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Abstract 

The focal species of the research was the freshwater cyprinid fish Garra ghorensis. 

Endemic to the southern Dead Sea basin of the Middle East, it is ‘Red listed’ by the 

IUCN as ‘endangered’. It inhabits the small rivers of the basin (‘wadis’), existing within 

fish communities of very low species diversity. The aim of the research was to inform 

conservation strategies for the species through investigations into their phylogeny, 

current distribution, life history traits and feeding relationships.  

Analysis of the mitochondrial DNA of G. ghorensis with other fishes of the Garra 

genus tested two contrasting hypotheses on their biogeographic origin: whether they 

were descended from Garra tibancia in the Arabian Peninsula or from a common 

ancestor shared with Garra rufa, which would have indicated dispersal from the 

Mediterranean basin and Mesopotamia. The phylogenetic tree clearly indicated that G. 

ghorensis shared a common ancestor with G. rufa and thus was of Mediterranean origin. 

These phylogenetic analyses were then important for interpreting G. ghorensis 

biogeography in relation to their natural range and current distribution. Surveys 

completed in 2010 provided data on their spatial distribution; this distribution was at 

least partially explained by historical geological and water salinity changes of the proto-

lakes of Lake Samra and Lisan. These surveys also revealed that during the 2000s, there 

had been little change in G. ghorensis distribution, with populations still present in 

wadis that were recorded in 2002. However, at the surveyed sites, some alterations to 

the physical habitats and hydrology of the wadis were apparent, such as construction of 

impoundments. 

To assess the life history traits and feeding relationships of G. ghorensis, three locally 

abundant populations were studied. These were an allopatric population, a population 

sympatric with the native cyprinid Capoeta damascina and a population sympatric with 
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the invasive cichlid Oreochromis aureus. The allopatric and sympatric native 

populations were present in wadis with minimal habitat disturbance, whereas the 

sympatric invasive population was present in a wadi with substantial alteration, 

including some impoundments that deepened the main channel and reduced the flow. 

Analyses of ages, growth rates and reproductive traits revealed that life spans, growth 

rates and reproductive investment were greatest at this disturbed site, despite being 

relatively altered from the apparently preferred habitat of the species. These results 

suggested that providing the hydrological disturbance at sites where G. ghorensis is 

present still enables the completion of their life cycle then their populations can 

withstand some aspects of habitat disturbances from anthropogenic activities.  

The feeding relationships of G. ghorensis were then assessed in relation to the presence 

of C. damascina and O. aureus in two of the sites, and used a combination of stomach 

contents analyses and stable isotope analysis. Results from both methods revealed 

whilst there were some overlaps in the trophic niches of the fishes, diets were based 

mainly on detritus and algae. These items are rarely limiting in freshwaters and thus 

whilst resources were shared, it was unlikely to result in high levels of inter-specific 

competition.  

Thus, an important ecological feature of G. ghorensis populations is their plasticity in 

life history traits and their resource use that enables some adaptation to disturbed 

environments. This suggests that their conservation management does not necessarily 

have to return their habitats to pristine conditions, as their adaptive capacity should 

enable some adaptation to the new conditions and thus continued population 

sustainability. Consequently, providing that development schemes prevent the 

destruction of the key habitats required for the completion of the G. ghorensis lifecycle, 

then their populations could remain sustainable in the face of continued development in 

the region. 
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Chapter 1. General Introduction 

1.1 Research Overview 

The overall aim of this research was to assess the ecology and conservation threats to the 

endangered cyprinid fish Garra ghorensis through analysis of a range of biogeographic 

and ecological indicators. This fish species is endemic to the southern Dead Sea basin in 

the Middle East, including Jordan, the country of study. The research covers their 

phylogeography, contemporary distribution, life history traits and trophic ecology, with 

this introduction chapter providing the rationale and context for the research. The chapter 

concludes with the research aims, objectives and thesis structure.  

1.2 Freshwater fish fauna of Jordan 

The freshwater fish fauna of Jordan is relatively diverse due to its derivation from five 

different zoological affinities, the Palaeratctic, Indoasiatic, Afrotropical, Thehys relict and 

Mediterranean. This diversity has attracted considerable scientific interest in the past, 

resulting in several studies of the fishes of the Levant (an Eastern Mediterranean area 

including Jordan), with authors such as Hasselquist (1757), Heckel (1843), and Tristram 

(1884) providing detailed accounts of the fishes of Palestine. Trewavas (1942) reviewed 

the cichlids of Palestine, including those of the River Jordan and Yarmouk. More recent 

works provided the first comprehensive taxonomical studies of Jordanian freshwater 

fishes, with Krupp and Schneider (1989) describing 25 freshwater fishes in the Jordan and 

Yarmouk river basins, of which 12 were endemic to the region, including G. ghorensis of 

the family Cyprinidae (Figure 1) and the Azraq killifish Aphanius sirhani. They also 

listed 27 introduced fishes, although few other details were provided on these non-native 

species. 



 

24 

 

Figure 1 Garra ghorensis, the focal fish of the study (© Mr Koji Kawai). 

More recently, studies coordinated by the Royal Society for the Conservation of Nature 

(RSCN), Jordan, provided species accounts of Jordanian freshwater fishes derived from 

field visits completed between 2001 and 2004, and in 2014 (Hamidan, 2004, 2014). 

Across a series of water bodies, sampling revealed 15 fish species present belonging to 6 

families and 12 genera. Similar to Krupp and Schneider (1989), the work emphasised the 

presence of a number of endemic fishes in these locations, including G. ghorensis, but 

also noted differences in their community composition, and population abundance and 

structure, across the range of waters sampled. When compared to local factors that may 

be constraining these fishes, threats of introduced species, habitat loss, and unsustainable 

water abstraction and utilisation were identified as potential major issues. However, how 

these factors might have been impinging on the fish populations was not ascertained. 

Nevertheless, these potential threats to the endemic fish fauna of Jordan were sufficient 

for Krupp and Schneider (1989) to suggest that unsustainable water utilisation was of 

particular concern for the status of the endemic A. sirhani. Hamidan (2004) concluded his 

work by saying that the combination of habitat loss and introduced species appeared to be 
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the most critical threats to the status of the endemic fishes, including G. ghorensis. This is 

consistent with work by numerous authors that assert that the global threat to native 

biodiversity posed by alien species and habitat loss is high (e.g. Marchetti et al., 2004; 

Clavero and Garcia-Berthou, 2006; Olden et al., 2006, Mantyka et al., 2012, Galiana et 

al., 2014, Walsh et al., 2016).  

1.3 Fish species declines and status in Jordan, including Garra ghorensis 

Within the freshwater fish fauna of Jordon, observed declines in the population status of a 

number of species are apparent. For example, Weissenbacher and Zornig (2000) assessed 

the Azraq Killifish A. sirhani as being "at the edge of extinction", resulting in the Royal 

Society for the Conservation of Nature (RSCN) initiating a long-term conservation 

programme designed to restore their populations back to their former levels. This 

commenced in 2000 and after starting from a stock of only 40 individual fish collected 

from Azraq wetland and thought to be of the last remaining individuals in the wild 

population, the programme has been sufficiently successful that their populations are 

completely restored, representing a conservation success (Soorae, 2008). This work 

demonstrated the conservation benefit that can accrue for threatened species in Jordan 

following restoration programmes that are based on data gained on the biology and 

ecology of the species concerned. 

In 2006, the IUCN Red List classified G. ghorensis as being critically endangered due to 

its limited distribution range (Figure 2). This evaluation was made by international 

ichthyologists who were not fully aware about the freshwater fish studies completed in 

Jordan in recent years. However, in 2014, and based on field research it was reduced to 

‘endangered’ (Freyhof, 2014) due to the high but disturbed area of occupancy the species 

occurred in its distribution range.  
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Figure 2 The known distribution of Garra ghorensis as determined prior to this study, 

recorded and published by Hamidan and Mir, 2003. 

The natural range of the species is currently restricted to the springs and ‘wadis’ of the 

southern Dead Sea area (south of Mujib River to Wadi Khneizerah). Note a wadi (plural: 

wadis) refers to a stream in a valley or gully in this region and is a term used throughout 

the thesis. Until the 1980s this endemic species also occurred in the western side of the 
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Dead Sea basin, but due to the destruction of its natural habitat, it is no longer found there 

(Goren & Ortal 1999). In addition to the habitat destruction, at the western side of the 

basin, the synergistic effects of the introduced mosquito fish Gambusia holbrooki was 

noticed as bio-controllers in most of the water bodies at the western side of the previous 

distribution range of G. ghorensis (IUCN, 2006).  

The impact of invasive Gambusia fishes is well documented around the world, and it can 

be summarised thus. Direct predation on native, competitive exclusion from food 

resources and habitat resulting in displacement of native fishes from optimal niches, and 

aggressive interactions in confined environments (Pyke 2008). Implications include 

reduced condition of native fishes, increased susceptibility of individuals to secondary 

infection through damage to skin and fins (i.e. via fin-nipping), and mortality-

/competitive interference-driven reductions in population size and distribution 

(Macdonald and Tonkin, 2008). Allied with habitat loss this leads the populations of G. 

ghorensis to become extinct in the western side of the Dead Sea basin. In Jordan 

specifically, their rate of decline has yet to be fully quantified but it is estimated that the 

population has declined by at least 50 %, with their area of occupancy less than 10 km², 

and their habitats now severely fragmented (IUCN, 2006).  

There is, however, little known about their population ecology and so although there is a 

strong desire to expand the A. sirhani conservation programme into G. ghorensis, there 

are presently no ecological or biological data on which this can be based. A baseline 

study, completed in 2003, initiated this process of identifying the major ecological threats 

to their status (Hamidan and Mir, 2003). These threats appeared to be primarily related to 

disturbance to habitats, such as severe modifications resulting from river damming and 

/or water abstraction for agriculture. The threat of alien species was also identified and 
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although this has yet to be quantified fully, an introduced cichlid fish (Oreochromis 

aureus) was recorded in Ein Al-Haditha the type locality where G. ghorensis was present. 

The early descriptions of G. ghorensis described it as a subspecies of Garra tibanica 

(Krupp, 1982), an Arabian species closely related to the African Garra quadrimaculata 

(Stiassny and Getahun 2007). Krupp (1982) identified the Garra populations from the 

northern Dead Sea basin as Garra rufa and postulated that the southern Dead Sea basin 

was colonised by the Garra genus from the Arabian Peninsula / Saudi Arabia, rather than 

from the northern Dead Sea basin (Krupp, 1983). Conversely, Goren and Ortal (1999) and 

Gorshkova et al. (2012) argued against this hypothesis and postulated that G. ghorensis 

has close relationships to the other Garra species in the Mediterranean and Mesopotamia.  

1.4 Garra ghorensis: current state of biological and ecological knowledge 

After being described by Krupp (1982), and reviewed by Al-Absy and Mir (1986), and 

Krupp and Schneider (1989), no updates on the status or knowledge about G. ghorensis 

regard to its distribution or life history traits were available. Consequently, Hamidan and 

Mir (2003) and Hamidan (2004) provided some update on the conservation status of G. 

ghorensis in Jordan. However, these data remain limited. For example, Hamidan and Mir 

(2003) provided similar information to Al-Absy and Mir (1986) regarding the wide 

temperature range where G. ghorensis exists (approximately 8 to 34 C°, personal 

observation). Other than Krupp and Schneider (1989), however, there is no information 

available on their biology and ecology. Krupp and Schneider (1989) summarised the 

species as being fluvial, preferring fast flowing streams, with populations having some 

adaptation to high water temperature. They identified that the species’ reproductive 

period was in late spring and early summer when the fish spawn in groups in the open 

water, eggs and sperms are released in open water, and eggs sink quite quickly into 
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gravel. Consequently, there remain considerable knowledge gaps for this species in many 

aspects of their autecology and biology. As a fish of arid regions, aspects of their ecology, 

population threats and conservation might be informed by fishes from similar regions 

elsewhere in the world, i.e. desert fishes. 

1.5 Conservation of desert fishes 

In the wider context, the conservation of desert fishes has received research interest due 

to the harsh conditions of desert habitats, and the dynamic and unpredicted changes that 

occur in these habitats in relation to the arid conditions and how endemic fish in 

particular adapt for such changes. Moreover, many freshwaters in desert areas are highly 

exploited for water abstraction and suffer from the detrimental effects of invasive species 

in a wide range of occupancy that potentially challenge conservation management efforts.  

Jordan is the world's fourth water-poorest country and thus has issues with freshwater 

storage for domestic, agricultural and industrial use. Jordan’s water demand is 900 

MCM/yr, with 75 % of this demand being within the Jordan River Basin (Hadadin, 2015). 

Total dam capacity in Jordan is estimated at 350 MCM, including the desert dams. There 

are seven dams constructed in the north and middle Jordan valley, with a total storage 

capacity of 270 MCM (Hadadin, 2015). There are also three dams (Wala, Mujib and 

Tannour) that are constructed in the southern Dead Sea basin that have a total live storage 

of 30 MCM. Stored water from these dams is used for livestock and groundwater 

recharge (Hadadin, 2015). 

The major users of water in Jordan in 2007 (the last year where figures are publicly 

available) were agriculture (590.6 MCM/Year; 63 % of all water), domestic (301.5 

MCM/Year; 32 %) and industry (48 MCM/Year; 5 %). This total of 940.1 MCM 

contrasts to the supply provided by dams of 158.7 MCM, i.e. 17 % of supply (Hadadin, 
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2015). Other sources are the ground water of Azraq aquifer in the east and, since 2014, 

the Disi aquifer in the south.  

To deal with these continuous and expanded threats, integrated management planning 

approaches are often developed that balance the conservation of freshwater ecosystems 

with the human use of aquatic resources (Jones et al., 2003). Spatial prioritisation tools 

such as integrated watershed management, land use prioritisation, and participatory 

management of the upstream toward the sustainable use have the potential to identify 

cost-effective solutions for river conservation at the watershed scale (Nel et al., 2009). 

For example, Pool et al. (2013) applied this integrated management by adopting a 

hierarchical prioritisation approach in the Galia River basin of the Gila Mountains of 

southwestern Arizona, United States of America. In their work, the high priority areas 

(PAs) were identified and termed ‘preservation PAs’, characterised by high native fish 

richness and low non-native richness, and represent areas with traditional conservation 

targets. The areas with high native fish richness that also contained high numbers of non-

native species was termed ‘restoration PAs’; these represent less traditional conservation 

targets. The results of Pool et al. (2013) showed that negative impacts associated with 

non-native species, such as parasitism, competition, and predation (Cucherousset and 

Olden, 2011), led to the notion that invaded stream reaches are less deserving of 

conservation and management attention than uninvaded or minimally invaded stream 

reaches. However, invaded areas where high or unique native species diversity still exists 

may be worthy of some management focus by contributing to the broader goals of 

integrated watershed management plans. The study concluded that despite the widespread 

support for the implementation of integrated river basin management to protect native 

aquatic species, there is still little consensus on the best method to focus management 

activity within freshwater landscapes.  
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A comprehensive investigation of the long-term fish responses and short-term solutions to 

flow regulation (via a dam) in dryland river basin of Bill Williams River in Arizona, 

United States of America, was provided by Pool et al. (2015) utilising a 30 year data set. 

In this work, the effect of flooding was analysed at both long term and short term levels. 

In the long-term, it was found that the non-native fish species have proliferated 

throughout the basin, with greater densities in the lower elevations. However, native 

species have persisted throughout most of the major river segments, but have experienced 

significant declines in frequency of occurrence and abundance in areas also containing 

high abundances of non-native species.  

In response to flooding, a short-term reduction was observed in the abundance of non-

native species in sites close to the dam, but the fish assemblage returned to its pre-flood 

composition within eight days of the event, with the exception of small-bodied fish, 

which sustained lower post-flood densities. The study concluded that these findings 

demonstrate the importance of natural flow regime on the balance of native and non-

native species at the basin scale within dryland rivers, and highlighted the minimal effects 

on non-native fishes of short duration flood releases below dams. 

The Lower Colorado River basin in the United States of America is one of the most 

studied rivers in terms of desert fishes, including the effects of biological invasions and 

impoundments. It has received a lot of research attention in recent years in relation to the 

fishes that are most at threat from environmental disturbances. Olden et al. (2006) 

summarised the three life history strategies that represent the endpoints of a triangular 

continuum arising from trade-offs among the three basic demographic parameters of 

survival, fecundity, and onset and duration of reproduction (e.g. Winemiller, 1989, Vila-

Gispert et al., 2002, Kind and McFarlane, 2003). Based on Winemiller and Rose (1992), 
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these life history strategies are: (i) Periodic strategists: generally large-bodied fishes with 

late maturation, high fecundity per spawning event and low juvenile survivorship, (ii) 

opportunistic strategists: small-bodied fishes with early maturation, low fecundity per 

spawning event, and low juvenile survivorship and that typically inhabit highly disturbed 

and unpredictable environments, and (iii) equilibrium strategists: small to medium bodied 

fishes with moderate maturation age, low fecundity per spawning event, and high juvenile 

survivorship and that typically inhabit constant environments (Figure 3). Of these, 

periodic strategists are most vulnerable to extirpations caused by habitat disturbances, 

such as low flows, with opportunistic fishes the most resilient to disturbances. Whilst this 

body of work suggests the restoration of flows to the undisturbed states would allow the 

fish communities to recover within the habitat types they evolved in, given the level of 

development and importance of water to agriculture in the Colorado basin, this might be 

an unattainable goal (Olden et al., 2006).  

Pool et al. (2010) investigated the environmental drivers of fish functional diversity and 

composition of the Lower Colorado River Basin. This was because the conservation 

efforts of freshwater require an understanding of how natural and anthropogenic factors 

shape the present-day biogeography of native and non-native species. This knowledge 

need is especially acute for imperilled native fishes in the highly modified Lower 

Colorado River Basin. In this study, both a taxonomic and functional approach was 

applied to explore how natural and human-related environmental drivers shape landscape-

scale patterns of fish community composition in the study site. 
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Figure 3 The life history continuum model (reproduced from Mims et al., 2010; as 

adapted from Winemiller (2005) and originally conceptualised in Winemiller and Rose 

(1992)). Inside arrows summarise fundamental trade-offs between juvenile survivorship, 

generation time, and fecundity that define the three end-point strategies. Outside arrows 

summarise how selection pressures may favour certain strategies in relation to biotic and 

abiotic factors (Mims et al., 2010). 

The results showed that hydrologic alteration, watershed land use, and regional climate 

explained 30 % and 45 % of the total variation in fish community taxonomic and 

functional composition respectively. The study also revealed that dams have provided 

additional ‘‘niche opportunities’’ for non-native equilibrium life history strategists by 

introducing new reservoir habitat and modifying downstream flow and thermal regimes. 

By contrast, watersheds characterised by greater upstream land protection, lower dam 

densities, and higher variation in spring and summer precipitation supported fish 

communities with a strong complement of native species (opportunistic–periodic 

strategists). In conclusion, the study highlighted the utility of a life-history approach to 
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better understand the patterns and processes by which fish communities vary along 

environmental gradients.  

Pool and Olden (2012) tested the taxonomical and functional homogenisation of the 

endemic fish fauna in lower Colorado River Basin. They found that fish fauna of the 

study site has become increasingly homogenised both taxonomically and functionally 

over the 20th Century. The rate of homogenisation varied substantially where range 

declines of native species initially caused taxonomic differentiation in the 1960s followed 

by marginal homogenisation observed in the 1990s in response to an influx of non-native 

species introductions. Conversely, the functional homogenisation of the basin was already 

evident in the 1950s because of the widespread introduction of non-native species sharing 

similar suites of biological traits. Their results were that taxonomic and functional 

homogenisation was positively related to the direct and indirect effects of non-native 

species richness. They concluded that the processes of taxonomic and functional 

homogenisation were highly dynamic temporally, varying in magnitude and rate of 

change over the 20th century. 

1.6 Research aim and objectives, and thesis structure 

The aim of the research is, through building on the initial work outlined on G. ghorensis 

populations to assess a series of ecological indicators (e.g. life history traits and 

strategies) that will enable the conservation threats to G. ghorensis to be assessed. These 

indicators will be assessed for three populations under varying levels of disturbance (a 

higher number of populations cannot be assessed due to their endangered status). These 

indicators will be supplemented by initial data on the biogeography and contemporary 

distribution of G. ghorensis. The results are discussed in relation to current and future 
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threats to the species, including climate change, and in relation to desert fishes more 

generally. The research objectives (O) and their position in the thesis are: 

O1. Assess the genetic relationships between G. ghorensis, G. rufa and G. tibanica to 

identify their biogeographic origins and the phylogenetic relationships of the Garra genus 

(Chapter 3);  

O2. Evaluate the current distribution of G. ghorensis and in relation to surveys completed 

in the early 2000s (Chapter 4);  

O3. Quantify the age structure and somatic growth rates of G. ghorensis in relation to 

varying levels of environmental disturbance (Chapter 5); 

O4. Assess the reproductive traits of G. ghorensis in relation to varying levels of 

environmental disturbance (Chapter 6); and 

O5. Determine the diet, feeding interactions and trophic relationships of G. ghorensis in 

allopatry and in sympatry with a native and an invasive fish (Chapter 7). 

In addition to the above, Chapter 2 provides details on the study sites of Chapters 5 to 7 in 

order to avoid unnecessary repetition in subsequent text. The final chapter, Chapter 8 

(Discussion) provides a summary of the results of the thesis and puts them in their wider 

ecological and conservation contexts. Correspondingly, the structure of this thesis is: 

Chapter 1: Introduction 

Chapter 2: Study sites and initial sample collection 

Chapter 3: The biogeographic origin and phylogenetic relationships of Garra ghorensis in 

the Southern Dead Sea basin 
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Chapter 4: A revised account of the geographical distribution of the endangered 

freshwater fish Garra ghorensis in Jordan and implications for conservation 

Chapter 5: Age structure and somatic growth rates of Garra ghorensis in relation to 

varying levels of environmental disturbance 

Chapter 6: Reproductive traits of Garra ghorensis in relation to varying levels of 

environmental disturbance 

Chapter 7: Diet and trophic niche of the endangered fish Garra ghorensis in three 

Jordanian populations 

Chapter 8: Discussion. 
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Chapter 2 Study sites, and initial samples collection 

2.1 Overview 

Study area is located south of the Dead Sea in Jordan. The study area comprises 14 wadi 

systems that are draining from east to west. These rivers used to drain and flood to the 

Dead Sea, where in past 20 years local and large scale impoundment took place for 

domestic and irrigation use, an control the water flow to the Dead Sea. Out of the 14 

wadis of the study area, only seven found to have fish, where six sites are already known 

with their fish species content since 2002 (Hamidan and Mir, 2003). 

In entirety, the spatial area covered in this work encompassed the distribution range of G. 

ghorensis as reported by Krupp (1982), Krupp and Schneider (1989), Mir (1990), 

Hamidan and Mir (2003) and Hamidan (2004). This area was re-surveyed in 2010 by the 

candidate to assure the existence of G. ghorensis in its known range, and to investigate 

any alteration to the distribution range (Chapter 4).  

The study area is thus comprised the area from Ein Al-Haditha (31°17'47.74" N, 

35°32'35.38"E) at the northern border and extended south to Wadi Khneizerah 

(30°52'53.79"N, 35°26'1.00"E ) app. 50 km to the south of Ibn Hammad. It also extended 

east to Wadi al-Burbaitah (30°59'1.11"N, 35°40'13.71"E) at the upper tributaries of Wadi 

Al-Hassa (31° 0'44.95" N, 35°31'19.08"E), and from western site to rivers outlets down to 

the Dead Sea (Figure 4). A brief description of each site is provided in Table 3 / Chapter 

4. 
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Figure 4 The study area, showing the large scale Dam Al- Tannour, local impoundments, 

and the current distribution range of G. ghorensis.  
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2.2 Sampling sites 

The three populations of G. ghorensis used in the study were sampled from the sites 

below (Fiure 5): 

 Wadi-al-Burbaita (35°69’E, 30°98’N) 

 Ain al-Haditha (35°54’E, 31°29’N)  

 Wadi Ibn Hammad (35°38’E, 31°18’N).  

