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Kurzfassung 

 

Grosse Gebiete der kontinentalen Erdoberfläche sind von Permafrost unterlagert, d.h. von 

ständig gefrorenen Untergrund, der in Periglazialregionen mit negativen Jahresmittel-

temperaturen auftritt. Der kontinuierliche Permafrost, umfasst in den arktischen und 

subarktischen Tiefländern der nördlichen Hemisphäre Tundra-, Waldtundra- und 

Taigalandschaften. Er ist dort ein dominierender Umweltfaktor, der die Vegetation, die 

Hydrologie, die Böden und das Relief einer periglazialen Landschaft durch den 

jahreszeitlichen Wechsel von Abkühlen, Gefrieren, Erwärmen und Auftauen in der 

obersten aktiven Schicht (Auftauzone) sowie durch längerfristige Dynamik bestimmt. Da 

Permafrosteigenschaften und Permafrostdynamik von langfristigen Klimabedingungen 

abhängen, werden entsprechende gefrorene Sedimentabfolgen, die während des 

Quartärs akkumulierten, als Archiv von Klima- und Umweltveränderungen der 

Vergangenheit betrachtet.  

Basierend auf der Tatsache, dass die heute fortschreitende globale Erwärmung die 

arktischen Gebiete weit mehr als andere Regionen der Erde beeinflusst, ist die 

Untersuchung von klimaempfindlichen Organismen in der modernen und in der 

vergangenen polaren Umwelt von großer Bedeutung, sowohl für das Verständnis der 

heutigen Wechselwirkungen als auch für die Abschätzung zukünftiger Auswirkungen des 

Klimawandels. Frühere Umweltveränderungen in arktischen Periglazialgebieten können 

mit Hilfe gut erhaltener Tier- und Pflanzenfossilien aus Permafrostabfolgen rekonstruiert 

werden. In der hier vorgelegten Arbeit werden Ostracoden als ein neuer Bioindikator für 

das Umweltarchiv Permafrost eingeführt, wobei taxonomische und geochemische 

Untersuchungsmethoden genutzt werden. Ostracoden sind Kleinkrebse mit einem 

zweiklappigen Kalzitgehäuse. Diese aquatischen Organismen reagieren sensibel auf sich 

ändernde Lebensbedingungen. Die hohe Anzahl von Ostracodenschalen in lakustrinen 

Sedimenten machen sie zu nützlichen Anzeigern vergangener Umweltbedingungen. Die 

geochemischen Eigenschaften im Kalzit der Ostracodenschalen, d.h. stabile 

Isotopenverhältnisse von Sauerstoff (δ18O) und Kohlenstoff (δ13C) und molare 

Elementverhältnisse von Strontium, Magnesium und Kalzium (Sr/Ca, Mg/Ca) 

widerspiegeln die Wasserzusammensetzung in den jeweiligen Habitaten.   

Moderne Ostracodenassoziationen wurden in Nordost-Sibirien im Norden (Lenadelta), im 

Nordosten (Moma-Gebiet) und im zentralen Teil (Lena-Amga-Gebiet) Jakutiens 

untersucht. Referenzdatensätze zu Süßwasserostracoden Nordost-Sibiriens waren bisher 

kaum vorhanden, so dass die vorgelegte Arbeit einen ersten umfassenden regionalen 

Datensatz präsentiert. Diese Datensammlung umfasst Ergebnisse von Untersuchungen 

der modernen Ostracodetaxonomie und -geochemie exemplarischer Standorte, die auf 
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fossile Ostracoden-Vergesellschaftungen angewendet wurden. Die periglazialen 

Gewässer jeder Untersuchungsregion (Polygontümpel, Tau-Seen und Thermokarstseen) 

erbrachten umfangreiche Originaldaten zur Artenverbreitung und den entsprechenden 

ökologischen Bedingungen in Nordost-Sibirien. Insgesamt wurden 42 Taxa in modernen 

und fossilen Ostracodenvergesellschaftungen gefunden. Davon wurden 10 Taxa sowohl 

modern als auch fossil nachgewiesen, 18 Taxa sind nur in modernen Habitaten präsent 

und 14 Taxa, einschließlich einiger heute ausgestorbener Arten, wurden nur fossil 

gefunden.    

Die fossilen Ostracoden sind zahlreich in spätquartären Permafrostabfolgen, die in 

interglazialen Warmzeiten und gemäßigten interstadialen Perioden akkumulierten (Eem-

Interglazial, Mittelweichsel-Interstadial, Spätweichsel/Frühholozän einschließlich des 

Allerød, Spätholozän). In Ablagerungen aus Kaltzeiten hingegen wurden kaum 

Ostracoden gefunden. Insbesondere die in modernen Habitaten weitverbreitete Art 

Candona muelleri jakutica, konnte fossil in Ablagerungen aus dem Früh- und 

Mittelweichsel, wie auch aus dem Spätholozän zahlreich nachgewiesen werden. Außer in 

früh- und spätweichselzeitlichen Sedimenten findet sich die Art Fabaeformiscandona 

harmsworthi in allen untersuchten Abfolgen, wobei diese Ostracodenart wahrscheinlich 

endemisch für die Arktis ist und auch heute in Nordjakutien vorkommt. Fossile Schalen 

der Art Fabaeformiscandona rawsoni, die heutzutage in Zentraljakutien anzutreffen ist, 

wurden in Sedimenten unterschiedlicher Warmphasen gefunden. Zwei weitere häufig 

fossil vorkommende Arten, Limnocytherina sanctipatricii und Ilyocypris lacustris, fehlen 

allerdings in den modernen Gewässern oder sind dort nur sehr selten. Vier typische Arten 

der fossilen Ostracodenassoziationen aus warmzeitlichen Sedimenten (Limnocythere 

falcata, L. goersbachensis, L. suessenbornensis, and Eucypris dulcifons) konnten 

ebenfalls in modernen Habitaten nicht wiedergefunden werden.  

Die geochemischen Eigenschaften des Ostracodenkalzits werden als zeitlich und 

räumlich begrenzte Indikatoren der entsprechenden Gewässerzusammensetzung zum 

Zeitpunkt der Schalenbildung betrachtet. Da bisher keine regionalen Vergleichsdaten 

verfügbar waren, wurde ein entsprechender Datensatz erhoben, um erste Interpretationen 

der Zusammenhänge zwischen der Wasserzusammensetzung und Schalenkalzit 

einzelner Ostracodenarten vorzunehmen. Solche Zusammenhänge konnten 

nachgewiesen werden, wenn die untersuchten Individuen in höherer Zahl vorlagen und 

die gemessenen Umweltparameter einen ausreichend hohen Gradienten aufwiesen. Die 

Beziehungen zwischen δ18O, Sr/Ca, Mg/Ca auf der einen und der elektrischen 

Leitfähigkeit (bzw. Salinität) der Gewässer als Ausdruck der verdunstungskontrollierten 

Ionenkonzentrationen auf der anderen Seite, sind komplex und konnten aufgrund der 

begrenzten Datenlage noch nicht umfassend geklärt werden. Mehrere 
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Steuermechanismen (z.B. Temperatur- und Stoffwechseleffekte), die bei der Kalzitbildung 

die Aufnahme der Isotope und Elemente in die Ostracodenschale beeinflussen konnten 

daher für die untersuchten periglazialen Habitate noch nicht ausreichend beurteilt werden.   

Für die Rekonstruktion regionaler quartärer Umweltbedingungen bestätigen die fossilen 

Ostracoden die Existenz von stabilen Flachwasserstandorten und ergänzen zudem die 

Rekonstruktion polygonaler Tundren und thermokarst-geprägter Landschaften. Die 

geochemische Zusammensetzung der Ostracodenschalen und die Artvorkommen 

widerspiegeln dabei auch das hydrologische und hydrochemische Regime der quartären 

Periglazialgewässer. Neue stratigraphische und paläoökologische Ergebnisse in der 

vorgelegten Arbeit unterstreichen die Bedeutung von Rekonstruktionen der interstadialen 

und interglazialen Umweltbedingungen. Weiterführende Untersuchungen moderner und 

fossiler Ostracoden werden ihre zukünftige Anwendung als Bioindikatoren für die 

sibirische Arktis verbessern. 



                                                            Abstract 
 
__________________________________________________________________________________________________ 

 
Abstract 

 

Large areas of the continental Earth’s surface are underlain by permafrost, i.e. frozen 

ground that exists in periglacial regions with negative mean annual air temperatures. 

Continuous permafrost in arctic and subarctic lowlands including tundra, forest-tundra, 

and taiga periglacial landscapes of the Northern Hemisphere is a dominant environmental 

factor; it affects vegetation, hydrology, soils, and morphology via seasonally alternating 

freezing, cooling, and thawing of the ground (cryogenic processes) as well as long-term 

variations. Due to the dependence of permafrost characteristics and dynamics on long-

term climatic conditions, permafrost sequences which accumulated during the Quaternary 

past are regarded as an archive of palaeoenvironmental and palaeoclimatic changes.  

Based on the fact that the current, ongoing global warming affects arctic regions to a 

greater degree than other Earth environments, studies of climate-sensitive organisms in 

modern and past polar environments are of great value for enabling us to understand 

current interactions and to estimate the impact of future climate changes. Past 

environmental changes in arctic periglacial regions can be deduced from well-preserved 

floral and faunal remains in permafrost deposits. In this study, freshwater ostracods are 

established as a new bioindicator for understanding permafrost as a palaeoarchive; 

environmental interpretations are reinforced using taxonomical and geochemical methods. 

Ostracods are small crustaceans whose bivalved shells consist of calcite. These aquatic 

organisms are sensitive to environmental conditions, and the high frequency at which their 

valves occur in lacustrine sediments makes them a useful palaeoproxy. Geochemical 

properties, i.e. stable isotopes of oxygen and carbon (δ18O, δ13C) and element ratios of 

strontium and magnesium to calcium (Sr/Ca, Mg/Ca) in ostracod calcite reflect the host 

water composition.  

The modern ostracod records presented are from North (Lena Delta), Northeast (Moma 

region), and Central (Lena-Amga region) Yakutia (Northeast Siberia). Reference 

freshwater ostracod data were previously rare for Northeast Siberia; thus a 

comprehensive dataset has been introduced for this region. This dataset includes studies 

of modern ostracod taxonomy and geochemistry, which are based on exemplary sites and 

have been applied to fossil records. Each study site reveals original data of ostracod 

species distribution and environmental conditions in Northeast Siberia; sites comprise 

different types of periglacial waters (polygonal ponds, thaw lakes, and thermokarst lakes). 

A total of 42 ostracod taxa were identified in modern and fossil records; ten taxa could be 

found in both the modern and the fossil periglacial environments studied, whereas 18 taxa 

only occur today and 14 taxa, including some extinct species, have only been described 

from fossil records.  
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The fossil ostracods in late Quaternary permafrost sequences are numerous in deposits 

from warm stages and temperate periods (i.e. Eemian Interglacial, Middle Weichselian 

Interstadial, Late Weichselian/early Holocene including the Allerød period and late 

Holocene) whereas cold-period deposits are almost free of ostracods.  

In particular, the species Candona muelleri jakutica, wide-spread in modern records, has 

been indentified in deposits from the Early and Middle Weichselian and the Late 

Holocene. Except for Early and Late Weichselian sediments all lacustrine records contain 

shells of Fabaeformiscandona harmsworthi, a species likely endemic to the Arctic that 

occurs today in North Yakutia. Fossils of the species Fabaeformiscandona rawsoni, 

present today in Central Yakutia, have been obtained from warm-stage deposits. Other 

common fossil ostracods belong to the species Limnocytherina sanctipatricii and 

Ilyocypris lacustris, which are rare or lacking in the modern environments studied. Four 

species without a modern record (Limnocythere falcata, L. goersbachensis, L. 

suessenbornensis, and Eucypris dulcifons) were also frequently found in the warm-stage 

sediments.  

Geochemical properties of ostracod calcite that precipitates from the host water at the 

time of shell secretion are regarded as a spatially- and temporally-restricted reflection of 

the host water composition. No regional reference data were previously available; thus, a 

new data set has been compiled to allow initial interpretation of the linkage between the 

composition of host waters and ostracod calcite of single species. It is valid for studied 

species that were found in higher frequencies and over considerable ranges in the values 

of measurable environmental properties. The relationships between δ18O, Sr/Ca and 

Mg/Ca ratios, and electrical conductivity (salinity) as an expression of solute 

concentrations in the waters that are mainly controlled by evaporation are more 

complicated, and the limited database is insufficient to clarify these relationships. Several 

controls on the uptake of isotopes and elements into ostracod calcite (i.e. temperature and 

metabolic effects) clearly exist but cannot yet be assessed for the studied periglacial 

habitats.  

Ostracod fossils support the reconstruction of stable shallow aquatic conditions in regional 

palaeoenvironmental records and complete landscape reconstructions, especially for 

polygonal tundra plains and thermokarst-affected landscapes. The composition of fossil 

freshwater ostracod calcite and distribution of species also mirror the hydrological and 

hydrochemical regime of periglacial inland waters in the Quaternary past. New here 

presented stratigraphic and palaeoecological results highlight the usefulness of 

reconstructions of interglacial and interstadial environments. Further comprehensive 

studies in both modern and fossil research directions will allow reliable future applications 

of ostracods as bioindicators in Arctic Siberia.  
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1 Introduction 

 

1.1 Scientific background 

1.1.1 Arctic environmental dynamics 

Worldwide, substantial climate warming has occurred during the second half of the 20th 

century (IPCC 2007). This warming has been particularly intense in the Arctic, a 

phenomenon known as the “polar amplification” (Serreze et al. 2000; ACIA 2005; McGuire 

et al. 2007). 

Accompanying pronounced changes in climate, pronounced changes in permafrost 

conditions have been observed in Russian arctic regions with increasing air and 

permafrost ground temperatures (Oberman and Mazhitova 2001; Richter-Menge et al. 

2008) as well as increasing greenness of the arctic region as snow melts earlier in spring 

and the shrub and tree lines expand to the North (Richter-Menge et al. 2008). Warmer 

summer air temperatures and deeper winter snows over permafrost result in an increase 

of the maximum seasonal thaw depth (Lemke et al. 2007).  

Simultaneous changes of climate and permafrost conditions in the Russian Arctic have 

also been inferred on longer time scales. Permafrost has been present in the arctic 

Siberian lowlands since the Late Pliocene (Arkhangelov et al. 1996) and has persisted 

there over the entire Pleistocene, although it strongly degraded during warm periods (e.g. 

during the Eemian Interglacial; Kienast et al. 2008). During the Holocene a dramatic 

decrease of the permafrost zone occurred together with large-scale flooding of arctic shelf 

areas (Romanovskii et al. 2004). 

Continental arctic freshwater bodies ranging from small, shallow polygonal ponds to large 

thermokarst lakes occupy huge areas of the arctic and subarctic lowlands and provide an 

integrated, climate-sensitive inventory of changes in the surrounding landscape. Seasonal 

shifts in water flow, ice cover, precipitation surplus, and sediment and nutrient input have 

all been identified as climate-related factors that control the biodiversity, storage regime, 

and greenhouse gas exchange of these water bodies (Wrona et al. 2005). Using satellite-, 

air-, and ground-borne remote sensing methods, Yoshikava and Hinzman (2003) and 

Smith et al. (2005) showed for Alaska and Siberia, respectively, that initial permafrost 

melting leads to thermokarst and lake expansion, followed by lake drainage and shrinkage 

as the permafrost degrades further. Such examples highlight the climate sensitivity of 

arctic freshwater bodies. 

Permafrost degradation is already leading to changes in surface relief and drainage 

patterns. Thermokarst poses a serious threat to arctic biota through either inundation 

(when the lake forms) or desiccation (when the lake drains) (Hinzman et al. 2005; Walsh 

et al. 2005). Satellite data reveal that in the past three decades the total lake area in the 

 1
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continuous permafrost zone of Siberia has increased by 12 % whereas the number of 

lakes rose by 4 % (Smith et al. 2005).  

Beside thermokarst lakes, polygonal ponds are widely distributed in wetland landscapes 

of the arctic lowlands. These shallow, small waters are often highly productive, and form 

hotspots of biodiversity for microorganisms, plants, and animals in this otherwise hostile 

environment (Smol et al. 2005). Polygonal ponds are especially susceptible to the effects 

of climatic change because of their small water volume and large surface area to depth 

ratio (Smol and Douglas 2007). Current studies from the Canadian High Arctic document 

the disappearance of polygonal ponds due to increasing evaporation/precipitation ratios 

that are probably associated with climatic warming (Smol and Douglas 2007).  

Based on the fact that the ongoing global climate warming affects arctic regions to a 

greater degree than other Earth environments, studies of climate-sensitive organisms in 

modern and past polar environments will be of great value for estimating the impact of 

future climate changes. In this context, freshwater ostracods from arctic periglacial waters 

are regarded as valuable bioindicators, and are the subject of the studies presented in this 

thesis.   

 

1.1.2 Freshwater ostracods and their use in palaeoenvironmental studies 

Ostracods are small aquatic organisms mostly ca. 1 mm long (different species range in 

size from 0.3 to 30 mm; Athersuch et al. 1989). In phylogenetic systematics ostracods are 

classed within the Metazoa and belong to the Phylum Arthropoda LATREILLE, 1829, 

Subphylum Crustacea PENNANT, 1777. The Class Ostracoda LATREILLE, 1806 is separated 

from other Crustacea such as lobsters and crabs by a laterally compressed body, 

undifferentiated head, five to eight limbs, and a bivalved carapace lacking growth lines 

(e.g. Horne et al. 2002). Micro-crustacean ostracods are considered to be the most 

diverse Crustacea with probably at least 25,000 extant species, of which roughly 12,000 

have been described (3,000 freshwater and 9,500 marine species; Cohen et al. 2007). 

Ostracods inhabit a wide range of marine and non-marine (freshwater) habitats including 

both temporary and stable inland waters, lakes, rivers, springs, and even groundwater. 

They can be divided into pelagic (free-swimming) and benthic (crawling in or on the 

substrate) forms. Both forms receive their nutrition from a wide range of sources including 

diatoms, bacteria, and detritus. Benthic ostracods are commonly detritivores or filter 

feeders. The reproduction of ostracods includes asexual (parthenogenetic) and sexual 

modes. Sexual reproduction enables selection for sexual dimorphism; males and females 

of the same species may have carapaces of slightly differing form.  

Early fossil records of marine ostracods are known from the Cambrian (e.g. Athersuch et 

al. 1989), whereas the first freshwater forms occurred in the Carboniferous. Since the 
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Jurassic, freshwater ostracods have become common. Along with marine, brackish water, 

and (semi-) terrestrial species all freshwater ostracods belong to the Order Podocopida 

SARS, 1866 (Meisch 2000). However, freshwater ostracods do not belong to one 

phylogenetic group, but arose from three different lineages; the Darwinuloidea, 

Cypridoidea, and Cytheroidea occupied inland waters independently (Martens et al. 

2007). The research presented here is focused on freshwater species from modern 

habitats and from Quaternary permafrost sequences in Yakutia (Northeast Siberia, 

Russia).  

As in other Arthropoda, a distinctive morphological feature of ostracods is the two-sided 

symmetry of their body shape. The paired parts of the soft body are enclosed in a 

dorsally-hinged carapace which consists of a right and a left valve; various appendages 

protrude from the carapace for locomotion, feeding, and reproduction (Figure 1-1). The 

podocopid ostracods produce a calcified, overlapping flange called a duplicature around 

the ventral margin. 

 

 

Figure 1-1: General structure of a typical podocopid ostracod: (a) carapace seen from the left side 

with appendages protruding ventrally; (b) carapace seen dorsally; (c) schematic cross section 

(modified after Athersuch et al. 1989) 

 

The term ‘ostracod’ derives from the Greek word ‘όστρακον’ (ostrakon) which means 

‘shell’ or ‘mussel’ and describes the outer structure of the animal. The classification of 

living ostracods is mostly based on variations in their soft body parts and appendages, but 

fossil ostracods usually lack well-preserved, intact soft parts; therefore, the morphological 

characteristics of the carapace have become essential to palaeontological classification. 

The carapace of ostracods consists of low-magnesium calcite (Kesling 1951); these 

valves are commonly preserved as fossils in marine and lacustrine sediments. A fossil 

ostracod assemblage is often composed of numerous valves from juvenile specimens and 
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fewer valves from adults, implying lower adult numbers. However, during ostracod 

ontogeny, the individuals pass through nine moult (growth) stages between egg and adult 

and every stage leaves a calcareous carapace which may be preserved in the fossil 

record; therefore, each individual adult may also be represented by eight juvenile 

specimens.  

Broad knowledge of taxonomy, species distribution, and ecology is prerequisite for using 

ostracods in palaeoenvironmental research. Ostracod species have distinct ecological 

requirements for water salinity, water temperature, dissolved oxygen supply, and 

additional habitat parameters such as area, water depth, and water permanency and type 

(e.g. Hiller 1972; Boomer et al. 2003). Due to this sensitivity of freshwater ostracods to 

environmental conditions and the high frequency at which their valves occur in lacustrine 

sediments, freshwater ostracods have been frequently and effectively used as 

palaeoenvironmental indicators mainly based on three approaches (Mischke 2001):  

 

 assuming that the ecological requirements of modern assemblages also apply to 

fossil records (e.g. Viehberg 2006; Horne 2007; Mischke et al. 2007, 2008);  

 investigating the effects of environmental physical and chemical parameters on the 

shape and structure of the carapace (e.g. Vesper 1975; van Harten 2000); and 

 analysing the geochemical properties of ostracod shells (e.g. Xia et al. 1997a; 

Holmes and Chivas 2002).  

 

The later approach includes measuring element ratios of magnesium and strontium to 

calcium (Mg/Ca, Sr/Ca) as well as stable isotope ratios of oxygen (δ18O) and carbon 

(δ13C) in ostracod calcite; these ratios are increasingly used in palaeoenvironmental 

reconstructions of temperature, salinity, and lake productivity (e.g. Griffiths and Holmes 

2000).  

Freshwater ostracods have already been successfully used as indicators of Holocene and 

late Quaternary palaeoenvironmental changes. Numerous convincing studies combining 

ecological and/or geochemical methods were presented in the last decades, such as by 

Dettman et al. (1995) for North America, Schwalb et al. (1999) for South America, von 

Grafenstein et al. (1999) for Europe, Keatings et al. (2006a) for Africa, Mischke and 

Wünnemann (2006) for Tibet and Holmes et al. (1992) for India. 

Whereas fossil and modern ostracod fauna and their ecology at mid-latitudes are 

relatively well known due to numerous investigations, there are only very rare records 

from high latitudes or from Siberia, where the studies presented here were carried out.  

For the area covering the former USSR modern ostracods were summarised by 

Bronshtein (1947), Kurashov (1995), and Semenova (2005). However, the occurrence of 
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Arctic freshwater species is only briefly mentioned. Several studies on modern ostracods 

have been presented from high latitude environments, including the Faroe Islands 

(Jeppesen et al. 2002), Greenland (Anderson and Bennike 1997), Svalbard (Svenning et 

al. 2006), Canada (Delorme 1970a-c; Delorme et al. 1977; Bunbury and Gajewski 2005), 

Central Yakutia (Pietrzeniuk 1977), and Arctic Siberia (Alm 1914; Neale 1969), but 

environmental and geochemical data are mostly lacking. Moreover, the identification of 

Arctic species is complicated by inconsistent nomenclature since in the past American, 

Russian, and European researchers have used different classifications (e.g. Delorme 

1967).  

 

1.1.3 Permafrost and the periglacial environment 

Any ground on the Earth which remains at temperatures of 0 °C or less for two or more 

consecutive years is defined as permafrost (van Everdingen 1998). According to this 

definition, about 20 to 25 % of the continental Earth’s surface is underlain by permafrost 

(Zhang 2003). As one moves from far northern to more southern latitudes, permafrost, 

expressed as the percentage of frozen ground on the land surface, occurs in continuous, 

discontinuous, sporadic, and isolated distribution (e.g. Yershov 1990). Continuous 

permafrost is one of the dominant environmental factors in the arctic lowlands of Alaska, 

Canada, and Siberia; it affects vegetation, hydrology, soils, and morphology in these 

periglacial landscapes via cryogenic processes.  

The occurrence of permafrost in periglacial regions depends on climatic conditions, in 

particular on annual mean air temperatures below 0 °C; the summer, when temperatures 

are positive, is short and complete thawing of the ground which is frozen during winter 

does not occur. Therefore, the existence of deep permafrost indicates that stable, cold 

climatic conditions have reigned over long periods of time. The oldest permafrost 

indications in East Siberia are known from upper Pliocene deposits at the Krestovka River 

in the Kolyma lowlands (Sher 1971) and also in the Val’karai lowlands on the northern 

coast of Chukotka (Arkhangelov et al. 1985) in the form of frost crack pseudomorphs. 

Actually, Froese et al. (2008) reported middle Pleistocene relict ground ice within the 

discontinuous permafrost zone of Central Yukon Territory, Canada dated to 740,000 +/- 

60,000 yrs BP. 

Permafrost degradation (thermokarst) caused by extensive thawing of ground ice is 

climatically driven and intensified during warm periods in the Quaternary, especially since 

the Holocene (e.g. Katasonov et al. 1979). It is responsible for the formation of numerous 

depressions in the landscape surface (alases), which are often occupied by thermokarst 

lakes.  
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Late Pleistocene permafrost sequences are widely distributed in the arctic lowlands. Such 

deposits are of epigenetic or syngenetic type (e.g. Dostovalov and Kudryavtsev 1967). 

Epigenetic permafrost forms when sediments or rocks freeze singly after their deposition; 

syngenetic permafrost forms when sediments freeze approximately simultaneously during 

their accumulation. The latter is commonly accompanied by migration of moisture into the 

freezing ground and, depending on the original water content, syngenetic permafrost may 

be enriched in ground ice. The resulting ice structures (cryostructures) are of different 

types and patterns and indicate the temperature and moisture regime at the time of 

freezing (Katasonov 1954). Syngenetic ice wedges are large ground ice bodies. They 

begin as frost cracks generated by rapid temperature drops below 0°C; afterwards these 

cracks are filled by melt water, which freezes immediately because of the negative 

temperatures in the ground. Syngenetic ice wedges are formed by successive annual 

cycles of this process and are composed of vertical ice veins; they grow in a polygonal 

pattern, while at the same time upward sedimentation occurs  

During the late Pleistocene, the continuous growth of polygonal ice-wedge systems and 

the synchronous accumulation and freezing of sediments composed ice-rich sequences 

which are widely distributed in the Siberian arctic lowlands. These frozen sediments are 

called Ice Complex (e.g. Kunitsky 1989). 

Because the existence of permafrost depends on the temperature regime and has 

therefore been sensitive to climate changes during the Quaternary past, such frozen 

deposits are regarded as an archive of palaeoenvironmental changes. The high content of 

well-preserved floral and faunal remains as well as the sedimentological and cryological 

parameters enable these permafrost sequences to be used in reconstructing the 

palaeoenvironment. Numerous multidisciplinary publications have already focused on 

permafrost deposits as late Quaternary palaeoclimate archives in the Siberian Arctic (e.g. 

Hubberten et al. 2004; Pitulko et al. 2004; Sher et al. 2005; Grosse et al. 2007; 

Schirrmeister et al. 2008a), in Alaska (e.g. Anderson and Lozhkin 2001), and in Canada 

(e.g. Murton 2001, 2005). Various palaeoproxies in frozen deposits such as pollen (e.g. 

Andreev et al. 2004, 2008), plant macrofossils (Yurtsev 2001; Kienast et al. 2005, 2008), 

rhizopods (e.g. Bobrov et al. 2004), chironomids (e.g. Ilyashuk et al. 2006), insects (e.g. 

Kiselyov 1981; Kuzmina and Sher 2006), diatoms (Pirumova 1968), and mammal bones 

(e.g. Vartanyan et al. 1993; Guthrie 2001) as well as stable isotope records of ground ice 

(Vasil’chuk 1992; Meyer et al. 2002a, b) have been used for reconstructions of late 

Quaternary palaeoenvironments and palaeoclimate in Northeast Siberia. Such studies 

have contributed to reconstructing the environmental history of Beringia, the huge arctic 

landmass connecting East Siberia and Alaska during several Pleistocene periods.  
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1.2 Aims and approaches 

Up to now, although ostracods bear indicator potential for modern and past environments, 

neither modern nor fossil assemblages have been studied in detail in the huge areas of 

Northeast Siberia. The first goal of this thesis, therefore, is to elucidate the abundance 

and diversity of modern ostracods in periglacial environments by performing an inventory 

of species present today. In order to apply modern reference data to the analysis of fossil 

assemblages, the interactions between relevant environmental parameters and ostracod 

occurrence have been studied by combining ecological, taxonomic, and geochemical data 

(Table 1-1).  

 

Table 1-1: Generalised overview of methods applied in studies of modern and fossil freshwater 

ostracods and their habitats  

 Modern approach Fossil approach 

F
ie

ld
 s

tu
d

ie
s 

Site characteristics 

Water body size and depth 

Vegetation 

Ground substrate 

Fingerprint hydrochemistry 

Air and water temperatures 

Exposure characteristics 

Profile description 

Stratigraphy and general structure 

Cryostructures  

Sedimentology 

Hydrochemistry and element ratios 

Stable isotopes in water  

 (δD, δ13C, δ 18O ) 

Sedimentology 

Geochronology 

 

Taxonomy Taxonomy 

L
ab

o
ra

to
ry

 s
tu

d
ie

s 

Stable isotopes and element ratios 

of valves   

(δ13C, δ 18O, Sr/Ca, Mg/Ca ) 

Stable isotopes of valves  

 (δ13C, δ 18O ) 

 

The following questions should be answerable using this approach: 

 

 Which environmental parameters are directly or indirectly related to ecological and 

taxonomical ostracod characteristics? 

 How does the geochemistry of ostracod shells reflect the natural modern aquatic 

environment?  

 How do environmental gradients in space and time control the occurrence of 

ostracods in polygonal ponds and thermokarst lakes in Siberian tundra and taiga 

landscapes? 
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 What is the significance of freshwater ostracods within the permafrost 

palaeoarchive, and what does the presence of their fossil remains indicate? 

 

The second goal of this thesis is to interpret Quaternary ostracod records from North 

Yakutian permafrost exposures based on the modern dataset (Table 1-1). This goal was 

pursued through multidisciplinary studies using a variety of bioindicators and 

sedimentological, geocryological, and geochronological methods. Studies of fossil 

ostracods from permafrost deposits were performed on deposits from the Holocene and 

Eemian Interglacials, and from the Middle Weichselian and Late Weichselian (Allerød) 

Interstadials. These studies sought to answer the following questions:  

 

 Which information about the late Quaternary past can be deduced from fossil 

ostracod assemblages? 

 What are the potentials and limits to the application of geochemical methods 

(element ratios and stable isotopes) to fossil ostracod shells for understanding the 

palaeoenvironmental record present in archive permafrost? 

 How does the ostracod record fit into multiproxy palaeoenvironmental 

reconstructions? 
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1.3 Study region 

1.3.1 Study sites 

The studies of modern and fossil ostracods presented here were performed on material 

which was collected during several joint Russian-German expeditions to Yakutia (Figure 

1-2; Northeast Siberia, Russia); Russian partners from several institutions participated 

along with researchers from the German Alfred Wegener Institute for Polar and Marine 

Research. 

 

Figure 1-2: Position of study sites in Yakutia (Northeast Siberia, Russia). Modern ostracod records 

were obtained (I) in the Lena River Delta (North Yakutia), (II) on the Lena-Amga-interfluve (Central 

Yakutia), and (III) in the Moma River region (Northeast Yakutia). Fossil records from Quaternary 

permafrost deposits in North Yakutia were studied from coastal exposures at (IV) the Dimitri Laptev 

Strait (East Siberian Sea), (V) the Bykovsky Peninsula (Laptev Sea), and (VI) Kurungnakh Island 

(Lena River Delta). Map compiled by G. Grosse (University of Alaska Fairbanks) using data from 

Hastings et al. (1999)  
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Three study regions in the North, Northeast, and Central Yakutia were investigated for 

modern ostracod assemblages and the environmental parameters affecting their life 

conditions in 2002 (Lena River Delta) and 2005 (Central Yakutia and Moma regions) 

(Figure 1-2). The material for the fossil records from Quaternary permafrost sequences 

was sampled on riverside or coastal exposures in 1998 (Bykovsky Peninsula, Laptev 

Sea), in 2002 (Kurungnakh Island, Lena River Delta), and in 2007 (Dimitri Laptev Strait, 

East Siberian Sea) (Figure 1-2). 

 

1.3.2 Geological characteristics 

The geology in the studied regions is generally structured by three major elements with 

diverse stratigraphic and lithological successions: the Siberian craton, which belongs to 

the Eurasian plate, and the Verkhoyansk-Kolymian orogen and the Laptev Rift system, 

both of which belong to the North American plate (Fujita et al. 1997).  

The western and southern parts of Yakutia fit in the Siberian craton which is further 

divided into the Lena-Yenisey plate, the Anabar massif, and the Aldan shield (Figure 1-3).  

 

 

Figure 1-3: Generalised geological map of Yakutia (Popp et al. 2007, based on Sedenko et al. 

2001) 
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The basement is mainly composed of early Archean metamorphic series which are 

structured by numerous basin, uplift, and graben units. Several hundred metres of 

Neogene to late Pleistocene aged sediment successions in the Aldan basin underlie the 

study sites in Central Yakutia. The eastern and northern parts of Yakutia are dominated 

by the Verkhoyansk-Kolymian orogen (Figure 1-3) which resulted from the collision of the 

Eurasian plate with the Kolyma-Omolon microcontinent along the eastern margin of the 

Siberian craton in Mesozoic times (Parfenov 1991). The folded Paleozoic and Mesozoic 

sediments of the Verkhoyansk-Kolymian orogen are penetrated by Jurassic and 

Cretaceous granitoid intrusions. The study sites in the Moma region in the valleys of the 

Indigirka and Moma rivers are situated between the Cherskii and Moma ridges which are 

of Cretaceous and Jurassic origin. 

The study sites in the Lena River Delta, at the Bykovsky Peninsula, and along the Dimitri 

Laptev Strait are situated on Cenozoic sediments which belong in the western part to the 

Siberian craton, and in the eastern part to the Verkhoyansk-Kolymian orogen. In the range 

of the Laptev rift system both structures are separated by the Lyakhov-South Anyui suture 

(Drachev et al. 1998). The Laptev rift system is known for neotectonic activity. Due to the 

presence of different basement levels for late Pleistocene and Holocene sediments in the 

region of the Lena River Delta, formerly and presently active block tectonics are assumed 

to influence the delta formation and orientation of the main outlets (Grigoriev et al. 1996; 

Are and Reimnitz 2000). 

 

1.3.3 Climate 

The climate of all Yakutian study sites is characterised by continental conditions 

(Gavrilova 1998): great seasonal contrasts, high temperature amplitudes over the year, 

and low precipitation (Figure 1-4; Table 1-2).  

 

 

Figure 1-4: Long-term climatic data from meteorological stations next to the study sites (data 

compiled using Rivas-Martínez 2007) 

 

Short, cool summers follow long, very cold winters; periods with air temperatures above 0 

°C range from three to five months from North to South (Figure 1-4). Consequently, 
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shallow lakes and ponds are covered with ice and frozen to the bottom during seven to 

nine months of the year; this short time period circumscribes the period of active growth 

for annual aquatic organisms such as ostracods at high latitudes. 

 

Table 1-2: Summarised climatic data from meteorological stations next to the study sites (Rivas-

Martínez 2007) 

Study region Station Coordinates  
  °N          °E 

Tmean 

[°C] 
∆T 

[°C] 
 

pmean 

[mm] 

North Yakutia 
(Dimitri Laptev Strait) 

Mys 
Shalaurova 

73°11' 143°56' -15.1 35.0 253.0

North Yakutia  
(Lena River Delta) 

Tiumyati 72°30' 123°50' -14.5 49.5 206.0

Northeast Yakutia 
(Moma region) 

Moma 66°27' 143°14' -15.3 60.3 256.6

Central Yakutia 
(Lena-Amga interfluve, Yakutsk)

Yakutsk 62°05' 129°45' -10.4 59.8 247.5

Tmean: mean annual temperature; ∆T: absolute annual amplitude between mean 
temperatures in January and July; pmean: mean annual precipitation 

 

The continental effect in Northeast Siberia strengthens southwards and causes absolute 

annual amplitudes between mean January and July temperatures of about 60 ºC in 

Central Yakutia and the Moma region, whereas the North Yakutian sites in the Lena River 

Delta and at the Dimitri Laptev Strait are influenced by ameliorating maritime conditions. 

The extreme climate conditions are caused by the northern position and the huge 

landmass of Eurasia, and the position of mountainous systems leading to a relative 

isolation of the area with respect to maritime humid air masses except for the Arctic 

Ocean (Tumel 2002). In winter, in response to strong radiation-caused cooling of the 

Earth’s surface, a stable high pressure system (Siberian high) develops over Central 

Siberia (40-55 °N, 90-110 °E), accompanied by a second high over the Yana-Indigirka 

lowlands (65-70 °N, 140-150 °E) (Shahgedanova 2002). Like the temperature-induced 

winter Siberian high, the heating of air masses and high insolation during summer leads to 

the development of low pressure areas in East Siberia. The pressure decrease from West 

to East over Eurasia assists the transport of Atlantic maritime air across the continent and 

leads to higher precipitation rates in the summer months.  

The mean precipitation averages about 200 to 250 mm at all study sites (Table 1-2). 

Obviously, the annual precipitation pattern is controlled by the seasonally-occurring 

cyclones and anticyclones in Northeast Siberia. For this reason the precipitation during 

the winter months is clearly lower than in the summer; in particular, July and August are 

the wettest months. However, evaporation exceeds precipitation during the summer 

(Gavrilova 1973). The moisture deficit amounts to more than 220 mm per year in all study 
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regions due to approximately twofold higher potential evapotranspiration than real 

precipitation (Rivas-Martínez 2007); in consequence, arid conditions are maintained.  

 

1.3.4 Periglacial freshwaters 

The tundra, forest-tundra, and taiga landscapes within the zone of continuous permafrost 

are mainly affected by the deeply frozen ground which thaws in its upper part several 

centimeters to meters during summer. Because of the seasonally alternating freezing, 

cooling, and thawing of the ground, several periglacial (cryogenic) processes form a 

periglacial relief on different scales. Such relief-forming processes are frost cracking and 

ice wedge growth leading to a polygonal wedge relief, frost heave and frost mounds, 

thermokarst, thermoerosion, geli-solifluction, and patterned ground (French 2007). The 

occurrence of lakes, ponds, and other water bodies in periglacial landscapes is directly 

connected to those cryogenic processes that form depressions on the land surface. 

Polygonal ice wedge systems often contain so-called polygonal ponds, shallow waters 

only several meters in diameter whose development may, however, lead to the initial 

formation of thermokarst lakes, so-called thaw lakes, which continuously expand in depth 

and size (Soloviev 1959; Billings and Peterson 1980). Polygonal ponds and thermokarst 

lakes are the most frequent inland water bodies in arctic lowlands and serve as habitats 

for aquatic organisms, whose fossil remains are also present in Quaternary deposits. 

In the course of the work presented in this thesis, in the Lena River Delta sites of North 

Yakutia, modern ostracods primarily from small polygonal ponds and thaw lakes of the 

arctic polygonal tundra were studied, while in the central Yakutian taiga, mainly dominated 

by alas landscapes, ostracods were primarily studied from large thermokarst lakes. The 

study sites in the mountainous Moma region of Northeast Yakutia were mostly small, 

water-filled lowland depressions and old branches (distributaries) of the Moma and 

Indigirka Rivers.  

 

1.4 Synopsis 

This thesis is composed of an introductory chapter with background information, followed 

by three main chapters and a synthesis. The three main chapters and appendices I and II 

contain original research papers which have been published or are in the process of being 

published (Table 1-3).  

Chapters 2 and 3 deal with modern ostracod assemblages, their life conditions and the 

geochemical properties of periglacial waters on islands of the Lena River Delta (Wetterich 

et al. 2008a), and in Central and Northeast Yakutia (Wetterich et al. 2008b). Studies of 

Holocene and Eemian fossil ostracods from permafrost sequences at the Dimitri Laptev 

Strait (East Siberian Sea) presented in Chapter 4 are currently being prepared for 
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publication in the journal Palaeogeography, Palaeoclimatology and Palaeoecology. Based 

on sedimentological, geocryological, and geochronological as well as palynological 

analyses, taxonomical and stable isotope records of ostracods have been used for 

palaeoecological interpretations. The appendix contains two late Quaternary 

palaeoreconstructions from permafrost deposits of the Bykovsky Peninsula in the Laptev 

Sea (Wetterich et al. 2005) and Kurungnakh Island in the Lena River Delta (Wetterich et 

al. 2008c). Ostracods were used as a bioindicator in both these multidisciplinary studies of 

the palaeoarchive permafrost.  

 

Table 1-3 Overview of publications presented within the thesis 

Publication Chapters 
Wetterich S, Schirrmeister L, Meyer H, Viehberg FA and Mackensen A (2008a) 
Arctic freshwater ostracods from modern periglacial environment in the Lena 
River Delta (Siberian Arctic, Russia): Geochemical applications for 
palaeoenvironmental reconstructions. Journal of Paleolimnology 39: 427-449 
(DOI 10.1007/s10933-007-9122-1) 

Chapter 2 

Wetterich S, Herzschuh U, Meyer H, Pestryakova L, Plessen B, Lopez CML and 
Schirrmeister L (2008b) Evaporation effects as reflected in freshwaters and 
ostracod calcite from modern environments in Central and Northeast Yakutia 
(East Siberia, Russia). Hydrobiologia 614: 171-195 (DOI 10.1007/s10750-008-
9505-y) 

Chapter 3 

Wetterich S, Schirrmeister L, Andreev A, Pudenz M, Plessen B, Meyer H and 
Kunitsky VV (in preparation) Eemian and Late Glacial/Holocene 
palaeoenvironmental records from permafrost sequences at the Dimitri Laptev 
Strait (NE Siberia, Russia). Palaeogeography, Palaeoclimatology, Palaeoecology 

Chapter 4 

Wetterich S, Schirrmeister L and Pietrzeniuk E (2005) Freshwater ostracodes in 
Quaternary permafrost deposits from the Siberian Arctic. Journal of 
Paleolimnology 34: 363-376 (DOI 10.1007/s10933-005-5801-y) 

Appendix I 

Wetterich S, Kuzmina S, Andreev AA, Kienast F, Meyer H, Schirrmeister L, 
Kuznetsova T and Sierralta M (2008c) Palaeoenvironmental dynamics inferred 
from late Quaternary permafrost deposits on Kurungnakh Island (Lena Delta, 
Northeast Siberia, Russia). Quaternary Science Reviews 27: 1523-1540 (DOI 
10.1016/j.quascirev. 2008.04.007) 

Appendix II 

 

The results and implications of all five publications are summarised in the Chapter 5 

synthesis that also includes an outlook for further development and application of ostracod 

research in the context of palaeoecology and permafrost sciences.  

Taking into account the multidisciplinary character of the studies, each co-author 

contributed to his own field of experience (Table 1-3). As first author, S. Wetterich 

initiated, wrote and coordinated the publications. In particular, he contributed to all data 

collections, analyses and interpretations related to modern and fossil ostracods.   
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2.1 Abstract 

The aim of this study is to describe ostracods from freshwater habitats in the Siberian 

Arctic in order to estimate the present-day relationships between the environmental 

setting and the geochemical properties of ostracod calcite. A special focus is on the 

element ratios (Mg/Ca, Sr/Ca), and the stable isotope composition (δ18O, δ13C), in both 

ambient waters and ostracod calcite. The most common species are Fabaeformiscandona 

pedata and F. harmsworthi with the highest frequency in all studied waters. Average 

partition coefficients D(Sr) of F. pedata are 0.33 ± 0.06 (1σ) in females, and 0.32 ± 0.06 

(1σ) in males. A near 1:1 relationship of δ18O was found, with a mean shift of 

∆mean = 2.2‰ ± 0.5 (1σ) to heavier values in ostracod calcite of F. pedata as compared to 

ambient waters. The shift is not dependent on δ18Owater, and is caused by metabolic (vital) 

and temperature effects. Temperature-dependence is reflected in the variations of this 

shift. For ostracod calcite of F. pedata a vital effect as compared to inorganic calcite in 

equilibrium was quantified with 1.4‰. Results of this study are valuable for the 

palaeoenvironmental interpretation of geochemical data of fossil ostracods from 

permafrost deposits.  

 

2.2 Introduction 

Freshwater ostracods are crustaceans, usually less than 3 mm long, with a bivalved 

carapace made of low magnesium-calcite. During their ontogeny, the individuals run 

through nine moult stages (Kesling 1951). After each moult, ostracods calcify new shells 
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within a short time, probably within a few days (Chivas et al. 1983). The ions for the calcite 

formation are incorporated directly from the ambient water at this time (Turpen and Angell 

1971). Therefore, element ratios of magnesium, strontium and calcium (Mg/Ca, Sr/Ca) as 

well as stable isotope ratios of oxygen (δ18O) and carbon (δ13C) in ostracod calcite are 

related to the geochemistry of the ambient water (e.g. Chivas et al. 1986; Xia et al. 1997b, 

c; von Grafenstein et al. 1999). The understanding of these relationships is a prerequisite 

for interpreting geochemical information in fossil ostracod calcite for palaeoenvironmental 

reconstructions.  

Due to the sensitivity of freshwater ostracods to environmental changes and the high 

durability of their remains in lacustrine sediments, ostracods serve as good indicators for 

palaeoclimatic reconstructions (e.g. Anadón et al. 2006; Poberezhnaya et al. 2006; Xia 

et al. 1997a). The ecology of freshwater ostracods is defined by water chemistry, water 

temperature and additional habitat parameters such as area, water depth, and water 

permanency and type. Environmental changes influence the diversity of freshwater 

ostracods as well as the morphology and the geochemical composition of the ostracod 

shells (e.g. Griffiths and Holmes 2000). Coupled element and stable isotope 

measurements in fossil ostracod calcite are being increasingly used in 

palaeoenvironmental reconstructions of temperature, salinity and productivity (e.g. De 

Deckker and Forester 1988; Griffiths and Holmes 2000). Whereas fossil and modern 

ostracod fauna and their ecology in mid-latitudes are relatively well known due to 

numerous investigations, there are only a few records concerning freshwater ostracods in 

Siberia, or in (sub-) Arctic permafrost regions (e.g. Alm 1914; Bunbury and Gajewski 

2005; Pietrzeniuk 1977; Semenova 2005).  

Numerous multidisciplinary studies have focused on permafrost deposits with well 

preserved remains of palaeoindicative fossils and have highlighted their potential and 

significance as Quaternary palaeoclimate archives in the Siberian Arctic (e.g. 

Schirrmeister et al. 2002a, b, 2003; Hubberten et al. 2004), especially since other long-

term records such as lake sediment cores or inland glacier ice cores are rare or not 

available in this vast region. Various palaeoproxies in the frozen deposits, such as pollen 

(Andreev et al. 2002), rhizopods (Bobrov et al. 2004), plant macrofossils (Kienast et al. 

2005), insects (Kuzmina and Sher 2006) and mammal bones (Sher et al. 2005), as well as 

stable isotope records of ground ice (Meyer et al. 2002a), have already been used, while 

ostracods were introduced as a valuable palaeoindicator only recently by Wetterich et al. 

(2005).  

Still, knowledge about the ecology and biology of Arctic freshwater ostracods needs 

improvement to apply modern analogues to fossil records. Thus, the key question is how 

do ostracod associations and/or the geochemistry of their valves reflect the natural setting 
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of a modern aquatic environment in the periglacial Arctic, which is characterised by widely 

distributed polygons and thermokarst lakes in a tundra landscape. It should be mentioned 

that this study presents the species distribution and life conditions of ostracods at the 

sampling time. Nevertheless, our results increase the value of using freshwater ostracods 

from permafrost deposits as palaeoindicators and, when combined with planned 

geochemical studies on element ratios (Mg/Ca, Sr/Ca) and stable isotopes (δ18O, δ13C), 

will enable us to interpret signals from fossil ostracod calcite in this region.  

 

2.3 Study area and types of water bodies 

The Lena River has the largest delta in the Arctic, located at the Laptev Sea shore 

between Taimyr Peninsula and the New Siberian Islands (Figure 2-1a). The delta covers 

an area of about 32,000 km2, where more than 1,500 islands of various size were formed 

by a network of rivers and channels (e.g. Are and Reimnitz 2000). The islands are 

composed of Quaternary sediments. They are subdivided into three terraces of different 

ages and height levels above the modern flood plain of the Lena River (e.g. Grigoriev 

1993; Schwamborn et al. 2002).  

 

 

Figure 2-1 (a) Location of the Lena River Delta on the Laptev Sea coast in northeast Siberia; (b) 

the study area in the southern part of the delta (Satellite image provided by Statens Kartverk, 

UNEP/GRID-Arendal and Landsat 2000)  

 

The modern climatic conditions of the Lena River Delta are extreme. Short and cool 

summers follow long and very cold winters. The mean July air temperature varies 

between +4°C and +8°C and the mean January air temperature varies between −36°C 

and −32°C (Atlas Arktiki 1985). The mean annual air temperature averages −14°C 

(Kunitsky 1989). Only 4 months of the year are mean air temperatures above 0°C. 

