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B.similaris Bradybaena similaris  (Férussac, 1821) 

B.fumigata Byrsotria fumigate  (Guérin-Méneville , 1857) 

C.augar Calliphora augur Fabricius, 1775 

C.chloropyga Calliphora chloropyga (Wiedemann, 1818) 

C.dubai Calliphora dubia  (Macquart, 1855) 

C.hilli Calliphora hilli  Patton, 1925 

C.megacephala Calliphora megacephala* (Fabricius, 1794) 

C.putoria Calliphora putoria* (Wiedemann 1830) 

C.stygia Calliphora stygia (Fabricius 1782) 

C.vicina Calliphora vicina  Robineau-Desvoidy, 1830 

C.vomitoria Calliphora vomitoria  (Linnaeus, 1758) 

Ch.albiceps Chrysomya albiceps (Wiedemann, 1819) 

Ch.chani Chrysomya chani  Kurahashi , 1979 

Ch.megacephala Chrysomya megacephala (Fabricius, 1794) 

Ch. nigripes Chrysomya nigripes Aubertin, 1932 

Ch.pinguis Chrysomya pinguis (Walker, 1858 ) 

Ch.putoria Chrysomya putoria  (Wiedemann 1830) 

Ch.rufifacies Chrysomya rufifacies (Macquart, 1842) 

Ch.villeneuvi Chrysomya villeneuvi Patton, 1922 

C.septempuctata Coccinella septempuctata  (Linnaeus, 1758) 

C.macellaria Cochliomyia macellaria (Fabricius, 1775) 

C.verena Compsomyiops verena  Walker, 1849 

C.tibialis Conicera tibialis Schmitz, 1925 

D.carnivorus Dermestes carnivorus Fabricius, 1775 

D.freshi Dermestes frischi  Kugelann, 1792 

D.lardarius Dermestes lardarius Linnaeus, 1758 

D.maculatus Dermestes maculatus De Geer, 1774 

D.melanogaster Drosophila melanogaster Meigen, 1830 

D.pseudoobscura Drosophila pseudoobscura  Frolova & Astaurov, 1929 

E.persolla Eumacronychia persolla  Reinhard, 1965 

F.canicualris Fannia canicularis  (Linnaeus, 1761) 

F.trimaculata Fannia trimaculata  (Stein, 1898) 
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H.ligurriens Hemipyrellia ligurriens  (Weidmann, 1830) 

H.longipennis Hippobosca longipennis Fabricius, 1805 

L.maderae Leucophaea maderae (Fabricius, 1781) 

L.ampullacea Lucilia ampullacea Villeneuve, 1922 

L.caesar Lucilia caesar (Linnaeus, 1758) 

L.coeruleivirdis Lucilia coeruleivirdis Macquart, 1855 

L.cuprina Lucilia cuprina (Wiedemann, 1830) 

L.illustris Lucilia illustris Meigen, 1826 

L.sericata Lucilia sericata (Meigen, 1826) 

M.glabra Madiza glabra Fallen, 1820 

M.abdita Megaselia abdita Schmitz, 1959 

M.curtineura Megaselia curtineura (Brues 1909) 

M.giraudii Megaselia giraudii (Egger, 1862) 

M.rufipes Megaselia rufipes (Meigen, 1804) 

M.scalaris Megaselia scalaris (Loew, 1866) 

M.spiracularis Megaselia spiracularis Schmitz, 1938 

M.rusticella Monopis rusticella (Denis & Schiffermüller, 1775) 

M.autumnalis Musca autumnalis De Geer, 1776 

M.domestica Musca domestica  Linnaeus, 1758 

M.prolapsa Muscina prolapse (Harris, 1780) 

M.stabulans Muscina stabulans (Fallén, 1817) 

N.vitripennis Nasonia vitripennis  Ashmead, 1904 

N.bullata 

 

Neobellieria bullata* Parker, 1916 

O.aenesens Ophyra aenesens  Wiedemann, 1830 

O.spinigera Ophyra spinigera* Stein, 1910 

O.pumilum Orthostigma pumilum  (Nees, 1834) 

P.vindemmiae Pachycrepoideus vindemmiae  (Rondani 1875) 

P.ruficornis Parasarcophaga  ruficornis* (Fabricius, 1794) 

P.chrysostoma Peckia chrysostoma (Wiedemann 1830) 

P.americana Periplaneta Americana  (Linnaeus, 1758) 

P.coeruleiviridis Phaenecia coeruleiviridis* Macquart, 1855 

P.regina Phormia regina Meigen, 1826 

P.pictipennis Phylloteles pictipennis  Loew, 1844 

P.casei Piophilia casei (Linnaeus, 1758) 

P.terraenovae Protophormia terraenovae Robineau-Desvoidy, 1830 

P.brunneus Ptinus brunneus* Panzer, 1792 

Puliciphora borinquenensis Puliciphora borinquenensis  Wheeler, 1906 

R.sanguineus Rhipicephalus sanguineus (Latreille, 1806) 

R.parallelocollis Rhizophagus parallelocollis  Gyllenhal, 1827 

R.prolixus Rhodhinus prolixus Stål, 1859 

S.alienus Saprinus alienus  LeConte, 1851 
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S.albiceps Sarcophaga albiceps Meigen, 1826 

S. bullata Sarcophaga bullata  (Parker, 1916) 

S.hirtipes Sarcophaga hirtipes Wiedemann, 1830 

S.scrofa Sus scrofa Linnaeus, 1758 

S.nudiseta Synthesiomyia nudiseta Van Der Wulp, 1883 

T.fusca Teichomyza fusca* (Macquart, 1835) 

T.obscurus Tenebrio obscurus Fabricius, 1792 

T.sinuatus Thanatophilus sinuatus  Fabricius, 1775 

T.biselliella Tineola biselliella (Hummel, 1823) 

T.pellionella Tineola pellionella* Linnaeus 1758 

X.coerulescens Xerosaprinus coerulescens  LeConte, 1851 

X.vitiosus Xerosaprinus vitiosus LeConte, 1851 

* Species names are written as presented in the original publication 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 



xx 

 

General Abbreviations 

 

 

AFTER Australian Facility for Taphonomic Experimental Research 

CND Control with no drug 

CT Computed Tomography 

DAM Drosophilia Activity Monitor 

DD Complete Darkness 

DNA Deoxyribonucleic acid 

EM Environmental monitor 

ETSD Elapsed time since death  

EtOH Ethanol  

HWI Hot water immersion  

IR Infrared  

KI Potassium Iodide 

LAM Locomotor Activity Monitor 

LD Light/Dark 

LED Light Emitting Diode 

mPMI Minimum Post Mortem Interval 

maxPMI Maximum Post Mortem Interval 

mRNA Messenger Ribonucleic acid 

PCR Polymerase Chain Reaction 

R Rhythmicity 

RNA Ribonucleic acid 

SEM Standard Error of the Mean 

SEM Scanning Electron Microscopy 

TEM Transmission Electron Microscopy 

USA United States of America 
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Abstract 
 

 Megaselia scalaris (Diptera, Phoridae) is a common species found amongst 

indoor and outdoor crime scenes and plays an important role in the decomposition of 

human remains and can be used following the forensic entomology approach for the 

estimation of the post mortem interval particularly in indoor cases. Several questions 

concerning the biology and the chronobiology of this species remain open.   

 Circadian clocks have evolved to synchronize physiology, metabolism and 

behaviour to the 24-h geophysical cycles of the Earth. The understanding of the circadian 

clock mechanism is a crucial element of forensic entomology because it is able to control 

routines such as feeding, mating, ovipositing or emergence times. To describe the 

behaviour and the potential role that the circadian clock may have on both the locomotor 

activity and emergence times of the M.scalaris, using Trikinetics technology, used 

previously in Drosophilia studies allows for factual data rather than observational data 

seen in many journals.   

 The activity rhythms of M.scalaris were monitored using light/dark photoperiods 

at 20 °C. Males and females both demonstrate that there are significant differences 

between dark and light conditions and further results establish that the flies are both 

diurnal and nocturnal in activity. The pupa emergence shows that there are different 

rhythms during full darkness conditions and light/dark conditions. In addition our 

experiments demonstrated that the activity of this species is clock regulated. Differences 

in locomotor activity between male and female flies were observed in the absence of food 

in continuous dark (DD), in contrast the activity of the two sexes don’t differ in 

continuous light (LL) or in presence of food both in DD and in LL conditions. Cold 

White, Blue, Green, Red and Yellow lights were used to test the light attractiveness. 

Males and females show different behaviour. In contrast females seem to be attracted to 

red light and they don’t present any directional behaviour under other light.  

 Colonisation of carrion by insects allow for the post mortem interval (PMI) to be 

determined. However it is thought by some, that flies are not active during the night time 

period and therefore are not able to oviposit during this time. To put that into a forensic 

context, if eggs were located on a cadaver, the conclusion would be that death occurred 

during the previous day or before. Determining nocturnal oviposition in forensically 

important flies is of fundamental importance so that the PMI can be determined correctly 

by the forensic entomologist. Our experiments have demonstrated that M.scalaris were 

able to oviposit in dark conditions during the night.  

 Insects colonise a cadaver in a predictable pattern otherwise known as the 

succession. Succession patterns may vary due to intrinsic and environmental factors, for 

example, has the cadaver been buried or is it located above ground. Colonisation in buried 

remains depend on the slower decomposition rate of buried bodies, reduced dispersion of 

the decomposition odours but as well the reduced accessibility to the body. Phoridae are 

commonly found amongst the entomofauna of exhumed bodies or coffins. The phorid 

M.scalaris has been reported as being able to dig up to 6 feet. Little information is 

available about the kind of soil this fly is able to dig through to reach a cadaver; two 
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different kinds of soil were investigated: sand and sandy loam garden soil. The results 

showed that M.scalaris was able to excavate garden soil but not sand. 

 Insect development rate is mainly temperature dependent, although other 

parameters like photoperiod, overcrowding and food availability can affect the 

developments. In addition several studies demonstrated that drugs and other chemicals 

can affect the growth of larvae, feeding on the dead body, leading to Inc.orrect mPMI 

estimations. Amitriptyline is a commonly used antidepressant in cases of major 

depressive disorder. It is a tricyclic molecule absorbed in the gastrointestinal tract and 

metabolized into the liver. This molecule shows a high toxicity results in cases of 

overdose. Studies on the effect of Amitriptyline on insect development and 

accumulation/excretion have been performed in the 1990’s on Parasarcophaga ruficornis 

(Diptera: Sarcophagidae) and on Calliphora vicina (Diptera: Calliphoridae) whereas no 

data are available for other taxa. The results of these studies demonstrated the non-effect 

of the molecule on the growth rate. In the same years Amitriptyline and derivates have 

been isolated from empty puparia of Megaselia scalaris and from skin and faecal material 

of Dermestes maculatus (Coleoptera: Dermestidae) collected from a mummified body in 

New England. The aim of our study was to investigate the effect that Amitriptyline, often 

found on cadavers, may have on the development of Megaselia scalaris. Our experiment 

showed that Amitriptyline had no effect on the size but saw a decrease in the 

developmental time of M.scalaris, so the mPMI estimation can be affected if based on the 

larval size and not on the complete development. 

 The results reported and discussed in this thesis improve the knowledge about the 

biology of M.scalaris and its applicability in the forensic context. 



 

 

 

 

 

 

 

 

 

 

 

 

 

1: Introduction
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1.1 General Introduction to Forensic Entomology 

 

An accurate estimation of the time since death is of fundamental importance in 

many forensic cases. Post mortem interval (PMI) or time since death on human remains 

can be estimated by a pathologist using different methods such as: algor mortis 

(temperature), livor mortis, rigor mortis, vitreous potassium concentrations, electrical 

excitability of skeletal muscles and gastric content (Henssge et al., 2002), however these 

methods can only be measured accurately in the two to three days following death 

(Amendt et al., 2004).  An additional method that may help with the estimation of the 

time since death is the entomological approach. The collection and analysis of insect 

evidence from a forensic investigation may be used to assist in forensic, legal or medico-

legal cases (Varatharajan and Sen, 2000).   

The relationship between larvae on a cadaver and the oviposition of adult flies 

was not recognised during medieval times, however by the seventeenth century, insects 

were starting to be recognised and more understood which saw them becoming used to 

investigate crime scenes ( Smith, 1986; Schroeder et al., 2003; Amendt et al., 2004; 

Gennard, 2012) . As the centuries advanced so did Forensic Entomology which became 

its own branch of scientific study and entomology came into use in Europe in the 19
th

 

century (Schroeder et al., 2003). To date, forensic entomology is accepted as an important 

forensic tool in many countries (Catts, 1992; Greenberg, 1990a; Goff et al., 1991; 

Campobasso et al., 2001).  

The Forensic Entomology discipline may also be applied to identifying pests that 

are found infesting food products (fruit, meat, etc.). In addition urban locations may see 

infestations in the home, work environment or businesses (Gennard, 2012).  

Forensic Entomology may use the insect evidence to estimate the developmental 

time of insects whilst also observing the carrion insect succession to estimate time since 

death. As death may occur a variable amount of time prior to colonisation the 

entomologist will estimate the Minimum PMI (mPMI) by determing the earliest period the 

body was colonised by insects to time taken for the collected specimens to reach a certain 

developmental stage (Villet et al., 2010). This time had also been defined by Byrd and 

Castner (2009) as the Time of Colonisation (TOC). The maximum PMI (maxPMI) can be 
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calculated from when the person was last seen alive to the discovery of the body (Fig 1) 

(Villet et al., 2010).  

 

Fig 1: Estimation of the post mortem interval time line of a general death investigation  

using minPMI and maxPMI (Villet et al., 2010) 

 

 

 

 

Decomposition of human remains can begin quickly after death (approximately 

four minutes) but is dependent on many factors such as temperature, insect activity, soil 

type and how the body has been disposed of, for instance, whether the body has been 

buried, left in a cave or left on the surface open to the elements (Vass, 2001;  

Campobasso et al., 2001). There are four stages to the decomposition of human remains: 

autolysis, putrefaction, liquefaction and skeletisation (Dent et al., 2004). Whereas 

(Bornemissza, 1957) classified their decomposition stages by initial decay, putrefaction, 

black putrefaction, butyric fermentation and dry decay and commented on the affect that 

decomposition has on the underlying soils.  

Many researchers use a wide variety of animal species as models for 

decomposition studies trying to draw conclusions about human decomposition from these 

studies. Due to the many differences (i.e. size, weight and hair) between some of the 

species used and humans, the validity of this research has been questioned in active court 

cases. Research showed that a suitable human model was found to be the domestic pig 

(Sus scrofa L). Side by side studies were completed in which pigs were found to have 

similarities such as, their bodies are moderately hairless, similar gut fauna and their skin 
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is similar to that of humans. A pig weighing 23 kg was found to be equivalent to that of 

an adult male torso (Anderson, 1996; Catts and Goff, 1992). Due to religious and ethical 

reasons, field studies of human decomposition were rare until the University of Tennessee 

Forensic Anthropology Centre came along with five other taphonomy centres in the USA 

were created and an Australian Facility for Taphonomic Experimental Research (AFTER) 

is currently being built. These facilities help to provide answers into decomposition under 

varying conditions and parameters.   
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1.2 The role of Diptera and other Arthropods in body decomposition and 

PMI estimation. 

 

1.2.1 Introduction 

Flies are the first colonisers on exposed cadavers but they play a fundamental role 

in decomposition as well on buried remains. Specific odours which are released during 

the different stages of decomposition will attract a wide variety of insect species, by 

identifying the insects present on the remains may help to estimate the stage of 

decomposition and the time since  death (Smith, 1986). The most important insects used 

in the forensic entomology field are Diptera, Coleoptera, Lepidoptera and Hymenoptera 

(Table 1).  

Table 1: Summary of forensically important insects (Amendt et al., 2004). 

Order/Family Important genera 

Coleoptera/Beetles  

Cleridae (Checkered beetles) 

Dermestidae (Larder beetles) 

Geotrupidae (Dung beetles) 

Histeridae (Clown beetles) 

Silphidae (Carrion beetles) 

Staphylinidae (Rove beetles) 

Necrobia 

Attagenus, Dermestes 

Geotrupes 

Hister, Saprinus 

Necrodes, Nicrophorus, Silpha 

Aleochara, Creophilus 

 

Diptera/Flies  

Calliphoridae (Blowflies) 

Drosophilidae (Fruit flies) 

Ephydridae (Shore flies) 

Fanniidae (Latrine flies) 

Heleomyzidae (Sun flies) 

Muscidae (House flies) 

Phoridae (Scuttle flies) 

Piophilidae (Skipper flies) 

Sarcophagidae (Flesh flies) 

Sepsidae (Black scavenger flies) 

Sphaeroceridae (Small dung flies) 

Stratiomyidae (Soldier flies) 

Trichoceridae (Winter gnats) 

Calliphora, Chrysomya, Cochliomyia, Lucilia, Phormia 

Drosophila 

Discomyza  

Fannia 

Heleomyza, Neoleria 

Hydrotaea, Musca, Muscina, Ophyra*  

Conicera, Megaselia 

Piophila, Stearibia 

Liopygia, Sarcophaga 

Nemopoda, Themira  

Leptocera 

Hermetia, Sargus 

Trichocera 

 

Lepidoptera/Buterflies  
Tineidae (Clothes moths) Tineola 

Hymenoptera/Wasps  

Ichneumonidae (Ichneumon wasps) 

Pteromalidae (Fly wasps) 

Alysia  

Nasonia, Muscidifurax 

* see abbreviations 
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Knowledge of succession patterns is important when trying to estimate the mPMI, 

as variations can occur in the visitation of insects at different intervals of the 

decomposition process. Research has been conducted to determine the insect succession 

that follows the decomposition process (Kasper et al., 2012).  

Drugs, poisons or burnt cadavers are known to have an effect on both 

decomposition and insect succession which may affect the PMI estimation. In addition as 

well the body size and concealment of the body may impact the insect succession 

(Campobasso et al., 2001). Vanin and colleagues (2013) discuss a classic pattern of 

colonisation that is observed in cases of burnt carcasses, with insects usually attributed to 

different waves arriving at the same time. 

The first studies on succession patterns have been produced in the XIX century 

and the first complete table was published by Megnin (1894) and updated by Smith 

(1973). Seasons can play a role in insect colonisation in temperature climate, but 

succession data in south China determined that 47 species of insect were identified on the 

carcasses. No obvious differences were seen in any of the four seasons and most of the 

necrophagous flies could be seen all year round with the exception of dermestid beetles 

which were absent during winter  (Wang et al., 2008).  

Blow flies (Calliphoridae), are in general the first colonisers of an exposed 

cadaver, attracted by the odour produced during decomposition. Females will oviposit 

within the first few hours after death however, differences in faunal colonisation have 

been observed depending on the environment in which the body was left (e.g. in water, in 

a vehicle, buried, indoors or outdoors, exposed to the elements, wrapped up in blankets or 

carpets)  (Simpson and Knight, 1985). In forensic cases when working with flies of the 

first colonisation wave, PMI estimation can be calculated by determining the stage of 

development of the insect present on the body and correlating it with the temperature of 

the environment experienced by them prior to the body being discovered. An additional 

method involves looking at the appearance of specific arthropods and comparing the data 

to a succession model which may allow for both the minimum and maximum PMI to be 

calculated (Smith, 1986). Information about the cadaver may be provided when there is 

knowledge of the many insect species and the surroundings they inhabit (Varatharajan 

and Sen, 2000). 
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Succession patterns of carrion insects have a direct relationship to the decay rates 

of a human cadaver, Rodriguez and Bass (1983) observed that a cadaver with no insects 

was found to decompose and dry out slower, whilst Oliveira and Vasconcelos (2010) 

discuss the that time between death and skeletisation may be a lot shorter in tropical 

countries due to the constantly high temperatures, which could possibly reduce the time 

for successful data collection for the entomologist.  

Oliveira and Vasconcelos (2010) describe the four main categories which house 

forensically important insects, these are: 

 Necrophagous insects -  feed only on decomposing tissue e.g. blowflies, 

hide/clown beetles,  

 Predators (and parasites) of the necrophages – e.g. rove/ground beetles 

which ingest larvae and eggs of flies on the decomposing tissue, 

 Omnivores – ingest live insects occupying the dead flesh e.g. ants and 

wasps, 

 Opportunist species – appear due to the corpse being in their local 

environment e.g.  Butterflies, spiders, mites and hoverflies.  

 

Using exposed cadavers (Table 2), a total of eight waves of arthropod succession 

was documented throughout the different stages of decomposition and has continually 

been updated throughout the years.  Faunal succession using buried cadavers was also 

researched (Table 3) (Mégnin, 1894; Johnston and Villeneuve, 1897; Smith, 1986). 
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Table 2: Faunal succession on exposed human cadavers. Based on Mégnin (1894) and tabulated by Johnston and 
Villeneuve (1897) and updated by Smith (1973). 

Wave Fauna Condition of 
corpse 

Approx. age of 
corpse 

1
st

 Calliphora vicina (Dipt., Calliphoridae) 

Calliphora.vomitoria (Dipt., Calliphoridae) 

Lucilia spp. (Dipt., Calliphoridae) 

Musca domestica (Dipt.,Muscidae) 

Musca autumnalis (Dipt.,Muscidae) 

Muscina stabulans (Dipt.,Muscidae) 

Fresh (changes 

with season) 

First 3 months 

    

2
nd

 Sarcophaga spp. (Dipt., Sarcophagidae) 

Cynomya spp. (Dipt., Calliphoridae) 

Odour developed  

    

3
rd

 Dermestes spp. (Col., Dermestidae) 

Aglossa spp. (Lep., Pyralidae) 

Fats rancid  

    

4
th

 Piophilia casei (Dipt., Piophilidae) 

Madiza glabra (Dipt., Piophilidae) 

Fannia spp (Dipt.,Fanniidae) 

Drosophilidae (Dipt.) 

Sepsidae (Dipt.) 

Sphaeroceridae (Dipt.) 

Eristalis (Dipt., Syrphidae) 

Teichomyza fusca (Dipt., Ephydridae) 

Corynetes,Necrobia (Col., Cleridae) 

After butyric 

fermentation 

protein of caseic 

fermentation 

3 - 6 months 

    

5
th

 Ophyra* spp. (Dipt., Muscidae) 

Phoridae (Dipt.) 

Thyreophoridae (Dipt.) 

Nicrophorus  spp (Col., Silphidae) 

Silpha spp. (Col., Silphidae) 

Hister spp. (Col., Histeridae) 

Saprinus spp.  (Col., Histeridae) 

Ammoniacal 

fermentation 

 

Evaporation of 

sanious fluids 

 

Remaining body 

fluids 

now absorbed 

4 - 8 months 

    

6
th

 Acari  6 - 12 months 

    

7
th

 Attagenus pellio (Col., Dermestidae) 

Anthrenus museorum (Col., Dermestidae) 

Dermestes maculatus (Col., Dermestidae) 

Tineola biselliella (Lep.,Tineidae) 

Tineola pellionella (Lep.,Tineidae) 

Monopis rusticella (Lep.,Tineidae) 

Completely dry 1- 3 years 

    

8
th

 Ptinus brunneus (Col., Ptinidae) 

Tenebrio obscurus (Col., Tenebrionidae) 

 3 years plus 

(Dipt; Diptera, Col: Coleoptera, Lep: Lepidoptera)  
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Table 3: Faunal succession on buried human cadavers. Based on Mégnin,(1894) and tabulated by Johnston and 
Villeneuve (1897) and updated by Smith (1973). 

 

Wave Fauna Approx. age of 
corpse 

1
st

 Calliphora and  Muscina stabulans  
   

2
nd

 Ophyra* spp.  
   

3
rd

 Phoridae (Conicera may appear on surface) 1 year 
   

4
th

 Rhizophagus parallelocollis (Col., 
Rhizophagidae) 
Philonthus (Col., Staphylinidae) 

2 years 
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1.2.1.1 Colonisation of Buried Cadavers 

 Pastula and Merritt (2013) and Gunn and Bird (2011) comment that victims of 

fatal crimes are often found in shallow clandestine graves, this may be due to the 

assailants trying to dispose of the body rapidly, as digging a deeper grave would require 

more time and effort given the size and weight of an average adult human therefore the 

longer the body is in the assailants’ possession the more likely they are to be caught. 

Gunn and Bird (2011) comment that on average, clandestine graves in the United 

Kingdom had an average depth of 0.4 m whilst those found in the USA were found to be 

a depth of 0.56 metres. 

 With the research done by Manhein, (1996) a preliminary experiment was set up 

by Pastula and Merritt (2013) in which two pigs were buried at 90 cm in different 

seasons. Results concluded that no insect activity was found at this depth in any of the 

experiments. Further experiments were set up using depths of 30 and 60 cm. The 

objective was to establish an insect succession database on buried carrion in the Michigan 

area by observing both arrival times and insect succession on buried pigs.  The results 

showed that a cadaver buried at 30 cm would be colonised in less than two weeks as 

forensically important species were collected on day 5. Collection on day 7 from the 

burial at 60 cm found two Diptera species, one of which was Megaselia scalaris. It was 

thought that due to the smaller size of the collected flies that they would find it easier to 

manoeuvre through the spaces in the soil to reach the cadaver. At both 30 and 60 cm 

depths, larvae were regularly collected from the ventral torso, ear facing the soil, the fold 

of the legs and between the hooves rather than the usual sites such as the eyes, anus, 

mouth and nose. The authors suggested that the insects may have found protection at 

these points from rain that fell during the experiment.  

 Due to certain species, moving vertically away from the food source rather than 

horizontally, research by Balme et al. (2012) was undertaken using Cochliomyia 

macellaria (Diptera: Calliphoridae) and Protophormia terraenovae (Diptera: 

Calliphoridae) to determine if immature blowflies were able to complete their 

development process and emerge as flies when buried at different soil depths of 5, 25 and 

50 cm. Their research revealed that the soil depth of 50 cm produced the least number of 

adult flies. Buried 3
rd

 instar larvae were the most successful in survival whilst flies that 

were buried as pupae were the least successful. A further experiment was conducted in 

which 2
nd

 instar larvae were buried with 30 g food, the soil was examined after a period 



11 

 

of time and the result showed that the insects were able to pupate near the soil surface 

therefore showing that they were able to move vertically in the soil which allowed for an 

increase in survival. Balme et al. (2012) then go on to discuss that should either 

C.macellaria  or  P. terraenovae fly puparia be found during an exhumation of a body 

that this may suggest the cadaver was colonised prior to burial.   

 Further work examining burrowing behaviour using Chrysomya albiceps (Diptera: 

Calliphoridae) and Lucilia cuprina (Diptera: Calliphoridae) was done by Gomes et al. 

(2009).  Body weight and depth of burrowing were measured at different temperatures 

beginning at 15 
o
C, increasing in 5 

o
C increments up to 30 

o
C. The results showed that 

temperature had an effect on both burial depth and body weight. At both lowest and 

highest temperatures, both species remained nearer the surface and the body weights were 

recorded to be lowest. Gomes and colleagues (2009) discuss that further studies are 

required using different species and also using temperature intervals that are less than 5 

o
C should be researched.  

It is important to understand insect burial behaviour to further comprehend the 

environmental parameters which may affect larval behaviour; this information may help 

to assist the entomologist in locating larvae which have buried down below the surface. 

Whilst some species e.g. Megaselia scalaris are able to burrow down on to buried 

cadavers numerous feet below the surface to colonise and complete their full 

developmental cycle, other species will reach their final development stage before 

moving away from the food source and burrowing to complete their final developmental 

stage (Gomes et al., 2009). Post feeding larval dispersal is the final development stage for 

larvae in which they are seen moving away from the food source, they do this to either 

look for another food source if their weight is not adequate or to locate a different area in 

which to begin the pupation process (Gomes et al., 2005). A review completed by Gomes 

et al. (2006) indicates all the work previously done on post feeding larval dispersal (Table 

4). A protocol is also discussed to assist entomologists in larval or pupal location whilst 

assessing a crime scene. 
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Table 4: Review of post feeding larval dispersion data (Gomes et al., 2006). 

Species Dispersal Depth Reference 

Diptera Gen. spp. X  (Green, 1951b) 

Diptera Gen. spp.  X (Lundt, 1964) 

Diptera Gen. spp. X X (Nuorteva, 1977) 

(Gomes et al., 2005) 

Lucillia sericata, 

Calliphora vicina 

Phormia regina 

Chrysomya rufifacies 

Muscina stabulans 

Cochlliomyia macellaria 

X  (Greenberg, 1990a) 

Chrysomya rufifacies 

Chrysomya chani 

Chrysomya villeneuvi 

Ophyra spinigera* 

Chyrsomya megacephala 

Chyrsomya nigripes 

Chyrsomya pinguis 

Hemipyrelli ligurriens 

X  (Omar et al., 1994) 

Phormia terraenovae X  (Berrigan and Pepin, 1995) 

Chrysomya megacephala 

Chyrsomya putoria 

X  (Godoy et al., 1993) 

Calliphoridae Gen. spp. X  (Bassanezi et al., 1997) 

Cochliomyia macellaria 

Chrysomya putoria 

X  (Tessmer and Meek, 1996) 

Protophormia terraenovae X  (Benecke, 1998) 

Calliphora vomitoria 

Lucilia caesar 

X  (Kocarek, 2001) 

Chrysomya albiceps 

Chrysomya megacephala 

Lucilia cuprina 

X X (Gomes et al., 2002) 

(Gomes et al., 2003) 
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1.2.1.2 Colonisation of Submerged Cadavers 

Cadavers that have been emerged in water lose body heat twice as fast when 

compared to those in exposed conditions and therefore the decomposition process is 

delayed (Simpson and Knight, 1985).  

 

Davis and Goff (2000) characterised the decomposition stages from a carcass 

being in a water environment as:  

 Fresh – begins at the moment of death and continues until bloating is first 

observed.  

 Bloat/Floating/Buoyant – the carcass begins to bloat from gases that are 

being produced from the activities of anaerobic bacteria.  

 Deterioration/disintegration – skin begins to disintegrate and may flake 

off or break away. 

 Buoyant remains – skin, tissue and parts of the bones remain partially 

suspended in the water with some parts being partially exposed.  

 Scattered Skeletal – Fat and bones remain, no skin or soft tissues are 

present.  

 

Anderson and Hobischak (2004)  completed a similar study on the decomposition 

process of carrion in a marine environment. Freshly killed pigs were submerged at two 

different depths, 7.6 m and 15.2 m and secured so that they could either sink or float but 

were not able to drift away; time is recorded as the days elapsed since time of death 

(ESTD). 
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1.2.2 Application of Entomology to the Archaeological context: Archaeoentomology 

 Pettigrew (1834) discusses the unwrapping of mummies being the first scientific 

observations of archaeological flies. It was the entomologist F.W Hope who commented 

that the mummification process must be a lengthy process as he discovered two different 

species of fly puparia.  

The most common insects seen within this specialisation are: 

 Flies: fly remains e.g. puparia may give details about the presence and decay of 

organic material, season or exposure. 

 Ectoparasites: fleas, lice and bedbugs which have a diet of human blood may 

help to interpret sanitary conditions.  

 Coleoptera: beetles may indicate the environment and climate in which it was 

living.  

 

 In the early 1950’s the Candelaria funerary cave located near San Pedro de las 

Colonias in the semi desert zone of the State of Coahuila, northern Mexico was excavated 

which produced many well preserved human remains within funerary bundles. The 

custom was used widely throughout America, from southwest USA to the Andes in which 

a corpse would be wrapped within a mat or cloth and bound with cords. The wrappings 

were thought to allow easier transport of the dead to the burial place. To some societies 

funerary bundles represented a chrysalis of a butterfly however there was no evidence to 

show that the Canderlia cave occupants shared this symbolism. Insects (Table 5) were 

recovered from different damaged parts of the funerary bundle and listed (Huchet et al., 

2013a).  

 Current cases use Forensic entomology to estimate time since death and location 

of death, in addition Huchet (1996) and Dussault and Bain (2009) discuss a recently new 

field called Archaeoentomology, which is the collection and analysis of preserved insects 

from archaeological sites. Information gained through these findings can provide detailed 

information such as: environment, climate and living and burial conditions from the past. 

This discipline, that pulls together the principle protocols of Forensic Entomology and the 

aims of the archeoentomology has been created by Huchet (1996) and is called Funerary 

Archeoentomology. Reinhard and Araújo (2008) introduce the term Archaeoparasitology 
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to describe the study of all parasitological remains which have been excavated from both 

historic and recent archaeological contexts. 

