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Anthropogenic climate change is altering global biogeographical patterns. However, 
it remains difficult to quantify how bioregions are changing because pre-industrial 
records of species distributions are rare. Marine microfossils, such as planktonic fora-
minifera, are preserved in seafloor sediments and allow the quantification of bioregions 
in the past. Using a recently compiled data set of pre-industrial species composition 
of planktonic foraminifera in 3802 worldwide seafloor sediments, we employed mul-
tivariate and statistical model-based approaches to study spatial turnover in order to 
1) quantify planktonic foraminifera bioregions and 2) understand the environmen-
tal drivers of species turnover. Four latitudinally banded bioregions emerge from the 
global assemblage data. The polar and temperate bioregions are bi-hemispheric, sup-
porting the idea that planktonic foraminifera species are not limited by dispersal. The 
equatorial bioregion shows complex longitudinal patterns and overlaps in sea surface 
temperature (SST) range with the tropical bioregion. Compositional-turnover mod-
els (Bayesian bootstrap generalised dissimilarity models) identify SST as the strongest 
driver of species turnover. The turnover rate is constant across most of the SST gradi-
ent, showing no SST threshold values with rapid shifts in species composition, but 
decelerates above 25°C, suggesting SST is less predictive of species composition in 
warmer waters. Other environmental predictors affect species turnover non-linearly, 
and their importance differs across regions. In the Pacific ocean, net primary produc-
tivity below 500 mgC m−2 day−1 drives fast compositional change. Water depth values 
below 3000 m (which affect calcareous microfossil preservation) increasingly drive 
changes in species composition among death assemblages in the Pacific and Indian 
oceans. Together, our results suggest that the dynamics of planktonic foraminifera bio-
regions are expected to be highly responsive to climate change; however, at lower lati-
tudes, environmental drivers other than SST may affect these dynamics.
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Introduction

Species are responding to anthropogenic climate change in 
different ways, by expanding or contracting their distribu-
tions or by locally adapting to the new conditions. Thus, 
the species composition of local communities is changing 
through time (Burrows et al. 2019) and, as a consequence, 
global biogeographical patterns are being reshaped. Global 
trends in biodiversity change have been increasingly stud-
ied, for example, by analysing how local assemblages change 
through time (Antão et al. 2020) or by comparing locations 
facing different pressures (Purvis et al. 2018). However, the 
dynamics of biogeographical regions (bioregions) are seldom 
studied because they rely on the observation of species’ geo-
graphical ranges in the past.

Microfossils, such as the calcareous planktonic foramin-
ifera, allow for the study of global biogeographical patterns 
through time (Lazarus 2011, Yasuhara et al. 2020a). Such 
fossils occur in the oceans worldwide, and accumulate on 
the seafloor over time, creating layers of preserved biominer-
alised structures (e.g. microscopic shells or tests). These layers 
are sampled using sediment cores: the top layers of the core 
(coretops) recover younger assemblages, while deeper layers 
recover older, fossil assemblages. Because of slow sedimen-
tation rates in the open ocean, the coretop assemblages of 
planktonic foraminifera represent pre-industrial assemblage 
composition (Jonkers et al. 2019). These pre-industrial, 
death assemblages (sampled in seafloor sediments) have been 
shown to differ in species composition from their living 
counterparts (sampled in the water column) (Jonkers et al. 
2019). Although this observed change in species composi-
tion could be a result of temporal scaling effects (Kidwell and 
Tomasovych 2013), it is consistent with historical changes in 
temperature (Jonkers et al. 2019), suggesting that planktonic 
foraminifera species are shifting their geographical ranges 
as a response to anthropogenic climate change. However, 
although global bioregions of planktonic foraminifera are 
likely being re-shaped, we still lack an understanding of the 
patterns and drivers of their pre-industrial biogeography.

Assemblages of planktonic foraminifera deposited on the 
ocean floor have been widely sampled around the world due to 
their importance for palaeoceanography and palaeoclimatol-
ogy (Kucera 2007). These assemblage data have been recently 
compiled into an exceptional standardised database (Siccha 
and Kucera 2017), ideal for the study of global, pre-indus-
trial biogeographical patterns in planktonic foraminifera. 
Such data allow for statistical biogeographic characterisa-
tions, which are valuable tools for understanding species dis-
tributions and managing marine biodiversity (Woolley et al. 
2020). Biogeographic studies of microfossils are particularly 
important for the study of the long-term temporal dynam-
ics of bioregions. Global bioregions (i.e. faunal provinces) of 
planktonic foraminifera have been described in pre-industrial 
and ice-age times (Bé and Tolderlund 1971, Moore Jr. et al. 
1981). However, these studies used less comprehensive 
assemblage data and non-reproducible methods to define the 
bioregions. Moreover, their bioregions were either based on 

hydrographical conditions instead of assemblage data (Bé and 
Tolderlund 1971), or included other groups (e.g. radiolaria) 
decreasing the taxonomic consistency of the study (Moore 
Jr et al. 1981). Thus, a statistical quantification of planktonic 
foraminifera bioregions based on global assemblage data is 
yet to be undertaken.