Consequently, shallow lakes and ponds are covered with ice and frozen to the bottom 
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during at least eight to nine months of the year, which circumscribes the period of active 

growth for annual aquatic organisms such as ostracods in this region. The mean annual 

precipitation (about 200 mm) is low, but still higher than evaporation, because of the 

predominance of freezing temperatures through the year (Kunitsky 1989). Data from 2002 

by an automatic soil and meteorology measurement station on Samoylov Island (Friedrich 

and Boike 1999; Wille et al. 2003) recorded mean air temperatures 0.5 m above the 

ground and mean soil temperature 0.15 m below the ground as the following: in May 

(TAir = −9.0°C; TSoil = −10.5°C), in June (TAir = 6.2°C; TSoil = −0.1°C), in July 

(TAir = 10.7°C; TSoil = 6.1°C) and in August (TAir = 10.0°C; TSoil = 7.4°C). The precipitation 

totalled 65 mm (J. Boike, AWI Potsdam, unpublished data).  

The entire Lena River Delta is located in the zone of continuous permafrost, with a 

permafrost thickness of 400–700 m in the western part and 300–500 m in the eastern part 

(Kondrat’eva and Solov’ev 1989). The occurrence of permafrost is expressed on the 

landscape microrelief as widespread patterned ground dominantly formed by ice wedge 

polygons in different stages of development. The formation of lakes, ponds, and other 

water bodies on islands of the Lena River Delta is directly connected to permafrost 

processes like ice wedge growth, thermokarst, and thermoerosion, as well as to the fluvial 

dynamics of the Lena River on the flood plain.  

The patterned ground of the polygonal tundra is dominated by ponds and thaw lakes 

(Figure 2-2). In winter, initial frost cracks are generated by rapid temperature drops below 

0°C (Figure 2-2a). In spring, these cracks are filled by melt water, which freezes 

immediately because of the negative temperatures in the ground. Ice wedges, formed by 

successive annual cycles of this process, grow in a polygonal pattern. The polygon rim is 

usually higher than the polygon centre. Intrapolygon ponds (Figure 2-2b) are situated in 

these so-called low-centre polygons (French 1996). Later, the degradation of the polygon 

rims and changes in the hydrological regime may cause the formation of so-called high-

centre polygons (French 1996), which are often accompanied by interpolygon ponds and 

thaw lakes (Figure 2-2c,d). Shallow intrapolygon ponds have a water depth between 

about 0.5–1 m, but are characterised by different diameters (Meyer 2003). The size of 

intrapolygon ponds can be up to 30 m in diameter, depending on the polygon in which 

they occur. Interpolygon ponds delineate the location of polygon rims and are underlain by 

ice wedges. Thaw lakes are also shallow with a water depth of up to 1.5 m and cover 

areas of up to several hundred m2. Thermokarst processes cause extensive melting of the 

underlying permafrost and large depressions thus develop, which often form lakes. 

Thermokarst lakes occur over areas up to several km2 with water depths up to 5 meters. 

On the lower floodplain, shallow cut-off river branches (up to 1 m water depth) expand 

during spring flooding and form stream-oriented shallow depressions.  
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Recent ostracods were found during limnological investigations in 40 shallow lakes and 

ponds on Samoylov (72° 22′ N, 126° 28′ E), Kurungnakh (72° 20′ N, 126° 10′ E), and Tit 

Ary Islands (71° 58′ N, 127° 04′ E) in the southern part of the Lena River Delta 

(Figure 1b). Here, we present data from 23 lakes and ponds situated on Samoylov (on the 

first Lena River terrace and lower flood plain) and Kurungnakh Islands (on the third Lena 

River terrace), where ostracods were found in sufficient numbers for further geochemical 

analyses. The studied waterbodies included three intrapolygon ponds, three interpolygon 

ponds, 13 thaw lakes and one river branch on Samoylov Island as well as one 

intrapolygon pond and two thermokarst lakes on Kurungnakh Island (Appendix III-1).  

 

 

Figure 2-2 The formation of ice wedges and the resulting changes on the landscape surface with 

different types of shallow waterbodies depending on the polygon degradation state in the Lena 

River Delta (modified after Meyer 2003). (a) Juvenile polygon type with very small height 

differences between polygon wall and the centre; no waterbody; (b) Mature low-centre polygon 

type with height differences between 0.5 m and 1 m between polygon wall and the centre; 

intrapolygon ponds develop in poorly drained sites; (c) Polygon type of initial degradation with 

height differences between 0.5 m and 1 m between polygon wall and the centre; interpolygonal 

ponds on the polygon wall are present as triangular ponds in the triple junctions or elongated ponds 

along the frost crack; (d) Polygon type of final degradation with height differences of up to 1.5 m 

between polygon wall and polygon centre; thaw lake of variable size and polygonal structure are 

present  

 

2.4 Materials and methods 

Hydrochemical variables such as pH, the content of nutrients (NH4, NO2, NO3, PO4) and 

oxygen (O2) were analysed during the fieldwork by means of a compact laboratory 

(Aquamerck). All water samples and measurements were performed at the margin of the 

water bodies at water depths of about 0.5 m, where near-bottom water was taken or 

measured, respectively. Water temperature and electrical conductivity were measured 
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with a conductivity meter (WTW Cond 330i). Water was sampled for ionic (Ca, K, Mg, Sr, 

Na, Cl, SO4, HCO3) and stable isotope (δD, δ18O, δ13C) analyses. 

Samples for cation analyses were acidified with HNO3, whereas samples for anion 

analyses and residue samples were preserved by freezing until analysis. Before 

conservation, samples for cation and anion analyses were passed through a cellulose-

acetate filter (0.45 μm pore size). Upon return to the main laboratory, the element (cation) 

content of the waters was analysed by Inductively Coupled Plasma-Optical Emission 

Spectrometry (ICP-OES, Perkin–Elmer Optima 3000 XL), while the anion content was 

determined by Ion Chromatography (IC, Dionex DX-320). The hydrogen carbonate 

concentrations (alkalinity) of the waters were determined by titration with 0.01 M HCl using 

an automatic titrator (Metrohm 794 Basic Titrino).  

The lake water samples for oxygen and hydrogen stable isotope analysis (δD, δ18O) were 

stored cool and later analysed by equilibration technique (Meyer et al. 2000) using a 

mass-spectrometer (Finnigan MAT Delta-S). The reproducibility derived from long-term 

standard measurements is established with 1σ better than ±0.1‰ (Meyer et al. 2000). All 

samples were run at least in duplicate. The values are expressed in delta per mil notation 

(δ, ‰) relative to the Vienna Standard Mean Ocean Water (VSMOW). The water samples 

for carbon isotope analysis (δ13C) on total dissolved inorganic carbon (TDIC) were 

preserved by freezing until analysis using a mass-spectrometer (Finnigan MAT 252). The 

reproducibility derived from standard measurements over a 1-year period is ±0.1 ‰ (1σ). 

TDIC was extracted from lake water with 100% phosphoric acid in an automatic 

preparation line (Finnigan Gasbench I) coupled online with the mass-spectrometer. All 

samples were run at least in duplicate. The values are expressed in delta per mil notation 

(δ, ‰) relative to the Vienna Pee Dee Belemnite standard (VPDB).  

Samples from the upper layer of bottom sediments (up to 5 cm) were analysed for 

nitrogen, organic and total carbon contents by CNS-Analyser (Elementar Vario EL III), as 

well as for grain-size distribution by Laser-Granulometry (Coulter LS 200).  

Living ostracods were collected using an exhaustor (Viehberg 2002), then preserved in 

70% alcohol and finally counted and identified under a binocular microscope (Zeiss SV 

10) by soft body and valve characteristics described in Alm (1914), Bronshtein (1947), 

Neale (1969), and Meisch (2000). In samples with sufficient numbers of living ostracods, 

the most common species were prepared for element (Mg, Sr, Ca) and stable isotope 

(δ18O, δ13C) analyses. Additionally, subfossil valves from the upper layer of the bottom 

sediments were analysed in order to relate these data to that of the ostracods caught 

alive. The valves of these ostracods were cleaned by removing the soft body under the 

binocular microscope, and then washed in distilled water and air-dried. The subfossil 

valves were picked from the wet sieved 250 μm fraction of the upper layer of bottom 

 20



Arctic freshwater ostracods from modern periglacial environments in the Lena River Delta       Chapter 2 
Journal of Paleolimnology 39: 427-449 
__________________________________________________________________________________________________ 

sediments under the binocular microscope. Only clean valves of adult specimens were 

used for analysis. Particles adhered to valves were removed with a fine brush. Prior to 

analysis, up to four single valves from the same sample were weighed using an electronic 

micro-balance (Sartorius micro) in order to check the reliability of the CaCO3 Nominal 

Shell Weight (NSW). The CaCO3 NSW is calculated from total Ca concentrations of each 

sample solution (Chivas et al. 1986). The single valve samples were placed in a reaction 

vial and dissolved in 30 μl of 20% HNO3 (Baker Ultrex). Afterwards, 3 ml of distilled water 

were added. For analysis of Ca, Mg, and Sr contents we used Inductively Coupled 

Plasma-Optical Emission Spectrometry (ICP-OES, Varian Vista-MPX) at the Research 

Centre for Geosciences Potsdam (GFZ Potsdam, Germany). The ICP-OES was calibrated 

with three multi-element standards prepared by mono-element standard solutions for ICP 

(Alfa Aesar Specpure 1,000 μg/ml). Standard solution 1 contained 1 ppm Ca, 0.02 ppm 

Mg, and 0.01 ppm Sr. The concentrations in standard solutions 2 and 3 were twice and 

three times higher, respectively. Three determinations were made from each sample to 

check machine precision. Contaminant (blank) concentrations in the solvent acid were 

analysed for each batch of 10 samples to determine detection limits of the measurements. 

The detection limits in solution (3σ above background in μg/l or ppb, e.g. Doerfel 1966) 

are 1.51 for Ca (wavelength 422.673 nm), 0.05 for Mg (279.553 nm), and 0.03 for Sr 

(407.771 nm). Standard 1 provided a consecutive reference for each batch of 10 samples 

analysed, and confirmed an internal 1σ error of less than ±2.3% for Ca, ±1.0% for Mg, and 

±1.2% for Sr. The results for Mg and Sr are expressed as μg/g (ppm) in calcite following 

Chivas et al. (1986). From these results, molar ratios of Mg/Ca × 10−2 and Sr/Ca × 10−3 

were calculated. In total, 47 samples of recent ostracods and 18 samples of subfossil 

ostracods from 23 water bodies were used for the determination of Mg/Ca and Sr/Ca 

ratios.  

The ostracod valves for oxygen isotope (δ18O) and carbon isotope (δ13C) analysis were 

prepared and cleaned in the same way as for the element analysis. To ensure enough 

material for isotope analysis (80–100 μg CaCO3), 10–18 single valves of one species and 

sex from one waterbody were aggregated to create one sample. The aggregated samples 

were analysed by an isotope ratio gas mass-spectrometer (Finnigan MAT 251) directly 

coupled to an automated carbonate preparation device (Kiel II). The reproducibility, as 

determined by standard measurements over a 1-year period, is ±0.08‰ (1σ) for δ18O and 

±0.06‰ (1σ) for δ13C. The values are expressed in delta per mil notation (δ, ‰) relative to 

the VPDB. In total, 46 samples of recent ostracods and 14 samples of subfossil ostracods 

from 23 water bodies were analysed for δ18O and δ13C stable isotopes.  
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2.5 Results 

2.5.1 Physico-chemical characteristics of the ostracod habitats 

During the summer period, when no ice covers the lakes and ponds, the water bodies are 

defined as polymictic. Because of the shallow water depth and the wind driven mixing, the 

water temperature is tightly correlated to the air temperature and ranged from 5.9°C to 

15.3°C during the fieldwork period (Appendix III-1). Dissolved oxygen concentrations were 

between 5.3 mg/l and 11.3 mg/l. The waters were oligotrophic (with phosphate values 

<0.1 ppm, below the detection limit), slightly acid to neutral (pH 6.5–7.6), and had 

alkalinities between 13.4 ppm and 148 ppm (Appendix III-1). The electrical conductivity 

was very low and ranged from 27 μS/cm to 254 μS/cm. The waters were dominated by 

Mg–Ca or Ca–Mg, and HCO3 (Figure 2-3), but the ion content was generally low in all 

studied waters (Appendix III-1). The molar Mg/Ca ratios ranged from 0.53 to 1.40 and the 

Sr/Ca ratios from 2.63 × 10−3 to 4.83 × 10−3 (Appendix III-2).  

 

 

Figure 2-3 Ionic composition in waters of lakes and ponds in the Lena River Delta  

 

The results of oxygen and hydrogen isotope analyses of the lake waters are presented in 

a δ18O–δD plot (Figure 2-4a) with respect to the Global Meteoric Water Line (GMWL), 

which correlates fresh surface waters on a global scale (Craig 1961).  

The studied lakes and ponds are mainly fed by precipitation waters. The isotope values of 

three rain water samples from the beginning of August 2002 and one sample of Lena 

River water are given in Figure 2-4a. Whereas the local rain water samples and the river 

water are close to the GMWL, samples from the studied lakes and ponds are shifted 

below the GMWL. The deviation of the data from the GMWL reflects evaporation in the 

studied water bodies, as indicated by a slope of 5.56 (R2 = 0.96; excluding the cut-off river 

branch) shown in Figure 2-4a. The isotopic composition of one cut-off river branch 

(sample SAM-14) shows the influence of the Lena River with relatively lighter δ18O 

(Figure 2-4a).  

 

 22



Arctic freshwater ostracods from modern periglacial environments in the Lena River Delta       Chapter 2 
Journal of Paleolimnology 39: 427-449 
__________________________________________________________________________________________________ 

 

Figure 2-4 Isotopic composition in natural waters in the Lena River Delta: (a) Plot of oxygen and 

hydrogen isotopes (δ18O and δD) in lake water and precipitation in summer 2002 as well as in Lena 

River water; (b) Plot of oxygen and carbon isotopes (δ18O and δ13C) in lake water  

 

The plot of δ18O–δ13C (Figure 2-4b) shows no distinct differentiation in δ13C between lakes 

and ponds situated on Samoylov and Kurungnakh islands. The waters varied between 

+0.1‰ and −14.4‰ for δ13C. The δ13C of the cut-off river branch observed on Samoylov 

Island (sample SAM-14) lies within this range. The wide range in δ13C obviously reflects 

the influence of several biotic and abiotic factors on this parameter. The minimum value of 

−14.4‰ for δ13C comes from an intrapolygon pond (sample SAM-13) on Kurungnakh 

Island. In this pond a pH-value of 6.5 was measured in the field. It had the lowest pH and 

consequently the lowest HCO3 value of all the studied waters (Appendix III-1). At constant 

temperatures a decrease in pH leads to a decrease in HCO3 and therefore the 

composition of δ13C in TDIC tends to become lighter (e.g. Clark and Fritz 1997).  

The bottom sediments at the sites consisted primarily of minerogenic, sandy deposits with 

an organic cover. The main fraction of the studied sediments was composed of fine-

grained sand (0.125–0.25 mm) or medium-grained sand (0.25–0.5 mm) (Figure 2-5a). 

Furthermore, the sediments were characterised by C/N ratios from 9.8 to 17.9 (Figure 2-

5b), which are typical for polyhumic sediments with a low rate of decomposition (Hansen 

1961) as is expected in high-latitude regions. The organic carbon content of the sediment 

varied between 0.7% and 17.3%. Highest values of more than 15% were found in 

sediments from two water bodies on Kurungnakh Island, which may be linked to higher 

organic carbon contents in the late Pleistocene Ice Complex deposits on the third Lena 

River terrace compared to those in the Holocene deposits on the first Lena River terrace 

(Schirrmeister et al. 2003).  
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Figure 2-5 Sedimentological properties of bottom sediments for the studied types of lakes and 

ponds: (a) Grain size distributions of examples for intrapolygon ponds (SAM-30); interpolygon 

ponds (SAM-37), thaw lakes (SAM-28), thermokarst lake shores (SAM-38) and river branches 

(SAM 14); (b) Plot of C/N ratios and organic carbon content in bottom sediments  

 

2.5.2 Ostracod taxonomy and environmental ranges of their habitats 

Among the 14 observed ostracod taxa, 11 taxa were identified down to the species level 

and two taxa to the genus level, whereas one taxon comprises indeterminate juvenile 

Candoninae. Here, we present the species from lakes and ponds that were used in 

describing the geochemical applications (Figure 2-6).  

 

 

Figure 2-6 Ostracod species frequency (in absolute numbers) in different types of lakes and ponds 

in the Lena River Delta. Note varying scales  
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The ostracod assemblage in the shallow water bodies of the Lena River Delta consists 

partly of cosmopolitian species like Candona candida (O.F. MüLLER, 1776), 

Fabaeformiscandona cf. hyalina (BRADY & ROBERTSON, 1870), Fabaeformiscandona cf. 

tricicatricosa (DIEBEL & PIETRZENIUK, 1969), Fabaeformiscandona protzi (HARTWIG, 1898), 

Bradleystrandesia reticulata (ZADDACH, 1844), Limnocytherina sanctipatricii (BRADY & 

ROBERTSON, 1869), and Cypria ophtalmica (JURINE, 1820). The second group of 

ostracods found in lakes and ponds of the Lena River Delta are typical species for the 

Subarctic and Arctic of Siberia like Candona muelleri jakutica PIETRZENIUK, 1977, 

Fabaeformiscandona harmsworthi (SCOTT, 1899), Fabaeformiscandona pedata (ALM, 

1914), and Tonnacypris glacialis (SARS, 1890). The two taxa Fabaeformiscandona sp. 1 

and Fabaeformiscandona sp. 2 still remain in open nomenclature. Bisexual populations 

were found for all species except for C. candida, C. ophtalmica, and T. glacialis. The 

ostracod species frequency for the studied lakes and ponds is shown in Figure 2-6.  

The species C. muelleri jakutica, F. protzi, F. sp. 2, and B. reticulata were mostly found in 

ponds and small lakes of polygonal genesis. A further dependence of species distribution 

on the water body type was not observed. The most common species in our study were F. 

pedata and F. harmsworthi. In Figure 2-7 the ecological range is shown according to the 

environmental parameters at the sampling site, when the species occurred. Anyway, 

these data do not reflect the species tolerance as the only a limited gradient is covered by 

the studied waters. In general, the gradient of the environmental parameters during the 

sampling time in August 2002 is quite low due to the very low ionic content of the studied 

water. The broadest ranges were found for the most common species in our study F. 

pedata and F. harmsworthi.  
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Figure 2-7 Ranges of environmental parameters of ostracod habitats for most current taxa found in 

the studied shallow lakes and ponds. Horizontal lines connect the minimum and the maximum, and 

the vertical line is the mean. C. candida (n = 3), C. muelleri jakutica (n = 7), F. harmsworthi 

(n = 12), F. cf. hyalina (n = 3), F. levanderi (n = 2), F. pedata (n = 21), F. protzi (n = 6), F. sp. 2 

(n = 4), B. reticulata (n = 3) and L. sanctipatricii (n = 4). Note varying scales  

 

2.5.3 Ostracod geochemistry 

The correlation between the CaCO3 Nominal Shell Weight (NSW) and the measured 

valve weights is shown in Figure 2-8. In general, the valve weights determined by micro-

balance are higher than the calculated CaCO3 NSW since ostracod valves consist of 80–

90% CaCO3 (Sohn 1958). Distinct or systematic differences between weights of recent 

and subfossil valves of any one species were not observed. The reliability of the 

preparation method (soft body extraction) of the modern ostracods for geochemical 

analyses is therefore assumed.  
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Figure 2-8 Correlation of the calculated Nominal Shell Weight (NSW, Ca content by ICP-OES) and 

the measured weight (by micro-balance) of recent and subfossil single valves of: (a) F. pedata; (b) 

C. candida, C. muelleri jakutica, F. harmsworthi, F. cf. hyalina, F. sp. 2 and L. sanctipatricii. The 

species identification follows the key: species (e.g. F. pedata → pedata) and state (recent → rec or 

subfossil → sub)  

 

The element ratios (Mg/Ca, Sr/Ca) in ostracod calcite are listed in Appendix III-2. In 

Figure 2-9 the relationship of element ratios in calcite for several species are shown. The 

highest variation in the Mg/Ca ratio is found in recent valves of F. harmsworthi, ranging 

from 0.35 to 0.97 × 10−2 (mean 0.7 × 10−2; n = 5), whereas Mg/Ca ratios from the most 

common species in our dataset, F. pedata, range between 0.21 and 0.8 × 10−2 (mean 

0.45 × 10−2; n = 49). The Sr/Ca ratios for F. harmsworthi vary between 0.66 and 

0.96 × 10−3 (mean 0.78 × 10−3; n = 5), and for F. pedata between 0.69 and 1.94 × 10−3 

(mean 1 × 10−3; n = 49). Element ratios of subfossil valves lie within the ranges of recent 

valves (Figure 2-9).  

The plot of stable isotopes (δ18O, δ13C) in ostracod calcite reflects a differentiation with 

regard to the origin of water (Figure 2-10). The isotopic composition of ostracod calcite 

from lakes and ponds on Samoylov Island fed by precipitation shows heavier isotopic 

composition, with values between −1.6‰ and −6.3‰ for δ13C, and between −10.4‰ and 

−15.1‰ for δ18O (Figure 2-10). The waters on Kurungnakh Island are situated on the up to 

40 m high third Lena River terrace and are not influenced by river water. The isotope 

record of ostracods from this location is lighter in comparison to the data from Samoylov 

Island in δ18O or in both δ18O and δ13C (Figure 2-10). The isotopic composition of ostracod 

calcite from one cut-off river branch on Samoylov Island (sample SAM-14) is 

characterised by relatively light values (−17.7 and −18.5‰ for δ18O) as compared to those 

from precipitation-fed waters, whereas the δ13C in ostracod calcite from the river branch 

does not differ (Figure 2-10).  
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Figure 2-9 Element ratios (Sr/Ca and Mg/Ca) of recent and subfossil single valves of: (a) F. 

pedata; (b) C. candida, C. muelleri jakutica, F. harmsworthi, F. cf. hyalina, F. sp. 2 and L. 

sanctipatricii. The species identification follows the key: species (e.g. F. pedata → pedata) and 

state (recent → rec or subfossil → sub)  

 

 

Figure 2-10 Isotopic composition (δ18O and δ13C) in ostracod calcite for recent and subfossil single 

valves of: (a) F. pedata; (b) C. candida, F. harmsworthi, F. cf. hyalina and F. sp. 2. The species 

identification follows the key: species (e.g. F. pedata → pedata) and state (recent → rec or 

subfossil → sub). Full circles mark precipitation fed waters on Samoylov Island. Dashed circles 

mark precipitation fed waters on Kurungnakh Island. The dotted circle marks a river fed branch 

water on Samoylov Island  

 

2.6 Discussion 

2.6.1 Taxonomy and ecology of ostracods 

The species C. candida, F. cf. hyalina, F. protzi, B. reticulata, C. ophtalmica, and L. 

sanctipatricii are known from mid-latitude regions to be broadly distributed and tolerant to 

a wide range of environmental factors, but with a preference or at least a tolerance for 

cooler water temperatures (Hiller 1972; Meisch 2000; Viehberg 2006). Their occurrence in 

Arctic environments shows their great ability for adaptation to extreme climatic conditions 

where the time for ontogenic cycles is very short. Semenova (2005) listed these species 
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as commonly distributed in East Siberia. Furthermore, C. candida, F. hyalina, and B. 

reticulata were found in thermokarst lakes in permafrost regions of Central Yakutia 

(Pietrzeniuk 1977). C. candida and B. reticulata were also described from Arctic 

environments on Greenland and in North Siberia (Alm 1914).  

Species with preferences for (sub-) Arctic environments are C. muelleri jakutica, F. 

harmsworthi, F. pedata, and T. glacialis. The subspecies C. muelleri jakutica was first 

described by Pietrzeniuk (1977) from thermokarst lakes in Central Yakutia, whereas F. 

harmsworthi is commonly distributed in East Siberia (Semenova 2005) and known from 

Arctic environments on the Novaya Zemlya Archipelago and Franz Josef Land (Neale 

1969). Another typical representative of Arctic freshwater ostracods is F. pedata, which 

was originally described as Candona pedata by Alm (1914). The genus 

Fabaeformiscandona, defined by Krstić (1972), did not originally include F. pedata, but the 

structure of the externo-distal seta (γ-seta) of the penultimate segment of the mandibular 

palp (which is smooth, not pulmose), and a carapace longer than 0.6 mm confirm the 

attribution of F. pedata to this genus. T. glacialis is known from East Siberia (Semenova 

2005) and is considered to be endemic to most parts of the Arctic (Griffiths et al. 1998).  

Some of the recently found species in the study area are known from Quaternary 

permafrost deposits in northeast Siberia, and therefore hold potential for aiding in regional 

palaeoenvironmental reconstructions. C. candida, F. harmsworthi, F. pedata, L. 

sanctipatricii, and T. glacialis are documented by Pietrzeniuk (unpublished data) in Late 

Pleistocene Ice Complex deposits in the Lena River Delta, and C. muelleri jakutica, F. 

harmsworthi, F. cf. hyalina, and L. sanctipatricii were collected in permafrost deposits on 

Bykovsky Peninsula to the east of our study sites (Wetterich et al. 2005).  

 

2.6.2 Element ratios in ostracods and ambient waters 

A relationship between the element content in ostracod calcite and water properties 

controlling the uptake of elements was established by studies in laboratory cultures and 

field collections of freshwater ostracods (e.g. Engstrom and Nelson 1991; Xia et al. 1997c; 

Wansard et al. 1998). This relationship is usually expressed as the partition coefficient 

D(M): D(M) = (M/Ca)valve / (M/Ca)water         (1) 

where M can either be Mg or Sr, and M/Ca ratios are molar ratios. This function reflects 

the environmental conditions of the host water (temperature, Mg/Ca, Sr/Ca) expressed as 

the Mg/Ca and Sr/Ca ratio of the valves of any one species at the time of calcification to 

the corresponding ratio in ambient water, and it is used for palaeoenvironmental 

reconstructions which are based on ostracod geochemical data (e.g. Chivas et al. 1986; 

Ricketts et al. 2001). Other factors which may also control the element composition of 

ostracod calcite, such as the biological effect of temperature dependent metabolic rates 
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and ionic uptake also have to be taken into account (e.g. Dettmann et al. 2002). Presently 

the relationships between the element composition in host waters and ostracod calcite are 

not fully understood (Ito et al. 2003).  

The magnesium uptake during valve calcification is a function of both the Mg/Ca ratio and 

the temperature of the water. Therefore, Mg/Ca ratios have the potential for being used as 

palaeothermometer (Chivas et al. 1986; Boomer et al. 2003). The observed Mg/Ca ratios 

in waters and ostracod calcite reach 1.39 in waters and 1.08 × 10−2 in valves. The lack of 

covariance between Sr and Mg (Figure 2-9) can be explained by these low Mg/Ca ratios 

of the ambient waters and the narrow range of Mg/Ca in ostracod calcite (Xia et al. 

1997c). The plot of Mg/Ca ratios for F. pedata versus water shows no covariance within 

the observed ranges due to the temperature-dependence of Mg partitioning and the very 

low Mg/Ca ratios in the ambient waters (Figure 2-11a). For F. harmsworthi, which was 

investigated in much lower numbers, higher Mg/Ca ratios in waters seem to lead to higher 

ratios in valves (Figure 2-11b). Partition coefficients for magnesium D(Mg) were not 

calculated because of their temperature-dependence, and therefore should be 

investigated in laboratory cultures under controlled temperatures only. Furthermore, water 

temperatures measured during fieldwork at the time of ostracod sampling were likely 

different from those at the time of calcification of the valves. Strontium uptake into 

ostracod calcite and consequently the resulting Sr/Ca ratios correlate with the Sr/Ca ratio 

(mostly depending on salinity) of the ambient water (Chivas et al. 1986; Engstrom and 

Nelson 1991). De Dekker et al. (1999) presented preliminary data that suggest the 

possibility of a small thermodependence of Sr uptake in ostracod calcite of Cyprideis. This 

relationship underscores the potential of using Sr/Ca ratios as a salinometer in 

palaeoenvironmental reconstructions based on the geochemistry of fossil ostracods (e.g. 

Chivas et al. 1986; Boomer et al. 2003). The Sr/Ca ratios observed in ostracod calcite in 

the Lena River Delta seem to be positively correlated with their ambient waters (Figure 2-

12). However, the variation in electrical conductivity in our data is too small to assume a 

strong correlation between changes in Sr/Ca ratio and electrical conductivity (salinity). The 

Sr/Ca ratio varies between 0.66 and 1.94 × 10−3 in ostracod calcite and between 2.63 and 

4.83 × 10−3 in waters (Figure 2-12). For the most common species in our study, F. pedata, 

average partition coefficients D(Sr) for living caught specimens were calculated according 

to equation (1) and were 0.33 ± 0.06 (1σ) for female adults (n = 19) and 0.32 ± 0.06 (1σ) 

for male adults (n = 18). Xia et al. (1997c) discussed a Mg dependence of D(Sr), where 

D(Sr) increases with Mg concentration because of the large physiological energy needed 

to exclude Mg (and Sr) during shell calcification in waters of high Mg/Ca. Following this 

assumption, in our data the calculated low partition coefficients D(Sr) correspond to the 
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low Mg/Ca ratios of the ambient waters. D(Sr) values for other species were not 

calculated due to the low numbers of individuals.  

 

 

Figure 2-11 Plot of Mg/Ca ratios in ostracod calcite and ambient waters for recent and subfossil 

single valves of: (a) F. pedata; (b) C. candida, C. muelleri jakutica, F. harmsworthi, F. cf. hyalina, F. 

sp. 2 and L. sanctipatricii. The species identification follows the key: species (e.g. F. pedata → 

pedata) and state (recent → rec or subfossil → sub)  

 

 

Figure 2-12 Plot of Sr/Ca ratios in ostracod calcite and ambient waters for recent and subfossil 

single valves of: (a) F. pedata; (b) C. candida, C. muelleri jakutica, F. harmsworthi, F. cf. hyalina, F. 

sp. 2 and L. sanctipatricii. The species identification follows the key: species (e.g. F. 

pedata → pedata) and state (recent → rec or subfossil → sub)  

 

Arctic ostracods are observed to produce only one population in the open water season 

(Semenova 2003), which lasts about 3 months in the Lena River Delta. That implies that 

the adults will hatch first in July. So the time lag between shell secretion and time of our 

sampling (in August) was quite short, while hydrochemical characteristics of the host 

waters were fairly stable. We therefore assume that shell chemistry at sampling time was 

similar to the one at secretion time. Nevertheless, it is clear that our results do not reflect 

the exact Mg/Ca and Sr/Ca ratios of host waters during shell secretion, because of 
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laboratory manipulations, as shown in other experiments (Xia et al. 1997c). Furthermore, 

we emphasise strongly that the very low ionic content of the waters of the polygonal 

tundra does not allow a safe interpretation of the relationship between the element 

chemistry of the waters and the ostracod calcite. We refer to the fact that the observed 

variability does not allow us to calculate transfer functions.  

In comparison with other studies on element chemistry in waters and ostracods (Engstrom 

and Nelson 1991; Xia et al. 1997c; Wansard et al. 1998, 1999; Wansard and Mezquita 

2001), our data are likely to represent one endmember on the scale of hydrochemical 

information preserved in ostracods. It should be complemented by further investigations in 

(sub-) Arctic waters with higher ionic contents, where continental climatic conditions 

favour higher evaporation rates that alter the hydrochemical setting of fresh waters.  

 

2.6.3 Stable isotopes in ostracods and ambient waters 

Like element ratios, the isotopic composition of ostracod calcite (δ18O, δ13C) can be linked 

to the composition of the ambient water at the time of valve formation. (e.g. Chivas et al. 

1993; Xia et al. 1997b, b; von Grafenstein et al. 1999). Therefore, δ18O and δ13C records 

of ostracod calcite provide a highly localised and temporally restricted reflection of the 

isotopic composition of water and TDIC, making them useful proxies in palaeolimnology 

(Holmes 1996). The isotopic composition of ostracod calcite shows both interspecific and 

intraspecific variations, mainly because of species-dependent metabolic effects on isotope 

fractionation, the timing of shell calcification in different seasons and at different 

temperatures, and species-dependent preferences for different microhabitats (e.g. Heaton 

et al. 1995; von Grafenstein et al. 1999). The δ18O of ostracod carbonates is used as a 

proxy for temperature and isotopic composition of the water from which they precipitated 

(e.g. Chivas et al. 1993; Xia et al. 1997b; von Grafenstein et al. 1999). Factors affecting 

the oxygen isotope composition of lake water are the isotopic composition of precipitation, 

drainage basin hydrology, groundwater input, the precipitation/evaporation ratio, the 

residence time of water, the size of the waterbody, as well as the hydrochemical 

properties and temperature of the lake water (e.g. Kelts and Talbot 1990; Schwalb 2003; 

Leng and Marshall 2004).  

Water bodies mostly fed by precipitation are common on the Lena River terraces above 

the floodplain and are generally not deep enough for extensive melting of the permafrost. 

Therefore, the influence of river water and meltwater from the frozen ground is of minor 

importance for most of the waterbodies. The main water source is summer precipitation. 

The δ18O of these waterbodies ranged between −13.1‰ and −17.6‰ δ18O (mean 

−15.1‰; n = 23) with a slope of 5.56 (Figure 2-4a). According to Meyer et al. (2002a), rain 

water samples from the Bykovsky Peninsula ranged between −11.4‰ and −17.0‰ δ18O 
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(mean −14.8‰; n = 10) with a slope of 6.77 and lie nearer to the GMWL than the data 

from lakes and ponds, which confirms the noticeable influence of evaporation on the δ18O 

signal in waterbodies fed by precipitation. In general, the smaller polygonal ponds show a 

stronger deviation from the GMWL than thaw lakes, which in turn deviate more than 

thermokarst lakes (Figure 2-4a); this is obviously caused by lower evaporation rates per 

volume in deeper waters. Furthermore, deeper thaw lakes and thermokarst lakes reflect a 

mixed isotopic signal of precipitation waters and meltwater from the underlying ground ice. 

The latter is known to have a mean δ18O isotopic ratio of −25‰ in Holocene ground ice 

and −30‰ in late Pleistocene ground ice (Meyer et al. 2002a). The isotopic signal of one 

cut-off river branch on Samoylov Island (sample SAM-14, −20.4‰ for δ18O and −159.6‰ 

for δD) corresponds to the relatively light isotopic composition of the river water (−20.5‰ 

for δ18O and −156‰ for δD; Schirrmeister et al. 2003). Obviously, this waterbody was 

flooded by the Lena River during spring flooding.  

A strong covariance is shown between δ18O in ostracod calcite of F. pedata (Figure 2-13a) 

and of other species (Figure 2-13b) with the water in which the valves were formed. The 

data show a near 1:1 relationship of δ18O with a systematic shift to heavier values in 

ostracod calcite than in the respective ambient waters. According to Xia et al. (1997b), this 

shift (∆) reflects the dependence between the δ18O of ostracod calcite and of water with 

respect to water temperature, and is defined as: ∆ = δ18Ovalve – δ18Owater [‰]             (2) 

 

 

Figure 2-13 Plot of δ18O in ostracod calcite and ambient waters for recent and subfossil single 

valves of: (a) F. pedata; (b) C. candida, F. harmsworthi, F. cf. hyalina and F. sp. 2. The species 

identification follows the key: species (e.g. F. pedata → pedata) and state (recent → rec or 

subfossil → sub)  

 

The shift varies between ∆min = + 1.1‰ and ∆max = + 3.2‰ (excluding two outliers), with a 

mean of + 2.2‰ ± 0.5 (1σ) for living caught female and male specimens of F. pedata 

(Figure 2-13a). Two outliers with shifts of −6.1‰ and −6.7‰ were observed in valves of 

living female and male F. pedata caught in one thaw lake (SAM-24) on Samoylov Island. 
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This thaw lake drained into the river, had a water depth less than one meter, and the 

highest electrical conductivity and ionic contents of all studied waters (Appendix III-1). 

Probably because of the very shallow water in this lake, evaporation had a stronger 

influence than in other waterbodies and led to the unusual isotopic composition. These 

samples were therefore not included in further interpretation.  

 

 

Figure 2-14 Temperature-dependent δ18O fractionation in Fabaeformiscandona pedata expressed 

as: (a) variations in the calcite-water oxygen isotope fractionation shift ∆ (T [°C] = 20.22–

4.48(δ18Ovalve–δ18Owater)) in comparison with that of inorganic carbonates (T [°C] = 13.8–

4.58(δ18Ovalve–δ18Owater) + 0.08(δ18Ovalve–δ18Owater)
2) by Kim and O’Neil (1997), re-expressed by 

Leng and Marshall (2004); (b) variations in the calcite-water oxygen isotope fractionation factor α 

for ostracods of the genera Candona and Fabaeformiscandona: closed dots for F. rawsoni (Xia 

et al. 1997b); open diamond for C. candida (von Grafenstein et al. 1999); closed diamonds for C. 

candida (Keatings et al. 2002) and closed squares for F. pedata (this study) in comparison with 

data of equilibrium fractionation in inorganic calcite at 5 mM Ca2+ solution (Kim and O’Neil 1997) 

given as a solid line. The dashed line reflects the slope in the data of this study  

 

The parameters (δ18Ovalve, δ18Owater) were measured in duplicate with high-precision of 

about ±0.1‰ (1σ) and therefore measurement errors can be ruled out. The isotopic 

composition of the water is more negative than that of the valves. However, the water was 

sampled in summer after the ostracod calcite had formed and δ18Owater should 

consequently rather be heavier (more summer precipitation, more evaporation) than the 

measured one. This leads to the assumption that the systematic deviation of about 2‰ is 

not related to δ18Owater. The shift of about 2‰ (Figure 2-13a) between δ18Owater and 

δ18Ovalve includes most likely metabolic (vital) and temperature effects which cause this 

systematic deviation. A metabolic or vital offset as compared to inorganic calcite in 

equilibrium was quantified to about 1.4‰ for F. pedata (Figure 2-14a). Vital offsets were 

already proposed by von Grafenstein et al. (1999), where a temperature-independent 

deviation (vital offset) of ∆ = +2.2‰ ± 0.15 (1σ) was inferred for several species of 
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Candoninae. Other studies already showed the influence of vital effects on the isotopic 

composition of ostracod calcite of modern F. rawsoni (Xia et al. 1997b) and of C. candida 

(Keatings et al. 2002).  

Our dataset is based on sampling of ostracods from shallow waterbodies with a high daily 

temperature range. Hence, it is difficult to relate our temperature data directly to δ18Owater 

and δ18Ovalve. Therefore, we correlated the minima and maxima of temperatures (Tmin, 

Tmax) and of shifts (∆min, ∆max) in our dataset (Figure 2-14). Water temperatures and 

δ18Owater measured at the time of ostracod sampling may have been different from those 

at the time of valve calcification. Nevertheless, we assume that field data reflect potential 

temperature variations between about 6 and 15°C over the summer period. Due to the 

lack of continuous water temperature measurements over the ice free period, we use field 

observations as well as air and soil temperature measurements from Samoylov Island in 

summer 2002 (Wille et al. 2003) to support the relevance of water temperature variations. 

The temperature regime of the studied shallow polymictic ponds and lakes is controlled by 

air and soil temperatures and should range between them. Hourly mean temperatures in 

July 2002 varied from 0°C to 25°C in the air and from 3°C to 10°C in the soil. In August 

2002, the temperature variation ranged from 1°C to 24°C in the air and from 4°C to 10°C 

in the soil (J. Boike, AWI Potsdam, unpublished data). The studied shallow water bodies 

frozen down to the bottom in winter usually start thawing in the middle of June and 

refreeze in the middle of September (G. Stoof, AWI Potsdam, pers. comm.). The 

ostracods from these habitats most likely start their ontogeny not earlier than the waters 

are free of ice at the end of June when water temperature should be distinctly above 0°C. 

After this ostracods certainly need some time to reach adulthood. From these 

presumptions we conclude that a range of near bottom water temperature between about 

6°C and 15°C which was measured during ostracod sampling seems to be quite realistic.  

The temperature-dependence of δ18O fractionation is reflected by the variation of the shift 

within a species, where increased temperatures correspond to smaller shifts (e.g. Leng 

and Marshall 2004). Xia et al. (1997b) showed a clear and consistent temperature-

dependence of oxygen isotope fractionation during biological calcification by the species 

Fabaeformiscandona rawsoni (TRESSLER, 1957) in culture experiments at 15°C and 25°C. 

The 15°C cultures were about 2‰ heavier than the 25°C cultures, which confirms with the 

expected deviation of about 2‰ for a temperature difference of 10°C in inorganic 

carbonates (Xia et al. 1997b). The observed variation in the shift for modern F. pedata 

(between ∆min = + 1.1‰ and ∆max = + 3.2‰) over a temperature range of 9.4°C 

(Tmin = 5.9°C and Tmax = 15.3°C) during the fieldwork in summer 2002 can be explained 

by different temperatures of the water at the time of calcification (Figure 2-14a). The 

equation relating δ18O of ostracod calcite to temperature is: T [°C] = 20.22–4.48(δ18Ovalve–
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δ18Owater), defined according to the standard palaeotemperature scale by Epstein et al. 

(1953).  

From the two samples where maximal and minimal shifts are found, the calcite-water 

oxygen isotope fractionation factors (α) are calculated based on the definition:  

α = δ18Ovalve + 1,000 /  δ18Owater +1,000                                                                              

(3) 

The results are α = 1.0342 at 5.9°C and α = 1.0320 at 15.3°C (δ18Ovalve and δ18Owater, 

relative to VSMOW). The temperature-dependence between ostracod calcite and ambient 

water, expressed as oxygen isotope fractionation factors (α), is given in Figure 2-14b, 

along with results for inorganic calcite (Kim and O’Neil 1997) and for ostracod calcite from 

other studies (Xia et al. 1997b; von Grafenstein et al. 1999; Keatings et al. 2002) which 

dealt with species of the genera Candona and Fabaeformiscandona. The oxygen isotope 

fractionation factors for inorganic calcite in equilibrium are given as solid line for a 5 mM 

Ca2+ solution which was assumed as most representative for equilibrium fractionation 

(Kim and O’Neil 1997). The other data plotted in Figure 2-14b derive from an in vivo study 

of C. candida in small shallow ponds in southern England (α = 1.0345 at 11°C; Keatings 

et al. 2002), and otherwise from an in vivo study of the same species in a large, deep lake 

in southern Germany (α = 1.0356 at 6°C, calculated by Keatings et al. 2002, based on 

data of von Grafenstein et al. 1999). Furthermore, data of an in vitro study of is shown for 

F. rawsoni (α = 1.0322 at 15°C and α = 1.0305 at 25°C; Xia et al. 1997b). The authors 

stated that F. rawsoni incorporate relatively more 18O relative to inorganic calcite at 25°C 

than at 15°C, probably due to slower or less robust calcification, and to stress at the lower 

temperature. Therefore, the F. rawsoni data are closer to equilibrium fractionation line of 

inorganic calcite and reflect lower fractionation at a given temperature (Xia et al. 1997b). 

Even though the comparison of data from different environments and laboratory 

experiments is highly speculative, the results are instructive since presently there are only 

a few studies on modern ostracods of different taxa and some aspects are worth 

discussing. Since the slope of temperature-dependence of the F. pedata data is defined 

by just two points (Figure 2-14b), and our species is different, we only assume a general 

accordance with the results of the studies cited above. The effect of lower calcification 

probably due to temperature-stress conditions as described by Xia et al. (1997b) is not 

seen in our data and most likely due to coldwater adaptation by the Arctic species F. 

pedata. The slope between the two data points of F. pedata is parallel to that of 

equilibrium fractionation of inorganic calcite, but systematically shifted. Both data points 

are arranged between that of Candona species and inorganic calcite. Possible 

explanations of lower fractionation in F. pedata can be attributed to species-dependent 

vital effects which result in different fractionation factors. Up to now the mechanisms of 
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ostracod calcification still remain unclear (e.g. Keatings et al. 2002). Furthermore, the 

different fractionation can be also caused by habitat-specific characteristics of Arctic 

fects are 

 δ13C of TDIC (e.g. von Grafenstein et al. 

999; Schwalb 2003; Leng and Marshall 2004).  

 

environments, which are not fully understood up to now. 

In summary, the variation in δ18O ostracod calcite corresponds to the isotopic composition 

of ambient waters, which is affected by the general climatic setting of the region, the water 

source feeding the waterbody (precipitation or river water), and the influence of meltwater 

from the frozen ground. For the δ18O of ostracods adapted to cold environments such as 

F. pedata, a temperature-dependence is reflected in the variations of calcite-water oxygen 

isotope fractionation factor (α) and shift (∆). Additionally, the deviation to equilibrium 

fractionation is most likely influenced by metabolic (vital) effects. These vital ef

also seen in the deviation of the δ18O signal in ostracod calcite of other species.  

The δ13C of carbonates is not very influenced by temperature variations but is rather 

understood to be a response to changes in the isotopic ratio of the total dissolved 

inorganic carbon (TDIC) from which the carbonates precipitated (Holmes 1996). 

Commonly, changes in δ13C are attributed to changes in carbon and productivity within a 

lake (e.g. Schwalb 2003; Leng and Marshall 2004). Rates of exchange of CO2 with the 

atmosphere, photosynthesis/respiration of aquatic plants, organic decay, and bacterial 

processes are the main controlling factors for the

1

 

Figure 2-15 Plot of δ13C in ostracod calcite and ambient waters for recent and subfossil single 

valves of: (a) F. pedata; (b) C. candida, F. harmsworthi, F. cf. hyalina and F. sp. 2. The species 

identification follows the key: species (e.g. F. pedata → pedata) and state (recent → rec or 

ubfossil → sub)  s

 

In Figure 15 the relationship between δ13C in ostracod calcite of different species and in 

water is shown. The δ13C of the waters ranges between +0.1‰ and −14.4‰, and waters 

fed by precipitation cannot be distinguished from that in the old branch. The considerable 

scatter in δ13C indicates the influence of complex abiotic and biotic effects on δ13C 
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ily variation of water plant photosynthesis and seasonal variations 

uring the summer. 

tructions of palaeoenvironments. The following conclusions can 

(1) 

ipatricii were found. The most common species are F. pedata

(2) 

ne endmember on a scale of hydrochemical information preserved in 

(3) 

r recent and subfossil valves, either within one species or between 

(4) 

0.06 (1σ) for female adults (n = 19), and 0.32 ± 0.06 (1σ) for 

(5)  e, indicate the water 

fractionation as is expected in natural lacustrine systems (Leng and Marshall 2004). The 

most probable explanation for the observed δ13C variation at the studied shallow ponds 

and lakes is the da

d

 

2.7 Conclusions 

For the first time, this study deals with the geochemical properties of modern freshwater 

ostracods from northeast Siberia. The geochemical record in ostracod calcite (Mg/Ca, 

Sr/Ca; δ18O, δ13C) was investigated in comparison with data from ambient waters. Over 

the years, several studies on this branch of ostracodology have been undertaken, but 

even more recent studies do not fully explain the relationships between water and shell 

chemistry (e.g. Wansard et al. 1998, 1999; Griffiths and Holmes 2000; Boomer et al. 

2003). Our study was the first attempt to expand knowledge about the geochemistry of 

freshwater ostracods in Arctic regions. The results show the potential of Arctic freshwater 

ostracods, which are often preserved in Quaternary permafrost deposits, as geochemical 

proxies for regional recons

be drawn from our study:  

 The ostracod assemblages in the Lena River Delta include typical Arctic species like 

Candona muelleri jakutica, Fabaeformiscandona harmsworthi, Fabaeformiscandona 

pedata, and Tonnacypris glacialis, but also cosmopolitan species like Candona 

candida, Fabaeformiscandona cf. hyalina, Fabaeformiscandona cf. tricicatricosa, 

Fabaeformiscandona protzi, Bradleystrandesia reticulata, Cypria ophtalmica, and 

Limnocytherina sanct

and F. harmsworthi.  

 Due to the very low ionic content of the waters of the Arctic tundra, the observed 

element ratios of ostracod calcite (Mg/Ca, Sr/Ca) in recent valves of female and male 

specimens of different species range in very narrow arrays. Therefore, our data 

represent o

ostracods. 

 No distinct differentiations are observed in Mg/Ca, Sr/Ca, δ18O, and δ13C between 

female and male o

different species.  

 Average partition coefficients D(Sr) for living caught specimens of F. pedata were 

calculated, with 0.33 ± 

male adults (n = 18).  

The δ18O data of the waters, and consequently of ostracod calcit
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(6) 

compared to 

inorganic calcite in equilibrium was quantified with 1.4‰ for F. pedata.  

 

source in the watershed is either precipitation or the Lena River.  

