HELMHOLTZ

DFG Travel grant KON 485/2007 JA 1800/1-1

Reproduction of the copepods Rhincalanus gigas, Calanus simillimus and Pleuromamma robusta during an iron induced phytoplankton bloom (EIFEX) in the Southern Ocean

Sandra Jansen*1,2, Ulrich Bathmann²

¹Leibniz-Institut für Meereswissenschaften GEOMAR, Kiel, Germany AVVI (1) ²Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany * Sandra Jansen@awi.de

Introduction

The Southern Ocean is characterized by low temperatures and a short growth season for primary producers, which potentially limit zooplankton growth and reproduction. Different copepod species seem to exhibit a spectrum of adaptations and life cycles are diverse. However, the association of spawning events with phytoplankton concentrations is not clearly demonstrated yet. The European iron fertilization experiment (EIFEX) provided an unique opportunity to follow the reproductive response of the calanoid copepods Rhincalanus gigas, Calanus simillimus and Pleuromamma robusta during the entire development of a diatom dominated phytoplankton bloom.

Can spawning of copepods be induced

by enhanced phytoplankton concentrations?

Conclusions

The observation that R. aigas reacted in autumn on enhanced food concentration with increasing egg production, suggests that this species can react on favourable conditions and that their reproduction during this study was neither dependent on lipid reserves, nor on seasonal aspects. The fast reproductive response indicates that R. gigas was food limited during the period of this study in the Antarctic Polar Front region.

Throughout the experiment the phytoplankton assemblage was dominated by chain-forming and large diatoms. Deformed N2 nauplia from R. gigas were observed during the hatching experiments.

The three different copepod species showed different responses to the induced phytoplankton bloom:

Field study

Most studies of spawning have been made on temperate and high latitude species. One area of interest is the possibility that laying of eggs is timed to take advantage of phytoplankton increase or blooms. The association of spawning events with phytoplankton concentrations is not clearly demonstrated. During the iron fertilization experiment EIFEX we observed three different responses to enhanced phytoplankton concentrations from three different abundant copepod species. Results from the experiments were reflected in the egg abundance in the field (Fig. 5).

s66e

R. gigas did not produce eggs at the start of the experiment. Egg production increased "in patch" until day 30 after fertilization with an average of 50 eggs female-1 day-1. The egg production rate "out patch", corresponding to low chl a concentrations remind close to zero during the

Material and Methods

Egg production experiments were performed with Rhincalanus gigas, Calanus simillimus and Pleuromamma robusta during the iron fertilization experiment EIFEX in the beginning of 2004. In response to the iron fertilization a diatom bloom developed with chlorophyll a concentrations up to 3.1 μ g Chl a l⁻¹. Samples were taken inside and outside the fertilized patch. Females were caught with Bongo nets and incubated individually for ~24 hours in 100 ml beakers with filtered seawater. All females were included in the calculation of the egg production rates, whether they spawned or not