 

Table 5: Summary of insect remains recovered from the funerary bundle sample set modified from (Huchet et 
al., 2013a). 

Order Family Taxa No. of Insects *MNI 

Diptera Musicdae Synthesiomyia nudiseta >10 4 

Diptera Fanniidae Fannia spp. 10 5 

Diptera Sarcophagidae Gen. spp. >3 3 

Coleoptera Dermestidae Dermestes (Dermestinus) 

carnivorus  

>9 5 

Coleoptera Histeridae Saprinus alienus 1 1 

Coleoptera Histeridae Xerosaprinus coerulescens  1 1 

Coleoptera Histeridae Xerosaprinus vitiosus  1 1 

Coleoptera Staphylinidae Gen. spp. 1 1 

Coleoptera Anobiidae,Ptinidae Niptus spp. >10 8 

Coleoptera Trogidae Omorgus spp. 2 1 

Hymenoptera Formicidae Acromyrmex versicolor  >10 3 

Lepidoptera Tineidae ? Gen. spp. 1 1 

  Total >59 34 

* Minimal number of individuals 

 

 The first case of canine ectoparasitosis was reported by Huchet et al. (2013b) in 

which well-preserved mummified dogs were discovered during archaeological 

investigations in El Dier, Egypt which were dated to Roman period (ca. 1
st
 century A.D to 

4
th

 century A.D). One young dog, the time of death was estimated to be 4 to 5 months old 

was found to have clear signs of marked external parasitism. Under further examination 

still attached to the fur remnants was the presence of ticks, on inspection the right ear 

showed a high concentration of ticks. A sum of 61 tick specimens were collected from the 

dog and identified as ‘brown dog tick’ or Rhipicephalus sanguineus (Parasitiformis, 

Ixodidae). Twenty-three of these specimens were found still firmly attached to the inner 
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ear. R. sanguineus is also referred to as ‘kennel tick’ or ‘pan tropical dog tick’, the adults 

and nymphs are found attached to ears and shoulders of the host (Table 6).   

Table 6: Summary of ectoparasites and other insect remains recovered from the dog mummy (Huchet et al., 
2013b). 

Order Family Taxa Stage/Remains Location 

Acarina Ixodidae Rhipicephalus 

sanguineus 

Adults/nymphs Left ear/coat 

Diptera Hippoboscidae Hippobosca 

longipennis 

Adult Coat 

- Calliphoridae Chrysomya 

albiceps 

Puparia (+few 

nymphs) 

Coat/internal 

organs 

- Sarcophagidae Gen. spp. Puparia Coat/internal 

organs 

Coleoptera Dermestidae Attagenus sp. Larval exuviae (cast 

skins) 

Coat 

- - Anthrenus sp. Larval exuviae (cast 

skins) 

Coat 

- - Dermestes sp. Larva (9
th
 abdo. 

Segm.) 

Internal 

organs 
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1.2.3 Chronobiology and Forensic Entomology 

 

 Evolution of the circadian clock has allowed synchronization of behaviour, 

physiology and metabolism to the 24 hour geophysical cycles of the Earth. The 

understanding of the circadian clock mechanism is a crucial element of forensic 

entomology as it is able to control routines such as feeding, mating, ovipositing or 

emergence times (Vanin et al., 2012a).  

 Much research has been done with Drosophila melanogaster (Diptera: 

Drosophilidae) some of the work researched by Quinn et al. (1974); Salomon and Spatz 

(1983); Brembs and Heisenberg (2001) and Washington (2011) included the conditioning 

to colours and odours, research of colour vision and mating with different intensities of 

light. 

 Baldridge and colleagues (2006) investigated nocturnal ovipositing in 

necrophilous flies, and found that during  200 hours of bait being laid, nocturnal 

oviposition was recorded only once. Research of nocturnal ovipositing demonstrates a 

lack of consistency regards to the baits used (Table 7) as the foods used ranged from 

hedgehogs to pigs. One main observation found that certain species would not oviposit 

nocturnally on fresh bait but would wait for three to four days before laying their eggs. 

The authors that had successful results all observed a decline in the number of eggs laid at 

night when compared to daytime egg laying data.  
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Table 7:  Nocturnal oviposition data from different authors detailing bait, urban/rural area and light sources.  

Bait Light R/U Nocturnal species 

oviposition 

Diurnal species 

oviposition 

Author 

Hedgehogs 
T
 

 

 

 

Beef liver 
F 

 

 

Stock 

culture 
F
 

 

 

 

 

 

 

 

 

LD 14:10 

U & R 

 

 

 

U 

 

 

 

N/A (Lab) 

None 

 

 

 

None 

 

 

 

Lucilia sericata 

 

L.sericata 

L. ampullacea 

L.caesar 

C.vicina 

L. sericata 

L.caesar 

C.vicina 

P. terraenovae 

- 

(Amendt et al., 

2008) 

White rat 
F
 

White rat
 F 

Beef 
F
 

 

 

 

Beef 
A 

 

Pig
 F 

 

Yes 

No 

N/A 

 

Yes 

 

Yes & No 

 

- 

U 

U 

R 

 

R 

 

R 

 

- 

None 

None 

M.domestica 

P.coeruleiviridis 

C.macellaria 

N.bullata 

None 

 

 

 

None 

None 

 

 

 

 

None 

 

P.coeruleiviridis 

C.macellaria 

M.domestica 

(Baldridge et 

al., 2006) 

 

Ox liver 
F
 

 

No 

 

SR 

 

None 

C.augar 

C.dubai 

C.hilli 

C.vicina 

 

(George et al., 

2012) 

Rats 

 

Ground 

Beef 

Yes & No 

 

Yes & No 

U 

 

 

U 

C.vicina 

P.sericata 

P.regina 

P.sericata 

N/A 

 

 

N/A 

(Greenberg, 

1990b) 

 

Beef liver 

 

No 

 

R 

C. megacephala 

Sarcophagidae 

sps. 

 (Pritam and 

Jayaprakash, 

2009) 

 

Mutton 
T
 

 

No 

 

U 

C.megacephala 

C.rufifcaies 

 

C.vicina 

(Singh and 

Bharti, 2001) 

 

 

Mutton 
F
 

 

No 

 

U 

S.albiceps 

S.hirtipes 

 

 

N/A 

(Singh and 

Bharti, 2008) 

Rats 
T
 Yes & No U&R None N/A (Stamper and 

Debry, 2007) 

Rats 
T
 Yes & No U & R None N/A (Stamper et 

al., 2009) 

 

 

Pork
F
 

 

 

Rats
T
 

 

No 

 

 

No 

 

N/A (Lab) 

 

 

U 

Lucilia spp. 

C.putoria 

C.chloropyga 

 

Lucilia spp. 

Lucilia spp. 

C.putoria 

C.chloropyga 

C.megacephala 

 

(Williams, 

2003) 

 

 

Pigs 
F 

 

 

 

No 

 

 

 

R 

 

 

 

None 

L.coeruleivirdis 

P.regina 

C. vomitoria 

L.sericata 

C.vicina 

(Zurawski et 

al., 2009) 

T
= thawed, 

F
 = fresh, 

A 
= aged, R = rural, U= urban, SR= semi-rural  
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1.2.4 Myiasis 

 

 Myiasis refers to the infestation of living tissue from either animals or humans by 

Diptera larvae. Human myiasis cases are more common in warmer climates and is 

prevalent in third world countries where many poor people live in unsanitary conditions, 

are malnourished and where the quality of health care is not first rate. Myiasis has also 

been stated to occur around the globe in different environments. In the veterinary field, 

myiasis is often referred to by other names e.g. fly-blown, fly strike (Rossi-Schneider et 

al., 2007).  Myiasis is also reported to occur in both rural areas infection of livestock and 

domestic pets such as cats and dogs (Gabriel et al., 2008).  

   In 1840, a paper titled ‘On insects and their larvae occasionally found in the 

human body’ written by Hope was amongst the earliest discussions about human myiasis 

(Hope, 1840). 

Human myiasis is commonly caused by families of Calliphoridae, Sarcophagidae, 

Phoridae, Stratiomyidae and Oestridae however many other families of Diptera have been 

reported in myiasis cases. The majority of reported cases in human myiasis are known to 

be facultative (i.e. under varying conditions) wound myiasis mainly caused by 

Calliphorids (Sherman, 2000; Huntington et al., 2008). Dutto and Bertero (2011) 

comment that human myiasis may fall into one of two categories: specific myiasis (the 

flies require a live host for larvae to develop) and semi-specific myiasis (development 

that occurs in decomposing organic waste but occasionally may develop in/on living 

organisms) which does not cause tissue lesions, both these terms are also referred to as 

obligatory and facultative myiasis (Amendt, 2010).  

 Many cases of myiasis acquired in a hospital environment are often under reported 

or not reported at all, (Table 8) shows the reported cases between the years 1980 to 1998 

(Joo and Kim, 2001).  
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Table 8: Reported cases of nosocomial myiasis between 1980 and 1998 (Joo and Kim, 2001). 

Diagnosis Site of larvae Age/Sex Country Author 

Diabetic foot infection 

Diabetic foot infection 

Foot wound 

Foot wound 

73 / NA 

66 / NS 

Germany 

Germany 

(Mielke and Schlote, 

1980) 

Heart surgery 

Heart surgery 

Sternal wound 

Nose 

73 / F 

67 / M 

United States 

United States 
(Jacobson et al., 1980) 

Encephalopathy Comatose 8 / M United States 
(Magnarelli and 

Andreadis, 1981) 

Multiple stab wounds Sedated 25 / M India (Gupta et al., 1983) 

Cerebrovascular 

accident 
Comatose 65 / F Jamaica 

(Rawlins and Barnett, 

1983) 

Terminal illness 

Renal failure 

NS 

NS 

NS / M 

NS / F 

United States 

United States 
(Greenberg, 1984) 

Diabetic hypersomolarity Comatose 64 / M United States 
(Smith and Clevenger, 

1986) 

Diabetic 
Eyelid 

reconstruction 
63 / M United States 

(Bosniak and Schiller, 

1990) 

Diabetic Leg ulcer 57 / F England 
(Burgess and Davies, 

1991) 

Peripheral vascular 

disease 
Leg ulcer 79 / M England 

(Burgess and Spraggs, 

1992) 

Myocardial infarct 
Tracheostomy 

wound 
82 / F Canada 

(Josephson and Krajden, 

1993) 

Vulvar condyloma 

Retropharyngeal 

abscess 

Vulvar wound 

Nose 

19 / F 

2 / M 

Honduras 

Honduras (de Kaminsky, 1993) 

Squamous cell 

carcinoma 

Left temple 

wound 
73 / M England 

(Phillips and Marsden, 

1993) 

Right facial palsy Oral cavity 71 / M Korea (Chung et al., 1996) 

Premature Vaginal orifice Infant/ F Israel (Amitay et al., 1998) 
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 In a first of its kind, a case reported by Benecke and Lessig, (2001) used an 

entomological approach to determine if neglect was evident prior to the death of a child.  

Muscina stabulans (Diptera: Muscidae), Fannia canicularis (Diptera: Fanniidae) and 

Calliphora vomitoria (Diptera: Calliphoridae) were found at the scene. M. stabulans and 

F. canicularis can both be found in an indoor environment. M. stabulans is highly 

attracted to human faeces but not as attracted to human cadavers, whilst F. canicualris is 

attracted to both urine and faeces, whilst C. vomitoria is amongst one of the first 

colonisers in cadavers.  By collecting the insect evidence and determining the age of the 

developmental stages found, it was shown that the anal genital region of the child had not 

been cleaned for ~14 days whilst death occurred only 6-8 days prior to discovery.   

 In cases of neglect of the elderly not all cases involve violence and therefore the 

deceased may die from natural causes. Over the years there has become an increased 

awareness of malpractice cases towards the elderly in both the professional and personal 

environments. Determining if a care giver is guilty is difficult to judge however by 

bringing entomology in to the case helps to contribute further information surrounding the 

case that may have been originally missed.  

 Benecke et al. (2004) reported three cases in which not all cases were of neglect. 

The first case involved an elderly woman who was found in her apartment. The apartment 

was reported as being clean and only larvae and dead flies of M.stabulans were collected. 

By determining the developmental data it was decided that the minimal interval was 

around 21 days which would suggest misconduct by the carer. However in this case the 

elderly lady had dismissed her care giver and was not prosecuted for misconduct. In 

another case an elderly woman was found in her apartment which was described as untidy 

from non-organic items. Adult flies and larvae of F.canicularis, M. stabulans and adult 

Dermestes lardarius were found within the apartment. These species are often found 

inside human housing, however the finding of F.canicularis which is attracted by faeces 

and urine suggest some form of neglect as none of the species found had fed off the 

corpse.  
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1.2.5 Entomotoxicology 

 Introna et al. (2001a) comment that due to their feeding preferences of 

decomposing human tissue carrion feeding insects can be used for toxicological analysis 

for the purpose of identifying toxins and drugs in cases of poisoning or possible 

overdoses. Toxicological analyses include gas chromatography (GC), radioimmunoassay 

(RIA), gas chromatography/mass spectrometry (GCMS) and high performance liquid 

chromatography-mass spectrometry: the analysis used for human samples and biological 

fluids can be used for drug quantification from  insect specimens (Campobasso et al., 

2004b). 

 Entomologists began using insects to detect drugs from the 1980’s. When the 

body is skeletonised and there is a complete absence of suitable tissue samples i.e. urine, 

blood or internal organs, then insects may be viewed as an alternative solution. 

Determining if drug abuse was a factor just before death is of major interest in 

entomotoxicology (Beyer et al., 1980).  

 Necrophagous species are often recommended for entomotoxicological analyses 

as they are often the first species to colonise the cadaver and their development is well 

studied as they are used to estimate post mortem intervals. Differences in drug 

concentrations are observed between the different instar feeding activities e.g. puparia 

drug concentrations are observed to be lower when compared with larvae. As 

development and oviposition may be affected by temperature and photo-periods, the 

toxicologist must have an understanding of the environmental factors that may affect 

insect development. Numerous drugs  (Table 9) have been detected in insect tissues in 

many forensic cases however due to the differences in procedures e.g. oral/injection, drug 

stability, time before analysis and bacterial metabolism, requires research to understand 

how these parameters may affect the interpretation of the results (Gosselin et al., 2011b).  

 A study by Kintz et al. (1990c) found that drug concentrations were more stable in 

fly larvae than in post-mortem tissues with a greater sensitivity being obtained using fly 

larvae. Insects are often present for long periods of time and in large quantities when 

toxicological samples have diminished.  

 A review of publications featuring toxins and the name and development stage of 

the insect species along with the authors are listed in (Table 9). 
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Table 9: Review of publications reporting toxic substances detected during different developmental stages of 
insects (Gosselin et al., 2011b). 

Toxic Substance Insect species Developmental 
stage 

Reference 

     
Alcohol Ethanol Calliphoridae, 

Sarcophagidae 
L (Definis-

Gojanović et 
al., 2007) 

  Phormia regina L (Monthei, 
2009) 

Drugs     
Antidepressants Amitryptyline Not specified L (Tracqui et 

al., 2004) 
  Lucilia sericata L (Campobasso 

et al., 2004b) 
  Calliphora vicina C (Wilson et al., 

1993) 
   L, P (Sadler et al., 

1997b, Sadler 
et al., 1995) 

  Dermestes 
maculatus 

E,F,Pu (Miller et al., 
1994) 

  Megaselia 
scalaris 

E, F, Pu (Miller et al., 
1994) 

 Clomipramine Not specified L (Tracqui et 
al., 2004, 
Kintz et al., 
1990a) 

  Lucilia sericata  (Campobasso 
et al., 2004b) 

 Dothiepin Not specified L (Tracqui et 
al., 2004) 

 Fluoxetin Not specified L (Tracqui et 
al., 2004) 

 Nortriptyline Lucilia sericata L (Campobasso 
et al., 2004b) 

  Dermestes 
maculatus 

 (Miller et al., 
1994) 

  Megaselia 
scalaris 

 (Miller et al., 
1994) 

 Trazodone Calliphora vicina L (Sadler et al., 
1995) 

 Trimipramine Calliphora vicina L (Sadler et al., 
1995) 

 Venlafaxine Not specified L (Tracqui et 
al., 2004) 

Barbiturates Amobarbital Not specified L (Tracqui et 
al., 2004) 

 Barbiturates Not specified L (Tracqui et 
al., 2004) 

 Phenobarbitol Cochliomyia 
macellaria 

L (Beyer et al., 
1980) 

  Lucilia sericata L (Campobasso 
et al., 2004b) 

  Not specified L (Tracqui et 
al., 2004, 
Kintz et al., 
1990a) 



24 

 

 Secobarbital Not specified L (Levine et al., 
2000) 

 Sodium 
amylobarbitone 

Calliphora vicina L, P (Sadler et al., 
1997c) 

 Sodium barbitone Calliphora vicina L, P (Sadler et al., 
1997c) 

 Sodium 
brallobarbitone 

Calliphora vicina L, P (Sadler et al., 
1997c) 

 Sodium 
phenobarbitone 

Calliphora vicina L, P (Sadler et al., 
1997c) 

 Sodium 
thiopentone 

Calliphora vicina L, P (Sadler et al., 
1997c) 

Benzodiazepines Alprazolam Not specified L (Tracqui et 
al., 2004) 

  Calliphora vicina L, P (Wood et al., 
2003) 

 Bromazepam Not specified L (Tracqui et 
al., 2004) 

  Piophilia casei L, P, A (Kintz et al., 
1990b) 

 Clonazepam Calliphora vicina L, P, A (Wood et al., 
2003) 

 Diazepam Calliphora vicina L, P, A (Wood et al., 
2003) 

  Chrysomya 
albiceps 

 (Carvalho et 
al., 2001) 

  Chrysoma 
putoria 

 (Carvalho et 
al., 2001) 

 Flunitrazepam Calliphora vicina L, P, A (Wood et al., 
2003) 

 Lorazepam Not specified L (Tracqui et 
al., 2004) 

  Calliphora vicina L, P, A (Wood et al., 
2003) 

 Nordiazepam Not specified L (Tracqui et 
al., 2004) 

  Calliphora vicina L, P, A (Wood et al., 
2003) 

 Oxazepam Not specified L (Tracqui et 
al., 2004, 
Kintz et al., 
1990a) 

  Calliphora vicina L, P, A (Wood et al., 
2003) 

 Prazepam Calliphora vicina L, P, A (Carvalho et 
al., 2001) 

 Temazepam Calliphora vicina L, P, A (Sadler et al., 
1995, Wood 
et al., 2003) 

 Triazolam Not specified L (Tracqui et 
al., 2004) 

  Calliphora vicina L, P, A (Kintz et al., 
1990a) 

  Not specified L (Kintz et al., 
1990c) 

Miscellaneous Amphetamine Not specified L (Definis-
Gojanović et 
al., 2007) 

  Calliphora vicina L (Sadler et al., 
1997c) 
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 Benzoylecgonine Not specified L (Nolte et al., 
1992) 

 Cocaine Not specified L (Nolte et al., 
1992, 
Manhoff et 
al., 1991) 

  Lucilia sericata L (Campobasso 
et al., 2004b) 

 Digoxin Not specified L (Tracqui et 
al., 2004) 

 Meprobamate Not specified L (Tracqui et 
al., 2004) 

 Nefopam Not specified L (Tracqui et 
al., 2004) 

 Sodium 
aminohippurate 

Calliphora vicina L (Sadler et al., 
1997c) 

 Sodium 
salicylates 

Calliphora vicina L (Sadler et al., 
1997c) 

 THC-COOH Not specified L (Tracqui et 
al., 2004) 

 11-Hydroxy-THC Not specified L (Tracqui et 
al., 2004) 

Opioids/opiates Codeine Lucilia sericata L, P, A (Kharbouche 
et al., 2008)  

  Not specified L (Tracqui et 
al., 2004, 
Kintz et al., 
1994) 

 Methadone Lucilia sericata L (Gosselin et 
al., 2010) 

 Morphine Dermestes freshi L, P, A (Bourel et al., 
2001b, Bourel 
et al., 2001c) 

  Thanatophilus 
sinuatus 

L, P, A (Bourel et al., 
2001b, Bourel 
et al., 2001c) 

  Lucilia sericata L, P, Pu, A (Bourel et al., 
2001b, 
Hédouin et 
al., 1999) 

  Calliphora stygia L (Gunn et al., 
2006) 

   L, P, Pu, PP, A (Parry et al., 
2011) 

  Calliphora vicina L, Pu (Introna et al., 
2001b) 

  Calliphora vicina L, P (Hédouin et 
al., 2001) 

  Protophormia 
terraenovae 

L, P (Hédouin et 
al., 2001) 

  Not specified L (Tracqui et 
al., 2004, 
Kintz et al., 
1994) 

 Opiates Lucilia sericata L (Campobasso 
et al., 2004b, 
Introna Jr et 
al., 1990) 

 Pholcodine Not specified L (Tracqui et 
al., 2004) 
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 Propoxyphene Not specified L (Tracqui et 
al., 2004) 

  Calliphora vicina C (Wilson et al., 
1993) 

Phenothiazine Alimezanine Not specified L (Tracqui et 
al., 2004, 
Kintz et al., 
1990a) 

 Cholopromazine Not specified L (Tracqui et 
al., 2004) 

 Cyamezanine Not specified L (Tracqui et 
al., 2004) 

 Levomepromazine Not specified L (Tracqui et 
al., 2004) 

  Lucilia sericata L (Campobasso 
et al., 2004b) 

  Piophila casei L (Kintz et al., 
1990b) 

 Thioridazine Lucilia sericata L (Campobasso 
et al., 2004b) 

L = larvae, P = pupa, PP = prepupa, A = adult, C= crop, F = frass, E = exuvia 
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1.2.6 Imaging 

 The morphology of insects throughout their developmental stages has been 

conducted using both stereo and compound microscopes however advances in technology 

over the years have seen images using the scanning electron microscope, Transmission 

Electron Microscope, these techniques may have required considerable sectioning, 

dissection and more frequently the complete destruction of the specimen. 

 A newer imaging technique is that has been applied in insect morphology since 

the 1990’s is  the computer based 3D reconstruction however due to the early software 

programmes being used mainly for product design, many man working hours were 

required in the application of biological specimens. Today, software programmes have 

been much improved with minimal amount of time being needed to reconstruct the 

images (Friedrich and Beutel, 2008). Current X-ray micro-CT instruments are based on a 

similar principle to medical CT scanners. The specimen rotates inside the x-ray beam and 

the x-ray detector; this then acquires a large number of 2D angular projections which 

allows for the reconstruction of 3D imagery. For good imaging control with insects a low 

energy level is required as insects have a weak absorption due to their size (Gui et al., 

2010).  

 Traditional approaches may make the analysis more subjective than objective 

which may result in a high level of error.  It is the development of new technologies that 

allow for the increasing detail of anatomical and morphological changes. One such piece 

of technology is the Micro-computed tomography (micro-CT). Richards and colleagues 

(2012b) found that by using micro-CT with Calliphora vicina (Diptera: Calliphoridae) 

they were able to demonstrate the anatomical changes taking place within the pupae 

which could help to determine an accurate PMI. Stained specimens (aqueous Iodine 0.5 

M solution) were mounted in a plastic drinks straw and scanned using energy at 80kV 

with current ranging from 50 to 100 µA. Reconstructions were done using CT pro 2.1 

software (Nikon Metrology), renderings and slice stacks were created using VG Studio 

Max 2.1.  Stained and unstained pupae at different development stages were dissected 

from the pupal cases and the specimens were photographed using light microscopy and 

external morphology was described. Overall it was determined that the specimens which 

had been stained for 7 days had the highest differentiation between tissue types. The 

disadvantages mentioned against using the micro CT are that the pupae would have to be 
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killed prior to imaging; this may cause problems where there are a limited number of 

specimens whilst the advantages include non-destructive and fast results.  

 Greco and colleagues (2011) discuss a new method for the non-invasive imaging 

of insects at microscopic level, it comes in the form of conventional micro focus and 

synchrotron based Micro CT, these are similar methods, currently used with medical CT 

scanners. This method allowed Greco and colleagues to be able to visualise an ancient 

social bee that had been preserved in amber however three different systems were used to 

perform these scans: 

 A commercial bench top system (TOMOLAB) 

Energy = 40kV, Current = 200µA, Source to sample distance = 12cm, 

Isotropic voxel size = 8µm, Exposure time = 2.7s, Number of projections 

= 2400 over 360
o
, Measurement time = 1h 48mins. 

 

 SYRMEP beamline 

Energy = 15keV, Isotropic voxel size = 9µm, exposure time = 0.9s number 

of projections = 1800 over 180
o
, measurement time = 1h 48mins 

 

 Micro CT 40 system 

Energy = 45kV, Current = 177µA, Isotropic voxel size = 10µm, Number 

of projections = 1000 over 180
o
, Measurement time = 10.5h.   

 

 Greco and colleagues concluded that they were able to accurately assess and 

visualise the anatomical characteristics of the ancient social bee using all three systems.  

 De Almeida and colleagues (2011) mention that to be able to comprehend an 

insect’s development and function it is vital to be able to understand their anatomical 

structure. Traditionally anatomy and morphology is understood by using techniques such 

as dissection or by taking histological slices. Commonly used equipment that allows the 

viewing of 2D specimens Includes SEM (Scanning Electron Microscope) and either a 

stereo or compound microscope. By using x-ray computed tomography de Ameida and 

colleagues were able to research the microanatomy of Rhodhinus prolixus (Hemiptera, 

Reduviidae). Useful energy ranges are discussed and determined to be between 8 to 
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35keV. Methods include using 17keV at a distance of 10cm from the specimen position 

to allow the phase contrast technique to perform.  

 Post mortem CT scans have previously been used by Johnson and colleagues 

(2012) to determine the volume of maggot masses on deceased people. Maggot masses 

can generate a temperature increase which may cause increased growth rates and could be 

problematic for the entomologist also any physical evidence that may be on the cadaver 

could be destroyed. It was concluded that CT scanning was an accurate method for 

forensic cases in estimating and identifying the size of maggot masses and also helped 

with thermogenesis research.  

 

 A micro-CT study of overwintering seven spotted ladybird beetles Coccinella 

septempuctata (Coleoptera: Coccinellidae) was undertaken by Bell et al. (2012) in which 

different energy levels varied between 30kV and 50 kV. The lining of the malpighian 

tubules were visible on the scan and appeared to contain a dense radio-opaque material. 

Malpighian tubules are part of the excretory system; their openings are positioned at the 

mid and hind gut and they are variable in numbers as well as in form. Abdominal 

dissections were also done in 5 specimens to confirm their findings.   

 X-ray phase sensitive imaging and PITRE (Phase-sensitive X-ray Image 

processing and Tomography Reconstruction) software is discussed by Chen et al. (2012), 

this method  uses phase shifts rather than absorption information which is currently used 

in x-ray absorption imaging/CT as the imaging signal. This allows the extension of 

possibilities of x-ray absorption imaging. Progress made in detector development allows 

the decrease of the pixel size whilst increasing the pixel number to allow for better 

reconstructions.  
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1.3  Introduction to Phoridae (Diptera) 

 Phoridae (Diptera) are made up of a large family of flies with ~ 3000 

world species of which 300 occur in the British Isles (Table 10). They are often medium to 

minute in size and can be brown, black or yellowish in colour and have a distinctive wing 

venation (Fig 3). The hump backed fly feeds on a variety of different foods (polyphagous) 

as well as dead or decaying matter (sacrophagous) (Campobasso et al., 2004a; Disney, 

2008). Some of these flies have been found to develop on peculiar media such as ripe 

banana (Karunaweera et al., 2002), boot polish (Lever, 1944) and emulsion paint 

(McCrae, 1967).  

Phoridae are commonly referred to as humpbacked flies (due to their arched 

thorax when viewed from the side), coffin flies (due to their ability to burrow down into 

soil) and scuttle flies (due to their rapid surge of scuttling movement across surfaces 

rather than flying). Predominantly a warm climate species (Mediterranean distribution) 

but have been reported to have been found in central Europe as far north as Belgium, 

Netherlands and England and have also been found in Northern America (Disney, 2008).  

 

1.3.1 Phoridae importance in Forensic Entomology 

Phoridae are recorded to be amongst the fifth wave of insects (Table 2) that inhabit 

an exposed human cadaver. The cadaver at this stage is between four to eight months old 

depending on the climate, latitude, altitude, exposure, etc., the body would be fermenting 

ammonia and releasing a thin, fetid, greenish fluid consisting of serum and pus (Smith, 

1986).  

Environmental parameters may affect the colonisation of a cadaver, some of these 

parameters include: weather, geography, water, air exposure, sun exposure, bodies of 

water and moisture levels.  

A delay in blowfly (Calliphoridae) arrival due to lack of entry (i.e. closed doors 

and windows) may be observed when a cadaver is located indoors, as a closed property 

could confine the odour of decomposition, therefore PMI using blowflies may be 

unreliable. The lack of entry for the larger flies allows much smaller flies such as scuttle 

flies (Phoridae) to be the primary ovipositor, suggesting in a case of similar circumstances 
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that the PMI for the Phoridae (Table 10) would be more reliable than that of the blowfly 

(Calliphoridae) (Reibe and Madea, 2010). 

 

Table 10: Summary of Phoridae genera (McAlpine, 1987). 

Abaristophora Acontistoptera Aenigmatias Anevrina 

Apocephalus Auxanommatidia Bactropalpus Beckerina 

Borophaga Cataclinusa Chaetopleurophora  Chonocephalus 

Citrago Commoptera Conicera Coniceromyia 

Cremersia Crinophelba Diocophora Diplonevra  

Dohrniphora Ecitomyia Gymnophora  Hypocera 

Lecanocerus Megaselia  Metopina Myriophora  

Myrmosicarius Pericyclocera Phalacrotophora Phora 

Physoptera Plastophora Pseudacteon Puliciphora  

Rhyncophoromyia Spiniphora Stenophorina Stichillus  

Syneura Triphleba Trophithauma Trophodeinus 

Woodiphora Xanionotum Zyziphora  

  

 

 Phoridae encountered in case studies between the period of June 2007 and June 

2009 in Penang, Malaysia was reported by Thevan et al. (2010). All specimens were 

collected from decomposed cadavers during the autopsy in the Forensic Medicine 

Department, Penang Hospital. The first case comprises of a fully clothed 78 year old 

cadaver which was found lying face down on its right side and was in the mummified 

stage of decomposition. The insects present were collected and sampled. Two adult 

females and four puparia of Megaselia scalaris were identified. Phoridae pupae were 

located beneath the clothing, on the surface of the abdomen and on the right foot in 

second case involving a fully clothed cadaver which was in active decay. One pupae of 

M.scalaris was sampled, other Phoridae sampled compromised of M.spiracularis, 

M.curtineura.  

 Motter (1898) studied the fauna of the grave, 100 graves were exhumed over 

different time periods. In 37 of the burials, Phoridae puparia were identified and but not 

the species (Table 11). A further 50 burials ( 
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Table 12) were exhumed, Phoridae puparia were found in 6 of the burials however the 

findings of the examinations were either unreliable or the specimens were not available.  

 To determine the entomofauna of buried bodies, skeleton studies were conducted. 

Unclaimed bodies from Municipal Cemetery of La Plata were donated to School of 

Medical Sciences, National University at La Planta for research and teaching purposes.  

The skeletons were received in numbered plastic bags which included sediments and 

external wrappings and death records (age, sex, nationality, date and cause of death, 

location at cemetery and date of exhumation) were also included. Insect remains were 

collected from an exhumed bundle of a 5 month male whose cause of death was non-

traumatic cardiorespiratory arrest. The body had been buried into a 40cm deep grave 

underground in a soft wooden coffin which was made for rapid decomposition; the body 

had been clothed in woollens and a disposable nappy as well as wrapped in two woollen 

blankets. The exhumed bundle revealed insect species of forensic importance. Megaselia 

scalaris were amongst the first taxa to colonise the buried remains along with Fannia 

canicularis (Diptera: Fanniidae), Muscina stabulans (Diptera: Muscidae) and Ophyra 

aenescens* (*see abbreviation)  (Diptera: Muscidae) (Mariani et al., 2014). 

 Bugelli et al. (2014) presented eight cases found  between  the months of June and 

November in central Italy in which bodies of elderly people and socially isolated people 

were discovered. Insects were collected during the body recovery and post mortem. In 75 

% of the cases both Sarcophagidae and Calliphoridae species were present whilst 50 % of 

the cases had Lucilia sericata and Chrysomya albiceps and scuttle flies (Phoridae) were 

found in 37.5 % of the cases which confirmed the ability of indoor colonisation by this 

species.  
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Table 11: Phoridae puparia found on 100 human cadavers buried for different periods of time (Motter, 1898).  