 A near 1:1 relationship of δ18O in waters and valves was found, with a mean shift of 

∆mean = 2.2‰ ± 0.5 (1σ) to heavier values for calcite of modern F. pedata (n = 34) as 

compared to ambient waters. The shift is not dependent on δ18Owater, and caused by 

vital and temperature effects. Temperature-dependence is reflected in the variations 

of ∆ (between ∆min = +1.1‰ and ∆max = +3.2‰). A vital effect as 
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3.1 Abstract   

Taxonomical and geochemical investigations on freshwater ostracods from 15 waters in 

Central and Northeast (NE) Yakutia have been undertaken in order to estimate their 

potential usefulness in palaeoenvironmental reconstructions based on regional fossil 

records. Higher variability in environmental factors such as pH, electrical conductivity, and 

ionic content was observed in thermokarst-affected lakes in Central Yakutia than in NE 

Yakutia lakes. Species diversity of freshwater ostracods reached up to eight taxa per lake, 

mostly dominated by Candona weltneri HARTWIG, 1899, in Central Yakutia, whereas in NE 

Yakutian waters the diversity was lower and Candona muelleri jakutica PIETRZENIUK, 1977 

or Fabaeformiscandona inaequivalvis (SARS, 1898) had highest frequencies. Coupled 

analyses of stable isotopes (δ18O, δ13C) and element ratios (Sr/Ca, Mg/Ca) were 

performed on both host waters and ostracod calcite, aiming to estimate the modern 

relationships. Correlations between host waters and ostracod calcite of single species 

were found for δ18O, δ13C and Sr/Ca and Mg/Ca ratios. The relationships between δ18O, 

Mg/Ca and Sr/Ca ratios and electrical conductivity (salinity) as an expression of solute 

concentrations in the waters mainly controlled by evaporation are more complicated but 

evident, and may be useful in future interpretation of geochemical data from fossil 

Siberian ostracods.  

 

3.2 Introduction 

Knowing the physico-chemical properties of lake water is a prerequisite for understanding 

relationships between environmental conditions and the significance of bioindicators such 

as freshwater ostracods for interpreting fossil records in palaeoenvironmental 
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reconstructions. Therefore, we studied relevant environmental parameters controlling 

ostracod diversity and the geochemical properties of their shells in order to apply modern 

reference data in future studies of fossil assemblages.  

The most characteristic feature of micro-crustacean ostracods is a bi-valved carapace 

made of low-magnesium calcite. Changes in environmental parameters alter the 

composition of freshwater ostracod assemblages and the geochemical composition of 

ostracod calcite that precipitates from the host water at the time of shell secretion (e.g. 

Griffiths and Holmes 2000). In particular, stable isotopes of oxygen and carbon (δ18O, 

δ13C) as well as molar element ratios of strontium and magnesium to calcium (Sr/Ca, 

Mg/Ca) in ostracod calcite provide a highly localised and temporally restricted reflection of 

the host water composition (Griffiths and Holmes 2000).  

In East Siberia, two palaeo-archives have been used mainly for reconstructions of 

palaeoclimatic changes: lake sediments (e.g. Katamura et al. 2006; Lozkhin et al. 2007) 

and permafrost deposits (e.g. Hubberten et al. 2004). The scientific interest in 

palaeoclimatic and palaeoenvironmental reconstructions from East Siberian records is 

based on current understanding that permafrost is a climate-driven phenomenon and 

Arctic regions are sensitive to the ongoing climate change. In this context, the Siberian 

Arctic is experiencing a large impact from global warming (ACIA 2005; IPCC 2007). The 

permafrost system reacts to warming with intensified thermokarst processes which lead to 

changes in matter and energy cycles, and also influence relief and hydrology in the Arctic. 

Understanding past environmental history can enable us to explain and estimate future 

environmental dynamics in Arctic permafrost areas.  

Remains of fossil freshwater ostracods have been obtained from Siberian lacustrine 

sediments and used as proxy for climatic and hydrological conditions during the Late 

Quaternary (Wetterich et al. 2005; Wetterich et al. 2008c). However, modern and fossil 

Siberian freshwater ostracods have seldom been studied. The first description of modern 

ostracods from Yakutia was given by Pietrzeniuk (1977). More recent data on ostracod 

occurrence in Siberia was summarised by Semenova (2005). The first geochemical 

studies on shells of Yakutian freshwater ostracods were carried out on samples from 

waters located on islands in the Lena River Delta, Laptev Sea (Wetterich et al. 2008a).  

In this article we present taxonomical and geochemical data of ostracods and their 

habitats from two study regions in East Siberia in order to apply modern analogues to 

fossil records. Further studies of East Siberian fossil ostracod assemblages and their 

palaeoecological interpretation will benefit from the modern reference data offered here 

since the understanding of fossil records is impossible without knowledge of recent 

relationships and processes. Therefore, we focus our research on climate-relevant 
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parameters such as evaporation, solute concentration and temperature regime in lakes as 

they are reflected in geochemical composition of both host waters and ostracod calcite.  

 

3.3 Study area 

Our limnological study in East Siberia includes two regions: (1) Central Yakutia (61° N to 

62° N and 129° E to 132° E) at the Lena River, and (2) NE Yakutia (66° N and 143° E) at 

the mouth of the Moma River where it flows into the Indigirka River (Figure 3-1).  

 

Figure 3-1 Location of the two study regions in Central and Northeast Yakutia in East Siberia. Map 

compiled by G. Grosse (UAF) using data from Hastings et al. (1999)  

 

The study regions belong to the boreal coniferous forest zone (taiga) and to the zone of 

continuous permafrost. The permafrost thickness in both regions reaches up to 500 m 

(Geocryological Map 1991). The climatic conditions are strongly continental, with high 

annual temperature amplitudes (Gavrilova 1998). The mean annual air temperatures are 

−10.4°C in Yakutsk (TJanuary −41.7°C; TJuly +18.1°C) and −15.3°C in Khonuu (TJanuary 

−46.3°C; TJuly +13.9°C; Rivas-Martínez 2007). The mean precipitation averages about 

250 mm in both regions (Rivas-Martínez 2007). About 75–85% of the annual precipitation 

occurs from April to October, and evaporation exceeds precipitation during the summer 
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(Gavrilova 1973). The moisture deficit amounts to more than 220 mm per year in both 

study regions due to approximately twofold higher potential evapotranspiration than real 

precipitation (Gavrilova 1969; Rivas-Martínez 2007).  

Thermokarst, an important landscape-forming feature of the permafrost zone, is mainly 

caused by extensive melting of ground ice in the formerly underlying permanently-frozen 

loose sediments (van Everdingen 1998). Widespread thermokarst processes form 

numerous depressions in the landscape surface (Alases), which are often occupied by 

thermokarst lakes. This thermokarst landscape is typical of Central Yakutia (e.g. Soloviev 

1973). Due to the continental climate conditions, the lakes of Central Yakutia are likely to 

experience changing water levels and desiccation (e.g. Nemchinov 1958; Bosikov 2005; 

Pestryakova 2005). Water level changes and depth in thermokarst lakes are also 

controlled by geomorphological features (e.g. Bosikov 2005). Solute concentrations in 

these waters are influenced by the ionic composition of thawed ground ice from the 

underlying permafrost (e.g. Lopez et al. 2007), but the main source of such waters is 

precipitation. Thermokarst lakes are sensitive to any variations in climate, vegetation, or 

anthropogenic influence (e.g. Kumke et al. 2007; Pestryakova et al. 2007). Except of river 

branches where periodic flooding may alter the isotope and ionic composition all other 

studied waters are mainly fed by precipitation since visible inflows and outflows have not 

been observed. In summer, commonly the upper 0.5 to 2.0 m of the ground is unfrozen. 

The thickness of the so-called active layer mainly depends on substrate, exposition and 

vegetation covers and controls the melt water flow above the permafrost table within the 

seasonal thawed ground. 

 

3.4 Material and methods 

All presented samples and data were obtained in frame of a joint Russian–German 

expedition to Yakutia in summer 2005. A total of 56 lakes and other waters were sampled 

for several limnological purposes during the fieldwork in two study regions. Here, we 

present the limnological data from all sampled lakes and focus on ostracod data from 15 

sites where enough ostracod material could be obtained for further taxonomical and 

geochemical analyses.  

 

3.4.1 Field work 

In July 2005, fieldwork was performed in Central Yakutia; 12 sites around Yakutsk and 27 

sites on the Lena-Amga interfluve east of Yakutsk were sampled (Figure 3-1). The studied 

waters, including thermokarst lakes in different development stages, lakes in thermo-

erosion depressions, one Tukulan (dune) lake and old branches of the Lena River 

(Appendix III-3), are situated on denudation plains and different flood plain levels 
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(terraces) of the Lena River. The classification of thermokarst lakes comprises of the 

following stages Soloviev (1959): Dyuedya (initial thermokarst), Tyympy (first stage of 

Alas development) and mature Alas lake. In August 2005, 17 sites in total were sampled 

in NE Yakutia near the Khonuu settlement (Figure 3-1) on the flood plain and the lower 

terraces of the Indigirka and the Moma rivers. Kerdyugen ponds (ponds in areas of burned 

forests) as well as lakes in lowland depressions and anthropogenic water basins were 

studied (Appendix III-3). 

Studies of water chemistry and physics in lakes were undertaken in order to describe 

recent environmental variables affecting life conditions of ostracods. For hydrochemical 

analyses conducted while still in the field and afterwards in the laboratory, lake water was 

sampled from each site in Central Yakutia in the lake centre at 0.5–1 m water depth using 

an inflatable dinghy. Because we did not have a dinghy in NE Yakutia, the lake water was 

sampled at the lake margin at a water depth of 0.5–1 m.  

Total hardness, alkalinity and acidity were determined using titrimetric test kits (Macherey-

Nagel, Visocolor series). We quantified pH, temperature, oxygen concentration and 

electrical conductivity (EC) using a handheld multi-parameter instrument (WTW 340i) 

equipped with appropriate sensors (pH: SenTix 41; Oxygen: CellOx 325; EC and 

temperature: Tetracon 325). In August, due to technical problems with the oxygen sensor 

these measurements were continued using a titrimetric test kit (Aquamerck, Oxygen Test). 

These field measurements were performed on water samples directly after sampling. Our 

investigations included measuring water depth using an echo sounder (Appendix III-3). 

Continuous measurements of water temperature, EC and water level fluctuations (HM-500 

series, Hi-net) were performed from May to September 2005 at the Japanese–Russian 

research station Neleger, west of Yakutsk (62°05′ N, 129°45′ E) in an Alas lake (2 m 

deep) at a water depth of ca. 0.4 m using a datalogger (Campbell, CR10X).  

 

3.4.2 Water analyses 

Water samples were analysed for stable isotopes and hydrochemistry at the Alfred 

Wegener Institute (Potsdam and Bremerhaven, Germany).  

The lake water samples for δ18O determination were stored cool and afterwards analysed 

by an equilibration technique (Meyer et al. 2000) using a mass-spectrometer (Finnigan 

MAT Delta-S). The water samples intended for analysis of δ13C in total dissolved inorganic 

carbon (TDIC) were preserved by adding HgCl2 until analysis; carbon was extracted from 

lake water with 100% phosphoric acid in an automatic preparation line (Finnigan 

Gasbench I) coupled online with the mass-spectrometer (Finnigan MAT 252). The 

reproducibility of these data derived from standard measurements is better than ±0.1‰ 

(1σ). The stable isotope water data are expressed in delta per mil notation (δ, ‰) relative 
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to the Vienna Standard Mean Ocean Water (VSMOW) for water isotopes (δ18O, δD), and 

relative to the Vienna Pee Dee Belemnite (VPDB) standard for δ13C in TDIC.  

Water samples for ion analysis were passed through a cellulose-acetate filter (pore size 

0.45 μm) in the field. Afterwards, samples for element (cation) analyses were acidified 

with HNO3, whereas samples for anion analysis and residue samples were stored cool. 

Upon return to the laboratory, the element content of the water was analysed by 

Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES, Perkin-Elmer 

Optima 3000 XL), while the anion content was determined by Ion Chromatography (IC, 

Dionex DX-320). The bi-carbonate concentrations of the water were calculated from the 

alkalinity measurements in the field. To ensure the reliability of the analytical methods, the 

ion balance of each sample was calculated, resulting in deviations of better than ±10% for 

most samples. Poor charge balances were obtained in single samples, that are caused 

likely by underestimated bi-carbonate concentrations. Molar ratios in the water were 

calculated from the concentrations of magnesium, strontium and calcium as Mg/Ca and 

Sr/Ca (×10−3).  

 

3.4.3 Ostracod analyses 

Living ostracods were captured from the upper 5 cm of the lake margin sediment in about 

0.5–1 m water depth using an exhaustor system (Viehberg 2002), and were preserved in 

70% alcohol. This method allows representative and qualitative sampling of living 

specimens, enables further preparation of the soft body needed for taxonomical work, and 

preserves the undamaged valves needed for geochemical analyses of ostracod calcite. In 

samples with sufficient number of living ostracods, the most common species were 

prepared for element (Mg, Sr, Ca) and stable isotope (δ18O, δ13C) analyses.  

The species were identified under a binocular microscope (Zeiss SV 10) by the soft body 

and valve characteristics described in Bronshtein (1947), Pietrzeniuk (1977), and Meisch 

(2000), and following the taxonomic nomenclature given by Meisch (2000). The total 

number of caught and identified individuals per lake reaches more than 100 in most lakes 

except of Yak-31 (69 individuals) Yak-22 (92 individuals) and Yak-12 (99 individuals). 

Maximal number of ostracods was caught in Yak-49 (911 individuals). From the total 

number of individuals per lake percentage data of species frequencies were calculated as 

shown in Figure 7. Scanning Electron Microscopy (SEM, Zeiss Digital Scanning 

Microscope 962) with ×40, ×80, or ×100 magnification, depending on valve sizes, was 

used at the GeoForschungsZentrum (Potsdam, Germany) for imaging valves of the most 

common ostracod species.  

Altogether, 34 samples of modern ostracods from 15 water bodies were analysed for δ18O 

and δ13C stable isotopes and for Mg/Ca and Sr/Ca ratios. In order to create sufficient 
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material (ca. 50 μg) for isotope analyses we compiled two to four valves of one species 

and sex for mostly two samples per lake (Appendix III-5). In total, 112 valves were used 

for isotope analyses. The analyses on element content (Sr, Mg, Ca) of ostracod calcite 

were carried out mostly on two single-valve samples from one species and sex per lake 

(Appendix III-5). In total, 34 valves were used for element analyses. The analytical work 

on ostracod valves was performed at the GeoForschungsZentrum laboratories. Following 

Keatings et al. (2006b) the ostracod valves were manually cleaned by removing the soft 

body under the binocular microscope, and then washed in distilled water and air-dried. 

Only clean valves of adult specimens were used for analysis. Particles adhering to valves 

were removed with a fine brush. The prepared valves were dissolved with 103% 

phosphoric acid and analysed for δ18O and δ13C by a mass-spectrometer (Finnigan MAT 

253) directly coupled to an automated carbonate preparation device (Kiel IV). The 

reproducibility as determined by standard measurements is better than ±0.06‰ (1σ) for 

δ18O and ±0.04‰ (1σ) for δ13C. The stable isotope ostracod calcite (δ18O, δ13C) data are 

expressed in delta per mil notation (δ, ‰) relative to VPDB.  

For analysis of Ca, Mg and Sr we used an ICP-OES (Varian Vista-MPX) at the 

GeoForschungsZentrum. The single valve samples were placed in a reaction vial, 

dissolved in 30 ml of 20% HNO3 (Baker Ultrex), and 3 ml of distilled water were added. 

The ICP-OES was calibrated with three multi-element standards prepared from mono-

element standard solutions for ICP (Alfa Aesar Specpure 1,000 μg/l). Standard solution 1 

contained 1 ppm Ca, 0.02 ppm Mg and 0.01 ppm Sr. Concentrations in standard solutions 

2 and 3 were two and three times higher, respectively. For samples with calcium 

concentrations more than 3 ppm standard solutions of 2, 4 and 6 ppm Ca were used. 

Three determinations were made from each sample to check machine precision. 

Contaminant (blank) concentrations in the solvent acid were analysed for each batch of 10 

samples to determine detection limits of the measurements. The detection limits in 

solution (3σ above background in μg/l (ppb), e.g. Doerfel 1966) are 0.55 for Ca 

(wavelength 422.673 nm), 0.11 for Mg (279.553 nm) and 0.01 for Sr (407.771 nm). The 

results for Mg, Sr and Ca are expressed as μg/g (ppm) in calcite following Chivas et al. 

(1986). From these results, molar ratios in ostracod calcite were calculated as Mg/Ca 

(×10−2) and Sr/Ca (×10−3).  

 

3.5 Results 

3.5.1 Physico-chemical characteristics of the lakes and ponds 

Results of limnological investigations and observations during the fieldwork and later in 

the laboratory are summarised in Appendix III-3 and Appendix III-4. 
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The studied lakes are shallow with maximal depths of about 4 m. Lake area varies from 

2 × 5 m to 30 × 1000 m. The pH ranges from 6.6 to 10.2 in mostly slightly alkaline to 

alkaline waters in Central Yakutia and from 6.0 to 9.1 in mostly neutral waters in NE 

Yakutia. Electrical conductivity differs between the regions, with generally higher values in 

Central Yakutia (0.10 to 5.71 mS/cm) than in NE Yakutian waters (0.03 to 0.93 mS/cm). 

The water temperature varies from 8.0 to 26.3°C at different times and sites of sampling. 

The data obtained at the Neleger Site from continuous monitoring of water temperature, 

EC and lake level fluctuations in one Alas lake reflect clear trends during summer 2005 

(Figure 3-2).  

 

Figure 3-2 Continuous temperature and conductivity measurements in an Alas lake at the 

Japanese–Russian research station Neleger from May 2 until September 27, 2005. Note lacking 

data due to technical problems in the first half of July 2005  

 

The water temperature record is characterised by daily high amplitudes of up to 11°C with 

mean temperatures of 9.8°C in May, 19.1°C in June, 19.2°C in the second half of July 

(data from 03 to 21 July 2005 are lacking), 14.9°C in August and 9.6°C in September. 

Electrical conductivity increases continuously from the beginning of May until the end of 

June, rising fourfold from 0.1 to 0.4 mS/cm, and likely stays at the upper end of this range 

during July and August; the highest value (0.5 mS/cm) is reached in the second half of 

September (Figure 3-2). 
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The measured lake level fluctuations are consistent with the changes in conductivity; they 

decrease from May to June and remain fairly stable from July to September (Figure 3-2). 

Lake levels briefly increased after larger rainfall events (Figure 3-2); in total, 217 mm 

precipitation was measured during the monitoring period.  

As shown in Figure 3-3, the ionic composition of Central Yakutian lakes is dominated by 

Mg or Na + K and HCO3. In contrast, lakes studied in NE Yakutia are dominated by Ca 

and HCO3.  

 

 

Figure 3-3 Ionic composition of lake and pond waters in Yakutia. Data from Central Yakutia are 

shown by grey symbols and those from NE Yakutia by white symbols  

 

The results of oxygen and hydrogen isotope analyses of the lake waters are presented in 

a δ18O-δD plot (Figure 3-4) with respect to the Global Meteoric Water Line (GMWL) that 

correlates fresh surface waters on a global scale (Craig 1961).  

 

 

Figure 3-4 Isotopic composition of natural Yakutian waters; plot shows oxygen and hydrogen 

isotopes in lake water and summer 2005 precipitation. Data from Central Yakutia are shown by 

grey symbols and those from NE Yakutia by white symbols. Precipitation data are given by black 

symbols. Regional evaporation effects on the waters are expressed as Local Evaporation Lines 

(LELs)  
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The studied lakes are mainly fed by precipitation. The isotope values of seven August 

2005 rain water samples from Yakutsk are given in Figure 3-4. Whereas the local rain 

water samples are close to the GMWL, samples from the studied lakes are shifted to 

lower values. The δ18O values from Central Yakutian lake samples range between about 

−15.7 and −5.5‰, differing from NE Yakutian lakes with values between about −21.3 and 

−12.2‰ (Figure 3-5). The δ13C data from both regions show a similar and considerable 

scatter, and range between about −11.2 and +11.0‰ (Figure 3-5). We did not detect a 

correlation between δ18O and δ13C. 

 

 

Figure 3-5 Isotopic composition of natural Yakutian waters; plot shows oxygen and carbon 

isotopes in lake water in summer 2005. Data from Central Yakutia are shown by grey symbols and 

ronmental ranges 

mong the 18 ostracod taxa observed, 16 taxa were identified to the species level, one 

( is represented by undetermined 

ona, Fabaeformiscandona and Pseudocandona (Figure 3-7). With up to eight 

those from NE Yakutia by white symbols  

 

3.5.2 Ostracod taxonomy and envi

A

taxon Cyclocypris sp.) to the genus level, and one taxon 

juvenile Candoninae. SEM images of the most common species are presented in 

Figure 3-6.  

Most of the adult specimens belong to species of the subfamily Candoninae including the 

genera Cand

taxa per lake, the number of species is generally higher in Central Yakutian lakes than in 

NE Yakutia. In our Central Yakutian collection the dominant species in most samples is 

Candona weltneri HARTWIG, 1899, but Candona candida (O.F. MÜLLER, 1776), Candona 

muelleri jakutica PIETRZENIUK, 1977, and Fabaeformiscandona rawsoni (TRESSLER, 1957) 

are most common in single lakes (Figure 3-7). NE Yakutia lakes are dominated by 

C. muelleri jakutica or F. inaquivalvis (SARS 1898) except for two lakes, where 

F. acuminata (FISCHER, 1851) or Physocypria kraepelini G.W. MÜLLER, 1903 are most 
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abundant. F. inaquivalvis was first described as Candona inaequivalvis by Sars ( 1898) 

from the environs of Verkhoyansk in Yakutia and also listed by Semenova (2005) as a 

rare species in East Siberia. Other species such as Pseudocandona compressa (KOCH 

1838), F. fabaeformis (FISCHER, 1851), F. hyalina (BRADY & ROBERTSON, 1870), 

Limnocythere inopinata (BAIRD, 1843) and Cyclocypris ovum (JURINE, 1820) are recorded 

as common in Central Yakutia by Pietrzeniuk (1977), but are found in lower quantities in 

our data set. 

 

Figure 3-6 SEM images of Yakutian ostracod valves (LV - left valve, RV - right valve). Dolerocypris 

fasciata: (1) female RV; Candona candida: (2) female LV, (3) female RV; C. muelleri-jakutica: (4) 

female LV, (5) female RV, (6) male LV, (7) male RV; C. weltneri: (8) female LV, (9) female RV, (10) 

male LV, (11) male RV; Fabaeformiscandona acuminata: (12) female LV, (13) female RV, (14) 

male LV, (15) male RV; F. fabaeformis: (16) female LV, (17) female RV, (18) male LV, (19) male 

RV; F. hyalina: (20) female LV, (21) female RV, (22) male LV, (23) male RV; F. inaequivalvis: (24) 

female LV, (25) female RV, (26) male LV, (27) male RV; F. rawsoni: (28) female LV, (29) female 

RV, (30) male LV, (31) male RV; Physocypria kraepelini: (32) female LV, (33) female RV, (34) male 

LV, (35) male RV; Cyclocypris ovum: (36) female LV, (37) female RV, (38) male LV, (39) male RV; 

Cypris pubera: (40) postero-ventral RV margin, (41) antero-ventral RV margin, (42) female LV, (43) 

female RV. Note varying scales: 0.5 mm scale for number 1-41 and 1 mm scale for number 42-43  
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Figure 3-7 Ostracod taxa and specimens (in absolute numbers) as well as species frequency (in 

percentage) in waters of Northeast and Central Yakutia (highlighted in grey). Frequencies of singl  e

species <5% are marked by a cross. Note varying scales. The data are arranged by increasing 

electrical conductivities for each region  

 

 

Figure 3-8 Ranges of environmental parameters of ostracod habitats for most current taxa found in 

the studied lakes. Horizontal lines connect the minimum and the maximum, and the vertical line 

connects the mean values. Species include Candona candida (n = 5), C. muelleri jakutica (n = 10), 

C. weltneri (n = 8), Fabaeformiscandona acuminata (n = 3), F. hyalina (n = 3), F. inaequivalvis 

(n = 3), Cyclocypris ovum (n = 8), Dolerocypris fasciata (n = 3), and Physocypria kraepelini (n = 4). 

Note varying scales  
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In Figure 3-8 the ecological ranges of the species that occur in three or more lakes are 

shown according to environmental parameters measured at the sampling time and site. 

nalyses of the stable isotope content were performed on valves of the most common 

 vary between about −18.5 

The broadest ranges in most of the presented parameters were found for the species 

C. candida (at 5 sites) and C. weltneri (at 8 sites), which are common in our collection. 

F. inaequivalvis (at 3 sites) was found exclusively in NE Yakutia, within relatively small 

ranges in most of the measured environmental parameters; its rarity underscores the 

differentiation in the environmental setting (e.g. pH, ionic content) between study regions.  

 

3.5.3 Stable isotopes in host waters and ostracod calcite 

A

species and their host waters (Appendix III-5). The δ18O values

and −10‰ in lake water where either C. candida or C. muelleri jakutica were abundant; 

the δ18O values of the valves of both species taken together ranges from −16 to −9‰ 

(Figure 3-9a).   

 

 

Figure 3-9 Stable oxygen isotopes in host waters and ostracod calcite of: (a) C. candida (squares) 

and C. muelleri jakutica (circles); (b) F. inaequivalvis (triangles) and C. weltneri (diamonds). Data

as 

und (R2 = 0.76, n = 12; Figure 3-9a). The species F. inaequivalvis (typical for NE 

, ranging 

between about −7 and +2‰ (Figure 3-10). The δ13C in valves of C. muelleri jakutica co-

 

from Central Yakutia are shown by grey symbols and those from NE Yakutia by white symbols  

 

A positive correlation between the δ18O of six lakes and of C. muelleri jakutica valves w

fo

Yakutia) shows small variations in valve δ18O from −14 to −12‰, corresponding to host 

waters from −17 to −15‰ (Figure 3-9b). Whereas the δ18O values range from about −12 

to −10‰ in host waters where C. weltneri (typical for Central Yakutia) occurs, the δ18O 

range in valves of this species was about 6‰, from −11 to −5‰ (Figure 3-9b). 

The relationship between the δ13C in host waters and in ostracod valves is illustrated in 

Figure 3-10. The overall variation in water δ13C amounts to more than 9‰
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varies with values between about −6 and 0‰ (R2 = 0.82, n = 12; Figure 3-10a). The 

variation of δ13C in valves of C. candida and F. inaequivalvis are within the same range, 

whereas C. weltneri values are widely scattered between about −8 and +5‰ (Figure 3-

10a, b). Nevertheless, the C. weltneri data also seem to show the same trend; higher δ13C 

values in ostracod calcite correspond to higher δ13C values in host waters. 

 

 

Figure 3-10 Stable carbon isotopes in host waters and ostracod calcite of (a) C. candida (squares) 

and C. muelleri jakutica (circles), and (b) F. inaequivalvis (triangles) and C. weltneri (diamonds). 

Data from Central Yakutia are shown by grey symbols and those from NE Yakutia by white

ent ratios in host waters and in the ostracod calcite of several species are listed 

 Appendix III-5. The Sr/Ca of host waters in both study regions ranges from about 2 to 

elleri jakutica, which varies 

 Only C. weltneri inhabits waters with Mg/Ca of about 

 

symbols  

 

3.5.4 Element ratios in host waters and ostracod calcite 

The elem

in

6.5 (×10−3), corresponding to Sr/Ca ratios in calcite of C. mu

from about 0.7 to 1.8 (×10−3) (R2 = 0.92, n = 12; Figure 3-11a). The Sr/Ca of the other 

studied species F. inaequivalvis and C. weltneri are within the range mentioned above, 

whereas Sr/Ca ratios in C. candida reach about 2.3 (×10−3) (Figure 3-11a, b). The Sr/Ca 

ratios in seven lakes and in C. weltneri valves is correlated (R2 = 0.74, n = 12; Figure 3-

11b). A positive correlation between the Sr/Ca in host waters and ostracod calcite is 

obvious for all species.  

The Mg/Ca of host waters show a wide range between about 0.4 and 7 (Figure 3-12a, b). 

The species C. candida, F. inaequivalvis and C. muelleri jakutica are found in waters with 

low Mg/Ca ratios of about 2 or less.

5 to 7 (Figure 3-12b). For this species, we found a correlation of Mg/Ca in water to Mg/Ca 

in ostracod calcite (R2 = 0.66, n = 12; Figure 3-12b).  

 

 53 
 



Evaporation effects as reflected in freshwaters and ostracod calcite                                                                Chapter 3 
Hydrobiologia 614: 171-195 
__________________________________________________________________________________________________ 

 

Figure 3-11 Molar strontium/calcium (Sr/Ca) ratios in host waters and ostracod calcite of (a) 

C. candida (squares) and C. muelleri jakutica (circles), and (b) F. inaequivalvis (triangles) and 

C. weltneri (diamonds). Data from Central Yakutia are shown by grey symbols and those from NE 

Yakutia by white symbols  

 

 

Figure 3-12 Molar magnesium/calcium (Mg/Ca) ratios in host waters and ostracod calcite of (a) 

C. candida (squares) and C. muelleri jakutica (circles), and (b) F. inaequivalvis (triangles) and 

C. weltneri (diamonds). Data from Central Yakutia are shown by grey symbols and those from NE

nds 

 comparison to NE Yakutian lakes the studied Central Yakutian lakes are characterised 

tly alkaline to alkaline), higher electrical conductivity (up to 

nd HCO3, not by Ca 

 

Yakutia by white symbols. Note varying scales in Figure 3-12a and b  

 

3.6 Discussion 

3.6.1 Physico-chemical characteristics of the lakes and po

In

by higher pH (sligh

5.71 mS/cm) and an ionic composition dominated by Mg or Na + K a

and HCO3 as in NE Yakutian waters (Figure 3-3). Central Yakutian limnological features 

reported by Kumke et al. (2007) include alkaline conditions with mean pH 8.5 and mean 

electrical conductivities of 0.5 mS/cm with maxima of up to 3.6 mS/cm in Yakutsk 

environments. From these data, it is obvious that physico-chemical characteristics of 
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Central Yakutian lakes are strongly influenced by the climatic setting (i.e. high 

continentality) resulting in strong evaporation and a negative moisture balance. Therefore, 

decreasing water levels in lakes are common and, as a consequence, the enrichment of 

soluble salts at different stages of lake development (e.g. Pestryakova et al. 2007). 

Limnological records from North Yakutia report neutral pH values and generally low EC of 

maximum 0.25 mS/cm in lakes and ponds in the headwaters region and in the delta of the 

Lena River (Duff et al. 1999; Wetterich et al. 2008a). The NE Yakutian data show higher 

ionic contents than in the North, with EC up to 0.93 mS/cm; Central Yakutian data show 

EC up to 5.71 mS/cm, reflecting increasing continentality from the North to the South.  

Seasonal changes in water properties are obvious in the record of evaporation-relevant 

parameters (temperature, EC and lake level fluctuations) from data of an Alas lake in 

Central Yakutia at the Neleger site (Figure 2). Increasing EC and decreasing water level 

pes of 4.99 (R2 = 0.95, 

en the two study regions, most likely because 

f differences in the environmental parameters that affect ostracod habitats (Figure 3-7). 

as recorded in 

point to a major influence of evaporation during the summer. In addition, the ongoing 

thawing of deeper ground layers with higher ionic contents below and around the lake 

during the summer (Lopez et al. 2007) likely explains the increase in EC from 0.4 to 

0.5 mS/cm in the second half of September. Although monitoring data over several years 

is lacking, it is assumable that the lake level will rise again and the EC will decline again 

during the next spring due to winter precipitation and snow melt.  

The influence of evaporation on lake waters is reflected in stable oxygen–hydrogen 

isotope compositions which show distinct local evaporation effects on lake waters, 

evidenced by the Local Evaporation Lines (LELs) with low slo

n = 39) for Central Yakutian lakes and 4.09 (R2 = 0.98, n = 17) for NE Yakutian lakes 

(Figure 3-4). The initial precipitation source for both regions show a similar isotope 

signature as indicated by similar slopes and very narrow points of intersection with the 

GMWL (Figure 3-4). The small differences in LELs can be explained by varying local 

conditions such as low recharge rates, repeating precipitation–evaporation cycles and 

generally shallower water bodies in the mountainous region of NE Yakutia. The lower 

summer mean temperature in NE Yakutia is reflected by generally lower δ18O values in 

lake water between about −21.3 to −12.2‰ as compared Central Yakutian lake water data 

which are higher than −15‰ (Figure 3-4).  

 

3.6.2 Ostracod taxonomy, biogeography, and environmental ranges 

Ostracod species compositions differ betwe

o

Higher diversity in environmental conditions, and accordingly in species, w

Central Yakutian waters where, in total, 15 species were found. The dominating species 

Candona weltneri has only been recorded once in a NE Yakutian lake. Other common 
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Central Yakutian species are Cyclocypris ovum, Candona candida and C. muelleri 

jakutica. The later seems to be widely distributed and was already recorded from several 

modern environments of North Yakutia, in the Lena River Delta (Wetterich et al. 2008a) 

and in Central Yakutia (Pietrzeniuk 1977). Fossil records of C. muelleri jakutica are known 

from Central Yakutia (Wetterich et al. 2008d) and also from North Yakutia, Lena River 

Delta (Wetterich et al. 2008c) and Bykovsky Peninsula (Wetterich et al. 2005).  

Most species such as C. compressa, Fabaeformiscandona acuminata, F. fabaeformis, F. 

rawsoni, Limnocythere inopinata, Cypris pubera, Ilyocypris decipens and Dolerocypris 

fasciata are very rare, with one or two records and low frequencies in the studied waters 

escribed as belonging to the genus Fabaeformiscandona. This 

 C. muelleri jakutica, known 

in Central Yakutia, is 

(Figure 7). Except for F. acuminata all species are already described for the region by 

Pietrzeniuk (1977), who counted 24 species in Central Yakutia. The higher number of 

Central Yakutian species recorded by Pietrzeniuk (1977) is most likely caused by 

additional sampling of sediments in order to expand the live-caught collection. Most 

species which have not been found in 2005 are represented in the dataset of Pietrzeniuk 

(1977) by valves (Pseudocandona sucki, P. hartwigi, Cyprois marginata, Plesiocypridopsis 

newtoni and Paralimnocythere cf. diebeli) or by rare, sometimes juvenile, individuals 

(Cypria exsculpta, Cypridopsis vidua and Notodromas monarcha). Generally, we believe 

that every careful ostracod sampling in the low studied waters of Yakutia would expand 

the total species number.  

Nine species were found in NE Yakutia; C. muelleri jakutica and F. inaequivalvis occur at 

the highest frequencies. The latter species, previously known as Candona inaequivalvis 

SARS 1898, should be re-d

genus, defined by Krstić (1972), did not originally include F. inaequivalvis, but the 

structure of the externo-distal seta (γ-seta) of the penultimate segment of the mandibular 

palp (which is smooth, not pulmose), and a carapace longer than 0.6 mm with the 

carapace width/length ratio (W/L) less than 0.4 confirm this attribution. This determination 

should be confirmed by further detailed taxonomical studies.  

An ostracod community studied in lakes and ponds in North Yakutia (Lena River Delta, 

Laptev Sea) was clearly dominated by the typical Arctic species F. harmsworthi and 

F. pedata (Wetterich et al. 2008a). In addition, C. candida and

from more southern regions of Yakutia (Pietrzeniuk 1977), occurred there. Obviously, both 

species are adapted to the harsh conditions of the Siberian Arctic.  

The observed modern ostracod assemblages are dominated by species preferring, in 

general, lower water temperatures and low ionic content (e.g. C. candida, C. muelleri 

jakutica and C. welterni). C. weltneri, the most common species 

described as cold stenothermal to oligothermophilic and oligohalophilic (Meisch 2000). 

However, a broad spectrum of species was observed with different adaptations to 
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temperature and salinity, ranging from cold stenothermal (e.g. F. hyalina) to 

mesothermophilic (e.g. P. compressa and D. fasciata), and from oligohalophilic (e.g. 

F. acuminata) to mesohalophilic (e.g. C. ovum). Therefore, care should be taken when 

interpreting the temperature and salinity environments of fossil ostracod assemblages.  

The observed environmental gradients (Figure 3-8) do not determine the overall 

distribution of the ostracods species since species distribution surely depends on more 

environmental parameters than observed in course of the study presented here. 

ostracod calcite (δ18O, δ13C) and of 

ost waters has already been examined in numerous laboratory and field studies (e.g. Xia 

1 b). The δ18O of lake water is affected by 

Especially, detailed sampling of ostracods in different water depths, lake zones and types 

as well as estimations of parameters such as the presence and type of the aquatic 

vegetation, the substrate type, the turbidity of the water and the duration of the ice-free 

period in relation to the length of the life cycle are required to be studied in detail at 

monitoring sites for better understanding of the complex environmental dependencies of 

species distribution. In this context, our record is more focussed on stable isotope and 

hydrochemical properties of the sampled lakes in comparison to the geochemical 

properties in ostracod calcite. Actually, detailed discussion on modern ostracod species 

distribution and their environmental habitat parameters in Yakutia is impossible since data 

sets needed for these purposes are lacking except of the already mentioned publications 

of Pietrzeniuk (1977) and Wetterich et al. (2008a). However, within the Yakutian data set, 

C. candida, C. muelleri jakutica, C. weltneri and C. ovum are the most common species, 

probably suggesting higher tolerance to solute composition in lakes within the observed 

ranges (Figure 3-8). In contrast, F. inaequivalvis was only found in very narrow ranges of 

pH and electrical conductivity in NE Yakutian waters.  

 

3.6.3 Stable isotopes in ostracod calcite 

The relationship between the isotopic composition of 

h

et al. 997b; Keatings et al. 2002, 2006a, 

environmental factors, such as the isotope composition of the input water (precipitation 

and groundwater), the climate-driven precipitation to evaporation (P/E) ratio, and the 

hydrochemical properties and temperature of the lake water (e.g. Leng and Marshall 

2004). Commonly, δ18O and δ13C records of ostracod calcite are thought to provide a 

restricted reflection of the isotopic composition of water and TDIC at the time of shell 

secretion, making them helpful proxies in palaeolimnology (Griffiths and Holmes 2000). 

However, the δ18O and δ13C composition of ostracod calcite is influenced by interspecific 

and intraspecific variations, caused by species-dependent metabolic effects on isotope 

fractionation (vital effects) and preferences for different microhabitats, as well as by the 

timing of shell calcification in different seasons and at different temperatures (e.g. Heaton 
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et al. 1995; von Grafenstein et al. 1999). Temperature-independent vital effects (in 

comparison to anorganic calcite precipitated in equilibrium to the isotopic composition of 

the water) for species of Candoninae from different field and laboratory collections were 

estimated to be +2.2‰ (von Grafenstein et al. 1999) and +2.5 to +3‰ for C. candida 

(Keatings et al. 2002), 1.5 to 2‰ for C. subtriangulata (Dettman et al. 1995), about +2‰ 

for F. rawsoni (Xia et al. 1997b), and 1.4‰ for F. pedata (Wetterich et al. 2008a).  

In our study, the species C. muelleri jakutica was observed at six localities in numbers 

sufficient for stable isotope analyses, and over great ranges of about 8‰ for water δ18O. 

The corresponding stable isotope values of this species’ ostracod calcite show good 

ncy in the 

 of lakes. We found a logarithmic correlation (R2 = 0.69, n = 55; Figure 3-13a) 

correlations (Figure 9). Similar results were obtained from the species F. pedata common 

in lakes and ponds in the North Yakutian Lena Delta (Wetterich et al. 2008a), where the 

stable oxygen isotopes in host waters and ostracod calcite were also well correlated. The 

lack of such correlation in other species (C. candida, C. weltneri and F. inaequivalvis) is 

likely because they are less frequent and they occurred in more restricted stable isotope 

ranges during our fieldwork. The vertical stack of δ18O values in calcite of C. weltneri 

probably reflects different isotope compositions in host waters at the time of calcification 

and at the sampling time. Monitoring of ostracod development and seasonal changes in 

water properties at selected sites is needed for detection of such relationships.  

Compared to Arctic Siberian ostracod δ18O records ranging from −18 to −11‰ (Wetterich 

et al. 2008a), the data presented here show more evaporation influence by more positive 

(heavier) values ranging from about −15 to −9‰ (Figure 3-9). This general tende

δ18O records of ostracod calcite reflects cooler conditions and lower evaporation (higher 

P/E ratios) in the North as compared to the South, and is consistent with southwards-

decreasing continentality as estimated by the stable isotope record of the host waters. 

Furthermore, the influence of evaporation is obvious when comparing δ18O of waters or 

ostracod calcite and electrical conductivity as an expression of ionic concentration 

(salinity).  

Even though Central Yakutia and NE Yakutia are geographically and hydrologically 

different regions, they may be used to illustrate the Rayleigh distillation process during 

evaporation

between δ18O of lake water and EC when both regions are plotted in one diagram. The 

observed relationship is controlled by Rayleigh distillation processes, wherein light 

isotopes evaporate faster than heavy ones leading to nonequilibrium enrichment of the 

residual water (Clark and Fritz 1997). Depending upon relative humidity this relation leads 

to an asymptotic increase in δ18O values under high evaporation conditions to a steady-

state value which is strongly influenced by the salinity of the residual water (e.g. Gat 1979, 

1981). As shown in Figure 3-13a a steady-state value of about −6‰ is reached in 
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evaporated residual waters at conductivities of about 4 mS/cm and more. However, this 

interpretation is likely based only on few data, but may be a reliable explanation of the 

scatter observed. The correlation between δ18O of ostracod calcite and conductivity is 

weak (R2 = 0.39, n = 34; Figure 3-13b) and more data and sampling of time-series during 

the ice-free season are required to assess this relationship. Nevertheless, it seems that 

these first results should be taken into account for interpreting stable isotope data from 

fossil ostracods of East Siberia, where lakes occurred during the Quaternary past under 

high continental conditions and climate-driven lake level changes up to desiccation took 

place (Bosikov 2005).  

 

 

Figure 3-13 Plot of electrical conductivity and oxygen stable isotopes in (a) host waters and (b) 

ostracod calcite. Data from Central Yakutia are shown by grey symbols and those from NE Yakutia 

by white symbols  

e most important influences are the isotopic composition of inflows, CO2 

xchange between air and lake water, and photosynthesis/respiration of aquatic plants 

 

The δ13C composition of TDIC in waters is controlled by fractionation during several 

carbon cycles; th

e

(Leng and Marshall 2004). The last two controls are characterised by high seasonal and 

even daily variability; thus it is more difficult to interpret these data since periodic sampling 

during the open-water season is required to register carbon cycle dynamics. The δ13C 

records from both host waters and ostracod calcite reflect a positive trend over great 

ranges of about 9‰ for δ13C in waters and about 14‰ for δ13C in ostracod calcite 

(Figure 3-10). For C. muelleri jakutica from six lakes we found a correlation between δ13C 

in host waters and valves (R2 = 0.82, n = 12; Figure 3-10a). However, as explained above 

any interpretation of this relationship is complicated. 
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3.6.4 Element ratios in ostracod calcite 

he relationship between element ratios (Sr/Ca, Mg/Ca) in host waters and in ostracod 

alcite has been investigated in (palaeo-) limnological studies (e.g. Palacios-Fest and 

ia et al., 1997c). The partitioning is usually 

ptake into the valves at the time of 

en to acc unt (Engstrom and Nelson 1991; De Deckker 

rrelation between M/Ca 

a Sr/Ca range from about 2 to 

na pedata 

T

c

Dettman 2001; Palacios-Fest et al. 2002; X

expressed as the species-dependent coefficient D(M): 

D(M) = (M/Ca)valve / (M/Ca)water                    (1) 

where M can either be Mg or Sr, and M/Ca ratios are molar ratios (e.g. Chivas et al. 

1986). The strong dependency on temperature of Mg u

valve secretion must also be tak in o

et al. 1999). Furthermore, Xia et al. (1997c) showed in field experiments that the uptake of 

both Sr and Mg is influenced by Mg/Ca ratios of the host water whereas physiological 

costs of calcification becomes substantial at high Mg/Ca waters.  

Both proxies have been used to indicate changes in salinity due to evaporation leading to 

increasing Sr/Ca and/or Mg/Ca ratios in both host water and ostracod calcite (e.g. Chivas 

et al. 1993; Xia et al. 1997a; Ingram et al. 1998). However, the co

of host water and measured EC as an expression of ionic concentration (salinity) is not 

clear, as has been shown by several authors in studies of modern environments. 

Engstrom and Nelson (1991) explained the weakness of the correlation between salinity 

and the Sr/Ca ratio of Devils Lake, North Dakota, USA by postulating continuous Sr 

removal via mineral precipitation of both calcite and inorganic aragonite. Keatings et al. 

(2006a) suggested that the lacking of correlation between water salinity and M/Ca ratios in 

the arid Faiyum Depression, Egypt was caused by regional characteristics of groundwater 

input and precipitation/dissolution of evaporative minerals.  

In the Yakutian dataset, correlations between Sr/Ca ratios in waters and valves are 

obvious for the most common species C. muelleri jakutica (R2 = 0.92, n = 12; Figure 3-

11a) and C. weltneri (R2 = 0.74, n = 12; Figure 3-11b) over 

6.5 (×10−3) in host waters. It has to be mentioned that the database is actually poor since 

the ostracod calcite analyses for C. muelleri jakutica were performed on two single-valve 

samples per lake and only six lakes were taken into account. For the same approach 

ostracod calcite of C. weltneri from seven lakes was measured. Two single-valve samples 

could be applied to five lakes and one single-valve samples each to two lakes.  

According to Eq. 1, average partition coefficients were calculated for live-caught 

C. muelleri jakutica with D(Sr) = 0.32 ± 0.03 (1σ) and C. weltneri with D(Sr) = 0.38 ± 0.05 

(1σ). Similar results from field collections were obtained for Fabaeformiscando

from Arctic Siberia (D(Sr) = 0.33 ± 0.06 (1σ); Wetterich et al. 2008a) and for 

Fabaeformiscandona rawsoni in laboratory cultures (D(Sr) = 0.406; Engstrom and Nelson 

1991).  
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A clear correlation of lake water Sr/Ca ratio to conductivity has not been obtained 

especially because the Sr/Ca ratios in waters at low conductivities below 0.5 mS/cm are 

highly variable ranging from about 1.8 to 7.6 (×10−3) (Figure 3-14a). However, higher 

conductivities in the waters where ostracods have been caught lead to higher Sr/Ca ratios 

in ostracod calcite, though the relation between host water and ostracod calcite data 

(Figure 3-14b) suffers by time lag between sampling and calcification, and a general poor 

database of mostly two single-valve samples per lake.  

 

 

Figure 3-14 Plot of electrical conductivity and molar strontium/calcium (Sr/Ca) ratios in (a) host 

waters and (b) ostracod calcite. Data from Central Yakutia are shown by grey symbols and those 

from NE Yakutia by white symbols  

gure 3-12b) over an Mg/Ca range in waters between 0.4 

nd 7; the other species studied occurred in restricted ranges with low Mg/Ca ratios of 

 

The Mg/Ca ratios in the studied Yakutian waters and in ostracod calcite are correlated for 

C. weltneri (R2 = 0.66, n = 12; Fi

a

about 2 or less. The uptake of Mg by ostracods and the resulting Mg/Ca ratios of ostracod 

calcite are controlled by temperature (Engstrom and Nelson 1991; De Deckker et al. 

1999). However, the temperature effect is small in comparison to the dependence on 

Mg/Ca of water at higher ranges. For the species C. candida, C. muelleri jakutica and 

F. inaequivalvis that were found in a narrow (and low) range of Mg/Ca waters, 

temperature effect became relatively large, and consequently no correlation between 

Mg/Ca of water and Mg/Ca of ostracod calcite is seen (Figure 3-12a). For C. weltneri, the 

range of Mg/Ca of water was large enough that a positive trend became apparent 

(Figure 3-12b), but with a large scatter that is caused by different sampling time in relation 

to the time of calcification which leads in our data based mostly on two single-valve 

samples per lake to clear shifts in ostracod calcite chemistry from individual lakes. This 

effect is clearly seen in C. weltneri data from lakes Yak-12, Yak-20 and Yak-27 (Appendix 

III-5) and should be avoided in future studies by applying more measurements on 
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ostracod calcite per lake in order to improve the database for more robust statistic 

evidence of the data obtained. However, our results give a first base on geochemical 

properties of Yakutian ostracods in relation to their host waters.  

The partition coefficient D(Mg) has not been calculated, since the temperature 

dependence of Mg uptake cannot be quantified in our dataset based on field collections. 

Due to generally higher ionic concentrations (i.e. electrical conductivities) as compared to 

Arctic environments in the Lena Delta (Wetterich et al. 2008a), Mg/Ca records of both 

waters and ostracod calcite reflect increasing salinity by increasing ratios under low 

Mg/Ca conditions in the host waters. 

