

A new monotypic family for the enigmatic crustose red alga Plagiospora gracilis

Journal:	Botanical Journal of the Linnean Society
Manuscript ID	BOTJLS-Mar-2016-2432-OM.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Maggs, Christine; Bournemouth University, Faculty of Science & Technology Saunders, Gary; University of New Brunswick, Department of Biology
Keywords:	agamospecies < Genetics, DNA sequence data < Genetics, gametogenesis < Genetics, molecular markers < Genetics, molecular phylogenetics < Genetics, 26S rDNA < Genetics, rbcL gene < Genetics

Running heads: New monotypic family for Plagiospora (Rhodophyta)

Corresponding author. E-mail: cmaggs@bournemouth.ac.uk

A new monotypic family for the enigmatic crustose red alga

Plagiospora gracilis

CHRISTINE A. MAGGS FLS*¹ and GARY W. SAUNDERS²

¹Faculty of Science and Technology, Bournemouth University, Poole House, Talbot Campus, Poole, Dorset BH12 5BB, UK

²Department of Biology, Centre for Environmental and Molecular Algal Research, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 5A3

ABSTRACT

Plagiospora gracilis, a mucilaginous crustose red alga growing on subtidal pebbles on both coasts of the North Atlantic Ocean, forms distinctive tetrasporangia (red algal meiotic structures that release haploid tetraspores) but gametophytes have never been reported. In the absence of gametangia, the taxonomic position of this monotypic genus has always been uncertain; it is currently placed provisionally in the Gloiosiphoniaceae (Gigartinales) by comparison with sporophytes of Gloiosiphonia obtained in culture. Dioecious gametophytic crusts of P. gracilis are now reported for the first time, forming gametangia in inconspicuous superficial sori. There is no evidence that fertilization ever occurs in the field although fertile males and female were collected together. In culture, tetraspores grew into tetrasporophytes for three successive generations, by presumed apomictic sporophyte recycling. The life history of *P. gracilis* may represent a late stage in the loss of sexual reproduction leading to tetraspore-to-tetrasporophyte life histories such as that in Hildenbrandia. Phylogenetic analysis of sequences of the rbcL, LSU (28S) rDNA and coxl (COI-5P) genes for P. gracilis with other Gigartinales resolved P. gracilis as a distinct lineage in a well-supported clade of the families Sphaerococcaceae, Gloiosiphoniaceae, Endocladiaceae, Nizymeniaceae and Phacelocarpaceae. We here propose the monotypic Plagiosporaceae fam. nov. to accommodate P. gracilis.

ADDITIONAL KEYWORDS: apomixis – evolution – Gigartinales – life-history – molecular systematics – phylogeny – Rhodophyta

Botanical Journal of the Linnean Society

INTRODUCTION

The Rhodophyta (red algae) are an ancient eukaryotic lineage of mostly photosynthetic marine organisms, including what is generally believed to be one of the oldest taxonomically resolved eukaryotic fossils, the 1.2 billion year old *Bangiomorpha pubescens* Butterfield (Butterfield, 2000; Yoon *et al.*, 2004). Their Red algal ordinal and familial classification is going through a period of rapid change as morphological and ultrastructural studies are complemented and elucidated by molecular data (e.g. Saunders & Hommersand, 2004; Yoon *et al.*, 2006; Verbruggen *et al.*, 2010; Yang *et al.*, 2015; Saunders *et al.*, 2016).

The monotypic red algal genus *Plagiospora* is based on *P. gracilis* Kuckuck (1897), collected once (in the winter of 1895/6) at Helgoland in the North Sea. Kuckuck described the tetrasporangia of this small mucilaginous crustose alga but found no male or female reproductive organs. He characterized *Plagiospora* by its obliquely divided tetrasporangia, which he had previously observed only in the crustose red algal genus *Hildenbrandia* Nardo, placing it provisionally in the Squamariaceae J.Agardh, nom. illeg. (Denizot, 1968), a heterogeneous group that included the Peyssonneliaceae Denizot (1968). Batters (1902) transferred *P. gracilis* to *Cruoriopsis* L.Dufour (1864) on the basis of its tetrasporangial morphology. As *C. gracilis* (Kuckuck) Batters, this species was reported occasionally from European and North American coasts (Rosenvinge, 1917; Taylor, 1957) and was moved to the Cruoriaceae Kylin by Kylin (1956).

Plagiospora was reinstated by Denizot (1968) mainly on account of its very small vegetative cells but left *incertae sedis* because it was very rare and poorly known. South & Hooper (1980) suggested that *P. gracilis* might be involved in the life history of *Gloiosiphonia capillaris* (Hudson) Carmichael because its tetrasporangia resembled

those of *G. capillaris* obtained in culture (Edelstein, 1970). For the same reason, Parke & Dixon (1976) placed *P. gracilis* provisionally in the <u>gigartinalean order</u> Gloiosiphoniaceae Schmitz (Wynne & Kraft, 1981; Irvine, 1983), where it remains (<u>Schneider & Wynne,</u> <u>2007;</u> Guiry & Guiry, 2016). The Gloiosiphoniaceae are members of the large red algalorder Gigartinales (Saunders *et al.*, 2004).

Plagiospora gracilis has a wide distribution in the temperate North Atlantic Ocean from Sweden to southern England, and from Newfoundland to Massachusetts, but it is confined to the subtidal and has rarely been reported (Table 1). The aim of the present study was to determine the systematic and evolutionary position of this enigmatic genus by integrating morphological and life history observations in the field and in culture with molecular phylogenetic analyses. For this purpose, *P. gracilis* was collected subtidally around the British Isles and eastern Canada, including year-round sampling of a population in Northern Ireland where gametangia were observed for the first time.

MATERIALS AND METHODS

FIELD COLLECTIONS AND SAMPLE PROCESSING

Phenological sampling was carried out at Cloghy Rocks, Strangford Narrows, Northern Ireland (54°21'38.16"N, $\underline{0}$ 5°32'47.84"W). Strangford Narrows is a channel 8 km long, on average 30 m deep and 0.5 km wide at the narrowest part, linking the main body of Strangford Lough to the Irish Sea. Although currents in the central Narrows reach 3.5 m s⁻¹, Cloghy Rocks is relatively sheltered, experiencing maximum currents of less than 0.8 m s⁻¹ (Kregting & Elsäßer, 2014). Substrata at the sampling depths of 5-12 m at Cloghy

Rocks ranged in size from 2 cm cobbles to large boulders. Cobbles were sampled on 4 August 1983, monthly from October 1983 to February 1985, and on 15 May and 16 December 1985 (Table S2). On each date about 20 cobbles 2-15 cm in length, with visible crustose algae, were collected by divers. Measurements of bottom temperature were taken on each dive using a hand-held thermometer and monthly means of surface sea temperature measurements from 1983-1985 for Port Erin, Isle of Man, in the Irish Sea about 60 km from Strangford Narrows, were obtained from CEFAS

(<u>https://www.cefas.co.uk/cefas-data-hub/sea-temperature-and-salinity-trends/</u>). Daylength was determined from tables as described by Maggs & Guiry (1987).

Cobbles were returned to the laboratory and carefully examined under a dissecting microscope; all species of crustose red algae, including *Plagiospora gracilis*, were sampled and identified with a compound microscope (Leitz Dialux). The reproductive status of all crustose species was recorded for each collection of cobbles.

Plagiospora gracilis was also collected by-during diving surveys around the British Isles and Canada (Table 1). Collections of other Gigartinales for phylogenetic analysis were made intertidally or in the subtidal by diving with a subsample of each specimen dried in silica gel for DNA extraction (Table S1). The remainder of each specimen was stored in silica or pressed to serve as a voucher deposited in UNB (Saunders & McDevit, 2012).

MORPHOLOGICAL STUDIES

Fresh material and herbarium samples were prepared as squashes, either unstained or stained with aqueous aniline blue, post-fixed in 1% HCl, and mounted in 80% Karo corn syrup (Bestfoods Inc, NJ, USA) as permanent slide mounts. Voucher material was deposited in BM (BM568808, BM568872, BM569403), GALW and NRCC (herbarium

Botanical Journal of the Linnean Society

abbreviations as inafter Thiers, 2016). Fresh gametophytic crusts were stained with Hoechst 33258 fluorescein (10 μ g ml⁻¹) to visualize nuclei with an epifluorescence microscope (Leitz Dialux). Preparations briefly fixed in 4% formalin-seawater before staining with aceto-iron-haematoxylin-chloral hydrate (Wittmann, 1965) or aniline blue also gave good definition of nuclei. Photographs were taken using Kodak Technical Pan film developed in Kodak HC110 liquid developer.

CULTURE STUDIES

Plagiospora gracilis cultures were initiated from tetraspores released by a thallus collected at Flannery Bridge, Kilkieran Bay, Co. Galway ($53^{\circ}21'25.13"N$; $9^{\circ}42'33.77"W$), Ireland on 6 December 1981, and grown in half-strength modified von Stosch enriched seawater (Guiry & Cunningham, 1984). Cultures were at first maintained at $15^{\circ}C$ 16 h light: 8 h dark, at a photon irradiance of 5-7 µmol m⁻² s⁻¹, and later subjected to a series of transfers between conditions as detailed in the results. For molecular studies, an isolate was established from material collected at Strangford Lough on 17 January 1994.

