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Chapter 1

Introduction

1.1 Multipole in Condensed Matter Physics

Multipole, which is a fundamental concept in physics, characterizes the angular depen-
dence of an electromagnetic distribution. It was originally introduced in a series expansion
of scalar and vector potentials in classical electromagnetism to describe an arbitrary distri-
bution of sources, such as the electric charge and current, systematically [1, 2]; any electric
charge and current distributions are usually described by using the electric and magnetic
multipoles. Typical examples of multipole are the electric dipole, magnetic dipole, and
electric quadrupole. The electric dipole appears by a polar alignment of positive and nega-
tive charges, as shown in Fig. 1.1(a), whose macroscopic alignment gives rise to an electric
polarization. The magnetic dipole correspond to a circular electric current known as the
Biot-Savart law, as shown in Fig. 1.1(b), which becomes a source of a magnetization. The
electric quadrupole in Fig. 1.1(c) describes a symmetric charge configuration consisting
of staggered pairs of the electric dipoles. Since the concept of multipole is suitable to
analyze any anisotropic angular dependences of electromagnetic objects, it has been used
in various fields, such as nuclear physics [3-5], metaphotonics [6-8], colloid science [9, 10],
and so on.

(a) electric (b) magnetic (c) electric (d) electric quadrupole
dipole dipole quadrupole ordering

+ @ ¢ ©
_OI b

electric o &

current

Figure 1.1: (a—c) Schematic pictures of (a) the electric dipole, (b) magnetic dipole, and
(c) electric quadrupole. (d) Electric quadrupole ordering in a periodic lattice system.

The concept of multipole can also be used to represent an atomic-scale angular depen-
dence of the wave functions of an electron in quantum mechanics. Notably, the quantum-
mechanical operator expressions of atomic-scale multipoles can be applicable to describe
various electronic degrees of freedom in solids, such as charge, spin, and orbital. Espe-



1.1. MULTIPOLE IN CONDENSED MATTER PHYSICS

cially, it is useful in the situation where there is a mutual entanglement between them by
relativistic spin-orbit coupling, crystalline electronic field, electron-electron interaction,
and so on, since the multipole expression gives a unified way to describe the electronic
degrees of freedom. Indeed, it was shown that the multipole degree of freedom spans the
complete set in the Hilbert space for s, p, d, and f electrons without any deficiency [11-13].

The atomic-scale multipole has been used for d- and f-electron systems, since d- and
f-orbital electrons tend to be affected by the relativistic spin-orbit coupling and the crys-
talline electric field owing to their large orbital angular momenta [14-16]. In such a
situation, there is a chance of realizing the higher-rank multipole orderings as shown in
Fig. 1.1(d), whose electric and magnetic properties are different from the conventional
charge and magnetic orderings. The multipole orderings have been found in various
materials: electric quadrupole ordering in CeBg [17-24], magnetic octupole ordering in
NpO, [25-30], and electric hexadecapole ordering in PrRuyPis [31, 32]. Since these higher
rank multipoles have no direct coupling to the electric and magnetic fields, an identifica-
tion of these multipole orderings is quite difficult compared to conventional charge and
magnetic orderings. To detect such multipole orderings directly, some microscopic probes,
such as the nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR)
have been used [17, 22, 24].

Conventional Augmented multipole
multipole bbb bbb bbb bbb bbbl ;
'+ Hybrid multipole Cluster multipole Bond multipole k multipole :
¥ an atom E v an atom ¥ on-site sublattice v off-site sublattice v between unit cells !
¥ single orbital iV different orbital degrees of freedom  degrees of freedom (momentum space)
angular momentum ' angu|ar momenta PR 1
: A B A B DI AR (G
E ‘ ‘ — gT O—¢ E
: b >< | ‘ | :
f— ' ¢ ¢ H
L E C C S« —> s"b DA Zome s 2 e E
; unit cell
: d f ABCD ABCD band modulation
i L A A k, :
B B !
! : f C C k E
! D D x :

Figure 1.2:  Relation of conventional/augmented multipoles and electronic degrees of
freedom in solids. The relevant Hilbert space is schematically shown in each bottom
panel.