 

 

Figure 3-15 Plot of electrical conductivity and molar magnesium/calcium (Mg/Ca) ratios in (a) host 

waters and (b) ostracod calcite. Data from Central Yakutia are shown by grey symbols and those 

from NE Yakutia by white symbols  

nt is mostly covered by values below 2.5 mS/cm. The 

g/Ca ratio in Candona species in relation to Mg/Ca ratios in host waters shows a 

ve so far been poorly 

tudied; this paper presents adequate data for further expansion of the database as 

 

As compared to EC, Mg/Ca ratios in waters show covariance (R2 = 0.81, n = 55; Figure 3-

15a), but the conductivity gradie

M

different scatter (Figure 3-15b). The relatively low Mg/Ca values in the Na + K and HCO3 

dominated waters Yak-31 with 1.43 mS/cm and Yak-33 with 0.85 mS/cm are probably 

caused by different hydrological setting. Both waters are exposed on the floodplain of the 

Lena River in Central Yakutia and the river water control on the hydrochemical setting 

might explain the probably different relationship in Mg uptake into ostracod calcite. 

However, these assumptions are currently based on two single-valve samples from two 

old branches and surely need additional sampling of such waters.  

 

3.7 Conclusions 

Siberian freshwater ostracods and their geochemical properties ha

s
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f ostracods in palaeoenvironmental reconstruction from East 

er studies on 

(2) 

ificant ranges in the respective 

(3) 

 

(4) 

prerequisite for the use o

Siberian records. The following conclusions can be drawn from this paper:  

(1)  The species C. muelleri jakutica seems to be common in East Siberia in modern 

habitats and also in fossil records. Due to its distribution over significant 

environmental gradients, this species should be subjected to furth

geochemistry and palaeoenvironments since the species was already recorded in 

Quaternary lake sediments, and permafrost deposits.  

 The stable isotope ratios (δ18O, δ13C) and the element ratios (Sr/Ca, Mg/Ca) in 

ostracod calcite are correlated to the composition of host lake waters, if the studied 

species were found in higher frequencies and over sign

environmental proxies. Thus, geochemical proxies of ostracod calcite can provide 

environmental information for further studies of fossil assemblages in East Siberia.  

 The relation between electrical conductivity as evaporation proxy and geochemical 

properties of ostracod calcite (δ18O, δ13C, Sr/Ca, Mg/Ca) is not apparent due to the 

general low database and several controls on the uptake of the respective isotopes

and elements into ostracod calcite such as temperature effects and physiological 

costs which could not been quantified in the presented field study.  

 Synchronic sampling of waters and ostracods at calcification time in course of 

monitoring approaches would be desirable for better understanding of complex 

biomineralisation processes and biogeochemical cycles in lakes.  
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4.1 Abstract 

Terrestrial permafrost sections from the southern and northern coasts of Dimitri Laptev 

Strait have preserved records of landscape transition from glacial to interglacial periods. 

They allow geomorphologic and environmental changes to be traced from pre-Eemian 

time to the Eemian, and from the Late Glacial to the Holocene. The transition from one 

period to another induced extensive thawing of permafrost (thermokarst). Evolving 

thermokarst depressions transformed formerly frozen ground into taberal (unfrozen) 

deposits with accumulating overlying lacustrine deposits. Lacustrine horizons rich in 

palaeontological remains retain evidence of changes in environmental conditions. The 

pollen records reflect changes from grass-sedge dominated vegetation during the Early 

Eemian to shrub dominated spectra during the Middle Eemian thermal optimum followed 

by Late Eemian grass-sedge dominated tundra vegetation. Abundant Larix pollen have 

been found in Middle Eemian deposits from the south coast of the Dimitri Laptev Strait 

(Oyogos Yar), but are absent in similar deposits from the north coast (Bol’shoy 

Lyakhovsky Island), likely indicating that the northern tree line was located near the 

Oyogos Yar region during the Eemian thermal optimum. Grass-sedge dominated tundra 

vegetation occurred during the Late Glacial/Holocene transition which was replaced by 

shrub tundra during the early Holocene. Rich fossil ostracod records from Eemian and 

Late Glacial/Holocene lacustrine deposits could be correlated with the Eemian thermal 

optimum and the Late Glacial Allerød warm period. For both periods, the stable oxygen 

isotope data from the fossil ostracods indicate an approximate mean summer water 

temperature range between 10 and 19 °C in the palaeo-lakes. 
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4.2 Introduction 

Climate and subsequent environmental changes occurred in northern Eurasia during the 

Quaternary. Glacial-interglacial cycles certainly exerted an enormous influence on 

Eurasian periglacial landscapes and ecosystems. The study of palaeoindicators from 

interglacial periods that are preserved in different palaeoarchives allow to reconstruct 

ancient environments; such reconstructions are useful for understanding the controls on, 

interactions between, and effects of climate change and ecosystem response (e.g. 

Lozhkin and Anderson 1995; Velichko and Nechaev 2005; Sirocko et al. 2007). However, 

although Arctic Eurasia is especially sensitive to current and future climate warming (ACIA 

2005), interglacial palaeoenvironmental records from this region are less studied than are 

those from lower latitudes.  

Huge areas of the Eurasian landmass are underlain by permafrost.  Permafrost 

occurrence depends on climate (temperature) conditions, and both past and present 

climate dynamics influence the state, stability, and distribution of permafrost. One of the 

most common reactions of periglacial landscapes during interglacial warm periods is 

extensive thawing of ground ice; this permafrost-degrading process is known as 

thermokarst. Thermokarst progressively leads to the formation of large-scale, often lake-

filled depressions (alases) in the landscape surface and also to the formation of ice wedge 

casts (pseudomorphs) which are small-scale, secondary sediment-filled depressions 

(French 2007).      

Both alases and pseudomorphs can be regarded as interglacial palaeoarchives in 

Northeast Siberia because they contain well-preserved remains such as plant 

macrofossils (e.g. Kienast et al. 2008), pollen, rhizopods, and chironomids (e.g. Andreev 

et al. 2004, 2008; Ilyashuk et al. 2006); these remains are useful for palaeoenvironmental 

reconstructions. In this context, fossil freshwater ostracods are a newly-introduced 

palaeoindicator for the permafrost archive (Wetterich et al. 2005); their taxonomical-

ecological relationships and their geochemistry (stable isotopes) are the primary useful 

measurements.  

The study presented here deals with cryolithological as well as palaeoecological pollen 

and ostracod records from two Eemian and two Late Glacial/Holocene permafrost 

sequences exposed on the coasts of the Dimitri Laptev Strait. These records were 

obtained during the summer 2007 by a joint Russian-German Lena-New Siberian Islands 

expedition.   

 

4.3 Regional setting 

The Dimitri Laptev Strait connects the Laptev and East Siberian Seas (Figure 4-1); its 

coasts have long been of geographical and geological interest. The coastal outcrops 
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along the Dimitri Laptev Strait are characterised by frozen Quaternary sediments of 

different ages and accumulation types which are exposed on steep bluffs of thermokarst 

depressions, thermo-erosional valleys and Yedoma hills which are remnants of late 

Pleistocene accumulation plains in Northeast Siberian lowlands (Figure 4-2). 

 

 

Figure 4-1 The coasts of the Dimitri Laptev Strait with exposure positions. Map compiled by H. 

Lantuit (AWI Potsdam) using a satellite image (LANDSAT 7 ETM+ 29.06.2001) 

 

 

Figure 4-2 South coast of the Bol’shoy Lyakhovsky Island west of the Zimov’e River mouth at the 

Dimitri Laptev Strait 

 

Since its discovery in the 18th century, Bol’shoy Lyakhovsky Island, north of the Dimitri 

Laptev Strait, has been well-known for the presence of fossil mammal bones; it has 

become one of the most important Pleistocene mammal sites in Siberia (Chersky 1891).  

Permafrost sequences exposed on the south coast of Bol’shoy Lyakhovsky Island were 
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first studied in the 19th century (Bunge 1887; von Toll 1897). However, detailed 

geocryological and palaeoenvironmental studies began much later on both Bol’shoy 

Lyakhovsky Island (Romanovskii 1958a-c; Pirumova 1968; Igarashi et al. 1995; Nagaoka 

et al. 1995; Arkhangelov et al. 1996; Kunitsky 1996, 1998; Kunitsky and Grigoriev 2000) 

and on the coast of Oyogos Yar, south of Dimitri Laptev Strait (Kayalaynen and Kulakov 

1966; Ivanov 1972; Gravis 1978; Konishchev and Kolesnikov 1981; Vereshchagin 1982).  

The general stratigraphic situation of Quaternary sediments exposed on both coasts of the 

Dimitri Laptev Strait is similar (Table 4-1), but the stratigraphy is complicated because 

absolute age determinations are rare and single stratigraphic units possess different local 

definitions.  

 

Table 4-1 Synopsis of the stratigraphic units exposed on the Dimitri Laptev Strait. The 

stratigraphical position of the Bychchagy Suite (grey highlighted) is still unclear  

№ Period* Characteristics Name  Selected references 

8 Holocene Lacustrine and 
boggy deposits 

Alas 
Sequence 

Andreev et al. (2008) 

7 Late (Sartan*),      
middle (Kargin),        
and early (Zyryan) 
Weichselian 

Ice Complex 
deposits  

Yedoma 
Suite 

Nagaoka et al.(1995), Andreev et 
al. (2004, 2008), Nikolsky and 
Basilyan (2004) 

6 Eemian (Kazantsevo) Lacustrine and 
boggy deposits 

Krest 
Yuryakh 
Suite 

Andreev et al. (2004), Nikolsky 
and Basilyan (2004), Ilyashuk et 
al. (2006), Kienast et al. (2008) 

5 Pre- or post-Eemian Ice-rich deposits 
of controversial 
stratigraphic 
position  

Bychchagy 
Suite 

Tumskoy and Basilyan (2006) 

4 Late Saalian (Taz) Well-sorted flood 
plain deposits  

Kuchchugui 
Suite 

Andreev et al. (2004) 

3 Middle Saalian (Shirta) Palaeo active 
layer 

Zimov’e 
Strata 

Tumskoy and Basilyan (2006) 

2 Middle Saalian (Shirta) Ice Complex 
deposits  

Yukagirsky 
Suite 

Arkhangelov et al. (1996),  
Schirrmeister et al. (2002c), 
Andreev et al. (2004), Tumskoy 
and Basilyan (2006) 

1 (?) Late Cretaceous 
to Palaeocene 
periglacial 
reworked 
weathering crust 

Cryogenic 
eluvium 

Romanovskii and Hubberten 
(2001), Andreev et al. (2004) 

* Local stratigraphic terms are given in parentheses according to Velichko et al. (2005) 

 

However, such archives including Eemian deposits are generally low studied in the 

Siberian Arctic (e.g. Allaikha River, Indigirka River lowland, Kaplina et al. 1980; Duvanny 

Yar, Kolyma River lowland, Kaplina et al. 1978; El’gygytgyn Lake, Chukotka, Lozhkin et al. 
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2007) and the coastal exposures of the Dimitri Laptev Strait are regarded as the longest 

and most comprehensive Arctic permafrost archive; it contains records of two to three 

glacial-interglacial cycles from the middle Pleistocene to the Holocene. Past studies by 

Russian scientists (e.g. Romanovskii 1958a-c; Arkhangelov et al. 1996; Kunitsky 1998; 

Romanovskii et al. 2000) and joint Russian-German projects (Meyer et al. 2002b; 

Schirrmeister et al. 2002c; Andreev et al. 2004, 2008) have described and partly dated 

different stratigraphic units of middle and late Quaternary age. Tertiary deposits and 

weathering crusts, middle Pleistocene ice-rich deposits, and well-sorted loess-like 

sequences have been found. The permafrost coast along both sides of the Dimitri Laptev 

Strait is composed of Eemian horizons of lacustrine deposits containing ice wedge casts 

and late Pleistocene ice-rich deposits of the Yedoma Suite as well as Holocene 

thermokarst sequences (Table 4-1). 

 

4.4 Material and methods 

4.4.1 Field methods and cryolithology 

After conducting a survey along the sea coasts, permafrost exposures in coastal bluffs 

were selected for detailed studies. In general, field studies were difficult due to limited 

accessibility of the steep permafrost outcrops and extensive mudflows on the slopes. 

Therefore, composite profiles were obtained which consist of several sub-profiles. Such 

subprofiles were dug by spades and cleaned with hatchets. The exposed sequences were 

surveyed, described, photographed, and sketched according to sediment colour, 

composition, and structures as well as ice structures (cryostructures). Distances, altitudes 

above sea level (a.s.l.), and depths below surface (b.s.) were gauged using measuring 

tape. Afterwards, the frozen deposits were taken for further analyses using hammers and 

small axes and packed in plastic bags. While still in the field, subsamples were placed in 

sealed aluminium boxes in order to determine the gravimetric (grav.) ice content which is 

defined as the ratio of ice mass in a sample to the total dry sample mass, expressed as a 

weight percentage (wt%) (van Everdingen 1998). 

 

4.4.2 Geochronology 

Sediment samples were obtained from Eemian sequences (Figures 4-3 and 4-5 on  pages 

72 and 75) for Optically Stimulated Luminescence (OSL) dating by horizontally drilling with 

an electric drill (Hilti) and were protected from daylight during sampling. These samples 

are currently being processed at the Quaternary Geochronology Section, Saxon Academy 

of Science (Freiberg, Germany).  

Selected plant fragments from Late Glacial/Holocene sequences (Figures 4-6 and 4-8 on 

pages 77 and 79) were radiocarbon-dated at the Accelerator Mass Spectrometry (AMS) 
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facilities at the Leibniz Laboratory for Radiometric Dating and Stable Isotope Research 

(Kiel University, Germany). Conventional 14C ages were calculated according to Stuiver 

and Polach (1977), with a δ13C correction for isotopic fractionation based on the 13C/12C 

ratio measured by the AMS system simultaneously with the 14C/12C ratio. Calibrated ages 

were calculated using “CALIB rev 5.01” (Data set: IntCal04; Reimer et al. 2004). The 

Leibniz Laboratory reduces the background inherent to the spectrometer, which results in 

low background count rates of the detector, equivalent to an apparent age of 75 kyr (gated 

background) (Nadeau et al. 1997). Details of the Leibniz Laboratory AMS procedures are 

given by Nadeau et al. (1997, 1998). 

 

4.4.3 Sedimentology and stable isotopes 

Moist sediment samples were freeze-dried (Christ ALPHA 1-4) in the laboratory, gently 

manually homogenised, and split into equal parts for the various analyses. In total, 102 

samples have been analysed using different methods. A laser particle analyser (Coulter 

LS 200) was used to measure grain size distribution. Samples were treated with hydrogen 

peroxide before analysis to successively dissolve organic particles. The mass-specific 

mineral magnetic susceptibility (MS) was determined using a Bartington MS2 MS meter 

equipped with an MS2B sensor. The values of mass specific magnetic susceptibility are 

expressed in SI units (10-8 m³/kg). The contents of total organic carbon (TOC), total 

carbon (TC), and nitrogen (N) were measured with a Carbon-Nitrogen-Sulphur CNS 

analyser (Elementar Vario EL III). Stable carbon isotope ratios (δ13C) in TOC were 

measured with a Finnigan DELTA S coupled to a FLASH element analyser and a 

CONFLO III gas mix system after removal of carbonate with 10% HCl in Ag-cups and 

combustion to CO2. Due to technical difficulties, samples from the Oy7-11 profile were 

analysed for their δ13C in TOC using a Finnigan DELTAplusXL mass spectrometer 

coupled with a Carlo-Erba CN2500 elemental analyser. Accuracy of the methods was 

determined by parallel analysis of international and internal standard reference materials. 

The analyses were accurate to ±0.2‰. The δ13C values are expressed in delta per mil 

notation (δ, ‰) relative to the Vienna Pee Dee Belemnite (VPDB) Standard. 

Ice wedges from two sections on Bol’shoy Lyakhovsky Island were sampled for stable 

oxygen (δ18O) and hydrogen (δD) isotopes; the first section was located above an Eemian 

sequence, and the second section within a Late Glacial/Holocene sequence. Ice screws 

were used to drill transects across the exposed ice, keeping a distance of 0.1 m between 

the drill-holes. The ice samples were stored cool and afterwards analysed by equilibration 

technique with a mass spectrometer (Finnigan MAT Delta-S). The reproducibility derived 

from long-term standard measurements is established with 1σ better than ±0.1‰ (Meyer 

et al. 2000). All samples were run at least in duplicate. The values are expressed in delta 
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per mil notation (δ, ‰) relative to the Vienna Standard Mean Ocean Water (VSMOW) 

Standard. 

 

4.4.4 Palaeoecological proxies 

Pollen 

In total, 102 samples were studied for pollen and palynomorphs. A standard hydrofluoric 

acid HF technique was applied for pollen preparation (Berglund and Ralska-Jasiewiczowa 

1986). Pollen and spores were identified using a microscope (Zeiss Axioskop 2) with 400 

x magnification. At least 200 pollen grains were counted in every sample. The relative 

frequencies of pollen taxa were calculated from the sum of the terrestrial pollen taxa. 

Spore percentages are based on the sum of pollen and spores. The relative abundances 

of reworked taxa (Tertiary spores and redeposited Quaternary pollen) are based on the 

sum of pollen and redeposited taxa, and the percentages of algae are based on the sum 

of pollen and algae. The Tilia/TiliaGraph/TGView software programs (Grimm 1991, 2004) 

were used to calculate percentages and to draw diagrams. Diagrams were zoned by 

visual inspection. 

 

Freshwater ostracods 

For ostracod analyses, sediment samples (ca. 200 g each) were wet-sieved through a 

0.25 mm mesh screen, and then air-dried. In total, 102 sediment samples were screened 

for ostracods. Ostracod valves were found in 47 sediment samples and identified under a 

stereo-microscope (Zeiss Stemi SV11 Apo). The ostracod taxonomy was based on 

relevant species descriptions (Alm 1914; Pietrzeniuk 1977; Meisch 2000) following the 

nomenclature in Meisch (2000).  

The common species Candona candida and Cytherissa lacustris from 11 sediment 

samples in total were prepared for stable isotope analyses. In order to create sufficient 

material (ca. 50 μg) for isotope analyses for each species we combined three valves of C. 

candida or two valves of C. lacustris into one subsample. Altogether, 58 ostracod 

subsamples were analysed for stable oxygen (δ18O) and carbon (δ13C) isotopes. Usually 

three subsamples per sediment sample were analysed and afterwards averaged. 

Following Keatings et al. (2006a) the ostracod valves were manually cleaned by removing 

adhered particles under the binocular microscope using fine brushes and needles. Only 

clean valves from adult specimens were used for analysis. The prepared valves were 

dissolved with 103% phosphoric acid and analysed for δ18O and δ13C by a mass-

spectrometer (Finnigan MAT 253) directly coupled to an automated carbonate preparation 

device (Kiel IV). The analytical precision as determined by standard measurements (NBS 
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19) is better than ±0.06‰ (1σ) for δ18O and ±0.04‰ (1σ) for δ13C. The stable isotope data 

are expressed in delta per mil notation (δ, ‰) relative to the VPDB standard.  

 

4.5 Results 

4.5.1 Geochronology, lithostratigraphy, sedimentology, and cryolithology 

4.5.1.1 Eemian sequences 

Geochronology 

Eemian deposits were stratigraphically classified according to previously dated and 

palaeo-ecologically determined interglacial horizons of similar structure and composition 

in comparable stratigraphic positions (Andreev et al. 2004, 2008; Ilyashuk et al. 2005; 

Kienast et al. 2008). The most essential lithostratigraphic evidence besides the 

geochronological and biostratigraphical records is the large-scale coverage of the 

assumed Eemian deposits by Ice Complex sequences of the late Pleistocene Yedoma 

Suite.  

 

Eemian exposure on the south coast of Bol’shoy Lyakhovsky Island (L7-14) 

On Bol’shoy Lyakhovsky Island a section within an ice wedge cast, filled with alternating 

beds of peaty brownish plant detritus layers and grey clayish silt layers, was studied 

(subprofiles B and C; Figure 4-3a, b, e). Ripple bedding (ripples 1-2 cm high, 2-5 cm 

spacing), fine laminated layers (each lamination 5-10 mm thick), and small-scale 

synsedimentary slumping structures were common (Figure 4-3e). Several layers 

contained mollusc shells, about 5 mm in diameter. Larger twig fragments and peat 

inclusions of 2-3 cm in diameter were also observed. The cryostructure was 

predominantly massive. Only single thin ice veins (< 1 mm thick) were visible parallel to 

the bedding).  

The ice wedge cast was underlain by grey silt (subprofile A; Figure 4-3a, b, e) with 

irregular fine single white laminations (< 1 mm thick). No plant remains were observed, but 

numerous small, dark-grey round spots, probably decomposed plant remains, were 

visible. The cryostructure was massive. This material represents thawed and refrozen 

(taberal) deposits. 

The alternate bedding structures of the ice wedge cast were discordantly covered by ice-

rich deposits (subprofile D, E and F; Figure 4-3a, b, d). This sequence exposed the 

transition between laminated lacustrine and weakly-bedded ice-rich boggy deposits. The 

latter were characterised by lens-like cryostructures, ice bands (Figure 4-3d), and the 

occurrence of single twig fragments. The ice-rich sequence of silty sand transformed 

gradually into a thick peat horizon.  
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Figure 4-3 Composite Eemian to post-Eemian sequence L7-14 at the south coast of Bol’shoy 

Lyakhovsky Island (73.28770 °N; 141.69097 °E): (a) Exposure scheme with position of the studied 

subprofiles A to F; (b) Positions of the sediment samples and samples for OSL-dating (in yellow); 

(c) Overview picture of the studied sequence; (d) Ice-rich deposits covering the Eemian sequence; 

(e) Well-bedded Eemian lake deposits in an ice wedge pseudomorph 
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Figure 4-4 Comparison of sedimentological, biogeochemical, and cryolithological records of the 

composite Eemian profiles L7-14 and Oy7-08 

 

The transition horizon contained several large peat inclusions ≈30 cm in diameter. The 

cryostructure was banded (2-5 cm thick bands) with coarse lens-like reticulations between 

ice bands, reflecting conditions of ice supersaturation. Several vertical ice veins (1 to 1.5 

cm broad, 20 cm long) were observed in 20 cm distance to each other in the upper part of 

the peat horizon. The entire sequence was framed by ≈1 m wide ice wedges to the left 

and to the right, and is considered to be polygon filling (Figures 4-3a, c). The peat horizon 

consisted of numerous large peat lenses embedded in greyish sandy silt. Similar thick 
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peaty horizons were observed several other places on the coast. Therefore, it can be 

concluded that the sequence of interglacial finely-laminated lake deposits covered by ice-

rich silty sands and a peat layer is of stratigraphic importance. Further upwards to the 

surface the coastal section consisted of a ≈20 m thick Ice Complex sequence. According 

to grain size analysis, the studied deposits are poorly sorted clayish sandy silts (Figure 4-

4). The silt fraction is dominant, but the changing content of fine-grained and middle-

grained sand reflects the alternating beds of lacustrine Eemian deposits. The 

sedimentological records of the well-bedded part and the adjacent underlying and 

covering layers are similar. Therefore, both the underlying and overlying layers seem to 

have been transformed by thawing and freezing or by refreezing only after accumulation. 

In general, two horizons could be distinguished. The lower horizon containing less ice and 

organic carbon corresponds to the Eemian lacustrine sequence. The upper horizon of 

higher ice (100-300 wt%) and TOC contents is considered to be a boggy formation. The 

δ13C record probably reflects changes in plant associations which would result from a 

gradual transition from aquatic to boggy environmental conditions (Figure 4-4).  

 

Eemian exposure on the coast of Oyogos Yar (Oy7-08) 

A second ice wedge cast profile studied on the Oyogos Yar coast was part of a 28 m long 

coastal section mostly composed of late Pleistocene Ice Complex deposits (Schirrmeister 

et al. in press). For this paper, we selected the lower two subprofiles A and B underlying 

the Ice Complex deposits (Figure 4-5a). Subprofiles A and B were exposed between 2 

and 6 m a.s.l. at the cliff wall of the thermo-terrace to the sea and in a small thermo-

erosional gully cutting the thermo-terrace (Figure 4-5b).  

The lowest horizon (sample Oy7-08-01 of subprofile A) underlying the ice wedge cast 

contained grey taberal deposits with black spots and several plant remains. The 

cryostructure was massive. These deposits were covered by light-brown peat lenses (2 x 

5 to 10 x 15 cm) in a grey sandy silt matrix with lens-like reticulated cryostructure and 

higher ice content. In addition, single ice lenses 5 mm thick were visible. Disturbed 

layering and white lines of thaw structures between the layers were observed. The 

lowermost layer of the exposed ice wedge cast consisted of finely-laminated 1-2 to 5-10 

mm thick alternating layers of brownish plant detritus layers and grey sandy silt layers 

(Figure 4-5a). The cryostructure was fine lens-like reticulated. 

The centre of the ice wedge cast and the overlying deposits were studied in the second 

subprofile B (Figure 4-5a). This subprofile was composed of numerous 5-10 cm thick 

alternating plant detritus layers and sandy silt layers (Figure 4-5c). Ripple bedding, 

synsedimentary slumping structures, and separate peat lenses were observable in some 

layers. The cryostructure was lens-like layered. Ice lenses were oriented parallel to the 
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bedding. Further upwards the bedding was disturbed and the plant detritus content 

decreased. Grey silty sand dominated this horizon, which contained numerous mollusc 

shells. The cryostructure changed upward from lens-like layered to lens-like reticulated. 

Because of overlapping sample heights the analytical records of subprofile A were 

presented separately in Figure 4-4. The entire sequence consisted of less-sorted clayish 

sandy silt. Small-scale changes of mean grain size and of sand fraction reflect the 

alternating bedding of the lacustrine deposits. The horizon below the ice wedge cast is 

characterised by δ13C values lighter than those of the ice wedge cast sediments (Figure 4-

4). 

 

 

Figure 4-5 Composite Eemian sequence Oy7-08 at the north coast of Oyogos Yar (72.68002 °N; 

143.53181 °E): (a) Exposure scheme with positions of the studied subprofiles A and B, sediment 

samples, and samples for OSL-dating (in yellow); (b) Photograph of the positions of subprofiles A 

and B which occur close together; (c) Detail of the well-bedded sediment structure within the ice 

wedge cast. For legend see Figure 4-3  

 

4.5.1.2 Late Glacial/Holocene sequences 

Geochronology 

In total, the plant remains and detritus in twenty sediment samples from both Late 

Glacial/Holocene sequences have been radiocarbon dated (Table 4-2).  

The age-height relationship is not consistent, probably due to pre-sedimentary relocation 

and post-sedimentary cryogenic processes. Furthermore, the interpretation of the 

stratification is complicated by the sampling of subprofiles at different positions. However, 

the general picture is similar at both study sites on the northern and southern coasts of the 

Dimitri Laptev Strait. Late Pleistocene taberal deposits dated between about 46.6 and 
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36.6 kyr BP are discordantly overlain by lake deposits dated from about 11.8 to 7.1 kyr BP 

at the Bol’shoy Lyakhovsky section (profile L7-08) and from about 14.8 to 10.7 kyr BP at 

the Oyogos Yar section (profile Oy7-11). The overlying boggy deposits accumulated from 

about 7.5 to 4.0 kyr BP at the Bol’shoy Lyakhovsky section and between about 10.0 and 

3.3 kyr BP at the Oyogos Yar section. The late Holocene deposits discordantly cover the 

underlying older Holocene sediments. 

 

Table 4-2 AMS-measured radiocarbon ages of plant remains in samples of the Alas sequences 

from Bol’shoy Lyakhovsky (L7-08) and Oyogos Yar (Oy7-11)   

Sample № Lab № Altitude     
[m, a.s.l.] 

Uncal. AMS       
ages [yr BP] 

Cal. AMS 
ages* [yr BP], 

maximum 

Cal. AMS 
ages* [yr BP], 

minimum 

L7-08-25 KIA 36692 10.7 3960 ±140 4830 4083

L7-08-22 KIA 35227 10.0 7525 ±40 8309 8293

L7-08-19 KIA 35226 9.0 11610 +690/-640 15497 11755

L7-08-18 KIA 36691 8.4 10090 ±150 12184 11223

L7-08-16 KIA 35225 7.9 9220 +190/-180 10890 9894

L7-08-14 KIA 36690 7.5 7095 ±60 8020 7794

L7-08-12 KIA 35224 6.8 11210 +880/-800 15378 10650

L7-08-08 KIA 35223 5.7 11860 ±160 14050 13362

L7-08-05 KIA 35222 5.0 46620 +1750/-1440  

L7-08-02 KIA 36689 4.2 44030 +820/-750  

Oy7-11-14 KIA 35234 11.1 3325 ±35 3635 3477

Oy7-11-12 KIA 35233 10.1 8335 ±45 9472 9247

Oy7-11-10 KIA 35232 8.8 8260 ±40 9408 9092

Oy7-11-09 KIA 36687 8.6 9985 ±35 11616 11271

Oy7-11-08 KIA 36686 8.3 11145 ±40 13141 12943

Oy7-11-07 KIA 35231 8.0 14830 +70/-60 18500 17731

Oy7-11-06 KIA 36688 7.7 10720 +40/-35 12839 12700

Oy7-11-04 KIA 35230 7.1 11995 ±50 13984 13748

Oy7-11-03 KIA 35229 6.8 41290 +2370/-1830   

Oy7-11-01 KIA 35228 6.0 36580 +1090/-960   

*Calibrated ages were calculated using the software program „ CALIB rev 5.01”  
 (Data set: IntCal04; Reimer et al. 2004) 

 

Alas exposures on the south coast of Bol’shoy Lyakhovsky Island (L7-08, R33-A1) 

An 8 m thick sediment sequence in the centre of a thermokarst depression, cut by the 

coastal cliff, was studied about 4.1 km west of the Zimov’e River mouth (Figure 4-1). 

The lowermost exposed horizon consisted of greenish grey sandy silt, the thawed and 

refrozen  (taberal) remains of Ice Complex deposits (Yedoma Suite), containing peat 

lenses of 5-10 cm length (Figure 4-6).  

 76 
 



Eemian and Late Glacial/Holocene palaeoenvironmental records                                                                      Chapter 4 
Palaeogeography Palaeoclimatology Palaeoecology (in preparation) 
__________________________________________________________________________________________________ 

 

Figure 4-6 Composite Late Glacial/Holocene thermokarst sequence L7-08 on the south coast of 

Bol’shoy Lyakhovsky Island (73.28161 °N; 141.83794 °E); (a) Exposure scheme with positions of 

the studied subprofiles A to D, sediment samples, and AMS-measured dates (kyr BP);  (b) 

Overview photograph of the studied sequence. For legend see Figure 4-3 

 

The cryostructure was coarse lens-like reticulated. The gravimetric ice content was 

relatively low. Above this horizon, a 0.5 m thick layer of cryoturbated peaty palaeosol 

containing less-decomposed, light-brown peat moss and a dark-brown peat layer with 

wood fragments in a sandy silt matrix was exposed. The cryostructure was net-like to 

lens-like, with 4-5 cm long ice lenses, and an ice content of 38 to 46 wt%. This segment 

was covered by 4 m of lacustrine deposits altogether, consisting of alternating beds of 

dark-grey clayish silt and 2 mm thick dark-grey layers of plant detritus. The cryostructure 

was lattice-like with distances between separate ice veins of 5-10 cm. This part was 

additionally marked by 2 to 3 cm thick brownish zones of iron oxide impregnations along 

cracks. The uppermost 3 m of the alas sequence were characterised by light-brown, 10 to 

15 cm long peat inclusions in light-grey sandy silt matrix reflecting subaerial accumulation 

conditions. The cryostructure was banded and lens-like between ice bands. Between 1.1 

to 0.3 m below the surface grass roots and peat layers occurred. The cryostructure 

consisted of diagonally-ordered, partly-broken ice veins and lenses, or of lattice-like 

structures. The studied deposits from the L7-08 sequence are predominantly composed of 

less-sorted fine-grained sand. Three horizons (taberal, lacustrine, boggy) were separated 

according to sedimentological, biogeochemical, and cryolithological results (Figure 4-7).  

 

 77 
 



Eemian and Late Glacial/Holocene palaeoenvironmental records                                                                      Chapter 4 
Palaeogeography Palaeoclimatology Palaeoecology (in preparation) 
__________________________________________________________________________________________________ 

 

Figure 4-7 Comparison of sedimentological, biogeochemical, and cryolithological records of the 

composite Holocene alas profiles and underlying taberal deposits L7-08 and Oy7-11 

 

The bedding of the lacustrine segment is reflected in changing mean grain size values 

and variations in the silt and sand fractions. The less variable magnetic susceptibility 

reflects the homogenous mineral composition of these deposits. Taberal Ice Complex 

deposits below and boggy deposits above the lacustrine horizon are clearly separated by 

lighter δ13C values (< −30‰), higher TOC contents, and low values of magnetic 

susceptibility.  

 78 
 



Eemian and Late Glacial/Holocene palaeoenvironmental records                                                                      Chapter 4 
Palaeogeography Palaeoclimatology Palaeoecology (in preparation) 
__________________________________________________________________________________________________ 

An additional alas section (R33) already described by Andreev et al. (2008) exposed on 

the eastern slope of the same thermokarst depression was additionally used for ostracod 

studies. The cryolithological and stratigraphic situation was generally similar to that of the 

above-mentioned section. According to radiocarbon data, the lower horizon was formed 

during the Middle Weichselian. The upper subaquatic and the subaerial sediments 

containing molluscs, snails, and thin layers with leaves, accumulated between 12 and 8 
14C kyr BP. The sequence was covered by boggy deposits that are 3.7 kyr BP old. Woody 

remains were radiocarbon dated between 8.4 and 8.9 kyr BP and found in a near-surface 

ice wedge cast (Andreev et al. 2008). 

 

Alas exposure on the coast of Oyogos Yar (Oy7-11) 

This exposure consists of two subprofiles that were studied at the coast on both sides of 

an erosional crack (Figure 4-8a).  

 

 

Figure 4-8 Composite Late Glacial/Holocene thermokarst sequence Oy7-11 on the north coast of 

Oyogos Yar (72.68347 °N; 143.47526 °E): (a) Exposure scheme with position of the studied 

subprofiles A and B, sediment samples, and AMS-measured dates (kyr BP); (b) Overview 

photograph showing both walls of an erosional crack; (c) Subprofile A with taberal Ice Complex 

deposits, lacustrine deposits and ice wedge casts, and the covering peat layer. For legend see 

Figure 4-3  
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The sediment sequence was exposed at an ≈ 10 m high wall, where subprofile A was 

studied, and at a fallen block opposite to the wall, where subprofile B was accessible. The 

lower subprofile A (Figure 4-8a) consists of taberal Ice Complex deposits of the Yedoma 

Suite. 

The light-grey silty sand contained no or rare visible plant detritus. The cryostructure was 

lens-like layered. One mm thick, 5-15 cm long ice lenses occurred 1-2 cm apart. Irregular 

white lines were also observed and were interpreted as thaw structures. These whitish 

structures occurred with increasing frequency closer to the overlaying peaty soil. This 

palaeosol layer contained twigs and peat inclusions. Above this buried soil, lacustrine 

deposits were indicated by alternating layers of silty fine sand and plant detritus. Ripple 

marks, small faults, wood fragments, and mollusc shells were observed. The cryostructure 

was lens-like layered. Similar lacustrine sediments were found in a flanking ice wedge 

cast (Figure 4-8c). Small epigenetic ice wedges became a broad syngenetic ice wedge 

crossing the sediment sequence, similar to the above-described section on Bol’shoy 

Lyakhovsky Island.  

The lake sequence was covered by a peat horizon which was not accessible in subprofile 

A. Therefore, the upper part of the alas sequence was studied in a seperate block directly 

in front of the wall (Figure 4-8b). The 20 to 30 cm thick peat horizon was dense and platy 

and contained wood fragments (2-3 cm in diameter) and 1-2 mm thick silt layers. Further 

upward, greyish silty sand and light-brown peat lenses were found. The cryostructure was 

banded and coarse lens-like reticulated. Ice lenses up to 1 cm thickness were composed 

of vertical ice needles.  

Field observations indicated that the alas sequence was subdivided into three different 

parts; this conclusion was confirmed by analytical records (Figure 4-7). The entire 

sequence predominantly consists of poorly sorted silt. The lowermost taberal Ice Complex 

deposits are characterised by fine-grained clayish silt. The covering lacustrine segment 

contains more sand. The magnetic susceptibility of both parts was similar (about 20 x 10-8 

m3/kg) reflecting a similar sediment source. The observed bedding of lacustrine sediments 

is shown by variations in mean grain size. Finally, the uppermost boggy segment is 

characterised by higher ice content, lower mean grain size, and variations in magnetic 

susceptibility and TOC values. 

 

4.5.2 Stable isotope ground ice records 

Stable isotope data from ice wedges presented here were obtained on Bol’shoy 

Lyakhovsky Island. Corresponding samples were taken on Oyogos Yar; those analyses 

are still in progress and the subject of an upcoming paper by Opel et al. (in preparation).  
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We obtained four samples at 8.5 m a.s.l. from a syngenetic ice wedge exposed at section 

L7-14 above the Eemian lacustrine sediments (Figure 4-3).  

 

 

Figure 4-9 (a) δ18O–δD plot of post-Eemian Glacial syngenetic ice wedges (Section L7-14) and 

Holocene syngenetic and epigenetic ice wedges (Section L7-08) with respect to the Global 

Meteoric Water Line (GMWL), which correlates fresh surface waters on a global scale (Craig 

1961); (b) Overview photograph of the sampled Holocene syngenetic ice wedge in the upper part 

of section L7-08 at 11 m a.s.l.  

 

Syngenetic ground ice formed concurrently with sediment accumulation. The isotopic 

record shows values of ≈ −29‰ for δ18O and −218‰ for δD, which are relatively light 

isotopically when compared to the Holocene records of section L7-08. The deuterium (d) 

excess averages about 10.7 (Figure 4-9, Table 4-3).  

The Holocene stable isotope ground ice record comes from two samples taken at 6.3 m 

a.s.l. from the epigenetic part and 11 samples at 11 m a.s.l. from the syngenetic part of 

the Holocene ice wedges exposed at section L7-08 (Figure 4-6). The epigenetic part 

formed after sedimentation in the underlying lacustrine deposits, and the syngenetic part 

formed approximately simultaneously during sediment accumulation in the boggy deposits 

(Figure 4-6). The isotopic records of the Holocene syngenetic ice wedge show heavier 

values of around −24‰ for δ18O and −182‰ for δD than the post-Eemian Glacial records 

of section L7-14. The d excess averages about 7.3 (Figure 4-9, Table 4-3). The δ18O  and 

δD values of the sampled epigenetic parts of the Holocene ice wedges were heavier than 

those of the syngenetic parts; about −20‰ for δ18O and −158‰  for δD, an a deuterium 

excess of around 0.5 (Figure 4-9, Table 4-3). The latter value points to interactions 

between the thin epigenetic parts of ice wedges and the surrounding frozen sediments, 

altering the primary meteoric precipitation signal. 
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Table 4-3 Oxygen and hydrogen stable isotope signatures (mean values and standard deviations) 

of post-Eemian Glacial and Holocene ice wedges (IWs) 

Type of            

ground ice 

Sub-

samples 

Altitude δ18O 

mean 

δ18O  

σ 

δD 

mean 

δD    

σ 

d 

mean 

d       

σ 

  [m a.s.l.] [‰] [‰] [‰] [‰] [‰] [‰] 

Holocene IW 

(syngenetic) 

11 11 −23.63 1.35 −181.8 10.2 7.3 1.2 

Holocene IW  

(epigenetic) 

2 6.5 −19.87 1.96 −158.4 13.4 0.5 2.2 

Post-Eemian IW 

(syngenetic) 

8       8.5 −28.62 0.25 −218.3 1.3 10.7 0.8 

 

4.5.3 Pollen studies 

4.5.3.1 Eemian sequences 

Eemian pollen record from Bol’shoy Lyakhovsky Island  

The lowermost spectra (pollen zone I: PZ I) in profile L7-14 (Figure 4-10) are dominated 

by pollen of Poaceae and Cyperaceae with some Betula sect. Nanae and Alnus fruticosa. 

The pollen concentration is low. PZ I contains high numbers of Glomus spores (indicative 

of denudated soils) and reworked ancient (mineralised) Pinaceae. It is also likely that 

Pinus and Picea pollen found in PZ I have been reworked as well. Therefore, the pollen 

spectra of PZ I should be considered carefully. Poaceae and Cyperaceae pollen and 

Glomus spores were probably mostly produced by local vegetation during sedimentation, 

while numerous coniferous pollen were reworked from older sediments. Betula and Alnus 

pollen might also be of reworked or contaminated origin. Taking this into consideration, we 

should exclude the PZ I spectra from palaeoecological interpretation. 

Pollen spectra from PZ II are dominated by pollen from Poaceae, Cyperaceae, Betula 

sect. Nanae, and Alnus fruticosa. These spectra also contain rather high amounts of Salix 

and Artemisia pollen, spores of fungi (dung-inhabiting Sordariales and Glomus), and 

remains of green algae colonies (Pediastrum and Botryoccous). According to pollen 

spectra the area around a supposed initial thermokarst lake was dominated by shrubby 

tundra vegetation. Climate conditions were relatively moderate (warm and moist).  

Pollen spectra from PZ III are mainly composed of pollen from Poaceae, Cyperaceae, 

Betula sect. Nanae, and Alnus fruticosa. This zone can be subdivided into two subzones. 

The contents of shrub pollen are the highest in PZ IIIa, reflecting the warmest interval. The 

remains of green algae colonies and fungal spores are completely absent in the PZ IIIb 

zone, reflecting dryer local environmental conditions. Lower contents of shrub pollen in the 

upper subzone also point to a slight cooling.  
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Figure 4-10 Eemian pollen record from Bol’shoy Lyakhovsky Island (Section L7-14) 

 

Eemian pollen record from Oyogos Yar 

The pollen concentration of the lowermost sample (PZ I of section Oy7-08) is low (Figure 

4-11). As in the samples from PZ I of section L7-14, it contains relatively high amounts of 

reworked ancient (mineralised) coniferous pollen (Larix, Pinus, Picea), and is therefore of 

minor relevance for palaeoecological interpretation. However, some taxa from PZ I can be 

used to characterise environmental conditions in the area during sedimentation. For 

example, rather high amounts of Cichoriaceae pollen and Riccia spores are notable in the 

spectrum. Both taxa are indicative of denuded soils and may reflect an unstable 

environment connected with melting Saalian ice wedges and initial formation of Eemian 

thermokarst depressions. It is also notable that the Poaceae, Cyperaceae, and Betula 

sect. Nanae pollen in PZ I are very similar to pollen types in the lower part of PZ II, and 

probably reflect similar vegetation around the site. Pollen spectra of PZ II dominated by 

Poaceae, Cyperaceae, Larix and Betula sect. Nanae pollen (Figure 4-11) can be 

subdivided into two subzones. PZ IIa contains higher amounts of Salix and Artemisia 

pollen and spores of dung-inhabiting Sordariales fungi (Sporormiella, Podospora, 

Sordaria), while PZ IIb contains more pollen of Betula sect. Nanae, B. sect. Albae, and 

Alnus fruticosa. Rather high amounts of Larix pollen in PZ II indicate that larch grew 

around the study site. Shrub alder and dwarf birch stands were also common. Very high 

amounts of Salix pollen in the lowermost sample of PZ II may reflect a predominance of 
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willow shrubs in the pioneer vegetation around the site. Relatively high amounts of dung-

inhabiting fungal spores in the PZ IIa subzone indirectly point to the presence of grazing 

herds in the area during the interval between PZ 11a and PZ 11b. 

 

 

Figure 4-11 Eemian pollen record from Oyogos Yar (Section Oy7-08) 

 

The PZ IIb Oy7-08-05 and -06 samples from subprofile Oy7-08-A correlate with the 

samples Oy7-08-07 and -17 from the subprofile Oy7-08-B that was sampled in detail; at 

Oy7-08-B the record continues as PZ III of subprofile Oy7-08-B (Figure 4-11).  

PZ III is dominated by pollen of Poaceae, Cyperaceae, Betula sect. Nanae, Alnus 

fruticosa, Larix, and spores of Equisetum and fungi. The pollen spectra of PZ III can be 

subdivided into two subzones (Figure 4-11). PZ IIIa differ from PZ IIIb because higher 

amounts of fungal spores (dung-inhabiting Sordariaceae and Glomus) are present in PZ 
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llla, while the numbers of Larix, Salix, and Picea pollen are higher in PZ IIIb. PZ III pollen 

assemblages reveal a larch forest, with alder shrub and dwarf birch stands dominating the 

vegetation (Figure 4-13). The content of Glomus spores, which indicate disturbed soils, 

shows a trend similar to that of the Sordariaceae (especially with Sporormiella) and likely 

indicate the presence of numerous grazing animals during this interval. The highest 

presence of larch and spruce pollen occurs in PZ IIIb, indicating the most favourable 

conditions during the Eemian, i.e. the Middle Eemian thermal optimum. Slightly higher 

numbers of Salix pollen and remains of green algae colonies (Botryococcus and 

Pediastrum) point to a wetter environment than during the PZ IIIa interval. Numbers of 

Larix, Salix, and Picea pollen are significantly lower in PZ IV, indicating climate 

deterioration. Disappearance of dung-inhabiting fungi spores indirectly shows that the 

number of grazing animals in the area was significantly reduced. 

 

4.5.3.2 Late Glacial/Holocene sequences 

Late Glacial/Holocene pollen record from Bol’shoy Lyakhovsky Island (L7-08) 

The pollen spectra of PZ I are mostly dominated by Poaceae and Cyperaceae with few 

Asteraceae and Artemisia (Figure 4-12).  

Two radiocarbon dates within PZ I of about 46.6 and 44.0 kyr BP show that the sediments 

were accumulated during the Middle Weichselian. Similar pollen spectra reflecting open 

steppe- and tundra-like vegetation are known from the area (Andreev et al. 2008). The 

presence of shrub pollen (especially Salix) might reflect a growth of shrub communities in 

the area. 

PZ II is dominated by Poaceae and Cyperaceae, but also contains rather large numbers 

of Betula sect. Nanae, B. sect. Albae, and Alnus fruticosa (Figure 4-12). According to the 

radiocarbon dates (Table 4-2) the sediments were accumulated during the Allerød and the 

early Holocene. Comparing the studied spectra with other local records (Andreev et al. 

2008) shows that these spectra are typical of early Holocene records, but they also 

contain organic material of different origins due to reworking by thawing and refreezing, 

and therefore should be interpreted very carefully.  

The pollen spectra of PZ III are also dominated by Poaceae and Cyperaceae and contain 

relatively high amounts of Betula sect. Nanae, B. sect. Albae and Alnus fruticosa (Figure 

4-12). However, radiocarbon dates from the low part of the section (Table 4-2) show that 

sediment is contaminated by older organic matter. The upper part of the sediments (PZ 

IIIb pollen subzone) was accumulated in under wetter conditions as evident by higher 

amounts of Cyperaceae and green algae colonies remains. 
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Figure 4-12 Late Glacial/Holocene pollen record from Bol’shoy Lyakhovsky Island (Section L7-08) 

 

Late Glacial/Holocene pollen record from Oyogos Yar (Oy7-11) 

The lowermost PZ I is dominated by Poaceae and Cyperaceae, but also contains large 

numbers of Betula sect. Nanae, B. sect. Albae, and Alnus fruticosa (Figure 4-13).  

In addition, the uppermost pollen spectra of PZ I (sample Oy7-11-03) contain a large 

amount of Sordariaceae fungi spores. Two radiocarbon dates within PZ I of about 41.3 

and 36.6 kyr BP (Table 4-2) show that the sediments accumulated during the Middle 

Weichselian period. However, the taberal sediments representing PZ I could have been 
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contaminated by organic material of a different origin due to reworking by thawing and 

refreezing, and therefore should be interpreted carefully.  

The pollen spectra of PZ II are mostly dominated by Poaceae pollen with some pollen 

from Cyperaceae, Artemisia, Betula sect. Nanae, and a few other taxa. PZ II can be 

subdivided into two subzones  (Figure 4-13). PZ IIa contains higher numbers of shrub and 

tree pollen, while PZ IIb shows higher numbers of Asteraceae and spores of fungi. 

According to the radiocarbon dates (Table 4-2) PZ IIa spectra indicate a relatively warm 

interval which might be correlated with the Allerød. PZ IIb spectra indicate some climate 

deterioration which occurred during the Younger Dryas.  

 

 

Figure 4-13 Late Glacial/Holocene pollen record from Oyogos Yar (Section Oy7-11) 

 

PZ III is characterised by large numbers of shrub and tree pollen reflecting the shrubby 

tundra vegetation around the site  (Figure 4-13). The radiocarbon dates (Table 4-2) show 

the early Holocene age of the sediments. The environmental conditions were warmer than 

today, corresponding to the Holocene thermal optimum. 

