In any groundwater flow regime there is usually some component of vertical movement of groundwater. Areas where groundwater has some component of downward movement are called recharge areas. Areas where groundwater is moving up (towards the surface) are known as discharge areas. The relationship between monitoring wells MW-4 and MW-6 provides data to determine the general vertical flow characteristics at the Site. The higher groundwater elevation measured in MW-04 (295.67) which is screened across the water table (295.38 to 285.38), versus the elevation measured in MW-06 (283.13) which is screened below the water table (278.76 to 268.76), indicates a downward flow regime or recharge.

9.3 POTENTIAL RECEPTORS AT EXPOSURE POINTS

Exposure points include any areas where MGP constituents are accessible in soils and groundwater to potential human (i.e., children, adult residents, and workers) and/or environmental (i.e., such as plant and animal species) receptors. Potential exposure points at the Site and its vicinity include those areas where local residents, commercial and potential future construction workers come into contact with the COI in soils or groundwater. Commercial and residential workers may potentially be exposed to COI in surface soils whereas construction workers are expected to be mainly exposed to COI detected in subsurface soils during construction or excavation activities that may occur in the

future at the Site. In addition, aquifers impacted by the COI are potential exposure points to humans who may use them as drinking water sources.

9.3.1 Water Wells

A water well survey was conducted by Williams during the CSI for former Macon 2 MGP facility. The water well survey entailed a database search performed by the U.S.G.S. No water wells were found in use within a three-mile radius of the former MGP facility. The area surrounding the Site is served by the municipal water supply which obtains its water from the Ocmulgee River approximately three miles upstream from the Site.

9.3.2 Surface Water

Figure 5 (Site Map and Surface/Storm Water Flow Path) identifies the flow paths of surface water at the Site and at surrounding areas. Storm water at the former MGP property flows to various storm drains located at the facility (Figure 3) or as a sheet flow over the embankment located on the eastern boundary of the property. Storm water that flows towards the embankment accumulates in standing pools on the western side of the Norfolk Southern Railway and eventually seeps through the railway gravel bed and to the Ocmulgee River. Stormwater which falls on up-gradient properties including the Exxon station, Pizza Hut restaurant, Burger King restaurant, and Conoco station, flows into either storm drains that feed into storm drains located at the facility, as surface flow over the embankment previously mentioned, or into a drainage located on the southwestern side of the Spring Street bridge. Storm water that flows into the drainage located on the southwestern side of the Spring Street bridge empties into the Ocmulgee River at a point on the southwestern side of the bridge (Figure 5).

9.3.3 Crops and Hunting

Bibb County contains approximately 24,600 acres of land used for agriculture. The majority of this land is located in the southern portion of the county. However, near the Site, the land is utilized for urban and industrial purposes and, therefore, is not suitable for agriculture. Accordingly, potential exposure through ingestion of crops that might be affected by Site contaminants is not likely.

Several species of wildlife are hunted in Bibb County including fox squirrel, white-tailed deer, bobwhite, quail, and mourning dove. However, hunting is not likely to occur on the Site due to its commercial/industrial setting. Some fishing may occur in the Ocmulgee River although the potential of exposure through fish is expected to be low since the COI related to the Site were detected below Type 1 RRSs in groundwater and they have been delineated prior to entering the river. Therefore, potential human exposure to Site contaminants through ingestion of local wildlife and fish is expected to be low, if at all.

9.3.4 Environmental Receptors

Environmental receptors include plant and animal species that might be exposed to the COI in soil at the Site. The discussion of potential receptors in Appendix M includes a list of species in Bibb County and adjacent counties of Crawford, Houston, Jones, Monroe, Peach, and Twigs considered by the U.S. Fish and Wildlife Service, Georgia Department of Natural Resources, and the Georgia Natural Heritage Program as threatened, endangered, protected, and/or species of special concern. These species are not likely to inhabit the Site due to its commercial/industrial setting.

9.4 EXPOSURE ROUTES

Potential exposure routes at the exposure points include incidental ingestion, inhalation and dermal contact with the COI detected in soils and groundwater by potential receptors (i.e., Site workers or residential receptors). The potential exposure of workers and residential populations to COI present in surface soil is limited since most of the area where the COI were found in soils are covered by buildings, asphalt or concrete. In addition, no residences were noted in any of the areas defined as impacted by the COI. Construction workers are the most likely receptors that may potentially be exposed to COI detected in soils through incidental ingestion, dermal contact or inhalation of COI during construction/excavation activities.

Potential human indirect routes of exposure include ingestion by humans of plants or wildlife that have bioaccumulated/biomagnified the COI from surface soils. Indirect exposure at the Site is not likely because no terrestrial wildlife species were observed on the Site. The potential for exposure of terrestrial and aquatic wildlife to COI potentially discharged in groundwater to Ocmulgee River is low because COI related to the Site are not likely to discharge to the River. Overall, the potential for transfer of the contaminants through the food web to humans or ecological receptors is low considering the urban/industrial setting of the Site and the absence of impact of the Siterelated groundwater contaminants on the Ocmulgee River.

9.5 HSRA EVALUATION

Regulated substances identified at a site must be compared with appropriate Risk Reduction Standards (RRSs) as required by HSRA. RRSs are based on property use (i.e., residential or non-residential) and, when applicable, Site-specific conditions. Thirty-five HSRA-regulated substances were detected in soils or groundwater at the Macon 2 former MGP facility during the CSI. The concentrations detected were first compared with Type 1 RRSs (most stringent residential) to determine which chemicals required further evaluation. The following subsections address the evaluation of HSRA regulated substances for compliance with RRSs.

9.5.1 Soils

9.5.1.1 Calculation of Risk Reduction Standards

Types 1 through 4 RRSs for soils at the Site were derived to evaluate Site compliance with HSRA regulations (Appendix M). The RRSs and the methods by which they were derived are summarized in Table 9.2. The methods for Types 1 and 3 RRSs include, as applicable, values given in the tables of the HSRA rules (Tables 1 and 2, Appendix III), the appropriate Risk Assessment Guidance for Superfund (RAGS) Equations, or background concentrations. Type 2 RRSs were determined by calculating the appropriate RAGS equations with default exposure assumptions published by

TABLE 9.2 RISK REDUCTION STANDARDS FOR SOIL AND METHODS USED IN CALCULATIONS

Constituent		hest ntration* >2'	Type 1		Type 2		Type 3 0-2'	Type 3 >2'	•	Type 4 0-2'	Type 4 >2'	
VOCs										1		
Benzene	ND	0.0310	0.500	В	8.37	D	0.500	0.500	В	0.500	0.500	F
Ethylbenzene	ND	ND	70.0	B	139	E	70.0	70	B	70.0	70.0	ŀ
Toluene	ND	0.0100	100	B	514	E	100	100	В	100	100	Ti
Total Xylenes	ND	0.00550	1,000	B	1,000	E	1,000	1,000	B	1,000	1,000	İ
Carbon Disulfide	ND	0.0320	400	В	228	E	400	400	В	400	400	F
Methylene Chloride	ND	ND	0.500	В	96.5	D	0.500	0.500	В	0.500	0.500	I
SVOCs												
Acenaphthene	ND	6.10	300	A	4,690	E	300	300	A	300	300	
Acenaphthylene	ND	8.80	130	A	2,350	E	130	130	A	130	130	Ti
Anthracene	ND	33.0	500	A	23,500	E	500	500	A	500	500	ti
Benzo(a)anthracene	0,750	37.0	-5.00	A ·	12.5	D	5.00	5.00	A	78.4	120	
Benzo(a)pyrene	0.740	26.0	1.64	A	1.25	D	1.64 .	1.64	A	7.84	63.3	
Benzo(b)fluoranthene	0.690	27.0	5.00	A	12.5	D	5.00	5.00	A	78.4	298	
Benzo(g,h,i)perylene	0.540	5.00	500	A	2,350	E	500	500	A	500	500	
Benzo(k)fluoranthene	0.780	28.0	5.00	A	125	D	5.00	5.00	A	5.00	5.00	
Chrysene	0.770	37.0	5.00	A	1,250	D	5.00	5.00	A	5.00	5.00	Ti
Dibenzo(a,h)anthracene	ND	3.50	2.00	D	1.25	D	. 5.00	5.00	A	5.00	5.00	1
Fluoranthene	1.50	68.0	500	A	3,130	E	500	500	A	500	500	
Fluorene	ND	31.0	360	A	3,130	E	360	360	A	360	360	
Indeno(1,2,3-cd)pyrene	0.380	15.0	5.00	A	12.5	D	5.00	5.00	A	78.4	924	T
Naphthalene	ND	51.0	100	A	59.9	E	100	100	A	100	100	
Phenanthrene	1.10	110	110	A	2,350	E	110	110	A	110	110	
Phenol	ND	ND	400	В	46,900	E	400	400	В	400	400	II
Pyrene	1.10	70.0	500	A	2,350	E	500	500	A	500	500	1
organics												-
Arsenic	31.5	7.47	20.0	C	6.08	D	38.1	41.0	D/A	38.1	41.0	
Barium	119	279	1,000	С	5,430	E	1,000	1,000	С	1,000	1,000	H
Beryllium	ND	ND	2.00	C	156	E	3.00	3.00	A	3.00	3.00	
Cadmium	ND	ND	2.00	C	78.2	E	39.0	39.0 -	A	39.0	39.0	
Chromium	25.0	46.3	100	C	234	E	1,200	1,200	A	1,200	1,200	
Copper	63.7	89.1	100	C	3,130	E	1,500	1,500	A	1,500	1,500	1
Lead	151	1070	75.0/204	C/F	400	**	400	400	**	1,070	1,070	
Mercury	0.825	9.43	0.500/0.540	C/F	23.5	E	17.0	17.0	A	17.0	17.0	
Nickel	8.29	14.4	50.0	C	1,560	E	420	420	A	420	420	
Vanadium	75.3	79.3	100/120	C/G	548	E	100	100	A	100	100	1
Zinc	160	544	100/257	C/F	23,500	E	2,800	2,800	A	2,800	2,800	
Total Cyanide	ND	1.44	20.0	В	1,560	E	20.0	20.0	В	20.0	20.0	1

* - Data from the February/April 2001 sampling event ** - Derived based on the EPA Integrated Exposure Biokinetic Model.

A – Appendix I Notification Requirement B – Appendix III Table 1 times 100

C – Appendix III Table 2 D- Upperbound excess cancer risk

E- Noncarcinogenic risk

F- Background in fill material

G - Background in natural soils

 H – Calculated Type 4 RRS by RAGS was not evaluated for leachability; therefore, defaults to Type 3.
 I – Concentration protective of groundwater is less than Type 4 RRS calculated by RAGS, therefore Type 4 has been adjusted to be protective of groundwater.

Values listed in milligrams per kilogram (mg/Kg)

Values rounded to three significant digits

the Georgia EPD or by background concentrations. Type 4 RRSs were determined for COI that exceeded Types 1 through 3 RRSs by calculating RAGS equations for the two exposure scenarios based on depth of soils at the Site. The Type 4 RRSs were additionally evaluated by a leaching potential study (Section 9.5.1.2) to demonstrate the values are protective of groundwater. The lesser of the calculated RRSs by RAGs and the leaching potential study were used as the Type 4 RRS for soil. For COI that did not exceed Types 1 through 3 RRS in soil, the Type 4 RRS was defaulted to a lower type RRS as the COI already meet a more stringent RRS. These COI include all compounds detected in the Site soils except for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and lead.

For surface soils (i.e., soil depth interval of 0-2 feet bgs.), Type 4 RRSs were determined for a commercial worker by calculating the appropriate RAGS equations with default exposure assumptions published by the Georgia EPD or by background concentrations. For subsurface soils (i.e., soil depth interval greater than 2 feet bgs.), Type 4 RRSs were determined by calculating the appropriate RAGS equations with exposure assumptions for a construction worker. Construction activities involve a direct contact with subsurface soils primarily through incidental ingestion of soil and inhalation of volatile compounds and soil particulates. Accordingly, Type 4 RRSs for subsurface soil were derived to be protective of construction workers. Exposure parameters used in derivation of subsurface soil Type 4 RRS are the same as those used in calculating surface soil Type 4 RRS except for frequency of exposure, duration of exposure and incidental soil ingestion rate. In this case, exposure frequency was assumed to be 125 days/year and duration of exposure was selected as 0.5 year as subsurface construction activities at the Site are not expected to last more than 0.5 years. These parameters were selected based on best professional judgment, assuming that moderate construction activities may occur at the Site in the future. Incidental soil ingestion rate for Construction workers was set at 330 mg per day, based on the USEPA draft guidance document; Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites (USEPA, 2001). A more complete discussion of the calculation of HSRA RRSs along with calculated results of RAGS equations and a list of HSRA table values is included in Appendix M.

Because toxicity values are not available for lead, Type 2 RRSs and Type 4 RRSs were developed based on the USEPA's Integrated Exposure Uptake Model for Lead and Georgia Adult Lead Model (GALM); respectively, using standard assumptions and a Site specific groundwater lead concentration of 0.01 mg/L (refer to Appendix M for discussion of derivation of RRSs for lead). In fact, lead was not detected in groundwater beneath the Site and the detection limit was used as the lead groundwater concentration in the GALM. Compliance with a RRS for a given constituent was not evaluated if the constituent already met a more restrictive RRS (e.g., for a given constituent, compliance with a Type 3 RRS was not evaluated if the compound was in compliance with its Type 2 RRS).

9.5.1.2 Leaching Potential Study

The COI at the Macon 2 MGP Site were evaluated to determine if concentrations in soil at their respective Type 4 RRS have the potential to leach at concentrations that may cause groundwater concentrations to exceed a Type 4 RRS for groundwater (leachability study). The first step of the leachability study included screening out those COI that did not exceed Types 1, 2, and 3 RRSs in soil since these COI are already in compliance with a more restrictive RRS. For the Macon 2 MGP Site, the only five COI exceeding Types 1 through 3 RRS in soil include: lead, benzo(a)anthracene,

benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene. Additional studies were performed on these COI to determine what concentrations would not cause groundwater to exceed applicable RRSs.

A dilution attenuation factor (DAF) of 20 was utilized in the leachability study for this Site based on the default value provided in the Environmental Protection Agency (EPA) "Soil Screening Guidance: User Guide, Second Edition," July 1996 (SSG). The SSG states that this DAF is protective of sources up to 0.5 acres. As the source areas at the Site are greater than this, a Site-specific value was calculated per the SSG (Table 9.3). The Site-specific calculated value was 86.2, which is greater than the default, therefore the DAF was lowered to the default value to be conservative.

DAF = '	1+(Kid)/(IL)	
Where: d = (0.011	2*L ²) ^{0.5} +d _a {1-exp[(-Ll)/(Kid _a)]}	
86.2	DAF - Dilution Attenuation Factor (unitless)	Calculated
2,770	K - Aquifer Hydraulic Conductivity (m/yr.)	Site-specific
0.086	i - Hydraulic Gradient (m/m)	Site-specific*
0.178	I - Infiltration Rate (m/yr.)	DRASTIC
7.0	d - Mixing Zone (m)	Calculated (Limited by da)
110	L - Source Length Parallel to GW Flow (m)	Site-specific
7.0	d _a - Aquifer Thickness (m)	Site-specific
Notes:		
DRASTIC	- DRASTIC: A Standardized System for Evaluating Ground V	Vater Pollution Potential Using
Hydro	geologic Setting, EPA, June 1997.	
* - Hydrau	lic gradient from August 20, 2003 (Figure 18).	
Assumpti	ons - Piedmont Blue Ridge Ground-Water Region; (8D) Regol	lith; Net Recharge Infiltration Rate (Ne
Rech	arge) Range of 0.101 m/yr. to 0.178 m/yr. (4-7 in/yr.).	- •

TABLE 9.3 CALCULATION OF SITE-SPECIFIC DILUTION ATTENUATION FACTOR

9.5.1.2.1 Lead

Three soil samples collected from unsaturated soils during the CSI contained concentrations of lead (634 mg/Kg at SB-27-8-12; 425 mg/Kg at SB-45-10-12; and 1,070 mg/Kg at SB-45-15-17) exceeding the maximum of Types 1, 2, and 3 RRS (400 mg/Kg). Since the maximum lead concentration in unsaturated soils at the Site was less than the calculated Type 4 RRS for lead (based on the GALM), samples SB-27-8-12 and SB-45-15-17 were analyzed for lead following synthetic precipitation leaching potential (SPLP) extraction. The SPLP results for sample SB-27-8-12 was 0.038 mg/L and for sample SB-45-15-17 was 0.0808 mg/L. These data were evaluated following protocols presented in the SSG. As stated in the SSG, "To calculate SSLs (soil screening levels) for the migration to groundwater pathway, multiply the acceptable groundwater concentration of 0.015 mg/L (Type 4 groundwater RRS) and the DAF of 20, the target soil leachate concentration equals 0.30 mg/L. The SSG states "if a leach test is used, compare the target soil leachate concentrations from the leach tests." The lead leachate concentrations from samples SB-27-8-12 and SB-45-15-17 are 0.038 mg/L and 0.0808 mg/L, respectively, which are an order of magnitude below the target soil leachate concentration of 0.30 mg/L. Therefore, for the former Macon 2 MGP Site, the Type 4 soil RRS for lead will equal 1,070 mg/Kg which is the maximum detected lead value in the data set for the Site, meets the target soil leachate concentration of 0.30 mg/L.

9.5.1.2.2 Semivolatile Organic Compounds

Soil samples were not collected during the CSI to perform SPLP analysis for SVOCs to be utilized in a leachability study, therefore, an additional step taken from the SSG was used to determine the appropriate concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene in soil that would not cause groundwater to exceed the higher of Types 1 through 4 groundwater RRSs. To determine the target soil leachate for these COI, the acceptable groundwater concentrations (based on RRSs for groundwater) were multiplied by a DAF of 20. Equation 10 (Soil Screening Level Partitioning Equation for Migration to Groundwater) from the SSG was used in lieu of a leach test. Table 9.4 identifies the input values used in this equation and the sources of the data. Based on the input values, concentrations of 38.3 mg/Kg benzo(a)pyrene, 120 mg/Kg benzo(a)anthracene, 298 mg/Kg benzo(b)fluoranthene, and 966 mg/Kg indeno(1,2,3-cd)pyrene in soil will not cause groundwater to exceed the Type 4 groundwater RRS. Therefore, the Type 4 soil construction worker RRS (i.e., soils deeper than 2 feet bgs.) for benzo(a)pyrene, benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene default to these values, as they are protective of human health based on RAGS calculations and will not cause groundwater concentrations to exceed Type 4 RRSs.

SSL = Cw * {	Kd + [Ow + (Oa * H')] / Pb}	
Benzo(a)anthrac		
120	SSL - Soil Screening Level (mg/Kg)	Calculated
0.00075	RRS – Groundwater Risk Reduction Standard (mg/L)	Type 4 RRS
20	DAF – Dilution attenuation factor	Soil Screening Guidance, July 1996
0.015	Cw – Target soil leachate conc. (mg/L)	RRS * DAF
8024	Kd - Soil-water partition coefficient (L/Kg)	Koc * foc
4.01E+05	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19,
		Appendix III, Table 3
0.19	Ow – Water-filled soil porosity (Lwater/Lsoil)	Site-specific
0,17	Oa - Air-filled soil porosity (Lair/Lsoil)	n - Ow
1.69	Pb - Dry soil bulk density (Kg/L)	Site-specific
0.36	n - Soil porosity (Lpore/Lsoil)	Site-specific
2.65	Ps - Soil particle density (Kg/L)	Site-specific
3.40E-06	H' – Dimensionless Henry's Law constant	USEPA, SCDM, June 1996
Benzo(a)pyrene		
63.3	SSL - Soil Screening Level (mg/Kg)	Calculated
0.0002	RRS – Groundwater Risk Reduction Standard (mg/L)	Type 3 RRS
20	DAF - Dilution attenuation factor	Soil Screening Guidance, July 1996
0.004	Cw - Target soil leachate conc. (mg/L)	RRS * DAF
15820	Kd - Soil-water partition coefficient (L/Kg)	Koc * foc
7.91E+05	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19,
	• • •	Appendix III, Table 3
0.19	Ow - Water-filled soil porosity (Lwater/Lsoil)	Site-specific
0.17	Oa - Air-filled soil porosity (Lair/Lsoil)	n-Ow
1,69	Pb - Dry soil bulk density (Kg/L)	Site-specific
0.36	n - Soil porosity (Lpore/Lsoil)	Site-specific
2.65	Ps - Soil particle density (Kg/L)	Site-specific
1.10E-04	H' - Dimensionless Henry's Law constant	USEPA, SCDM, June 1996

TABLE 9.4 CALCULATION OF SOIL SCREENING LEVELS

SSL = Cw * {	Kd + [Ow + (Oa * H')] / Pb}	*	
Benzo(b)fluorar	thene		
298	SSL - Soil Screening Level (mg/Kg)	Calculated	
0.00075	RRS Groundwater Risk Reduction Standard (mg/L)	Type 4 RRS	
20	DAF - Dilution attenuation factor	Soil Screening Guidance, July 1996	
0.015	Cw - Target soil leachate conc. (mg/L)	RRS * DAF	
19843	Kd - Soil-water partition coefficient (L/Kg)	Koc* foc	
9.92E+05	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996	
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19,	
	括 約	Appendix III, Table 3	
0.19	Ow - Water-filled soil porosity (Lwater/Lsoil)	Site-specific	
0.17 Oa Air-filled soll porosity (Lair/Lsoil) n - Ow			
1.69 Pb - Dry soil bulk density (Kg/L) Site-specific			
0.36	n – Soil porosity (Lpore/Lsoil)	Site-specific	
2.65	65 Ps – Soll particle density (Kg/L) Site-specific		
1.10E-04	H' - Dimensionless Henry's Law constant	USEPA, SCDM, June 1996	
Indeno(1,2,3-cd)	pyrene		
924	SSL - Soil Screening Level (mg/Kg)	Calculated	
0.00075	RRS - Groundwater Risk Reduction Standard (mg/L)	Type 4 RRS	
20	DAF - Dilution attenuation factor	Soil Screening Guidance, July 1996	
0.015	Cw - Target soil leachate conc. (mg/L)	RRS * DAF	
61600	Kd - Soil-water partition coefficient (L/Kg)	Koc * foc	
3.08E+06	Koc - Soil organic carbon/water partition coefficient (L/Kg)	USEPA, SCDM, June 1996	
0.020	foc - Fraction organic carbon in soil (g/g)	GAEPD, Chapter 391-3-19, Appendix III	
	C. 272, 201. Control Control Control Control Additional Systems (Control Control r>Control Control Con	Table 3	
0.19	Ow - Water-filled soil porosity (Lwater/Lsoil)	Site-specific	
0.17	Oa Air-filled soil porosity (Lair/Lsoil)	n - Ow	
1.69	Pb Dry soil bulk density (Kg/L)	Site-specific	
0.36	n - Soil porosity (Loore/Lsoil)	Site-specific	
2.65	Ps - Soil particle density (Kg/L)	Site-specific	
1.60E-06	H' - Dimensionless Henry's Law constant	USEPA, SCDM, June 1996	

TABLE 9.4 CALCULATION OF SOIL SCREENING LEVELS (CONTINUED)

9.5.1.3 Compliance With Risk Reduction Standards

An evaluation of the COI detected in the Site soils with regards to Types 1 through 4 RRSs is presented in Table 9.5. Concentrations of all six detected VOCs (benzene, carbon disulfide, ethylbenzene, methylene chloride, toluene and total xylenes), ten PAHs (acenaphthene, acenaphthylene, anthracene, benzo(g,h,i)pyrene, fluoranthene, fluorene, naphthalene, phenonanthrene, phenol and pyrene), seven metals (barium, beryllium, cadmium, chromium, copper, nickel and vanadium) and cyanide did not exceed Type 1 RRS. Type 3 RRSs for soils deeper than 2 feet bgs were exceeded by four PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene) and lead. None of the COIs detected in the Site soils exceeded Type 4 RRSs. The areas in which RRSs are exceeded in soil are shown on Figure 20.

Constituent	Type 1	Туре 2	Type 3	Type 4
VOCs				
Benzene	N	*	*	*
Ethylbenzene	- N	*	*	*
Toluene	N	*	*	*
Total Xylenes	N	*	*	*
Methylene Chloride	N	*	*	*
Carbon Disulfide	N	*	•	*
SVOCs				
Acenaphthene	N	*	*	* .
Acenaphthylene	N	. *	*	*
Anthracene	N	*	*	*
Benzo(a)anthracene	Ý.	Ŷ	Y	N
Benzo(a)pyrene	Ŷ	Ŷ	Y	N
Benzo(b)fluoranthene	Ý	Ŷ	Ý	N
Benzo(k)fluoranthene	Ŷ	N	*	*
Benzo(g,h,i)perylene	N	•	*	*
Chrysene	Ŷ	N ·	*	+
Dibenzo(a,h)anthracene	Ŷ	Y	N	*
Fluoranthene	N	*	*	*
Fluorene	N	*	*	*
Indeno (1,2,3-cd)pyrene	Ŷ	Y	Y	N
Naphthalene	N	*	*	*
Phenanthrene	N	*	*	*
Phenol	N	*	*	*
Pyrene	N	*	*	*
Inorganics			· · · · · · · · · · · · · · · · · · ·	
Arsenic	Y	Y	N	*
Barium	N	• *	*	*
Beryllium	N	*	*	*
Cadmium	N	*	*	*
Chromium	N	*	*	÷
Copper	N	±	*	*
Lead	Y	· Y	Y	N
Mercury	Y	N	*	*
Nickel	N	· *	. *.	*
Vanadium	N	*	*	*
Zinc	Ŷ	N .	. *	*
Total Cyanide	N	*	*	*
Y – Yes; exceeds RRS. N – No; does not exceed RR *– Constituent meets more r	S. estrictive RRS.			

TABLE 9.5 RISK REDUCTION STANDARD EXCEEDANCES IN SOIL

9.5.2 Groundwater

Types 1 through 4 RRSs for groundwater at the Site were derived in accordance with HSRA requirements and are summarized in Table 9.6. Calculations for the RRSs are attached in Appendix M. The Types 1 and 3 RRSs are based on the concentrations listed in Table 1, Appendix III of the HSRA regulations. Also, for Types 1 and 3, the sum of regulated substances in a single sample must not exceed 10 mg/L if the Table 1 value for each compound is less than 5 mg/L. If at least one compound has a Table 1 value greater than or equal to 5 mg/l, the sum of concentrations must not exceed the maximum Table 1 value plus 10 mg/l.

Types 2 and 4 RRSs are based on the lesser of the concentrations calculated by using RAGS equations 1 and 2 with default residential (Type 2) and non-residential (Type 4) exposure assumptions published by the Georgia EPD. A discussion of the calculation of the RRSs and a table of RAGS equations results for each constituent are shown in Appendix M. Compliance with a RRS for a given constituent was not evaluated if the constituent already met a more

restrictive RRS (e.g., for a given constituent, compliance with a Type 3 RRS was not evaluated if the constituent was in compliance with its Type 2 RRS).

Groundwater data collected during the CSI, August 2003 sampling event at the Site were used in evaluating compliance with the RRSs. Compliance of each COI detected in groundwater beneath the Site with RRSs is presented in Table 9.7. All COI detected in groundwater beneath the Site did not exceed any of the Types of RRSs.

	Highest						
Constituent	Concentration*	Type 1/3	ļ	Type 2		Type 4	
VOCs		1954.110	I	1,100 %			
Benzene	ND	0.00500	A	0.00545	D	0.0088	Гс
Ethylbenzene	ND	0.700	Â	0.0582	D	0.0734	D
Toluene	ND ND	1.00	Â	0.221	D	1.10	D
Total Xylenes	ND	10.0	Â	31.3	D	204	D
Carbon Disulfide	ND	4.00	Â	0.329	D	1.70	D
Methylene Chloride	ND	0.00500	A	0.0622	C	0.119	c
Methyl-tert-butyl-ether	NA	DL	B	1.79	D	8.76	Ď
SVOCs	<u>, ,,,,</u> ,		<u> </u>			0.10	
Acenaphthene	0.014	2.00	A	0.939	D	6.13	D
Acenaphthylene	ND	DL	B	0.469	D	3.07	D
Anthracene	ND	DL	B	4.69	D	30.7	D
Benzo(a)anthracene	ND	0.000100	Ā	0.000450	C	0.000747	c
Benzo(a)pyrene	ND	0.000200	A	0.0000450	Ĉ	0.0000747	Ċ
Benzo(b)fluoranthene	ND	0.000200	A	0.000450	C	0,000747	Ċ
Benzo(g,h,i)perylene	ND	DL	В	0.469	D	3.07	D
Benzo(k)fluoranthene	ND	DL	В	0.00450	С	0.00747	C
Chrysene	ND	DL	В	0.0450	С	0.0747	С
Dibenzo(a,h)anthracene	ND ·	0.000300	A	0,0000450	С	0.0000747	С
Fluoranthene	ND	1.00	A	0,626	D	4.09	D
Fluorene	ND	1.00	A	0.626	D	4.09	D
Indeno(1,2,3-cd)pyrene	ND	0.000400	A	0.000450	С	0.000747	С
Naphthalene	ND	0.0200	A	0.00187	D	0.00916	D
Phenanthrene	ND	DL	В	0.469	D	3.07	D
Phenol	ND	4.00	A	9.39	D	61.3	D
Pyrene	ND	1.00	A	0.469	D	3.07	D
Inorganics							
Arsenic	ND	0.0500	A	0.000568	С	0.00191	C
Barium	1.85	2.00	A	1.10	D	7.15	D
Beryllium	ND	0.00500	A	0.0313	D	0.204	D
Cadmium	ND	0.00500	A	0.00782	C	0.0511	C
Chromium	ND	0,100	A	0.0469	D	0.307	D
Copper	ND	1.30	A	0.626	D	4.09	D
Lead	ND .	0.0150	A	0.0150	A	0.0150	Α
Mercury	ND	0.00200	A	0.00469	D	0.0307	C
Nickel	ND	0.100	A	0.313	D	2.04	D
Vanadium	ND	0.200	A	0.110	D	0.715	D
Zinc	ND	2.00	A	4.69	D	30.7	D
	Total Cyanide 0.048 0.200 A 0.313 D 2.04 D						
*- Data from the August 2003 sampling event A - Appendix III Table 1 B - Detection limit C- Upperbound excess cancer risk D- Noncarcinogenic risk Values listed in milligrams per liter (mg/L)							
Values rounded to three significant digits							

TABLE 9.6				
RISK REDUCTION STANDARDS FOR GROUNDWATER				
AND METHODS USED IN CALCULATION				

COMPLIANCE STATUS REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

TABLE 9.7 RISK REDUCTION STANDARD EXCEEDANCES IN GROUNDWATER -AUGUST 2003 SAMPLING EVENT

Constituent	Type 1	Type 2	Type 3	Type 4
VOCs				
Benzene	N	*	*	±
Ethylbenzene	. N	*	*	*
Toluene	N	*	*	*
Total Xylenes	N	*	*	*
Carbon Disulfide	N	*	*	*
Methylene Chloride	N	*	*	±
Methyl-tert-butyl-ether	N	*	*	. t
SVOCs		·		
Acenaphthene	N	*	*	*
Acenaphthylene	Ň	*	*	*
Anthracene	N	*	*	* .
Benzo(a)anthracene	N	*	*	*
Benzo(a)pyrene	N	*	*	* .
Benzo(b)fluoranthene	N	*	*	*
Benzo(g,h,i)perylene	N	*	*	*
Benzo(k)fluoranthene	N	*	*	*
Chrysene	N	*	*	* ,
Dibenzo(a,h)anthracene	N	*	ż	*
Fluoranthene	N	*	*	*
Fluorene	N	*	*	*
Naphthalene	N	*	*	*
Phenanthrene	N	*	*	*
Phenol	N	*	*	*
Pyrene	N	*	*	*
Inorganics				
Arsenic	N	*	*	*
Barium	N	*	*	*
Beryllium	N	*	*	*
Cadmium	N	*	*	*
Chromium	N	*	±	*
Copper	N	*	*	*
Lead	N	*	*	*
Mercury	• N	*	*	*
Nickel	N	*	*	*
Vanadium	N	*	*	*
Zinc	N	*.	*	*
Total Cyanide	N	*	*	*
Y – Yes; exceeds RRS. N – No; does not exceed RF * – Constituent meets more i				

۰.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION

SECTION 10 CORRECTIVE ACTION FEASIBILITY INFORMATION

The property owned by the City of Macon is partially encompassed by a security fence. The property is accessible by vehicle through two gates which are closed and locked at nights and on weekends and which control access to the property.

10.1 POTENTIAL SOURCE MATERIAL

Figure 11 indicates the horizontal distribution of TLM and/or OLM at the Site. The only observed potential source material was located within the two gas holders and consisted of limited amounts of TLM and/or OLM. As described in Section 2.5.1, within both of these holders, no more than one-inch of TLM and/or OLM was observed and therefore the material appears to be minimal. A sample (GH-2-41) of the most visibly concentrated TLM and/or OLM observed at the Site was collected and analyzed for VOCs and SVOCs. Based on the analytical results of the sample, this material does not appear to meet the definition of source material. Additionally, HSRA regulation 391-3-19-.07(9)(a) states "all source materials must be removed or decontaminated to Type 4 media criteria." The total results from sample GH-2-41 (Appendix C-2) indicate that this material already meets Type 4 or more restrictive RRSs. Based on this and that the only TLM and/or OLM observed at the Site was within the holders, no remedial actions will be required at the Site with respect to potential source material.

10.2 SOILS

As discussed in Section 9, soils at the Site are in compliance with Type 4 or more restrictive RRSs. Therefore, no remedial actions will be required to certify the Site in compliance with Type 4 RRSs with regard to soils.

10.3 GROUNDWATER

Groundwater at the Site is in compliance with all RRSs. Therefore, no remedial actions will be required to certify the Site in compliance with Type 1 RRSs with regards to groundwater.

10.4 CORRECTIVE ACTION

As previously noted, the Site is in compliance with Type 4 RRSs. Upon the Director's concurrence with the Type 4 certification, the following corrective action requirements will be implemented:

- GPC, AGLC, and the City of Macon will submit a monitoring program to the EPD to assure compliance with Section 391-3-19-.07(9)(b); and
- GPC, AGLC, and the City of Macon will make the required property notices as specified under Section 391-3-19-.08(1) and (2).

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL

SECTION 11 QUALITY ASSURANCE/QUALITY CONTROL

During the field work of the CSI, certain procedures were followed to:

- insure that laboratory methods are within control limits;
- verify the quality of data collected during field measurements; and
- insure that cross contamination has not occurred during sample collection or sample transport.

11.1 LABORATORY QUALITY ASSURANCE/QUALITY CONTROL CHECKS

Analytical Environmental Services, Inc. was used to perform laboratory analyses for this CSI and is an accredited National Environmental Laboratory Accreditation Program laboratory (certificate number E87582). A complete CLP-like data package was prepared by AES for one SDG containing soil samples and one SDG containing groundwater samples collected during the CSI. The data packages were submitted to Southern Company Chemical Services, Norcross, Georgia, for data validation using USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review, 1994, and Contract Laboratory Program National Functional Guidelines for Inorganic Data Review, 1994. Southern Company Chemical Services indicated that all laboratory data for the soil and groundwater samples were acceptable. Southern Company Chemical Services also reviewed the laboratory data for precision, accuracy, representativeness, compatibility and completeness (PARCC) parameters. Southern Company Chemical Services found the PARCC parameters acceptable. A copy of Southern Company Chemical Services' report is included in Appendix G-1

Internal laboratory quality control checks were conducted by Williams to monitor data integrity for each SDG. These checks included evaluating method blanks, matrix spikes, matrix spike duplicates, blank spikes, internal standards, surrogate standards, calibration standards, and reference standards. Laboratory data precision for organic analyses was monitored through the use of matrix spike/matrix spike duplicate sample analyses. For other parameters, laboratory data precision was monitored through the use of field duplicates and/or laboratory duplicates. A relative percent difference (RPD) between the replicated samples was calculated. All RPDs were within the laboratory established limits except where noted in the Williams Laboratory QA/QC reports included in Appendix G-2.

Laboratory accuracy was assessed with the use of matrix spikes, surrogate spikes and reference standards. Accuracy was measured in terms of percent recovery. Percent recoveries were within laboratory established limits except where noted in the Williams Laboratory QA/QC report included in Appendix G-2.

11.2 FIELD OPERATIONS QUALITY ASSURANCE/QUALITY CONTROL CHECKS

Field performance was monitored by the Field Manager during the CSI field investigation. Field instrumentation, including the PID and water field measurement equipment were calibrated each morning prior to use and generally each afternoon using supplied standards to insure that the equipment was functioning properly and measurements were

accurate. Results of the calibrations were recorded in the calibration log. An internal audit was conducted on March 2, 2001, by the Quality Assurance Officer to verify that field measurements and field meter calibrations were taken according to established protocol and that work being performed was consistent with the Work Plan. The QAO also reviewed all field reports and drilling logs to determine if field documentation was appropriate and complete. The QAO also reviewed the duplicate, rinse and trip blank data to identify any deficiencies in field sampling, handling or decontamination procedures. A Field Operations System Audit Checklist, reports the results of the internal audit and is included in Appendix G-3. All field operations were conducted according to the Work Plan and standard procedures except where noted in the checklist.

A rinse blank sample was collected for each SDG to monitor the cleanliness of the sampling equipment and the effectiveness of the cleaning procedures. Rinse blanks were taken using organic-free water which was supplied by the laboratory and were analyzed for COI. Barium was detected in five rinse blank samples at very low concentrations. Chromium and lead were detected in one rinse blank sample at concentrations just above the detection limits. Copper was detected in one rinse blank sample just above the detection limit. Based on the low concentrations of these COI reported in the rinse blank samples, it is unlikely that analytical results of the collected soil or groundwater were affected by the sampling equipment. The equipment from which the samples were collected and analytical results for the rinse blank samples are reported in Appendix F.

A trip blank was also collected for each SDG to assess whether cross-contamination may have occurred during sample storage and transport. Trip blanks were supplied by the laboratory in appropriately preserved containers and analyzed for VOCs only. All concentrations of VOCs in trip blank samples were below detection limits. Analytical results for the trip blank samples are included in Appendix F.

Field blanks were collected for each SDG to determine if contaminants present in the sampling area may have had an affect on sample integrity. Field blanks were collected with organic-free water and containerized in 40-milliliter vials preserved with hydrochloric acid. Field blanks accompanied the applicable SDG and were analyzed for VOCs. All concentrations of VOCs in field blank samples were reported below detection limits. Analytical results for the field blank samples are included in Appendix F.

A sample of potable water was collected at the beginning of the field investigation for analysis of the Site COI. The potable water sample (TAP WATER) was collected from the source that supplied water for DPT and HSA equipment decontamination to determine if decontamination procedures could affect sample analytical results. VOC and SVOC concentrations in the tap water sample were reported below detection limits. Barium and copper were reported in the tap water sample at concentrations just above their respective detection limits and it is not believed these results would affect the integrity of the analytical results for the soil and groundwater samples collected at the Site. COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 12 REFERENCES

SECTION 12 REFERENCES

Management of Manufactured Gas Plant Sites, Volume I, Wastes and Chemicals of Interest, Gas Research Institute (GRI), 1987.

Management of Manufactured Gas Plant Sites, Volume III, Risk Assessment, Gas Research Institute (GRI), 1988.

Geology and Ground-Water Resources of the Macon Area, Georgia, H. E. LeGrand, Georgia Geologic Survey Bulletin 72, 1962.

Geology and Ground-Water Resources of Central-East Georgia, H. E. LeGrand, A. S. Furcron, R. F. Carter, and A. C. Lendo, Georgia Geologic Survey Bulletin 64, 1956.

Subsurface Geology of the Georgia Coastal Plain, Stephen M. Herrick and Robert C. Vorhis, Georgia Geologic Survey Information Circular 25, 1963.

<u>The Geohydrology of the Cretaceous Aquifer System in Georgia</u>, Lin D. Pollard and Robert C. Vorhis, Georgia Geologic Survey Hydrologic Atlas 3, 1980.

Groundwater Hydrogeology and Hydraulics, D. B. McWhorter and D. K. Sunada, 1977.

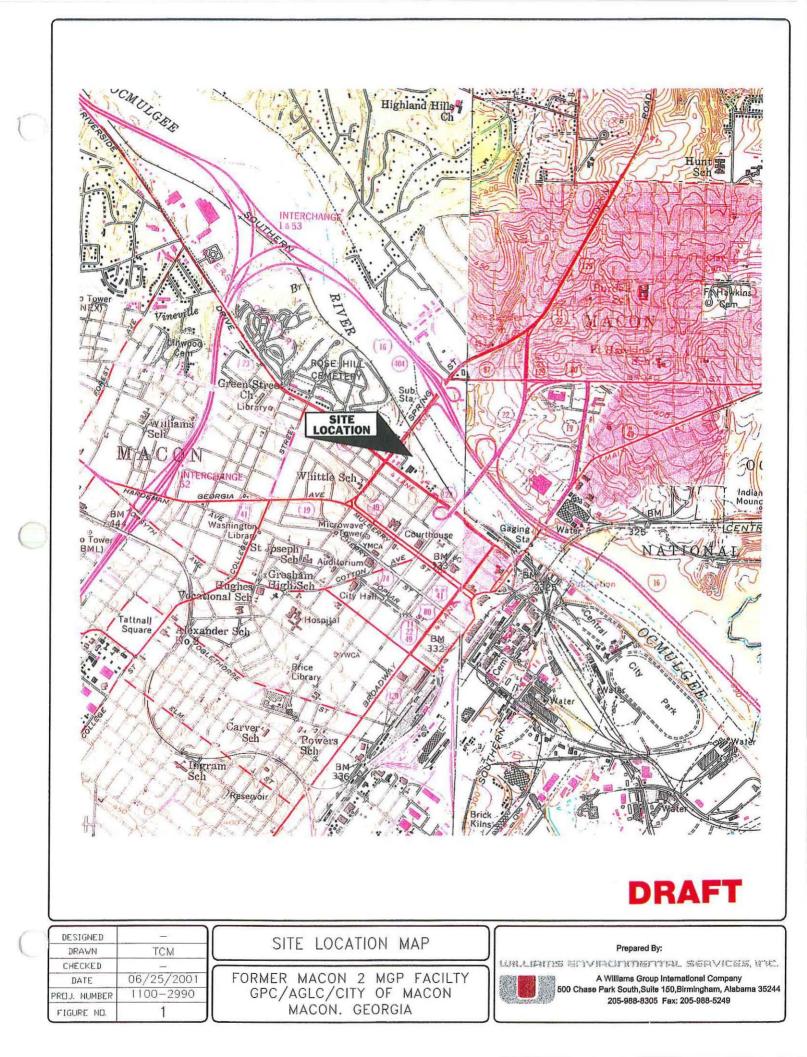
Preliminary Assessment, Former Manufactured Gas Plant Site, Macon, Georgia, LAW Environmental, Inc., 1991.

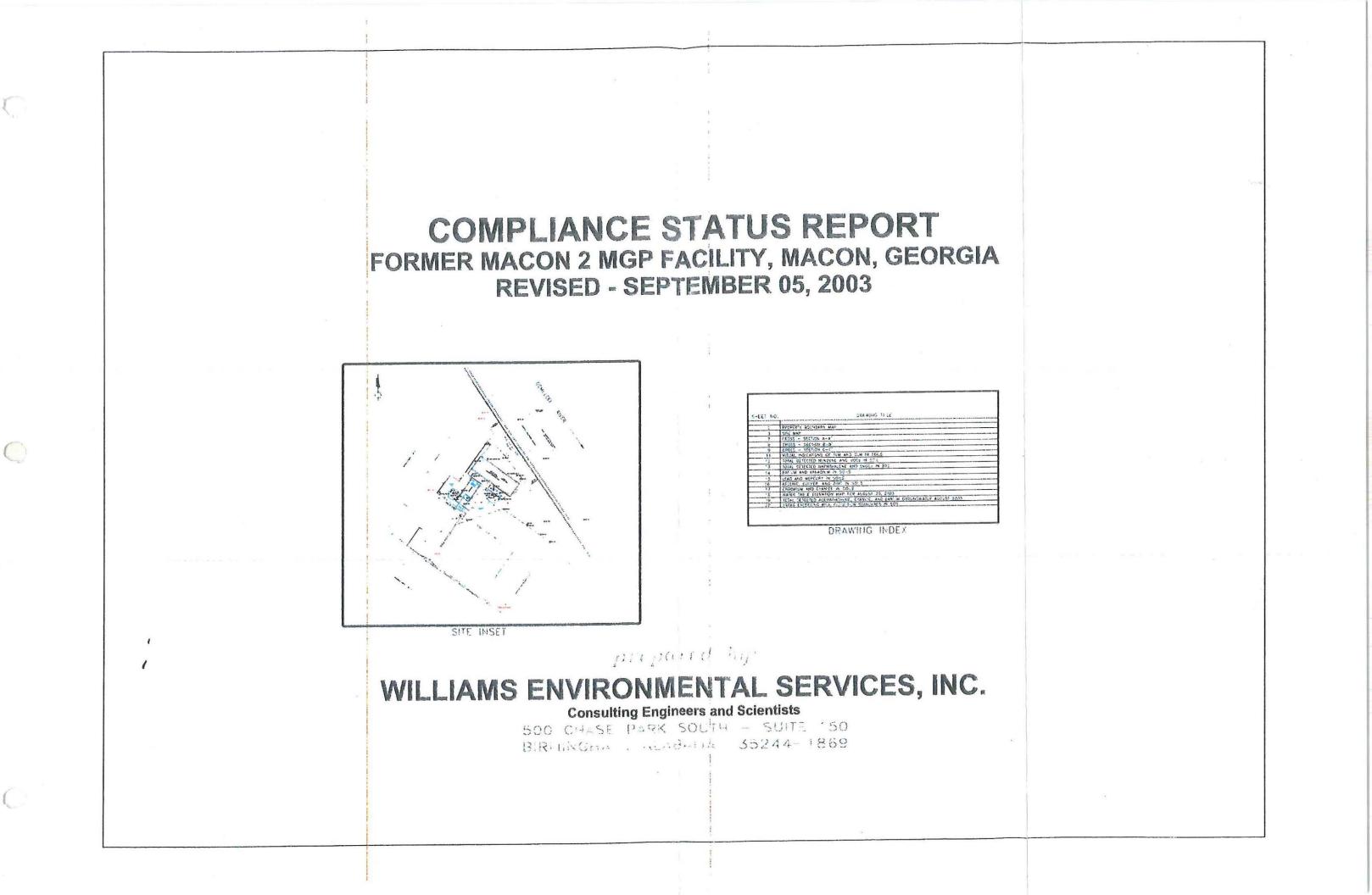
Site Inspection, Former Manufactured Gas Plant Site, Macon, Georgia, LAW Environmental, Inc., 1992.

An Introduction to the Rock-Forming Minerals, W.A. Deer, R.A. Howie, and J. Zussman, 1971.

Igneous and Metamorphic Petrology, F.J. Turner and J. Verhoogen, 1960.

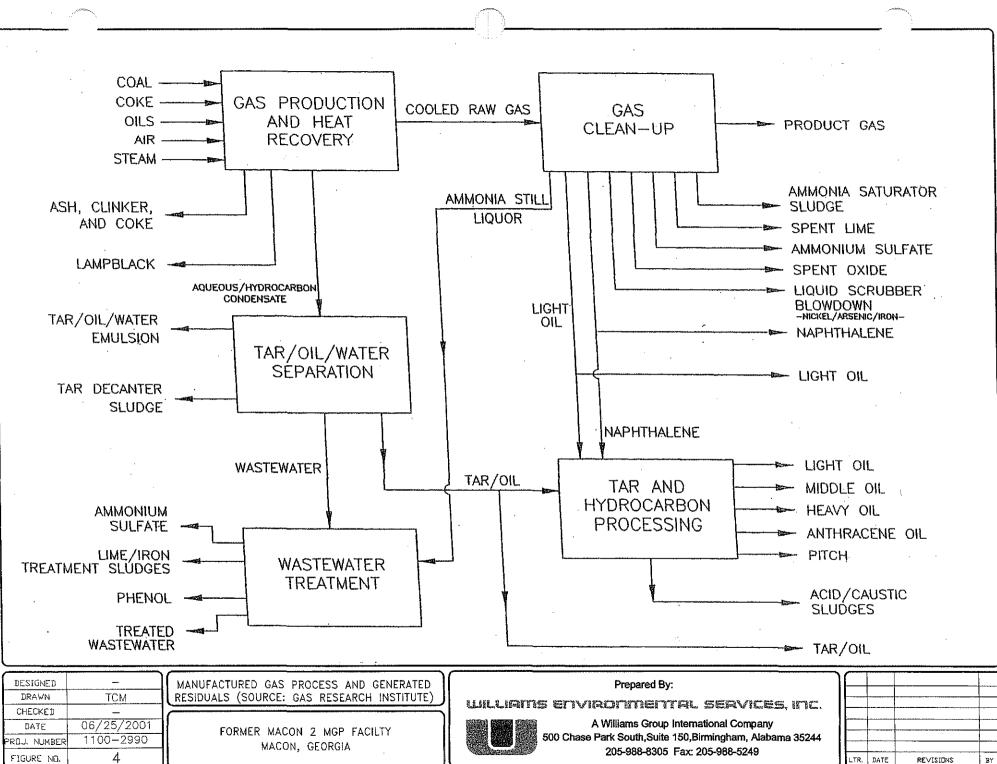
Solutions, Minerals, and Equilibria, R.M. Garrels and C.L. Christ, 1965.

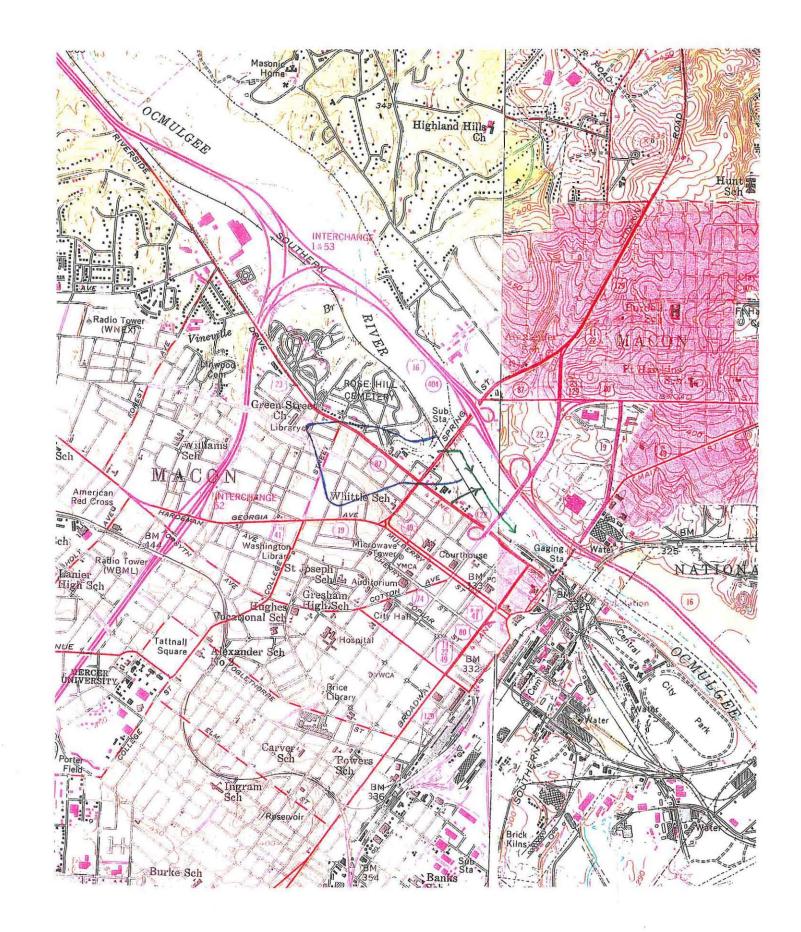

For Background Statistics:

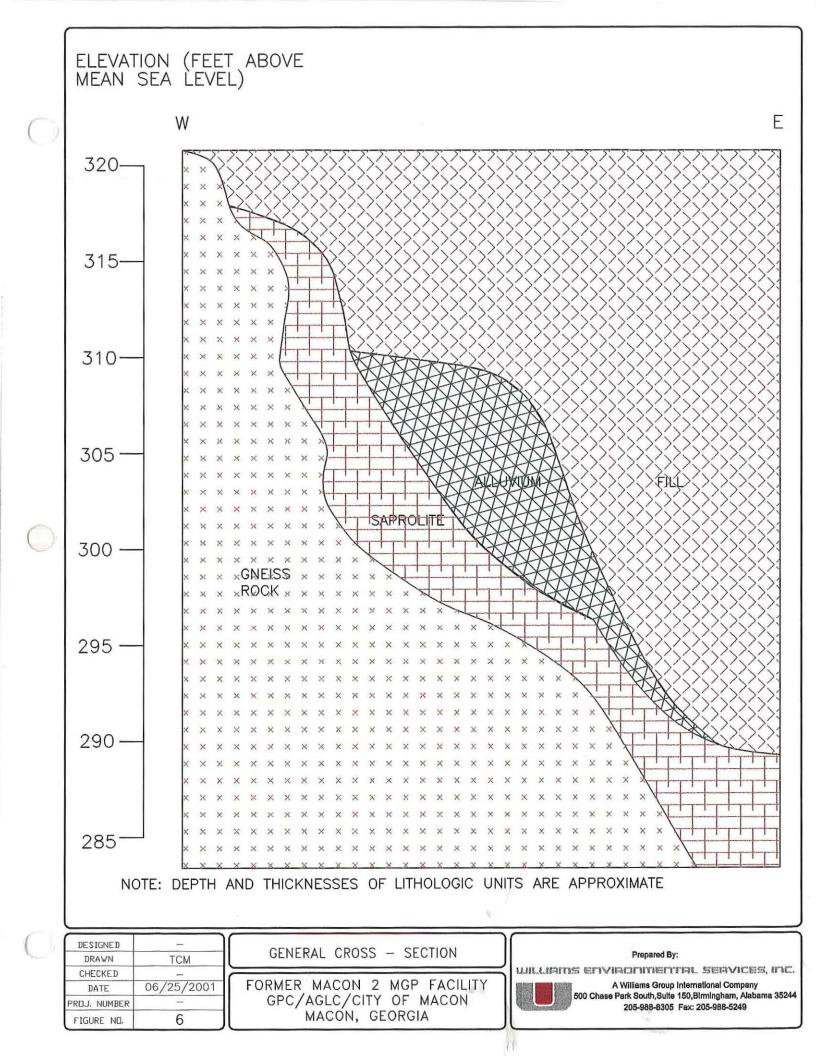

"Determination of Background Concentrations of Inorganics in Soils and Sediments at Hazardous Waste Sites." Breckenridge, R. P., and Crockett, A. B. (1995). U.S. Environmental Protection Agency. Washington, D. C.

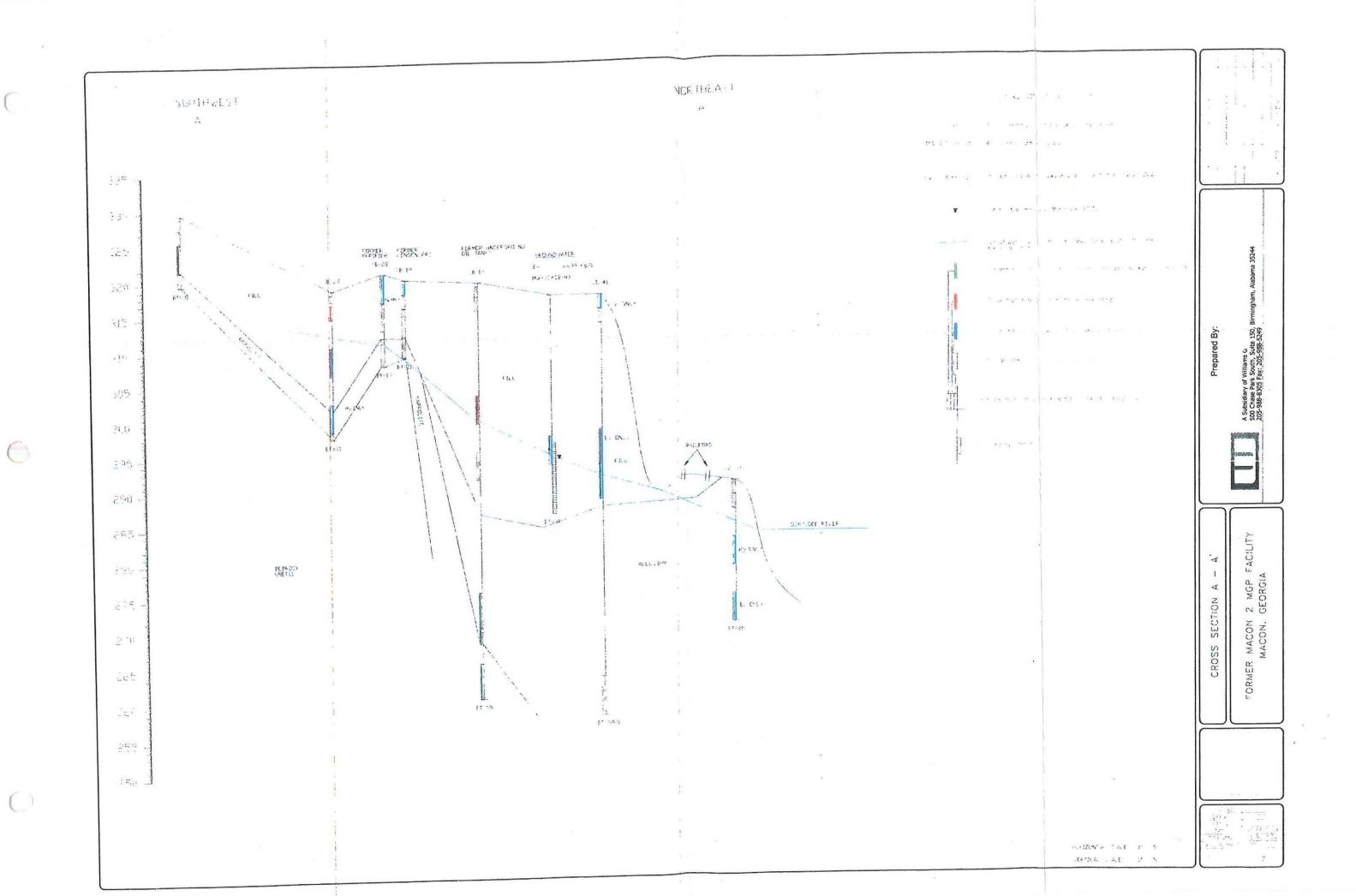
"Statistical Analysis of Groundwater Monitoring Data At RCRA Facilities - Addendum to Interim Final Guidance." EPA. (1992). U.S. Environmental Protection Agency. Washington, D. C.