Bioregions can be quantified based on how species compo-
sition changes through space (Hill et al. 2020). Understanding 
how this spatial turnover (i.e. beta diversity) relates to envi-
ronmental gradients informs us about the drivers of global 
biogeographical patterns. Despite the importance of plank-
tonic foraminifera to palaeoclimate reconstructions, only one 
study, Morey et al. (2005), has explored the relationships 
between global assemblage composition and multiple envi-
ronmental variables. Using canonical correspondence anal-
ysis (CCA) and data from the Atlantic and Pacific oceans, 
Morey et al. (2005) found that sea surface temperature was 
the main predictor of planktonic foraminifera assemblage 
composition, but other variables such as salinity and ocean 
productivity were also important. Ordination-based meth-
ods such as the CCA assume a constant rate of species turn-
over across environmental gradients, which is often not the 
case (Ferrier et al. 2007). Generalised dissimilarity models 
(GDMs) account for variation in the rate of turnover along 
environmental variables (Ferrier et al. 2007) and can further 
inform us about the uncertainty related to the estimated rela-
tionships between species turnover and environmental vari-
ables (Woolley et al. 2017). Thus, compositional-turnover 
models such as GDMs provide a robust way to analyse large-
scale drivers of global biogeographical patterns.

Here, we quantify the pre-industrial biogeographical 
patterns of planktonic foraminifera and model the envi-
ronmental drivers of their spatial variation in assemblage 
composition. We applied compositional-turnover models 
globally and within the Atlantic, Pacific and Indian oceans 
separately, because ocean basins differ in their geological his-
tory and environmental gradients. We tested the following 
hypotheses: 1) community composition changes discontinu-
ously in space, allowing the quantification of bioregions of 
planktonic foraminifera; 2) the spatial variation in species 
composition is explained by multiple environmental variables 
(e.g. temperature, nutrients, salinity) and 3) the rate of spe-
cies turnover changes across these environmental gradients.

Methods

Species’ relative abundance data

To calculate compositional turnover globally, we used data 
on the relative abundance of planktonic foraminifera spe-
cies from the ForCenS database, which is a curated database 
of 4205 marine samples from the surface of sediment cores 
(coretops) (Siccha and Kucera 2017). The age of these core-
top assemblages was estimated based on sedimentation rate 
and bioturbation depth, yielding mean ages of centuries to 
millennia, which warrant the use of these coretop samples as 
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a pre-industrial baseline (Jonkers et al. 2019). The sampling 
methodology in the ForCenS database is standardised and 
consists of counting around 300 specimens larger than 150 
µm in each sample. All individuals are identified to species 
level based on the morphology of their shells/tests (i.e. mor-
phospecies), and species’ relative abundances are recorded as 
a percentage. The samples are geo-referenced; when samples 
had identical coordinates (303 samples out of 4205), we 
randomly selected one of them and removed the others. 
Additionally, we removed samples that did not differentiate 
between pair of species, namely Globorotalia menardii and 
Globorotalia tumida, Globigerinoides ruber pink and white, 
and Turborotalita humilis and Berggrenia pumilio. With these 
restrictions, the data set we used consists of 3802 unique sites 
of relative abundances of 41 planktonic foraminifera species 
distributed across the globe.

Compositional turnover

We quantified species turnover based on pairwise composi-
tional dissimilarity between all 3802 sites, using the R package 
vegan (Oksanen et al. 2019). We selected dissimilarity met-
rics that capture two different aspects of turnover (Jost et al. 
2011): 1) the Sorensen dissimilarity (Sorensen 1948), based 
on presence–absence data, is the probability that two ran-
domly sampled species from two assemblages do not belong 
to any of the shared species between the assemblages; 2) the 
Morisita–Horn dissimilarity (Morisita 1959), based on abun-
dance data, is the probability that two randomly sampled 
individuals from two assemblages do not belong to the same 
species. The values of both metrics vary between 0 (identi-
cal communities) and 1 (completely distinct communities). 
We compared these two metrics to assess the effect of taking 
species abundances into account when analysing global turn-
over patterns. Additionally, we compared the Morisita–Horn 
metric to the commonly used Bray–Curtis metric (Bray and 
Curtis 1957). Both show similar results (Supporting infor-
mation), thus we discuss the Morisita–Horn metric only.