PZ IV spectra reflect some climate deterioration that occurred during the late Holocene at 

about 3.3 kyr BP. However, the climate was still warmer than today and shrubs (Betula 

sect. Nanae and Alnus fruticosa) grew at a location where no shrubs grow today. The 

uppermost pollen spectrum is dominated by Poaceae with some Cyperaceae and Betula 

sect. Nanae, reflecting a further deterioration. However, the climate was still warmer than 

today as evidenced by high pollen numbers of B. sect. Nanae which is not present in the 

area nowadays. 
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4.5.4 Ostracod studies 

4.5.4.1 Eemian sequences 

Taxonomy  

Remains of ostracods have been found in most of the lacustrine sediment samples of 

Eemian sequences. Taberal deposits situated below the lacustrine sediments generally 

lack ostracods, but in the overlying zone of section L7-14 which represents a transition 

from a lacustrine to a boggy milieu a rich ostracod fauna has been observed.  

Changing abundances of ostracods are obvious for several time slices within the record. 

Especially at the bottom of the lacustrine sediments, ostracods are found rarely or not at 

all in sediment samples, most likely due to unstable conditions during the early stages of 

thermokarst lake formation. However, also within the lacustrine sediments but further 

upwards, the ostracod record is inconsistent, probably indicating periods of desiccation or 

other changes in the aquatic regime. A total of 14 Eemian ostracod species was identified 

(Figure 4-14). The species composition differs between the deposits from Bol’shoy 

Lyakhovsky Island and Oyogos Yar coast since the abundance of each species differs 

between the sites. For example, Limnocythere falcata is very common in deposits from 

Oyogos Yar, but rare on Bol’shoy Lyakhovsky Island while L. suessenbornensis and 

Cypria exsculpta are generally lacking on Bol’shoy Lyakhovsky Island. The three species 

L. falcata, L. suessenbornensis, and Eucypris dulcifons from the Eemian sequences are 

not reported from modern environments, but are known from Eemian deposits in Germany 

(Diebel 1968; Diebel and Pietrzeniuk 1969). Common species from both coastal exposure 

sites are Candona candida, Fabaeformiscandona levanderi, F. rawsoni, Limnocytherina 

sanctipatricii and Ilyocypris lacustris. The modern ecological requirements of these 

species are not very specific since these species are tolerant to temperature and salinity 

variations. C. candida and F. rawsoni are known from modern thermokarst lakes in 

Central Yakutia (Wetterich et al. 2008b) and L. sanctipatricii from polygon ponds in North 

Yakutia (Wetterich et al. 2008a).  
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Figure 4-14 Ostracod species assemblages from Eemian deposits of Bol’shoy Lyakhovsky Island 
and Oyogos Yar. Note varying scales.  
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Stable isotopes 

The stable isotope record of ostracod calcite from the Eemian period was analysed in 

samples from section Oy7-08 (Table 4-4). The mean δ18O record of C. candida during this 

period ranges from −11.3 to −12.6‰, while the record of species C. lacustris varies from 

−12.2 to −14.5‰ (Table 4-4). 

 

Table 4-4 Oxygen and carbon stable isotope signatures (mean values, maxima and minima) of 

ostracod calcite from different periods  

Site Uncal.   

ages 

[kyr BP] 

№ of 

sub-

samples 

Species  δ18O 

mean 

[‰] 

δ18O 

max 

[‰] 

δ18O 

min 

[‰] 

δ13C 

mean 

[‰] 

δ13C 

max 

[‰] 

δ13C 

min 

[‰] 

North 

Yakutia* 

modern 1 C. candida −14.97 -- -- −6.91 -- -- 

Central 

Yakutia** 

modern 6 C. candida / 

C. muelleri-

jakutica 

−10.34 −8.88 −11.64 −1.96 0.24 −5.75 

8 C. candida −13.37 −12.34 −15.12 −5.62 −4.23 −7.40 L7-08 11.6 to 

10.1 
10 C. lacustris −14.10 −13.03 −14.89 −7.54 −6.28 −9.93 

21 C. candida −12.99 −12.21 −13.93 −6.13 −5.29 −6.77 R33 

A1*** 

12.5 

19 C. lacustris −14.01 −12.82 −14.86 −7.82 −6.04 −9.77 

5 C. candida −11.70 −11.25 −12.59 −5.05 −4.70 −5.50 Oy7-08 Eemian 

8 C. lacustris −13.08 −12.15 −14.48 −8.53 −7.28 −10.2 

*Wetterich et al. (2008a); **Wetterich et al. (2008b); ***Andreev et al. (2008) 

 

The difference of > 1‰ between the mean values of the two species is probably due to 

species-dependent metabolic (vital) offsets. Such an effect leads to 18O-enrichment, 

compared to the precipitation of calcite when organismal isotopes are in equilibrium with 

the lake water (Hammarlund et al. 1999). The vital offset of Candona candida was 

quantified as 2.1 ± 0.2‰ by von Grafenstein et al. (1999) and as +2.5 to +3‰ by Keatings 

et al. (2002), whereas the vital offset of Cytherissa lacustris is lower at 1.2 ± 0.3‰ (von 

Grafenstein et al. 1999). The δ13C values range from −4.7 to −5.5‰ for C. candida and 

from −7.3 to −10.2‰ for C. lacustris (Table 4-4). 

 

4.5.4.2 Late Glacial/Holocene sequences 

Taxonomy 

In sediments from the Late Glacial/Holocene L7-08 and R33 A1 sections on Bol’shoy 

Lyakhovsky Island, ostracods were found in the lacustrine horizon and in the lower part of 

the boggy horizon. In total, 11 species have been identified of which Candona candida, 
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Fabaeformiscandona levanderi, Cytherissa lacustris, and Cypria exsculpta were the most 

abundant (Figure 4-15). 

 

 

Figure 4-15 Ostracod species assemblages from Late Glacial/Holocene deposits of Bol’shoy 

Lyakhovsky Island and Oyogos Yar. Note varying scales. 

 

In contrast, the Oyogos Yar Oy7-11 section provided a very poor ostracod record; it 

included a single valve of juvenile Candoninae in the lowermost taberal deposits, and low 

numbers of F. levanderi, F. rawsoni, and L. falcata in the overlying lacustrine sediments 

from the Late Glacial age (Figure 4-15). As in the Eemian records, changing abundances 
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of ostracods are obvious in several time slices. During the transition from the Late Glacial 

to the early Holocene, the highest numbers of ostracod remains are seen at about 12.5 

kyr BP (samples R33 A1-12 to -15) and at about 11.6 to 10.1 kyr BP (samples L7-08-18 to 

-20). Such data point to the occurrence of well-developed thermokarst lakes and stable 

aquatic conditions even before the beginning of the Holocene. Compared to the Eemian 

records, the modern ecological demands of the most common species in the Late 

Glacial/Holocene records do not allow differentiation of aquatic conditions; these species 

are generalists, preferring cold water and tolerating slightly salty conditions. However, 

except for Candona candida the dominant species from the Late Glacial/Holocene record 

are absent from modern Central Yakutian thermokarst environments (Pietrzeniuk 1977; 

Wetterich et al. 2008b) probably due to generally warmer water temperatures today.  

 

Stable isotopes 

A stable isotope record of ostracod calcite from the Late Glacial/Holocene period was 

obtained from samples of sections L7-08 and R33 A1, and dated from 12.5 to 10.1 kyr BP 

(Table 4-4). The δ18O record of C. candida during this period ranges from −12.2 to 

−15.1‰, and the record of C. lacustris ranges from to −12.8 to −14.9‰ (Table 4-4). As in 

the Eemian stable isotope record, a general shift of about 1‰ between the mean values 

of the two species has been observed, likely resulting from different species-dependent 

vital offsets. The δ13C values range from −4.2 to −7.4‰ for C. candida and from −6.0 to 

−9.9‰ for C. lacustris (Table 4-4). 

 

4.6 Discussion and interpretation 

4.6.1 Local palaeoenvironmental changes during the Eemian  

The lithostratigraphical structure of the Eemian sections at the northern and southern 

coast of Dimitri Laptev Strait show a similar general pattern of three different horizons 

which accumulated under different environmental conditions.  

The lowermost sequences of taberal deposits represent thawed and subsequently 

refrozen material which likely accumulated in pre-Eemian times and underwent thawing 

during the Eemian Interglacial when thermokarst processes led to the formation of lakes 

and thawed deposits (taliks) below the lakes.  

The sedimentological and cryolithological features of the pre-Eemian taberal horizons 

show single whitish laminations which are interpreted as thaw signs, numerous small 

dark-grey spots representing strongly decomposed organic matter, and a massive 

cryostructure. The pollen records (lowermost PZ I of L7-14 and Oy7-08) reveal relatively 

high amounts of reworked ancient (mineralised) coniferous pollen, and ostracod remains 
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are absent. Similar results were obtained in formerly described pre-Eemian deposits of 

Bol’shoy Lyakhovsky Island (Andreev et al. 2004).  

The refreezing of the taberal horizons took place in post-Eemian time and the deposits 

remained frozen until today. Such taberal deposits are covered by the Eemian lacustrine 

sequence that formed due to warmer conditions during the Interglacial when thermokarst 

lakes occurred. Under such conditions pre-Eemian ice wedges thawed; at their positions 

small thermokarst lake basins formed and lacustrine sediments began to accumulate. 

Distinctive features of the lacustrine sediments are the alternating beds of finely laminated 

brownish plant detritus and grey sandy silt layers.  

The Eemian pollen records (PZ II and III) from both locations show similarities reflecting 

comparable vegetation. The main difference between the Bol’shoy Lyakhovsky and 

Oyogos Yar Eemian pollen records is the absence of Larix at the northern location. The 

northern tree line likely reached the Oyogos Yar region during the Middle Eemian, but not 

the Bol’shoy Lyakhovsky region. Basing on correlation of the studied pollen assemblages 

with previously studied records (Andreev et al. 2004; Ilyashuk et al. 2006; Kienast et al. 

2008) we may assume that the PZ II of L7-14 and Oy7-08 represents the Early to Middle 

Eemian period. High numbers of Glomus spores indicate that vegetation and soils were 

significantly disturbed, probably due to active erosion processes connected with the 

melting of Saalian ice wedges and thermokarst lake formation. Rather high numbers of 

Artemisia and the presence of herb pollen taxa such as Brassicaceae, Caryophyllaceae, 

and Asteraceae show that open plant associations were also common. Dung-inhabiting 

fungi spores in the pollen spectra indirectly point to the presence of grazing animals 

around the lake. PZ IIIa (Oy7-08-B) was formed during the Middle Eemian thermal 

optimum. Climate conditions in the Eemian were warmer than today in northern Yakutia 

as has already been discussed on the basis of pollen and plant macrofossil data from 

exposures on Bol’shoy Lyakhovsky Island. Andreev et al. (2004) provided a quantitative 

climate reconstruction based on a pollen-climate reference data set from northern Eurasia 

(Tarasov et al. 2005). Mean air temperatures of the warmest month (MTWA) vary from 7.8 

to 9.6 °C for the Eemian thermal optimum (modern MTWA at Cape Shalaurova, Bol’shoy 

Lyakhovsky Island: 2.8 °C; Rivas-Martínez 2007). Using Eemian plant macrofossil records 

from Bol’shoy Lyakhovsky Island, Kienast et al. (2008) concluded a MTWA of about 12.5 

°C for the Eemian optimum. The pollen spectra of PZ IIIb (Oy7-08-B) indicate gradual 

climate deterioration during the Late Eemian.   

The occurrence of numerous well-preserved ostracod remains in the lacustrine horizons 

points to stable aquatic conditions due to extensive thawing of pre-Eemian permafrost 

deposits and the widespread occurrence of thermokarst lakes caused by generally 

warmer climate conditions. The Eemian ostracod assemblages are dominated by species 
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which tolerate the considerable changes in temperature and salinity regimes that are 

typical of modern habitats like thermokarst lakes and polygon ponds in the periglacial 

landscapes of East Siberia.  

The Eemian lacustrine deposits are discordantly covered by thick Ice Complex deposits 

(Yedoma Suite) of late Pleistocene age. 

 

4.6.2 Local palaeoenvironmental changes during the Late Glacial/Holocene  

As already described for the Eemian sequences, the Late Glacial/Holocene 

sedimentological records are also subdivided into taberal, lacustrine, and boggy deposits. 

The accumulation record of this period based on available radiocarbon dates is not 

consistent (Table 4-2). Middle Holocene deposits from about 7.5 to 4.0 kyr BP have not 

been found in the Dimitri Laptev Strait exposure. Similar situations are known from other 

key regional Quaternary sections of permafrost deposits (Schirrmeister et al. 2002a, b, 

2003, 2008a; Sher et al. 2005; Andreev et al. 2008). Thermokarst-related landscape 

dynamics during interglacial or interstadial warm periods led to extensive melting and 

reworking of underlying ice-rich deposits, and such processes are likely responsible for 

the lack of sediment preservation. Low sedimentation rates during the middle Holocene 

are another possible explanation that to date remains unsubstantiated. Generally, Late 

Glacial and Holocene deposits mostly appear in the permafrost region of northern Yakutia 

as filling of thermokarst depressions or as a thin horizon above late Pleistocene 

sequences. The studied sequences exhibit a sedimentation history in which late 

Pleistocene Ice Complex deposits dated from about 46.6 to 36.6 kyr BP are discordantly 

overlain by Late Glacial deposits dated to 14.8 kyr BP and younger. The boundary 

between the two sequences is visually obvious due to exposure characteristics, and is 

also distinguished by differences in sedimentological and cryolithological properties. The 

lowermost sequence is built up of taberal deposits of the former Ice Complex, composed 

of sandy silt containing peat lenses and thaw signs (whitish laminations) and lens-like 

reticulated or layered cryostructures with generally low ice content. The pollen data from 

the taberal horizons point to a Middle Weichselian interstadial vegetation. Due to 

reworking during thawing and refreezing of the deposits, the possibility of pollen 

contamination cannot be excluded and therefore the taberal horizon is of minor relevance 

for the palaeoenvironmental interpretation. Ostracods have very rarely been observed in 

the taberal deposits, but their occurrence in undisturbed Middle Weichselian Ice Complex 

sequences has been reported by Wetterich et al. (2005, 2008c).   

The taberal horizon is discordantly covered by a lacustrine horizon of Late 

Glacial/Holocene age. Its lowermost part is composed of cryoturbated peaty palaeosols in 

both sections on the northern and southern coasts of the Dimitri Laptev Strait. The 
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overlying lacustrine horizons of alternating beds of clayish silts and plant detritus layers 

are of lens-like or lens-like layered cryostructure and contain mollusc shells, ostracods, 

and wood fragments.    

Radiocarbon dates of single samples and a comparison with previously studied regional 

records (Grosse et al. 2007; Andreev et al. 2008) confirm Allerød (PZ IIa of Oy7-11) and 

Younger Dryas (PZ IIb of Oy7-11) ages of the Late Glacial pollen records. Warmer 

conditions (MTWA: 8-12 °C) than today have already been reconstructed for the Allerød 

and the early Holocene, using pollen records from Bol’shoy Lyakhovsky Island (Andreev 

et al. 2008). 

The ostracod records point to stable aquatic conditions during the last period of the Late 

Glacial. The highest numbers and rich assemblages of ostracod remains were found in 

such sediments. Obviously, thermokarst development started some time before the 

Holocene.  

The uppermost sequence accumulated under subaerial conditions in a boggy polygonal 

tundra environment. Ice wedges syngenetic to the boggy deposits are present. Their 

stable isotope record clearly differs from those of Glacial ice wedges of post-Eemian age, 

pointing to warmer conditions during the Holocene. Numerous peat inclusions or single 

peat layers were found in a sandy silt matrix with ice bands and a lens-like cryostructure 

between single bands which indicate simultaneous (syngenetic) freezing of the sediments 

at the time of accumulation. An early Holocene shrubby tundra vegetation is reconstructed 

from the pollen spectra, whereas the pollen spectra indicate late Holocene cooling and a 

shift to modern tundra vegetation. The ostracod assemblages from the early Holocene are 

sparse and generally low diverse. As in the Eemian record, the prevailing species are 

tolerant to changes in the temperature and salinity regimes. The up-filling (aggradation) of 

the Late Glacial lake environment and its successive transformation into polygonal tundra 

may be deduced from the ostracod record. Moreover, the preservation of ostracod calcite 

in an organic-rich milieu such as the boggy horizon is generally poor (Wetterich et al. 

2005). Therefore, ostracods likely occurred in Holocene polygonal ponds, but were not 

preserved due to acidic conditions in peaty deposits.  

 

4.6.3 Palaeoenvironmental interpretation of ostracod calcite δ18O data  

The stable oxygen isotope (δ18O) data from ostracod calcite reflect the stable isotope 

composition of the host water (at the time of shell formation) which itself mostly depends 

on temperature regime and evaporation effects (e.g. Wetterich et al. 2008a, 2008b). The 

stable isotope composition of thermokarst lakes in the permafrost zone is mostly 

influenced by precipitation waters and, to a lesser degree, by the melt water from the 

surrounding and underlying permafrost. Available δ18O annual precipitation data from 
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Central Yakutia (Station Yakutsk: 1997 to 2006) average about −23.1‰ and from North 

Yakutia (Station Tiksi: 2003 to 2007) about −24.4‰ (Kloss 2008). These values are fairly 

similar considering the latitudal distance of about 1500 km between them. Assuming a 

similar precipitation input, the lake water δ18O is also influenced by local temperature and 

resulting evaporation effects which are stronger in Central Yakutia due to higher 

temperatures (Wetterich et al. 2008b). Consequently, the δ18O in lake waters is controlled 

by the climatic setting. The δ18O ostracod calcite data reflect the lake water composition 

and can therefore be assumed to indicate the water temperature and evaporation regime 

of lakes.          

Comparing the fossil data to the very scarce modern reference data of ostracod δ18O and 

water temperatures where those ostracods are found, some preliminary conclusions for 

the palaeo-temperature regime of waters can be drawn. As shown in Figure 4-16, heavier 

stable δ18O values are obtained from specimens of the Eemian and Late Glacial ostracod 

Candona candida than from the same modern species found today, suggesting conditions 

of warmer mean water temperatures and/or higher evaporation during the ancient as 

compared to the modern North Yakutia. Furthermore, when a second modern data set 

from continental Central Yakutia is compared with the fossil δ18O records, the fossil 

records are lighter; this can likely be interpreted as colder and/or lower evaporation 

conditions for the ancient as compared to the modern Central Yakutia. The rare water 

temperature data from the North Yakutian site for the months of June and July (relevant 

for ostracod growth) show averages of  TJune = 8.4 °C and TJuly = 11.1 °C (measured in 

2007/08, 0.24 m below the water surface; unpublished data from Samoylov Island, Lena 

Delta; kindly provided by Julia Boike, SPARC group, AWI Potsdam). Distinctly warmer 

conditions were documented in continental Central Yakutian thermokarst lakes where 

TJune = 19.1 °C and TJuly = 19.2 °C (measured in 2005, 0.4 m below the water surface; 

Wetterich et al. 2008b).   

Considering the sparse database, a quantitative palaeo-temperature estimation is actually 

impossible since continuous temperature data are rare and ostracod monitoring in 

northern regions and accompanying stable isotope analyses are still lacking. However, 

because the fossil δ18O values from the Eemian and also from the Late Glacial clearly fall 

between modern reference δ18O values of about −15‰ and −10‰ (reflecting mean 

summer water temperatures of about 10 °C and 19 °C, respectively), an approximate 

palaeo-temperature range can be assumed for the palaeo-lakes during both periods. Such 

fairly accurate estimation is also supported by the above mentioned MTWA temperature 

reconstruction of 7.8 to 9.6 °C (by pollen data) and ≈12.5°C (by plant macrofossil data) for 

the Eemian thermal optimum, and 8-12 °C (by pollen data) for the Late Glacial/Holocene 

period.  
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Figure 4-16 Oxygen and carbon stable isotope signatures (mean values, maxima and minima) of 

ostracod calcite from different periods. Eemian records are given by light grey symbols, Late 

Glacial records by dark grey symbols and modern reference records from thermokarst lakes in 

North Yakutia (Lena Delta; Wetterich et al. 2008a) and Central Yakutia (Wetterich et al. 2008b) by 

black symbols. Diamonds indicate data from the species Candona candida (and Candona muelleri-

jakutica for the modern record from Central Yakutia) and squares indicate data from the species 

Cytherissa lacustris 

 

4.7 Conclusions 

The studied permafrost exposures on the northern and southern coasts of the Dimitri 

Laptev Strait contain warm-stage Eemian Interglacial and Holocene deposits as well as 

underlying deposits reflecting the glacial-interglacial transitions. The multi-proxy 

palaeoenvironmental record from both periods constructed using sedimentological, 

cryolithological, and palaeontological methods indicates a general pattern of landscape 

development according to changes in the climatic setting. The transition from glacial to 

interglacial conditions is accompanied by extensive thawing of permafrost (thermokarst), 

which leads to the formation of basins, or so-called thermokarst depressions. Thawing ice 

wedges of the former glacial period are transformed into ice wedge pseudomorphs and 

preserve well-bedded deposits of the thermokarst lakes developing above. Underlying 

deposits transform into taberal deposits due to thawing. Lacustrine sequences above the 

taberal horizons contain rich palaeontological records. Further climate change leading to 

colder and drier conditions in the case of the Eemian/Early Weichselian boundary results 

in disappearing thermokarst lakes and the development of a polygonal tundra landscape 

which is reflected in thick sequences of late Pleistocene Ice Complex. In the case of the 

Late Glacial/Holocene boundary, lakes which had already formed during the Late Glacial 

warming period at ≈12 kyr BP (Allerød) underwent succession stages and were 
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transformed into boggy polygonal tundra with considerable peat accumulation. Evidence 

of the three landscape development stages, including (1) thermokarst-induced formation 

of basins, (2) accumulation of lacustrine sequences, and (3) transformation of lake-

dominated areas into polygonal tundra, was obtained and studied for both time slices, and 

these stages are therefore considered to be of stratigraphical significance (Figure 4-17).  

 

 

Figure 4-17 General scheme of glacial-interglacial landscape dynamics controlled by thermokarst 

processes 

 

The Eemian record presented here is to be one of the northernmost terrestrial records in 

existence from the last Interglacial. Abundant Larix pollen have been found in Middle 
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Eemian deposits from Oyogos Yar, but are absent from the northerly Middle Eemian 

records from Bol’shoy Lyakhovsky Island (Andreev et al. 2004; Ilyashuk et al. 2006), likely 

indicating that the northern tree line was located near the Oyogos Yar region during the 

Eemian thermal optimum. The Late Glacial/Holocene records correlate very well with data 

from the Laptev Sea coastal lowland concerning the onset of permafrost degradation 

during the Allerød and the general vegetation dynamics (Grosse et al. 2007; Andreev et 

al. 2008).  

In the course of ostracod studies depositional records like those described above can be 

used for taxonomical and geochemical studies. The Eemian associations contain more 

taxa than the Late Glacial/Holocene. However, apart from three species (C. cf. neglecta, 

L. suessenbornensis, L. laevis) in the Eemian and one species (T. glacialis) in the Late 

Glacial/Holocene sequences the ostracod associations are similar. Comparable habitats 

in thermokarst lakes are therefore assumed for both periods. Increasing occurrence of 

ostracods in lacustrine deposits could be correlated with the Eemian thermal optimum and 

the Allerød warm period. Only six of the species presented here also occurred in the Late 

Weichselian association studied at Bykovsky Peninsula and in the Lena River Delta 

(Wetterich et al. 2005, 2008c). This first presentation of interglacial freshwater ostracod 

associations from Arctic periglacial environments can be used as a reference for 

understanding similar Quaternary periglacial records in Europe. 

The application of ostracods as a palaeo-proxy in permafrost sediments by comparing 

ancient data to modern reference data is a relative new approach to understanding 

palaeo-archive permafrost; expanding the modern database of species ecology, the 

modern geochemical reference data of host waters, and the database of stable isotope 

data from ostracod calcite would improve the accuracy of this method. However, initial 

assumptions that can be made from comparing Eemian and Late Glacial fossil ostracods 

to modern reference assemblages were presented here. The δ18O data from the fossil 

ostracods indicate an approximate mean summer water temperature range between 10 

and 19 °C in the palaeo-lakes during both periods. Future monitoring of modern 

associations in thermokarst lakes and polygonal ponds in connection with continuous 

climate and hydrological observations will expand the database and improve our ability to 

utilize ostracods as a palaeoenvironmental indicator. 
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5 Synthesis 

 

5.1 Taxonomy and ecology of ostracods 

One goal of the studies presented here is to inventory and compare modern and fossil 

freshwater ostracod assemblages from high-latitude Siberian regions, and to estimate 

current ostracod-relevant environmental parameters (Table 5-1). Since reliable and 

complete modern ostracod and limnological data from Arctic Siberia are very rare, studies 

of modern ostracod taxonomy and ecology have been performed at representative sites in 

North, Northeast, and Central Yakutia in order to obtain reference data for fossil 

applications. Because modern ostracod records are sparse, every study site revealed 

original data of ostracod species distribution and environmental conditions in Siberian 

periglacial waters comprising polygonal ponds, thaw lakes, and thermokarst lakes. 

 

Table 5-1 Selected hydrochemical characteristics from modern Yakutian study sites  

Study region № of 
sites 

Prevailing 
ostracod habitats 

EC mean 
[mS/cm] 

pH mean 

North Yakutia*                       
(Lena River Delta) 

23 Polygonal      
waters  

0.10 7.39 

Northeast Yakutia**              
(Moma region) 

7 Lowland 
depressions 

0.25 7.24 

Central Yakutia**                    
(Lena-Amga interfluve, Yakutsk) 

8 Thermokarst-
affected waters 

0.74 8.35 

* Wetterich et al. (2008a); ** Wetterich et al. (2008b) 

 

The ostracod taxa have mostly been identified to the species level by valve and soft body 

characteristics, but due to the rarity of reference collections several taxa were only 

determinable to genus level (Table 5-2 on page 103). One taxon is represented only by 

unidentified juvenile Candoninae.  The taxonomical records include 14 taxa from 23 North 

Yakutian sites (71-72 °N, 126-127 °E), mainly polygonal ponds and thaw lakes, on islands 

of the Lena River Delta (Chapter 2). Seven Northeast Yakutian sites (66 °N, 143 °E) in the 

Moma River region produced specimens from 11 taxa only, thus exhibiting the lowest 

diversity, whereas eight Central Yakutian sites (61-62 °N, 129-132 °E) near the town of 

Yakutsk and on the Lena-Amga interfluve are the most diverse, with 16 taxa identified 

(Chapter 3). The records reveal regional differences in the environmental conditions that 

influence species distribution. As we move from North to South, decreasing latitude 

means increasing mean monthly and yearly temperatures, decreasing precipitation, and 

increasing continentality, i.e. influence of evaporation on water characteristics (Figure 1-4 

on page 11, Table 1-2 on page 12 ); habitat-specific parameters differ as well between the 

three regions studied (Chapters 2 and 3, Table 5-1).  
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The tundra landscapes of North Yakutia are characterised by shallow polygonal waters in 

different stages of development which serve as primary habitat for ostracods. These 

waters are mainly precipitation-fed and are therefore very low in ionic content (measured 

as electrical conductivity, EC); in addition, the open water period that defines the period of 

active growth for ostracods is only about three months long.  Therefore, living conditions 

for ostracods in the northernmost sites are fairly extreme. Thermokarst-affected waters in 

the taiga landscapes of Central and Northeast Yakutia offer more favourable conditions 

since these waters are, in general, warmer and ice-free for a longer period of time. As 

compared to the northern sites, the ionic content of Central Yakutian waters is higher due 

to higher evaporation rates and greater meltwater supply from frozen deposits around the 

lakes caused by higher ground temperatures and a thicker unfrozen active layer during 

summer. Consequently, the variability in the environmental setting is higher and the 

ostracod species diversity is therefore greater (Figure 3-7 on page 51).  

The same species may occur in temperate regions of Europe or elsewhere, and also at 

higher latitudes; the higher-latitude populations must tolerate extremely short periods of 

time in which to complete their life cycle, large water temperature variations, and the ionic 

and nutrient contents that are generally characteristic of arctic and subarctic waters. 

Therefore, the ecological ranges in which these species could occur at mid-latitudes is 

expanded when we consider data from northern environments (Figure 2-7 on page 26, 

Figure 3-8 on page 51).  

Concerning the modern distribution of ostracods, the species Candona candida (O.F. 

MÜLLER, 1776) and C. muelleri jakutica PIETRZENIUK, 1977 are present in all three study 

regions in Yakutia, whereas the dominant species from North Yakutia, Fabaeformis-

candona pedata (ALM, 1914), was not found in more southerly sites, where Candona 

weltneri  HARTWIG, 1899 was one of the most common species.   

The taxonomic position of several species could be adapted to modern nomenclature. In 

particular the species Fabaeformiscandona pedata and Fabaeformiscandona 

inaequivalvis (SARS, 1889) formerly belonging to the genus Candona have been re-

evaluated according to their soft body characteristics. According to Meisch (2000) the 

species Physocypria kraepelini G.W. MÜLLER, 1903 found in Central Yakutia most likely 

corresponds to the species Physocypria fadeewi DUBOWSKY, 1927 formerly described by 

Pietrzeniuk (1977).    

The fossil ostracod records obtained from permafrost exposures at the Laptev and East 

Siberian seacoasts include particularly rich assemblages from several periods of the late 

Quaternary. The oldest records have been obtained from Eemian interglacial deposits. 

Generally, permafrost deposits can be regarded as an informative ostracod archive since 

ostracod shells are preserved by freezing and can be identified under the microscope 
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after standard preparation. However, ostracod shells are poorly preserved under pre-

sedimentary acidic conditions that existed in, for instance, the peaty deposits of early 

Holocene tundra environments. Normally, large numbers of fossil ostracods are found in 

deposits from all warm stages and temperate periods of the late Quaternary such as the 

Eemian Interglacial, the Middle Weichselian Interstadial, the transition from the Late 

Weichselian to the early Holocene (including the Allerød period), and the late Holocene. 

As many as 15 taxa were identified in Eemian thermokarst lake deposits, and as many as 

14 in Middle Weichselian polygonal pond deposits (Table 5-2). Fossil ostracods could only 

rarely be found in deposits from cold stages like the Early and the Late Weichselian 

Glacials. During these glacial periods the climate was generally dry, and cold and water 

bodies were unstable; because these conditions are unfavourable for aquatic organisms 

like ostracods, poor records of not more than six taxa are unsurprising (Table 5-2).    

Two deposits types within Quaternary permafrost sequences have been found to be 

promising for ostracod studies: (1) filled areas of formerly low-centred polygons where 

intrapolygonal shallow ponds occurred, and (2) thermokarst lake deposits. The first type 

was chiefly found in Late Pleistocene Ice Complex sequences; the second type, in which 

formation is controlled by thermokarst processes, prevails in sequences from warm 

stages. Several species could be found as numerous and common fossils in permafrost 

sequences from different periods. In particular, the species Candona muelleri jakutica, 

which is numerous in modern records, could be indentified in deposits from the Early and 

Middle Weichselian, and also in late Holocene. All lacustrine records, except for those 

from the Early and Late Weichselian, contain shells of Fabaeformiscandona harmsworthi 

(SCOTT 1899), a species likely endemic to the Arctic that nowadays occurs in North 

Yakutia. Fossils of the species Fabaeformiscandona rawsoni (TRESSLER, 1957), present 

in modern Central Yakutia, have also been obtained from warm-stage deposits. Other 

common fossil ostracods belong to the species Limnocytherina sanctipatricii (BRADY & 

ROBERTSON, 1869) and Ilyocypris lacustris KAUFMANN, 1900 which are rare or lacking in 

the modern environments studied. Four species without a modern record (Limnocythere 

falcata, DIEBEL, 1968; L. goersbachensis, DIEBEL, 1968; L. suessenbornensis, DIEBEL, 

1968; and Eucypris dulcifons, DIEBEL & PIETRZENIUK, 1969), but described from 

Quaternary lacustrine deposits in Germany (e.g. Diebel 1968; Diebel and Pietrzeniuk 

1969, 1975, 1978a) were also frequently found in the warm stage sediments studied.       

Taking into account the generally sparse database and comparing the total of 42 identified 

taxa in modern and fossil records, ten taxa could be found in both the modern and the 

fossil periglacial environments studied, whereas 18 taxa only occur today and 14 taxa, 

including some extinct species, have only been described from fossil records (Table 5-2).  
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Table 5-2 Overview of modern and fossil ostracod species. Detailed information about specific 

localities given in Chapter 2 (a), Chapter 3 (b), Annex I (c), Chapter 4 (d), Annex II (e). Very rare 

occurrences (in one or two samples): one cross; rare occurrences (in more than two samples): two 

crosses; common occurrences (in more than 50 % of all samples of one dataset): three crosses  
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Table 5-1 Co

 

 of 

er sampling resolution in modern studies.      

ntinuation 

 

Along with climatic and environmental variability through space and time, the dominance 

of modern taxa without fossil analogues is likely explainable by selective preservation

several species in fossil records and high
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ds 

s of these data are widely lacking in the literature, and are first presented in this 

sition of host waters 

5.2 Geochemistry of ostraco

Element ratios (Sr/Ca and Mg/Ca) 

The geochemical properties of the ostracod calcite that precipitates from the host water at 

the time of shell secretion are commonly regarded as a spatially- and temporally-restricted 

reflection of the host water composition (Griffiths and Holmes 2000). In particular, stable 

isotopes of oxygen and carbon (δ18O, δ13C) as well as molar element ratios of strontium 

and magnesium to calcium (Sr/Ca, Mg/Ca) in ostracod calcite have already been studied 

and applied in palaeoenvironmental reconstructions (Chivas et al. 1986; Engstrom and 

Nelson 1991; Xia et al. 1997a, b, c; Keatings et al. 2002, 2006a, b). Modern data 

describing the geochemical properties of high-latitude ostracod calcite and fossil 

application

thesis.     

Concerning Sr/Ca and Mg/Ca element ratios, the relationship between the element 

content in ostracod calcite and in the host water which controls the uptake of these 

elements is usually expressed as the partition coefficient D(M) = (M/Ca)valve / (M/Ca)water , 

where M can either be Mg or Sr, and M/Ca ratios are molar ratios. In this context the 

Sr/Ca element ratio of water is regarded as indicative of salinity, whereas the Mg/Ca ratio 

of water depends on the temperature and salinity regimes (e.g. Boomer et al. 2003). 

However, other factors also control the elemental composition of ostracod calcite, such as 

the biological effect of temperature-dependent metabolic rates and ionic uptake (e.g. 

Dettmann et al. 2002); the relationship between the elemental compo

and of ostracod calcite is as yet not fully understood (Ito et al. 2003). 

In the North Yakutian study sites in the Lena River Delta (Chapter 2) the generally very 

low ionic content of the waters (ECmean = 0.1 mS/cm; Table 5-1) is reflected in narrow 

arrays of element ratios in water and consequently in ostracod calcite. Therefore, the 

elemental geochemistry data represent the lower endmember on a scale of such proxy 

data. The correlation between element ratios in host waters and in the calcite of 

Fabaeformiscandona pedata, the most common ostracod species in this data set, is weak 

or lacking (Figures 2-11 and 2-12 on page 31) because there is no corresponding gradient 

in host water element ratios. The average partition coefficients D(Sr) for live-caught 

specimens of F. pedata were calculated: D(Sr) = 0.33 ± 0.06 (1σ) for female adults and 

D(Sr) = 0.32 ± 0.06 (1σ) for male adults. The Mg/Ca ratios in host waters and in the calcite 

of F. pedata are not correlated due to the temperature dependence of Mg partitioning and 

to the very low Mg/Ca ratios in waters. At the opposite end of the spectrum, host waters 

studied at the Northeast and Central Yakutian sites (Chapter 3) were generally higher in 

ionic content (ECmean = 0.25 mS/cm, ECmean = 0.74 mS/cm; Table 5-1) than those at the 

northernmost sites because of higher evaporation rates and greater meltwater supply. 
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f fossil ostracod calcite were not studied as part of the work presented in this thesis.           

d inorganic carbon (TDIC) at the time of shell 

of the lake water (e.g. 

odern datasets if stable isotope data from 

Thus, the host water element ratio gradients are larger, resulting in better correlations 

between Sr/Ca and Mg/Ca ratios in the host waters and in the calcite of the common 

ostracod species Candona muelleri jakutica and Candona weltneri (Figures 3-11 and 3-12 

on page 54). Average partition coefficients were calculated: D(Sr) = 0.32 ± 0.03 (1σ) for 

live-caught C. muelleri jakutica, and D(Sr) = 0.38 ± 0.05 (1σ) for live-caught C. weltneri. 

Generally, the element ratios in ostracod calcite are correlated with the composition of 

host waters, if the species studied are found in higher frequencies and over significant 

ranges in the host water proxies. No correlation was found between EC measurements, 

which express ionic content (i.e. salinity), and either lake water or ostracod calcite Sr/Ca 

ratios due to the very broad scatter in Sr/Ca values at low EC values below 0.5 mS/cm 

(Figure 3-14 on page 61). Such effects could not be explained by the field data collected 

during this study; an explanation likely requires research in a laboratory setting under 

conditions of fixed salinities and temperatures in order to understand metabolic controls 

on the ionic uptake from host water into ostracod calcite. Consequently, the element ratios 

o

 

Stable isotopes (δ18O, δ13C) 

In (palaeo-) limnological studies, the stable oxygen (δ18O) and carbon (δ13C) isotope 

records of ostracod calcite are considered to provide a restricted reflection of the isotopic 

composition of host water and total dissolve

secretion (e.g. Griffiths and Holmes 2000).  

Lake water δ18O is mainly controlled by precipitation, drainage basin hydrology, 

groundwater input, the precipitation/evaporation ratio, the residence time of water, the size 

of the water body, and the hydrochemical properties and temperature of the lake water 

(e.g. Kelts and Talbot 1990; Schwalb 2003; Leng and Marshall 2004). The δ18O of 

ostracod calcite is commonly used as a proxy for temperature 

Chivas et al. 1993; Xia et al. 1997b; von Grafenstein et al. 1999). 

When stable isotope compositions of host waters and ostracod calcite are compared, 

interspecific and intraspecific variations are obvious. The timing of shell calcification in 

different seasons and at different temperatures, species-dependent preferences for 

different microhabitats, and species-dependent metabolic effects on isotope fractionation 

likely control the ostracod calcite composition (e.g. Heaton et al. 1995; von Grafenstein 

et al. 1999). Metabolic (vital) effects lead to 18O enrichment relative to the 18O content of 

inorganic calcite precipitated in isotopic equilibrium with the lake water (Hammarlund et al. 

1999); these effects must be quantified using m

fossil ostracods are to be reliably interpreted.  
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tracod valves are correlated if the 

ure-independent vital effect 

oncentration (salinity) was studied in the Central and Northeast 

se and the numerous controls on ostracod isotope uptake. More data and 

within a lake and is controlled by fractionation during several carbon cycles; the most 

The δ18O - δD plots of host waters reveal evaporation effects at all study sites (Figures 2-4 

and 3-4 on pages 23 and 48). The waters are mainly affected by the general climatic 

setting, the water source (precipitation or river water), and the influence of meltwater from 

the frozen ground, and the δ18O in host waters and os

species studied were found in high frequencies and over large gradients in the host water 

proxies (Figures 2-13 and 3-9 on pages 33 and 52).      

Because of temperature and vital effects, the δ18O is shifted to heavier values in ostracod 

calcite than in the host water in all study regions. The near 1:1 relationship of δ18O found 

in waters and valves in the North Yakutian data set (Chapter 2) could be quantified as  a 

mean shift of ∆mean = 2.2‰ ± 0.5 (1σ) for modern F. pedata  (∆ = δ18Ovalve - δ18Owater  [‰]; 

Xia et al. 1997b). The shift is not dependent on δ18O of the host waters and its 

temperature dependence is reflected in the variations of the shift (between ∆min = +1.1‰ 

and ∆max = +3.2‰). When the minima and maxima in the shift and in the water 

temperature (Tmin = 5.9 °C and Tmax = 15.3 °C) are compared, a temperature-dependent 

δ18O fractionation can be shown for F. pedata; increasing temperature leads to smaller 

shifts (Figure 2-14 on page 34). Such insights are useful for a reliable interpretation of 

stable isotope data from fossil ostracod calcite. The temperat

on δ18O fractionation as compared to the δ18O fractionation of inorganic calcite in 

equilibrium was quantified as 1.4‰ for the species F. pedata. 

The relationship between EC and δ18O of lake waters as a likely evaporation-controlled 

expression of ionic c

Yakutian sites where the data showed the existence of an EC gradient from about 0 to 6 

mS/cm (Chapter 3).   

A logarithmic correlation between δ18O of lake water and water EC has been found 

(Figure 3-13 on page 59) which is controlled by Rayleigh distillation processes, wherein 

light isotopes evaporate faster than heavy ones leading to nonequilibrium enrichment of 

the residual water (Clark and Fritz 1997). Depending upon relative humidity, this process 

leads to an asymptotic increase in δ18O values under high evaporation conditions; a 

steady-state value is reached which is strongly influenced by the salinity of the residual 

water (e.g. Gat 1979, 1981). However, because this interpretation is based on few data, it 

must be considered a provisional explanation for the observed scatter. The correlation 

between EC and δ18O of ostracod calcite is weak (Figure 3-13 on page 59) due to the 

sparse databa

sampling of time-series during the ice-free season are required to elucidate this 

relationship.  

The δ13C in TDIC reflects changes in carbon quality and sources and bioproductivity 
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and 3-10 on 

r the Late Glacial and early Holocene periods (Andreev et al. 2004; Kienast 

et al. 2008).  

important influences are the isotopic composition of inflows, organic decay, bacterial 

processes, CO2 exchange between air and lake water, and photosynthesis/respiration of 

aquatic plants. (e.g. von Grafenstein et al. 1999; Schwalb 2003; Leng and Marshall 2004). 

The last two controls are characterised by high seasonal and even daily variability; thus it 

is more difficult to interpret these data, since periodic sampling during the open-water 

season is required to register carbon cycle dynamics. Therefore, reliable correlations 

between the δ13C data from host waters and from ostracod calcite have not been found. 

The δ13C records from all study sites scatter over great ranges (Figures 2-15 

pages 37 and 53) and any interpretation of such relationships is complicated. 

Geochemical analyses of modern and fossil ostracod calcite require sufficient material in 

order to ensure reliable multiple measurements according to rigorous analytical 

procedures. Furthermore, the dominant species with greatest numbers of valves differ 

between modern and fossil records. Therefore, the comparison of fossil ostracod data and 

modern analogues suffers because data were obtained from different species and the 

elemental and stable isotope uptake from the ambient water into the ostracod shell is 

obviously controlled by species-specific metabolic (vital) effects. Such problems are 

apparent in this thesis, and they are intensified by the generally sparse data base for both 

modern and fossil ostracods. Dominant modern species such as Fabaeformiscandona 

pedata from North Yakutia or Candona weltneri from Central Yakutia were not detected in 

fossil assemblages, and their geochemical records are therefore not regarded as an 

informative modern analogue. Less available geochemical data from Candona candida 

and Candona muelleri jakutica, species which are common in both modern and fossil 

assemblages, were therefore used for the first use of stable oxygen isotopes in ostracod 

calcite from Siberian permafrost deposits of the Eemian and Late Glacial/Holocene 

periods (Chapter 4). The average δ18O value of Candona candida from both fossil 

assemblages was located between the modern reference data mean maximum and 

minimum of about –15‰ and –10‰ (reflecting mean summer water temperatures of about 

10 °C and 19 °C, respectively) from North and Central Yakutia (Figure 4-16 on page 97). 

Such a fairly accurate estimation indicates warmer mean water temperatures and/or 

higher evaporation rates as compared to modern conditions in North Yakutia, and 

consequently colder mean water temperatures and/or lower evaporation rates than in 

modern Central Yakutia. Supporting palaeo-temperature reconstructions of air 

temperatures of the warmest month (MTWA) from regional pollen and plant macrofossil 

data, however, calculated an MTWA of 7.8-9.6 °C (by pollen data) and of about 12.5°C 

(by plant macrofossil data) for the Eemian thermal optimum, and an MTWA of 8-12 °C (by 

pollen data) fo
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5.3 Indicator potential of freshwater ostracods in late Quaternary 

 permafrost deposits  

In conclusion, the presence of ostracods in permafrost deposits clearly points to the 

existence of aquatic habitats in the palaeo-environment. Ostracod remains can be 

regarded as in-situ preserved fossils because their thin valves are likely destroyed by 

intensive re-deposition processes. Since the species assemblages commonly consist of 

generalists, i.e. species with broad tolerance to environmental parameters like 

temperature regime or ionic content, and cold-adapted species or species endemic to the 

Arctic, further deductions from taxonomic records of fossil ostracods are complicated. 

Surely, the interpretation of fossil ostracod assemblages requires comparison with modern 

analogues and their current ecological controls. However, shallow ponds in low-centred 

ice wedge polygons and shallow, less-disturbed shore zones of thermokarst lakes were 

habitats for freshwater ostracods in the periglacial lowlands of Arctic Siberia during the 

late Quaternary. 

Permafrost deposits from interglacial and interstadial periods are particularly rich in 

ostracod fossils. On the other hand, the lack or very sparse occurrence of ostracods 

during glacial or stadial times reflects the corresponding unfavourable harsh 

environmental conditions. In addition to other palaeontological data from pollen, plant 

macrofossils, and testate amoebae (rhizopods), ostracod fossil data support the 

reconstruction of stable shallow aquatic conditions in regional palaeoenvironmental 

records and complete reconstructions of landscapes such as polygonal tundra plains or 

thermokarst-affected landscapes. Fossil freshwater ostracods also have the potential to 

mirror the palaeo-hydrological and palaeo-hydrochemical regimes of periglacial inland 

waters. Cryolithological and sedimentological records pointing to refreezing of bedded and 

plant-detritus-rich lacustrine warm-stage deposits can also be confirmed by the 

occurrence of ostracod fossils. In addition, syncryogenic ice structures in deposits of 

polygonal ponds reflect the long seasonal freezing period of the entire water and sediment 

body, as well as the short period during which ostracods live. 

However, the indicator potential of freshwater ostracods in Quaternary permafrost 

deposits is still limited by an uncompleted database which complicates (1) the application 

of modern reference data to fossil records, and (2) the interpretation of fossil assemblages 

in multiproxy palaeoenvironmental reconstructions. 

In particular, the positive identification of Arctic species according to modern taxonomic 

nomenclature is complicated by different classifications used in the past by American, 

Russian, and European researchers. Reference collections, especially for the Russian 

Arctic, are rare, and probable species synonyms have not yet been ruled out. Because of 

the dominance of generalists and the lack of specialists, indicator species (e.g. for 
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temperature, salinity, or water depth) could not be identified in the modern data set. In 

addition, modern reference data are not available for many fossil species. Synchronous 

sampling of waters and ostracods at the time of shell calcification would be a desirable 

monitoring approach for bettering our understanding of complex biogeochemical cycles in 

waters and biomineralisation processes in ostracod calcite. 

Ostracods have up to now been largely unstudied in Arctic periglacial regions; the 

knowledge of environmental conditions and interactions affecting modern ostracods has 

been improved and, for the first time, applied to fossil ostracods from Quaternary 

permafrost deposits. The applicability of common geochemical proxies, i.e. stable 

isotopes and element ratios in ostracod studies, for further interpretations of 

environmental parameters was examined and critically evaluated using modern reference 

data. Furthermore, the species inventory revealed for the first time an ostracod presence 

in modern periglacial environments and Quaternary sequences in Northeast Siberia. The 

taxonomical and environmental data provide reference data for related studies. 

Established preparatory and analytical methods for performing field and laboratory studies 

on ostracods were adapted for material from Arctic environments. Finally, the research 

presented in this thesis, including methodology and data sets, will be useful for future 

ostracod studies in the Arctic.           

 

5.4 Outlook 

Any application of bioindicators in palaeoecological research needs as much reference 

data as possible of species distribution and habitat requirements under modern 

environmental conditions. The more modern reference data is known, the better any 

interpretation from ancient environmental archives can be deduced. In this context, 

freshwater ostracods from Arctic periglacial regions in Siberia are largely unstudied. This 

thesis presents the first steps taken towards using them in palaeoenvironmental 

reconstruction. Both modern and fossil aspects of this research require further 

comprehensive study if ostracods are to be used as reliable bioindicators in Arctic Siberia. 

These first studies conducted in different regions of Northeast Siberia profile diverse 

species occurrences over climatic and aquatic gradients. However, due to the spotty 

character of the studies performed in modern environments, clear dependencies of 

species distribution on environmental factors remain to be elucidated. For these reasons, 

the inventory of ostracod species in the Arctic continued during the 2007/2008 field 

seasons on the Dimitri Laptev Strait coast (Wetterich and Schirrmeister 2009), in the 

Kolyma River lowland (Wetterich and Schirrmeister in prep.) in Siberia, and in 2008 on 

Alaska’s Seward Peninsula. For the first time, host waters and ostracods were repeatedly 

sampled and continuous temperature measurements were performed at single sites in 
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order to detect seasonal changes in hydrochemical parameters, ostracod species, and 

shell calcite composition. Results of these studies will be prepared for publication in 2009. 