These sites were chosen on the basis of their known populations of G. ghorensis 

(Hamidan, 2004) that, following survey in October 2010 (Chapter 4), were sufficiently 

abundant to allow some fish removals (i.e. destructive sampling would not impact their 

population and conservation status) and so provide fish for laboratory analyses. Wadi Ibn 

Hammad (hereafter referred to as site IB) is a relatively fast flowing (0.9-1.2 ms
-1

) and 

shallow habitat in which G. ghorensis was the only fish present (Figure 6a). Wadi-al-

Burbaita (hereafter referred to as site BR; Figure 6b) has generally lower flow rates (0.6-

0.9 m s
-1

) and some human disturbances through water use for domestic and agricultural 

uses, with G. ghorensis present along with the native fish Capoeta damascina. Ain al-

Haditha (hereafter referred to site HD; Figure 6c) was the most disturbed site, with local 

impoundments creating sections of slower (< 0.4 m s
-1

) and deeper water (> 1m). The 

invasive cichlid Oreochromis aureus was also present in the site, but no other fishes were 

recorded.  



 

40 

 

Figure 5 Location of the sites in relation to the Middle East (inset) and Jordan (main). The 

sampling site locations are shown on the main map by the solid black square which are 

Wadi Ibn Hammad (IB), Wadi-al-Burbaita (BR), and Ain al-Haditha (HD). Weather 

stations W1 Rabbah at elevation of 950 m above mean sea level, and W2 al Safi at -426 

m below mean sea level.  
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Figure 6 Photographs of the sampling sites: (a) Wadi Ibn Hammad (IB); (b) Wadi Al-

Burbaitah (BR); and (c) Ain Al-Haditha (HD). 



 

42 

2.2.1 Geology 

In the study area to the south of the Lisan Peninsula, there are some mountains that are 

dissected by several wadis that run from east to west. These wadis are continuously 

deepening to cope with the subsidence of the base level and uplift of the source (Abed, 

2000). Almost all these wadi have a base flow of fresh water depending on their location 

and length; e.g. Wadi Al-Hassa is the longest wadi and so has the highest base flow. 

Although the geology of the area is not that variable, there are some differences arising 

from certain structural features. The rock units cropping out within the area and as 

outlined briefly below, include Precambrian rocks, Ram Group, Cambrian rocks, Salib 

Formation, Burj Formation, Umm Ishrin Formation and lower Ordovician (Bender, 1974: 

Abed, 2000). In the middle and lower parts of the study area, the wadis are occupied by a 

sandstone regime, several hundred metres thick. However, Wadi Ibn Hammad differs 

from this due to the presence of a syncline, pushing most of the Ram Group sediments to 

the subsurface. In both wadis, a small part of Umm Ishrin Formation is cropping out, in 

addition to the Kurnub Group.  

Quaternary deposits: The older parts of these deposits, Pleistocene in age or perhaps 

older (not dated), are deposited at the mouths of almost all the wadis when entering the 

Dead Sea basin. They consist essentially of conglomerates/gravels of varying thickness of 

limestone and chert rock fragments. The latest Pleistocene is best represented by the 

Lisan Formation which consists of varved, soft, white sediments made of alternating 

aragonite (calcite) with gypsum. The Lisan sediments are best seen in the Lisan 

Peninsula, the type area, as well as throughout the eastern part of the Dead Sea basin, 

including the mouths of the discussed wadis. They were deposited from the saline Lake 

Lisan, especially in the southern part of the present–day Dead Sea. Furthermore, the 
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courses of the wadis are occupied by recent, loose sediments which consist essentially of 

limestone and chert rock fragments ranging from sand to boulder size. Their thickness is 

variable and can be up to 30 m (Abed, 2000). 

2.2.2 Hydrology and thermal regimes 

The Dead Sea groundwater basin is located along the eastern shore of the Dead Sea. 

Groundwater recharge occurs primarily in the eastern highland area of the basin in the 

winter, and recharge is highest in the northern highlands as a result of the regional 

precipitation pattern (Salameh and Bannayan, 1993). Groundwater discharges through 

many mid- and low altitude springs towards the western part of the basin, and the ultimate 

discharge is to the Dead Sea, a terminal hyper-saline lake. The lowering of the Dead Sea 

water level during the recent decades has occurred due to the capturing of flood runoff 

and over-pumping of groundwater from the basin (Salameh and El-Naser, 2009). Major 

intermittent streams in the basin include, in the northern part, Wadi Haidan and Wadi 

Wala; in the central part, Wadi Mujib; and, in the southern part, and Wadi Al Hassa. 

Water temperatures for the study sites were not available over the course of the study 

since fixing data logger in any of the three sites was not possible due to the high current 

and the strong seasonal flood that would remove the loggers. Thus air temperatures are 

used as a surrogate; the air temperatures of the weather recording stations in the vicinity 

of the sampling sites (W1, W2) are shown in Figure 7. These clearly demonstrate a strong 

seasonal pattern in air temperature that is assumed to be reflected in the thermal regimes 

of the study sites. At the time of the study, data available were for 2010, covering the 

initial four months of sampling. The mean seasonal temperatures did not significantly 

alter between 2010 and 2011 (personal observation). 
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Figure 7 Daily maximum and minimum air temperature for (a) the weather station closest 

to site IB and BR; and (b) closest to site HD. 
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2.3 Fish sampling and initial data collection 

The fish community of each site was sampled once per month between February 2011 

and January 2012 by electric fishing. This was completed in an upstream direction for a 

standardised time of 30 minutes using handheld Samus 725 MP electro-fishing 

equipment. Where less than 15 fish were captured in this period then fishing was 

continued to 60 minutes to attempt to capture this number as a minimum sample size, 

although this was not always possible. All of the captured fish were identified in the field. 

In case of high numbers of fish were captured, a random sub-sample of 15 specimens was 

taken to the laboratory for further analysis. Permission for removing individuals was 

granted by licence from the Royal Society for the Conservation of Nature, Jordan. These 

sub-sampled fish were given an overdose of anaesthetic (overdose of anesthetic (clove 

oil; Soto and Burhanuddin, 1995)) before being preserved in ethanol 76%.  

In the laboratory, each fish was assigned a reference number, measured using callipers 

(total length, fork length and standard length; to 0.1 mm), weighed (to 0.01g) and six 

scales removed from the area between the dorsal fin and lateral line for subsequent age 

and growth rate analyses (Chapter 5). These were transferred to paper envelopes for 

drying and long-term storage. The fish were then dissected, sexed, and their gonads were 

removed, weighed and then preserved in ethanol for subsequent analysis of reproductive 

traits (Chapter 6). The intestine was then removed and preserved in ethanol for 

subsequent dietary analysis; at the same time, a sample of dorsal muscle was taken for 

stable isotope analysis (Chapter 7). A fin clip (pelvic fin) was also taken and preserved in 

95 % ethanol that was used in the genetic analyses outlined in Chapter 3. 
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Chapter 3. The biogeographic origin and phylogenetic relationships of 

Garra ghorensis in the Southern Dead Sea basin 

 

 

 

 

 

 

This chapter has been published as a part of: 

Hamidan, N., Geiger, M. and Freyhof, J., 2014. Garra jordanica, a new species from the 

Dead Sea basin with remarks on the relationship of G. ghorensis, G. tibanica and G. rufa 

(Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters, 25, 223-236. 
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3.1 Overview 

3.1.1. Presentation of the Chapter 

This chapter is presented in two main sections. The first section (Section 3.2) outlines the 

biogeography of the Garra genus based on literature and knowledge on the importance of 

proto-lakes in the Pleistocene, followed by biogeographic information on the fishes in 

relation to the present day. This section then concludes by providing a series of 

hypotheses on the origin and relationships of the Garra genus of fishes in Jordan and the 

Middle East. These hypotheses are then tested in the subsequent section of the chapter 

(Section 3.3). This uses genetic methods to determine the phylogenetic relationships of 

this genus in the region and in doing so, tests the hypotheses developed in Section 3.2.  

3.1.2 Summary 

Phylogeography uses genetic approaches to assess the distributions of species in 

contemporary times in relation to the historical processes that might have resulted in these 

distributions. Providing that there has been appropriate sampling of individuals and 

genes, phylogeographic approaches can be used to test biogeographic hypotheses. Here, 

three hypotheses (H) were developed and tested on the origin of fishes of the Garra 

genus. H1 was that G. ghorensis was descended from G. tibancia in the Arabian 

Peninsula; H2 was contrary to this, stating G. ghorensis shared a common ancestor with 

G. rufa, indicating dispersal from the Mediterranean and Mesopotamia; and H3 stated that 

Garra fishes from the northern Dead Sea basin represented a different lineage than G. 

rufa from Mesopotamia and so represent a species yet to be described. The phylogenetic 

tree built from mitochondrial DNA sequences taken from over 20 species of the Garra 

genus rejected H1, but was consistent with H2, that the biogeographic origin of G. 
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ghorensis was the basins of the Mediterranean and Persian/Arabian Gulf basins. The tree 

also was consistent with H3, suggesting that the Garra fish of this part of the basin could 

be called a new species, Garra jordanica. These phylogenetic analyses thus help explain 

the biogeography, ancestral populations and dispersal of G. ghorensis, and so also have 

utility for interpreting patterns in their contemporary distribution. 

3.2 Introduction 

3.2.1 Phylogeography 

Most species have sufficient population genetic structure to enable their interpretation in 

geographic and chronological contexts (Beheregaray, 2008). Thus, phylogeography uses 

approaches that assess the distributions of species in contemporary times in relation to the 

historical processes that might have resulted in these distributions. Providing that there 

has been appropriate sampling of individuals and genes, phylogeographic approaches can 

be used to test biogeographic hypotheses, describe the evolution of reproductive isolation 

of population units, and infer processes underlying the origin, distribution and 

maintenance of biodiversity (Beheregaray, 2008). As the structure of population 

genealogies tend to be strongly influenced demographic history, analyses can also infer 

temporal changes in the physical and biotic environment of a population from data 

collected in the present (Feliner, 2014; Mossop et al., 2015). Thus, it can be applied to 

understand speciation processes (e.g. Hewitt, 2001; Kohn, 2005) and historical 

biogeography (Avise, 2000; Riddle and Hafner, 2006), as well as other processes 

including palaeoecology and conservation biology (Beheregaray, 2008).  
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3.2.2 Phylogeography of the Cyprinidae family  

The family Cyprinidae is the second largest fish family in the world and one of the most 

widespread in freshwater, with natural ranges encompassing all continents other than 

South America and Australia (Durand et al., 2002). Cyprinid fishes are primarily 

freshwater species. So, given that they are unable to cross stretches of saline water, their 

distributions should reflect the geological evolution of the landscape (Durand et al., 2002; 

Mesquita et al., 2005; Aboim et al., 2013). Molecular phylogenetic studies have already 

utilised the Cyprinidae to, for example, define phylogenetic links (e.g. Gilles et al., 1998) 

and make biogeographical inferences (e.g. Tsigenopoulos and Berrebi, 2000; Machordom 

and Doadrio, 2001). These have indicated that the Middle East is an important region for 

cyprinid biogeography due to its location; some consider it to represent either a major 

biogeographical crossroads (Banarescu, 1992; Coad, 1996a), or a centre of speciation 

(Por and Dimentman, 1985). The former has the greater support, given that fishes are 

capable of arriving in the region via dispersal from the south (Africa), west (Palearctic), 

and east (Western Asia) (Banarescu, 1992). The region is also often considered as a major 

zoogeographical interchange area and, correspondingly, there are difficulties in 

identifying the adjacent region(s) that most influenced its ichthyofauna (Durand et al., 

2002). Some argue it belongs to the Palearctic region (e.g. Coad, 1996a) whilst others 

suggest it is a sub-region of the Oriental region (Banarescu, 1992). Irrespective, it means 

there is scope for the origins of Cyprinid fish in the region to be heavily influenced by the 

ichthyofauna of fish in neighbouring regions, with this providing a key question in the 

context of their contemporary distribution (Section 3.3). 
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3.2.3 Historical fish biogeography in Jordan: importance of proto-lakes in the 

Pleistocene  

The general presence and/ or absence of the fish species in Jordan and the surrounding 

areas, and the specific presence of species of the Garra genus, is potentially explained 

biogeographically by formation and presence of proto-lakes in the Dead Sea–Jordan 

Valley region during the Pleistocene. Of particular interest are the Samra and Lisan Lakes 

(Figure 8).  

The Samra Lake, named after the ruins of Samra (Kherbet Samra, some 6 km NNE of 

Jericho), was present 135-70/65 Ka (thousand years) ago. It preceded the Lisan Lake by 

70/65-16/15 Ka and so its sediments underlie the Lisan sediments. Both lakes belong to 

the uppermost Pleistocene. The Samra Lake level fluctuated between 320-380 m below 

mean sea level (BMSL), meaning it was about 200 m lower than the Lisan Lake level of 

around 170 m BMSL, but higher than present day Dead Sea level of 430 BMSL (Bartov 

et al., 2003). Lisan Lake occupied a larger area within the Jordan Valley-Dead Sea basin 

compared with Samra Lake, especially in an east-west direction. In addition, and because 

the Samra deposits are overlain by the widespread Lisan sediments, the former deposits 

are mostly in the subsurface; i.e. they are not as conspicuous as the Lisan sediments. 

Recent works (e.g. Bartov et al., 2003; Waldmann et al., 2009; Neugebauer et al., 2016) 

have identified the Samra Lake deposits from outcrops and boreholes in the Jordan 

Valley, the Dead Sea basin and also further south of these. This simply means that the 

Samra Lake had occupied the same area as the Lisan Lake in a north-south direction; i.e. 

along the rift valley system 

. 
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Figure 8 Lisan Lake location in relation to the surrounding watersheds. 

The Samra Lake sediments consist of conglomerates, limestones and marls with no 

evaporates, indicating a fresh water lake (Abed, 1985; Abed and Yaghan, 2000). 

Consequently, fish were most likely present in the lake and in wadis that discharged into 

it, including Wadi Mujib, one of the oldest wadis at the eastern site of the Rift Valley 

(Bareberi et al., 1979; Abed, 2000). Lisan Lake developed in place of Samra lakes after 

further geological and glacial changes (Kaufman, 1971; Abu Ghazleh, 2011) and finally 

extended from the present Lake Tiberias in the north to Wadi Khneizereh in the south of 

the Dead Sea (Figure 8).  

http://www.sciencedirect.com/science/article/pii/S0277379104000253#BIB32
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Today, Lisan Lake sediments are encountered across the 220 km length of the lake (Abu 

Ghazleh, 2011), with this ‘Lisan formation’ consisting of deposits with a typical thickness 

of 30 m consisting of authigenic aragonite and gypsum layers that alternate with thin silt 

and sand detritus layers (Katz et al., 1977; Stein, 2001; Begin et al., 2004). For most of its 

history (70,000–28,000 years B.P.), the lake maintained a stable water level of −280 ± 

20 m above sea level (ASL), with two main level drops at 67–63 and 47–43 ka (Bartov et 

al., 2003; Haase-Schramm et al., 2004). At 28,000 years B.P., the lake level rose and at 

about 26,000 years B.P., the lake reached a maximum level of −165 m ASL (Bartov et al., 

2003), standing more than 200 m higher than the present Dead Sea (Figure 9). At that 

stage, Lake Lisan coalesced with the ancient Lake Tiberias (Hazan, 2001), becoming 

240 km long and 7 to 15 km wide (Neev and Emery, 1967). At 14,000 years B.P. the lake 

receded to −280 m, and the recession continued (Bartov et al., 2003; Stein, 2001).  

Of biogeographic importance is that the salinity of Lisan Lake, as inferred from its 

sediments, was variable (Figure 9), due to the area near Al-Karn in the Jordan Valley 

being tectonically narrowed and elevated that produced a natural barrier to the water flow 

southwards (Abed, 1985, Begin et al., 2004). Consequently, north of Al-Karn, the lake 

was fresh, indicated by abundant freshwater diatoms with no evaporite minerals in the 

deposits, whereas it was saline in all parts near Al-Karn and the Lisan Peninsula, as 

revealed by gypsum deposits (Abed, 1983, 1985) (Figure 9). Summer salinity levels were 

likely to have been high (at least 100 g l
-1

) (Abed, 1985, Begin et al., 2004), preventing 

fish species from surviving and thus influencing the contemporary biogeographic fish 

distribution, as explored in Chapter 4.  

 

http://www.sciencedirect.com/science/article/pii/S0277379104000253#BIB4
http://www.sciencedirect.com/science/article/pii/S0277379104000253#BIB4
http://www.sciencedirect.com/science/article/pii/S0277379104000253#BIB24
http://www.sciencedirect.com/science/article/pii/S0277379104000253#BIB42
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Figure 9 Different levels of salinities in Lisan Lake (Abed 1985). 
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3.2.4 Contemporary knowledge on the biogeography of the Garra genus in Jordan 

Cyprinid fishes of the genus Garra are widely distributed across subtropical and tropical 

Asia, the Middle East, and Africa (Menon, 1964). In the Mediterranean basin, ten species 

are recognised by Geiger et al. (2014), of which only three have a mental adhesive disc 

(Figure 10). The adhesive disc is used in feeding where the mouth pads sticks to the 

substrate and the disc scratches the algae. The disc and its surrounding structure is also 

used for holding position against the high flow and strong flood. These Garra with 

mental adhesive disc are: Garra variabilis, distributed in the Asi and Nahr al Kabir 

drainages in Syria, G. ghorensis, distributed in the southern tributaries of the Dead Sea 

basin (Hamidan and Mir, 2003), and G. rufa, found in the Seyhan River in Turkey and 

south to the northern tributaries of the Dead Sea basin (Krupp, 1985). In addition to these 

three species, Garra jordanica was recently described (Hamidan, et al., 2014) with a well 

developed mental disc, that increased the number of Garra species with mental disc 

identified by Geiger et al. (2014) to four (Figure 11). These fishes with a mental disc 

share very similar morphological features and thus are interpreted as being closely 

related, especially as the mental disc was considered as diagnostic for the genus Garra 

(Menon, 1964). In addition, the data presented by Geiger et al. (2014) suggested that the 

Garra populations from the region in the northern Dead Sea basin represented a different 

lineage than G. rufa from Mesopotamia, and might represent a species yet to be 

described. Whilst G. ghorensis is endemic to the southern Dead Sea basin, G. variabilis 

and G. rufa occur in the Persian/Arabian Gulf basin, where the former is widespread in 

the upper Qweik, Euphrates and Tigris drainages, and the latter has a wider distribution 

range occurring all over from the Qweik and the Euphrates and Tigris drainage south to 

the Mond River, which flows into the Persian/Arabian Gulf in Iran. 
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Figure 10 The adhesive disc of Garra jordanica, located on the 

underside of the fish. Source: Hamidan et al. (2014).  
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Figure 11 The distribution range of the four 

Garra species with close association with the 

hypotheses (Hamidan et al. 2014). 
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Garra ghorensis was described by Krupp (1982) as a subspecies of G. tibanica, an 

Arabian species closely related to, or even identical with, the African species Garra 

quadrimaculata (Stiassny and Getahun 2007). Krupp (1982) identified the Garra 

populations from the northern Dead Sea basin as G. rufa and postulated that the southern 

Dead Sea basin was colonised by Garra from the Arabian Peninsula and not from the 

northern Dead Sea basin (Krupp, 1983) (Figure 11, 12). Goren and Ortal (1999) and 

Gorshkova et al. (2012) argued against this hypothesis and postulated that G. ghorensis 

has close relationships to the other Garra species in the Mediterranean and Mesopotamia 

(Figure 11, 12). To date, however, there have been no genetic studies completed on the 

phylogeography of G. ghorensis and so their biogeographic origin remains uncertain. 

These arguments on the origin of the Garra genus thus give rise to three hypotheses.  

3.2.5 Biogeographic hypotheses on the origin of the Garra genus in Jordan and the 

Middle East for testing with phylogeography 

Following Section 3.2.3 and 3.2.4, the following hypotheses (H) have been developed for 

testing in Section 3.3: 

H1. Garra ghorensis descended from G. tibancia in the Arabian Peninsula, as per Krupp 

(1982); 

H2. Garra ghorensis shares a common ancestor with G. rufa, indicating dispersal from 

the Mediterranean and Mesopotamia, as per Goren and Ortal (1999) and Gorshkova et al. 

(2012); and  

H3. Garra fishes from the northern Dead Sea basin represent a different lineage than G. 

rufa from Mesopotamia and represent a species yet to be described (referred to as Garra 

jordanica here) (Hamidan et al., 2014) 



 

58 

 

Figure 12 A: Garra ghorensis; B: Garra jordanica; C: Garra rufa (©Yazdan Keivany); and D: Garra tibanica. 



 

59 

3.3 Assessing the phylogeography of the Garra genus 

The rationale for this section was developed and outlined in Section 3.2. The aim of the 

section was to test the three hypotheses provided at the end of Section 3.2.5 using genetic 

approaches.  

3.3.1 Material and methods 

Sample collection 

To determine the phylogenetic relations of Garra genus and enable testing of the 

hypotheses, a total of 62 individuals of Garra representing 24 species were examined 

(Table 1 and 2). These specimens were collected from across the Arabian Peninsula, 

Jordan, the Mediterranean basin, Mesopotamia and Africa. In order to better understand 

the phylogenetic position of the studied species, records from Genbank were added for 

Garra congoensis and Garra ornata from Democratic Republic of Congo (DRC), (DRC), 

and for Garra waterloti from Guinea. Specimens held by two collaborators (n = 13, 4) 

were also used, as well as samples collected by the candidate (n = 6 species and one 

subspecies) (Table 2). For these latter species, individuals were collected by using a cast 

net 12 mm, and handheld Samus 725 MP electro-fishing equipment. Following their 

capture, the fish were euthanized (over-dose of clove oil) and preserved in high grade 

ethanol. In the laboratory, tissue samples were taken, usually of pelvic fin tissue.. 

Collection of larger number of specimens was constrained by the endangered 

conservation status of these species like G. ghorensis, or the low numbers of such species 

in their habitats. Sampling was also limited by the tough terrain and the inaccessibility of 

some sites such as Wadi Fifa and Wadi Khneizerah. As for specimens that were obtained 

from the Breeding Centre of the Endangered Arabian Wild life Species, the Centre does 
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not permit more than three specimens due to their unknown status, endemic, and limited 

distribution of species such as G. dunserei. 

Table 1 Number of individuals of each Garra species that were used for DNA analysis. 

Species Individuals analysed (n)  

Garra sp.  2 

Garra culiciphaga  1 

Garra rufa 5 

Garra klatti 2 

Garra kemali 1 

Garra caudomaculata  1 

Garra variabilis  2 

Garra nana 1 

Garra jordanica  7 

Garra sauvagei  1 

Garra ghorensis  7 

Garra festai  1 

Garra typhlops  1 

Garra widdowsoni  1 

Garra smarti  3 

Garra cf. longipinnis 2 

Garra dunserei  3 

Garra sahilia 7 

Garra buettikerii 3 

Garra tibanica 3 

Garra barreimiae  5 

G. waterloti 1 

G. congoensis 1 

G.ornata 1 

Total 62 
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Table 2 Specimens of Garra species that were used for sequencing of their mitochondrial 

DNA, with information on their sampling site, tissue number, DNA aliquots of each 

sample, location, and collector. Location represents co-ordinates in decimal degree.  

Species and Location 

Tissue 

Sample 

No. 

DNA Aliquots Location  Collector 

Garra sp.  

Orontes Turkey 
331 Ex14B10 

36.851983, 

36.686083 

Jörg 

Freyhof 

Garra sp.  

Orontes Turkey 
331 Ex14B8 

36.851983, 

36.686083 

Jörg 

Freyhof 

Garra sp.  

Orontes Turkey 
331 Ex14B9 

36.851983, 

36.686083 

Jörg 

Freyhof 

Garra sp.  