Degree of moisture:  1= dry, 2= moist, 3= wet, 4= coffin submerged  

Character of soil: s = sandy, c = clay, sc = sand/ clay mix 
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3 years  1 month 5 sc 3 5 16 years 5  months 9 s 2 218 

3 years  2 months 6 sc 4 174 18 years 11 months 3 s 1 20 

3 years  3 months 3 s 1 19 20 years 0 months 3 s 1 99 

3 years  6 months 5 sc 2 280 20 years - months 9 s 1 40 

3 years  6 months 5 sc 2 291 20 years 3 months 5 s 1 48 

4 year  1 month 5 sc 2 286 20 years 7 months 4 s 1 92 

4 year  1 month 3 sc 1 306 20 years 9 months 6 s 1 45 

4 year  1 month 5 sc 2 315 21 years - months 3 s 1 38 

4 year  2 month 5 sc 2 314 21 years - months 3 s 1 31 

5 years  5 month 5 sc 3 250 21 years - months 6 s 1 51 

6 years  0 months 5 sc 2 205 21 years - months 3 s 1 54 

7 years  0 months 4 sc 2 405 21 years - months 4 s 1 62 

7 years  7 months 5 sc 2 373 21 years - months 6 s 1 64 

9 years 9 months 5 sc 2 240 21 years - months 4 s 1 68 

10 

years 

- months 5 sc 3 228 21 years - months 6 s 1 77 

10 

years 

- months 5 sc 2 239 21 years - months 6 s 1 82 

12 

years 

11 months 6 s 1 89 27 years - months 8 s 1 130 

15 

years 

5 months 7 s 1 96 38 years - months 6 s 1 126 

15 

years 

10 months 4 sc 4 189       
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Table 12: Phoridae puparia found on 50 human cadavers buried for different periods of time (Motter, 1898).  

Degree of moisture:  1= dry, 2= moist, 3= wet, 4= coffin submerged  

Character of soil: s = sandy, c = clay, sc = sand/ clay mix 
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Other descriptions 

7 years 3 months 4 sc 2  No cadaver in coffin 

11years 0 months 5 s 1   

11 years 7 months 5 s 3 ?  

14 years 5 months 6 - 1  Dry rotten rock 

14 years 8 months 5 s 1   

24 years 5 months 5 s 1   
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1.4 Megaselia scalaris 

 

Phoridae have over 3000 world species, Megaselia one of the Phoridae genera, 

alone has over 1400 species worldwide and is the largest genus in the Phoridae family. 

Megaselia scalaris (Diptera: Phoridae) is a species that primarily favours a warmer 

climate however this species has been carried around the world by unsuspecting humans 

and observations and identification of this fly are becoming more common around the 

world. This species is able to survive in environments that avoid frost but when the 

temperatures begin to drop can move indoors to the warmer temperatures to breed 

(Turchetto and Vanin, 2004; Disney, 2008).  

M.scalaris is a small (2 to 3 mm) blackish, brownish and yellowish minute fly 

with a small, rather flattened head. The thorax has a characteristic humpbacked 

appearance; the wings are commonly large with a distinctive venation (Fig 3). The legs 

are usually well developed with a stout, enlarged, laterally compressed hind femur. This 

species are also referred to as coffin fly, humpback and scuttle flies (McAlpine, 1987).  

M.scalaris has six stages to its life cycle, the adult (Fig 2), the egg (Fig 16), first instar 

larval stage (Fig 15), second instar larval stage (Fig 16), third instar larval stage (Fig 17) 

and pupa (Fig 19). 

M.scalaris are frequently found in exhumed bodies and soils which supports the 

‘coffin fly’ status (Campobasso et al., 2004a; Mariani et al., 2014). They are also reported 

to be amongst the fifth colonisation wave of insects (Table 1) that inhabit an exposed 

human cadaver. The cadaver at this stage is between four to eight months old, the body 

would be fermenting ammonia and releasing a thin, fetid, greenish fluid consisting of 

serum and pus. Observations show when a human cadaver is indoors with limited access 

to the larger flies, amongst the first wave of insects attracted is M.scalaris (Oliva, 2002; 

Reibe and Madea, 2010; Feng and Liu, 2013).  

New reports of M.scalaris being present around the world in crime scenes or 

present on cadavers are becoming frequently reported. During the period 2005 to 2010, a 

review of forensically important entomological specimens that were collected in Malaysia 

from human cadavers to update the one previously carried out by (Reid, 1953; Lee et al., 

1984; Lee, 1996; Hamid et al., 2003; Lee et al., 2004). Eighty cases in total were recorded 
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and 93 specimens were collected. 1.08% of specimens were identified as M.scalaris 

(Kavitha et al., 2013).   

 Trappings were conducted in Buenos Aires city, Argentine by Oliva (2001) using 

beef bait to determine the succession of insects (Table 13). The data shows that when a 

hiatus appeared in the month of February (middle of summer) and March-April (early 

fall) that M.scalaris had partially filled the traps. 

 Carvalho et al. (2004) explored succession using the carcasses of two domestic 

pigs (Sus scrofa L) weighing 17 kg. The carcasses were in an exposed open urban area in 

Campinas, Brazil and in direct sunlight. The experiment was run between the months of 

August and September. Further succession data was provided by Faria et al. (2013) in 

which M.scalaris was found only to be present in the forest during the dry decay stage 

during the humid season (October to April) and were not present at all during the dry 

season (May to September).  

Table 13: Monthly data of insect activity during 1996-1997 (Oliva, 2001). 

Month C.vicina P.sericata Parasarcophaga 

spp 

M.scalaris 

January Not found No oviposition All stages All stages 

February Not found No oviposition All stages All stages 

March Not found Not found Not found Larvae 

April Not found Not found Not found Not found 

May Oviposition  Not found Not found Larvae, pupae 

June All stages Not found Not found Pupae, adults 

July All stages Not found Not found All stages 

August All stages Not found Adults Not found 

September All stages Not found Larvae Larvae, pupae 

October All stages Oviposition All stages Pupae 

November All stages All stages All stages All stages 

December All stages All stages All stages Not found 
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Fig 2: Lateral view of an adult Megaselia scalaris fly, scale = 500µm, x40 magnification. 

 

 

Fig 3: Morphology of a left wing belonging to Megaselia scalaris (Diptera: Phoridae), scale = 500µm, x40 

magnification.  

 1=Subcosta vein, 2 = costa cilia, 3= Radial 1, 4= Radial 2 + Radial 3, 5 = Radial 4 + Radial 5, 6= Medial 1, 7= 

Medial 2, 8= Anterior cubital 1, 9 = Anterior branch of cubitus 2 and anal vein 1, 10 = axillary bristles 

(McAlpine et al., 1981). 
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Different fly species are used to calculate the PMI in warmer weather but it is 

understood that insect species are less active during the colder seasons. M.scalaris could 

be found over the whole year when researchers collected necrophagous insects 

throughout one calendar year in Germany (Schroeder et al., 2003). 

 There has been much research done investigating development and growth rates 

of M.scalaris, as it is important to a forensic case to know at what temperature larvae 

were reared as the length of larvae may be used to give an estimation of age.  Journal 

articles published on the duration of development of M.scalaris have been summarised 

below (Table 14).  
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Table 14: Duration of development of Megaselia scalaris by different authors (Disney, 2008). 

°
C E 

°
C E-FL 

°
C E-PF 

°
C E-P Sex Reference 

15 2 - - 15 20.4-

22.7 

15 (.45/-) M+F (Prawirodisastro and 

Benjamin, 1979) USA 

25 0.7 - - 25 7.6-8.4 25 17.2-18.4 M+F “ 

20 1.1 - - 20 10.1-

11.1 

30.3 28.3 M+F “ 

- - - - - - 17 ~60 M+F (Mainx, 1964) USA 

- - - - - - 28 18- M “ 

- - - - - - 28 20- F “ 

- - - - - - 18.3-

20.0 

21-27 M+F (Patton, 1922) UK 

20.8 2 - - 21.4 9.5 20.9 18.5 M+F (Leccese, 2004) Italy 

20.8 2 - - 21.5 12 22.5 22 M+F “ 

- - - - 21 11.7-

17.8 

21 29.2-37.3 M+F (Trumble and 

Pienkowski, 1979) USA 

- - - - 27 5.2-8.8 27 16.2-20.3 M+F “ 

- - - - 32 3.7-7.8 32 11.2-14.8 M+F “ 

22 1.3 22 4.3 22 6.8 22 21.9 M+F (Greenberg and Kunich, 

2002) UK 

29 0.75 29 2.87 29 4.27 29 11.2 M+F “ 

- - - - 23 5-6 23 16-18 M+F (Semenza, 1953) Italy 

27 0.7 - - 27 7.7 27 19.0 M+F “ 

20-25 2 - - 20-25 8-11 20-25 22-25 M+F (Robinson, 1975b) USA 

- - - - 21-33 -  25 M (Benner and 

Ostermeyer, 1980) USA 

- - - - 23-25 -  25 F “ 

23-27 2 - - 23-27 7.3 23-27 18.7 M+F (Idris and Abdullah, 

1997) Malaysia 

 

26-28 1 - - 26-28 12-19 26-28 15-20 M (Tumrasvin et al., 1977) 

Thailand 

26-28 1 - - 26-28 12-19 26-28 16-22 F “ 

27 0.6 - - 27 4.6-5.2 27 13.6-16.6 M+F (Amoudi et al., 1989) 

Saudi Arabia 

27 0.7 - - 27 4-6 27 13-15 M+F (El-Miniawi and 

Moustafa, 1966) French 

E =egg, E-FL = egg + feeding larvae, E–PF = egg + feeding stage larvae + post feeding stage 

larvae, E-P = egg + larvae + pupa, 
o
C = temperature range, M=males, F=females. 
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Fig 4: Growth rate of Megaselia scalaris reared in four different temperatures, length (mm) vs. age (hr). 

Values are the mean and Standard deviation of the 5 - 8 largest larvae observed at each age 

(Greenberg and Wells, 1998). 

 

 Further developmental studies include Greenberg and Wells (1998) who created a 

growth curve for M.scalaris (Fig 4) which compared length in millimetres (mm) to age 

(hours) for specimens reared at 19, 22, 29
 
and 35 

°
C.  Harrison and Cooper (2003), 

compared the developmental rates between the Drosophila melanogaster (Diptera: 

Drosophilidae) and M.scalaris, a slower developmental rate was observed with 

M.scalaris which was more pronounced the lower the temperature. Recent work by Zuha 

and Omar (2014) compared developmental studies of Megaselia scalaris to previously 

published developmental data. They found that the developmental periods of their 

experiments were shorter than those previously published, 40.3% shorter than the 

findings of  and 52.1% shorter than (Idris et al., 2001). The variances were explained by 

difference in lab equipment, food and sample volumes etc. The average daily egg 

production at 25 
°
C (Fig 5) was reported by (Prawirodisastro and Benjamin, 1979).  

Additional observations of Megaselia scalaris include Benner and Ostermeyer 

(1980) who observed that female larvae at 25 
°
C pupate two days later than the males. 

Sex ratios were investigated by Semenza (1953); El-Miniawi and Moustafa (1966) 

Benner and Ostermeyer (1980); Macieira (1983) and Amoudi et al. (1989), they all 
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reported the male to female sex ratios can be affected by the temperature (23 
°
C = 1.28:1, 

25 
°
C = 1.18:1, 25

 °
C to 30 

°
C = 1.0:1, 27

 °
C = 0.86:1). However with constant light and a 

relative humidity of 75% at 27
 °
C the ratio was reported at 0.43:1 but ranged from 0.13:1 

to 0.60:1. 

Water balance characteristics was studied by Rivers et al. (2013) in which 

M.scalaris was shown to have the lowest percentage body water content when compared 

to other forensically important fly species such as Protophormia terraenovae (Diptera: 

Calliphoridae), Phormia regina (Diptera: Calliphoridae), Sarcophaga bullata (Diptera: 

Sarcophagidae), Lucilia sericata (Diptera: Calliphoridae)  and Lucilia illustris (Diptera: 

Calliphoridae). As the maggot mass increased there was no change in body water content, 

changes were observed only when the maggot mass contained over 1000 specimens and 

was a result of overcrowding. Having high dehydration tolerance and a low water content 

indicates that M.scalaris is able to colonise a dry carcass as discussed by Goff (2010) and 

Rivers and colleagues (2013). 

Prawirodisastro and Benjamin (1979) researched the duration of the adult flies’ 

life span calculating reproduction success. Specimens were kept in environmental 

chamber maintained at 15, 20 and 25 
°
C in a LD 18:6 photo-period. Overall 25 

°
C showed 

the most rapid development throughout the life stages. No adults emerged at 15 
°
C from 

the pupa (Table 15 & Table 16) and adults were noticeably less active at lower 

temperatures which was also commented on by (Mazyad and Soliman, 2006) whilst 

(Dian-Xing and Guang-Chun, 2014) found that a few adults were seen emerging at 15
 °
C. 

Overcrowding was seen to influence mean development times; larval development period 

was longer at 100 larvae per 10g food however at 200 larvae per 10g many 

underdeveloped larvae moved away from the food and died and the pupal development 

stage was shortened.  
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Table 15: Average longevity and fecundity at 3 constant temperatures (Prawirodisastro and Benjamin, 1979). 

Temperature (
°
C) Sex N Longevity (Days) 

Mean ± SD 

Fecundity 

Mean ± SD 

15 ♀ 10 51.0 ± 6.9 146.9 ± 51.3 

 ♂ 19 43.0 ± 3.7  

20 ♀ 10 30.7 ± 12.5 591.7 ± 213.0 

 ♂ 27 24.9 ± 1.5  

25 ♀ 10 29.9 ± 9.0 664.8 ± 254.1 

 ♂ 30 24.8 ± 2.4  

 

Table 16: Average pupal duration and survival of adults over three temperatures based on 250 male and female 
specimens (Prawirodisastro and Benjamin, 1979). 

Temperature 

(
O
C) 

Sex Duration (Days) Survival (%) 

15 ♀ - - 

 ♂ - - 

20 ♀ 17.5 ± 0.4 82.0 ± 9.3 

 ♂ 17.7 ± 0.4 75.9 ± 10.3 

25 ♀ 9.8 ± 0.2 95.8 ± 6.3 

 ♂ 9.8 ± 0.2 91.6 ± 8.1 

 

 

 

 

 

 

 

 

Fig 5: Average daily egg production at 25 °C (Prawirodisastro and Benjamin, 1979). 

 

Megaselia scalaris adult flies are just one of the species that are able to burrow 

down into the soil and oviposit on to the corpse whilst other species lay their eggs on the 

soil surface and the newly hatched larvae reach the corpse by burrowing down through 
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the soil (Smith, 1986). Mariani et al. (2014) comments that M.scalaris larvae are able to 

burrow over 50cm to reach a buried cadaver. Buried corpses have four recognised waves 

(Table 3) which also shows Phoridae in the third colonisation wave when the age of the 

corpse is approximately 1 year old. Given the opportunity M.scalaris has been observed 

ovipositing at different stages throughout the decomposition process (Disney, 2008).   

 

M.scalaris larvae have been defined as being predator, parasitoid or a parasite; 

this is supported by reports of: 

 infestation of laboratory cultures by Robinson (1975a); Miller (1978); 

Gregorio and Leonide (1980); Garris (1983); Harrison and Gardner 

(1991); Andreotti et al. (2003); Zwart et al. (2005); Ruíz-Nájera et al. 

(2007); Costa et al. (2007); Miranda-Miranda et al. (2011); Batista-Da-

Silva (2012) and Koch et al. (2013). 

 infestation of food and seeds by Walter and Wene (1951);  Disney (1994) 

and Karunaweera et al. (2002). 

 the myiasis of reptiles and fish by Da Silva et al. (1999); De Morretti et 

al. (2006);  Diclaro et al. (2011) and Vanin et al. (2012b). 

 the myiasis in humans i.e. intestinal myiasis, urinary myiasis, wound 

myiasis etc. Trape et al. (1982); Singh et al. (1988); Sigh and Rana 

(1989); Carpenter and Chastain (1992); Hira et al. (2004); Mazayad and 

Rifaat (2005); Diaz (2006) and Wakid (2008). 

 

 Megaselia scalaris does however have its own predators and parasitoids, 

Marchiori and Barbaresco (2007) collected six specimens of Pachycrepoideus 

vindemmiae (Hymenoptera: Pteromalidae) from M.scalaris pupae. Disney and Munk 

(2004) also found that Orthostigma pumilum (Hymenoptera, Braconidae) were parasitoids 

of other Megaselia species and Disney (1983) comments that respiratory horns in 

Megaselia may be absent in the cases of parasitism by Hymenoptera, this is still to be 

confirmed. 
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1.4.1 Observations of Megaselia scalaris found in some Forensic Entomology cases 

 To determine characterisation of the different insects present on cadavers that 

arrived for autopsy at the Institute of Legal Medicine (ILM) in Pernambuco, Brazil, a 

survey was performed. Bait traps were placed around the ILM and were used for the 

collection of insects which took place three times a week for six months. Cadavers were 

examined immediately on entering the ILM prior to any washing. Overall during the 

study 4589 adult insects belonging to 24 species of dipteran families were collected. The 

frequency of M.scalaris was determined to be 23.1% and were collected from the ILM 

courtyard, storage room for putrefied cadavers, autopsy room and hospital garbage site 

(Oliveira and Vasconcelos, 2010).  

 In Recife, one of the largest cities in Brazil and one of the most violent cities in 

the country (homicide rates: 57.9 homicides/100,000 inhabitants) a study was carried out 

by Vasconcelos et al. (2013) to determine if larval competition during colonisation would 

favour a limited number of species in completing their developmental cycle on the 

carcass. A location frequently used for the clandestine disposal of cadavers was selected 

for the experiment. Numerous collections from 5 to 180 mins were taken immediately 

post death. To determine which species would continue to visit the carcass further 

collections were taken at 24, 48 and 72 hours. In the first few hours after death a total of 

153 insects from 14 families were collected, this included species of Phoridae (24.2% of 

all adults), Sarcophagidae (18.3%), Piophilidae (10.5%), Calliphoridae (10.5%), Fannidae 

(8.5%), Chloropidae (6.5%), Muscidae (4.6%) and Dixidae (4.6%). Megaselia scalaris 

was observed to be the most abundant species at the period immediately after death and 

was seen within 30 mins post death but was also observed at different times up to 72 

hours post death. Throughout the stages of decomposition M.scalaris larvae were not 

restricted in completing their larval development cycle.   

 A body of a male was found in his apartment in July in the municipality of 

Jaboatao dos Guararapes, Pernambuco state, Brazil. The deceased’s flat was clean and 

tidy and the windows had been partially opened which allowed for limited access of 

insects. Death was estimated to have occurred five days prior to discovery of the body. 

On the head and trunk areas large larval masses were observed also under and between 

the clothes. Over a 180 minute sampling period, third instar larvae were collected from 

several parts of the body (10 insects per pot) and observed daily until emergence for 

identification. From the lab reared specimens, six species were recorded: Chrysomya 
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albiceps (Diptera: Calliphoridae) (65 %), Chrysomya megacephala (Diptera: 

Calliphoridae) (18.6 %), Chrysomya putoria (Diptera: Calliphoridae) (0.4%), Megaselia 

scalaris (Diptera: Phoridae) (15.2 %), Fannia trimaculata (Diptera: Fanniidae) (0.4%) 

and Peckia chrysostoma (Diptera: Sarcophagidae) (0.4%). Of the six species recorded 

three were the most abundant of which one was M.scalaris (Vasconcelos et al., 2014).  

 A fully clothed body of an adult male was exhumed in Bari, Southern Italy. He 

had been buried in a wooden coffin at a depth of 30 to 40 cm, one year after burial his 

body was exhumed. His cause of death was gunshot wound to the head and chest. On 

examination of the coffin revealed some very small holes which only small flies would be 

able to access. The corpse was covered with larvae, pupae and empty puparia.  

Examination of the insect remains revealed that only one species was present in the coffin 

and these were identified as individuals of M.scalaris (Campobasso et al., 2004a). 

 Other cases that involved M.scalaris, include a body found within a tightly sealed 

7
th

 floor apartment in Japan (Greenberg and Wells, 1998).  

 Further forensic cases include myiasis; in which larvae were found on the 

deceased body of a female was discovered in her apartment. Young larvae of M.scalaris 

were found in the genital area of the body. The larvae were collected and reared in which 

the time interval for full development was considered too short for a complete life cycle 

and therefore myiasis was discussed (Dewaele et al., 2000). 

 Two cases of wound myiasis by Megaselia species in USA were reported, the first 

was (Sherman, 2000). Many cases of myiasis acquired in a hospital environment are often 

under reported or not reported at all, (Table 8) shows the reported cases between the years 

1980 to 1998 (Joo and Kim, 2001).  
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1.4.2 Molecular identification of Megaselia scalaris 

 Insect sampling and identification plays an important role for the entomologist 

when trying to estimate the Post Mortem Interval. Many fly species such as Phoridae 

have similar morphology characteristics which pose a challenge when trying to determine 

identification as over 3,000 of these scuttle fly species have been identified so far. 

Morphological keys may be unavailable or hard to use for the different stages such as 

immature or adult.  A DNA based method that allows for easier identification of fly 

species is beginning to be used more frequently. Molecular phylogenetic is approximating 

the evolutionary past based on the comparison of protein sequences or DNA (Baldauf, 

2003). By amplifying suitable regions of the genome, amplicons are acquired. Commonly 

researched genes are: subunits I and II of the cytochrome oxidase (part of the respiratory 

chain within the mitochondrial membrane), ND5, ND1, 12S and 16S DNA 

(mitochondrial encoded) along with 28S, ITSI and II DNA (nuclear encoded) (Amendt, 

2004). Cytochrome oxidase I (COI) gene was found to have a couple of advantages over 

other primers, as it appears to contain a larger range of phylogenetic signals when 

compared to other mitochondrial genes and the universal primers were found to be robust 

allowing for recovery of 5’. Using DNA based identification much research has been 

accomplished over the years from all around the world on many different species for the 

purpose of identifying forensically important flies (Wells et al., 2007; Nelson et al., 

2007), (Wallman and Donnellan, 2001; Boehme et al., 2010). If a reference sequence 

matches a sequence from an unknown insect the conclusion would be that the unknown 

insect may belong to the same species of the reference sample or that the two taxa are 

identical. If differences are present in the sequence then interspecific and intraspecific 

variation information needs to be analysed to be able to evaluate the differences in the 

sequence. Using the cytochrome oxidase I gene (COI) and amplifying using polymerase 

chain reaction (PCR), the 658 base pair (bp) long region (without primer or 750 bp with 

primer) which in forensic entomology is a common molecular marker is then able to be 

sequenced  and a neighbour joining phylogenetic tree can be generated (Boehme et al., 

2010; Aly and Wen, 2013).  

 Rasmussen and Noor (2009) used pyrosequencing to sequence the genome of 

M.scalaris (Fig 6). Food associated insect pests were identified and sequenced (Cho et al., 

2013)  which included COI sequencing for M.scalaris (Genbank accession numbers: 

KC407773,  KC407774, JN896297,  JN896298,  GU075400,  JN896281 and JN896283). 
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  Boehme et al. (2010) molecularly analysed Megaselia scalaris, Megaselia 

giraudii, Megaselia abdita, Megaselia rufipes, Conicera tibialis, and Puliciphora 

borinquenensis. The COI barcoding region was amplified, a total of 34 individuals were 

sequenced and aligned over 559 nucleotides of the COI barcoding fragment. The phorid 

sequences were deposited in GenBank under the following accession numbers: 

GU075399, GU075400, GU075401, GU075402, GU075403, GU075404, GU075405, 

GU075406, and GU075407. It was concluded that almost all specimens of one species 

showed identical nucleotide sequence except slight differences within the sequences of M. 

rufipes. Only two individuals shared the same haplotype while the remaining three 

specimens (M.giraudii, M.abdita and M.scalaris) differed to each other in one to two base 

pairs. 

 

 

Fig 6: Map of the Megaselia scalaris mitochondrial genome  

showing the positions of the protein-coding genes (green arrows), 16S ribosomal RNAs (red line) and the gaps in 
our sequence (external yellow arrows) (Rasmussen and Noor, 2009). 
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1.5  Aims of Research 

 

 Megaselia scalaris is a common species found amongst indoor and outdoor crime 

scenes and plays an important role in the decomposition of human remains and can be 

used following the forensic entomology approach for the estimation of the post mortem 

interval particularly in indoor cases. 

 Several questions concerning the biology and the chronobiology of this species 

remain open. Only by researching and finding the answers to these questions will allow 

for the routine use of this species in forensic and legal investigations. 

The most important questions include: 

- period of activity and eggs laying time of this species, 

- period of hatching and eclosion times from eggs and pupae, 

- most important stimuli able to attract the flies to a body, 

- effect of the food source in the species development, 

- time of development related to the different photo-periods and temperatures 

- estimation of the time of pupation 

- estimation of the burial activity. 

 

 Studies have been conducted by numerous researchers on the developmental 

period of this species however different parameters were used by each of the groups, this 

has left the current data with inconsistencies and contradictions therefore the published 

data could not be used as comparison material. For the purpose of PMI estimation, 

developmental studies have been conducted using the same parameters such as constant 

temperature, time and size data. Studies were also conducted using different pabulum and 

drug induced food of different concentrations. 

  To further understand the behavioural patterns of this species the use of up to date 

technology may help us to be able to determine a more precise circadian clock rhythm.  It 

has long been discussed by numerous researchers that flies are not active during the night 

time period, this also includes oviposition, understanding of the biological clock that 

controls this species may allow for a more precise estimation of the time since death.  
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Research has been completed to determine when this species is active, when they are able 

to oviposit and emerge as adults from their puparia.  

 Morphology imaging of Megaselia scalaris throughout the developmental stages 

has previously been conducted using SEM (Sukontason et al., 2003; Sukontason et al., 

2005), TEM (Wolf and Liu,1996) and both stereo and compound microscopes however 

new technologies are emerging which allow for a non-destructive approach, which may 

be required in either forensic or archaeological specimens.   

 This thesis was completed with the aim of giving robust answers to the above 

questions, based on experimental data collected meaning that other issues could be 

addressed which may allow us to be able to better understand the species Megaselia 

scalaris and the overall effect they may have in the entomological field. Permission has 

been granted for the reproduction of illustrations used throughout this thesis. 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

2: Morphology
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2.1  Morphology 

2.1.1  Introduction 

 Changes to the morphology of M.scalaris throughout the developmental stages 

has been conducted using Scanning Electron Microscopy (SEM), Transmission Electron 

Microscopy (TEM) and both stereo and compound microscopes as previously discussed 

which may have required considerable sectioning, dissection and more frequently the 

complete destruction of the specimen.  

 Megaselia scalaris larvae go through numerous changes in size and weight during 

their development cycle; these measurements are used by forensic entomologists to 

estimate the age of the larvae along with other morphological characters. Estimating 

pupal age is increasingly harder to determine due to the lack of morphological changes 

that occur outside the pupa. To be able to describe anatomical and morphological changes 

that occur during metamorphism without destroying the sample relies on newer advanced 

technology such as X-ray computed micro-tomography (micro-CT) (Feng and Liu, 2013).  

 Richards and colleagues (2012b) explored the methods currently used with pupae 

which may help to determine PMI. Measurements of weight and larval length are the 

main techniques in determining the developmental age of the larvae. However the same 

method cannot be used for determining pupal age, techniques presently used include:  

 Killing of the pupae, removing the case and observing the specimen under a light 

microscope.  

 Identifying morphological markers on the pupal case observed during 

development.  

 Histology which looks at changes that occur within the internal morphological 

structures such as structural changes in salivary glands in larvae during pupation 

(Levy and Bautz, 1985).  

 Recently scanning electron microscopy (SEM) has been used to try and determine 

the developmental rates of blowfly pupae however it was found that further work 

is required if this method is to be made reliable when calculating PMI.     
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 Different staining methods which would allow for a high contrast in 3D imaging 

was researched by Metscher (2009). The smaller specimens were imaged using an Xradia 

Micro XCT system whilst specimens above 5mm were imaged using a Skyscan 1171 

scanner. The stains of interest to the research consisted of a PTA stock solution (PTA), 

Iodine aqueous solution (IKI) and an Iodine alcohol solution (I2E, I2M). It was 

determined that the better stains were either the PTA solution or the aqueous iodine 

solution. Aqueous Iodine solution was found to penetrate into the tissues more rapidly 

and was able to stain the specimen within a few hours and was found to be a robust 

contrast stain. As PTA is a larger molecule the solution was found to require overnight 

incubation to diffuse into the tissues but the pupae must be pierced for this to happen.  

Different imaging techniques used to investigate the external morphology of 

M.scalaris have included SEM and TEM. 

 Developmental differences between the first and second instar larvae were 

researched by Boonchu and colleagues (2004). Observed were changes in both the 

posterior and anterior spiracles and little change in the structure of the mouthparts. 

They concluded that morphology between first and second instars were very 

similar however even fewer changes were observed between second and third 

instars.  

 Mouthparts of the M.scalaris was researched by Sukontason and colleagues 

(2003) to determine sexual dimorphism. It was concluded that differences were 

seen between the two sexes, with the most distinctive feature of M.scalaris sexual 

dimorphism is the surface structure of the labellum, females have an entirely 

smooth labellum whereas the males labellum is entirely covered with microtrichia. 

 The ultrastructure of the ommatrichia in M.scalaris was studied by Sukontason 

and colleagues (2005) to gain a further understanding of the compound eye 

structure. They concluded that the M.scalaris have numerous ommatrichia 

however there was no differences noted between the sexes though further work is 

required to determine the exact function of the ommatrichia in the M.scalaris. 

 Sukontason and colleagues (2006) also examined M.scalaris puparia to determine 

if any morphological features were present. It was concluded that whilst the pupa 

is of a uniform shape, under a high magnification many different structural 

features are present i.e. intersegmental spines along the dorsal and lateral 
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segments. Two straight slits are present on the anterior spiracles with one end 

closed whilst the other is open.  The papillae on the respiratory horn may be 

species specific in arrangement, shape and number. This may help to differentiate 

the M.scalaris from other fly species which are of great importance in forensic 

cases.  

 Further work includes the identification of forensically important fly eggs using 

researched by Sukontason and colleagues (2004). Characteristics were based on 

length of the egg, width of plastron and morphology of plastron area surrounding 

the micropyle and chorionic sculpturing. It was determined that the chorionic 

sculpturing allowed for identifying species which was more apparent on some 

species when compared to others.  

 Using TEM, Wolf and Liu (1996) investigated the fine shell structure of both the 

M.scalaris and M.spiracualaris. Concluded was that when comparing the 

Megaselia species alongside Drosophila that the Megaselia species had thicker 

chorions. This may help prevent environmental hazards such as bacterial attack 

and dehydration. An electron dense lamina was also discovered this is thought to 

represent the wax layer found in Drosophila which serves as resisting layers in an 

aqueous environment.  
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2.2.2  Experimental Design 

 

2.2.2.1 Adult, Egg and Larval Imaging 

 Images were taken of the throughout the different stages of development using 

both a Leica M60 microscope at different magnifications imaging was completed using 

Leica software and a Keyence VHX-1000 (Fig 7) with digital optical system, a 54 

megapixel camera, 3D measurement software and magnification from 20 x to 2500 x with 

auto magnification recognition software.  

The life cycle of M.scalaris consists of six parts, the adult (Fig 9), the egg (Fig 12, 

Fig 13 and Fig 14), no staining was required with the eggs as sufficient detail was 

captured, first instar larval stage (Fig 15), second instar larval stage (Fig 16), third instar 

larval stage (Fig 17) and pupa (Fig 19). The hot water immersion (HWI) killing method 

was used on both larvae and pupa, whilst recently deceased flies were used for imaging.  

Fig 7: Keyence VHX-1000 digital microscope. 
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2.2.2.2 Pupal Imaging 

 Flies used were from lab colonies maintained and reared on pet food and kept 

under constant conditions at 20 ± 0.5 
O
C using LD 12:12 photo-period.  White prepupae 

were collected and observed every hour for pupation, once pupated, each puparia was 

sexed and separated into petri dishes. Each dish contained three males and females and 

damp tissue to prevent dehydration.  