The further development of this monitoring approach is planned within the framework of a 

submitted joint German-Russian research project, which is focused on polygonal tundra 

wetlands; several developmental stages of polygonal habitats will be studied in a gradient 

transect comprising three representative sites across the Northeast Siberian lowlands 

between the Lena and the Kolyma rivers. Using an interdisciplinary approach, modern, 

sub-recent, and fossil environments will be characterised and compared in order to 

understand temporal and spatial environmental dynamics in relation to climate change. 

Cryological, limnological, pedological, and ecological features will be combined to link 

past, present, and future environmental dynamics in Polar regions. Present day 

environmental conditions and their main forcing parameters will be thoroughly assessed, 

faunal and floral communities in ponds, mires, and cryosols, which make up the major part 

of the polygonally-patterned ground, will be described, and cryogenic processes affecting 

these structured landscape units will be observed and evaluated. Species and 

assemblages that are indicative of modern ecosystem conditions will be identified and 

used as indicators to reconstruct Quaternary climate variations and ecosystem reactions. 

The results obtained will be used to explain and forecast future environmental dynamics in 

permafrost regions.  

Arctic ostracod species have already been reported to the Non-marine Ostracod 

Database of Europe (NODE; Horne 1998) as a prerequisite for using a mutual 

temperature-range method for Quaternary palaeoclimatic analysis; this is a nonanalogue 

approach based on the presence/absence of species in a fossil assemblage (Horne 

2007). Further extension of the Arctic dataset and possible application of this method to 

fossil ostracod assemblages from Arctic Siberia will greatly advance the relevance of 

fossil ostracods in quantitative palaeo-temperature reconstructions. Samples are already 

available from late Quaternary permafrost sequences in Arctic Siberia, Alaska, and 

Canada; they will be studied for ostracods with the same combined analytical approach as 

presented in the thesis.    

In pursuit of quantified palaeoenvironmental reconstructions which are essential to 

estimate the impact of future climate changes on ecosystems, ecological training sets are 

also a progressive modern approach. Such work is based on faunistic data from regional 

multireference sites and limnological surveys, and can be used to build transfer functions 

to infer major environmental variables (e.g. temperature, conductivity and pH values). 

Freshwater ostracods from Arctic environments can potentially be used to hindcast 

glacial/interglacial and stadial/interstadial palaeoclimate variations. Various methods can 

be applied to fossil assemblages including an indicator species approach, modern 
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analogue techniques, and transfer functions based on ecological training sets. In this 

context, the first steps have already been taken to combine modern ostracod data from 

the Canadian and the Siberian high latitudes in cooperation with Finn Viehberg (Technical 

University Braunschweig, Institute of Environmental Geology, Germany). The current 

dataset, which already includes 75 locations in Canada and Siberia, was presented during 

the European Geophysical Union General Assembly 2008 (Wetterich et al. 2008e); further 

extension of the database and development of ostracod transfer functions is intended for 

2009.     

Several new or rediscovered ostracod taxa have been found during the identification of 

modern species. Hopefully, a detailed taxonomical examination of Arctic freshwater 

ostracod assemblages and an extensive description of the modern species using soft 

body features will take place in cooperation with Claude Meisch (National Museum of 

Natural History Luxembourg). 
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I.1 Abstract 

Ostracode analysis was carried out on samples from ice-rich permafrost deposits obtained 

on the Bykovsky Peninsula (Laptev Sea). A composite profile was investigated that covers 

most of a 38 m thick permafrost sequence and corresponds to the last ca. 60 kyr of the 

late Quaternary. The ostracode assemblages are similar to those known from European 

Quaternary lake deposits during cold stages. The ostracode habitats were small, shallow, 

cold, oligotrophic pools located in low centred ice wedge polygons or in small thermokarst 

depressions. In total, fifteen taxa, representing seven genera, were identified from 65 

samples. The studied section is subdivided into six ostracode zones that correspond to 

late Quaternary climatic and environmental stadial-interstadial variations established by 

other paleoenvironmental proxies: (1) cold and dry Zyrianian Stadial (58 – 53 kyr BP); (2) 

warm and dry Karginian Interstadial (48 – 34 kyr BP); (3) transition from the Karginian 

Interstadial to the cold and dry Sartanian Stadial (34 – 21 kyr BP); (4) transition from the 

Sartanian Stadial to the warm and dry late Pleistocene period, the Allerød (21 – 14 kyr 

BP); (5) transition from the Allerød to the warm and wet middle Holocene (14 – 7 kyr BP); 

and (6) cool and wet late Holocene (ca. 3 kyr BP). The abundance and diversity of the 

ostracodes will be used as an additional bioindicator for paleoenvironmental 

reconstructions of the Siberian Arctic.  

 

I.2 Introduction  

Fossil freshwater ostracodes have been used as bioindicators for the reconstruction of 

late Quaternary environments in Europe for about sixty years (e.g. Triebel 1941; Lüttig 

1955, 1959; Kempf 1967; Diebel 1968; Diebel and Pietrzeniuk 1969, 1975, 1978a, 1978b; 

Fuhrmann and Pietrzeniuk 1990a, 1990b; Meisch 2000; Schwalb 2003). Ostracodes have 

also been used as paleoindicators in many other regions, such as North America (e.g. 

Curry and Delorme 2003) and Africa (e.g. Park et al. 2003), as well as in other regions. 

Whereas fossil and modern ostracode fauna and their ecology in Europe are relatively 

 113



Freshwater ostracodes in Quaternary permafrost deposits in the Siberian Arctic                             Appendix I         
Journal of Paleolimnology 34: 363-376 
__________________________________________________________________________________________________ 

well known due to numerous investigations, there are only a few records concerning 

freshwater ostracodes in Siberia, particularly from periglacial permafrost regions. Recent 

ostracodes were summarised by Bronshtein (1947) and Kurashov (1995) for the area 

covering the former USSR. The occurrence of Arctic freshwater ostracodes is only briefly 

mentioned. In addition, recent freshwater ostracodes from Siberia are described for Lake 

Baikal (Mazepova 2001), Central Yakutia (Pietrzeniuk 1977), and Arctic Siberia (Alm 

1914; Neale 1969). Only a few freshwater ostracodes studies have been published for the 

Arctic regions of Alaska (e.g. Swain 1963) and Canada (e.g. Delorme 1970c; Delorme et 

al. 1977). Detailed studies of fossil ostracodes occurring in permafrost deposits are 

lacking.   

A diverse ostracode fauna was observed during multidisciplinary investigations of late 

Pleistocene, ice-rich Arctic permafrost sequences on the Bykovsky Peninsula, Russia 

(Figure I-1). The occurrence of ostracode valves in these permafrost sequences was 

previously mentioned by Kunitsky (1989) and Slagoda (1993). However, up to now, 

detailed taxonomic and quantitative analysis of these freshwater Arctic ostracodes has not 

been carried out. The aim of this paper is to describe freshwater ostracodes as 

bioindicators within a paleoenvironmental permafrost archive. This study was carried out 

in a geochronologically, sedimentologically and paleoecologically well-studied permafrost 

sequence located at Mamontovy Khayata (“Mammoth hill”), on the Bykovsky Peninsula. In 

the future, freshwater ostracode studies in periglacial environments will be supported by 

studies of the modern Arctic assemblages, as well as by stable isotope studies on 

ostracode valves. 

 

I.3 Study area and geological background 

The permafrost sequence in this study is an exposure located on the east coast of the 

Bykovsky Peninsula (71°40’-72° N and 129°-129°30’ E) in the southern Laptev Sea 

(Figure 1). Initial paleoecological studies were carried out at the beginning of the 19th 

century when the first complete mammoth carcass was recovered (Adams 1807). 

Subsequently, the Mamontovy Khayata profile has become one of the most extensively 

paleoecologically studied permafrost sequences in the Siberian Arctic. Geomorphological, 

geocryological, and sedimentological studies were conducted by Kunitsky (1989), Slagoda 

(1993), and Grigoriev (1993). Mamontovy Khayata was also mentioned in reviews of Ice 

Complex deposits in Siberia by Tomirdiaro and Chernenky (1987), and Fartyshev (1993).  

Under the framework of the Russian-German science cooperation “SYSTEM LAPTEV 

SEA”, the Bykovsky Peninsula has been studied by expeditions every year since 1998. 

The results include several publications concerning geocryology, sedimentology, and 

geochronology (Schirrmeister et al. 2002a; Siegert et al. 2002), stable isotope ratio and 
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hydrochemistry of ground ice (Meyer et al. 2000, 2002a), and bioindicators such as fossil 

pollen (Andreev et al. 2002), plant macrofossil remains (Kienast et al. 2005), and 

rhizopods (Bobrov et al. 2004). A comprehensive paleoenvironmental reconstruction is 

presented in Schirrmeister et al. (2002b).  

 

 

Figure I-1 Location of the Mamontovy Khayata study section 

 

The ice-rich permafrost sequence of Mamontovy Khayata covers the last ca. 60 kyr of the 

Quaternary. The profile was divided into four units (A, B, C, D), which include the late 

Pleistocene Ice Complex units and its overlying Holocene cover (Figure 2). This division is 

based on changes in biogeochemical parameters, such as total organic carbon content 

(TOC), carbon/nitrogen ratio (C/N), isosope values of organic carbon (δ13Corg) and 

carbonate content, as well as cryolithological and grain size parameters, and mass-

specific magnetic susceptibility (Schirrmeister et al. 2002a). The units reflect several 

stages of the late Quaternary landscape history in the Laptev Sea region.  

Ice Complex deposits were formed on the accumulation plains of the dry Siberian shelf 

areas during the late Pleistocene. These Arctic accumulation plains were characterised by 

widely distributed ice wedge polygon systems. The studied coastal outcrops are 

dominated by giant ice wedges reaching approximately 40 m long and 5-6 m wide, which 

were formed continuously and syngenetically during periods of sedimentation on these 

plains. The studied permafrost sequence consists of numerous cryoturbated peaty cryosol 

horizons with silty to fine-grained sandy interbeds, which are mostly supersaturated with 

ice. Numerous well preserved micro- and macrofossils are found in the frozen deposits. 

Thus, the syngenetically formed permafrost sequences are excellent terrestrial 

paleoenvironmental archives. Most of the samples belong to the Ice Complex deposits 

(units A-C) and their Holocene cover (unit D). Two additional deposit types (Figure I-2) 

were classified as thermoerosional valley deposits (unit E) and thermokarst depression 
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deposits (unit F). Both were formed during the late Holocene, when thawing of ground ice 

reduced the extent of Ice Complex deposits due to thermo-erosional and thermokarst 

processes. This resulted in a strong transformation of the Arctic landscape by changing 

the hydrological regime, as well sediment accumulation conditions.  

 

 

Figure I-2 Schematic profile of the study section on the east coast of Bykovsky Peninsula with 

subdivided cryolithological units (A-F) and the position of the analysed subprofiles 

 

I.4 Materials and methods  

Frozen samples weighing approximately 0.5 kg each were collected from several 

overlapping thermokarst mound subprofiles (Figure I-2). Thermokarst mounds represent 

intra-polygon sediment blocks that surround the perimeter of ice wedges that have melted 

(Figure I-3). A composite profile was studied covering most of the 38 m thick permafrost 

sequence. Ostracode valves were obtained from the deposits of the Ice Complex (units A-

C), the Holocene cover (unit D), and the thermokarst depression (unit F). The thermo-

erosional valley deposits (unit E)  generally lacked ostracodes.  

Samples were freeze-dried, wet sieved through a 0.250 mm mesh screen, and then air-

dried. About 0.2 kg of each sample was used for ostracode analysis. If less material was 

available, the numbers of valves counted were normalised to a 0.2 kg sediment weight. 

Ostracode valves were analysed under a binocular microscope (Zeiss SV 11) and their 

structure was studied by light microscopy, as well as by scanning electron microscopy 

(Phillips CM 20 ATEM). Broken fragments of valves were also used for ostracode analysis 

if they could be identified. The species identification was based on Diebel and Pietrzeniuk 

(1969, 1975, 1978a, b) and Pietrzeniuk (1977), as well as on the reference collection of 

ostracodes at the Museum of Natural History in Berlin, Germany.  
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Figure I-3 Photograph of some analysed subprofiles on thermokarst mounds showing the structure 

and composition of the exposed permafrost deposits 

 

The age control of the Mamontovy Khayata section was provided by 70 radiocarbon AMS-

dates and 20 conventional radiocarbon dates. The geochronological results are presented 

in detail by Schirrmeister et al. (2002a). The age-height correlation of in-situ organic 

remains is in good agreement. This age model takes into account the rising uncertainties 

of older radiocarbon AMS-dates. Nevertheless the high accuracy of the dates provided by 

Leibniz Laboratory Kiel, Germany (Nadeau et al. 1997, 1998) and the corresponding 

geological observations allow an estimation of the chronology back to 60 kyr BP. 

Therefore, continuous accumulation during the last 60 kyr BP is assumed for the Ice 

Complex units (units A-C) and its younger cover (unit D). Additionally, the thermo-

erosional valley deposits (unit E) were dated between 2 and 1 kyr BP. The sediments of 

the thermokarst depression (unit F) accumulated at about 3 kyr BP.  

 

I.5 Results and interpretations 

Ostracode valves occurred in the silty, fine-grained sandy Ice Complex deposits and its 

Holocene cover, as well as in the sandy sediments of the thermokarst depression (Figure 

I-2, Plates I-1 – I-3). Peaty permafrost deposits from all sections generally lacked 

ostracode valves because of the acidic environment present during peat accumulation 

(Figure 2). The thermokarst deposit profile (unit F) includes a 0.1 m thick layer of eroded 

Ice Complex material dated to 13560±80 yr BP, which do not correspond with the 

Holocene sequence dated between 2910±30 yr BP and 2925±30 yr BP. This layer is a 
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result of slope processes depositing material within the thermokarst deposits and 

consequently will have to be considered separately (Figure I-5).  

In general, the ostracode taxa presented in this paper are similar to late Pleistocene 

assemblages from the Lena Delta (Pietrzeniuk 1986), as well as to a modern assemblage 

from Central Yakutia (Pietrzeniuk 1977). There are no evident distinctions between 

ostracode assemblages identified in the deposits of the thermokarst depression and the 

Ice Complex. However, the exact number of taxa is different. In total, fifteen taxa were 

identified and counted. Fourteen taxa were found in the Ice Complex sequence, while 

eleven taxa were observed in the Ice Complex material layer within the thermokarst 

depression deposits, and nine taxa within the true thermokarst depression deposits. The 

study section can be subdivided into six ostracode zones based on the ostracode 

distribution in the profile (Table I-1, Figures I-4 and I-5). These zones correspond to the 

profile zones established using sedimentological, geochemical, and paleoecological 

proxies (Schirrmeister et al. 2002b).   

 

Table I-1 Ostracode zones of the Mamontovy Khayata sequence 

Ostracode 

zones 

Unit Altitude  

[m, a.s.l.] 

14C Age 

[kyr BP] 

Number of 

samples 

Number of valves 

Mean (min-max) 

Number 

of taxa 

Zone VI F 0.4- 1.5 ca. 3 4 77 (54 - 103) 3 - 7 

Zone V D 34.5 - 37.6 14 - 7 10 < 1 (0 - 7) 0 - 2 

Zone IV C 30.0 - 34.5 21 - 14 11 32 (0- 124) 0 - 6 

Zone III C 22.0 - 30.0 34 - 21 13 < 1 (0 - 9) 0 - 2 

Zone II B 8.8 - 22.0 48 - 34 20 410 (0 - 3710) 0 - 11 

Zone I A 1.3 - 3.5 58 - 53 6 71 (0 - 298) 0- 6 

 

I.5.1 Ostracode zone I (58 to 53 kyr BP, 1.3 – 3.4 m, a.s.l.) 

Six of the eight samples in ostracode zone I contained ostracodes with up to 300 valves 

per sample.  Ostracodes were not found in two of the zone’s samples. Six taxa are 

present in this zone, with juvenile Candoninae and Limnocytherina sanctipatricii being the 

most abundant taxa (Figure 4). According to Meisch (2000), Limnocytherina sanctipatricii 

(Plate I-3; 9-12) are found from the shallow littoral to the profundal zone in lakes, as well 

as in permanent small water bodies. They have been reported in fossil records in Europe 

ranging from the Pleistocene to recent times. Their habitats range from oligotrophic, cold 

waters to brackish waters with up to 3 ‰ salinity in the Baltic Sea (Frenzel 1991). Their 

presence in this zone suggests arid climatic conditions with higher evaporation rates than 

the present. The low species diversity and abundance of the identified assemblage reflect 

unfavourable (cold and dry) life conditions for ostracodes. Ostracode zone I corresponds 
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to unit A of the sedimentological data (Zyrianian Stadial), which is, according to grain size 

distributions, considered to be a shallow, fluvial environment with graded bedding (Siegert 

et al. 2002). The pollen data suggest an open treeless landscape with scarce vegetation 

cover, dominated by cold and dry summers (Andreev et al. 2002). Strong climatic 

conditions are also reported by the analysis of plant macrofossils, which are represented 

primarily by the remains of kryoxerophytic pioneer plants (Kienast et al. 2005). The 

Permafrost sequence between 3.4 and 8.8 m, a.s.l. was buried by modern deposits that 

were deposited by coastal erosion and, therefore, could not be studied.  

 

I.5.2 Ostracode zone II (48 to 34 kyr BP, 8.8 – 22.0 m, a.s.l.) 

Zone II is characterised by the profile’s highest valve abundance and diversity (Figure I-4). 

Altogether twenty samples from this zone were studied. Two samples did not contain any 

ostracodes. The faunal association of zone II is characterised by the dominance of 

juvenile Candoninae and Ilyocypris lacustris. The arctic summers were probably too short 

to complete their life cycle and allow sufficient growth for the Candoninae to develop into 

their adult stage. Six species of the genera Candona and Fabaeformiscandona were 

identified. Only one valve of Candona cf. acutula was found in single sample (Plate I-2; 1), 

suggesting that it may have been misidentified. Candona acutula has previously been 

found in Holocene lake sediments (Porter et al. 1999) and presently occurs in shallow 

water with abundant vegetation in Canada (Delorme 1970c). Candona cf. combibo was 

identified in five samples (Plate I-1; 1). The ecological characteristics of Candona combibo 

are not well understood. Fossil records of Candona combibo are reported in Russia from 

the middle Pliocene to the middle Pleistocene periods (Kaz’mina 1975).  

Candona harmsworthi were found in eight samples of zone II with up to sixteen valves 

being found in a single sample (Plate I-1; 5-6). Candona harmsworthi has been found in 

the modern Arctic environments of Novaya Zemlya and Franz-Josef-Land (Neale 1969) 

and as cold stage fossils in both Europe and northern Siberia (Lena Delta) (Pietrzeniuk 

1986). Only female C. harmsworthi valves have been found. Males are not known.  

Candona muelleri ssp. jakutica was present in eight samples, with up to fourteen female 

and male valves being found in a single sample (Plate I-1; 2-4). This species was first 

described by Pietrzeniuk (1977) in thermokarst lakes from Central Yakutia, as subspecies 

of Candona muelleri. It has been frequently recorded and the records point to a wide 

general distribution in Siberia (Meisch 2000). Further findings of Candona muelleri ssp. 

jakutica are reported for late Pleistocene thermokarst deposits in Central Yakutia 

(Pietrzeniuk 1984).  
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Figure I-4 Chronostratigraphy, and stratigraphic variation in two ostracode indices (total numbers 

of valves and species) as well as in number of each ostracode species of the Ice Complex 

sequence and the Holocene cover (units A-D). Counts are based on 0.2 kg sediment  

 

 

Figure I-5 Chronostratigraphy, and stratigraphic variation in two ostracode indices (total numbers 

of valves and species) as well as in number of each ostracode species of the thermokarst 

depression (unit F). Counts are based on 0.2 kg sediment 
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Plate I-1 Species of the genus Candona. Candona cf. combibo: (1) female, carapace; Candona 

muelleri ssp. jakutica: (2) male, RV; (3) female, LV; (4) female, RV; Candona harmworthi: (5) 

female, LV; (6) female, RV; Candona rawsoni: (7) male, LV; (8) male, RV; (9) female, LV; (10) 

female, RV 

 

 

Plate I-2 Species and taxa of the genera Candona, Fabaeformiscandona, Eucypris, Ilyocypris, 

Trajancypris and Tonnacypris. Candona cf. acutula: (1) female, LV; Candona sp. hyalina: (2) male, 

RV; Fabaeformiscandona levanderi: (3) female, LV; (4) female, RV; Eucypris dulcifons: (5) female, 

LV; (6) female, RV; Ilyocypris lacustris: (7) female, LV; (8) female, RV; Trajancypris sp. juv.: (9) LV; 

(10) RV; Tonnacypris cf. glacialis: (11) LV  
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Candona muelleri is Holarctic and oligothermophilic (Meisch 2000), and has been 

observed in Europe in sediments ranging from Pleistocene cold stage deposits up to 

recent times (Fuhrmann et al. 1997).  

A high abundance of female and male Candona rawsoni was recorded in only one sample 

at 8.8 m, a.s.l. (Plate I-1; 7-10). Candona rawsoni occurs in cold, oligotrophic lakes, and 

small temporary water bodies (Delorme 1969). Smith (1997) describes the species as 

eurytopic (tolerant to a wide range of physical and chemical conditions). Fossil records are 

reported for both cold and warm Pleistocene stages in Middle Europe (Diebel and 

Pietrzeniuk 1975, 1978a, 1978b), through the Holocene to recent times in North America 

(Delorme 1968, 1970c; Smith 1997) and Siberia (Bronshtein, 1947; Pietrzeniuk 1983).  

The highest abundance of Fabaeformiscandona levanderi was found in the lower part of 

zone II (Plate I-2; 3-4). F. levanderi has been observed in the littoral and profundal zones 

of lakes, even those with a higher salinity (1–6 ‰). It has been described as 

oligothermophilic, likely titanoeuryplastic (occuring in different calcium-ranges from 0 mg/L 

up to >72 mg/L), oligorheophilic,  (Hiller 1972), and mesohalophilic (Meisch 2000). Its 

presence in the fossil record ranges from the lower Pleistocene to recent times with a 

Holarctic distribution (Meisch 2000).  

The species Ilyocypris lacustris (Plate I-2; 7-8) occurs in most samples of ostracode zone 

II.  It is has been reported in Pleistocene cold stage sediments in Germany (Diebel and 

Pietrzeniuk 1969) and in Central Yakutia (Pietrzeniuk 1983, 1985), and has recently been 

reported in Europe in Switzerland and in Lake Constance (Meisch 2000). Its ecology and 

life history are unknown.  

Eucypris dulcifons (Plate I-2; 5-6), Limnocythere falcata (Plate 3; 1-4), and Limnocythere 

goersbachensis (Plate I-3; 5-8) are numerous in two samples within ostracode zone II, as 

well as being less frequently found in other samples. Limnocythere falcata valves were 

found up to 0.85 mm in length (Plate I-3; 1-2). The environmental preferences of these 

species are not known. Fossil records are reported from Pleistocene cold stages in 

Europe (Fuhrmann et al. 1997; Diebel and Pietrzeniuk 1969, 1975, 1978a) and Northern 

Yakutia (Pietrzeniuk 1986), as well as from Holocene lake sediments in north-west China 

(Mischke 2001).  

Broken fragments of Tonnacypris cf. glacialis were found in only two samples (Plate I-2; 

11). Tonnacypris glacialis inhabits Arctic freshwaters and is also found as a Pleistocene 

cold stage fossil in Europe (Griffith et al. 1998). Tonnacypris glacialis is characterised as a 

Holarctic, circumpolar species, which occurs at mean summer temperatures of 5.9 (± 3.2) 

°C (Griffith et al. 1998). Valves of the genus Trajancypris sp. (Plate I-2; 9-10) were mostly 

juvenile and similar to those of Trajancypris clavata and Trajancypris laevis. Adults were 
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only represented as broken fragments. Both species have been found as fossils spanning 

from Pleistocene to recent times (Meisch 2000). 

 

 

Plate I-3 Species of the genera Limnocythere and Limnocytherina. Limnocythere falcata: (1) 

female LV; (2) female RV; (3) female LV; (4) female RV; Limnocythere goersbachensis: (5) male 

LV; (6) male RV; (7) female LV; (8) female RV; Limnocytherina sanctipatricii: (9) male, LV; (10) 

male, RV; (11) female, LV; (12) female, RV 

 

Ostracode zone II presents the most favourable environmental conditions for ostracodes 

preferring a stable shallow water environment. This is reflected in the high diversity of the 

ostracode fauna and high abundances of several species. The ostracode assemblages 

are characterised by the occurrence of Arctic species (e.g. Candona harmsworthi and 

Tonnacypris glacialis), typical cold stage species (e.g. Eucypris dulcifons, Limnocythere 

falcata and Limnocythere goersbachensis), and cosmopolitans with a preference for cold 

conditions (e.g. Candona rawsoni and Fabaeformiscandona levanderi). According to 

paleoecological and geochronological data, zone II belongs to the Karginian Interstadial 

(unit B). The pollen record of this period is represented by the shrubby vegetation of 

steppe-like and tundra environments that correspond to dry and relative warm summers 

(Andreev et al. 2002). In addition, the frequent occurrence of kryoxerophitic pioneer and 

tundra bog plants, as well as hydrophytes is reported by plant macro fossil remains 

(Kienast et al. 2005).  
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I.5.3 Ostracode zone III (34 to 21 kyr BP, 22.0 – 30.0 m, a.s.l.) 

In Zone III, only two of the thirteen samples yielded a total of nine juvenile Candoninae 

and Fabaeformiscandona levanderi valves (Figure I-4). The lack of ostracodes in zone III 

suggests extremely unfavourable life conditions and corresponds to the transition to the 

coldest and driest period known as the Sartanian Stadial (unit C). Because of the dry 

conditions, polygon ponds were not continuously formed and habitats for ostracodes 

therefore did not exist. This climatic and environmental situation is supported by testate 

amoebae data that note the absence of hydrophillic, hygrophillic, and sphagnophillic 

species (Bobrov et al. 2004) as well as by paleobotanical data which contain a large 

number of xerophytes and species characteristic to a scarce steppe-like environment 

(Andreev et al. 2002; Kienast et al. 2005). 

 

I.5.4 Ostracode zone IV (21 to 14 kyr BP, 30.0 – 34.5 m, a.s.l.)  

Zone IV contains ostracode valves in ten out of twelve studied samples, but not as many 

valves as in zone I (Figure I-4). The ostracode species richness per sample ranges up to 

six taxa. The Candoninae group of this zone includes juvenile Candoninae, Candona 

harmsworthi, and Fabaeformiscandona levanderi. In addition, a few valves of Eucypris 

dulcifons, Limnocytherina sanctipatricii, and Ilyocypris lacustris, as well as one fragment of 

Tonnacypris cf. glacialis, were found. Zone IV indicates a warming trend at the end of the 

Sartanian Stadial (unit C), which improved the life conditions for ostracodes. However  the 

zone IV assemblages are dominated by Candona harmsworthi and Eucypris dulcifons, 

which still imply cold conditions. In this period, the effective moisture gradually increased 

and consequently the hydrological conditions allowed for the formation of small polygon 

ponds. This interpretation of climate amelioration at the end of the Sartanian Stadial (~15 

kyr BP) is supported by several paleoecological indicators including pollen (Andreev et al. 

2002), testate amoebae (Bobrov et al. 2004), and insect records (Schirrmeister et al. 

2000b). These data suggest an increase of herb communities, wet and warm soil 

conditions, and the occurrence of tundra-steppe insects.    

 

I.5.5 Ostracode zone V (14 to 7 kyr BP, 34.5 – 37.6 m, a.s.l.) 

Only one of the ten samples in zone V contained ostracodes, yielding three valves of 

juvenile Candoninae and four valves of Ilyocypris lacustris (Figure I-4). The sediment in 

this zone consists mainly of peat, which is not a favourable environment for ostracodes 

and the preservation of their carbonatic valves. Zone V corresponds to the Holocene 

optimum (unit D) when climatic conditions were at both their warmest and wettest climate 

according to the data of pollen (Andreev et al. 2002) and macrofossil plant remains 

(Kienast et al. 2005).   
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I.5.6 Ostracode zone VI (about 3 kyr BP, 0.4 – 1.5 m, a.s.l.) 

Ostracodes from the late Holocene sandy deposits of the thermokarst depression were 

delineated as ostracode zone VI (unit F). The species assemblage and diversity seem to 

be quite similar to those of zone IV (Figure I-5). The ostracode data suggest cool and wet 

climatic conditions, as well as the stable persistence of ostracode habitats. The 

occurrence of the species Eucypris dulcifons and Limnocythere falcata in late Holocene 

deposits, mostly known from Pleistocene cold stage deposits in Europe (Fuhrmann et al. 

1997; Diebel and Pietrzeniuk 1969, 1975, 1978b) are noteworthy. Zone VI reflects the 

recent conditions of the Arctic tundra (Andreev et al. 2002). 

 

I.6 Conclusions  

Ostracode valves from permafrost deposits on the Bykovsky Peninsula reflect the 

existence of stable aquatic habitats in the Siberian Arctic coastal lowlands during different 

paleoecological periods of the late Quaternary (Table I-2). Their occurrence in permafrost 

deposits depends mainly on climatic changes such as the stadial-interstadial variations of 

the late Quaternary. During the Zyrianian Stadial (58 to 53 kyr BP), the Karginian 

Interstadial (48 to 34 kyr BP), the end of the Sartanian Stadial (21 to 14 kyr BP), and the 

late Holocene (about 3 kyr BP), the climatic and environmental conditions allowed for the 

formation of polygon ponds and thermokarst lakes that were inhabited by ostracodes. 

Whereas, during most of the Sartanian Stadial (34 to 21 kyr BP) the climatic conditions for 

were too cold and dry to ensure the persistence of stable ostracode habitats. The lack of 

ostracodes in the early and middle Holocene (14 to 7 kyr BP) is likely caused by the poor 

preservation conditions of the acidic peaty sediments of this time period, even if the 

existence of ponds and lakes can be assumed.  

Ostracode-bearing samples are characterised by a dominance of Ilyocypris lacustris and 

juvenile Candoninae. Other taxa occur in substantially less numbers. Some general 

ecological conditions could be concluded despite the wide ecological spectrum that 

characterise the identified ostracode taxa.  

The ostracode zones correspond with the zones established by sedimentological, 

geochemical, and other paleoecological proxies (Schirrmeister et al. 2002b). 

The profile was subdivided into six ostracode zones representing stadial-interstadial 

variations in late Quaternary climate change: (1) cold and dry Zyrianian Stadial (58 – 53 

kyr BP); (2) warm and dry Karginian Interstadial (48 – 34 kyr BP); (3) transition from the 

Karginian Interstadial to the cold and dry Sartanian Stadial (34 – 21 kyr BP); (4) transition 

from the Sartanian Stadial to the warm and dry Allerød (late Pleistocene) period; (5) 

transition from the Allerød to the warm and wet middle Holocene (14 – 7 kyr BP); and (6) 

cool and wet late Holocene (ca. 3 kyr BP). The ostracode data suggest that the main 
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habitats were small, shallow, cold, oligotrophic pools located in either low centred ice 

wedge polygons or in small thermokarst depressions that warmed during the summer 

season. The presence of Fabaeformiscandona levanderi and Limnocytherina sanctipatricii 

suggest arid climatic conditions with higher evaporation rates than the present. Our study 

shows that ostracode fauna preserved in permafrost deposits provides considerable 

potential for paleoenvironmental reconstructions in aquatic habitats of the Siberian Arctic.                         

 

Table I-2 Characteristics and stratigraphy of the Ostracode zones in the Mamontovy Khayata 

section 

Ostracode 
zones     
(14C kyr BP) 

Units Ecological characteristics Typical species Stratigraphy

Zone VI 

(ca. 3) 

F low diversity and abundances 

cool and wet conditions 

stable shallow water 
environment 

C. harmsworthi 

E. dulcifons 

L. falcata  

I. lacustris 

Zone V 

(14 – 7) 

D lack of ostracodes 

warm and wet conditions 

stable peat environment 

I. lacustris 

 

Zone IV 

(21 – 14) 

C low diversity and abundances 

climate amelioration 

unstable shallow water 
environment 

C. harmsworthi 

E. dulcifons 

L. sanctipatricii 

I.  lacustris 

Zone III 

(34 – 21) 

 

C lack of ostracodes 

coldest and driest conditions 

unstable shallow water 
environment 

F. levanderi 

 

Zone II 

(48 – 34) 

B high diversity and abundances  

warm and dry conditions 

stable shallow water 
environment 

C. harmsworthi 

C. muelleri-jakutica 

C. rawsoni 

F. levanderi 

L. falcata  

L. goersbachensis 

I. lacustris 

Zone I 

(58 – 53) 

A low diversity and abundances 

cold and dry conditions 

shallow, fluvial environment 

F. levanderi 

E. dulcifons 

L. falcata 

L. sanctipatricii 

 

Late  

Holocene 

_ _ _ _ _ _  

Middle  

Holocene   

_ _ _ _ _ _ 

Allerød 

_ _ _ _ _ _   

 

Sartanian  

Stadial  

 

 

 

_ _ _ _ _ _  

 

Karginian  

Interstadial 

 

 

_ _ _ _ _ _  

 

Zyrianian  

Stadial 
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II.1 Abstract 

Late Quaternary palaeoenvironments of the Siberian Arctic were reconstructed by 

combining data from several fossil bioindicators (pollen, plant macrofossils, ostracods, 

insects, and mammal bones) with sedimentological and cryolithological data from 

permafrost deposits. The record mirrors the environmental history of Beringia and covers 

glacial/interglacial and stadial/interstadial climate variations with a focus on the Middle 

Weichselian Interstadial (50–32 kyr BP). The late Pleistocene to Holocene sequence on 

Kurungnakh Island reflects the development of periglacial landscapes under changing 

sedimentation regimes which were meandering fluvial during the Early Weichselian, 

colluvial or proluvial on gently inclined plaines during the Middle and Late Weichselian, 

and thermokarst-affected during the Holocene. Palaeoecological records indicate the 

existence of tundra–steppe vegetation under cold continental climate conditions during the 

Middle Weichselian Interstadial. Due to sedimentation gaps in the sequence between 32 

and 17 kyr BP and 17 and 8 kyr BP, the Late Weichselian Stadial is incompletely 

represented in the studied outcrops. Nevertheless, by several palaeoecological indications 

arctic tundra–steppe vegetation under extremely cold-arid conditions prevailed during the 

late Pleistocene. The tundra–steppe disappeared completely due to lasting paludification 

during the Holocene. Initially subarctic shrub tundra formed, which later retreated in 

course of the late Holocene cooling. 
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II.2 Introduction 

The complex composition and structure of late Quaternary ice-rich permafrost deposits in 

the Siberian Arctic has been investigated by a number of studies in the last decades (e.g. 

Lungersgauzen 1961; Tomirdiaro 1982; Galabala 1987; Sher et al. 1987; Kunitsky 1989; 

Grigoriev 1993), but the origin of these sediments and their exact stratigraphical 

classification still remain unclear. Special problems concern the position and characteristic 

of the so-called Kargin Interstadial between 50 and 25 kyr BP according to the regular 

stratigraphic order in Russia. Despite of legitimate criticism on the stratigraphic position of 

the stratotyp at Cape Karginsky on the lower Yenissei, which belongs to the Eemian 

(Kazantsevo) Interglacial (Astakhov 2001, 2006; Astakhov and Mangerud 2005) as well as 

the already revised interglacial environmental interpretation in Northeast Siberia (Kind 

1974) the term Kargin is not substituted yet by the Russian Interdepartmental 

Stratigraphic Commission on the Quaternary. Therefore, we have to use this term further 

on as long as no other name is established describing this special late Pleistocene period. 

Palaeoenvironmental records from the continental part of the Laptev Sea region link the 

West Siberian Arctic and Alaska (Figure II-1) and reveal the arctic palaeoenvironments of 

Beringia - the landmass that connected both regions during the late Pleistocene. 

 

 

Figure II-1 Position of the study site (a) in Northeast Siberia at the Laptev Sea coast; (b) in the 

southern part of the Lena Delta; and (c) on Kurungnakh Island 

 

Numerous multidisciplinary publications have already focused on permafrost deposits as 

late Quaternary palaeoclimate archives in the Siberian Arctic (e.g. Schirrmeister et al. 

 128



Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits                     Appendix II 
Quaternary Science Reviews 27: 1523-1540 
__________________________________________________________________________________________________ 

2002a, b, 2003; Hubberten et al. 2004; Pitulko et al. 2004; Sher et al. 2005; Grosse et al. 

2007), especially since other long-term Quaternary records such as lake sediments are 

rare in this region. 

The generally high content of well-preserved fossil remains in late Quaternary permafrost 

deposits in combination with sedimentological, geocryological, and stratigraphical 

descriptions allow detailed reconstructions of environmental and climatic dynamics. 

Various palaeoproxies in frozen deposits such as pollen (Andreev et al. 2002), plant 

macrofossils (Kienast et al. 2005), rhizopods (Bobrov et al. 2004), chironomids (Ilyashuk 

et al. 2006), freshwater ostracods (Wetterich et al. 2005), insects (Kuzmina and Sher 

2006), and mammal bones (Kuznetsova et al. 2003) as well as stable isotope records of 

ground ice (Meyer et al. 2002a, b) have been used for reconstructions of late Quaternary 

palaeoenvironments and palaeoclimate in the Laptev Sea region (Northeast Siberia). 

The goal of this study is to describe palaeoecological features and landscape 

development in the Siberian Arctic in comparison to other palaeorecords from this region. 

Different regional settings such as the change from an inland to a coastal position due to 

the late Quaternary marine transgression may alter the information preserved in 

permafrost deposits. 

The study is focused on the Middle Weichselian (Kargin) period, which correlates with the 

Marine Isotope Stage 3 (MIS-3) when thick ice-rich permafrost deposits (so-called Ice 

Complex) accumulated. Regional climatic variations within this period are well 

documented by detailed records of plant macrofossils and insect remains. Pollen records 

were interpreted as a supra-regional record. 

During three joint Russian–German expeditions in 1998, 2000, and 2002, fieldwork was 

conducted on outcrops of Kurungnakh Island (Rachold 1999; Rachold and Grigoriev 2001; 

Grigoriev et al. 2003). The results of the expeditions in 1998 and 2000 were summarised 

by Schwamborn et al. (2002) and Schirrmeister et al. (2003), whereas the results of the 

work done in 2002 are presented here for the first time. In 2002 we returned to 

Kurungnakh Island in order to supplement previous studies by sampling the site in more 

detail and in higher resolution. We aimed to make additional age determinations of the 

sediments, and receive additional bioindicator data from pollen, plant macrofossils, 

freshwater ostracods, insect remains, and mammal bones. 

 

II.3 Regional setting 

The fieldwork was performed in the Lena Delta that is located at the Laptev Sea coast 

(Figure II-1) in Northeast Siberia. The studied permafrost outcrops were obtained on 

Kurungnakh Island (72°20′N; 126°18′E) in the southern part of the delta beside the 

Olenyeksky Channel, which is the major western outlet of the Lena River within the delta. 
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In this part of the delta several islands remain as fragments of a broad foreland plain north 

of the Chekanovsky Ridge (Figure II-1). The foreland plain is dissected by several 

distributaries (outlets) of the lower Lena River and a number of small rivers and brooks 

that drain the slope of the Chekanovsky Ridge (Schirrmeister et al. 2003). 

Kurungnakh Island is mainly composed of late Quaternary sediments that belong to the 

third Lena River terrace (Grigoriev 1993) with altitudes up to 40 m above the river level 

(m a.r.l.). The sediments consist of two main formations (Figure II-2). The first formation is 

described as sandy deposits that are covered by the second formation that built up by ice-

rich peaty and silty Ice Complex deposits (Yedoma Suite). In addition, Holocene deposits 

are widely distributed on top of the third Lena River terrace in small-scale thermokarst 

depressions and in fillings of large thermokarst depressions called “alases”. Alases are an 

important landscape-forming feature of the ice-rich permafrost zone, which is mainly 

caused by extensive melting of ground ice in the underlying permafrost (van Everdingen 

1998). Such sequences of sandy deposits overlain by Ice Complex deposits and 

frequently interrupted by thermokarst depressions are exposed along the entire 

Olenyeksky Channel. 

 

 

Figure II-2 Exposure situation at 

Kurungnakh Island: (a) overview of 

the general stratigraphic configuration 

along the coast of the Olenyeksky 

Channel (photograph taken in 

summer 2000); (b) exposure situation 

at the sampling sites in 2002 

 

 

 130



Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits                     Appendix II 
Quaternary Science Reviews 27: 1523-1540 
__________________________________________________________________________________________________ 

II.4 Material and methods 

II.4.1 Sedimentology and cryolithology 

Sedimentological and cryolithological features of permafrost deposits from two sections 

were studied by describing and sampling several subprofiles on coastal exposures of 

frozen deposits (Figure II-3) in August 2002 by S. Kuzmina and S. Wetterich. The upper 

section was sampled at 72°20′41″N and 126°18′33″E top down from the island's surface, 

whereas the lower section was sampled at 72°20′35″N and 126°18′20″E bottom up from 

the Lena River bank. In total, 53 samples were studied for sedimentological and 

cryolithological characteristics. 

 

 

Figure II-3 Scheme of the studied permafrost sequence with sample positions and radiocarbon 

ages. The position of the additional sampled ice wedges are marked by black frames (see Figure 

II-4). Note distance of about 150 m between the sections 

 

The frozen sediment samples were taken by knife or axe. In the upper part of the section 

we collected samples along a stratigraphic vertical sequence of thermokarst mounds 

(baydzherakhs) with overlapping tops and bottoms (Figure II-3). The lower section was 

sampled at excavations. Various methods were used to characterise the permafrost 

deposits. While still in the field, the ice content was gravimetrically determined on a dry-

weight basis, as the ratio of the mass of ice in a frozen sample to the mass of the dry 

sample, expressed as a percentage (van Everdingen 1998). For these purposes we used 

an electric balance (Kern) for weight determination before and after sample-drying on 

metal field-oven. Before laboratory analyses all samples were freeze-dried and afterwards 
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prepared for different sedimentological, geochronological, and palaeoecological analyses. 

The grain-size distribution was measured by Laser Particle Analyser (Beckmann Coulter 

LS 200). Mass-specific magnetic susceptibility was determined using Bartington MS2 and 

MS2B instruments. Analyses of nitrogen, total carbon, and total organic carbon contents 

were carried out by CNS-Analyser (Elementar Vario EL III). 

 

II.4.2 Geochronology 

In order to understand the age sequence of the late Quaternary deposits exposed on 

Kurungnakh Island we used different dating methods for several sediment units. Two 

samples taken in 2000 (Schirrmeister et al. 2001) from two frozen peat layers within the 

lower sand horizon were dated by isochron uranium–thorium disequilibria technique with a 

thermal ionisation mass spectrometer (TIMS, Finnigan MAT 262+RPQ) at the Leibniz 

Institute for Applied Geosciences (GGA, Hannover, Germany). Analytical procedures are 

described in detail by Schirrmeister et al. (2002c) and Frechen et al. (2007). The external 

reproducibility was determined by measurements of standard solution of NBL-112A (New 

Brunswick Laboratories Certified Reference Material) and yields a value of 0.3% (1σ SD). 

The radiocarbon dating of handpicked plant remains from a total of 14 sediment samples 

was performed at the Leibniz Laboratory for Radiometric Dating and Stable Isotope 

Research, University of Kiel (Germany) using accelerator mass spectrometry (AMS). 

Details of the AMS procedures at the Leibniz Laboratory are given by Nadeau et al. 

(1997) and Nadeau et al. (1998). Calibrated ages were calculated using the software 

“CALIB rev 4.3” (Stuiver et al.1998). 

 

II.4.3 Stable isotopes 

Ice wedges are common features of periglacial landscapes in non-glaciated regions of 

Northeast Siberia (Figure II-2). Palaeoclimate studies in polar regions often provide 

reconstructions of palaeotemperatures and moisture sources using the composition of 

hydrogen (δD) and oxygen (δ18O) stable isotopes of ice as well as the deuterium excess 

(d=δD−8δ18O). In this context, ice wedges reflects a winter temperature signal (e.g. 

Vasil’chuk 1992; Meyer et al. 2002a, b). 

The stable carbon isotope (δ13C) content of TOC was analysed by mass spectrometry 

(Finnigan Delta S) after removal of carbonate with 10% HCl in Ag-cups and combustion to 

CO2 in a Heraeus elemental analyser (Fry et al. 1992). Accuracy of the methods was 

determined by parallel analysis of international standard reference material. The analyses 

were accurate to ±0.2‰. The values are expressed in delta per mil notation (δ, ‰) relative 

to the Vienna Pee Dee Belemnite (VPDB) Standard. 
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Ice wedges were sampled for oxygen and hydrogen stable isotope analysis (δD, δ18O) at 

two sites of the section; the first site (Bkh IW I) within in the upper sequence of the outcrop 

at 34–35 m a.r.l., and the second site (Bkh IW II) at 16 m a.r.l. (Figure II-3). We used ice 

screws to drill transects across the exposed ice, keeping a distance of 0.1 m between the 

drill-holes. Altogether we obtained 14 samples in one transect for stable isotope analysis 

from the lower site and 15 samples in three levels from the upper sites (Figure II-4). The 

ice samples were stored cool and afterwards analysed by equilibration technique (Meyer 

et al. 2000) with a mass spectrometer (Finnigan MAT Delta-S). The reproducibility derived 

from long-term standard measurements is established with 1σ better than ±0.1‰ (Meyer 

et al. 2000). All samples were run at least in duplicate. The values are expressed in delta 

per mil notation (δ, ‰) relative to the Vienna Standard Mean Ocean Water (VSMOW) 

Standard. 

 

 

Figure II-4 Sample transects across the studied ice wedges: (a) exposure of two Holocene ice 

wedge generations (Bkh IW I); (b) Pleistocene ice wedge exposure (Bkh IW II). Filled and open 

symbols correspond to Figure II-7 

 

II.4.4 Palaeoecological proxies 

The palaeoecological reconstruction is based on the remains of several bioindicators 

preserved in the frozen deposits such as pollen, plant macrofossils, ostracods, insect 

remains, and mammal bones. These proxies were determined by A. Andreev (pollen), F. 

Kienast (plant macrofossils), S. Wetterich (ostracods), S. Kuzmina (insect remains), and 

T. Kuznetsova (mammal bones). 

In total, 18 samples from the radiocarbon-dated units were used for analyses of pollen 

and palynomorphs. Pollen and spores were identified using a microscope with 400× 

magnification. Pollen percentages were calculated based on the tree and herbs pollen 

 133



Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits                     Appendix II 
Quaternary Science Reviews 27: 1523-1540 
__________________________________________________________________________________________________ 

sum. Pollen zonation was determined by visual inspection. The TILIAGRAPH programme 

(Grimm 1991) was used for graphing the pollen data. 

For the identification of plant macro-remains and ostracods in the sediments, samples 

were wet-sieved through a 0.25 mm mesh screen, and then air-dried. About 0.2 kg of 

each sample was used. If less material was available, the counted numbers of remains 

were normalised to a 0.2 kg sediment weight. In total, 66 (sub-)-samples were screened 

for these purposes. Plant macro-remains and ostracod valves were analysed under a 

stereo-microscope. The species identification of plant remains was based on a 

carpological reference collection, whereas the ostracod taxa were determined using 

taxonomical keys (Alm 1914; Pietrzeniuk 1977; Meisch 2000) as well as the reference 

collection of freshwater ostracods at the Museum of Natural History (Berlin, Germany). 

For scanning electron microscopy (SEM) photographs of ostracod valves we used a Zeiss 

DSM 962 at the GeoForschungsZentrum (Research Centre for Geosciences, Potsdam, 

Germany). 

In total, 15 samples of about 50 kg each, mostly taken from thawed sediment, were 

screened for insect remains. One sample was collected from the lower sequence and 10 

samples were taken from the upper sequence. In addition, four samples were screened 

from two freshly fallen frozen blocks of Ice Complex sediments, which could be assigned 

to their original position. We used a 0.4 mm mesh sieve for field screening. After drying, 

the concentrated plant detritus with insect remains was separated using a set of small soil 

sieves with meshes from 0.25 to 5 mm. The large fraction (2–5 mm) was studied visually; 

the smaller fractions were analysed under a stereo-microscope. The species identification 

is based on etalon collections of modern insects from the Zoological Institute of the 

Russian Academy of Science (RAS), St. Petersburg and the Palaeontological Institute 

RAS, Moscow, Russia. Photographs of fossil insects were taken at the Otto Schmidt 

Laboratory, St. Petersburg, Russia. For palaeoenvironmental reconstruction based on 

fossil insects, we used the Ecological Group Analysis (EGA), which was described in 

detail in previous works (Sher et al. 2005; Kuzmina and Sher 2006). 