Orontes Syria 
1140 Ex15F6 

37.950833, 

36.395833 

Jörg 

Freyhof 

Garra sp.  

Orontes Syria 
1140 

QSCII14TIS1140-

1 

35.95083, 

36.39583 

Jörg 

Freyhof 

Garra sp.  

Orontes Syria 
1140 

QSCII14TIS1140-

2 

35.95083, 

36.39583 

Jörg 

Freyhof 

Garra culiciphaga 

Seyhan Turkey 
400 Ex14H2 

36.975683, 

35.335417 

Jörg 

Freyhof 

Garra culiciphaga 

Seyhan Turkey 
400 Ex14H3 

36.975683, 

35.335417 

Jörg 

Freyhof 

Garra culiciphaga 

Seyhan Turkey 
400 Ex14H4 

36.975683, 

35.335417 

Jörg 

Freyhof 

Garra rufa  

Tigris Turkey 
918 Ex54E4 

37.887167, 

40.229800 

Jörg 

Freyhof 

Garra rufa  

Firat Turkey 
923 QSCII14TIS923-1 

37.72236, 

38.4479 

Jörg 

Freyhof 

Garra rufa  

Firat Turkey 
923 QSCII14TIS923-2 

37.72236, 

38.4479 

Jörg 

Freyhof 

Garra rufa  

Firat Turkey 
923 QSCII14TIS923-3 

37.72233, 

38.44794 

Jörg 

Freyhof 

Garra klatti  

Köprü Turkey 
1104 Ex15E4 

37.763617, 

31.033567 

Jörg 

Freyhof 

Garra klatti  

Isikli Turkey 
1074 Ex48C3 

38.122767, 

30.095383 

Jörg 

Freyhof 

Garra kemali  

Tuz Turkey 
1076 Ex15C11 

37.986133, 

33.351350 

Jörg 

Freyhof 

Garra kemali  

Tuz Turkey 
1076 Ex15C12 

37.986133, 

33.351350 

Jörg 

Freyhof 

Garra caudomaculata 1143 Ex18E9 37.950833, Jörg 
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Species and Location 

Tissue 

Sample 

No. 

DNA Aliquots Location  Collector 

Orontes Syria 36.395833 Freyhof 

Garra variabilis 

Orontes Syria 
1159 Ex15G4 

35.304980, 

36.350770 

Jörg 

Freyhof 

Garra variabilis 

Orontes Syria 
1159 Ex15G5 

35.304980, 

36.350770 

Jörg 

Freyhof 

Garra variabilis 

Orontes Syria 
1168 Ex15G10 

35.271667, 

36.562778 

Jörg 

Freyhof 

Garra variabilis 

Orontes Syria 
1168 Ex15G9 

35.271667, 

36.562778 

Jörg 

Freyhof 

Garra nana  

Al Tammasiyyar Syria 
1182 Ex48A5 

33.293611, 

35.924722 

Jörg 

Freyhof 

Garra nana  

Al Tammasiyyar Syria 
1182 Ex48A6 

33.293611, 

35.924722 

Jörg 

Freyhof 

Garra jordanica 

Jordan Syria 
1186 Ex82C4 

31.770556, 

35.602778 

Jörg 

Freyhof 

Garra jordanica 

Jordan Syria 
1186 Ex82C5 

31.770556, 

35.602778 

Jörg 

Freyhof 

Garra jordanica 

Jordan Syria 
1238 Ex18G7 

32.703333, 

36.022222 

Jörg 

Freyhof 

Garra jordanica 

Jordan Syria 
1206 Ex16A11 

32.739167, 

35.982222 

Jörg 

Freyhof 

Garra sauvagei  

Jordan Syria 
1187 Ex16A5 

32.738889, 

36.009167 

Jörg 

Freyhof 

Garra ghorensis  

Dead Sea Jordan 
1193 Ex16A6 

31.296389, 

35.542500 

Jörg 

Freyhof 

Garra ghorensis  

Dead Sea Jordan 
1193 Ex16A7 

31.296389, 

35.542500 

Jörg 

Freyhof 

Garra ghorensis  

Dead Sea Jordan 
1193 Ex16A8 

31.296389, 

35.542500 

Jörg 

Freyhof 

Garra ghorensis 

Jordan  
1225 FSJF2670 

30.965544, 

35.6822 

Jörg 

Freyhof 

Garra festai  

Litani Lebanon 
2153 Ex25F3 

33.732500, 

35.784444 

Jörg 

Freyhof 

Garra festai  

Litani Lebanon 
2153 Ex25F4 

33.732500, 

35.784444 

Jörg 

Freyhof 

Garra festai  

Litani Lebanon 
2153 Ex25F5 

33.732500, 

35.784444 

Jörg 

Freyhof 

Garra typhlops 

KaajeRu Iran 
2169 WH35SC2169x2 Not available 

Jörg 

Freyhof 

Garra typhlops 

KaajeRu Iran 
2169 WH35SC2169x3 Not available 

Jörg 

Freyhof 
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Species and Location 

Tissue 

Sample 

No. 

DNA Aliquots Location  Collector 

Garra rufa  

Tigris Iraq 
2234 Ex72A11 

35.808889, 

45.022222 

Jörg 

Freyhof 

Garra rufa  

Tigris Iraq 
2234 Ex72A12 

35.808889, 

45.022222 

Jörg 

Freyhof 

Garra rufa  

Tigris Iraq 
2234 Ex72B1 

35.808889, 

45.022222 

Jörg 

Freyhof 

Garra widdowsoni 

Euphrates Iraq 
2301 Ex72B7 

34.066667, 

42.400000 

Jörg 

Freyhof 

Garra widdowsoni 

Euphrates Iraq 
2301 Ex72B8 

34.066667, 

42.400000 

Jörg 

Freyhof 

Garra rufa  

Euphrates Turkey 
2414 Ex63H5 Not available 

Jörg 

Freyhof 

Garra rufa  

Euphrates Turkey 
2414 Ex63H6 Not available 

Jörg 

Freyhof 

Garra rufa  

Euphrates Turkey 
2414 Ex63H7 Not available 

Jörg 

Freyhof 

Garra rufa  

Shatt al-Arab Iraq 
2480 Ex89A2 

30.539517, 

47.831181 

Jörg 

Freyhof 

Garra smarti  

Hasaq Oman 
cn5874 cn5874 

17.434936, 

55.227808 

Nashat 

Hamidan 

Garra smarti  

Hasaq Oman 
cn5893 cn5893 

17.434936, 

55.227808 

Nashat 

Hamidan 

Garra cf. longipinnis  

Jabal al Akhdar Oman 
cn5897a cn5897 Not available 

Nashat 

Hamidan 

Garra cf. longipinnis 

Jabal al Akhdar Oman 
cn5897b cn5897b Not available 

Nashat 

Hamidan 

Garra smarti 

 Hasaq Oman 
cn773 cn773 Not available 

Nashat 

Hamidan 

Garra dunserei  

Dhofar Oman 
CN7766 CN7766 

17.113164, 

54.560464 

Nashat 

Hamidan 

Garra dunserei  

Dhofar Oman 
CN7769 CN7769 

17.113164, 

54.560464 

Nashat 

Hamidan 

Garra dunserei  

Dhofar Oman 
CN7771 CN7771 

17.113164, 

54.560464 

Nashat 

Hamidan 

Garra sahilia  

Sanaa Yemen 
cn789 cn789 15.354,44.206 

Nashat 

Hamidan 

Garra sahilia  

Sanaa Yemen 
cn872 cn872 15.354,44.206 

Nashat 

Hamidan 

Garra ghorensis 

Burbaita Jordan 

NHJO-

001 
Ex91H5 

30.98377, 

35.66992 

Nashat 

Hamidan 

Garra ghorensis 

Burbaita Jordan 

NHJO-

002 
Ex91H4 

30.98377, 

35.66992 

Nashat 

Hamidan 
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Species and Location 

Tissue 

Sample 

No. 

DNA Aliquots Location  Collector 

Garra ghorensis 

Burbaita Jordan 

NHJO-

004 
Ex91H6 

30.98377, 

35.66992 

Nashat 

Hamidan 

Garra ghorensis  

Ibn-Hammad Jordan 

NHJO-

009 
Ex91H3 

31.301397, 

35.62984 

Nashat 

Hamidan 

Garra ghorensis  

Fifa Jordan 

NHJO-

027 
Ex91G12 

30.931328, 

35.481166 

Nashat 

Hamidan 

Garra jordanica  

Dead Sea Jordan 

NHJO-

041 
Ex91E12 

31.456356, 

35.585746 

Nashat 

Hamidan 

Garra jordanica  

Dead Sea Jordan 

NHJO-

042 
Ex91E10 

31.456356, 

35.585746 

Nashat 

Hamidan 

Garra jordanica  

Dead Sea Jordan 

NHJO-

043 
Ex91E11 

31.456356, 

35.585746 

Nashat 

Hamidan 

Garra jordanica  

Dead Sea Jordan 

NHJO-

045 
Ex91F1 

31.456356, 

35.585746 

Nashat 

Hamidan 

Garra sahilia  

div Wadis SA 

NHKSA-

012 
Ex91G3 

18.776082, 

41.987773 

Nashat 

Hamidan 

Garra sahilia  

div Wadis SA 

NHKSA-

014 
Ex91G4 

18.776082, 

41.987773 

Nashat 

Hamidan 

Garra sahilia  

div Wadis SA 

NHKSA-

015 
Ex91G5 

18.776082, 

41.987773 

Nashat 

Hamidan 

Garra sahilia  

div Wadis SA 

NHKSA-

016 
Ex91G6 

18.776082, 

41.987773 

Nashat 

Hamidan 

Garra buettikerii  

div Wadis SA 

NHKSA-

020 
Ex91F3 

20.589190, 

41.289086 

Nashat 

Hamidan 

Garra buettikerii  

div Wadis SA 

NHKSA-

021 
Ex91F5 

20.589190, 

41.289086 

Nashat 

Hamidan 

Garra buettikerii  

div Wadis SA 

NHKSA-

022 
Ex91F4 

20.540388, 

41.286326 

Nashat 

Hamidan 

Garra buettikerii  

div Wadis SA 

NHKSA-

024 
Ex91F6 

20.762300, 

41.231388 

Nashat 

Hamidan 

Garra sahilia div 

Wadis SA 

NHKSA-

026 
Ex91G7 

25.74726, 

39.260362 

Nashat 

Hamidan 

Garra tibanica  

Wadi damad SA 

NHKSA-

027 
Ex91G8 

25.747262, 

39.260362 

Nashat 

Hamidan 

Garra tibanica  

Wadi damad SA 

NHKSA-

028 
Ex91G9 

25.74726, 

39.260362 

Nashat 

Hamidan 

Garra tibanica  

Wadi damad SA 

NHKSA-

031 
Ex91G10 

25.7472623, 

39.26036 

Nashat 

Hamidan 

Garra barreimiae 

Wuray UAE 

NHUAE-

001 
Ex91F7 

25.398400, 

56.269537 

Nashat 

Hamidan 

Garra barreimiae 

Wuray UAE 

NHUAE-

002 
Ex91F8 

25.398400, 

56.269537 

Nashat 

Hamidan 
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Species and Location 

Tissue 

Sample 

No. 

DNA Aliquots Location  Collector 

Garra barreimiae 

Wuray UAE 

NHUAE-

006 
Ex91F10 

25.398400, 

56.26953 

Nashat 

Hamidan 

Garra barreimiae 

Shawkah UAE 

NHUAE-

011 
Ex91F11 

25.098444, 

56.109218 

Nashat 

Hamidan 

Garra barreimiae 

Shawkah UAE 

NHUAE-

012 
Ex91F12 

25.098444, 

56.109218 

Nashat 

Hamidan 

Garra barreimiae 

Shawkah UAE 

NHUAE-

013 
Ex91G1 

25.098444, 

56.109218 

Nashat 

Hamidan 

Garra barreimiae 

Shawkah UAE 

NHUAE-

014 
Ex91G2 

25.098444, 

56.109218 

Nashat 

Hamidan 

 

DNA extraction and PCR 

Mitochondrial DNA was extracted from the fish tissues using Macherey and Nagel 

NucleoSpin® Tissue kits following the manufacturer’s protocol on an 

EppendorfEpMotion® pipetting-roboter with vacuum manifold.  

The standard vertebrate DNA barcode region of COI (cytochrome c oxidase subunit 1) 

was amplified using a M13 tailed primer cocktail including FishF2_t1 (5’ 

TGTAAAACGACGGCCAGTCGACTAATCATAAAGATATCGGCAC), FishR2_t1 (5’ 

CAGGAAACAGCTATGACACTTCAGGGTGACCGAAGAATCAGAA),VF2_t1 (5’ 

TGTAAAACGACGGCCAGTCAACCAACCACAAAGACATTGGCAC) and FR1d_t1 

(5’ CAGGAAACAGCTATGACACCTCAGGGTGTCCGAARAAYCAR-AA) (Ivanova 

et al., 2007). Sequencing of the ExoSAP-IT (USB) purified PCR product in both 

directions was conducted at Macrogen Europe Laboratories with forward sequencing 

primer M13F (5’ GTAAAACGACGGCCAGT) and reverse sequencing primer M13R-

pUC (5’ CAGGAAACAGCTATGAC). In order to better understand the phylogenetic 

position of the studied species, records were included from the NCBIgenbank for Garra 

congoensis (DRC), G. ornata (DRC), and G. waterloti from Guinea. Kimura 2-parameter 
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(K2P) model was used to measure the distance since it is the simplest, most symmetrical 

model that has different rates for transitions than for transversions (Kimura, 1980). 

Molecular data analysis 

To determine the most appropriate sequence evolution model for the data and thus enable 

hypothesis testing, the molecular data processing and sequence assembly was done in 

‘Geneious’ (Biomatters, 2013), with the Muscle algorithm (Edgar, 2004) chosen to create 

a DNA sequence alignment. The most appropriate sequence evolution model for the 

given data was determined using the program ‘Modeltest’ (Posada and Crandall, 1998), 

implemented in the MEGA 5 software (Tamura et al., 2011), treating gaps and missing 

data with the partial deletion option under 95 % site coverage cut-off. The model with the 

lowest BIC score (Bayesian Information Criterion) was used to best describe the 

substitution pattern. Neighbour-joining (Saitou and Nei, 1987), maximum parsimony 

(Swofford, 2002; with PAUP4b) and maximum likelihood phylogenetic trees were 

generated with 1000 bootstrap replicates to explore species phylogenetic affinities, and 

thus test the hypotheses.  

3.3 Results 

The Maximum Likelihood based estimation of the phylogenetic relationships, based on 

the mitochondrial COI barcode region, placed the sequenced fishes into 24 groups (Figure 

13). This revealed values in the K2P sequence divergence in their COI barcode region of 

between 0.2 (for Garra congoensis vs. Garra ornate, indicating a close phylogenetic 

relationship) and 36.2 % (for G. ornata vs. G. rufa, indicating a relatively distant 

phylogenetic relationship). It also revealed that G. ghorensis is distantly related to the 

South Arabian Garra species of G. tibanica, Garra buettikeri, Garra dunsirei and Garra 
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smarti with a minimum K2P distance of 15.6 % to this group (Figure 13) while closer to 

the Mesopotamian/ Mediterranean group of G. rufa.  

The G. rufa from the Euphrates and Tigris Rivers formed a group that was well separated 

from the fish identified as G. rufa from the Orontes to the Jordan drainages. The Garra 

populations of the Jordan drainage were closely related to G. ghorensis in the southern 

Dead Sea and so could not be identified as G. rufa, as suggested by Krupp and Schneider 

(1989). Instead, the phylogeographic outputs suggested they are a new species, i.e. Garra 

jordanica, as per Hamidan et al. (2014) (Figure 12, 13). The phylogenetic tree is also 

assured the existence of the undecided species of Garra of the Orontes. 

3.4 Discussion 

Section 3.2 developed three hypotheses in relation to the origin of the Garra genus. H1 

and H2 related to the biogeographic origin of G. ghorensis, either the Arabian Peninsula 

(H1) or the Mediterranean and Mesopotamia (H2, and H3 related to the potential presence 

of a Garra species yet to be described (potentially Garra jordanica). These are now 

discussed in turn. The phylogenetic tree built from the mitochondrial DNA sequences 

rejected H1 that had the origin of G. ghorensisis as the Arabian Peninsula, due to their 

morphometric similarity to G. tibanica. Instead, the output was consistent with H2, that 

G. ghorensisis shared a common ancestor with G. rufa, with their biogeographic origin 

being the basins of the Mediterranean and Persian/Arabian Gulf basins, with close 

phylogenetic relations with other species such as G. barreimiae, G. widdowsoni and G. 

jordanica (Goren and Ortal 1999; Gorshkova et al., 2012). Krupp (1982) had described 

G. ghorensis as a subspecies of G. tibanica due to their high morphological similarity of 

many Garra species in Western Asia, but this was clearly refuted genetically.  
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Figure 13 Maximum Likelihood estimation of the phylogenetic relationships of 24 Garra species from the Arabian Peninsula, the 

Mediterranean basin, Mesopotamia and Africa based on the mitochondrial COI barcode region. Nucleotide positions with less than 95 % 

site coverage were eliminated before analysis. Numbers of nodes indicate bootstrap values (> 75 %) from the Maximum Likelihood, 

Neighbour joining, and Maximum Parsimony method based on 1000 pseudo replicates.  
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Krupp (1985) and Krupp and Schneider (1989) have indicated that there is a high 

proportion of endemic freshwater fishes in the Dead Sea and Jordan basin, and 

postulated that the Jordan River had been directly, or through the Damascus basin, been 

colonised by fishes from the Euphrates. It is now apparent by the phylogenetic analysis 

that the ancestral population of G. ghorensis and G. jordanica colonised the Dead Sea 

basin from the Euphrates. As this connection was already closed during the Pliocene 

(Horowitz 1979), then this was in broad agreement to the phylogenetic tree here that 

indicated G. ghorensis and G. jordanica were only distantly related to G. rufa from the 

Euphrates.  

The presence and/or absence of G. ghorensis in the southern Dead Sea basin might be 

explained by the variable salinities of both Samra and then Lisan lakes (Section 2.2). At 

that time, the common ancestor of G. jordanica and G. ghorensis inhabited the coast of 

Samra Lake, following the north-south pathway through the wadis on both sides of the 

lake. Samra Lake was succeeded by Lisan Lake, with this extending from the present 

Lake Tiberias in the north to Wadi Khneizereh in the south of the Dead Sea. The high 

salinity of Lisan Lake (Abed, 1985) disconnected the G. jordanica populations at the 

Mujib River. Garra ghorensis did appear to survive in this period at Wadi Ibn-Hammad 

due to its high freshwater flow, although it was disconnected between the Mujib River 

and Wadi Ibn-Hammad. It is then proposed that the southern population remained 

connected under they were extirpated due to the salinity of Lake Lisan increasing to 

lethal levels. Thus, the fish species of this area that thrived in the freshwaters of Samra 

Lake were lost due to Lake Lisan, with this supported in contemporary times by the 

absence of any fish species in the wadis of this area (cf. Chapter 4).  

Hypothesis 3 suggested that Garra fishes from the northern Dead Sea basin represented 

a different lineage than G. rufa from Mesopotamia, and thus are a species yet to be 

described (for simplicity, they have been referred to as G. jordanica throughout the 
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chapter). The analyses completed here support this. Krupp (1985) and Krupp and 

Schneider (1989) already pointed to the high rate of endemic freshwater fishes in the 

Dead Sea and Jordan basin, and postulated that the Jordan had been colonised directly, 

or through the Damascus basin, by fishes from the Euphrates. There is now little doubt 

that the population ancestral to G. ghorensis and G. jordanica invaded the Dead Sea 

basin from the Euphrates. This connection was already closed during the Pliocene 

(Horowitz, 1979), which is in good agreement with these findings since these fishes are 

only distantly related to G. rufa from the Euphrates. Krupp (1985) also pointed out that 

fishes might have reached the Orontes from the Jordan through the Litani, which flows 

in Lebanon, as the upper Litani has lost one of its headwater streams to the Orontes 

(Vaumas, 1957). Krupp (1985) gave one record of G. rufa for the Litani, although this is 

likely to be erroneous given that the species has not been found in this river despite 

intensive fieldwork in recent years (M. Bariche, personal communication). Also, the 

molecular data do not suggest an invasion of G. jordanica to the Orontes. Most likely, 

the Orontes was colonised by Garra fishes directly from the Euphrates at a later stage 

than the colonization of the Jordan from the Euphrates. 

Thus, these analyses of Garra mitochondrial DNA has enabled testing of the three 

hypotheses. They revealed that G. ghorensis is (genetically) closely related to Garra 

species from the Mediterranean and Persian/Arabian Gulf basins, and this helps to 

explain their biogeography, ancestral populations and their dispersal throughout the 

distribution range. They have also indicated that G. jordanica can also be described as a 

new Garra species in their own right.  
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Chapter 4. A revised account of the geographical distribution of the 

endangered freshwater fish Garra ghorensis in Jordan and implications 

for conservation 

 

 

 

 

A version of this chapter has been published as:  

Hamidan, N. and Britton, J. R. 2015. A revised account of the geographical distribution 

of the endangered freshwater fish Garra ghorensis in Jordan and implications for 

conservation. Jordan Journal of Natural History, 2: 33-44. 
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4.1 Introduction 

The causal factors involved in extirpations and extinctions of threatened freshwater 

fishes include the negative consequences that arise from anthropogenic disturbances 

including engineering works, industrial and domestic pollution, acidification, fishing 

and fishery management, and land use practices (Maitland, 1995; Olden et al., 2010; 

Maceda-Veiga, 2013). Consequently, the successful conservation of freshwater fish is 

highly reliant on data on their ecology and distribution, and understanding their 

relationships with their physical habitats (Dudgeon, 2000). Indeed, understanding how 

species respond to disturbances is important for understanding how human activities 

affect key habitats, such as spawning and nursery areas (Maitland, 1995; Olden et al., 

2010). Maintaining habitat connectivity is especially important for species that 

undertake spawning migrations, with impoundments usually resulting in losses of both 

longitudinal and lateral connectivity (Falke and Gido, 2006; Fullerton et al., 2010). Data 

on the consequences of habitat alterations on threatened fishes are, however, often either 

unavailable or expensive to collect, especially in remote areas and where countries have 

limited conservation resources (Helfmann, 2007). This can result in conservation efforts 

often being undermined by insufficient understandings on the ecology and distribution 

of the species.  

The importance of understanding the distribution and ecology of threatened freshwater 

fishes is highlighted by the genus Garra of the Cyprinidae family that has attracted 

attention and dispute in their taxonomic and biogeographic origins (Hamidan et al., 

2014; Chapter 3). This genus is encountered across subtropical and tropical Asia, the 

Middle East and Africa (Menon, 1964), with ten species recognised by Geiger et al. 

(2014) in the Mediterranean basin. Of these ten species, four have a mental adhesive 

disc, being G. variabilis, distributed in the Asi and Nahr al Kabir drainages in Syria, G. 
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ghorensis, distributed in the southern tributaries of the Dead Sea basin, but currently 

only found in in Jordan (Hamidan and Mir, 2003), G. jordanica, distributed in the 

northern Dead Sea basin of Jordan and Syria, and G. rufa, distributed in the Qweik, 

Euphrates, Tigris and in rivers in the Persian Gulf south to the Mond River (Hamidan et 

al., 2014). Garra ghorensis was originally described by Krupp (1982) as a subspecies of 

G. tibanica, an Arabian species closely related to, or even identical with the African G. 

quadrimaculata (Stiassny and Getahun, 2007). However, the recent genetic study 

indicated that G. ghorensis is of Mediterranean and Mesopotamian origin (Hamidan et 

al., 2014; Chapter 3).  