PCR AMPLIFICATION, SEQUENCING AND PHYLOGENETIC ANALYSES

Total genomic DNA was extracted as in Saunders & McDevit (2012). The COI-5P was amplified and sequenced as outlined in Saunders & McDevit (2012), while LSU and *rbcL* followed the protocols of Saunders & Moore (2013). Sequencing was performed at Genome Quebec and all molecular data were uploaded to BOLD (http://www.barcodinglife.org) and GenBank (http://www.ncbi.nlm.nih.gov/). The new data generated here were added to data for representative Atractophorales, Peyssonneliales and Gigartinales (Table S1; Saunders *et al.*, 2016). Preliminary single-gene analyses for

LSU and *rbc*L both positioned *Plagiospora gracilis* within the Gigartinales among the families Endocladiaceae Kylin, Gloiosiphoniaceae <u>F</u>.Schmitz, Nizymeniaceae Womersley, Phacelocarpaceae Searles and Sphaerococcaceae Hauck (data not shown). To reduce distant outgroups, the representative Atractophorales and Peyssonneliales were removed from the alignment, which was reanalysed including only Gigartinales. As a result<u></u> a multigene alignment (LSU + *rbc*L + COI-5P) was established, partitioned by gene and then by codon for the two protein-coding genes, and analysed using maximum likelihood (ML) methods in RAxML employing a GTR+I+G model in Geneious Pro 9.0.4 (Kearse *et al.*, 2012). Branch support was estimated using nonparametric bootstrapping (1000 replicates).

RESULTS

PHENOLOGY

At the Strangford Narrows study site, *Plagiospora gracilis* was one of the most frequently observed crustose red algae on cobbles collected at 5-12 m depth, although because of small individual size the total coverage was small. A marked reproductive periodicity was apparent (Fig. 1; Table S2). Tetrasporangia first developed in late November and were produced abundantly from December to April. A few sporangia were still present in late May and early June. Non-pigmented necrotic sporangia were sometimes observed in crusts collected in July and August. Water temperatures measured *in situ* at Strangford Narrows were generally 0.5-1.0°C below the mean monthly temperatures for Port Erin (Fig. 1); the daily temperature range in Strangford Narrows is up toreaches 2.0°C (Kregting & Elsäßer, 2014: fig. 2). Tetrasporangia of *P. gracilis* were initiated when the

water temperature dropped below about 10°C, at a daylength of ca. 8.5 h, and tetrasporangia were present until the temperature increased to 8-9°C in May/June, when the daylength was 15 h. Gametangia were observed on only four occasions (Fig. 1; Table S2), between late November and late February.

MORPHOLOGY

Crusts were usually up to 15 mm (rarely to 45 mm) in diameter, and 70-135 µm thick, closely adherent to the substratum, with a smooth glossy surface that was bright red under good illumination. They were mucilaginous and squashed easily under slight pressure, composed of a single basal layer of parallel filaments of cells measuring 6-9 x 2.5-4.0 µm, between which abundant cell fusions (Fig. 2A) were formed. Each basal layer cell gave rise to 1-2 sparsely branched erect filaments of isodiametric cells 5-6 µm wide basally, tapering to 3-4 µm near the apices (Fig. 2 B-D), and up to 22 cells in length. Apical cells in surface view were rounded, separated by mucilaginous walls. Cell fusions occurred between neighbouring erect filament cells with varying frequency. All cells were uninucleate unless fused, when pairs of fused cells showed two nuclei near their original positions (Fig. 2K). Pig plugs were narrow and not always visible, even in stained material.

Tetrasporocytes developed laterally on erect filaments by division of intercalary cells, cut off by anticlinal divisions of the enlarged supporting cell, pyriform or ovoid, up to $9 \times 6 \mu m$ before division (Fig. 2B). In some thick crusts they formed terminally on 1-3– celled lateral branches, and occasionally a single filament bore two sporangia at different levels. Mature tetrasporangia were 10-17(-22) × 9-11 µm excluding walls, obliquely divided, irregularly cruciate (Fig. 2C,D) in a pattern that is very similar to irregularly zonate

division (Guiry, 1978: 117). In surface view of fertile crusts, mature sporangia were visible over all but the thallus margins.

The gametangial crusts were dioecious, forming male or female gametangia in superficial slightly pigmented mucilaginous sori up to 1.5 mm in diameter. Tetrasporangia were sometimes closely associated with gametangial sori, although they were never borne on filaments that terminated in gametangial branches. It was not clear whether the same crusts can form both sporangia and gametangia, or whether these observations result from coalescence of separate individual thalli.

Male sori (Fig. 2F-H) developed by apical extension of erect filaments above the level of the surrounding vegetative thallus, other filaments remaining vegetative. Spermatangial filaments were slightly pigmented and deeply staining, except for the basal cell which was intermediate in morphology with the vegetative cells. They elongated initially by apical division, forming unbranched filaments of 8-9 cells 3-4 μ m wide (Fig. 2E-F) that subsequently cut off irregularly pinnate series of lateral branches of 1-3 cells about 3 μ m in diameter (Fig. 2F-H). The distal cells of each filament tended not to form lateral cells, but instead cut off obliquely up to 4 ovoid spermatangia, 3.<u>0</u>-4.5 x 1.5-2.<u>0</u> μ m, in a paired or whorled arrangement (Fig. 2F-H). All but the lowermost lateral branch cells also functioned as spermatangial mother cells, budding off obliquely 1-3 spermatangia (Fig. 2H). Mature spermatangial filaments were 35-40 μ m long, and covered by a thick mucilaginous layer. Released spermatia were ovoid, about 5 μ m long, highly vacuolate and possibly necrotic.

Female sori (Figs 2I-M, 3A-F) likewise developed superficially from vegetative apical cells. They were composed of thick-walled, <u>semi-slightly</u> pigmented cells 3.5-6.0 µm wide (Fig. 2J-M), with larger nuclei and pit plugs than vegetative cells, usually forming filaments but occasionally remaining as single large cells. The filaments were either unbranched and sterile, up to 7 cells long (Fig. 2J), or up to 13 cells in length, with a

pinnate, alternate, or secund arrangement of 1-3 lateral branches 5-8 (-11) cells long, that were themselves sometimes branched once (Fig. 2I,K-M). The unbranched filaments are not interpreted as a developmental stage of the branched ones, because they were also present in mature sori. Many of the lateral branches terminated in hairs 1.5 μ m wide, connected by pit plugs to elongate conical cells. Two different types of reproductive branch systems were observed in female sori, one bearing carpogonial branches, the other auxiliary cells.

Carpogonial branches (Figs 3A-C, 4A-K) developed in a lateral position on the branch systems, usually initiated as a single elongate cylindrical cell (Figs 3A, 4A-B) that developed an apical protuberance before dividing by a cross-wall to form a 2-celled carpogonial branch (Figs 3B, 4C-F). In some cases a small wedge-shaped cell was present below the carpogonial initial (Fig. 4E); division of this initial could give rise to a 3celled carpogonial branch (Fig. 4G). In mature carpogonial branches that were 3-4 cells long (Figs 2L, 4G-H), only the carpogonium and hypogynous cell were differentiated from sterile branch cells by their dense cytoplasmic contents. In one example (Fig. 3C), a single sterile lateral cell was formed by one of the carpogonial branch cells. Developing carpogonia (Fig. 3A-C, 4A-G) were ovate-conical, c. 9 x 5 µm, with a single nucleus in an apical position, 3 µm wide, containing a nucleolus of 1 µm diameter. Mature carpogonia (Figs 2L, 3B-C, 4I-J) were usually conical, 5 x 5 µm, bearing trichogynes 2.5 µm in diameter and up to 225 µm long. Older carpogonia decreased to 3.5 x 3.5 µm, and the nucleus was no longer visible. Hypogynous cells (Fig. 4F-J) were usually binucleate, containing equal-sized nuclei 1.5 µm in diameter; the other carpogonial branch cells, where present, were uninucleate. Supporting cells of carpogonial branches were sometimes binucleate (Fig. 4J), and not otherwise distinguished from other cells of reproductive branch systems. Spermatia were never seen on trichogynes, and there was no evidence that fertilization had occurred, although in some cases the hypogynous cell

had formed a lateral protuberance (Fig. 4J) or cut off a small cell. Old necrotic carpogonia on binucleate hypogynous cells (Fig. 4K) were frequently observed, sometimes in the same reproductive branch system as mature carpogonial branches, but never on the same supporting cell. More than one mature carpogonium was never present in a single branch system.

Auxiliary cell branch systems (Figs 3D-F, 4L-N) were similar to those bearing carpogonial branches. Auxiliary cells were intercalary, usually the basal or suprabasal cell of a lateral branch of 4-6 (-9) cells, but were rarely in an unbranched filament. The auxiliary cells were initially slightly larger than other cells (Fig. 3D), enlarging to 8 μ m diameter, spherical or ovoid in shape, with much enlarged pit plugs (Figs 3D-F, 4L-N). Their nuclei (Figs 3D-F, 4L-N) were about 4 μ m diameter, with a nucleolus 2.5 μ m in diameter, compared to the 1.5 μ m diameter nuclei of the sterile cells.

Neither carpogonial branches nor auxiliary cells ever showed evidence of postfertilization development, and cystocarps were not observed, despite the presence of mature male and female gametangia over a two-month period.

LIFE HISTORY IN CULTURE

Tetraspores grown at 15°C 16:8 h (long days; LD) often developed into filaments (Fig. 5A) before forming crustose sporelings (Fig. 5B) with a multiaxial marginal meristem. After 4 months the crusts were 3 mm in diameter and 50 µm thick. Examined from below (Fig. 5C), a radial arrangement of basal filaments with numerous cell fusions was apparent. In surface view (Fig. 5D), apical cells of erect filaments were rounded and embedded loosely in mucilage. Erect filaments branched occasionally and consisted of up to 9 more or less isodiametric cells 3-6 µm diameter (Fig. 5E) that formed a few cell fusions. The crusts were then transferred to 15°C, 8:16 h (short days; SD) and after a

further 3 months, to 10°C SD. Within 2 months, intercalary erect filament cells had differentiated into tetrasporangial supporting cells that cut off tetrasporocytes (Fig. 5E). When mature, obliquely cruciately divided tetrasporangia 11-20 x 7-11 μ m (Fig. 5F) released spores.