The above multipoles have been usually discussed to describe atomic electronic de-
grees of freedom in a Hilbert space limited to the orbital space with a single orbital
angular momentum as schematically presented in the leftmost panel of Fig. 1.2. They
have long been studied in d or f-electron systems, which were denoted as “conventional
multipole”. Meanwhile, recent studies have extended the concept of multipole to describe
the electronic degrees of freedom over different orbitals and sites. For instance, a hybrid
multipole has been introduced to describe the atomic interorbital degrees of freedom with
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the different orbital angular momenta [12, 13, 33], where the concept of the atomic-scale
magnetic toroidal and electric toroidal multipoles has been established. Moreover, the
concept of multipole has been extended to describe the electronic degrees of freedom over
multi sites: a cluster multipole to describe the on-site sublattice degree of freedom [34, 35]
and a bond multipole to describe the off-site sublattice degree of freedom [36, 37] in a clus-
ter. Such a multipole degree of freedom in real space affects the electronic band structure,
which leads to the introduction of a £ multipole describing the anisotropy in momentum
space [37-42]. Collectively, these multipoles are called “augmented multipole”, which are
summarized in Fig. 1.2 with the schematic illustration of the relevant Hilbert space. Im-
portantly, augmented multipole can describe any electronic degrees of freedom in solids in
a classified way, since the multipole degrees of freedom span the symmetry-adapted basis
in solids. Moreover, a systematic description by using augmented multipole enables us to
explore unconventional electronic order parameters and their related physical properties
from the microscopic viewpoint beyond the symmetry argument, as will be discussed in
this thesis.

In the remaining part of this section, we briefly review a recent development of aug-
mented multipoles and their physical properties. First, we present the four types of
multipoles and their quantum-mechanical operators in Sec. 1.2. After the short review of
the conventional atomic multipoles at the end of Sec. 1.2, we introduce augmented mul-
tipoles: hybrid multipole, cluster multipole, bond multipole, and £ multipole in Sec. 1.3.
Finally, we summarize how these multipole degrees of freedom are relevant to the crys-
tallographic symmetry in solids in Sec. 1.4 and physical properties including multiferroic
responses in Sec. 1.5. Sections 1.6 and 1.7 are devoted to summarizing the purpose and
organization of this thesis, respectively.

1.2 Four Types of Multipoles

monopole dipole quadrupole
(=0 (=1 (=2

distrbaton L Q+8(P%+t£ % G&&&@ %4_

Figure 1.3: Multipole expansion of a source charge for a scalar potential.

We here review classical and quantum-mechanical representations of multipoles [1,
2, 11-13, 43-46]. In classical electromagnetism, multipole moments are introduced to
describe a source charge and current distributions of scalar and vector potentials in the
multipole expansion, which is schematically shown in Fig. 1.3 [1, 2, 43-46]. Starting
from the Maxwell equation for Gaussian-cgs units under the time-independent electric
and magnetic field with Coulomb gauge V-A(r)=0, scalar potential ¢(r) and vector

3
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potential A(r) satisfy the following Poisson equations:

V2¢(r)=—4mp.(r), (1.1)
V2 A(r) =~ i), (1.2)

where ¢ is the speed of light and p.(r) and j.(r) represent a source electric charge p.(r) and
current jo(r), respectively. Any angle distributions of ¢(r) and A(r) can be represented
by a superposition of spherical harmonics Y}, (7) and vector spherical harmonics Y( )( )
(P=|r|/r, —1<m<I and I'=1,1%1), respectively, where [) is the azimuthal quantum
number and m is the magnetic quantum number!. Then, ¢(r) and A(7), the solutions of
the Poisson equations in Egs. (1.1) and (1.2), are given by

[eS) l ~
=Z Z 2z+ Qi H(l), (1.4)
A7(1+1) (l+1)(7z)
Z Z |: 2l+1 lm l+1 VvV 4 l+1 Em . (15)