The distribution of Garra fishes in Jordan was discussed further by Krupp and 

Schneider (1989) and Mir (1990). These studies provided a comprehensive account of 

the fish fauna of Jordan and adjacent areas. These data were used as the basis of a 

review of the conservation status of freshwater fishes in the Arabian Peninsula, 

including southern and eastern Jordan, at a conservation assessment and management 

planning (CAMP) meeting in 2002. The outcome was a conservation plan outlining that 

three Jordanian fish species, Aphanius ricardsoni, A. sirhani, and G. ghorensis, were 

priority species for conservation as they faced an imminent risk of extinction (EPPA, 

2002). At that time, G. ghorensis and A. sirhani were evaluated on the IUCN Red List 

as a critically endangered species while A. ricardsoni as endangered. A recent 

evaluation has reduced G. ghorensis to endangered status due to their area of occupancy 

not allowing for the classification of critically endangered (Freyhof, 2014).  

Despite this conservation prioritisation in 2002, there was a paucity of data on the status 

and distribution of these fishes, including G. ghorensis. This presented a major 

challenge to any efforts to conserve these species in light of potential impacts of 

anthropogenic disturbances (e.g. impoundments) and climatic events (e.g. drought). 

Correspondingly, Hamidan and Mir (2003) assessed the status of G. ghorensis in Jordan 
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in 2002, building on knowledge provided by earlier studies of Krupp and Schneider 

(1989) and Mir (1990). Since this survey, however, there have been substantial 

alterations to many natural watercourses in Jordan, such as the construction of 

impoundments that have transformed lotic habitats to lentic in order to meet societal 

demands for potable water and irrigation.  

One of the large-scale water impoundments in the distribution range of G. ghorensis 

(Figure 4) was Al-Tannour Dam that receives water of a catchment area of 2160 km sq, 

and located on the Wadi Al-Hassa system (Hadadin, 2015; Figure 2), which is one of 

the most important wadi system of G. ghorensis (Hamidan and Mir, 2003). In addition 

to the Al-Tannour Dam, four local impoundments with 30,000-100,000 cubic metre 

capacities were established downstream to regulate water use for agriculture and these 

were on Ein Al- Haditha (HD) site, Wadi Al-Hassa, Wadi Fifa, and Wadi Khneizerah 

(Figure 4). 

This shift in lotic characteristics, allied with reduced volumes due to water abstraction 

and the introduction of alien species (e.g. Oreochromis aureus), suggest there has been 

some anthropogenic disturbances that could potentially have impacted the status of 

populations of G. ghorensis since the 2002 surveys (Hamidan and Mir, 2003). 

Consequently, the aims of this chapter were to (1) assess the spatial distribution of G. 

ghorensis in Jordan in 2010 and compare it to the distribution recorded by Hamidan and 

Mir (2003); (2) assess the extent of the increased anthropogenic disturbances at the 

survey sites in 2010 compared with 2002, and (3) identify the issues that could result in 

conservation threats to the current status of G. ghorensis.  
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4.2 Materials and Methods 

4.2.1 Study area 

Sampling for G. ghorensis in 2010 was conducted in October at 14 riverine sites at the 

southern end of the Dead Sea in Jordan. Of these sites, six had been sampled in 2002, 

with a further eight sampled here to identify other sites where the species might be 

present (Table 3; Figure 4). Of the six sites sampled in both years, four were impounded 

in their lower reaches where the water used to drain to the Dead Sea.  

In entirety, the spatial area covered in the 2010 surveys encompassed the distribution 

range of G. ghorensis as reported by Krupp (1982), Krupp and Schneider (1989), Mir 

(1990), Hamidan and Mir (2003) and Hamidan (2004). It is thus comprised the area 

from Ein Al-Haditha (31°17'47.74" N, 35°32'35.38"E) at the northern border and 

extended south to Wadi Khneizerah (30°52'53.79"N, 35°26'1.00"E ) app. 50 km to the 

south of Ibn Hammad. It also extended east to Wadi al-Burbaitah (30°59'1.11"N, 

35°40'13.71"E) at the upper tributaries of Wadi Al-Hassa (31° 0'44.95" N, 

35°31'19.08"E), and from western site to rivers outlets down to the Dead Sea (Figure 

14). A brief description of each site is provided in Table 3. 

4.2.2 Fish sampling  

Fish sampling at the 14 sites was completed in October 2010. At all sites, sampling used 

electric fishing. Where sites were impounded, then the downstream limit of the site 

would be the impoundment. Sampling was completed at all sites in an upstream 

direction and continued for 15 minutes before moving 500 m upstream to repeat. This 

was repeated once more so that a total of 45 minutes fishing was completed per site and 

over a distance of approximately 1500 m river length. The electric fishing equipment 

was a hand-held Samus 725 MP electro-fishing unit. At each section of each site, 
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sampling concluded before 15 minutes if 15 G. ghorensis individuals were captured. 

This was to prevent excessive numbers of this endangered fish being captured.  

With the exception the sites Ain al-Hadihta, Wadi Ibn-Hammad, and Wadi Burbaitah, 

field identification of G. ghorensis was completed at the conclusion of the fishing and 

then all fish were immediately returned to the water to prevent excessive handling and 

stress associated with capture. As sample sizes at Ain al-Hadihta, Wadi Ibn-Hammad 

and Wadi Burbaitah were relatively high, then up to 15 individual fish were removed, 

euthanized (overdose of anaesthetic, clove oil) and taken back to the laboratory for 

identification and measuring (standard length, nearest 0.1 mm). Permission for 

removing individuals was granted by licence from the Royal Society for the 

Conservation of Nature, Jordan.  

Across the 14 sites, reporting of G. ghorensis was on a presence/ absence basis, with 

supplementary data only provided for Ain al-Hadihta, Wadi Ibn-Hammad, and Wadi 

Burbaitah. Qualitative assessment of the extent of anthropogenic disturbance was 

through noting the additional alterations to the sites since 2002. As length data were 

available in both 2002 and 2010 for the site at Ein Al-Haditha, differences in the length 

distribution of G. ghorensis between the years were tested using a Mann Whitney U-

test, as they were not normally distributed (Shapiro-Wilk test, P < 0.05 in both years). 

In reporting, where error is expressed around the mean, it represents standard error. 

 

..
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Table 3 The sites sampled in 2010 across the described range of G. ghorensis; presented from north (Ibn-Hammad ) to south 

(Wadi Khneizereh). In site name, codes in parentheses refer to sites used in Table 2. Year represents the year(s) the sites were 

sampled 

Site name Location Alt.* Year Brief description Human impact Fish species 

2002 2010 

Ibn-Hammad 

(IB) 

31°18'4.25" N, 

35°37'47.36" E 

81 2002, 

2010 

Deep cliff, shallow 

water (10-30 cm), 

fast running (app. 

1.2 m/s). Width of 

sampling site: 2-4 

metres, and depth is 

less than 10 m. 

Minimum 

number of 

visitors with no 

facilities. Water 

extraction for 

agriculture at a 

local scale. 

Over visit especially in 

summer, tourism facilities 

Agricultural encroachment 

on the wadi beds, and water 

extraction 

G. ghorensis 

Ain al-

Haditha 

(HD) 

31°17'47.74" 

N, 

35°32'35.38"E 

-316 2002, 

2010 

Local 

impoundments, 

natural water pond 

at the spring head 

(app. 28m Length 

by 4-8 m width), 

deep (3 m), 

artificial concrete 

collection ponds, 

and a fast running 

(1.3 m/s) open 

channelled water 

between the natural 

and artificial ponds.  

Impoundment 

Water extraction 

for agriculture, 

recreation, and 

invasion with O. 

aureus  

Large scale water extraction 

to apply the growing demand 

of agriculture, invasion with 

O. aureus, grazing around the 

natural ponds and livestock 

drinking, and recreation. 

G. ghorensis 

Oreochromis 

aureus 
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Site name Location Alt.* Year Brief description Human impact Fish species 

2002 2010 

Wadi al-

Hassa 

31° 0'44.95" 

N, 

35°31'19.08"E 

-184 2002-

2010 

Drainage system 

for several 

tributaries and 

springs extending 

along the Karak 

Mountains 

Tourism 

activities, water 

extraction, 

 

Large scale dam up stream, 

Tourism facilities, Over 

visiting at both Afra and 

Burbita site. Enlarged 

agricultural scheme, water 

extraction, and river 

diversion especially at the 

upper reaches.  

G. ghorensis 

Capoeta 

damascina 

Afra hot 

spring 

35°38'24.96"E 

30°59'2.97"N 

 

180 2002-

2010 

Originated from 

Wadi al-, sulphuric 

hot spring with 

temperature of 

almost 40cº 

originated from the 

main Afra hot 

spring 2.6 km from 

the confluence 

point with Wadi al 

Burbaitah. Fast 

running wadi (1.3 

m/s), with long 

gorge, narrow 1 m 

width to wide edges 

20 m width 

especiall at the 

lower part. 

G. ghorensis 

(Only juvenile 

fish were found 

close to the 

confluence 

point with wadi 

Burbaitah) 

Wadi-al-

Burbaita 
(BR) 

30°59'1.11"N, 

35°40'13.71"E 

250 2002-

2010 

Originated from 

Wadi al-Hassa at 

the confluence 

point with Afra hot 

G. ghorensis 

C. damascina 
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Site name Location Alt.* Year Brief description Human impact Fish species 

2002 2010 

spring. Fast running 

water 

Wadi Fifa 30°55'52.57"N

, 

35°28'46.55"E 

-260 2002-

2010 

Fust running (1.4m 

/s) narrow width 1-

3m wadi. 

Domestic use of 

water 

 

Water impoundment, large 

scale water extraction to 

apply the expanded 

agricultural demand on 

water, recreation activities 

including over visiting, 

grazing and livestock 

drinking. 

G. ghorensis 

C. damascina 

Wadi 

Khneizereh 

30°52'53.79"N

, 35°26'1.00"E 

-256 2002-

2010 

A narrow wadi 

surrounded by hills 

of sandstone and 

limestone with 

large boulders, Fast 

running water (1.3 

m/s) water depth 

varies from 10 -50 

cm depth) 

Domestic use of 

water 

Water extraction 

for agriculture. 

Impoundment at 

the downstream. 

Tourism. 

Increased water extraction to 

apply the expanded 

agricultural demand. Over 

visiting / recreation. 

G. ghorensis 

C. damascina 

wadi al-

Karak 

31°15'32.11" 

N, 

35°36'50.68" 

-51 2010 Fast running river 

(0.9 m/s) water 

depth is 15-30 cm, 

wadi width is 

varied from 1 m 

water width to 12 m 

Water extraction 

for agriculture 

Increased water demand, that 

block the water to reach the 

downstream leaving behind a 

dry wadi of 1.5 km river 

length, the wadi became over 

visited by tourists at local and 

Oxyneomacheil

us insignis 
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Site name Location Alt.* Year Brief description Human impact Fish species 

2002 2010 

at the eastern side. national levels. 

Wadi 

Weida’a 

[31°13'45.29"

N, 

35°34'51.67"E 

50 2010 perennial shallow 

and slow running 

stream (0.3 m/s) 

Tourism 

activities 

Tourism activities - 

Wadi ‘Assal 31°11'16.40"N

, 

35°33'39.98"E 

-190 2010 perennial shallow 

and disconnecting 

water flow.  

Tourism 

activities  

Tourism activities and 

grazing around the site 

- 

Wadi 

Marsad 

31°10'24.81"N

, 

35°32'38.02"E 

-250 2010 little, shallow, and 

slow running (0.3-

0.1 m/s) streams of 

water that is not 

extended over the 

wadis 

Tourism 

activities 

Tourism activities and 

grazing around the site. 

- 

Wadi 

Numeira 

31° 8'59.69"N, 

35°32'9.91"E 

-266 2010 

wadi 

Hudeira 

31° 7'49.81"N, 

35°32'1.73"E 

-245 2010 Slow running 

(0.3m/s) and low 

amount water that 

is extended to a 

dead end 

Tourism 

activities 

Tourism activities, grazing 

around the site, and water 

collection in artificial ponds 

for domestic and agricultural 

use. 

- 

wadi Umruq 30°54'7.14"N, 

35°28'51.69"E 

-150  Thick and heavy 

riparian vegetation 

that is covering the 

little amount of 

Water extraction 

for agriculture 

Local tourism 

Large water extraction for 

agricultural purposes, High 

tourism activities at national 

level. 

- 



 

81 

Site name Location Alt.* Year Brief description Human impact Fish species 

2002 2010 

water along of the 

wadi 

* Refers to altitude at the collection site 
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Figure 14 Locations of the sampling sites in Jordan (inset) and in Southern Jordan (main image). Filled triangles represent sites where 

Garra ghorensis was present, filled squares represent sites where they were absent. The filled circle is the site where only 

Oxyneomacheilus insignis was captured. The dashed line marks the limit of the known up to date distribution range of G. ghorensis 

described by Krupp and Schneider (1989), Mir (1990), Hamidan and Mir (2003), and Hamidan (2014).  
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4.3 Results 

In 2002, G. ghorensis was detected in all of the six sites that were sampled (Figure 2) 

(Hamidan and Mir 2003). In 2010, all of these sites were still found to have populations, 

with an additional population detected in one of the eight extra sites fished (Table 3). 

This was an allopatric population in the lower reaches of Wadi Ibn Hammad (Table. 3). 

The samples collected in 2010 revealed that the seven recorded G. ghorensis 

populations comprised: (i) an isolated population at the lower part of wadi Ibn 

Hammad; (ii) a population that was sympatric with invasive O. aureus in Ein Al-

Haditha; and (iii) populations that coexisted naturally with the native Capoeta 

damascina (Wadi Al-Hassa (including Burbaitah and wadi Fifa), and wadi Khneizerah) 

(Table 3). In the upper part of Wadi Al-Karak, no G. ghorensis were sampled, but the 

nemacheilid loach Oxyneomacheilus insignis was found (Figure 14, Table 3). There 

were no fish recorded from Wadi Weida’a, Wadi Assal, Wadi Marsad, Wadi Numeira, 

Wadi Hudeira, and Wadi Umruq (Figure 14, Table 3). Across the three sites where 

samples were recorded in more detail, the number of sampled G. ghorensis was the 

lowest at wadi Ibn Hammad (n = 9) and highest at Wadi al-Burbaitah (n = 78) (Table 4).  
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Table 4 Sample size, sub-sample size and length characteristics of Garra ghorensis at 

the three sites where they were most abundant. Site codes are those referred to in Table 

3.1. Site Codes: Ain al-Haditha (HD), Ibn-Hammad (IB), and Wadi al Burbaitah (BR). 

Year Site 

code 

Number fish 

sampled 

Sub-sample 

size (n) 

Mean length 

(mm) 

Length range 

(mm) 

2002 HD 123 - 57.4 ± 1.3 29.0 - 99.0 

2010 HD 15 15 35.1 ± 2.6 20.7 – 48.8 

2010 BR 78 15 45.2 ± 2.8 24.9 – 62.0 

2010 IB 9 9 32.7 ± 3.4 21.2 – 57.3 

 

Data of collected samples at Ein Al-Haditha in 2002, and the three sites in 2010, 

revealed G. ghorensis present in samples from 21 to 99 mm, suggesting a recruiting 

population comprising of juvenile and mature fish (cf. Chapter 5), with mean lengths 

highest in Ein Al-Haditha and lowest in Ibn Hammad (Table 4). Between the samples 

collected in 2002 and 2010 at Ein Al-Haditha, their median standard lengths differed 

(2002: 55.0 ± 1.2 mm; 2010: 35.1 ± 2.6 mm), with these differences being significant 

(Mann Whitney U test: Z = -4.95, P < 0.01).  

Additional anthropogenic disturbances were apparent at all sites sampled (Table 3). The 

primary disturbances were increased impoundment, leading to decreased flows, channel 

deepening and the potential for increased silt deposition (Table 3). At a larger spatial 

scale, a 17 million cubic metres dam, Al-Tannour, was established at the upstream of 

Wadi Al-Hassa and was operational from 2005, after which seasonal flooding was 
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controlled and non-native fishes were introduced into the impoundment (O. aureus, 

Cyprinus carpio, and Clarias gariepinus). However, no introduced fish were present in 

the samples collected downstream. 

4.4 Discussion 

The 2010 surveys revealed that across the range of G. ghorensis described by Krupp 

(1982), Krupp and Schneider (1989), Mir (1990), Hamidan and Mir (2003) and 

Hamidan (2004), seven populations were detected, of which six had previously been 

detected in 2002. These populations covered three scenarios: allopatry, present in 

sympatry with native C. damascina and present in sympatry with invasive O. aureus. 

This reveals that G. ghorensis is present in fish communities with inherently low species 

diversity, perhaps due to the often extreme conditions that occur at the sites. These 

conditions include very high summer water temperatures (> 30 
o
C) and low flows, and 

winter flood events (Hamidan and Mir, 2003). The influence of these invasive species 

on the ecology of the populations of these sites is discussed further in Chapters 5 to 7. 

In comparison with 2002, the six sites re-sampled in 2010 all revealed additional 

physical modifications from anthropogenic disturbances, particularly at the lower 

reaches close to their confluence to the Dead Sea, where the water tended to be 

impounded and/ or heavily abstracted for domestic and agricultural use. With the 

exception of the Al-Tannour dam, these schemes tended to be relatively small-scale. As 

these impoundments are mainly at the lower end of the rivers, then their potential 

impacts of G. ghorensis were likely to relate more to shifting conditions from lotic to 

lentic, rather than being connected to population fragmentation. Across the seven 

populations, although no apparent major issues were yet apparent for G. ghorensis from 

these impoundments, it should be noted that these surveys were restricted in scope, with 

a primary focus on the presence/ absence of the species and so restricting further 
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inferences on the effects of habitat change on other aspects of their ecology (cf. 

Chapters 5, 6).  

The use of impoundments to manage freshwater availability in water-poor countries 

such as Jordan is only likely to increase in future, particularly as climate change 

predictions for the country are for increasing uncertainty in rainfall patterns, including 

increased periodicity of drought and thus water shortages (United Nation for 

Development Programme/ Ministry of Environment, 2014, Hadadin, 2015). 

Impoundments thus represent an increasing conservation threat to the sustainability of 

Jordanian freshwater resources and the fish communities they support. Although they 

might provide some benefits in minimising the harmful effects of annual flood cycles, 

and especially the damaging effects of stochastic summer flood events on fish 

recruitment, flooding can also play important ecological and engineering roles in river 

systems (Jackson, 1989, Kingsford, 2000; Olden et al., 2005). Moreover, impoundments 

tend to provide conditions suitable for the establishment of introduced fishes (Johnson 

et al., 2008; Liermann et al., 2012), a result of the considerable disturbance that occurs 

when lotic conditions are transformed to lentic that are unfavourable for native fluvial 

fishes allied to the introduction of non-native fishes for recreational angling and/ or 

aquaculture (Liermann et al., 2012). Indeed, non-native fishes such as Tilapia zillii, O. 

aureus and C. carpio, and Clarias gariepinus already been introduced into some 

impoundments in Jordan (Hamidan, 2014), primarily for fishery purposes (Khoury et 

al., 2012). Should these species develop invasive populations then there would be 

potential for detrimental ecological consequences to develop (Gozlan et al., 2010; 

Simberloff et al., 2013).  

Impoundments also change the hydrological system by creating static water bodies 

(Lentic), which is not the favourable habitats for G. ghorensis, since the species prefers 

lotic habitat with fast running water, shallow with gravel bottom, described by Krupp 
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(1982). Effect of such habitat change from lotic to lentic is discussed later in this thesis 

in chapter 5. 

In conclusion, despite a range of additional anthropogenic disturbances across their 

range, the distribution range of G. ghorensis did not decrease between 2002 and 2010, 

although the habitat changes are likely to have resulted in some ecological and life-

history changes (Chapter 5, 6). These data provide some support for the recent 

downgrading of G. ghorensis from critically-endangered to endangered on the IUCN 

Red List, (Freyhof 2014), however, given the species’ on-going and increasing 

disturbances from human activities, then it is suggested that their Red List status 

remains at endangered for the foreseeable future.  
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Chapter 5. Age structure and somatic growth rates of G. ghorensis in 

relation to varying levels of environmental disturbance 

 

 

 

 

 

 

 

 

This chapter has been published in full in: 

Hamidan, N. and Britton, J. R. 2015. Age and growth rates of the critically endangered 

fish Garra ghorensis can inform their conservation management. Aquatic Conservation: 

Marine and Freshwater Ecosystems 25, 61-70.  
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5.1 Introduction 

In arid regions, the escalating demands for water have resulted in the substantial 

modification of many river systems (Propst et al., 2008). In conjunction with the 

widespread invasion of many of these rivers by non-native fishes, this has increased the 

threat of local native fish populations being extirpated and endemic fishes becoming 

extinct (Kingsford, 2000; Olden and Poff, 2005; Propst et al., 2008). However, the risks 

of extirpation and extinction vary between species according to their traits that 

determine their responses to modified environments (McKinney, 1997; Olden et al., 

2006, 2008). These ecological attributes, including their life history traits, ecological 

niche and morphology, have been applied to disturbed rivers in arid regions for 

identifying those species most at risk to extinction so that conservation strategies can 

focus on their populations (Olden et al., 2006, 2008; Pool and Olden, 2012). Studies 

suggest that fishes with a ‘slow’ life history, such as large body sizes, slow somatic 

growth rates and delayed maturity (i.e. K-selected traits), tend to have a greater 

frequency of local extirpation and are more prone to extinction compared with those 

with the opposite suite of traits (i.e. r-selected traits) (Olden et al., 2008). 

In fish populations, life-span, age structure and somatic growth rates form an important 

component of their life history strategy through their relationships with reproductive 

traits such as length and age of maturity (Winemiller and Rose, 1992). Moreover, fish 

age and growth data assist the understanding of the basic ecological relationships of fish 

populations and their interactions with their environments (Beardsley and Britton, 2012; 

Britton et al., 2012). Given that life history traits can be a strong predictor of 

extirpations of fish populations in arid regions (Angermeier, 1995; Reynolds et al., 

2005; Olden et al., 2006), the analysis of a species’ age composition and growth rates 

can help to explain how threatened species might be conserved in these regions by 
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indicating their initial responses to the environmental changes. Where data indicate, for 

example, significantly reduced life spans then this might suggest the species has 

relatively narrow tolerances to disturbance that ultimately could result in population 

decline and eventual loss.  

In view of the endangered status of G. ghorensis outlined in Chapter 1, there is an 

impending requirement for their remaining populations to be conserved. However, there 

is little information available on the ecology of the species, with the only study (other 

than that detailed in this thesis) on their Jordanian populations being a distribution 

survey completed in the early 2000s (Hamidan and Mir, 2003; Chapter 3). As there has 

been no subsequent study that provides data on their life history traits then the aim here 

was to determine the age composition and growth rates of the three G. ghorensis 

populations identified in Chapter 3 and 4 as being appropriate for ecological studies and 

sampling. Through collecting monthly samples throughout 2011 and early 2012 

(Chapter 4), the objectives were to: 

(1) identify the presence of length modes in the samples by month and assess their 

growth through 2011;  

(2) quantify the utility of using scales to age individual fish within the populations;  

(3) determine the age structure and growth rates of the three populations using scale 

analysis; and 

(4) identify the initial conservation implications for G. ghorensis of the outputs of 

Objectives 1 to 3. 
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5.2 Materials and Methods 

Modal progression analysis (MPA) was used to identify the presence of length modes in 

the samples per month and assess their growth through 2011, enabling completion of 

Objective 1. Each month, the lengths of all the sampled fish at each site were sorted into 

length distributions (10 mm increments) and were then used within decomposition 

assessment using Bhattacharya’s method in FiSAT (Bhattacharya, 1967; Bolland et al., 

2007). This identified the presence of modes in each length distribution by separating 

them into a series of normal distributions (King, 2007). For each mode, the output was 

the number of individuals, their mean length and standard deviation (SD) (Bolland et 

al., 2007). The modes were separated by application of a separation index (SI), 

calculated as the ratio of the difference between successive means and the difference 

between their SD modes; values above 2.0 indicate significant difference from the other 

modes (Bhattacharya, 1967; Bolland et al., 2007). This is advantageous over similar 

methods as it ensures that the identified modes are significantly different and so is 

statistically reliable, justifying its selection for use over alternative methods (Bolland et 

al., 2007). The overall output of MPA for each site per month was the number of modes 

in the population and their mean length (± SD), enabling length increases to be 

identified for each mode over the study period.  