Environmental variables

To model compositional turnover as a function of environ-
ment, we compiled data on sea surface temperature (SST) 
mean and standard deviation, net primary production, 
concentrations of phosphate, nitrate and dissolved oxygen, 
salinity and water depth. To assess the influence of species 
dispersal in assemblage composition, we used the geographi-
cal distance between sites as a predictor in the compositional-
turnover models. The shortest distance between sites was 
calculated considering only seaways (excluding land).

SST is known to be a major correlate of planktonic fora-
minifera assemblage composition (Morey et al. 2005) and 
richness patterns (Rutherford et al. 1999, Fenton et al. 2016). 
We retrieved sea surface temperature (SST) data from the 
Extended Reconstructed Sea Surface Temperature (ERSST 
ver. 5; Huang et al. 2017) from 1854 to 1899, to get estimates 
of the annual mean and the standard deviation of historical 

SST. We also ran the compositional-turnover models using 
modern SST data (1985–2017) from the World Ocean Atlas 
2018 (WOA18; Locarnini et al. 2018), and the results were 
almost identical (Supporting information).

Net primary production (NPP), used here as a proxy for 
nutrient availability, is also likely to affect the assemblage com-
position of planktonic foraminifera, given that species have 
different trophic strategies (Takagi et al. 2019). However, his-
torical data on NPP is not available, and model reconstruc-
tions of NPP yield different outputs (Fu et al. 2016). Other 
proxies for nutrient availability such as phosphate and nitrate 
are also not available for pre-industrial periods. Currently, 
anthropogenic marine nutrient pollution affects a minor area 
of the global open ocean, having a greater effect on coastal 
regions (< 200 m depth) (Halpern et al. 2008), where plank-
tonic foraminifera do not occur. Therefore, we retrieved 
annual mean values of NPP from the Ocean Productivity 
project (<www.science.oregonstate.edu/ocean.productiv-
ity/>), using the standard VGPM algorithm (Behrenfeld and 
Falkowski 1997), which extends the furthest back in time 
(1997). Annual mean values of phosphate and nitrate con-
centrations (at the surface) were retrieved from the WOA18 
database (Garcia et al. 2018b).

Annual mean values of dissolved oxygen (at 100 m depth) 
and salinity were also retrieved from the WOA18 database 
(Garcia et al. 2018a, Zweng et al. 2018). Data on salinity 
extended back to 1955–1964, so we retrieved data from 
this decade. For each site of the species composition data, 
we matched its spatial coordinates to the nearest grid point 
of each environmental variable, based on the shortest geo-
graphical distance using the World Geodetic System of 1984 
(WGS 84) and the R package geosphere (Hijmans 2015).

Water depth values were taken directly from the ForCenS 
database and were expected to influence species composi-
tion of death assemblages because of calcite dissolution at the 
deep seafloor. Dissolution is related to the carbonate satura-
tion in the seawater, and species have different susceptibility 
to it depending on the structure and thickness of their shells 
(Berger 1970).

Quantifying bioregions

To determine the planktonic foraminifera bioregions, we 
used 1) hierarchical clustering (UPGMA method) and 2) 
non-metric multidimensional scaling (NMDS), both based 
on the Morisita–Horn metric. We quantified the optimum 
number of clusters (bioregions) based on the Silhouette 
method, which retrieved the same optimum number of 
clusters as the method minimising the total within sum-of-
squares per number of clusters (Supporting information). 
We then assigned each site to its bioregion (cluster) to plot a 
world map and the two-dimensional NMDS.

After determining the bioregions, we related them to 
their environment by modelling the presence and absence 
of each cluster along the studied environmental gradients 
(Hill et al. 2020). We ran a generalised additive model 
(GAM) on each cluster separately, setting the response 
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variable for each community assemblage sample to 0 
(absence of the given cluster) or 1 (presence of the given 
cluster) and the environmental variables as explanatory vari-
ables. We used the R package mgcv (Wood 2020) to fit the 
GAM models with a binomial family, logit link function 
and a maximum of three knots. We removed predictors that 
were strongly correlated to avoid issues with co-linearity 
of covariates in the model, namely dissolved oxygen and 
nitrate (Supporting information). We used the remaining 
six environmental predictors for the analyses: SST mean 
and standard deviation, salinity, NPP, phosphate and water 
depth (Supporting information).