The coefficient @y, in Eq. (1.4) represents an electric (E) multipole moment with rank /,
which is expressed as

sz=/ drpe(r) Oy (1), (1.6)

where Oy, (r)=+/4m/(21+1)r'Y}; (7). Meanwhile, M, and T}, in Eq. (1.5) represent
magnetic (M) and magnetic toroidal (MT) multipole moments, respectively, which are
described as

1 ;
Mlm:C(H_l)/dr[’r‘xge(’l")]~VOlm(’l“), (1.7)
1 3
Tlmzm/dr[r-ge(r)]@m(r) (1.8)

MT multipole is sometimes neglected in the multipole expansion in classical electromag-
netism as it does not affect a magnetic field. Nevertheless, it is essential to describe a
distribution of the vortex-type magnetic field. Such current distributions are only rep-
resented by the time-reversal-odd polar quantity that corresponds to the MT multipole

IThe vector spherical harmonics Yzfp (#) (I'=l,1£1) are given by using the spherical harmonics ¥, (#)
and an operator l=—irx 'V as follows [11, 43, 44, 47]:

Y(l)(f'): 1Yim (7) Y(l+1)(7;):_1 (14 1) 7Y (P) +ir X (1Y) (7)] Y(l,1)(ﬁ):1lrﬁm(f‘)—ir>< (1Y) (7)]
fm I+ r (+1)(20+1) P oim r 1020+1) '
(1.3)

It is noted that the vector spherical harmonics have several definitions, where Ylg)(ﬁ) in Eq. (1.3) do
not have the orthogonal relation among I’=I[,l—1, and {+1. The complete orthogonality is satisfied by
taking linear combination of Ygl)( ), Y(l+1)( ), and v~ 1)( ).

ilm ilm
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T, which has different spatial inversion and time-reversal parities from the other two
multipoles. Qpn, My, and Ty, are characterized by (P, T)=[(-1)!,+1], [(=1)", —1],
[(—1)!, —1], respectively, since Oy, (r) is characterized by the spatial inversion parity
P=(—1)" and the time-reversal parity T=+1 and p.(r)[j.(r)] is the scalar (polar vector)
quantity characterized by 7=+1(—1). In other words, the E multipole corresponds to
the time-reversal-even polar tensor, the M multipole corresponds to the time-reversal-odd
axial tensor, and the M'T multipole corresponds to the time-reversal-odd polar tensor.

In addition, the multipole corresponding to the time-reversal-even axial tensor can be
introduced by taking into account the magnetic current density j,(r) as a counterpart
of jo(r) [12, 48, 49]. This fourth multipole is called an electric toroidal (ET) multipole,
which is represented as

1

Glm:m/dr[r-jm(r)]@m(r), (1.9)

with the parities (P, T)=[(—1)""1, +1], since ju(r) is the axial vector characterized by
T=+1. The spatial inversion and time-reversal parities of four types of multipoles are
summarized in Table 1.1. The sources of each multipole are also shown.

Table 1.1:  Four types of multipoles and their spatial inversion (P), time-reversal (7 ),
and PT parities. The relevant sources are also presented.

type notation P T PT source
E Qum (_1>l +1 (_1)l Pe (Jrn)
M My, (=)t -1 (=1) Je

MT T, (=D -1 (=™ g
ET Glm (_1)l+1 +1 (_1)l+1 jrn

The four types of multipoles constitute a complete set to represent an arbitrary angle
dependence of electromagnetic charge and current in terms of spatial inversion and time-
reversal symmetries. For example, any vector quantities with different space-time inver-
sion symmetries are described by the E, ET, M, and MT dipoles, as shown in Fig. 1.4(a),
where the E dipole is transformed into the ET (MT) dipole by reversing the spatial inver-
sion (time-reversal) parity, while the M dipole is transformed into the MT (ET) dipole by
reversing the spatial inversion (time-reversal) parity. This argument holds for the higher-
rank multipoles with different rotational symmetries, such as quadrupole (I=2), octupole
(I=3), and so on, since they are described by the anisotropic spatial distribution of the
dipole, as shown in Fig. 1.4(b)%. In this way, the multipoles up to rank {— oo can describe
any arbitrary anisotropic charge and current distributions.