 Specimens were removed from the Incubator at set time intervals: 0, 14, 36, 50, 

71, 86, 100 % throughout the developmental period. Time 0% was the initial pupation 

formation plus 30 min max to prevent disruption of the pupation process.  

 Initially prior to the removal of the pharate, microscopy images were taken of the 

pupae exoskeleton (Table: 3 & 4) to display the changes over time under a Leica M60 

microscope at x 25 magnification and  Keyence VHX-1000 with digital optical system at 

x 50 magnification, both microscopes used white illumination. Once the external images 

were taken the pupa were then fixed using the HWI method. The developing fly was then 

dissected from the pupa case and imaged using the method above (Table: 5 & 6).  

 At the end of the experiment it was noted that the unused specimens emerged 

from pupae within 2 hours of the last sample therefore time 100 % was within the very 

final stages of adult emergence. 
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2.2.2.3 Nikon XT H 225 Series Used for Internal Imaging 

 Nikon XT H 225 series X-ray and CT technology (Fig 8) was initially used to 

investigate the anatomical and morphological changes taking place within the puparia of 

Megaselia scalaris. This research was completed in collaboration with Dr Peter Laity and 

Dr Paul Bills. 

 

 

 

 

 

 

 

 

Fig 8: Nikon Metrology XTH 225 

 

 Nikon datasheet (Nikon, 2012) shows the system operates from 30 to 225 kV and 

0 to 1000 µA.  Reconstruction software used was CT pro software and VG studio max 2.1 

was used for the 3D renderings and slice stacks. The operational method used during the 

experiment was: 

 

 Energy = 50kV,  

 Current = 200µA,  

 Measurement time = 1h 30mins.  

 

 The pupae used in the initial experiments were of undetermined age as the initial 

experiments were preliminary attempts at imaging to determine the best parameters for 

both x-raying and positioning of the pupae. 

Three different techniques were initially used: 

 Dry 

 Stored in 70% Ethanol (EtOH),  
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 Stained in Potassium Iodide aqueous solution (IKI) for 1, 3, 5 and 7 days. 

 The specimens in EtOH were removed and imaged immediately or left to air dry 

for one hour to determine if this had any effect on the internal specimen (i.e. 

dehydration). 

Two different mounting mediums were used: 

 Polyethylene cylindrical mounting media.  

(A body portion that has the same diameter throughout from start to finish) 

 

 Polyethylene tapered mounting media.  

(A body portion that has a cylindrical shape with the outer periphery having a 

larger diameter than that of the distal end portion) 

 

 Different supports were used alongside the mounting mediums to investigate 

which method would offer the most support to prevent movement during imaging, these 

were: 

 Spongy Phenolic Foam 

 Petroleum Jelly 

 

 All of the above were used together in different arrangements to determine if they 

had any effect on the resulting image. To prevent the dehydration of the specimens’ 

Petroleum Jelly was used.  

 Images of both unstained and stained M.scalaris adult flies and larvae were also 

captured to try and understand the positioning of the internal structures that we may see.  
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2.2.2.4 Elettra Synchrotron Used For Internal Imaging 

 Beam time was accepted at Elettra Synchrotron in Trieste, Italy. Using a lower 

energy higher resolution images were taken. This research was completed in collaboration 

with Dr Lucia Mancini (Beamline Scientist - SYRMEP Group). 

The operational method used during the experiment was: 

 

 Energy = 10 to 14 keV,  

 Current = 200µA,  

 Filter = Aluminium 

 Exposure = 800 m sec 

 No of projections = 1800 over 180 
O
 

 Measurement time = 46 mins.  

 

 Image pro plus, VHR grablink and IDL Image software was used for the image 

rendering and reconstructions.  

 

 Pupa of both sexes was collected at 0, 10, 30, 60, 80, and 100 % of their 

development. The samples were by fixed by HWI and stained with a 0.5 Iodine solution 

for 3 hours and stored in 70 % EtOH solution until imaging.  Time 0 % was the initial 

pupation formation plus 30 mins to prevent disruption of the pupation process. The 

unused specimens emerged from pupae within 2 hours of the last sample therefore 100 % 

was within the very final stages of adult emergence. Aging of pupa will be determined by 

combining both internal and external morphological markers. 
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2.2.3  Results 

 

2.2.3.1 Adult, Egg and Larval Imaging 

 The adult fly (Fig 9) is small and is brown/yellowish in colour with dark eyes. 

Females are larger in size than the males and also have rotund white abdomens that are 

occupied with eggs. 

 

 

 

 

 

 

 

 

Fig 9: Lateral image of Megaselia scalaris adult fly. Scale 500µm, x40 magnification 

 

 

  

Fig 10: Abdominal section of female Megaselia scalaris 

(Brown and Oliver, 2007) 

Fig 11: Abdominal section of male Megaselia.scalaris 

(Brown and Oliver, 2007) 



80 

 

 The female sclerite (Fig 10) of segment/tergite 6 extends laterally.  The male’s 

final segments (Fig 11) are easily recognisable (Brown and Oliver, 2007). 

 Megaselia scalaris eggs (Fig 12, Fig 13 and Fig 14) are white in colour, boat like in 

shape as half the egg is curved whilst the other half is flat. Polygonal patterns cover the 

curved half of the egg whilst plastron occupies the other half.  

Fig 12: Lateral image of Megaselia scalaris egg using Keyence digital microscope at x300 magnification.  

 

Fig 13: Ventral image of Megaselia scalaris egg using Keyence digital microscope at x300 magnification.  
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Fig 14: Dorsal image of Megaselia scalaris egg using Keyence digital microscope at x250 magnification 

 

 All Megaselia scalaris larvae are cylindrical in shape with narrowing towards the 

head. Larvae have 12 abdominal segments in which bilateral spines are present from the 

third thoracic to the last abdominal segment.  Posterior spiracles are present on the 12
th

 

abdominal segment and appear cone like in shape which protrude dorsally. 

 

 

Fig 15: Lateral image of a first instar Megaselia scalaris larvae taken using Leica M60 microscope at x40 
magnification, scale = 500µm. 

 

First instars (Fig 15) are white with some transparency after eclosion from the egg. 
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Fig 16: Lateral image of second instar larvae of Megaselia scalaris taken using Leica M60 microscope at x40 
magnification, scale = 500µm. 

 

 Second instars (Fig 16) lose their transparency during this stage and take on a 

more cylindrical shape.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 17: Lateral image of Megaselia scalaris third instar larvae taken using Leica M60 microscope at x32 
magnification, scale = 1mm. 

 

 Third instar (Fig 17) is the last stage prior to then becoming post feeding in which 

they empty their gut and then move away from their food source and begin the 

metamorphic process into a pupa, the last developmental immature stage. 
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 Larvae are able to swallow air (Fig 18) which allows them some buoyancy to 

prevent them from drowning.  

 

Fig 18: Air swallowed by Megaselia scalaris larvae creating bubbles to prevent drowning when in aqueous 

solution 
(Harrison and Cooper, 2003) 

 

 

2.2.3.2 Pupal Imaging 

At the beginning of the metamorphic process the puparia is soft and white (Table 

17) the pupa will harden and turn brown over a short period of time.  

The puparia contains both anterior and posterior spiracles along with respiratory 

horns which extrude through the posterolateral wall (Fig 19). The horns which curve at 

the apex are slender and long. On the surface of the horns are papillae which form a spiral 

pattern, whilst we were able to see these on a higher magnification images, we did not 

research these features further.  Each puparia is dome shaped and oval in appearance.  

The anterior spiracle contains two straight slits in which one end is closed whilst the other 

remains open (Sukontason, 2006).  

Due to females being larger than males (Carareto and Mourão, 1988; Disney, 

2008 and Dian-Xing, Guang-Chun, 2014),  logically their puparia are larger allowing for 

easier sex determination. At the end of the metamorphosis process the adult fly will 

emerge from the hardened puparia. 
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Fig 19: Dorsal image of a ten day old Megaselia scalaris puparia, x26 magnification 
(PS =posterior spiracle, AS = anterior spiracle, RH = respiratory horn). 

 

In order to correlate the changes that occurred over time through the development 

stage of pupa to fly, analysis and was performed (Table 17) at 0, 14, 36, 50, 71, 86, 100 % 

throughout the developmental period. Time 0% was the initial pupation formation plus 30 

minutes max to prevent disruption of the pupation process. The pictures on the left hand 

side of the table were taken with the Leica microscope whilst the right hand side images 

were taken with the Keyence digital microscope. Ventral and dorsal images of the puparia 

are displayed. 

 

 

 

 

 

 

PS 

 

RH 

AS 
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Table 17: Dorsal and ventral images from the pupal development phases of a male Megaselia scalaris.  

Numbers under the images represent the developmental time since pupation. Images on the left side of the table 
were acquired using the Leica microscope, images on the right side were acquired using the Keyence microscope.  

  

0% 0% 

  

14% 14% 
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36% 36% 

  

50% 50% 
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71% 71% 

  

86% 86% 
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 Other than size, males and females both have very similar characteristics 

throughout their development. The observations noted (Table 18) are those that can be 

observed through the transparent pupal case.  

Table 18: Sequence of visible events during pupal metamorphism of both Megaselia scalaris sexes. 

Time (%) Observations 

0 

 

White prepupae which has stopped moving completely. 

14 

 

Respiratory horns have everted. 

Exoskeleton changes colour from white to yellow then to light brown. 

36 

 

No further colour change, white adult can be seen taking shape within the 

transparent puparia. 

50 

 

Further darkening of exoskeleton, clear legs seen through transparent 

puparia. 

 

71 Head, thorax and abdomen can be defined. Edges around the adult are 

beginning to darken, thorax has darkened and scutellum present, hair 

present on thorax, legs have darkened in colour. Slight darkening around 

head down to thorax. 

86 

 

Head and thorax very dark, wings appear black and black eyes can be seen. 

100 

 

No further change. 

 

  

100% 
 

100% 
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2.2.3.3 Pharate Imaging 

In order to correlate the changes that occurred over time through the development 

stage of pupa to adult fly, the pupal cases were fixed using the hot water immersion 

method and the pharate was removed by gently dissecting the pupal cage away from the 

pharate.  

The pharate was removed at 0, 14, 36, 50, 71, 86, 100 % throughout the 

developmental period. Time 0% was the initial pupation formation plus 30 minutes max 

to prevent disruption of the pupation process. Prior to the respiratory horns emerging the 

pharate was not possible to remove therefore time 0 % is the pupal case.  

Dorsal, ventral and lateral images were taken (Table 19) of the pharate. The top 

rows of images were taken using the Leica microscope whilst the bottom rows of images 

were taken using the Keyence digital microscope. The observations are noted in (Table 

20). 

Table 19:  Dorsal, lateral and ventral images showing the morphology of pharate Megaselia scalaris male.  

Numbers under the images represent the developmental time since pupation. Images on the top of the table were 

acquired using the Leica microscope; images on the bottom were acquired using the Keyence microscope with 

the exception of 0% in which right side images were taken using Leica microscope and the left side images were 
taken using a Keyence microscope.  
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 100%  

 Newly Emerged 

 

 

 

 

 

Table 20:  Description of morphological developmental changes of pharate Megaselia scalaris male. 

Time (%) Observations 

0 

 

White prepupae which has stopped moving completely. 

14 

 

Respiratory horns have everted. Outline of eyes, legs and wings can be observed. 

Mouth parts can be seen along with antennas which are currently white. 

36 

 

Small colour changes in the abdomen. White adult can be seen taking shape. 

50 

 

Body starting to take further shape. Legs and wings more prominent.  

 

71 Head, thorax and abdomen can be defined. Edges around the abdominal tergites are 

becoming darker in colour, thorax has darkened and scutellum present, hair present 

on thorax, legs have darkened in colour. Slight darkening around head down to 

thorax. White wings and dark legs can be observed. A protective membrane 

surrounding the fly can be clearly seen.  

86 

 

Head and thorax very dark, wings appear darker in colour and black eyes can be 

observed. Stripes more prominent on the abdomen. 

100 

 

Protective membrane coming away from the adult fly ready for emergence.  
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2.2.3.4 Internal Imaging Collected Using Nikon XT H 225 series 

 In order to associate the changes that occur over time throughout the development 

stage within the puparia, X-ray tomography was performed using a Nikon XT H 225 

series X-ray and CT scanner. The puparia images (Fig 20 to Fig 38) were taken at different 

periods throughout the developmental stage and images taken. Stains had previously been 

used by Metscher (2009) and Richards and colleagues (2012b), this was an area that was 

also looked at. Images were taken using dry specimens, specimens that had been stored in 

70% EtOH and specimens stained with an aqueous potassium iodide stain. The images 

were taken using 50kv energy and between 150 and 200µA current.  

Dry Images 

 

 

 

 

 

 

 

 

 

 

 

Fig 20: Dorsal surface rendering of dry female Megaselia scalaris pupa. 

 

 

 

 

 

 

 

 

 

Fig 21: Ventral surface rendering of dry female Megaselia scalaris pupa. 



94 

 

 

Fig 22: Coronal images of female Megaselia scalaris dry pupa. 

 

 

Fig 23: Surface rendering of dry male Megaselia scalaris pupa. 
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Fig 24: Sagittal images of female Megaselia scalaris dry pupa. 

 

 

Fig 25: Surface rendering of Megaselia scalaris pupa supported with oasis foam. 
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Stored in 70% Ethanol 

 

Fig 26: Dorsal surface rendering of Megaselia scalaris pupa, 
Stored in 70% EtOH and imaged in petroleum jelly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 27: Ventral surface rendering of Megaselia scalaris pupa 
Stored in 70% EtOH and imaged in petroleum jelly. 
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Potassium Iodide Staining 

Fig 28: Dorsal surface rendering of Megaselia scalaris pupa stained with KI for 24 hours 
Imaged in petroleum jelly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 29: Sagittal renderings of Megaselia scalaris pupa stained with KI for 24 hours. 
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Fig 30: Lateral surface rendering of Megaselia scalaris pupa stained with KI for 7 days.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 31: Sagittal renderings of Megaselia scalaris pupa stained with KI for 7 days. 
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Fig 32: Coronal renderings of Megaselia scalaris pupa stained with KI for 7 days. 

 

 

 

 

 

 

 

Fig 33: Dorsal rendering of Megaselia scalaris pupa stained with KI for 3 days. 

  

 

 

 

 

 

 

 

 

 

Fig 34: Sagittal rendering of Megaselia scalaris pupa stained with KI for 3 days. 



100 

 

 

 

Fig 35: Coronal rendering of Megaselia scalaris pupa stained with KI for 3 days. 

 

Fig 36: Dorsal rendering of Megaselia scalaris pupa stained with KI for 5 days. 

 

 



101 

 

 

 

Fig 37: Sagittal rendering of Megaselia scalaris pupa stained with KI for 5 days. 

 

 

 

 

Fig 38: Coronal rendering of Megaselia scalaris pupa stained with KI for 5 days. 
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The images (Fig 20 to Fig 38) show that the size of the specimen is of great importance as 

some X-ray and CT machines are unable to clearly image internal anatomical structures. 

Richards and colleagues (2012b) have shown that the Nikon XT 225 series works very 

well when used with a larger species such as Calliphora vicina  (Diptera:  Calliphoridae) 

however the Nikon XT 225 series does not work well with Megaselia scalaris due to the 

size of the specimens.   

 

2.2.3.5 Internal Imaging Collected At Elettra Synchrotron 

 In order to try to improve the resolution of the CT scan obtained with the Nikon, 

some samples were observed at the Elettra Synchrotron using monochromatic light and 

phase contrast. The puparia images were taken at different periods (Table 21) throughout 

the developmental stage from Time 0 % (Time 0 % was the initial pupation formation 

plus 30 min max to prevent disruption of the pupation process) to Time 100 %. The 

puparia were fixed using the hot water immersion method then stained with an aqueous 

potassium iodide, Metscher (2009) for 30 mins and then stored in 70% EtOH till imaging.  

 

Table 21:  Developmental series of dorsal images displaying the morphology of pharate Megaselia scalaris 
female. 

0 

 

10 
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Table 22: Developmental series of dorsal images displaying the morphology of pharate Megaselia scalaris male. 

0 

 

30 

 

60 

 

100 
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 In both the male and female images (Table 21 and Table 22) we can see the 

reproductive organs. In the females the organs begin towards the rear of the puparia and 

they remain this way up to Time 60 % however when we look at Time 80 % we can see 

that the organs have moved towards the middle of the specimen and at 100 % we can see 

they have moved slightly passed the middle segment. When we compare this to the males 

we can see that again the organs again start at the rear of the abdomen however by Time 

60 % they seem to have shifted towards the middle of the specimen however Time 100 % 

has conflicting results with the organs remaining towards the rear of the abdomen.  A 

larger sample and a shorter time period have to be further analysed in order to better 

understand and describe the experiment.  
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2.2.4  Discussion 

2.2.4.1 Adult, Egg and Larval Imaging 

 Our morphological observations from the different development stages have the 

same findings to other researchers. The observations from  the eggs are in agreement with 

previous work done by other researchers (Sukontason et al., 2004) who used potassium 

permanganate (KMn04) to view the eggs under a high powered microscope, however new 

technologies have become available that allow for materials to be viewed under the 

microscope with no preparation required. Our images show the morphology without 

stains and under high resolution.  

 

2.2.4.2 External Imaging of Pupa 

 Our results showed that the male pupa is smaller in size when compared to the 

female according to (Carareto and Mourão, 1988; Disney, 2008; Dian-Xing and Guang-

Chun, 2014) and therefore this aided in sex determination of the pupa. The morphological 

characteristics of the male developmental stages are also observed in the female during 

the same stages and have therefore been recorded together.  

 Different killing and storing methods (i.e. HWI and stored in 70% EtOH) were 

used to determine the best method to dissect the pharate as some approaches were found 

to make the exoskeleton very brittle resulting in the pharate being easily destroyed.  HWI 

was the best method as it also aided in softening the exoskeleton which made the 

dissection easier. Trying to remove the pharate prior to the respiratory horns being 

everted resulted in the pharate being easily damaged therefore the dissections took place 

after the respiratory horns everted which agreed with observations made by Dian-Xing 

and Guang-Chun (2014).  

 Colour differences were noted between our findings and those reported by Dian-

Xing and Guang-Chun (2014), our wings were never viewed as black only, as white or 

grey, a yellow eye is never observed however we do see the changes in the colour of the 

abdomen at the same time the eye colour was reported by Dian-Xing and Guang-Chun 

(2014). Their newly emerged fly also differs in colour to ours; these variances may be put 

down to the differences in microscopes and lighting used as a Olympus BX41 

stereomicroscope with lateral yellow illumination was used by Dian-Xing and Guang-
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Chun (2014) whereas a Leica and Keyence digital microscope with white light  were used 

to take our images.  

 By placing the pupal cases under the microscope allows the exoskeleton to 

become transparent which showed the external morphology of M.scalaris. The three main 

regions (head, thorax and abdomen) were easily identifiable from early on (14%) in the 

development process as were the mouth parts, legs, wings and antenna. 

 

2.2.4.3 Internal Imaging Collected Using Nikon XT H 225 series & Elettra Synchrotron 

 X-ray tomography is becoming increasingly used in the entomological field to 

help determine research from developmental rates, morphology of anatomical structures 

to estimating maggot mass volumes in bodies. Some technical problems were 

encountered during the collection of our initial images.  

 Dry imaging surface renderings of the dry female specimen was successful and 

external structures Including eyes, mouth parts and legs can be distinguished whilst the 

accessory glands related to the reproductive system can also be made out due to the 

density difference compared to the other internal organs. When looking at coronal and 

sagittal images, the dense areas can be made out clearly however there is difficulty when 

trying to identify further internal structures.  The surface renderings of the male body 

show that the dense organs previously discussed are situated differently in the males’ 

body and therefore it may be possible to use these organs as another sex determination 

tool.  With the Nikon series, the male specimen is too small to be able to image further 

therefore no coronal or sagittal images were possible.  

 During the storage of specimens in 70% ethanol it was noted that the pupa cases 

became very brittle and would start to fall apart whilst in the ethanol. Trying to gently 

handle the specimens into the polyethylene mounting media would prove difficult due to 

the fragility of the cases. It was decided that ethanol was not a good storage medium for 

the M.scalaris when used with X-ray tomography. The imaging results were very similar 

to that of the dry specimens in that the dense internal organs can be seen along with the 

external structures as previously discussed. No coronal and sagittal images were taken.  

 The surface renderings of specimens stained with Potassium Iodide (KI) for 24 

hours confirms that the Iodine has managed to enter the pupa case as there are a lot of 
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black areas on the rendering, this shows that the stain has begun to equilibrate the colour 

of the case and the internal structures. Due to the small amount of time in the stain the 

dense regions previously seen in the dry images are still present in this stained specimen.  

Observations were made that some of the specimens sunk to the bottom of the vial whilst 

in the stain whilst some floated. The specimens that sank were the ones imaged in all 

experiments.  

 The sagittal images show that the densest of regions can still be seen however no 

further structures can be observed. 

 Three day KI staining of specimens shows that the Iodine stain has managed to 

enter the pupa case as a lot of black areas are present on the rendering as observed in the 

24 hour stain. The dense regions previously seen in the 24hr stain images are still present. 

The sagittal and coronal images show that the dense regions can still be seen whilst the 

other internal organs have started to darken in colour it is still impossible to be able to 

identify the relevant organs.  

 Surface renderings show that a 5 day staining in KI has made the dense organs 

seen previously in both the 24hr and 3 day stains fade as there is nothing visible in the 

puparia. Sagittal imaging shows some external features such as mouth parts and legs seen 

around the head and thorax region. The coronal images again show that some of the 

external structures can be made out however no clear internal structures are notable.  

 Seven day KI staining of specimens shows that staining for this length of time has 

had the maximum effect as the densest regions previously seen in both the 24hr and 3 day 

stains are no longer visible. Both the sagittal and coronal images again show that the 

dense regions are not visible however there are a lot of dark areas throughout the stack 

that are representing the internal structures, unfortunately they are not clear enough to be 

able to distinguish them.  

 Overall using the Nikon XT H 225 series did not give us the desired images due to 

the size of the samples. Whilst it has previously worked well in larger specimens e.g. 

Calliphora, for specimens as small as M.scalaris a lower kV is required for better images 

as the lowest the Nikon was only able to operate between 30 to 225 kV 

 Using Micro CT at Elettra in Trieste to continue work with pupa developmental 

studies using their monochromatic Synchrotron under 10 to 14 keV.  
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 As a preliminary experiment it initially shows that we may be able to estimate the 

developmental stage of the females by determining the movement of the internal 

reproductive organs. Due to the conflicting image between Time 60 % and Time 100 % 

of the male images would suggest further imaging of the males needs to be completed to 

determine if the developmental stage can be estimated. 

 



     

 

 

 

 

 

 

 

 

 

 

 

 

3: Effect of Diet on Development
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3.1 Diets 

 

3.1.1  Introduction 

Collection and analysis of insect evidence from a forensic investigation and may 

be used to assist in forensic, legal or medico-legal cases by giving answers to important 

questions. Determining the period of insect activity on a cadaver is used to estimate the 

minimum post mortem interval (mPMI) or time since death, knowing the length of time 

required during each developmental stage of the insect at varying temperatures is 

imperative to a forensic case to determine the estimation of age of the insect 

(Varatharajan and Sen, 2000). 

To be able to estimate the mPMI, it is of fundamental importance that the size and 

age of the insect is determined correctly when working with specimens taken from 

forensic investigations. Estimation of the development rate is completed in a laboratory 

by rearing the specimen on an artificial diet that mimics both human tissues along with 

the decomposition process. Factors that may affect development consist of geographical 

regions, high and low temperatures, direct access to the food source, indoor or outdoor 

death, clear or cloudy days, clothing, exposed or buried bodies, if the body was immersed 

in water, larval overcrowding, burnt and charred bodies (Campobasso et al., 2001). 

For flies to oviposit, protein is an essential nutrient and can be sourced from 

numerous areas some of which include: animal and human excrement, animal carcasses, 

cadavers and food remains left around by humans. To precisely determine time since 

death, oviposition behaviour in necrophilous flies first needs to be established (Acikgoz et 

al., 2012). For successful development in eggs and larvae, females require moisture and 

therefore do not oviposit on either dehydrated or mummified tissue (Introna et al., 2001a). 

Roberts et al. (1983) discusses that the larval development stage is the most 

sensitive phase and is most affected by lighting whilst the pupal stage responds more to 

temperature cycles than photoperiods.  

Da Silva Mello et al. (2012), found that as the light phase increased the 

development time for all stages differed and was seen to be more pronounced for newly 

hatched larvae through to adult hood. Whilst much of the research looks into photo-period 
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and temperature growth rates, there is only a small amount of research looking into 

different pabulum having an effect on growth rates in relation to the Megaselia scalaris. 

 The development rate of Calliphora vicina when fed on decomposed liver was 

compared to those reared on frozen/thawed, minced and fresh whole liver, the research 

was carried out by Richards and colleagues (2012a). It was concluded that decomposed 

liver had a significantly adverse effect on the growth rates.  Day and Wallman (2006) 

research the effect of frozen and thawed sheep liver on the development of Calliphora 

augur. It was concluded that there was no significant difference in larval development 

when fed on either frozen or thawed sheep liver when compared to larvae fed on fresh 

sheep liver.  

 

 Ireland and Turner (2006), found that when feeding C.vomitoria on three different 

pig tissues (liver, brain or muscle), that an increased  rate of development was observed 

along with undersized larvae and adults, which may have been due to higher temperatures 

within the larval mass and an increased feeding regime. 

Disney (2008), remarks that M.scalaris larvae require a liquefied sustenance to 

survive, to do this they secrete digestive enzymes on to a possible food source and have 

been documented surviving on a wide range of decomposing organic material such as 

curdled milk, paint, plants, animals and have also been reported breeding on boot polish. 

Megaselia scalaris flies have also been found to develop on ripe banana (Karunaweera et 

al., 2002) which aided in deciding the medium for the developmental studies. 

There have been numerous studies (Table 14) of Megaselia scalaris development 

using a variety of temperatures ranging from 15 to 35 °C.  Alongside the temperature 

studies using a wide range of foods (beef, Drosophila media, proteins etc.) were used. 

Overall findings demonstrated that larvae were longer at cooler temperatures and that 

development became stressful in the higher temperatures (> 30 °C).  Few adults were 

observed emerging along with slow activity at 15 °C whilst the most rapid development 

was observed at 25 °C (Disney, 2008). 

Larval diet influences the response to chemical cues therefore the diet that the 

larvae were fed on would be more attractive as an adult, this is called pre-imaginal 

conditioning (Tully et al., 1994;  Barron and Corbet, 1999). 
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 Trumble and Pienkowski (1979), researched temperature and photo-periods of 

M.scalaris using 26 specimens per temperature. The lower the temperature the longer the 

species survived. The flies were fed a Drosophila diet and a photo-period of LD 12:12 

allowed for a more uniform survival at each temperature compared to LD 16:8. Larvae 

developed faster under LD 12:12 at 21 
o
C and it was concluded that there were significant 

differences in growth rates at 21 and 27 
o
C but no differences were observed at 32 

o
C. 

 Five different diets and development rates of the M. scalaris were researched, the 

diets consisted of: nutrient agar (na), casein agar (ca), na + tissue extract from 

Bradybaena similaris (round snails), na + tissue extract from Achatina fulica (giant 

African snails), and na + tissue extract from A.fulica + cabbage leaves and which were 

determined to have an effect on the developmental rates (Idris et al., 2001). 

Zuha and colleagues (2012) investigated the effect that different pabulum had on 

the development rates on post feeding larvae and pupa of M. scalaris by continual 

measuring and weighing of the specimens. It was determined that both temperature and 

pabulum types had an effect on puparia size in both the male and females. Pupal stages 

and emergence were also found to take longer the higher the temperature.  

 

Baldridge et al. (2006) determined if forensically important flies had a preference 

to either bovine meat or universally prepared cat food (Whiskas
TM

). It was determined the 

flies favoured bovine meat over cat-food for laying eggs or feeding. However for those 

who work in a laboratory environment the use of cat food is recommended as this would 

help to reduce the smell when the food dries up over time.  Due to the M.scalaris larvae 

being able to consume anything that comes from either dead or alive organisms, makes 

rearing breeding colonies in a laboratory environment straightforward (Varney and Noor, 

2010). 

 Different diets are seen to have an effect on the developmental data but how much 

of a difference is seen? Do different foods’ affect the developmental rate or is that a 

temperature related parameter. This chapter is investigating two different diets that 

M.scalaris has been found breeding on to observe any differences in the developmental 

growth rate.    
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 The objective of this study is to understand the developmental growth of this 

species using constant temperatures, time and size data as parameters.  
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3.1.2  Experimental Design 

 

3.1.2.1 Megaselia scalaris Development on Sainsbury’s smooth pate pet food 

 To test the effect of diet on growth rates, twenty vials, each containing 6 g of 

Sainsbury’s smooth pate pet food were prepared; a small piece of filter paper was added 

to each of the vials, previous experiments showed the food would get very moist causing 

the eggs and larvae to drown, the addition of filter paper to the breeding vials prevented 

this.  

 Sainsburys smooth pate cat food is made up of:  Meat and Animal Derivatives 

(Minimum 4% Turkey, Minimum 4% Chicken), Minerals, Various Sugars, Oils and Fats, 

Derivatives of Vegetable Origin.  

Five male and female adult M.scalaris flies were added to the vials and left for 3 

hours to oviposit. Ten vials were placed into a 20 ±0.5 °C incubator whilst the remaining 

vials were placed into a 25 ±0.5 °C incubator. Both incubators were programmed with a 

12:12 photo-period. After 3 hours the adults were removed and this was called time zero. 

Thirty eggs from one of the ten vials were taken and measured whilst the remaining nine 

vials were left to allow the eggs to continue developing. After the initial egg 

measurements were taken, thirty measurements were taken from a vial every 24 hours 

until pupation. Due to the inability to sex the larvae, thirty of the largest larvae were 

selected for each experiment.   

The HWI method (Adams and Hall, 2003) was used to kill the larvae, a kettle was 

used to boil the water, once boiled the water was left for thirty seconds and then poured 

over the larvae, the larvae were removed, placed on to a microscope slide then 

imaged/measured immediately afterwards. This method was used for all larval 

experiments unless otherwise stated.  

 One measurement was taken from the largest pupae which were not killed when 

measured and were placed back into the breeding vials after imaging/measuring and left 

to continue their development.  

 Once the flies began emerging, they were left for a total of three days to allow for 

maximum emergence. After three days the vials were placed into - 20 °C freezer and the 
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flies were killed. The left wing was removed from the females and 5 different 

measurements were taken (Fig 39).  

 Images/measurements were taken using a Leica M60 microscope and images 

taken using Leica software.  

  

 

Fig 39: Parameters of 5 different wing length measurements taken from Megaselia scalaris (red line), scale = 
500µm, x40 magnification  

 

 Statistical analysis was performed using Microsoft Excel and IBM SPSS 

independent sample t-test and ANOVA.  
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3.1.2.2 Megaselia scalaris Development on Fresh Pork Liver and Banana 

 

To test the effect of different diets on growth rates, twenty vials containing 8 g of 

homogenised fresh pork liver and 20 vials containing 6g fresh banana were prepared, a 

small piece of filter paper was added to each of the vials (to prevent drowning). Five male 

and female M.scalaris adults were added to each vial and left for 3 hours to lay eggs. Ten 

liver vials and 10 banana vials were placed in a 25 ±0.5 °C Incubator whilst the remaining 

vials were placed into a 20 ±0.5 °C incubator. Both incubators were programmed with a 

LD 12:12 photo-period.  

After 3 hours the adults were removed and this was called ‘time zero’, the vials 

were left to allow continual development of the eggs.  

The HWI method (Adams and Hall, 2003) was used to kill the larvae, a kettle was 

used to boil the water, once boiled the water was left for thirty seconds and then poured 

over the larvae which killed the larvae on contact, the larvae were removed, placed on to 

a microscope slide then imaged and measured immediately afterwards. This method was 

used for all larval experiments during this experiment unless otherwise stated.  

Thirty larvae were taken from each food every 24 hours up to pupation. One 

length measurement was taken from the pupae a few days into pupation. The pupae were 

imaged and measured live and placed back into the breeding vials to continue their 

development. 

Once the flies had emerged they were placed into - 20 °C and killed. The right 

wing was removed from the adult flies and measured (Fig 39) using a Leica M60 

microscope.  
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3.1.2.3 Larval Food Preference 

 

In order to investigate if larvae had a food preference as some literature reveal that 

M.scalaris larvae have been found eating and reproducing on strange foods such as boot 

polish, paint and banana (Lever, 1944; McCrae, 1967; Karunaweera et al., 2002).  