During our fieldwork we also collected mammal bones and their fragments. Afterwards, 

these fossil remains of the Mammoth Fauna were identified. The bones were obtained: (a) 

in situ, i.e. within the frozen sediment, (b) in thermo-erosional cirques, where the original 

position within the sediments can be determined, (c) within the thawed debris of the 

outcrop, and (d) on the Lena River bank. Two of these bones were used for radiocarbon 

dating at the Geological Institute (GIN) of the RAS in Moscow and at the Oxford 

Radiocarbon Accelerator Unit Research Laboratory (OxA). 
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II.5 Results 

II.5.1 Lithostratigraphy, sedimentology, and cryolithology 

In general the cliffs along the Olenyeksky Channel consist dominantly of a lower, sandy 

and ice-poor formation (units I and II) and an upper ice-rich, fine-grained, peaty formation 

(Ice Complex), which contains numerous large ice wedges (units III and IV), and which 

are overlain by thermokarst depression fillings (unit V). Because of quite similar 

cryostructures in upper ice-rich formation and partly problematic exposure conditions 

(steep, slippery muddy, many debris) boundaries between the separate units were not 

always very well visible during the field observation. Nevertheless, our sedimentological 

data from the deposits of Kurungnakh Island confirm the stratigraphical division of the 

exposure into five main units (Figure II-5; Table II-1), which was made during the field 

work. The deposits of the lower sand sequence are well exposed along the whole section. 

The sands reach altitudes up to 17 m a.r.l. and delineate a division by sedimentological 

parameters into two units (Figure II-5). 

 

 

Figure II-5 Stratigraphic differentiation of the permafrost sequence into units I–V according to 

sedimentological records 

 

II.5.1.1 Unit I (up to 12 m a.r.l.) 

Unit I consists of interbedded yellow medium-grained sand (1–5 cm thick) and grey silty 

sand (1–2 cm thick) with plant detritus, roots, and single silt layers (Supplementary data 

A). In some layers of unit I, the sands contain abundant grass roots and stems. Well-

sorted medium-grained sands with low TOC and TOC/N ratios alternate with poorly sorted 
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silty sands with higher TOC and TOC/N ratios. This interbedding reflects frequent 

changes in the current velocity under shallow water conditions. The ice content is 

generally lower in coarser sediments (about 25 wt%). No ice wedges were observed 

within unit I. The cryostructure is massive, i.e. no distinct small-scale segregated ice 

lenses or veins were visible. The magnetic susceptibility decreases from more than 

100×10−8 m3/kg at about 9 m a.r.l. to less than 50×10−8 m3/kg at the transition to unit II. 

 

Table II-1 Stratigraphic composition of the studied permafrost sequence and sediment 

characteristics of individual sediment units 

Unit Altitude 
[m a.r.l.] 

AMS 
ages   
[kyr BP] 

Stratigraphy Sediments 

V 33.5 – 37 6 – 3 Middle and late Holocene  Grey peaty silt with peat lenses 
and the uppermost modern 
active layer 

IVb 32 – 33.5 about 8 Early Holocene  

 

Grey sandy silt with rare plant 
detritus 

   Gap  

IVa 29.5 – 32 about 17 Late Weichselian Stadial 

(Sartan) 

Grey sandy silt with rare plant 
detritus 

   Gap  

III 17 – 29.5 42 – 32 Middle Weichselian 
Interstadial  

(Kargin) 

Grey peaty silt as continuous 
Ice Complex deposits with peat 
lenses and layers, including 
cryoturbated palaeosol 
horizons 

II 12 – 17 > 50 Early Weichselian Stadial  

(Zyryan) 

Yellow medium grained 
homogeneous finely-laminated 
pure sand 

I Up to 12 > 50 Early Weichselian Stadial  

(Zyryan) 

Interbedded yellow medium 
grained sand and grey silty 
sand with plant detritus, roots 
and single silt layers 

 

II.5.1.2 Unit II (12–17 m a.r.l.) 

Above the alternation of sand, silt and plant detritus layers in unit I the upper part of the 

sand formation was characterised by homogeneous finely laminated pure sand 

(Supplementary data A). Single laminae of grey, greyish, and light-brown colour are 0.2–

2 cm thick partly with graded bedding structures. The boundary between units I and II was 

not very sharp and hardly identifiable. Deposits of unit II are well-sorted medium-grained 

sands and contain only very little organic material (TOC 0.12–0.19 wt%) (Figure II-5). Thin 

layers of fine plant detritus were only observed in some places. The fine lamination was 

synsedimentarily disturbed at the mm-scale (load casts). Sediment features reflect that 

fluvial accumulation conditions changed to more continuous transport in rather shallow 
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water. The general trend of decreasing magnetic susceptibility continues in unit II. The ice 

content varies between 23 and 26 wt%. The cryostructure is massive without any small-

scale structures of segregated ice. No syngenetic ice wedges were formed. But epigenetic 

thin ice wedges, which form the “roots” of the large ice wedges in unit III penetrate the 

upper part of unit II. 

 

II.5.1.3 Unit III (17–29.2 m a.r.l.) 

The upper sand sequence of unit II is covered by the Ice Complex sequence. The 

boundary between the lower sand and the Ice Complex is sharp and visible along the 

whole section (Figure II-2). At this boundary an approximately 1-m-thick horizon of a 

cryoturbated palaeosol occurred. Ice Complex ice wedges sharply narrow near the 

boundary with the lower sand sequence, and their long and thin tails penetrate about 1–

2 m into the sand unit II. The Ice Complex is often exposed in the form of an ice wall along 

the river bank (Figure II-2). This wall, up to 1 km long, is likely the longitudinal part of a 

polygonal ice wedge system. The ice wall is covered by overhanging frozen blocks of peat 

and silt (Figure II-2). In less steep parts of the outcrop numerous thermokarst mounds 

reflect the transversal cut through a polygonal ice wedge system (Supplementary data A). 

The thickest peat layers are observed in the lower part of the Ice Complex sequence (unit 

III). At least two such layers are clearly observed along the section. In addition, 

cryoturbated greyish-brown palaeosols of about 0.5 m thickness with peat inclusions and 

twig fragments occurred repeatedly within unit III. The described characteristics reflect the 

subaerial accumulation of these sediments. 

Unit III is composed of ice-rich poorly sorted, cryoturbated greyish sandy silt with 0.5–

0.7 m thick peat horizons, single sand and peat lenses (0.2–0.5 m in diameter), and large 

ice wedges (Figure II-3 and Figure II-5). The ice wedges are 2–4 m wide and 15–20 m 

high. They have symmetrical shoulders, which merge to ice bands (segregation ice). Such 

ice wedges are vertically striped, consist of numerous 1–2 cm thick elementary ice veins, 

and contain numerous small gas bubbles. The ice content in sediments of unit III varies 

from 50 to 133 wt%. Ice bands of 1–3 cm thickness as well as reticulate nets of mm-thin 

ice veins and lenses between the ice bands characterise the cryostructure. The shape of 

the large wedges and their connection to the bands of segregated ice band as well as the 

ice supersaturation are signs of syngenetic (i.e. contemporary) ice wedge growth and 

accumulation. The magnetic susceptibility shows a stable signal of about 20×10−8 m3/kg. 

The TOC content of these organic-rich sediments ranges from about 2 to 7 wt%, and the 

TOC/N ratio varies from about 9 to 23. The δ13C averages about −27‰. 

In the upper part of the Ice Complex sequence the peat layers are rare and less thick. The 

boundary to the overlain unit IV is again formed by a cryoturbated palaeosol of 0.5–1.5 m 
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thickness. There, sandy layers or lenses are often observed near the contact between ice 

wedges and the surrounding sediments. 

 

II.5.1.4 Unit IV (29.5–33.5 m a.r.l.) 

According to field observations unit IV could be separated from the underlain unit III 

because of yellowish grey to greenish-grey colour, higher sand content, a lack of peat 

inclusions, and the lesser content of plant remains (only few thin grass roots; 

Supplementary data A). Unit IV is composed of very poorly sorted sandy silt with low 

organic content. The TOC is significant lower than in unit III (1.7–2 wt%). The δ13C 

composition of unit IV is clearly shifted to more positive values averaging about −25.5‰ 

and reaching at its most positive (heaviest) a value of −25.1‰. The TOC/N ratio in unit IV 

does not clearly differ from that of unit III. As far as observable the large ice wedges of 

unit III seemed to continue in unit IV without any interruption. The cryostructure is similar 

to those of unit III and the ice content is variable (24–150 wt%). The magnetic 

susceptibility is higher as compared to the overlying unit V and the underlying unit III with 

values of 17.4–36×10−8 m3/kg. 

 

II.5.1.5 Unit V (33.5–37 m a.r.l.) 

The uppermost part of the outcrop below the active layer consists of sandy silt with peat 

lenses 0.1–0.2 m in diameter (Supplementary data A). This deposits form separate, 

several decametres wide bodies of thermokarst depressions fillings on top of the underlain 

ice-rich deposits. The contact next to the thick Pleistocene ice wedges between the 

surrounding sediments of units V and IV is turned up (Figure II-3) indicating the particular 

erosion (thermokarst) of the upper part of unit IV sediments. Ice wedges of 0.5–1.5 m 

width and up to 5 m height often penetrate into the much larger ice wedges of unit IV 

(Figure II-4a) forming larger composite ground ice bodies, which consist of several 

separate ice wedges. The cryostructure is similar to the ice-rich units below. The ice 

content of frozen sediments ranges from 48 to 117 wt%. The TOC content is similar to 

that of unit III and varies between about 3 and 12 wt%. The δ13C signal of unit V clearly 

differs from all other units and reaches at its most negative (lightest) a value of about 

−29‰. The TOC/N ratio of about 17 in unit V is significant higher than in the other units. 

The mass-specific magnetic susceptibility reaches only 8.4–11.5×10−8 m3/kg. 

 

II.5.2 Geochronology 

New 230Th/U data from peat layers of unit I show isochron derived mean ages of 107±3 

and 95±4 kyr at 3.2–3.8 m a.r.l. (Table II-2). Peat layers in similar position in the western 

Lena Delta exposed about 5 m a.r.l. at the Anrynsky Channel were 230Th/U dated at 
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113±14 kyr (Schirrmeister et al. 2003). Krbetschek et al. (2002) provided three age 

determinations between 4.3 and 8.8 m a.r.l. by Infrared Optical Simulated Luminescence 

(IR-OSL) from 88±14 to 65±8 kyr. 

 

Table II-2 Data of 230Th/U age determinations of two samples (three subsamples each) from two 

peat horizon within unit I taken in 2000 (Schirrmeister et al. 2001) 

Sample 
№ 

TIMS  

№ 

Altitude   

[m, a.r.l.] 

234U/238U 

± 2σ 

 

230Th/232Th 

± 2σ 

 

U 
conc. 

[ppm] 

Th 
conc. 

[ppm] 

230Th/U age 

103 yr ± 2σ 

  

230Th/U age 

103 yr ± 2σ 
Isochrone-
corr. 

Bkh2 

U/Th-1 

3.2-3.4      107 ±3 

700  1.181 

±0.003 

0.566 

±0.003 

0.83  

 

5.19 315 ±10  104 ±5 

701  1.241 

±0.005 

0.7726 

± 0.004 

1.50 

 

6.37 194 ±3  105 ±3 

702  1.194 

±0.005 

0.608 

±0.005 

0.66  

 

3.98 343 ±21  114 ± 6 

Bkh2 

U/Th-2 

3.6-3.8      95 ±4 

704  1.141 

±0.003 

0.550 

±0.004 

0.66  

 

4.30 457 ±60  94 ±8 

705  1.241 

±0.002 

0.651 

±0.004 

1.08  

 

5.79 234 ±4  94 ±6 

706  0.98 

±0.005 

0.546 

±0.005 

0.62  

 

3.52 >650  99 ±9 

 

The radiocarbon ages (Table II-3) of unit III range between 41.3 +2.0/−1.6 kyr BP at 

17.9 m a.r.l. and 32.9±0.3 kyr BP at 29.2 m a.r.l. One dating from this unit (Bkh2002 S14; 

665±30 yr BP at 30 m a.r.l.) was excluded from further interpretation, because it comes 

from relocated material of late Holocene age. In unit IV two ages of about 17 kyr BP were 

determined at 31 and 31.7 m a.r.l., and two early Holocene ages of about 8 kyr BP at 32.5 

and 33.2 m a.r.l. According to these results unit IV should be divided into two subunits IVa 

and IVb (Table II-1). The uppermost unit V was formed during the middle Holocene 

between about 6 and 3 kyr BP. 

In order to understand the complete radiocarbon geochronology of the studied section we 

combined our new results with previous radiocarbon data from Schirrmeister et al. (2003) 

(Figure II-6a); the good agreement of these two studied outcrops on Kurungnakh Island is 

apparent. Considering the total data set of 28 radiocarbon ages it has to be mentioned 
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that two gaps in the chronology are present between approximately 32 and 17 kyr BP and 

between 17 and 8 kyr BP. The continuous sedimentation between about 50 and 32 kyr BP 

(during the Middle Weichselian/Kargin/MIS-3 Interstadial) allows us to estimate an age–

height correlation (R2
mean=0.87) based on 11 dates for this period (Figure II-6b). This good 

correlation was also used in palaeoecological studies for age estimations of non-dated 

samples. 

 

Table II-3 Radiocarbon AMS ages of plant remains in samples of the Kurungnakh study site 

collected in 2002 

Sample       
№ 

Lab       
№ 

Material 
dated 

Altitude  
[m, a.r.l.] 

uncalibrated           
AMS                  
ages                        
[yr BP] 

cal 
AMS 
ages*     
[yr BP] 
Max 

cal 
AMS 
ages*     
[yr BP] 
Min 

Bkh02 S03 KIA31046 plants 35 2795 ±30   2954  2841  

Bkh02 S29 KIA31047 plant detritus 34   5860 ±35   6756 6593

Bkh02 S06 KIA31048 plants 33.2 8155 ±45   9155  9,010  

Bkh02 S17 KIA31049 plants 32.5 8075 ±30   9034  8980  

Bkh02 S08 KIA30235 wood 31.7 16 860 ±70   20 195 19 855

Bkh02 S13 KIA31050 plants  31 17 200 ±80   21 138  19 849  

Bkh02 S14 KIA31051 plants 
(relocated) 

30 665 ±30   602  558  

Bkh02 S20 KIA30236 wood 29.2 32 920 +330/-310     

Bkh02 S16 KIA30237 wood 29 31 960 +380/-360     

Bkh02 S22D KIA30238 wood, leaves 26.3 34 830 +390/-370     

Bkh02 S48 KIA30240 wood 24 40 410 +610/-560     

Bkh02 S25D KIA30239 wood, moss, 
coarse leaves 

23 40 020 +660/-610     

Bkh02 S46aD KIA30241 moss, leaf 
fragments 

19.8 41 220 +1260/-1090     

Bkh02 S45aD KIA31052 plants 17.9 41 330 +2000/-1600     

* Calibrated ages were calculated using the software „CALIB rev 4.3” (Stuiver et al.1998) 
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Figure II-6 Results of radiocarbon AMS 

age determination from Kurungnakh 

Island: (a) age-model of the entire 

radiocarbon-dated permafrost sequence; 

(b) age–altitude-correlation of the 

continuously accumulated Kargin period 

between 50 and 31 kyr BP. Previous 

dates from Schirrmeister et al. (2003) are 

marked as grey symbols 

 

II.5.3 Oxygen and hydrogen stable isotopes of ground ice 

The studied late Pleistocene ice wedge is about 2 m wide at the sample site and 

penetrates another 2 m further into unit II. The sampled transect covers the right side of a 

large ice wedge (samples Bkh-II 7–14) and a smaller, slightly bended parallel-striped ice 

vein (samples BKh IW II 1–6), which merges oblique into the ice wedge (Figure II-4b). 

Such kind of small “daughter ice wedges” was often observed in the lowermost part of 

large ice wedges. They mirror changing frost crack orientation during epigenetic ice 

wedge formation if stress relations during frost cracking were not yet clear. The apparently 

horizontal orientation of such ice wedge is caused by angular cutting orientation of the 

inclined oriented ice body. Two small Holocene ice wedges that nest one into another 

(Bkh IW I) were sampled at the top of the section (Figure II-4a). 

The stable isotope signature of late Pleistocene ice lies in a more negative (lighter) range 

of about −32‰ for δ18O and −248‰ for δD, whereas the d excess averages 6‰ (Table II-

4). The horizontally striped ice vein next to this ice wedge is slightly shifted to heavier 

values of −31‰ for δ18O and −241‰ for δD (d≈4‰). 
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Table II-4 Oxygen and hydrogen table isotope signatures of late Pleistocene and Holocene ice 

wedges 

Type of    
ground ice 

Sub-
samples 

Altitude δ18O 
mean 

δ18O 
std. 
dev. 

δD 
mean 

δD 
std. 
dev.  

d 
mean 

d   
std. 
dev. 

  [m a.r.l.] [‰] [‰] [‰] [‰] [‰] [‰] 

Younger 
Holocene  
ice wedge 

12 34 - 35 −24.6 0.8 −185.1 6.1 11.6 1.0 

Older Holocene  
ice wedge 

3 34 - 35 −25.4 1.1 −198.6 7.0 4.2 1.7 

Late Pleistocene  
ice wedge 

8 16 −31.8 0.5 −248.3 3.2 5.8 0.4 

Horizontal striped 
ice vein 

6 16 −30.6 0.5 −240.7 3.4 4.0 0.7 

 

The younger Holocene ice wedge shows relatively heavy values of around −25‰ for δ18O 

and −185‰ for δD. The d excess averages about 12‰ (Table II-4). This is clearly different 

from the surrounding older Holocene ice in which the younger ice wedge grew, with 

values of about −25‰ for δ18O, −199‰ for δD, and 4‰ for the d excess (Table II-4). The 

δ18O-δD signature of the older Holocene ice wedge lies below the Global Meteoric Water 

Line (GMWL; Figure II-7).  

 

 

Figure II-7 δ18O–δD plot of Pleistocene 

and Holocene ground ice as with 

respect to the Global Meteoric Water 

Line (GMWL), which correlates fresh 

surface waters on a global scale (Craig 

1961) 

 

The relatively low d excess is not typical for Holocene ice wedges and might indicate that 

this generation of ice wedges formed not only under the influence of winter snow, but also 

were fed by additional water supply. However, these samples are less suitable for climate 

interpretation. 

In summary, late Pleistocene and Holocene ground ice are clearly differentiated by their 

stable isotopic signals. Similar results have been obtained from other outcrops in the 

Laptev Sea region (Meyer et al. 2002a, b; Schirrmeister et al. 2003). The interpretation of 
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the stable isotope data allows us to conclude that winter temperatures were warmer 

during the late Holocene than in the late Pleistocene when the Ice Complex formed. 

 

II.5.4 Palynological studies 

Sediments of units I and II contain almost no pollen. Five pollen zones (PZ 1–5) can be 

distinguished in units III–V (Figure II-8). The dominance of Cyperaceae and Poaceae 

pollen with some Artemisia and Salix is typical for pollen zone 1 (PZ 1) corresponding to 

the lower part of unit III (ca 45–40 kyr BP). The pollen spectra reflect the domination of 

open tundra- and steppe-like associations in the area at that time, although willow 

shrublets were probably present in the vegetation as well. A relatively high content of 

green algae colonies (Pediastrum) indicates the existence of shallow water bodies (e.g. 

centres of ice wedge polygons). The interval corresponds well with the beginning of the 

Kargin Interstadial when climate amelioration took place. 

 

 

Figure II-8 Pollen and spore diagram of Kargin, late Sartan and Holocene sediments (A—algae 

remains, R—re-deposited taxa). Pollen and spore data from Schirrmeister et al. (2003) are marked 

as grey bars and dots 

 

The dominance of Poaceae, Cyperaceae, Artemisia, and Caryophyllaceae pollen with 

some Asteraceae, Thalictrum, and Brassicaceae is typical for PZ 2 corresponding to the 

upper part of unit III (ca 40 and 32 kyr BP). This interval corresponds well with the climatic 

optimum of the Kargin Interstadial. The pollen spectra reflect the domination of open 

steppe-like and tundra-like associations in the area at that time. Relatively high contents 

of Pediastrum and Botryococcus colonies and Salix pollen indicate relatively moist local 

conditions during this interval. A similar environment was reconstructed for this time for 

the Bykovsky Peninsula, Laptev Sea (72°N, 129°E; Figure II-1) as well (Andreev et al. 

2002; Schirrmeister et al. 2002a). Large amounts of spores from dung-inhabiting 

Sordariales fungi (Sporormiella, Podospora, and Sordaria) are also characteristic for the 
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spectra, and can be seen as an indication of grazing mammals in the area during that 

time. 

Very low pollen concentrations characterise PZ 3 (unit IVa) dated at around 17 kyr BP. 

This feature may indicate scarce vegetation around the site, or more likely very low 

pollination during the Sartan stage. Pollen spectra are dominated by Poaceae, 

Cyperaceae, Artemisia, and Caryophyllaceae. They also contain reworked indeterminable 

Pinaceae pollen grains and rather numerous dung-inhabiting fungi spores. The latter most 

likely indicate the presence of grazing herds in the area. It can be assumed that scarce 

steppe-like grass-sedge-Artemisia communities dominated the study area. The climate 

was probably extremely cold and dry. However, relative high contents of Betula sect. 

Nanae and Salix pollen may reflect the beginning of slight climate amelioration after the 

Last Glacial Maximum (LGM). 

An increase in Alnus fruticosa, Betula sect. Nanae, B. sect. Albae, and Ericales pollen 

contents and the presence of Rubus chamaemorus in PZ 4 reflect the early Holocene 

warming (unit IVb). Such changes suggest that shrubby tundra was widely distributed 

around the site ca 8 kyr BP. Previous studies at the area confirm this conclusion 

(Schirrmeister et al. 2003). The second spectrum of PZ 4 (unit V) radiocarbon dated to 

5.9 kyr BP is characterised by a strong decrease in A. fruticosa and increase in Betula 

nana and Ericales pollen. These changes reflect some climatic deterioration resulting in 

the disappearance of shrub alder from the vegetation. 

The uppermost spectrum of PZ 5 (unit V) radiocarbon dated to ca 2.5 kyr BP is 

characterised by a disappearance of Ericales and R. chamaemorus pollen, and an 

increase in Salix, Cyperaceae, and long-distance transported pollen (Pinus). The 

spectrum reflects vegetation and climate conditions similar to modern. 

 

II.5.5 Plant macrofossils 

In general, the studied sequence is poor in plant macrofossils. Altogether 66 samples 

were studied of which only 42 contained identifiable material (Supplementary data B). 

In the lowermost units I and II, plant macro-remains were especially rare. Both units are 

similar in their fossil plant composition. The macrofossil spectra include beside Salix sp., 

and Carex sp. mainly tundra–steppe representatives like Potentilla sp., Kobresia 

myosuroides, Puccinellia sp. but also wetland species such as Carex sect. Phacocystis, 

Saxifraga hirculus, and Eriophorum angustifolium (Figure II-9). They reflect a tundra–

steppe-like vegetation, thus cold and dry conditions and the presence of wet localities. 

The scarcity of plant remains is likely the result of taphonomical conditions and is not 

regarded as being due to climatic conditions. Well-sorted sand is deposited by wind or 
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running water, implicating the removal of lightweight fractions of the sediment load 

including small grain sizes and plant detritus. 

 

 

Figure II-9 Fossil plant macro-remains 

from Kurungnakh Island: (1) Alyssum 

obovatum, both sides of a seed 

fragment; (2) Lagotis minor, fragment 

of the fruit, two sides; (3) Phlox sibirica, 

valve of the capsule, two-sided; (4) 

Astragalus sp., both sides of the seed; 

(5) Thalictrum alpinum, fragments of 

two individual pericarps; (6) Kobresia 

myosuroides, three sides of a nutlet; 

(7) Kobresia myosuroides, two sides of 

another nutlet; (8) cf. Lesquerella 

arctica, seed, two-sided; (9) Hierochloë 

cf. odorata, spikelet with two visible 

staminate florets enclosing one 

pistillate floret, two sides; (10) 

Arctagrostis latifolia, caryopsis, (a) and 

(b) lateral, (c) obliquely ventral view 

showing that the peduncle is lacking 

(evidence that spikelets are uniflorous) 

 

Unit III consists mainly of organic-rich silty and peaty deposits, which inherently contain 

more identifiable plant remains. Consistently, the diversity and abundance of plant macro-

remains in unit III are the highest within the recorded sequence. The spectra are mainly 

dominated by artic upland plants characteristic of Kobresia meadows and by steppe 

plants (Supplementary data B), reflecting the presence of a tundra–steppe under dry 

conditions. Remains of Carex sect. Phacocystis were also abundant, indicating the 

existence of constantly wet habitats possibly connected with periodic flooding in the 

proximity of a riverbed. The nearby existence of a river bed might also explain the scarcity 

of Puccinellia sp., a plant species that is actually very abundant in Pleistocene deposits of 

Arctic Siberia (Kienast et al. 2005, 2008). This grass occurs inland only under dry climate 

conditions in closed depressions, which lack drainage, where groundwater level and salt 

concentration fluctuate seasonally due to high evaporation. The high drainage that exists 

close to a river bed probably hampered salt accumulation in the top soil. 
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In unit IVa, the composition of the macrofossil assemblages does not change significantly 

from that of unit III, but the abundance and diversity of plant remains decrease 

(Supplementary data B). This might be the result of a higher accumulation rate or of poor 

macrofossil preservation. Since all palaeoecological records indicate a drastic decrease in 

diversity and abundance and a dominance of cold-tolerant taxa, a strong temperature 

decrease has to be assumed. 

Interestingly, the floral composition does not change notably towards the early Holocene 

warming (unit IVb). Plants typical of the Pleistocene tundra–steppe such as K. 

myosuroides and Potentilla cf. stipularis continue to exist in the study area beyond the 

Weichselian/Holocene border. Their existence together with the low number of wetland 

plants during the early Holocene might be an indication of a continuing continental climate 

as a result of delayed Laptev Sea transgression. Plant remains indicating a temperature 

increase towards the early Holocene are largely absent except for a single Betulaceae 

fruit in the Bkh2002 S30D sample. This result is in contrast to palynological results, which 

clearly show a drastic increase in A. fruticosa, Betula sect. Nanae, B. sect. Albae, and 

Ericales pollen. 

Unit V corresponds largely to the late Holocene and is characterised by a further floral 

impoverishment connected with increasing oceanic climate influence due to the Laptev 

Sea transgression. Among the few macrofossils that were found, remains of wetland 

sedges (Carex sect. Phacocystis) and willow shrubs dominate. Single remains of Betula 

cf. fruticosa and Ledum palustre indicate subarctic temperature conditions. Steppe, 

meadow, and cryo-arid elements are completely absent from the late Holocene record. 

 

II.5.6 Ostracod remains 

In total, 54 samples from the site studied in 2002 and 15 samples from the outcrop 

sampled in 2000 were checked for ostracod remains. However, only five samples from the 

2000 and 2002 sample sets contained any ostracod remains, mostly rare valve fragments 

or single valves of juvenile Candoninae and Candona muelleri jakutica. The only sample 

with sufficiently high valve numbers (in total 2485 valves) for further interpretation was 

found at an altitude of 19.8 m a.r.l. (sample Bkh2002 S46aD) in the lower part of unit III. 

This sample was dated to 41 220+1260/−1090 yr BP. The species composition comprises 

five taxa. Four species were identified by valves of adult specimens and one taxon 

comprises juvenile Candoninae, which represents more than 50% of the total amount of 

ostracod valves. The abundance of the four species is shown in Figure II-10. Due to 

finding only four species represented by adults the species diversity is low. Nevertheless, 

some interpretation can be undertaken. All observed species are already described for 

modern (sub-)arctic shallow water habitats (e.g. Alm 1914; Semenova, 2003, 2005; 
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Wetterich et al. 2008a). The good preservation of the valves which even contain, in some 

cases, soft body parts, and also the occurrence of closed carapaces indicate in situ 

conditions (Figure II-11). 

 

 

Figure II-10 Ostracod species spectra 

of sample Bkh2002 S 46 aD (19.8 m 

a.s.l.) in the lower part of unit III dated 

to 41 kyr BP 

 

 

 

Figure II-11  SEM photography of 

freshwater ostracod valves (left valve-

LV, right valve-RV). Candona muelleri 

jakutica: (1) female LV, (2) female RV, 

(3) male LV, (4) male LV (internal view 

with preserved soft body parts); 

Fabaeformiscandona harmsworthi: (5) 

female LV, (6) female RV; 

Fabaeformiscandona lapponica var. 

arctica: (7) female LV, (8) female RV, 

(9) male LV, (10) male RV; 

Bradleystrandesia reticulata: (11) 

female LV, and (12) female RV. 

The most common species in the record here presented is C. muelleri jakutica 

PIETRZENIUK, 1977 (Figure II-11, 1–4) which was first observed in Central Yakutian 
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thermokarst lakes (Pietrzeniuk 1977) and has also been found in arctic polygonal ponds in 

the Lena Delta (Wetterich et al. 2008a) under very low electrical conductivities (salinities) 

and water temperatures between about 5 and 15°C. Fossils of C. muelleri jakutica are 

already known from Kargin Interstadial deposits from Bykovsky Peninsula, Laptev Sea, 

Northeast Siberia (Wetterich et al. 2005). Modern and fossil assemblages of C. muelleri 

jakutica are commonly represented by female and male specimen. 

The species Fabaeformiscandona harmsworthi (SCOTT, 1899) (Figure II-11, 5–6) has 

been found in the modern arctic environments of Novaya Zemlya and Franz Josef Land 

(Neale 1969) and also in the Lena Delta under the same environmental conditions as C. 

muelleri jakutica (Wetterich et al. 2008a). Fossil valves were obtained in Kargin 

interstadial deposits in Northeast Siberia (Wetterich et al. 2005). Only female F. 

harmsworthi valves have been found. Males are not known. 

Fabaeformiscandona lapponica var. arctica (ALM, 1914) (Figure II-11, 7–10) was first 

described from ponds on Novaya Zemlya Archipelago, Russian Arctic (Alm 1914). 

Semenova (2003) classified this species as a high-arctic form also common on 

Spitsbergen and in other regions in the Arctic. The female and male valves presented 

here are very similar to F. lapponica var. arctica in size and outline. Nevertheless, it has to 

be mentioned that the valve surface is covered by a pitted pattern (Figure II-11, 7–10), 

which was originally not described by Alm (1914). Males of F. lapponica var. arctica have 

not been previously observed in modern records (Semenova 2003). For several ostracod 

species populations of both sexes are known to indicate more favourable living conditions, 

whereas the parthenogenetic reproduction takes place when the environmental setting of 

habitats changes. The identification of F. lapponica var. arctica males is doubtless due to 

preserved Zenker organs (typical male reproduction organ) in some specimens. Males of 

F. lapponica var. arctica in unit III may indicate more favourable conditions for this species 

than exist today for the regions where this species has been found. To verify this 

argument, male specimens should be observed under modern conditions. 

The species Bradleystrandesia reticulata (ZADDACH, 1844) (Figure II-11, 11–12) is broadly 

distributed in mid-latitudes as well as in high-latitude regions and has broad tolerance to 

such environmental factors (Meisch 2000). Populations of both sexes are known from 

northern habitats, but probably due to the rareness of B. reticulata valves in our record we 

observed only female valves. The species has been found in East Siberia (Pietrzeniuk 

1977; Semenova 2005), and also in Greenland and in the Siberian Arctic (Alm 1914; 

Wetterich et al. 2008a). Fossil records of this species were obtained in European 

Quaternary deposits (Griffiths 1995), but have not been found in Siberia to date. 

The fossil ostracod assemblage can be interpreted as typical for shallow water conditions 

with moderate water temperature variations. The habitat was most likely a pond, as these 

 148



Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits                     Appendix II 
Quaternary Science Reviews 27: 1523-1540 
__________________________________________________________________________________________________ 

organisms are typical in today's polygonal tundra landscapes. The great rarity of ostracod 

findings in the studied sequence contradicts the former studies of Wetterich et al. (2005) 

on the Bykovsky Peninsula. The occurrence and preservation of ostracod shells in 

syngenetic frozen deposits of ponds in low-centred ice wedge polygon systems depends 

on numerous hydrological, pedological, and cryological factors. Nevertheless, the high 

abundance of shells in even one sample confirms that freshwater ostracods could appear 

in such a periglacial environment. 

 

II.5.7 Insect remains 

The samples for insect remains analysis were mostly taken in equal volume, but contain 

different numbers of individuals. The poorest sample with 43 insect remains (Bkh2002 

B11, 10 m a.r.l.) comes from unit I, and the richest sample with 463 insect remains comes 

from the upper part of the unit IVa (Bkh 2002 B04, 31.7 m a.r.l.). The fossil insect fauna is 

mostly represented by beetles (order Coleoptera) whose hard chitin parts allow good 

preservation in non-consolidated deposits (Supplementary data C and Figure II-12). We 

also found some unidentified remains from other orders such as Hymenoptera, Diptera, 

Trichoptera, and Hemiptera, which have not been included in the species list. 

The insect association in unit I (Bkh2002 B11) consists predominantly of representatives 

of the typical arctic tundra group and the mesic tundra group. Insects of the steppe groups 

as well as the shrub, meadows, and forest groups are only secondarily represented. This 

spectrum does not show that there are differences between insect assemblages of the 

lower sand units I and II, and the Ice Complex units III and IVa (Figure II-13). Fossil insect 

assemblages from the Ice Complex units III and IVa show a rather consistent composition 

of species representative of different ecological spectra (Figure II-13). There are almost 

equal abundances of xerophilous groups, mostly tundra xerophilous (ks), meso-

hygrophilous tundra insects (mt), and arctic insects (tt). An increase of steppe insects is 

evident at about 40 kyr BP (Bkh2002 B10), but later the species composition returns to 

the previous one. 

In the Ice Complex units III and IVa (Figure II-13) insect remains are present at an 

unusually high level for an arctic group, with an average of 20–30% and a maximum of up 

to 86% of all remains. Insects of typical and arctic tundra (tt) are represented here mostly 

by the willows weevil Isochnus arcticus. The steppe group (ss) which normally plays an 

important role in most late Pleistocene entomofauna records from Northeast Siberia 

(Kiselyov 1981; Sher and Kuzmina 2007) is not very abundant in the section, except for 

one single assemblage. Nevertheless, the character of the late Pleistocene insect fauna 

from Kurungnakh Island is evidently steppe–tundra. The assemblage includes such typical 

Pleistocene steppe–tundra species as the pill beetle Morychus viridis, the leaf beetles 
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Chrysolina brunnicornis and Ch. arctica, the weevils Coniocleonus cinerascens, 

Coniocleonus astragali, Coniocleonus ferrugineus, and Stephanocleonus fossulatus in 

association with some xerophilous species, which were widespread in the Pleistocene 

steppe–tundra landscape and have become relatively rare recently, as well as the weevils 

Mesotrichapion wrangelianum, Hemitrichapion tschernovi, Sitona borealis, Hypera ornate, 

and others. The most typical member of the steppe-tundra insect community, the weevil 

Stephanocleonus eruditus, was not found in the Kurungnakh assemblages, but was 

present in most samples of neighbouring outcrops (Kuzmina, unpublished data; Sher et al. 

2005). Although this weevil is a significant local feature of this section, it seems to be not 

characteristic of the entire region. 

 

 

Figure II-12 Fossil insect remains from 

Kurungnakh Island: (1) Ground beetle 

Carabus kolymensis, pronotum; (2) 

Ground beetle Carabus kolymensis, 

elytron; (3) Ground beetle Pterostichus 

tundrae, elytron; (4) Rove beetle 

Tachinus brevipennis, pronotum; (5) 

Rove beetle Eucnecosum cf. tenue, 

elytron; (6) Dung beetle Aphodius sp., 

elytron; (7) Leaf beetle Chrysomela 

blaisdelli, elytron; (8) Leaf beetle 

Chrysolina brunnicornis wrangeliana, 

elytron; (9) Leaf beetle Chrysolina 

subsulcata, elytron; (10) Weevil 

Coniocleonus cinerascens, head and 

pronotum; (11) Weevil Coniocleonus 

sp., connected elytrons; (12) Weevil 

Coniocleonus astragali, head; (13) 

Weevil Stephanocleonus fossulatus, 

head; (14) Weevil Sitona borealis, 

head; (15) Weevil Isochnus arcticus, 

pronotum; (16) Weevil Isochnus 

arcticus, connected elytrons; (17) 

Weevil Isochnus flagellum, elytron; (18) 

Weevil Lepyrus nordenskioeldi, 

pronotum; and (19) Weevil Lepyrus 

nordenskioeldi, elytron. Note varying 

scales which correspond to 1 mm 

length each
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Figure II-13 Distribution of the fossil insect groups from Kurungnakh Island: (ss) insects of 

hemicryophytic steppe; (st) insects of thermophilic steppe; (ms) insects of meadow-steppe and 

steppe-like habitats in the tundra zone; (ks) xerophilic insects of different habitats; (dt) insects of 

dry tundra habitats; (tt) insects from typical and arctic tundra; (mt) insects of mesic tundra habitats; 

(sh) insects associated with shrubs; (me) insects living in meadows, mostly in the forest zone; (ri) 

riparian insects; (aq) aquatic insects; (ta) dendrophagous and insects restricted to the taiga zone; 

and (oth) other insects 

 

In unit IVa the appearance of the insect assemblage changed at about 17 kyr BP 

(Bkh2002 B04). There is a distinct domination of arctic species with up to 86%, which 

have not been described in Siberian fossil insect records yet. Even the “coldest” insect 

assemblages (LGM) from Bykovsky Peninsula (Sher et al. 2005) contain less percent of 

arctic species. In general, the species diversity of this sample is low. This sample contains 

no true steppe insects, except for the quite cold-resistant meadow-steppe leaf beetle 

Chrysolina arctica, recently known only from Wrangel Island, East Siberian Sea. The 

overlying sample (Bkh2002 B03) at 33.3 m a.r.l. belongs to the early Holocene unit IVb 

and has lost the overwhelmingly arctic species assemblage, but it still contains more than 

30% arctic insects. 

The observed pattern seems to be similar to the well-studied Ice Complex sequence of 

Bykovsky Peninsula, Laptev Sea (Sher et al. 2005), where one stage in the section (ca 

46–34 kyr BP) with mostly low occurrences of the steppe insect group and a remarkable 

number of arctic insects was also discovered. Nevertheless, some short intervals of 

slightly increasing steppe insects are present also. The Bykovsky Peninsula sediments, 

dated between 24 and 15 kyr BP, which corresponds to the coldest time of the LGM, is 

characterised by 20–67% of arctic insects. 

Two samples (Bkh2002 B01 and B07) were studied from the Holocene unit V. An 

additional sample taken in 2000 from nearby thermokarst deposits (profile Bkh 4, Figure 4 

in Schirrmeister et al. 2003) was also analysed (Supplementary data C). All Holocene 
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insect assemblages are significantly different from those found in both the lower sand and 

the Ice Complex deposits. The Holocene entemofauna is dominated by species of wet 

tundra (mt) at up to 72%. The wet tundra group includes species such as the ground 

beetles Diacheila polita, Pterostichus brevicornis, P. pinguedineus, P. vermiculosus, and 

P. agonus as well as the rove beetles Olophrum consimile and Tachinus brevipennis. 

The ground beetle Pterostichus (Cryobius) brevicornis is the most abundant beetle in the 

Holocene sediments. This is one of the most common beetles in modern tundra and 

forest-tundra regions. The rove beetle O. consimile was dominant in the thermokarst unit 

V. This is not surprising, since the rove beetles of Olophrum genus prefer boggy habitats, 

which are typical of succession stages of thermokarst depressions. There are also a 

number of other hygrophilous insects in all Holocene assemblages from Kurungnakh: the 

ground beetles Dyschiriodes nigricornis, Agonum sp., the rove beetle Holoboreaphilus 

nordenskioeldi, the leaf beetle Hydrothassa hannoverana, and the weevil Tournotaris 

bimaculatus. In addition, some forest species have been found: the ground beetle 

Notiophilus sylvaticus, the rove beetle Phyllodrepa angustata, and the bark beetle 

Polygraphus sp. The species diversity of shrub insects in the Holocene unit V is higher 

than in the Pleistocene insect assemblages. The shrub group (sh) includes the leaf 

beetles Chrysomela blaisdelli and Phratora vulgatissima and the weevils Dorytomus 

imbecillus, D. rufulus amplipennis, and Lepyrus nordenskjoeldi. 

According to the insect studies we can discern three stages of the developing 

environment. During the first stage (>50–32 kyr BP), there existed a cold variant of 

steppe–tundra that comprises the formation of the lower sand units I and II as well as the 

Ice Complex unit III. The second stage (about 17 kyr BP) was characterised by dry and 

cold tundra conditions (unit IVa). During the Holocene (<8 kyr BP) an open tundra-like 

landscape occurred, probably with weakly developed forest vegetation (units IVb and V). 

 

II.5.8 Mammal remains 

The mammal bone collection consists of 118 bones sampled by different scientists in 

2000–2002, 2005, and 2007 on the outcrops of Kurungnakh Island. Palaeontological 

findings from the island are also stored in the Museum of the Lena Delta Reservation, 

Tiksi, Russia. 

According to the finding's location the bones were divided into four groups. Group A 

comprises eight strictly in situ-found bones, probably of one individual horse (Equus 

caballus) from the Ice Complex deposits. Additionally, another in situ horse bone was 

found with copulas and marrow in a state of excellent preservation. The second group B 

includes 37 samples from thermo-erosional cirques. Knowing the altitude of these findings 

(i.e. the minimum level of their original position), we can define the approximate altitude 

 152



Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits                     Appendix II 
Quaternary Science Reviews 27: 1523-1540 
__________________________________________________________________________________________________ 

from which these bones come. Therefore, both groups A and B have direct importance for 

the geological interpretation of the deposits. A third group C of mammal remains were 

collected within the debris of the exposure. They also belong to the section. Group D 

includes the biggest part of the collection from Kurungnakh Island, which comes from the 

shore and sandbank. Such bones were probably relocated from distant outcrops by river 

current or ice flow. Nevertheless, such findings also reflect the association of large fossil 

mammals. 

The composition of the studied bone collection is typical for the late Pleistocene 

“Mammoth Fauna” of the Siberian Arctic. Fossil remains of woolly mammoths 

(Mammuthus primigenius BLUMENBACH, 1799), horses (Equus caballus LINNAEUS, 1758), 

reindeer (Rangifer tarandus LINNAEUS, 1758), bison (Bison priscus BOJANUS, 1827), 

muskox (Ovibos moschatus ZIMMERMANN, 1780), and hares (Lepus sp.) are found (Figure 

II-14). The lower horizon of the Ice Complex (unit III) contains rather abundant bone 

material. The bones that were found there belonged to separate individuals, e.g. several 

ribs and leg bones from two mammoth individuals, as well as several leg bones from one 

horse individual. 

 

 

Figure 14 Taxonomic composition of mammal bones collected from Kurungnakh Island (total 

number - 107 samples) 

 

The taxonomical study was completed by radiocarbon dates obtained from bone collagen. 

In unit III several horse bones were found in situ. Large hind leg bones from one horse 

individual were collected from the frozen silt sediments between two peat layers at a 

height near 20 m a.r.l. From the same level a foreleg bone from a horse was collected and 

radiocarbon dated at 34 200±500 yr BP (GIN 110883, BKh–O65, Schirrmeister et al. 

2003). Another radiocarbon date on bone material of 31 220±180 yr BP (OxA-13675, 

BKh–O42) also indicates the age of the Ice Complex deposits. 

Palaeontological material from the thermo-erosional cirques of Kurungnakh Island is 

characterised by good preservation and completeness. Often different parts of a skeleton 
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lay not far from each other. Of particular interest is the find of a woolly mammoth skeleton 

fragments (23 bones: vertebrae, ribs, foreleg, and hind leg bones) from the highest layers 

of the Ice Complex at 32–35 m a.r.l. 

The species diversity of the Kurungnakh collection agrees with other records from Arctic 

Siberia (e.g. Kuznetsova et al. 2003; Sher et al. 2005). The large number of bones from 

grazing mammals mostly originating from deposits of the Kargin interstadial period (unit 

III) is evidence for the high bioproductivity of the tundra–steppe (mammoth steppe) 

vegetation during this period. This conclusion is also supported by large amounts of 

spores from dung-inhabiting Sordariales fungi, which were determined by palynological 

studies. 

 

II.6 Discussion 

II.6.1 Local stratigraphic and palaeoenvironmental interpretation 

The multidisciplinary palaeo-proxy dataset allows several stages of the late Quaternary 

history of the study area to be distinguished (Table II-5). 

 

Table II-5 Summary of stratigraphy, facies, and palaeecology deduced from multiproxy records 

 

 

The lower sand formation of the section (units I and II) accumulated under changing 

shallow water conditions probably in a meandering fluvial milieu of the Palaeo-Lena River 

between 100 and 50 kyr before. This is evident by IR-OSL dating (Schwamborn et al. 

2002), 230Th/U dates, and a lot of indefinite radiocarbon ages >50 kyr BP (Schirrmeister et 

al. 2003). According to our new data, which coincide with previous datings of these widely 
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exposed sands in the western Lena Delta, an Early Weichselian (Zyryan) Stadial river 

landscape existed there. Changing transport and accumulation conditions can be deduced 

from the sedimentological data from units I and II. While in unit I, small-scale interbedding, 

poor sorting, and repeated peat layer accumulation reflect frequently varying water runoff 

in a quiet, shallow river branch or near-shore area, unit II is distinguished by fine 

lamination, less organic material, more continuous grain sizes, and a higher degree of 

sorting. Such properties give evidence for stable fluvial current conditions. Probably 

because of meandering the course of the river branch shifted between the sedimentation 

of units I and II. These sediments were epigenetically frozen after their accumulation. The 

fluvial sedimentation conditions were unfavourable for the deposition and preservation of 

pollen, plant macrofossils, insect remains, and ostracod shells in units I and II. The 

concentration of these fossils is therefore too low for detailed environmental 

interpretations. The bioindicators merely reflect the existence of a tundra–steppe 

environment during the time of deposition, which correspond to previous regional 

multiproxy records (Schirrmeister et al. 2002a, b, c,  2003; Sher et al. 2005). 

Great change in all environmental conditions is evident with the beginning of the Middle 

Weichselian (Kargin) Interstadial in connection with the formation of the Ice Complex unit 

III. Large syngenetic ice wedges, ice-supersaturated deposits, segregated ice veins, and 

thick cryoturbated peaty palaeosol horizons, which are characteristic for the late 

Pleistocene Yedoma Suite reflect the different landscape that existed between 50 and 

32 kyr BP. Subaerial accumulation within a polygonal ice wedge net, which formed on a 

badly-drained plain in front of the Chekanovsky Ridge, is assumed for this period, with an 

estimated mean accumulation rate of about 12.5 cm per 100 years. In addition, 

decreasing values of magnetic susceptibility reveal a change of the sediment source. 

According to heavy mineral analysis the sediments source was the neighbouring 

Chekanovsky Ridge (Schwamborn et al. 2002; Schirrmeister et al. 2003). The formation of 

large syngenetic ice wedges clearly indicates long-term stable landscape conditions 

during this interval. We doubt interpretations of the Yedoma Suite as pure Arctic loess and 

the primarily aeolian origin (Tomirdiaro 1982) because of poorly sorting, multimodal grain-

size distribution, ice-supersaturated cryolithology, and local sediment sources 

(Schirrmeister et al. 2008b). 

Palynological spectra from unit III reflect relatively warm summer conditions for the earlier 

part of the Kargin Interstadial about 42 kyr BP (PZ 1) and climate amelioration during the 

Kargin climate optimum between 40 and 32 kyr BP (PZ 2). Abundant Pediastrum and 

Botryococcus colonies indicate the presence of small ponds in the surrounding area and 

wet places may have existed in the floodplain itself during that time as is indicated by the 

presence of Carex sect. Phacocystis macrofossils during most of the period. The variation 
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of dominating insect groups is probably indicative of short-term environmental fluctuations 

during the entire interstadial period. 

An age gap of 15 kyr between 32 kyr (units III) and 17 kyr BP (unit IVa) spans long 

periods of the Sartan glacial. This gap could be explained by local erosion most of the 

Sartan deposits. A rather similar gap between 28.5 and 12 kyr BP was recorded from 

Bol'shoy Lyakhovsky Island (73°N, 141°E), eastern Laptev Sea (Andreev et al. 2008). 

Nevertheless, in other Ice Complex sequences e.g. from Bykovsky Peninsula southeast of 

the Lena Delta (Andreev et al. 2002; Schirrmeister et al. 2002a, b) and at Cape Mamontov 

Klyk (73°N, 117°E), western Laptev Sea (Schirrmeister et al. 2008b) complete Sartan 

sequences were proven. Unit IV, which is sedimentologically and cryolithologically 

uniform, consists of the late Sartan part (unit IVa) and the Holocene part (unit IVb). This 

subdivision in a scarce tundra environment (PZ 3) and more moderate shrubby tundra (PZ 

4) is also clearly evident according to pollen and insect data. Therefore, unit IV probably 

could be considered as deposits that buried an erosional surface of the Ice Complex 

sequence, where late Sartan deposits were preserved between small Holocene 

thermokarst depressions. Layers of poorly sorted sand with low organic content indicate 

occasionally stronger transport energy due to sporadic surface runoff events during the 

late Sartan and the partial reworking of unit IVa deposits during the early Holocene. The 

age hiatus of almost 10 kyr between units IVa and IVb was probably caused by Holocene 

thermokarst processes. Nevertheless, a polygonal ice wedge system persisted for the 

entire time as is indicated by the continuous growth of large syngenetic ice wedges. 