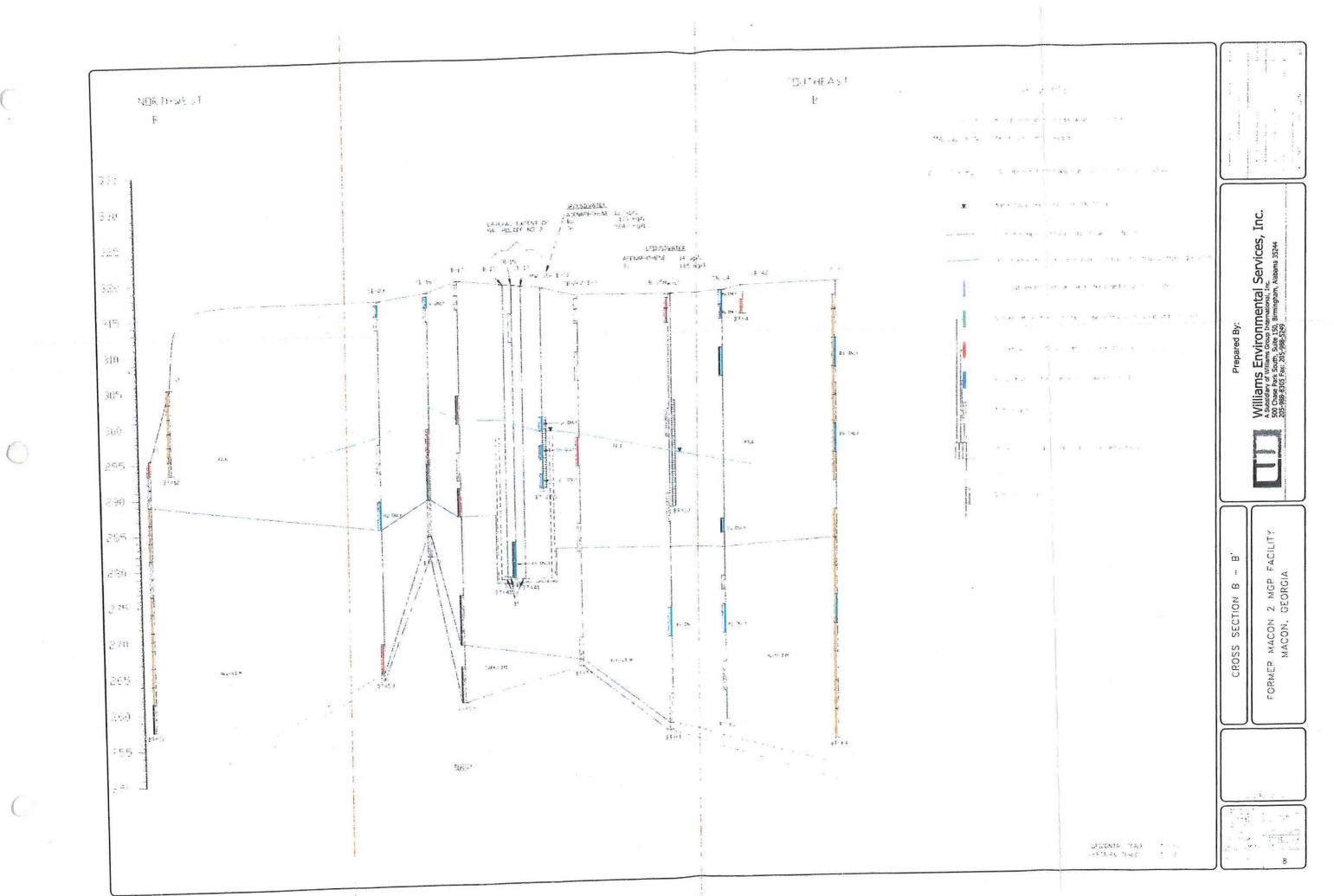
For Hazardous Waste Determination:

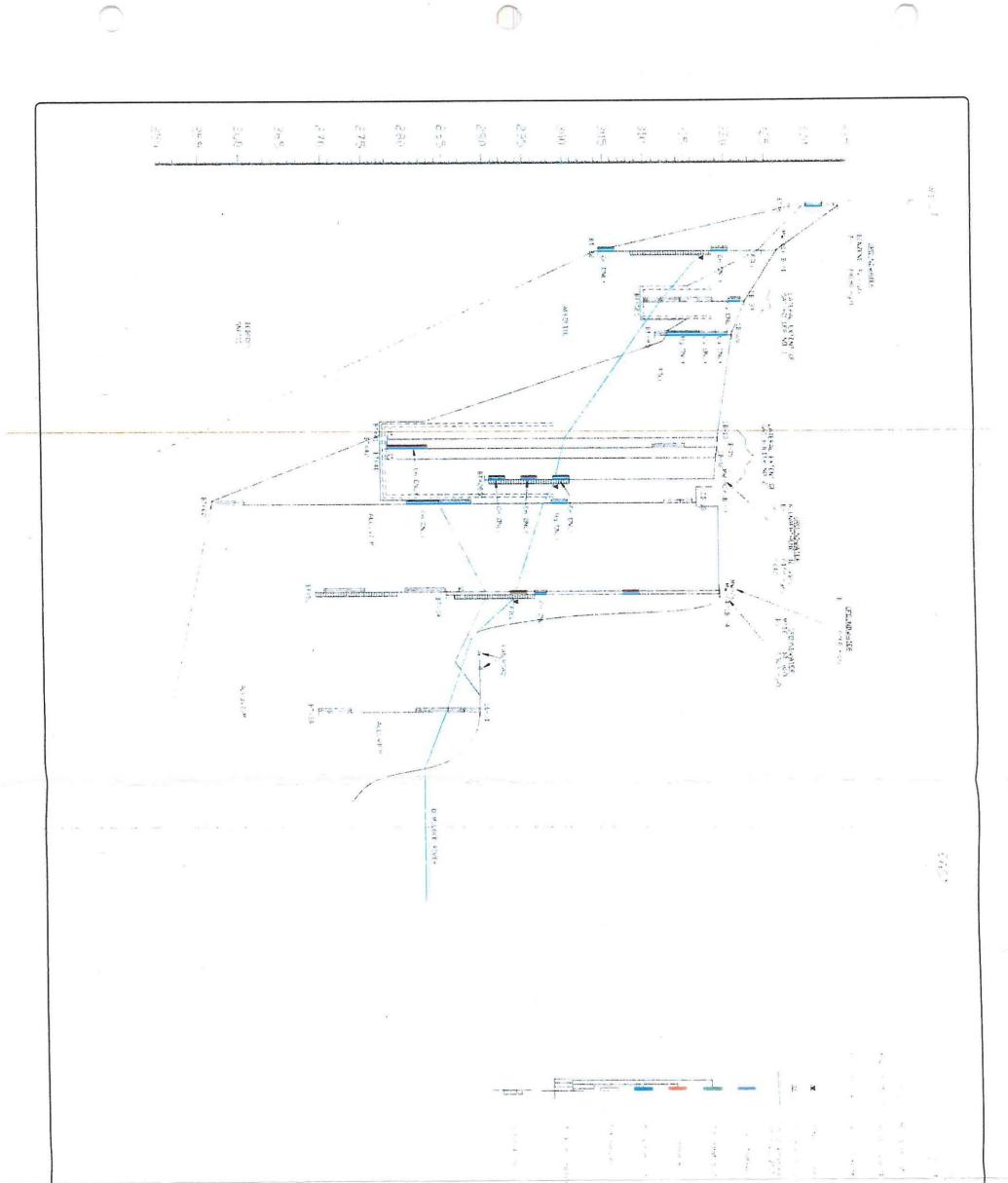

"SW-846. Test Methods for Evaluating Solid Waste." EPA. (1986). U.S. Environmental Protection Agency. Washington, D. C.



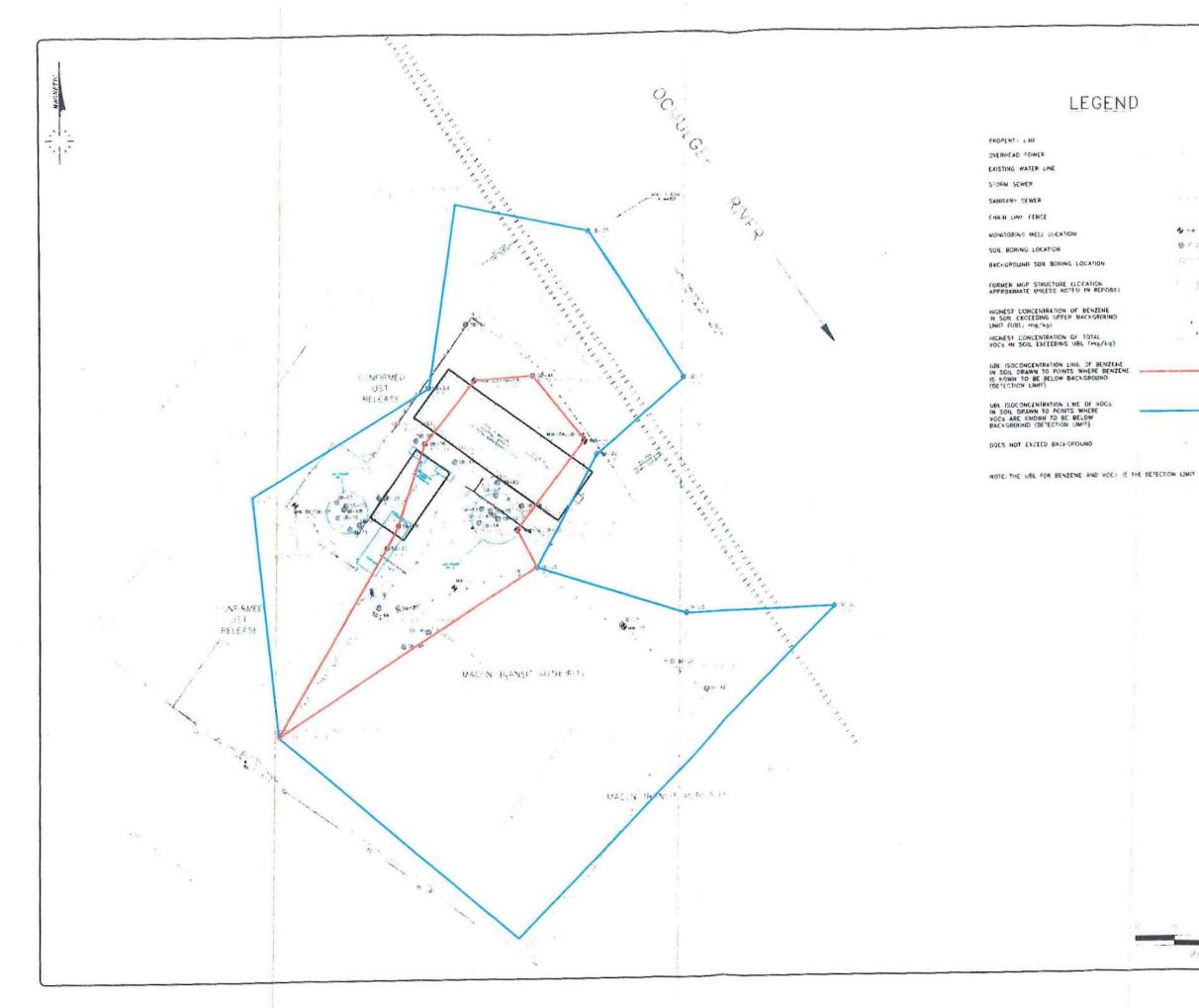


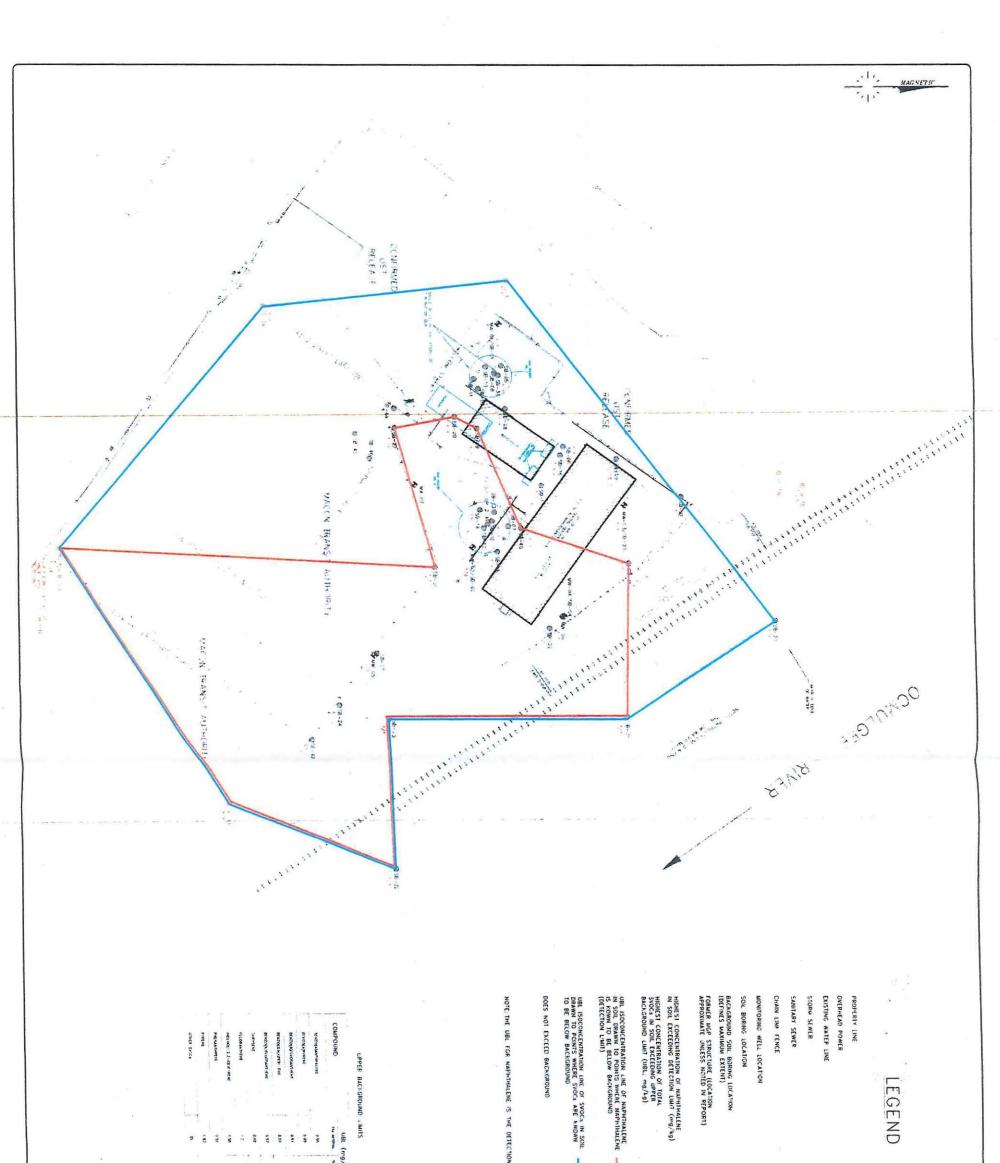

PROPERTY BOUNDARY MAP	Prepared By:	· · · · · · · · · · · · · · · · · · ·
FORMER MACON 2 MGP FACILITY MACON, GEORGIA	Williams Environmental Services, Inc. A Subsidiary of Williams Group Internationai, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249	



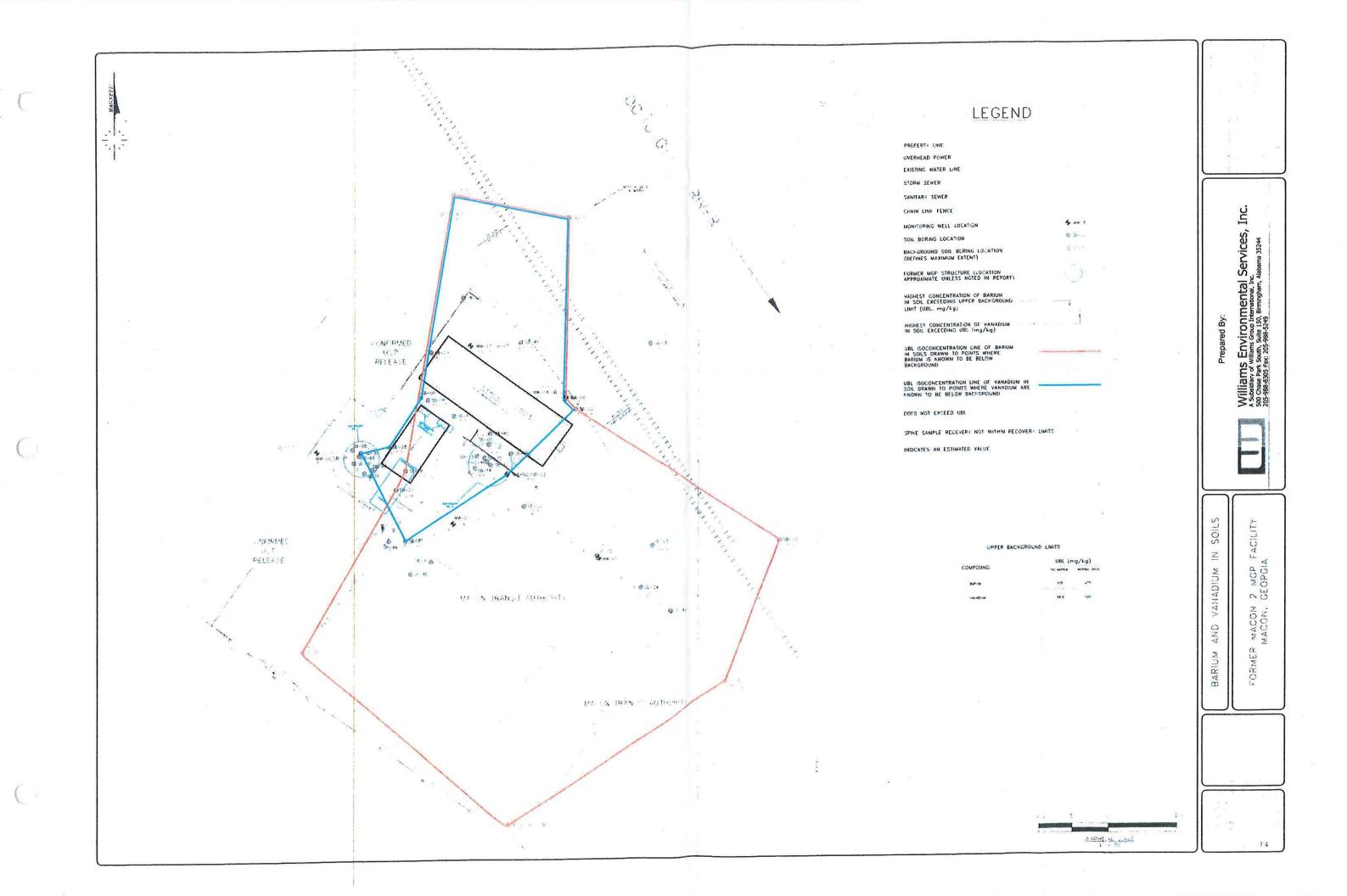


APPROXIMATE DRAINAGE BASIN FOR OUTFALL		A Williams Group International Company A Williams Group International Company 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249 LTR. DATE REVISIONS BY
	SURFACE/STORM WATER FLOW PATH	FORMER MACON 2 MGP FACILITY MACON, GEORGIA
DRAFT	DESIGNE DRAVI SCALE PROJ. JUN FIGURE O	4 TCM 1* 2000' 06/18/2001 IBER 1100-2990

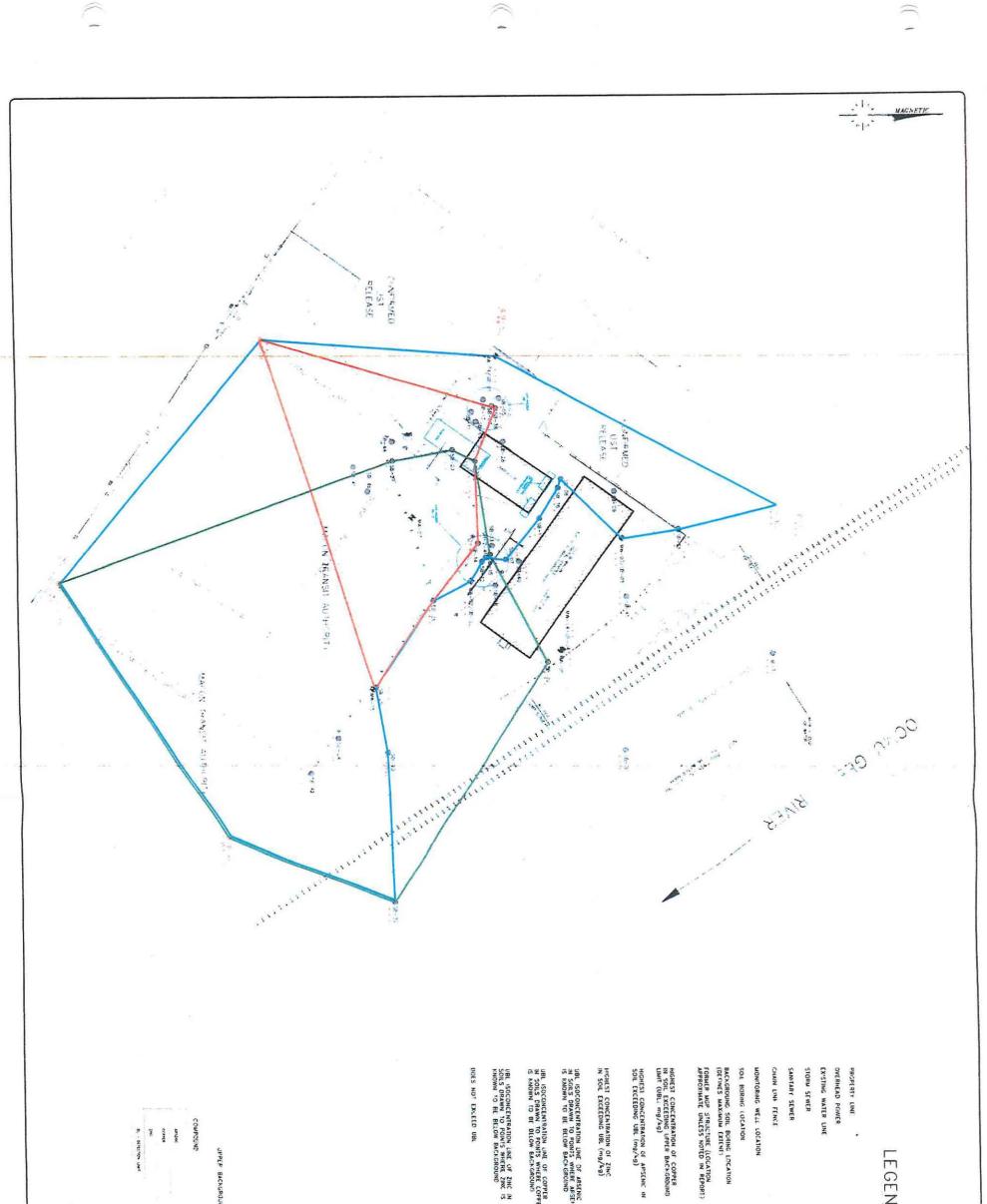




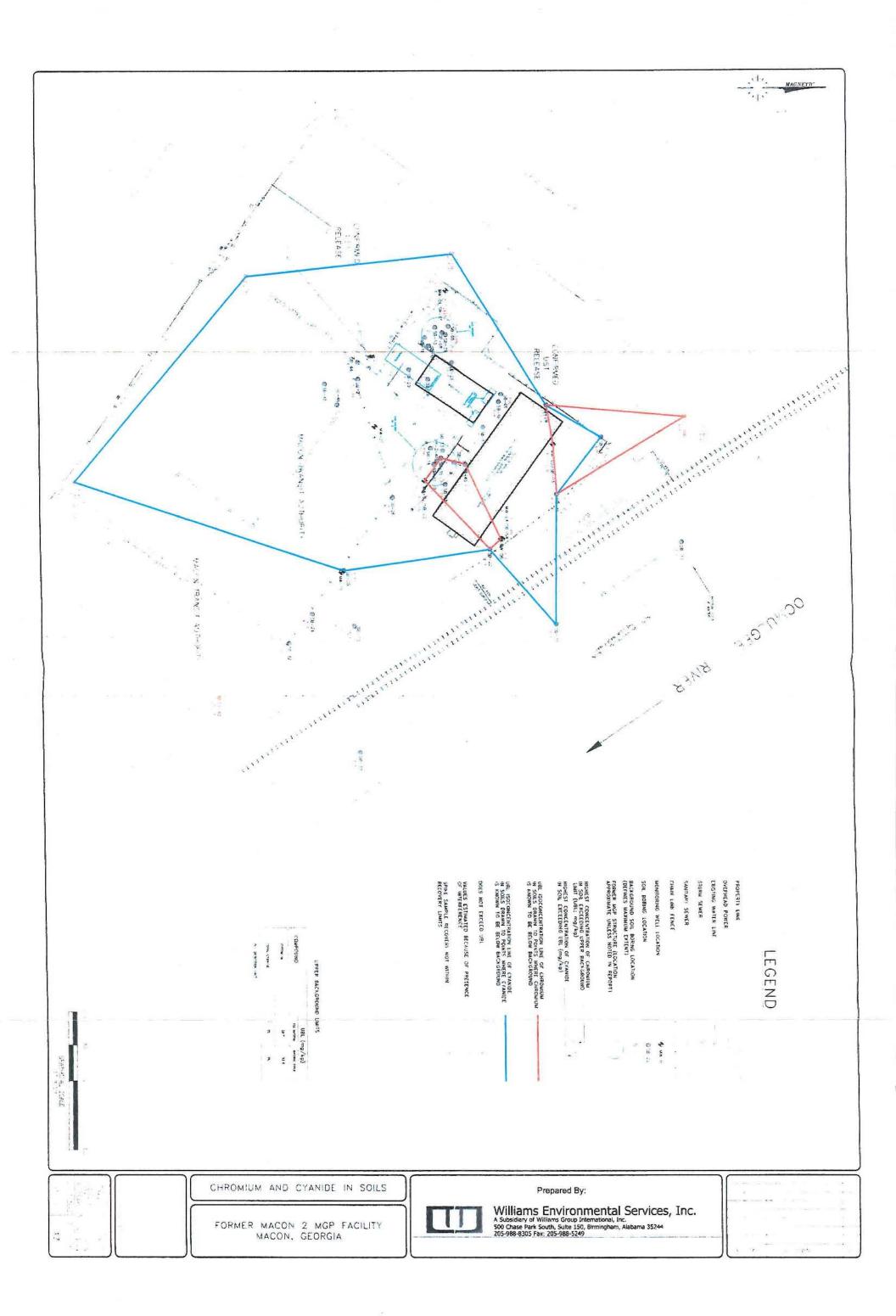
CROSS SECTION C - C' FORMEP MACON 2 MGP FACILITY MACON, GEORGIA Prepared By: Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. S00 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249			
	Solt	FORMEP MACON 2 MGP FACILITY	Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249

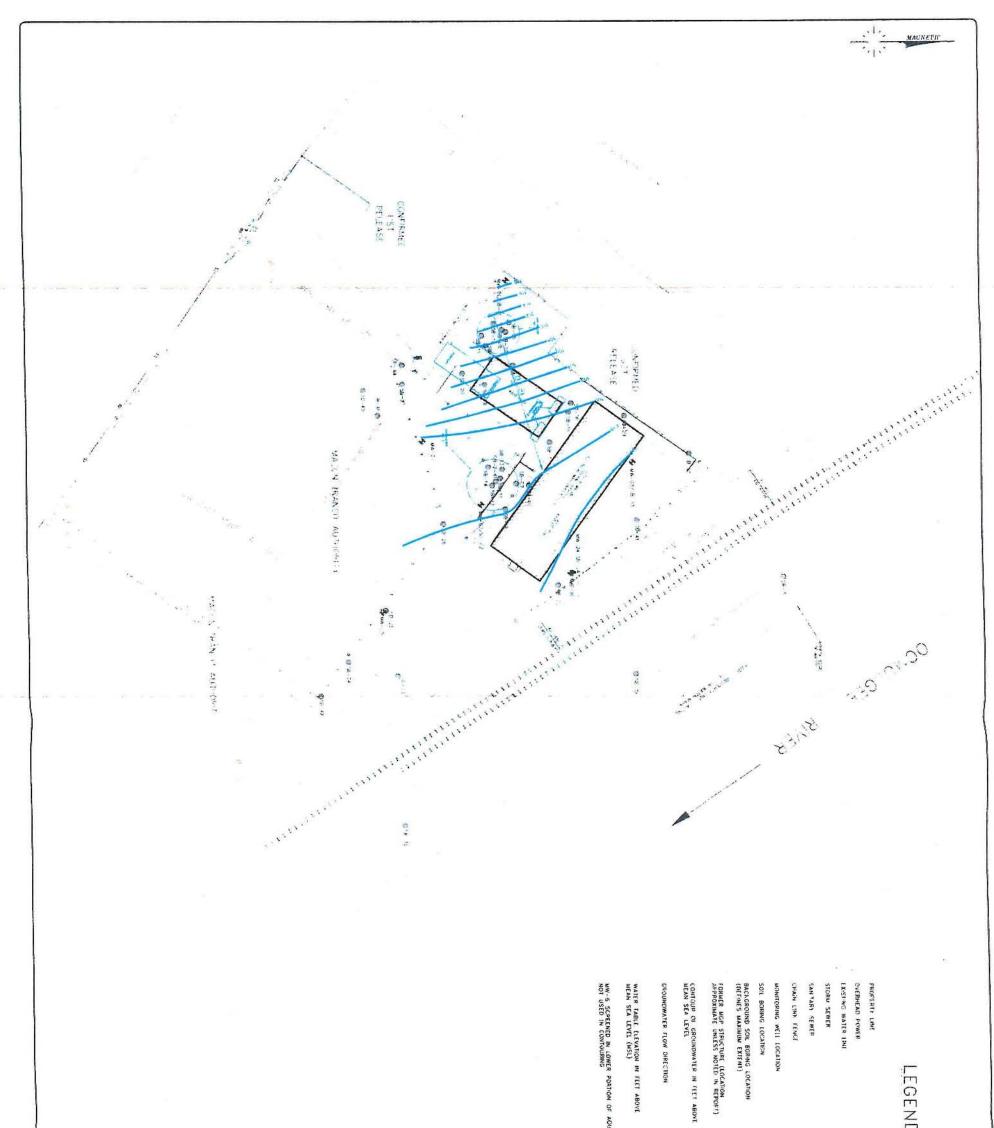


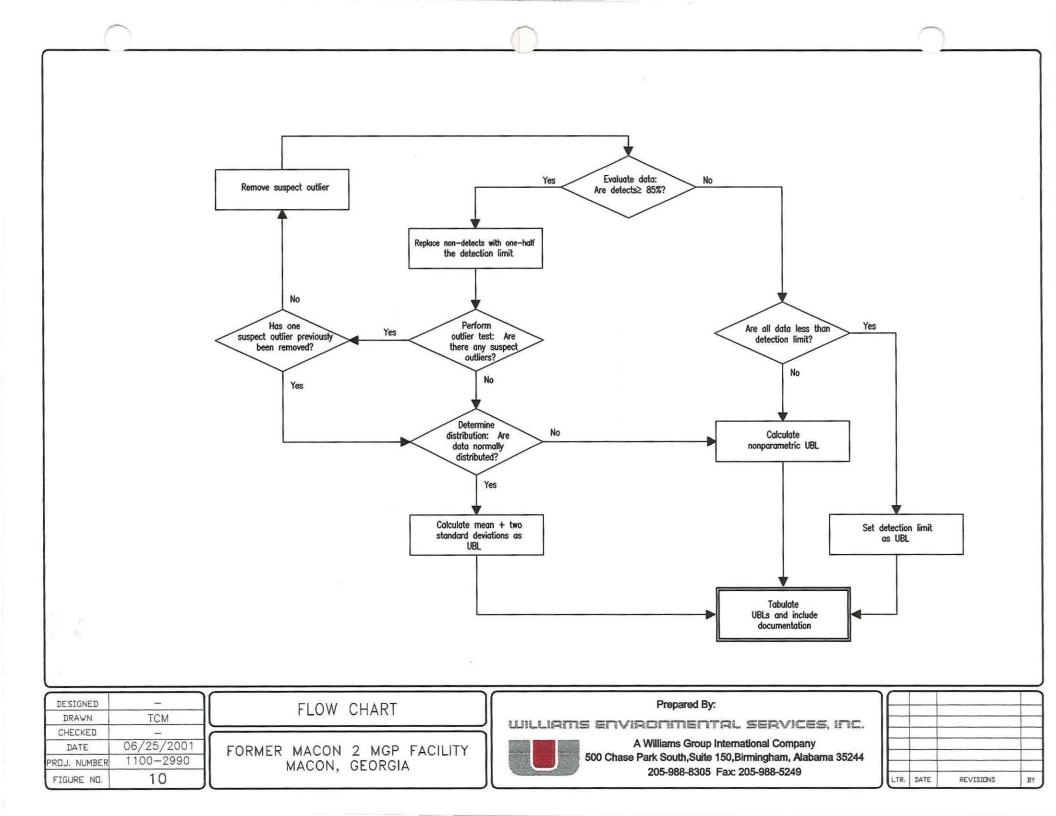
0

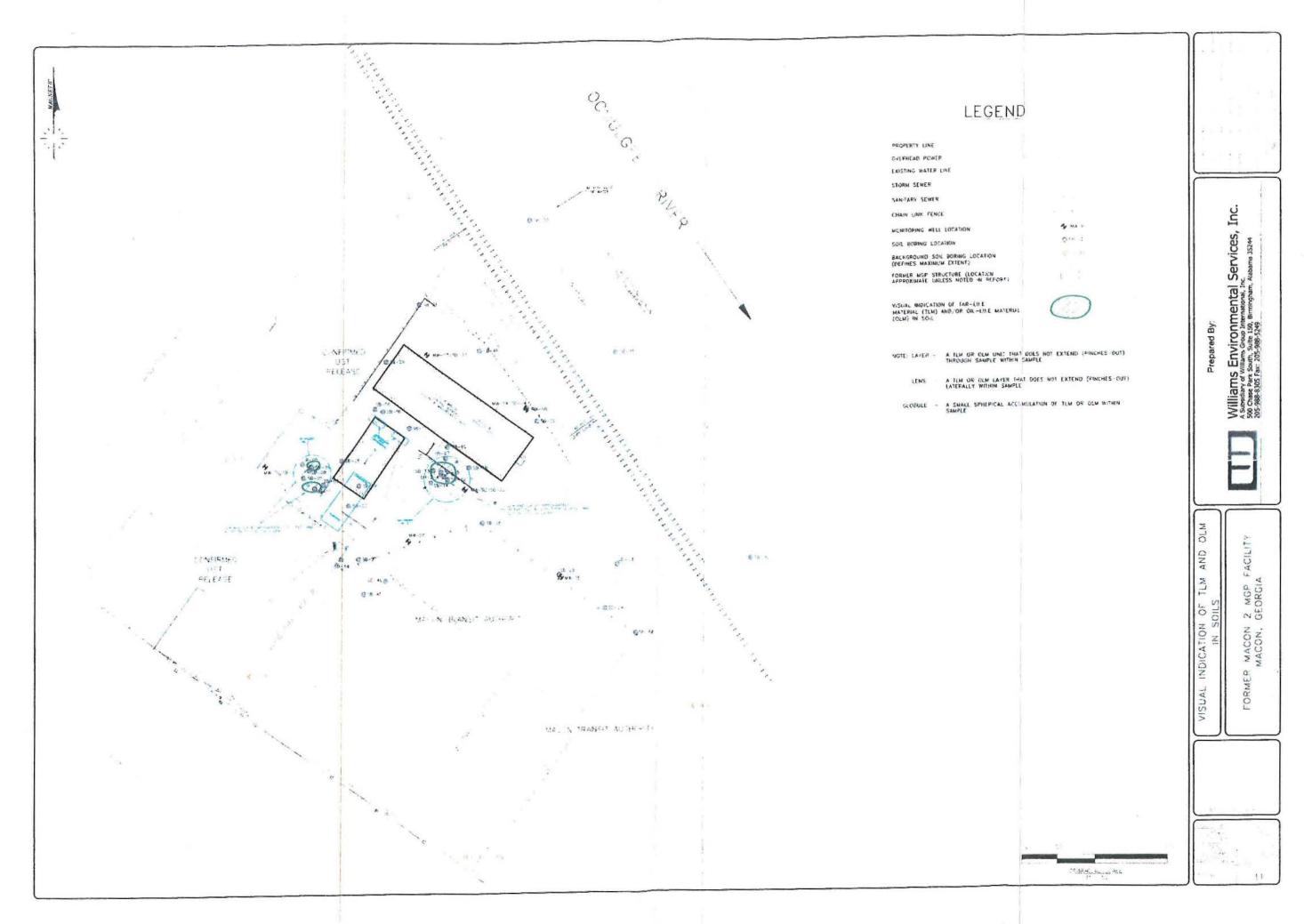

Professional and a second and a second and a second and a second and a second and a second and a second and a s		Z 	
	TOTAL DETECTED NAPHTHALENE AND SVOCS IN SOIL	Prepared By:	for an an an an an an an an an an an an an
	FORMER MACON 2 MGP FACILITY MACON, GEORGIA	Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249	

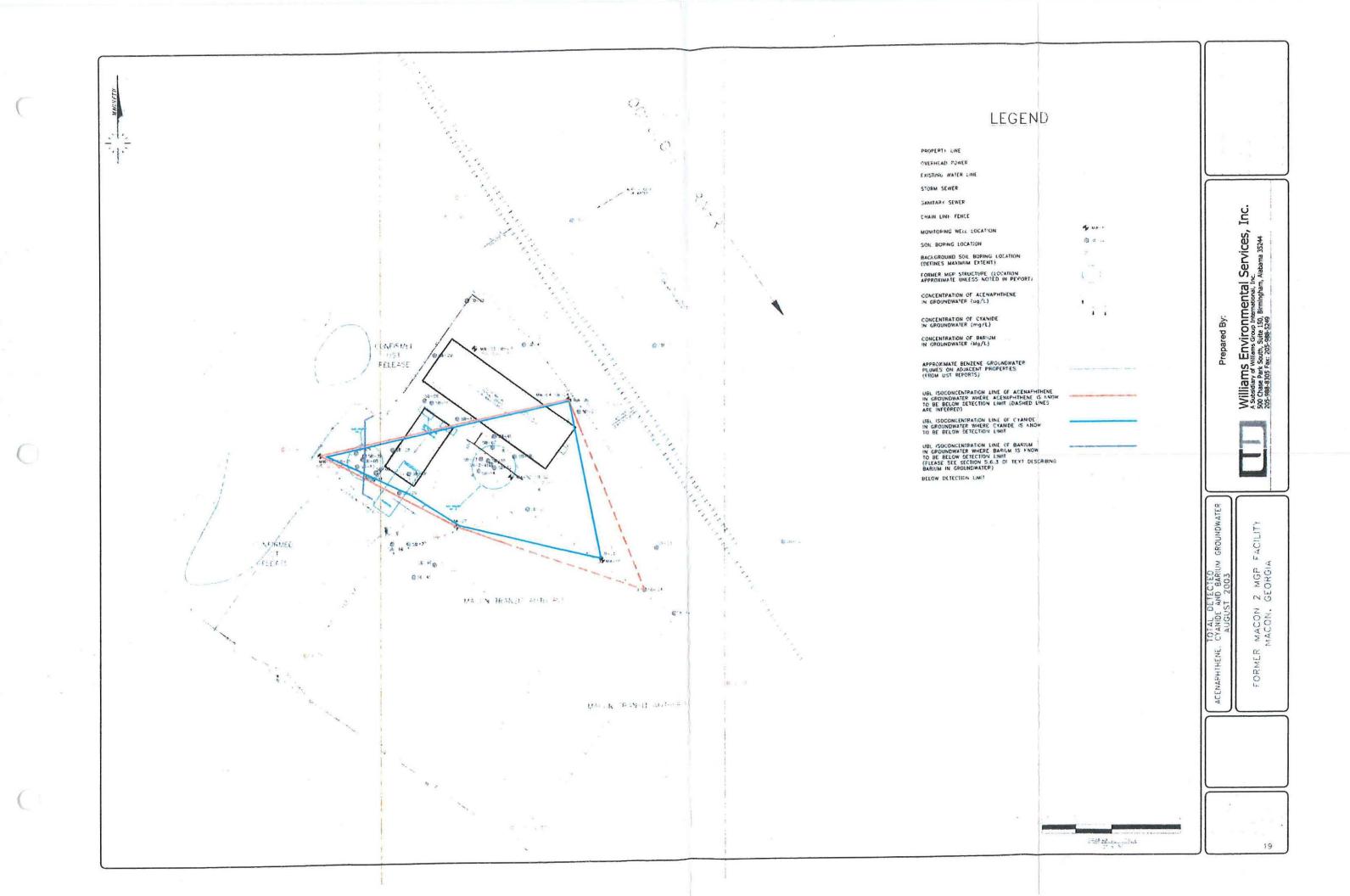
1. . .

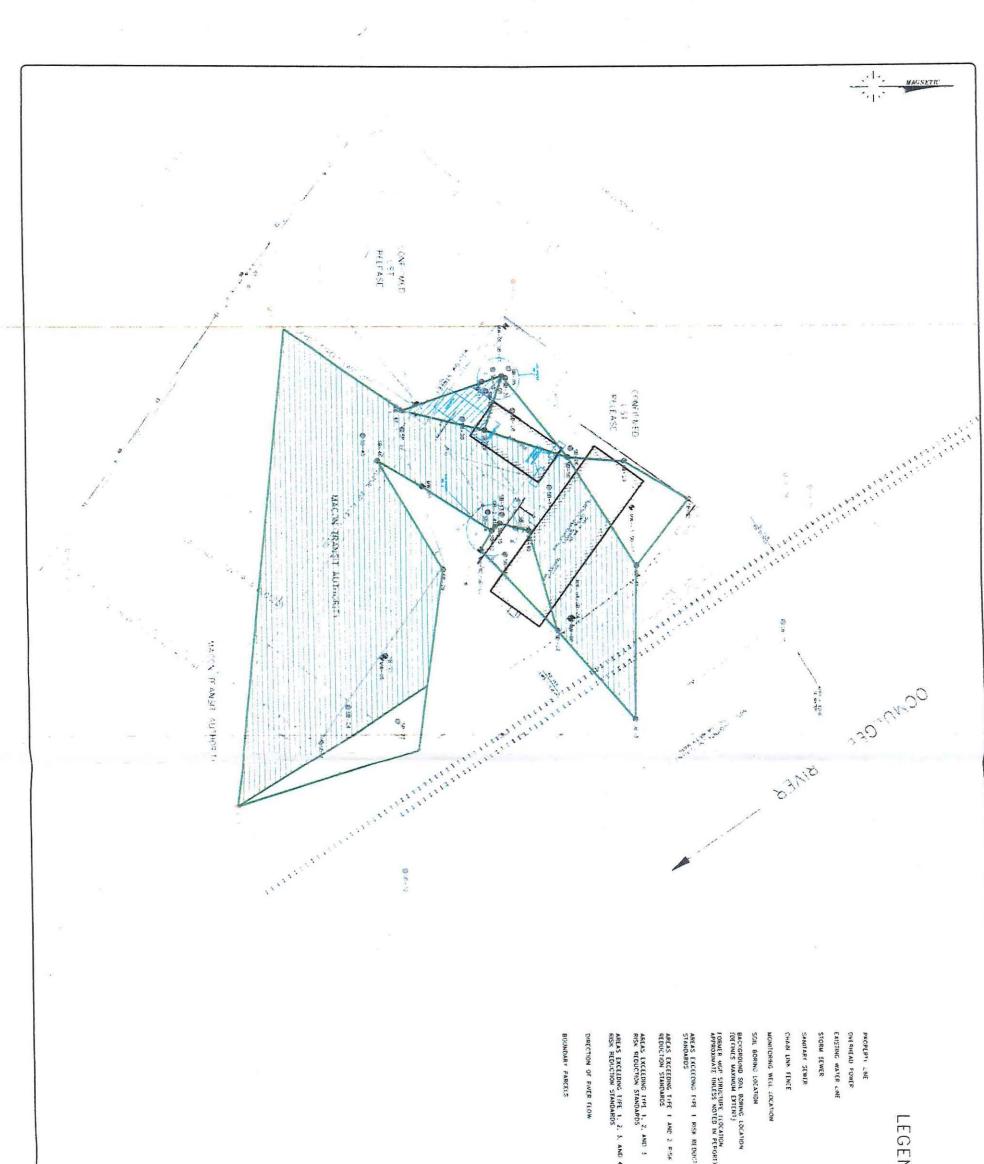

· . 12. *






A CANADA A CANADA A CANADA A CANADA A CANADA A CANADA A CANADA A CANADA A CANADA A CANADA A CANADA A CANADA A C	imp/	RECORPER CODECE FOODELS	ËND N
16	ARSENIC. COPPER, AND ZINC IN SOILS FORMER MACON 2 MGP FACILITY MACON, GEORGIA	Prepared By: Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249	





State of the state		vonitei	
	WATER TABLE ELEVATION MAP FOR AUGUST 20. 2003 FORMER MACON 2 MGP FACILITY MACON, GEORGIA	Prepared By: Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249	

State and the second seco			Ŭ
	AREAS EXCEEDING RISK REDUCTION STANDARDS IN SOIL	Prepared By:	
05	FORMER MACON 2 MGP FACILITY MACON, GEORGIA	Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249	

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

B-2 COMPLIANCE STATUS INVESTIGATION

· . . .

VOLATILE ORGANIC COMPOUNDS SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

1		·							
	Saturated/Unsaturated	Unit	Вепхеле	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material			DL	DL	DL	DL	DL	DL	
UBL - Nat. Soils			DL	DL	DL.	DL	DL	DL	
SB-14-0.5-2	U	Fill	5.8U	5.8U	. 5.8U	23U	5.8U	5.8U	0
SB-14-16-20	Ų	Fill	5.1U	5.1U	5.1U	20U	. 5.1 U	5.1U	0
SB-14-24-28	S	Fill	9.3 Phate 9.3	8.2U	8.2U	33U	· 8.2U	8.2U	9.3
SB-15-4-8	U	Fill	4.2U	4.2U	4.2U	17U	4.2U	4.2U	. 0
SB-15-36-41	S	Fill	5.1U	后后 ¹⁹ 57年317	5.1U	20U	5.1U	5.1U	17
SB-16-0.5-2	U	Fill	6U	6U	6U	24U	6U	6U	. 0
SB-16-2-4	U	Fill	. 4.9U	4.9U	4.9U	20U	4.9U	4.9U	0
SB-16-19-24	U	Fill	4.9U	4.9U	4.9U	20U	4.9U	4.9U	. 0
SB-16-24-29	S	Fill	6.6U	》:之情 [14	6.6U	26U	6.6U	6.6U	14
SB-16-29-34	S	Nat. Soil	70	70	7U	28U	7U	7U	. 0
SB-16-34-37	S	Nat. Soil	5.6U	5.6U	5.6U	22U	5.6U	<u>5.6U</u>	0
SB-17-0.5-2	U	Fill	6.1U	6.1U	6.1U	24U	6.1U	6.1U	0
SB-17-2-4	U	Fill	4.4U	4.4U	4.4U	18U	4.4U	.4.4U	C
SB-17-16-20	U	Fill	5U	5.3	5U	20U	5U	5U	5.3
SB-17-24-28	S	Fill	5.1U	5.1U	5.1U	20U	5.1U	5.1U	0
SB-17-29-33	S	Fill	13	6.3U	6.3U	25U	. 6.3U	6.3U	13
SB-17-44-49	S	Nat. Soil	19 - 51 00	6.9U	125 - le 23	28U	150	61	5300
SB-17-49-51	S	Nat. Soil	10	5U	5U	20U	5U	5U	10
SB-17-54-59	S	Nat. Soil	15	· 4.9U	4.9U	20U	4.9U	4.9U	15
SB-18-0.5-2	U	Fñ	5.6U	5.6U	5.6U	22U	5.6U	5.6U	C
SB-18-2-4	U	Fill	5.1U	5.1U	5.1U	20U	5.1U	5.1U	· C
SB-18-16-18	U	Fill	5.20	5.2U	5.2U	21U	5.2U	5.2U	C
SB-18-28-32	S	Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-18-32-36	S	Nat. Soil	5 S S 94	5.7U	5 - 15 - 15	23U	al 196	1. July 10 p. 37.	160
SB-18-56-60	S	Nat. Soil	6.5U	6.5U	6.5U	26U	6.5U	6.5U	C
SB-19-0.5-2	U	Fill	4.4U	4.4U	4.4U	18U	4.4U	4.4U	Ċ
SB-19-2-4	U	Fill	5.1U	· 5.1U	5.1U	-20U	5.1U	5.1U	C
DUP032101A	U	Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	C
SB-19-4-8	U	Fill	· · 4.6U	4.6U	4.6U	18U	4.6U	4.6U	C
SB-19-8-11	U	Nat. Soil	5.2U	5.2U	5.2U	21U	5.2U	5.2U	C
SB-20-0-2	10	Fill	5.8U	5.8U	5.8U	23U	5.8U	5.8U	C
DUP031501B	U	Fill	5.3U	5.3U	5.3U	21U	5.3U	5.3U	C
SB-20-2-4	U	Fill	4.3U	4.3U	4.3U	17U	· 4.3U	4.3U	C
SB-20-4-8 .	υ	Fill .	4.8U	4.8U	4.8U	19U	4.8U	4.8U	(
SB-20-9-13	U	Nat. Soil	5.5U	5.5U	5.5U	22U	5.5U	5.5U	C
SB-21-0-2	U	Fill .	4.6U	4.6U	4.6U	18U	4.6U	4.6U	C
DUP030601A	U	Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	(
SB-21-2-4	U	Fill	7.1U	7.1Ū	7.1U	29U	7.1U	7.1U	(
SB-21-12-16	U	Fill	4.9U	4.9U	4.9U	20U	6.7	4.9U	6.7
SB-21-16-20	U	Fill	5.4U	5.4U	5.4U	22U	5.4U	5.4U	(
SB-21-28-30	s	Fill	5.3U	in 10	5.3U	21U	5.3U	5.3U	1(
SB-21-44-48	s	Nat. Soil	50	5U	5U	20U	50	5U	(
SB-21-60-64	s	Nat. Soil	4.6U	4.6U	4.6U	18U	4.6U	4.6U	(
SB-22-0-2	U	Fill	4.8U	4.8U	4.8U	19U	4.8U	4.8U	(

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	1								
	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material			DL	DL	DL	DL	DL	DL	
UBL - Nat. Soils			DL	DL	DL	DL	, DL	DL	
SB-22-2-4	U	Fill	3.6U	3.6U	3.6U	15U	3.6U	3.6U	0
SB-22-19-24	U	Fill	3.8U	3.8U	3.8U	15U	3.8U	3.8U	0
SB-22-24-29	S	Nat. Soil	4.5U	4.5U	4.5U		4.5U	4.5U	0
SB-22-59-62	S	Nat. Soil	5.1U	5.1U	5.1U	21U	5.1U	5.1U	0
SB-23-0-2	U	Fill	5.6U	5.6U	5.6U	22U	5.6U	5.6U	0
DUP032201B	U	Fill	5.5U	5.5U	5.5U	22U	5.5U	5.5U	0
SB-23-2-4	U	Fill	3.8U	3.8U	3.8U	15U	3.8U	3.8U	0
SB-23-14-19	U	Fill	5.2U	5.2U	5.2U	21U	5.2U	5.2U	0
SB-23-24-29	S	Fill	5.9U	5.9U	5.9U	23U	5.9U	5.9U	0
SB-23-59-62	S	Nat. Soil	6.2U	6.2U	6.2U	25U	6.2U	6.2U	0
SB-24-0-2	U	Fill	4.1U	4.1U	4.10	16U	4.1U	4.1U	0
SB-24-2-4	U	Fill	3.5U	3.5U	3.5U	14U	3.5U	3.5U	0
SB-24-8-12	U	Fill	4.8U		4.8U	19U	4.8U	4.8U	5.4
SB-24-32-34	S	Fill	5.4U	18	5.4U	22U	5.4U	5.4U	. 18
SB-24-40-42	S	Nat. Soil	5.6U	5.6U	5.6U	22U	5.6U	5.6U	0
SB-24-44-48	S	Nat. Soil	5.3U	5.3U	5.3U	21U	5.3U	5.3U	0
DUP030101A	S	Nat. Soil	4.5U	4.5U	4.5U	18U	4.5U	4.5U	0
SB-24-52-56	S	Nat. Soil	4.9U	4.9U	4.9U	19U	4.9U	4.9U	0
SB-25-0.5-2	υ	Fill	4.4U	4.4U	4.4U	18U	4.4U	4.4U	0
SB-25-2-4	U	Fill	-4.7U	4.7U	4.7U	19U	4.7U	4.7U	0
SB-25-16-20	C	Fill	3.7U	3.7U	3.7U	15U	3.7U	3.7U	0
SB-25-28-32	S	Fill	5U	5U	5U	20U	5U	5U	0
SB-25-44-48	S	Nat. Soil	5.1U	5.1U	5.1U	21U	5.1U	5.1U	0
SB-25-56-60	S	Nat. Soil	4.4U	4.4U	· 4.4U	17U	4.4U	4.4U	0
SB-25-60-61	S	Nat. Soil	6U	6U	6U	24U	6U	6U	0
SB-26-0.5-2	U	Fill	4.7U	4.7U	4.7U	19U	4.7U	4.70	0
SB-26-2-4		Fill	4.1U	· 4.1U	4.1U	·16U	4.1U	4.1U	
SB-26-8-12	U	Fill	50	- 5U	5U	20U	5U	50	0
DUP030201A		Fill	3:9U	3.9U	3.9U	16U	3.9U	3.9U	0
SB-26-20-24	U	Fill	3.5U	3.5U	3.5U	14U	3.5U	3.5U	0
SB-26-32-36		Fill	5.20	5.2U	5.2U	21U	5.2U	5.2U	0
SB-26-48-51	S	Nat. Soil	6.8U	6.8U	6.8U	27U	6.8U		. 0
SB-26-51-52	Ş	Nat. Soil	5.90	5.9U	5.9U	240	5.9U	5.9U	0
SB-27-0.5-1.5		Fill	5.40	5.4U	<u>5.4U</u>	21U	5.4U	5.4U	0
SB-27-2-4		Fill	4.5U	4.50	4.5U	18U	4.5U	4.5U	0
SB-27-8-12		Fill	18-1-1-SI	· 5.4U	5.4U	22U	6·8	And the second se	43
SB-27-16-20		Nat. Soil	4.8U	4.8U	4.8U	19U	4.8U	4.8U	0
SB-27-20-21	S	Nat. Soil	4.90	4.9U	4.90	19U	4.9U	4.90	0
SB-28-0.5-2		Fill	5.4U	5.4U	- 5.4U	21U	5.4U	5.40	
SB-28-2-4	_	Fill	4.5U	4.5U	4.5U	18U	4.5U	4.50	
SB-28-4-8		Fill	4.8U	5.7	4.8U	19U	4.8U	<u> </u>	5.7
SB-28-8-9.5	U	Nat. Soil	5.3U	5.3U	5.3U	21U	5.3U		0
SB-29-0.5-2		Fill	50	5U	5U		5U		
DUP030501A	Ų	Fill	50	5U	5U	20U	50	50	0

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

F	1	1	<u>. </u>					1	
	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material	1.75		DL	DL	 DL	DL	DL	DL	
UBL - Nat. Soils			DL	DL	DL	DL	DL	DL	
SB-29-2-4	U	Fill	4.7U	4.7U	4.7U	19U	· 4.7U	4.7U	0
SB-29-20-24	U	Fill	3.5U	3.5U	3.5U	.14U	3.5U	3.5U	0
SB-29-28-32	S	Fill	4.8U	4.8U	4.8U	. 19U	4.8U	4.8U	Ō
SB-29-48-52	s	Nat. Soil	7U	7U	70	28U	7U	- 7U	0
SB-29-52-53	s	Nat. Soil	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-30-0-2	U	Nat. Soil	5.8U	5.8U	5.8U	23U	5.8U	5.8U	0
DUP041201A	U	Nat. Soil	6.1U	6.1U	6.1U	24U	6.1U	6.1U	0
SB-30-2-4	U	Nat. Soil	6.90	6.9U	6.9U	28U	6.9U	6.9U	0
SB-30-8-12	s	Nat, Soil	6.8U	6.8U	6.8U	27U	6.8U	6.8U	0
SB-30-16-20	s	Nat. Soil	5.5U	5.5U	5.5U	22U	5.5U	5.5U	0
SB-31-0-2	υ	Nat. Soil	6.9U	6.9U	6.9U	28U	6.9U	6.9U	0
SB-31-2-4	U	Nat. Soil	7U	7U	7U	28U	7U	70	0
SB-31-4-8	U	Nat. Soil	6.3U	6.3U	6.3U	25Ŭ	6.3U	6.3U	.0
SB-31-8-12	U	Nat. Soil	6.7U	6.7U	6.7U	27U	6.7U	6.7U	. 0
SB-31-16-20	s	Nat. Soil	6.4U	6.4U	6.4U	26U	6.4U	6.4U	0
SB-32-0-2	Τυ	Nat. Soil	7.3U	7.3U	7.3U	29U	7.3U	7.3U	0
SB-32-2-4	Τυ	Nat. Soil	5.8U	5.8U	5.8U	23U	5.8U	5.8U	0
SB-32-4-8	U	Nat. Soil	6.4U	6,4U	6.4U	26U	6.4U	6.4U	0
SB-32-16-20	s	Nat. Soil	6U	6U	6U	24U	6U	6U	0
SB-33-0.5-2		Fill	4.2U	4.2U	4.2U	17U	4.2U	4.2U	0
SB-33-2-4	τ	Fill	4.6∪	4.6U	4.6U	19U	4.6U	4.6U	0
SB-33-8-10	U	Fill	5.3U	5.3U	5.3U	21U	5.3U	5.3U	0
SB-33-10-14	T U	Nat. Soil	4.7U	4.7U	4.7U	19U	4.7U	4.7U	0
SB-34-0.5-2	Ū	Fill	4.7U	4.7U	. 4.7U	19U	4.70	4,7U	0
SB-34-2-4	U	Fill	4.7U	4.7U	4.7U	19U	4.7U	4.7U	0
SB-34-4-8	U	Fill	5.7	4.1U	4.1U	17U	4.1U	4.1U	5.7
SB-34-8-10	Τυ	Nat. Soil	7.3U	7.3U	7.3U	29U	7.3U	7.3U	0
\$B-36-0.5-2	U	Fill	5.4U	5.4U	5.4U	21U	5.4U	5.4U	. 0
SB-36-2-4	U	Fill	6.6U	6.6U	6.6U	26Ü	6.6U	6.6U	0
SB-36-4-6	U	Nat. Soil	8.5U	8.5U	8.5U	34U	8.5U	8.50	0
SB-38-0-2		Fill	5.7U	5.7U	5.7U	23U	5.7U	5.7U	0
DUP041201B		Fill	5.6U	5.6U	5.6U	23U	5.6U	5.6U	0
SB-38-2-4		FIII	5.5U	5.5U	5.5U	22U	5.5U	5.5U	0
SB-38-4-6.5 .		Fill	6.1U	6.1U	6.1U	24U	· 6.1U	6.1U	· 0
SB-38-14-19	s	Nat. Soil	6.6U	6.6U	6.6U	26U	6.6U	6.6U	0
SB-38-34-38	s	Nat. Soil	62	6.8U	6.8U	27U	6.8U	6.8U	62
SB-39-0.5-2 -	U	Fill	6.1U	6.1U	6.1U	24U	6.1U	6.1U	0
SB-39-4-8	υ	Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-39-8-12.5	U	Fill	4.5U	4.5U	4.5U	18U	4.5U	4.5U	0
SB-40-0.5-2	U	Fill	6U	6U	6U	24U	6U	6U	0
SB-40-2-4	U	Fill	.5.1U	5.1U	5.1U	20U	5.1U	5.1U	0
SB-40-16-20	U	Fill	4.7U	4.7U	4.7U	· 19U	4.7Ŭ	4.7U	0
SB-40-24-28		Fill	4.6U	4.6U	4.6U	18U	4.6U	4.6U	0
SB-40-40-44	s	Nat. Soil	and 175 33	4.5U	4.5U	18U	4.5U	4.5U	33
1			A CONTRACTOR OF THE OWNER OWNE						المحبوبية ومستعمل والمستعم والمستعم والمستعم والمستعم والمستعم والمستعم والمستعم والمستعم والمستعم والمستعم والم

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Toluene	Xylenes	Total Detected VOCs
UBL - Fill Material			· DĿ	DL	DL,	DL	DĻ	DL	
UBL - Nat. Soils			DL	DL	DL	DL.	DL	DL	
DUP032001A	S	Nat. Soil	e. 64	6.1U	6.1U	24U	6.1U	6.1U	64
SB-40-56-58	S	Nat. Soil	4.9U	4.9U	4.9U	20U	4.9U	4.9U	0
SB-41-0-2	U	Fill	7.9U	7.9U	7.9U	32U	7.9U	7.9U	0
SB-41-2-4	U	Fill	5.1U	5.1U	5.1U	20U	5.1U	5.1U	0
SB-41-19-24	U	Fill	4.5U	12	4.5U	18U	4.5U	4.5U	12
SB-41-24-29	S	Fill	8.3U	35章 建闭合于 1 5	8.3U	33U	8.3U	8.3U	15
SB-41-54-59	S	Nat. Soil	4.9U	4.9U	4.9U	20U	4.9U	4.9U	0
MW-6-34-39	S	Nat, Soil	6.1U	6.1U	6.1U	25U	6.1U	6.1U	0
MW-6-44-49	S	Nat, Soil	6.3U	6.3U	6.3U	25U	6.3U	6.3U	0
DUP032701A	S	Nat. Soil	5.6U	5.6U	5.6U	22U	5.6U	5.6U	0
GH-2-41	S	Fill	7.5U	7.5U	7.5U	30U	7.5U	7.5U	0.