Ten pet food bred third instar feeding larvae were placed into a 150 mm by 15 mm 

Petri dish. The dish had been divided into three compartments (Fig 40). A different food 

stimulus (Table 23) was placed into each of the compartments under light conditions. The 

experiment was performed with two or three food choices: during two compartmental 

experiments, larvae were placed into the bottom compartment (C), when all three 

compartments (A, B & C) each contained food stimuli, the larvae were placed in the 

middle of the three compartments. The larvae were monitored after fifteen and thirty 

minutes and their locations recorded. Each experiment had nine replicates. The stimuli 

were rotated in a random way in each of the compartments to avoid any location bias. 

Table 23: Different stimuli experiments used with Megaselia scalaris larvae. 

NB: Colgate toothpaste is made up of: Aqua, Glycerin,Hydrated Silica,PVM/MA, Copolymer, Sodium 

Lauryl Sulfate, Cellulose Gum, Aroma, Sodium Hydroxide, Carrageenan,Sodium Fluoride, 

Triclosan,Sodium Saccharin, Mica, Cinnamal,Eugenol, Limonene, CI 77891, CI 42090, CI 47005, 

Contains: Sodium Fluoride (1450 ppm F). 

HP brown sauce  is made up of: Tomatoes, Malt Vinegar (from Barley), Molasses, Glucose-Fructose 

Syrup, Spirit Vinegar, Sugar, Dates, Modified Cornflour, Rye Flour, Salt, Spices, Flavourings, 

Tamarind. 

Control (no stimuli) Pet food vs. Liver 

Sugar solution Pet food vs. Liver vs. Sugar  

Sugar solution vs. Pet food  Pet food vs. Liver vs. Banana 

Sugar solution vs. Liver  Colgate Total Toothpaste 

Honey HP Brown Sauce 
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Fig 40: Schematic of larvae maze representing compartments A to C. 

 

3.1.2.4 Pre-imaginal Conditioning of Megaselia scalaris 

To determine whether the larvae had been conditioned into a specific food 

preference from the rearing of the adult flies on a specific food i.e. pet food, further 

experiments were run using both liver and banana reared larvae.  
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3.1.3  Results 

 

3.1.3.1 Megaselia scalaris Development on Sainsbury’s smooth pate pet food. 

 There has been much research done investigating development and growth rates 

of M.scalaris, it is essential to a forensic case to know at what temperature larvae were 

reared, as the length of larvae gives an estimation of age.  The followings experimental 

results (Fig 41) show the larval, pupa and wing developmental differences between 20 °C 

and 25 °C from M.scalaris flies reared on fresh Sainsbury’s smooth pate pet food. The 

pupa and wing measurements were taken from females whilst the larval data was taken 

from 30 random larvae.  

30 measurements were taken from the vials every 24 hours until pupation. 

 

 

 

 

 

 

 

 

 

Fig 41: Developmental data of Megaselia scalaris at 20 °C and 25 °C from egg to post feeding larvae reared on 

Sainsbury’s smooth pate pet food 

Measurements of length (mm) were recorded every 24 hours (n = 30). Error bars represent standard error of the 
mean.  

 

 Overall development shows that the specimens under 25 
○
C developed quicker 

and faster when compared to those at 20 
○
C however the specimens at the lower 

temperature were longer towards the final stages of larval development. Larval 

measurements showed a significant difference between 24 and 144 hours (n=30, p=0.00) 
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however the last comparison measurement at 168 hour saw no significant difference 

(p=0.352).   

 

Fig 42: Pupal length measurements of Megaselia scalaris at 20 °C and 25 °C reared on Sainsbury’s smooth pate 

pet food.  

Measurements of length (mm) were recorded half way through the pupation stage (n = 30, p=0.198). Error bars 
represent standard error of the mean.  

 Pupal length was observed (Fig 42) to be longer at 25 
○
C however statistical 

analysis saw no significant differences (n=30, p=0.198) observed between the two 

temperatures. 

 

Fig 43: Wing measurements from Megaselia scalaris females at 20 °C and 25 °C reared on Sainsbury’s smooth 

pate pet food. 

Measurements of length (mm) were taken from the left wing (n = 30). Error bars represent standard error of the 

mean, * represents significant differences.  
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 Wing measurements (Fig 43) taken from specimens at 25 
○
C appear slightly longer 

with the exception of M2 which was shorter. The only measurements that showed a 

significant difference were M1 p = 0.44 (length from the subcostal to the end of the costa 

cilia) and M5 p = 0.006 (vein).  
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 3.1.3.2 Megaselia scalaris Larval Development on Liver and Banana. 

 

There has been much research investigating development and growth rates of 

M.scalaris, it is essential to a forensic case to know at what temperature larvae were 

reared, as the length of larvae gives an estimation of age.  The followings experimental 

results and statistical analysis show if there are any differences in the larval, pupal and 

wing measurements taken when M.scalaris flies were reared on fresh banana, fresh pork 

liver and cat food at 20 and 25 °C. 

 

 

Fig 44: Developmental data of Megaselia scalaris larvae reared on fresh banana and fresh pork liver at 20 and 25 

°C from 48 hours to post feeding larvae.  

Measurements of length (mm) were recorded every 24 hours (n = 240, p=0.00). Error bars represent standard 
error of the mean. 

 

 M.scalaris larvae reared on fresh banana show that development at 20 °C took 48 

hours longer to reach the post feeding stage when compared to those at 25 °C (Fig 44) 

however larval length was longer at the higher temperature. Statistical analysis (Table 24) 

showed significant differences in larval lengths from both temperatures (n=30, p=0.00) in 

all but the data from 48 hours (n=30, p=0.605).  Overall when the data from both 

temperatures was analysed a statistical difference was observed (n= 150, p=0.00). 

 M.scalaris larvae reared on fresh pork liver show that at both temperatures (Fig 

44), the post feeding stage was reached at the same time. Initially larval length was longer 

in the larvae reared at 25 °C up to 72 hours however at 96 hours larval length at 20 °C 
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exceed those at 25 °C and remained that way until post feeding. Statistical analysis (Table 

24) showed significant differences (n=30, p=0.00) in all the length comparisons, the 

overall comparisons also showed a significant difference (n=120, p=0.00).   

 When the results are combined we can see that liver reared larvae at 20 °C have 

the longest length overall followed by liver reared larvae at 25°C, liver reared larvae was 

also quicker to reach the post feeding stage.  Statistical analysis (Table 24) showed 

significant differences (n=30, p=0.00) in all the length comparisons when comparing 

banana and liver together. Comparison of the overall data also showed a significant 

difference (n=240, p=0.00).   

Table 24: p - values for independent t-test in which Megaselia scalaris larval lengths were reared under 20 °C 

and 25 °C and on either fresh banana or fresh pork liver were compared.  

Measurements of length (mm) were recorded every 24 hours (n = 30) the experiment was run under a 12:12 

photo-period. (B20= banana 20°C, B25 = banana 25 °C, L20=Liver 20°C, L25 = Liver 25°C). Significant 
differences have been underlined.  

Conditions/Hours 48 72 96 120 144 

B20 v B25 0.605 0.00 0.00 0.00 0.00 

B20 v L20 0.00 0.00 0.00 0.00 - 

B25 v L25 0.00 0.00 0.00 0.00 - 

L20 v L25 0.00 0.00 0.00 0.00 - 

 

 

 

 

 

 

 

 

 

 

Fig 45: Developmental data of Megaselia scalaris larvae at 20 °C from 48 hours to post feeding larvae reared on 

fresh pork liver, Sainsburys’ pet food and fresh banana.  

Measurements of length (mm) were recorded every 24 hours (n = 240, p=0.00). Error bars represent standard 
error of the mean. 
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 If we include the Sainsbury’s smooth pate pet food results then the data at 20 °C 

shows us that liver is the first to reach the post feeding stage followed by cat food.  

Statistical analysis shows no significant difference when all three foods were compared at 

20 °C (n=30, p=0.00) however there was a significant difference observed between liver 

and cat food at 48 hours (p=0.057) and 120 hours (n=30, p=0.153) (Fig 45). When the 

lengths were analysed together the data showed no significant difference (n=240, p=0.00) 

between the three foods.  

 At 25 °C significant differences were observed between banana and cat food 

(n=30, p=0.00) (Fig 46 & Table 25) however no statistical differences were seen between 

cat food and liver reared larvae during 96 (n=30, p=0.998) and 120 hours (n=30, 

p=0.057), the remaining hours showed significant differences (n=30, p=0.00). 

  

 

 

 

 

Fig 46: Developmental data of Megaselia scalaris at 25 °C from 48 hours to post feeding larvae reared on fresh 

pork liver, Sainsburys’ pet food and fresh banana.  

Measurements of length (mm) were recorded every 24 hours (n = 30, p=0.00). Error bars represent standard 
error of the mean. 
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Table 25: p - values for independent t-test/ANOVA  in which Megaselia scalaris larval lengths reared under 

temperatures 20 and 25 °C and reared under fresh banana, fresh pork liver and cat food are compared.  

Measurements of length (mm) were recorded every 24 hours (n = 30) the experiment was run under a 12:12 

photo-period. (B20= banana 20°C, B25 = banana 25°C, L20=Liver 20°C, L25 = Liver 25°C, CF20= Cat food 
20°C, CF25=Cat food 25°C). Significant differences have been underline. 

Conditions/Hours 48 72 96 120 144 

CF20 v B20 0.00 0.00 0.00 0.00 0.00 

CF20 v L20 0.06 0.00 0.00 0.15 
- 

CF25 v B25 0.00 0.00 0.00 0.00 0.00 

CF 25 v L25 0.00 0.00 0.99 0.06 
- 

CF/B/L 20 0.00 0.00 0.00 0.00 
- 

CF/L/B 25 0.00 0.00 0.00 0.00 
- 
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3.1.3.3 Megaselia scalaris Pupal Development on Liver and Banana. 

 The followings experimental results show the pupal differences between 20 °C 

and  25 °C from M.scalaris flies reared on fresh banana, fresh pork liver and Sainsbury’s 

smooth pate pet food. The results from M.scalaris pupae reared on fresh pork liver show 

that the pupal length was longer at 20 °C when compared to the other specimens (Fig 47), 

statistical analysis (Table 26), shows significant differences (n= 30, p=0.00) when banana 

and liver reared specimens were compared and overall liver had longer pupae under both 

temperatures. 

 

 

 

 

 

 

 

 

 

Fig 47: Developmental data of Megaselia scalaris pupae at 20 °C and 25 °C reared on fresh pork liver, cat food 

and banana.  
Measurements of length (mm) were recorded (n = 60, p=0.00). Error bars represent standard error of the mean. 

 

Table 26: p - values from independent t-test in which Megaselia scalaris pupal lengths reared under 

temperatures 20 and 25 °C and reared under fresh banana and fresh pork liver are compared.  

Measurements of length (mm) were recorded (n = 30) the experiment was run under a 12:12 photo-period. (B20= 

banana 20°C, B25 = banana 25°C, L20=Liver 20°C, L25 = Liver 25°C). Significant differences have been 
underlined.  

Conditions T-test p-value 

B20 v L20 0.00 

B25 v L25 0.00 

B20 v B25 0.00 

L20 v L25 0.00 
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 When we include the Sainsbury’s smooth pate pet food result, the results from 

M.scalaris pupae reared on fresh banana, fresh pork liver and cat food show that overall 

liver still had the longer pupal length under both temperatures. There was very little 

difference observed in the pupal length of cat food pupae under both temperatures (n=30, 

p=0.198). Statistical analysis (Table 27), shows significant differences (p=0.00) when 

comparing each of the foods under a specific temperature, the same outcome was seen 

when comparing the foods under all temperatures (n=60, p=0.00). 

 

Table 27: p - values from independent t-test in which Megaselia scalaris pupal lengths reared under 

temperatures 20 and 25 °C and reared under fresh banana and fresh pork liver are compared.  

Measurements of length (mm) were recorded (n = 30) the experiment was run under a 12:12 photo-period. (B20= 

banana 20°C, B25 = banana 25°C, L20=Liver 20°C, L25 = Liver 25°C). Significant differences have been 
underlined. 

Conditions T-test/Anova p-value 

CF20 v CF25 0.20 

CF/B/L20 0.00 

CF/B/L 25 0.00 
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 3.1.3.4 Megaselia scalaris Adult Development on Liver and Banana 

 The following experimental results show the wing differences (Fig 39) between 20 

and 25 °C from M.scalaris flies reared on fresh banana, fresh pork liver.  

 

Fig 48: Developmental data of Megaselia scalaris wing at 20 °C and 25 °C reared on fresh banana and fresh pork 

liver.  
Measurements of length (mm) were taken from the left wing see (Error! Reference source not found.) for reference 

n = 30). Error bars represent standard error of the mean 

 

 The results from the M.scalaris wing measurements from specimens reared on 

fresh banana show that the lengths 1, 3 and 4 were longer at 20 °C when compared to the 

other specimens (Fig 48), statistical analysis (Table 28), shows significant differences (n= 

30, p=0.00/p=0.042) through all 5 measurements.  

 When banana and liver reared specimens were compared, liver was seen to have 

the largest wings at both 20 and 25 °C. A pattern can be observed showing that specimens 

at 20 °C had the largest wing measurements which was observed in all the reference 

points. Statistical analysis (Table 29 and Table 30) showed significant differences when 

banana and liver were compared.  

Table 28: p - values from independent t-test in which Megaselia scalaris wing lengths reared under temperatures 

20 and 25 °C and fed fresh banana are compared.  

Measurements of length (mm) were recorded (n = 30) the experiment was run under a 12:12 photo-period. (B20= 
banana 20°C, B25 = banana 25°C). Significant differences have been underlined. 

Parameter/WRP 1 2 3 4 5 

      

B20 v B25 0.00 0.00 0.00 0.00 0.04 
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Table 29: p - values from independent t-test in which Megaselia scalaris wing lengths reared under temperatures 

20 and 25 °C and fed fresh pork liver are compared.  

Measurements of length (mm) were recorded (n = 30) the experiment was run under a 12:12 photo-period. (L20= 
liver 20°C, L25 = liver 25°C). Significant differences have been underlined. 

Parameter/WRP 1 2 3 4 5 

      

L20 v L25 0.00 0.00 0.00 0.00 0.07 

 

Table 30: p - values from independent t-test in which Megaselia scalaris wing lengths reared under temperatures 

20 and 25 °C and fed fresh banana and fresh pork liver are compared.  

Measurements of length (mm) were recorded (n = 30) the experiment was run under a 12:12 photo-period. (B20= 
banana 20°C, B25 = banana 25°C, L20= liver 20°C and L25 = liver 25°C) 

Parameter/WRP 1 2 3 4 5 

      

B20 v L20 0.00 0.00 0.00 0.00 0.00 

B25 v L25 0.00 0.00 0.00 0.00 0.00 

 

 

 

Fig 49: Developmental data of Megaselia scalaris wing at 20 °C reared on, fresh pork liver, cat food and fresh 

banana.  

Measurements of length (mm) were taken from the left wing (n = 30). Error bars represent standard error of the 

mean  
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Fig 50: Developmental data of Megaselia scalaris wing at 25 °C reared on fresh pork liver, cat food and fresh 

banana.  

Measurements of length (mm) were taken from the left wing (n = 30). Error bars represent standard error of the 
mean 

 

 When Sainsbury’s smooth pate pet food is added to the data, at 20 °C we observe  

that liver has the longest wing measurements (Fig 49) followed by cat food and then 

banana however this changes at 25 °C and cat food wings measurements (Fig 50) are 

longer than the liver measurements. Statistical analysis (Table 31) shows that when 

banana and liver are compared to cat food individually a variety of differences are 

observed. Liver and cat food at 25 °C have no significant differences (n=30, p=>0.230).  

Table 31:  p - values from independent t-test in which Megaselia scalaris wing lengths reared under temperatures 

20 and 25 °C and fed on fresh pork liver, cat food and fresh banana are compared.  

Measurements of length (mm) were recorded (n = 30) the experiment was run under a 12:12 photo-period. (B20= 

banana 20°C, B25 = banana 25°C, L20= liver 20°C and L25 = liver 25°C). Significant differences have been 
underlined.  

Parameter/WRP 1 2 3 4 5 

      
B20 v CF20 0.00 0.20 0.00 0.02 0.47 

B25 v CF25 0.00 0.00 0.00 0.00 0.00 

L20 V CF20 0.00 0.63 0.00 0.00 0.00 

L25 v CF25 0.59 0.59 0.40 0.23 0.27 

B/L/CF20 0.00 0.28 0.00 0.00 0.00 

B/L/CF25 0.00 0.00 0.00 0.00 0.00 
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3.1.3.5 Larval Food Preference 

 

In both two (Fig 51) and three well (Fig 52) experiments the larvae clearly show 

there is a significant difference between pet food and liver with pet food being the 

preference. As these larvae originated from cat food reared flies the same experiment was 

run using larvae originating from liver bred flies. These results (Fig 55) again show there 

is a significant difference between the foods with pet food again being the preference. A 

similar experiment was run with banana reared larvae (Fig 56), in which banana, cat food 

and liver were used. The results showed that banana was the preferred choice (p=0.000, 

N= 270). 

 

 

Fig 51: Cat food reared Megaselia scalaris larvae food preference experiment, two well test: cat food vs liver.  
Error bars represent SEM,   (p=0.00, N = 179). 
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Fig 52: Cat food reared Megaselia scalaris larvae food preference experiment, three well test: cat food, liver and 

sugar solution. 
 Error bars represent SEM, (p=0.018, N = 270). 

A further experiment was run using random ingredients. The first experiment 

showed that cat food was the preferred choice by the larvae followed by brown sauce and 

then honey (Fig 53),  however there were no significant differences between the three 

(p=0.247, N=81). The second experiment showed that toothpaste was the preferred choice 

followed by cat food and then boot polish (Fig 54), there were significant differences 

observed between the three ingredients (p=0.000, N=81). 

 

Fig 53: Cat food reared Megaselia scalaris larvae food preference experiment, three well test: cat food, honey 

and banana.  
Error bars represent SEM, (p=0.247, N = 81). 
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Fig 54: Cat food reared Megaselia scalaris larvae food preference experiment, three well test: toothpaste, cat 

food and boot polish.  
Error bars represent SEM, (p=0.000, N = 81). 

 

3.1.3.6 Pre-imaginal Conditioning of Megaselia scalaris 

To determine if larvae showed a memory of preference for the food their parents 

were bred on. The experiments used cat food, liver and banana reared larvae. 

 

 

Fig 55: Liver reared Megaselia scalaris larvae food preference experiment, three well test: Cat food, liver and 

sugar solution.  
Error bars represent SEM, (p=0.000, N = 270). 
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Fig 56: Banana reared Megaselia scalaris larvae food preference experiment, three well test: cat food, liver and 

banana.  
Error bars represent SEM, (p=0.000, N = 270). 

 

 The results showed that the larvae from the liver reared colonies (Fig 55) did not 

have pre-imaginal memory of liver as the preference for these larvae was cat food 

followed by sugar solution with liver coming last. However the colonies reared on banana 

had a preference for banana followed by cat food and then liver (Fig 56).  
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3.1.4  Discussion 

It is of fundamental importance that the size and age of the insect is correct when 

working with forensic cases. Development in the laboratory has to be completed on an 

artificial diet that mimics both human tissues alongside the decomposition process. 

Previous work has been completed on diet development data unfortunately numerous 

diets have been used and as seen in the standard developmental studies none of the 

parameters were the duplicated from previous research so the results are not comparable. 

3.1.4.1 Megaselia scalaris Development on Sainsbury’s smooth pate pet food. 

Statistical analysis (t-tests) were run on larval, pupal and wing measurements from 

M.scalaris reared on Sainsbury’s smooth pate pet food to determine if any significant 

differences were observed between temperatures of 20 °C  and 25 °C.  Eggs were not 

measured as the flies that oviposited during the initial set up of the experiment originated 

from the same batch reared under the same conditions. Personal observations during all 

the developmental experiments saw the larvae decreasing in size whilst emptying the gut; 

they then extended themselves immediately prior to pupation which is observed with an 

increase in measurements. The reduction in size followed by an increase is also observed 

in Greenberg and Wells (1998) findings, along with the difference in size observed during 

rearing at cooler temperatures. Our findings showed that larvae reared at 25 °C were 

quicker to complete their developmental cycle however the larvae reared at 20 °C were 

longer in length from 120 hrs onwards.  

The pupal length measurements showed no statistical difference between either 

temperatures (n=30, p=0.348).  Zuha and Omar (2014) findings indicated that 

temperature significantly influence male and female puparia length with the lowest 

temperature having a significant difference when compared to the higher temperatures. It 

was also observed that the weight of the pupa at the lowest temperature had a 

significantly higher weight when compared to those reared at higher temperatures. Wing 

measurements M1 (p=0.038) and M5 (p=0.013) showed significant differences whilst the 

remaining measurements did not (M2: p=0.638, M3: p=0.307 and M4: p=0.449).  

Findings showed that total development time of specimens reared at 20 °C from 

eggs to early pupation took a total of 8 days whilst specimens reared at 25 °C took 7 days. 

Pupation to adult emergence took 10 days at 20 °C whilst specimens at 25 °C took 9 days.  
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In total, at 20 °C, it took a total of 18 days from egg to adult emergence whilst 

specimens reared at 25 °C took 16 days.  

 

 3.1.4.2 Megaselia scalaris Development on Fresh Liver and Banana. 

 Richards and colleagues (2012a) studying C. vicina, found that the immature 

stages reared on fresh liver required the least amount of time to reach maximum larval 

length, pupariation when compared to those fed on other diets which is what was 

observed during our development times experiments followed by those reared on 

Sainsbury’s smooth pate pet food and then banana.  

 

 Zuha and co-workers (2012) used a diet of either beef liver tissue or liver 

agar and they discovered that there was no difference in larval sizes reared on either diet 

however different weights of both pupae and larvae were detected on the liver agar diet at 

27 °C. It was concluded that as growth could be influenced by different temperature and 

food types it could possibly lead to the wrong age estimation of this species, which agrees 

with our findings which showed that larvae reared at 25 °C were quicker to complete their 

developmental cycle however the larvae reared at 20 °C were longer in length.  

 The pupal length measurements showed that liver 20 °C  and 25 °C had 

the longest pupal lengths when compared to those reared on Sainsbury’s smooth pate pet 

food and then banana.  

 Idris and colleagues (2001) concluded that diets did have an effect on the 

developmental rate of the M.scalaris larvae and pupa but no temperature parameter was 

discussed, our experiments have demonstrated that different foods do have an effect on 

developmental rate and growth and that the rearing temperature also has an impact.  

 Ideally developmental studies should be completed and the results compared to 

developmental studies using cadavers to determine the authenticity of the developmental 

data. This may also help towards determining what diets are suitable for determining 

developmental rates in forensic cases when reared in a laboratory environment. 

Unfortunately there is much controversy around this area especially in the UK where 

there are no ‘human body farm’ facilities and this nature of research. Till now the pig 
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model has provided useful information by providing answers to the main questions about 

decomposition, insect development and PMI estimation.  

 

3.1.4.2 Larval Food Preference and Pre-imaginal Conditioning. 

 During the experiments it was observed that Sainsbury’s smooth pate pet food has 

a stronger smell than liver and therefore if flies detect food primarily by odour as 

commented by Erzinclioglu (1996) then this could be the reason for the attractiveness of 

pet food. 

 

 The larvae have shown to be attracted to some unusual ingredients such as brown 

sauce, honey and toothpaste which would suggest they are attracted to a wider range of 

materials than suggested.  

  

 Pre-imaginal conditioning (Tully et al., 1994; Barron and Corbet, 1999) 

experiment  showed this theory to be incorrect as both liver reared adult flies and larvae 

showed  that they had a preference for pet food rather than liver.   
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3.2 Entomotoxicology 

3.2.1  Introduction 

 Toxicology is a scientific field that uses quantitative and qualitative analysis to 

identify illegal substances and their metabolic products. Drug related deaths have 

increased  over the recent years and in some cases the body of the victim may often 

remain undiscovered for a period of time which may find the body in a greatly 

decomposed state or where there is no blood or urine left for samples to be taken (Tanaka 

et al., 1994; Goff and Lord, 1994). Entomotoxicology is the application of toxicological 

analysis to determine the qualitative and/or quantitative quantities of toxic substances 

found on insects feeding from human remains (Gagliano-Candela and Aventaggiato, 

2001).  

 Drugs of abuse or psychotropics are detectable in carrion feeding larvae (Table 

32). The drugs detected in the larvae specimens were also identified in the tissues from 

the cadaver however the concentrations found in the larvae were much lower than those 

in cadaveric samples therefore giving the conclusion that determining drug concentrations 

in insects for entomotoxicological purposes may have almost no interest in practical 

forensic casework unless research is actively advanced to understand the factors that that 

affect the drug concentrations in insects is further understood  (Tracqui et al., 2004). The 

above statement would suggest that further research is required before the full potential of 

entomotoxicology is taken seriously (Murthy and Mohanty, 2010). 

Table 32: Drugs detected in different developmental stages of arthropods. 

Substance  Sample Reference 

Copper, iron, zInc. Housefly (adult) (Sohal and Lamb, 
1979) 

Phenobarbital Blowfly (larvae) (Beyer et al., 1980) 
Mercury Blowfly (larvae, puparia, 

adult) and beetles 
(Nuorteva and 
Nuorteva, 1982) 

Arsenic Piophilidae, Psychodidae 
and Muscidae 

(Leclercq, 1978) 

Selenium Adult house fly (Simmons et al., 
1988) 

Malathion Fly larvae (Gunatilake and Goff, 
1989) 

Cocaine Fly larvae (Goff et al., 1989) 
Bromazepam, 
levomepromazine,morphine, 
phenobarbital, triazolam,oxazepam, 
phenobarbital, alimemazine, 
clomipramine 

Fly larvae (Kintz et al., 1990a, 
Kintz et al., 1990b, 
Kintz et al., 1990c) 

Opiates Fly larvae (Introna Jr et al., 
1990) 
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Heroin Fly larvae (Goff et al., 1991) 
Cocaine Fly larvae and beetle faecal 

material 
(Manhoff et al., 1991) 

Cocaine Fly larvae and puparia (Nolte et al., 1992) 
Amitriptyline, 
propoxyphene and acetaminophen 

Fly larvae (Wilson et al., 1993) 

Opiates Fly larvae (Kintz et al., 1994) 
Amitriptyline and nortriptyline Empty fly puparia and 

beetle exuvie 
(Miller et al., 1994) 

Phenobarbital, paracetamol Fly larvae (Sadler et al., 1997a) 
3,4 methylenedioxy 
methamphetamine 

Fleshfly 
(larvae and puparia) 

(Goff et al., 1997) 

Morphine Fly larvae (Hédouin et al., 1999) 
Secobarbital Fly larvae (Levine et al., 2000) 
Diazepam Blowfly (larvae, puparia and 

adult) 
(Carvalho et al., 2001) 

Morphine Fly larvae (Bourel et al., 2001a, 
Bourel et al., 2001b, 
Bourel et al., 2001c) 

Cocaine, opiates, phenobarbital, 
levomepromezine, amitriptyline, 
nortriptyline, tioridazine and 
clomipramine 

Blowfly(larvae) 
and human tissues 

(Campobasso et al., 
2004b) 

Parathion Diptera,Coleoptera, 
Hymenoptera, 
Isopoda and Acari 

(Wolff et al., 2001) 

Nordiazepam and oxazepam Fly larvae and puparia (Pien et al., 2004) 
Cannabis sativa, cocaine and 
dietilpropione (amphepramone) 

Blowfly(larvae, 
puparia and adult) 

(Carvalho et al., 2004) 

Paracetamol Blowfly larvae (O’Brien and Turner, 
2004)  

Amphetamines and Barbiturates Blowfly larvae (Peace, 2005)  
Morphine Blowfly larvae (Gunn et al., 2006)  
Amphetamine Blowfly larvae (Definis-Gojanović et 

al., 2007)  
Diazepam Blowfly larvae (Beauchamp et al., 

2007)  
Codeine Larvae, Pupa and imago (Kharbouche et al., 

2008)  
Methadone Blowfly larvae (Gosselin et al., 2010)  
Methadone Blowfly larvae (Gosselin et al., 

2011a)  
Malathion Blowfly larvae (Mahat et al., 2012)  
Methylphenidate Blowfly larvae  

 
(Bushby et al., 2012)  

Ketamine Blowfly larvae (Zou et al., 2013)  
Codeine, Sodium Pentothal Blowfly larvae (Gui et al., 2010)  
Methamphetamine Blowfly larvae (Mullany et al., 2014)  
Ketamine Blowfly larvae (Lu et al., 2014)  
Methamphetamine Blowfly larvae (Magni et al., 2014)  
Ketamine 
Hydrochloride, Xylazine 

Blowfly larvae (Singh et al., 2014)  

Methylphenidate hydrochloride, 
phenobarbital, and methylphenidate 
hydrochloride associated with 
phenobarbital 

Larval and pupa (Rezende et al., 2014)  
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 Decomposing tissues containing drugs or toxins have been shown to affect the rate 

of development of larvae and oviposition of adult flies (Voss et al., 2008). Puparia of 

M.scalaris was recovered from the remains of a female drug addict that had died in her 

home. Both Amitriptyline and Nortriptyline were found to have greater concentrations in 

the puparia than in either the excrement or exuviae of the insect. Due to Phorids having a 

preference for soft tissues, where the drug concentrations may be higher would reflect the 

high density of larvae that were collected in these areas (Miller et al., 1994).  

 Due to the limited entomotoxicological research on M.scalaris, many questions 

are left unanswered. Some of these questions may include: which developmental stage 

allows for the best toxicological analysis and does insect growth suggest larger drug 

concentrations? 
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3.2.2  Experimental Design 

 

 Three concentrations of Amitriptyline were made up in a saline solution along 

with a fourth blank solution which consisted of solely saline solution.  The experiment 

was run blind without the knowledge of the drug concentrations until after the experiment 

was completed. The toxicological analysis was completed in collaboration with Dr Peter 

Maskill and Emma Lomas (PhD Research student). 

  The different drug concentrations were labelled A to D. Four repetitions of each 

drug concentration was set up and labelled 1A, 2A etc.  

 A = Control 0mg/kg (0.9% salt solution/ saline) 

  

 B = Low Conc. (6mg/kg) 

  

 C = Middle Conc. (12mg/kg) 

  

 D = High Conc. (41mg/kg) 

 
 

 A small amount of tissue was placed into the bottom of the vials to collect any 

liquids which would prevent larval drowning. One hundred grams of fresh pork liver was 

weighed out and placed into a blender along with Drug A. The samples were then 

homogenised over 1 minute, 5 g of liver/drug mixture were weighed out into 20 vials.  A 

small piece of filter paper was added to the top of the liver this prevented the sleeping 

flies from landing directly on to the meat and dying, it also provided a platform for the 

flies to lay their eggs.  Five flies of both sexes were added to each vial and left for a few 

hours to lay eggs, once enough eggs were laid the adults were removed and this period 

was labelled ‘Time Zero’. The first measurement would be taken 48 hour from this point 

and then every 24 hours until pupation.  The vials were placed into a 25 °C incubator 

programmed with a LD12:12 photo-period.  

This method was also used to set up Drugs B, C and D. 

 Qualitative analysis of the presence of amitriptyline in flies and liver was carried 

out using (high performance liquid chromatography with diode array detection) HPLC-

DAD.  
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 The flies and larvae were homogenised, 800 µl of deionised were added to each 

sample and vortexed for 30 seconds. The vials were left at room temperature for one hour 

and then placed into a -20 °C freezer. Each sample tube had 0.5 ml removed and placed 

into a separate plastic 15 ml centrifuge tube in which 0.5 ml 0.2M Sodium carbonate 

(Na2CO3) and 5ml 1-chlorobutane was added. The samples were mixed for 30 minutes to 

extract the drugs from the homogenised samples. The top layer (1-chlorobutane layer) 

was removed and placed in a separate tube; the solutions were dried down using a 

TurboVap at 40 °C for 30 minutes. The samples were then reconstituted in 100µl 

methanol and transferred to a HPLC vial. 

The HPLC was a Dionex Ultimate 3000 and the method conditions were: 

  

Column: Waters Spherisorb 5µm OD/CN, 4.6 x 150 mm Analytical Cartridge 

Column Thermostat: 25 °C 

Mobile Phase A: 57 % 

Mobile Phase C: 43 %. 