Based on Egs. (1.6)—(1.9), the quantum-mechanical operator expressions of four types

2 Although E multipole was originally introduced to describe the anisotropic charge distribution pe(r),
it can be used to describe the anisotropic E dipole distribution P(r) by using the relation p(r)=—V-P(r)
in Eq. (1.6).
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(a) (b) ‘ ‘
7 n — dipole e f ;/L;
T (=1 X X

ET

o~
Xx

+ dipo:itﬂ’ /l quadrupole ( }( \y\( ;4\'{ _>:<_
Xu

Ll g
B L A

Figure 1.4: (a) Four types of dipoles with different spatial inversion and time-reversal
parities: electric (E), magnetic (M), electric toroidal (ET), and magnetic toroidal (MT)
dipoles. (b) Dipole distributions up to rank 3. The arrows represent the E, ET, M, or
MT dipoles in (a) (X=Q,G, M, or T).

of multipoles are given by [11-13]

Qun=—€Y _ Op(ry), (1.10)

Mlm:_NB Zml(ri)-VOlm(ri), (111)

T}m:_ﬂiB Ztl('ri)'volm<ri)a (112)
R zx,y,z

Gimn==¢Y_ > 977 (r:)VaVs0um(ry), (1.13)
i af

where —e and —pup are the electron charge and Bohr magneton, respectively, which are
taken to be unity hereafter, ie., —e,—ug—1. my(r;), ti(r;), and ¢’ (r;) are the M
moment, MT moment, and ET tensor, respectively, which are expressed as

21;

ml(Ti):l+1+Ui, (1.14)
T; 2lZ

tl(ri)_l—i— X (l+2+al> , (1.15)

g7 () =mj (ri)t] (ry), (1.16)

where l; and o;/2 are the dimensionless orbital and spin angular-momentum operators of
an electron at r;, respectively. Similar to the above discussion in the classical represen-
tation, these four types of multipoles constitute a complete set to describe an arbitrary
electronic degree of freedom, such as the charge, spin, and orbital, in an atomic site [11—-
13].

In the following discussion for crystallographic systems characterized by a discrete
rotational symmetry rather than a continuous rotational symmetry, the real expressions

6
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of Oy, are often used [11, 39, 50]. The multipole notation up to the rank 4 is shown as

monopole (1=0): X, (1.17)
dipole (I=1): X,, X,, X, (1.18)
quadrupole (1=2): X, X, Xyz,Xm,Xxy, (1.19)
octupole (I=3): X, X7, X', X7, X5 X’8 X5 (1.20)
hexadecapole (I=4): Xy, X4u, X40, X5, Xfy,XfZ,sz,Xfy,Xﬁ (1.21)
See also Appendix A for their specific expressions.
monopole (I = 0) quadrupole (1=2)
E
electric (E € sl e }L
_ (E) S P |\\ }\\ /\
multipole r Y
QO Qu Qv Qyz sz sz
dipole (I=1) octupole (I = 3)

L QY& kAP XxRE
m:;lrg];l;::)izléM) Iy \ ’ g\ ét( ** 8*7\?\/\*
Ve ze~ i%ﬁggémf*

Mﬂ

Figure 1.5: Spatial distributions of charge and orbital angular momentum when the expec-
tation value of multipole with rank 0-3 becomes nonzero in the five d-orbital system. The
color in the M multipoles represents the spatial distribution of I,(r)=—1,(r) (u==,y, 2),
where red (blue) stands for the positive (negative) value.