Whilst MPA revealed the number of length modes in the population and their length 

increases over time, it could not reveal the age of the fish within the modes. Thus, to 

complete Objectives 2 and 3, the scales collected from the fish (Section 2.3) were 

analysed. To ascertain whether these fish could be aged from their scales (Objective 2), 

it was ascertained whether growth checks were present on scales. As they were then the 

next step was to determine the frequency and timing of their formation. This required 

the scales to be viewed on a projecting microscope (× 48 magnification) and following 
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measurements taken from one scale: total scale radius (SR), distance from the focus to 

the last formed check (LA) and distance to the second-last formed check (LA-1). These 

data were then subjected to marginal increment ratio analysis (MIRA; Haas and 

Recksiek, 1995; Vilizzi and Walker, 1999), where the MIRA calculation of the marginal 

increment ratio (MIR) was determined by MIR = [(SR – LA) / (LA – LA-1)]. When 

only one check was observed, the denominator was the distance from the scale focus to 

the check (Vilizzi and Walker, 1999). To test for differences in the marginal increment 

ratio data for each month, ANOVA was used where the dependent variable was the 

MIR for each fish and the independent variable was month. Tukey’s post-hoc tests 

enabled the significant differences to be identified for each month and indicated the 

timing of when the growth checks were formed.  

Once the frequency of check formation had been determined then the age of each fish 

was determined by counting the number of growth checks. The scales were then 

measured to enable back-calculation of their lengths (Francis, 1990). This enabled three 

analyses on their lengths at age to be completed. First, the effect of sex on length at age 

was determined through building a general linear model (GLM) that tested the effect of 

sex (male or female; immature fish were excluded from the model) on length at the last 

annulus whilst the effects of site and age were controlled in the model. In the model, 

statistical complications from using repeated measurements from individual fish in the 

same test (i.e. pseudo-replication) were avoided by using only the back-calculated 

length at the last growth check for each fish (Beardsley and Britton, 2012). Differences 

between the sexes were assessed for significance using linearly independent pairwise 

comparisons with Bonferroni adjustment for multiple comparisons. Second, the data 

were analysed for their mean standardised length-at-age residuals for each site 

(Benstead et al., 2007; Storm and Angilletta, 2007; Beardsley and Britton, 2012; Britton 

et al., 2012). This required the predicted mean length at each age across all the 
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populations to be determined using the log-log quadratic function of Vilizzi and Walker 

(1999) as this is the most precise and biologically meaningful growth model. These 

values then enabled the standardised residual of the length at age of each fish to be 

calculated (Beardsley and Britton, 2012), with these compared between sites using a 

GLM that controlled for the effects of sex. Again, only the back-calculated length at the 

last annulus was used for each fish to avoid pseudo-replication. Lastly, the length at age 

data by sex and site were applied to the non-linear von Bertalanffy growth model (von 

Bertalanffy, 1938) to produce values of the maximum (asymptote) theoretical length at 

each site (L∞) and K, the annual growth rate towards L∞. All statistics were completed 

in SPSS v.16.0 and only tests that met all underlying assumptions were used. 

5.3 Results 

5.3.1 Modal progression analysis 

Across the study sites, a total of 123 G. ghorensis specimens were collected from HD 

site, total of 165 from IB site, and 164 from BR site (Table 5). Fish were captured to a 

maximum length of 137 mm, although the majority of fish sampled were below 100 mm 

(Figure 15). Modal progression analysis identified three length modes in each site, 

although not all modes could be identified every month (Figure 15). The smallest mode, 

whose mean lengths varied between 20 and 30 mm at IB and BR, but up to 48 mm in 

HD. They only appeared in samples from August at the earliest (Figure 15) in both BR 

and IB sites, but not in HD site until December, suggesting these fish were the fish that 

were hatched in the last spawning season technically known as young-of-the-year 

(YOY), and obviously were more abundant in IB and BR than in HD. At each site, there 

was also a length mode of relatively large fish (generally > 60 mm) whose growth 

increase was minimal through the year, especially at site HD (Figure 15) where they 

were high abundant than in BR, and IB respectively. 
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Table 5 Number and fork lengths of Garra ghorensis in sub-samples collected by site between February 2011 and January 2012. All lengths are in 

mm; where error is provided it represents standard deviation. 

 HD BR IB 

Month n Mean length Length range N Mean length Length range n Mean length Length range 

February 15 76.0 ± 21.8 40.0 – 103.9 15 81.9 ± 22.9 43.1 – 113.4 0   

March 14 87.8 ± 12.6 68.6 – 105.2 15 50.3 ± 12.3 28.4 – 71.9 15 51.7 ± 11.2 35.1 – 73.2 

April 15 74.7 ± 17.5 47.9 – 106.8 15 43.6 ± 12.9 23.8 – 60.8 15 53.1 ± 13.9 37.0 – 84.2 

May 15 65.4 ± 18.4 33.1 – 88.9 15 59.1 ± 15.5 25.2 – 80.6 15 46.3 ± 17.2 20.9 – 70.9 

June 15 77.4±17.5 42.0 – 113.4 15 44.8 ± 14.1 18.7 – 62.9 15 46.9 ± 14.4 25.0 – 75.4 

July 4 65.8 ± 17.2 48.4 – 82.1 15 57.2 ± 15.3 34.5 – 88.6 15 53.0 ± 16.6 26.8 – 76.2 

August 5 79.3 ± 27.5 54.5 – 126.7 14 43.3 ± 14.8 21.4 – 65.9 15 39.1 ± 11.2 24.6 – 55.1 
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Table 5 (cont.) HD BR IB 

Month n Mean length Length range N Mean length Length range n Mean length Length range 

September 5 71.6 ± 15.7 94.5 - 56.8 15 44.0 ± 13.0 21.6 – 60.5 15 44.0 ± 15.9 21.6 – 60.5 

October 4 51.5 ± 30.6 20.8 - 79.4 15 38.5 ± 14.7 15.7 – 69.4 15 49.0 ± 15.9 21.6 – 75.2 

November 1 92.6  9 37.5 ± 10.9 25.7 – 63.1 15 49.6 ± 16.2 29.2 – 66.9 

December 15 77.4 ± 14.4 45.4 - 101.9 6 26.8 ± 6.2 20.2 – 36.5 15 59.5 ± 16.2 26.1 – 74.2 

January 15 69.8 ± 17.4 39.7 - 94.6 15 46.7±17.1 28.5 - 81.0 15 51.5 ± 13.1 31.3 - 65.7 
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5.3.2 Marginal increment ratio analysis of scales 

There was a low number of fish sampled in the colder months and there were high 

volumes of regenerated scales in the samples generally. Note that these regenerated 

scales could not be aged as they had lost their original circuli patterns and so it was not 

possible to derive an age from them. This resulted in the number of scales (Figure 16) 

suitable for marginal increment ratio analysis and ageing being variable between 

months (range 0 to 15; see Table 5 for numbers per month and per site). The differences 

in the mean marginal increment ratios of scales in each site across the study period were 

significant (IB: F10,76= 6.61, P < 0.01; BR: F11,92 = 12.91, P < 0.01; HD: F9,88 = 36.21, P 

< 0.01; Figure 17). At IB and HD, an increase in the marginal increments was apparent 

from April through to at least October, with post-hoc analyses (Tukeys) revealing 

significant differences between March and all subsequent months (P < 0.05; Figure 17). 

At Site BR, growth at the scale margin was apparent from March, with post-hoc 

analyses (Tukeys) revealing significant differences between February and all 

subsequent months (P < 0.05; Figure 17). This suggests formation of an annual growth 

check in February/ March as the fish started to grow again after the colder winter period 

(Figure 15, 17). 

5.3.3 Age range and structure  

Scale ageing, completed by counting the number of annual growth checks (Figure 16), 

revealed fish present in the samples between 0+ and 6 years old (Figure 18). This 

indicated that the modes revealed by the MPA generally did represent discrete age-

classes of fish (Figure 15, 17), where the smallest length-mode comprised young-of-the-

year fish, the next mode comprised fish of age 1 in February/ March 2011 and 1+ 

thereafter, and the largest mode comprised of fish of > 2 years old (Figure 15, 17).  
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Figure 15 Mean lengths (± SD) per month of modes identified by modal progression 

analysis through the study period, where ▲= young-of-the-year; ○ age 1+; ● > age 2 

years and (a) Site IB, (b) Site BR; and (c) Site HD.  



 
98 

The MPA could not differentiate different age-classes of fish within this largest length 

mode as the scales revealed their annual growth increments were relatively low 

compared to their growth earlier in life (Figure 15, 17). There was variation in the age 

structure between the sites, with only one fish aged above 3 years old at site IB, but with 

fish of age 4 and 5 present in greater numbers at Site BR and HD (Figure 18). There 

was only one 6-year-old fish present across all the samples (HD). 

5.3.4 Length-at-age 

Analysis of the age structure of the populations revealed a significant difference in the 

lengths at age of female and male fish across all sites (F1,186 = 12.02, P < 0.01; Figure 

18), where both site and age had significant effects in the GLM (P < 0.01). Females 

were the larger sex, with an estimated marginal mean length of 62.7 ± 1.1 mm 

compared to 57.0 ± 1.2 mm for males; pairwise comparisons with Bonferroni 

adjustment for multiple comparisons indicated this difference was significant (P < 

0.01). The lengths at each age of fish within each site were variable, with differences at 

age 1 by as much as 40 mm in fish whose lengths did not exceed 70 mm; Figure 18). 

Length-at-age was also variable between the sites, with the mean standardized residual 

analysis revealing these differences were significant (F2,185 = 19.19, P < 0.01) when the 

significant effect of sex (P < 0.01) was controlled. Pairwise comparisons with 

Bonferroni adjustment for multiple comparisons indicated the significant differences 

were between site HD and both IB and BR (P < 0.01), but with no significant difference 

between IB and BR (P > 0.05; Figure 19). Outputs of the von Bertalanffy growth model 

also revealed that L∞ was highest at site HD, but relatively low at the other sites and 

with females having higher values than males (Table 6).  
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Figure 16 Image of a scale from a 67.3 mm Garra ghorensis sampled in May 2011 and 

age 2+ years. The white arrows mark the annual growth checks. Note the second growth 

check is close to the edge of the scale as a result of the time of sampling, i.e. the fish has 

only just started to grow again after winter.  
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Figure 17 Marginal increment ratio analysis of scales (± SD) across the study period 

from (a) Site IB, (b) Site BR; and (c) Site HD. 
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Figure 18 Length at the last annulus of ○ female and ● male fish at (a) Site IB, (b) Site 

BR; and (c) Site HD. 
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Table 6 Estimated parameters of the von Bertalanffy growth model for Garra ghorensis 

at the three study sites. Note at Site IB, values for male fish could not be calculated as 

fish were only present to age 2 years. 

 Female Male 

Site L∞ (mm) K L∞ (mm) K 

IB 102 ± 8  0.36 ± 0.06 - - 

BR 112 ± 5 0.35 ± 0.04 80 ± 1 0.76 ± 0.07 

HD 121 ± 2  0.48 ± 0.03 109 ± 1 0.47 ± 0.05 
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Figure 19 Estimated marginal means (± standard error) of standardized growth residuals 

at site HD, BR and IB, where the means have been adjusted for the effects of sex. 
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5.4 Discussion 

The ages of G. ghorensis could be estimated from their scales and so provided data on 

the age structure, lengths at age and growth parameters of the three Jordanian 

populations. These data revealed individuals present in the sites of up to six years old, 

with relatively fast growth up to the age of two years and the production of relatively 

small annual growth increments thereafter. The oldest fish and fastest growth rates were 

recorded at site HD, the most disturbed site due to its habitat modifications including 

impoundment, substrate modification, and the presence of invasive O. aureus that 

became expanded to be 1:1 ratio with G. ghorensis (Hamidan, filed observation). Thus, 

the altered hydrological regime that increased depths and reduced flows were 

insufficient to impact the persistence of G. ghorensis and instead appeared to provide 

more optimal growth conditions than the less disturbed sites.  

In disturbed arid environments, the life history traits of desert fish that increase their 

vulnerability to extirpation and extinction relate to those of the periodic life history 

strategy of Winemiller and Rose (1992) (Olden et al., 2006, 2008). This combination of 

large body size, late maturation, and low juvenile survivorship despite high fecundity 

per spawning event, results in poor adaptation to changing environments. By contrast, 

the traits of small body size, fast growth to maturation and low fecundity per spawning 

event are generally well predisposed to ensuring more favourable population responses 

to highly disturbed and unpredictable environments (Olden et al., 2006). These life 

history traits are important to understand given that desert fish conservation 

management strategies should be based on a fundamental understanding of how the 

ecological attributes of species interact with fluvial habitats to influence population 

persistence (Olden et al., 2008). In the case of G. ghorensis, their traits of relatively fast 

growth and limited lifespan suggest a life history strategy that is more aligned to the 
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opportunistic strategy of Winemiller and Rose (1992). They do not suggest the 

populations have ‘slow’ life histories that are congruent with high extinction risk (Olden 

et al., 2008), although it is acknowledged that data on G. ghorensis reproductive traits 

are required for this inference to be more robust. 

This apparent resilience to disturbance in G. ghorensis was also emphasised by the 

population comprising of the longest-lived and fastest growing individuals being present 

in the most disturbed site. This is a key outcome given that many studies on threatened 

desert fishes in arid environments suggest that conservation strategies should focus on 

the restoration or maintenance of natural flow regimes (Poff et al., 1997; Eby et al., 

2003; Richter et al., 2003). This is based on the assumption that the restoration of 

natural flow regimes will provide the impacted rivers with the attributes in which the 

native fauna evolved and so are necessary for the maintenance of robust and healthy 

populations (Propst et al., 2008). The data shown here for G. ghorensis suggested their 

populations can at least tolerate some hydrological disturbance - and also the presence 

of an invasive cichlid - suggests that their conservation management does not 

necessarily have to return their habitats to pristine conditions. Instead, the next steps in 

their conservation should be the identification of those life history traits (e.g. 

reproductive traits) and/ or ecological associations that do detrimentally impact their 

population persistence when their environments are disturbed so that these can be 

mitigated or rehabilitated (Olden et al., 2008). Notwithstanding, it should be noted that 

the impact of hydrological change is not necessarily clarified by the change in growth, 

but alternatively could be a result of displacement by juvenile fishes that reduces their 

number and thus results in reduced competitive interactions and so faster growth rates. 

Conseqeuntly, growth rate analysis alone is insufficient for drawing conclusions on the 

underlying effect of habitat alteration on G. ghorensis and hence why other metrics, 

such as diet composition, will also be assessed (cf. chapter 7). 
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There was high variability in the length at age of the fish at each site that was 

independent of sex, with variation between individuals at lengths of age 1 of up to 40 

mm. This was also allied with the regular appearance of new 0+ fish in samples between 

July and October that were identified in a discrete length mode from August. Whilst it 

was not implicitly tested within the study, this suggests that a further favourable trait 

that provides G. ghorensis with some resilience to environmental disturbances is a 

protracted spawning period. This is because protracted spawning tends to produce high 

variation in the lengths of the 0-group cohort (Nunn et al., 2002). Protracted spawning 

periods are a common feature of many cyprinid fishes with, for example, C. carpio 

capable of asynchronous spawning throughout the year in equatorial regions (Britton et 

al., 2007). For other riverine cyprinid fishes, protracted spawning is also apparent. For 

example, in Lake Naivasha and its tributary rivers in Kenya, the cyprinid Barbus 

paludinous spawns asynchronously with no clear spawning peak (Mutia et al., 2010). 

This is also the case in temperate cyprinid riverine populations, where protracted 

spawning periods provide the cohorts of juvenile fish with considerable resilience 

against stochastic environmental events that generally result in high early life mortality 

(Nunn et al., 2002). Here, the apparent protracted spawning by G. ghorensis might be a 

deliberate strategy that provides their progeny with the opportunity for greater 

proportions to survive their first year of life in systems that are located in arid regions of 

high summer temperatures and very low rainfall that could lead to periodic drying of 

some nursery areas and so high mortality of the 0+ cohort.  
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Chapter 6. Reproductive traits of Garra ghorensis in relation to 

varying levels of environmental disturbance 

 

 

 

 

 

This chapter has been published in full in: 

Hamidan, N. and Britton, J. R., 2015. Reproductive ecology of Garra ghorensis, a 

critically endangered fish in Jordan. Environmental Biology of Fishes, 98, 1399-1409. 

http://link.springer.com/journal/10641
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6.1 Introduction 

Life history traits are strong predictors of the vulnerability of fish populations to 

extirpation as they determine how resilient a species is to disturbances such as habitat 

loss and the adverse effects of invasive species (e.g., Angermeier, 1995; Reynolds et al., 

2005; Olden et al., 2006, 2008; Dawson et al., 2011; Mace, 2014). Consequently, 

knowledge of life history traits provides a suite of information to inform the 

conservation of threatened fish species (Olden et al., 2006). The traits of reproductive 

effort, duration of the spawning season, length at maturity, and fecundity are important 

within these (Blanck and Lamouroux, 2007). Moreover, these traits help describe 

species’ life history strategies. Winemiller and Rose (1992) described three primary life 

history strategies in fish: opportunistic, equilibrium and periodic (Section 1.5; Chapter 

5). Opportunists tend to be small-bodied and mature early, have low juvenile 

survivorship and are associated with habitats with frequent and intense disturbance 

(Section 1.5). Equilibrium strategists are small to medium in body size, mature later 

than opportunists, have low fecundity per spawning event but with high juvenile 

survivorship through high parental care and are associated with relatively stable habitats 

(Winemiller and Rose, 1992; Olden et al., 2006; Section 1.5). Periodic strategists are 

larger, mature even later in life, are highly fecund but with low juvenile survivorship, 

and are usually associated with seasonal environments (Winemiller and Rose, 1992; 

Olden et al., 2006; Section 1.5).  

Due to the critically endangered status of existing G. ghorensis populations, 

conservation measures are needed to maintain and then enhance their status (Chapter 1). 

The design of effective conservation measures requires knowledge on the species’ 

biology and ecology, particularly in relation to their life history traits. Chapter 5, 

working on the age and growth rates of three Jordanian G. ghorensis populations, 



 
108 

recorded ages to a maximum of six years old, but with most fish being under three years 

old. Analysis of monthly length frequency distributions revealed the appearance in 

samples of young-of-the-year over a protracted period throughout the summer months, 

suggesting a prolonged spawning season with the possibility of batch spawning. Across 

the three populations, there was also considerable variability in the life-span and growth 

rates of individuals, with fish in the most disturbed site being the longest lived and 

fastest growing (Hamidan and Britton, 2015a). This suggested that these G. ghorensis 

populations have an opportunistic life history with individuals successfully adapting to 

mildly disturbed habitats (Section 5.4). These inferences however, remain speculative in 

the absence of data on their reproductive traits. Consequently, the aim of this Chapter 

was to quantify the reproductive ecology of these three G. ghorensis populations using 

samples collected on a monthly basis over a 12 month period. The objectives were to:  

(1) assess the temporal and spatial variability in G. ghorensis reproductive effort;  

(2) use the temporal data on reproductive effort to identify the commencement and 

duration of the spawning season;  

(3) determine body length: fecundity relationships and identify spatial patterns in 

fecundity; and  

(4) assess the life history and conservation implications of these outputs.  

6.2 Materials and Methods 

The fish sampled at each site and month were analysed for: sex ratio, length at maturity, 

absolute fecundity (F, female fish only) and reproductive effort. For an individual fish, 

absolute fecundity was determined from a total egg count (i.e. number of vitellogenetic 

oocytes) of a weighed subsample of a weighed ovary and then multiplied up to represent 

the total egg number of that ovary. The relationship between fecundity (F) and fork 

length (LF) was then described by the logarithmic transformation of the power curve 
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log(F) = log(a) + b log(LF); where a and b are parameters (Bagenal and Braum, 1978). 

Length at maturity was calculated from the percentage of mature fish in each 5 mm 

length class using a modification of the formula of DeMaster (1978). The original 

formula is based on age classes and so the modification used the 5 mm length classes 

instead (Trippel and Harvey, 1987). A fish was classed as mature when developed testes 

or ovaries could be identified in the body cavity. Reproductive effort was assessed by 

the gonadosomatic index (IG) of both female and male fish, calculated as gonad 

weight/(body weight-gonad weight). 

The IG data were used to determine the temporal variation in reproductive effort so that 

the timing of reproduction and the length of the reproductive season could be deduced, 

and the role of temperature within this be identified. It was also used to determine how 

reproductive effort varied between the sites. The fecundity data were used to determine 

the relationship between fork length and egg production, and to identify how fecundity 

varied by site. The fish length: fecundity relationship was determined through linear 

regression following logarithmic transformation of the data. All the other analyses were 

completed using generalized linear models (GLM). This was because the reproductive 

effort and fecundity data were not normally distributed, preventing the use of general 

linear models, and GLM allows the influences of covariates to be controlled in the 

models, as variables such as fish length tend to significantly influence reproductive trait 

data. Models testing IG data used linear distributions and models testing fecundity used 

Poisson distributions with a log-linear function, as fecundity represented count data of 

eggs. The variables used in each model are described in the Results section along with 

their significance. The outputs of each GLM included the mean adjusted values of the 

groups of dependent variable (as estimated marginal means) and their significance (as 

pairwise comparisons with Bonferroni adjustment for multiple comparisons). All 

statistics were completed in SPSS v. 19.0 
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6.3 Results 

The majority of the G. ghorensis monthly sub-samples comprised of 15 fish, although 

numbers were reduced in some months, particularly in winter when sampling conditions 

were more hostile (Table 6/ chapter 5). The lengths of the sampled fish ranged between 

20 and 137 mm, with mean length per month varying through the year and a general 

trend of decreasing mean length (Table 6). Sex ratios at Site HD and BR were not 

significantly different from 1:1 (HD: n = 105, 
2
 = 1.15, P = 0.28; BR: n = 130, 

2
 = 

0.00, P = 1.0), but was dominated by females at Site IB (n = 152, 1M: 1.9F, 
2
 = 13.92, 

P < 0.01; Table 6). At sites HD, IB and BR respectively, lengths at 50 % maturity for 

male were 37.0, 27.7 and 29.3 mm, and for female 47.0, 30.2 and 30.0 mm. These 

lengths support the previous findings that this species matured below the age 1 (Section 

5.3, 5.4). The GLMs testing the effect of month on female reproductive effort (as IG) 

with fish length as the covariate were significant at each site (HD: Wald 
2
 = 102.1, d.f. 

= 10, P < 0.01; IB: Wald 
2
 = 57.2, d.f. = 9, P < 0.01; BR: Wald 

2
 = 64.7, d.f. = 10, P 

<0.01). In each model, the effect of month on IG was significant (P < 0.01) whilst fish 

length was significant at BR and HD (P < 0.05) but not at IB (P = 0.65). At each site, 

female IG varied through the year, with higher values in spring that peaked in May and 

declined thereafter (Figure 20). 

This decline, however, was not consistent, with subsequent increases and decreases in 

mean IG during the remainder of the year (Figure 20). Some of these mean values 

decreased significantly from values in May (e.g. June in Site HD; Table 6/chapter 5) 

only to increase to non-significant differences once more (e.g. July in Site HD; Table 7). 

The GLMs of reproductive effort (as IG) of male fish versus month with fish length as 

the covariate were significant at each site (HD: Wald 
2
 = 119.6,d.f. = 10, P < 0.01; IB: 

Wald 
2
 = 98.3, d.f. = 9, P < 0.01; BR: Wald 

2
 = 154.6, d.f. = 10, P < 0.01). 
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Figure 20 Mean gonado-somatic index (adjusted for the effect of fish length) by length 

of female Garra ghorensis at sites HD, IB and BR. Error bars represent standard error. 