Flow Rate: 2.0 mL/min 

Injection Volume: 40 µL 

Run time: 7.0 min 

Gradient: Isocratic 

Wavelength:  210 nm and 220 nm 

Retention Times: Amitriptyline: Approx. 3.8 min       

    Clomipramine: Approx. 4.9 min 
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3.2.3  Results 

3.2.3.1 Insect Data 

 There has been little research done investigating development and growth rates of 

M.scalaris when reared on drugged pabulum. It is essential to a forensic case to know 

what effect drugs will have on the rate of insect development. The followings 

experimental results show the larval (Fig 57), pupa (Fig 58) and adult developmental 

differences at 25 °C from flies reared on fresh pork liver that had been laced with 

amitriptyline. There were four repetitions of each concentration in which 30 

measurements were taken from each therefore n = 120 measurements per concentration. 

  

Fig 57: Larval length measurements (mm) with standard error of the mean bars from Megaselia scalaris reared 

on fresh pork liver.  

Liver contains increasing amitriptyline concentrations at a constant temperature of 25 °C under a LD 12:12 
photo-period. n=120 per concentration. 

Table 33: p - values for ANOVA Tukey post hoc multiple comparison test. 

Each concentration is compared to all others from Megaselia scalaris larval length measurements (mm) reared 

on fresh pork liver containing increasing amitriptyline concentrations at a constant temperature of 25 °C under 
a 12:12 photo-period taken after 48 and 72 hours. 

Concentration 

(48 hours) 

A B C D 

B C D A C D A B D A B C 

Sig. .622 .000 .000 .622 .000 .000 .000 .000 .003 .000 .000 .003 

 

Concentration 

(72 hours) 

A B C D 

B C D A C D A B D A B C 

Sig. .000 .026 .599 .000 .007 .000 .026 .007 .399 .599 .000 .399 
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 The larval lengths show that at 48 hours, larvae at concentrations C and D are 

developing more rapidly when compared to A and B as shown by the statistical analyses 

(Table 33 to Table 35). Overall there are no differences seen between concentrations A and 

B (p = 0.622) whilst the rest of the concentration comparisons are significantly different 

ranging from p = 0.00 to 0.03. However this changes at the 72 hour measurements in 

which A and B becomes significantly different whilst C and D are not significantly 

different.  

 

Fig 58: Pupal length measurements (mm) of Megaselia scalaris reared on fresh pork liver.  

Liver contains increasing amitriptyline concentrations at a constant temperature of 25 °C under a 12:12 photo-
period.  N= 120. 

Table 34: p- values for ANOVA Tukey post hoc multiple comparison test. 

Each concentration is compared to all others from Megaselia scalaris pupal length measurements (mm) reared 

on fresh pork liver containing increasing amitriptyline concentrations at a constant temperature of 25 °C under 
a 12:12 photo-period. 

Concentration 

 

A B C D 

B C D A C D A B D A B C 

Sig. .003 .004 .436 .003 1.00 .000 .004 1.000 .000 .436 .000 .000 
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Fig 59: Wing measurements (mm) from five different points (shown in Figure 5) of Megaselia scalaris reared on 

fresh pork liver. 

Liver contains increasing amitriptyline concentrations at a constant temperature of 25 °C under a 12:12 photo-
period. (n =120 per concentration).  

 

Table 35: p- values for ANOVA Tukey post hoc multiple comparison test. 

Each concentration is compared to all others from Megaselia scalaris wing measurements (mm) reared on fresh 

pork liver containing increasing amitriptyline concentrations at a constant temperature of 25 °C under a 12:12 
photo-period.  

Concentration A B C D 

Measurement 

1 

B C D A C D A B D A B C 

Sig. .000 .000 .000 .000 .995 .323 .000 .995 .210 .000 .323 .210 

Measurement 

2 

            

Sig. .000 .000 .000 .000 .216 .216 .000 .216 .001 .000 .216 .001 

Measurement 

3 

            

Sig. .000 .000 .000 .000 .952 .122 .000 .952 .032 .000 .122 .032 

Measurement 

4 

            

Sig. .000 .000 .000 .000 .922 .011 .000 .922 .068 .000 .011 .068 

Measurement 

5 

            

Sig. .000 .000 .000 .000 .283 .910 .000 .283 .678 .000 .910 .678 

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1 2 3 4 5

W
in

g 
le

n
gt

h
 (m

m
) 

Wing measurments 
A B C D



147 

 

3.2.3.2 Entomotoxicology Data  

 There has been limited research done investigating toxicological sampling of 

M.scalaris when reared on drugged pabulum. The research that has been done used 

different toxicological sampling methods such as GCMS so comparisons are not possible. 

This preliminary entomotoxicological study was to try and determine from which 

development stage we could detect the drug.  

Table 36: Calibration and quality control data for Amitriptyline detection on entomotoxicological analysis.  

Calibration Amitriptyline Detected Quality Control Amitriptyline Detected 

0.16mg/L Yes Low QC (0.5mg/L) 1 Yes 

0.31mg/L Yes Low QC (0.5mg/L) 2 Yes 

0.62mg/L Yes High QC (5mg/L) 1 Yes 

1.25mg/L Yes High QC (5mg/L) 2 NOT RUN 

2.50mg/L NOT RUN   

5.00mg/L Yes   

10.00mg/L Yes   

20.00mg/L Yes   

 

 

Table 37:  Amitriptyline detection for Megaselia scalaris specimens at different drug concentration.  
Thirty specimens were analysed from each concentration.  

Specimen Drug Concentration 

Larvae (48 hours) A1 A2 A3 A4 

Amitriptyline 

Detected 
No No No No 

Larvae B1 B2 B3 B4 

Amitriptyline 

Detected 
Yes Yes Yes Yes 

Larvae C1 C2 C3 C4 

Amitriptyline 
Detected 

No No No No 

Larvae D1 D2 D3 D4 

Amitriptyline 
Detected 

Yes Yes Yes No 

     

Larvae (72 hours) A1 A2 A3 A4 

Amitriptyline 

Detected 
No No No No 

Larvae B1 B2 B3 B4 

Amitriptyline 

Detected 
No No No No 

Larvae C1 C2 C3 C4 

Amitriptyline 

Detected 
No No No No 
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Larvae D1 D2 D3 D4 

Amitriptyline 
Detected 

No No No No 

     

Pupa A1 A2 A3 A4 

Amitriptyline 

Detected 
No No No No 

Pupa B1 B2 B3 B4 

Amitriptyline 

Detected 
No No No No 

Pupa C1 C2 C3 C4 

Amitriptyline 
Detected 

No No No No 

Pupa D1 D2 D3 D4 

Amitriptyline 

Detected 
No No No No 

     

 

 Amitriptyline was detected in specimens B (low concentration) in the 48 hours 

specimens and also in D (high concentration) in the 48 hours specimens (Table 36 and  

 

Table 37). The drug was not detected in any other M.scalaris specimens including the 

pupa in which previous research revealed that this was the most reliable development 

stage for drug detection. It was observed that the Amitriptyline detected in the specimens 

was below the limit of quantitation of 0.31 mg/L. 
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3.2.4  Discussion 

 

 When the data from larvae bred on food added with different amounts of 

Amitriptyline is compared to that from the control that had no drug (Drug A), the insects 

were observed to develop rapidly during the larval stage. The control larvae took 7 days 

from egg to pupation whilst the drugged and blank saline larvae took 4 days from egg to 

pupation, the pupal period between the no drug control and the drugged specimens had a 

two day difference in emergence (CND = 9 days, Drugged and blank saline = 11 days). A 

difference in pupal period was also observed by Goff and Lord (1994) who used cocaine 

in rabbits to determine the effects that drugs may have on the development of 

Boettcherisca peregrina. When the same experiment was run using Amitriptyline and 

Parasarcophaga ruficornis no differences were observed until the larvae reached 

maximum size and a prolonged period of post feeding stage was recorded, however a 

prolonged period of post feeding was not observed during our experiment.  

 In general research carried out by Nazari (2011) observed that Amitriptyline had 

an effect on the viability, eclosion and developmental time of Drosophila melanogaster 

however it had no effect on the sex ratio. The difference in development time and 

eclosion was also observed during our experiment. Due to the experiment being a 

preliminary test we did not research the viability or sex ratio data.  

 There has been much entomotoxicological analysis completed on the larger 

Diptera flies e.g. Calliphora spp. (Sadler et al., 1995; Sadler et al., 1997c; Sadler et al., 

1997b) and Lucilia spp. (Hédouin et al., 1999; Bourel et al., 1999; Kharbouche et al., 

2008) however quite limited research was found on Megaselia scalaris. The methods of 

other researchers have involved injecting live specimens with drugs of different 

concentrations and feeding the deceased tissues to fly colonies, the vast difference in 

methods used may explain our results.  

  The only work citing the effect of Amitriptyline on M.scalaris was done 

by Miller and colleagues (1994) who collected empty fly puparia, beetle faecal material 

(frass) and cast beetle skins from a case where mummified remains of a middle-aged 
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white female were discovered at her residence. The body was extremely mummified with 

some loss of tissues and considerable insect activity including a combination of 

mummified integument, adipocere, and filamentous insect frass. Numerous prescription 

vials, most of which were empty were found near the remains. Empty fly puparia, beetle 

faecal material (frass) and cast beetle skins were collected from the scene and sent for 

extraction and analysis of both amitriptyline and nortriptyline. The results showed that 

Amitriptyline concentrations were greater in puparia than in exuviae or frass. This may be 

explained by the food source preferences characteristic as skin beetles (Dermestidae) feed 

primarily on dried integument whereas scuttle flies (Phoridae) have a preference for soft 

tissues where acute drug concentrations are likely to be higher. Miller and colleagues 

(1994) also comment that during analysis, for the drugs to be released the protein/chitin 

matrix needs to be broke down, which requires strong acids or bases to be used for the 

breakdown of the protein/chitin. Chitin remains are discarded during the metamorphosis 

stage from larvae to adult. Once the acid/base analysis has been completed then more 

routine toxicological analysis can be undertaken for analytical isolation.   

 Our limited results in which the puparia did not show any drug present may 

suggest that further research into the toxicological analysis from M.scalaris is required. 

The liver and the drug may have not mixed together correctly in which the flies may not 

have ingested the drug as readily, as other experiments commented that live specimens 

were injected with the fatal levels of a drug and then fed to the fly colonies. We may also 

need to investigate completing the toxicological analysis using different analytical 

equipment e.g. GCMS so that we can compare results to those previously published. In 

addition, a wider spectrum of concentrations needs to be analysed in order to identify the 

minimal amount of drug on the pabulum that can be detected in the puparia. 

 





     

 

 

 

 

 

 

 

 

 

 

4: Chronobiology of Megaselia 

scalaris
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4.1 Locomotor Activity 

4.1.1  Introduction 

Clock, controls the majority of the phases of the life cycle of an insect, such as 

eclosion and emergence. In addition the most important activity of an insect is under 

clock control like mating feeding, walking and flying. The understanding of the circadian 

clock mechanism is a crucial element in different disciplines from human health to pest 

control. The improvement in the knowledge of this field plays an important role in 

forensic entomology. In fact in several insects, routines such as feeding, mating, 

ovipositing or emergence times have been demonstrated to be under clock control 

(Danks, 2003; Vanin et al., 2012a). 

The clock is synchronised by external stimuli such as temperature and light. Light 

stimuli research in Phlebotominae (Diptera: Psychodidae), Lucilia sericata (Diptera: 

Calliphoridae) and Drosophila melanogaster (Diptera: Drosophilidae) was undertaken.  

Locomotor activity is one of the clock outputs as demonstrated by several authors 

such in Drosophila melanogaster (Helfrich‐Förster, 2005). Research has been undertaken 

in different fly species e.g. Drosophila pseudoobscura to look into whether adult eclosion 

patterns are affected by a change in rhythm of the circadian clock along with adult 

locomotor activities (Engelmann and Mack, 1978). Observations showed  that L.sericata 

had a different response to colours (blue, black, green, dark blue and red) under 

laboratory conditions (Wall and Smith, 1996). Males and females were shown to be more 

drawn to yellow and least attracted to red. The experiment was then moved outside, 

however there were no differences observed and further analysis showed that any 

differences seen may be due to the experimental site being in either a shaded or a sunlit 

area.  

There are many ommatidia that make up an insect compound eye which collect 

optical information. Each ommatidium is composed of a cornea, cone (crystalline), 

pigment cells and photoreceptors. Each ommatidia has a number of rhabdomeres 

(different species have different amounts of rhabdomeres) which run centrally and 

vertically through the cone. The rhabdomere is where light detection takes place 

(Stavenga, 2002). Dark coloured eyes are common and observed in many insect species 

and personal observations include Megaselia scalaris. Colour vision has been 
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investigated by Fukushi (1989); Bernard and Remington (1991); Arikawa and Stavenga 

(1997) and Stavenga (2002) are found to be common amongst different insect species. 

Hoel and colleagues (2007) comment that differing intensities of light are an 

attractant to phlebotomine sand flies. Blue, green, red, orange, yellow, infrared LEDS, no 

light and incandescent light were used. It was observed that blue or green light was 

preferred, but light colours were also popular. Incandescent light performed better than 

red, orange and yellow and was nearly as popular as the green and blue lights. A second 

experiment was run in which sand flies preferred red to all other colours. 

LEDs are highly monochromatic, emitting a pure colour in a narrow frequency 

range. The colour emitted from an LED is identified by peak wavelength and measured in 

nanometres (nm). Wavelengths of LED colours (Table 38) used above range from 

between the broad spectrum (white) and λ < 760 (red). Visible light falls in the range 400 

to 760 nm whilst infrared is in the range of 760 to 3000 nm (Da Silva and Simonis, 2005). 

The objective of this chapter is to attempt to determine the periods in which 

M.scalaris  are able to search for food, their locomotor activities, pupal emergence times, 

oviposition preference and to determine if the different sexes had an attractiveness to 

light.  
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4.1.2  Experimental Design 

 

4.1.2.1 General Maze Preparation 

The adult flies were sedated using the icing method which involved placing the 

breeding chambers on to ice for a few minutes whilst rotating the jar halfway through the 

process; this allows the flies to collect at the bottom of the chamber for easier collection. 

Once asleep the flies were sexed using both size and observations of the flies’ abdomens 

(Fig 10 and Fig 11). 

The females had large rotund white abdomens whilst the males were observed to 

be a lot smaller in size and had much smaller abdomens (Fig 10 and Fig 11). The males 

and females were placed into individual tubes, in which each contained ten to thirteen 

adult flies which allowed for any losses. 

 Flies were placed into the starting tube the day prior to the experiments being run 

in order to avoid any manipulation that could have any effect on the flies’ behaviour. 

The starting tubes contained a small piece of absorbent paper which was placed at 

one end of the tube and a freshly prepared sugar solution was injected on to it to allow the 

flies some nourishment whilst housed in the tubes. The other end of the tube was sealed 

using clips which allowed quick attachment and removal to the maze.  

 

4.1.2.2 Maze Activity Monitoring 

To test the adult preference of either food or different coloured lights as 

attractants, a plastic maze was used (as described in a previously used in a behavioural 

study in Drosophila (Hay and Crossley, 1977). Schematic representation of the maze can 

be seen in (Fig 60). The maze experiment was conducted using both males and females 

separately under different conditions (i.e. dark/light conditions, AM/PM time periods).  

Between 7 am and 1 pm were termed (AM) and the afternoon between 1 pm and 7 

pm were termed (PM). 

Light conditions, the maze was placed on a work bench in front of a window 

allowing the maze to be positioned in natural light, the laboratory lights were also 

switched on during the experiments’. Dark conditions were imitated by placing the maze 

into a black box; all edges were sealed to prevent any light seeping through into the box.   
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Dark and light condition experiments were run in both the AM and PM periods 

using both male and female adults to determine if there were any differences observed in 

activity between the two time periods. Each experiment had three replicates.  

 

Fig 60: Schematic of control maze with scores. 

 

4.1.2.3 Control Maze 

The control maze had empty vials at the finish points of the maze i.e. no stimuli 

were present. The flies housed in the starting tubes were connected to the start area of the 

maze as shown in (Fig 60). The flies were released into the maze and the experiment ran 

for a total of sixty minutes, the timer was stopped at thirty minutes and the flies’ positions 

were recorded, this method was repeated again at sixty minutes. Once completed the 

scores were determined and analysed.  

 

 

 

 

 

 

 

Fig 61: Schematic showing position of food with scores.  
The food could move from right to left with the scores being altered accordingly. 
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4.1.2.4 Food Stimulus 

Using the same parameters (i.e. males/females, dark/light conditions, AM/PM 

time periods) as the control maze, experiments were run to determine if a food stimulus 

would affect the locomotor activity of the adult flies. The first stimulus used in the maze 

was pet food (Sainsbury’s pate cat food). The stimulus was placed on to either the right or 

left side of the maze (Fig 61), the vials with the stimuli had the highest score. Food used 

as stimulus weighed ~ 0.5 g. 

A second food stimuli used was fresh pig liver collected from the local 

supermarket. The same method and parameters as the pet food experiment were used. 

Food used as stimulus weighed ~ 0.8 g. 

 

4.1.2.5 Light Stimulus 

To run the coloured light experiment, a method similar to that of the dark 

condition control experiments was implemented. These experiments involved a small 

Light Emitting Diode (LED) being fixed into the corner of the dark box.  

The lights were run off a single electrical board in which each light had the same 

electrical output. The colours used were white (W), red (R), blue (B), green (G) and 

orange (O).  

Table 38: LED colours and wavelengths (Da Silva and Simonis, 2005) 

Colour Wavelength  (λ) 

White Broad Spectrum 

Blue 450 < - < 500 

Green 500 < - < 570 

Orange 590 < - < 610 

Red 610 < - < 760 

 

The lights were placed to the right or left hand side of the maze, no other stimuli 

was used, and the highest scores were positioned with the stimuli (Fig 62). The flies were 

released into the maze and recorded after thirty and sixty minutes as per previous 

methods. Experiments were run in triplicate. 
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Fig 62: Schematic showing LED positions with scores. 

 

In order to investigate the strength of the stimuli, a further experiment was run in 

which a food stimulus was added to the opposite end of the maze from where the light 

was placed (Fig 63). Pet food was used as the stimulus in this experiment due to earlier 

positive results. Experiments were again run in triplicate, once completed the food, light 

and scores were rotated as previously seen in both the food or light experiments. 

 

 

 

 

 

 

 

 

 

Fig 63: Schematic showing food and LED positions. 
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4.1.2.8 Statistical Analysis 

Mann-Whitney non-parametric tests were carried out on the maze results to 

determine effects of different parameters had on the attractiveness of food stimuli. Score 

was used as the test variable and gender, time and condition were used as the grouping 

variable. 
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4.1.3  Results 

 

4.1.3.1 Food Stimuli in Adult Maze  

 

Activity monitoring was carried out to determine the effect of either food or lights 

from different colours as attractants and to observe locomotor activities of M.scalaris to 

determine if these parameters had an effect during both light and dark periods using 

different foods.  Experiments were carried out in both natural light and in an incubator.  

 

Fig 64: Maze results for Megaselia scalaris flies under control conditions, no stimulus was used. Error bars 

represent SEM. 
(DD = dark, LL= Light), N=477, Gender p=0.00, Time p=0.00, Condition p=0.00 

 

 The comparison of the control results indicates a significant difference in male 

and female activity, dark/light phases and AM/PM time periods (Fig 64). Females show a 

significant difference in activity when compared to the males (p = 0.00) and the most 

activity was observed during the dark in the AM time period (p = 0.00).  
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Fig 65: Maze results for Megaselia scalaris flies, pet food stimulus was used. Error bars represent SEM. 

(DD = dark, LL= Light), N=995, Gender p=0.97, Time p=0.01, Condition p=0.00 

 

 In the presence of pet food (Fig 65), both male and female activity has no 

significant difference (p=0.97). In contrast, activity during the dark phase differs from the 

light phase (p=0.00) along with the activity in the time period (p=0.01). 

 

Fig 66: Maze results for Megaselia scalaris flies, liver stimulus was used. Error bars represent SEM. 
(DD = dark, LL= Light), N=1036, Gender p=0.01, Time p=0.00, Condition p=0.00 
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 In the presence of liver (Fig 66), male and female activities differ (p=0.01). 

Females show the most activity compared to the males. Most activity was observed with 

during the dark period (p=0.00) along with the AM time period (p=0.00). 

 

Fig 67: Maze results for Megaselia scalaris flies, pet food and liver stimulus was used.  Error bars represent 

SEM. 
(DD = dark, LL= Light), N=2031, Gender p=0.06, Time p=0.88, Condition p=0.000 

 

 When comparing the results between pet food and liver (Fig 67), both male and 

female activity does not have any difference (p=0.06). No difference in activity was 

observed in the AM or PM time period (p=0.88). However a significant difference in 

activity was observed during the dark phase (p=0.00) when compared to the light. 
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4.1.3.2 Food Preference Analysis 

 

 Preference experiments comparing pet food vs. liver (Fig 68) clearly reveals a 

preference for pet food and not liver. This behaviour has been dissected considerably by 

carrying out separate experiments in both dark and light conditions (Fig 69). In both of the 

experiments the average indicates a cat food preference (dark p=0.023, light p=0.002).  

 

Fig 68: Maze results for Megaselia scalaris flies, pet food and liver stimulus was used.  Error bars represent SEM 

Average score ± SEM of food maze performed in dark condition. 
(CF=Cat food, L=liver, M = Male, F = Female), (N=1002, p=0.02). 

 

Fig 69: Average score ± SEM of food maze performed in light condition. 
(CF=Cat food, L=liver, M = Male, F = Female), (N=1029, p=0.00). 
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4.1.3.3 Overall Food Preference in Dark and Light Conditions 

 

 

Fig 70: Average score ± SEM of food maze performed in light/dark condition. 
(CF=Cat food, L=Liver, LL= Light,   DD = Dark), (N=2031, p=0.000). 

 

 Overall the results (Fig 70) show that the adults preferred the cat food in dark 

conditions followed closely by the liver also in dark conditions. Significant differences 

were observed when all four experiments were analysed (p=0.00). 

4.1.3.4 Light Stimuli 

To determine the preference of different coloured lights and the effect that the 

different parameters had on the attractiveness of the light stimuli in both sexes the maze 

was used. The results were determined by the range being calculated using a stochastic 

method using high and low scores from the maze results.  

Cold white (CW), Blue (B), Green (G) Red (R) and Orange (O) lights were used 

to test the attractiveness of light.  

Males and females show different behaviour (Fig 71), males clearly prefer cold 

white, blue, green and orange lights and they seem not to see the red light according to 

other species behaviour (p=<0.00, N=1500). 
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In contrast females seem to be attracted by the red light and they do not present 

any directional behaviour under other light colours (Fig 71). A statistical difference in 

behaviour towards the red light is observed (p=0.126, N=1940). 

 

Fig 71: Combination of left and right light stimulus for Megaselia scalaris males (N=1500) and females (N=1940). 
Error bars represent SEM. 1=White, 2=Red, 3=Blue, 4=Green, 5=Orange. 

 

 

 

4.1.3.5 Light and Food Stimuli 

 The maze was used in this experiment to determine the strength of coloured lights 

or food as attracting stimuli. The results were determined using the same approach in the 

previous experiments and the same colours were used as in the light stimuli experiments.  

 Male and females (Fig 72) show no preference for the food and prefer to move 

towards the light. Males show a significant difference in behaviour (p=0.00, n=1411). 

 Females (p=0.00, n=2885) show a preference for cold white whilst the males 

show a preference for all colours with blue having the highest score followed by cold 

white. 
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Fig 72: Combination of left and right light/food stimulus for Megaselia scalaris males (N=1411) and females 

(N=2885). Error bars represent SEM. 
1=White, 2=Red, 3=Blue, 4=Green, 5=Orange. 
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4.1.4  Discussion 

 

Megaselia scalaris males and females show different behaviour, males clearly 

prefer cold white, blue, green and orange and they seem not to see red light, in contrast 

females seem to be attracted by red light and they do not present any directional 

behaviour under other light colours. Disney et al. (1982) found that by using different 

coloured water traps showed that flies in general have different colour preferences which 

has been shown by the results of the light maze.  

 

Hardie (1986) discusses that many insect species have darkly coloured eyes, but 

distinct colours or patterns are frequently featured. The screening pigments in the pigment 

cells commonly determine the eye colour. The red screening pigments of fly eyes and the 

dorsal eye regions allow stray light to photo-chemically restore photo-converted visual 

pigments. A similar role is played by yellow pigment granules inside the photoreceptor 

cells which function as a light-controlling pupil. Most insect eyes contain black screening 

pigments which prevent stray light to produce background noise in the photoreceptors. 

The dipteran compound eye conceals an equally regular array of photoreceptors and 

interneurons that constitutes one of the most thoroughly analysed visual systems.  One of 

these regions appears specialized for the analysis of polarized light patterns in the sky, 

whilst the other which is found only in males is apparently devoted to the task of tracking 

females in flight. This may explain the difference between the male and female results if 

the same is true for the Megaselia species. 

 

Research was undertaken by Wooldridge and colleagues (2007) in which 

carcasses were placed outside either raised off the ground or placed on to the ground, 

results showed that during the dark and also in artificially lighted areas that no evidence 

was found of nocturnal oviposition. Using L.sericata and C. vomitoria further research 

was done determine the attractiveness of odours; this concluded that whilst flies may be 

stimulated by the odours they seem unable to bring themselves to the source in the dark 

(Green, 1951a;  Faucherre et al., 1999).   

 

During the experiments eggs were observed in the tubes at either AM or PM time 

periods however a more detailed study on oviposition can be read in Chapter 4.2. 
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4.2 Diurnal/Nocturnal Activity and Oviposition 

4.2.1  Introduction 

 

Flight activity by insects is thought to occur during a portion of the 24 hour cycle 

and is therefore periodic. Insect flight has many parameters surrounding it such as time of 

day, light intensity, amplitude may be affected by temperature, some insects are only able 

to fly in direct sunlight and this may explain the reason behind short flight periods. Adult 

feeding habits were also found to have an effect on the time of flight. Feeders of decaying 

organic matter were seen to have higher presence in the dusk & dawn periods followed by 

high numbers in the day time, night time saw a very small presence (Lewis and Taylor, 

1965). 

It has long been thought by some entomologists that forensically important flies 

are unable  to fly, be active or to lay their eggs in the night time period (Faucherre et al., 

1999). Over the years there has been much research (Table 7) investigating whether flies 

are able to oviposit during the night i.e. after sunset and before sunrise, by using many 

different parameters.  Much of the research carried out has received contradictory results 

or criticism from other researchers on the methods used to determine nocturnal 

oviposition.   

  Erzinclioglu (1996) remarks that it is incorrect to believe that flies are unable to 

oviposit in dark conditions as they are known to be able to oviposit in dark areas. Dark 

conditions may entail; darkness in daylight (e.g. cave, coffins, dark rooms) as well as dark 

during the night period. This theory would be relevant to flies such as M.scalaris that are 

reported to be able to burrow down into the soil to lay their eggs on to buried cadavers 

(Smith, 1986). 

Acikgoz and colleagues (2012) discuss the requirement of protein by flies in order 

to lay their eggs, protein is sourced from numerous areas some of which include: animal 

and human excrement, animal carcasses, cadavers and food remains left around by 

humans. To precisely determine time since death, ovipositing behaviour in necrophilous 

flies first needs to be established.  

Colonisation of carrion by insects allow for the post mortem interval (PMI) to be 

estimated. However it is thought by some, that flies are not active during the night time 
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period and therefore are not able to oviposit during this time (Barnes et al., 2014). To put 

that into a forensic context, if eggs were located on a cadaver, the conclusion would be 

that death occurred during the previous day or before. Determining nocturnal oviposition 

in forensically important flies is of fundamental importance so that the PMI can be 

estimated correctly by the forensic entomologist.  Understanding the allure of food and 

light stimuli for M. scalaris, in both dark and light conditions, are important for the 

evaluation of the eggs’ laying time, with consequences in the mPMI estimation.  

 In order to understand the ability of the flies to colonise a body we need to 

understand when individuals of both sexes are active. To describe the behaviour and the 

potential role that the circadian clock may have on both the locomotor activity of 

M.scalaris, TriKinetics Inc. technology used previously in Drosophila studies which 

allows for factual data rather than observational data whist determining nocturnal 

oviposition in forensically important flies is of fundamental importance so that the PMI 

can be determined with more precision by the forensic entomologist. 

 One of the main questions asked by entomologists is whether oviposition was at 

any point delayed as this may have an overall effect on the PMI estimation possibly 

causing discrepancies of up to 12 hours (Amendt et al., 2008).  To be able to determine 

this first we must understand when M.scalaris is able to lay eggs and in what conditions.  
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4.2.2  Experimental Design 

4.2.2.1 Diurnal/Nocturnal Activity of Megaselia scalaris 

Locomotor activity of M.scalaris can be measured using TriKinetics Inc. 

Drosophila activity monitors (DAM) (Fig 73 and Fig 74). The TriKinetics Inc. Drosophila 

Activity Monitoring System enables a biologist to accurately characterize the locomotor 

and eclosion behaviour rhythms.  The monitor contains 32 tubes, each tube is made from 

Pyrex glass with a diameter of 5 mm with a length of 65 mm; each tube houses an 

individual fly. An infrared beam (IR) is present across the tubes midpoint, so when the fly 

travels through the middle of the tube, the IR beam is interrupted and an activity count is 

recorded by the systems host computer using the DAM system date acquisition software 

package (Trikinetics).  

 

 

 

 

 

 

 

 

 

 

 

Fig 73: Schematic of TriKinetics Inc. equipment set up (Trikinetics). 
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Fig 74: TriKinetics Inc. Drosophila Activity Monitor (Trikinetics). 

 

 Drosophila fly medium (Toivonen et al., 2007) was placed into one end of the 

tube which was sealed with wax. The opposite end of the tube had a cotton wool plug 

allowing for air flux. The tubes were placed into the DAM and the preliminary 

experiment was left to run for 7 days. Temperature, humidity, light intensity was recorded 

by a Drosophila environmental monitor (EM) (Fig 75).  

 

 

 

 

 

 

 

Fig 75: TriKinetics Inc. environmental monitor (Trikinetics). 
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 The LAM (Locomotor activity monitoring) recording was set up in an incubator 

with a temperature of 21 
o
C and a photo-period of 12:12 LD. 

 Puparia sexing was undertaken so that virgin females could be used for the female 

experiments. The experiment was carried out with virginal females to prevent false 

recordings of activity from any larval hatching from the eggs laid by gravid females 

during the experiment. Flies were entrained under LD 12:12 conditions for at least three 

days prior to the experiment.  
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4.2.2.2 Oviposition 

 4.2.2.2.1 Oviposition in a Light Environment 

 To investigate if oviposition occurred during day time hours between the hours of 

7 am and 7 pm, ninety glass tubes were prepared; pet food was positioned into one end of 

the tube and sealed with wax, this allowed the food to remain fresh for the short period of 

the experiment. Pet food was used as flies have shown a preference for ovipositing on this 

media when compared to liver. Female M.scalaris flies, previously entrained to LD 12:12 

were individually placed into glass tubes and sealed with a cotton wool plug which would 

allow a sufficient air flux into the tube to prevent suffocation.  The tubes were then placed 

inside an LMS cooled incubator 410XAL. The incubator was programmed to 21 ± 0.5 
o
C 

with a LD 12:12 photo-period condition in which the incubator lights were programmed 

to switch on at 7am and switch off at 7 pm. Once the experiment was completed the flies 

were removed from the incubator and immediately placed on to ice so that no further 

ovipositing would occur. The flies were removed from the tubes to prevent any 

obstruction when looking for eggs. The tubes were examined under a Leica M60 

microscope to determine if any oviposition activity had occurred and a count of how 

many eggs were taken. 

 4.2.2.2.2 Ovipositing in a Dark Condition in a Light Environment   

 To determine if oviposition occurred during the day (7 am to 7 pm) in a dark 

environment to imitate environments such as coffins, caves, chimneys etc. The same 

general method as seen in the light environment experiment was used however this time 

the tubes were placed into a black box. The box was then placed into an additional black 

box so that no light penetration could occur. The boxes were placed into the incubator and 

once was completed the same removal and examination method was used.  

 4.2.2.2.3 Ovipositing In Dark Condition 

 To determine whether oviposition could occur during the night time period (i.e. 

after 7 pm); the tubes were placed into the Incubator at 7 pm and were removed from the 

incubator at 7 am. Once completed the same removal and examination method was used 

as previously mentioned.  