Compositional-turnover models

To assess what drives global compositional turnover of plank-
tonic foraminifera, we modelled turnover as a function of 
environmental predictors using Bayesian bootstrap gener-
alised dissimilarity models (Ferrier et al. 2007, Woolley et al. 
2017). Strongly correlated predictors were removed and, in 
total, six environmental variables were used for the analy-
ses (as in the GAM analysis) plus the geographical distance 
between sites (Supporting information). Generalised dissimi-
larity models (GDM) are based on generalised linear models 
and use a negative exponential link function to transform the 
response variable (i.e. the dissimilarity metric), which has val-
ues constrained between 0 and 1. GDM relates the change 
in species composition to environmental or spatial gradients 
via monotonic I-spline functions. The monotonic assump-
tion means that as environmental or geographical distances 
increase, communities can only become more dissimilar. The 
sum of the fitted I-spline functions shows the relationship 
between the observed species turnover and the given environ-
mental predictor (partial effect plots). The maximum height 
of each curve shows the relative contribution (magnitude) 
of each predictor in explaining overall turnover. The I-spline 
functions also give information on the rate of turnover along 
the gradient of each predictor. Linearity or non-linearity is 
assessed as the shape of the I-splines curve and its derivative. 
Acceleration (or levelling-off) of the rate of turnover along 
the environmental gradient shows where in the gradient most 
(or least) of the change in species composition occurs.

Model-based likelihoods calculated on dissimilari-
ties can be misleading due to the correlation between site 
pairs and their unknown probability distribution. Thus, 
model selection based on the log-likelihood (such as R2, or 
Akaike or Bayesian information criteria) can be unreliable 
(Warton et al. 2012, Woolley et al. 2017). Bayesian bootstrap 
GDM (BBGDM) attempts to relate the underlying model 
back to the amount of data observed (i.e. measured species 
abundances), rather than the number of dissimilarities used 
in the model (Woolley et al. 2017). BBGDM characterises 
the uncertainty around each predictor using Bayesian boot-
strapping and provides confidence intervals for the param-
eters estimates. Important predictors will be ones with larger 
magnitudes (height of the sum of I-splines) and smaller con-
fidence intervals.

Typically, GDM performs significance testing using ran-
dom matrix permutations (Fitzpatrick et al. 2013). This 
procedure tests if the predictors explaining the variance are 
significant compared to a null hypothesis, but it does not 
account for the inflated degrees of freedom in the dissimilari-
ties (Woolley et al. 2017). Following Woolley et al. (2017), 
we used a Wald-like test to select the subset of environmental 
parameters that significantly explain the observed composi-
tional turnover.

In total, we ran five BBGDMs with 100 bootstraps: 
two global models each with a different dissimilarity met-
ric (presence–absence-based: Sorensen; abundance-based: 
Morisita–Horn) and one model for the Atlantic, the Pacific 
and the Indian ocean basins, using the Morisita–Horn met-
ric. We used the R packages gdm (Fitzpatrick et al. 2020) 
and bbgdm (Woolley et al. 2015) to run the BBGDMs. 
All data visualisation and analyses were conducted in R 
ver. 4.0.2 (<www.r-project.org>). Additionally, we used 
ggplot2 (Wickham 2016), oce (Kelley and Richards 2020) 
and viridis (Garnier 2018) for the graphical representation  
of the analyses.

Results

Bioregions

The clustering analysis of global compositional dissimilarity 
resulted in four bioregions (Fig. 1), based on a parsimonious 
selection of the number of groups (Supporting information). 
The four bioregions are latitudinally distributed, character-
ised by the bi-hemispheric temperate and polar zones sepa-
rated by the continuous equatorial and tropical zones. Given 
the distribution of samples, the equatorial bioregion occurs 
mostly between −13° and 18° latitude, the tropical biore-
gion includes the subtropics and occurs between −30° and 
35°, the temperate zone occurs between −50° and −21° in 
the Southern Hemisphere and 15° and 65° in the Northern 
Hemisphere, and the polar zone between −63° and −43° 
and 42° and 81° latitude (Supporting information).