SEMI-VOLATILE ORGANIC COMPOUNDS SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

· · · · · · · · · · · · · · · · · · ·	Saturated/Unsaturatec		Acenaphthen	Acenaphthylen	Anthracene	Benzo(a)anthracen	Benzo(a)pyre	Benzo(b)fluoranthe	Benzo(g,h,i)perylene	Benzo(k)fluoranthen	Chryse	Dibenzo(a,h)anthrac	Fluoranth	Fluoren	Indeno(1,2,3-cd)pyren	Naphthal	Phenanthrene	- Ph	Руге	Total Detected SVOCs Exceeding Background	Total Detected SV
	ated	Unit	lene	lene	ene	ene	ene	iene	lene	iene	iene	;ene	nthene	ene.	rene	lene	rene	henol	rene	und	SVOCs
UBL - Fill Mater	rial		DL	DL	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	DL	920		
UBL - Nat. Soils	s		DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL		
SB-14-0.5-2	U	Fill	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	0	0
SB-14-16-20	٠U	Fill	2,200	370U	3,700	6,600	6,800	15,600	5.000	5,800	6;000	3,500	14,000	2,300	6,100	2,100	13,000	370U	11,000	94,000	94,000
SB-14-24-28	S	Fill	2,100	400U	4,000	006,8	10,000	8,900	8,500	8,300	9,600	4,200	20,000	-2,700	7,100	1,800	15,000	400U	15,000	130,000	130,000
SB-15-4-8	U	Fill	410U	410U	410U	410U	410U	410U	4100	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-15-36-41	S	Fill	380U	380U	550	a 100	1,200	1,100	P1 000	720	× 1,100	All: 390	2,600	380U	870	380U	2,100	380U	2,300	15,000	15,000
SB-16-0.5-2	U	Fill	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	0	0
SB-16-2-4	U	Fill	370U	370U	370U	370Ü	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	. 0
SB-16-19-24	U	Fill	380U	380U	380U	19 670	740	630	380U	Nin700	680	380U		380U	380U	380U	1,000	380U	980	6,200	6,900
SB-16-24-29	S	Fill	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	-
SB-16-29-34	Ş	Nat. Soil	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	0	0
SB-16-34-37	S	Nat. Soil	410U	410U	410U	410U	4100	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-17-0.5-2	U	Fill	390U	390U	390U	390U	390U	390U	3900	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-17-2-4		Fill	410U	410U	410U	4100	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	
SB-17-16-20		Fill	1,500	400U	2,600	1.5,300	5,000	4:500	4,900	900,6	5,100	2,300	11,000	1,300	4,700	400U	7;500	400U	7;400	67,000	67,000
SB-17-24-28		Fill	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	
SB-17-29-33		Fill	420U	450	420U		910	680	01,300	### 940	900	420U	363,000	420U	840	420U	2,600	420U	3,900	16,000	16,000
SB-17-44-49		Nat. Soil	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	0	0
SB-17-49-51	S	Nat. Soil	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	
SB-17-54-59	S	Nat. Soil	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	
SB-18-0.5-2		Fill	3800	380U	380U	380U	380U	380U	3800	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0	
SB-18-2-4		Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	
SB-18-16-18	_	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	
SB-18-28-32	S	Fill	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	0	
SB-18-32-36	S	Nat. Soil	4200	420U	4200	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	0	
SB-18-56-60	s	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	0	
SB-19-0.5-2		Fill	410U	410U	410U	410U	410U	410U	4100	410U	410U	410U	410U	4100	410U	4100	410U	410U	410U	0	0
SB-19-2-4	U	Fill	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0	0

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION

MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

VALUES	LISTED IN MICROGRAMS I	ER ALLUGRAM	(ug/kg)

	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Materi			DL	DL	DL	560	690	610	690	570	680		1,200	DL	580	DL	560	DL	920	***	
UBL - Nat. Soils		l esu	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	***	
DUP032101A		Fill	3700	370U	370U	370U	3700	370U 370U	370U 370U	370U	3700	370U	3700	370U	370U	370U	370U	370U	370U	· 0	
SB-19-4-8 SB-19-8-11	U	Fill	370U 360U	370U 360U	370U 360U	370U 360U	370U 360U	3700 360U	3700	370U 360U	370U 360U	370U 360U	370U 360U	370U 360U	370U 360U	370U 360U	370U 360U	370U	370U 360U	0	
SB-20-0-2	<u> </u>	Nat. Soil Fill	4200	420U	4200	420U	4200	420U	4200	4200	420U	420U	420U	420U	4200	4200	420U	360U 420U	420U	0	
DUP031501B		Fill	4200	4000	4000	400U	4000	4000	4000	400U	400U	400U	400U	400U	400U	400U	400U	4000	400U	0	
SB-20-2-4		Fill	390U	390U	3900	3900	3900	390U	390U	3900	3900	3900	3900	390U	3900	3900	3900	3900	3900	0	
SB-20-4-8			360U	360U	360U	3600	3600	3600	360U	3600	3600	3600	360U	3600	3600	360U	3600	3600	3600	0	
SB-20-9-13	Ŭ	Nat. Soil	370U	370U	3700	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
SB-21-0-2	Ū	Fill	4000	400U	400U	400U	400U	400U	400U	400U	4000	400U	400U	400U	4000	4000	400U	400U	400U	0	
DUP030601A	Ū	Fill	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-21-2-4	U	Fill	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-21-12-16	Ū	Fill	390U	390U	390U	390U	390Ú	390U	390U	390U	390U	390U	390U	390U	3900	390U	390U	390U	390U	0	0
SB-21-16-20	U	Fill	380U	380U	380U	380U	3800	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0	0
SB-21-28-30	S	Fill	4000	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	0
SB-21-44-48	S	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	ō	0
SB-21-60-64	S	Nat. Soil	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	0	0
SB-22-0-2	U	Fill	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	0
SB-22-2-4	U	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-22-19-24	U	Fill	420	370U	800	1,400	1,400	\$11,300	980	4,000	1,400	470	3,000	730	-850	12,300	2,800	370U	2;300	21,000	21,000
SB-22-24-29	S	Nat. Soil	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-22-59-62	S	Nat. Soil	380U	380U	380U	380U	380U	380U	380U	380U	380U	<u>380U</u>	380U	380U	380U	380U	380U	380U	380U	0	0
SB-23-0-2	Ű	Fill	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	0	
DUP032201B	U		370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	
SB-23-2-4	U	Fill	360U	360U	360U	360U	360U	360U.	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	-
SB-23-14-19	U	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	510	360U	360U	360U	360U	360U	410	0	
SB-23-24-29	S	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-23-59-62	s	Nat. Soil	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	0	0

÷.,

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,l)perytene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Mater				DL	DL DL	560 DL	690 DL	610 DL	690 	570 DL	680 DL		1,200 DL	DL DL	580 	DL DL	560 DL		920 DL		H-H
SB-24-0-2		Fill	3600	360U	3600	3600	360U	360U	3600	360U	3600	360U	360U	360U	 360U	3600	360U	360U	3600		
SB-24-2-4	U	Fill	3700	370U	1100	2,500	2.900	3200	730	2/100	2,500	370Ú	5,600	420	0000	370U	3,700	370U	4,400	30,000	30,000
SB-24-8-12	-	Fill	3800	380U	380U	380U	380U	380U	380U	380U	380U	380U	410	380U	380U	380U	380U	380U	380U	00,000	410
SB-24-32-34	s	Fill	440U	4400	440U	4400	4400	440U	440U	440U	440U	440U	440U	440U		440U	440U	440U	440U	0	0
SB-24-40-42	s	Nat. Soil	400U	4000	400U	400U	4000	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	0
SB-24-44-48	s	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
DUP030101A	s	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	. 430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-24-52-56	s	Nat. Soil	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-25-0.5-2	U	Fill	370U	370U	370U	750	740	690	370U	20780	770	370U	1.500	370U	370U	370U	1,100	370U	1,100	7,400	7,400
SB-25-2-4	U	Fill	188 800	360U	2,000	8,300	11,000	12,000	2 500	12,000	9,100	650	17,000	970	2,600	760	8 600	360U	13,000	100,000	100,000
SB-25-16-20	U	Fill	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	0	0
SB-25-28-32	S	Fill	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	480U	0	0
SB-25-44-48	S	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	0	0
SB-25-56-60	S	Nat. Soil	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	0	0
SB-25-60-61	S	Nat. Soil	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	470U	0	0
SB-26-0.5-2	U	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
SB-26-2-4	U	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
SB-26-8-12	U	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
DUP030201A	U	Fill	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	370U	0	0
SB-26-20-24	U	Fill	370U	370U	370U	580	610	500	380	610	EL 690	370U		370U	370	370U	1,200	370U	1,200	5,700	7,500
SB-26-32-36	Ş	Fill	390U	390U	390U	390U	390U	390U	3900	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-26-48-51		Nat. Soil	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	0
SB-26-51-52	1	Nat. Soil	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	0	0
SB-27-0.5-1.5		Fill	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	0
SB-27-2-4		Fill	370U	370U	370U	450	540	430	370U	500	460	370U	960	370U	370U	370U	720	370U	770	720	4,800
SB-27-8-12	U	Fill	460U	460U	490	980	1,100	1,000	460U	930	1,000	460U	2,000	460U	460U	460U	2,000	460U	1,900	11,000	11,000
SB-27-16-20	U	Nat. Soli	390U	3900	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0

7 of 17

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

UBL - Fill Mater	Saturated/Unsaturated	Unit	Acenaphthene	· Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene 680	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene 920	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Nat. Soils			DL				DL	DL	DL	DL	DL	DL	1,200 DL	DL	DL	DL	DL	DL			
SB-27-20-21		Nat. Soil	3800	3800	380U	380U	3800	3800	3800	-380U	3800	3800	3800	3800	380U	3800	3800	3800	3800		0
SB-28-0.5-2		Fill	410U	4100	410U	4100	4100	410U	410U	410U	4100	4100	410U	4100	410U	4100	4100	410U	410U	0	
SB-28-2-4		Fill	390U	3900	3900	390U	3900	3900	390U	3900	390U	390U	390U	390U	390U	390U	3900	3900	3900	0	· · · · ·
SB-28-4-8	Ū	Fill	410U	4100	410U	4100	4100	410U	410U	410U	410U	410U	410U	4100	410U	410U	4100	4100	410U	0	
SB-28-8-9.5	Ū	Nat. Soil	360U	360U	3600	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	3600	360U	0	0
SB-29-0.5-2	Ū	Fill	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	
DUP030501A	U	Surface	420U	4200	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	4200	420U	0	
SB-29-2-4	U	Fill	400U	400U	400U	400U	400U	4000	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	
SB-29-20-24	U	Fill	390U	390U	3900	390U	390U	3900	390U	390U	390U	390U	390U	390U	390U	390U	390U	3900	390U	0	0
SB-29-28-32	S	Fill	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-29-48-52	S	Nat. Soil	490U	490U	490U	490U	520	490U	490U	490U	490U	490U	490U	490U	490U	490U	490U	490U	490U	0	520
SB-29-52-53	S	Nat. Soii	390U	390U	3900	390U	390U	390U	390U	390U	390U	390U	390U	3900	390U	390U	390U	390U	390U	0	0
SB-30-0-2	U	Nat. Soil	340U	340U	340U	3400	340U	340U	340U	340U	340U	340U	340U	340U	340U	340U	340U	340U	340U	0	Ö
DUP041201A	U	Nat. Soil	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350U	350Ú	350U	0	0
SB-30-2-4	U	Nat. Soil	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-30-8-12	S	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430Ü	0	0
SB-30-16-20	S	Nat. Soil	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	420Ü	420U	420U	420U	420U	0	0
SB-31-0-2	U	Nat. Soil	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410	410U	410U	410U	410U	410U	410U	0	410
SB-31-2-4	U	Nat. Soil	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410Ú	410U	410U	410U	410U	0	0
SB-31-4-8	ŰU	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	Ó
SB-31-8-12	U	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	4400	440U	440U	440U	0	0
SB-31-16-20	<u> </u>	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	<u> </u>
SB-32-0-2	1	Nat. Soil	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	
SB-32-2-4	U	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	_
SB-32-4-8		Nat. Soil	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	4 <u>1</u> 0U	410U	410U	410U	410U	410U	0	0
SB-32-16-20	S	Nat. Soil	420U	420U	4200	420U	420U	420U	420U	420U	420U	420U	420U	420U	420U	4200	420U	420U	420U	0	
SB-33-0.5-2	U	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0

Revised September 5, 2003

8 of 17

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Mater	al		DL	DL	DL	560	690	610	690	570	680	DL	1,200 DL	DL	580		560	DL	920		
UBL - Nat. Soils			DL	DL	DL	DL	DL	DL	DL	DL 42,200	DL	DL 520	1	DL	DL	DL	DL	DL	DL		
SB-33-2-4		Fill Fill	370U	420	370U 400U	2,300	5,200 400U	2,500 400U	400U	400U	2,300 400U	400U	3,200 400U	370U 400U	400U	370U 400U	4,300	370U	3,200	24,000	24,000
SB-33-8-10 SB-33-10-14		Nat. Soil	400U 360U	400U 360U	4000 360U	400U 360U	4000 360U	4000 360U	360U	4000 360U	360U	360U	360U	4000 360U	360U	360U	400U 360U	400U 360U	400U 360U	0	0
SB-33B-2-4		Fill	370U	370U	3700	. 490	690	540	690	430	540	370U	970	370U	580	3700	530	370U	850	0	6.310
<u>SB-33B-2-4</u> SB-34-0.5-2		Fill	3500	3500	3500	350U	350U	350U	350U	350U	3500	3500	350U	3500	3500	3500	350U	3500	350U	0	0,310
SB-34-2-4	-	Fill	360U	3600	3600	360U	360U	360U	3600	360U	360U	3600	610	3600	3600	3600	3600	3600	530	0	1,100
<u>SB-34-2-4</u> SB-34-4-8	U	Fill	360U	3600	360U	3600	360U	360U	360U	360U	3600	3600	360U	3600	360U	360U	3600	3600	360U		1,100
SB-34-8-10		Nat. Soil	3500	3500	3500	350U	350U	350U	350U	350U	350U	3500	3500	3500	3500	350U	3500	350U	3500	0	0
SB-36-0.5-2	U	Fill	350U	3500	350U	3500	350U	350U	350U	350U	350U	350U	3500	3500	3500	3500	3500	3500	350U	0	0
SB-36-2-4		Fill	380U	3800	3800	380U	380U	380U	380U	380U	3800	3800	3800	3800	380U	380U	3800	3800	3800	0	0
SB-36-4-6	Ū	Nat. Soil	460U	460U	4600	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	0	
SB-38-0-2	Ū	Fill	370U	370U	370U	470	450	590	540	370U	490	370U	1.000	370U	380	370U	480	370U	920	0	5,300
DUP041201B	U	Fill	370U	370U	370U	370U	420	420	440	370U	370	370U	870	370U	370U	370U	1670	370U	670	670	3,900
SB-38-2-4	Ū	Fill	370U	370U	370U	560	590	610	370U	570	680	370U	1,200	370U	370U	370U	560	3700	900	0	5,700
SB-38-4-6.5	U	Fill	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	400U	0	0
SB-38-14-19	S	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-38-34-38	S	Nat, Soil	450U	450U	450U	. 450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	0	0
SB-39-0.5-2	U	Fill	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-39-4-8	U	Fill	380U	380U	380U	. 380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380U	380Ú	380U	0	0
SB-39-8-12.5	U	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	、 0	0
SB-40-0.5-2	U	Fill	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	410U	0	0
SB-40-2-4	U	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-40-16-20	U	Fill	360U	360U	360U	540	550	380	360U	510	570	360U	1, 300	360U	360U	360U	960	360U	760	2,300	5,600
SB-40-24-28	S	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-40-40-44	S	Nat. Soil	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	450U	· 0	0
DUP032001A	S	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-40-56-58	S	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	4300	430U	430U	430U	430U	430U	430U	0	0

SOIL SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER KILOGRAM (ug/kg)

	Saturated/Unsaturated	Unit	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Total Detected SVOCs Exceeding Background	Total Detected SVOCs
UBL - Fill Materi	al		: DL	DL	DL	560	690	610	690	570	680	DL	1,200	DL	580	DL	560	DL	920		
UBL - Nat. Soils			DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	**	
SB-41-0-2	υ	Fill	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	390U	0	0
SB-41-2-4	U	Fill	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	360U	0	0
SB-41-19-24	U	Fill	10:0530	380U	1,300	2,300	2,200	2200	630	1700	2,100	380U	4,800	690	710	380U	4,100	380U	3,600	26,000	27,000
SB-41-24-29	S	Fill	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	550U	0	0
SB-41-54-59	S	Nat. Soil	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	430U	0	0
SB-42-2-4	U	Fill	1100	370U	01,800	6,100	5,600	4,900	4200	4,600	6,100	sv1,500	000	1 200	3 700		9,900	370U	6,900	71,000	71,000
SB-43-2-4	U	Fill	350U	350U	350U	350U	350U	390	350U	350U	350U	350U	690	350U	350U	350U	480	350U	Considerer and the second second	0	2,100
MW-6-34-39	S	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	0	. 0
MW-6-44-49	S	Nat. Soil	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	440U	0	0
DUP032701A	S	Nat. Soil	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	460U	0	0
GH-2-41	S	Fill	6100	4 400	17,000	10,000	16,000		6.700	7,900	11,000	570	37,000	11,000	9.000	24,000	55,000	530U	47,000	270,000	270,000

INORGANIC COMPOUNDS SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

		· · · ·		·····				I		r		1		
	Saturate	· ·												
	Saturated/Unsaturated	Unit	Arsenic	. Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	T-Cyanide
UBL - Fill Material			7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils			DL	275	DL	DL	52.8	35.7	26.5	DL	29.7	120	80.3	DL
SB-14-0.5-2		Fill	6.33U	100	3.16U	3.16U	9.48	51.6	13:0	0.131	6.33U	69.3	47.0	0.959U
SB-14-16-20		Fill	5.54U		2.77U	2.77U	11.0	31.7	195	COLUMN STREET, SHOWING SHOWING T	5.76	17.5	267	1.09U
SB-14-24-28		Fill	5.66U	61.8	2.83U	2.83U	9.68	56.4	83.3	0.147	5.66U	18.1	39.1	0.985U
SB-15-4-8		Fill	5.09U	53.1	2.54U	2.54U	7.37	17.1	9.72	0.105U	5. 0 9U	47.6	32.5	1.1U
SB-15-36-41		Fill	4.6U	25.6	2.3U	2.3U	4.68	4.43	10.0	0.0957U	4.60	7.70	11.7	1.17
SB-16-0.5-2	U	Fill	6.26U	65.3	3.13U	3.13U	· 17.2	39.2	10.4	0.124U	6.26U	75.3	18.8	1.13U
SB-16-2-4		Fill	4.63U	6.52	2.32U	2.32U	2.77	3.19	7.94	0.288	4.63U	24.6	9.58	0.754U
SB-16-19-24		Fill	5.19U	88.1	2.59U	2.59U	14.9	12.3	125	0.202	5.19U	31.5	118	0.735U
SB-16-24-29	S	Fill	5.41U	37.5	2.71U	2.71U	9.28	16.9	62.1	0.299	5.41U	19.9	48.4	0.739U
SB-16-29-34	S	Nat. Soil	5.26U	76.0	2.63U	2.63U	9.88	2.82	16.3	0.131U	5.26U	9.81	14.3	1.08U
SB-16-34-37	S	Nat. Soil	4.36U	9.77	2.18U	2.18U	3.73	2.18U	7.69	0.11U	4.36U	5.88	4.98	1.06U
SB-17-0.5-2		Fill	6.02U	114	3.01U	3.01U	9.93	23.3	. 16.8	0.112	6.28	43.1	48.1	1.2U
SB-17-2-4		Fill	5.16U	80.1	2.58U	2.58U	8.10	.19.8	14.7	0.115U	5.16U	37.4	31.2	. 1.25U
SB-17-16-20	U	Fill	5.91U	44.2	2.95U	2.95U	11.4	13.2	54.3	0.170	5.91U	14.0	58.3	0.738U
SB-17-24-28		Fill	4.95U	75.4	2.47U	2.47U	10.5	9.51	41.9	0.223	5.05	30.8	40.5	0.833U
SB-17-29-33	S	Fill	5.78	84.4	2.78U	2.78U	10.9	12.2	73.4	0.159	5.57U	21.5	83.5	1.03U
SB-17-44-49	S	Nat. Soil	6.89U	157	3.44U	3.44U	37.1	21.6	16.5	0.128U	13.4	62.1	57.9	1.32U
SB-17-49-51	S	Nat. Soil	5.35U	13.4	2.67U	2.67U	6.44	2.67U	5.35U	0.116U	5.35U	8.64	7.36	0.989U
SB-17-54-59		Nat. Soil	5.29U	24.0	2.64U	2.64U	7.35	3.66	5.29U	0.118U	5.29U	5.29U	13.2	0.97U
SB-18-0.5-2		Fill	5.44U	68.2	2.72U	2.72U	9.84	20.5	24.6	0.135	5.44U	46.1	39.4	1.17U
SB-18-2-4		Fill	3.98U	65.4	1.99U	1.99U	10.9	16.8	77.1	0.191	4.34	39.8	55.9	1.11U
SB-18-16-18		Fill	3.61U	59.6	1.81U	1.81U	7.78	12.1	70.6	ver surgérorézes(synales-oph).	3.61U		62.6	1.11U
SB-18-28-32		Fill	5.96U	111	2.98U	2.98U	29.1	18.3	14.0	0.0988U	10.1	65.7	44.0	1.28U
SB-18-32-36	S	Nat. Soil	4.82U	74.6	2.41U	2.41U	14.6	7.79	14.5	0.111U	5.54	28.7	23.6	1,81
SB-18-56-60		Nat. Soil	5.78U	68.8	2.89U	2.89U	22.7	14.2	6.91	0.105U	9.04	40.9	41.9	1.33U
SB-19-0.5-2		Fill	4.81U	87 <i>.</i> 9	2.40	2.4U	11.2	63.7	13.5	0.105U	6.72	- address of the stand of the second standing of the	44.5	1.01U
SB-19-2-4	U	Fill	4.32U	29.9	2.16U	2.16U	8.07	16.4	21.6	0.102	4.32U	. 25.9	16.9	0.96U

11 of 17

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

r		T	<u> </u>		I				· · · · ·					
	Saturated/Unsaturatec	Unit	Arsenic	Barium	Beryllium	Cadmium	Chromium	Coppe	Lead	Mercury	Nicke	Vanadium	Zinc	T-Cyanide
UBL - Fill Material	L	·. i	7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils			DL	275	DL	DL	52.8	35.7	26.5	DL	29.7	120	80.3	DL
DUP032101A	U	Fill	4.79U	29.4	2.4U	2.4U	6.75	14.6	11.2	0.11U	4.79U	24.3	11.2	0.873U
SB-19-4-8	U	Fill	4.62U	47.6	2.31U	2.31U	7.34	11.3	11.1	0.0963U	4.62U	20.8	13.8	1.08U
SB-19-8-11	U	Nat. Soil	4.74U	9.42	2.37U	2.37U	4.84	2.37U	4.74U	0.108U	4.74U	9.66	4.74U	1U
SB-20-0-2	U	Fill	31.5	47.5	2.47U	2.47U	25.0	21.8	117	0.825	5.85	50.1	97.2	1.27U
DUP031501B	U.	Fill	5.3U	88.3	2.65U	2.65U	12.3	36.1	11.3	0.112U	6.74	60.6	39.4	1.22U
SB-20-2-4	U	Fill	4.64U	50.4	2.32U	2.32U	9.05	16.6	28.0	1.14	4.64U	34.9	33.6	1.17U
SB-20-4-8	U	Fill	5.24U	65.4	2.62U	2.62U	12.2	14.3	33.3	0.170	5.25	29.9	45.5	1.1U
SB-20-9-13	U	Nat. Soil	4.15U	8.32	2.07U	2.07U	8.22	-2.98	8.55	0.103U	4.15U	6.97	6.24	1.13U
SB-21-0-2	· U	Fill	5.98U	76.7	2.99U	2.99U	10.6	21.2	51.4	0.357	5.98U	40.8	153	0.936U
DUP030601A	U	Fill	5.69U	60.9	2.85U	2.85U	23.5	19.7	68.6	0.202	5.69U	73.5	73.8	1.07U
SB-21-2-4	U	Fill	6.04U		3.02U	3.02U	7.32	31.4	13.0	0.129	9.09	- 62.1	48.2	0.992U
SB-21-12-16	U	Fill	5.88U	47.8	2.94U	2.94U	13.4	19.3	61.1	0.284	5.88U	25.5	68.8	0.879U
SB-21-16-20	U	Fill	5.56	50.4	2.71U	2.71U	副部位的29 :4	14.3	57.8	0.276	5.42U	40,1	45.0	1.08U
SB-21-28-30	S	Fill	5.23U	47.4	2.62U	2.62U	9,72	17.1	54.6	1.36	5.23U	20.7	43.2	0.772U
SB-21-44-48	S	Nat. Soil	5.86U	171	2,93U	2.93U	37.1	21.6	12.3	0.123U	12.1	69.2	61.9	1.25U
SB-21-60-64	S	Nat. Soil	6.38U	78.9	3.19U	3.19U	18.8	10.1	6.38U	0.131U	6.38U	33.4	· 32.1	0.886U
SB-22-0-2	U	Fill	5.56U	92.1	2.78U	2.78U	8.45	18.9	10.3	0.108U	5.56U	50.8	36.4	0.912U
SB-22-2-4	U	Fill	4.55U	52.3	2.27U	2:27U	6.78	11.1	36.7	0.121	4.55U	26.7	43.3	1.03U
SB-22-19-24	U	Fill	5.29U	31.8	2.64U	2.64U	9.38	31.1	138	0.161	5,29U	17.6	62.3	0.828U
SB-22-24-29	S	Nat. Soil	5.77 [.] U	33.2	2.89U	2.89U	8.44	5.33	32,1	9,164	5.77U	16.7	30.0	0.734U
SB-22-59-62	S	Nat. Soil	4.02U	13.3	2.01U	2.01U	4.51	2.01U	4.02U	0.111U	4.02U	5.01	10.9	0.901U
SB-23-0-2	U	Fill	6.58U	80.8	3.29U	3.29U	8.31	14.1	7.82	0.12U	6.58U	48.4	34.0	0.996U
DUP032201B	U	Fill	4.2U	49.0	2.1U	2,1U	7.32	18.4	7.20	0.106U	4.2U	39.6	33.5	1.02U
SB-23-2-4	- U	Fill	5.01U	50.9	2.5U	2.5U	10.9	9.20	39.9	0.554	5.01U	19 <i>.</i> 5	30.1	0.944U
SB-23-14-19	U	Fill	6.81	268	2.42U	2.42U	18.5	37.6	298	118	10.3	23.6	544	1U
SB-23-24-29	S	Fill	4.45U	60.7	2.23U	2.23U	13.0	18.2	42.4	0.133	4.78	17.9	60.5	0.767U
SB-23-59-62	S	Nat. Soil	6.21U	38.3	3.1U	3.1U	13.3	5.57	6.21U	0.124U	6.21U	25.8	20.7	0.852U

12 of 17

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

UBL - Fill Material	Saturated/Unsaturated	Unit	Arsenic 7.05	Barium 115	Beryllium	Cadmium	Chromium 28.7	Copper 43,4	204	Mercury 0.541	Nickel 14.4	Vanadium 58.9	Ni 257	T-Cyanide
UBL - Nat. Soils			7.05 DL	275	DL		52.8	43.4	204	0.541 DL	29.7	120	80.3	DL
SB-24-0-2	U	Fill	5.38U	74.6	2.69U	2.69U	13.5	11.6	151	0.650	5.38U	24.7	86.6	0.889U
SB-24-2-4	U U	Fill	5.44U	42.4	2.000	2.72U	9.63	11.5	80.9	0.601	5.44U	23.9	53.7	0.748U
SB-24-8-12		Fill	5.32U	2549131	2.66U	2.66U	9.75	13.8	338	0.412	5.32U	19.3	462	1.08U
SB-24-32-34	s	Fill	6.43U	74.5	3.22U	3.22U	15.9	958	152	0.465	6.43U	31.6	106	1.24U
SB-24-40-42	s	Nat. Soil	6.11U	40.1	3.06U	3.06U	7.44	4.36	14.5	0.112U	6.11U	14.4	12.5	0.745U
SB-24-44-48	s	Nat. Soil	6.56U	186	3.28U	3.28U	41.9	21.2	12.1	0.126	15.0	72.5	63.0	1.11U
DUP030101A	s	Nat. Soil	6.43U	175	3.22U	3.22U	43.2	20.5	13.8	0.126U	14.4	76.2	59.0	0.928U
SB-24-52-56	s	Nat. Soil	5.26U	. 134	2.63U	2.63U	29.8	15.2	10.4	0.109U	11.1	55.2	45.3	0.958U
SB-25-0.5-2	υ	Fill	5.25U	56.9	2.63U	2.63U	10.3	14.6	67.3	0.289	5.25U	28.7	59.1	0.793U
SB-25-2-4	U	Fill	5.4U	23.0	2.7U	2.7U	6.21	9.23	29.5	0.154	5.4U	13.1	21.5	0.879U
SB-25-16-20	Ū	Fill	3.46U	93.6	·1.73U	1.73U	9.10	10.1	85.3	0.346	3.76	22.4	104	0.942U
SB-25-28-32	S	Fill	4.97U	50.5	2.49U	2.49U	17.2	8.63	20.9	0.454	4.97U	38.3	26.2	1.01U
SB-25-44-48	S	Nat. Soil	5.47U	169	2.74U	2.74U	36.0	20.7	36,3	0.134U	11.7	74.5	61.9	1.32U
SB-25-56-60	S	Nat. Soil	6.15U	160	3.07U	3.07U	31.0	18.8	10.7	0.131U	10.6	60.8	47.9	0.842U
SB-25-60-61	S	Nat. Soil	6.48U	9 1.9	3.24U	3.24U	25.6	13.4	7.49	0.139U	11.5	52.1	46.3	0.87U
SB-26-0.5-2	U	Fill	5.19U	50.1	2.6U	2.6U	14.2	27:9	.15.7	0.203	5.19U	43.0	22.7	0.999U
SB-26-2-4	U	Fill	5.11U	33.8	2.55U	2.55U	9.96	14.1	89.3	0.151	5.11U	18.7	59.8	0.883U
SB-26-8-12	U	Fill	5.53U	54.2	2.77U	2.77U	13.3	6.60	20.1	0.125	5.53U	32.0	24.0	1.01U
DUP030201A	U	Fill	5.25U	104	2.62U	2.62U	14.5	9.00	59.9	0.286	6.14	31.8	39.6	0.823U
SB-26-20-24	U	Fill	5.36U	42.4	2.68U	2.68U	7.86	24.7	75.1	0.237	5.36U	18.0	41.9	1.01U
SB-26-32-36	S	Fill	5.93U	5.93U	2.96U	2.96U	9.67	3.57	6.65	0.438	5.93U	10.8	5.93U	1.14U
SB-26-48-51	S	Nat. Soil	5.74U	58.8	2.87U	2.87U	15.8	6.76	6.87	0.118U	5.74U	29.6	22.1	1.03U
SB-26-51-52	s	Nat. Soil	5.9U	48.8	2.95U	2.950	13.1	3.70	5.9U	0.122U	11.5	25.0	54.6	0.888U
SB-27-0.5-1.5	U	Fill	5.6U	53.9	2.8U	2.8U	10.4	15.7	57.4	0.242	5.6U	33.6	40.5	0.933U
SB-27-2-4	U	Fill	5.3U	42.0	2.65U	2.65U	11.5	24.8	104	0.266	5.3U	20.5	71.7	0.986U
SB-27-8-12	U	Fill	2012/147	209	3.23U	3.23U	22.6	891	634	4,59	6.46U	19.6	219	1.44
SB-27-16-20	U	Nat. Soil	5.93U	44.7	2.96U	2.96U	11.8	4.69	18.5	创业的0.154	5.93U	21.1	10.2	0.766U

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

		T	<u> </u>		·		· · · · · · · · · · · · · · · · · · ·			- I				
	Sat													
	Saturated/Unsaturated	Unit	Arsenic	Barlum	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	T-Cyanide
UBL - Fill Material			7.05	115	DL	DL	28.7	. 43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils			DL	275	DL	DL	52.8	35.7	26.5	DL	29.7	120	80.3	DL
SB-27-20-21	s	Nat. Soil	5.43U	5.43U	2.72U	2.72U	9.62	3.55	6.35	0.115U	5.43U	11.0	5.43U	1.04U
SB-28-0.5-2	U	Fill	6.13U	· 81.0	3.06U	3.06U	10.0	57.6	12.5	0.115	6.13U	56.0	33.3	1.23U
SB-28-2-4	U	Fill .	. 6U	85.4	30	3U	8.53	44.7	9.52	0.12U	6U	48.6	41.1	1.2U
SB-28-4-8	U	Fill	6.15U	73.1	3.08U	3.08U	12.6	16.8	76.3	1+10:814	6.15U	31.9	101	1.25U
SB-28-8-9.5	U	Nat. Soil	4.91U	5.88	2.46U	2.46U	5.26	2.46U	6.35	0.105U	4.91U	9.80	4.91U	1.09U
SB-29-0.5-2	U	Fill	4.24U	50.3	2.12U	2.12U	14.7	42.6	11.6	0.126U	4.24U	72.8	17.3	1.13U
DUP030501A	U	Fill	6.34U	0-8 119	3.17U	3.17U	11.6	56:3	22.0	0.149	6.34U	60.9	28.8	0.759U
SB-29-2-4	U	Fill	4.6U	67.2	2.3U	2.3U	13.2	31.7	12.8	0.114U	4.72	44.6	29.6	1.15U
SB-29-20-24	U	Fill	5.35U	17.3	2.67U	2.67U	5.78	3.64	14.1	0.134	5.35U	22.1	13.3	0.841U
SB-29-28-32	s	Fill	3.65U	72.9	1.83U	1.83U	16.3	4.99	11.0	0.553	4.11	22.7	22.6	1.03U
SB-29-48-52	S	Nat. Soil	5.55U	88.0	2.77U	2.77U	21.1	10.5	8.98	0.138U	9.46	35.9	37.4	1.36U
SB-29-52-53	S	Nat. Soil	5.07U	9.52	2.53U	2.53U	5.69	2.53U	5.07U	0.11U	5.07U	14.7	17.8	1.04U
SB-30-0-2	U	Nat. Soil	2.98U	25.5	1.49U	1.49U	11.1	5.28	7.46	0.0913U	2.98U	12.9	15.2	0.817U
DUP041201A	U	Nat. Soil	3.59U	33.5	1.8U	1.8U	10.7	5.67	6.34	0.103U	3.59U	16.5	18.7	0.889U
SB-30-2-4	υ	Nat, Soil	2.78U	45.7	1.39U	1.39U	13.1	8.69	11.2	0.101U	3.72	21.6	19.8	1.03U
SB-30-8-12	S	Nat. Soil	3.83U	128	1.91U	1.91U	30.6	19.7	· 16.3	0.154	11.1	62.8	44.0	1.13U
SB-30-16-20	S	Nat. Soil	4.14U	159	2.15	2.07U	40.9	19.6	12.3	0.122U	14.2	72.0	66.6	1.27U
SB-31-0-2	υ	Nat. Soil	5.03U	102	2.51U	2.51U	18.9	12.9	21.2	0.12U	7.42	35.5	51.0	1.17U
SB-31-2-4	U	Nat. Soil	5.3U	93.0	2.65U	2.65U	18.8	14.0	23.5	0.125U	6.19	36.7	37.9	0.976U
SB-31-4-8	U	Nat. Soil	5.8U	119	2.9U	2.9U	26.5	15.8	14.1	0.126U	9.05	54.3	37.1	0.856U
SB-31-8-12	U	Nat. Soil	6.55U	40.2	3.28U	3.28U	8.43	4.19	6.55U	0.124U	6.55U	16.7	12.8	0.960U
SB-31-16-20	S	Nat. Soil	5.76Ü	57.2	2.88U	2.88U	15.9	7.29	5.76U	0.125U	5.76U	30.4	24.3	0.718U
SB-32-0-2	U	Nat. Soil	5.09U	95.0	2.55U	2.55U	19.5	13.0	20.4	0.12U	6.62	37.2	43.0	0.871U
SB-32-2-4	U	Nat. Soil	5.57U	85.5	2.79U	2.79U	20.1	12.0	43.0	0.121U	6.32	38.2	27.8	0.995U
SB-32-4-8	Ū	Nat. Soil	6.04U	83.5	3.02U	3.02U	18.0	10.1	12.1	0.121U	6.04U	38.8	22.8	0.74U
SB-32-16-20	S	Nat. Soil	6.18U	63.5	3.09U	3.09U	20.6	6.00	6.18U	0.126U	6.18U	26.7	22.3	0.941U
SB-33-0.5-2	U	Fill	4.4U	99.7	2.2U	2.2U	8.10	6.71	32.9	0.174	4.4U	21.7	33.5	0.929U

14 of 17

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

·			· · · · ·												
		Saturated/Unsaturated	Unit	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	T-Cyanide
UBL - Fill Mate				7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58,9	257	DL
UBL - Nat. Soi	ls			DL	275	DL	DL	52.8	35.7	26.5	DL	29.7	120	80.3	DL
SB-33-2-4			Fill	4.58U	81.1	2.29U	2.29U	22.0	43.4	65.8	0.541	4.58U	43.4	73.7	1.02U
SB-33-8-10			Fill	5.67U	11.1	2.84U	2.84U	28.7	5.74	5.67U	0.247	5.67U	58.9	6.33	1.02U
SB-33-10-14		U	Nat. Soil	5.43U	5.43U	2.72U	2.72U	5.58	2.72U	5.43U	0.105U	5.43U	10.6	5.43U	0.963U
SB-34-0.5-2	. [_	Fill	4.61U	87.2	2.31U	2.31U	9.40	42.2	149	0.241	8.29	17.3	160	0.82U
SB-34-2-4	.		Fill	4.93U	41.5	2.47U	2.47U	12.9	10.8	60.1	0.318	4.93U	24.5	58.8	0.87U
SB-34-4-8	[U	Fill	4.92U	95.7	2.46U	2.46U	14.4	10.8	95.7	0.264	4.92U	18.8	85.4	1.08U
SB-34-8-10		U	Nat. Soil	5.04U	5.04U	2.52U	2.52U	2.52U	2.52U	5.04U	0.101U	5.04U	5.04U	5.04U	1.03U
SB-36-0.5-2		U	Fill	4.23U	24.8	2.12U	2.12U	12.3	8.42	8.98	0.0938U	4.23U	24.7	15.9	1.07U
SB-36-2-4		U	Fill	7.05	70.1	2.55U	2.55U	46.3	74 9	232	0.380	⁵ .10	79.3	339	0.908U
SB-36-4-6		U	Nat. Soil	6.56U	6.56U	3.28U	3.28U	5.63	3.28U	6.56U	0.122U	6.56U	14.6	6.56U	1.06U
SB-38-0-2		Ċ	Fill	5.69U	54.4	2.84U	2.84U	11.5	11.9	135	0.248	5.69U	27.8	106	1.14U
DUP041201B		U	Fill	5.63U	57.1	2.82U	2.82U	8.49	11.6	94.3	0.182	.5.63U	21.9	95.8	1.13U
SB-38-2-4	· 1	U	Fill	5,55U	63.9	2.77U	2.77U	9.08	12.4	116	0.336	5.55U	20.9	102	1.11U
SB-38-4-6.5		U	Fill	6.08U	21.6	3.04U	3.04U	9.68	5.54	18.1	0.117U	6.08U	17.2	15.8	1.22U
SB-38-6.5-9		U	Nat. Soil	6.72U	84.1	3.36U	3.36U	16.3	9.53	7.88	0.133U	6.72U	33.9	23.8	1.34U
SB-38-9-11.5		U	Nat. Soil	6.32U	91.5	3.16U	3.16U	23.5	11.3	6.33	0.119U	7.62	45.9	38.8	1.26U
SB-38-11.5-14		U	Nat. Soil	6.15U	83.4	3.08U	3.08U	24.6	11.9	7.47	0.122U	8.45	55.0	41.1	1.23U
SB-38-14-16.5		U	Nat. Soil	6.62U	63.2	3.31U	3.31U	17.7	10.1	6.62U	0.126U	8.24	32.8	35.1	1.32U
SB-38-16.5-19		U	Nat. Soil	6.65U	· 51.2	3.32U	3.32U	15.5	8.44	6.65U	0.131U	6.65U	32.3	27.7	1.33U
SB-38-19-21.5		S	Nat. Soil	6.51U	92.5	3.26U	3.26U	20.0	11.6	6.95	0.121U	6.88	36.6	40.2	1.3U
SB-38-21.5-24		S	Nat. Soil	6.35U	65.9	3.18U	3.18U	15.0	9.66	6.35U	0.118U	6.35U	34.6	27.0	1.27U
SB-38-24-26.5		S	Nat. Soil	6.64U	30.1	3.32U	3.32U	7.76	4.02	6.64U	0.124U	6.64U	15.9	13.3	1.33U
SB-38-26.5-29		S	Nat. Soil	6.53U	110	3.26U	3.26U	24.5	13.8	8.34	0.123U	8.28	48.1	42.5	1.31U
SB-38-29-31.5		S	Nat. Soil	6.92U	155	3.46U	3:46U	36.3	23.1	13.6	0.124U	11.1	68.4	57.6	1.38U
SB-38-31.5-34		S	Nat. Soil	6.84U	155	3.42U	3.42U	35.3	22.1	14.7	0.125U	10.3	71.9	50.8	1.37U
SB-38-34-36		S	Nat. Soil	5.96U	169	2.98U	2.98U	41.4	23.4	15.0	0.136U	15.9	78.3	60.7	0.991U
SB-38-36-38		S	Nat. Soil	6.27U	147	3.14U	3.14U	39.4	19.5	14.6	0.126U	12.1	75.0	46.9	1.2U
L	L		·I					· · · · · · · · · · · · · · · · · · ·		<u>,</u>				,	

15 of 17

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

UBL - Fill Material	Saturated/Unsaturated	Unit	Arsenic 7.05	Barium 115	Beryllium	Cadmium	Chromium 28.7	Copper 43.4	د عم 204	Mercury 0.541	Nickel 14,4	Vanadium	N 5 257	T-Cyanide
UBL - Nat. Soils			DL	275	DL	DL	52.8	35.7	26.5	DL	29.7	120	80.3	DL
SB-38B-0-2	U	Fill	4.8U	53.8	2.4U	2.4U	10.3	11.6	59.1	0.132	4.80	23.8	65.2	0.971U
DUP041301A		Fill	5.41U	52.9	2.70	2.7U	11.2	11.0	72.6	0.156	5.41U	23.6	69.5	0.915U
SB-38B-2-4	Ū	Fill	4.89U	69.9	2.44U	2.44U	10.2	11.5	164	0.318	4.89U	20.3	145	0.749U
SB-38B-4-6	U	Fili	4:1U	59.4	2.05U	2.05U	11.6	12.3	77.9	0.188	14.4	20.4	76.6	0.881U
SB-38B-6-8	U	Fill	4.54U	63.3	2.27U	2.27U	11.6	21.1	65.9	0.385	4.54U	50.1	62.4	0.678U
SB-38B-8-10	U	Fill ·	4.26U	52.8	2.13U	2.13U	16.0	17.1	73.2	0.329	6.05	19.6	61.7	0.795U
SB-38B-10-12	Ū	Fill	4.27U	49.7	2.13U	2.13U	9.43	11.8	75.7	0.293	4.27U	19.0	64.1	0.801U
SB-39-0.5-2	U	Fill	6.3U	53.6	3.15U	3.15U	6.34	44.5	8.97	0.12U	6.3U	39.0	20.1	1.01U
SB-39-4-8	Ŭ	Fill	4.98U	58.0	2.49U	2.49U	12.8	39.8	68.0	0.262	5.70	30.4	32.9	0.958U
SB-39-8-12.5	U	Fill	5.17U	42.3	2.59U	2.59U	14.7	27.1	23.1	0.191	5.17U	34.1	21.6	1.03U
SB-40-0.5-2	U	Fill	. 5.92U	51.2	2.96U	2.96U	. 10.2	18.3	25.7	0.185	5.92U	46.8	43.3	1.06U
SB-40-2-4	U	Fill	5.58U	83.7	2.79U	2.79U	11.8	10.5	135	0.402	5.58U	26.9	136	1.15U
SB-40-16-20	U	Fill	5.03U	74.0	2.51U	2.51U	5.83	13.4	140	0.498	5.03U	12.4	105	1.03U
SB-40-24-28	S	Fill	4.27U	53.9	2.13U	2.13U	8.94	6.36	17.2	0.0996	5.80	13.7	24.0	0.985U
SB-40-40-44	S	Nat. Soil	6.52U	119	3.26U	3.26U	27.0	13.7	7.16	0.118U	10.0		47.6	0.985U
DUP032001A	S	Nat. Soil	6.45U	104	3.23U	3.23U	24.1	14.2	6.82	0.127U	8.93	45.0	43.1	0.889U
SB-40-56-58	S	Nat. Soil	6.27U	104	3.14U	3.14U	31.3	16.6	10.3	0.108U	10.4	58.9	44.9	0.897U
SB-41-0-2	U	Fill	5.56U	92.0	2.78U	2.78U	12.0	35.2	11.2	0.101U	6.82	59,8	48.5	1.08U
SB-41-2-4	U	Fill	4.75U	63.2	2.37U	2.37U	11.3	12.9	7.25	0.101U	5.45	43.6	37.3	0.878U
SB-41-19-24		Fill	4.97U	279	2.49U	2.49U	10.8	9.66	166	0.228	4.97U	18.5	219	0.961U
SB-41-24-29	S	Fill	6.39U	212	3.19U	3.19U	13.0	9.02	484	1.33	6.39Ú	18.6	84.4	0.998U
SB-41-54-59	S	Nat. Soil	5.78U	114	2.89U	2.89U	31.3	17.3	10.4	0.125U	10.8	58.1	46.3	1.090
SB-43-2-4	U	Fill	3.79U	69.2	1.9U	1.9U	7.01	7.78	166	0.242	3.79U	14	96.9	0.854U
SB-43-4-8	U.	Fill	2.98U	70.4	1.49U	1.49U	14.5	11.7	170	0.274	3.1	18.6	124	0.928U
SB-43-8-12	U	Fill	3.86U	126	1.93U	1.93U	9.11	9.22	99.2	0.139	3.86U	28	71.2	1.03U
SB-43-12-16	U	Fill	4.14U	78.6	2.07U	2.07U	16.7	12	113	0.253	4.91	24.6	86.8	0.971U
SB-43-16-20	U [.]	Fill	3.07U	55.9	1.54U	1.54U	13.90	9.16	51.3	0.134U	3.86	25.3	55.7	1.09U

SOIL SAMPLES - COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/ WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER KILOGRAM (mg/kg)

	•													
	Saturated/Unsaturated	Unit	Arsenic	Barlum	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	T-Cyanide
UBL - Fill Material	-		7.05	115	DL	DL	28.7	43.4	204	0.541	14.4	58.9	257	DL
UBL - Nat. Soils			DL	275	DL	DL	52.8	35.7	26.5	· DL	29.7	120	80.3	DL
SB-43-20-24	Ų	Fill	4.19	. 89	1.79U	1.79U	17.80	11.1	379	0.184	3.58U	16.4	257	1.06U
SB-43-24-28	S	Fill	4.24U	37.1	2.12U	2.120	18.40	7.34	104	0.109U	4.24U	31	69.1	0.706U
SB-43-32-36	S	Fill	3.94U	67.7	1.97U	1.97U	12.6	6.3	66.9	0.114U	4.36	16.5	49.8	0.829U
SB-43-36-40	S	Nat. Soil	5.22U	158.0	2.61U	2.61U	31.3	13.8	12.8	0.123U	13	58.9	54.9	1.22U
SB-43-40-44	S	Nat. Soil	5.9U	197	2.95U	2.95U	51.5	26.4	• 17.9	0.130U	15.8	96.6	68.6	0.995U
SB-43-44-48	S	Nat. Soil	10.5U	- 338	5.27U	5.27U	87.2	45.5	26.5	0.237U	29.7	152	125	1.81U
SB-43-48-52	S	Nat. Soil	4.94U	204	2.47U	2.47U	44.7	25.6	16	0.132U	16.3	88.1	68.3	1.04U
SB-43-52-56	S	Nat. Soil	5.53U	219	2.77U	2.77U	41	24.2	15.6	0.131U	14.7	75	68	1.23U
SB-43-56-60	S	Nat. Soil	3.77U	116	1.88U	1.88U	29.3	17.7	9.9	0.138U	10.8	59.6	46	1.22U
SB-43-60-64	S	Nat. Soil	4.94U	50.4	2.47U	2.47U	15.7	7.39	4.94U	0.139U	5.89	28.4	24.9	1.13U
SB-44-0-2	U	Fill	NA	NA	NA	NA	NA	NA	12.1	NA	NA	NA	NA	NA
SB-44-5-7	U	Fill	NA	NA	NA	NA	NA	NA	25.3	NA	NA	NA	NA	NA
SB-44-10-12	U	Fill	NA	NA	NA	NA	NA	NA	181	NA	. NA	NA	NA	NA
SB-44-15-17	U	Nat. Soil	NA	NA	NA	NA	NA	NA	5.53U	NA	NA	NA	NA	NA
SB-44-20-21	U	Nat. Soil	NA	NA	NA	NA	NA	NA	5.54U	NA	NA	NA	NA	NA
SB-45-0-2	U	Fill	NA	NA	NA	NA	NA	NA	58.5	NA	NA	NA	NA	NA
SB-45-5-7	U	Fill	NA	NA	NA	NA	NA	NA	35.6	NA	NA	NA	NA	NA
SB-45-10-12	U	Fill	NA	NA	NA	NA	NA	NA	425	NA	NA.	NA	NA	NA
SB-45-15-17	U	Fill	NA	NA	NA	NA	NA	NA	1070	NA	NA	NA	NA	NA
SB-45-18.5-20	U	Fill	· NA	NA	NA	NA	NA	NA	38.6	NA	NA	NA	NA	NA
DUP082003A	U	Fill	NA	NA	NA	NA	NA	NA	37.8	NA	NA	NA	NA	NA
SB-46-0-2	U	Fill	NA	NA	NA	- NA	NA	NA	15.6	NA	NA	NA	NA	· NA
SB-46-0-2		Fill	NA	NA	NA	NA	NA	NA	70.6	NA	NA	NA	NA	NA
SB-46-0-2	υ	Fill	NA	NA	NA	. NA	NA	NA	34.5	NA	NĄ	NA	NA	NA
SB-46-0-2	U	Fill	NA	NA	NA	NA	NA	NA	20.0	NA	NA	NA	NA	NA
MW-6-34-39	s	Nat. Soil	6.43U	173	3.21U	3.21U	26.7	23.5	24.6	0.125U	10.6	68.3	54.5	1.19U
MW-6-44-49	s	Nat. Soil	6.36U	114	3.18U	3.18U	25.5	14.5	7.52	0.123U	11.6	49.5	46.9	1.14U

17 of 17

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

C-2 COMPLIANCE STATUS INVESTIGATION

VOLATILE ORGANIC COMPOUNDS GROUNDWATER SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER LITER (ug/L)

	Date	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Methyl-tert-butyl-ether	Toluene	Xylenes	Total Detected VOCs
UBL	H H	DL	בע	DL	DL	DL	DL	DL	- 1
MW-1	March-01	1.00	5U	- 5U	5U	5U	5U	50	9.1
	August-03	5U	5U	5U	5U		5U	50	0
MW-2	March-01	5U	5U	5U	5U	at (12 - 18.5	5U	50	8.5
	August-03	5U	5U	5U	5U	N/A	5U	5U	0
MW-3	March-01	5U	5U	5U	5U	5U	5U	50	0
Dup 031201A	March-01	- 5U	5U	5U	5U	5U	5U	50	0
	August-03	5U	5U	5U	5U	N/A	5Ú	50	0
Dup082003A	August-03	5U	5U	5U	5U	N/A	5U	50	0
MW-4	March-01	5U	5U	5U	5U	18	· 5U	50	18
	August-03	5U	5U	5U	5U	N/A	5U	5ປ	- 0
MW-5	March-01	5U	5U	5U	5Ū	5U	5U	5U	0
Dup032901A	March-01	5U	50	5U	5U	5U	5U	50	0
	August-03	5U	5U	5U	5U	N/A	5U	50	0
MW-6	March-01	5U	5U	5U	5U	5U	5U	50	0
	August-03	5U	5U	5U	. 5U	N/A	5U	5U	0
MW-7	August-03	· 5U	5U	5U	5U	N/A	50	5U	0