In quantum-mechanical systems, the types of active multipole degrees of freedom
depend on the low-energy Hilbert space. For example, in the situation where only the
five d orbitals are relevant with the Hilbert space, following 25 multipoles can be active:
E monopole Qy, M dipoles (M,, M,, M,), E quadrupoles (Q., Qu, Qyz, Q:zy Quy), M
octupoles (Mmyz, Mg, Mg, M, MfB Mﬁ M?$), and E hexadecapoles (Q4, Quu, Qu, QF,,

Q3 Q1. Q4x, Q4y, Q4z). These atomic multipoles active within a single orbital angular
momentum are referred to as the conventional multipoles in Fig. 1.2. We can evaluate the
expectation values of active multipoles by using the d-orbital basis functions. We show the
spatial distributions of charge and orbital angular momentum in Eq. (1.6)—(1.9) when each
multipole takes a nonzero expectation value in Fig. 1.5. The shape of each wave function
in Fig. 1.5 represents the angular dependence of the electronic charge distribution. For
example, the charge distribution in the E monopole has the spherical form, while the
E quadrupoles have the anisotropic charge distribution satisfying the two-fold rotational
symmetry. Besides, the color in M multipoles stands for the spatial distribution of the
orbital angular momentum [I,(r)=—1,(r) (u=x,v, z)], where the red and blue describe

7



1.3. AUGMENTED MULTIPOLES

the opposite sign, positive and negative, respectively. For instance, the M dipole M,
has the uniform distribution of lx, whereas the other components l and [, have no net
value in whole. Meanwhile, the spatial distribution of lu in actlve M octupoles leads
to no net orbital angular momentum, except for (Mg, Mg, M)®. It is noted that all
the conventional multipoles active in the five d-orbital systems have the spatial inversion
symmetric electromagnetic distribution, since only even-parity multipoles become active
in a Hilbert space spanned by wave functions with a specific spatial-inversion parity.

1.3 Augmented Multipoles

In this section, we briefly introduce the augmented multipoles, which have been used
to describe the electronic degrees of freedom in the multi-orbital and multi-sublattice
systems that cannot be expressed by conventional multipoles. The augmented multipole
is divided into four classes depending on the electronic and site degrees of freedom: the
hybrid multipole in the multi-orbital system with different orbital angular momenta in
Sec. 1.3.1, the cluster multipole and the bond multipole in the multi-sublattice system in
Secs. 1.3.2 and 1.3.3, respectively, and the k£ multipole in momentum space in Sec. 1.3.4.

1.3.1 Hybrid Multipole

The hybrid multipole has been introduced to describe the atomic interorbital electronic
degrees of freedom in the multi-orbital system with different orbital angular momenta,
such as the s-p, p-d, d-f, and s-d orbitals [12, 13]. There are two main differences from
the conventional multipoles. One is that the hybrid multipole describes the odd-parity
multipole without the spatial inversion symmetry. In other words, the hybrid multipole
can describe the effect of the parity-mixing hybridization in the absence of the inversion
center at the atomic site. The other is that the hybrid multipole describes the ET and
MT multipoles, which are not activated in the single d or f-orbital system.

We show an example of the hybrid multipole by considering the s and p, orbitals.
The off-diagonal matrix elements in the Hilbert space spanned by the basis {¢s, ¢,.}
correspond to the hybrid multipoles. Specifically, the real (imaginary) off-diagonal matrix
elements are represented by the odd-parity E dipole ), and MT dipole T,, which are

represented by
A 01 - 0 —1
o (01). 2 (05). -

They have the nonzero expectation values when the s and p, orbitals are hybridized. In
this way, the atomic-scale odd-parity multipoles can be active in the hybridized orbital
systems.

A similar discussion holds for other systems; the odd-parity hybrid multipoles (in-
cluding ET and MT multipoles) can be active in the odd-parity hybridization, while the
even-parity hybrid multipoles (including ET and MT multipoles) can be active in the
even-parity hybridization. We show the spatial distribution of charge and orbital angular

SMe, M, and M7 have a net orbital angular momentum, because active M octupole M induces M
dipole M,,.
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momentum when each expectation value of multipole takes nonzero in the case of the odd-
parity p-d hybridization in Fig. 1.6 and in the case of the even-parity p-f hybridization
in Fig. 1.7.

dipole (I=1) octupole (I = 3)

. - 6 }/ \l/\ \‘ /T L}i\’ |/ \\‘/, \}\/
electric (E) S< 4 SE X< 2 =2
i Q @ QG & @ & @ ¢ &

- | | o P . | ‘
(‘g Y @ Lle@eE
magnetic i ) w L |

toroidal MT) b % S 3 O e
multipole L Lﬁ‘\ %; il} ﬁli h*\ )’ij\ ﬂk m ﬁ\\
T,

T, T, Tpy. To Ty T TP TP TP

quadrupole (I = 2)

electric K o *' PR
toroidal (ET) >& )Af\}ﬁ\/ﬂ \/q:,\\
multipole G Gy Gy G.:  Gay

multipole

Y EY
magnetic (M) I 8 * t\ A,,i x\
% .