Bioregions show different patterns across and within 
ocean basins (Fig. 1). The equatorial zone is extensive in the 
Pacific Ocean but less present in the Atlantic Ocean. The 
Atlantic and the Pacific oceans show equatorward deflections 
of the temperate bioregions in the eastern boundary currents. 
These regions also show high local turnover, with a mix of 
polar, temperate and equatorial assemblages off the Chilean 
coast (Humboldt current) and a mix of temperate, tropical 
and equatorial assemblages off the south-west coast of Africa 
(Benguela current). Other regions of high local turnover are 
the upwelling zones in the north-west coast of Africa and 
southeast Asia. Our bioregional map broadly matches the 
planktonic foraminifera map of Bé and Tolderlund (1971). 
However, the equatorial bioregion overlaps with the tropical 
and emerges distinctively in the Pacific Ocean, plus the tran-
sitional zone characterised by Globoconella inflata in Bé and 
Tolderlund (1971) is merged with our temperate bioregion.
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The bioregions are composed of different species (Fig. 2). 
The polar zone is dominated by one species, Neogloboquadrina 
pachyderma (on average 75% relative abundance), and the tem-
perate zone by Globigerina bulloides (24%), Neogloboquadrina 
incompta (22%) and G. inflata (17%). The tropical zone con-
tains G. ruber white (28%), Globigerinita glutinata (13%) 
and Trilobatus sacculifer (12%), and the equatorial zone 
Neogloboquadrina dutertrei (30%), Pulleniatina obliquilocu-
lata (15%), G. menardii (13%) and G. tumida (13%).

The bioregions can be distinguished via non-metric mul-
tidimensional scaling (NMDS) based on abundance data 
(Fig. 3a); however, overlap among bioregions is large when 
considering presence–absence data (Supporting information). 
Within bioregions, assemblage composition is not homoge-
neous (Fig. 3b). The equatorial bioregion has the lowest aver-
age similarity between sites; this heterogeneity can also be seen 
in the clustering dendrogram (Supporting information), as the 
equatorial zone diverges earlier into sub-groups than the other 
zones. Regarding the total number of species, the tropical bio-
region is the richest, followed by the equatorial and temper-
ate regions and, lastly, the species-poor polar region (Fig. 4). 
In the Pacific Ocean, however, the richness of the equatorial 
bioregion reaches low values, comparable to the polar region.

The patterns of bioregion occurrence along SST show how 
the polar, temperate and tropical bioregions are distinctively 

distributed along this gradient (Fig. 3c). The temperate zone 
shows the largest SST range, and the equatorial and tropical 
bioregion overlap in SST range. Besides SST, the occurrence 
of the equatorial bioregion is also related to low phosphate 
concentration, low salinity and deep waters (Supporting 
information). All environmental variables contribute to the 
occurrence of the tropical bioregion (Supporting informa-
tion). This bioregion contains more oligotrophic waters than 
the other bioregions in terms of NPP and phosphate concen-
tration, but it also includes sites with high NPP in upwell-
ing zones (Supporting information). Higher salinity and 
low seasonality (SST standard deviation) also characterise 
the tropical bioregion (Supporting information). The tem-
perate bioregion occurs in regions with marked seasonality 
and dominates the waters with NPP values between 800 and 
2000 mgC m−2 day−1 and intermediate values of phosphate 
concentration (around 0.8 µmol kg−1)(Supporting informa-
tion). The polar bioregion is characterised by high-latitude 
patterns: low SST values, low seasonality, low salinity and 
high phosphate concentration (Supporting information).

Predictors of species’ turnover

Mean annual sea surface temperature (SST) is the main pre-
dictor of planktonic foraminifera compositional dissimilarity 

Figure 1. Bioregions of planktonic foraminifera based on assemblage data from ocean-floor surface sediments (pre-industrial period). The 
map shows the 3802 sites coloured by bioregions (defined based on the clustering analysis): polar 348 sites, temperate 1179, tropical 1837 
and equatorial 438 sites. Assemblages show the averaged relative abundances of species within each bioregion. Drawings from Parker 
(1962); reproduced with permission.
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globally (Fig. 5). The rate of abundance-based compositional 
change along the SST gradient is mostly linear, but deceler-
ates in the tropics, for SST values above 25°C (Fig. 5a, black 
line). The presence–absence-based species turnover changes 
non-linearly along the SST gradient, showing less composi-
tional change for SST values above 15°C (Fig. 5a, red line). 
The change in species turnover across the SST gradient can 
also be seen in the derivative plots of the I-splines functions 
(Supporting information). When conducting the analyses 
within oceans, SST remains the main predictor of turnover, 
particularly in the Atlantic Ocean (Fig. 5b).