GROUNDWATER SAMPLES-COMPLIANCE STATUS INVESTIGATION

MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990

VALUES LISTED IN MICROGRAMS PER LITER (ug/L)

	Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Phenol	Total Detected SVOCs
UBL		DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	·
MW-1	March-01	100	10U	10U	10U	10U	10U	10U	100	10U	10U	10U		10U	100	10U	10U	10U	0
·	August-03	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U		10U	100	10U	10U	10U	0
MW-2	March-01	10U	10U	10U	. 10U	10U	10U	10U	100	10U	10U	10U	100	10U	100	10U	100	10U	0
	August-03	- 12	10U	10U		10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	100	_ 10U	10U	12
MW-3	March-01	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	100	100	10U	10U	· 0
Dup 031201A	March-01	·10U	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	100	_ 10U	100	10U	100	10U	0
	August-03	100	10U	10U	10U	10U	10U	10U	100	10U	10U	10U	10U	10U	100	100	100	10U	0
Dup082003A	August-03	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	10U	10U	10U	10U	o
MW-4	March-01	10U	10U	10U	100	10U	10U	10U	100	10U	10U	10U	10U	10Ü	10U	10U	100	10U	0
	August-03	10U	10U	10U	10U	10U	100	10U	10U	10U	100	10U	10U	10U	10U	10U	100	10U	o
MW-5	March-01	13	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10Ú	10U	10U	100	10U	13
Dup032901A	March-01	5 7 12	10U	10U	100	10U	100	10U	100	10U	100	10U	10U	10U	100	10U	100	10U	12
	August-03	8583 14	10U	10U	100	10U	100	10U	10U	10U	10U	10U	10U	10U	100	100	100	10U	14
MW-6	March-01	100	10U	10U	10U	10U	10U	10U	100	10U	100	10U	10U	10U	10U	10U	10U	10U	0
	August-03	100	10U	· 10U	10U	10U	.10U	10U	100	10U	10U	10U	10U	10U	100	10U	100	10U	0
MW-7	August-03	100	10U	10U	10U	10U	100	10U	10U	10U	10U	10Ú	10U	10U	10U	10U	10U	10U	0

GROUNDWATER SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER LITER (mg/L)

	Date	Arsenic	Barium	Beryllium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Vanadium	Zinc	T-Cyanide
UBL	f	DL	DL	DL	DL	DL	DL	DL	DL	DL	DL	0.0290	DL
MW-1	March-01	0.02U	0.02U	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.0290	0.01U
	August-03	0.02U	0.02U	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
MW-2	March-01	0.02U	0.102	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.0680
	August-03	0.02U	0.178	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.048
MW-3	March-01	0.02U	0.866	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
Dup 031201A	March-01	0.02Ú	- 0.867	0.005U	0.005U	0.01U	0.01U	0.01∪	0.0005U	0.02U	0.01U	0.02U	0.01U
	August-03	0.02U	0.699	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
Dup082003A	August-03	0,02U	0.692	0.005U	0.005U	0.010	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
MW-4	March-01	0.02U	0.329	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
	August-03	0.02U	- 0.389	0.005U	0.005 <u>U</u>	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
MW-5	March-01	0.02U	1.93	0.01U	0.01U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
Dup032901A	March-01	0.02U	1.90	0.01U	0.01U	0.01U	0.01U	- 0.01U	0.0005U	0.02U	0.01⊍	0.02U	0.01U
	August-03	0.02U	California and a second s	0.005U	0.005U	0.01U			0.0005U	0.02U	0.01U	0.02U	
MW-6	March-01	0.02U	0,167	0.005U	0.005U	0.01U	-		0.0005U	0.02U	0.01U	0.02U	
	August-03	0.02U	0.168	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U
MW-7	August-03	0.02U	0.328	0.005U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.01U	0.02U	0.01U

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

D-2 COMPLIANCE STATUS INVESTIGATION

Williams En A Subsidiary of Wil		Services, Inc.							BORING LOG
BORING NUM		S8-44	PAGE	1	OF	1 PROJECT NUM	IBER		1100-2990
PROJECT	Macon 2 M	GP			•	DRILLING CON	ITRACTO	R	Georgia Power Company
BORING LOCA	ATION						ATION		
DRILLING ME		HSA with conti	inuous sa	mpler		TOP OF CASIN ELEVATION	G		
DATE	8/20/03	START	7	30	FINISH	820	LO	GGER	Mike Dillon
			SAMPL	E		·····			SOIL DESCRIPTION/COMMENTS
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND	TIME	REC. %	OVM PEAK/ AVG. (ppm)	REMARKS	SYMBOLIC		NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, RIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY R CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL
.0		0-2	730				FILL		Asphalt 0-3' Sandy clay - light brown, fine sand, plastic, stiff, dry
	0-3.5			100%					
<u> </u>	- -		<u> </u>						
	-								3-3.5' Clayey sandy silt - dark yellowish orange, fine sand,
			· · ·						slightly cohesive, dry
5									3.5-6.5' Clayey silty sand - dark yellowish brown, very cohesive, medium sand, dry
	3.5-8.5	5-7	740	100%					
	1								
									6.5-8.5 Same as above; less clay content, no cohesiveness,
	-								
						• •			8.5-12' Gravelly silty sand - dusky yellowish brown, dry, gravel size brick, glass, fine sand, wood
10	8.5-13.5			80%					• • • • • • • • • • • • • • • • • • •
		. 10-12	750	[•				
	: 								, · · · ·
									_
							SAP		13.5-18.5' Clayey silty sand - saprolite - mottled gravish
. 15	1								orange and pale red, dry, relict foliation almost vertical friable
. 19	13.5-18.5		<u> </u>	95%		* · ·			
		15-17	800						· · ·
	-	· · ·		~					. –
									
_									18.5-21 Same as above; less friable, more cohesive, dry
20	18.5-21		1	95%					
	10.0-21	20-21	810	33%					
									Boring Termination 21' at bedrock
·	-	• •						L	·
l								· · ·	
1									
	1.	,							. –
25	I	t	<u> </u>	Ll			<u> </u>		

(Continued on next page if over 25 feet deep)

A Subsidiary of Williams Group Intern BORING NUMBER PROJECT Macon 2 M		SB-45 PAGE 1				1 PROJECT NU	MBER	BORING LOG 1100-2990			
						DRILLING CO	NTRACTO	DR Georgia Power Company			
ORING LOCA	TION					GROUND ELE	VATION				
RILLING MET		HSA with conti	nuous sa	impler		TOP OF CASI	٩G	·			
		START 830			FINISH	ELEVATION 920	10				
DATE		SAMPLE						GGER Mike Dillon SOIL DESCRIPTION/COMMENTS			
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	REMARKS	LOG SYMBOLIC	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, DISTRIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DE OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USC GROUP SYMBOL			
0	0-3.5	0-2	830	100%			FILL	Asphait 0-3.5' Sandy clay - light brown, plastic, medium sand, stiff, dry			
<u> </u>											
5	3.5-8.5			80%				3.5-5' Same as above 5-5.5' Clayey sand - dusky yellowish brown, very cohesive,			
	5.5-6.0	5-7	. 840	0076				medium sand, dry 5.5-6.5' Same as above; pale yellowish brown 6.5-7.5' Sandy clay - medium light gray, very fine sand, plastic, 3" brick fragment at base			
		-			•						
								8.5-13.5' Clayey gravelly sand - dusky yellowish brown, abundant organic material, wood, sticks, glass, brick fragments			
	8.5-13.5	_ 10-12	850	95%							
								13.5-17.5' Same as above - abundant particle board			
	13.5-18.5	15-17	900	80%							
					-						
20	• -	18.5-20	910					18.5-23.5' Clayey sand - dusky yellowish green, medium sand, slightly cohesive, wet at 20' bgs			
	18.5-23.5	· · ·		80%			-	L			
						· .					
		1				1		Boring Termination 23.5'			

ALC: NOT

Williams Env A Subsidiary of Will		Services, inc.								BORING LOG			
BORING NUM		SB-46	PAGE	1	OF	<u>1</u> PI	ROJECT NUM	BER		1100-2990			
PROJECT	Macon 2 M	GP				D	RILLING CON	TRACTO	R	Georgia Power Company			
BORING LOCA	TION					G	ROUND ELEV	ATION					
DRILLING METHOD HSA with continuous sampler AND EQUIPMENT					OP OF CASIN	G							
DATE				FINISH	1040 LOGGER				Mike Dillon				
			SAMPL	E					ļ	SOIL DESCRIPTION/COMMENTS			
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	REN	IARKS	SYMBOLIC SYMBOLIC		NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, RIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY R CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL			
0	0-3.5	0-2	950	100%				FILL		Asphalt 0-0.5' Gravelly silty sand - dusky yellowish brown, brick frags., dry, very fine sand, slightly cohesive, glass 0.5-6' Same as above; light brown			
5	3.5-8.5	5-7	10000	95%						6-8.5' Sand - pale brown, dry, medium, some gravel sized brick fragments			
10	8.5-13.5	. 10-12	1010	95%						8.5-12' Gravelly clayey fine sand - moderate yellowish brown, slightly cohesive, minor amount of rounded river gravel (quartz) 12-13.5' Gravelly sand clay - dusky yellowish brown, gravel size rocks & brick fragments, dry, plastic, stiff			
15	13.5-18.5	15-17	1020	80%		· ,				13.5-18.5' 3" brick at top - Clayey sandy silt - grayish orange, dry, very fine sand, slightly cohesive, glass			
20	18.5-23.5			25%			- -	\bigtriangledown		1.25' of Gravelly sand - dusky yellowish brown, gravel			
25			<u> </u>	L					·	· · · · · · · · · · · · · · · · · · ·			

(Continued on next page if over 25 feet deep)

٠.

	IVIFONRI ONTA Name Group Interne	i Seivices, Inc. adonal, Inc.								BORING LOG
BORING NUN	IBER	MW-07	PAGE	1	OF	PR	DJECT NUN	IBER		1100-2990
PROJECT	Macon 2 N	IGP .				DRI	LLING CON	ITRACTO	R	Georgia Power Company
BORING LOC	ATION					GR	OUND ELEV	ATION		
DRILLING ME		HSA			.	•	P OF CASIN	G		
DATE	8/19/03	START	1	400	FINISH			. LO	GGER	Mike Dillon
			SAMPLE					[SOIL DESCRIPTION/COMMENTS
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	REMA	RKS	SYMBOLIC	DISTR	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, NBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY R CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL
0						Logged from	Cuttings	FILL	1	Asphalt
										Clay - light brown, cohesive, plastic, dry Gravelly sand - moderate yellowish brown, dry, fine sand, medium size gravel
									-	· · · · · ·
								ŀ	-	-
	-									·
·	4								ļ.	
	-									·
										Same as above; slight cohesiveness, slightly moist
10					. :					
	1									Gravelly clay - plastic, moderate brown, small gravel
	- · ·								-	· · · · -
	-								⊢	· _
	-								-	-
	-								L.	Sandy clay - dark yellowish brown, stiff, medium sand,
15	-					•				plastic, dry
	<u> </u>	ſ	ĺ		•		•	Í	L	
									L	
		ι.								Clayey fine sand - dusky yellowish brown, cohesive, dry
	1.									-
	- ·								-	- · · -
20	-					· ,				· · · · · · · · · · · · · · · · · · ·
—	-								<u> </u>	
· · · · · · · · · · · · · · · · · · ·	4							$ert \sim$	 	Gravelly sandy clay - dusky yellowish brown, gravel rock &
_	4								L	brick fragments, glass, wet
<u> </u>										· · · · · · · · · · · · · · · · · · ·
25										_
I			L	1	L			L	<u> </u>	· · · · · · · · · · · · · · · · · · ·

• •

7

(Continued on next page if over 25 feet deep)

.

numinen nu next hafte u over zo iee

.

"Advance"

					•					,			
William s Env A Subsidiary of Willia		i Services, inc.								BORING LOG			
			1	OF _ 2 PROJECT NUMBER					1100-2990				
PROJECT Macon 2 MGP			_		DRILLING COM	ITRACTO	R	Georgia Power Company					
BORING LOCA					-		GROUND ELE						
DRILLING METHOD HSA					TOP OF CASI		NG		· · · · · · · · · · · · · · · · · · ·				
	8/19/03	START	· 1.	400	FINISH		1630	LO	GGER	Mike Dillon			
		-	SAMPL	Ē	-			-		SOIL DESCRIPTION/COMMENTS			
DEPTH BELOW GROUND SURFACE (feet)	SAMPLE INTERVAL	TYPE AND NUMBER	TIME	REC. %	OVM PEAK/ AVG. (ppm)	F	REMARKS	SYMBOLIC	DISTF OI	NAME, GRADATION OR PLASTICITY, PARTICLE SIZE, RIBUTION, COLOR, MOISTURE CONTENT, RELATIVE DENSITY R CONSISTENCY, SOIL STRUCTURE, MINERALOGY, USCS GROUP SYMBOL			
25						Logged	from Cuttings			Same as above; moderate yellowish brown, rock && brick fragments			
								ľ	-				
-									-	· <u> </u>			
										-			
30										Clayey sand - dusky yellowish brown, very saturated,			
									L .				
					· .					.			
										Boring Termination 33.5'			
35	-									<u>.</u>			
										·			
										_			
·										—			
· · ·										_			
40				1						<u></u>			
					-				-	• • • •			
										. –			
·										-			
									L				
45													
										_			
										-			
1										. –			
		· · · .							F				
50		.t	L	1		L		I	<u> </u>	—			

.

- Hacepart

.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX F QUALITY ASSURANCE / QUALITY CONTROL SAMPLES

COLUMN AND ADD

QA/QC SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MICROGRAMS PER LITER (ug/L)

	Sample Collected From	Benzene	Carbon Disulfide	Ethylbenzene	Methylene Chloride	Methyl-tert-butyl-ether	Toluene	Xylenes	Total Detected VOCs
FB030101A	NA	50	5U	50	50	<u>N/A</u>	5U	5U	0
FB030201A	NA	5U	5U	5U	10U	N/A	5U	5U	0
FB030501A	NA	5U	50	5U	10U	N/A	5U	5U	0
FB030601A	NA	5U	5U	5U	10U	N/A	5U	5U	
FB030701A	NA	5U	5U	5U	10U	N/A	5U	5U	0
FB031201A	NA	5U	50	50	5U	5U	5U	5U	. 0
FB031401A	NA	5U	, 50	<u>.</u> 5U	10U	N/A	- 5U	5U	0
FB032001A	NA	5U	50	5 <u>U</u>	10U	N/A	5U	5U	0
FB032101A	NA	5U	5U	5U	10U	5U	5U	50	0
FB032201A	NA	5U	5U	5U	100	N/A	5U	5U	. 0
FB032601A	NA	5U	5U	5U	100	N/A	5U	5U	0
FB041201A	NA	5U	50	5U	10U	5U	5U	5U	0
FB041201B	NA .	5U	5U	5U	10U	5U	5U	5U	. 0
FB041301A	NA ·	5U	5U	5U	10U	5U	5U	5U	0
RB030101A	Liner	5U	5U	5U	·10U	N/A	5U	. 50	0
RB030201A	Liner	5U	5U	5U	.⊬ <u>,</u> 10U	N/A	5U	5U	0
RB030501A	Liner	5U	5U	5U	10U	N/A	5U	5U	0
RB030601A	Liner	5U	5U	5U	10U	N/A	5U	50	0
RB030701A	Liner	5U	5U	5U	10U	N/A	5U	5U	0
RB031401A	Liner	5U	5U	5Ú	10U	N/A	5U	5U	- 0
RB032001A	Split spoon	5U	5U	5U	10U	N/A	50	5U	0
RB032101A	Liner	5U	5U	5U	10U	N/A	5U	5U	0
RB032201A	Liner	5U	50	50	10U	50	50	5U	0
RB032601A	Split spoon	5U	5U	5U	10U	N/A	5U	5U	0
RB032901A	Peristaltic pump and tubing	50	50	. 50	10U	N/A	5U	50	0
RB041201A	Liner	5U	50	50	10U	5U	5U	50	0
RB041201B	Gloves	5U	50	5U	10U	5U	5U	5U	0
RB041301A	Liner	5U	5U	5U	. 10U	5U	5U	5U	0
RB082103	Tubing	5U	5U	5U	5U	N/A	5U	5U	0
TB030101A	NA	5U	5U	5U	5U	N/A	5U	5U	0
TB030201A	NA	5U	5U	5U	10U	N/A	5U	50	0
TB030701A	NA	5U	50	- 5U	10U	N/A	5U	5U	0
TB031601A	NA	5U	5U	5U	10U	N/A	50	5U	0
TB032001A	NA	5U	5U	5U	10U	N/A	5U	5U	· 0
TB032301A	NA	5U	5U	² 5U	10U	5U	5U	5U	0
TB032301B	NA	5U	5U	5U	10U	N/A	5U	5U	0
TB032901A	NA	5U	50	5U	10U	5U	5U	50	0
TB033001A	NA	5U	5U	5U	5U	<u>5U</u>	50	5U	0
TB040301A	NA	5U	5U	5U	5U	5U	5Ú	5U	0
TB041301A	NA	5U	5U	5U	10U	5U	50	5U	0
TB041301B	NA	5U	5U	5U	10U	5U	5U	. 5U	0
TB041301C	NA	5U	5U	5U	10U	5U	50	5U	0
TB082103	NA Loading	5U	50	50	50	N/A	- 5U	5U	0
TAP WATER	dock spicket	5U	. 5U	5U	5U	N/A	5U	5U	0

NA - Not Available

N/A - Not Analyzed

SEMI-VOLATILE ORGANIC COMPOUNDS QA/QC SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MIGROGRAMS PER LITER (ug/L)

	Sample Collected From	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol	Pyrene	Total Detected SVOCs
RB030101A	Liner	100	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	10U	10U	100	0
RB030201A	Liner	10U	10U	10U	100	10U	100	10U	10U	10U	10U	100	10U	10U	100	100	100	10U	0
RB030501A	Liner	10U	10U	100	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	0
RB030601A	Liner	10U	10U	10U	10U	10U	10U	10U	10U	10U	-10U	10U	10U	100	10U	10U	10U	10U	0
RB030701A	Liner	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	10U	10U	- 10U	10U	10U	0
RB031401A	Liner	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10Ü	10U	10U	10U	0
RB032001A	Split spoon	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	100	10U	10U	10Ü	10U	0
RB032101A	Liner	100	10U	100	10U	10U	100	10U	100	10U	10U	10U	10U	100	10U	10U	10U	10U	0
RB032201A	Liner	100	10U	10U	10U	10U	100	100	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	0
RB032601A	Split spoon	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	10U	10U	10U	10U	10U	10U	10U	0
RB032901A	Peristaltic pump and tubing	10U	10U	10U	10U	10U	10U	10U	10U	10Ú	·10U	10U	10U	10U	10U	10U	10U	10U	0
RB041201A	Liner	100	10U	10U	10U	10U	100	10U	10U	10U	10U	10U	10U	100	100	100	100	10U	0
RB041201B	Gloves	10U	10U	10U	1'0U	10U	10U	10U	10U	10U	10U	10U	10U	100	10U	10U	10U	10U	0
RB041301A	Líner	10U	10U	10U	10U	10U	100	10U	10U	10U	10U	10U	10U	10U	10Ü	10U	. 10U	10U	0
RB082103	Tubing	100	10U	10U	10U	10U	100	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	10U	0
TAP WATER	Loading dock spicket	100	10U	10U	10U	100	10U	10U	100	10U	10U	10U	10U	10U	10U	10U	10U	10U	0

N/A - Not Analyzed

i,

2 of 3

INORGANIC COMPOUNDS

QA/QC SAMPLES-COMPLIANCE STATUS INVESTIGATION MACON 2 FORMER MGP FACILITY/WILLIAMS PROJECT NO. 1100-2990 VALUES LISTED IN MILLIGRAMS PER LITER (mg/L)

	Sample Collected From	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Vanadium	T-Cyanide
RB030101A	Liner	0.02U	Second states and second stat	0.005U	0.01U	·0.01U	L ·	0.0005U	0.02U	0.02U	0.01U	0.01U
RB030201A	Liner	0.02U	0,107	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB030501A	Liner	0.02U	Are 0.109	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB030601A	Liner	0.02U	·····································	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.010	0.01U
RB030701A	Liner	0.02U	0.02U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB031401A	Liner	0.02U	0.02U	0.005U	0.01U	0:0106	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB032001A	Split spoon	0.02U	0.02⊍	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB032101A	Liner	0.02U	0.02U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U)	0.01U	0.01U
RB032201A	Liner	0.02U	0.02U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.010	0.01U
RB032601A	Split spoon	0.02U	0.02U	0.005U	0,0196	0.01U	0,0254	0.0005U	0.02U	0.02U	0.01U	0.01U
	Peristaltic pump											
RB032901A	and tubing	0.02U	0.02U	0.01U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB041201A	Liner	0.02U	0.02U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB041201B	Gloves	0.02U	0.02U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB041301A	Liner	0.02U	0.02U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
RB082103	Liner	0.02U	0.02U	0.005U	0.01U	0.01U	0.01U	0.0005U	0.02U	0.02U	0.01U	0.01U
TAP WATER	Loading dock spicket	0.02U	0.0216	0:005U	0.01U	0,0258	. 0.01U	0.0005U	0.02U	0.0585	0.01U	0.01U

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

G-2 WILLIAMS LABORATORY QA/QC REPORTS

Analytical Data Validation Report

.

Client: Georgia Power Company
Project Location: Macon, Georgia
Project Number: 1100-2990
Laboratory: Analytical Environmental Services, Inc.
Date of Sample Collection: August 20, 2003
Samples Collected By:Mike Dillon
Date Samples Received By Laboratory: August 21, 2003
Laboratory Remarks: None
Laboratory Code: 0308662

Analytical Data Validation Report ContinuedProject Number:1100-2990Laboratory Code:0308662

Sample ID#	SB-44-0-2, SB-44-5-7, SB-44-10-12, SB-44-15-17, SB-44-20-21, SB-45-0-2, SB-
	45-5-7, SB-45-10-12, SB-45-15-17, SB-45-18.5-20, SB-46-0-2, SB-46-5-7, SB-46-
	10-12, SB-46-15-17, DUP082003A, DRUM-1

Analysis: Total Lead
Method: SW6010B
Matrix: Soil
Preservative: Ice for soil
Holding Time: 6 months
Date of Collection: August 20, 2003
Date of Analysis: August 25, 2003
Samples Analyzed Within Holding Time: Yes
Laboratory Method Blank Less Than Laboratory Reporting Limits: Yes
Surrogate Spike Recovery Within Quality Control Limits: N/A
Laboratory Control Sample (LCS) Percent Recovery Within Advisory Limits: Yes
Relative Percent Difference (RPD) Between Field Duplicate Sample and Laboratory Duplicate Sample Below Quality Control Limits: Yes
Matrix Spike Percent Recovery Within Advisory Limits: Yes
Trip Blank Result Less Than Laboratory Reporting Limits: N/A
Equipment Blank Result Less Than Laboratory Reporting Limits: No equipment blank collected.
Comparison of Duplicate Results: A duplicate sample of SB-45-18.5-20 was collected and identified as DUP082003A. A comparison of the results is shown in the table below.

Comparison of Sample and Duplicate Results (mg/kg-dry)

Parameter	SB-45-18.5-20	DUP082003A
Total Lead	38.6	37.8

Analytical Data Validation Report

Client: Georgia Power Company
Project Location: Macon, Georgia
Project Number: 1100-2990
Laboratory: Analytical Environmental Services, Inc.
Date of Sample Collection: August 20 & 21, 2003
Samples Collected By: Pete Robinson
Date Samples Received By Laboratory: August 21, 2003
Laboratory Remarks: None
Laboratory Code: 0308663

Analytical Data Validation Report ContinuedProject Number:1100-2990Laboratory Code:0308663

Sample ID#	MW-5, MW-2, MW-3,	MW-4, MW-7, MW-6, MW	-1, DUP082003, RB082103						
Analysis:	Total Metals		'						
Method: SW	Alethod:SW6020 for all metals except mercury, 7470A for mercury								
Matrix: Wat	er								
Preservative: Nitric Acid and Ice									
Holding Time: _6 months for all metals except mercury, 28 days for mercury									
Date of Collection: August 20, 2003									
Date of Analysis:August 25 & 26, 2003									
Samples Analyzed Within Holding Time: Yes									
Laboratory M	ethod Blank Less Tha	n Laboratory Reporting	Limits: Yes						
Surrogate Spi	ke Recovery Within G	uality Control Limits:	N/A						
Laboratory Co Advisory Limi		Percent Recovery Within	Yes, except where noted in the QC Report.						
	aboratory Duplicate S	Between Field Duplicate Sample Below Quality	Yes						
Matrix Spike F	Percent Recovery With	nin Advisory Limits:	Yes, except where noted in the QC Report and the Case Narrative						
Trip Blank Re	sult Less Than Labor	atory Reporting Limits:	N/A						
Equipment Blank Result Less Than Laboratory Reporting Limits: Yes									
Comparison o	f Duplicate Results:	as DUP082003. All of the duplicate were below the exception of barium.	W-3 was collected and identified the results for both the sample and / laboratory detection limits with It was detected at 699 μg/l in the 22 μg/l in the duplicate sample.						

. . .

Analytical Data Validation Report Continued Project Number: <u>1100-2990</u> Laboratory Code: <u>0308663</u>

Sample ID# _	MW-5, MW-2, MW-3, MW-4, MW-7, MW-6, MW-1, DUP082003, RB082103							
Analysis:	Semivolatile Organic Compounds							
Method: SW8	8270C							
Matrix: Wate	۰ ۲							
Preservative:	lce							
Holding Time:	14 days until extraction, 40 days after extraction							
Date of Collect	Date of Collection: _ August 20, 2003							
Date of Analys	is: August 22, 23, and 25, 2003							
Samples Analy	zed Within Holding Time: Yes							
Laboratory Me	thod Blank Less Than Laboratory Reporting Limits: Yes							
Surrogate Spik	e Recovery Within Quality Control Limits: Yes							
Laboratory Cor	ntrol Sample (LCS) Percent Recovery Within Advisory Limits: Yes							
Relative Percer Quality Control	nt Difference (RPD) Between MS and MSD Below I Limits: Yes							
	Matrix Spike (MS) and Matrix Spike Duplicate (MSD) Percent Recoveries Within Advisory Limits: Yes							
Trip Blank Result Less Than Laboratory Reporting Limits: N/A								
Equipment Blank Result Less Than Laboratory Reporting Limits: Yes								
Comparison of	Duplicate Results: A duplicate sample of MW-3 was collected and identified as DUP082003. All of the results for both the sample and the duplicate were below laboratory detection limits.							

Analytical Data ValidationReport ContinuedProject Number:1100-2990Laboratory Code:0308663

Sample ID#	MW-5, MW-2, MW-3, TB082103	MW-4, MW-7, MW-6, MW-1, DUP082003, RB082103,
Analysis:	Volatile Organic Com	pounds
Method: _SV	/8260B	
Matrix: Wat	er	
Preservative:	Hydrochloric Acid a	nd Ice
Holding Time	: <u>14 days</u>	
Date of Collec	tion: <u>August 20, 200</u>	3
Date of Analy	sis: August 22, and	25, 2003
Samples Anal	yzed Within Holding	Time: Yes
Laboratory Mo	ethod Blank Less Tha	n Laboratory Reporting Limits: Yes
Surrogate Spi	ke Recovery Within C	uality Control Limits: Yes
Laboratory Co	ontrol Sample (LCS) F	ercent Recovery Within Advisory Limits: Yes
Relative Perce Control Limits		Between MS and MSD Below Quality Yes
	MS) and Matrix Spike veries Within Advisor	
Trip Blank Re	sult Less Than Labor	atory Reporting Limits: Yes
Equipment Bla	ank Result Less Than	Laboratory Reporting Limits: Yes
Comparison o	f Duplicate Results:	A duplicate sample of MW-3 was collected and identified as DUP082003. All of the results for both the sample and the duplicate were below laboratory detection limits.

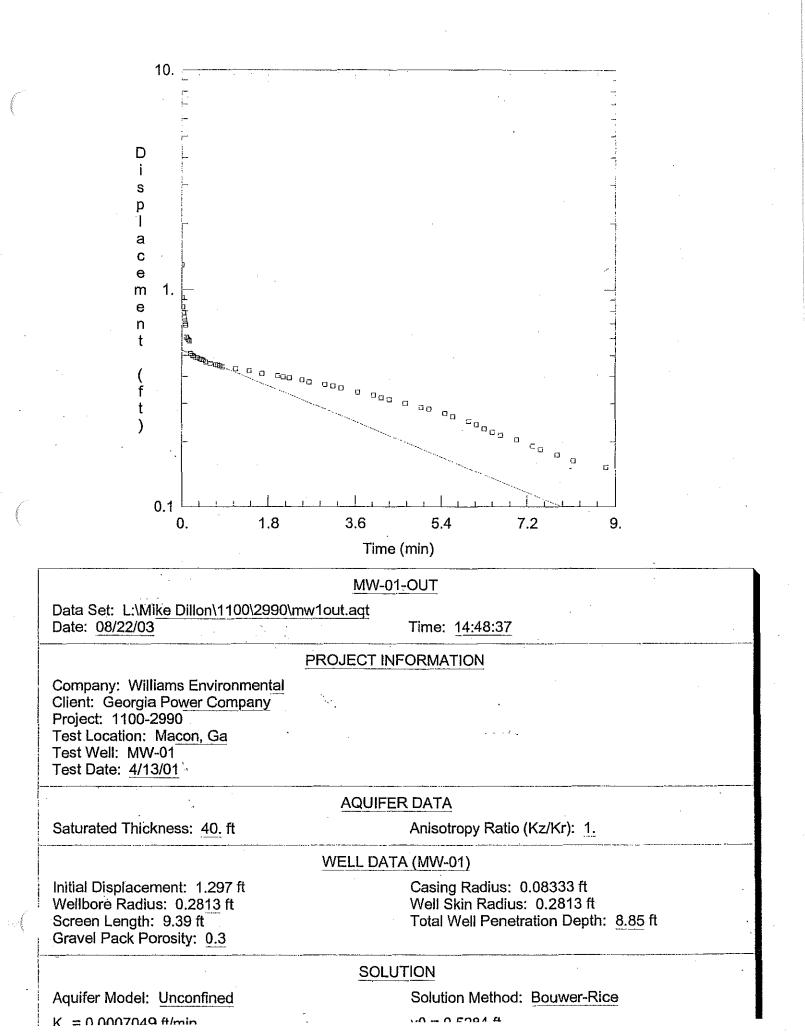
Analytical Data Validation Report ContinuedProject Number:1100-2990Laboratory Code:0308663

Sample ID#MW-5, MW-2, MW-3, MW-4, MW-7, MW-6, MW-1, DUP082003, RB082103,							
Analysis: Cyanide							
Method: SW9014							
Matrix: Water							
Preservative: Sodium Hydroxide and Ice							
Holding Time: 14 days							
Date of Collection: August 20, 2003							
Date of Analysis: August 21, 2003							
Samples Analyzed Within Holding Time: Yes							
Laboratory Method Blank Less Than Laboratory Reporting Limits: Yes							
Surrogate Spike Recovery Within Quality Control Limits: N/A							
Laboratory Control Sample (LCS) Percent Recovery Within Advisory Limits: Yes							
Relative Percent Difference (RPD) Between Field Duplicate Sample and Laboratory Duplicate Sample Below Quality Control Limits: Yes							
Matrix Spike Percent Recovery Within Advisory Limits: Yes							
Trip Blank Result Less Than Laboratory Reporting Limits: N/A							
Equipment Blank Result Less Than Laboratory Reporting Limits: Yes							
Comparison of Duplicate Results: A duplicate sample of MW-3 was collected and identified as DUP082003. All of the results for both the sample and							

as DUP082003. All of the results for both the sample ar the duplicate were below laboratory detection limits.

Analytical Data Validation Report

Client: Georgia Power Company	
Project Location: Macon, Georgia	
Project Number: 1100-2990	
Laboratory: Analytical Environmental Services, Inc.	
Date of Sample Collection: August 20, 2003	
Samples Collected By: Mike Dillon	
Date Samples Received By Laboratory: August 21, 2003	
Laboratory Remarks: None	
Laboratory Code: 0308828	


Analytical Data Validation Report Continued Project Number: <u>1100-2990</u> Laboratory Code: 0308828

Sample ID# SB-45-15-17
Analysis: ICP Metals, SPLP
Method: SW1312/6010B
Matrix: Soil
Preservative: Ice
Holding Time: 14 days
Date of Collection: August 20, 2003
Date of Analysis: August 27, 2003
Samples Analyzed Within Holding Time: Yes
Laboratory Method Blank Less Than Laboratory Reporting Limits: Yes
Surrogate Spike Recovery Within Quality Control Limits: N/A
Laboratory Control Sample (LCS) Percent Recovery Within Advisory Limits: Yes
Relative Percent Difference (RPD) for Laboratory Duplicate Sample Below Quality Control Limits: Yes
Matrix Spike Percent Recovery Within Advisory Limits: Yes
Trip Blank Result Less Than Laboratory Reporting Limits: N/A
Equipment Blank Result Less Than Laboratory Reporting Limits: No equipment blank collected.
Comparison of Duplicate Results: No duplicate sample collected.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX I SLUG TEST DATA

.

Data Set: L:\Mike Dillon\1100\2990\mw1out.aqt Title: MW-01-OUT Date: 08/22/03 Time: 14:48:43

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-01

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 1.297 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.2813 ft Well Skin Radius: 0.2813 ft Screen Length: 9.39 ft Total Well Penetration Depth: 8.85 ft Gravel Pack Porosity: 0.3

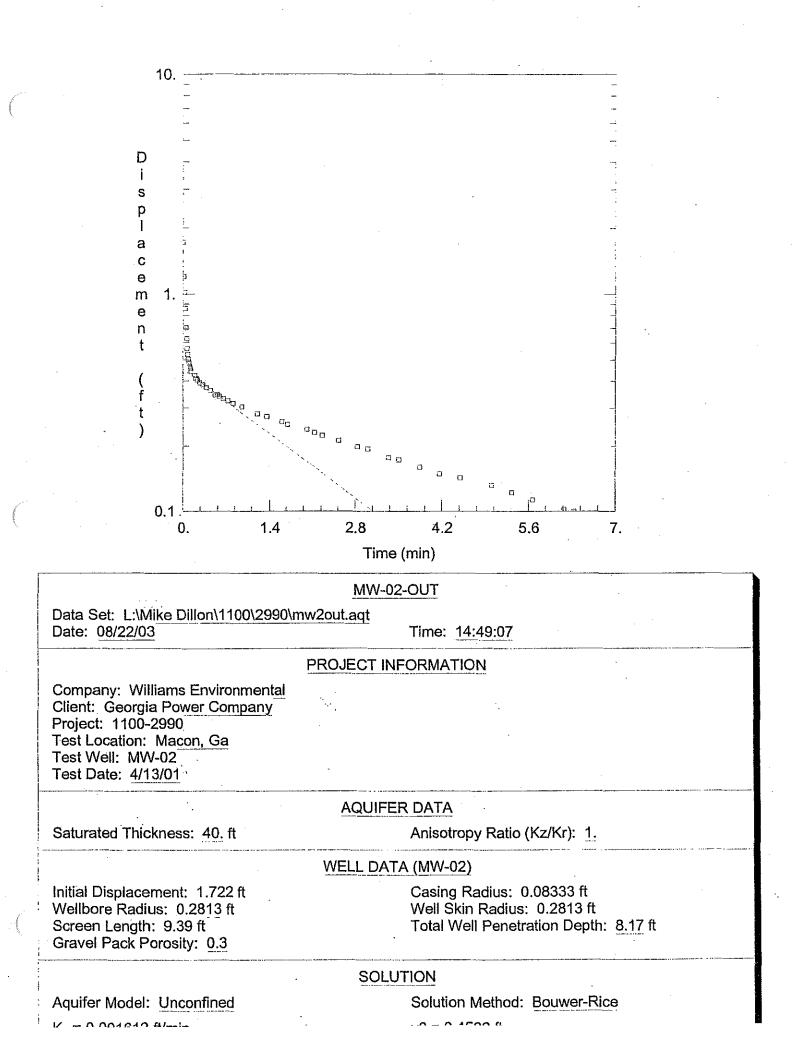
No. of observations: 66

		Observation Da			
	acement (ft) Tim	e (min) Displa		me (min) Displa	acement (ft)
-0.0001		.2829		3.149	0.36
0.0112 0.0224			0.488 0.486		0.353 0.338
0.0335			0.480		0.328
0.0447		.3989	0.48		0.319
0.0559			0.478		0.313
0.067	0.702 0	.4472	0.475	4.649	0.3
0.0782			0.467		0.287
0.0894		.5957			0.283
0.1005			0.454	5.483	0.27
0.1117			0.452		0.261
0.1229					0.249
0.134			0.443	6.149	0.24 0.229
0.1452 0.1564			0.433 0.424		0.229
0.1675			0.413		0.214
0.1787			0.403		0.204
0.1899			0.398		0.191
0.2127			0.394		0.184
0.2252			0.386		0.174
0.2384		2.659	0.377		0.163
0.2524	0.495 2	2.983	0.366	8.816	0.152

SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS


Estimated Parameters

1

Parameter Estimate K 0.0007049 ft/min y0 0.5284 ft

2

14:48:43

Data Set: L:\Mike Dillon\1100\2990\mw2out.aqt Title: MW-02-OUT Date: 08/22/03 Time: 14:49:12

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-02

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

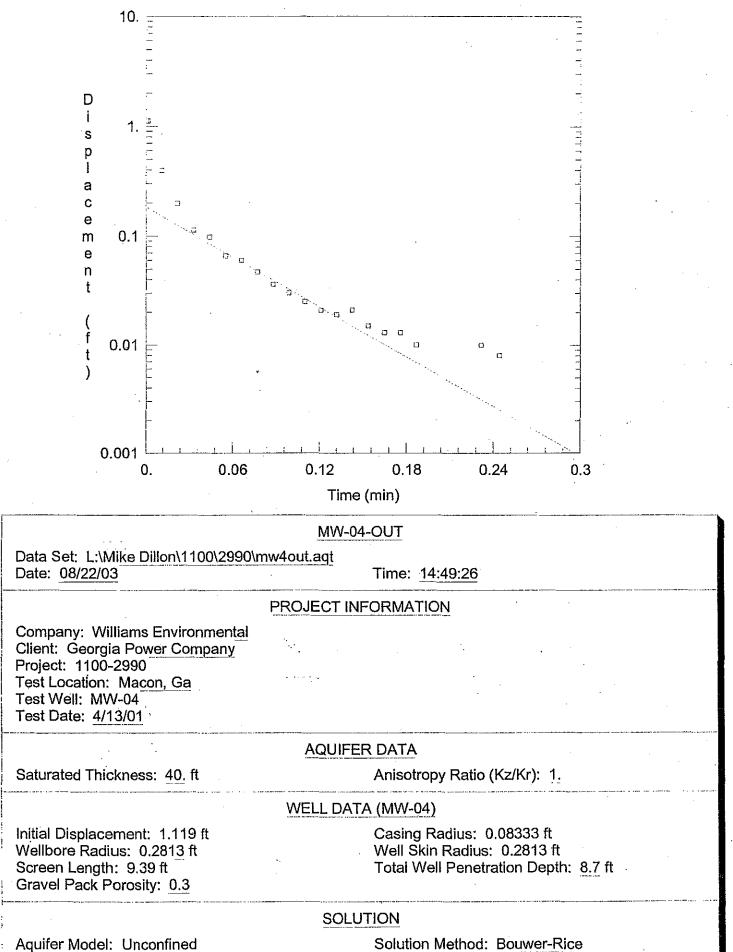
SLUG TEST WELL DATA

Initial Displacement: 1.722 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.2813 ft Well Skin Radius: 0.2813 ft Screen Length: 9.39 ft Total Well Penetration Depth: 8.17 ft Gravel Pack Porosity: 0.3

No. of observations: 47

Observation Data						
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	
0.001	1.722	0.2713	0.391	<u> </u>	0.231	
0.011	1.202	0.3185	0.383	2:256	0.224	
0.022	1.016	0.3747	0.372	2.529	0.212	
0.033	0.86	0.4413	0.361	2.835	0.199	
0.044	0.702	0,5205	0.344	3.002	0.194	
0.055	0.625	0.5502	0.346	3,335	0.177	
0.066	0.563	0.5815	0.34	3.502	0.173	
0.077	0.53	0.6498	0.331	3.835	0.16	
0.088	0.503	0.7267	0.323	4,168	0.149	
0.099	0.483	0.8128	0.314	4.502	0.143	
0.11	0.468	0,9623	0.304	5.002	0.132	
0.121	0.458	1.206	0.282	5.335	0.122	
0.132	0.443	1.351	0.274	5.668	0.113	
0.187	0.423	1.602	0.259	6.168	0.102	
0.209	0.411	1.696	0.252	6.335	0.1	
0.2317	0.404	2.012	0.239			

SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.001612	ft/min
v0	0.4533	ft

1

Data Set: L:\Mike Dillon\1100\2990\mw4out.aqt Title: MW-04-OUT Date: 08/22/03 Time: 14:49:31

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-04

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

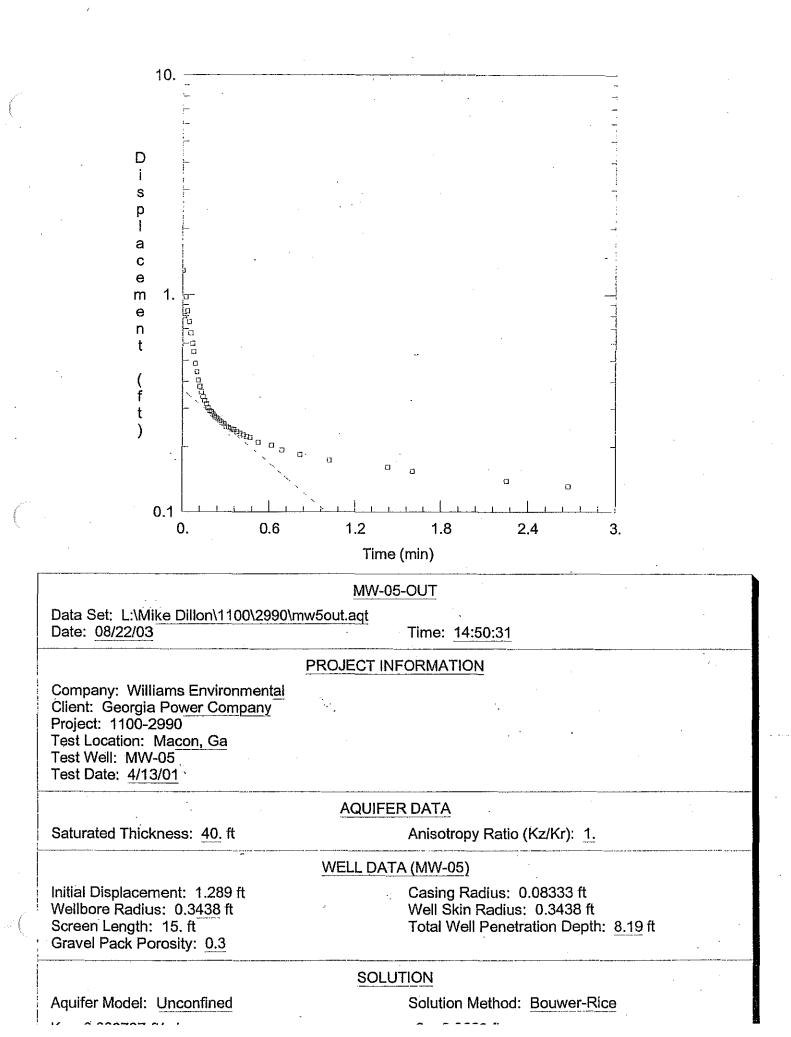
Initial Displacement: 1.119 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.2813 ft Well Skin Radius: 0.2813 ft Screen Length: 9.39 ft Total Well Penetration Depth: 8.7 ft Gravel Pack Porosity: 0.3

No. of observations: 20

· · ·		Observ	ation Data		•
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.001	1.119	0.077	0.047	0.154	0.015
0.011	0.396	0.088	0.036	0:165	0.013
0.022	0.199	0.099	0.03	0.176	0.013
	0.113	0.11	0.025	0.187	0.01
0.044	0.098	0.121	0.021	0.2317	0.01
0.055	0.066	0.132	0.019	0.2442	0.008
0.066	0.06	0.143	0.021		

.

•••


SOLUTION

Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K .	0.05886	ft/min
v0 ·	0.1847	ft

MW-05-OUT

Data Set: L:\Mike Dillon\1100\2990\mw5out.aqt Title: MW-05-OUT Date: 08/22/03 Time: 14:50:37

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990 Location: Macon. Ga Test Date: 4/13/01 Test Well: MW-05

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

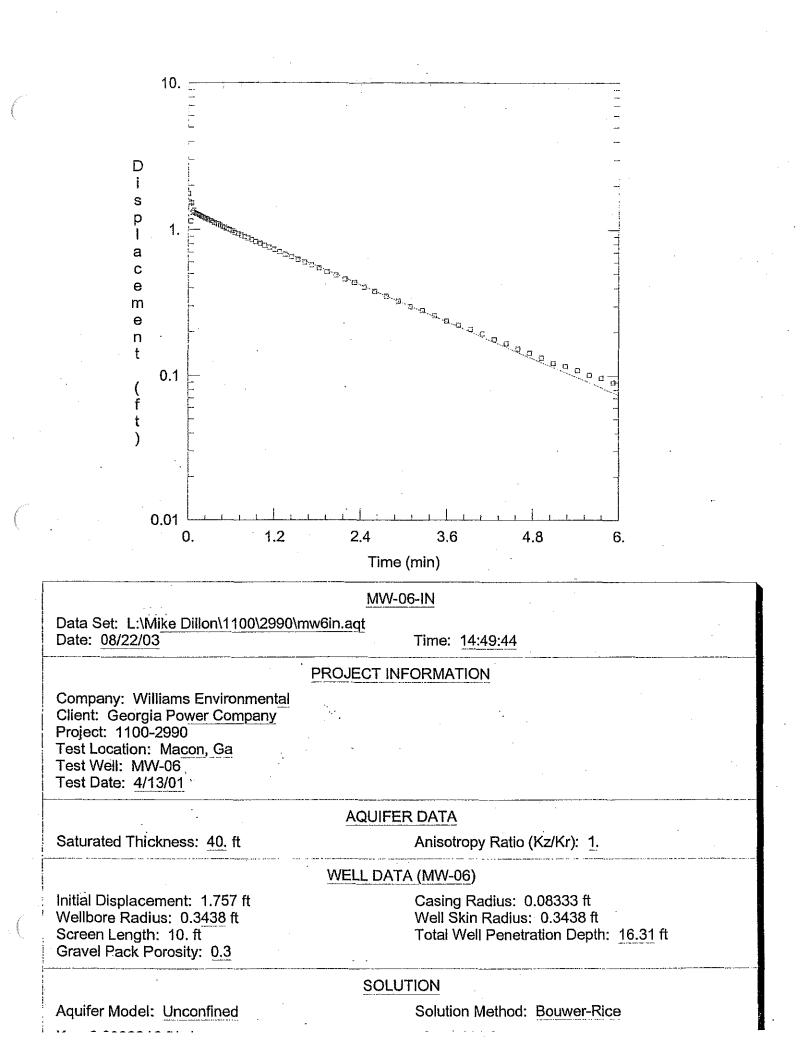
SLUG TEST WELL DATA

Initial Displacement: 1.289 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.3438 ft Well Skin Radius: 0.3438 ft Screen Length: 15. ft Total Well Penetration Depth: 8.19 ft Gravel Pack Porosity: 0.3

No. of observations: 44

		Observ	ation Data		
Time (min)	Displacement (ft)	Time (min)	Displacement (ft)	Time (min)	Displacement (ft)
0.001	1.289	0.165	0.315	0.3747	0.235
0.011	0.801	0.176	0.302	0.3957	0.231
0.022	0.976	0.187	0.293	0.4178	0.227
0.033	0.843	0.198	0.289	0.4413	0,223
0.044	0.753	0.209	0.283	0.4662	0.221
0.055	0.668	0.22	. 0.276	0.5205	0.21
0.066	0.599	0.2317	0.272	0.6147	0.203
0.077	0,548	0.2442	0.268	0.6872	0.193
0.088	0,484	0.2573	0.263	0.8128	0.184
0.099	0.443	0.2713	0.259	1.018	0.173
0.11	0.405	0.2862	0.255	1.43	0.161
0.121	0.379	0.3018	0.248	1.602	0.154
0.132	0.358	0.3185	0.246	2.256	0.139
0.143	0.34	0.3362	0.242	2.678	0.131
0.154	0.325	0.3548	0.24		
	,				

SOLUTION


Aquifer Model: Unconfined Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter	Estimate	
K	0.003787	ft/min
y0	0.3663	ft

1

Data Set: L:\Mike Dillon\1100\2990\mw6in.aqt Title: MW-06-IN Date: 08/22/03 Time: 14:49:50

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990 Location: Macon, Ga Test Date: 4/13/01 Test Well: MW-06

AQUIFER DATA

Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

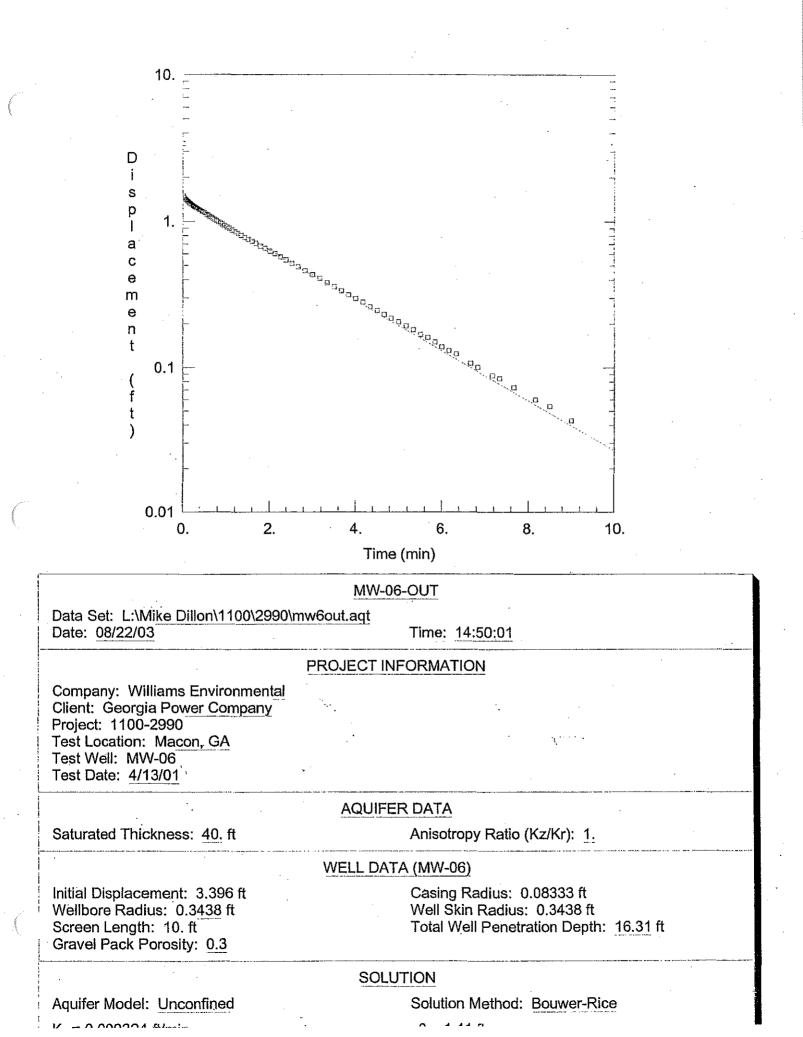
Initial Displacement: 1.757 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.3438 ft Well Skin Radius: 0.3438 ft Screen Length: 10. ft Total Well Penetration Depth: 16.31 ft Gravel Pack Porosity: 0.3

No. of observations: 79

		Observ	ation Data		
<u>Time (min)</u>	Displacement (ft)	Time (min)	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
0.001 0.011	1.757	0.3892 0.4155	1.097	2.054 2.179	0.488
0.022	1.506	0.4435	1.067	2.311	0.433
0.033	1.14	0.4732	1.048	2.452	0.405
0.044	1.521	0.5045	1.033	2.6	0.379
0.055	1.305	0.5377	1.013	2.758	0.351
0.066	1.32	0.5728	0.996	2.925	0.326
0.077 0.088	1.35 1.3	0.6102 0.6497	0.979 0.958	3.091 3.258	0.298 0.281
0.099	1.287	0.6915	0.930	3.425	0.259
0.11	1.279	0.7358	0.919	3.591	0.238
0.121	1.27	0.7828	0.898	3.758	0.223
0.132	1.262	0.8327	0.876	3.925	0.208
0.143	1.253	0.8853	0.855	4.091	0.195 0.178
0.1547 0.1672	1.245 1.234	0.9412	0.829 0.808	4.258 4.425	0.178
0.1803	1.225	1.063	0.782	4.591	0.154
0.1943	1.215	1.129	0.758	4.758	0.144
0.2092	1.206	1.2	0.733	4.925	0.133
0.2248	1.195	1.274	0.707	5.091	0.122
0.2415	1.185	1.353	0.679	. 5.258 5.425	0.116 0.109
0.2592 0.2778	1.172 1.161	1.437 1.525	0.653 0.625	5.591	0.103
0.2977	1.148	1.619	0.598	5.758	0.096
0.3187	1.137	1.718	0.572	5.925	0.09
0.3408	1.122	1.824	0.544		
0.3643	1.11	1.935	0.514		· · · · · · · · · · · · · · · · · · ·

SOLUTION

Aquifer Model: Unconfined


Solution Method: Bouwer-Rice

VISUAL ESTIMATION RESULTS

Estimated Parameters

Parameter K y0 Estimate 0.0003948 1.339 ft/min ft

2

Data Set: L:\Mike Dillon\1100\2990\mw6out.aqt Title: MW-06-OUT Date: 08/22/03 Time: 14:50:08

PROJECT INFORMATION

Company: Williams Environmental Client: Georgia Power Company Project: 1100-2990 Location: Macon, GA Test Date: 4/13/01 Test Well: MW-06

AQUIFER DATA

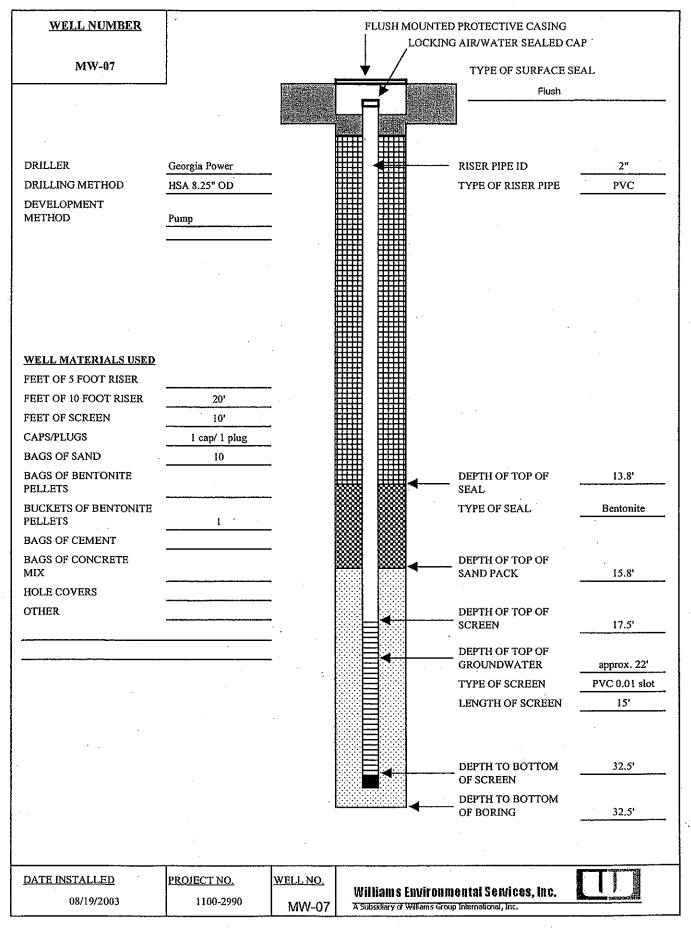
Saturated Thickness: 40. ft Anisotropy Ratio (Kz/Kr): 1.