Germination of released tetraspores occurred by division of the spore into several cells, one of which often grew out as a filament when spores were poorly attached. Sporelings grown at 15°C LD and 10°C LD formed crusts identical to those of the parent culture. While maintained under LD for 11 months, no reproduction occurred. Replicate cultures transferred to 10°C SD had formed abundant tetrasporangia 1.5 months later, representing the third successive sporangial generation of a tetraspore-to-tetrasporophyte life history.

PHYLOGENETIC ANALYSES

Phylogenetic analysis of LSU, *rbcL* and COI-5P sequences placed *Plagiospora gracilis* in a strongly supported clade within the Gigartinales consisting of representatives of the families Sphaerococcaceae, Gloiosiphoniaceae, Endocladiaceae, Nizymeniaceae and Phacelocarpaceae (Fig. 6). *Sphaerococcus* and *Plagiospora* constituted separate lineages sister to a robust grouping of the representatives of the remaining families, including the Gloiosiphoniaceae. There was a close relationship between the Nizymeniaceae and Phacelocarpaceae and a robust but more distant relationship between the Gloiosiphoniaceae and the Endocladiaceae.

DISCUSSION

We report here the first discovery of gametangia in *Plagiospora gracilis*. Field collections and culture studies indicate that a short-day response is involved in the induction of tetrasporangia, and gametangia likewise appear to be formed under short days. Development of tetrasporangial plants from tetraspores in culture, the extreme rarity of gametangial plants in the field, and the lack of post-fertilization development strongly suggest that the principal life history is recycling of tetrasporophytes.

Mixed development of tetraspores into both gametophytes and tetrasporophytes (facultative apomixis) has been observed in *Gloiosiphonia capillaris* (Maggs, 1988). The (uncompleted) isomorphic life history distances *P. gracilis*, however, from *G. capillaris* which has an erect, ephemeral much-branched gametophytic phase as well as the crustose phase. The situation in *P. gracilis* might represent an extension of a trend towards an increased frequency of tetrasporophyte recycling, to the point where fertilization never occurs and gametangia may be non-functional. Obligate apomeiosis is thought to be rare in the red algae, <u>a phenomenon observed mostly in crustose species</u> (Hawkes, 1990).

Our molecular phylogenetic analyses (Fig. 6) place *Plagiospora* in a distinct lineage in a well-supported clade among the five gigartinalean families Sphaerococcaceae, Gloiosiphoniaceae, Endocladiaceae, Nizymeniaceae and Phacelocarpaceae. Searles (1968: 77) was probably the first author to draw attention to similarities between the Phacelocarpaceae (including the Nizymeniaceae, later segregated by Womersley, 1971) and the Endocladiaceae and Gloiosiphoniaceae, despite their position in two different orders at the time. The resemblance included the uniaxial vegetative construction and similar polycarpogonial procarps. Molecular analyses showed that the Nizymeniaceae and Phacelocarpaceae are closely related and might be better placed in the same family (Saunders & Kraft, 1994; Saunders *et al.*, 2004). In

previous multi-gene analyses without *Plagiospora*, this five-family clade including Sphaerococcaceae received only poor support although <u>the</u> Gloiosiphoniaceae, Endocladiaceae, Nizymeniaceae and Phacelocarpaceae were grouped robustly (Verbruggen *et al.*, 2010). As *Plagiospora* represents a lineage distinct from the other families in this clade, its position could be treated taxonomically either by merging all five families, with Sphaerococcaceae Hauck (1885: 17) having priority, or by recognizing a new family.

The most important morphological characters for systematics of the red algae are features of the female reproductive system and post-fertilization development (Kylin, 1956), but since post-fertilization development is unknown in *Plagiospora*, only vegetative, gametangial and tetrasporangial characters can be used to inform our judgement regarding familial assignment. The crustose thallus of *Plagiospora* is relatively simple and its morphology can only be compared directly with other species with crustose phases. Of the five families in this clade, only the Gloiosiphoniaceae and Sphaerococcaceae form a crustose phase as part of their heteromorphic life histories. The crusts of *Gloiosiphonia capillaris* (Maggs, 1988; Maggs, unpublished observations) resemble Plagiospora in being mucilaginous and forming abundant cell fusions and obliquely divided cruciate tetrasporangia, these but differ in the presence of a compact pseudoparenchymatous layer that grows downwards. Sphaerococcus crusts are tough, not mucilaginous, and also differ greatly from Plagiospora in the complex morphology, with rows of large cells equivalent to axial filaments (Maggs & Guiry, 1982). Life histories in the Nizymeniaceae, Phacelocarpaceae and Endocladiaceae, where known, exhibit isomorphic erect gametophytes and sporophytes.

The female reproductive structures of *Plagiospora*, consisting of 2-4-celled carpogonial branches borne singly in sparsely branched, quite variable, reproductive branch systems, have some similarities to those of the five families in the clade.

Formatted: No underline

However, *Plagiospora* differs from the others in the relative position of carpogonial and auxiliary cell branches. Whereas all five families are procarpic (i.e. the auxiliary cell branches and carpogonial branches are in proximity, usually in the same branch system; Searles, 1968), in *Plagiospora* carpogonial and auxiliary cell branches are always separate (non-procarpic). *Sphaerococcus* has a simple procarpic system, with only one carpogonial branch per auxiliary cell (Kylin, 1930), but the four other families are polycarpogonial – each fertile branch system has several carpogonial branches in association with one auxiliary cell. An analysis (Norris, 1957) of the reproductive branch systems of gigartinalean families including the Gloiosiphoniaceae and Endocladiaceae concluded that procarpic families probably developed from non-procarpic families, possibly more than once. Because *Gloiosiphonia* is not always functionally procarpic (the post-fertilization connecting filament may contact a distant auxiliary cell; Kylin, 1930), it may be an early stage in the development of typical procarps (Kylin, 1956).

The plane of division of spermatangial mother cells is an important character in red algae which can be diagnostic at the ordinal level (e.g. Ahnfeltiales Maggs & Pueschel, 1989). Spermatangia are cut off obliquely in the Gloiosiphoniaceae (Kylin, 1928; Lee & Yoo, 1979), and in the Nizymeniaceae and Phacelocarpaceae, which are mostly Southern Hemisphere endemics (Womersley, 1994). Although vegetative thalli in the Nizymeniaceae and Phacelocarpaceae and Phacelocarpaceae and Phacelogically complex, with a pseudoparenchymatous construction, male gametangia are formed in distinctive superficial filamentous nemathecia (Searles, 1968; Womersley, 1994). The male filaments of *Nizymenia conferta* (Harvey) Chiovitti, G.W.Saunders & Kraft [as *Stenocladia australis* (Sonder) P.C.Silva (Searles, 1968, fig. 16; Womersley, 1994, fig. 138)] are uniseriate and form whorls of spermatangial mother cells that each of which cuts off obliquely one or two spermatangia, in the same manner as *Plagiospora*. The obliquely

budded spermatangia in *Plagiospora* differ markedly from <u>those of</u> *Endocladia*, in which spermatangia are formed in short rows by transverse division (Kylin, 1928).

Tetrasporangia in *Sphaerococcus* and *Phacelocarpus* are terminal and regularly zonate (Searles, 1968; Maggs & Guiry, 1982; Chiovitti *et al.*, 1995; Womersley, 1994), in contrast to *Plagiospora*. However, tetrasporangia in *Nizymenia australis* Sonder (Womersley, 1994, fig. 137) are formed laterally in superficial tufts of filaments and divide irregularly cruciately, as in *Plagiospora*.

Despite the stark contrast between the general morphology of *Plagiospora* and the other five families in the clade, some potentially significant similarities can be seen among *Plagiospora* and the other taxa. These are presumably linked to the shared evolutionary history demonstrated by our molecular analyses, but do not justify mergers among the families. We therefore propose the monotypic Plagiosporaceae fam. nov. to accommodate the genus *Plagiospora*.

Plagiosporaceae Maggs & G.W. Saunders, fam. nov.

Description: Thalli crustose, non-calcified, mucilaginous, with marginal meristems forming prostrate filaments that bear erect filaments of cuboid cells 6-9 µm in diameter; vegetative cell fusions common. Tetrasporangia borne laterally on erect filaments, dividing obliquely cruciately. Gametophytes crustose; gametangial sori formed in inconspicuous superficial sori developing by apical extension and differentiation of erect vegetative filaments. Carpogonial branches lateral, 2-4–celled; auxiliary cells distant, intercalary in lateral branches; spermatangial filaments bearing short lateral branches that function as spermatangial mother cells, budding off spermatangia obliquely. Postfertilization development unknown.

Type genus: Plagiospora Kuckuck, 1897: 393.

ACKNOWLEDGEMENTS

CAM is grateful to Prof. M.D. Guiry and <u>WG.M</u>. Guiry for the initial isolation and care of the cultures from Galway, to Sue Scott (formerly Hiscock) for supplying material, and to Dr J. McLachlan and M. Greenwell (both deceased) for the opportunity to collect samples at Prince Edward Island during a Natural Sciences and Engineering Research Council of Canada (NSERC) fellowship. The staff and students at Portaferry Marine Laboratory, Queen's University Belfast, made it possible to dive regularly in Strangford Narrows. Dr M.H. Hommersand kindly discussed the taxonomic position of *Plagiospora*. GWS thanks T. Harper and N. MacAfee for technical assistance. This project was supported in part by NSERC grants to GWS. Sian Wilson and Caroline Magill (QUB) prepared most of the figures.