 4.2.2.2.4 Statistical analysis 

 Statistical analysis was performed using Microsoft Excel and IBM SPSS. Analysis 

includes chi square test, Anova and averages.  
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4.2.3  Results 

 4.2.3.1 Diurnal/Nocturnal Activity of Megaselia scalaris 

 Locomotor activity results using the Drosophila activity monitor indicates that the 

male flies show both diurnal and nocturnal activity and a bimodal behaviour represented 

by the two peaks which corresponded to the transition between dark to light and light to 

dark. 

 The transition from dark to light clearly shows a response to the light being off 

(Fig 76, Fig 77 and Fig 78); in fact from the data it is not possible to see any anticipation. 

In contrast the evening the peak seems to indicate a weak anticipation to the light 

switching off but further investigation is required to solve this point. The activity during 

the diurnal phase is significantly different (lower than 0.05) to the nocturnal activity.  

 

 

Fig 76: Locomotor activity profiles recorded (±SEM) with DAM Trikinetics show male Megaselia scalaris 

activity. 

 (N=593, LD 12:12, T = 21
o
C, p=0.00), the activity profiles (white represents daytime and black represents night) 

showed bimodal peaks at morning and at evening.  
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Fig 77: Locomotor activity profiles recorded (±SEM) with DAM Trikinetics show female Megaselia scalaris 

activity. 

 (N=205, LD 12:12, T = 21oC, p=0.00), the activity profiles (white represents daytime and black represents night) 
showed bimodal peaks at morning and at evening. 

 

:  

Fig 78: Average period of activity (±SEM) of Megaselia scalaris males and females. 

Derived from the experiments in Fig 79 & 80, both sexes have a period of circa 24 hours with no 

statistical differences (N=69, df 68, p=0.22). 

 

 In order to understand if M.scalaris behaviour was under (circadian) clock 

regulation we performed an experiment run over eight days in which flies were entrained 

under LD 12:12 conditions for 3 days and then maintained in complete dark for five days  

0

20

40

6 12 18 24

A
ct

iv
it

y 
 

Time of Day (h) 

22

23

24

25

26

P
er

io
d

 (H
rs

) 

Male Female



176 

 

(Fig 79 and Fig 80). The activity pattern show the presence of a morning and evening peak 

in both male and females along with a drastic reduction of the burst of activity related 

with the switching on and off of the light. During the period of complete darkness the 

activity peak is still visible in both the sexes showing that they are still active in a 

completely dark environment.  As the days continue a gradual decrease in activity can be 

seen daily as the circadian clock is disrupted by the absence of light.  
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Fig 79: Average activity profiles (±SEM) (number of counts 30mins-1) of Megaselia scalaris male flies (N=97) under three days of LD 12:12 and five days in complete darkness 

under constant temperature (20 °C).  
The activity bimodal profile (Morning and Evening peaks) are maintained in complete darkness conditions. 
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Fig 80: Average activity profiles (±SEM) (number of counts 30mins-1) of Megaselia scalaris female flies (N= 72) under three days of LD 12:12 and five days in complete darkness 

under constant temperature (20 °C).  
The activity bimodal profile (Morning and Evening peaks) are maintained in complete darkness conditions.
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 4.2.3.2 Oviposition 

 It is common knowledge that flies are able to lay eggs during the day however 

Megaselia scalaris is also referred to as a ‘coffin fly’ and is therefore often found in dark 

environments. It was undetermined whether M.scalaris were able to lay their eggs in 

either a dark condition during the day (dark in daylight) or during the night. 

 The results show that 35% of females were able to oviposit during the night 

compared with 37% during the day (Fig 81). 

 When flies were left to oviposit during their subjective day in DD only 14% did 

so. There were no significant differences in the percentage of oviposition when 

comparing night, day, darkness during daylight (χ
2 
test, df 2, p=0.90). 

 Overall the number of eggs per tube showed a significant difference in the three 

conditions (p=0.00). In light conditions flies laid more eggs (17.5+/- SEMS egg per tube) 

than in dark conditions (p=0.013). No difference was observed when comparing the dark 

conditions during the day or night. 

 



180 

 

 

Fig 81: a) Average percentage of tube with eggs. Megaselia scalaris flies laid eggs in all the tested conditions, no 

statistical difference was observed comparing the number of ovipositions (χ2 test, df 2, p=0.90).    

b)  Number of eggs per tube, flies laid eggs in all the conditions but with a statistical significant difference 
comparing the number of eggs laid in light and dark conditions (p=0.013). 
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4.2.4  Discussion 

 

 4.2.4.1 Diurnal/Nocturnal Activity of Megaselia scalaris 

  Diurnal and nocturnal activity patterns of flies are important aspects that are 

currently being researched as currently necrophagous flies are thought to be inactive 

during the night however if this is found to not be the case then the mPMI could be out by 

a period of up to 12 hours. The present knowledge of nocturnal activity needs to be 

improved in order to further understand the environmental parameters that may further 

affect nocturnal activity (Amendt et al., 2008). Flies are thought to active through only a 

portion of the 24 hour period which may suggest that insect activity  is periodic (Lewis 

and Taylor, 1965). 

 

 It was observed by Payne (1965) that there was a rapid decrease in the activity of 

blow flies after sunset. Baldridge et al. (2006) saw fly activity cease within an hour after 

sunset however it was suggested that nocturnal environmental conditions e.g. air 

temperature, wind speed and humidity should be researched further. Artificial 

illumination as an exogenous activity stimulant in the presence of an odour cue showed 

nocturnal activity when researched by (Greenberg, 1990b; Wooldridge et al., 2007).  

 When an insect is transferred from a LD environment to a continuous DD 

environment, if the parameters (e.g. temperature) remain the same then the rhythmic 

activity becomes ‘free running’ and this will reveal the natural periodicity. When 

cockroaches Leucophaea maderae, Byrsotria fumigata and Periplaneta America 

(Blattodea, Blattidae) were transferred into complete DD the rhythm continued for up to 3 

months (Saunders, 2002). 

 The burst at the switch on/switch off of the lights are a clear response to the 

change in light conditions which are observed during all three activity experiments. 

Under LD 12: 12 (Fig 76 and Fig 77), M.scalaris males and females both demonstrate that 

there are significant differences in their locomotor activities between dark and light 

conditions and further results establish that the flies are both diurnal and nocturnal in 

activity; the general pattern of activity for both sexes indicates a persistent nocturnal 

activity. The locomotor activity for 3 days LD 12:12/ 5 day LD 00:24 (Fig 79 and Fig 80) 
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show that there is a clear rhythmic pattern in the levels of diurnal activity as well as 

nocturnal activity.  

 The only other locomotor activity research done on Megaselia species was 

completed by (Lewis and Taylor, 1965) in which a few different Megaselia species had 

their flight distribution recorded (Fig 82 to Fig 84).  

 

  

Fig 82: Flight distribution curve of undetermined 

Megaselia species and undetermined sexes. 

(Lewis and Taylor, 1965) 

Fig 83: Flight distribution of curve of undetermined 

Megaselia species and undetermined sexes.  

(Lewis and Taylor, 1965) 

 

 

Fig 84: Flight distribution curve of Megaselia halterata of 

both male and female sexes. 

(Lewis and Taylor, 1965) 

 

 The curves demonstrate that the majority of Megaselia species have a bimodal 

activity and during the day and also at the end of the day and during the night which 

supports our findings. The second peak, the evening burst is common as well in 

Drosophila melanogaster in both natural and laboratory conditions (Vanin et al., 2012a).  
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4.2.4.2 Oviposition 

 The factors that may delay the oviposition on a dead body are of critical 

importance for mPMI estimation. Numerous researchers, state that blowflies are 

considered to be diurnal and not very active during the nocturnal period, therefore this 

may affect the oviposition on an exposed cadaver at night. Often authors pointed the 

attention on the ability of blowflies to lay eggs during the day in dark environments 

(Nuorteva, 1977; Erzinclioglu, 1996; Wooldridge et al., 2007).  

 Megaselia scalaris is not only able to oviposit during daylight hours in either light 

or dark conditions but that they are able to oviposit during the night time period which 

supports both Erzinclioglu (1996) and Smith (1986) discussions completed with other 

species, mainly Calliphoridae and Muscidae.  

 There are other parameters that need to be considered such as would a full moon 

or artificial lighting provide enough light to allow for oviposition in the dark (Kempinger 

et al., 2009). However despite these comments some blowflies have been caught 

ovipositing during the night (Green, 1951a; Faucherre et al., 1999). 

 It has been suggested by Saunders (2002) that adults entrained to a LD 12:12 

photo-period would oviposit during the early part of the night and at dusk.  

 A circadian pattern was observed in oviposition in a variety of insect species, it is 

thought by Howlader and Sharma (2006) that eggs laid during the night time period 

would elude desiccation or parasitic infestation.  

 In a normal light condition, i.e. during the daytime hours, 37.2 % of M.scalaris 

females oviposited. During the light phase but maintained in a completely dark 

environment showed that 13.9 % of females were able to oviposit in this condition whilst 

the night time period showed that overall 34.5 % of females were able to oviposit. 

 Our experiments have demonstrated that M.scalaris is able to oviposit in dark 

conditions during the night. Further work is required to determine the oviposition rates on 

different media as well as determining the lowest temperature at which oviposition may 

occur, knowing that the lowest daily temperature occurs during the night before sunrise.  
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4.3 Emergence 

 

4.3.1  Introduction 

 Evolution of the circadian clock has allowed synchronization of behaviour, 

physiology and metabolism to the 24h geophysical cycles of the Earth. The understanding 

of the circadian clock mechanism is a crucial element of forensic entomology as it is able 

to control routines such as feeding, mating, ovipositing or emergence times (Vanin et al., 

2012a).  

 Studies on different photo-periods affecting the immature development of 

Chrysomya albiceps were conducted by da Silva Mello and colleagues (2012). By using 

different dark and light cycles LD 12:12, photophase (LD 24:00) and scotophase (LD 

00:24), they researched how different photo-periods may influence larval body weight 

and the viability of the species. It was shown that the different photo-periods had an effect 

on the rhythm of emergence with shorter light conditions (LD 00:24) showing a more 

homogenous adult emergence pattern whilst under longer day conditions the rhythm was 

slower.  

 Research has been undertaken in different fly species e.g. Drosophila 

pseudoobscura to look into whether adult eclosion patterns are affected by a change in 

rhythm of the circadian clock along with adult locomotor activities (Engelmann and 

Mack, 1978). 

 Females have been observed by Benner and Ostermeyer (1980) emerging from the 

pupa later than males, this allows the males to feed and for their sperm to mature prior to 

the females emergence. Disney (2008), comments that other researchers have been unable 

to conclude this fact.  

 

 This is the case with the parasitic wasp Nasonia vitripennis (Hymenoptera, 

Pteromalidae) in which the males emerge first after chewing a hole in the host puparia, 

the males then wait at the exit hole for the females to emerge so they can mate 

straightaway (Bertossa et al., 2010) 

 



185 

 

 To describe the behaviour and the potential role that the circadian clock may have 

on both the emergence times of the M.scalaris, Trikinetics technology used previously in 

Drosophila studies which allows for factual data rather than observational data. 
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4.3.2  Experimental Design 

 

4.3.2.1 Pupa Emergence in a LD 12:12 Environment 

 To investigate periods of pharate emergence from puparia, the Trikinetics 

locomotor activity monitor was used with glass tubes measuring 3 cm in length and 5 mm 

in diameter. The same method regards food and air flux were used as referred to in the 

previously completed activity monitoring experiments. The specimens had been reared 

under 20 ± 0.5
 o
C in LD 12:12 conditions up to the pupal stage.   

 Pupa were individually placed into the midpoint of the tubes and placed into the 

activity monitor. The pupa resided in the middle of the monitor beside the IR beam. 

Recordings were performed in an Incubator with a temperature of 21 ± 0.5 
o
C and a 

photo-period of LD 12:12.  

 Once the experiment was completed both pupa and emerged flies were removed. 

The flies were sexed to determine if any emergence pattern was observed between the 

two sexes and the pupa were measured to further understand the differences seen between 

the sexes.     

4.3.2.2 Pupa Emergence in LD (00:24) Environment 

 The same method was used as seen in the LD 12:12 experiments, however to 

imitate constant darkness, the monitors were placed into a black box and sealed; the box 

was then placed into a larger black box to prevent any light from penetrating in. 

4.4.2.3 Pupa Emergence in LD (24:00) Environment  

 The same method was used as seen in the LD 00:24 experiment; the black box 

used had white LED lights mounted into it; the lights which were connected to the mains 

and remained switched on constantly till the experiment was completed. The monitors 

including the environmental monitor were placed into the box, sealed and the experiment 

was left to run. The results were monitored daily to confirm the light remained static 

during the experiment. 
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4.3.3  Results 

 

 Pupa emergence experiment run in LD 12:12 photo-period (N=67, p=0.00) 

determines that there is a significant difference between the emergence in both light and 

dark conditions whilst pupa emergence which was run in complete darkness (N=46, 

p=0.069) show no significant differences. The emergence results showed that M.scalaris 

males pupated prior to females (Fig 85). 

 

 

 

 

 

 

 

 

 

Fig 85: Emergence pattern from both sexes of Megaselia scalaris adult flies at 20
o
C. 

 

 In order to evaluate if the emergence is controlled by an internal clock, pupae 

were placed under different lighting conditions (LD 12:12, 00:24 and 24:00) which when 

compared showed a difference between the three different conditions. Calculating the 

degree of rhythmicity (R) is determined by identifying the highest number of eclosions 

within an 8 hour period. R is then calculated by dividing the number of eclosions outside 

this eight hour period by the number within the 8 hour period and multiplying the answer 

by 100 as used by Goto and colleagues (2006). If the pattern of emergence is completely 

uniform this would be represented by R=0. Values of R greater than 90 show statistically 

uniform emergence, values less than 60 represent a rhythmic pattern and those between 

60 and 90 represent a weak rhythmicity. 
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4.3.3.1 LD 12:12 Pupa and Sex emergence Patterns 

 A clear unimodal pattern is observed during the second half of the day, the pattern 

is the same for both sexes (Fig 86, Fig 87 and Fig 88) showing a rhythmic pattern of 

emergence. In contrast when data from LD 12:12 is compared to both LD 00:24 and LD 

24:00 (Fig 89 to Fig 92) the patterns appear to shift showing both a statistically uniform 

and an arrhythmic pattern of emergence.   

 In LD 12:12 conditions, 80 % of the flies emerged during daylight hours and 

emergence of all flies took 6 days with 1 female fly emerging on day 8.  

 

 

Fig 86: LD 12:12 – Emergence Data of males and females of Megaselia scalaris adult flies at 20 °C. 

 

  A rhythmic pattern is observed under LD 12:12 with R = 24 which is below the 

threshold of 60 (highest number of emergence within an eight hour period = 58; Number 

of emergence outside this eight hour period = 28; R (Rhythmicity) = 28/58 * 100 = 24). 
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Fig 87: LD 12:12 – Sex Emergence Pattern of Megaselia scalaris adult flies at 20 °C. 

 

 

Fig 88: LD 12:12 – Number of days taken by Megaselia scalaris adult flies to emerge from puparia at 20 °C. 
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4.3.3.2 LD 00:24 Pupa and Sex emergence Patterns 

 LD 00:24 shows the pattern shifting with only 56% of flies emerging from the 

pupa during the daylight hours and the emergence of all flies took 6 days.  

 

 

 

 

 

 

 

 

 

 

 

Fig 89: LD 00:24 – Emergence Data of males and females of Megaselia scalaris adult flies at 20 °C. 

 

 A statistically uniform emergence pattern is observed under LD 00:24 as R = 100 

which is above the threshold of 90 (highest number of emergence within an eight hour 

period = 44; Number of emergence outside this eight hour period = 44; R (Rhythmicity) = 

44/44 * 100 = 100). 
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Fig 90: LD 00:24 – Sex Emergence Pattern of Megaselia scalaris adult flies at 20 °C. 

 

 

 

Fig 91: LD 00:24 – Number of days taken for Megaselia scalaris adult flies to emerge from puparia at 20 °C. 

 

 

 

4.3.3.3 LD 24:00 Pupa and Sex Emergence Patterns 

 LD 24:00 conditions showed 57% of flies emerged from the pupa during the 

daylight hours and the number of days it took for the flies to emerge fell by 2 days when 

compared to LD 00:24 (Fig 92 to Fig 94). 
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Fig 92: LD 24:00 – Emergence Data of males and females of Megaselia scalaris adult flies at 20 °C. 

 

 An arrhythmic pattern is observed under LD 00:24 as R = 79 which is between the 

threshold of 60 and 90 (highest number of emergence within an eight hour period = 35; 

Number of emergence outside this eight hour period = 44; R (Rhythmicity) = 35/44 * 100 

= 79) 

 

 

 

 

 

 

 

 

 

Fig 93: LD 24:00 – Sex Emergence Pattern of Megaselia scalaris adult flies at 20 °C.  

(Light symbol represents when the light would normally illuminate) 
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Fig 94: LD 24:00 – Number of days taken for Megaselia scalaris adult flies to emerge from puparia at 20 °C. 

 

4.3.3.4 Summary of emergence results 

 The graph (Fig 95) summarises the emergence results showing the significant 

difference of emergence in photo-phase when compared to scoto-phase.  

 

 

 

 

 

 

 

 

 

 

 

Fig 95: Day & night emergence average with SEM at 20 °C.  LD 12:12 N=80, p=0.00, LD 00:24 N=88, p=0.24, 

LD 24:00 N= 79, p=0.26. 

* represents significant difference at 0.05 level 

 

* 
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4.3.4  Discussion 

  

 Time of emergence plays an important role in the understanding of the organism 

biology and behaviour and a fundamental role in Forensic Entomology when mPMI is 

requested.  The pattern of emergence and flight periodicity is discussed by Lewis and 

Taylor (1965) in which it is thought that the emergence rhythm may influence the time of 

flight in the insect. In the majority of fly species both sexes fly together as both sexes 

respond to the same light intensities however this is not the case for all species (Lewis 

and Taylor, 1965). 

 Benner and Ostermeyer (1980) comment on M.scalaris males pupating prior to 

females, our observations are in agreement with this research as our males pupated one 

day prior to the females (Fig 85). We also saw that males emerged prior to females, it is 

understood that this enables the males to feed and allows their sperm to mature prior to 

meeting the females, also the number of males observed were greater than that of females 

(Disney, 2008). 

 Pupal emergence experiments were carried out in three different conditions: LD 

12:12, 00:24 and 24:00. Pupal emergence experiments in LD 12:12 showed a significant 

difference between the light and dark phases (Fig 86) (N=80, p=0.00) with the majority of 

the flies emerging in the light. In contrast pupa emergence experiments in LD 00:24 or 

24:00 do not show any significant differences (N=88, p=0.24 and N= 79, p=0.26 

respectively). 

 The observations regarding the pupa emergence agree with the results reported by 

da Silva Mello and colleagues (2012).They showed that LD 00:24 had a quick emergence 

in which their flies appeared within a day whilst their LD 12:12 took 5 days for all flies to 

emerge.  The results seen for LD 00:24 and 24:00 showed that the emergence pattern was 

different to that of LD 12:12. Using the rhythmicity determination method as reported by 

(Goto et al., 2006) we were able to determine the rhythmicity data for M.scalaris 

eclosions.  

 LD 12:12 = Rhythmic pattern  

The majority of eclosions occurring between 10.30 to 18:00.  

 LD 00:24 = Uniform pattern 
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The majority of eclosions occurring between 05:00 to 12:30. 

 LD 24:00 = Arrhythmic  

The majority of eclosions occurring between 04:30 to 12:00 

 

 Benner and Ostermeyer (1980) comment on M.scalaris males pupating prior to 

females, our observations are in agreement with this research as our males pupated one 

day prior to the females (Fig 85). 

 The pupa emergence determines that there are different rhythms during full 

darkness conditions and light/dark conditions. In addition our experiments demonstrated 

that emergence in this species is light/dark regulated and that in continuous dark it can 

happen both during the dark or the light subjective phase. The LD 12:12 findings are in 

agreement with the findings of Drosophila pseudoobscura (Diptera, Drosophilidae) by 

Saunders (2002) and LD 24:00/00:24 results are in agreement with the research by 

Truman (1971) on Antheraea pernyi (Lepidoptera, Saturniidae) which saw the emergence 

rhythm begin to break down over longer photo-periods. 



     

 

 

 

 

 

 

 

 

 

 

5: Burial Behaviour in Soil and 

Penetration through Bandage and 

Fabrics
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5.1 Burial behaviour in soil 

 

5.1.1  Introduction 

Carrion throughout the decomposition process undergoes a series of changes 

from: fresh, bloated, active decay, advanced decay, dry and finally skeletisation. During 

each of these stages, many different species of insect will be attracted to the carrion. 

Insects colonise the carrion in a predictable pattern otherwise known as the succession 

pattern and this is one of two methods used to estimate PMI, however the succession 

pattern may vary greatly due to location of the cadaver, environmental temperature, 

habitat and whether the cadaver is buried or above ground (Smith, 1986). The second 

method of PMI is by analysing developmental data taken from either larvae or pupa 

collected at the scene (Payne, 1965; VanLaerhoven and Anderson, 1999).   

Temperature and humidity plays an important role in the decomposition process, 

as very high or very low temperatures may affect the organic matter decay whilst polar 

temperature can preserve the body for many years. Insect activity is also affected by 

temperature as is the rate of insect development which in turn has a relative impact to the 

decomposition of a cadaver (Campobasso et al., 2001). Other factors that may have an 

effect on decomposition and colonisation may include outdoor locations, indoor location 

burial and submerged in water (Amendt et al., 2004). 

For a cadaver that has been colonised on the ground surface, a PMI may be 

estimated by collecting temperature comparisons from both the crime scene and from the 

nearest weather station and then using a regression equation from the relationship 

between the internal and external data (Pastula and Merritt, 2013; García-Rojo et al., 

2013). Whilst cadavers that are buried, the equation does not give realistic response 

therefore a Post Burial Interval (PBI) was introduced by VanLaerhoven and Anderson 

(1999) which involves measuring the soil temperature as this is the best prediction of 

internal buried carcass temperatures. Different studies have shown that bodies that have 

been buried decompose at a slower rate than those bodies that are left exposed to the 

elements (Lundt, 1964; Payne, 1965; Payne and King, 1968). Manhein (1996) previously 

showed that 79 % of cadavers had been located at depths of between 30 and 90 cm.  
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To determine the entomofauna of buried bodies, skeleton studies were conducted. 

Unclaimed bodies from Municipal Cemetery of La Plata were donated to School of 

Medical Sciences, National University at La Planta for research and teaching purposes.  

The skeletons were received in numbered plastic bags which included sediments and 

external wrappings and death records (age, sex, nationality, date and cause of death, 

location at cemetery and date of exhumation) were also included. Insect remains were 

collected from and exhumed bundle of a 5 month male who cause of death was non-

traumatic cardiorespiratory arrest. The body had been buried into a 40cm deep grave 

underground in a soft wooden coffin which was made for rapid decomposition; the body 

had been clothed in woollens and a disposable nappy as well as wrapped in two woollen 

blankets. The exhumed bundle revealed insect species of forensic importance (Mariani et 

al., 2014).  

Megaselia scalaris were amongst the first taxa to colonise the buried remains 

along with Fannia canicularis (Diptera, Fanniidae), Muscina stabulans (Diptera, 

Muscidae) and Ophyra aenesens (Diptera, Muscidae). In Buenos Aires, M.scalaris is 

frequently found in exhumed bodies and soils (Mariani et al., 2014).  

Fauna of the grave was researched in which 100 graves were exhumed over 

different time periods. In 37 of the burials, Phoridae puparia were identified but not the 

species (Motter, 1898).  

 

It is important to understand insect burial behaviour to further comprehend the 

environmental parameters which may affect larval behaviour, this information may help 

to assist the entomologist in locating larvae which have buried down below the surface 

(Gomes et al., 2009). 

The question surrounding Megaselia scalaris are whether the larvae or the adults 

of this species are able to reach a buried body and are the larvae/adults able to return to 

the outside world after completing development on/in the body?  
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5.1.2  Experimental Design 

 

To determine the depth of soil that M.scalaris adult flies are able to burrow down 

to oviposit on carrion, two different materials was used: sand (Fig 96) and clay soil (Fig 

97).  

1 L cylinders were used to determine depth of soil. To determine water content of 

soils, a 200ml sample was weighed and then placed into an oven at a temperature of 75 

o
C. The soil was removed from the oven a few days later and re-weighed. The difference 

was calculated and water content determined.  

Soil characterisation was carried out by determining structure, colour consistency 

and texture of the soil using Munsell soil identification protocols (Munsell and Color, 

2000). 

 

Fig 96: Microscopy image of sand particles used in the burial experiment. Scale = 0.12mm, x26 magnification 

 

Fig 97: Microscopy image of soil particles used in the burial experiment. Scale = 0.12mm, x26 magnification 
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Table 39: Initial soil experiment to determine burial depth capability for Megaselia scalaris. 

Sample Reference Soil Type Soil Depth in millilitres (ml) 

A Sand 125 250 500 

B Soil 125 250 500 

C Sand/Soil 125/125 250/250 - 

D Soil/Sand 125/125 250/250 - 

 

Thermocron data loggers (- 40 to + 85 °C) were placed into the control and soil 

experiment and programmed to take readings every 30 mins over the period of the 

experiments.  

A small layer of soil was placed on the bottom of the 1 L cylinder, a thermocron 

data logger was placed on to the soil and ~18 g of pet food was placed on the top of the 

soil and data logger. The data logger was protected by a plastic covering to prevent 

damage during the different decomposition stages of the meat. Soil was then added to the 

cylinder to make up the correct soil depth (Table 39). Initially sand and soil were 

measured to different depths from 125 ml up to 500 ml and a further data logger placed 

on to the top of the soil. A second experiment was run in which a mixture of sand and soil 

were measured to different depths i.e. 125 ml of soil and 125 ml sand was placed on top.  

Ten male and female adult M.scalaris flies were added to the cylinder and the top 

was sealed with blue roll to allow for ventilation. The same set up was used for both the 

sand and sand/soil (Fig 98 and Fig 99) experiments. 

The cylinders were left for 1 month at room temperature to determine if any 

activity would be observed. 
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Fig 98: Initial burial experiment 

with 125ml Soil and 125ml sand. 

Fig 99: M.scalaris adults in cylinder 

containing 125ml Soil and 125ml sand. 

 

A further experiment was set up to determine if there was a minimum particle size 

that M.scalaris would not be able to burrow through after observing the issues with sand. 

Soil was sieved (W.S Tyler testing sieves) in to different particle sizes to determine the 

adults digging capability (Table 40) (Fig 100 to Fig 104) and the same method used as 

previously explained.  

Table 40: Soil burial experiment to determine particle size capability for Megaselia scalaris. 

 

 

 

 

 

Soil Type Particle size (mm) Soil Depth (ml) 

Soil 4.0 250 

Soil 2.8 250 

Soil 2.0 250 

Soil 1.0 250 
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Fig 100: Not sieved soil 

 

 

Fig 101: 4.0 mm soil particles 

 

 

Fig 102: 2.8mm soil particles 

 

 

 

 

 

Fig 103: 2.0mm soil particles 

 

 

Fig 104: 1.0mm soil particles 
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5.1.3  Results 

The phorid Megaselia scalaris has been reported as being able to burrow down up 

to 6 feet, as they are commonly found amongst the entomofauna of exhumed bodies or 

coffins (Mariani et al., 2014). Little information is available about the kind of soil this fly 

is able to dig through to reach a cadaver.  How far the fly is able bury and oviposit has yet 

to be determined therefore to be able to determine burial depths in different soil 

environments of the fly two different experiments were set up using both sand and sandy 

loam garden soil.  The average temperature recorded throughout the experiments was 

16.0 + 1.0 °C. 

To determine the water content of the soil, 3 x 200ml soil were placed into 75 °C 

oven and left for a three days to dry.  The results showed that there was an average of 16 

% ± 1.73 SD of water in soil (Table 41) with no statistical difference between the samples. 

 

Table 41:  Weight of water content from soil taken after three days of drying in 75 °C oven. 

Item 1  2  3  

Boat 7.24g 7.14g 7.10g 

Boat and Soil 203.69g 196.38g 187.92g 

Boat and Dry Soil 161.89g 156.53g 149.72g 

Water Content 34.56g 32.71g 31.10g 

 

During the course of the experiment condensation was observed from the bottom 

of the cylinder making its way towards the top of the soil.  

Upon completion of the experiments, the soil was removed and separated into five 

layers to determine the pupal count throughout the cylinder (Table 42). 

 

 

 

 

 



204 

 

0

125

250

375

500

1 2 3 4 5

N
u

m
b

er
 o

f 
p

u
p

ae
 p

er
 la

ye
r 

Layers 

Depth 125 ml Depth 250 ml Depth 500 ml

Table 42: Results of pupae found at 50ml increments throughout 1 litre cylinder filled with sandy loam garden 

soil and sand.  

1 represents top layer, 4 represents area containing the bait, 5 represents bottom of cylinder underneath bait. 

 

 

 

 

 

 

 

 

  

Fig 105:  Number of pupae found at 50ml increments throughout 1 litre cylinder filled with either sandy loam 
garden soil. 

 

Table 43: Percentage of pupae located at different layers throughout the sandy loam garden soil. 

1 represents top layer, 4 represents area containing the bait, 5 represents bottom of cylinder underneath bait. 

 

 

  

 

 

  

  

Depth of  

soil (ml) 

 Soil Total Sand Total 

 Layer 1 2 3 4 5  1 2 3 4 5  

125  14 26 47 459 106 652 0 0 0 0 0 0 

250  2 8 81 222 91 404 0 0 0 0 0 0 

500  0 0 0 17 72 89 0 0 0 0 0 0 

Depth of  

soil (ml) 

 Percentage of Pupae Located in Soil 

 Layer 1 2 3 4 5 

125  2.15 3.99 7.21 70.40 16.26 

250  0.50 1.98 20.05 54.95 22.52 

500  0.00 0.00 0.00 19.10 80.90 
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The results from the soil burial experiment (Table 42,Table 43 and Fig 105) demonstrate 

that M.scalaris flies were able to bury through the soil to the bait and continue their 

development stages i.e. larvae, pupa. The graph shows that the majority of pupae were 

located on/near the bait the deeper the bait is buried into the soil.  

 Adults were not able to penetrate the sand experiments and were found dead on 

top of the sand after a couple of days without laying any eggs. The sand/soil experiments 

showed similar results, the flies were not able to penetrate the sand to reach the soil and 

therefore died on top of the sand whilst the soil/sand experiments found the flies able to 

burrow down a short way before reaching the sand, the flies did not lay any eggs and 

were found dead on top of the sand half way down the experiment.  

A further experiment (Table 40) was set up to determine if there was a minimum 

particle size that M.scalaris would not be able to burrow through. Numbers were not 

collected for this experiment as observations (Table 44) on burial behaviour in different 

soil sizes were the main point of this experiment. The adult flies noticeably vanished after 

the first day within the general soil cylinders; whilst the rest of the experiments saw the 

adults remain on the surface of the soil. The egg activity was not observed in the general 

soil experiment due to the flies being below the surface or the 1.0 mm particle size as the 

eggs.  The male and female adult flies re-emerged from the soil 27 - 28 days (possibly for 

mating purposes), two days later the flies burrowed down into the soil.  

Cylinder 1 and 2 showed no re-emergence of flies over the course of the experiment. 
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Table 44:  Observation of Megaselia scalaris burial activity through different particle sizes over time. 

Observations/ 

Soil size 

1 Day 3 Days 8 days 14 days 27-28 days 

General Soil 

(not sieved) 

Flies were not 

visible after first 
day 

 

No activity Many larvae 

seen 

Pupa and 

larvae present 

Flies 

emerged 
from pupa 

4.0mm Flies still 

present. Egg 

clusters present 

on soil surface 

 

Eggs present Flies still 

present along 

with larvae  

Pupa present 

amongst soil. 

Flies 

emerged 

from pupa 

2.8mm Flies still 

present. Egg 

clusters present 

on soil surface 

First instar 

larvae present 

Many larvae 

on glass walls 

Many pupae 

present 

Flies 

emerged 

from pupa 

. 