Figure 1.6: Spatial distribution of charge and orbital angular momentum when each
expectation value of odd-parity hybrid multipole takes nonzero in the p-d orbital system.

The above hybrid multipole describing the interorbital electronic degrees of freedom
becomes important in the lattice structure without the local inversion symmetry [33,
51]. It can also describe interorbital electronic order parameters due to the interorbital
Coulomb interaction, such as an excitonic state [52-57].

1.3.2 Cluster Multipole
The cluster multipole can describe the on-site electronic degrees of freedom over several
atomic sites in a cluster [16, 34, 35, 58, 59]. The expressions of the cluster multipole can

be obtained by substituting 7; in Egs. (1.10)—(1.13) with the position vector of the ith

9
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quadrupole (I = 2)

electric (E) Joslh \J& /L /\

multipole 0. Q.

magnetic "

toroidal (MT) Iy % 2

. ‘ |

~ | P || o3

multipole i % K % x\i

T. T, Ty Tow Ty

dipole (I =1) octupole (I = 3)

electric N L b b b e
NS e A B %
toroidal (ET) iﬁxﬁﬁkk*\>§\~?$\%§\/kx\
multipole Gay. G GY G2 G G Gf

multipole

magnetic (M) i, “@ A\'\ ’“ " 8 A

.
3
o
%
Py
5 0@
Y 2
i

Figure 1.7: Spatial distribution of charge and orbital angular momentum when each
expectation value of even-parity hybrid multipole (up to rank 3) takes nonzero in the p-f
orbital system.

atom, R;. For example, the cluster E multipole in the N-site cluster is represented by

N
Q§2=Z 4O (R;), (1.23)
i=1

where the superscript (c) represents the cluster multipole and g¢; is the charge of the ith
atom.

We exemplify the E cluster multipole in a four-sublattice square cluster with ¢;=1
for i=1-4. By using Eq. (1.23) from the lower-rank components, four independent E
multipoles are obtained as follows:

QY =+ g1+ g2+ a5+, (1.24)
QY =—qi+@+a6—q, (1.25)
Q;C)Z—Q1+Q2—Q3+Q4, (1.26)
QY =+q+a2—a—qu, (1.27)

10
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where R; and the schematic charge configurations are illustrated in Fig. 1.8. Among
them, the E monopole Q(()C) is characterized by the uniform charge distribution, while the
E dipoles Q_Ef) and Qg(f) and the E quadrupole Q;(;;) are characterized by the anisotropic
charge distributions. The corresponding matrix elements for the basis {¢i=1, P2, 3, Ps}
are given by

1000 ~100 0 ~10 0 0 100 0
5@ 01001 5 [ 0100 | 5o [ 0100} 59 [010 0
o “lootro|>™ “{ootro " " loo-10f[ ¥ |oo-10 |
0001 000-1 0001 000 —1
(1.28)

where one finds that any four diagonal matrix elements are spanned by four independent
E multipoles.

charge magnetic moment
E monopole M monopole
4 2 y
s
i=1 3 )v—\\
E dipole M dipole MT d|pole
M M(C) ' 2 T(C)E : T(C): T(C)
- - - -‘/-D—-b-» s,/—$
- +
E quadrupole M quadrupole MT quadrupole

|

- ﬁ 7 ' ] - ¢
Mv(c) \ Méc) ¥ rr(c) T(9) T

Figure 1.8: Schematic pictures of the cluster multipoles representing the charge and spin
configurations in a four-sublattice square cluster.