SLUG TEST WELL DATA

Initial Displacement: 3.396 ft Casing Radius: 0.08333 ft Wellbore Radius: 0.3438 ft Well Skin Radius: 0.3438 ft Screen Length: 10. ft Total Well Penetration Depth: 16.31 ft Gravel Pack Porosity: 0.3

No. of observations: 96

			Observ	ation Data		
	<u>Time (min)</u>	Displacement (ft)	Time (min)	Displacement (ft)	<u>Time (min)</u>	Displacement (ft)
	0.001	3.396	0.4178	1.174	2.529	0.518
	0.011	1.486	0.4413	1.163	2:678	0.49
	0.022	1.456 1.428	0.4662 0.4925	1.154 1.148	2.835 3.002	0.46 0.433
	0.033 0.044	1.428	0.4925	1.12	3.168	0.409
•	0.044	1.411	0.5502	1.109	3.335	0.381
	0.066	1.405	0.5815	1.097	3.502	0.358
	0.077	1.396	0.6147	1.077	3.668	0.336
	0.088	1.386	0.6498	1.064	3.835	0.315
	0.099	1.373	0.6872	1.047	4.002	0.298
	0.11	1.358	0,7267	1.03	4.168	0.281
	0.121	1.358	0.7685	1.011	4.335	0.261
	0.132	1.341	0.8128	0.994	4.502	0.246
	0.143	1.332	0.8598	0.974	4.668	0.231
	0.154	1.326	0.9097 0.9623	0.955 0.936	4.835 5.002	0.218 0.206
	0.165 0.176	1.317 1.309	1.018	0.936	5.168	0.193
	0.170	1.302	1.077	0.895	5.335	0.182
	0.198	1.294	1.14	0.874	5.502	0.169
	0.209	1.287	1.206	0.85	5.668	0.161
	0.22	1.281	1.277	0.829	5.835	0.15
	0.2317	1.272	1.351	0.803	6.002	0.139
	0.2442	1.266	1.43	0.78	6.168	0.131
	0.2573	1.259	1.514	0.756	6.335	0.124
	0.2713	1.251	1.602	0.732	6.668	0.107
1	0.2862	1.242	1.696	0.709	6.835	0.101
:	0.3018	1.234	1.796 1.901	0.679 0.655	7.168 7.335	0.088 0.084
	0.3185 0.3362	1.225 1.216	2.012	0.625	7.668	0.073
	0.3548	1.208	2.131	0.602	8.168	0.06
	0.3747	1.197	2.256	0.572	8.502	0.054


AQTESOLV for Wi	ndows		-		MW-06-0U
<u>Time (min)</u> 0.3957	Displacement (ft)	<u>Time (min)</u> 2.388	Displacement (ft) 0.546	<u>Time (min)</u> 9.002	Displacement (ft) 0.043
SOLUTION					
Aquifer Model: Ur Solution Method:	nconfined Bouwer-Rice				
VISUAL ESTIMAT	ION RESULTS				<u>_</u>
Estimated Parame	eters				
Parameter K y0		ft/min ft			
			,		
4					
				• • •	
				• • • • • •	

.

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX K WELL CONSTRUCTION FORMS

TYPE II MONITORING WELL

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX L WATER QUALITY SAMPLING FORMS

Client:	MACON II MGP	<u></u>	Project Number:	11002990	
Sample Number:	MW-1		Date:	8/20/03	
Sample Type:	GROUNDWATE	R	Time:	******************	
Sampled By:	PNR		Weather:	CLEAR 83 ⁰ F	
WELL DEVELOPMENT	a meve () a	18			
Depth to Water:	7.32		Well Diameter:	2"	
Depth of Well:	17.89				
Height of Water Column:	10.57				·
Water Column (gal):					
Gallons Purged:	5.5 GALS (WELL DI	RY)	-		
WATER SAMPLE COLLE	ECTION DATA				
Method of Removal:	PUMP		Pump Time:		
Method of Sampling:	PUMP		Pump On:		1057
Time of Sampling:	8/12/03	0830	Pump Off:		1133
	9.06 NTU'S				
FIELD ANALYSES		1	- 'a · ·		
· ·	Well Vol. 1	Well Vol. 2	Well Vol. 3	Well Vol. 4	Well Vol. 5
Temperature:	25.8	24.7	24.7	24.5	24.4
pH:	7.44	5.63	5.71	5.05	5.35
Specific Conductance:	21.0 ms/m	21.4	22.2	19.0	20.2
Dissolved Oxygen:	10.24	8.16	7.06	6.58	6.10
Redox Potential:	135	176	178	233	220
Gallons Purged	0	1.0	2.0	3.0	4.0
NTU's	27.6	26.6	12.9	57.2	57.2
Time:	1058	1105	1112	1119	1126
Dessen for Compliant					
Reason for Sampling: Other (Specify):		100 2 0 1 2 0 .			
Method of Shipment:	HAND DELIVER	}	·		
Physical Appearance:	CLEAR W/NO C				
Type of Analysis:	VOC'S	SVOC'S	METALS	CN	
Container Size and Type:	2@40ml	2@1liter	500ml	500ml	
Preservative:	HCL	ICE	HNO3	NAOH	
•					
REMARKS AND OBSER		10.0			
Well dry @ 5.5 gals. Let recharge c	overnight. Sampled 8/21	/03			
· · · · · · · · · · · · · · · · · · ·			·.		

ite Location:	MACON, GA			
<u></u>			Williams Environmental Service A Subsidery of Williams Group International, (nc.	and the second sec
Date:		Project No.		Well I.D.
	8/20/03		11002990	MW-1

		projectivo.		1002990		MW-1 Pg.2
		Project No.		liam s Environmental Se ssidary of Williams Group International		1 7
atio	n: MACON, GA				[
	······································					
-	REMARKS AND OBSER		1/03			
	•					
	Preservative:	HCL	ICE	HNO3	NAOH	
	Container Size and Type:	2@40ml	2@1liter	500ml	500ml	
	ype of Analysis:	VOC'S	svoc's	METALS	CN	· · · · · · · · · · · · · · · · · · ·
1	hysical Appearance:	CLEAR W/NO (DOR			*******
N	Aethod of Shipment:	HAND DELIVE	2			
С)ther (Specify):					·
R	leason for Sampling:					
			••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • •		
	ïme:	1133				
	ITU's	>1000				
G	alions Purged	5.0			·	
	ledox Potential:	231				
	issolved Oxygen:	5.47				· ·
	pecific Conductance:	19.5				
pl	H:	5.24				
T	emperature:	24.2				
		FINAL				
E	IELD ANALYSES					
		9.06 NTU'S			·	
	ime of Sampling:	8/12/03	0830	Pump Off:		1133
	lethod of Sampling:	PUMP		Pump On:		1057
	lethod of Removal:	PUMP		Pump Time:		
и	VATER SAMPLE COLLE					
G	iallons Purged:	5.5 GALS (WELL D	RY)			
	/ater Column (gal):		 ,			
	eight of Water Column:	10.57				
	epth of Well:	17.89				
	VELL DEVELOPMENT epth to Water:	7.32		Well Diameter:	2"	
	ampled By:	PNR	· · · · · · · · · · · · · · · · · · ·	Weather:	CLEAR 83 ⁰	-
	ample Type:	GROUNDWATE	<u>:R</u>	Time:		
	ample Number:	<u>MW-1</u>		Date:	8/20/03	
	lient:	MACON II MGP		Project Number:	1100299	

Alfah ...

Client:	MACON II MGP	Project Number:	11002990
Sample Number:	MW-2	Date:	8/20/03
Sample Type:	GROUNDWATER	Time:	
Sampled By:	PNR	Weather:	SUNNY 83 ⁰ F
WELL DEVELOPMENT	· · · · · · · · · · · · · · · · · · ·	<u> </u>	······
Depth to Water:	18.23'	Well Diameter:	2"
Depth of Well:	27.90		· · · · ·
Height of Water Column:	9.67		· · · · · · · · · · · · · · · · · · ·
Water Column (gal):		·	
Gallons Purged:	2 GALS.		

WATER SAMPLE COLLECTION DATA

Method of Removal:	PUMP	Pump Time:	
Method of Sampling:	PUMP	_ Pump On:	0758
Time of Sampling:	0820	_ Pump Off:	0820

FIELD ANALYSES

	Well Vol. 1	Well Vol. 2	FINAL	
Temperature:	24.2	23.7	23.8	
pH:	8.08	7.85	7.80	
Specific Conductance:	84.0 ms/m	83.3	82.9	
Dissolved Oxygen:	4.54	3.08	2.77	•
Redox Potential:	-169	-186	-179	
Gallons Purged	0	1.0	2.0	
NTU's	91.1	11.0	4.84	
Time:	0759	0805	0815	

Reason for Sampling:					
Other (Specify):		•			
Method of Shipment:	HAND DELIV	ER	•		
Physical Appearance:	CLEAR W/NC	ODOR			
Type of Analysis:	VOC'S	SVOC'S	METALS	CN	
Container Size and Type:	2@40ml	2@1liter	500ml	500ml	
Preservative:	HCL	ICE	HNO3	NAOH	-

REMARKS AND OBSERVATIONS

te Location:	MACON, GA				
	•		Williams Environment A Substany of Wilams Group Inter	a projection of the second secon	
Date:		Project No.		Well I.D.	
	8/20/03		11002990	MW-2	

	·		
Client:	MACON II MGP	Project Number:	11002990
Sample Number:	MW-3 DUP082003	Date:	8/20/03
Sample Type:	GROUNDWATER	Time:	
Sampled By:	PNR	Weather:	SUNNY 90 ⁰ F
WELL DEVELOPMENT			n an tha an the second s
Depth to Water:	22.00'	Well Diameter:	2"
Depth of Well:	30.30		
Height of Water Column:	8.3		
Water Column (gal):			
Gallons Purged:	2 GALS.	······································	

WATER SAMPLE COLLECTION DATA

Method of Removal:	PUMP	_ Pump Time:	
Method of Sampling:	PUMP	Pump On:	1234
Time of Sampling:	1300	_ Pump Off:	1300

T

1

,

FIELD ANALYSES

	Well Vol. 1	Well Vol. 2	FINAL		
Temperature:	- 26.3	22.6	22.4	· .	
pH:	6.70	6.81	6.84	· · · · · · · · · · · · · · · · · · ·	
Specific Conductance:	128 ms/m	.128	.128		
Dissolved Oxygen:	9.26	6.26	5.17		
Redox Potential:	-126	-132	-137		
Gallons Purged	0	1.0	2.0	-	
NTU's	35.8	6.97	3.44		
Time:	1235	1244	1253		
			. · ·		

-				
		·		
HAND DELIÙ	ER			
	ODOR			
VOC'S	SVOC'S	METALS	CN	<u> </u>
2@40ml	2@1liter	500ml	500ml	
HCL	ICE	HNO3	NAOH	· · · ·
	CLEAR W/NC VOC'S 2@40mi	VOC'SSVOC'S2@40mi2@1liter	CLEAR W/NO ODOR VOC'S SVOC'S METALS 2@40mi 2@1liter 500mi	CLEAR W/NO ODOR VOC'S SVOC'S METALS CN 2@40ml 2@1liter 500ml 500ml

REMARKS AND OBSERVATIONS

ite Location:	MACON, GA				
			Williams Environmental Services, Inc.		
Date:		Project No.		Well I.D.	
•	8/20/03		11002990	MW-3 DUP	

Client:	MACON II MGP	Project Number:	11002990	
Sample Number:	MW-4	Date:	8/20/03	
Sample Type:	GROUNDWATER	Time:		
Sampled By:	PNR	Weather;	SUNNY 91 ⁰ F	
WELL DEVELOPMENT	· · ·			
Depth to Water:	22.75'	Well Diameter:	2"	
Depth of Well:	32.85	•		
Height of Water Column:	10.1			-
Water Column (gal):	(· · · · · · · · · · · · · · · ·	· ·		
Gallons Purged:	3 GALS.			
	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

WATER SAMPLE COLLECTION DATA

Method of Removal:	PUMP	_ Pump Time:	
Method of Sampling:	PUMP	Pump On:	1347
Time of Sampling:	1415	Pump Off:	1415

FIELD ANALYSES

. · · · .	Well Vol. 1	Well Vol. 2	Well Vol. 3	FINAL	
Temperature:	23.3	22.4	22.4	22.4	
pH:	7.55	7.51	7.56	7,55	
Specific Conductance:	.137 s/m	131	.129	128	•
Dissolved Oxygen:	9.39	6.75	5.42	5.40	
Redox Potential:	-194	-191	-194	-195	
Gallons Purged	0	1.0	2.0	3.0	
NTU's	37.4	10.9	4.63	4.38	
Time:	1349	1356	1404	1411	

				<u> </u>
		· · · · · · · · · · · · · · · · · · ·		
HAND DELIV	ÈR	· .	· · · · · · · · · · · · · · · · · · ·	
CLEAR W/NO	DODOR			
VOC'S	SVOC'S	METALS	CN	
2@40ml	2@1liter	500ml	500ml	
HCL	ICE	HNO3	NAOH	
	CLEAR W/NO VOC'S 2@40ml	2@40ml 2@1liter	CLEAR W/NO ODORVOC'SSVOC'SMETALS2@40ml2@1liter500ml	CLEAR W/NO ODOR VOC'S SVOC'S METALS CN 2@40ml 2@1liter 500ml 500ml

REMARKS AND OBSERVATIONS

(te Location: MACON, GA					
	· · · · · · · · · · · · · · · · · · ·		Williams Environmenti A Subsidiary d' Williams Group Inter		
Date:	······································	Project No.		Well I.D.	
÷.	8/20/03		11002990	MW-4	

WATER QUALITY SAMPLING FORM

Client:	MACON II MGP	Project Number:	11002990
Sample Number:	MW-5	Date:	8/20/03
Sample Type:	GROUNDWATER	Time:	·
Sampled By:	PNR	Weather:	CLEAR 75 ⁰ F
WELL DEVELOPMENT	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Depth to Water:	19.17'	Well Diameter:	2"
Depth of Well:	30.20		
Height of Water Column:	11.03		
Water Column (gal):			
Gallons Purged:	8 GALS.	·	

WATER SAMPLE COLLECTION DATA

Method of Removal:	PUMP	_ Pump Time:	
Method of Sampling:	PUMP	Pump On:	0642
Time of Sampling:	0745	Pump Off:	0745

FIELD ANALYSES

	Well Vol. 1	Well Vol. 2	Well Vol. 3	Well Vol. 4	FINAL
Temperature:	23.3	22.6	22.6	22.6	22.6
oH:	7.71	7.78	7.80	7.82	7.82
Specific Conductance:	.103 s/m	.104	.103	.099	.099
Dissolved Oxygen:	6.56	3.96	3.47	3.29	3.27
Redox Potential:	-177	-223	-224	-224	-224
Gallons Purged	0	2.0	4.0	6.0	8.0
ITU's	22.8	19.3	15.8	10.4	4.46
Time:	0643	0704	0721	0732	0745

Reason for Sampling:					
Other (Specify):			·····		
Method of Shipment:	HAND DELIV	'ER			
Physical Appearance:	CLEAR W/N	O ODOR	•		
Type of Analysis:	VOC'S	SVOC'S	METALS	CN	
Container Size and Type:	2@40ml	2@1liter	500ml	500ml	<u></u>
Preservative:	HCL	ICE	HNO3	NAOH	<u> </u>

REMARKS AND OBSERVATIONS

		·		
te Location:	MACON, GA	· · · · · · · · · · · · · · · · · · ·	William s Environments A Subsidiary of Withams Group Intern	
Date:	· · · · · · · · · · · · · · · · · · ·	Project No.		Well I.D.
	8/20/03		11002990	MW-5

WATER QUALITY SAMPLING FORM

Client:	MACON II MGP	Project Number:	11002990	
Sample Number:	MW-6	Date:	8/21/03	
Sample Type:	GROUNDWATER	Time:		
Sampled By:	PNR	Weather:	CLEAR 85°F	
WELL DEVELOPMENT	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Depth to Water:	35.28'	Well Diameter:	2"	
Depth of Well:	50.20			
Height of Water Column:	14.92			
Water Column (gal):			·	
Gallons Purged:	3.0 GALS.			

WATER SAMPLE COLLECTION DATA

Г

Method of Removal:	PUMP		Pump Time:	
Method of Sampling:	PUMP		Pump On:	0739
Time of Sampling:	0815		Pump Off:	0815

FIELD ANALYSES

-	Well Vol. 1	Well Vol. 2	Well Vol. 3	FINAL	
Temperature:	23.0	22.0	22.0	22.1	
pH:	7.09	6.53	6.51	6.51	
Specific Conductance:	43.3 ms/m	42.9	42.7	42.6	
Dissolved Oxygen:	6.24	4.33	4.30	4.29	
Redox Potential:	-35	-32	-29	-27	
Gallons Purged	0	1.0	2.0	3.0	
NTU's	62.2	14.3	10.7	4.46	
Time:	0740	0748	0756	0805	

Reason for Sampling:	·				
Other (Specify):		<u>.</u> .	· · · · ·		
Method of Shipment:	HAND DELIV	'ÉR	•		
Physical Appearance:	CLEAR W/N	O ODOR	·····		
Type of Analysis:	VOC'S	SVOC'S	METALS	CN	
Container Size and Type:	2@40ml	2@1liter	500ml	500ml	<u>.,, ,</u>
Preservative:	HCL	ICE	HNO3	NAOH	

٠.

REMARKS AND OBSERVATIONS

ite Location:	MACON, GA		,	
		Williams Environment A Subsidiary of Williams Goup Inter		
Date:		Project No.		Well I.D.
	8/21/03	e.	11002990	MW-6

WATER QUALITY SAMPLING FORM

20 y - 28

Client:	MACON II MGP	•	Project Numb	11002990	
Sample Number:	MW-7		Date:	8/21/03	
Sample Type:	GROUNDWATE	R	Time:		
Sampled By:	PNR		Weather:	CLEAR 75 ⁰ F	
WELL DEVELOPMENT					
Depth to Water:	21.45'		Well Diameter	2"	
Depth of Well:	34.83				
Height of Water Column:	13.38				
Water Column (gal):					
Gallons Purged:	8.0 GALS.	-		· · · · · · · · · · · · · · · · · · ·	
WATER SAMPLE COLLE	ECTION DATA	、	•		
Method of Removal:	PUMP		_ Pump Time:		
Method of Sampling:	PUMP		Pump On:	(0538
Time of Sampling:	0650		Pump Off:	t	0650
FIELD ANALYSES					
<u>LIER MAREI VEU</u>	Well Vol. 1	Well Vol. 2	Well Vol. 3	Well Vol. 4	FINAL
Temperature:	24.2	24.1	24.1	'24.1	· 24.1
pH:	7.91	7.32	7.18	7.14	7.14
Specific Conductance:	84.9 ms/m	85.0	91.0	93.3	93.4
Dissolved Oxygen:	5.45	4.01	3.46	3.14	3.12
Redox Potential:	-168	-165	-156	-154	-154
Gallons Purged	0	2.0	4.0	6.0	8.0
NTU's	34.7	268	31.3	16.1	4.98
Time:	0538	0552	0608	0623	0646
Reason for Sampling:					
Other (Specify):		•	· · ·	·	· · · · ·
Method of Shipment:	HAND DELIVER				
Physical Appearance:	VOC'S		METALS	CN	
Type of Analysis:		SVOC'S	500ml	500mi	
Container Size and Type:	2@40ml	2@1liter			
Preservative:	HCL	ICE	HNO3	NAOH	
REMARKS AND OBSER	VATIONS				
		-	·		
· · · · · · · · · · · · · · · · · · ·					

Site Location:	MACON, GA		Williams Environmental Services, Inc.		
Date:		Project No.	····	Well I.D.	
	8/21/03	-	11002990	MW-7	

COMPLINACE STATUS INVESTIGATION REPORT - Revised September 5, 2003 FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

APPENDIX M POTENTIAL RECEPTOR STUDY

SECTION 1 INTRODUCTION

The Hazardous Site Response Act (HSRA) Rules (GEPD, 2003) allow for the determination of Risk Reduction Standards (RRS) that are protective of human health and the environment. Regulated substances identified at a given site must be compared with appropriate RRS that are based on property use (i.e., residential or non-residential) and, when applicable, site specific conditions. The five types of RRS against which a site's compliance status may be evaluated are described below:

Type 1 - standardized exposure assumptions for residential properties;

Type 2 - site-specific exposure determinations for residential properties;

Type 3 - standardized exposure assumptions for non-residential properties;

Type 4 - site-specific exposure determinations for non-residential properties; and

Type 5- restricted exposure assumptions evolving from engineering and institutional controls, such as caps, slurry walls, fences, deed restrictions, etc., to minimize exposure on properties where it is not appropriate and/or practical to apply Types 1 through 4 RRS.

The Macon 2 former Manufactured Gas Plant (MGP) facility is located on a 2.5-acre parcel, southeast of Spring Street between Riverside Drive and the Ocmulgee River in Macon, Georgia. The property is currently owned by the City of Macon and is used by the City of Macon to house the Electrical Service Shop. Facilities at the property include a combined office/service shop, equipment storage area, a warehouse and an employee parking lot. The majority of the property is covered with asphalt.

The Macon Transit Authority Bus Garage is located to the south of the former MGP facility. A Burger King restaurant, an Exxon service station and a Pizza Hut restaurant are located to west of the former MGP facility. The Norfolk Southern Railroad abuts the property to the northeast. The Ocmulgee River is located approximately 250 feet east of the Macon 2 former MGP facility.

The derivation of RRS and an ecological receptor evaluation were performed for an area encompassed by Macon 2 former MGP facility as well as all properties potentially affected by former MGP operations. Henceforth this area will be called the Site. The results of the Compliance Status Investigation (CSI) conducted by Williams Environmental Services, Inc., from February through April, 2001 and August 2003, revealed the presence of 35 regulated substances in soils and/or groundwater beneath the Site. The maximum concentrations of regulated substances detected in soil and groundwater were compared with Types 1 through 4 RRS to determine Site compliance. All four types of RRS are potentially applicable for the Site because the former Macon 2 MGP facility is located or adjacent to areas zoned for commercial, industrial as well as residential use and the future use of these areas is expected to remain the same. Type 5 RRS were not considered for this Site.

SECTION 2 RISK REDUCTION STANDARDS

The following section presents methods used to calculate RRS for the constituents of interest (COIs) detected in soil and groundwater.

2.1 SOIL

The equations employed in calculating Types 1 through 4 RRS for COI detected in Site soils are presented below. The assumptions employed in derivation of each type of RRS are discussed in Sections 2.1.1 through 2.1.4.

Non-carcinogenic Effects:

 $C_{soil} =$

 $\frac{\text{HI} * \text{BW} * \text{AT} * 365 \text{ days/year}}{\text{ED}*\text{EF}* [(1/\text{RfD}_{o}*\text{CF}*\text{IR}) + (1/\text{RfD}_{i}*\text{IR}_{a}*(1/\text{VF}+1/\text{PEF})]}$

Carcinogenic Effects:

 $C_{soil} = \frac{\text{TR * BW * AT * 365 days/year}}{\text{ED*EF*} [CSF_{o}*CF *IR) + (CSF_{i}*IR_{a}*(1/VF+1/PEF)]}$ Where:

 $C_{soil} = Concentration of a contaminant in soil (mg/kg)$ HI = Hazard Index BW = Body Weight (kg)AT = Averaging Time, non-carcinogenic effects (years) AT = Averaging Time, carcinogenic effects (years) ED = Exposure Duration (years) EF = Exposure Frequency (days/year) $RFD_{o} = Oral Reference Dose (mg/kg-d)$ CF = Conversion Factor (kg/mg)IR = Ingestion Rate (mg/day) $RfD_i =$ Inhalation Reference Dose (mg/kg-d) $IR_a = Inhalation rate (m^3/day)$ VF = Volatilization Factor (m³/kg)PEF = Particulate Emission Factor (m³/kg) $CSFo = Oral Cancer Slope Factor (mg/kg-d)^{-1}$ CSFi = Inhalation Cancer Slope Factor (mg/kg-d)⁻¹

2.1.1 TYPE 1 RISK REDUCTION STANDARDS

Type 1 RRS (generic residential) for soil were developed for the Site in accordance with HSRA Rule 391-3-19-.07(6) by selecting the smallest concentration fitting the following criteria:

1. The highest value of:

2.

- (a) Soil concentrations that trigger notification requirements (Appendix I of HSRA Rules);
- (b) 100-times the Type I groundwater criteria listed in Appendix III, Table 1 of the HSRA Rules; and
- (c) Type 1 soil criteria listed in Appendix III, Table 2 of the HSRA Rules
- The non-cancer effects RRS, as calculated by equation 7 from Part B of the Risk Assessment Guidance (RAGS

Part B; USEPA, 1991); and

The carcinogenic effects RRS as calculated by equation 6 from RAGS Part B.

The equations used to calculate Type 1 RRS concentrations for non-carcinogenic and carcinogenic effects (i.e., RAGS Part B equation 7 and equation 6, respectively; USEPA, 1991a) are presented in Section 2.1. Type 1 RRS concentrations are calculated based on residential adult exposure via incidental ingestion of soil and inhalation of particulates and volatile compounds. The default exposure parameters used to calculate Type 1 RRS were obtained from Table 3 of Appendix III of HSRA Rules (GEPD, 2003) and included the following: 70 kilograms (Kg) body weight for an adult, 30 years exposure duration, 350 days per year frequency of exposure and 114 mg/day for an incidental ingestion of soil. The inhalation rate for adult residential receptors used was 20 m³/day. The soil-to-air volatilization factors for volatile compounds were derived according to an equation presented in the footnote to Table 3, Appendix III of the HSRA Rules. Physical and chemical properties of the regulated substances required to derive the volatilization factor for each compound such as diffusitivity in air (D_i), Henry's Law Constant (H), and the organic particulate emission factor of 4.63 x 10^{-9} m³/Kg used in calculating fugitive dust emission for each compound was obtained from Appendix III of the HSRA Rules.

Toxicity values of regulated compounds [i.e., the cancer slope factors (CSFs), used to assess potential carcinogenic effects risks, and reference doses (RfDs), used to assess non-carcinogenic effects], are employed in the derivation of RRS. These toxicity values were primarily obtained from the United States Environmental Protection Agency (USEPA) Integrated Risk Information System (IRIS, 2001). When toxicity values were not available in IRIS, other sources of information were used. These include Health Effects Assessment Tables (USEPA, 1997) and the National Center for Environmental Assessment. These sources of toxicity data have been accepted by the GEPD in the past. Toxicity values used in derivation of RRS are presented in Table 2.

Table 3 presents a comparison of maximum detected concentrations of COIs in soil to Type 1 RRS. Eleven COIs [benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, arsenic, lead, mercury, and zinc) exceeded Type 1 RRS.

2.1.2 Type 2 Risk Reduction Standards

Residential exposure factors were used to calculate the Type 2 RRS for COIs detected in Site soils through incidental ingestion of soils and inhalation of volatile compounds and fugitive dust. Since the vicinity of the Site is inhabited by both adults and children, Type 2 RRS concentrations were calculated for each of these receptor populations separately and the lesser of the two values was taken as the Type 2 RRS. The exposure factors used to calculate Type 2 RRS included: 70 Kg body weight for an adult and 15 Kg for a child, 30 years exposure duration for an adult and 6 years for a child, and incidental soil ingestion rates of 100 mg/day for an adult and 200 mg/day for a child. The inhalation rate for adult residential receptors used was 20 m³/day and 15 m³/day for a child. It was also assumed that

3.

residents would be at home 350 days per year. The equations used in the derivation of Type 2 RRS are presented in Section 2.1 and the Type 2 RRS for the 35 COI are presented in Table 4.

Type 2 RRS cannot be calculated for lead because toxicity values are not available for this metal. A better prediction of potential exposure for lead is obtained through determining blood lead levels of exposed populations. Sensitive populations include preschool-age children and fetuses. In children, a blood lead level of 10 micrograms per deciliter (ug/dL) has been identified as a level at which no adverse effects would be expected (Centers for Disease Prevention and Control, 1985).

The Type 2 RRS for lead in soil was determined to be 400 mg/Kg based on the concentration in soil that triggers a notification concentration under HSRA. A cleanup target level of 400 mg/Kg for lead was also established by the Office of Solid Waste and Emergency Response as presented in the "Interim Guidance on Establishing Soil Lead Cleanup Levels at RCRA Facilities" (USEPA, 1994a). A concentration of 400 mg/Kg lead in soil is also supported by the USEPA's Integrated Exposure Uptake Model for Lead in Children (IEUBK; USEPA, 1994b). The IEUBK predicts that 400 mg/Kg lead in soil would cause 6 year old child to have a probability of no greater than 5 percent of a blood lead level of 10 ug/dL assuming exposure to Site soil and groundwater and other media not necessarily related to the Site such as food and maternal milk.

The comparison of maximum detected soil concentrations of COIs with Type 2 RRS (Table 3) indicated that benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene, arsenic and lead exceeded Type 2 RRS.

2.1.3 Type 3 Risk Reduction Standards

Compounds that exceeded Type 2 RRS for soil were evaluated for compliance with Type 3 RRS. Type 3 RRS (generic non-residential) for soil were developed for the Site by selecting the highest concentration among the following criteria:

- 1. Soil concentrations that trigger notification requirements (Appendix I of HSRA Rules);
- 2. 100-times the Type I groundwater criteria listed in Appendix II, Table 1 of the HSRA Rules;
- 3. For lead, 400 mg/kg
- 4. Type 1 soil criteria listed in Appendix III, Table 2 of the HSRA Rules; and
- 5. For constituents detected in the top two feet of soil (surface soil) the lower of:
 - (a) the non-cancer effects RRS as calculated by equation 7 from RAGS Part B; and
 - (b) The carcinogenic effects RRS as calculated by equation 6 from RAGS Part B.

Type 3 RRS concentrations for carcinogenic and non-carcinogenic effects were calculated based on the exposed commercial/industrial worker scenario. Default exposure parameters for non-residential exposures obtained from Table 3, Appendix III of the HSRA Rule were applied in these calculations. The exposure factors include the following; 70 Kg body weight, 25 years exposure duration, 250 days per year as frequency of exposure, incidental soil ingestion rate of 50 mg/day, and inhalation rate of 20 m³/day. It was also assumed that workers would be at work for 8 hours per day and 5

days per week

As indicated in Table 5, no COI detected in surface soils (i.e., soil depth interval of 0-2 feet bgs.) exceeded Type 3 RRS for surface soils. The maximum detected concentrations of benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, and lead in deep soils (i.e., soil depth interval greater than 2 feet) exceeded Type 3 RRS for deep soils.

2.1.4 Type 4 Risk Reduction Standards

Exposure factors for commercial land use were employed to derive RRS for surface soils For soils deeper than 2 feet, RRS were derived based on a construction worker scenario. Since commercial and/or industrial use of the Site is anticipated to continue, industrial exposure scenario is a conservative assumption for the surface soils at the Site and provides an adequate level of protection for potentially exposed populations. In the future, construction or excavation might be performed at the Site, therefore, the RRSs developed for deep soils based on construction worker scenario are also appropriate. During construction and/or excavation activities, workers might potentially come to contact with contaminants in soils below ground surface. Type 4 RRS are presented in Table 6. The exposure parameters used for a commercial worker scenario are the same as those used for derivation of Type 3 RRS. Exposure parameters used in derivation of Type 4 RRSs for construction worker scenario differ in incidental ingestion of soil, 330 mg/day (USEPA, 2001), and duration of exposure, assumed to be 0.5 years based on best professional judgment that subsurface construction activities would not be expected to last more than a half a year. Therefore, construction workers would not likely be exposed to site COI in the subsurface soils greater than a 0.5 years.

The Type 4 RRS for lead in soil was calculated using the Georgia Adult Lead Model (GALM) that was finalized in November 1999. The GALM was based on USEPA's methodology for assessing risk associated with adult exposures to lead known as the "adult lead model" (USEPA, 1996). Like the adult lead model, the GALM is based on the protection of fetal blood levels. However, the GALM considers intakes from both soil and groundwater. The approach used by the GALM relates intake of lead from soil and groundwater to blood lead concentrations in women of childbearing age who might spend considerable time at the Site (GEPD, 1998). Protection of the blood lead of a hypothetical fetus ensures that any other person working the site will be adequately protected. For the Macon 2 former MGP facility, the Type 4 RRS for lead was calculated using the GALM that employed parameters presented in the HSRA Rules. The site-specific input parameter is the concentration of lead detected in groundwater beneath the Site. The analytical groundwater data indicated that lead was not detected at the Site. Therefore, the detection limit (0.01 mg/L) was used as the lead groundwater concentration in the GALM. The equations employed in derivation of Type 4 RRS for lead are presented in Table 7. The derived Type 4 RRS for lead is 1,429 mg/kg and is the same for both receptors (i.e., commercial and construction worker).

The HSRA regulations indicate that in addition to being protective of human health, Type 4 RRSs for soil should not cause impacts to groundwater above Type 4 RRSs established for groundwater. For those COI which did not exceed

Type 3 soil RRS, the Type 4 soil RRS was defaulted to the Type 3 RRS. Most of the COI were in compliance with more restrictive RRSs. Therefore, leachability studies were performed for only those COI which exceeded Type 3 RRS for soil, and the Type 4 RRSs have been adjusted accordingly. Section 9.5.1.2 of the CSR discusses the leachability study.

Comparison of the maximum detected concentrations of COI in soils (Table 5) indicated that no COIs exceeded Type 4 RRS and, therefore, the Site is in compliance with Type 4 RRS.

2.2 GROUNDWATER

The equations employed in calculating Types 1 through 4 RRS for contaminants detected in Site groundwater are presented below. The assumptions used in derivation of each type of RRS are discussed in Sections 2.2.1 and 2.2.4.

Non-carcinogenic Effects:

 $C_{groundwater} = \frac{HI*BW*AT*365 \text{ days/year}}{ED*EF*[(1/RfD_o*IR_w)+(1/RfD_i*K*IR_a)]}$

Carcinogenic Effects:

C_{groundwater} =

<u>TR*BW *AT*365 days/year</u> ED*EF*[CSF_o*IR_w)+(CSF_i*K*IR_a)]

Where:

 $C_{groundwater} = Concentration of a contaminant in groundwater (mg/l)$ HI = Hazard Index BW = Body Weight (kg) AT = Averaging Time, non-carcinogenic effects (years) AT = Averaging Time, carcinogenic effects (years) ED = Exposure Duration (years) EF = Exposure Duration (years) EF = Exposure Frequency (days/year) RFD₀ = Oral Reference Dose (mg/kg-d) IR_w = Ingestion Rate (l/day) RfD_i = Inhalation Reference Dose (mg/kg-d) IR_a = Inhalation Rate (m³/day) K = Volatilization Factor (unitless) CSF₀ = Oral Cancer Slope Factor (mg/kg-d)⁻¹

2.2.1 Types 1 and 3 Risk Reduction Standards

Type 1 RRSs apply at any point where groundwater has been affected by a release. To be in compliance, concentrations of COI in groundwater shall not exceed concentrations given in Table 1 of Appendix III of the HSRA Rules or, for those substances not listed, the background or detection limit concentration. If two or more regulated

organic compounds are present in groundwater, their sum in a single sample shall not exceed 10 mg/L if the Table 1 value for each compound is less than 5 mg/L, or, where at least one compound has a Table 1 value greater than or equal to 5 mg/L, the sum of the concentrations shall not exceed the maximum Table 1 value for a detected compound plus 10 mg/L.

No COI were detected in groundwater beneath the Site at concentrations exceeding their respective Type 1 RRS (Table 8). Therefore, groundwater at the Site is in compliance with Type 1 RRSs.

2.2.2 Type 2 Risk Reduction Standards

The groundwater Types 2 and 4 RRS concentrations for carcinogenic and non-carcinogenic effects were calculated using Equations 1 and 2, respectively from RAGS Part B. These equations are presented in Section 2.2. Residential exposure factors were used to calculate Type 2 RRSs for COI detected in groundwater. The Type 2 RRSs are based on potential residential exposure of both children and adult populations. The Type 2 RRSs take under account that groundwater might be used as a source of potable water. Accordingly, exposure through ingestion of groundwater and inhalation of volatile compounds are considered as potential exposure pathways. The exposure factors used to calculate Type 2 RRSs are obtained from Appendix III, Table 3 of the HSRA Rules. Water intake rates for adult and child were assumed to be 2 L/day and 1 L/day, respectively. The remaining exposure factors (i.e., body weight of adult and child receptor, exposure frequency and duration of exposure etc.) were the same as the ones used to calculate residential (Type 2) RRS for soil.

RAGS Equations 1 and 2 include a default water-air volatilization factor of 0.5 L/m³ for compounds that easily evaporate from water. Based on RAGS Part B this volatilization factor is only applicable to chemicals with Henry's Law constant of greater than 1×10^{-5} atm-m³/mole. Accordingly, the volatilization potential for compounds that did not meet these criteria were not included in the derivation of groundwater RRSs.

Type 2 RRS are presented in Table 9. Comparison of maximum detected concentrations of COI in groundwater with Type 2 RRS indicate that no COI were detected in groundwater exceeding a Type 2 RRS (Table 8).

2.2.3 Type 3 Risk Reduction Standards

The Type 3 RRS criteria for groundwater are the same as the Type 1 RRS (see Section 2.2.1). As indicated in Table 10, concentrations of COI in groundwater are below the Type 3 RRSs.

2.2.4 Type 4 Risk Reduction Standards

Non-residential exposure factors based on a commercial worker scenario were used to calculate Type 4 RRS concentrations for COIs detected in groundwater beneath the Site. Under the commercial worker scenario it was assumed that persons working at the Site might be exposed to groundwater through ingestion of 1 liter of water per day and through inhalation of volatile compounds. All the other exposure intakes such are the same as those used for

calculation of Types 4 RRS for soil. Derived Type 4 RRSs for COI are presented in Table 11. No COI detected in groundwater exceeded Type 4 RRSs for groundwater (Table 10).

POTENTIAL RECEPTOR STUDY – Revised September 5, 2003 COMPLIANCE STATUS INVESTIGATION REPORT FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 3 ECOLOGICAL RECEPTORS EVALUATION

The following section identifies ecological receptors likely to be present at the Site and its vicinity and evaluates potential pathways whereby local fauna and flora might be exposed to contaminants detected in Site soils and groundwater.

3.1 ECOLOGICAL SETTING

The former Macon 2 MGP facility is located in an area developed largely for industrial and commercial use. Due to its location and use, there are no suitable (natural) ecological habitats at the Site. The Site is comprised of buildings and open areas mostly covered by asphalt and/or concrete. The Site is located approximately 250 feet from the Ocmulgee River. The stretch of Ocmulgee River that lies adjacent to the former Macon 2 MGP facility is located in the industrial area. The banks of the river are densely vegetated by shrubs, grasses and mixed hardwood and pine trees. Bottomland hardwood habitats are limited to a narrow strip of land along the river banks due to proximity of urban and industrial/commercial areas. Trees commonly observed in areas adjacent to the site include loblolly-shortleaf pine, oak, hickory, sweet gum, yellow poplar, elm, maple and white ash. The plants sighted in the area include wild black cherry, passion flower, Catesby's trillium and mountain laurel. Reptiles commonly found in this part of Georgia include timber rattlesnakes, kingsnakes, cottonmouth, copperhead, and the black rat snakes and these may be present in this area. Common birds found in this area include red-tailed hawk, northern bobwhite, summer tanager, blue jay, downy woodpecker, dove, wood duck and snowy egret. Small wildlife such as grey squirrels, opossums and chipmunks are expected to inhabit this area. This area is also a suitable habitat for white-tailed deer, raccoons and cottontail rabbits.

The Ocmulgee River at Macon passes through the downtown area and is approximately 280 feet wide. The river provides habitat for a variety of aquatic species such as striped bass, largemouth bass, catfish, common carp and black and white crappie as well as a variety of mussels.

3.2 THREATENED AND ENDANGERED SPECIES

Based on information obtained from the Georgia Natural Heritage, and the U.S. Fish and Wildlife databases, several federal endangered and threatened plant and animal species are listed (Table 12) for Bibb County and adjacent counties (Crawford, Houston, Jones, Monroe, Peach and Twiggs) and may, therefore, potentially inhabit this area. The endangered and threatened animal species include bald eagle, (*Haliaeetus leucocephalus*), wood stork (*Mycteria americana*), red-cockaded woodpecker (*Picoides borealis*), Eastern indigo snake (*Drymarchon corais couperi*), Barbour's map turtle (*Graptemys barbouri*), alligator snapping turtle (*Macroclemys temmincki*) and gopher tortoise (*Gpherus polyphemus*). The endangered and threatened plant species include sweet pitcher-plant (*Sarracenia rubra*), fringed campion (*Silene polypetala*), Shoals spider-lily (*Hymenocallis coronaria*), Ocmulgee skullcap (*Scutellaria ocmulgee*), green pitcher-plant (*Sarracenia rubra*), Indian olive (*Nestronia umbellula*) and relict trillium (*Trillium reliquum*). Aquatic species listed as threatened and endangered species that may inhabit the stretch of Ocmulgee River

Page 9

adjacent to the Site include bluestripe shiner (*Cyprinella callitaenia*), purple bankclimber mussel (*Elliptoideus sloatianus*), shiny-rayed pocketbook mussel (*Lampsilis subangulata*), Gulf moccasinshell mussel (Medionidus pencillatus) and oval pigtoe mussel (Pleurobema pyriforme).

3.3 POTENTIAL EXPOSURE

The potential for exposure of ecological species to contaminants detected in soil and groundwater at the Site is low. Terrestrial wildlife is not likely to enter the Site because the Site is covered by buildings and pavement and therefore does not provide a suitable habitat for wildlife. The Ocmulgee River and areas adjacent to the River present a suitable habitat for aquatic birds, fish and terrestrial wildlife. These receptors could potentially be exposed to contaminants in surface soils through ingestion of soil, dermal contact and inhalation of fugitive dust. However, ecological receptors are not likely to be affected by contaminants detected in the Site soils because the Site is currently paved and, therefore, there are no mechanisms for transport of soil contaminants (i.e., via surface water runoff or through fugitive emissions) from the Site. Contaminants detected in groundwater beneath the Site might potentially discharge to surface waters in Ocmulgee River. However, the impact on Ocmulgee River is expected to be low because all of the COIs detected in groundwater are below Type 1 RRS (see Section 2.2). In addition, the extent of COI in groundwater has been delineated to background levels and does not extend to the river.

POTENTIAL RECEPTOR STUDY -- Revised September 5, 2003 COMPLIANCE STATUS INVESTIGATION REPORT FORMER MACON 2 MGP FACILITY, MACON, GEORGIA WILLIAMS PROJECT NO. 1100-2990

SECTION 4 REFERENCES

Centers for Disease Prevention and Control (CDC), 1985. Preventing Lead Poisoning in Children, U.S. Department of Health and Human Services, Atlanta, Georgia.

Georgia Department of Natural Resources, Environmental Protection Division (GEPD), 1998. Georgia Adult Lead Model. March 23, 1998.

Georgia Department of Natural Resources, Environmental Protection Division (GEPD), 2003. Rules of GEPD Chapter 391-3-19 Hazardous Site Response.

Health Effect Assessment Summary Tables, 1997. Office of Research and Development U.S. Environmental Protection Agency, Washington, D.C. FY-1995 Annual.

Integrated Risk Information System (IRIS), 2000. U.S. Environmental Protection Agency, Office of Health and Environmental Assessment, Cincinnati, Ohio.

U.S. Environmental Protection Agency (USEPA), 1991a. Risk Assessment Guidance for Superfund: Volume I -Human Health Evaluation Manual (Part B): Development of Risk-Based Preliminary Remediation Goals, Interim. Office of Emergency and Remedial Response, Washington, DC. OSWER Dir. 9285.7-01B. December 1991.

U.S. Environmental Protection Agency (USEPA), 1991b. Exposure Factors Handbook. Interim final. OSWER Directive No. 9285.6-03.

U.S. Environmental Protection Agency (USEPA), 1994a. Interim Guidance on Establishing Soil Lead Cleanup Levels at RCRA Facilities. OSWER Directive #9355.4-12.

U.S. Environmental Protection Agency (USEPA), 1994b. Guidance Manual for the Integrated Exposure Uptake Biokinetic Model. OSWER Directive #9285.7-15.1, BB93-963510, February 1994.

U.S. Environmental Protection Agency (USEPA), 1996. Methodology for Assessing Risk Associated with Adult Exposure to Lead in Soil.

U.S. Environmental Protection Agency (USEPA), 2001. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites - Draft.

TABLE 1 PHYSICAL AND CHEMICAL PROPERTIES OF CONSTITUENTS OF INTEREST Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

	Di	Н	Koc	VF
Parameter	(cm ² /sec)	(atm-m ³ /mol)	(cm ³ /g)	(m³/kg)
VOCs		· · · · · · · · · · · · · · · · · · ·		
Benzene	0.088	5.60E-03	55.1	2.76E+03
Carbon Disulfide	0.104	3.00E-02	66.2	1.12E+03
Ethylbenzene	0.075	7.88E-03	341	6.36E+03
Methylene Chloride	1.01 E -01	2.20E-03	12.80	1.95E+03
Toluene	0.087	6.60E-03	165	4.47E+03
Xylenes	0.0769	7.30E-03	341	6.53E+03
Semi-VOCs				
Acenaphthene	0.0421	1,60E-04	6820	2.68E+05
Acenaphthylene	0.06703	1.10E-04	10700	3.21E+05
Anthracene	0.0324	6.50E-05	26500	9.44E+05
Fluorene	0.0363	6.40E-05	13500	6.42E+05
Naphthalene	0.059	4.80E-04	1760	6.64E+04
Phenanthrene	0.0543	2.56E-05	26500	1.16E+06

Superfund Chemical Data Marix, EPA, 1996.

Derivation Of VF Values (Soil-to-Air Volatilization Factor):

VF(m ³ /kg) =	(LS xVxDH)	х	$(\pi \times \alpha \times T)^{1/2}$
	A		$(2 \times D_{el} \times E \times K_{as} \times 10^3 \text{ kg/g})$

where;

LS = length of side of contaminated area (m): V = wind speed in mixing zone (m/s):	45 2.25
DH = diffusion height (m):	2
A = area of contamination (cm^2)	2.03E+07
$\pi = pi$:	3.1415927
$\alpha = (cm^2/s)$:	(D _{ei} x E)/(E + (ρs x ((1-E)/K _{as})))
T = exposure interval (s), industrial:	7.88E+08
$p_s = \text{density of soil solids (g/cm^3):}$	2.65
OC = soil organic carbon content fraction (unitles	ss): 0.02
D _{ei} = effective diffusivity (cm ² /s):	D ₁ x E ^{0.33}
D ₁ = molecular diffusivity (cm ² /s):	chemical-specific
E = total soll porosity (unitless):	0.35
K _{as} = soil/air partition coefficient (g soil/cm ³ air):	(H/K₀)×41
H = Henry's law constant (atm-m ³ /mol):	chemical-specific
K _d = soil-water partition coefficient (cm ³ /g):	K _w ×OC
K_{oc} = organic carbon partition coefficient (cm ³ /g)	chemical-specific

m = meter s = second cm = centimeter g = gram atm-m3/mol = atmospheres-cubic meters per mole

TABLE 2

CANCER SLOPE FACTORS AND REFERENCE DOSES FOR CONSTITUENTS OF INTEREST Former Macon 2 Manufactured Gas Plant Facility

Macon, Georgia

	RfD,		RfDi		CSF,		CSF	
Parameter	(mg/kg-d)		(mg/kg-d)		(mg/kg-d) ⁻¹		(mg/kg-d) ⁻¹	
VOCs								
Benzene	4.00E-03	а	8.60E-03	а	5.50E-02	а	2.73E-02	а
Carbon Disulfide	1.00E-01	а	2.00E-01	а	NA		NA	
Ethylbenzene	1.00E-01	а	2.90E-01	а	NA		3.90E-03	е
Methylene Chloride	6.00E-02	а	8.60E-01	b	7.50E-03	а	1.65E-03	а
Methyl-tert-butyl-ether	NA		8.57E-01	а	NA		NA	
Toluene	2.00E-01	а	1.14E-01	а	NA		NA	
Xylenes ,	2.00E+00	а	3.00E-03	a	NA		NA	
SVOCs								
Acenaphthene	6.00E-02	a.	NA		NA		NA	
Acenaphthylene	3.00E-03	С	NA	·	NA		NA	
Anthracene	3.00E-01	a	NA		NA		NA	
Benzo(a)anthracene	NA		NA		7.30E-01	d	3.10E-01	d
Benzo(a)pyrene	NA		NA		7.30E+00	а	3.10E+00	g
Benzo(b)fluoranthene	NA		NA		7.30E-01	d	3.10E-01	d
Benzo(g,h,i)perylene	3.00E-02	е	NA		NA		NA	
Benzo(k)fluoranthene	NA		NA		7.30E-02	d	3.10E-02	d
Chrysene	NA		NA		7.30E-03	d	3.10E-03	d
Dibenzo(a,h)anthracene	· NA		NA		7.30E+00	d	3.10E+00	đ
Fluoranthene	4.00E-02	а	NA		NA		NA	
Fluorene	4.00E-02	а	NA		NA		NA	
Indeno(1,2,3-cd)pyrene	NA		NA		7.30E-01	d	3.10E-01	d
Naphihalene	2.00E-02	а	9.00E-04	а	NA		NA	
Phenanthrene	3.00E-02	С	NA		NA		NA	
Phenol	6.00E-01	а	NA		NA		NA	
Pyrene	3.00E-02	а	NA		NA		NA	
<u>inorganics</u>								
Arsenic	3.00E-04	а	NA		1.50E+00	а	1.51E+01	а
Barlum	7.00E-02	а	1.40E-04	b	NA		NA	
Beryilium	2.00E-03	а	5.70E-06	а	NA		8.40E+00	а
Cadmium	1.00E-03	a, f	5.70E-05	e	NA		6.30E+00	а
Chromium	3.00E-03	а	3.00E-05	а	NA		4.10E+01	b
Copper	4.00E-02	b	NA		NA		NA	
Cyanide	2.00E-02	a	NA		NA		NA	
Lead	NA		NA		NA		NA	
Mercury	3.00E-04	а	8.60E-05	а	NA	·	NÁ	
Nickel	2.00E-02	а	NA		NA		NA	а
Vanadium	7.00E-03	. b	NA		NA		NA	
Zinc	3.00E-01	а	NA		NA		NA	

(a) IRIS (2003)

(b) HEAST(7/97)

(c) Pyrene used as surrogate

(d) Toxicity Equivalence Factor (TEF) relative to benzo(a)pyrene were obtained from:

USEPA Region IV Office of Technical Sevices Supplemental Guidance to RAGS; October, 1996. (e) EPA-NCEA

(f) Value based on exposure to cadmium through food intake; RfD for cadmium-water is 5E-04 mg/kg-day NA = Not available or not applicable

TABLE 3 COMPARISON OF MAXIMUM CONCENTRATIONS DETECTED IN SOIL TO TYPES 1 AND 2 RISK REDUCTION STANDARDS Former Macon 2 Manufactured Gas Plant Facility

Macon, Georgia

·			·		
	Max.Conc.	Type 1	Source of	Type 2	Source of
_	Above Water Table	RRS	Type 1	RRS	Type 2
Parameter	(mg/kg)	(mg/kg)	Standard	(mg/kg)	Standard
VOCs			·		
Benzene	0.031	0.500	b	8.37	d
Carbon Disulfide	0.032	400	b	228	f
Ethylbenzene	ND	70.0	b	139	f
Methylene Chloride	ND	0.500	b	96.5	d
Toluene	0.010	100	b	514	f
Xylenes	0.0055	1,000	b	1,000	f
SVOCs					
Acenaphthene	6.1	300	а	4,690	f
Acenaphthylene	8.8	130	a	2,350	f
Anthracene	33	500	a	23,500	f
Benzo(a)anthracene	37	5.00	a	12.5	d
Benzo(a)pyrene	26	1.64	a	1.25	ď
Benzo(b)fluoranthene	27	5.00	a	12.5	d
Benzo(g,h,i)perylene	5.0	500	a	2,350	1 ŭ 1-
Benzo(k)fluoranthene	28	5.00	a	125	d
Chrysene	37	5.00	a	1,250	ď
Dibenzo(a,h)anthracene	3.5	2.00	d	1.25] d
Fluoranthene	68	500	a	3,130	f f
Fluorene	31	360 .	. a	3,130	ŕ
Indéno(1,2,3-cd)pyrene	15	5.00	a	12.5] d
Naphthalene	51	100	a	59.9	f:
Phenanthrene	110	110	a	2,350	f
Phenol	ND	400	b	46,900	f
Pyrene	70	500	a	2,350	f
Inorganics					
Arsenic	31.5	20.0	с	6.08	d
Barium	279	1,000	Ċ	5,430	f
Beryllium	ND	2.00	С	156	f
Cadmium	ND	2.00	c	78.2	f
Chromium	46.3	100	c	234	f
Copper	89.1	100	с	3,130	f
Cyanide	1,44	20.0	b	1,560	f
Lead	634	75.0/204	c/e	400	•
Mercury	9.43	0.500/0.540	cle	23.5	f
Nickel	14.4	50,0	C	1,560	f
Vanadium	79.3	100/120	c/g	548	f
Zinc	544	100/257	c/e	23,500	f

Blocked values exceed Risk Reduction Standards

* = Derived based on the EPA Integrated Exposure Biokinetic Model.

a = Appendix I Notification Requirement (GEPD, 1999)

b = Appendix III Table 1 times 100 (GEPD, 1999)

c = Appendix III Table 2 (GEPD, 1999)

d = Upperbound excess cancer risk

e = Background in fill material

f = Noncarcinogenic risk

g = Background in natural soils

NA = Not available

TABLE 4 TYPE 2 RISK REDUCTION STANDARDS FOR POTENTIAL RESIDENTIAL (ADULT AND CHILD) EXPOSURE TO SOIL Former Macon 2 Manufactured Gas Plant Facility

Miacon, Georgia							
· · · · · · · · · · · · · · · · · · ·	Calculated	Calculated	Calculated	Calculated			
	Goal	Goal	Goal	Goal			
	Child (Nonc)	Child (Carc)	Adult (Nonc)	Adult (Carc)	Type 2 RRSs		
Parameter	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
	•						
VOCs							
Benzene	22.91	11.44	84.04	8.368	8.37		
Carbon Disulfide	227.7	NA	811.8	NA	228		
Ethylbenzene	1,544	199	6,166	139	139		
Methylene Chloride	1,275	128.7	5,374	96.45	96.5		
Toluene	514.5	NA	1,839	NA	514		
Xylenes	156,429	NA	1,460,000	NA	156,429		
SVOCs							
Acenaphthene	4,693	NA	43,800	NA	4,693		
Acenaphthylene	2,346	NA	21,900	NA	2,346		
Anthracene	23,464	NA	219,000	NA	23,464		
Benzo(a)anthracene	20,404 NA	12.50	NA	23.33	12.5		
Benzo(a)pyrene	NA	1.250	NA	2.333	1.25		
	NA .	12,50	NA	23.33	12.5		
Benzo(b)fluoranthene		12,50 NA		23.55 NA			
Benzo(g,h,i)perylene	2,346		21,900		2,346		
Benzo(k)fluoranthene	NA	125.0	NA	233	125		
Chrysene	NA	1,250	NA .	2,333	1,250		
Dibenzo(a,h)anthracene	NA	1.250	ŅA	2.333	1.25		
Fluoranthene	3,129	NA	29,200	NA	3,129		
Fluorene	3,129	NA	29,200	NA .	3,129		
Indeno(1,2,3-cd)pyrene	NA	12.50	NA	23.33	12.5		
Naphthalene	59.9	NA	214.8	NA	59.9		
Phenanthrene	2,346	NA	21,900	NA	2,346		
Phenol	46,929	NA	438,000	NA	46,929		
Pyrene	2,346	NA	21,900	NA	2,346		
inorganics							
Arsenic	23.46	6.082	219.0	11.35	6.08		
Barium	5,431	NA	50,020	NA	5,431		
Beryllium	155.5	67,056	1,438	46,939	156		
Cadmium	78.19	89,408	729.4	62,586	78.2		
Chromium	234.3	13,738	2,181	9,617	234		
Copper	3,129	NA	29,200	NA	3,129		
Cyanide	1,564	NA	14,600	NA	1,564		
•	NA	NA	NA	NA	400		
Lead	NA 23.46	NA	218.9670	NA	23.5		
Mercury				NA			
Nickel	1,564	NA	14,600		1,564 548		
Vanadium	548 .	NA	5,110	NA			
	23,464	<u>NA</u>	219,000	NA	23,464		

NA = Not available

* = Derived based on the EPA Integrated Exposure Biokinetic Model.