REFERENCES

Batters EAL. 1902. A catalogue of the British marine algae. *Journal of Botany, London*40 (Suppl.): 1-107.

Butterfield NJ. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26: 386-404.

Chiovitti A, Kraft GT, Saunders GW, Liao ML, Bacic A. 1995. A revision of the systematics of the Nizymeniaceae (Gigartinales, Rhodophyta) based on polysaccharides, anatomy, and nucleotide sequences. Journal of Phycology 31: 153-166. Collins FS. 1911. The marine algae of Casco Bay. Proceedings of the Portland Society of Natural History 2: 257-282. Denizot M. 1968. Les algues floridées encrôutantes à l'exclusion des Corallinacées. Paris: M. Denizot (privately published). Dufour L. (1864). Elenco delle alghe della Liguria. Commentario della Società Crittogamologica Italiana 2: 28-75. Edelstein T. 1970. The life history of Gloiosiphonia capillaris (Hudson) Carmichael. Phycologia 9: 55-59. Guiry MD. 1978. The importance of sporangia in the classification of the Florideophyceae. In: Irvine DEG, Price JH, eds Modern approaches to the taxonomy of red and brown algae. London: Academic Press, 111-144. Guiry MD, Cunningham EC. 1984. Photoperiodic and temperature responses in the reproduction of north-eastern Atlantic Gigartina acicularis (Rhodophyta: Gigartinales). Phycologia 23: 357-367. Guiry MD, Guiry WGM. 2016. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available at: http://www.algaebase.org (4 February 2016). Hauck F. 1885. Die Meeresalgen Deutschlands und Österreichs. In: Rabenhorst L, ed. Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Zweite Auflage. Vol. 2, Leipzig: Eduard Kummer, 513-575.

Hawkes MW. 1990. Reproductive strategies. In: Cole KM, Sheath RG, eds, *Biology of the red algae*. Cambridge: Cambridge University Press, 305-345.

Irvine LM. 1983. Seaweeds of the British Isles Volume 1 Rhodophyta Part 2A Cryptonemiales (sensu stricto), Palmariales, Rhodymeniales. London: British Museum

(Natural History).

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S,
Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A.
2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. *Bioinformatics* 28:1647-1649.

- Kregting L, Elsäßer B. 2014. A hydrodynamic modelling framework for Strangford Lough Part 1: tidal model. *Journal of Marine Science and Engineering* 2: 46-65.
- **Kuckuck P.** 1897. Bemerkungen zur marinen Algenvegetation von Helgoland. *Wissenschaftliche Meeresuntersuchungen*, N.F. **2**: 371-400.
- Kylin H. 1928. Entwicklungsgeschichtliche Florideenstudien. Lunds Universitets Arsskrift N.F. Avd. 2 84(4): 1-127.
- Kylin H. 1930. Uber der Entwicklungsgeschichtliche der Florideen. *Lunds Universitets Arsskrift* N.F. Avd. 2, 26 (6): 1-104.
- **Kylin H.** 1944. Der Rhodophyceen der Schwedischen Westküste. *Lunds Universitets Arsskrift.*, Avd. 2, 40 (2): 1-104.

Kylin H. 1956. Die Gattungen der Rhodophycen. Lund: CWK Gleerup Förlag.

Lee IK, Yoo SA. 1979. *Gloeophycus koreanum* gen. et sp. nov. (Rhodophyta, Gloiosiphoniaceae) from Korea. *Phycologia* **18**: 347-354.

Maggs CA, Guiry MD. 1982. The life history of *Haematocelis fissurata* Crouan frat. (Rhodophyta: Sphaerococcaceae). *British Phycological Journal* **17**: 235.

Maggs CA. 1988. Intraspecific life history variability in the Florideophycidae

(Rhodophyta). Botanica marina, **31**: 465-490.

Maggs CA, Guiry MD. 1987. Environmental control of macroalgal phenology. In: Crawford RMM, ed. *Plant life in aquatic and amphibious habitats*. British Ecological Society Special Symposium, Oxford: Blackwell, 359-373.

Maggs CA, Pueschel CM. 1989. Morphology and development of *Ahnfeltia plicata* (Rhodophyta): proposal of Ahnfeltiales ord. nov. *Jounal of Phycology* **25**: 333-351.

Norris RE. 1957. Morphological studies on the Kallymeniaceae. University of California Publications in Botany 28: 251-334.

Parke M, Dixon PS. 1976. Check-list of British marine algae - third revision. Journal of the Marine Biological Association of the UK 56: 527-594.

Rosenvinge LK. 1917. The marine algae of Denmark. Contributions to their natural history. Part II. Rhodophyceae II (Cryptonemiales). *Det Kongelige Danske Videnskabernes Selskabs Naturvidenskabelige og Mathematiske Afhandlinger* **7**: 153-284.

Saunders GW, Kraft GT. 1994. Small-subunit rRNA gene sequences from representatives of selected families of the Gigartinales and Rhodymeniales (Rhodophyta). I. Evidence for the Plocamiales ord. nov. *Canadian Journal of Botany* 72: 1250–1263.

Saunders GW, Hommersand M. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. *American Journal of Botany* 91: 1494-1507.

Saunders GW, Chiovitti A, Kraft GT. 2004. Small-subunit rDNA sequences from representatives of selected families of the Gigartinales and Rhodymeniales

21	
(Rhodophyta). 3. Delineating the Gigartinales sensu stricto. Canadian Journal of	
Botany 82 : 43-74.	
Saunders GW, Filloramo G, Dixon K, Le Gall L, Maggs CA, Kraft GT. 2016. Multigene	
analyses resolve early diverging lineages in the Rhodymeniophycidae	
(Florideophyceae, Rhodophyta). Journal of Phycology, in revision.	
Saunders GW, McDevit DC. 2012. Methods for DNA barcoding photosynthetic protists	
emphasizing the macroalgae and diatoms. Methods in Molecular Biology 858: 207-	
222.	
Saunders GW, Moore TE. 2013. Refinements for the amplification and sequencing of	
red algal DNA barcode and RedToL phylogenetic markers: a summary of current	
primers, profiles and strategies. Algae 28: 31-43.	
Schneider CW, Wynne MW. 2007. A synoptic review of the classification of red algal	
genera a half century after Kylin's "Die Gattungen der Rhodophyceen". Botanica	Formatted: Font: Italic
<u>Marina 50: 197-249.</u>	Formatted: Font: Bold
Searles RB. 1968. Morphological studies of red algae of the order Gigartinales.	
University of California Publications in Botany 43 : i–vii, 1–100.	
Sears JR, Wilce RT. 1975. Sublittoral, benthic marine algae of southern Cape Cod and	
adjacent islands: seasonal periodicity, associations, diversity and floristic	
composition. Ecological Monographs 45: 337-365.	
South GR, Hooper RG. 1980. Catalogue and atlas of the benthic marine algae of the	
Island of Newfoundland. Memorial University Newfoundland Occasional Papers in	
Island of Newfoundland. Memorial University Newfoundland Occasional Papers in Biology 3: 1-136.	

staff. New York Botanical Garden's Virtual Herbarium.

Thiers B. 2016. Index Herbariorum: A global directory of public herbaria and associated

http://sweetgum.nybg.org/science/ih/. Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O. (2010). Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evolutionary Biology 2010, 10:16 doi:10.1186/1471-2148-10-16. Wittmann W. 1965. Aceto-iron-haematoxylin-chloral hydrate for chromosome staining. Stain Technology 40: 161-164. Womersley HBS. 1971. The relationships of Nizymenia and Stenocladia (Gigartinales, Rhodophyta). Phycologia 10: 199-203. Womersley HBS. 1994. The marine benthic flora of Southern southern Australia. Rhodophyta. Part IIIA. Bangiophyceae and Florideophyceae (Acrochaetiales to Gigartinales). Flora of Australia Supplementary Series Number I. Canberra: Australian Biological Resources Study, 508 pp. Wynne MJ, Kraft GT. 1981. Appendix: classification summary. In: Lobban, CS, Wynne MJ, eds, The biology of seaweeds. Berkeley & Los Angeles: University of California Press, 743-750. Yang EC et al. 2015. Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biology and Evolution 7(8): 2394-2406. Yoon H, Muller KM, Sheath RG, Ott FD, Bhattacharya D. 2006. Defining the major lineages of red algae (Rhodophyta). Journal of Phycology 42:482-492.

Figure legends

Figure 1. Phenology of *Plagiospora gracilis*, collected at Strangford Lough Narrows, 1983-1985, showing water temperature measured *in situ* during collections (dashed line) and monthly means of seawater temperature at Port Erin, Isle of Man (continuous line). Tetrasporangia are indicated by the quartered circle. nd, no data.

Figure 2. Vegetative and reproductive morphology of *Plagiospora gracilis*, collected at Strangford Lough Narrows, 23 Jan 1985. A, Basal layer, with numerous cell fusions (arrows), giving rise to erect filaments. B, Thin crust with tetrasporocyte (tmc) borne on intercalary supporting cell. C, Mature obliquely cruciate tetrasporangia (t). D, Thick crust with tetrasporangia. E, Young spermatangial sorus with unbranched filaments. F, Mature spermatangial sorus. G, H, Spermatangial filaments showing spermatangial mother cells obliquely budding off up to 3 spermatangia. I, Female sorus formed above vegetative thallus (arrow indicates orginal surface of crust). J, Sorus consisting of single enlarged apical cells with thick membranes around them. K, Female sorus showing cell fusions between vegetative filaments; reproductive filaments have enlarged nuclei. L, Four-celled carpogonial branch (ca) includes a binucleate hypogynous cell. M, Binucleate cell (hy, of unknown function) formed laterally on female gametangial filaments.