Pollen and plant macro-remains indicate that a tundra–steppe, typical for extremely 

continental arctic climate, persisted during the late Sartan (unit IVa) period even though 

this ecosystem was probably much scarcer than before due to a temperature drop. The 

fossil insect records also point to very cold conditions before termination of the last glacial 

period. 

Large changes in nearly all sedimentological parameters and palaeoecological records 

are evident for the uppermost middle to late Holocene part (unit V) of the sequence, which 

discordantly covers the frozen deposits below. This part of the sequence was 

accumulated from the middle Holocene on. Modern environmental conditions appeared 

after 5 kyr BP. Warmer winter temperatures during the late Holocene in comparison to the 

Kargin Interstadial are deduced from the stable isotope signature of the ice wedges. The 

size of the polygonal ice wedge systems decreased because of warmer winter conditions 

as well as the newly formed small-scale thermokarst relief. All bioindicators reflect a sharp 

shift of environmental conditions in the Holocene. Paludification and a complete 

disappearance of dry habitats are the most sustained effects, indicated by plant and insect 
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remains. The pollen record indicates a rapid warming during the early Holocene and 

successive cooling towards modern climate conditions in the course of the Holocene. 

 

II.6.2 Beringian palaeoenvironmental context 

The local records that are presented from Kurungnakh Island in the southern Lena Delta 

are additional pieces required to reconstruct the puzzle that is the late Pleistocene 

environment and the climate dynamics of Western Beringia. 

The lower sand horizon was part of a meandering fluvial system that ran parallel to the 

Chekanovsky Ridge. Early Weichselian fluvial deposits are widely distributed in the Laptev 

Sea region. Similar horizons of fluvial sands below Ice Complex deposits were also 

observed on Cape Mamontov Klyk in front of the Pronchishchev Ridge at the western 

Laptev Sea coast (Schirrmeister 2004; Schirrmeister et al. 2008b) and on the Bykovsky 

Peninsula in front of the Kharaulakh Ridge southeast of the study site (). The formation of 

such deposits was explained by Galabala (1987) as accumulation of a huge alluvial fan of 

the Lena River within a closed non-marine basin. This interpretation is similar to our 

opinion. According to Schwamborn et al. (2002) and Schirrmeister et al. (2003) the sandy 

units were formed on a flood plain of the Early Weichselian Lena River and intensified 

fluvial activities are assumed for the Early Weichselian (Zyryan) period. The landscape-

forming processes in the study region probably pertained to a more comprehensive 

reorganisation of the hydrological systems in northern Eurasia. For example, Mangerud et 

al. (2004) have reported on the rerouting of the drainage in northern Eurasia during this 

period connected with changing orientation of glacial meltwater runoff. 

The Ice Complex horizon on Kurungnakh Island belongs to the Yedoma Suite of the 

Northeast Siberian Quaternary stratigraphy (Sher et al. 1987). The studied horizon 

contains primarily middle Weichselian (Kargin) interstadial records and a part of Late 

Weichselian (Sartan) Stadial. Sedimentological, cryolithological, pollen, plant macrofossil, 

and insect data sets are similar to those of the Kargin sequence on Bykovsky Peninsula 

(Andreev et al. 2002; Kienast et al. 2005; Sher et al. 2005). For most of the sedimentation 

time (>50 to about 32 kyr BP), the palaeoecological records from Kurungnakh Island 

indicate the existence of tundra–steppe vegetation under a cold continental climate. In 

contrast to the Ice Complex sequence on the Bykovsky Peninsula (Andreev et al. 2002; 

Kienast et al. 2005; Sher et al. 2005), the Kargin interstadial climate was possibly 

somewhat cooler during the summer periods. The Bykovsky Peninsula was most likely 

climatically favoured by the proximity of the Kharaulakh Mountain range, which hampered 

cloud formation, trapped rainfall coming from the west, and caused warm southerly winds 

(foehn). According to Arkhipov et al. (2005) the Kargin Interstadial in West Siberia lasted 

from 55–50 to 23 kyr BP and consisted of three warming periods separated by two cooling 
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periods (44–42 and 35–30 kyr BP). In Central Yakutia the duration of the Kargin period is 

given between 42–43 and 25–26 kyr BP (Fradkina et al. 2005a). In the Yana-Indigirka 

lowland the Kargin Interstadial between 50 and 26 kyr BP was also characterised by three 

warming and two cooling phases (Fradkina et al. 2005b). The younger Kargin sediments 

were not preserved in the studied sequence. Therefore, our palaeoecological records 

reflect at least some weak environmental fluctuations during approximately 42–32 kyr BP, 

which probably correspond to the end of the first cooling and the next warming period. 

Interstadial records were evident also in the eastern region of the Beringian landmass 

during the Kargin period. In Alaska the Middle Wisconsin was also characterised by 

stronger soil formation and accumulation of detritic organic beds (Hopkins 1982) as well 

as downward thawing of permafrost and ice wedges in the Fairbanks area about 

>38 kyr BP, which was connected with a warmer period during the Middle Wisconsin time 

(Péwé 1975). In addition, Berger (2003) refers several papers about a MIS warming 

between 40 and 30 kyr BP in northwest and Central Alaska as well as in the Canadian 

Yukon Territory. Finally, Anderson and Lozhkin (2001) summarise most of the Beringian 

MIS 3 records available ten years before. Between 30–26 and 39–33 kyr BP the climate 

was as warm or nearly as warm as present whereas cool and dry intervals occurred 

between 33–30 and 45–39 kyr BP. That also corresponds with our local interpretation 

from Kurungnakh Island of climate variations during the studied MIS3 time frame. 

The sharp cut of the sequence at about 32 kyr BP and the absence of about 15 kyr of 

sedimentation are probably connected with strong erosional processes due to neotectonic 

seismic events on the seismically highly active rift region at the northeastern border of the 

Eurasian continental plate (Drachev et al. 1998; Franke et al. 2000). Similar explanations 

are given for the lack of the Sartan stage in Ice Complex deposits on Bol'shoy Lyakhovsky 

Island (Andreev et al. 2008). 

The degradation of permafrost by thermokarst processes and the transgression of the 

arctic shelf seas due to global warming were the most radical environmental impacts on 

the entire arctic and subarctic Siberian lowlands during the late Pleistocene–Holocene 

transition period. Ice-rich permafrost sequences in Siberia are therefore often not 

complete on the top because of thermokarst processes and discontinued accumulation. A 

strong reorganisation of hydrological systems and the entire periglacial landscape is 

evident during this highly dynamic transition period (e.g. Grosse et al. 2007). 

The Holocene climate optimum in Arctic Siberia was characterised by the spreading of 

warmth-loving species associations, especially of shrubby tundra and trees. This is also 

reported by some other studies in the Siberian Arctic. 
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II.7 Conclusions 

The sedimentation regimes in the periglacial palaeo-landscapes changed repeatedly 

during the late Quaternary (meandering fluvial, proluvial or colluvial, and thermokarst-

affected). Erosional events occurred as a consequence of permafrost degradation and 

likely neotectonic seismic activity. 

The studied sequence covers a time of various glacial/interglacial and stadial/interstadial 

climate variations. The corresponding stratigraphic configuration of the late Pleistocene to 

Holocene sequence on Kurungnakh Island correlates well with the regional stratigraphy in 

northeastern Siberia and with Eurasian equivalents (Early, Middle, and Late Weichselian, 

Holocene) as well as global analogues (MIS 4–1). 

Between >50 and 32 kyr BP, the palaeoecological records indicate the existence of 

tundra–steppe vegetation under a cold continental climate. After a sedimentation gap at 

the termination of the Late Weichselian cold stage, extremely cold-arid conditions 

prevailed in the study area according to bioindicators. At the beginning of the Holocene, 

the tundra–steppe disappeared completely due to lasting paludification. A shrub tundra 

formed with boreal elements like A. fruticosa, which later retreated in response to the late 

Holocene cooling. 
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Supplementary data A, B and C 

 

Supplementary data A Selected photographs of the studied sediment units I–V of late Quaternary 

permafrost outcrops from Kurungnakh Island 
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Supplementary data B Taxonomic composition of plant macrofossils from Kurungnakh Island 
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Supplementary data C Taxonomic composition of insect associations from Kurungnakh Island. 

For ecological index (EcoCode) see Figure II-13 

 

 

 

 

 

 

 162



Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits                     Appendix II 
Quaternary Science Reviews 27: 1523-1540 
__________________________________________________________________________________________________ 

 163

Supplementary data C Continuation 
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III Data tables from Chapters 2 and 3 

 

Appendix III-1 (Chapter 2) Location, type and hydrochemical characteristics of the studied lakes 

and ponds. The sample sites are arranged by water types as in Figure 2-6. The water type 

identification follows the key: intrapolygon pond → intrapolygon; interpolygon pond → interpolygon; 

thaw lake → thaw lake; thermokarst lake shore → thermokarst and river branch of the Lena River 

→ river branch 

  

Sample Locality Date Water type Sample 
depth 

Cond* pH O2 TAir TWater 

№  yy-mm-dd  [m] [µS/cm]  [mg/l] [°C] [°C] 

SAM-13 Kurungnakh 02-08-15 intrapolygon 0.5 27.0 6.5 5.9 13.3 13.6 
SAM-21 Samoylov 02-08-21 intrapolygon 0.5 105.6 7.5 9.0 11.9 11.4 

SAM-23 Samoylov 02-08-21 interpolygon 0.5 98.8 7.5 8.3 15.8 13.9 

SAM-25 Samoylov 02-08-25 interpolygon 0.5 94.3 7.5 9.4 6.1 6.2 

SAM-30 Samoylov 02-08-27 intrapolygon 0.5 106.6 7.5 10.6 10.5 8.0 

SAM-37 Samoylov 02-08-30 interpolygon 0.5 93.3 7.2 11.3 7.9 9.3 

SAM-44 Samoylov 02-09-03 intrapolygon 0.5 70.8 7.5 9.0 7.6 7.0 

SAM-01 Samoylov 02-08-02 thaw lake 0.5 90.4 7.1 9.8 10.4 11.4 

SAM-17 Samoylov 02-08-19 thaw lake 0.5 64.9 7.5 8.4 11.1 12.0 

SAM-19 Samoylov 02-08-20 thaw lake 0.5 53.1 7.5 8.8 13.5 12.5 

SAM-24 Samoylov 02-08-21 thaw lake 0.5 254.0 7.0 5.3 16.5 15.3 

SAM-26 Samoylov 02-08-25 thaw lake 0.5 78.5 7.5 10.6 8.6 7.7 

SAM-27 Samoylov 02-08-25 thaw lake 0.5 109.4 7.5 10.0 8.5 8.3 

SAM-28 Samoylov 02-08-26 thaw lake 0.5 122.6 7.6 8.8 9.8 7.8 

SAM-29 Samoylov 02-08-26 thaw lake 0.5 110.8 7.5 11.0 17.0 10.3 

SAM-32 Samoylov 02-08-27 thaw lake 0.5 113.2 7.5 10.8 14.2 9.8 

SAM-33 Samoylov 02-08-29 thaw lake 0.5 96.9 7.5 9.7 8.0 6.7 

SAM-34 Samoylov 02-08-29 thaw lake 0.5 107.7 7.5 9.5 6.7 6.1 

SAM-40 Samoylov 02-09-01 thaw lake 0.5 77.8 7.5 11.2 8.7 5.9 

SAM-41 Samoylov 02-09-01 thaw lake 0.5 79.6 7.3 9.4 6.3 6.6 

SAM-12 Kurungnakh 02-08-15 thermokarst 0.5 28.0 7.2 7.7 11.6 13.4 

SAM-38 Kurungnakh 02-08-31 thermokarst 0.5 109.2 7.5 9.8 6.1 7.8 

SAM-14 Samoylov 02-08-18 river branch 0.5 86.6 7.5 8.8 13.0 12.6 

         *Electrical conductivity 
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Appendix III-1 (Chapter 2) Continuation 

 

 

 

 

 

Sample Locality Water type Mg Sr Ca HCO3 Na Cl K SO4 

№   ppm ppm ppm ppm ppm ppm ppm ppm 

SAM-13 Kurungnakh intrapolygon 1.39 0.03 2.68 13.4 1.04 1.90 < 0.3 < 0.1
SAM-21 Samoylov intrapolygon 4.31 0.03 5.25 67.5 0.81 2.22 0.46 < 0.1

SAM-23 Samoylov interpolygon 7.09 0.06 11.22 60.8 1.68 2.50 0.56 < 0.1

SAM-25 Samoylov interpolygon 7.01 0.06 10.86 65.5 1.79 1.86 0.32 < 0.1

SAM-30 Samoylov intrapolygon 7.23 0.06 8.87 66.4 1.37 2.21 0.76 < 0.1

SAM-37 Samoylov interpolygon 6.88 0.06 11.07 61.4 1.68 2.61 0.43 < 0.1

SAM-44 Samoylov intrapolygon 4.22 0.04 6.43 39.3 1.20 1.86 0.59 < 0.1

SAM-01 Samoylov thaw lake 4.68 0.05 7.62 50.3 2.17 3.45 0.60 0.91

SAM-17 Samoylov thaw lake 3.80 0.04 8.07 38.3 0.88 1.20 0.56 < 0.1

SAM-19 Samoylov thaw lake 2.84 0.04 6.31 31.8 1.53 2.35 0.47 0.73

SAM-24 Samoylov thaw lake 14.51 0.25 36.63 148 2.29 1.98 1.83 < 0.1

SAM-26 Samoylov thaw lake 5.48 0.05 8.19 52.1 1.57 2.16 0.99 < 0.1

SAM-27 Samoylov thaw lake 7.85 0.08 12.30 66.4 1.77 2.74 0.79 < 0.1

SAM-28 Samoylov thaw lake 8.21 0.08 14.53 77.5 1.87 2.81 1.00 < 0.1

SAM-29 Samoylov thaw lake 7.19 0.08 13.86 70.6 1.55 2.31 0.96 < 0.1

SAM-32 Samoylov thaw lake 8.29 0.08 13.74 78.6 1.55 2.20 0.91 < 0.1

SAM-33 Samoylov thaw lake 6.68 0.06 10.83 56.7 1.34 1.79 0.79 < 0.1

SAM-34 Samoylov thaw lake 8.48 0.07 11.80 71.5 1.67 2.63 0.78 < 0.1

SAM-40 Samoylov thaw lake 5.26 0.05 8.64 48.6 1.46 2.73 0.76 < 0.1

SAM-41 Samoylov thaw lake 5.34 0.05 8.83 50.4 1.45 2.09 0.48 < 0.1

SAM-12 Kurungnakh thermokarst 1.50 0.02 3.18 16.7 0.66 0.92 0.37 < 0.1

SAM-38 Kurungnakh thermokarst 2.80 0.06 8.73 66.9 0.80 2.44 0.39 0.28

SAM-14 Samoylov river branch 3.29 0.08 10.77 41.6 4.26 6.39 0.59 3.96
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Appendix III-2 (Chapter 2) Stable isotopes (δ18O, δ13C) and element ratios (Mg/Ca, Sr/Ca) of 

ostracod calcite and ambient water. The species identification follows the key: species (e.g. 

pedata → F. pedata), sex (f → female or m → male) and state (rec → recent or sub → subfossil)  

 

Sample Species Valve Water Valve Water 
№ identification δ18O δ 18O δ 13C δ 13C 

  ‰ ‰ ‰ ‰ 
  PDB SMOW PDB PDB 
SAM-01 pedata_f_rec -13.55 -16.65 -3.75 -2.11 
SAM-01 pedata_m_rec -13.83 -16.65 -3.95 -2.11 
SAM-12 pedata_f_rec -15.92 -17.64 -8.44 -8.14 
SAM-12 pedata_m_rec -16.16 -17.64 -5.89 -8.14 
SAM-12 pedata_f_sub -15.47 -17.64 -7.15 -8.14 
SAM-12 pedata_m_sub -15.72 -17.64 -6.89 -8.14 
SAM-13 pedata_f_rec -11.38 -13.34 -11.01 -14.40 
SAM-13 pedata_f_sub -11.49 -13.34 -10.81 -14.40 
SAM-13 pedata_m_sub -10.81 -13.34 -11.10 -14.40 
SAM-14 candida_f_rec -17.69 -20.38 -7.74 -6.85 
SAM-14 harmsworthi_f_rec -18.46 -20.38 -6.47 -6.85 
SAM-17 hyalina_f_rec -14.21 -15.87 -2.76 -3.89 
SAM-17 hyalina_m_rec -14.12 -15.87 -2.85 -3.89 
SAM-17 hyalina_f_sub -13.97 -15.87 -2.98 -3.89 
SAM-17 hyalina_m_sub no data -15.87 no data -3.89 
SAM-19 harmsworthi_f_rec -15.14 -16.39 -3.40 -10.01 
SAM-21 pedata_f_rec -10.93 -13.29 -3.17 -0.22 
SAM-21 pedata_m_rec -11.00 -13.29 -3.50 -0.22 
SAM-21 sanctipatricii_f_sub no data -13.29 no data -0.22 
SAM-23 pedata_f_rec -12.66 -14.57 -2.38 -5.61 
SAM-23 pedata_m_rec -12.82 -14.57 -1.94 -5.61 
SAM-23 species2_f_rec -12.71 -14.57 -3.35 -5.61 
SAM-23 species2_m_rec no data -14.57 no data -5.61 
SAM-23 harmsworthi_f_rec -13.53 -14.57 -1.58 -5.61 
SAM-23 harmsworthi_m_rec -14.07 -14.57 -1.94 -5.61 
SAM-24 pedata_f_rec -10.94 -17.59 -4.19 -4.88 
SAM-24 pedata_m_rec -11.51 -17.59 -4.16 -4.88 
SAM-24 pedata_f_sub -10.80 -17.59 -4.19 -4.88 
SAM-24 pedata_m_sub -11.65 -17.59 -4.14 -4.88 
SAM-25 pedata_f_rec -13.31 -14.41 -3.72 -2.50 
SAM-25 pedata_f_sub -13.21 -14.41 -3.79 -2.50 
SAM-25 pedata_m_sub no data -14.41 no data -2.50 
SAM-25 jakutica_f_sub no data -14.41 no data -2.50 
SAM-26 pedata_f_rec -11.37 -13.46 -2.54 -9.12 
SAM-26 pedata_m_rec -11.78 -13.46 -3.44 -9.12 
SAM-27 pedata_f_rec -12.19 -14.11 -2.42 -1.39 
SAM-27 pedata_m_rec -12.45 -14.11 -1.84 -1.39 
SAM-27 pedata_f_sub -12.51 -14.11 -2.52 -1.39 
SAM-28 pedata_f_rec -11.71 -13.35 -2.48 0.05 
SAM-28 pedata_m_rec -11.52 -13.35 -2.84 0.05 
SAM-29 pedata_f_rec -12.56 -14.17 -4.16 -3.45 
SAM-29 pedata_m_rec -12.13 -14.17 -4.41 -3.45 
SAM-30 pedata_f_rec -10.69 -13.16 -1.82 -0.19 
SAM-30 pedata_m_rec -10.94 -13.16 -2.50 -0.19 
SAM-32 pedata_f_rec -11.80 -14.26 -2.55 -3.71 
SAM-32 pedata_m_rec -12.12 -14.26 -2.45 -3.71 
SAM-32 pedata_f_sub -11.55 -14.26 -2.11 -3.71 
SAM-33 pedata_f_rec -11.83 -14.01 -4.13 -1.13 
SAM-33 pedata_m_rec -12.20 -14.01 -4.89 -1.13 
SAM-34 pedata_f_rec -10.84 -13.80 -2.18 -1.95 
SAM-34 pedata_m_rec -11.76 -13.80 -2.53 -1.95 
SAM-37 harmsworthi_f_rec -13.32 -15.41 -3.89 -4.60 
SAM-38 pedata_f_rec -15.46 -17.39 -6.99 -3.49 
SAM-38 pedata_m_rec -15.17 -17.39 -6.75 -3.49 
SAM-38 pedata_f_sub -15.36 -17.39 -7.25 -3.49 
SAM-38 pedata_m_sub -14.95 -17.39 -6.82 -3.49 
SAM-38 candida_f_rec -14.97 -17.39 -6.91 -3.49 
SAM-38 candida_f_sub -14.74 -17.39 -6.57 -3.49 
SAM-40 pedata_f_rec -12.46 -15.37 -3.59 -4.00 
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Appendix III-2 (Chapter 2) Continuation 

 

 

 

Sample Species Valve Water Valve Water 
№ identification Mg/Ca Mg/Ca Sr/Ca Sr/Ca 

  (x 10-2)  (x 10-3) (x 10-3) 
  molar molar molar molar 
SAM-01 pedata_f_rec 0.51 1.07 1.01 3.02 
SAM-01 pedata_m_rec 0.37 1.07 1.06 3.02 
SAM-12 pedata_f_rec 0.53 0.81 1.07 3.33 
SAM-12 pedata_m_rec 0.48 0.81 0.98 3.33 
SAM-12 pedata_f_sub 0.44 0.81 1.36 3.33 
SAM-12 pedata_m_sub 0.20 0.81 1.52 3.33 
SAM-13 pedata_f_rec 0.38 0.90 1.94 4.83 
SAM-13 pedata_f_sub 0.21 0.90 1.67 4.83 
SAM-13 pedata_m_sub 0.31 0.90 1.40 4.83 
SAM-14 candida_f_rec 0.13 0.53 1.43 3.37 
SAM-14 harmsworthi_f_rec 0.35 0.53 0.96 3.37 
SAM-17 hyalina_f_rec 0.37 0.81 0.95 2.65 
SAM-17 hyalina_m_rec 0.39 0.81 0.95 2.65 
SAM-17 hyalina_f_sub 0.32 0.81 0.92 2.65 
SAM-17 hyalina_m_sub 0.45 0.81 0.97 2.65 
SAM-19 harmsworthi_f_rec 0.45 0.78 0.85 2.69 
SAM-21 pedata_f_rec 0.41 1.39 0.93 3.09 
SAM-21 pedata_m_rec 0.58 1.39 0.80 3.09 
SAM-21 sanctipatricii_f_sub 1.00 1.39 1.18 3.09 
SAM-23 pedata_f_rec 0.38 1.08 0.73 2.74 
SAM-23 pedata_m_rec 0.57 1.08 0.69 2.74 
SAM-23 species2_f_rec 1.08 1.08 0.89 2.74 
SAM-23 species2_m_rec 0.62 1.08 0.85 2.74 
SAM-23 harmsworthi_f_rec 0.87 1.08 0.69 2.74 
SAM-23 harmsworthi_m_rec 0.84 1.08 0.75 2.74 
SAM-24 pedata_f_rec 0.61 0.66 0.92 3.18 
SAM-24 pedata_m_rec 0.46 0.66 0.92 3.18 
SAM-24 pedata_f_sub 0.24 0.66 0.97 3.18 
SAM-24 pedata_m_sub 0.47 0.66 0.96 3.18 
SAM-25 pedata_f_rec 0.47 1.11 1.14 2.76 
SAM-25 pedata_f_sub 0.39 1.11 0.73 2.76 
SAM-25 pedata_m_sub 0.39 1.11 0.71 2.76 
SAM-25 jakutica_f_sub 0.57 1.11 0.70 2.76 
SAM-26 pedata_f_rec 0.29 1.15 1.06 3.00 
SAM-26 pedata_m_rec 0.47 1.15 0.89 3.00 
SAM-27 pedata_f_rec 0.41 1.11 0.77 2.94 
SAM-27 pedata_m_rec 0.57 1.11 0.84 2.94 
SAM-27 pedata_f_sub 0.51 1.11 0.80 2.94 
SAM-28 pedata_f_rec 0.37 0.98 0.85 2.77 
SAM-28 pedata_m_rec 0.52 0.98 1.10 2.77 
SAM-29 pedata_f_rec 0.42 0.89 1.36 2.64 
SAM-29 pedata_m_rec 0.46 0.89 1.23 2.64 
SAM-30 pedata_f_rec 0.52 1.40 0.87 3.07 
SAM-30 pedata_m_rec 0.67 1.40 0.92 3.07 
SAM-32 pedata_f_rec 0.51 1.03 0.83 2.73 
SAM-32 pedata_m_rec 0.32 1.03 0.81 2.73 
SAM-32 pedata_f_sub 0.53 1.03 0.92 2.73 
SAM-33 pedata_f_rec 0.54 1.06 1.13 2.75 
SAM-33 pedata_m_rec 0.80 1.06 1.21 2.75 
SAM-34 pedata_f_rec 0.39 1.24 0.81 2.78 
SAM-34 pedata_m_rec 0.44 1.24 0.78 2.78 
SAM-37 harmsworthi_f_rec 0.97 1.09 0.66 2.64 
SAM-38 pedata_f_rec 0.77 0.55 0.92 3.22 
SAM-38 pedata_m_rec 0.54 0.55 0.84 3.22 
SAM-38 pedata_f_sub 0.25 0.55 0.84 3.22 
SAM-38 pedata_m_sub 0.42 0.55 0.86 3.22 
SAM-38 candida_f_rec 0.68 0.55 1.18 3.22 
SAM-38 candida_f_sub 0.26 0.55 1.18 3.22 
SAM-40 pedata_f_rec 0.59 1.07 1.04 2.96 
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Appendix III-3 (Chapter 3) Location, type, and general characteristics of the studied lakes and 

ponds 

 

Lake Date* Region** Latitude Longitude Elevation Lake Size Depth 
№   °N °E [m, a.s.l.] type*** [m x m] [m] 

Yak-01 10.07.05 Lena 61°45'39,6'' 130°28'15,6'' 213 D 20 x 30 1.8 
Yak-02 10.07.05 Lena 61°45'36,0'' 130°28'19,2'' 213 D 60 x 100 3.5 
Yak-03 10.07.05 Lena 61°45'39,6'' 130°28'26,4'' 233 D 80 x 80 4.6 
Yak-04 11.07.05 Lena 61°45'54,0'' 130°27'55,9'' 209 Alas 40 x 250 1.8 
Yak-05 11.07.05 Lena 61°46'11,1'' 130°28'07,4'' 215 T 100 x 300 4.6 
Yak-06 13.07.05 Lena 62°06'13,3'' 130°13'21,6'' 130 L-D 300 x 400 1.3 
Yak-07 13.07.05 Lena 62°01'00,1'' 130°03'57,1'' 138 L-D 400 x 700 1.0 
Yak-08 15.07.05 Yakutsk 62°03'60,5'' 129°03'23,4'' 228 Alas 400 x 800 1.5 
Yak-09 15.07.05 Yakutsk 62°03'28,9'' 129°03'13,9'' 228 Alas 200 x 300 2.2 
Yak-10 17.07.05 Lena 61°42'11,4'' 129°22'11,1'' 160 Alas 80 x 150 5.2 
Yak-11 17.07.05 Lena 61°36'50,4'' 130°42'12,6'' 182 Alas 200 x 350 5.2 
Yak-12 17.07.05 Lena 61°37'06,6'' 130°42'28,1'' 172 Alas no data 3.0 
Yak-13 18.07.05 Lena 61°33'26,0'' 130°32'48,3'' 219 Th-E 200 x 600 3.9 
Yak-14 18.07.05 Lena 61°34'06,0'' 130°33'59,2'' 203 Th-E 100 x 300 1.9 
Yak-15 18.07.05 Lena 61°34'20,7'' 130°36'42,7'' 198 Th-E 80 x 300 1.6 
Yak-16 19.07.05 Lena 61°24'13,4'' 130°33'10,8'' 224 Alas 150 x 400 1.5 
Yak-17 19.07.05 Lena 61°33'09,3'' 130°51'34,0'' 234 Alas 40 x 350 1.6 
Yak-18 20.07.05 Lena 61°33'01,5'' 130°53'11,7'' 211 Th-E no data 1.5 
Yak-19 20.07.05 Lena 61°24'26,0'' 131°07'01,7'' 250 Alas 50 x 150 1.3 
Yak-20 20.07.05 Lena 61°32'45,3'' 130°54'18,9'' 230 Th-E 400 x 800 2.0 
Yak-21 22.07.05 Lena 62°00'11,3'' 131°49'06,1'' 208 Th-E 100 x 200 1.9 
Yak-22 22.07.05 Lena 62°00'23,7'' 131°43'10,0'' 207 Th-E 100 x 200 1.7 
Yak-23 22.07.05 Lena 62°07'54,2'' 131°13'24,9'' 169 Th-E 150 x 350 2.3 
Yak-24 23.07.05 Lena 61°58'05,7'' 132°14'49,7'' 182 Alas 200 x 300 3.2 
Yak-25 23.07.05 Lena 61°48'05,9'' 132°04'58,8'' 198 Alas 300 x 500 2.0 
Yak-26 24.07.05 Lena 61°54'09,9'' 132°12'22,1'' 187 Alas 150  x 150 1.7 
Yak-27 24.07.05 Lena 61°53'24,2'' 132°09'51,3'' 200 Alas 200 x 350 2.0 
Yak-28 24.07.05 Lena 61°56'23,9'' 132°09'55,8'' 171 T 150 x 200 4.7 
Yak-29 24.07.05 Lena 61°56'46,5'' 132°08'39,2'' 207 Alas 150 x 200 1.4 
Yak-30 26.07.05 Yakutsk 61°57’60,9'' 129°24’51,2'' 200 Tukulan 300 x 500 4.0 
Yak-31 31.07.05 Yakutsk 62°00'11,7'' 129°35'57,8'' 102 R-B 20 x 30 no data 
Yak-32 31.07.05 Yakutsk 62°00'13,7'' 129°35'58,8'' 104 R-B 20 x 100 no data 
Yak-33 02.08.05 Yakutsk 61°50'57,8'' 129°34'10,2'' 111 R-B 30 x 300 no data 
Yak-34 03.08.05 Yakutsk 62°18'22,8'' 129°54'29,0'' 96 R-B 200 x 500 no data 
Yak-35 04.08.05 Yakutsk 62°19'00,7'' 129°30'20,3'' 182 Alas 40 x 50 no data 
Yak-36 05.08.05 Yakutsk 62°19'03,7'' 129°32'58,2'' 217 Alas 20 x 30 no data 
Yak-37 05.08.05 Yakutsk 62°18'35,7'' 129°31'18,9'' 218 Alas 40 x 50 no data 
Yak-38 06.08.05 Yakutsk 62°20'02,2'' 129°34'50,1'' 200 D 30 x 200 no data 
Yak-39 06.08.05 Yakutsk 62°19'39,2'' 129°33'43,2'' 210 Alas 100 x 100 no data 
Yak-40 09.08.05 Moma 66°20'57,7'' 143°23'42,9'' 220 L-D 200 x 300 no data 
Yak-41 09.08.05 Moma 66°20'57,4'' 143°23'37,1'' 223 L-D 10 x 100 no data 
Yak-42 10.08.05 Moma 66°28'33,7'' 143°15'01,9'' 210 K 20 x 30 no data 
Yak-43 13.08.05 Moma 66°31'05,2'' 143°45'26,0'' 768 L-D 300 x 500 no data 
Yak-44 15.08.05 Moma 66°27'22,6'' 143°15'27,3'' 205 A 30 x 300 no data 
Yak-45 15.08.05 Moma 66°26'57,8'' 143°16'00,0'' 203 A 10 x 30 no data 
Yak-46 16.08.05 Moma 66°16'34,2'' 143°18'49,1'' 220 R-B 20 x 1100 no data 
Yak-47 16.08.05 Moma 66°17'11,2'' 143°18'48,4'' 224 R-B 30 x 1000 no data 
Yak-48 17.08.05 Moma 66°00'54,4'' 143°12'40,4'' 270 R-B 30 x 250 no data 
Yak-49 18.08.05 Moma 66°11'44,9'' 143°20'49,5'' 240 L-D 5 x 10 no data 
Yak-50 18.08.05 Moma 66°13'18,2'' 143°23'13,5'' 235 L-D 2 x 5 1.0 
Yak-51 19.08.05 Moma 66°14'44,2'' 143°19'18,2'' 222 L-D 10 x 20 1.0 
Yak-52 20.08.05 Moma 66°26'22,2'' 143°17'20,1'' 217 L-D 5 x 5 0.5 
Yak-53 20.08.05 Moma 66°26'46,4'' 143°16'24,4'' 203 L-D 10 x 20 1.0 
Yak-54 21.08.05 Moma 66°29'14,3'' 143°13'23,8'' 203 L-D 10 x 30 1.0 
Yak-55 21.08.05 Moma 66°28'19,8'' 143°15'21,2'' 211 K 5 x 10 1.0 
Yak-56 21.08.05 Moma 66°27'23,1'' 143°14'05,4'' 199 A 10 x 200 1.0 

*day/month/year 
**Lena – Lena-Amga interfluve, Central Yakutia; Yakutsk – near Yakutsk, Central Yakutia; Moma – near Khonnu, NE 
Yakutia 
***Alas – Lake in an Alas depression; D – Dyuedya; T –  Tyympy; Th-E – Lake in a thermokarst valley; R-B – River 
branch on the floodplain; Tukulan – Dune lake; L-D – Lake in a lowland depression; A – Anthropogenic (man-made 
reservoir); K – Kerdyugen 
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Appendix III-4 (Chapter 3) Hydrochemical and stable isotope characteristics of the studied lakes 

and ponds 

 

Lake EC* pH O2 Twater δ18O δD δ13C 
№ [mS/cm]  [mg/l] [°C] [‰] [‰] [‰] 

    VSMOW VSMOW VPDP 
Yak-01 1.63 8.54 3.88 24.3 -13.02 -131.7 -7.45 
Yak-02 2.38 9.11 9.50 26.3 -9.97 -116.5 -5.43 
Yak-03 0.82 8.71 6.50 26.1 -10.14 -116.9 -1.17 
Yak-04 0.91 8.08 7.63 24.2 -13.76 -133.8 -2.98 
Yak-05 1.99 9.05 9.13 24.4 -8.79 -110.9 6.19 
Yak-06 5.71 9.96 5.70 18.7 -5.48 -88.7 7.98 
Yak-07 4.14 9.91 14.50 21.0 -5.89 -90.7 11.00 
Yak-08 0.10 7.54 7.50 20.5 -13.91 -130.0 4.68 
Yak-09 0.12 7.31 6.14 19.5 -13.12 -124.4 -0.31 
Yak-10 0.42 8.78 9.76 21.8 -14.36 -137.1 1.73 
Yak-11 0.50 8.64 7.60 21.9 -10.12 -114.0 5.65 
Yak-12 0.92 8.42 8.46 21.4 -10.20 -113.7 1.80 
Yak-13 0.14 8.46 12.00 21.7 -14.48 -133.2 4.74 
Yak-14 0.21 6.86 9.18 24.6 -14.12 -131.5 -1.87 
Yak-15 0.16 7.55 5.75 22.9 -16.02 -141.3 -3.47 
Yak-16 0.29 10.24 19.90 21.3 -11.44 -117.0 -3.90 
Yak-17 0.10 6.60 2.40 20.2 -15.71 -140.8 -3.09 
Yak-18 0.39 8.57 13.70 21.5 -12.90 -125.9 4.87 
Yak-19 0.71 8.02 1.00 22.9 -12.36 -122.6 -1.66 
Yak-20 0.81 9.00 13.30 22.6 -11.05 -117.9 2.29 
Yak-21 0.33 8.19 7.40 20.0 -13.66 -128.4 -0.15 
Yak-22 0.36 8.69 22.20 20.8 -15.03 -134.5 1.27 
Yak-23 0.26 9.20 15.70 22.8 -14.84 -134.3 -4.73 
Yak-24 0.79 8.58 38.00 21.7 -7.72 -98.7 4.89 
Yak-25 0.82 8.75 n.a. 22.0 -7.86 -95.9 0.77 
Yak-26 0.48 8.16 13.50 21.5 -10.56 -113.5 1.85 
Yak-27 0.65 8.20 14.30 22.0 -10.46 -112.6 0.87 
Yak-28 1.95 8.60 17.30 23.8 -8.18 -105.9 6.46 
Yak-29 1.04 8.93 14.20 22.0 -10.37 -113.3 -1.58 
Yak-30 n.a n.a n.a n.a. -12.33 -122.1 5.24 
Yak-31 1.43 8.38 5.90 20.5 -11.61 -119.0 -7.55 
Yak-32 1.39 8.09 6.80 20.2 -12.02 -126.7 -7.51 
Yak-33 0.85 8.09 5.50 20.5 -9.76 -108.4 -2.84 
Yak-34 0.49 9.05 6.80 18.5 -14.98 -133.3 -5.23 
Yak-35 0.36 9.19 4.50 18.7 -10.26 -109.8 -10.62 
Yak-36 0.39 7.78 2.40 16.4 -12.13 -121.9 -5.51 
Yak-37 1.52 9.12 2.40 22.7 -8.75 -103.5 -4.65 
Yak-38 0.59 7.58 1.50 15.0 -9.74 -105.8 -4.48 
Yak-39 0.18 7.04 5.00 16.1 -11.14 -107.4 -3.82 
Yak-40 0.11 7.64 4.70 17.2 -17.20 -151.4 1.04 
Yak-41 0.11 6.85 5.80 17.1 -17.69 -153.3 -8.08 
Yak-42 0.12 7.21 5.40 13.7 -21.66 -167.8 -9.30 
Yak-43 0.12 6.00 5.80 11.4 -21.84 -169.4 n.a. 
Yak-44 0.08 7.27 4.90 14.6 -20.53 -163.2 -4.22 
Yak-45 0.24 6.99 1.90 12.6 -15.11 -142.4 -2.82 
Yak-46 0.10 6.81 7.50 14.8 -20.64 -164.3 -5.67 
Yak-47 0.09 6.89 7.40 14.4 -20.89 -165.0 -6.29 
Yak-48 0.03 6.48 5.70 14.2 -21.33 -166.1 n.a. 
Yak-49 0.42 7.45 4.00 13.2 -12.24 -129.7 0.00 
Yak-50 0.10 7.03 5.70 11.7 -18.81 -155.0 -2.52 
Yak-51 0.13 6.83 4.70 10.4 -14.98 -140.8 -7.44 
Yak-52 0.13 7.09 5.30 14.2 -18.34 -148.8 -4.54 
Yak-53 0.32 7.37 6.90 14.3 -16.64 -143.3 -3.38 
Yak-54 0.06 6.08 5.50 8.0 -15.46 -140.8 -11.23 
Yak-55 0.40 7.30 4.70 16.4 -13.62 -135.6 -7.29 
Yak-56 0.93 9.08 6.20 18.9 -12.42 -129.5 -5.38 
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Appendix III-4 (Chapter 3) Continuation 

 

 

Lake HCO3 Ca Na Cl Mg Sr K SO4 
№ [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] [mg/l] 

Detection limit 0.10 0.20 0.10 0.10 0.02 0.20 0.10 
Yak-01 561.36 33.56 147.09 109.60 178.72 0.29 3.88 436.80 
Yak-02 1269.15 24.11 267.42 199.00 305.26 0.29 4.03 424.20 
Yak-03 561.36 18.64 81.08 33.82 86.23 0.18 1.26 23.98 
Yak-04 475.93 17.67 100.28 83.13 65.47 0.12 7.45 35.39 
Yak-05 1598.65 26.5 227.81 147.55 285.44 0.35 4.47 43.53 
Yak-06 3794.51 2.17 1481.44 408.50 96.71 < 0.02 158.27 0.52 
Yak-07 2581.52 1.58 1040.92 350.80 91.64 0.03 68.25 < 0.10 
Yak-08 48.81 11.61 11.37 1.32 3.75 0.13 2.74 < 0.10 
Yak-09 73.22 10.0 18.62 2.59 4.54 0.11 3.03 0.94 
Yak-10 347.80 20.8 24.1 8.56 41.10 0.15 12.49 0.19 
Yak-11 439.32 32.51 41.12 5.75 54.85 0.26 3.87 0.33 
Yak-12 738.31 20.35 124.85 33.77 86.63 0.20 11.13 10.34 
Yak-13 122.03 14.33 3.46 0.37 11.90 0.09 2.32 2.48 
Yak-14 170.85 22.17 5.46 < 0.10 18.02 0.11 1.30 2.87 
Yak-15 140.34 16.74 3.95 < 0.10 14.12 0.08 1.53 2.25 
Yak-16 256.27 25.39 12.37 4.24 22.63 0.11 3.93 < 0.10 
Yak-17 73.22 10.83 1.80 0.11 7.32 0.05 2.94 0.13 
Yak-18 335.59 36.25 20.26 1.46 34.62 0.24 3.63 0.30 
Yak-19 573.56 21.39 83.24 19.83 60.50 0.19 4.53 5.18 
Yak-20 634.58 37.16 175.36 33.80 38.23 0.20 5.35 1.49 
Yak-21 274.58 37.71 8.79 0.96 25.82 0.15 3.81 0.54 
Yak-22 298.98 40.31 11.09 2.98 28.99 0.19 4.73 2.78 
Yak-23 262.37 34.50 8.20 0.58 22.88 0.14 3.01 1.10 
Yak-24 842.03 17.18 129.12 38.37 96.13 0.19 13.05 5.04 
Yak-25 683.39 23.50 107.94 28.36 80.93 0.26 9.22 2.44 
Yak-26 390.51 35.89 50.21 5.95 34.84 0.21 6.61 0.60 
Yak-27 536.95 21.66 65.92 19.19 62.91 0.21 11.81 0.24 
Yak-28 1659.66 18.10 288.97 151.35 226.77 0.27 4.09 11.20 
Yak-29 683.39 4.91 180.11 110.36 64.36 0.07 17.95 6.01 
Yak-30 61.02 8.29 8.11 1.18 3.67 0.13 2.13 2.70 
Yak-31 524.75 56.63 189.96 187.90 74.99 0.66 18.18 168.30 
Yak-32 561.36 39.02 197.36 196.90 73.59 0.53 15.08 93.19 
Yak-33 305.09 40.19 103.22 143.70 43.93 0.50 7.66 33.12 
Yak-34 183.05 39.23 52.75 72.29 18.80 0.39 3.81 26.41 
Yak-35 274.58 16.84 28.37 7.96 27.49 0.15 16.30 2.77 
Yak-36 292.88 24.37 22.94 5.65 30.93 0.17 12.20 1.03 
Yak-37 976.27 15.22 202.39 87.84 155.88 0.30 7.01 203.40 
Yak-38 414.92 26.17 56.77 9.88 50.61 0.27 9.35 1.95 
Yak-39 122.03 3.39 24.11 4.92 11.45 0.06 14.20 < 0.10 
Yak-40 73.22 14.86 4.04 0.51 4.87 0.17 2.24 5.83 
Yak-41 85.42 15.08 3.83 < 0.10 5.13 0.14 0.71 0.54 
Yak-42 97.63 18.14 4.45 < 0.10 5.02 0.14 0.67 0.11 
Yak-43 2.44 1.17 0.64 0.12 0.37 < 0.02 < 0.20 0.68 
Yak-44 61.02 11.25 2.48 0.18 4.10 0.14 0.75 < 0.10 
Yak-45 183.05 26.76 12.34 1.15 12.76 0.24 5.19 1.44 
Yak-46 73.22 15.41 3.07 0.16 3.80 0.09 0.27 0.46 
Yak-47 85.42 14.86 2.98 0.12 3.73 0.08 0.26 0.53 
Yak-48 14.79 3.62 1.32 < 0.10 1.04 < 0.02 < 0.20 < 0.10 
Yak-49 341.70 40.16 27.21 1.08 30.15 0.29 5.93 10.51 
Yak-50 61.02 16.65 3.24 < 0.10 3.05 0.09 < 0.20 2.53 
Yak-51 109.83 16.03 5.91 0.16 7.83 0.09 1.30 < 0.10 
Yak-52 85.42 16.11 5.80 0.12 8.79 0.22 2.28 0.10 
Yak-53 256.27 46.71 16.00 0.30 18.11 0.39 2.61 0.12 
Yak-54 35.23 12.03 0.43 < 0.10 2.71 0.09 < 0.20 < 0.10 
Yak-55 335.59 55.91 17.69 2.10 21.02 0.51 6.89 < 0.10 
Yak-56 329.49 26.96 119.49 171.30 42.71 0.31 44.97 16.46 
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Appendix III-5 (Chapter 3) Stable isotopes (δ18O, δ13C) and element ratios (Mg/Ca, Sr/Ca) of host 

waters and ostracod calcite. The species identification follows the key: species (candida → 

C. candida, inaequi → F. inaequivalvis, jakutica → C. muelleri jakutica, weltneri → C. weltneri) and 

sex (f → female or m → male)  

 

Lake Species δ18O δ18O δ13C δ13C Mg/Ca Mg/Ca Sr/Ca Sr/Ca 

№  [‰] [‰] [‰] [‰]  (* 10-2) (* 10-3) (* 10-3) 

  VSMOW VPDP VPDP VPDP molar molar molar molar 

  water valve water valve water valve water valve 

Yak-12 welterni_f -10.20 -10.47 1.80 2.73 7.02 1.52 4.39 1.77 
Yak-12 welterni_m -10.20 -6.45 1.80 1.37 7.02 2.03 4.39 1.24 
Yak-20 welterni_f -11.05 -5.88 2.29 0.01 1.70 0.60 2.51 1.05 
Yak-20 welterni_m -11.05 -5.07 2.29 4.85 1.70 1.18 2.51 1.28 
Yak-22 jakutica_f -15.03 -11.27 1.27 -1.95 1.19 0.45 2.12 0.76 
Yak-22 jakutica_m -15.03 -11.64 1.27 -1.39 1.19 0.55 2.12 0.71 
Yak-26 jakutica_f -10.56 -9.52 1.85 -0.15 1.60 0.46 2.71 0.82 
Yak-26 jakutica_m -10.56 -9.72 1.85 0.24 1.60 0.53 2.71 0.90 
Yak-26 welterni_f -10.56 -8.72 1.85 -0.97 1.60 0.34 2.71 1.04 
Yak-26 welterni_m -10.56 -9.00 1.85 -0.56 1.60 0.36 2.71 1.05 
Yak-27 welterni_f -10.46 -9.79 0.87 4.15 4.79 0.89 4.35 1.71 
Yak-27 welterni_m -10.46 -9.86 0.87 3.91 4.79 0.64 4.35 1.65 
Yak-31 welterni_m -11.61 -9.09 -7.55 -5.28 2.18 0.67 5.35 1.90 
Yak-33 candida_f -9.76 -8.88 -2.84 -2.75 1.80 0.56 5.64 1.88 
Yak-36 candida_f -12.13 -10.99 -5.51 -5.75 2.09 0.57 3.24 1.23 
Yak-36 welterni_f -12.13 -7.32 -5.51 -7.77 2.09 0.58 3.24 1.20 
Yak-36 welterni_m -12.13 -9.86 -5.51 -4.49 2.09 0.55 3.24 1.14 
Yak-40 candida_f -17.20 -15.19 1.04 -3.90 0.54 0.24 5.22 2.29 
Yak-45 candida_f -15.11 -11.91 -2.82 -1.33 0.79 0.32 4.14 1.53 
Yak-45 inaequi_f -15.11 -13.18 -2.82 -2.45 0.79 0.47 4.14 1.29 
Yak-45 inaequi_m -15.11 -12.51 -2.82 -1.56 0.79 0.55 4.14 1.50 
Yak-45 jakutica_f -15.11 -15.30 -2.82 -4.87 0.79 0.52 4.14 1.27 
Yak-45 jakutica_m -15.11 -12.27 -2.82 -2.05 0.79 0.35 4.14 1.31 
Yak-49 jakutica_f -12.24 -9.51 0.00 -0.81 1.24 0.51 3.27 1.04 
Yak-49 jakutica_m -12.24 -10.08 0.00 -1.92 1.24 0.53 3.27 0.95 
Yak-49 welterni_f -12.24 -9.80 0.00 -1.06 1.24 0.33 3.27 1.07 
Yak-51 inaequi_f -14.98 -11.81 -7.44 -4.51 0.81 0.57 2.56 0.94 
Yak-51 inaequi_m -14.98 -13.11 -7.44 -5.47 0.81 0.48 2.56 0.90 
Yak-52 jakutica_f -18.34 -15.03 -4.54 -6.47 0.90 0.51 6.32 1.69 
Yak-52 jakutica_m -18.34 -15.61 -4.54 -5.38 0.90 0.59 6.32 1.86 
Yak-53 inaequi_f -16.64 -13.68 -3.38 -2.69 0.64 0.41 3.83 1.33 
Yak-53 inaequi_m -16.64 -14.05 -3.38 -2.91 0.64 0.55 3.83 1.42 
Yak-55 jakutica_f -13.62 -10.48 -7.29 -5.94 0.37 0.41 3.43 1.34 
Yak-55 jakutica_m -13.62 -9.83 -7.29 -5.49 0.37 0.47 3.43 1.22 
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