Other environmental variables explain some, but overall 
less, global compositional change than SST and show non-
linear relationships with species turnover (Fig. 5, Supporting 
information). Globally, NPP and phosphate concentration 
show higher association with abundance- than presence–
absence-based turnover (Fig. 5a), which suggest that ocean 
productivity contributes more to shifts in species abun-
dances than species’ occurrence. Salinity affects species turn-
over as much as NPP and, although it shows a significant 
effect, it has a wider confidence interval than NPP meaning 

a more uncertain relationship with turnover (Fig. 5a). In 
the Indian ocean, phosphate is a more important predic-
tor than NPP but phosphate correlates strongly with SST 
in this ocean (Pearson correlation: −0.74, p < 0.001); the 
rate of turnover accelerates for salinity values above 36 units 
(Fig. 5b; Supporting information), characteristic of the Red 
Sea (Siccha et al. 2009). In the Pacific and Indian oceans, 
the rate of turnover greatly accelerates below 2500–3000 
m depth (Fig. 5b, Supporting information). In the Pacific 
Ocean, water depth explains almost as much compositional 
variation as SST and turnover is faster at NPP values below 
500 mgC m−2 day−1 (Fig. 5; Supporting information). 
Geographical distance shows a weak contribution to global 
turnover, but it is significant in the Pacific Ocean (Fig. 5b).

Discussion

Our global analysis of species turnover of planktonic fora-
minifera preserved in pre-industrial sediments resulted in 
four, latitudinally banded bioregions (Fig. 1), similar to the 

Figure 2. Relative abundances of species within each bioregion, following the taxonomy of Siccha and Kucera (2017).
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pelagic provinces of the world (Longhurst 2010, Lazarus 
2011, Spalding et al. 2012) and the open-ocean surface 
biome map (Fay and McKinley 2014). The bioregions span 
all ocean basins, and the temperate and polar zones are bi-
hemispheric, with all species occurring in both hemispheres. 
Thus, similar communities emerge in environmentally sim-
ilar regions, even when these regions are in different ocean 
basins and/or hemispheres. This pattern, added to the fact 
that geographical distance was not a strong predictor of spe-
cies turnover (Fig. 5), indicates that planktonic foramin-
ifera species are not limited by dispersal and suggests that 
this group has the ability to overcome constraints on global 
dispersal set by local natural selection (Ward et al. 2021). 
However, planktonic foraminifera assemblages may still 
be limited by dispersal at shorter time scales, as opposed 
to the centennial to millennial time scales analysed in this 
study. Whether the observed biogeographical patterns also 

Figure 3. (a) Non-metric multidimensional scaling (NMDS, two-
dimensional) coloured by bioregion based on abundance-based dis-
similarities (Morisita–Horn metric). (b) Pairwise compositional 
similarity of sites within each bioregion (Morisita–Horn metric). 
Values of 1 mean that assemblages are identical (share all species in 
equal proportions), and value 0 means assemblages are completely 
dissimilar (share no species). (c) Probability of occurrence of each 
bioregion along sea surface temperature (SST, annual mean), pre-
dicted by the generalised additive models (GAM). The dots repre-
sent the individual samples and their predicted probability of 
occurrence in each bioregion given the GAM fit.

Figure 4. Latitudinal richness gradient per ocean basin, coloured by 
the four bioregions (purple equatorial, green tropical, blue temper-
ate and yellow polar).
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8

persist at shorter timescales or with genetic analyses remains  
to be tested.

Marine biogeography can also show complex longitudinal 
patterns (Longhurst 2010, Spalding et al. 2012, Proud et al. 
2017, Sutton et al. 2017). Such complexity in planktonic 
foraminifera biogeography can be partially reproduced if we 
increase the number of optimal clusters. Considering five clus-
ters instead of four, the polar, temperate and tropical bioregions 
remain identical but the western equatorial Pacific breaks from 
the equatorial zone and emerges as a new bioregion (Supporting 
information). This heterogeneous longitudinal pattern is con-
sistent with former planktonic foraminifera studies in the 
North Pacific (Coulbourn et al. 1980, Taylor et al. 2018) and 
can explain why geographical distance is a significant, albeit 
weak, predictor of species turnover in this ocean (Fig. 5b). 
The equatorial zone can also be seen as a less integrated bio-
region given it contains the lowest compositional similarity 
of all bioregions (Fig. 3b) and that it continues to subdivide 
longitudinally into more bioregions as we increase the number 
of clusters (Supporting information). Thus, the polar, temper-
ate and tropical bioregions of planktonic foraminifera show a 
marked latitudinal pattern and are more homogeneous when 
compared to the equatorial bioregion, which shows heteroge-
neous longitudinal patterns within and across ocean basins.