Figure 3. Female reproduction in *Plagiospora gracilis*, collection data as preceding figure, stained with Wittmann's haematoxylin or aniline blue. A, Large carpogonial branch initial (ci) before trichogyne formation. B, Young 2-celled and developing 3-celled carpogonial branches, carpogonium with large nucleus in an apical position. First branch

cell of the 3-celled branch is small and wedge-shaped. C, Four-celled carpogonial branch; first cell has cut off a sterile lateral cell (arrow). D, Female sorus with branched reproductive filaments; one cell (arrow) may be a developing auxiliary cell. E, F, Intercalary auxiliary cells (a); note large nucleus (arrow).

Figure 4. Female reproductive structures of *Plagiospora gracilis*, collection data as before. Figs A-K stained with Wittmann's haematoxylin; Figs L-N with aniline blue. Upper scale bar applies to Figs A-K; lower scale bar to Figs L-N. A, Carpogonial branch initial (ci) prior to formation of trichogyne. B, Carpogonial branch initial showing trichogyne initiation. C, D, Carpogonial branch initial has apparently cut off hypogynous cell (h) to form 2-celled carpogonial branches; carpogonia (c) contain single large nucleus. E, Carpogonial branch initial borne on small wedge-shaped cell (b), possibly a stage in the formation of 3-celled carpogonial branches. F, Carpogonial branch consisting of carpogonium with elongating trichogyne borne on binucleate hypogynous cell. G, H, Developing 3- and 4-celled carpogonial branches. I, Old carpogonial branch, with small conical carpogonium. J, Mature carpogonial branch, with conical carpogonium bearing long trichogyne; hypogynous cell has formed a protuberance. K, Necrotic carpogonium (nc) on 3-celled carpogonial branch. L-N, Auxiliary cells (a) intercalary in lateral auxiliary cell branches. Auxiliary cells contain single large nuclei and have enlarged pit connections.

Figure 5. *Plagiospora gracilis* grown in culture. A, Germinating tetraspores. B, Crust grown from tetraspores released in culture. C, Crust from below, showing abundant cell fusions in basal layer. D, Crust from above, showing rows of rounded cells embedded in mucilage. E, Erect filaments forming tetrasporocytes (tmc) on intercalary supporting cells, following transfer to short-day conditions. F, Mature obliquely cruciate tetrasporangia.

Figure 6. Maximum likelihood phylogeny for the multigene alignment restricted to the included Gigartinales (Table S1). Bootstrap values (1000 replicates) indicated along branches with >50 % support. Scale bar indicates substitutions per site.

Table 1. Distribution and reproduction of *Plagiospora gracilis* Kuckuck. All published records are as *Cruoriopsis gracilis* (Kuckuck) Batters, except Kuckuck (1897) and Batters (1896; as *Cruoriopsis crucialis* L.Dufour).

Locality (North to South by	Habitat	Tetrasporangia	Reference/collector
country)		present?	voucher
NE Atlantic			
Sweden: Kristineberg	5-10 m,	Yes, Oct to Dec	Kylin (1944)
	stones		
Denmark: Middelfart	15 m, stones	Yes, July	Rosenvinge (1917)
Germany: Helgoland, North Sea	10 m, stones	Yes, Winter	Kuckuck (1897)
		1895/96	
Scotland: Islay, Argyll	Subtidal	Few, June 1982	САМ
	stones		
N. Ireland: Rathlin Is, Co. Antrim	15 m, stones	None, 29 Aug	САМ
		1985	
N. Ireland: Strangford Lough,	5-12 m,	See Table S1	САМ
Co. Down	stones		
Ireland: Flannery Bridge,	5 m, stone	6 Dec 1981	CAM
Kilkieran Bay, Co. Galway			
Wales: Bardsey, Caernavon	12-17 m,	None, 22 Aug	САМ
	stones	1983	BM568872
Wales: Bardsey, Caernavon	9 m, stones	None, 25 Aug	CAM
		1983	

1
2 3
3 4 5 6
7
0
9 10 11 12 13 14 15 16 17 18 19 20
12
14
15 16
17 18
19 20
21 22 23
23
24 25
20 27
28
29 30 31
32 33
34 25
32 33 34 35 36 37
38
39 40
41 42
43 44
45 46
47 48
49
50 51
52 53
54 55
56 57
58 59
09

			BM569403
Wales: Skomer, Pembrokeshire	5-10 m, stones	None, Aug 1982	S. Hiscock
Wales: Martinshaven, Pembs	5-10 m, stones	None, Aug 1982	S. Hiscock
England: Starehole Bay,	3 m, stones	None, 8 Sept 1985	САМ
Salcombe, Devon			BM568808
England: Yealm Estuary,	"Deep" shells	Yes; no date given	Batters (1896)
Plymouth, Devon			
NW Atlantic			
Newfoundland: Bonne Bay &	10-20 m	Yes, July	South & Hooper (1980)
Fortune Bay			
Prince Edward Is: Rustico	18 m, stones	Undivided	САМ
		sporocytes, 22	
		Aug 1986	
Prince Edward Is: Gala Pt.	8 m, stones	Yes, very rare;	GWS
		also undivided	
		sporocytes and	
		abortive	
		bisporangial	
		stages, 29 July	
		2008	
Nova Scotia: Peggys Cove	15 m, stones	None, 19 July	GWS
		1986	

Nova Scotia: Diligent River	2-3 m, stones	Yes, 12 Dec 1986	САМ
Maine: Casco Bay	4-8 m, stones	Few, July	Phycotheca Boreali-
			Americani, no. 1650
			(Collins 1911).
Massachusetts: S. Cape Cod	8-22 m, stones	Apr to Nov	Sears & Wilce (1975)

CAM, Christine Maggs; GWS, Gary Saunders

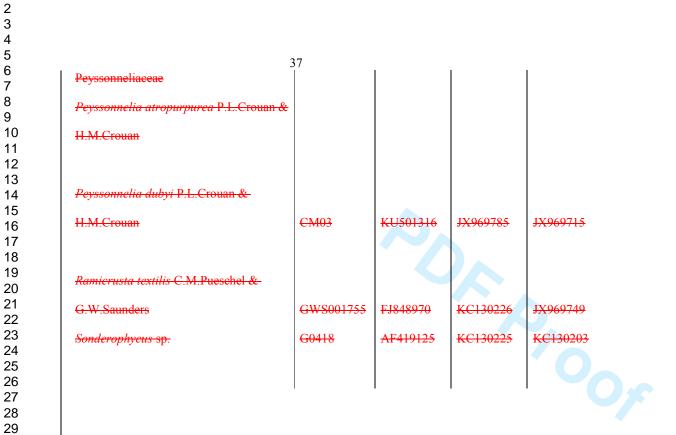
1			
2 3 4 5 6 7 8 9 10			
4 5		29	
6		2,	
7 8			
9	Supplementary files		
10 11			
12	T 11 01		
13 14	Table S1		
15	Table S2		
16 17			
18			
19 20			
21			
22			
24 25			
26			
27 28			
29			
30 31			
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35			
33 34			
35 36			
37			
38 39			
40			
41 42			
43			
44 45			
46			
47 48			
49			
50 51			
51 52 53			
54			
55 56			
57			
58 59			
60			
		Second and the second	

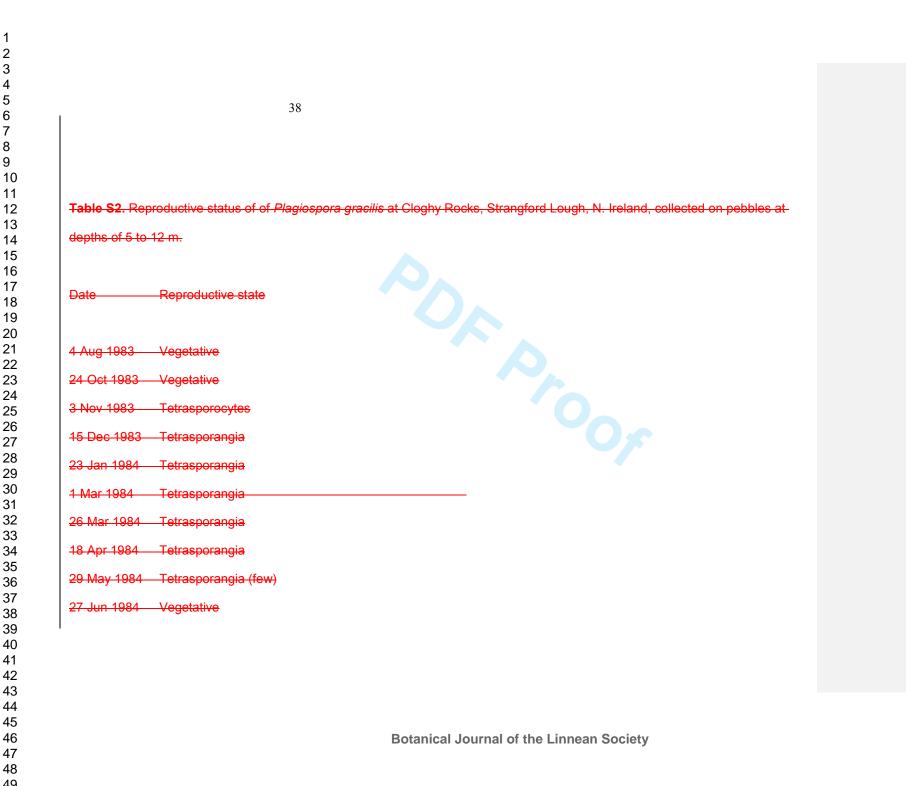
Table S1. A list of the taxa used in this study with the corresponding GenBank accessions for the three genes used in phylogenetic analyses.