Similarly, the spin configurations over multi sites can be described by cluster M and
MT multipoles, whose expressions are given by [35]

N
Ml(mC):Z ai'Vz'Olm(Ri)7 <1'29)
=1
1 N
ple) _

We show that all the spin configurations in the four-sublattice square cluster, i.e., 3 x4=12
spin configurations, are described by the cluster M and M'T multipoles in the right panel
of Fig. 1.8.

11
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The cluster multipole provides a systematic understanding of the physical phenomena
in complicated charge and spin orderings, such as the antiferromagnetic orderings. For
example, a cluster M octupole has been used for the understanding of the anomalous Hall
effect in Mn3Sn [34, 60] and the magneto-striction effect [61, 62], the cluster MT dipole for
the linear magnetoelectric effect in various antiferromagnetic insulators, e.g., CryO3 [63],
Gag_,Fe, O3 [64, 65], LiCoPOy [66, 67], BagCoGeyO [68], and antiferromagnetic metals,
e.g., UNiyB [69-71] and Ce3TiBi; [72, 73], the cluster M quadrupole for the linear magne-
toelectric effect in CoyNbyOg [74-77] and KOsOy [78] and the magnetopiezoelectric effect
in Bal_szMngASQ [38] and EuMngBig [79]

1.3.3 Bond Multipole

The bond multipole describes the bond degrees of freedom over multi sites, i.e., the off-site
electronic degrees of freedom in a cluster [37]. Similar to the cluster multipole, the bond
E multipole is expressed as

Nbond
=" 4y Om(Ry), (1.31)
ij

where the superscript (b) represents the bond multipole. (ij) stands for the bond between
ith and jth atoms with the real value q(;;). R is the position vector pointing from ith
atom to jth atom. Nye,q is the number of the bonds.

We again consider the four-sublattice square cluster with g(;; =1 to show the corre-
spondence between the bond degree of freedom and the bond E multipoles in Eq. (1.31).
The four nearest-neighbor bond degrees of freedom denoted as (bl) and the two next-
nearest-neighbor bond degrees of freedom denoted as (b2) are represented by

Qéb1)=+Q(13)+Q(32)+Q(24)+Q(41), (1.32)
ngl) =+q(32) —q(41), ( )
QY =+q(20y—q(13), (1.34)
QY = —q13)+q2) — G4y +qan). (1.35)
Qéw) =+q12)Tq(34), ( )
QS;Q) =+q(12) —4q(34) ( )

where each matrix element for the basis {¢1, ¢o, 3, P4} is given by

0011 000-1 00-10 0 0 —11
o (0011 ) 2wy | 001 0] Aoy [0001] ~0py [0 0 1 —1
@D =100 Tl o100 P9 T 0009 T 211 0 0

1100 ~100 0 0100 1 10 0

(1.38)

0100 010 0
b [1000] uy [100 0
@ =looo1]" ¥ =00 0 -1

0010 00-10

(1.39)
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The E bond multipoles in the square cluster are shown in Fig. 1.9. The bond E multipoles
are useful to describe the real hopping of electrons in terms of multipoles in a systematic
way.

real bond imaginary bond
E monopole
4 2
Q((]bl) L>/Q'(()bz)
i1 s N\
E dipole M dipole MT dipole
- o®v | + Q§b1) M®EOT 4 TP Tébl) T(P2) Ty(bz)
: :] ] Q I:I o—0 ¢ ¢
E quadrupole MT quadrupole

b2
¢

Figure 1.9: Schematic pictures of the bond multipoles in a four-sublattice square cluster.

In a similar way, the imaginary hopping of electrons is described by the bond M and
MT multipoles [37], which are given by

Nbond
~(b
M) = Z (i) X (i) O (Ryijy), (1.40)
(i7)
Nbond
~(b
Tl(m): Z t(ij) O (Ryij)), (1.41)
(i7)

where Oy, (1)=V Oy (7) and nj=Rj) /| Rejl|. taj) is the local MT dipole at the (ij)
bond defined as #(;j)=1it(;;)n(;;) with the imaginary hopping it;;). We show the imaginary
bond distributions in the square cluster in the right panel of Fig. 1.9, where the red arrow
stands for the imaginary hopping with ¢ (imaginary unit).