 
112 

Table 7 Pairwise comparisons of mean adjusted gonad-somatic index of female Garra 

ghorensis at each study site between May 2011 and all other months, where values for 

mean difference are displayed with their standard error, and where * denotes the 

difference is significant at P < 0.05. 

 Month HD BR IB 

 

 

 

 

May 

February 0.03 ± 0.06 0.09 ± 0.02* - 

March  0.03 ± 0.06 -0.01 ± 0.02 0.00 ± 0.02 

April  0.01± 0.05 0.03 ± 0.02  0.02 ± 0.02 

June 0.08 ± 0.02* 0.07 ± 0.02* 0.04 ± 0.01 

July 0.03 ± 0.03 0.08 ± 0.02* 0.06 ± 0.02* 

August 0.15 ± 0.04* 0.05 ± 0.02 0.03 ± 0.02 

September 0.11 ± 0.03* 0.06 ± 0.02 0.07 ± 0.02* 

October 0.07 ± 0.04 0.06 ± 0.02 0.06 ± 0.02* 

November 0.09 ± 0.02* 0.07 ± 0.03 0.08 ± 0.01* 

December - 0.07 ± 0.03 - 
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In each model, the effect of month on IG was significant (P < 0.01), but the effect of fish 

length was not significant at any site (P > 0.05). As with female fish, male reproductive 

effort was highest in the initial months of the year and peaked around May (particularly 

in Sites IB and BR; Figure 20). However, unlike the female fish, IG progressively and 

significantly declined with each month thereafter (Table 8, Figure 21).  

Mean air temperatures by month at the two weather recording stations ranged between 

9.8 and 19.2 
o
C from February through May, and between 21.1 and 25.8 o

C from June 

through October (Figure 7). Comparison of mean IG and mean monthly air temperature 

suggested IG increased as air temperatures increased to 19 
o
C and then reduced as 

temperatures exceed 20 oC as the fish commenced spawning (Figure 22). This inference 

is supported by a GLM testing the effect of mean monthly air temperature (two groups, 

< 20 and > 20 o
C) on IG with site, sex and fish length being covariates. The model was 

significant (Wald 
2
 = 36.1, d.f. = 1, P < 0.01), with all independent variables 

significant (P < 0.05). It revealed mean adjusted IG was significantly higher at 

temperatures below 20oC (that occur before June) (0.07  0.01) than above 20oC (June 

to October) (0.03  0.01) (P < 0.01).  

The GLMs testing for the effect of site on reproductive effort with month and fish 

length as covariates were significant for female fish, but not males (female: Wald 2 = 

39.4, d.f. = 2, P < 0.01; male: Wald 2 = 1.3, d.f. = 2, P = 0.32; Figure 21). For females, 

the covariates of fish length and month were also significant (P < 0.05), with mean 

adjusted IG significantly higher at HD (0.21 ± 0.03) than at IB (0.06 ± 0.02) and BR 

(0.04 ± 0.03) (P < 0.01; Figure 23). The differences in mean adjusted male IG between 

the sites were not significant (Figure 23).  
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Table 8 Pairwise comparisons of mean adjusted gonad-somatic index of male G. 

ghorensis at each study site between May 2011 and all other months, where values for 

mean difference are displayed with their standard error, and where * denotes the 

difference is significant at P < 0.05. 

 Month HD BR IB 

 

 

 

 

May 

February - 0.08 ± 0.01* - 

March  0.06 ± 0.01 0.01 ± 0.01 0.04 ± 0.01 

April   ± 0.01 0.02 ± 0.01  0.04 ± 0.01 

June 0.04 ± 0.01 0.03 ± 0.01* 0.05 ± 0.02* 

July 0.04 ± 0.01 0.05 ± 0.01* 0.06 ± 0.01* 

August 0.05 ± 0.01* 0.06 ± 0.01* 0.06 ± 0.01* 

September 0.03 ± 0.01 0.07 ± 0.01* 0.08 ± 0.01* 

October 0.03 ± 0.01* 0.08 ± 0.02* 0.07 ± 0.01* 

November - 0.08 ± 0.02* 0.05 ± 0.02 

December 0.03 ± 0.01* - 0.07 ± 0.01* 
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Figure 21 Mean gonado-somatic index (adjusted for the effect of fish length) by length 

of male G. ghorensis at sites HD, IB and BR. Error bars represent standard error. 
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Figure 22 Relationship of mean monthly air temperature at the closest weather 

recording stations to the sites and mean gonado-somatic index (adjusted for the effect of 

fish length) at each site (HD, IB and BR) and for each sex (male ♂, female ♀). Error 

bars represent standard error. 
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Figure 23 Mean gonado-somatic index (adjusted for the effect of fish length and month) 

for male and female G. ghorensis at sites HD, IB and BR 
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The relationship between fecundity and fish length only used data for fish sampled prior 

to June, given the possibility that captured fish from June onwards could have already 

spawned (Figure 20; Table 9). The relationship between fish length and fecundity was 

significant at all sites (linear regression; Table 9). Comparison of fecundity between 

sites also only used data from fish sampled prior to June. The GLM was significant 

(Wald 2 = 11.50, d.f. = 2, P < 0.01), with the effect of site and fish length also 

significant (P < 0.01), but not month (P = 0.84). Mean adjusted fecundity was 

significantly higher at HD (435 ± 44 ripe oocytes) than at both IB (232 ± 38 ripe 

oocytes) and BR (242 ± 38) ripe oocytes (P < 0.01). Mean adjusted fecundity between 

IB and BR was not significantly different (P >0.05). 
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Table 9 Relationship between fish length and fecundity per site according to linear regression and where fecundity estimates are derived from log(F) = 

log(a) + b log(LF). Values in parentheses are the lower and upper 95 % confidence levels. Error around the mean is standard deviation. 

Site Mean length (mm) Length range (mm) Log(a) b R
2
 F statistic  P 

HD 83.8 ± 14.1 48.2 - 113.4  0.12 (-3.80 to 4.05)  1.33 (0.46 to 2.20) 0.31 F1,22 = 10.10 < 0.01 

BR 64.4 ± 17.2 33.0 - 103.9 -1.24 (-7.05 to 4.56) 1.51 (0.09 to 2.92) 0.20 F1,20 = 4.95 0.04 

IB 55.9 ± 13.3 32.1 - 84.2 -3.91 (-7.75 to -0.07)  2.19 (1.24 to 3.13) 0.48 F1,25 = 22.64 < 0.01 
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6.4 Discussion 

The reproductive traits of the three G. ghorensis populations revealed early maturation 

and relatively high reproductive effort. Considering their small body size and limited 

life-span (generally below 3 years; Hamidan and Britton, 2015a; Chapter 5), this 

suggests that the populations are expressing an opportunistic life history (Winemiller 

and Rose, 1992), a strategy associated with frequently disturbed habitats (Olden et al., 

2006). The G. ghorensis populations occurred in habitats with high temperatures 

(maximum daily air temperatures exceeded 40 
o
C in July and August) and minimal 

rainfall (i.e. low flows) in summer, and low temperatures (minimum daily air 

temperatures regularly fall below 0 
o
C in January) and relatively high rainfall (which 

can result in episodic floods) in winter. These conditions suggest a relatively harsh 

environment, especially when allied to the anthropogenic disturbances apparent at the 

sites, particularly HD where impoundments have replaced much of the fast, shallow 

water with slower, deeper sections. In disturbed environments, the life history traits of 

fish are theorised as predisposing fish to extinction risk as they determine their 

vulnerability to disturbances (Reynolds et al., 2005; Pool and Olden, 2012). Desert 

fishes with ‘slow’ life histories (e.g. large body sizes, long life-spans and delayed 

maturity) tend to have greater frequencies of local extirpation and so higher extinction 

risk (Olden et al., 2008). By contrast, desert fishes with ‘fast’ life histories and opposite 

suite of traits have greater resilience to extirpation and extinction. Consequently, the life 

history traits of G. ghorensis present in these three sites in Jordan suggest their 

populations have some inherent resilience to extirpation through their life history traits 

and opportunistic strategy. 

The overall risk of extirpation and extinction of fishes due to habitat loss and invasions 

is variable according to not only the traits of the species concerned but also their ability 
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to adapt to the new conditions through trait plasticity (McKinney, 1997; Olden et al., 

2006, 2008). Thus, whilst the opportunistic traits of G. ghorensis appear to generally 

provide resilience against extirpation and even extinction, this is coupled with their 

ability to adapt to changing conditions through trait plasticity. Site HD was the most 

disturbed site through impoundments and the presence of invasive O. aureus, yet 

individuals in this G. ghorensis population were the longest-lived and fastest growing 

(Section 5.3, 5.4; Hamidan and Britton, 2015a), and had significantly higher 

reproductive investment compared to fish in the other sites in terms of both female 

gonado-somatic index and fecundity. This indicates there is little evidence that invasive 

O. aureus were impacting G. ghorensis spawning success, an impact that has generally 

been recorded in other sympatric fishes (Doupé et al., 2008). Thus, these outputs 

suggest that in mild hydrological disturbance, the plasticity of G. ghorensis reproductive 

traits provide some resilience and persistence to populations.  

The female reproductive effort data suggested that G. ghorensis commenced spawning 

in May and June; when tested against the air temperature data, outputs suggested initial 

spawning occurred at air temperatures of approximately 20 
o
C. Following this initial 

spawning event, spawning was asynchronous, with the gonado-somatic index of females 

being variable throughout the summer months and was then largely unrelated to air 

temperature. Observations of the ovaries of these fish undertaken during fecundity 

estimates between February and May also revealed that in addition to oocytes ripening 

in response to temperature increases (and presumably also to changes in day length and 

flow regime), there remained numbers of undeveloped eggs present. Indeed, batch and 

asynchronous spawning is a feature of many cyprinid fishes (e.g. Rinchard and 

Kestemont, 1996; Nunn et al., 2002; Oyugi et al., 2011). Although G. ghorensis mainly 

spawned in June, some females protracted their spawning throughout the summer 

months. This was also supported by the appearance of young-of-the-year fish (YOY) in 
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samples throughout this period (Hamidan and Britton, 2015a). Similar to their trait 

plasticity, this reproductive strategy potentially provides increased resilience to 

disturbance through production of YOY over a protracted period that ensures some will 

survive to winter even if there is a disturbance in the early summer that would otherwise 

result in high YOY mortality (Hamidan and Britton, 2015a). 

In summary, the completion of these analyses on the reproductive traits of G. ghorensis 

in the three sites confirmed that their life histories were aligned to the opportunistic 

strategy of Winemiller and Rose (1992). This should provide their populations with 

some resilience to changing environments that stems from their trait plasticity, relatively 

fast growth, early maturity and high fecundity.  
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Chapter 7. Diet and trophic niche of the endangered fish Garra 

ghorensis in three Jordanian populations  

 

 

 

 

This chapter has been published in full in: 

Hamidan, N., Jackson M.C. and Britton, J.R., 2015. Diet and trophic niche of the 

endangered fish Garra ghorensis in three Jordanian populations. Ecology of Freshwater 

Fish. doi: 10.1111/eff.12226 
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7.1 Introduction 

Disturbed environments are often more vulnerable to the invasion of non-native species, 

as their often more generalist traits and high capacity for adaptation enable them to take 

advantage of the modified conditions (McKinney, 1997; Marvier et al., 2004). Whilst 

this combination of habitat disturbance and invasion increases the risk of local native 

fish populations being extirpated and endemic fishes becoming extinct (Olden and Poff, 

2005), this risk varies between species according to their traits, and their ability to adapt 

to the modified environment and co-exist with invasive species (Olden et al., 2006 

2008; Hamidan and Britton, 2015b). Consequently, understanding how endemic and 

threatened species respond to modified environments and interact with invaders is 

integral to impact assessment and the design of conservation strategies to ameliorate 

and/ or mitigate impact (Fausch et al., 2006).  

Jordan is considered the fourth water poorest country in the world (Denny et al., 2008) 

and its rivers are increasingly being impounded in order for water to be allocated for 

domestic use and ground water recharges (Chapter 1, 4). This has altered previously 

fast-flow inland shallow rivers with high longitudinal connectivity to river sections that 

are slower flowing, substantially deeper and often disconnected from their adjacent 

sections (Hamidan and Mir, 2003). Allied to this has been the release of non-native fish, 

usually for enhancing fish productivity in aquaculture using cichlid species such as 

Oreochromis niloticus and O.aureus. These introductions have also often occurred in 

habitats where endemic fish species are also present, such as G. ghorensis (Hamidan, 

2004; Hamidan and Britton, 2015a,b; Chapter 1).  

In situations where an endemic species of high ecological value is under increasing 

habitat impoverishment and is assessed as endangered, then research into their status 

and ecology can be justified where the studied populations are shown to be locally 
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abundant in preliminary surveys and so sampling will not affect the sustainability of the 

extant populations (Leunda et al., 2008). Consequently, work on G. ghorensis so far in 

its constricted range in Jordan range has focused on the expression of its life history 

traits in disturbed environments, revealing that even in the most disturbed environment 

studied, their ability to reproduce, have a relatively long life span (for the species) and 

grow relatively fast was not constrained (Hamidan and Britton, 2015a,b; Chapter 5, 6). 

This chapter builds on this work through assessment of G. ghorensis diet, with a focus 

on assessing feeding relationships across three contexts: in allopatry, and in sympatry 

with a native fish (Capoeta damascina) and in sympatry with an invasive fish 

(Oreochromis aureus). Given their level of conservation threat then each context could 

only be studied at a single site and thus replication of contexts was not possible 

(Chapter 1, 4). The objectives were to:  

(1) assess the diet and trophic niche breadth of G. ghorensis and the other fishes through 

stomach contents analysis;  

(2) assess the long-term trophic niche breadth and trophic interactions of G. ghorensis 

and the invasive O. aurues and the native C. damascina through stable isotope analysis 

(
13

C, 
15

N); and  

(3) assess the effect of co-existing fishes on G. ghorensis diet and feeding relationships, 

and in relation to their endangered status.  

7.2 Materials and Methods 

The diet and feeding relationships were analysed by two main methods: stomach 

contents analyses and stable isotope analysis. The former utilised all sampled fish 

collected at each site (Chapter 2, section 2.2), whereas stable isotope analysis was 

conducted on a smaller proportion of these sampled individuals. Note that logistical 
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constraints in the field prevented collection of invertebrate samples for analysis of food 

availability and so no comparison could be made in relation to diet composition versus 

food availability. 

7.2.1 Stomach contents analyses 

Stomach contents analyses were conducted through examining the contents of the 

intestine using dissecting microscope (× 7 to × 45 magnification). During the analyses, 

the number of empty intestines was noted. Food items were identified to the lowest 

taxonomic group possible, according to the remains and their ability to provide enough 

information for a positive identification. They were then grouped into the following 

categories according to the level at which they were identified: Spirogyra (algae), 

Gastropoda, Coleoptera, Odonata (as nymphs), Diptera, Ostracoda, Chironomid larvae, 

Formicidae, zooplankton (primarily Daphnia sp.), unidentified plant material, detritus, 

juvenile fish, fish eggs, unidentified invertebrate (where remains were encountered, 

such as wings and legs, that did not allow further identification) and digested material 

(tissues and structures in the stomach that could not be assigned a more specific 

category).  

For each fish species at each site, the stomach contents data were presented in two 

ways. Firstly, the data were combined for all months, providing a broad overview of the 

food items consumed by the fishes. Secondly, the data were split by season according to 

the mean monthly air temperatures calculated from data from the two metrological 

stations in the vicinity of the sampling sites (Figure 5; Chapter 2). Accordingly, data 

were combined for each species and site for December, January, and February (winter: 

< 12 
o
C); March, April and May (spring: 12 to 20 °C); June to September (summer, > 

20 °C), and October and November (autumn, 12 to 20 °C) (Figure 24). The stomach 

content data were then used in the following indices and metrics. The vacuity index 
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(%Iv) was calculated as the percentage of empty stomachs to the total number of 

stomachs examined (Hyslop 1980). Numerical analysis of food items was applied after 

Windell and Bowen (1978). Food items were represented as ‘frequency of occurrence’ 

(%Fi) and the ‘relative abundance’ of a given prey item (Ai).  
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Figure 24 Mean air temperature per month recorded from the two recording station 

close to the study area (Figure 5/ Chapter 2). Error is standard error; horizontal lines 

mark the temperature bands used to combine monthly data by season (< 12 
o
C; 12 to 20 

o
C; > 20 

o
C).  



 
128 

Frequency of occurrence, defined as the percentage of stomachs in which that prey 

occurred, was calculated as: %Fi = (Ni/N) × 100, where: Ni = Number of intestines 

containing item i and N = the total number on non-empty intestines. The relative 

abundance of prey items, defined as the percentage of total stomach contents in all 

stomachs that comprised of that prey item, was calculated as: Ai = (∑Si/∑ St) × 100, 

where Si= the stomach contents (numbers) composed of prey i, St = the total stomach 

contents (Number) of all stomachs in the entire sample (Total number of all stomach 

items). Note that for Ai calculations, detritus, spirogyra and digested material were 

unable to be included due to the requirement for numerical data. For analyses of Fi and 

Ai by season, all food items were included in calculations but only the principal food 

items were selected for reporting for the sake of brevity. Trophic niche breadth was 

calculated from the stomach content data to test the species food specialisation, 

according to Levins (1968): 

2

1
  

j

B
p



  

Where B = Levins' measure of niche breadth, Pj = Proportion of the individuals found in 

our using resource state j, or fraction of items in the diet that are of food category j 

(Estimated by: Nj / Y) (∑pj = 1.0), Nj = Number of individuals found in or using 

resource stat j, Y = ∑ Nj = Total number of individuals sampled.  

Niche overlap was calculated as a percentage, according to: 

1

(minimum , ) 100
n

jk ij ik

i

P p p



 
  


 

where Pjk = percentage overlap between species j and species k; pij = proportion 

resource i is of the total resources used by species j; pik = proportion resource i is of the 

total resources used by species k; and n = total number of resource states. Percentage 
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overlap is the simplest measure of niche overlap to interpret because it is a measure of 

the actual area of overlap of the resource utilization of the two species. This overlap 

measure was used by Schoener (1970) and has been labelled the Schoener overlap index 

(Hurlbert, 1978). Abrams (1980) recommends this measure as the best of the measures 

of niche overlap. Niche breadth and niche overlap were both calculated with 

EcoMethodology 7.2 software package.  

7.2.2 Stable isotope analysis 

Stable isotope analysis provided a longer-term perspective of the diet of the fishes as it 

represents assimilated diet (up to 6 months where dorsal muscle is used; Grey 2006), 

where δ
15

N is the indicator of trophic level and δ
13

C is the indicator of energy source 

(Cucherousset et al., 2012). The analyses were completed using replicate samples of the 

putative fish-food resources (benthic macro-invertebrates, back-swimmers and algae) 

collected during sampling, with triplicate samples used where possible. The dorsal 

muscle samples were from a random selection of up to 30 fish per species and site, 

taken from samples collected in October and November 2011, i.e. from fish at the end 

of their growth season when their stable isotope data from their dorsal muscle would be 

representative of their assimilated diet during the preceding summer months (Perga and 

Gerdeaux, 2005). All samples were dried at 50 
o
C for 48 hours before being sent to the 

Cornell Isotope Laboratory for analysis (Cornell University, New York, USA). Here, 

they were ground into a homogenous powder, approximately 0.5 mg weighed out into a 

tin cup, with the actual weight recorded using a Satorius MC5 microbalance. The 

nitrogen and carbon isotopes were then analysed, using a Thermo Delta V Advantage 

Isotope Ratio Mass Spectrometer. The outputs were values of δ
13

C and δ
15

N for each 

individual fish and their putative food resources. As the tissues and macro-invertebrates 

had been preserved in 70 % ethanol then there was the possibility that some consequent 

shifts in stable isotope signatures had occurred. For example, Kelly et al. (2006) 
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suggested that although ethanol did not significantly enrich δ
15

N in tissues of Artic charr 

Salvelinus alpinus, some significant changes were detected in δ
13

C. However, given the 

absence of species-specific stable isotope correction factors for G. ghorensis, C. 

damascina and O. aureus, the fish data were used uncorrected, on the basis that δ
15

N 

was unlikely to have altered significantly (Kelly et al., 2006), and any correction factor 

for shifts in δ
13

C would have to be applied equally over the three species and thus would 

not alter their trophic positions and trophic niche sizes relative to each other. Similarly, 

whilst the macro-invertebrate samples can also shift slightly in their stable isotope 

signatures following preservation in ethanol (e.g. Sarakinos et al., 2002), then given 

they were used to only assess relative trophic position then they were also used in their 

uncorrected form.  

To assess differences in the trophic position (TP) of each fish per species and site (i), the 


15

N data were converted to TP using the formula [(
15

Ni - 
15

Nbaseline) / 3.4] + 2, where 

Nbaseline is the mean 
15

N of the putative food resources. The items used as putative 

resources at each site were assessed by the outputs of both the stomach contents data 

and the extent of their differentiation with the fish isotope values (cf. Figure 25). The 

trophic position data were then tested using a generalized linear model (GLM), as the 

data were not normally distributed. In the model, trophic position was the dependent 

variable, the interaction of site and species was the independent variable, and 

differences in trophic positions between species and sites were tested by pairwise 

comparisons with Bonferroni adjustment for multiple comparisons. The same model 

structure was also used to test for differences between species and sites in 
13

C. To 

determine the trophic niche width of each species at each site according to assimilated 

diet, the metric ‘standard ellipse area’ was used (SEAc) (Jackson et al., 2011; Jackson et 

al., 2012). These ellipses are based on the distribution of individuals in isotopic space as 

an estimate of each species core trophic niche using the ‘siar’ package (Jackson et al., 
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2011; Parnell et al., 2010) in the ‘R’ computing programme (R Core Development 

Team 2012). The subscript ‘c’ in ‘SEAc’ indicates that a small sample size correction 

factor was used, as sample size tended to be below 20 per species (Jackson et al., 2011). 

Where G. ghorensis was present in sympatry then the extent of their overlap in trophic 

niche with the other fish species present was quantified (%). For the trophic niche 

calculations, the data were not combined between years so that any temporal differences 

could be identified.  

7.3 Results 

Site IB: Allopatric Garra ghorensis 

The mean length of the G. ghorensis at Site IB was 89.5 ± 20.3 mm. Of the 165 fish 

analysed, 54 had empty stomachs (Iv = 18 %). Frequency of occurrence of diet 

indicated that detritus, digested material and spirogyra were the most frequently 

encountered food categories in their stomachs, with Odonata nymphs the only macro-

invertebrate present in their diet at a frequency > 1 % (Table 10). In contrast to the other 

populations studied, no gastropods were encountered in the stomachs (Table 10). 

Detritus was the most important dietary items between Spring and Autumn, and 

Spirogyra was most important in Winter (Table 11). The relative abundance data 

indicated that Odonata species were an important food item, particularly in the spring, 

although values were relatively high in all seasons (Table 12, 13). The overall dietary 

niche breadth was 0.34, being the highest recorded across the three G. ghorensis 

populations, with this also generally reflected in the seasonal data (Table 14) where 

niche breadth was highest in winter (Table 14). The stable isotope data of 28 allopatric 

G. ghorensis (mean length: 54.1 ± 15.8 mm) indicated that their mean trophic position 

was 3.21  0.05 and their standard ellipse area (as a measure of trophic niche size) was 

2.86 ‰
2
 (Figure 25). 
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Site BR, Garra ghorensis in sympatry with native Capoeta damascina 

The mean length of the G. ghorensis used in the analyses at Site BR was significantly 

smaller than C. damascina (54.11 ± 20.3 mm and 85.03 ± 28.7 mm respectively; 

ANOVA: F1,325 = 125.81, P < 0.01). Of 158 G. ghorensis stomachs analysed, 69 were 

empty (Iv = 43 %), whereas of 168 C. damascina stomachs analysed, 14 were empty (Iv 

= 8 %). For both species, the frequency of occurrence indicated that detritus was the 

most frequently encountered food item, with Spirogyra, Gastropoda and plant material 

also present, albeit in differing frequencies between them (Table 10). The main contrast 

in these data between the species was in Odonata nymphs, which were not recorded in 

any G. ghorensis stomachs but were recorded in 26 % of C. damascina (Table 10). 