 
 

2.0mm Flies still 

present. Egg 

clusters present 

on soil surface 

 

First instar 

larvae present 

Many larvae 

present 

Many pupae 

present 

Flies 

emerged 

from pupa 

1.0mm Flies still 

present. Egg 

clusters present 

on soil surface 

No activity 

seen 

No activity 

seen 

Pupa present 

in soil 

Flies 

emerged 

from pupa 
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5.1.4  Discussion 

Our experiments showed that Megaselia scalaris adults were able to burrow down 

to reach the bait and continue their reproduction through all developmental stages, 

however the flies were noted to return to the surface after emerging from the puparia 

possibly to mate as after a couple of days they buried back down into the soil.  The sand 

was found to be a very dry environment resulting in the death of all the adults a few days 

after the experiments were set up.  

A post mortem performed on a 15 year old female Indian python weighing 70kg 

found the snake had Megaselia scalaris larvae in the lungs. Pupae and adults were located 

in the tracheal lumen which would point to the post feeding larvae moving away from the 

pabula to pupate, this behaviour may prevent developmental problems in the pupae 

caused by bacteria or other organisms found in the pabulum and increased humidity 

(Vanin et al., 2012b). Had the snake been left to observe M.scalaris development it may 

have been of interest to determine whether the adults left the snake to mate and colonise 

other food resources elsewhere or whether they would have stayed inside the snake to 

continue breeding and feeding.  

 Hutchet and Greenberg (2010) discuss that many fly remains are collected from 

the buried corpses on archaeological digs. It is not known as to whether the flies 

colonised the body prior to burial or whilst the body was in an unfilled grave along with 

the length taken between death and burial or whether the fly was able to burrow down 

into the soil to reach the buried corpse to colonise. It was confirmed that the blowflies 

Cochliomyia macellaria and Compsomyiops verena (Diptera, Calliphoridae) found on this 

dig were unable to reach a cadaver buried beyond 1 metre and therefore the colonisation 

must have taken place prior to burial.  

 

 VanLaerhoven and Anderson (1999) researched the insect succession from buried 

carrion in British Columbia, their findings showed that numerous species of Diptera were 

the most common inhabitants of buried carcasses however the depth of burial was not 

studied which would have a significant effect on the insect succession.  

 Gunn and Bird (2011) investigated the ability of blowflies Calliphora vomitoria, 

Calliphora vicina, Lucilia sericata, Muscina stabulans and Muscina prolapsa to colonise 

buried remains. Their data suggests that it is unlikely that C.vomitoria would colonise a 

buried cadaver unless there were large enough channels allowing access, however if the 
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eggs had been laid on the cadaver prior to burial and then buried, the eggs would continue 

to develop through all the developmental stages normally. Calliphora vicina may be more 

successful in colonising buried cadavers but further work is needed to verify this. Lucillia 

sericata may reach cadavers up to a depth of 10 cm but a variable success rate was 

observed. Both M.prolapsa and M.stabulans were able detect and colonise cadavers 

buried in loose soil at least 40 cm in depth which supports our experiment using different 

soil particles as they proved difficult for M.scalaris to penetrate as they were unable to 

burrow down into the soil and instead were observed laying their eggs on the soil surface, 

observations showed the larvae were also unable to burrow down as the pupae were 

located on the top of the soil. 

 Szpila and colleagues (2010) investigated species Eumacronychia persolla and 

Phylloteles pictipennis (Diptera, Sarcophagidae) and their results showed that they were 

able to penetrate dry loose soil to reach a buried cadaver which may make this species a 

useful forensic indicator when dealing with buried bodies in dry environments. However 

whilst a few insects are able to reach a buried cadaver, it does restrict access to many of 

the other carrion insects (Campobasso et al., 2001). 
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5.2 Penetration through bandages and fabrics 

 

5.2.1  Introduction 

Numerous adult fly species, for example blowflies, housefly and stable fly, may 

hold over 100 species of pathogenic microorganisms, which are associated with more 

than 65 diseases of humans and animals (Greenberg et al., 1970; Greenberg, 1971; 

Greenberg, 1973). It has been accepted for a long time that flies are transmitters of 

infectious and parasitic diseases of both man and animal along with the importance and 

knowledge of sanitary conditions. When a fly lands on a source of contamination (i.e. a 

cadaver, faeces, open wounds, contaminated food, etc.) it is possible for the fly to then 

transmit through direct or indirect contact an infectious agent to man or animal (Fischer, 

2007).  

Myiasis refers to the infestation of living tissue from either animals or humans by 

Diptera larvae. In the veterinary field, myiasis is often referred to by other names e.g. fly-

blown, fly strike (Rossi-Schneider et al., 2007).  In certain conditions involving cases of 

neglect, myiasis may be evident and used as evidence which could be presented in a court 

of law.   Neglect covers a wide variety of cases ranging from the elderly (Benecke et al., 

2004), children (Benecke and Lessig, 2001), adults (Nazni et al., 2011) and also non-

domesticated and domesticated animals (Hall and Wall, 1995) and (Anderson and 

Huitson, 2004).  

Myiasis caused by Phoridae have been reported in non-wound myiasis such as 

nasopharyngeal (Carpenter and Chastain, 1992), urogenital (Singh and Rana, 1989), 

intestinal (Singh et al., 1988) and ocular (Wright, 1927). Nosocomial (within a hospital 

type environment) myiasis infections by Phoridae have also been reported by Hira et al. 

(2004). 

 Five cases of wound myiasis were reported by Patton and Evans (1929) in which 

M.scalaris was involved. In 2010, New Zealand reported that M.scalaris was a new 

introduced species and had been reported in a number of human myiasis cases (Derraik et 

al., 2010).  

Two cases of wound myiasis by Megaselia species in USA were reported 

(Sherman, 2000). Many cases of myiasis acquired in a hospital environment are often 
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under reported or not reported at all, Joo and Kim (2001) discuss the reported cases  of 

hospital myiasis. The patients reported age ranged from 8 to 82 years of age under a 

variety of different mental states from alert to comatose or anaesthetised. The sites the 

larvae reported were either wounds, ulcers, oral cavities and the nose.  

The objective of this study is to understand the conditions in which M.scalaris is 

able to penetrate material i.e. bandages or fabrics such as cotton, to either oviposit on to 

flesh or for larvae to work their way through the dressings to reach the flesh.  
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5.2.2  Experimental Design 

 In both the human and animal kingdom parasitic infections are extremely 

common. There have been numerous reports of Phoridae myiasis, however there is 

limited information surrounding the conditions. This research is investigating different 

materials in which M.scalaris may penetrate to oviposit on to flesh.  

 

 5.2.2.1 Fabric Penetration 

To determine whether the females were able to place their ovipositors through the 

weaves of the material and lay eggs underneath the material or whether if laid on top of 

the material whether the first instar larvae were able penetrate through either the cotton 

(Fig 106) or the polyester (Fig 107) the following experiment has been set up. Ten ml of 

cat food was placed into a screw top tube. The tube lid had a hole pre-made into it to 

allow access for eggs/larvae. Material measured 5 cm x 9 cm which was placed over the 

top of the tube and the lid screwed on over the material. The control tube contained 10 ml 

of cat food with no material placed across the lid. The cat food does not come into contact 

with the fabric and is approximately 10 cm away from the fabric.  The tubes were then 

placed into individual glass jars, 5 adult male and female M.scalaris were added to the 

jars which were sealed with paper roll to allow for air flux. The experiment was run for 2 

weeks however the flies were removed after 1 week. Once the experiment was completed, 

the material and meat were removed and examined macroscopically and microscopically 

for the presence of eggs and larvae. Three replicates were set up.  

The fabric structures and weave design are reported in (Fig 106 and Fig 107).  

 

  

Fig 106: Cotton material 

(scale=5mm) x6.3 magnification 
 

Fig 107: Polyester material 

(scale=5mm) x6.3 magnification 
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Initial observations found that the pet food dried out too quickly and the flies died 

prior to oviposition occurring, to resolve this, two different methods were used. The first 

method involved placing a small damp sponge under the plastic tubes whilst the second 

method was to place a small damp sponge in the tube underneath the cat food. Either 

method worked in decreasing the time of the drying out period which in turn allowed for 

oviposition to occur. The results reported in this chapter are from the damp sponge being 

placed underneath the food.     

 

 5.2.2.2 Bandage penetration  

 

 5.2.2.2.1 One layer 

In order to verify if penetration through the bandage was achievable, three small 

pieces of fresh pork belly 3 x 2 cm were wrapped in one layer of 10 cm
2
  cotton cohesive 

bandage (Ko-flex) (Fig 108), Polymer dressing (Fig 109), cotton bandage (Ko-flex 

compression bandage) (Fig 110), Cotton compression bandage (K-plus compression 

bandage), soft-absorbent sub compression bandage (K-soft) (Fig 111), cotton tubular 

bandage (Comfinette) (Fig 112) and cling film. The control had no wrappings around the 

meat. The parcels were sealed with an elastic band to prevent penetration occurring at the 

opening. The bandages used in this research were not used for their primary role but in a 

general role to determine if M.scalaris immature stages were able to penetrate through 

this barrier. 

 

  

Fig 108: Cohesive bandage 

(scale=5mm) x6.3 magnification 

Fig 109:  Polymer dressing 

(scale=5mm) x6.3 magnification 
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Fig 110:  Cotton compression 

bandage (scale=5mm) x6.3 

magnification 

Fig 111: Soft sub compression 

bandage (scale=5mm) x6.3 

magnification 

Fig 112: Cotton stockinette 

(scale=5mm) x6.3 magnification 

 

The wrapped meats were then placed into individual breeding chambers, 5 male 

and female adult M.scalaris flies were added to the chambers and left for 24 hours to 

allow for oviposition. The adults were removed and the jars were left for 1 week at room 

temperature (~19 
o
C) to allow for larval development if oviposition had occurred after 

which the presence of larvae was determined. Two repeats were performed.  

The meats used in the experiment were becoming too dry too quickly during the 

week and therefore the larvae were not able to complete their development and died. To 

rectify this, a damp sponge was placed into the jars to allow sufficient moisture for the 

flies to continue their development.   

 

 5.2.2.2.2 Two layers 

Pork belly measuring 3 x 15 cm was wrapped up using same materials (Fig 108 to 

Fig 112) used in the one layer experiments. Two layers of material were wrapped around 

the meat and tightly sealed at each end using elastic bands.  Some of the dressings were 

found not to be as pliable as the cotton bandages and when wrapped/folded, left small 

gaps around the meat, this was rectified by placing surgical tape over the gaps to prevent 

easy access to the flies.  Surgical tape was chosen as this is a common material seen 

around bandages in hospitals. A control with no wrappings was also set up. Three 

replicates were set up.  

The samples were placed into containers; ten male and female flies were added to 

the containers and sealed. Duct tape was placed around the sealed box to prevent any 

possible escapes.  
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The experiment was left for two weeks at room temperature (~19 
o
C). After the 

first week all flies were removed and the boxes left for a further week to allow for 

development of any eggs. After the second week the wrappings and meats are examined 

under a stereomicroscope and any eggs or larvae seen are reported.  

 

 5.2.2.2.3 Five layers 

Pork belly measuring 3 x 15 cm was wrapped using same materials (Fig 108 to Fig 

112) that were used in the previous experiments. Five layers of material were wrapped 

around the meat and tightly sealed at each end using elastic bands.  Some of the dressings 

were found not to be as pliable as the cotton bandages and left small gaps when folded 

around the meat, this was rectified by placing surgical tape over the gaps to prevent easy 

access to the flies.  A control with no wrappings was also set up. Three replicates were set 

up.  
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5.2.3  Results 

 

 5.2.3.1 Material Penetration 

Megaselia scalaris is well related to cases of human myiasis within nosocomial 

environments therefore to investigate if flies required direct access to flesh for myiasis to 

occur or whether they were able to lay eggs on to the surface of either a bandage or 

clothing material or whether the first instar larvae would be able to work their way 

through the material was researched.  

 

Table 45: Average number of eggs on material after two weeks.  

Ten adult Megaselia scalaris flies (5 male, 5 female) were added and removed one week later.  

Development 

stage 

Material 

 Control Cotton Polyester 

Eggs 0 59 ± 19.2  68 ± 46 

Larvae > 200 0 0 

Pupae 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

Fig 113: Megaselia scalaris eggs oviposited through the weave on polyester material. Images taken using a Leica 

microscope.  

Scale bar = 2 mm, x26 magnification. 
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Fig 114: Number of Megaselia scalaris eggs deposited through the weave on to cotton material. Images taken 

using a Leica microscope of using.  

Scale bar = 1 mm, x32 magnification.  

 

 The control observed the flies entering the tubes and laying a vast amount of eggs 

on to the media. The experiments using cotton and polyester showed that the flies were 

able to penetrate the material with their ovipositors as the eggs were laid on the underside 

of the material (Table 45); however the majority of the eggs seen were laid on top of the 

material (Fig 113 & Fig 114).  The average number of eggs oviposited on the polyester 

fabric was 68 ± SD 46 which had the most eggs oviposited whilst cotton had an average 

of 59 ± 19.2 eggs.  None of the eggs that were laid developed, this may have been due to 

the distance between the media and the egg and the environment may have been too dry 

to allow for further development.  
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 5.2.3.2 Bandage Penetration 

 

 5.2.3.2.1 One Layer 

 It was only the presence of the larvae within the meat that showed the experiment 

to be successful. On microscopic examination eggs were seen on the outside surface of 

the bandage however no larvae were present on the outside, when opened up the larvae 

were present on the meat inside the bandage. Eggs were present on the outside on all 

material (Fig 115 and Fig 116); larvae were present on the outside of the material on 6 out 

of 7 of the materials (including control), pupa was present in 2 of the 7 experiments with 

the control having the majority. When the bandage was opened up eggs were found on 2 

of the 6 experiments whereas larvae were seen on 5 of the 6 experiments, no pupa was 

present inside the bandage. The only bandage wrapping in this experiment to prevent 

myiasis was the cling film wrap (Table 46). 

 

Table 46: Developmental stage averages with ± SD from one layer of bandage wrapping.  

Ten adults Megaselia scalaris flies (5 male, 5 female) were added for 7 days then removed and the experiment left 

for a further 7 days to allow development. 

 

Bandage Material Surface of bandage Surface of meat 

 Eggs Larvae Pupa Eggs Larvae Pupa 

Control N/A N/A N/A 47 ± 66 35 ± 1.4 0 

Cotton compression 10.5 ± 

15  

28.5 ± 11  0 0 13 ± 7 0 

Soft sub 

compression 

66 ± 88 0 0 0 32 ± 0.7 0 

Polymer 20 ± 3 8.5 ± 12 0 0 0 0 

Cohesive 0 9 ± 6 0 0 53 ± 35 0 

Cotton stockinette 10 ± 14 20.5 ± 15 0 4 ± 6 7 ± 10 0 

Cling film 8.5 ± 12 0 0 0 0 0 

 

 

 

 



218 

 

Table 47: Anova (P value) results from positions of development stage located on one layer of bandage wrapping. 

 

 

 

 

Table 48: Tukey post hoc (P value) results from positions of larvae located on one layer of bandage wrapping. 

Dressing Comparison P Value 

 Cohesive .845 

 Sub soft compression 1.000 

Control Cotton Compress .711 

 Cotton Stockinette .495 

 Polymer .292 

 Cling film .292 

 Control .845 

 Sub soft compression .729 

Cohesive Cotton Compress .194 

 Cotton Stockinette .117 

 Polymer .065 

 Cling film .065 

 Control 1.000 

 Cohesive .729 

Sub soft compression Cotton Compress .830 

 Cotton Stockinette .619 

 Polymer .384 

 Cling film .384 

 Control .711 

 Cohesive .194 

Cotton Compress Sub soft compression .830 

 Cotton Stockinette .999 

 Polymer .957 

 Cling film .957 

 Control .495 

 Cohesive .117 

Position P value 

Eggs on Outer Layer 0.549 

Eggs on Pork 0.506 

Larvae on Outer Layer 0.063 

Larvae on Pork 0.043 
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Cotton Stockinette Sub soft compression .619 

 Cotton Compress .999 

 Polymer .998 

 Cling film .998 

 Control .292 

 Cohesive .065 

Polymer Sub soft compression .384 

 Cotton Compress .957 

 Cotton Stockinette .998 

 Cling film 1.000 

 Control .292 

 Cohesive .065 

Cling Film Sub soft compression .384 

 Cotton Compress .957 

 Cotton Stockinette .998 

 Polymer 1.000 
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Fig 115: Eggs found on the surface of the soft sub 

compression bandage wrapped around a piece of 

pork, left for 7 days at room temperature whilst 

exposed to 5 male and 5 female adult Megaselia 

scalaris flies (Scale = 5 mm).   

Fig 116: Eggs found on the surface of the cotton 

stockinette wrapped around a piece of pork, left for 7 

days at room temperature whilst exposed to 5 male 

and 5 female adult Megaselia scalaris flies (Scale = 5 

mm).  

 

The developmental stages present through the one layer of bandage showed that 

M.scalaris were able to penetrate all the bandages where large amounts of eggs were 

observed (Fig 115 and Fig 116). The one material which was able to prove resistant was 

cling film, whilst eggs were laid on the surface there was no penetration through the film 

to the flesh (Table 46). Anova statistical analysis (Table 47) showed significant differences 

between the materials (p=0.043), Tukey post hoc results (Table 48) showed no significant 

difference between the dressings.  
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 5.2.3.2.2 Two Layers 

Table 49:  Average developmental data with ± SD from two layers of bandage wrappings.  

Twenty adult Megaselia scalaris flies (10 male, 10 female) were added for 7 days then removed and the 

experiments were left for a further 7 days to allow development. E=Eggs, L=Larvae, P=Pupae. 
 

 

 

Table 50:  Anova (P value) results from positions of development stage located on two layers of bandage 
wrapping 

 

Position P value 

Eggs on Outer Layer 0.458 

Eggs on 1st Layer 0.458 

Eggs on Pork 0.458  

Larvae on Outer Layer 0.107 

Larvae on 1st Layer 0.566 

Larvae on Pork 0.000 

Pupa on Outer Layer 0.477 

Pupa on 1st Layer - 

Pupa on Pork - 

 

 

 

Bandage Surface of bandage  

(1
st

  Layer) 

Second  layer of 

bandage (2
nd

 Layer) 

Surface of meat  

 E L P E L P E L P 

Control N/A N/A N/A N/A N/A  N/A 0 171 ± 74 N/A 

Cotton 

compression 

0 97 ± 140 0.7 ± 

1.2 

0 7 ± 10 0 0 12 ± 17 0 

Soft sub 

compression 

0 27 ± 12 26 ± 46 0 12 ± 10 0  2 ± 3 5 ± 6 0 

Polymer 0 10 ± 7 0.6 ± 

1.2 

9 ± 

16 

10 ± 18 0 0 8 ± 12 0 

Cohesive 0 122 ± 

133 

7± 13 0 6 ± 6 0 0 26 ± 13 0 

Cling film 3 ± 

5 

0 0 0 0 0 0 0 0 
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Table 51: Tukey post hoc (P value) results from positions of larvae located on two layers of bandage wrapping 

Dressing Comparison P value 

 Cohesive .001 

 Sub soft compression .000 

Control Cotton Compress .001 

 Polymer .000 

 Cling film .000 

 Control .001 

 Sub soft compression .963 

Cohesive Cotton Compress .993 

 Polymer .982 

 Cling film .913 

 Control .000 

 Cohesive .963 

Sub soft compression Cotton Compress 1.000 

 Polymer 1.000 

 Cling film 1.000 

 Control .001 

 Cohesive .993 

Cotton Compress Sub soft compression 1.000 

 Polymer 1.000 

 Cling film .997 

 Control .000 

 Cohesive .982 

Polymer Sub soft compression 1.000 

 Cotton Compress 1.000 

 Cling film .999 

 Control .000 

 Cohesive .913 

Cling Film Sub soft compression 1.000 

 Cotton Compress .997 

 Polymer .999 
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Fig 117: Cotton compression bandage wrapped around a piece of thick cut pork belly.  

Left in a 1.1L plastic airlock container after being exposed to 20 adult Megaselia scalaris flies for 7 days and the 

offspring left for a further 7 days at room temperature (~ 19oC). Image shows large amounts of larvae found on 

the surface that appears to have gained access to the pork via a gap by the first blue line. 

 

Two layered bandage wrappings experiment showed that eggs, larva and pupae 

were all observed, larvae was located in relatively high numbers when compared to the 

numbers of eggs and pupae found. The largest numbers of larvae were located on the 

control sample where there was no protection against the larvae which is what would be 

expected. 

All materials had eggs oviposited on to their surfaces (Table 49). Further 

development up to pupation was observed in all bandage materials used except one. Cling 

film again showed no further development after oviposition. Anova statistical analysis 

(Table 50) showed significant differences (p=0.00) between the number of larvae observed 

on all materials whilst the Tukey post hoc results (Table 51) showed significant 

differences between the control and the other dressings.  
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 5.2.3.2.3 Five Layers 

 Table 52:  Developmental stage data averages with ± SD from five layer bandage wrappings.  

 Twenty adult Megaselia scalaris flies (10 male, 10 female) were added for 7 days then removed and the experiment left for a further 7 days to allow development.

Bandage Egg Larvae 

 5th 4th 3rd 2nd 1st Pork 5th 4th 3rd 2nd 1st Pork 

Control N/A N/A N/A N/A N/A 0 N/A N/A N/A N/A N/A 186 ± 55 

Cohesive  0 0 0 0 0 0 63 ± 65 1 ± 1 1 ± 2 7 ± 6 14 ± 20 27 ± 18 

Soft sub  

compression 
0 0 0 0 0 0 40 ±38 4 ±7 0 1 ±2 3 ±5 20 ±35 

Polymer 0 0 0 0 0 0 14 ±17 2 ±2 10 ±17 0 
0.3 

±0.6 
5 ±6 

Cotton 

compression 
0 2 ± 3 0 0 0 0 

105 

±151 
4 ±4 5 ±8 1 ±2 3 ±4 40 ±39 

Cling film 0 0 0 0 0 0 29 ±44 0 0 0 0 0 
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Table 53:  Developmental stage data averages with ± SD from five layer bandage wrappings.  

Twenty adult Megaselia scalaris flies (10 male, 10 female) were added for 7 days then removed and the 

experiment left for a further 7 days to allow development. 
 

 

 

 Table 54: Anova (P value) results from positions of development stage located on five layers of bandage 
wrapping 

 

Bandage  Pupae 

 5th 4th 3rd 2nd 1st Pork 

Control N/A N/A N/A N/A N/A 5 ± 8 

Cohesive  2 ± 3 0 0 0 0 0 

Soft sub comp 0 0 0 0 0 0 

Polymer 0 0 0 0 0 0 

Cotton 

compression 
7 ±12 0 0 0 0 0 

Cling film 0 0 0 0 0 0 

Position P value Position P value 

Eggs on Outer Layer - Pupae on Outer Layer 0.458 

Eggs on 4th Layer 0.458 Pupae on 4th Layer - 

Eggs on 3
rd

 Layer - Pupae on 3rd Layer - 

Eggs on 2
nd

 Layer - Pupae on 2nd Layer - 

Eggs on 1
st

 Layer - Pupae on 1st Layer - 

Eggs on Pork - Pupae on Pork 0.458 

  

Larvae on Outer Layer 

 

0.428 

Larvae on 4
th

 Layer 0.450 

Larvae on 3
rd

 Layer 0.504 

Larvae on 2
nd

 Layer 0.066 

Larvae on 1
st

 Layer 0.368 

Larvae on Pork 0.000 
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Table 55: Tukey post hoc (P value) results from positions of larvae located on five layers of bandage wrapping. 

 

Dressing Comparison P value 

 Cohesive .000 

 Sub soft compression .001 

Control Cotton Compress .000 

 Polymer .000 

 Cling film .000 

 Control .000 

 Sub soft compression .995 

Cohesive Cotton Compress 1.000 

 Polymer .945 

 Cling film .887 

 Control .001 

 Cohesive .995 

Sub soft compression Cotton Compress .993 

 Polymer .732 

 Cling film .629 

 Control .000 

 Cohesive 1.000 

Cotton Compress Sub soft compression .993 

 Polymer .951 

 Cling film .897 

 Control .000 

 Cohesive .945 

Polymer Sub soft compression .732 

 Cotton Compress .951 

 Cling film 1.000 

 Control .000 

 Cohesive .887 

Cling Film Sub soft compression .629 

 Cotton Compress .897 

 Polymer 1.000 



227 

 

 

 

 

Observations during the experiment saw eggs, larva and pupae were all present 

during the experiment (Fig 118 and Fig 119).   

The largest numbers of larvae were located on the fifth layers of the material and 

on the pork with a small number of larvae found between these layers. Only one material 

showed that larvae were not able to penetrate through its layers and this was cling film. A 

large number of larvae were observed on the 5
th
 layer but no other layers. 

Larvae were located in relatively high numbers when compared to the numbers of 

eggs and pupae found. The largest numbers of larvae were located on the control sample 

where there was no protection against the larvae, which is what would be expected (Table 

52 and Table 53). 

Anova statistical analysis (Table 54) showed significant differences (p=0.00) on 

the number of larvae observed on the pork from each bandage type, the Tukey post hoc 

analysis (Table 55) shows a statistical difference between the larvae on the control and the 

other dressings.  

 

  

Fig 118: Polymer bandage wrapped around a piece of 

thick cut pork belly.  

Left in a 1.1L plastic airlock container after being 

exposed to 20 adult Megaselia scalaris flies for 7 days 

and the offspring left for a further 7 days at room 

temperature (~19 °C). Image shows large amounts of 

mould found on the 5th layer of the polymer bandage. 

Fig 119: Cling film bandage wrapped around a 

piece of thick cut pork belly.  

Left in a 1.1L plastic airlock container after being 

exposed to 20 adult Megaselia scalaris flies for 7 

days and the offspring left for a further 7 days at 

room temperature (~ 19 °C).  
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5.2.4  Discussion 

 Overall our experiments showed that there were differences between the control 

and the remaining dressings. Different developmental stages were found throughout the 

different layers of dressings in all but one dressing. The most successful covering in all 

wrappings used was cling film which found numerous eggs laid on the surface of the film 

but neither adults or larvae were able to penetrate the film to reach the meat within.  The 

research conducted shows that M.scalaris are able to lay eggs on the surface of the 

bandage and the 1
st
 instar larvae were then able to work their way towards the flesh.   

 In Forensic Entomology myiasis has been used to provide useful evidence in cases 

such as abuse and neglect. Whilst there are some reports of nosocomial myiasis some of 

these reports discuss the reasoning that flies were able to lay directly on to flesh before 

the damaged flesh was enclosed in bandages rather than them laying on the bandage 

surface for the larvae to burrow down on to.  

  Myiasis is a topic that has been discussed for many years with the first 

discussion being printed by Hope (1840).  

 Huntington and colleagues (2008) discuss the wound myiasis of a gentleman with 

long standing venous stasis ulcers. He had to attend surgery every week for dressing 

changes however he would occasionally miss an appointment and turn up a few days 

later. At one follow up appointment to re-dress his four layer compressive dressing, 

maggots were found under the dressing.  An antimicrobial barrier dressing and a four 

layer compressive dressing was re-applied to the site.  On further inspection of the 

removed dressing, hundreds of small larvae between 3 and 5 mm were observed along 

with one newly formed pupae. A second case was presented in which three larvae were 

collected from a leg wound of a patient. In both cases the specimens were sent for 

identification. In both cases the specimen was identified as M. scalaris, which supports 

our findings of larvae working their way through the numerous layers of bandage to feed. 

 Hira and colleague (2004) reported a case of myiasis of a man that had a building 

site accident which resulted in numerous fractures to the pelvis and many lacerations to 

the leg. The leg was bandaged and placed in traction however after 14 days the gauze 

bandaged was observed to be discoloured with a foul smell coming from it. Upon 

removal of the dressing small white worms were seen coming from the bandage. The 

specimens were collected and identified as M.scalaris. Preventative measures are 
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discussed however in the case of Phorids these measures are seen as difficult due to the 

Phorids small size which helps them enter through most fly screening as well as 

bandages, however by regularly changing the dressings and regular observations of the 

wounds  may help reduce the infestations.  

  



 

 

 

 

 

 

 

 

 

 

 

6: Conclusion
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6.1  Conclusion 

 

 Determing the post mortem interval (PMI) is the most important function of 

entomological evidence. There are many different factors that play a role in insect 

development with temperature playing the most important role; other factors may include 

weather, food type, access to food, buried, or exposed, presence of toxins along with 

geographical regions. The mPMI estimation requires knowledge of the development data 

for the specific species of insect collected from a cadaver (Byrd and Castner, 2009). 

Without this knowledge and understanding of the behaviour of the insects then specific 

species may not be used or classed as a forensically important species. It is of great 

importance that the size and age of the insect is correct when working with forensic cases. 

 Based on the results of the research carried out within in this thesis, many 

observations have been made about the species Megaselia scalaris which may help 

towards this fly being accepted as a forensically important species.  

 In Chapter 2, whilst our adult, eggs and larval imaging are in agreement with other 

work completed by researchers. The first observations carried out with a Nikon XT H 225 

and Synchrotron at Elettra found that it may be possible to age the pupa by looking 

internally at the reproductive organs which seem to move from the posterior to anterior 

region of the abdominal cavity, the older the pupa. Whilst this was a preliminary 

experiment and further work needs to be run, the images clearly show the movement of 

the internal organs; however we learnt that the minimum energy output to successfully 

image M.scalaris requires an energy source between 8 and 35kV. 

 During Chapter 3, observations showed that adult M.scalaris flies of both sexes 

are more inclined to go towards pet food rather than the fresh pig liver and that they are 

able to move and find food both in light and dark conditions. Females have been shown to 

be more active in dark conditions however different foods and rearing temperatures have 

shown that they have an effect on developmental rates.  

 Collaborative worldwide research in the area of growth development using the 

same parameters would be beneficial and more reliable. Different geographical areas may 

bode different results however currently as researchers are using many different 

parameters, the results cannot be used as a comparative method. 
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 Our research investigating toxicological analysis from M.scalaris showed that 

there was no effect on the size but saw an effect on developmental time. Results also 

showed the puparia did not show any drug present may suggest that further research into 

toxicological analysis is required. 

 The observations presented in Chapter 4, using both the maze and activity monitor 

conclude that M.scalaris were active in both dark and light periods.  It was also found that 

M.scalaris were able to oviposit during the dark phase in which the adults were active. 

Locomotor activity concludes that M.scalaris is both diurnal and nocturnal in activity 

with a period of activity spanning over 24 hours.  

 Light has shown to be an important stimulus to the flies, whilst the light maze has 

shown that different colours have different effect on the two sexes.  Our observations 

have also shown that M.scalaris are able to oviposit during the daytime hours which is 

expected fly behaviour, the experiment also showed that flies are able to lay eggs in a 

dark environment during daytime conditions which coincides with the coffin fly label. 

The experiment has also shown that these flies are able to oviposit in dark conditions 

during the night. 

 The pattern of emergence and flight periodicity is discussed by Lewis and Taylor 

(1965).  They comment that the emergence rhythm may influence the time of flight in the 

insect. Our observations concluded that males do emerge prior to females and that 

different rhythms are present during full darkness conditions and light/dark conditions. 

Our experiments demonstrated that this species is clock regulated and that emergence in 

continuous dark may occur both during the dark or the light subjective phase. 

The observations in Chapter 5 showed that Megaselia scalaris adults were able to 

burrow down in to soil and continued their reproduction through all developmental 

stages. The adult flies were observed returning to the surface after emerging from the 

puparia possibly to mate as after a couple of days they disappeared back down into the 

soil.  The sand was found to be a hard material for the adults to burrow down into 

possibly due to the small very dry environment resulting in the death of all the adults a 

few days after the experiments were set up. 

The study of myiasis has been used to provide useful evidence in forensic 

entomology cases such as abuse or neglect and nosocomial myiasis. Preventative 
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measures are seen as difficult in the case of Phorids due to their small size, which helps 

them enter through most fly screens as well as bandages; the regularly changing of the 

dressings may help towards the reduction of infections. Overall our experiments showed 

that the most successful covering was cling film which saw numerous eggs laid on the 

surface, neither M.scalaris adults nor larvae were not able to penetrate the film to reach 

the meat inside.  

This thesis was completed with the aim of trying to resolve previously asked 

questions along with addressing issues which allows us a better understanding of the 

species Megaselia scalaris and the effect it has on the Forensic Entomological field.  

Based on the results of this research, numerous observations were made which may impact 

what entomologists know about M.scalaris behaviour and may assist in future mPMI 

estimations. 
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