TABLE 4 TYPE 2 RISK REDUCTION STANDARDS FOR POTENTIAL RESIDENTIAL (ADULT AND CHILD) EXPOSURE TO SOIL Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

Noncarcinogens: C =

HI*BW*AT*365 days/year EF*ED[(1/RfD_o*IR*CF+(1/RfD₁*IR_a*(1/VF+1/PEF)]

Carcino	c = C= C= CF*ED*[(CSF ₀ *IR*CF)+(CSF ₁ *IR ₈ *(1/VF+1/PEF))]
where:	
HI (Hazard Index)	1
BW = Body Weight (kg), adult	70
BW = Body Weight (kg), child	15
AT = Averaging Time (years), child	6
AT = Averaging Time (years), (carc)	70
EF = Exposure Frequency (days/year)	350
ED = Exposure Duration (years), adult	30
ED = Exposure Duration (years), child	6
RfD _o = Oral Reference Dose	Chemical-specific
RfD _L = Inhalation Reference Dose	Chemical-specific
IR = Ingestion Rate (mg/day), child	200
IR = Ingestion Rate (mg/day), adult	100
TR = Target Risk	1.00E-05
CSF _o = Oral Cancer Slope Factor	Chemical-specific
CSF _I = Inhalation Cancer Slope Factor	Chemical-specific
IR _a = Air Inhalation Rate (child) (m ³ /day)	15
IR _a = Air Inhalation Rate (Aduit) (m ³ /day)	15
1/PEF = Inv of Particulate Emission Factor (kg/m ³)	2.16E-10
CF = Conversion Factor (kg/mg)	1.00E-06
VF = Volatilization Factor (m ³ /kg)	Chemical-specific

	· ·	1410	icon, Georgia		-			
	Max.Conc. Above Water Table	Max.Conc. Above Water Table	Tune 1 DDD		Course of	Turne d DDO	Ture 4 000	
			Type 3 RRS	Type 3 RRS (mg/kg)	Source of		Type 4 RRS	Source of
Parameter	(mg/kg) 0-2'	(mg/kg) >2'	(mg/kg) 0-2'	(mg/kg) >2'	Type 3 Standard	(mg/kg) 0-2'	(mg/kg) >2'	Type 4 Standard
	0-2	~2	<u>v-z</u>		otanuaru	<u> </u>	>2	Stanuaru
VOCs								
Benzene	ND	0.031	0.500	0.500	b	0.500	0.500	е
Carbon Disulfide	ND	0.032	400	400	ь	400	400	е
Ethylbenzene	ND	ND	70.0	70.0	b	70.0	70.0	е
Methylene Chloride	ND	ND	0.500	0.500	b	0.500	0.500	е
Foluene	ND	0.010	100	100	b	100	100	е
Xylenes	ND	0.0055	1,000	1,000	b	1,000	1,000	е.
SVOCs								
Acenaphthene	ND	6.1	300	300	а	300	300	. e
Acenaphthylene	ND	8.8	130	130	а	130	130	e
Anthracene	ND	33	500	500	a	500	500	6
Benzo(a)anthracene	0.75	37	5.00	5.00	a	78.4	120	d/f
Benzo(a)pyrene	0.74	26	1.64	1.64	а	7.84	63,3	d/f
Benzo(b)fluoranthene	0.69	27	5.00	5.00	а	78.4	298	d/f
Benzo(g,h,i)perylene	0.540	5.0	500	500	а	500	500	e
Benzo(k)fluoranthene	0.780	28	5.00	5.00	а	5.00	5.00	е
Chrysene	0.77	37	5.00	5.00	a	5.00	5.00	e
Dibenzo(a,h)anthracene	ND	3.5	5.00	5.00	a	5.00	5.00	e
Fluoranthene	1.5	68	500	500	а	500	500	Ð
luorene	ND	31	360	360	a	360	360	0
ndeno(1,2,3-cd)pyrene	0.38	15	5.00	5.00	a	78.4	924	d/f
Vaphthalene	DL	51	100	100	a	100	100	e
Phenanthrene	1.1	110	110	110	a	110	110	e
Phenol	ND	ND	400	400	b	400	400	e
Pyrene	1.1	70	500	500	а	500	500	е
Inorganics								
Arsenic	31.5	7.47	38.1	41.0	d,a	38.1	41.0	е
Barlum	119	279	1,000	1,000	c	1,000	1,000	е.
Beryllium	ND	ND	3.00	3.00	а	3.00	3.00	e
Cadmium	ND	ND	39.0	39.0	а	39.0	39.0	е
Chromium	25.0	46.3	1,200	1,200	а	1,200	1,200	е
Copper	63.7	89.1	1,500	1,500	a	1,500	1,500	e
Cyanide	ND	1.44	20.0	20.0	b	20.0	20.0	e
_ead	151	634	400	400	a	1,070	1,070	f
Vercury	0.825	9.43	17.0	17.0	a	17.0	17.0	e
Vickel	8.29	14.4	420	420	а	420	420	e
Vanadium	75.3	79.3	100	100	а	100	100	e
Zinc	160	544	2,800	2,800	a	2,800	2,800	6

ND = Non detect

Blocked values exceed Risk Reduction Standards

a = Appendix I Notification Requirement (GEPD, 1999)

b = Appendix III Table 1 times 100 (GEPD, 1999)

c = Appendix III Table 2 (GEPD, 1999)

d = Upperbound excess cancer risk

e = Calculated Type 4 RRS by RAGs was not evaluated for leachability; therefore, defaults to Type 3.

f = Concentration protective of groundwater is less than Type 4 RRS calculated by RAGs, therefore, Type 4 has been adjusted to be protective of groundwat NA = Not available

TABLE 6 TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL COMMERCIAL AND CONSTRUCTION EXPOSURE TO SOIL Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

			Commercial Worker	-			Construction Worker
			Type 4				Туре 4
	Calculated	Calculated	RRSs		Calculated	Calculated	RR\$
	Goal (Nonc)	Goal (Carc)	(mg/kg)		Goal (Noncar)	Goal (Car)	(mg/kg)
Parameter	(mg/kg)	(mg/kg)	0-2'		(mg/kg)	(mg/kg)	>2'
VOCs	· •						
Benzene	119,4	14.25	14.25		220.7	1,324	220.7
Carbon Disulfide	1,143	NA	1,143		2,216	NA	2,216
Ethylbenzene	9,013	233.4	233.4		14,457	23,344	14,457
Methylene Chloride	8,016	165.6	165,6		11,736	14,762	11,736
Toluene	2,590	NA	2,590		5,003	NA	5,003
Kylenes	4,088,000	NA	4,088,000	٠	1,238,788	NA	1,238,788
SVOCs	·						
Acenaphthene	122,640	NA	122,640		37,164	NA	37,164
Acenaphthylene	6,132	NA	6,132		1,858	NA	1,858
Anthracene	613,200	NA	613,200		185,818	NA	185,818
Benzo(a)anthracene	NA	78.4	78,40		NA	1,188	1,188
Benzo(a)pyrene	NA	7.84	7.840		NA	118.8	118.8
Benzo(b)fluoranthene	NA	78.4	78.40		NA	1,188	1,188
Benzo(g,h,i)perylene	61,320	NA NA	61,320		18,582	NA	18,582
Benzo(k)fluoranthene	NA	784	784.0		NA	11,879	11,879
Chrysene	NA	7,840	7,840		NA T	118,787	118,787
Jihysene Dibenzo(a,h)anthracene	NA	7.84	7,840		NA	118.8	118.8
-luoranthene	81,760	NA	81,760		24,776	NA	24,776
Fluorene	81,760	-NA	81,760		24,776	NA	24,776
	NA	78.4	78.40		NA	1,188	1,188
ndeno(1,2,3-cd)pyrene Naphthalene	303	NA	302.9		581.6	NA	582
Phenanthrene	-	NA				NA NA	18,582
Phenol	61,320	NA	61,320 1,226,400		18,582 371,636	NA	371,636
	1,226,400	NA	61,320		18,582	NA	18,582
Pyrene	61,320	IVA	01,320		10,002	IN/A	10,002
norganics			1				
Arsenic	613.2	38.12	38.12		185.8	578.0	186
3arium	137,155	NA	137,155		43,076	NA	43,076
Beryllium	3,968	78,858	3,968		1,233	112,654	1,233
Cadmium	2,041	105,144	2,041		619.3	10,514,403	619
Chromium	6,079	18,156	6,079		1,856	11,540	1,856
Copper	81,760	NA	81,760		24,776	NA	24,776
Cyanide	40,880	NA	40,880		12,388	NA	12,388
.ead	NA	NA	1,429	. **	NA	NA	1,429
Mercury	613.0	NA	613.0		185.8	NA	186
Nickel	40,880	NA	40,880		12,388	NA	12,388
Vanadium	14,308	NA	14,308		4,336	NA	4,336
Zinc	613,200	NA	613,200		185,818	NA	185,818

* = Type 4 RRS > 1.00E+08, therefore it defaults to Type 3 RRS. ** = Calculated based on Georgia Adult Lead Model (see Table 7)

NA = Not available

TABLE 6 TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL COMMERCIAL AND CONSTRUCTION EXPOSURE TO SOIL Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

Noncarcinogens:

Hi*BW*AT* 365 days/year C = EF*ED*[(1/RfD₀*CF*IR)+((1/RfD₀*IR_a*(1/VF+1/PEF)]

Carcinogens:

TR*BW*AT* 365 days/year C = EF*ED*[(CSF₀*IR*CF)+(CSF₁*IR₄*(1/VF+1/PEF)]

where:	Commercial Worker	Construction Worker
HI (Hazard Index)	· 1	1
BW = Body Weight (kg), adult	70	70
AT = Averaging Time (years), (aduit/carc)	70	70
AT = Averaging Time (years), (adult/nonc)	25	0.5
EF = Exposure Frequency (days/year)	250	125
ED = Exposure Duration (years), adult/carc	25	0.5
RfD _o = Oral Reference Dose	Chemical-specific	Chemical-specific
RfD _I = Inhalation Reference Dose	Chemical-specific	Chemical-specific
CSF₀ = Oral Cancer Slope Factor	Chemical-specific	Chemical-specific
CSF _i = Inhalation Cancer Stope Factor	Chemical-specific	Chemical-specific
IR = Ingestion Rate (mg/day), adult	50	330
TR = Target Risk	1.00E-05	1.00E-05
IR _a = Air Inhalation Rate (adult)	20	20
1/PEF = Inv of Particulate Emission Factor (kg/m ³)	2.16E-10	2.16E-10
CF = Conversion Factor (kg/mg)	1.00E-06	1.00E-06
VF = Volatilization Factor (m ³ /kg)	Chemical-specific	Chemical-specific

Revised September 5, 2003

TABLE 7 CALCULATION OF TYPE 4 RISK REDUCTION STANDARDS FOR LEAD IN SOIL Former Macon 2 Manufactured Gas Facility Macon, Georgia

Definitions	Units	Values	Comments
Baseline blood lead concentration in adults	ug/dL	1.38	·
The blood lead goal for the unborn fetus	ug/dL	10	
The average blood lead goal for adult	ug/dL	3.44	Calculated from equation 1 (see below)
Geometric standard deviation of blood lead concentration	unitless	2.04	
Constant of proportionality between fetal blood lead concentration at birth and maternal blood lead concentration	unitless	0.9	
Biokinetic slope factor	ug/dL per ug/day	0.4	
Exposure frequency	days/year	219	
Averaging time	days/year	365	
ntake rate of soil	g/day	0.05	
Absolute GI absorption factor for ingested lead in soil and in dust	unitless .	0.12	
Concentration of lead in groundwater at site	ug/L	0.01	Detection Limit
ntake rate of water	L/day	1	
Absolute GI absorption factor for lead ingested in groundwater	unitless	0.2	
Risk Reduction Standard - soil lead concentrations	mg/kg	1429.44	Calculated from equation 2 (see below)

Model, HSRA Appendix IV, October 27, 1999.

PbB = <u>PbB_{fetel}</u>

R*GSD^{1.645}

$$\begin{split} \mathsf{RRS} &= [\underline{(\mathsf{PbB} - \mathsf{PbB}_{\mathsf{b}})} - (\mathsf{C}_\mathsf{w}^*\mathsf{I}_\mathsf{w}^*\mathsf{A}_{\mathsf{w}}]^* (\mathsf{I}_\mathsf{s}^*\mathsf{A}_\mathsf{s})^{-1} \\ & \mathsf{BSF}^*(\mathsf{EF}/\mathsf{AT}) \end{split}$$

TABLE 8 COMPARISON OF MAXIMUM CONCENTRATIONS DETECTED IN GROUNDWATER TO TYPES 1 AND 2 RISK REDUCTION STANDARDS Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

····	Maximum Detected	Type 1	,	Type 2	
	Concentration*	RRS	Source of	RRS	Source of
Parameter	(mg/L)	(mg/L)	Type 1 Standard	(mg/L)	Type 2 Standard
VOCs		•	-		
Benzene	ND	0.00500	а	0.00545	d
Carbon Disulfide	ND	4.00	а	0.329	d
Ethylbenzene	ND	0.700	а	0.0582	' d
Methylene Chloride	ND	0.00500	а	0.0622	С
Methyl-tert-butyl-ether	NA .	DL	b	1.79	d
Toluene	ND	1.00	а	0.221	d
Xylenes	ND	10.0	а	31.3	d
SVOCs	· · · ·				
Acenaphthene	0.014	2.00	a	0.939	đ
Acenaphthylene	ND	DL	b	0.469	d
Anthracene	ND	DL	, b	4.69	d
Benzo(a)anthracene	ND .	0.000100	a	0.000450	C
Benzo(a)pyrene	ND	0.000200	a	0.0000450	С
Benzo(b)fluoranthene	ND	0.000200	a	0.000450	С
Benzo(g,h,i)perylene	ND	DL	b	0.469	d
Benzo(k)fluoranthene	ND	DL	b	0.00450	с
Chrysene	ND	DL	b	0.0450	С
Dibenzo(a,h)anthracene	ND	0.000300	a ·	0.0000450	ċ
Fluoranthene	ND	1.00	a	0.626	d
Fiuorene	ND	1.00	а	0.626	d
Indeno(1,2,3-cd)pyrene	ND	0.000400	а	0.000450	С
Naphthalene	ND	0.0200	a	0.00187	d
Phenanthrene	ND	DL.	b	0.469	d
Phenol	ND	4.00	а	9,39	d
Pyrene	ND	1.00	a	0.469	, d
Inorganics					
Arsenic	ND	0.0500	а	0.000568	С
Barlum	1.85	2.00	а	1.10	d
Beryllium	ND	0.00500	а	0.0313	d
Cadmium	ND	0.00500	а	0.00782	с
Chromium	ND	0.100	а	0.0469	đ
Соррег	ND	1.30	а	0.626	d
Cyanide	0.048	0.200	а	0.313	d
Lead	ND	0.0150	а	0.0150	а
Mercury	ND	0.00200	а	0.00469	đ
Nickel	ND .	0.100	a,	0.313	đ
Vanadium	ND	0.200	a ·	0.110	d
Zinc	ND	2.00	а	4.69	d

Blocked values = Risk Reduction Standard exceeded a = Appendix III Table 1 (GEPD, 1999) b = Detection limit

c = Upperbound excess cancer risk

d = Noncarcinogenic risk

* = Based on August 2003 sampling event.

TABLE 9 TYPE 2 RISK REDUCTION STANDARDS FOR POTENTIAL RESIDENTIAL (CHILD AND ADULT) EXPOSURE TO GROUNDWATER Former Macon 2 Manufactured Gas Plant Macon, Georgia

	Calculated Goal	Calculated Goal	Calculated Goal	Calculated Goal		
Parameter VOCs Benzene Carbon Disulfide Ethylbenzene Methylene Chloride Methyl-tert-butyl-ether Toluene Xylenes SVOCs Acenaphthene Acenaphthene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	Child (Noncarc)	Child (Car)	Adult (Noncarc)	Aduit (Carc)	Type 2 RRSs	
Parameter	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
VOCs						
	0.01394	0.007087	0.05320	0.005451	0.00545	
Carbon Disulfide	0.3293	NA	1.270	NA	0.329	
Ethvibenzene	0.4362	0.06239	1.592	0.05823	0.0582	
•	0.6162	0.09182	1,736	0.06222	0.0622	
-	1.787	NA	8.341	NA	1.79	
	0.2210	NA	0.9632	NA	0.221	
Xylenes	31.29	NA	73.00	NA	31.3	
SVOCs						
	0.9386	NA	2.190	NA	0.939	
•	0.4693	NA	1.095	NA	0.469	
Anthracene	4.693	NA	10.95	NA	4,69	
Benzo(a)anthracene	NA	0.000597	NA	0.000450	0.000450	
	NA	0.0000597	NA	0.0000450	0.0000450	
	NA	0.000597	NA	0.000450	0.000450	
Benzo(g,h,i)perylene	0.4693	NA	1.095	NA	0.469	
	NA	0.00597	NA	0.00450	0.00450	
Chrysene	NA	0.0597	NA	0.0450	0.0450	
•	NA	0.0000597	NA	0.0000450	0.0000450	
	0.6257	NA	1.460	NA	0.626	
Fluorene	0.6257	NA	1.460	NA	0.626	
ndeno(1,2,3-cd)pyrene	NA	0.000597	NA	0.000450	0.000450	
Naphthalene	0.001866	NA	0.7300	NA	0.00187	
Phenanthrene	0.4693	NA	1.095	NA	0.469	
Phenol	9.386	NA	21.90	NA	9.39	
byrene	0.4693	NA	1.095	NA	0.469	
Inorganics						
Arsenic	0.004693	0.00122	0.0110	0.000568	0.000568	
Barlum	1.095	NA	2.555	NA	1.10	
Beryllium	0.03129	NA	0.07300	NA	0.0313	
Cadmium	0.007821	NA	0.01825	NA	0.00782	
Chromium	0.04693	NA	0.1095	NA .	0.0469	
Copper	0.6257	NA	1.460	NA	0.626	
Cyanide	0.3129	NA	0.7300	NA	0.313	
Lead	NA	NA	NA	NA	NA	
Mercury	0.004693	NA	0.01095	NA	0.00469	
Nickel	0.3129	NA	0.7300	NA	0.313	
Vanadium	0.1095	NA	0.2555	NA	0.110	
Zinc	4.693	NA	10.95	NA	4.69	

TABLE 9

TYPE 2 RISK REDUCTION STANDARDS FOR POTENTIAL RESIDENTIAL (CHILD AND ADULT) EXPOSURE TO GROUNDWATER Former Macon 2 Manufactured Gas Plant Macon, Georgia

Noncarcinogens:

		THI*BW*AT*365 days/year
C	⊒	EF*ED*[(1/RFDi*K*IRa)+(1/RfDo*IRw)]

TR*BW*AT*365 days/year EF*ED*[(CSFi*K*IR_s)+(CSF_o*IR_w)]

Carcinogens:

	c =
where:	
THI = Target Hazard Index	1
BW = Body Weight (kg), child	15
BW = Body Weight (kg), adult	70
AT = Averaging Time (years) (carc)	70
AT = Averaging Time (years), child (noncarc)	6
AT = Averaging Time (years), adult (noncarc)	30
EF = Exposure Frequency (days/year)	350
ED = Exposure Duration (years), child	6
ED = Exposure Duration (years), adult	30
K = Volatilization Factor (unitless)	0.5
IR _a = Inhalation Rate of Air (m ³ /day), child	15
IR _e = inhalation Rate of Air (m ³ /day), adult	. 15
IR _w = Ingestion Rate of Water (L/day), adult	. 2
IR _w = Ingestion Rate of Water (L/day), child	1
RfD _o = Oral Reference Dose	Chemical-specific
RfD _i = Inhalation Reference Dose	Chemical-specific
TR = Target Risk	1.00E-05
CSF _e = Oral Cancer Slope Factor	Chemical-specific
CSF _i = Inhalation Cancer Slope Factor	Chemical-specific
NA = Not Applicable	

TABLE 10 COMPARISON OF MAXIMUM DETECTED CONCENTRATIONS IN GROUNDWATER TO TYPES 3 AND 4 RISK REDUCTION STANDARDS Former Macon 2 Manufactured Gas Plant Facility Macon, Georgia

	Maximum Detected	Type 3		Type 4	
	Concentration*	RRS	Source of	RRS	Source of
Parameter	(mg/L)	(mg/L)	Type 3 Standard	(mg/L)	Type 4 Standard
VOCa					
Benzene	ND	0.00500	а	0.0088	C
Carbon Disulfide	ND	4.00	а	1.70	ď
Ethylbenzene	ND	0.700	a	0.0734	d
Methylene Chloride	ND	0.00500	а	0.119	С
Methyl-tert-butyl-ether	NA	DL	ь.	8.76	d
Toluene	ND	1.00	а	1.10	d
Xylenes	ND	10.0	а	204	d
SVOCs					
Acenaphthene	0.014	2.00	a	6.13	_ d
Acenaphthylene	ND	DL	b	3.07	d
Anthracene	ND	DL	b	30.7	d
Benzo(a)anthracene	ND	0.000100	а	0.000747	C
Benzo(a)pyrene	ND	0.000200	a	0.0000747	Ċ
Benzo(b)fluoranthene	ND	0.000200	а	0.000747	C
Benzo(g,h,l)perylene	ND	DL	а	3.07	ď
Benzo(k)fluoranthene	ND	DL	b	0.00747	¢
Chrysene	ND	DL	а	0.0747	C
Dibenzo(a,h)anthracene	ND	0.000300	b	0.0000747	c
Fluoranthene	ND	1.00	b	4.09	d
Fluorene	ND	1.00	а	4.09	d
indeno(1,2,3-cd)pyrene	ND	0.000400	а	0.000747	C
Naphthatene	ND	0.0200	а	0.00916	d ·
Phenanthrene	ND	DL	b	3.07	d
Phenol	ND	4.00	а	61.3	d
Pyrene	ND	1.00	a ´.	3.07	d
Inorganics				• •	
Arsenic	ND	0.0500	a	0.00191	ç
Barium	1.85	2.00	a	7.15	đ
Beryllium [.]	ND	0.00500	а	0.204	đ
Cadmium	NØ	0.00500	а	0.0511	C
Chromium	ND	0.100	a	0.307	d
Copper	ND	1.30	.a	4.09	d
Cyanide	0.048	0.200	a	2.04	d
Lead	ND	0.0150	a	0.0150	di.
Mercury	ND	0.00200	a	0.0307	C
Nickel	ND.	0.100	a	2.04	đ
Vanadium	ND	0.200	a ·	0.715	d
Zinc	ND	2.00	a	30.7	d

Blocked values = Risk Reduction Standard exceeded

a = Appendix III Table 1 (GEPD, 1999)

b = Detection limit

c = Upperbound excess cancer risk

d = Noncarcinogenic risk

* = Based on August 2003 sampling event.

TABLE 11 TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL INDUSTRIAL GROUNDWATER EXPOSURE Former Macon 2 Manufactured Gas Plant, Macon, Georgia

	Calculated	Calculated	·····
	Goal (Nonc)	Goal (Carc)	RRS Type 4
Parameter	(mg/L)	(mg/L)	(mg/L)
VOCs			
Benzene	0.0723	0.0088	0.0088
Carbon Disulfide	1.703	NA	1.70
Ethylbenzene	2.298	0.07337	0.0734
Methylene Chloride	3.612	0.1192	0.119
Methyl-tert-butyl-ether	8.759	NA	8.76
Toluene	1.102	NA	1.10
Xylenes	204.4	NA	204
SVOCs			
Acenaphthene	6.132	ŇA	6.13
Acenaphthylene	3.066	NA	3.07
Anthracene	30.66	NA	30.7
Benzo(a)anthracene	NA	0.000747	0.000747
Benzo(a)pyrene	NA	0.0000747	0.0000747
Benzo(b)fluoranthene	NA	0.000747	0.000747
Benzo(g,h,i)perylene	3.066	NA	3.07
Benzo(k)fluoranthene	NA	0.00747	0.00747
Chrysene	· NA	0.07472	0.0747
Dibenzo(a,h)anthracene	NA	0.0000747	0.0000747
Fluoranthene	4.088	NA	4.09
Fluorene	4.088	NA	4.09
Indeno(1,2,3-cd)pyrene	NA	0.000747	0.000747
Naphthalene	0.00916	NA	0.00916
Phenanthrene	3.066	NA	3.07
Phenol	61.32	NA	61.3
Pyrene	3.066	NA	3.07
Inorganics			
Arsenic	0.03066	0.001908	0.00191
Barium	7.154	NA	7.15
Beryllium	0.2044	NA	0.204
Cadmium	0.05110	NA	0.0511
Chromium	0.3066	NA	0.307
Copper	4.088	NA	4.09
Cyanide	2.044	NA	2.04
Lead	NA	NA	NA
Mercury	0.03066	NA	0.0307
Nickel	2.044	NA	2.04
Vanadium	0.7154	NA	0.715
Zinc	30.66	NA	30.7

NA = Not available

Revised September 5, 2003

TABLE 11

TYPE 4 RISK REDUCTION STANDARDS FOR POTENTIAL INDUSTRIAL GROUNDWATER EXPOSURE Former Macon 2 Manufactured Gas Plant, Macon, Georgia

Non-carcinogens:

$c = \frac{THI^{*}BW^{*}AT^{*}365 \text{ days/year}}{EF^{*}ED^{*}[(1/RfD_{1}^{*}K^{*}IR_{n})+(1/RfD_{0}^{*}IR_{w})]}$

Carcinogens:

	IR BW AI 365 days/year
С	= EF*ED*[(CSFj*K*IRa)+(CSFo*IRw)]

where;	
THI = Target Hazard Index	1
BW = Body Weight (kg), aduit	70
AT = Averaging Time (years) adult (nonc)	25
AT = Averaging Time (years) adult (carc)	70
EF = Exposure Frequency (days/year)	250
ED = Exposure Duration (year), adult (nonc)	25
K = Volatilization Factor (unitless)	0.5
IR _s = Inhalation Rate of Air (m ³ /day), adult	. 20
IR _w = Ingestion Rate of Water (L/day), adult	1
RfD _o = Oral Reference Dose	Chemical-specific
RfD _i = Inhalation Reference Dose	Chemical-specific
TR = Target Risk	1.00E-05
CSF _d = Oral Cancer Slope Factor	Chemical-specific
CSF _i = Inhalation Cancer Slope Factor	Chemical-specific
NA = Not Applicable	

Revised September 5, 2003

PROTECTED ANIMAL AND PLANT SPECIES POTENTIALLY OCCURRING IN BIBB COUNTY AND THE SURROUNDING COUNTIES OF CRAWFORD, HOUSTON, JONES, MONROE, PEACH, AND TWIGGS Macon 2 Former Manufactured Gas Plant Facility

Macon, Georgia

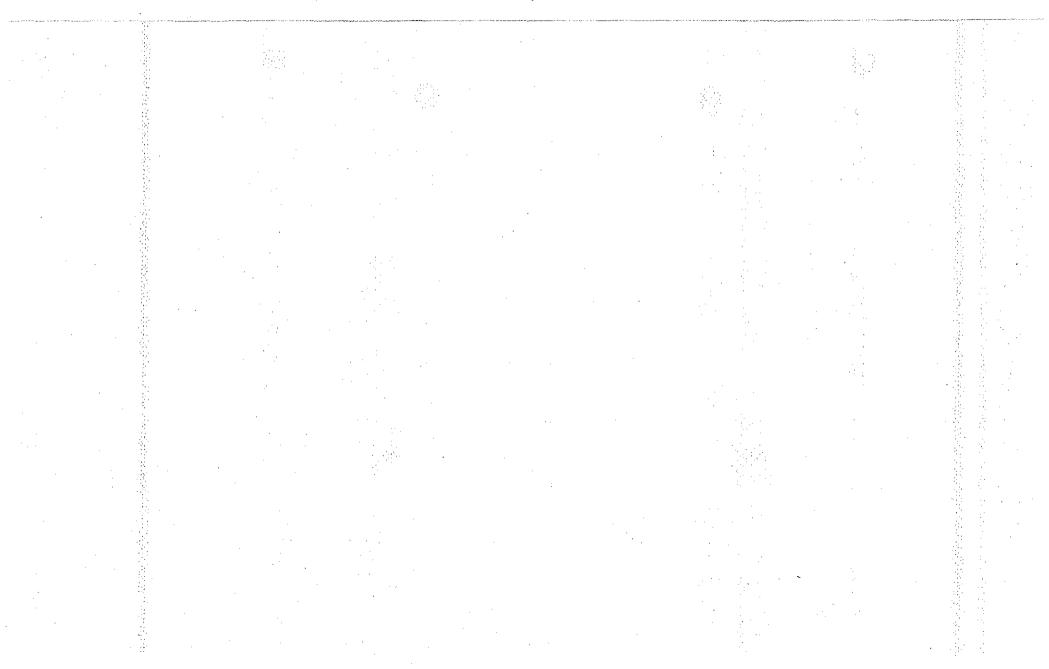
Species Name	County	Federal Status ^(a)	State Status ^(b)	Preferred Habitat
BIRDS			4	1
Bald eagle (Haliaeetus leucocephalus)	Bibb, Crawford, Houston, Jones, Monroe, Peach, Twiggs	T	E	Associated with coasts, river and lakes, usually nesting within sight of large bodies of water.
Wood stork (Mycteria americana)	Bibb, Crawford, Houston, Jones, Peach, Twiggs	E	E	Primarily feed on fish in fresh and brackish wetlands and nest in cypress or other wooded swamps.
Red-cockaded woodpecker (Picoides borealis)	Bibb, Crawford, Houston, Jones, Monroe, Peach, Twiggs	E	E	Nest in mature pine with low understory vegetation, forage in pine hardwood stands greater than 30 years of age.
FISHES				
Bluestripe shiner (Cyprinella callitaenia)	Crawford	NL	T	Restricted to the Apalachicola – Chattahoochee-Flint (ACF) River system, in large streams with open, sand or rock-bottomed channels with flowing water and little or no aquatic vegetation.
MUSSELS				
Purple bankclimber mussel (Elliptoideus sloatianus)	Crawford, Peach	Т	Т	Main channels of ACF Basin rivers in moderate currents over sand, sand mixed mud, or gravel substrates.
Shiny-rayed pocketbook mussel (Lampsilis subangulata)	Crawford, Peach	E .	E	Medium Creeks to mainstream of rivers (Choctawhatchee and Ochlockonee only) with slow to moderate currents over sandy substrates and associated with rock or clay.
Gulf moccasinshell mussel (Medionidus pencillatus)	Crawford, Peach	E	E	Medium creeks to mainstream of rivers (Choctawhatchee and Ochlockonee only) with slow to moderate currents over sandy substrates and associated with rock or clay.
Oval pigtoe mussel (Pleurobema pyriforme)	Crawford, Peach	E	E	River tributaries and main channels (Apalachicola, Chattahoochee, and Flint basin) in slow to moderate currents over silty sand, muddy sand, sand, and gravel substrates.

Table 12

Species Name	County	Federal Status ^(a)	State Status ^(b)	Preferred Habitat
PLANTS	· · · · · · · · · · · · · · · · · · ·	·		
Shoals spider-lily (Hymenocallis coronaria)	Bibb	NL	E	Major streams and rivers in rocky shoals and in cracks of exposed bedrock, plants can be completely submerged during flooding.
Green pitcher-plant (Sarracenia oreophila)	Bibb	E	E	Open seepy meadows along sandy flushed banks of streams, and in partially shaded red maple-blackgum low woods or poorly drained oak-pine flatwoods; believed to be extirpated from Bibb County.
Sweet pitcher-plant (Sarracnia rubra)	Bibb, Crawford, Peach	NL	E	Acidic soils of open bogs, sandhill seeps, Atlantic white cedar swamps, wet savannas, and low areas in pine flatwoods and along sloughs and ditches.
Ocmulgee skullcap (Scutellaria ocmulgee)	Bibb, Houston	NFS	Т	Prefers forested terraces, hardwood slopes and riverbanks of tributaries to the Ocmulgee, Oconee, and Savannah Rivers.
Fringed campion (Silene polypetala)	Bibb, Crawford	Е	E	Mature hardwood or hardwood-pine forests on river bluffs, small stream terraces, moist slopes and well shaded ridge crests.
Relict trillium (Trillium reliquum)	Bibb, Houston, Jones	E	E	Hardwood forests; in the Piedmont on either rich ravines or adjacent alluvial terraces with other spring-flowering herbs.
Indian olive (Nestronia umbellula)	Peach	NFS	Т	Dry open upland pine-hardwood forests.
AMPHIBIANS AND REPTIL	LES			A
Eastern indigo snake (Drymarchon corais couperi)	Bibb, Houston, Twiggs	Т	Т	Winters in xeric sandhills habitat associated with gopher tortoises; forages in creek bottoms, upland forests, and agricultural fields during the worm months.
Barbour's map turtle (Graptemys barbouri)	Crawford	NFS	Т 	Restricted to Apalachicola River and large tributaries including Chipola, Chattahoochee, and Flint Rivers in eastern Alabama, western Georgia, and western Florida.
Alligator snapping turtle (Macroclemys temmincki)	Crawford, Peach	NFS	R	Rivers, lakes, and large ponds
Gopher tortoise (Gopherus polyphemus)	Bibb, Crawford, Houston	NFS	T .	Well drained sandy soils in forest and grassy areas often associated with pine overstory with grass associated with pine overstory and open understory with grass and groundcover, and sunny areas for nesting.

.•.

Source: <u>http://www.fws.gov/r4gafo/</u> (a) Federal; E = Endangered; T = Threatened; NFS = No Federal Status (b) State; E = Endangered; T = Threatened


COMPLIANCE STATUS INVESTIGATION REPORT

FORMER MACON 2 MGP FACILITY

MACON, GEORGIA

WILLIAMS PROJECT NO. 1100-2990

June 17, 2002 - Revised September 5, 2003

COMPLIANCE STATUS INVESTIGATION REPORT ATTACHMENT A FORMER MACON 2 MGP FACILITY MACON, GEORGIA

Prepared For: Georgia Power Company Atlanta Gas Light Company and The City of Macon

 $\left(\cdot \right)$

Prepared By: WILLIAMS ENVIRONMENTAL SERVICES INC. 500 Chase Park South, Suite 150 Birmingham, Alabama 35244

> Preparation Date: June 17, 2002 Revised September 5, 2003

Analytical Environmental Services, Inc.

August 25, 2003

Mike Dillon Williams Environmental Services, Inc 500 Chase Park South Suite 150 Birmingham, AL 35244

TEL: (205) 988-8305 FAX (205) 988-5249

RE: Macon II MGP

Dear Mike Dillon:

Order No.: 0308662

Analytical Environmental Servs, Inc. received 16 samples on 8/21/2003 9:50:00 AM for the analyses presented in the following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows: -NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water, effective 07/02/03-06/30/04. -AIHA Certification number 505 for analysis of Air, Paint Chips, Soil and Dust Wipes, effective until 10/01/03.

These results relate only to the items tested. This report may only be reproduced in full and contains 20 total pages (including cover letter).

If you have any questions regarding these test results, please feel free to call.

Sincerely,

allison (autill

Allison Cantrell Project Manager

NALYTICAL RONMENTAL SERVI	ces, inc	0 .			CH	(1990) (1990) (1990)	OF C	UST	DDY	ζ				•			Work Order:	- - - -	s662.
EL: (770) 457-8177 / TC FREE: (800) 972-4889 / FAX: (- Lar				: 									Date:	<u>8</u>]2	ALE S Page	(of	2.
MPANY: Wy Mingray END. SERVICES	ADDRESS;	500 56	÷-,2	بمرجلة فمترج	4, 5							A١	VALYS						
ν, μ	「日本の」	DDRESS: 500 CHASE MARE, S Ster 150 Bhani, Al 25277															T		
IONE: 305-7592. #305		AX:																·	Kers
MPLED BY:		Maci	/1 - /	11	·Ler:=														No # of Containers
		AMPLED				12											REMARK	\$	10 # OE
# SAMPLE ID			Grab	Composite	Matrix (See codes)		LL			PRES	ERVAT	TON	k 		······				~
	DATE	TIME	1	<u> </u>		<u> </u>	┞──┤			-									<u> </u>
<u>58-99-0-2</u> 58-99-5-7	8/20/3	î	X		50														
		10月4日	X		i.		├ ──-}								┢╼╌╿				
<u></u>	<u>i</u>	<u>0450</u>	X			ì	├ ───												
58-44-15-17			X				┝──┢												
58-44-20-21		1318116	<u> </u>		<u> </u>													······	<u> </u> !
		0936	X			-											• •		ļ. ,
<u> </u>		0840	<u> </u>	Į	-	ļ į									<u> </u>				
211-45-76-72		05 50	1		ļ.	1	ļļ.												
18-45-15-17		0400	X			, î													
58-43-1815-22		040	R.	[, in the second													[]
- 14 - 416 - Com 2.		19450	X			Ĩ													
		منتقب المحرمين المحرمين المحرمين المحرمين المحرمين المحرمين المحرمين المحرمين المحرمين المحرمين المحرمين المحرم المحرمين المحرمين الم	X			1			_										
513-46-10-12		12:50	X		174	Ĩ													1
38-46-5-17	1.1	1020	2			- ¹⁹⁹⁴								T .					
LINQUISHED BY	ERECEIVED	BY	· · · · ·	D	ATE/TIM				PR	OJECT	INFOR	MATIO	N				REG	,EILL	
Mar u. Elin studis		MA_8		i) În	5°		IECT N	AUD.		N L	M	3					Total # of Cont	liners	
· ·							PROJECT #: ((58) こう(れな)									Turnaround Time Request			
·	2.					FAC											Standard 3-5	-	•
	J ³ .	3: SITE A					ADDR	ESS: 🥍	1-60 A	5	ζ.	r i	بيضن ويركمه فا	i⊂'	No. 8	ļ	O Same Day Ro Next Busines)
ECIAL INSTRUCTIONS: COMMENTS:		SHIPMENT	METHOD)		PRO.	JECT N	IANAGE		n)[48	5 D.	115-	end [†]				O 2 Business D		
		1 1	VIA:				DICE T										O Other	·····	
· · · · · · · · · · · · · · · · · · ·	IN		VIA:	00100	100	(IF D	NFFER	ENT FRO	ом АВ	IOVE)						1	PROGRAM (see codes	:	
		NT FedEx UP			IEK														
)#: JOTE CONTRACT #:																	DATA PACKAGE:	1 11 111	iv

ATRIX ('ODES: A = Air GW = Groundwater SE = Sediment SO = Soil SW = Surface Water W - Water (Blanks) O = Other (specify)

LESERVATIVE CODES: H = Hydrochloric acid + ice I = Ice only N = Nitric acid + ice S = Sulfuric acid + ice O = Other (specify) NA = None

OGRAM: FLUST FLDC ALUST TNUST MSUST NOUST SOUST GAUST GACONV FLCONV

.

RONMENTAL SERVICES, INC. INALYTICAL

CH/)JF	CUSTODY
---------	---------

Work Order: 👔 🛛 💥 🔂 📶

785 Presidential Pkw,	Ianta, GA 30340-3704	•
EL: (770) 457-8177 / TO	OLL FREE: (800) 972-4889 /	FAX: (770) 457-8188

MALIIICAL KUNMENIAL SERVI	CES, INC.					1													
785 Presidential Pkw,lanta, GA 30340-3704 "EL: (770) 457-8177 / TOLL FREE: (800) 972-4889 / FAX:	(770) 457-8188	े इ छ	67 5 8	ية من المقاط معرفة المحوريني المقاط معرفة المحوريني	£ ` ŧ						1-			Da	11e: 😸	يتية بن إن من	Page	<u> </u>	(
DMPANY: レルビシュー	ADDRESS: برنج ک	S OHHE	F / A	ĐĽ, -	50			·		ANALYSIS REQUESTED									
	RI MA	S. OHHS WUCHUZ D	244	1			5							· 					
IONE:	FAX: 52.7					Q.	Marnes												incrs
MPLED BY: MILE Dillow	SIGNATURE:	the la	1.1	Shark John L	>	7.07A.C	i.												# of Containers
		IPI.ED		1		10	34										REMAR	KS	No # 0
# SAMPLE ID	DATE	TIME	Grab	Composite	Matrix (See codes)				PRE	SERV	ATION			T		**************************************		······	
		diameters.	- À	<u> </u>	50	ļ								1					
Douban	2123/05	12/32	<u> </u>	×,	50		(101	の実影	- <i>¥</i> :	. And .
			-												_	-			
		· · · · · · · · · · · · · · · · · · ·					$\left - \right $			-	-					7.000 av. 16.7.000 av. 100.70 ¹⁰ 1			-
																	• •		
			1			<u> </u>											. •		
						ļ				_									
						<u> .</u>				+	1						-,	· · · · · ·	
										<u> </u>					_				
ELINQUISHED BY DATE/TIM	E RECEIVED BY		1		ATE/TIME				PROJEC	T INFC	DRMA'	TION	L				R	ECEIPT	
Miller Div eleger 1500	"WA	WIL_	54311	ز <i>فر</i> نه فخ ^{سته}	60		jV)	NAME: R CON			Wac	ρ					Total # of Co	ntainers	1 (
	2:							1: 11:00	24	10								nd Time Requi	
	3:	FAC ID#: 3: SITE ADDRE:				RESS: Jak	1	× 1	3					-8		-5 Business D Rush (auth red			
					·			RESS: ME	15,000	۲ ^س (110	- ¹				Next Busir	iess Day Rush	
PECIAL INSTRUCTIONS COMMENTS:	our /	SHIPMENT /	METHO VIA:			INV	OICE 1				3.5	i lle	ハノ				2 Business Other		
· · ·	IN /	/ T (FedEx) UI	VIA: S MAII		IER	(IF I	DIFFEF	RENT FROM	ABOVE)						PROG	RAM (see cod	es):	
)#:		YHOUND O														DATA	PACKAGE:	<u>1 II 1</u>	<u>11 IV</u>
UOTE CONTRACT #:																			

GW = Groundwater SE = Sediment SO = Soil SW = Surface Water W - Water (Blanks) O = Other (specify) ATRIX CODES: A # Air

RESERVATIVE CODES: H = Hydrochloric acid + ice 1 = Ice only N = Nitric acid + ice S = Sulfuric acid + ice O = Other (specify) NA = None

ROGRAM: FLUST FLDC ALUST TNUST MSUST NCUST SCUST GAUST GACONV FLCONV

Date: 25-Aug-03

CLIENT: Williams Environmental Services, Inc Client Sample ID: SB-44-0-2 Lab Order: 0308662 **Project:** Macon II MGP Lab ID: 0308662-001

Collection Date: 8/20/2003 7:30:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	4		Analyst: CDW
Lead	12.1	5.79	mg/Kg-dry	1	8/25/2003 12:57:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	20.1	. 0	wt%	1	8/21/2003 5:00:00 PM

· ·		·		· · · · · · · · · · · · · · · · · · ·
Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	, J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	· S	NELAC analyte certification pending Page 1 of 15 Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

Williams Environmental Services, Inc **CLIENT:** Lab Order: 0308662 **Project:** Macon II MGP Lab ID: 0308662-002

Client Sample ID: SB-44-5-7 Collection Date: 8/20/2003 7:40:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL Lead	25.3	SW6010B 5.67	mg/Kg-dry	1	Analyst: CDW 8/25/2003 1:02:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	14.4	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		в	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified		Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	-	S	NELAC analyte certification pending Page 2 of 15 Spike Recovery outside accepted recovery limits

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-003

Client Sample ID: SB-44-10-12 Collection Date: 8/20/2003 7:50:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	`		Analyst: CDW
Lead	181	5.76	mg/Kg-dry	1	8/25/2003 1:06:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	14.6	0	wt%	1	8/21/2003 5:00:00 PM

					· · · · · · · · · · · · · · · · · · ·
Qualifiers:	*	Value exceeds Maximum Contaminant Level		в	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified		Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	•	S	NELAC analyte certification pending Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT: Lab Order:	Williams Environme 0308662	ntal Services, Inc		Client Sample ID:	SB-44-15-17 8/20/2003 8:00:00 AM		
Project:	Macon II MGP			Concerion Date.	0/20/2		
Lab ID:	0308662-004			Matrix:	SOIL	·	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed	
METALS, TOT Lead	AL	BRL	SW6010B 5.53	, mg/Kg-dry	1	Analyst: CDW 8/25/2003 1:11:00 AM	
PERCENT MOI	STURE		D2216			Analyst: DCC	
Percent Moistur	e	11.5	0	wt%	1	8/21/2003 5:00:00 PM	

Qualifiers: * Value exceeds Maximum Contaminant Level В Analyte detected in the associated Method Blank BRL **Below Reporting Limit** Е Value above quantitation range H J Analyte detected below quantitation limits Holding times for preparation or analysis exceeded N P NELAC analyte certification pending Spike Recovery outside accepted recovery limits Analyte not NELAC certified S Rpt Limit Reporting Limit

Date: 25-Aug-03

CLIENT: Williams Environmental Services, Inc Client Sample ID: SB-44-20-21 Lab Order: 0308662 Collection Date: 8/20/2003 8:16:00 AM Macon II MGP **Project:** Matrix: SOIL Lab ID: 0308662-005 Result Limit Qual Units DF **Date Analyzed** Analyses SW6010B Analyst: CDW METALS, TOTAL 8/25/2003 1:15:00 AM BRL 5.54 mg/Kg-dry Lead 1 Analyst: DCC PERCENT MOISTURE D2216 8/21/2003 5:00:00 PM 1 Percent Moisture 12.9 0 wt%

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	1	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	Р	NELAC analyte certification pending
-	Rpt Limit	Reporting Limit	·	NELAC analyte certification pending Spike Recovery outside accepted recovery limits

CLIENT:Williams Environmental Services, IncClient Sample ID:SB-45-0-2Lab Order:0308662Collection Date:8/20/2003 8:36:00 AMProject:Macon II MGPMatrix:SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	ι.		Analyst: CDW
Lead	58.5	5.42	mg/Kg-dry	1	8/25/2003 1:31:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	15.4	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded		l	Analyte detected below quantitation limits
	N	Analyte not NELAC certified		Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	•	S	NELAC analyte certification pending Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-007

 Client Sample ID:
 SB-45-5-7

 Collection Date:
 8/20/2003 8:40:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B		· .	Analyst: CDW
Lead	35.6	4.50	mg/Kg-dry	1	8/25/2003 1:35:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	9.10	0	wt%	1	8/21/2003 5:00:00 PM

	· · · · · · · · · · · · · · · · · · ·				
Qualifiers:	*	Value exceeds Maximum Contaminant Level		В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Е	Value above quantitation range
•	н	Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified		Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	•	S	NELAC analyte certification pending Page 7 of 15 Spike Recovery outside accepted recovery-limits

Date: 25-Aug-03

Client Sample ID: SB-45-10-12 Collection Date: 8/20/2003 8:50:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	x		Analyst: CDW
Lead	425	4.33	mg/Kg-dry	1	8/25/2003 1:40:00 AM
PERCENT MOISTURE		D2216	ŗ		Analyşt: DCC
Percent Moisture	11.2	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Е	Value above quantitation range
	H	Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	•	Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	•	S	NELAC analyte certification pending Page 8 of Spike Recovery outside accepted recovery fimits

Analytical	Environmental		Date:	25-Aug-03			
CLIENT: Williams Environm		ntal Services, Inc		Client Sample ID:	SB-45-15-17		
Lab Order: 0308662			Collection Date: 8/20/2003 9:00:00 A				
Project:	Macon II MGP						
Lab ID:	0308662-009			Matrix:	SOIL	· .	
Analyses		Result	Limit Qual	Units	DF	Date Analyzed	
MËTALS, TOT	AL		SW6010B	• •		Analyst: CDW	
Lead		1070	5.51	mg/Kg-dry	1	8/25/2003 1:44:00 AM	
PERCENT MO	STURE		D2216			Analyst: DCC	
Percent Moistu	re	33.3	0	wt%	1	8/21/2003 5:00:00 PM	

				,
Qualifiers:	*	Value exceeds Maximum Contaminant Level	в	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	. S	NELAC analyte certification pending Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-010

 Client Sample ID:
 SB-45-18.5-20

 Collection Date:
 8/20/2003 9:10:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	`		Analyst: CDW
Lead	38.6	4.48	mg/ <u>Kg</u> -dry	1	8/25/2003 1:49:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	17.7	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	P	NELAC analyte certification pending Page 10 of 15 Spike Recovery outside accepted recovery limits
	Rpt Limit	Reporting Limit	` S	Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-011

Client Sample ID: SB-46-0-2 Collection Date: 8/20/2003 9:50:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	`	•	Analyst: CDW
Lead	15.6	4.84	mg/Kg-dry	1	8/25/2003 1:53:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	23.8	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	· P	NELAC analyte certification pending
•	Rot Limit	Reporting Limit	Ś	NELAC analyte certification pending Spike Recovery outside accepted recovery limits

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-012

 Client Sample ID:
 SB-46-5-7

 Collection Date:
 8/20/2003 10:00:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL Lead	70.6	SW6010B 3.82	、 mg/Kg-dry	1	Analyst: CDW 8/25/2003 1:58:00 AM
PERCENT MOISTURE Percent Moisture	24.4	D2216 0	wt%	1	Analyst: DCC 8/21/2003 5:00:00 PM

				· · · · · · · · · · · · · · · · · · ·
Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	Р	NELAC analyte certification pending
·	Rpt Limit	Reporting Limit	` S	NELAC analyte certification pending Page 12 of 15 Spike Recovery outside accepted recovery limits

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-013

Client Sample ID: SB-46-10-12 Collection Date: 8/20/2003 10:10:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
MËTALS, TOTAL		SW6010B	. .		Analyst: CDW
Lead	34.5	4.51	mg/Kg-dry	1	8/25/2003 2:02:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	24.2	0	wt%	1	8/21/2003 5:00:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	 В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	S	NELAC analyte certification pending Page 13 of 15 Spike Recovery outside accepted recovery limits

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-014

 Client Sample ID:
 SB-46-15-17

 Collection Date:
 8/20/2003 10:20:00 AM

Matrix: SOIL

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	• .		Analyst: CDW
Lead	20.0	3.78	mg/Kg-dry	1	8/25/2003 2:07:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	15.7	• 0 •	wt%	1	8/21/2003 5:00:00 PM

		· · · · · · · · · · · · · · · · · · ·		•
Qualifiers:	*	Value exceeds Maximum Contaminant Level	B	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	E	Value above quantitation range
	\mathbf{H}	Holding times for preparation or analysis exceeded	ł	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	· P	NELAC analyte certification pending

Rpt Limit Reporting Limit

S Spike Recovery outside accepted recovery limits

Date: 25-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308662Project:Macon II MGPLab ID:0308662-015

Client Sample ID: DUP082003A Collection Date: 8/20/2003

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
METALS, TOTAL		SW6010B	× .		Analyst: CDW
Lead	37.8	3.65	mg/Kg-dry	1 ·	8/25/2003 12:44:00 AM
PERCENT MOISTURE		D2216			Analyst: DCC
Percent Moisture	18.5	0	wt%	1	8/21/2003 5:00:00 PM

Qualifier	s: *	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	l	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	 S	NELAC analyte certification pending Spike Recovery outside accepted recovery limits

Sample/Cooler Receipt Checklist

client Williams Enu-Services		Work Order Number	0308662
Checklist completed by <u>MURILLe Cychare</u> 3 Signature Date	121/03		
Carrier name: FedEx UPS Courier Client U	S Mail Othe	ſ	
Shipping container/cooler in good condition?	Yes 1	No Not Presen	t
Custody seals intact on shipping container/cooler?	Yes L	No Not Presen	t ·
Custody seals intact on sample bottles?	Yes	No Not Presen	t L
Container/Temp Blank temperature in compliance?	Yes _	No	
Cooler #1 <u>5.8</u> Cooler #2 Cooler #3	Cooler #4	Cooler#5	Cooler #6
Chain of custody present?	Yes L	No	
ain of custody signed when relinquished and received?	Yes beau	No	
Chain of custody agrees with sample labels?	Yes june	No	
Samples in proper container/bottle?	Yes L	No	
Sample containers intact?	Yes	No	
Sufficient sample volume for indicated test?	Yes Jer	No	
All samples received within holding time?	Yes _	No	
Was TAT marked on the COC?	Yes 🛓	No	
Proceed with Standard TAT as per project history?	Yes	No Not Appli	cable L
Water - VOA vials have zero headspace? No VOA vials su	bmitted	Yes No	_
Water - pH acceptable upon receipt?	Yes	No Not Appli	cable
Adjusted?	Chec	cked by	

Case Narrative for resolution of the Non-Conformance.

C:\Documents and Settings\Chemist\Desktop\SampleReceiptChecklistRptREV.rtf

Date: 25-Aug-03

CLIENT:	Williams Environmental Services, Inc
Work Order:	0308662
Project:	Macon II MGP

ANALYTICAL QC SUMMARY REPORT

BatchID: 37297

Sample ID MB-37297	SampType: MBLK	TestCode: 6010B_S	Units: mg/Kg	Prep Date: 8/21/2003	RunNo: 41861
Client ID:	Batch ID: 37297	TestNo: SW6010B		Analysis Date: 8/25/2003	SeqNo: 762036
Analyte	Result	PQL SPK value SPI	< Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	BRL	5.00			
Sample ID LCS-37297	SampType: LCS	TestCode: 6010B_S	Units: mg/Kg	Prep Date: 8/21/2003	RunNo: 41861
Client ID:	Batch ID: 37297	TestNo: SW6010B		Analysis Date: 8/25/2003	SeqNo: 762035
Analyte	Result	PQL SPK value SPI	K Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	48.22	5.00 50	0 96.4	80 120 0	0
Sample ID 0308662-015AMS	SampType: MS	TestCode: 6010B_S	Units: mg/Kg-dry	Prep Date: 8/21/2003	RunNo: 41861
Client ID: DUP082003A	Batch ID: 37297	TestNo: SW6010B		Analysis Date: 8/25/2003	SeqNo: 762039
Analyte	Result	PQL SPK value SP	K Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	75.08	3.70 36.96	37.76 101	75 125 0	0
Sample ID 0308662-015ADU	P SampType: DUP	TestCode: 6010B_S	Units: mg/Kg-dry	Prep Date: 8/21/2003	RunNo: 41861
					· · · · · · · · · · · · · · · · · · ·
Client ID: DUP082003A	Batch ID: 37297	TestNo: SW6010B		Analysis Date: 8/25/2003	SeqNo: 762038
Client ID: DUP082003A Analyte	Batch ID: 37297 Result	TestNo: SW6010B PQL SPK value SP		Analysis Date: 8/25/2003 LowLimit HighLimit RPD Ref Val	

Qualifiers:

Н

R

Analyte detected in the associated Method Blank В Holding times for preparation or analysis exceeded BRL Below Reporting Limit

Ν

Ε Value above quantitation range Analyte not NELAC certified

J

RPD outside accepted recovery limits .

Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits Page 1 of 1

August 27, 2003

Matt Ebbert Williams Environmental Services, Inc 500 Chase Park South Suite 150 Birmingham, AL 35244

TEL: (205) 988-8305 FAX (205) 988-5249

RE: Macon II MGP

Dear Matt Ebbert:

Order No.: 0308663

Analytical Environmental Servs, Inc. received 10 samples on 8/21/2003 12:30:00 PM for the analyses presented in the following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water, effective 07/02/03-06/30/04.

-AIHA Certification number 505 for analysis of Air, Paint Chips, Soil and Dust Wipes, effective until 10/01/03.

These results relate only to the items tested. This report may only be reproduced in full and contains $_{40}$ total pages (including cover letter).

If you have any questions regarding these test results, please feel free to call.

Sincerely,

allisar (juntall

Allison Cantrell Project Manager

VALYTICAL E CONMENTAL SERVICES, INC.