The latitudinally banded bioregions found in our study 
reflect the strong relationship between SST and species com-
position in planktonic foraminifera (Fig. 3c, Morey et al. 
2005). Indeed, SST is the best predictor of their global spa-
tial turnover (Fig. 5). The abundance-based turnover rate 
is constant across most of the SST gradient (Fig. 5a, black 
line), suggesting that species’ abundances change relatively 
evenly with SST change, without any major compositional 
shifts for particular SST threshold values. Thus, the dynam-
ics of planktonic foraminifera bioregions are expected to be 
at pace with global warming. Since the thermal niches of 
planktonic foraminifera seem to be static throughout gla-
cial–interglacial climate change (Antell et al. 2021), species 
will likely track climate change by colonising newly suitable 
habitats and/or going locally extinct, instead of adapting to 
new local conditions. As the oceans get warmer, the polar 
bioregion is expected to contract and the temperate and 
tropical bioregions to expand to higher – and to contract in 
lower – latitudes, resulting in increases in richness at higher 
latitudes (Antão et al. 2020) and decreases in richness around 
the equator (Yasuhara et al. 2020b).

The rate of abundance-based turnover is constant across 
most of the SST gradient; however, it decelerates for SST 
values above 25°C (Fig. 5a–b; Supporting information). 

Figure 5. Partial response plots of Bayesian bootstrap generalised dissimilarity modelling (BBGDM) for planktonic foraminifera coretop 
data. x-axis: environmental gradient; y-axis: BBGDM spline function (see Methods). The maximum height attained on the y-axis indicates 
the relative importance of the predictor to overall compositional dissimilarity. For example, if the total sum of I-splines of temperature 
exceeds that of salinity by a factor of 2, then half of the temperature gradient explains the same amount of turnover than the full gradient 
of salinity. The shape of the spline function shows the rate of compositional change along the environmental gradient: straight lines reveal 
linear, and curved lines reveal non-linear, relationship between species turnover and the given predictor. Lines are the BBGDM median 
estimate, solid lines indicate significant relationships and dashed lines non-significant relationships (see Supporting information); the shad-
ing is the 95% confidence interval for BBGDM variance. (a) Global model; abundance-based metric (black line): Morisita–Horn; pres-
ence–absence-based metric (red line): Sorensen. (b) Model per ocean basin (Atlantic, Pacific and Indian oceans), based on the abundance-based 
metric (Morisita–Horn).
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This pattern is stronger when considering presence–absence 
of species: the turnover rate levels off for SST values above 
15°C (Fig. 5a, red line). This deceleration in turnover rates in 
warmer SST gradients could be a result of the large decline in 
richness from the tropical to the polar oceans (i.e. latitudinal 
richness gradient), which is strong in the Atlantic and Indian 
oceans but weaker in the Pacific Ocean (Fig. 4). To explore 
this hypothesis, we decomposed the presence–absence-based 
turnover into species replacement and nestedness (the latter 
captures in part richness differences between sites; Baselga 
2010) and re-ran the compositional-turnover models. The 
results suggest that the deceleration in turnover rates in 
warmer waters is related to latitudinal richness differences in 
the Atlantic Ocean but not in the Pacific and Indian oceans 
(Supporting information). Thus, the deceleration in turnover 
rates for higher SST values in the Pacific and Indian oceans is 
probably related to the longitudinal patterns in the equatorial 
zone, where there is small SST change but large composi-
tional change (Supporting information). In these oceans, the 
weaker relationship between species compositional change 
and SST change can lead to an underestimation of warmer 
SST values in palaeoclimate reconstructions (Mix et al. 1999, 
Morey et al. 2005).

We found no SST thresholds values where species com-
position rapidly shifts, but community composition changes 
discontinuously in space, as seen in the clustering and NMDS 
analyses (Fig. 1, 3a). This apparent contradiction can be 
explained by the fact that global thermal gradients are non-
linear across space. Thus, species distribution across space and 
latitude does not directly translate into species distribution 
across SST gradients (Tomašovỳch et al. 2015). Moreover, 
bioregional boundaries can be gradual instead of discrete as 
a result of widespread distribution of species (O’Hara et al. 
2011) or time-averaging in sedimentary assemblages (Kidwell 
and Tomasovych 2013). Regions that experience higher 
temporal variability in environmental variables, such as 
boundaries where ocean fronts meet, will experience higher 
temporal variability in community composition. Over time, 
this variability can generate mixed (e.g. tropical/temperate) 
sedimentary assemblages and smooth bioregional boundar-
ies, blurring discontinuous breaks in the turnover rate along 
the SST gradient.