Coleoptera, Diptera, juvenile fish and zooplankton were also present in C. damascina 

diet, although their frequency of occurrence was < 2 % (Table 10). The dominance of 

detritus in the diet of both fishes was also apparent in each season, with frequency of 

occurrence peaking in autumn for C. damascina (83 %) and in winter for G. ghorensis 

(67 %, Table 11). For C. damascina, Odonata nymphs were most prominent in diet in 

summer (50 %; Table 11). The relative abundance data emphasized the difference in the 

diet of the sympatric fishes related mainly to the Odonata in C. damascina in all seasons 

(Table 12, 13). Although the relative abundance of Gastropoda was high in G. 

ghorensis, especially in spring, this was partly due to the relatively low number of 

numerical food items in their stomachs (Tables 10, 12, 13).  

The overall niche breadth of G. ghorensis was relatively low when compared to C. 

damascina (0.10 and 0.24 respectively; Table 14). Their overall niche breadths 

overlapped by 72 %. Seasonally, the smallest calculated niche breadth for G. ghorensis 

occurred in summer when they were mainly consuming detritus, and was highest in 

spring, when the contribution of spirogyra and Gastropoda increased (Table 13, 14). A 

value for G. ghorensis in autumn was unable to be calculated due to the low diversity of 
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items taken, indicating a very small niche. The niche breadth of C. damascina was also 

considerably higher than G. ghorensis in all seasons except spring. The highest dietary 

overlap with C. damascina occurred in winter and varied between 41 and 72 % across 

the seasons (Table 14). 

Stable isotope analysis was completed for 15 G. ghorensis (mean length: 41.6 ± 15.8 

mm) and 17 C. damascina (mean length: 69.5 ± 22.1 mm). The differentiation between 

the fish and their putative food resources suggested that macro-invertebrates were 

important assimilated items compared with algae (mean 
15

N: all fish: 16.75 ± 0.13 ‰; 

macro-invertebrates: 12.87 ± 0.40; algae: 3.84 ± 0.56; Figure 25). There were 

significant differences between the species for trophic position (GLM: Wald 
2
 = 76.70, 

d.f. 4, P < 0.01); G. ghorensis being higher (3.32 ± 0.07 vs. 3.03 ± 0.05; P < 0.01). 

Although the trophic position of G. ghorensis was higher than at Site IB, the difference 

was not significant (0.11 ± 0.08, P > 0.05). The GLM testing differences in 
13

C 

between the species was significant (Wald 
2
 = 335.14, d.f. 4, P < 0.01), with G. 

ghorensis 
13

C depleted compared to C. damascina (-23.27  0.37 versus -21.74  0.28) 

(Figure 25). The trophic niche sizes according to SEAc revealed that the niche of C. 

damascina (4.18 ‰
2
) was considerably larger than G. ghorensis (2.48 ‰

2
), with a niche 

overlap of 8 % (Figure 25).  

Site HD, Garra ghorensis in sympatry with invasive Orecohromis aureus 

The mean length of analysed G. ghorensis at Site HD was 80.32 ± 20.4 mm and O. 

aureus was 129.7 ± 27.8 mm, with these differences not being significant (ANOVA: 

F1,254 = 0.41, P > 0.05). Of the 123 G. ghorensis stomachs analysed at the site 22 were 

empty (Iv = 17 %), with 47 of 141 O. aureus stomachs also being empty (Iv = 33 %). 

Frequency of occurrence data indicated both species were feeding strongly on algae (as 

Spirogyra), with detritus also frequently occurring in their stomachs (Table 10). 
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Gastropoda and Odonata nymphs were also taken frequently by G. ghorensis, with this 

much less apparent in O. aureus (Table 10). Instead, the O. aureus stomachs contained 

low frequencies of fish eggs, Formicidae, Chironomid larvae and juvenile fish (< 6 %), 

all of which were absent in G. ghorensis (Table 10). Seasonally, the frequency of 

occurrence of Gastropoda and Odonata nymphs to G. ghorensis diet was always 

considerably higher than for O. aureus, with these items well represented in all seasons 

(except autumn) for G. ghorensis (Table 11). In summer, both fishes had high 

frequencies of spirogyra in their diet (Table 11). The relative abundance of Gastropoda 

was high for both species (Table 12), although the effect was seasonal, as they were 

present less frequently in spring in both fishes (Table 12). The relative abundance of 

Odonata was high in G. ghorensis, especially in spring, but was absent in O. aureus, 

whereas chironomid larvae and fish eggs were relatively abundant in O. aureus but not 

G. ghorensis (Table 12, 13). The dietary niche breath of G. ghorensis was always higher 

than O. aureus, irrespective of season, although there was overlap in their diets (42 to 

74 %; Table 14). Niche breadth of G. ghorensis was lowest in summer, when items 

including zooplankton were absent in diet (Table 11, 14).  

Stable isotope analysis was completed for 16 G. ghorensis (83.6 ± 14.6 mm) and 12 O. 

aureus (75.9 ± 13.5 mm). Mean 
15

N of all fish was 7.82 ± 0.17 ‰, macro-invertebrates 

5.67 ± 0.52 ‰ and algae 3.54 ‰, suggesting both macro-invertebrates and algae had 

some contribution to assimilated diet (Figure 25). The outputs of the GLMs revealed the 

difference in mean TP between G. ghorensis and O. aureus was significant (TP: G. 

ghorensis 3.72  0.07, O. aureus 3.45  0.06, P = 0.03), but was not for 
13

C (1.15  

0.50, P > 0.05) (Figure 25). The trophic position of G. ghorensis at this site was 

significantly higher than at Sites BR and IB (P < 0.01 in both cases). Trophic niche size 

according to SEAc revealed G. ghorensis and O. aureus had similar sized trophic niches 

(4.33 ‰
2 

and 4.00 ‰
2
 respectively) and overlapped by 27 % (Figure 25). 
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Table 10 Frequency of occurrence of the food item categories of each fish species in 

each sampling location (all data).  

 IB BR HD 

Food Item 

G. ghorensis 

(n = 165 ) 

G. ghorensis 

(n = 158) 

C. damascina 

(n = 168) 

G. ghorensis 

(n = 123) 

O. aureus 

(n = 141) 

Detritus 37.8 67.4 73.4 21.8 50.0 

Digested 

material 

28.8 20.2 22.7 12.9 1.1 

Unidentified 

invertebrate 

8.1 3.4 7.1 4.0 3.3 

Spirogyra 20.7 4.5 14.3 52.5 58.5 

Gastropoda 0.0 3.4 3.9 24.8 7.4 

Plant material 2.7 4.5 14.3 0.0 9.6 

Odonata 

nymph 

8.1 0.0 26.0 19.8 0.0 

Zooplankton 0.9 0.0 1.3 2.0 0.0 

Coleoptera 0.0 0.0 0.6 0.0 0.0 

Diptera 0.0 0.0 0.6 0.0 0.0 

Juvenile fish 0.0 0.0 0.6 0.0 3.2 

Chironomid 

larvae 

0.9 0.0 0.0 0.0 4.3 

Formicidae 0.0 0.0 0.0 0.0 1.1 

Fish eggs 0.0 0.0 0.0 0.0 5.3 

Ostracoda 0.9 0.0 0.0 3.0 0.0 
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Table 11 Frequency of occurrence of selected food items of each species in each 

sampling location by season (n = number of guts examined).  

    Items 

Site Species Season n D
etritu

s 

S
p
iro

g
y
ra 

G
astro

p
o
d
a 

O
d
o
n
ata 

Z
o
o
p
lan

k
to

n
 

IB G. ghorensis Spring 45 48.7 18.9 0.0 8.1 2.7 

  Summer 69 28.8 11.5 0.0 5.7 1.9 

  Autumn 30 50.0 28.0 0.0 7.1 0.0 

  Winter 30 11.8 35.3 0.0 11.8 17.7 

BR 
G. ghorensis Spring 44 27.3 13.6 9.1 0.0 0.0 

  Summer 54 42.0 0.0 1.0 0.0 3.0 

  Autumn 24 20.0 0.0 0.0 0.0 0.0 

  Winter 36 67.4 4.5 3.4 0.0 3.4 

 C. damascina Spring 45 83.1 9.5 7.1 11.9 0.0 

  Summer 60 73.2 17.8 3.5 50.0 7.10 

  Autumn 19 83.3 11.1 5.5 27.7 11.1 

  Winter 44 52.6 15.8 7.9 7.9 15.8 
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    Items 

Site Species Season n D
etritu

s 

S
p
iro

g
y
ra 

G
astro

p
o
d
a 

O
d
o
n
ata 

Z
o
o
p
lan

k
to

n
 

HD G. ghorensis Spring 44 18.9 40.5 24.3 35.1 2.7 

  Summer 29 6.9 68.9 31.0 13.7 6.9 

  Autumn 5 40.0 40.0 40.0 0.0 40.0 

  Winter 45 37.1 45.7 20.0 8.6 2.9 

 O. aureus Spring 45 22.2 33.3 2.2 4.0 2.2 

  Summer 49 36.3 69.6 3.0 0.0 0.0 

  Autumn 11 100.0 50.0 16.6 0.0 0.0 

  Winter 36 63.3 46.7 13.3 0.0 6.7 
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Table 12 Relative abundance (as mean number of items per stomach) of food item 

categories of each fish species in each sampling location (all data).  

 IB BR HD 

Food Item G. ghorensis 

(n = 165 ) 

G. ghorensis 

(n = 158) 

C. damascina 

(n = 168) 

G. ghorensis 

(n = 123) 

O. aureus 

(n = 141) 

Unidentified 

invertebrate 

29.0 9.7 6.6 1.2 3.7 

Gastropoda 0.0 87.1 8.3 44.4 26.7 

Odonata 

nymph 

41.9 3.2 81.0 35.3 0.0 

Zooplankton 3.2 0.0 1.2 1.6 0.0 

Coleoptera 0.0 0.0 1.8 0.0 0.0 

Diptera 0.0 0.0 0.6 0.0 0.0 

Juvenile fish 0.0 0.0 0.6 0.0 3.2 

Chironomid 

larvae 

3.2 0.0 0.0 0.0 42.9 

Formicidae 0.0 0.0 0.0 0.0 0.9 

Fish eggs 0.0 0.0 0.0 0.0 22.6 

Ostracoda 9.7 0.0 0.0 16.7 0.0 
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Table 13 Relative abundance (as mean number of items per stomach) of selected food 

items of each species in each sampling location by season 

    Items 

Site Species Season n Gastropoda Odonata Zooplankton 

IB G. ghorensis Spring 45 0.0 75.0 25.0 

  Summer 69 0.0 38.4 46.2 

  Autumn 30 0.0 33.3 66.6 

  Winter 30 0.0 42.9 28.6 

BR G. ghorensis Spring 44 100.0 0.0 0.0 

  Summer 54 33.3 0.0 66.6 

  Autumn 24 0.0 0.0 0.0 

  Winter 36 87.1 3.2 9.7 

 C. damascina Spring 45 0.0 83.3 0.0 

  Summer 60 1.7 93.1 3.4 

  Autumn 19 4.3 86.9 4.4 

  Winter 44 66.0 20.0 6.0 

IB G. ghorensis Spring 45 0.0 75.0 25.0 

  Summer 69 0.0 38.4 46.2 

  Autumn 30 0.0 33.3 66.6 

  Winter 30 0.0 42.9 28.6 



 
140 

    Items 

Site Species Season n Gastropoda Odonata Zooplankton 

HD G. ghorensis Spring 44 23.9 72.8 1.1 

  Summer 29 80.6 19.3 0.0 

  Autumn 5 14.6 0.0 58.4 

  Winter 45 66.0 20.0 6.0 

 O. aureus Spring 45 1.3 0.0 0.0 

  Summer 49 9.1 0.0 81.8 

  Autumn 11 100 0.0 0.0 

  Winter 36 85.7 0.0 10.7 
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Table 14 Trophic niche breadth of each species in each site, and overall and by season, 

according to the methods of Levins (1968) and calculated from stomach contents data. 

Values in parentheses are the extent of the niche overlap between the fishes at that site 

in that season. Note at Site BR in autumn, there were insufficient items in diet to enable 

calculation. 

Site Species Overall Spring Summer Autumn Winter 

IB G. ghorensis 0.34 0.47 0.54 0.47 0.61 

BR G. ghorensis 0.10 

(71.6%) 

0.58 

(41.2%) 

0.25 (62.6 

%) 

- 0.20 

(72.2%) 

C. damascina 0.24 0.16  0.42 0.38 0.48 

HD G. ghorensis 0.20 

(54.4%) 

0.59 

(41.7%) 

0.423 

(57.7%) 

1.00 

(39.7%) 

0.44 

(73.8%) 

O. aureus 0.13 0.44 0.343 0.580 0.26 
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Figure 25 Stable isotope biplots of Garra ghorensis (black circles), Capoeta damascina 

(grey circles) and Oreochromis aureus (clear circles), and their trophic niche breadth as 

measured by standard ellipse area (SEAc) where solid black line = G. ghorensis, grey 

line = C. damascina, and dashed line = O. aureus. Black triangles are macro-

invertebrate samples and clear triangles are algal samples. Note differences in scales on 

the axes. 
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7.4 Discussion 

Garra ghorensis is endangered throughout its range, restricting the number of 

populations that could be used to study aspects of their ecology that would then inform 

conservation strategies. Here, only three populations were used, each representing a 

different context (allopatric, sympatric with a native fish and sympatric with an invasive 

fish) without replication. Correspondingly, whilst the data outputs indicate the extent to 

which the G. ghorensis populations were responding to the different contexts, the lack 

of replication might inhibit the identification of more general dietary patterns in relation 

to aspects such as invasions. Nevertheless, the outputs did suggest that in general, the 

populations of G. ghorensis had a greater proportion of empty stomachs than sympatric 

fishes and were heavily reliant on feeding on algae (spirogyra) and detritus that whilst 

are of low nutritive value, are rarely limiting (Persson, 1983). In stomachs, contributions 

of animal material to diet appeared low, although the stable isotope data suggested they 

made more important contributions to assimilated diet than the stomach contents data 

suggested. Nevertheless, these data suggest that all of the fishes used in the study were 

specialising on detritus and phyto-plankton. 

The reliance of the fishes on detritus and spirogyra in the stomach contents might 

represent a dietary preference over animal material, or might be reflective of a low 

availability of animal material at each site for the fishes, especially given the stable 

isotope outputs. Also, given the variation in site characteristics, then food availability 

might also have differed between sites and influenced diet choice. However, as the 

temporal and spatial abundance of these items were not measured at each site, this could 

not be investigated further. Nevertheless, the relatively high contribution to diet of algae 

and detritus compared to other resources in all sites is important as it can be speculated 

that these would be least likely to be limiting of all the resources consumed (Persson, 
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1983). This is important, as all outputs suggested the diet of G. ghorensis and the 

invasive O. aureus had some degree of overlap (stomach contents analysis: 54 %; stable 

isotope analysis: 27 %). Moreover, when invasive populations establish following an 

introduction, niche-based competition theory predicts that where there is dietary overlap 

between species that results in competition then the subordinate competitor will shift to 

alternative food resources, reducing their trophic niche but with partitioning promoting 

their coexistence (Sepulveda et al., 2012). Consequently, that this was not evident here 

suggests there was no requirement for shifting to alternative food resources, i.e. despite 

the resource sharing, competition was not evident and so did not alter their diet (Guo et 

al., 2014). Indeed, the G. ghorensis population that was sympatric with O. aureus 

comprised of relatively fast growing, highly fecund individuals (Hamidan and Britton, 

2015a,b) and so there was no supporting evidence that there were detrimental ecological 

consequences arising from sharing food resources.  

The complementary use of stomach contents and stable isotope data to study the diet 

and feeding relationships of fishes is now routine, including for investigating feeding 

interactions of invasive and native fishes (e. g. Leunda et al., 2008; Cucherousset et al., 

2012). Their complementary use is beneficial as although stable isotope analysis has 

many benefits, including use of relatively small sample sizes and provision of long –

term insights into diet composition, it also has a series of limitations. These limitations 

include issues relating to fish size, as fish diet is strongly related to ontogeny, thus 

differences between species could just be an artefact of differences in fish length and 

thus also their gape size (Cucherousset et al., 2012). Indeed, the complementary use of 

stable isotope analysis and stomach contents analysis can often provide contrasting 

outcomes. For example, Locke et al. (2013) used stomach contents, stable isotopes and 

trophically transmitted parasites to analyse the diet of pumpkinseed Lepomis gibbosus, 

and revealed each method provided virtually unrelated information, with no significant 
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correlation in the importance of prey items across the methods. In this chapter, however, 

there were some consistent outcomes in the combined use of stomach contents and 

stable isotopes. For example, they both indicated that C. damascina had a larger trophic 

niche than G. ghorensis at Site BR and these niches overlapped. The stomach contents 

data did, however, suggest that the niche breadth of G. ghorensis was higher than O. 

aureus in all seasons, with this was not apparent in the stable isotope data that suggested 

a relatively similar niche breath. This difference might relate to the stomach contents 

data being used seasonally, whereas the stable isotopes were used to primarily analyse 

the assimilated diet at the end of the growth season.  

In addition, the extent of assimilation into muscle tissue of items such as detritus, plant 

material and spirogyra, all common items in the stomachs, might be relatively low due 

to issues including their difficulty of digestion, resulting in their prolonged presence in 

the intestine (and so potentially a high contribution to stomach contents data) but low 

assimilation (and so potentially a low contribution to stable isotope data) (McCutchan et 

al., 2003).  

This low assimilation of plant material was supported by the differentiation in stable 

isotope values between fish and their putative resources that suggested macro-

invertebrates might have been more important in terms of assimilated diet than 

suggested by the stomach contents data. Thus, these animal resources might have been 

making relatively important energetic contributions to the fishes and so been important 

for maintaining their population stabilities.  

In summary, the outputs of the two dietary analytical techniques suggested that whilst 

there were some spatial differences in the diet of G. ghorensis, they were primarily 

consuming detritus and algae in each site, with this also being the case for the sympatric 

fishes, with the low proportion of animal material consumed being important for their 
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assimilated diet. Whilst this resulted in some overlap in the diet of G. ghorensis and the 

sympatric fishes, it was cautiously deduced that the fishes were unlikely to have been 

competing for this resource and so the endangered status of G. ghorensis was unlikely 

to be resulting from negative feeding interactions with an invasive fish.  
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Chapter 8. Discussion 

8.1 Overview  

The research studied the endangered fish species G. ghorensis, starting with analysis of 

their biogeographic origin and phylogeography, and assessment of their current 

distribution in the context of potentially reduced habitat availability in the last decade. 

The research then focused on three populations across a gradient of disturbance, where 

disturbance was in relation to both habitat alteration and the presence of an invasive 

fish. Analyses were completed on their life history traits and their feeding relationships. 

The aim of this final chapter is to thus provide a synthesis of the results and identify on-

going conservation threats to the species. Context is also provided in relation to studies 

on other desert fishes, impacts of invasive species and relevant aspects of ecological 

theory.  

8.2 Phylogeography and distribution 

The analyses of the mitochondrial DNA of the Garra genus reported in Chapter 3 were 

designed to determine the biogeographic origin and phylogeography of G. ghorensis. 

This was important for a number of reasons. Firstly, surveys on the species completed in 

recent years (cf. Chapter 4) indicate a very restricted spatial distribution and thus it was 

important to understand how their current distribution related to patterns that might have 

been more evident in the past. Secondly, this region of the Middle East has been subject 

to a series of studies that have provided contrasting perspectives on the biogeographic 

origin of species such as G. ghorensis, with some suggesting it is major biogeographical 

crossroads (Banarescu, 1992; Coad, 1996a), whilst others suggest it is a centre of 

speciation (Por, 1985). Finally, as genetic analyses can indicate where a population has 

been subjected to historical changes in the physical and biotic environment (Feliner, 

2014; Mossop et al., 2015), then it was able to highlight the potential importance of the 
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proto-lakes of Samra and Lisan in driving current distribution patterns. Thus, the genetic 

work, although only completed on mitochondrial DNA, was extremely important in 

providing context on the origin and distribution of G. ghorensis.  

It was apparent from the genetic results that the biogeographic origin of G. ghorensis 

was not the Arabian Peninsula, despite their morphological similarity to G. tibanica and 

contrary to the hypothesis suggested by the work of Krupp (1982). Instead, the 

phylogenetic data indicated that as G. ghorensis is sharing a common ancestor with G. 

rufa then their origins had to be the basins of the Mediterranean and Persian/Arabian 

Gulf, as per Goren and Ortal (1999) and Gorshkova et al. (2012). Importantly, these 

outputs also suggested that the absence of G. ghorensis in the southern Dead Sea basin, 

as detected in Chapter 3, was not necessarily due to alterations in habitat and hydrology 

of these wadis in recent times, but instead were most likely a legacy of the proto-lakes 

of Samra and Lisan. This was because these results suggested that the common ancestor 

of G. jordanica and G. ghorensis was likely to have originally occupied the coastal 

waters of Samra Lake, but the subsequent development of the variant salinities Lisan 

Lake split the populations of G. jordanica and G. ghorensis around the Mujib River 

(Figure 8, 9, 11). Their complete disconnection occurred as the salinity of Lisan Lake 

reached lethal levels. The Garra populations were then limited to the wadis in their 

respective regions where there was sufficient high freshwater flow. Consequently, the 

fish species and their distributions that were present in Lake Samra underwent some 

alterations in distribution and development as the salinity of Lake Lisan increased. 

Thus, the absence of fishes from the southern Dead Sea area, as detected in Chapter 3 

where a number of sites were sampled and no G. ghorensis were recorded (Table 3), 

might not be due to the influence of human activities in contemporary times. Instead, it 

could be the legacy of the salinity of Lake Lisan extirpating populations in historical 



 
149 

times, thus removing freshwater fish species that would otherwise have been endemic to 

the area. 

These results on the origin of G. ghorensis and their biogeographic constraints are 

important given the work on their contemporary distribution completed since 2002. 

Hamidan and Mir (2003) originally sampled six sites and detected G. ghorensis in all of 

them. In 2010, these surveys were repeated, with an additional eight sites also fished. 

The results indicated that there was minimal change in their distribution, with individual 

fish captured at each of the original six sites of Hamidan and Mir (2003). However, 

across the new sites fished, only one new population of G. ghorensis was detected. 

Although there could arguably be a case that this lack of new populations detected was 

the result of populations being recently extirpated by human disturbance, the lack of 

baseline data from earlier times, plus the issues already outlined in relation to Lisan 

Lake, suggest this is unlikely. Instead, it can be argued that the distribution map of 

Figure 14 is a strong representation of their contemporary distribution that has primarily 

resulted from temporal changes in the geology and water chemistry of the region over a 

very prolonged period. 

The importance of bringing these results from Chapter 3 and 4 together is that they help 

interpret the on-going issues associated with the endangered status of G. ghorensis. 

They highlight the natural limits on their distribution, thus enabling more focus on 

recent changes within this range. The results of Chapter 4 suggested that in the 2000s, 

there was little change in their distribution in this range, at least in relation to those sites 

in which it was logistically possible to sample, and highlighted the populations that 

were locally abundant and present in either allopatry or in sympatry. These populations 

were then important for highlighting those populations that could withstand regular 

sampling for subsequent analysis of their diet and life history traits (Chapters 5 to 7).  
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The surveys of 2010 were also important in highlighting that although the distribution 

of G. ghorensis had not altered, the physical characteristics of the sites sampled had, 

such as through construction of water impoundments. Although their recording was 

largely subjective in the study, given logistical constraints (Table 3), it was highlighted 

in Chapter 3 that these alterations potentially result in a loss of longitudinal connectivity 

in these wadis. This could then lead to habitat and population fragmentation, and 

potentially weakening the ability of individuals to adapt to changes in their 

environment, such as climate change (Section 8.5).  