CHAMP F CUSTODY

Work Order: 1 3665 Date: 5/21/63 Page / of 2

15 Presidential Pkwy.	.nta, GA 30340-3704
L: (770) 457-8177 / TOL	L FREE: (800) 972-4889 / FAX: (770) 457-8188

IPANY:	ADDRESS: A	de est	1 10	1										<u> </u>	· · · · · · · · · · · · · · · · · · ·
	COULDANS TAK	the station	1 C							AN.	ALYSIS	REQUI	ESTEI	D	
WEST	Surte 150 BEMINSHA	A				<u> </u>		T		- I	TT		1		. [
	Corneling	pris MC													
NE: 202-988-8305 IPLED BY: PETER N. Laborison	FAX: ZCST936-S SIGNATURE	287 -	,		F.	5							-		iners
IPLED BY:	SIGNATURE	and a second		·	لو لو	and the second second									onta
TOTER N. FOURIC	finite Pr. a		·····	NCK 5	SWACS	METALS	3			1					No A of Containers
	SAMPLED		Compusite Matrix (See codes)	12.00	VS	2 4	-							REMARKS	No
SAMPLE ID		Grab Composite Matrix		PRESERVATION						·	-				
MWS	DATE TIME	X		i.	i al	W YW					+				
		╞╱╤┝╌		low Game		<u>المتنا</u> بر	/				┼╌┼			· · · · · · · · · · · · · · · · · · ·	<u> </u>
Million - 2			Gia		<u>. in</u>	1000	11							······	6
MW:3	8 22 63 1320	<u> </u>	<u> </u>		June 1	1000	1							· · · · · · · · · · · · · · · · · · ·	6
FY L - H	3 24 63 1415		(F IN)	1000	N. I.]	 -					· · ·	6
MIW-7	3/21/3 08/5	X	Gu		i.	1	1						<u> </u>		6
MW-6	8 2165 06.50	*	Gui	V	- And		1/								6
MW-1	3 74 63 0830	K	(July	i.		10/10	1								C
D. 0 032003 RAOS2103	8 20 kg =	X	61		in the second	Land Lan									la
RA082103	\$21 63 /000	X	Glad	1	Ener	thereast "	and a star								6ª
TAO82103	8/21/3 1005		GW	i.	~			1					1		Z
												-			
			(1	-		1-1			· /·····	
													1		
										-	+				
INQUISHED BY	RECEIVED BY	. <u>ll.</u>	DATE/TIME	¦ł		l	PR	OJECT	INFORI	MATION	_ k_			RECEIPT	
REARCISES.	"And HADA"	d'a.L	12:35	PROJ	ECTN	iame: M	AC		1					Total # of Containers	56
	2: / //////////////////////////////////	1/2/18			ECT #		19.5	، پر چې						Tumaround Time Re	
				FAC		<u></u>	North Contraction	- 1 0						Standard 3-5 Business	Days
	3:				ADDR	ESS:	1		1 B					Same Day Rush (auth	
•				ļ		<u> </u>	<u>I AK</u>	. OVI	(in A	<u> </u>	-j			Next Business Day R	
CIAL INSTRUCTIONS COMMENTS:	SHIPMENT					IANAG	ER: /	1A-H		DØ P.A.,	Ţ			2 Business Day Rush	
	OUT / /	VIA:			NCE T	O: ENT FR	0M 4 B	AVEL						O Other	
	IN // CLIENT FedEx UP	VIA; S MAIL CO	HRIER			Lot PA								PROGRAM (see codes):	nantran an Lan
	harrow and the	HER												DATA PACKAGE: 1	
TE-CONTRACT #:			····									· • · · · · · · · · · · · · · · · · · ·		<u>1</u>	

FRIX CODES: A = Air GW = Groundwater SE = Sediment SO = Soil SW = Surface Water W - Water (Blanks) O = Other (specify)

SERVATIVE CODES: H = Hydroehloric acid + ice I = Ice only N = Nitric acid + ice S = Sulfuric acid + ice O = Other (specify) NA = None

IGRAM: FLUST FLUC ALUST TNUST MSUST NEUST SEUST GAUST GACONV FLEONV

Date: 27-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-001

Client Sample ID: MW-5 Collection Date: 8/20/2003 7:45:00 AM

Analyses		Result	Limit	Qual	Units	DF	Date Analyzed	
TOTAL METALS BY ICP/MS			sw	6020	L		Analyst: SSS	
Arsenic		BRL	20.0		µg/L⊺	1	8/25/2003 12:03:34 PN	
Barium	Barium		200		µg/L	10	8/26/2003 12:57:43 PM	
Beryllium		BRL	5.00		µg/L	1	8/25/2003 12:03:34 PN	
Cadmium			5.00		µg/L	1	8/25/2003 12:03:34 PN	
Chromium		BRL	10.0		µg/L	. 1	8/25/2003 12:03:34 PM	
Copper		BRL	10.0		µg/L	1	8/25/2003 12:03:34 PM	
Lead		BRL	10.0		µg/L	1	8/25/2003 12:03:34 PN	
Nickel		BRL	20.0		µg/L	1	8/25/2003 12:03:34 PM	
Vanadium		BRL	10.0		µg/L	1	8/25/2003 12:03:34 PM	
Zinc		BRL	20.0		µg/L	1	8/25/2003 12:03:34 PN	
VERCURY, T	OTAL		SW7	470A			Analyst: JDJ	
Mercury		BRL	0.00050		mg/L	. 1	8/25/2003	
SEMIVOLATI	LE ORG. COMP. BY GC	/MS	SW8	270C			Analyst: EP	
Acenaphthen	e	14	10		µg/Ľ	1	8/22/2003 10:02:00 PM	
Acenaphthyle	ene	BRL	· 10		µg/L	1	8/22/2003 10:02:00 PM	
Anthracene		BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Benz(a)anthra	acene	BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Benzo(a)pyre	ne	BRL	10		µg/L	1	.8/22/2003 10:02:00 PN	
Benzo(b)fluor	anthene	BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Benzo(g,h,i)perylene		BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Benzo(k)fluoranthene		BRL	10		μg/L	1	8/22/2003 10:02:00 PM	
Chrysene		BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Dibenz(a,h)ar	Dibenz(a,h)anthracene		10		µg/L	1	8/22/2003 10:02:00 PM	
Fluoranthene	•	BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Fluorene		BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
indeno(1,2,3-0	cd)pyrene	BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Naphthalene		BRL	10	-	ug/L	1	8/22/2003 10:02:00 PM	
Phenanthrene	e	BRL	10		µg/L	. 1	8/22/2003 10:02:00 PM	
Phenol	e tra ta	BRL	10		µg/L	1 .	8/22/2003 10:02:00 PM	
Pyrene		BRL	10		µg/L	1	8/22/2003 10:02:00 PM	
Surr: 2,4,6-	Tribromophenol	118	37-127		%REC	1	8/22/2003 10:02:00 PM	
Surr: 2-Fiuo	orobiphenyl	97.7	43-110		%REC	1	8/22/2003 10:02:00 PM	
Surr: 2-Fluc	orophenol	66.3	13-100		%REC	1.	8/22/2003 10:02:00 PM	
Surr: 4-Terr	phenyl-d14	87.6	10-121		%REC	. 1	8/22/2003 10:02:00 PM	
Surr: Nitrob	enzene-d5	82.7	40-110		%REC	1	8/22/2003 10:02:00 PM	
Surr: Pheno	ol-d5	20.5	10-121		%REC	1	8/22/2003 10:02:00 PN	
OLATILE OF	RGANIC COMPOUNDS I	BY GC/MS	SW8	260B			Analyst: AD	
Benzene		BRL	5.0		µg/L	. 1	8/22/2003.9:11:00 PM	
Carbon disulfi	de	BRL	5.0		µg/L	1	8/22/2003 9:11:00 PM	
Qualifiers:	* Value exceeds Maxi	mum Contaminant L	.evel		В	Analyte detected in	the associated Method Blank	
	BRL Below Reporting Lin	nit			Е	Value above quantit		
	H Holding times for pr		exceeded		J	•	low quantitation limits	
	N Analyte not NELAC				P			
Ŧ	Rpt Limit Reporting Limit				s.	Spike Recovery out	side accepted recovery limits	

Date: 27-Aug-03

CLIENT: Williams Environmental Services, Inc Lab Order: 0308663 **Project:** Macon II MGP Lab ID: 0308663-001

Client Sample ID: MW-5 Collection Date: 8/20/2003 7:45:00 AM

Matrix: GROUNDWATER

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	SW8260)B		Analyst: AD	
Ethylbenzene	BRL	5.0	µg/L	1	8/22/2003 9:11:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 9:11:00 PM
Toluene	BRL	5.0	µg/L	1	8/22/2003 9:11:00 PM
Xylenes, Total	BRL	5.0	µg/L	1	8/22/2003 9:11:00 PM
Surr: 4-Bromofluorobenzene	88.6	71.8-143	%REC	1	8/22/2003 9:11:00 PM
Surr: Dibromofluoromethane	93.4	80.3-123	%REC	1	8/22/2003 9:11:00 PM
Surr: Toluene-d8	89.1	70.1-142	%REC	1	8/22/2003 9:11:00 PM
CYANIDE		SW901	4		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	· 1	8/21/2003 6:20:00 PM

Qualifiers:

- BRL Below Reporting Limit
- Н Holding times for preparation or analysis exceeded

Rpt Limit Reporting Limit

- В Analyte detected in the associated Method Blank
- Έ Value above quantitation range

J Analyte detected below quantitation limits

P NELAC analyte certification pending

Spike Recovery outside accepted recovery fimits

S

N Analyte not NELAC certified

*

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-002

Date: 27-Aug-03

Client Sample ID: MW-2 Collection Date: 8/20/2003 8:20:00 AM

Analyses	Result	Limit	Qual Units	s DF	Date Analyzed
TOTAL METALS BY ICP/MS		SW6	020		Analyst: SSS
Arsenic	BRL	20.0	μg/L	1	8/25/2003 12:12:38 PM
Barium	178	20.0	µg/L	1	. 8/25/2003 12:12:38 PM
Beryllium	BRL BRL	5.00	µg/L	1 [.]	8/25/2003 12:12:38 PM
Cadmium		5.00	µg/L	1	8/25/2003 12:12:38 PM
Chromium	BRL	10.0	µg/L	1	8/25/2003 12:12:38 PM
Copper	BRL	10.0	µg/L	1	8/25/2003 12:12:38 PM
Lead	BRL	10.0	µg/L	` 1	8/25/2003 12:12:38 PM
Nickel	BRL	20.0	μg/L	1	8/25/2003 12:12:38 PM
Vanadium	BRL	10.0	µg/L	1	8/25/2003 12:12:38 PM
Zinc	BRL	20.0	µg/L	1	8/25/2003 12:12:38 PM
MERCURY, TOTAL		SW74	70A		Analyst: JDJ
Mercury	BRL	0.00050	mg/L	1	8/25/2003
SEMIVOLATILE ORG. COMP. BY GC/MS	;	SW82	70C		Analyst: EP
Acenaphthene	12	10	μg/L	1	8/22/2003 10:38:00 PM
Acenaphthylene	BRL	10	µg/Ľ	1	8/22/2003 10:38:00 PM
Anthracene	BRL	. 10	µg/L	1	8/22/2003 10:38:00 PM
Benz(a)anthracene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM
Benzo(a)pyrene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM
Benzo(b)fluoranthene	BRL	10	µg/L	. 1	8/22/2003 10:38:00 PM
Benzo(g,h,i)perylene	BRL	10	μg/L	1	8/22/2003 10:38:00 PM
Benzo(k)fluoranthene	BRL	10	μg/L	1	8/22/2003 10:38:00 PM
Chrysene	BRL	10	µg/∟	1	8/22/2003 10:38:00 PM
Dibenz(a,h)anthracene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM
Fluoranthene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM
Fluorene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM
Indeno(1,2,3-cd)pyrene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM
Naphthalene	BRL	10	µg/L	1	8/22/2003 10:38:00 PM
Phenanthrene	BRL	10	µg/L	, 1 [.]	8/22/2003 10:38:00 PM
Phenol	BRL	10	ից/Ը	1	8/22/2003 10:38:00 PM
Pyrene	BRL	10	μg/L	1	8/22/2003 10:38:00 PM
Surr: 2,4,6-Tribromophenol	109	37-127	%REC	; 1	8/22/2003 10:38:00 PM
Surr: 2-Fluorobiphenyl	92.5	43-110	%REC	; 1	8/22/2003 10:38:00 PM
Surr: 2-Fluorophenol	62.8	13-100	%REC	; 1	8/22/2003 10:38:00 PM
Surr: 4-Terphenyl-d14	81.9	10-121	%REC	1	8/22/2003 10:38:00 PM
Surr: Nitrobenzene-d5	80.2	40-110	%REC	; 1	8/22/2003 10:38:00 PM
Surr: Phenol-d5	39.7	10-121	%REC	: 1	8/22/2003 10:38:00 PM
OLATILE ORGANIC COMPOUNDS BY	GC/MS	SW82	60B		Analyst: AD
Benzene	BRL	5.0	µg/L	. 1	8/22/2003 9:42:00 PM
Carbon disulfide	BRL	5.0	µg/L	1	8/22/2003 9:42:00 PM
Qualifiers: * Value exceeds Maximum	Contaminant 1	evei	В	Analyte detected in	the associated Method Blank
BRL Below Reporting Limit			· E	Value above quantit	
H Holding times for prepara	tion or analysis	exceeded	.]		low quantitation limits
N Analyte not NELAC cert			· P	NEL AC analyte cer	rification pending
Rpt Limit Reporting Limit			S .	Spike Recovery out	side accepted recovery limits

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-002

Client Sample ID: MW-2 Collection Date: 8/20/2003 8:20:00 AM

Matrix: GROUNDWATER

Analyses ·	Result	Limit Qu	1al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260	B		Analyst: AD
Ethylbenzene	BRL	5.0	µg/L	1	8/22/2003 9:42:00 PM
Methylene chloride	BRL	5.0	μg/L	1	8/22/2003 9:42:00 PM
Toluene	BRL	5,0	μg/L	1	8/22/2003 9:42:00 PM
Xylenes, Total	BRL	5.0	µg/L	1	8/22/2003 9:42:00 PM
Surr: 4-Bromofluorobenzene	88.4	71.8-143	%REC	1	8/22/2003 9:42:00 PM
Surr: Dibromofluoromethane	101	80.3-123	%REC	1	8/22/2003 9:42:00 PM
Surr: Toluene-d8	91.1	70.1-142	%REC	1	8/22/2003 9:42:00 PM
CYANIDE		SW901	4		Analyst: VS
Cyanide, Total	0.048	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers: * Value exceeds Maximum Contaminant Level В Analyte detected in the associated Method Blank BRL Below Reporting Limit E Value above quantitation range Η· Holding times for preparation or analysis exceeded Ĵ. Analyte detected below quantitation limits NELAC analyte certification pending Spike Recovery outside accepted recovery fimits Ν Analyte not NELAC certified Р S Rpt Limit Reporting Limit

Date: 27-Aug-03

CLIENT:	Williams Environmental Services, Inc
Lab Order:	0308663
Project:	Macon II MGP
Lab ID:	0308663-003

Client Sample ID: MW-3 Collection Date: 8/20/2003 1:00:00 PM

Matrix: GROUNDWATER

BRL 699 BRL BRL BRL BRL BRL BRL BRL BRL BRL	SW602 20.0 20.0 5.00 5.00 10.0 10.0 20.0 10.0 20.0 SW7470	20 μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1	Analyst: SSS 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM	
699 BRL BRL BRL BRL BRL BRL BRL BRL	20.0 5.00 10.0 10.0 20.0 10.0 20.0 SW7470	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1 1	8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM	
BRL BRL BRL BRL BRL BRL BRL BRL	5.00 5.00 10.0 10.0 20.0 10.0 20.0 SW7470	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1 1 1	8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN	
BRL BRL BRL BRL BRL BRL BRL	5.00 10.0 10.0 20.0 10.0 20.0 SW7470	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1. 1. 1 1	8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN 8/25/2003 12:17:12 PN	
BRL BRL BRL BRL BRL BRL	10.0 10.0 20.0 10.0 20.0 SW747 0	μg/L μg/L μg/L μg/L μg/L	1 1 1. 1 1	8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM	
BRL BRL BRL BRL BRL BRL	10.0 10.0 20.0 10.0 20.0 SW7470	μg/L μg/L μg/L μg/L	1 1. : 1	8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM	
BRL BRL BRL BRL BRL	10.0 20.0 10.0 20.0 SW7470	μg/L μg/L μg/L	1 1 1	8/25/2003 12:17:12 PM 8/25/2003 12:17:12 PM	
BRL BRL BRL BRL	20.0 10.0 20.0 SW7470	μg/L μg/L	1	8/25/2003 12:17:12 PN	
BRL BRL BRL	10.0 20.0 SW7470	µg/L	1		
BRL BRL	20.0 SW7470				
BRL	SW7470	µg/L		8/25/2003 12:17:12 PM	
/IS			1	8/25/2003 12:17:12 PM	
/IS	0.00000)A		Analyst: JDJ	
	0.00050	mg/L	1	8/25/2003	
001	SW827(DC		Analyst: EP	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	μg/L.	· 1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	μg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	. 1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
BRL	10	µg/L	1	8/22/2003 11:15:00 PM	
107	37-127	%REC	1	8/22/2003 11:15:00 PM	
89.2	43-110	'%REC	· 1	8/22/2003 11:15:00 PM	
60.1	13-100	%REC	1	8/22/2003 11:15:00 PM	
85.5	10-121	%REC	1	8/22/2003 11:15:00 PM	
74.4	40-110	%REC	1	8/22/2003 11:15:00 PM	
43.0	10-121	%REC	1	8/22/2003 11:15:00 PM	
GC/MS	SW8260	B		Analyst: AD	
BRL	5.0	µg/L	. 1	8/22/2003 10:13:00 PM	
BRL	5.0	µg/L	1	8/22/2003 10:13:00 PM	
um Contaminant L	evel	B	Analyte detected in the associated Method Blank		
Qualifiers: * Value exceeds Maximum Contaminant L BRL Below Reporting Limit			- mary to dolotion mit	he associated Method Blank	
ţ		Е			
t aration or analysis	exceeded	E J	Value above quantita		
	BRL BRL BRL BRL BRL BRL BRL BRL BRL 107 89.2 60.1 85.5 74.4 43.0 (CC/MS BRL BRL BRL BRL	BRL 10 89.2 43-110 60.1 13-100 85.5 10-121 74.4 40-110 43.0 10-121 Y GC/MS BRL 5.0 BRL 5.0	BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L BRL 10 µg/L 107 37-127 %REC 89.2 43-110 %REC 85.5 10-121 %REC 74.4 40-110 %REC 43.0 10-121 %REC BRL 5.0 µg/L BRL 5.0	BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 BRL 10 μg/L 1 107 37-127 %REC 1 89.2 43-110 %REC 1 89.2 43-110 %REC 1 85.5 10-121 %REC 1 43.0 10-121 %REC 1 43.0 10-121 %REC 1 BRL 5.0	

Rpt Limit Reporting Limit

S Spike Recovery outside accepted recovery-finits

CLIENT: Williams Environmental Services, Inc Lab Order: 0308663 **Project:** Macon II MGP Lab ID: 0308663-003

Date: 27-Aug-03

Client Sample ID: MW-3 Collection Date: 8/20/2003 1:00:00 PM

Matrix: GROUNDWATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS		SW8260B			Analyst: AD
Ethylbenzene	BRL	5.0	µg/L⁻	1	8/22/2003 10:13:00 PM
Methylene chloride	BRL	5.0	µg/L	1	8/22/2003 10:13:00 PM
Toluene	BRL	5.0	µg/L	1	8/22/2003 10:13:00 PM
Xylenes, Total	BRL	5.0	µg/L	1	8/22/2003 10:13:00 PM
Surr: 4-Bromofluorobenzene	88.8	71.8-143	%REC	1	8/22/2003 10:13:00 PM
Surr: Dibromofluorométhane	91.9	80.3-123	%REC	1	8/22/2003 10:13:00 PM
Surr: Toluene-d8	91.6	70.1-142	%REC	1	8/22/2003 10:13:00 PM
CYANIDE		SW9014			Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

- BRL **Below Reporting Limit**
- H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

Rpt Limit Reporting Limit

*

- В Analyte detected in the associated Method Blank
- Ε Value above quantitation range
- J Analyte detected below quantitation limits
- ₽ NELAC analyte certification pending
- Spike Recovery outside accepted recovery finits S

CLIENT: Williams Environmental Services, Inc. Lab Order: 0308663 **Project:** Macon II MGP Lab ID: 0308663-004

Date: 27-Aug-03

Client Sample ID: MW-4 Collection Date: 8/20/2003 2:15:00 PM

Matrix: GROUNDWATER

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed	
TOTAL METALS BY ICP/MS		SW6020			Analyst: SSS	
Arsenic	BRL	20.0	µg/L	1	8/25/2003 12:21:48 PM	
Barium	389	20.0	μg/L	1	8/25/2003 12:21:48 PN	
Beryllium	BRL	5.00	µg/L	1	8/25/2003 12:21:48 PN	
Cadmium	BRL	5.00	µg/L	1	8/25/2003 12:21:48 PN	
Chromium	BRL	10.0	µg/L	1	8/25/2003 12:21:48 PN	
Copper	BRL	10.0	µg/L	1	8/25/2003 12:21:48 PM	
Lead	BRL	10.0	µg/L	1	8/25/2003 12:21:48 PN	
Nickel	BRL	20.0	µg/L	1	8/25/2003 12:21:48 PM	
Vanadium	BRL	10.0	μg/L	1	8/25/2003 12:21:48 PN	
Zinc	BRL	20.0	µg/L	1	8/25/2003 12:21:48 PN	
MERCURY, TOTAL		SW7470A			Analyst: JDJ	
Mercury	BRL	0.00050	mg/L	1	8/25/2003	
SEMIVOLATILE ORG. COMP. BY GC/MS		SW8270C	:		Analyst: EP	
Acenaphthene	BRL	10	µg/L	1	8/22/2003 11:51:00 PM	
Acenaphthylene	BRL	10	µg/L	1	8/22/2003 11:51:00 PN	
Anthracene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Benz(a)anthracene	BRL	10	µg/L	1	8/22/2003 11:51:00 PM	
Benzo(a)pyrene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Benzo(b)fluoranthene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Benzo(g,h,i)perylene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Benzo(k)fluoranthene	BRL	10	µg/L	1	8/22/2003 11:51:00 PM	
Chrysene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Dibenz(a,h)anthracene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Fluoranthene	BRL	10	µg/L	1	8/22/2003 11:51:00 PM	
Fluorene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Indeno(1,2,3-cd)pyrene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Naphthalene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Phenanthrene	BRL	10	μg/L	. 1	8/22/2003 11:51:00 PM	
Phenol	BRL	10	μg/L	. 1	8/22/2003 11:51:00 PM	
Pyrene	BRL	10	μg/L	1	8/22/2003 11:51:00 PM	
Surr: 2,4,6-Tribromophenol	119	37-127	%REC	1	8/22/2003 11:51:00 PM	
Surr: 2-Fluorobiphenyl	94.8	43-110	%REC	1	8/22/2003 11:51:00 PM	
Surr: 2-Fluorophenol	62.7	.13-100	%REC	1	8/22/2003 11:51:00 PM	
Surr: 4-Terphenyl-d14	89.4	10-121	%REC	1	8/22/2003 11:51:00 PM	
Surr: Nitrobenzene-d5	80.4	40-110	%REC	1	8/22/2003 11:51:00 PM	
Surr: Phenol-d5	42.4	10-121	%REC	1	8/22/2003 11:51:00 PM	
/OLATILE ORGANIC COMPOUNDS BY G	C/MS	SW8260B	-		Analyst: AD	
Benzene	BRL	5.0	μg/ኒ	. 1	8/22/2003 10:45:00 PM	
Carbon disulfide	BRL	5.0	μg/L	1	8/22/2003 10:45:00 PM	
Qualifiers: * Value exceeds Maximum	Contaminant		B	Analyte detected in	the associated Method Blank	
BRL Below Reporting Limit	Junaminiani I	(ت ۲ م) ر	Ē			
H Holding times for preparat	ion or analysis	exceeded	L J	Value above quantitation range Analyte detected below quantitation limits		
N Analyte not NELAC certif		-	Ъ Г	NICLAC hate a ser	etternion monding	
Rpt Limit Reporting Limit	100		F	THELENC assaryte Cer	side accepted recovery-finits	

CLIENT:Williams Environmental Services, Inc.Lab Order:0308663Project:Macon II MGPLab ID:0308663-004

Date: 27-Aug-03

Client Sample ID: MW-4 Collection Date: 8/20/2003 2:15:00 PM

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS BY GC/MS		SW8260B			Analyst: AD
Ethylbenzene	BRL	. 5.0	µg/L¯	1	8/22/2003 10:45:00 PM
Methylene chloride	BRL	5.0	µg/L	1	8/22/2003 10:45:00 PM
Toluene	BRL	5.0	µg/L	1	8/22/2003 10:45:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 10:45:00 PM
Surr: 4-Bromofluorobenzene	90.0	71.8-143	%REC	· 1	8/22/2003 10:45:00 PM
Surr: Dibromofluoromethane	91.4	80.3-123	%REC	1	8/22/2003 10:45:00 PM
Surr. Toluene-d8	91.6	70.1-142	%REC	1	8/22/2003 10:45:00 PM
CYANIDE		SW9014	4		Analyst: VS
Cyanide, Totai	BRL	0.010	mg/L	1 .	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	E	Value above quantitation range
	н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	· P	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	S	NELAC analyte certification pending Page 8 of 1 Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:Williams Environmental Services, Inc.Lab Order:0308663Project:Macon II MGPLab ID:0308663-005

Client Sample ID: MW-7 Collection Date: 8/21/2003 8:15:00 AM

Matrix: GROUNDWATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
TOTAL METALS BY ICP/I	vis	SW602	0		Analyst: SSS
Arsenic	BRL	20.0	µg/L	1	8/25/2003 12:35:30 PM
Barium	328	20.0	µg/L	1	8/25/2003 12:35:30 PM
Beryllium	BRL	5.00	µg/L	1	8/25/2003 12:35:30 PM
Cadmium	BRL	5.00	μg/L	1	8/25/2003 12:35:30 PM
Chromium	BRL	10.0	μg/L	· 1	8/25/2003 12:35:30 PM
Copper	BRL	10.0	μg/L	1	8/25/2003 12:35:30 PM
Lead	BRL	10.0	µg/L	1	8/25/2003 12:35:30 PM
Nickel	BRL	20.0	µg/L	1	8/25/2003 12:35:30 PM
Vanadium	BRL	10.0	µg/L	1	8/25/2003 12:35:30 PM
Zinc	BRL	20.0	µg/L	1	8/25/2003 12:35:30 PM
MERCURY, TOTAL		SW7470	A		Analyst: JDJ
Mercury	BRL	0.00050	mg/L	1	8/25/2003
SEMIVOLATILE ORG. CO	MP. BY GC/MS	SW8270	с		Analyst: EP
Acenaphthene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Acenaphthylene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Anthracene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Benz(a)anthracene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Benzo(a)pyrene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Benzo(b)fluoranthene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Benzo(g,h,i)perylene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Benzo(k)fluoranthene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Chrysene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Dibenz(a,h)anthracene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Fiuoranthene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Fluorene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Indeno(1,2,3-cd)pyrene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Naphthalene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Phenanthrene	BRL	10	μg/L	. 1	8/23/2003 12:27:00 AM
Phenol	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Pyrene	BRL	10	µg/L	1	8/23/2003 12:27:00 AM
Surr: 2,4,6-Tribromophene	bl 105	37-127	%REC	1	8/23/2003 12:27:00 AM
Surr: 2-Fluorobiphenyl	86.5	43-110	%REC	1	8/23/2003 12:27:00 AM
Surr: 2-Fluorophenol	58.8	13-100	%REC	1 -	8/23/2003 12:27:00 AM
Surr: 4-Terphenyi-d14	83.8	10-121	%REC	1	8/23/2003 12:27:00 AM
Surr: Nitrobenzene-d5	74.0	40-110	%REC	1	8/23/2003 12:27:00 AM
Surr: Phenol-d5	39.0	10-121	%REC	. 1	8/23/2003 12:27:00 AM
OLATILE ORGANIC CON	IPOUNDS BY GC/MS	SW8260	в		Analyst: AD
Benzene	BRL	5.0	μg/L	1	8/22/2003 11:16:00 PM
Carbon disulfide	BRL	5.0	μg/L	1	8/22/2003 11:16:00 PM
Qualifiers: * Value	exceeds Maximum Contaminant L	.evel	В	Analyte detected in	the associated Method Blank
	Reporting Limit		E	Value above quantita	
	ng times for preparation or analysis	exceeded	J		ow quantitation limits
	te not NELAC certified		· P	NELAC analyte cert	ification pending
Dent Limit Bonor			*		Page 9 of

Rpt Limit Reporting Limit

Spike Recovery outside accepted recovery limits

S.

Date: 27-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-005

Client Sample ID: MW-7 Collection Date: 8/21/2003 8:15:00 AM

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	SW8260	B		Analyst: AD	
Ethylbenzene	BRL	5.0	µg/L	1.	8/22/2003 11:16:00 PM
Methylene chloride	BRL	5.0	µg/L	1	8/22/2003 11:16:00 PM
Toluene	BRL	5.0	µg/L	1	8/22/2003 11:16:00 PM
Xylenes, Total	BRL	5.0	µg/L	. 1	8/22/2003 11:16:00 PM
Surr: 4-Bromofluorobenzene	89.3	71.8-143	%REC	1	8/22/2003 11:16:00 PM
Surr, Dibromofluoromethane	89.7	80.3-123	%REC	1	8/22/2003 11:16:00 PM
Surr: Toluene-d8	90.9	70.1-142	%REC	1	8/22/2003 11:16:00 PM
CYANIDE		SW901	4 .		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level		B	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Е	Value above quantitation range
	н	Holding times for preparation or analysis exceeded]	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	-	Р	NELAC analyte certification pending
	Rpt Limit	Reporting Limit		S	NELAC analyte certification pending Page 10 of 19 Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-006

Client Sample ID: MW-6 Collection Date: 8/21/2003 6:50:00 AM

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
TOTAL METALS BY ICP/MS		SW60:	20		Analyst: SSS
Arsenic	BRL	. 20.0	μg/L	1	8/25/2003 2:02:48 PM
Barium	168	20.0	µg/L	1	8/25/2003 2:02:48 PM
Beryllium	8RL	5.00	μg/L	1	8/25/2003 2:02:48 PM
Cadmium	BRL	5.00	µg/L	1	8/25/2003 2:02:48 PM
Chromium	BRL	10.0	µg/L	1	8/25/2003 2:02:48 PM
Copper	BRL	10.0	μg/L	1	8/25/2003 2:02:48 PM
Lead	BRL	10.0	µg/L	1	8/25/2003 2:02:48 PM
Nickel	BRL	20.0	μg/L	1	8/25/2003 2:02:48 PM
Vanadium	BRL	10.0	µg/L	1	8/25/2003 2:02:48 PM
Zinc	BRL	20.0	μg/L	1	8/25/2003 2:02:48 PM
MERCURY, TOTAL		SW747	0A		Analyst: JDJ
Mercury	BRL	0.00050	mg/L	1	8/25/2003
SEMIVOLATILE ORG. COMP. BY GC/MS		SW827	0C		Analyst: EP
Acenaphthene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Acenaphthylene	BRL	10	µg/L	1	8/23/2003 1:03:00 AM
Anthracene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Benz(a)anthracene	BRL	10	µg/L	1	8/23/2003 1:03:00 AM
Benzo(a)pyrene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Benzo(b)fluoranthene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Benzo(g,h,i)perylene	BRL	10	µg/L	1	8/23/2003 1:03:00 AM
Benzo(k)fluoranthene	BRL	10	μg/Ĺ	1	8/23/2003 1:03:00 AM
Chrysene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Dibenz(a,h)anthracene	BRL	10	µg/L	1	8/23/2003 1:03:00 AM
Fluoranthene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Fluorene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Indeno(1,2,3-cd)pyrene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Naphthalene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Phenanthrene	BRL	10	µg/L	. 1	8/23/2003 1:03:00 AM
Phenol	BRL	10	μg/L		8/23/2003 1:03:00 AM
Pyrene	BRL	10	μg/L	1	8/23/2003 1:03:00 AM
Surr: 2,4,6-Tribromophenol	110	37-127	%REC	1	8/23/2003 1:03:00 AM
Surr: 2-Fluorobiphenyl	84.9	43-110	%REC	1	8/23/2003 1:03:00 AM
Surr: 2-Fluorophenol	58.5	13-100	%REC	1	8/23/2003 1:03:00 AM
Surr: 4-Terphenyl-d14	84.0	10-121	%REC	1	8/23/2003 1:03:00 AM
Surr, Nitrobenzene-d5	84.0 74.4	40-110	%REC %REC	_ 1 4	8/23/2003 1:03:00 AM
Sur: Phenol-d5	74.4 39.5	40-110	%REC %REC	4	8/23/2003 1:03:00 AM
VOLATILE ORGANIC COMPOUNDS BY (SW826			Analyst: AD
Benzene	BRL	5.0	μg/L	1	8/22/2003 11:47:00 PM
Carbon disulfide	BRL	5.0	μg/L	1	8/22/2003 11:47:00 PM
Qualifiers: * Value exceeds Maximum	Contominant 7		·····	A maluta and a male	the appropriated Mathing Diamh
	Contaminant L	GVCI	· B E	2	the associated Method Blank
* . 0	· · · ·			Value above quantit	
H Holding times for prepara		exceeded	J		ow quantitation limits
N Analyte not NELAC certi	~ 1		· p	NELAC analyte cert	10 J

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-006

Date: 27-Aug-03

Client Sample ID: MW-6 Collection Date: 8/21/2003 6:50:00 AM

Matrix: GROUNDWATER

Analyses	Result	Limit Qual	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260B			Analyst: AD
Ethylbenzene	BRL	5.0	µg/L	1	8/22/2003 11:47:00 PM
Methylene chioride	BRL	5.0	µg/Ľ	1	8/22/2003 11:47:00 PM
Toluene	BRL	5.0	hð\r	1	8/22/2003 11:47:00 PM
Xylenes, Total	BRL	5.0	µg/L	1	8/22/2003 11:47:00 PM
Surr: 4-Bromofluorobenzene	89.2	71.8-143	%REC	1	8/22/2003 11:47:00 PM
Surr: Dibromofluoromethane	99.0	80.3-123	%REC	1	8/22/2003 11:47:00 PM
Surr: Toluene-d8	91.2	70.1-142	%REC	1.	8/22/2003 11:47:00 PM
CYANIDE		SW9014			Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

Rpt Limit Reporting Limit

*

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P NELAC analyte certification pending

S Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-007

Client Sample ID: MW-1 Collection Date: 8/21/2003 8:30:00 AM

Analyses	Result	Limit Qual	Units	DF	Date Analyzed	
TOTAL METALS BY ICP/MS		SW6020			Analyst: SSS	
Arsenic	BRL	20.0	µg/L	1	8/25/2003 2:07:24 PM	
Barium	BRL	20.0	µg/L	1	8/25/2003 2:07:24 PM	
Beryllium	BRL	5.00	µg/L	1	8/25/2003 2:07:24 PM	
Cadmium	BRL	5.00	µg/L	1	8/25/2003 2:07:24 PM	
Chromium	BRL	10.0	μg/L	1	8/25/2003 2:07:24 PM	
Соррег	BRL	10.0	µg/L	1	8/25/2003 2:07:24 PM	
Lead	BRL	10.0	µg/L	1	8/25/2003 2:07:24 PM	
Nickel	BRL	20.0	μg/L	. 1	8/25/2003 2:07:24 PM	
Vanadium	BRL	10.0	µg/L	1	8/25/2003 2:07:24 PM	
Zinc	BRL	20.0	µg/L	1	8/25/2003 2:07:24 PM	
MERCURY, TOTAL		SW7470A			Analyst: JDJ	
Mercury	BRL	0.00050	mg/L	1	8/25/2003	
SEMIVOLATILE ORG. COMP. BY GC/MS		SW8270C			Analyst: EP	
Acenaphthene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Acenaphthylene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Anthracene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Benz(a)anthracene	8RL	10	µg/L	1	8/23/2003 1:39:00 AM	
Benzo(a)pyrene	BRL	10	µg/L	· 1	8/23/2003 1:39:00 AM	
Benzo(b)fluoranthene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Benzo(g,h,i)perylene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Benzo(k)fluoranthene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Chrysene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Dibenz(a,h)anthracene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Fluoranthene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Fluorene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Indeno(1,2,3-cd)pyrene	BRL	10	µg/L	. 1	8/23/2003 1:39:00 AM	
Naphthalene	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Phenanthrene	BRL	10	µg/L	. 1	8/23/2003 1:39:00 AM	
Phenol	BRL	10	µg/L	1	8/23/2003 1:39:00 AM	
Pyrene	BRL	10	μg/L	1	8/23/2003 1:39:00 AM	
Surr: 2,4,6-Tribromophenol	117	37-127	%REC	1	8/23/2003 1:39:00 AM	
Surr: 2-Fluorobiphenyl	98.1	43-110	%REC	1	8/23/2003 1:39:00 AM	
Surr: 2-Fluorophenol	67.3	13-100	%REC	1	8/23/2003 1:39:00 AM	
Surr: 4-Terphenyl-d14	86.0	10-121	%REC	1	8/23/2003 1:39:00 AM	
Surr: Nitrobenzene-d5	85.4	40-110	%REC	, 1	8/23/2003 1:39:00 AM	
Surr: Phenol-d5	44.0	10-121	%REC	1	8/23/2003 1:39:00 AM	
VOLATILE ORGANIC COMPOUNDS BY G	C/MS	SW8260B			Analyst: NWH	
Benzene	BRL	5.0	µg/L	1	8/25/2003 11:48:00 AM	
Carbon disulfide	BRL	5.0	μg/L	1	8/25/2003 11:48:00 AM	
Qualifiers: * Value exceeds Maximum	Contaminant 1			Analyta datastad in 41	an approximated Mathad Plank	
BRL Below Reporting Limit	Comannuant L	-6461	В· Е	Analyte detected in the associated Method Blank Value above quantitation range		
H Holding times for preparat		• • • • • • • • • • • • • • • • • • •		=		
		s exceeded	່] ກ	Analyte detected belo		
N Analyte not NELAC certification	uea		Р	NELAC analyte certi	heation pending Page 13 of de accepted recovery limits	

Date: 27-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-007

Client Sample ID: MW-1 Collection Date: 8/21/2003 8:30:00 AM

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260E	3		Analyst: NWH
Ethylbenzene	BRL	. 5.0	µg/L	1	8/25/2003 11:48:00 AM
Methylene chloride	BRL	5.0	μg/L	1	8/25/2003 11:48:00 AM
Toluene	BRL	5.0	µg/L	. 1	8/25/2003 11:48:00 AM
Xylenes, Total	BRL	5.0	µg/L	1	8/25/2003 11:48:00 AM
Surr: 4-Bromofluorobenzene	85.8	71.8-143	%REC	1	8/25/2003 11:48:00 AM
Surr: Dibromofluoromethane	95.1	80.3-123	%REC	1	8/25/2003 11:48:00 AM
Surr: Toluene-d8	96.4	70.1-142	%REC	1	8/25/2003 11:48:00 AM
CYANIDE		SW9014		-	Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

		· · · · · · · · · · · · · · · · · · ·			
Qualifiers:	*	Value exceeds Maximum Contaminant Level	• .	B	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit		Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	-	Р	NELAC analyte certification pending
`	Rpt Limit	Reporting Limit		S	NELAC analyte certification pending Page 14 of 19 Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-008

Client Sample ID: DUP082003 Collection Date: 8/20/2003

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
TOTAL METALS BY ICP/MS		SW6	020			Analyst: SSS
Arsenic	BRL	20.0		µg/L	1	8/25/2003 2:11:58 PM
Barium	692	20.0		µg/L	1	8/25/2003 2:11:58 PM
Beryllium	BRL	5.00		µg/L	1	8/25/2003 2:11:58 PM
Cadmium	BRL	5.00		µg/L	1	8/25/2003 2:11:58 PM
Chromium	BRL	. 10.0		µg/L	1	8/25/2003 2:11:58 PM
Copper	BRL	10.0		µg/L	1	8/25/2003 2:11:58 PM
Lead	BRL	10.0		µg/L `	1	8/25/2003 2:11:58 PM
Nickel	BRL	20.0		µg/L	1	8/25/2003 2:11:58 PM
Vanadium	BRL	10.0		µg/L	1	8/25/2003 2:11:58 PM
Zinc	BRL	20.0		µg/L	1	8/25/2003 2:11:58 PM
MERCURY, TOTAL		SW74	70A			Analyst: JDJ
Mercury	BRL	0.00050		mg/L	1	8/25/2003
SEMIVOLATILE ORG. COMP. BY GC/MS		SW82	270C			Analyst: YH
Acenaphthene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Acenaphthylene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Anthracene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Benz(a)anthracene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Benzo(a)pyrene	BRL	10		µg/L	1.	8/25/2003 2:00:00 PM
Benzo(b)fluoranthene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Benzo(g,h,i)perylene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Benzo(k)fluoranthene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Chrysene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Dibenz(a,h)anthracene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Fluoranthene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Fluorene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Indeno(1,2,3-cd)pyrene	BRL	10		µg/Ľ	1	8/25/2003 2:00:00 PM
Naphthalene	BRL	10		µg/L	1	8/25/2003 2:00:00 PM
Phenanthrene	BRL	10		µg/L	. 1	8/25/2003 2:00:00 PM
Phenol	BRL	10		μg/L	1	8/25/2003 2:00:00 PM
Pyrene	BRL	10		μg/L	1	8/25/2003 2:00:00 PM
Surr: 2,4,6-Tribromophenol	107	37-127		%REC	1	8/25/2003 2:00:00 PM
Surr: 2-Fluorobiphenyl	92.6	43-110		%REC	1	8/25/2003 2:00:00 PM
Surr: 2-Fluorophenol	71.8	13-100		%REC	1.	8/25/2003 2:00:00 PM
Surr: 4-Terphenyl-d14	98.4	10-121		%REC	1	8/25/2003 2:00:00 PM
Surr: Nitrobenzene-d5	88.6	40~110		%REC	, 1	8/25/2003 2:00:00 PM
Surr: Phenol-d5	52.0	10-121		%REC	1	8/25/2003 2:00:00 PM
OLATILE ORGANIC COMPOUNDS BY G	C/MS	SW82	60B			Analyst: NWI
Benzene	BRL	5.0		µg/L	1	8/25/2003 1:11:00 PM
Carbon disulfide	BRL	5.0		µg/L	1	8/25/2003 1:11:00 PM
Qualifiers: * Value exceeds Maximum	Contaminant I	.evel		В	Analyte detected in the	ne associated Method Blank
BRL Below Reporting Limit		,	·.	E	Value above quantita	
H Holding times for preparat	tion or analysis	exceeded		J	Analyte detected belo	
N Analyte not NELAC certif	-		•	P	NELAC analyte certi	fication pending
Rpt Limit Reporting Limit				S	analyte cell	de accepted recovery limits

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-008

Date: 27-Aug-03

Client Sample ID: DUP082003 Collection Date: 8/20/2003

Analyses	Result	Limit Qua	Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260B			Analyst: NWH
Ethylbenzene	BRL	. 5.0	µg/L`	1	8/25/2003 1:11:00 PM
Methylene chloride	BRL	5.0	µg/L	1	8/25/2003 1:11:00 PM
Toluene	BRL	5.0	μg/L	1	8/25/2003 1:11:00 PM
Xylenes, Total	BRL	5.0	µg/L	1	8/25/2003 1:11:00 PM
Surr: 4-Bromofluorobenzene	85.7	71.8-143	%REC	1	8/25/2003 1:11:00 PM
Surr: Dibromofluoromethane	96.4	80.3-123	%REC	1	8/25/2003 1:11:00 PM
Surr: Toluene-d8	100	70.1-142	%REC	1	8/25/2003 1:11:00 PM
CYANIDE		SW9014			Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

Qualifiers:	<u>ب</u>	Value exceeds Maximum Contaminant Level	 В	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	E	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	Р	NELAC analyte certification pending
	Rot Limit	Reporting Limit	S	NELAC analyte certification pending Spike Recovery outside accepted recovery limits

Date: 27-Aug-03

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-009

Client Sample ID: RB082103 Collection Date: 8/21/2003 10:00:00 AM

Matrix: GROUNDWATER

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
TOTAL METALS BY ICP/MS		SW60)20		Analyst: SSS
Arsenic	BRL	20.0	µg/L⁻	1	8/25/2003 2:16:29 PM
Barium	BRL	20.0	µg/L	1	8/25/2003 2:16:29 PM
Beryllium	BRL	5.00	µg/L	1	8/25/2003 2:16:29 PM
Cadmium	BRL	5.00	µg/L	1	8/25/2003 2:16:29 PM
Chromium	BRL	10.0	µg/L	1	8/25/2003 2:16:29 PM
Copper	BRL	10.0	μg/L	1	8/25/2003 2:16:29 PM
Lead	BRL	10.0	µg/L	1	8/25/2003 2:16:29 PM
Nickel	BRL	20.0	μg/L	1	8/25/2003 2:16:29 PM
Vanadium	BRL	10.0	μg/L	1	8/25/2003 2:16:29 PM
Zinc	BRL	20.0	μg/L	1	8/25/2003 2:16:29 PM
MERCURY, TOTAL		SW741	70A		Analyst: JDJ
Mercury	BRL	0.00050	mg/L	1	8/25/2003
SEMIVOLATILE ORG. COMP. BY GC/N	IS	SW827	70C		Analyst: YH
Acenaphthene	BRL	10	µg/L	1	8/25/2003 2:38:00 PM
Acenaphthylene	BRL	10	µg/L	1	8/25/2003 2:38:00 PM
Anthracene	BRL	10	μg/L	. 1	8/25/2003 2:38:00 PM
Benz(a)anthracene	BRL	10	μg/L	1	8/25/2003 2:38:00 PM
Benzo(a)pyrene	BRL	10	µg/L	1	8/25/2003 2:38:00 PM
Benzo(b)fluoranthene	BRL	10	µg/L	1	8/25/2003 2:38:00 PM
Benzo(g,h,i)perylene	BRL	10	µg/L	1	8/25/2003 2:38:00 PM
Benzo(k)fluoranthene	BRL	10	hð/r	1 .	8/25/2003 2:38:00 PM
Chrysene	BRL	10	μg/L	1	8/25/2003 2:38:00 PM
Dibenz(a,h)anthracene	BRL	10	μg/L	1	8/25/2003 2:38:00 PM
Fluoranthene	BRL	10	μg/L	1	8/25/2003 2:38:00 PM
Fluorene	BRL	10	μg/L	1	8/25/2003 2:38:00 PM
Indeno(1,2,3-cd)pyrene	BRL	10	µg/L	1	8/25/2003 2:38:00 PM
Naphthaiene	BRL	10	μg/L	1	8/25/2003 2:38:00 PM
Phenanthrene	BRL	10	μg/L	. 1	8/25/2003 2:38:00 PM
Phenol	BRL	10	μg/L	1	8/25/2003 2:38:00 PM
Pyrene	BRL	10	μg/L	1.	8/25/2003 2:38:00 PM
Surr: 2,4,6-Tribromophenol	91.8	37-127	%REC	1	8/25/2003 2:38:00 PM
Surr: 2-Fluorobiphenyl	86.9	43-110	%REC	1	8/25/2003 2:38:00 PM
Surr: 2-Fluorophenol	64.5	13-100	%REC	1	8/25/2003 2:38:00 PM
Surr: 4-Terphenyl-d14	97.0	10-121	%REC	.1	8/25/2003 2:38:00 PM
Surr: Nitrobenzene-d5	97.0 84.1	40-121	%REC	- 1	8/25/2003 2:38:00 PM
Surr: Phenol-d5	42.8	40-110	%REC	1	8/25/2003 2:38:00 PM
OLATILE ORGANIC COMPOUNDS BY	•	SW826			
Benzene	BRL	5.0	μg/L	. 1	Analyst: AD 8/22/2003 8:09:00 PM
Carbon disulfide	BRL	5.0 5.0	μg/L	1	8/22/2003 8:09:00 PM
Qualifiers: * Value exceeds Maxim		1		· · · · · · · · · · · · · · · · · · ·	
		Jeyel	В	•	the associated Method Blank
BRL Below Reporting Limi			E	Value above quantita	
	aration or analysis	habaava	. J	Analyta datestad hal	ow quantitation limits
H Holding times for prep N Analyte not NELAC or	-	CACCELLED	P	NELAC analyte cert	-

CLIENT:	Williams Environmental Services, Inc
Lab Order:	0308663
Project:	Macon II MGP
Lab ID:	0308663-009

Date: 27-Aug-03

Client Sample ID: RB082103 Collection Date: 8/21/2003 10:00:00 AM

Matrix: GROUNDWATER

Analyses	Result	Limit Qu	al Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	BY GC/MS	SW8260	B		Analyst: AD
Ethylbenzene	BRL	. 5.0	µg/L	1	8/22/2003 8:09:00 PM
Methylene chloride	BRL	5.0	µg/L	1	8/22/2003 8:09:00 PM
Toluene	BRL	5.0	µg/L	1	8/22/2003 8:09:00 PM
Xylenes, Total	BRL	5.0	μg/L	1	8/22/2003 8:09:00 PM
Surr: 4-Bromofluorobenzene	89.7	71.8-143	%REC	1	8/22/2003 8:09:00 PM
Surr: Dibromofluoromethane	92.3	80.3-123	%REC	1	8/22/2003 8:09:00 PM
Surr: Toluene-d8	88.8	70.1-142	%REC	- 1	8/22/2003 8:09:00 PM
CYANIDE		SW9014	l i		Analyst: VS
Cyanide, Total	BRL	0.010	mg/L	1	8/21/2003 6:20:00 PM

· · ·					
Qualifiers:	*	Value exceeds Maximum Contaminant Level	· <u> </u>	В	Analyte detected in the associa
	BRL	Below Reporting Limit		Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded		J	Analyte detected below quantit
	N	Analyte not NELAC certified		P	NELAC analyte certification pe
	Rpt Limit	Reporting Limit		S	Spike Recovery outside accepte

iated Method Blank ge

titation limits

NELAC analyte certification pending Page 18 of 19 Spike Recovery outside accepted recovery limits

CLIENT:Williams Environmental Services, IncLab Order:0308663Project:Macon II MGPLab ID:0308663-010

Date: 27-Aug-03

Client Sample ID: TB082103 Collection Date: 8/21/2003 10:05:00 AM

Matrix: GROUNDWATER

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
VOLATILE ORGANIC COMPOUNDS	S BY GC/MS	SW826(B		Analyst: AD
Benzene	BRL	5.0	µg/L	1	8/22/2003 8:40:00 PM
Carbon disulfide	BRL	5.0	µg/L	1	8/22/2003 8:40:00 PM
Ethylbenzene	BRL	5.0	µg/L	1	8/22/2003 8:40:00 PM
Methylene chloride	BRL	5.0	µg/L	1	8/22/2003 8:40:00 PM
Toluene	BRL	5.0	µg/L	1	8/22/2003 8:40:00 PM
Xylenes, Total	BRL	5.0	µg/L	1	8/22/2003 8:40:00 PM
Surr: 4-Bromofluorobenzene	87.0	71.8-143	%REC	1	8/22/2003 8:40:00 PM
Surr: Dibromofluoromethane	94.7	80.3-123	%REC	1	8/22/2003 8:40:00 PM
Surr: Toluene-d8	91.9	70.1-142	%REC	1	8/22/2003 8:40:00 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

Rpt Limit Reporting Limit

¥

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P NELAC analyte certification pending

S Spike Recovery outside accepted recovery limits

Sample/Cooler Receipt Checklist

Client_WEST		Work Order	r Number <u>0308663</u>
Checklist completed by <u>Ny Clare Schares</u> Signature	1-2-11		
Carrier name: FedEx UPS Courier Client	S Mail Othe	r	_
Shipping container/cooler in good condition?	Yes L	No	Not Present
Custody seals intact on shipping container/cooler?	Yes	No	Not Present
Custody seals intact on sample bottles?	Yes	No	Not Present
Container/Temp Blank temperature in compliance?	Yes _	No	
Cooler #1 5.2° Cooler #2 4.3° Cooler #3 5.5°	Cooler #4	Co	oler#5 Cooler #6
Chain of custody present?	Yes _	No	
nain of custody signed when relinquished and received?	Yes	No	
Chain of custody agrees with sample labels?	Yes be	No	
Samples in proper container/bottle?	Yes 🛌	No	
Sample containers intact?	Yes _	No	
Sufficient sample volume for indicated test?	Yes k	No	
All samples received within holding time?	Yes _	No	
Was TAT marked on the COC?	Yes _	No	
Proceed with Standard TAT as per project history?	Yes	No	Not Applicable
Water - VOA vials have zero headspace? No VOA vials su	bmitted	Yes 上	No
Water - pH acceptable upon receipt?	Yes be	No	Not Applicable
Adjusted?	Chee	cked by	<u>0 N</u>

Case Narrative for resolution of the Non-Conformance.

C:\Documents and Settings\Chemist\Desktop\SampleReceiptChecklistRptREV.rtf

Date: 27-Aug-03

CLIENT:	Williams Environmental Services, Inc
Project:	Macon II MGP
Lab Order:	0308663

CASE NARRATIVE

Metals Analysis by Method 6020B:

Zn was detected in Method Blank 37318 at $23\mu g/l$ which was above reporting limit of $20\mu g/l$ resulting in "B" qualified data. Associated sample values were greater than approximately 10X the blank value or less than reporting limit and data was not affected.

LCS-37318 is flagged For Zn due to the hit in the method blank.