Taxon	Voucher	LSU	rbcL	COI-5P
Atractophorales				
Atractophoraceae-				
Atractophora hypnoides P.Crouan &				
H.Crouan	GWS005200	GQ497323	KU382063	GQ497303
Gigartinales				
Acrotylaceae				
Acrotylus australis J.Agardh	G0023	GQ406346-	KC130223	NÐ
	GWS034942	ND	NÐ	xxxxx
Areschougiaceae				
Areschougia congesta (Turner) J.Agardh	GWS002474	GQ406347	KC130213	ND
	GWS014882	ND	ND	HM917458
Austroclonium charoides (Harvey) Min-				
Thein & Womersley	G0360	KF026501	KF026485	HM915819

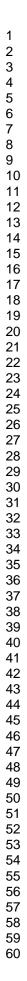
Chondrymeniaceae	31			I
Chondrymeniaceae sp.	GWS005891	KF026513	KF026497	HM918785
Crebradomus gongylocarpus Kraft &				
G.W.Saunders	GWS002030	KF026500	KF026482	HM915973
Dissimularia withallii Kraft &				
G.W.Saunders	JAR-1201	KF026509	KF026492	KF026473
Cruoriaceae				
Cruoria cruoriiformis (P.Crouan &				
H.Crouan) Denizot	SA2165 4	KC130241	KC130214	HM916098
Cruoria pellita (Lyngbye) Fries	GWS000563	GQ406348	KT310698	ND
Pseudopolyides furcellatus Barbara,				
Gallardo, Cremades, Barreiro, Maneiro &				
G.W.Saunders	SA19548	KC130239	ND	KC130189
	SA19559	ND	KC130212	KC130194
Cystocloniaceae				
Calliblepharis jubata (Goodenough &-				
Woodward) Kützing	GWS000323	KF026511	ND	ND

	32			
	GWS014653	ND	KF026494	KF026474
Cystoclonium purpureum (Hudson)				
Batters	G0421	KC130242	KC130217	ND
	GWS002294	NÐ	NÐ	HM918475
Hypnea charoides Lamouroux	G0358	GQ406354	KC130220	HM915818
Dicranemataceae				
<i>Dicranema revolutum</i> (C.Agardh)				
J.Agardh	G0036	GQ406349	ND	ND
	GWS014819	ND	KC130231	HM917423
Dumontiaceae				
<i>Dasyphloea insignis</i> Montagne	G0034	DQ343688	ND	ND
	GWS014869	ND	XXXXX	ND
	GWS015838	ND	NÐ	XXXXX
Dilsea carnosa (Schmidel) Kuntze	GWS000746	EF033609	JN403065	AY971151
Dudresnaya hawaiiensis R.K.S.Lee	GWS001024	KC130243	KC130219	KC130201
Dumontia contorta (Gmelin) Ruprecht	CSM005B	ND	JN403062	AY971155
	GWS001815	JX296139	ND	AY970583
l		1	I	1


	33		1	
Gibsmithia hawaiiensis Doty	GWS001343	GU176297	KT310689	ND
Endoeladiaceae				
<i>Endocladia muricata</i> (Postels &-				
Ruprecht) J.Agardh	G0155	KF026504	ND	ND
	GWS020093	NÐ	KF026496	KF026475
Gloiopeltis furcata (Postels & Ruprecht)				
J.G.Agardh	GWS002264	EF033612	JX969801	NÐ
	GWS013649	NĐ	ND	HM916317
Furcellariaceae				
Furcellaria lumbricalis (Hudson)-				
Lamouroux	GWS001772	GQ406350	ND	NÐ
	GWS003509	ND	KC130215	NÐ
<i>Turnerella mertensiana</i> (Postels &-				
Ruprecht) F.Schmitz	GWS003012	xxxxx	xxxxx	XXXXX
Gigartinaceae				
Chondracanthus exasperatus (Harvey &				
Bailey) Hughey	GWS002829	GQ338089	JN403073	GQ398091


	34	1		1
Rhodoglossum gigartinoides (Sonder)-				
Edyvane & Womersley	G0098	GQ338091	JN403074	NÐ
	GWS029663	KF026505	NÐ	KF026468
Gloiosiphoniaceae				
Gloiosiphonia capillaris (Hudson)-				
Carmichael in Berkeley	GWS000374	GQ406352 -	NÐ	ND
	GWS013313	NÐ	KU382056	HM915532
Haemeschariaceae				
Haemescharia polygyna Kjellman	GWS001849	GQ406353	KC130218	ND
Kallymeniaceae				
Callophyllis edentata Kylin	GWS001145	AY171604	KC130228	JX034247
<i>Glaphyrymenia pustulosa</i> J.Agardh	GWS015923	KF280962	KF280988	HM917946
Kallymenia cribrosa Harvey	GWS000466	KF280953	KF280978	KF280930
Meredithia crenata C.W. Schneider,				
C.E.Lane & G.W.Saunders	GWS001247	AY171612	KC157632	KC157617
Polycoelia laciniata J.Agardh	GWS001906	JX296144	KF280983	KT307606
Psaromenia sp1LH	GWS002058	JX296141	KC157627	HM915984

	35			
Mychodeaceae				
<i>Mychodea terminalis</i> Harvey	DV023	XXXXX	XXXXX	XXXXX
Mychodeophyllaceae				
Mychodeophyllum papillitectum Kraft	G0385	GQ406355	KF026493	HM915826
Nizymeniaceae				
Nizymenia australis Sonder	GWS001581	GQ406356	KC130227	ND
	GWS014843	NÐ	NÐ	HM917440
Phacelocarpaceae				
Phacelocarpus peperocarpos (Poiret)-				
Wynne, Ardré & Silva	GWS000417	GQ406357	KC130222	HM915869
Phyllophoraceae				60
Archestenogramma profundum-				
C.W.Schneider, T.Chengsupanimit &				
G.W.Saunders	BDA0368	JN403059	JN403075	HQ933374
Mastocarpus californianus-				
S.C.Lindstrom, J.R.Hughey &-				


Botanical Journal of the Linnean Society

	36			
Stenogramma phyllophoroides-	30			
(J.Agardh) Millar	GWS001506	JN403060	GQ338123	GQ380377
Plagiosporaceae				
Plagiospora gracilis	GWS000293	XXXXX	XXXXX	ND
Polyidaceae				
Polyides rotundus (Hudson) Greville	G03 44	FJ848972	KC130221	ND
	GWS002676	₩Ð	NÐ	HM918499
Rhizophyllidaceae				
Contarinia sp.	6091	KC130244	KC130224	ND
	6168	NÐ	NÐ	XXXXX
Portieria hornemannii (Lyngbye) Silva	G0232	FJ848973	JX996090	NÐ
Solieriaceae				
Solieria robusta (Greville) Kylin	GWS001590	GQ406360	KC130210	HM915934
Sphaerococcaceae				
Sphaerococcus coronopifolius-				
Stackhouse	GWS001833	FJ848974	KC130216	ND
Peyssonneliales	CM04	KU501313	JX969782	JX969703
				1

	39
27 Jul 1984 -	Vegetative
29 Aug 1984 -	- Vegetative
26 Sep 1984	Vegetative
2 Nov 1984 -	Vegetative
28 Nov 1984	- Tetrasporangia; spermatangia
19 Dec 1984	Tetrasporangia
23 Jan 1985	- Tetrasporangia; spermatangia; carpogonia
30 Jan 1985	- Tetrasporangia
26 Feb 1985	- Tetrasporangia; carpogonia
15 May 1985	Tetrasporangia
16 Dec 1985	-Spermatangia; carpogonia

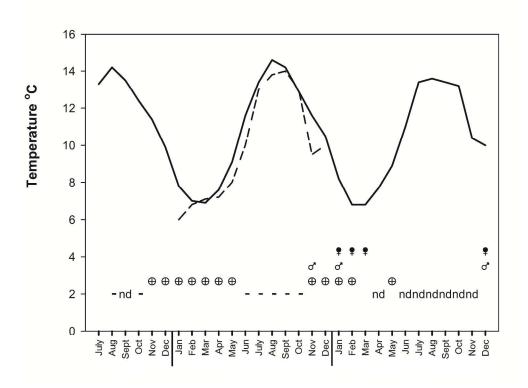


Figure 1. Phenology of Plagiospora gracilis, collected at Strangford Lough Narrows, 1983-1985, showing water temperature measured in situ during collections (dashed line) and monthly means of seawater temperature at Port Erin, Isle of Man (continuous line). Tetrasporangia are indicated by the quartered circle. nd, no data.