8.3 Life history traits  

Chapters 5 and 6 studied aspects of the life history traits of G. ghorensis across three 

sites, focusing initially on age and growth rates (Chapter 5) and then on reproductive 

traits (Chapter 6). These traits are fundamentally important in the context of the 

conservation of the species as, more generally, they are capable of highlighting fishes 

that are vulnerable to extirpation via their suite of life history traits. For example, Olden 

et al. (2006) summarised the three life history strategies that represent the endpoints of a 

triangular continuum arising from trade-offs among the three basic demographic 

parameters of survival, fecundity, and onset and duration of reproduction (Section 1.5; 

Figure 3). These life history strategies of periodic, opportunistic and equilibrium are 

also strongly indicative of the environments in which the species inhabit. For instance, 

an opportunistic strategist, usually a small-bodied fish of early maturation, low 

fecundity per spawning event, and low juvenile survivorship, typically inhabit highly 

disturbed and unpredictable environments (Section 1.5). By contrast, an equilibrium 

strategist, usually a small to medium bodied fish with moderate maturation age, low 

fecundity per spawning event, and high juvenile survivorship, typically inhabits 

constant environments (Olden et al., 2006).  
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These strategies also align to the r and k life history strategies (Table 15). These 

strategies all exist in a continuum, with species not necessarily at a fixed position on 

this, but varying by populations according to abiotic and biotic constraints (Figure 3). 

Work on the desert fishes of the Colorado River has strongly indicated that it is the r-

strategists that are most resilient to withstanding aspects of environmental change, 

where relatively high plasticity in their traits enables them to compensate for modified 

conditions by altering their growth and reproductive output, such as through faster 

growth enabling earlier maturation and then higher reproductive outputs (e.g. Olden et 

al., 2006; Mims et al., 2010; Section 1.5).  

Table 15 Typical characteristics of r-selected (opportunistic) and k-selected 

(equilibrium) fish populations (from Pianka 1994) 

Characteristic r-selected k-selected 

Maturation Early in life Relatively late in life 

Life span Short Medium to long 

Mortality rate High Low 

Number of progeny per 

reproductive episode 

Many Few 

Number of reproductive episodes 

per lifetime 

Usually one Often several 

Timing of first reproduction Early in life Late in life 

Egg/ progeny size Small Large 

Parental care None Often extensive 
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By contrast, k-selected, equilibrium species are highly vulnerable to extirpations and 

extinctions (Olden et al., 2006; Section 1.5). For G. ghorensis, the results of Chapters 5 

and 6 indicated that they rarely lived for more than 3 years, with growth rates that were 

relatively rapid early in life but slowed thereafter, and had high reproductive effort (e.g. 

high gonado-somatic index and fecundity) across a relatively short reproductive season. 

They are also a gravel spawning species, with no parental care. Thus, these results 

indicate that G. ghorensis utilised a r-selected life history strategy, with these traits also 

aligned to the opportunistic life history strategy of Winemiller and Rose (1992). Whilst 

there was variability in these traits between sites, this variability indicated an intensely 

r-selected strategy at IB and BR, where the habitat and environmental conditions (e.g. 

seasonal flow rates) were likely to be more variable than HD due to their lack of 

impoundment. At HD, it appeared that whilst a r-selected strategy was still being 

utilised by G. ghorensis, it was less intense than at IB and BR, as the altered habitat 

result in more stable conditions. Thus, across the range of G. ghorensis, whilst there will 

be some variability in their traits according to the habitat and environmental conditions, 

their life history traits will always consist of early maturity (<3 years), high relative 

fecundity and short body lengths (<180 mm), i.e. a r–selected strategy. The studies 

completed on the Colorado River (cf. Chapter 1) therefore indicate that this is highly 

advantageous by providing G. ghorensis populations with some resilience to tolerate 

some aspects of environmental changes. 

The results of both Chapters 5 and 6 also indicated that these growth and reproductive 

traits for G. ghorensis were plastic. Site HD was interpreted as the most altered 

hydrologically, with reduced flows and increased depths, whereas the other two sites 

were relatively undisturbed, with more natural flow regimes and habitats (Chapter 2). 

Growth rates were significantly higher and life spans longer at HD, with greater 

reproductive investment, despite being relatively altered from the apparently preferred 
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habitat of the species. Indeed, the results suggested that the reduced flows might have 

provided the population at HD with greater energy for investment in growth and 

reproduction, with the more stable hydrological regime resulting from impoundment 

providing some distinct advantages in terms of greater longevity and reproductive 

output. However, it is worth to say, that this kind of habitat alteration, can put more 

impact on G. ghorensis due to invasion, and changing in water chemical and physical 

parameters, so G. ghorensis invest more in reproduction and growth, that is way the 

subject of flow impact on length and production is recommended for further studies. 

These results are highly important as they indicate that, providing the hydrological 

disturbance at sites where G. ghorensis is present still enables the completion of their 

life cycle (e.g. there is still sufficient spawning substrate, nursery areas, and adult 

refugia and feeding areas) then their populations can withstand some anthropogenic 

disturbances. Importantly, these results are contrary to Propst et al. (2008), who 

suggested that to conserve endangered desert fishes in habitat altered environments 

requires the restoration of the natural flow regimes in which they evolved. Arguably, in 

the face of human development in securing water supplies in arid regions, such 

perspectives might be considered as highly unrealistic. Thus, by arguing that some 

habitat alteration is acceptable but stipulating that the habitat requirements of all life 

stages must still be met could help ensure that G. ghorensis populations can be 

maintained throughout their range.  

Notwithstanding these results and interpretations, it should also be noted that these 

studies were completed on three populations that were locally abundant. Had they also 

included some sites and populations that were under a greater risk of extirpation, such 

as from more extreme hydrological changes, then potentially some altered 

interpretations might have resulted. However, destructive sampling of vulnerable 

populations of endangered species would be have substantial ethical implications and be 
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contrary to subsequent conservation efforts. Nevertheless, given the successful use of 

scales for age and growth analysis, it could be argued that some age and growth 

analyses could be completed on some vulnerable populations. This is because scales can 

be collected using non-destructive methodologies and information on the age structure 

populations can help indicate recent reproduction and recruitment failures.  

8.4. Trophic ecology 

The trophic ecology of fishes can help interpret aspects of their status by identifying 

their feeding relationships and where there is potential for the adverse effects of 

competition to develop. Across the three sites that were studied, G. ghorensis was 

present in allopatry and then in sympatry with C. damascina (native fish) and O. aureus 

(invasive cichlid). For G. ghorensis, stomach contents analyses consistently showed 

detritus and algae were prominent food items in their diets, with low dietary 

contributions of animal material. Calculations of trophic niche size indicated their 

niches were small compared with C. damascina and overlapped by over 70 %, whereas 

it was larger than O. aureus, but still overlapped by 54 %. Complementary use of stable 

isotope analysis indicated greater contributions of animal material to assimilated diet, 

but also indicated that the trophic niche breadth of C. damascina was higher than G. 

ghorensis, with some overlap (26 %). Similarly, the trophic niche of G. ghorensis, as 

indicated by stable isotope analysis, was also larger than O. aureus, and did overlap (27 

%). These results are important as when in sympatry with the other fishes, they 

highlight the potential for G. ghorensis to compete for the shared food resources. 

Trophic niche based competition theory predicts that where there is inter-specific niche 

overlaps between species that results in competition, then the competitors will shift to 

alternative food resources, reducing their trophic niche size and potentially diverging in 

resource use, with this partitioning promoting their coexistence (Sepúlveda et al., 2012; 

Hamidan, et al., 2016, and Chapter 7). This partitioning was not evident here, given the 
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dietary overlaps between G. ghorensis and C. damascina and O. aureus. This was 

interpreted in Chapter 7 as being because there was no requirement for partitioning; that 

is, despite the trophic niche overlaps, competition was not evident via reduced and/or 

partitioned niches and so the fishes did not alter their diet (Guo et al., 2014). This might 

be related to the stomach contents data that suggested that G. ghorensis were heavily 

reliant on feeding on algae (spirogyra) and detritus, as these are rarely limiting in 

freshwaters. Moreover, they indicate that despite the presence of a highly invasive fish, 

there was no evidence trophically that this was having an ecological impact on G. 

ghorensis. This is again important in the context of the conservation of their 

populations, as they suggest they are capable of co-existing with invasive species. 

However, detailed future studies on food availability and seasonal food availability can 

provide wide understanding. 

8.5 Conservation threats 

8.5.1 Invasive species 

At the global level, freshwater fishes are among the most widely introduced aquatic 

animals, with at least 625 freshwater fish species now having been introduced outside of 

their natural range (Gozlan et al., 2010). A primary driver of these introductions is the 

gaining of socio-economic benefits via aquaculture (Gozlan, 2008; Gozlan et al., 2010). 

It was for this reason that cichlid species have been introduced into Jordan, with species 

including O. aureus being farmed. Although potentially solving food supply issues and 

providing socio-economic benefits, where these fishes escape into the wild and develop 

invasive populations then ecological consequences can be incurred (Gozlan et al., 

2010). A strong example is the release of the Nile perch Lates niloticus into Lake 

Victoria, East Africa, which has been implicated in the decline, and even extirpation, of 

over 200 haplochromine cichlid fishes (Barel et al., 1985; Ogutu-Ohwayo, 1990; Kishe-
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Machumu et al., 2012). Other examples include hybridisation of the already threatened 

native trout species (e.g. Oncorhynchus apache and Oncorhynchus gilae) with the 

introduced rainbow trout Oncorhynchus mykiss in North America (Vitule et al., 2009) 

and hybridisation of crucian carp Carassius carassius with introduced goldfish 

Carassius auratus and C. carpio in Britain (Hänfling et al., 2005). Additionally, C. 

carpio have also been shown to increase water turbidity and decrease aquatic 

macrophytes and zooplankton in invaded water bodies (Lougheed, 1998). Regarding 

invasive cichlids, Oreochromis mossambicus is listed by the IUCN on the list of the 

world’s worst 100 invaders (ISSG, 2006).  

In the field studies of Chapters 5 to 7, however, there was little evidence of detrimental 

impacts of O. aureus on aspects of G. ghorensis ecology, although it should be noted 

that these studies were not necessarily designed to be impact assessments. They do, 

however, highlight that detecting ecological impacts can be difficult and that in some 

cases, ecological impacts might indeed be minimal (Gozlan, 2008; Gozlan et al., 2010). 

Notwithstanding, from a conservation perspective, given the impacts recorded in many 

regions of the world regarding non-native fishes used in aquaculture such as invasive 

cichlids and C. carpio, including the Middle East (e.g. Coad, 1996b; Zak et al., 2014) 

then it would be unwise to discount invasive fishes generally as a long-term 

conservation threat to G. ghorensis. Moreover, with increasing impoundment of rivers 

in their range then the lentic conditions required for the aquaculture of fishes such as 

Oreochromis niloticus will continue to increase. The introduction of inappropriate fish 

species for aquaculture could thus be managed through implementation of risk 

assessment, such as the Fish Invasiveness Scoring Kit (FISK; Copp et al., 2009). This 

should help prevent the use of inappropriate fishes that will develop invasive, high 

impacting populations if they escape into the wild.  
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8.5.2 Habitat disturbance and loss 

As G. ghorensis is a rheophilic species, requiring flowing water and gravels for 

spawning substrate, then it can be argued that the most destructive habitat alteration in 

the wadis would be a total shift from lotic to lentic conditions caused by complete 

impoundment and reservoir construction. Indeed, such impoundments generally have 

the capacity to result in large losses of endemism, alter thermal regimes downstream of 

the impoundment and increase the risk of invasion by non-native species (Johnson et al., 

2008; Olden and Naiman, 2010; Lehner et al., 2011). In the case of G. ghorensis 

blocking the flow regime and the continuous cleaning of the gravely habitats removed a 

considerable space of spawning grounds either by removing the substrate (gravels) 

manually, or by covering them with sediments that used to be naturally cleaned off by 

the annual flow events.  

Activities such as water abstraction, whether from surface or ground waters, can alter 

the hydrology of rivers, reducing flow rates, especially during dry periods in summer 

(Benejam et al., 2010). This abstraction can then have negative ecological consequences 

for river biota, including the fish assemblage (Benejam et al., 2010; Lange et al., 2014). 

However, where data are available to ensure that the abstraction leaves sufficient flows 

for the fish community to remain sustainable (Cowx et al., 2012) then this flow 

reduction should not necessarily imperil the populations. Data requirements on flow 

rates of fishes and the ecological consequences of flow reductions can be assessed 

through packages such as PHABSIM (Physical Habitat Simulation; Moir et al., 2005; 

Beecher et al., 2010), although this is designed for salmonid fish communities (Louhi et 

al., 2008). It does, however, enable environmentally sustainable flows to be 

implemented that enable some abstraction without affecting the long-term sustainability 

of fish populations. The natural flow of river is particularly important in the case of G. 

ghorensis , it cleans the substrate of sediment, creates nursery sites (river pockets) 
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beside the fast flowing rivers, and the effect of oxygenates the eggs over the spawning 

grounds.  

The long-term drivers of these threats to the physical habitats of the wadis in the past 20 

years are likely to from water shortages that result in more extreme measures being 

taken to increase water security for society and industry, such as damming that recreates 

reservoirs. Unlike schemes currently at Site HD that deepen the channel and reduce 

flows but still enables the G. ghorensis population to be sustained, a switch to a 

completely lentic habitat would eliminate their access to spawning areas. Moreover, the 

potential for prolonged periods of extreme weather events such as drought, which result 

in increased water shortages, are predicted to increase under climate change (Section 

8.5.3).  

8.5.3 Climate change 

General climate change projections for Jordan consistently suggest that air temperatures 

will increase by up to 2 
o
C by 2050, with warming effects being stronger in the summer 

than in the winter (Ministry of the Environment, 2013). Site scale predictions (i.e. at 

smaller spatial scales) then suggest increased temperatures between 1 and 4 
o
C and, 

more crucially, decreased precipitation by between 15 and 60 %. This is predicted to be 

accompanied by extreme events, such as flash floods, intense rains, snow storms and 

drought (Ministry of the Environment, 2013). Given that Jordan is already among the 

driest countries in the world, with water scarcity a major issue that constrains economic 

growth and development, then this is a potentially major socio-economic and political 

issue. Available water resources per capita are already falling, while water demand and 

the water shortage will drastically increase in the future due to population growth and 

anticipated socio-economic development. Moreover, groundwater levels have already 

dramatically declined, suggesting groundwater exploitation has been unsustainable 

(Ministry of the Environment, 2013). Water management in the country is supply-based 
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and although there have been significant improvements in water-supply infrastructure, 

there remains a critical and serious supply-demand imbalance, exacerbated by the recent 

influx of displaced people from neighbouring countries due to political instability in the 

region (Ministry of the Environment, 2013).  

These climate change predictions suggest that these existing water supply-demand 

problems will only worsen and this will put greater stress on surface waters. Rahel and 

Olden (2008) suggest that in general, the outcomes of such climate change predictions 

will be altered stream flows and thermal regimes, increased water salinity and the 

increased development of water supply schemes to satisfy societal demands. Assuming 

these outcomes occur in the Dead Sea basin then it would suggest that the current 

freshwater habitats of G. ghorensis will become more prone to more extreme low flows 

in summer, when temperature increases will also result in warmer waters with 

concomitant changes in water chemistry, such as decreased dissolved oxygen levels. 

There will be potentially elevated flows in winter, with these often having deleterious 

effects on juvenile fish numbers (Gorski et al., 2011); alternatively, these waters could 

compensate the low level of riverine water caused by ground water and surface water 

abstraction. Indeed, similar hydrological outcomes have been predicted for many rivers 

across the world (Döll and Zhang, 2008). For example, large decreases in Q95 (i.e. the 

flow rate that is exceeded in a particular river for 95 % of the time) are predicted in 

summer for rivers in Great Britain, with this likely to have substantial consequences for 

river biota, including fishes (Johnson et al., 2008).  

The suggestion of Rahel and Olden (2008) that increased water scarcity will result in 

increased engineering to secure water supplies would then suggest that there will be 

increasing pressure on the wadis of the Dead Sea basin for impoundments, as these 

should provide more stable surface water supplies for the surrounding communities and 

agricultural activities. It has already been discussed that some habitat disturbance of this 
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nature can be tolerated by G. ghorensis, with their trait plasticity providing some 

adaptive capacity to the new conditions. However, should these schemes become more 

extreme, with development of permanent lentic conditions in place of the prevailing 

lotic conditions, then this is likely to result in the local extirpations of the G. ghorensis 

populations due to loss of spawning areas. Moreover, in these lentic waters, the risk of 

non-native species being used in aquaculture is increased, raising further concerns on 

their potential for resulting in irreversible changes to the native biota (Rahel and Olden, 

2008; Section 8.5.1). 

8.6 Recommendations 

The following recommendations are proposed that all aim to provide long-term 

sustainability in the populations of G. ghorensis. They seek to maintain the spatial 

distribution of the species in their natural range and within this, for populations to have 

the ability to form locally abundant populations. 

1. Maintenance of the Red Listing of Garra ghorensis as an endangered species.  

As G. ghorensis has a spatially limited distribution, with this in a region of political and 

climate uncertainty, the anthropogenic pressures on their populations will remain and, 

most likely, increase. Therefore, recognition that G. ghorensis is an endangered species 

will provide some wider recognition that their populations are going to remain imperiled 

in the face of anthropogenic pressures, climate change and biological invasions for a 

long time to come.  

2. Develop sustainable water supply strategies that provide adequate water supplies for 

societal needs but also sustainable flows for the G. ghorensis populations; and 

3. Education of water managers, engineers and planners over the need to conserve G. 

ghorensis populations.  
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Given that the major threat to the long-term sustainability of G. ghorensis is the 

maintenance of river flows and habitat availability in which to complete their lifecycle, 

then schemes to secure water supplies must take their populations into account. Any 

shift in habitats to entirely lentic conditions would be lead to population extirpations 

and, ultimately, extinction. Abstraction of ground waters that reduce surface water flows 

to minimal levels, especially in drought, needs to be avoided. Thus, the maintenance of, 

for example, sufficient flows and spawning gravels must be incorporated into all water 

supply schemes and the need to conserve G. ghorensis population be embedded into 

environmental impact assessments (EIAs). This will require education of relevant 

industries and individuals, including planners, engineers, water managers and those 

involved in completing EIAs. 

4. Integrate G. ghorensis as an important, resilient and endemic species in the local 

public awareness programme that is implemented by the Royal Society for the 

Conservation of Nature (RSCN) in general and around the protected areas within the 

range of G. ghorensis distribution, in particular the local communities around Fifa 

Protected Area a 23 sq. kilometres mixed saline and salt plain where the two 

southernmost wadis (Khneizereh and Fifa) drain. 

5. Following the steps of the conservation project of the endemic Azraq Killifish 

Aphanius sirhani in Jordan. It is recommended to integrate the “story of conservation of 

G. ghorensis” as a second flagship fish species in the school curricula in all stages. In 

which, the conservation story and the life history traits can be provided at different 

levels. The aim of this integration is to promote awareness and appreciation of the 

species and its conservation efforts among the young generations, who can provide 

more support in any future conservation programmes. 

6. Increased regulation and risk assessment of non-native fishes in aquaculture.  
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The use of non-native fishes in aquaculture, such as C. carpio and Orecochromis spp. is 

likely to increase in future in order to maintain food security. The production within 

cages within newly created lentic waters created by impoundments is likely to occur. As 

such, regulators and water managers must work along aquaculturists to ensure high 

biosecurity to prevent escapes and utilise non-native risk assessments to ensure that the 

species that are used are those that only have a low risk of invasion should they escape 

into the wider environment. A joint awareness programme is recommended to the 

stakeholders who are engaged in water impoundment and distribution because they do 

not mind [in general] the introduction, and though it is of good benefit for the 

surrounding communities and water quality itself as a bio cleaning effects, where the 

invasion risk is out of the context.  

7. Increase understandings of the interaction of climate change on the physical habitats 

of wadis, and the potential consequences for G. ghorensis; and 

8. Complete further research on G. ghorensis populations, with emphasis on collating 

more precise data on specific aspects of their life cycle, and on crucial life stages. 

The results of the research of this thesis have provided a great deal of information on G. 

ghorensis. However, to provide elevated understandings of the environmental and 

ecological needs of the species would require further research on the macro- and micro-

habitat requirements of the species across all stages of their life cycle. At present, there 

remains a paucity of data on their more precise river flow requirements and little or no 

knowledge on the interaction of river flow with spawning and recruitment success. For 

the ecology of the species to strongly inform planning processes will require further and 

more precise work on specific aspects of the different life stages of G. ghorensis. These 

data can then be used within predictive models to develop greater understandings of 

how climate change and habitat disturbances could impact their population 

sustainability. 
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It is recommended to expand the research to include the effects of water flow on the life 

history traits using fixed flow loggers in the study sites. In addition, population size and 

population structure can be used as a precise indicator of the rivers health by measuring 

the length of living fishes and return them back without specimens removal. Where it is 

difficult to obtain population estimates, a proxy could be used such as catch per unit 

effort, where the number of fish captured during a standard time using standardized 

gears (e.g. gill nets or electric fishing) is expressed as the number of fish per unit time 

and unit effort (Harley et al., 2001). A baseline survey can set up the initial level of 

population size and structure that can be monitored every 3 years. A food availability 

studies could be invaluable, and seasonal food analysis is also recommended.  

Finally, new modern techniques can be applied especially tagging either with 

microchips or more much advanced Platform Transmitter Terminal (PTT) radio tags or 

satellite tags that enable a wider understanding of fish movement patterns and 

associated life history traits in the disturbed environments.  

9. Development of long-term G. ghorensis captive breeding programmes 

Should recommendations 1 to 8 either be implemented and be unsuccessful, or 

overlooked and never implemented, then to also safeguard the species in the longer-

term, some consideration should be given to creating a captive rearing programme. 

Although global experiences with captive rearing of fishes for subsequent release into 

the wild suggest there are inherent issues with rearing fishes that are artificially selected 

for their traits due to the culture process, i.e. released fishes have not be naturally 

selected, this activity would at least ensure that the species have the capacity to be re-

introduced into waters where their populations have been extirpated due to habitat 

changes (Araki, et al., 2007, McPhee, 2004, Snyder, et al., 1996). However, these 

releases would only be completed once work had determined the fish were able to 
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survive and potentially develop sustainable populations in these habitats once more, 

such as following restoration work.  

8.7 Conclusions 

In conclusion, this research was successful in identifying the biogeographic origins of 

G. ghorensis and highlighted where historical geological and chemical changes had 

influenced their natural range in contemporary times. Surveys completed in 2010 

revealed that despite continued alterations to the physical habitats of rivers within this 

range, this had yet to impinge on their distribution in the last decade. Studies on life 

history traits indicated G. ghorensis has some inherent phenotypic plasticity that enables 

them to adapt to some changes in their environment, with their relatively general diet 

and high reliance on algae and detritus enabling them to share resources with other 

fishes, both native and invasive, without necessarily having to compete. However, given 

their restricted natural range and constrained distribution within this, it is recommended 

that their status on the IUCN Red List as endangered remains, with a series of 

conservation and recommendations provided in Section 8.5 and 8.6 to help ensure the 

species do not undergo any population extirpations. Nevertheless, the outputs of 

Chapters 5 to 7 do indicate that some level of hydrological disturbances might be 

permissible across this range, but only where there is sufficient habitat remaining to 

ensure their populations still have all of their critical habitats remaining to complete 

their lifecycles. However, given the on-going and future issues of water security in the 

region that might be reduced by climate change, then for this to be successful is likely to 

require increased conservation efforts, including education programmes for key 

stakeholders. 
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