Date: 28-Aug-03

CLIENT:Williams Environmental Services, IncWork Order:0308663

Project: Macon II MGP

ANALYTICAL QC SUMMARY REPORT

BatchID: 37280

Sample ID: MB-37280 Client ID:	SampType: MBLK Batch ID: 37280		le: 8260_TCL	_W Units: µg/L		Prep Date Analysis Date	e: 8/21/20 e: 8/21/20		RunNo: 417 SeqNo: 759		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	BRL	5.0	· ·	······································						<u>** </u>	
Carbon disulfide	BRL	5.0	•								
Ethylbenzene	BRL	5.0								1.1	
Methylene chloride	BRL	5.0									
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	48.99	0	50	0	98	71.8	143	0	0		
Surr: Dibromofluoromethane	57.34	0	50	• 0	115	80.3	123	0	0		
Surr: Toluene-d8	52.42	0	50	0	105	[.] 70.1	142	0	0	· ·	
Sample ID: MB-37280	SampType: MBLK	TestCoo	le: 8260B_W	Units: µg/L		Prep Dat	e: 8/21/20	03	RunNo: 417	/62	
Client ID:	Batch ID: 37280	Test	lo: SW8260B			Analysis Dat	e: 8/20/20	03	SeqNo: 759	9401	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	BRL	5.0									
Carbon disulfide	- BRL	5.0									
Ethylbenzene	BRL	5.0					,				
Methylene chloride	BRL	5.0									
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0								•	
Surr: 4-Bromofluorobenzene	47.64	5.0	50	0	95.3	71.8	143	0	0.		
Surr: Dibromofluoromethane	57.18	5.0	50	0	114	80.3	123	0	0		
Surr: Toluene-d8	53.72	5.0	50	0	107	70.1	142	0	0		
Sample ID: LCS-37280	SampType: LCS	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	e: 8/21/20	03	RunNo: 41	762	
Client ID:	Batch ID: 37280	Test	lo: SW8260B			Analysis Dat	e: 8/20/20	03	SeqNo: 75	9402	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	50.06	5.0	50	0	100	71.1	120	0	0		
H Holding time	cted in the associated Method I es for preparation or analysis ex accepted recovery limits		J Analy	Reporting Limit te detected below qua Recovery outside acc				Value above quan Analyte not NELA	-	Pc	nge I o

BatchID: 37280

Sample ID: LCS-37280	SampType: LCS		ie: 8260B_W	Units: µg/L		•	e: 8/21/20		RunNo: 417		
Client ID:	Batch ID: 37280	Test	lo: SW8260B			Analysis Dat	e: 8/20/20	03	SeqNo: 759	402	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toluene	51.32	5.0	50	0	103	84	124	0	0	· .	
Surr: 4-Bromofluorobenzene	47.87	5.0	50	0	95.7	71.8	143	0	Q		
Surr: Dibromofluoromethane	54.15	5.0	50	0	108	80.3	123	0	0		
Surr: Toluene-d8	51.32	.5.0	50	0	103	70.1	142	0	0		
Sample ID: 0308573-016AMS	SampType: MS	TestCo	ie: 8260B_W	Units: µg/L		Prep Dat	e: 8/21/20	03	RunNo: 419	34	
Client ID:	Batch ID: 37280	Test	lo: SW8260B			Analysis Dat	e: 8/26/20	03	SeqNo: 764	647	•
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	45.94	5.0	50	0	91.9	75	130	0	0		
Toluene	48.37	5.0	50	0	96.7	79	125	0	0	-	
Surr: 4-Bromofluorobenzene	43.22	5.0	50	0	86.4	71.8	143	0	0		
Surr: Dibromofluoromethane	44.98	5.0	50	0	90	80.3	123	0	. 0		
Surr: Toluene-d8	47.81	5.0	50	0	95.6	70.1	142	0	0		
Sample ID: 0308573-016AMSD	SampType: MSD	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	te: 8/21/20	03	RunNo: 419	934	
Client ID:	Batch ID: 37280	Test	io: SW8260B			Analysis Dat	te: 8/26/20	03	SeqNo: 764	1649	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	44.57	5.0	50	0	89.1	75	130	45.94	3.03	30	
Toluene	46.4	5.0	50	0	92.8	79	125	48.37	4.16	30	
Surr: 4-Bromofluorobenzene	43.51	5.0	50	0	87	71.8	143	43,22	0	· 0	
Surr: Dibromofluoromethane	45.62	5.0	50	0	91.2	80.3	123	44.98	0	0	
Surr: Toluene-d8	48.35	5.0	50	0	96.7	70.1	142	47.81	0	0	
Sample ID: NB-37280	SampType: MBLK	TestCo	de: 8260B_W	_CL Units: µg/L		Prep Dai	te: 8/21/20	03	RunNo: 41	751	
Client ID:	Batch ID: 37280	Test	No: SW8260B			Analysis Da	te: 8/20/20	003	SeqNo: 75	9216	
· · ·		501	CDK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Analyte	Result	PQL	SPK value	or rence var			··· ·				

R RPD outside accepted recovery limits

Williams Environmental Services, Inc

0308663

Macon II MGP

CLIENT:

Project:

Work Order:

S Spike Recovery outside accepted recovery limits

Page 2 of 13

BatchID: 37280

Sample ID: MB-37280	SampType: MBLK	TestCo	de: 8260B_W	_CL Units: µg/L		Prep Dat		03	RunNo: 417	51	
Client ID:	Batch ID: 37280	Test	No: SW8260B			Analysis Da	te: 8/20/20	03	SeqNo: 759	216	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide	BRL	5.0									
Ethylbenzene	BRL	5.0									
Methylene chloride	BRL	5.0						· ·			
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	47.64	0	50	0	95.3	71.8	143	0	0		
Surr: Dibromofluoromethane	57.18	0	50	0	114	80.3	123	0	0		
Surr: Toluene-d8	53.72	0	50	0	107	70.1	142	0	0		
Sample ID: LCS-37280	SampType: LCS	TestCo	de: 8260B_W	_CL Units: µg/L		Prep Da	te: 8/21/20	003	RunNo: 417	/51	
Client ID:	Batch ID: 37280	Testi	No: SW8260B			Analysis Da	te: 8/20/20	003	SeqNo: 759	217	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	50.06	5.0	50	0	100	71.1	120	0	0		•
Toluene	51.32	5.0	50	0	103	84	124	· 0	0		
Surr: 4-Bromofluorobenzene	47.87	0	50	0	95.7	71.8	143	· 0	0		
Surr: Dibromofluoromethane	54.15	0	50	0	108	80.3	123	0	· 0		
Surr: Toluene-d8	51.32	0	50	0	103	70.1	142	0	0		

Work Order: **Project:**

Qualifiers:

В

CLIENT:

0308663 Macon II MGP

Williams Environmental Services, Inc

н Holding times for preparation or analysis exceeded R

Analyte detected in the associated Method Blank

RPD outside accepted recovery limits

J Spike Recovery outside accepted recovery limits S

BRL Below Reporting Limit

Analyte detected below quantitation limits

E Value above quantitation range

Ν Analyte not NELAC certified

Page 3 of 13

CLIENT:

Williams Environmental Services, Inc 0308663

Work Order:

Project: Macon II MGP

ANALYTICAL QC SUMMARY REPORT

BatchID: 37292

Sample ID: MB-37292	SampType: MBLK	TestCoo	le: 8270_A2_V	/ Units: µg/L		Prep Dat	te: 8/21/20	03	RunNo: 418		
Client ID:	Batch ID: 37292	TestN	lo: SW8270C			Analysis Dat	te: 8/22/20	03	SeqNo: 762	476	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	BRL	10									
Acenaphthylene	BRL	10									
Anthracene	BRL	10	·								
Benz(a)anthracene	BRL	10									
Benzo(a)pyrene	BRL	10									
Benzo(b)fluoranthene	BRL	10									
Benzo(g,h,i)perylene	BRL	10		* <u>.</u>							
Benzo(k)fluoranthene	BRL	10									
Chrysene	BRL	10									
Dibenz(a,h)anthracene	BRL	10			·						
Fluoranthene	BRL	10							1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
Fluorene	BRL	10									
Indeno(1,2,3-cd)pyrene	BRL	10									
Naphthalene	BRL	10									
Phenanthrene	BRL	10									
Phenol	BRL	10									
Pyrene	BRL	10							e.		
Surr: 2,4,6-Tribromophenol	98.68	0	100	0	98.7	19	124	0	0		
Surr: 2-Fluorobiphenyl	47.61	0	50	0	95.2	26	115	0	0		
Surr: 2-Fluorophenol	92.27	0	100	0	92.3	10	121	0	0		
Surr: 4-Terphenyl-d14	49.27	0	50	0	98.5	18	137	0	Q		
Surr: Nitrobenzene-d5	47.42	0	50	· 0	94.8	15	120	0	0		
Surr: Phenol-d5	69.67	0	100	0	69.7	18	113	. 0	0		
Sample ID: LCS-37292	SampType: LCS	TestCo	de: 8270_A2_\	V Units: µg/L		Prep Da	ite: 8/21/20	03	RunNo: 41	384	
Client ID:	Batch ID: 37292	Test	No: SW8270C			Analysis Da	ite: 8/22/20	03	SeqNo: 762	2477	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	85.07	10	100	0	85.1	47	145	0	0		
Phenol	66.02	10	100	0	66	5	112	0	0		
Pyrene	97.49	10	100	0	97.5	52	115	0	0		
Qualifiers: B Analyte dete	ected in the associated Method I	Blank	BRL Below	Reporting Limit			E	Value above quan	titation range		
- · · · ·	es for preparation or analysis e			e detected below qua	antitation lin	nits	N	Analyte not NELA	C certified	-	,
-	e accepted recovery limits			Recovery outside acc						P_{i}	age 4 c

BatchID: 37292

Analyte Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5 Surr: Phenol-d5 Sample ID: 0308605-001AMS SampT	n ID: 37292 Result 98.58 98.58 43.48 83.96 48.94 40.59 72.88 ype: MS n ID: 37292 Result 79.45 56.12 85.02 94.98 40.05	PQL 0 0 0 0 0 TestCod TestPQL 10 10 10 0	100 100 100	SPK Ref Val 0 0 0	%REC 98.6 87 84 97.9 81.2 72.9	19 26 10 18 15 18 Prep Dat Analysis Da	HighLimit 124 115 121 137 120 113 te: 8/21/20 te: 8/22/20	RPD Ref Val 0 0 0 0 0 0 0	SeqNo: 762 %RPD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 RunNo: 418 SeqNo: 762 %RPD 0 0 0 0 0	RPDLimit	Qual
Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5 Surr: Phenol-d5 Sample ID: 0308605-001AMS SampT Client ID: Batch Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	98.58 43.48 83.96 48.94 40.59 72.88 ype: MS 1 ID: 37292 Result 79.45 56.12 85.02 94.98	0 0 0 0 TestCoo TestPQL 10 10 10 0	100 50 100 50 100 00 de: 8270_A2_ No: SW8270C SPK value 100 100 100	0 0 0 0 0 0 W Units: µg/L SPK Ref Val 0 0 0	98.6 87 84 97.9 81.2 72.9 %REC 79.4 56.1	19 26 10 18 15 18 Prep Da Analysis Da LowLimit 47 5	124 115 121 137 120 113 te: 8/21/20 te: 8/22/20 HighLimit 145 112	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 8 RunNo: 418 SeqNo: 762 %RPD 0 0	384 2479	
Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5 Surr: Phenol-d5 Sample ID: 0308605-001AMS SampT Client ID: Batch Analyte Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	43.48 83.96 48.94 40.59 72.88 ype: MS n ID: 37292 Result 79.45 56.12 85.02 94.98	0 0 0 TestCod TestP PQL 10 10 10 0	50 100 50 100 de: 8270_A2_ No: SW8270C SPK value 100 100 100	0 0 0 0 W Units: µg/L SPK Ref Val 0 0 0	87 84 97.9 81.2 72.9 %REC 79.4 56.1	26 10 18 15 18 Prep Dat Analysis Da LowLimit 47 5	115 121 137 120 113 te: 8/21/20 te: 8/22/20 HighLimit 145 112	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 RunNo: 418 SeqNo: 762 %RPD 0 0	2479	Qual
Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5 Surr: Phenol-d5 Sample ID: 0308605-001AMS SampT Client ID: Batch Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	83.96 48.94 40.59 72.88 ype: MS 1 ID: 37292 Result 79.45 56.12 85.02 94.98	0 0 0 TestCod TestPQL 10 10 10 0	100 50 100 de: 8270_A2_ No: SW8270C SPK value 100 100 100	0 0 0 W Units: µg/L SPK Ref Val 0 0 0	84 97.9 81.2 72.9 %REC 79.4 56.1	10 18 15 18 Prep Da Analysis Da LowLimit 47 5	121 137 120 113 te: 8/21/20 te: 8/22/20 HighLimit 145 112	0 0 0 003 RPD Ref Val 0 0	0 0 0 RunNo: 418 SeqNo: 762 %RPD 0 0	2479	Qual
Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5 Surr: Phenol-d5 Sample ID: 0308605-001AMS SampT Client ID: Batch Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	48.94 40.59 72.88 ype: MS 1D: 37292 Result 79.45 56.12 85.02 94.98	0 0 TestCoo Testh PQL 10 10 10 0	50 50 100 de: 8270_A2_ No: SW8270C SPK value 100 100 100	0 0 W Units: µg/L SPK Ref Val 0 0 0	97.9 81.2 72.9 %REC 79.4 56.1	18 15 18 Prep Dat Analysis Da LowLimit 47 5	137 120 113 te: 8/21/20 te: 8/22/20 HighLimit 145 112	0 0 003 RPD Ref Val 0 0	0 0 RunNo: 418 SeqNo: 762 %RPD 0 0	2479	Qua
Surr: Nitrobenzene-d5 Surr: Phenol-d5 Sample ID: 0308605-001AMS SampT Client ID: Batch Analyte Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	40.59 72.88 ype: MS n ID: 37292 Result 79.45 56.12 85.02 94.98	0 0 TestCod TestP PQL 10 10 10 0	50 100 de: 8270_A2_ No: SW8270C SPK value 100 100 100	0 0 W Units: µg/L SPK Ref Val 0 0 0	81.2 72.9 %REC 79.4 56.1	15 18 Prep Da Analysis Da LowLimit 47 5	120 113 te: 8/21/20 te: 8/22/20 HighLimit 145 112	0 003 003 RPD Ref Val 0 0	0 0 RunNo: 418 SeqNo: 762 %RPD 0 0	2479	Qua
Surr: Phenol-d5 Sample ID: 0308605-001AMS SampT Client ID: Batch Analyte Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	72.88 ype: MS n ID: 37292 Result 79.45 56.12 85.02 94.98	0 TestCoo TestP PQL 10 10 10 0	100 de: 8270_A2_ No: SW8270C SPK value 100 100 100	0 W Units: µg/L SPK Ref Val 0 0 0	72.9 %REC 79.4 56.1	18 Prep Da Analysis Da LowLimit 47 5	113 te: 8/21/20 te: 8/22/20 HighLimit 145 112	0 003 RPD Ref Val 0 0	0 RunNo: 418 SeqNo: 762 %RPD 0 0	2479	Qua
Sample ID: 0308605-001AMS SampT Client ID: Batch Analyte Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	ype: MS n ID: 37292 Result 79.45 56.12 85.02 94.98	TestCoo TestP PQL 10 10 10 0	de: 8270_A2_ No: SW8270C SPK value 100 100 100	W Units: µg/L SPK Ref Val 0 0 0	%REC 79.4 56.1	Prep Da Analysis Da LowLimit 47 5	te: 8/21/20 te: 8/22/20 HighLimit 145 112	003 003 RPD Ref Val 0 0	RunNo: 418 SeqNo: 762 %RPD 0 0	2479	Qua
Client ID: Batch Analyte Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	n ID: 37292 Result 79.45 56.12 85.02 94.98	Test PQL 10 10 10 0	No: SW8270C SPK value 100 100 100	SPK Ref Val 0 0 0	%REC 79.4 56.1	Analysis Da LowLimit 47 5	te: 8/22/20 HighLimit 145 112	003 RPD Ref Val 0 0	SeqNo: 762 %RPD 0 0	2479	Qua
Analyte Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	Result 79.45 56.12 85.02 94.98	PQL 10 10 10 0	SPK value 100 100 100	0 0 0	%REC 79.4 56.1	LowLimit 47 5	HighLimit 145 112	RPD Ref Val 0 0	%RPD 0 0		Qua
Acenaphthene Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	79.45 56.12 85.02 94.98	10 10 10 0	100 100 100	0 0 0	79.4 56.1	47 5	145 112	0 0	0	RPDLimit	Qua
Phenol Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	56.12 85.02 94.98	10 10 0	100 100	0 0	56.1	5	112	0	0	<u>-</u>	
Pyrene Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	85.02 94.98	10 0	100	0				-	•	_	
Surr: 2,4,6-Tribromophenol Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	94.98	0		-	85	52	115	0	0	-	
Surr: 2-Fluorobiphenyl Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5		-	400			~~		Ŷ			
Surr: 2-Fluorophenol Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5	40.05		100	0	95	19	124	0	0		
Surr: 4-Terphenyl-d14 Surr: Nitrobenzene-d5		0	50	0	80.1	26	115	0	0		
Surr: Nitrobenzene-d5	71.33	0	100	0	71.3	10	121	0	· 0		
	42.67	0	50	0	85.3	18	137	0	· 0		
Surr: Phenol-d5	38.17	0	50	0	76.3	15	120	0	0		
	60.84	0	100	0	60.8	18	113	0	0		
Sample ID: 0308605-001AMSD SampT	ype: MSD	TestCo	de: 8270_A2_	W Units: µg/L		Prep Da	te: 8/21/20)03	RunNo: 418	884	
Client ID: Batch	n ID: 37292	Test	No: SW8270C			Analysis Da	te: 8/22/20)03	SeqNo: 762	2480	
Analyte	Result	PQL.	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Acenaphthene	85.02	10	100	0	85	.47	145	79.45	6.77	0	
Phenol	60.89	10	100	0	60.9	5	112	56.12	8.15	. 0	
Pyrene	90.53	10	100	0	90.5	52	115	85.02	6.28	0	
Surr: 2,4,6-Tribromophenol	94.16	0	100	0	94.2	19	124	94.98	0	0	
Surr: 2-Fluorobiphenyl	40.28	0	50	0	80.6	26	115	40.05	0	0	
Surr: 2-Fluorophenol	74.29	0	100	0	74.3	10	121	71.33	0	0	

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

Page 5 of 13

CLIENT:

Work Order: Project: 0308663

Macon II MGP

Williams Environmental Services, Inc

BatchID: 37292

Sample ID: 0308605-001AMSD Client ID:	SampType: MSD Batch ID: 37292	TestCode: 8270_A2_W Units: μg/L TestNo: SW8270C				Prep Da Analysis Da	te: 8/21/20 te: 8/22/20		RunNo: 418 SeqNo: 762		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Terphenyi-d14	43.23	0	50	· 0	86.5	18	137.	42.67	0	0	-
Surr: Nitrobenzene-d5	38.16	0	50	0	76.3	15	120	38.17	0	0	
Surr: Phenol-d5	63.7	0	100	0	63.7	18	113	60.84	0	0	

Qualifiers:

· ^ .

В

CLIENT:

Project:

Work Order:

Analyte detected in the associated Method Blank

Williams Environmental Services, Inc

0308663

Macon II MGP

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

BRL Below Reporting Limit

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

N Analyte not NELAC certified

Page 6 of 13

÷.,

BatchID: 37318

Sample ID: N	iB-37318	SampType: MBLK	TestCoo	le: 6020_W	Units: µg/L		Prep Date	e: 8/22/200	3	RunNo: 418	93	
Client ID:		Batch ID: 37318	TestN	io: SW6020			Analysis Date	e: 8/25/200	3	SeqNo: 762	671	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit I	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	·····	BRL	20.0								******	
Barium		BRL	20.0									
Beryllium		BRL	5.00									
Cadmium		BRL	5.00									
Chromium		BRL	10.0									
Copper		BRL	10.0						9.			
ead	•	BRL	10.0			÷						
lickel		BRL	20.0									
/anadium		BRL	10.0									
linc		30.67	20.0									
ample ID: L	CS-37318	SampType: LCS	TestCoo	le: 6020_W	Units: µg/L	· · · · · · · · · · · · · · · · · · ·	Prep Date	e: 8/22/200	3	RunNo: 418	93	
lient ID:		Batch ID: 37318	Test	lo: SW6020			Analysis Date	e: 8/25/200	3	SeqNo: 762	2672	
nalyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
rsenic	······································	97.27	20.0	100	0.858	96.4	85	115	0	0		
larium		105.5	20.0	100	0.18	105	85	115	0	0		
Beryllium		107.3	5.00	100	0	107	85	115	0	• 0		
Cadmium		108.9	5.00	100	0	109	85	115	0	0		
Chromium		105.5	10.0	100	0	106	85	115	0	0		
Copper		107.3	10.0	100	0.642	107	85.	115	0	0		
ead	4. A	105.1	10.0	·. 100	0.26	105	85	115	0	0	,	
lickel		107.5	20.0	100	0	108	85	115	0	. 0		
/anadium		104.8	10.0	100	0	105	85	115	0	0		
Linc		112.7	20.0	100	30.67	82	85	115	0	0		S
ample ID: 0	308663-001DMS	SampType: MS	TestCoo	le: 6020_W	Units: µg/L		Prep Dat	e: 8/22/200	3	RunNo: 418	393	
Client ID: N	/W-5	Batch ID: 37318	TestN	lo: SW6020			Analysis Dat	e: 8/25/200	3	SeqNo: 762	2675	
Analyte	ء • 'د	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
rsenic		105.5	20.0	100	4.477	101	70	130	. 0	0		
Qualifiers:	B Analyte dete	cted in the associated Method	Blank	BRL Below	Reporting Limit			E V	alue above quan	titation range		
	H Holding time	es for preparation or analysis ex	cceeded		te detected below qua	ntitation lin	uits		nalyte not NELA	-		
	-	accepted recovery limits			Recovery outside acc				•		P	age 7 d

CLIENT:

Project:

Work Order:

Williams Environmental Services, Inc

0308663

Macon II MGP

BatchID: 37318

Sample ID: 0308663-001DMS	SampType: MS		le: 6020_W	Units: µg/L		Prep Date			RunNo: 418		
Client ID: MW-5	Batch ID: 37318	Testiv	lo: SW6020			Analysis Dat	e: 8/25/20	03	SeqNo: 762	675	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Beryllium	103.8	5.00	100	0	104	70	130	0	0		,
Cadmium	104.4	5.00	100	0.419	104	70	130	0	0		
Chromium	103.8	` 10.0	100	0	104	70	130	0	0		
Copper	99.78	10.0	100	1.004	98.8	70	130	0	.0		
Lead	111	10.0	100	0.918	110	70	130	0	0		
Nickel	101	20.0	100	0.619	. 100	70	130	0	0		
Vanadium	105.9	10.0	100	0.164	106	70	130	0	0		•
Zinc	103.7	20.0	100	23.22	80.5	70	130	0	0		В
Sample ID: 0308663-001DDUP	SampType: DUP	TestCod	de: 6020_W	Units: µg/L		Prep Dat	e: 8/22/20	03	RunNo: 418	393	·····
			_	4							
Client ID: MW-5	Batch ID: 37318		lo: SW6020	F 3		Analysis Dat			SeqNo: 762		
Client ID: MW-5 Analyte	•		lo: SW6020	SPK Ref Val	%REC	Analysis Dat	e: 8/25/20				Qual
	Batch ID: 37318	Test	lo: SW6020			Analysis Dat	e: 8/25/20	03	SeqNo: 762	2674	Qual
Analyte	Batch ID: 37318 Result	TestN PQL	lo: SW6020 SPK value	SPK Ref Val	%REC	Analysis Dat	e: 8/25/20 HighLimit	03 RPD Ref Val	SeqNo: 762 %RPD	2674 RPDLimit	Qual
Analyte Arsenic	Batch ID: 37318 Result BRL	TestM PQL 20.0	lo: SW6020 SPK value 0	SPK Ref Val	%REC 0	Analysis Dat LowLimit 0	e: 8/25/20 HighLimit 0	03 RPD Ref Val 4.477	SeqNo: 762 %RPD 0	2674 RPDLimit 20	Qual
Analyte Arsenic Beryllium	Batch ID: 37318 Result BRL BRL	TestN PQL 20.0 5.00	No: SW6020 SPK value 0 0	SPK Ref Val 0 0	%REC 0 0	Analysis Dat LowLimit 0 0	e: 8/25/20 HighLimit 0 0	03 RPD Ref Val 4.477 0	SeqNo: 762 %RPD 0 0	2674 RPDLimit 20 20	Qual
Analyte Arsenic Beryllium Cadmium	Batch ID: 37318 Result BRL BRL BRL	TestN PQL 20.0 5.00 5.00	lo: SW6020 SPK value 0 0 0	SPK Ref Val 0 0 0	%REC 0 0 0	Analysis Dat LowLimit 0 0 0	e: 8/25/20 HighLimit 0 0 0	03 RPD Ref Val 4.477 0 0.419	SeqNo: 762 %RPD 0 0 0	2674 RPDLimit 20 20 20	Qual
Analyte Arsenic Beryllium Cadmium Chromium	Batch ID: 37318 Result BRL BRL BRL BRL BRL	TestM PQL 20.0 5.00 5.00 10.0	lo: SW6020 SPK value 0 0 0 0	SPK Ref Val 0 0 0 0	%REC 0 0 0 0	Analysis Dat LowLimit 0 0 0 0	e: 8/25/20 HighLimit 0 0 0	03 RPD Ref Val 4.477 0 0.419 0	SeqNo: 762 %RPD 0 0 0 0	2674 RPDLimit 20 20 20 20	Qual
Analyte Arsenic Beryllium Cadmium Chromium Copper	Batch ID: 37318 Result BRL BRL BRL BRL BRL BRL	TestN PQL 20.0 5.00 5.00 10.0 10.0	lo: SW6020 SPK value 0 0 0 0 0 0	SPK Ref Val 0 0 0 0	%REC 0 0 0 0 0	Analysis Dat LowLimit 0 0 0 0 0	e: 8/25/20 HighLimit 0 0 0 0 0	03 RPD Ref Val 4.477 0 0.419 0 1.004	SeqNo: 762 %RPD 0 0 0 0 0 0 0	2674 RPDLimit 20 20 20 20 20 20	Qual
Analyte Arsenic Beryllium Cadmium Chromium Copper Lead	Batch ID: 37318 Result BRL BRL BRL BRL BRL BRL BRL	TestN PQL 20.0 5.00 5.00 10.0 10.0 10.0	lo: SW6020 SPK value 0 0 0 0 0 0 0	SPK Ref Val 0 0 0 0 0 0 0	%REC 0 0 0 0 0 0	Analysis Dat LowLimit 0 0 0 0 0 0 0	e: 8/25/20 HighLimit 0 0 0 0 0 0	03 RPD Ref Val 4.477 0 0.419 0 1.004 0.918	SeqNo: 762 %RPD 0 0 0 0 0 0 0 0	2674 RPDLimit 20 20 20 20 20 20 20	Qual

Qualifiers:

В

Н

CLIENT:

Project:

Work Order:

Analyte detected in the associated Method Blank

Williams Environmental Services, Inc

0308663

Macon II MGP

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

- BRL Below Reporting Limit
- J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

- E Value above quantitation range
- N Analyte not NELAC certified

Page 8 of 13

Williams Environmental Services, Inc 0308663

Work Order:0308663Project:Macon II MGP

CLIENT:

ANALYTICAL QC SUMMARY REPORT

BatchID: 37320

Sample ID: MB-37320	SampType: MBLK	TestCode: 9014_W	Units: mg/L		Prep Date:	8/21/2003		RunNo: 418	109	
Client ID:	Batch ID: 37320	TestNo: SW9014			Analysis Date:	8/21/2003		SeqNo: 760	439	
Anaiyte	Result	PQL SPK value	e SPK Ref Val	%REC	LowLimit H	ighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	BRL	0.0100) 0	0	0	0	0	0		· · ·
Sample ID: LCS-37320	SampType: LCS	TestCode: 9014_W	Units: mg/L	<u>.</u>	Prep Date:	8/21/2003		RunNo: 418	109	· · ·
Client ID:	Batch ID: 37320	TestNo: SW9014			Analysis Date:	8/21/2003		SeqNo: 760	440	
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC	LowLimit H	ighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
Cyanide, Total	0.2469	0.0100 0.2	5 0	98.8	85	115	0	0		
Sample ID: 0308663-009C MS	SampType: MS	TestCode: 9014_W	Units: mg/L		Prep Date:	8/21/2003		RunNo: 418	309	
Client ID: RB082103	Batch ID: 37320	TestNo: SW9014			Analysis Date:	8/21/2003		SeqNo: 760)451	
Analyte	Result	PQL SPK value	e SPK Ref Val	%REC	LowLimit H	lighLimit RP	D Ref Val	%RPD	RPDLimit	Qual
Analyte Cyanide, Total	Result 0.2369	PQL SPK value 0.0100 0.2		%REC 94.8	LowLimit H	ighLimit RP	D Ref Val	%RPD 0	RPDLimit	Qual
	<u></u>		3 0		70				·	Qual
Cyanide, Total	0.2369	0.0100 0.2	5 0 Units: mg/L	94.8	70	130 8/21/2003		0	309	Qual
Cyanide, Total Sample ID: 0308663-009C DUP	0.2369 SampType: DUP	0.0100 0.2 TestCode: 9014_W	5 0 Units: mg/L	94.8	70 Prep Date: Analysis Date:	130 8/21/2003	0	0 RunNo: 418	309	Qual

Qualifiers:

В

Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

BRL Below Reporting Limit

J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

E Value above quantitation range

N Analyte not NELAC certified

Page 9 of 13

CLIENT: Williams Environmental Services, Inc Work Order: 0308663 **Project:** Macon II MGP

ANALYTICAL QC SUMMARY REPORT

BatchID: 37326

·				
Sample ID: 0308631-013CPDS	SampType: PDS	TestCode: 7470A_W_T Units: mg/L	Prep Date: 8/25/2003 RunNo: 41912	
Client ID:	Batch ID: 37326	TestNo: SW7470A	Analysis Date: 8/25/2003 SeqNo: 763544	· .
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLin	nit Qual
Mercury	0.01258	0.000320 0.0125 0	101 85 115 0 0	
Sample ID: MB-37326	SampType: MBLK	TestCode: 7470A_W_T Units: mg/L	Prep Date: 8/22/2003 RunNo: 41912	
Client ID:	Batch ID: 37326	TestNo: SW7470A	Analysis Date: 8/25/2003 SeqNo: 763538	
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLin	nit Qual
Мегсигу	BRL	0.000160		
Sample ID: LCS-37326	SampType: LCS	TestCode: 7470A_W_T Units: mg/L	Prep Date: 8/22/2003 RunNo: 41912	
Client ID:	Batch ID: 37326	TestNo: SW7470A	Analysis Date: 8/25/2003 SeqNo: 763539	
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLin	nit Qual
Mercury	0.005488	0.000170 0.005 0	110 85 115 0 0	·······
Sample ID: 0308631-013CMS	SampType: MS	TestCode: 7470A_W_T Units: mg/L	Prep Date: 8/25/2003 RunNo: 41912	
Client ID:	Batch ID: 37326	TestNo: SW7470A	Analysis Date: 8/25/2003 SeqNo: 763542	
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLir	nit Qual
Mercury	0.005072	0.000160 0.005 0	101 70 130 0 0	······
Sample ID: 0308631-013CMSD	SampType: MSD	TestCode: 7470A_W_T Units: mg/L	Prep Date: 8/25/2003 RunNo; 41912	
Client ID:	Batch ID: 37326	TestNo: SW7470A	Analysis Date: 8/25/2003 SeqNo: 763543	
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val %RPD RPDLin	nit Qual
Mercury	0.00503	0.000160 0.005 0	101 70 130 0.005072 0.841	20

Qualifiers:

В

H

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits BRL Below Reporting Limit

Analyte detected below quantitation limits J

S Spike Recovery outside accepted recovery limits

- Value above quantitation range E
- Analyte not NELAC certified N

Page 10 of 13

BatchID: 37356

Sample ID: MB-37356	SampType: MBLK	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	e: 8/23/20	03	RunNo: 418	98	
Client ID:	Batch ID: 37356	Test	lo: SW8260B			Analysis Dat	e: 8/25/20	03	SeqNo: 762	844	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	BRL	5.0				······································		<u></u>			
Carbon disulfide	BRL	5.0									
Ethylbenzene	BRL	5.0									
Methylene chloride	BRL	5.0									
Toluene	BRL	5.0									
Xylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	42.94	. 5.0	50	0	85.9	71.8	143	0	0		
Surr: Dibromofluoromethane	48.34	5.0	50	0	96.7	80.3	123	0	0	н	
Surr: Toluene-d8	49.09	5.0	50	0	98.2	70.1	142	0	: 0		
Sample ID: LCS-37356	SampType: LCS	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	e: 8/23/20	03	RunNo: 418	198	
Client ID:	Batch ID: 37356	Test	No: SW8260B			Analysis Dat	e: 8/25/20	03	SeqNo: 762	845	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	46.71	5.0	50	0	93.4	71.1	120	0	0		
Toluene	42.67	5.0	50	0	85.3	84	124	0	0		
Surr: 4-Bromofluorobenzene	42.27	5.0	50	0	84.5	71.8	143	0	· 0		
Surr: Dibromofluoromethane	45.31	5.0	. 50	0	90.6	80.3	123	0	0		
Surr: Toluene-d8	42.87	5.0	50	0	85.7	70.1	142	0	. 0		
Sample ID: 0308663-007AMS	SampType: MS	TestCo	de: 8260B_W	Units: µg/L		Prep Dat	e: 8/23/20)03	RunNo: 418	198	
Client ID: MW-1	Batch ID: 37356	Test	No: SW8260B			Analysis Dat	ie: 8/25/20	003	SegNo: 763	3261	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	44.96	5.0	50	0	89.9	75	130	0	. 0		
Toluene	46.47	5.0	50	0	92.9	79	125	0	0		
Surr: 4-Bromofluorobenzene	41.73	5.0	50	0	83.5	71.8	143	0	0		
Surr: Dibromofluoromethane	50.29	5.0	50	0	101	80.3	123	0	0		
Surr: Toluene-d8	48.65	5.0	50	0	97.3	70.1	142	, O	0		
		÷									
Qualifiers: B Analyte dete	cted in the associated Method	Blank	BRL Below	Reporting Limit			E	Value above quan	titation range		
						-					
	es for preparation or analysis e	xceeded	J Anaiy	te detected below qua	ntitation lin	nits	N	Analyte not NELA	AC certified	-	ge 11 of

CLIENT:

Work Order: Project:

0308663 Macon II MGP

Williams Environmental Services, Inc

BatchID: 37356

Sample ID: 0308663-007AMSD Client ID: MW-1	SampType: MSD Batch ID: 37356		le: 8260B_W lo: SW8260B	Units: µg/L		Prep Da Analysis Da	te: 8/23/20 te: 8/25/20		RunNo: 418		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	43.59	5.0	50	0	87.2	75	130	44.96	3.09	30	
Toluene	45.1	5.0	50	0	90.2	79	125	46.47	2.99	30	
Surr: 4-Bromofluorobenzene	41.32	5.0	50	0	82.6	71.8	143	41.73	· 0	0	
Surr: Dibromofluoromethane	44.54	5.0	50	0	89.1	80.3	123	50.29	0	0	
Surr: Toluene-d8	47.23	5.0	50	0	94.5	70.1	142	48.65	0	0	
Sample ID: MB-37356	SampType: MBLK	TestCo	ie: 8260B_W_	CL Units: µg/L		Prep Da	te: 8/23/20	03	RunNo: 418	372	<u> </u>
Client ID:	Batch ID: 37356	Test	lo: SW8260B			Analysis Da	te: 8/23/20	03	SegNo: 762	282	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Benzene	BRL	5.0									
Carbon disulfide	BRL	5.0									
Ethyibenzene	BRL	5.0		4							
Methylene chloride	BRL	5.0									
Foluene	BRL	5.0									
Kylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	43.72	0	50	0	87.4	71.8	143	0	́О		
Surr: Dibromofluoromethane	47.82	0	50	·. 0	95.6	80.3	123	0	0		
Surr: Toluene-d8	49.24	0	50	0	98.5	70.1	142	. 0	0		
Sample ID: MB-37356-1	SampType: MBLK	TestCo	de: 8260B_W	CL Units: µg/L		Prep Da	te: 8/23/20	03	RunNo: 418	394	
Client ID:	Batch ID: 37356	Test	lo: SW8260B			Analysis Da	ite: 8/25/20	03	SeqNo: 762	2725	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	BRL	5.0									
Carbon disulfide	BRL	5.0									
Ethylbenzene	BRL	5.0									
Methylene chloride	BRL	5.0									
foluene	BRL	5.0									
Kylenes, Total	BRL	5.0									
Surr: 4-Bromofluorobenzene	42.94	0	50	0	85.9	71.8	143	0	0		
H Holding time	cted in the associated Method s for preparation or analysis accepted recovery limits		J Analy	Reporting Limit te detected below qua Recovery outside acc				Value above quan Analyte not NEL.		Pag	ge 12

Williams Environmental Services, Inc

0308663

Macon II MGP

CLIENT:

Project:

Work Order:

BatchID: 37356

Sample ID: MB-37356-1	SampType: MBLK					Prep Dat	e: 8/23/20	03	RunNo: 4	1894	
Client ID:	Batch ID: 37356	TestN	lo: SW8260B			Analysis Dat	e: 8/25/20	03	SeqNo: 7	62725	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPI	D RPDLimit	Qual
Surr: Dibromofluoromethane	48.34	0	50	0	96.7	80.3	123	0)	
Surr: Toluene-d8	49.09	0	50	0	98.2	70.1	142	0)	
Sample ID: LCS-37356	SampType: LCS	TestCoo	le: 8260B_W	_CL Units: µg/L		Prep Dat	ie: 8/23/20	03	RunNo: 4	1872	
Client ID:	Batch ID: 37356	Test	lo: SW8260B			Analysis Dai	te: 8/23/20	03	SeqNo: 7	62283	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPI) RPDLimit	Qual
Benzene	95.37	5.0	100	0	95.4	71.1	120	0)	
Toluene	98.13	5.0	100	0	98.1	84	124	0		0	
Surr: 4-Bromofluorobenzene	46.54	0	50	0	93.1	71.8	143	0	1	C	
Surr: Dibromofluoromethane	49.3	0	50	0	98.6	80.3	123	0	1	0	
Surr: Toluene-d8	48.37	0	50	. 0	96.7	70.1	142	0) .	
Sample ID: LCS-37356-1	SampType: LCS	TestCo	de: 8260B_W	CL Units: µg/L		Prep Dat	te: 8/23/20	003	RunNo: 4	1894	
Client ID:	Batch ID: 37356	Test	lo: SW8260B			Analysis Dat	te: 8/25/2 0	003	SeqNo:	62726	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPI	D RPDLimit	Qual
Benzene	46.71	5.0	50	0	93.4	71.1	, 120	Ö		 D	
Toluene	42.67	5.0	50	0	85.3	84	12 4	0		D	
Surr: 4-Bromofluorobenzene	42.27	0	50	0	84.5	71.8	143	0		0	
Surr: Dibromofluoromethane	45.31	0	50	0	90.6	80.3	123	0		0 .	
Surr: Toluene-d8	42.87	0	50	0	85.7	70.1	142	0		n	

Qualifiers:

В

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded H

R RPD outside accepted recovery limits · BRL Below Reporting Limit

Analyte detected below quantitation limits J

Spike Recovery outside accepted recovery limits S

Е Value above quantitation range

Analyte not NELAC certified Ν

Page 13 of 13

CLIENT:	Williams Environmental Services, Inc
Work Order:	0308663

Project: Macon II MGP

August 29, 2003

Matt Ebbert Williams Environmental Services, Inc 500 Chase Park South Suite 150

Birmingham, AL 35244

TEL: (205) 988-8305 FAX (205) 988-5249

RE: Macon II MGP

Dear Matt Ebbert:

Order No.: 0308828

Analytical Environmental Servs, Inc. received 1 sample on 8/21/2003 9:50:00 AM for the analyses presented in the following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative. AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water, effective 07/02/03-06/30/04.

-AIHA Certification number 505 for analysis of Air, Paint Chips, Soil and Dust Wipes, effective until 10/01/03.

If you have any questions regarding these test results, please feel free to call.

Sincerely,

allison, Cautull

Allison Cantrell Project Manager

AnaLYTICAL ENVIRONMENTAL SERVIC	ES, INC.				CHA	IN O	FC	JSTO	DDY							v	Vork Ord	er: <u>10</u>	308	662 <u></u>
3785 Presidential Pkwy., Atlanta, GA 30340-3704 TEL: (770) 457-8177 / TOLL FREE: (800) 972-4889 / FAX: (7		SDG												Ľ	Date: <u>8</u>	12010	<u>3</u> Pa	ge	[of	<u>Z</u>
Williams ENV. SERVICES	ADDRESS: 5	OD CHI	9 5€	PAR	ek, Si							AN	ALYS)UESTI		<u></u>		~ .	
	BhAN	i, AL	35Z	.44																
THONE: 205- 788- 8305	^{fax:} 524	9				0				-					1				ľ	ainers
SAMPLED BY: Mike Dillon	SIGNATURE:	Uni	V. 1	Ū	n	7										1		÷.,		No A of Containers
		PLED				18											REM	ARKS		No A O
# SAMPLE ID			-e	Composite	Matmx (See codcs)	[- <u>1</u> -	1	PRESE	ERVATI	ON		, ,	T					
	DATE	TIME	Gab	<u> 8</u>	<u>žž</u>	\downarrow	-		<u>. </u>	$\left \right $										
5B-44-0-2	8/20/03		X		50	1]	· ·
58-44-5-7		6740	X	<u> </u>	╄	1														
58-44-10-12		0750	$\frac{x}{z}$		<u> -</u>	<u>'</u>							-							
5B-44-15-17		0800	X	 	\downarrow						-+-									ļ
58-44-20-21		0816	X	<u> </u>	$\left \right $				<u>.</u>				1							ļ
513-45-0-2		0836	X	<u> </u>	┟┈╏──	14	·			 		<u> </u>					•			ļ
58-45-5-7	_	0840,	X	<u> </u>		1			_											L
58-45-10-12		0050	X	<u> </u>	╞╌╿──				_				_							·
58-45-15-17		0900	X	ļ		1			-							-0C)/]	
5B-45-18.5-20		0910	X	ļ				_				_								
513-46-0-2		0950	X																	
5B-46-5-7		1000	X			1														
5B-46-10-12		1010	X			11														
5B-46-15-17	V	1020	X		$ $ \vee							_								
	RECEIVED BY			CZ L	ATE/TIMI		ECT NA	ME.	PRO	DECTI	INFORM	IATIO	1					RECEIP	<u>T</u>	t
MUN. Min Brdo3	114 N	V 8	vt	9	50		M	ALO	NI	I_	MG	P					Total # of	Container	\$	
14:	2.	4				_		[[D	9 Z	99(2	······				12		und Tim		
3:	3:	<u></u>	·····4 · ••··		·····	FACI			e `				· ·	1 2 1		18		l 3-5 Busi ay Rush (a		
		. ·						G	A							Ιŏ		siness Da		
SPECIAL INSTRUCTIONS COMMENTS:		SHIPMENT	METHOD	>		PROJ	ECT M	NAGE	R: M	NKE	D,	lon	1.			0		es Day R	-	
	олт 🖓		VIA:				ICE TO] 0	Other		<u></u>	
	IN CLIENT	FedEx) UPS	VIA:		165	AF DI	FFERE	NT FRC	M ABC	JVE)						PROGR	LAM (see o	odes):		
PO#:	4 .		HER		.168											DATA	PACKAGI	. r	11 222	w
QUOTE CONTRACT #:	£															DATA.	I AL AALI	<u>. </u>	<u>n m</u>	1.9
																				<u></u>

MATRIX CODES: A - Air GW - Groundwater SE - Sediment SO - Soil SW - Surface Water W - Water (Blanks) O - Other (specify)

PRESERVATIVE CODES: 11 Hydrochloric acid + ace 1+ for only N=Nirric acid + ice S = Sulfaric acid + ice O - Other (specify) NA = None

PROGRAM. FLUST FLDC ALUST INVIST MSHST NEUST SCUST GAUST GACONV FLCONV

White Copy - ORIGINAL: Yellow Copy - LAB, Pink Copy - CLIENT

Ś

ANALYTICAL ENVIRONMENTAL SERVICES,	INC.
3785 Presidential Pkwy., Atlanta, GA 30340-3704	5
TEL: (770) 457-8177 / TOLL FREE: (800) 972-4889 / FAX: (770) 4	57-8188

CHAIN OF CUSTODY

030778

506003A

TEL: (770) 457-8177 / TOLL FREE: (800) 972-4889 / FAX: (2005											Date	82	003	Page_	<u>~_</u> ,	r <u>Z</u>
COMPANY: WEST	ADDRESS JOI STE 150 BI WA	Q CHAS	e l'A	ek,	50								ANAL	YSIS	REQU		•••			
• • • • • • • • • • • • • • • • • • •			244				512													·
PILONE: 205-488-8305	FAX: 52.4	-9		٦		1 Pb	TELP METAUS													ntainers
SAMPIED BY: Mike Dillon	· · · ·	Mir U	<u>/. </u>	1		TOTAL	472											REMARK:		No # of Containen
# SAMPLE R)	SAM	IPLED	4	Cumposite	Matrix (See codes)	6	<u></u>	<u>_</u>	k 	PRE	SERV/	LTION	1. 	<u>_</u>		1 T>			~	ž
	DATE			<u></u>	<u>× 2</u> 50		<u> </u>				+			\rightarrow	+	F-				\leftarrow
Drum-1	82003	1230		λ	50						+		-7	4		≯	HOLD	XF	¥	$\left(\right) $
																			2	
			<u> </u>	<u> </u>	ļ				_					\rightarrow		+				
· · · · · · · · · · · · · · · · · · ·				<u> </u>	 										-	+				
		[[- (r		1					1				1
										_				<u> </u>				_		
		· · · · · · · · · · · · · · · · · · ·		 	 											┥				
	-			+		<u> </u>									+	1				+
·				<u> </u>					\perp											
RELINQUISHED BY DATE TIM	E RECEIVED BY	1	<u> </u>	<u>і</u> D	ATE/TIME		. 1		f	ROJEC	T INFO	RMAT	TON		_1	<u> </u>		REC	THE	
RELINQUISHED BY DATE TIM	"Wf	M.	Aut:	23 q;		PROJ	ECT N	AME ACC	\sim	II 29°	1	nG.	ρ				То	ial#ofConi	ainers	16
2:	2;	•				PROJ FAC		110	D	290	10						to .	Tuntaround. Standard 3-5		1
3:	3:							ESS: /	MA	CON	, G	A					þ,	Same Day Ru Next Busines	ush (auth rec	4.) (4
SPECIAL INSTRUCTIONS COMMENTS:		SHIPMENT	METHO	 D						MI			110	\mathcal{N}				2 Business D	ay Rush	
			VIA VIA:				NCE T		ROM A	(BOVE)							4	Other		
	CLIENT		5 MAIL	COUR	IER	ļ	•													
PO#: QUOTE CONTRACT #:	GRE	YHOUND OT	HEK			<u> </u>											DATA PA	CKAGE:	<u>1 11 11</u>	<u>I IV</u>

MATRIX CODES: A - Air GW - Groundwater SE - Sediment SO + Soil SW - Surface Water W - Water (Blanks) O + Other (specify)

PRESERVATIVE CODES: H - Hydrochloric acid + ice I - Ice only N - Nitric acid - ice S = Sulfuric acid - ice O = Other (specify) NA = None

PROGRAME FLUST FLUC ALUST FNUST MSUST NEUST SCUST GAUST GACONV FLCONV

White Copy - ORIGINAL: Yellow Copy - LAB. Pink Copy - CLIENT

Sample/Cooler Receipt Checklist

client Williams Env. Services		Work Order Nur	nber 0308662/0308828
Checklist completed by Nyeue Gbare Signature Dat	121/03 e	· · · · · · · · · · · · · · · · · · ·	
Carrier name: FedEx UPS Courier Client U	S Mail Othe	t	
Shipping container/cooler in good condition?	Yes 🖌	No Not	Present
Custody seals intact on shipping container/cooler?	Yes	No Not	Present
Custody seals intact on sample bottles?	Yes	No Not	Present
Container/Temp Blank temperature in compliance?	Yes L	No	
Cooler #1 <u>5.0</u> Cooler #2 Cooler #3	Cooler #4	Cooler#	5 Cooler #6
Chain of custody present?	Yes 🖵	No	
Chain of custody signed when relinquished and received?	Yes 🖌	No	
Chain of custody agrees with sample labels?	Yes	No	
Samples in proper container/bottle?	Yes 1	No	
Sample containers intact?	Yes 1	No	
Sufficient sample volume for indicated test?	Yes L	No	
All samples received within holding time?	Yes	No	
Was TAT marked on the COC?	Yes 🔟	No	
Proceed with Standard TAT as per project history?	Yes	No No	t Applicable L
Water - VOA vials have zero headspace? No VOA vials s	ubmitted	Yes	No
Water - pH acceptable upon receipt?	Yes	No No	Applicable
Adjusted?	Che	cked by	

See Case Narrative for resolution of the Non-Conformance.

C:\Documents and Settings\Chemist\Desktop\SampleReceiptChecklistRptREV.rtf

Analytical Environmental Servs, Inc. Date: 29-Aug-03 CLIENT: Williams Environmental Services, Inc Client Sample ID: SB-45-15-17 Lab Order: 0308828 Collection Date: 8/20/2003 9:00:00 AM **Project:** Macon II MGP Matrix: SOIL Lab ID: 0308828-001 Result Limit Qual Units DF Analyses **Date Analyzed** ICP METALS, SPLP SW1312/6010B Analyst: CDW 8/27/2003 2:21:00 PM Lead 0.0808 0.0500 mg/L 1

Qualifiers:	*	Value exceeds Maximum Contaminant Level	в	Analyte detected in the associated Method Blank
	BRL	Below Reporting Limit	Е	Value above quantitation range
	H	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	N	Analyte not NELAC certified	· P	NELAC analyte certification pending
	Rpt Limit	Reporting Limit	S	Spike Recovery outside accepted recovery limits

Date: 29-Aug-03

CLIENT:Williams Environmental Services, IncWork Order:0308828Project:Macon II MGP

ANALYTICAL QC SUMMARY REPORT

BatchID: 37474

Sample ID MB-37474	SampType: MBLK	TestCode: 1312_M Units: mg/L	Prep Date: 8/28/2003	RunNo: 42025
Client ID:	Batch ID: 37474	TestNo: SW1312/6010	Analysis Date: 8/27/2003	SeqNo: 766072
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	BRL	0.0500		
Sample ID LCS-37474	SampType: LCS	TestCode: 1312_M Units: mg/L	Prep Date: 8/28/2003	RunNo: 42025
Client ID:	Batch ID: 37474	TestNo: SW1312/6010	Analysis Date: 8/27/2003	SeqNo: 766071
Analyte	Result	PQL SPK value SPK Ref.Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Lead	5.093	0.0500 5 0	102 85 115 0	0 *
Sample ID 0308828-001AMS	SampType: MS	TestCode: 1312_M Units: mg/L	Prep Date: 8/28/2003	RunNo: 42025
Sample ID 0308828-001AMS Client ID: SB-45-15-17	SampType: MS Batch ID: 37474	TestCode: 1312_M Units: mg/L TestNo: SW1312/6010	Prep Date: 8/28/2003 Analysis Date: 8/27/2003	RunNo: 42025 SeqNo: 766075
		. —		
Client ID: SB-45-15-17	Batch ID: 37474	TestNo: SW1312/6010	Analysis Date: 8/27/2003	SeqNo: 766075
Client ID: SB-45-15-17 Analyte	Batch ID: 37474 Result	TestNo: SW1312/6010 PQL SPK value SPK Ref Val	Analysis Date: 8/27/2003 %REC LowLimit HighLimit RPD Ref Val 103 75 125 0	SeqNo: 766075 %RPD RPDLimit Qual
Client ID: SB-45-15-17 Analyte Lead	Batch ID: 37474 Result 5.211	TestNo: SW1312/6010 PQL SPK value SPK Ref Val 0.0500 5 0.0808	Analysis Date: 8/27/2003 %REC LowLimit HighLimit RPD Ref Val 103 75 125 0	SeqNo: 766075 %RPD RPDLimit Qual 0 *
Client ID: SB-45-15-17 Analyte Lead Sample ID 0308828-001ADUP	Batch ID: 37474 Result 5.211 SampType: DUP	TestNo: SW1312/6010 PQL SPK value SPK Ref Val 0.0500 5 0.0808 TestCode: 1312_M Units: mg/L	Analysis Date: 8/27/2003 %REC LowLimit HighLimit RPD Ref Val 103 75 125 0 Prep Date: 8/28/2003	SeqNo: 766075 %RPD RPDLimit Qual 0 * RunNo: 42025

Qualifiers:

В

Analyte detected in the associated Method Blank

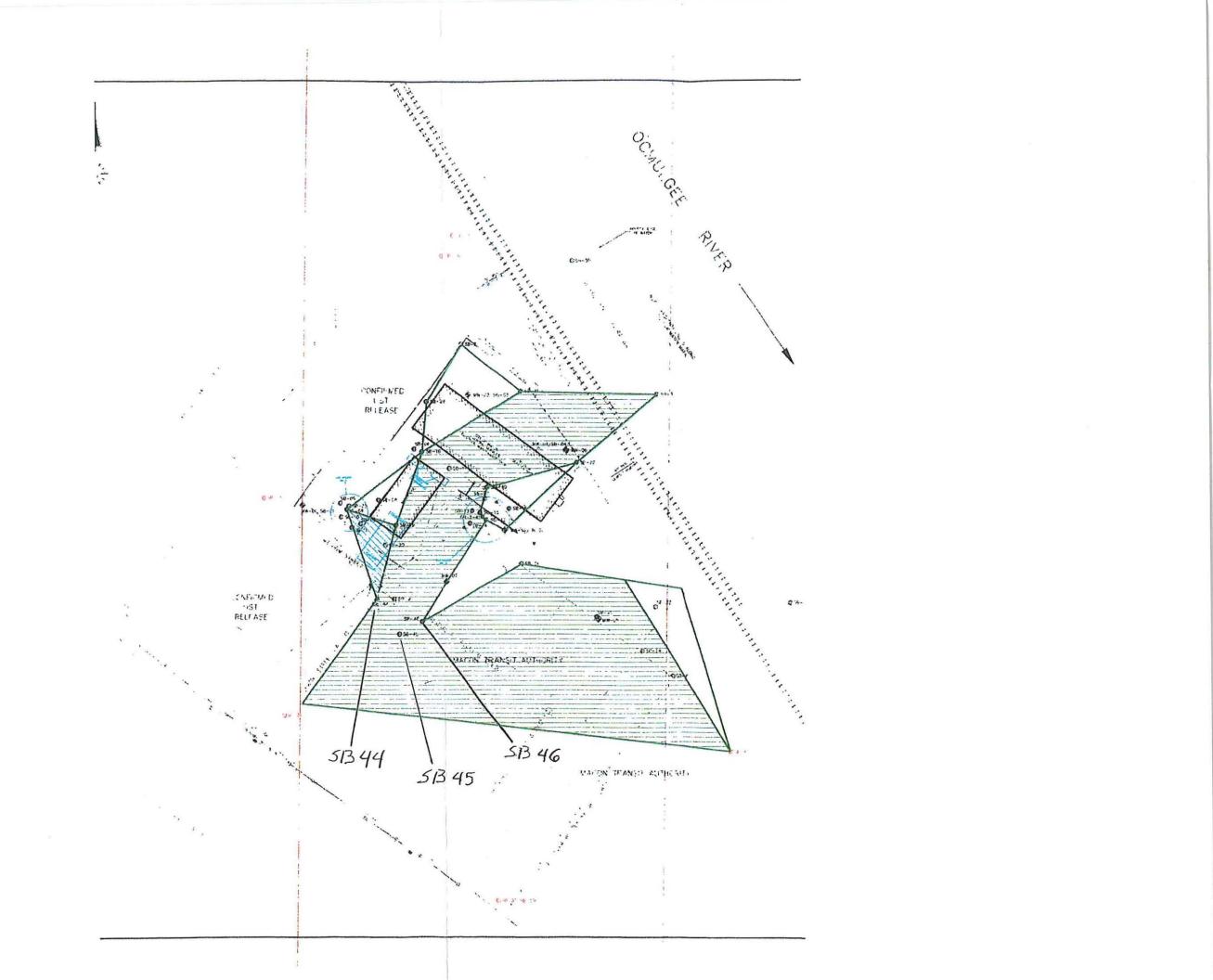
H Holding times for preparation or analysis exceeded

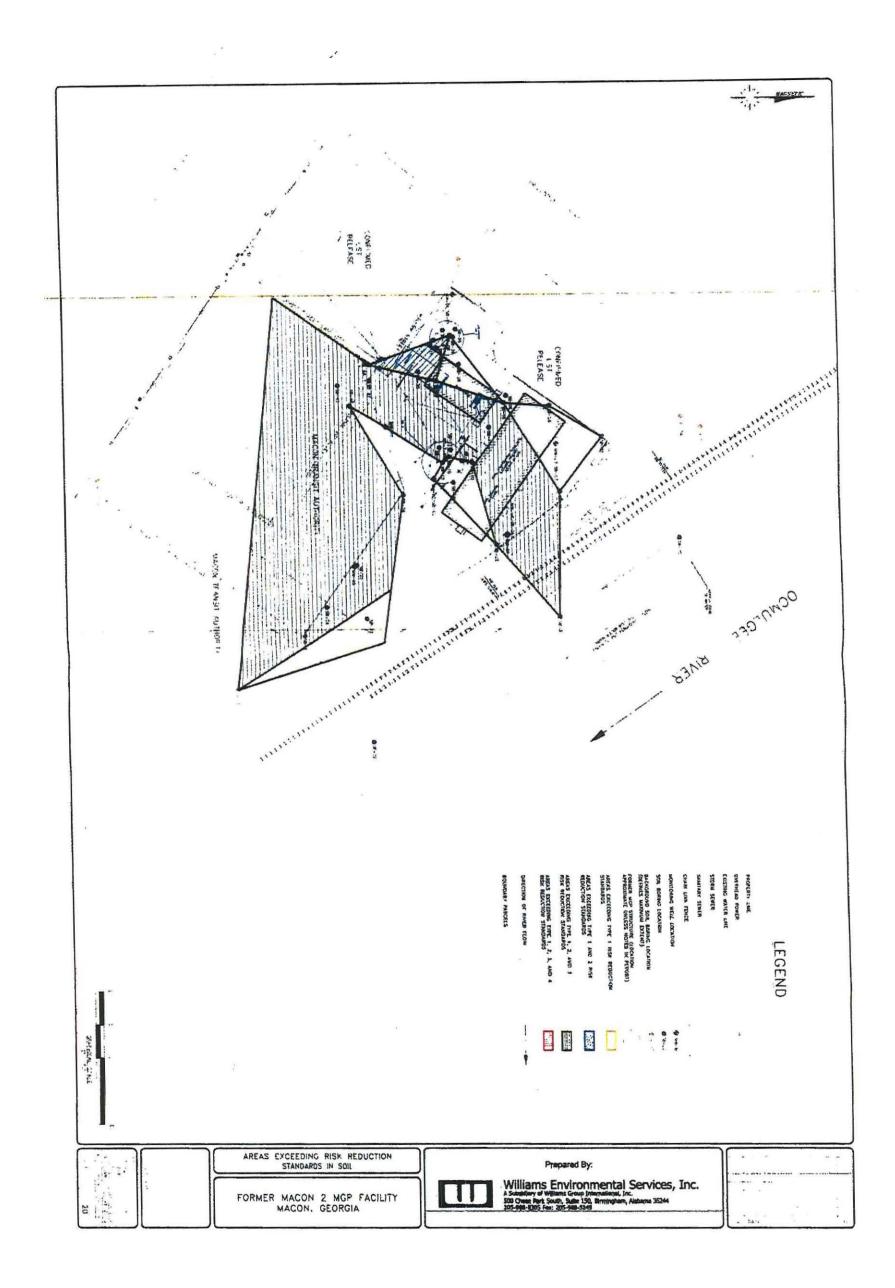
R RPD outside accepted recovery limits

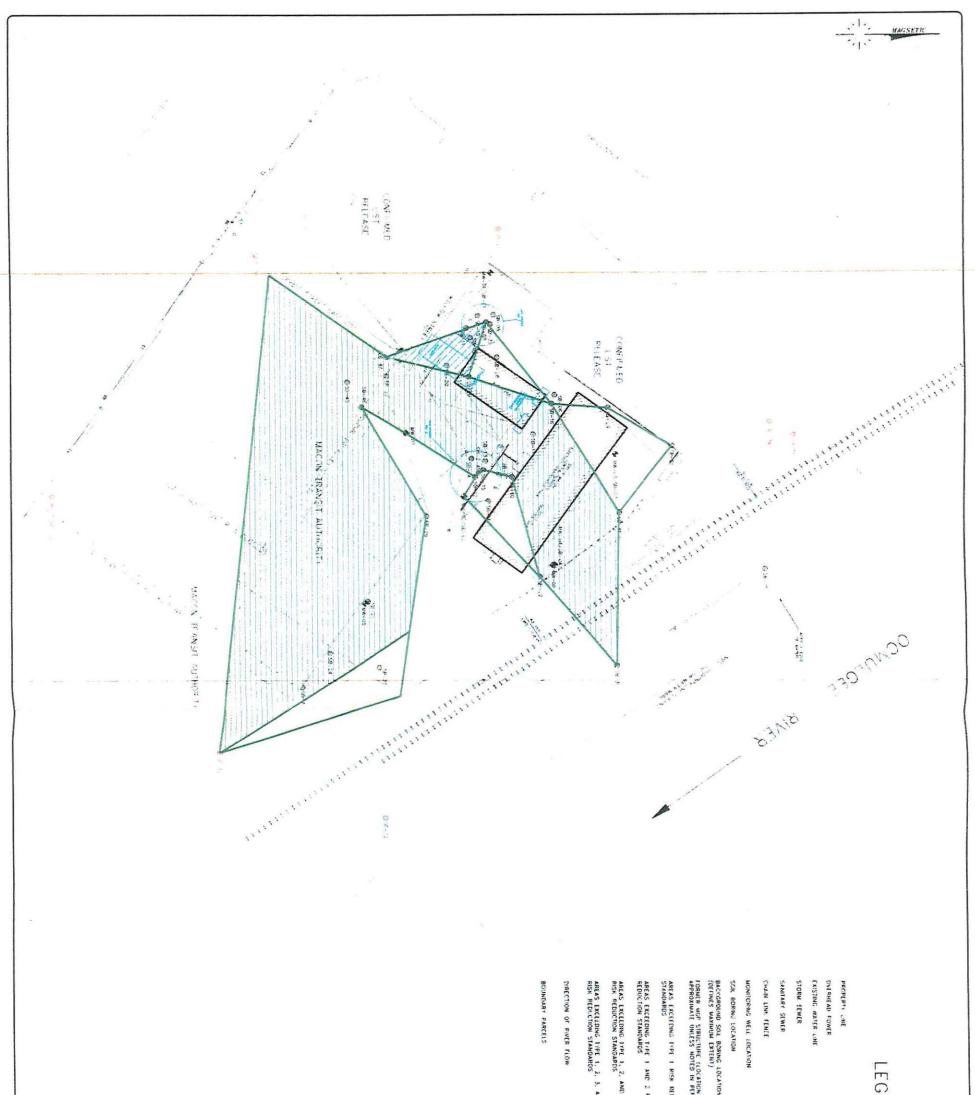
- BRL Below Reporting Limit
- J Analyte detected below quantitation limits

S Spike Recovery outside accepted recovery limits

- E Value above quantitation range
- .N Analyte not NELAC certified


Page 1 of 1


Date: 29-Aug-03


CLIENT:Williams Environmental Services, IncProject:Macon II MGPLab Order:0308828

CASE NARRATIVE

Matt Ebbert requested SPLP Pb analysis on sample "SB-45-15-17" as next day rush turnaround 8/27/03 2:00pm.

Notes and a set		ON RELOCION RECOLUN RE	GEND
	AREAS EXCEEDING RISK REDUCTION STANDARDS IN SOIL	Prepared By:	
20	FORMER MACON 2 MGP FACILITY MACON. GEORGIA	Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249	

LEGEND

MONITOPING WELL LOCATION SOIL BOPING LOCATION BACKGADUND SOIL BORING LOCATION (GEFNES MAXMUM FXTERT) FOBMEP NEP STRUCTURE (LOCATION APPROATMATE UNIESS NOTED IN REPORT) PROPERTY LINE OVTEREAD POWER EXISTING WATER UNE STORM SEWER SANITARY SEWER CHAIN LINK FENCE

AREAS EXCEEDING TYPE 1 RISK REDUCTION

AREAS EXCEEDING TYPE 1 AND 2 RISK REDUCTION STANDARDS

AREAS EXCEEDING TYPE 1, 2, AND 3 RISK REDUCTION STANDARDS

AREAS EXCEEDING TYPE 1, 2. 3, AND 4 RISK REDUCTION STANDARDS

DIRECTION OF RIVER FLOW

BOUNDARY PARCELS

109 5g 0 104			ND Cry Stresson
Eradia	AREAS EXCEEDING RISK REDUCTION STANDARDS IN SOIL	Prepared By:	
(562) 001 (15) 101 (102) (25) 102 (25) (20) 102 (25) (20) 102 (25) (20) 102 (25) (20) 103 (25) (25) (25) 103 (25) (25) (25) (25) (25) (25) (25) (25)	FORMER MACON 2 MGP FACILITY MACON. GEORGIA	Williams Environmental Services, Inc. A Subsidiary of Williams Group International, Inc. 500 Chase Park South, Suite 150, Birmingham, Alabama 35244 205-988-8305 Fax: 205-988-5249	