1514x1192mm (120 x 120 DPI)

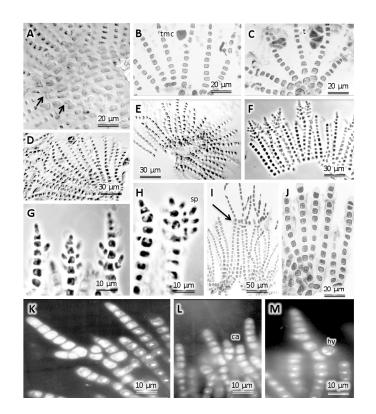


Figure 2. Vegetative and reproductive morphology of Plagiospora gracilis, collected at Strangford Lough
 Narrows, 23 Jan 1985. A, Basal layer, with numerous cell fusions (arrows), giving rise to erect filaments. B,
 Thin crust with tetrasporocyte (tmc) borne on intercalary supporting cell. C, Mature obliquely cruciate
 tetrasporangia (t). D, Thick crust with tetrasporangia. E, Young spermatangial sorus with unbranched
 filaments. F, Mature spermatangial sorus. G, H, Spermatangial filaments showing spermatangial mother
 cells obliquely budding off up to 3 spermatangia. I, Female sorus formed above vegetative thallus (arrow
 indicates orginal surface of crust). J, Sorus consisting of single enlarged apical cells with thick membranes
 around them. K, Female sorus showing cell fusions between vegetative filaments; reproductive filaments
 have enlarged nuclei. L, Four-celled carpogonial branch (ca) includes a binucleate hypogynous cell. M,
 Binucleate cell (hy, of unknown function) formed laterally on female gametangial filaments.
 1057x793mm (72 x 72 DPI)

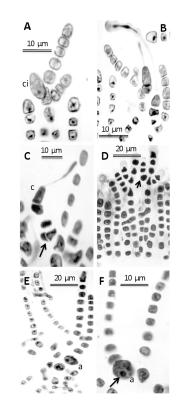


Figure 3. Female reproduction in Plagiospora gracilis, collection data as preceding figure, stained with Wittmann's haematoxylin or aniline blue. A, Large carpogonial branch initial (ci) before trichogyne formation. B, Young 2-celled and developing 3-celled carpogonial branches, carpogonium with large nucleus in an apical position. First branch cell of the 3-celled branch is small and wedge-shaped. C, Four-celled carpogonial branch; first cell has cut off a sterile lateral cell (arrow). D, Female sorus with branched reproductive filaments; one cell (arrow) may be a developing auxiliary cell. E, F, Intercalary auxiliary cells (a); note large nucleus (arrow).

1057x793mm (72 x 72 DPI)

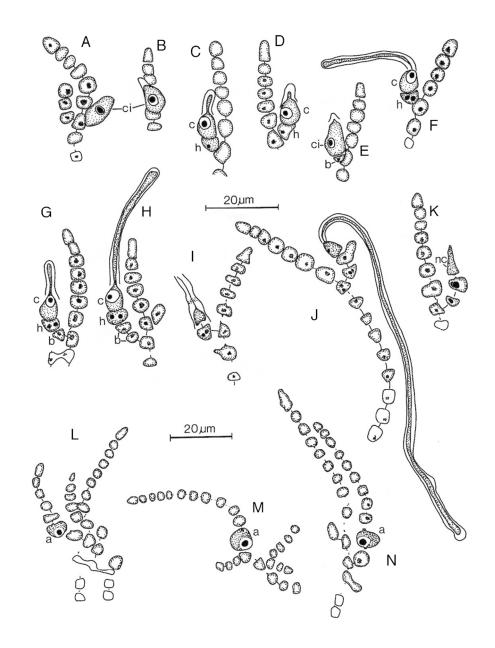


Figure 4. Female reproductive structures of Plagiospora gracilis, collection data as before. Figs A-K stained with Wittmann's haematoxylin; Figs L-N with aniline blue. Upper scale bar applies to Figs A-K; lower scale bar to Figs L-N. A, Carpogonial branch initial (ci) prior to formation of trichogyne. B, Carpogonial branch initial showing trichogyne initiation. C, D, Carpogonial branch initial has apparently cut off hypogynous cell (h) to form 2-celled carpogonial branches; carpogonia (c) contain single large nucleus. E, Carpogonial branch initial borne on small wedge-shaped cell (b), possibly a stage in the formation of 3-celled carpogonial branches. F, Carpogonial branch consisting of carpogonial branches. I, Old carpogonial branch, with small conical carpogonium. J, Mature carpogonial branch, with conical carpogonium bearing long trichogyne; hypogynous cell has formed a protuberance. K, Necrotic carpogonium (nc) on 3-celled carpogonial branch. L-N, Auxiliary cells (a) intercalary in lateral auxiliary cell branches. Auxiliary cells contain single large nuclei and have enlarged pit connections. 187x255mm (150 x 150 DPI)

Botanical Journal of the Linnean Society

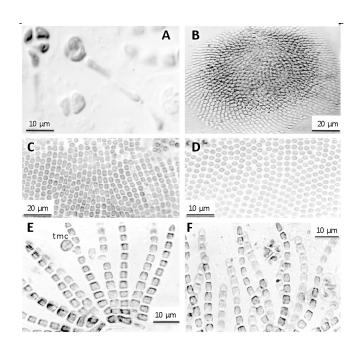
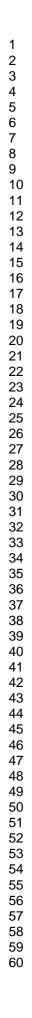



Figure 5. Plagiospora gracilis grown in culture. A, Germinating tetraspores. B, Crust grown from tetraspores released in culture. C, Crust from below, showing abundant cell fusions in basal layer. D, Crust from above, showing rows of rounded cells embedded in mucilage. E, Erect filaments forming tetrasporocytes (tmc) on intercalary supporting cells, following transfer to short-day conditions. F, Mature obliquely cruciate tetrasporangia.

1057x793mm (72 x 72 DPI)

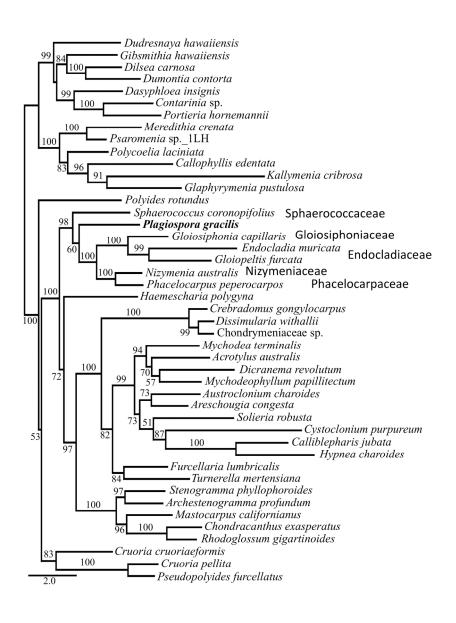


Figure 6. Maximum likelihood phylogeny for the multigene alignment restricted to the included Gigartinales (Table S1). Bootstrap values (1000 replicates) indicated along branches with >50 % support. Scale bar indicates substitutions per site. 250x333mm (300 x 300 DPI)

 Table S1. A list of the taxa used in this study with the corresponding GenBank accessions for the three genes used in phylogenetic analyses.

Taxon	Voucher	LSU	<i>rbc</i> L	COI-5P
Atractophorales				
Atractophoraceae				
Atractophora hypnoides PCrouan & H.				
Crouan	GWS005200	GQ497323	KU382063	GQ497303
Gigartinales				
Acrotylaceae				
Acrotylus australis JAgardh	G0023	GQ406346	KC130223	ND
	GWS034942	ND	ND	XXXXX
Areschougiaceae				
Areschougia congesta (Turner) J.				
Agardh	GWS002474	GQ406347	KC130213	ND
	GWS014882	ND	ND	HM917458
Austroclonium charoides (Harvey) Min-				
Thein & Womersley	G0360	KF026501	KF026485	HM915819
Chondrymeniaceae				
Chondrymeniaceae sp.	GWS005891	KF026513	KF026497	HM918785
Crebradomus gongylocarpus Kraft &				
G.WSaunders	GWS002030	KF026500	KF026482	HM915973
Dissimularia withallii Kraft & G.W.				
Saunders	JAR-1201	KF026509	KF026492	KF026473
Cruoriaceae				
<i>Cruoria cruoriiformis</i> (PCrouan & H.				
Crouan) Denizot	SA21654	KC130241	KC130214	HM916098
Cruoria pellita (Lyngbye) Fries	GWS000563	GQ406348	KT310698	ND
Pseudopolyides furcellatus Barbara,				
Gallardo, Cremades, Barreiro, Maneiro &	SA19548	KC130239	ND	KC130189

G.WSaunders	SA19559	ND	KC130212	KC130194
Cystocloniaceae	SA19559	ND	KC150212	KC130194
Calliblepharis jubata (Goodenough &				
Woodward) KŸtzingKützing	GWS000323	KF026511	ND	ND
woodward) Krizing<u>K</u>utzing	GWS014653	ND	KF026494	KF026474
<i>Cystoclonium purpureum</i> (Hudson)	0 w 5014055	ND	KI 020494	KI'020474
Batters	G0421	KC130242	KC130217	ND
Datters	GWS002294	ND	ND	HM918475
Human chanoidas IV I amouroux	G0358	GQ406354	KC130220	HM915818
<i>Hypnea charoides</i> J.VLamouroux Dicranemataceae	00330	00400334	KC130220	1111713010
Dicranema revolutum (CAgardh) J.				
Agardh	G0036	GQ406349	ND	ND
1 Gui un	GWS014819	ND	KC130231	HM917423
Dumontiaceae	GWB011019	TLD .	RC150251	11101/17/125
Dasyphloea insignis Montagne	G0034	DQ343688	ND	ND
	GWS014869	ND	XXXXX	ND
	GWS015838	ND	ND	XXXXX
Dilsea carnosa (Schmidel) Kuntze	GWS000746	EF033609	JN403065	AY971151
Dudresnaya hawaiiensis R.K.SLee	GWS001024	KC130243	KC130219	KC130201
Dumontia contorta (Gmelin) Ruprecht	CSM005B	ND	JN403062	AY971155
	GWS001815	JX296139	ND	AY970583
Gibsmithia hawaiiensis Doty	GWS001343	GU176297	KT310689	ND
Endocladiaceae				
Endocladia muricata (Postels &				
Ruprecht) JAgardh	G0155	KF026504	ND	ND
	GWS020093	ND	KF026496	KF026475
<i>Gloiopeltis furcata</i> (Postels & Ruprecht)				
J.GAgardh	GWS002264	EF033612	JX969801	ND
	GWS013649	ND	ND	HM916317