Although other processes not captured by our models 
can cause bioregion delineation (e.g. ocean currents and/or 
historical contingency; Fukami 2015, Richter et al. 2020), 
salinity, net primary productivity (NPP) and water depth 
contribute to planktonic foraminifera bioregionalisation 
(Supporting information). This contribution is less predict-
able than SST, as these variables relate differently to turnover 
across oceans and also show non-linear relationships with the 
turnover rate (Fig. 5). NPP contributes to species turnover 
particularly in the Pacific Ocean and at low values charac-
teristic of the equatorial upwelling zone (Fig. 5, Supporting 
information). This Pacific upwelling zone creates a latitudinal 
and longitudinal gradient from oligotrophic to productive 
waters, possibly contributing to the observed shift from trop-
ical to equatorial assemblages (Fig. 1) and to the longitudinal 

heterogeneity in species composition within the equatorial 
bioregion (Supporting information; Taylor et al. 2018).

Water depth also greatly contributes to species compo-
sition in the Pacific Ocean (Fig. 5b), suggesting that shell 
preservation influences species composition of planktonic 
foraminifera death assemblages. The equatorial zone occurs 
in deeper waters (Supporting information) and has high 
relative abundances of large, thick-shelled species such as G. 
tumida and P. obliquiloculata (Fig. 2), known to be less sus-
ceptible to dissolution (Berger 1970). Although Morey et al. 
(2005) and Taylor et al. (2018) concluded there is no sig-
nificant effect of dissolution in planktonic foraminifera bio-
geographical patterns, Morey et al. (2005) did not consider 
non-linear relationships (which is evidently the case for water 
depth; Fig. 5b) and Taylor et al. (2018) transect did not 
reach the Pacific equatorial zone. Thus, our results suggest 
that dissolution also influences species composition of plank-
tonic foraminifera and hint at an equatorial assemblage with 
mixed biological and fossil preservation signals. As the uptake 
of anthropogenic carbon dioxide acidifies the ocean, deep-
sea calcite dissolution will increase (Sulpis et al. 2018) and 
intensify preservational signals in planktonic foraminifera 
sedimentary assemblages.

Preservational biases in assemblage composition blur eco-
logical and physiological relationships between assemblage 
composition and environmental variables and influence 
palaeo-environmental reconstructions based on microfos-
sils assemblages (Parker and Berger 1971, Coulbourn et al. 
1980). The time-averaging of assemblages in seafloor sedi-
ments can also obscure ecological signals of species distribu-
tions, because individuals that died over centuries or even 
millenia are pulled together into a single sampling unit 
(death assemblages). Such time-averaging can be advanta-
geous for biogeographical studies because it averages out 
seasonal and interannual fluctuations as well as stochastic 
populational dynamics. However, it can also significantly 
change the composition of the fossil assemblages when com-
pared to the living assemblage, depending on the dispersal 
capability of the studied group and the environmental (and 
associated community) volatility of a given location (Kidwell 
and Tomasovych 2013). Planktonic foraminifera species have 
a high dispersal capability (this study), thus time-averaging 
likely has a strong impact on their spatial diversity patterns 
observed in seafloor sediments. The expected change related 
to time averaging is a decrease in the spatial variation of spe-
cies composition (Kidwell and Tomasovych 2013), which 
could explain why we found only four global bioregions and 
why comparisons of assemblages sampled in the water col-
umn and in seafloor sediments can show different species 
composition (Jonkers et al. 2019).

In conclusion, we showed that pre-industrial, spatial varia-
tion in species composition of planktonic foraminifera is 
strongly related to SST variation. The constant rate of turn-
over across the global SST gradient found in our study suggests 
that changes in SST are expected to generate proportional, 
and therefore predictable, changes in local species composi-
tion. However, to use the pre-industrial baseline of planktonic 
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foraminifera communities to predict future responses to cli-
mate change, we need to not only understand how differences 
between living and death assemblages relate to environmen-
tal change (Jonkers et al. 2019) but also quantify how much 
of the diversity patterns observed in seafloor sediments are a 
result of taphonomic biases (Kidwell 2013). This way, we can 
leverage the potential of microfossils as windows into long-
term baselines of the pelagic ecosystem and better predict the 
response of this ecosystem to future climate change.
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