	Furcellariaceae	1	I	1	I
I	<i>Furcellaria lumbricalis</i> (Hudson) J.V.				
	Lamouroux	GWS001772	GQ406350	ND	ND
		GWS003509	ND	KC130215	ND
	Turnerella mertensiana (Postels &				
	Ruprecht) FSchmitz	GWS003012	XXXXX	XXXXX	XXXXX
	Gigartinaceae				
	Chondracanthus exasperatus (Harvey &				
	Bailey) J.RHughey	GWS002829	GQ338089	JN403073	GQ3980
	Rhodoglossum gigartinoides (Sonder)				
	Edyvane & Womersley	G0098	GQ338091	JN403074	ND
		GWS029663	KF026505	ND	KF0264
	Gloiosiphoniaceae				
	Gloiosiphonia capillaris (Hudson)				
	Carmichael in Berkeley	GWS000374	GQ406352	ND	ND
		GWS013313	ND	KU382056	HM9155
	Haemeschariaceae	GUUG001040	0.000		
	Haemescharia polygyna Kjellman	GWS001849	GQ406353	KC130218	ND
	Kallymeniaceae	CW0001145	AY171604	KC130228	JX03424
	Callophyllis edentata Kylin	GWS001145			
	Glaphyrymenia pustulosa JAgardh	GWS015923	KF280962	KF280988	HM9179
	Kallymenia cribrosa Harvey Meredithia crenata C.W. <mark>S-S</mark> chneider,	GWS000466	KF280953	KF280978	KF28093
	C.ELane & G.WSaunders	GWS001247	AY171612	KC157632	KC1576
	Polycoelia laciniata JAgardh	GWS001247 GWS001906	JX296144	KC137032 KF280983	KC1376
	Psaromenia sp. 1LH	GWS002058	JX290144 JX296141	KC157627	HM9159
	Mychodeaceae	Gw 5002038	JA290141	KC157027	пиятэ:
	Mychodea terminalis Harvey	DV023	XXXXX	XXXXX	XXXXX
	Mychodeophyllaceae	D 1025			
	Mychodeophyllum papillitectum Kraft	G0385	GQ406355	KF026493	HM9158

Nizymeniaceae					
Nizymenia australis Sonder	GWS001581	GQ406356	KC130227	ND	
~ 1	GWS014843	ND	ND	HM917440	
Phacelocarpaceae					
<i>Phacelocarpus peperocarpos</i> (Poiret) M.J.Wynne, Ardré & P.C.Silva	GWS000417	GQ406357	KC130222	HM915869	
Phyllophoraceae	GW 5000417	00400337	KC150222	ПМ913809	
Archestenogramma profundum C.W.					Formatted: Font: Italic
Schneider, T. Chengsupanimit & G.W.					
Saunders	BDA0368	JN403059	JN403075	HQ933374	
Mastocarpus californianus S.C.	-				
Lindstrom, J.R. Hughey & P.TMartone	GWS000073	GQ338094	GQ338144	GQ380171	
Stenogramma phyllophoroides (J.		B 14000 (0			
Agardh) <u>A.</u> Millar	GWS001506	JN403060	GQ338123	GQ380377	
Plagiosporaceae Plagiospora gracilis <u>Kuckuck</u>	GWS000293	XXXXX	XXXXX	ND	- Formatted: Font: Not Italic
Polyidaceae	Gw 5000295				Formatted: Font: Not itaric
Polyides rotundus (Hudson) Greville	G0344	FJ848972	KC130221	ND	
	GWS002676	ND	ND	HM918499	
Rhizophyllidaceae	0	1.12			
Contarinia sp.	6091	KC130244	KC130224	ND	
	6168	ND	ND	XXXXX	
Portieria hornemannii (Lyngbye)					
P.C.Silva	G0232	FJ848973	JX996090	ND	
Solieriaceae	CW2001500	0040(2(0	VC120210	10 101 202 4	
Solieria robusta (Greville) Kylin Sphaerococcaceae	GWS001590	GQ406360	KC130210	HM915934	
Sphaerococcus coronopifolius	GUUG001022	510 400 7 4			
Stackhouse	GWS001833	FJ848974	KC130216	ND	
Peyssonneliales Peyssonneliaceae	CM04	KU501313	JX969782	JX969703	

1					
2 3					
4					
5 6					
7 8 9	<i>Peyssonnelia atropurpurea</i> P. L. Crouan & H. M. Crouan				
10					
11 12 13	<i>Peyssonnelia dubyi</i> P. L. Crouan & H. M. Crouan	CM03	KU501316	JX969785	JX969715
13 14 15 16	Ramicrusta textilis C.MPueschel & G.WSaunders Sonderophycus sp.	GWS001755 G0418	FJ848970 AF419125	KC130226 KC130225	JX969749 KC130203
17	Sonderophycus sp.	00418	AF419125	KC150225	KC130203
18					I
19 20					00,0
20 21					
22					
23					
24 25					
25 26					
27					
28					
29 20					
30 31					
32					
33					
34					
35 36					
37					
38					
39					
40					
41 42					
42 43					
44					
45					
46			Botanical Jo	urnal of the L	innean Society
47					
48					

Table S2. Phenology of *Plagiospora gracilis* at Cloghy Rocks, Strangford Lough, N. Ireland, collected on pebbles at depths of 5 to 12 m.

Date Reproductive state

24 Oct 1983 Ve 3 Nov 1983 Te 3 Nov 1983 Te 15 Dec 1983 Te 23 Jan 1984 Te 23 Jan 1984 Te 1 Mar 1984 Te 26 Mar 1984 Te 29 May 1984 Te 27 Jun 1984 Ve 27 Jul 1984 Ve 28 Nov 1984 Ve 28 Nov 1984 Te	egetative egetative etrasporocytes etrasporangia etrasporangia etrasporangia etrasporangia etrasporangia (few) egetative egetative egetative egetative egetative egetative egetative
3 Nov 1983 Te 15 Dec 1983 Te 23 Jan 1984 Te 1 Mar 1984 Te 26 Mar 1984 Te 18 Apr 1984 Te 27 Jun 1984 Te 27 Jul 1984 Ve 29 Aug 1984 Ve 26 Sep 1984 Ve 28 Nov 1984 Te	etrasporocytes etrasporangia etrasporangia etrasporangia etrasporangia etrasporangia etrasporangia (few) egetative egetative egetative egetative
15 Dec 1983Te23 Jan 1984Te1 Mar 1984Te26 Mar 1984Te28 Apr 1984Te29 May 1984Te27 Jun 1984Ve27 Jul 1984Ve29 Aug 1984Ve20 Aug 1984Ve20 Aug 1984Ve21 Nov 1984Ve28 Nov 1984Te	etrasporangia etrasporangia etrasporangia etrasporangia etrasporangia etrasporangia (few) egetative egetative egetative egetative
23 Jan 1984Te1 Mar 1984Te26 Mar 1984Te26 Mar 1984Te18 Apr 1984Te29 May 1984Te27 Jun 1984Ve27 Jul 1984Ve29 Aug 1984Ve26 Sep 1984Ve28 Nov 1984Te	etrasporangia etrasporangia etrasporangia etrasporangia etrasporangia (few) egetative egetative egetative egetative
1 Mar 1984 Te 26 Mar 1984 Te 18 Apr 1984 Te 29 May 1984 Te 27 Jun 1984 Ve 27 Jul 1984 Ve 29 Aug 1984 Ve 26 Sep 1984 Ve 28 Nov 1984 Te	etrasporangia etrasporangia etrasporangia etrasporangia (few) egetative egetative egetative egetative
26 Mar 1984Te18 Apr 1984Te29 May 1984Te27 Jun 1984Ve27 Jul 1984Ve29 Aug 1984Ve26 Sep 1984Ve2 Nov 1984Ve28 Nov 1984Te	etrasporangia etrasporangia etrasporangia (few) egetative egetative egetative egetative
18 Apr 1984 Te 29 May 1984 Te 27 Jun 1984 Ve 27 Jul 1984 Ve 29 Aug 1984 Ve 26 Sep 1984 Ve 28 Nov 1984 Ve	etrasporangia etrasporangia (few) egetative egetative egetative egetative
29 May 1984Te27 Jun 1984Ve27 Jul 1984Ve29 Aug 1984Ve26 Sep 1984Ve2 Nov 1984Ve28 Nov 1984Te	etrasporangia (few) egetative egetative egetative egetative
27 Jun 1984Ve27 Jul 1984Ve29 Aug 1984Ve26 Sep 1984Ve2 Nov 1984Ve28 Nov 1984Te	egetative egetative egetative egetative
27 Jul 1984Va29 Aug 1984Va26 Sep 1984Va2 Nov 1984Va28 Nov 1984Ta	egetative egetative egetative
29 Aug 1984 Vo 26 Sep 1984 Vo 2 Nov 1984 Vo 28 Nov 1984 To	egetative egetative
26 Sep 1984 Ve 2 Nov 1984 Ve 28 Nov 1984 Te	egetative
2 Nov 1984 Ve 28 Nov 1984 Te	•
28 Nov 1984 Te	egetative
	egetative
19 Dec 1984 Te	etrasporangia; spermatangia
	etrasporangia
23 Jan 1985 Te	etrasporangia; spermatangia; carpogonia
30 Jan 1985 Te	etrasporangia
26 Feb 1985 Te	etrasporangia; carpogonia
15 May 1985 Te	etrasporangia
16 Dec 1985 Sp	permatangia; carpogonia