The bond multipoles are related not only to the hopping in the Hamiltonian but also
the bond orders, such as a staggered flux state [80-83] and a loop-current state [36, 37, 84—
87]. Furthermore, more exotic bond orders corresponding to the active ET quadrupole
have been proposed in the 5d spin-orbit-coupled metal CdsResO7 [36].

1.3.4 k Multipole

The k multipole describes the anisotropic band deformation and spin splittings in the
electronic states. The expressions within the single-band system in the case of k—0 limit

13
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are given by [39]

[ 060um(K) (1=0,2,4,6,--)
le(k):{(kXU)VkOlm(k) (l:1,3,5,---) (1'42)
0 (1=0)
Tin(k)={ (kx0)-ViOp(k) (1=2,4,6,---) (1.43)
00 (k) (1=1,3,5,---)
)0 (1=0,2,4,6,---)
Mlm(k):{a-vkolmm) (1=1,3,5,--) (144)
k-o (1=0)
Glm(k)E O'VkOlm(k?) (l 2, 4 6, - ) (145)
0 (1=1,3,5,--+)

where k is the wave vector with parities (P,7)=(—1,—1) and o is the spin with (P, 7T )=
(+1,—1). Although there are no expressions of the rank-0 MT monopole, even-rank M
multipoles, and odd-rank ET multipoles in the single-band case, they can be defined in
the multi-band case [88].

The k multipoles describe the Hamiltonian in momentum space under a periodic lattice
system. A general Hamiltonian in momentum space can be represented as follows:

H=> " [5(k)6ror+E* (k) 0oqr+ [y (k) + [ (k)] ChyChor (1.46)

koo’

where ¢ (cgs) is the creation (annihilation) operator of electron with wave vector k and

spin o=1,1. &5(k), f5.(k), e*(k), and f2,(k) has different momentum and spin de-
pendences, which satisfy the following relations for their space-time inversion symmetries
as

(k)= (~k), foy(k)=frn(~k), " (k)=—c"(=k), fr(k)=—fr(=K).  (147)

oo [exea oo oo

The band deformation and the spin splittings for these four dispersions are shown in
Fig. 1.10(a), where the presence/absence of P, T, and PT symmetries corresponding to
each band deformation and spin splitting is shown. These dispersions are related to the
k multipole as

even

Z Z QP Qi (k (1.48)

odd
§=5 3 Tt Tl (L.19)
odd even
=D ) MM (K +Z Z T2 Tee (k (1.50)
l m
even odd

ZZGG’“ +ZZQG’“ (1.51)
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(a)

symmetric band antisymmetric symmetric asymmetric band ba::)ér:frgf;r;iion
deformation spin splitting spin splitting deformation & spin splitting
eS(k) S(k) + [ (k) eSk) +13 (k) e5(k) + (k) £3k) + eMK) +15,) +£A.()

eS(k) > Q,,(k) (I : even) ffd,(k) - Q) (1:0dd) £S5 (k) - M, (k) (I: odd) eAk) — Ty, (k) (I : 0dd)
— Gy, (k) (I : even) - T;,(k) (I: even)

&(k) e(k) &(k) &(k)

| k =T k N k = k
(P, T,PT) =(0,0,0) (P,T,PT)=(x,0,x) (P,T,PT) = (O, x,%x) (P, T,PT) =(x,%x,0) (P,T,PT)=(x,x,x)

Gyk) xk-c Q,k) x ko, — ko, G, (k) xko,+ko, G(k) xko,—kgo,

Figure 1.10: (a) Schematic dispersions in the presence of €°(k), f2,(k), f5.(k), and

eM(k). (b) Four examples of the antisymmetric spin splittings induced by odd-parity
E/ET multipoles.

where X' (X=Q, M, G, T) is the conjugate field in each multipole. We show the example
of fA,(k) by taking the low-rank E and ET multipoles in Fig. 1.10(b).

In this way, the k£ multipoles give a systematic way to understand anisotropic band
deformations and spin splittings. Such information is useful to engineer desired electronic
band structures from the microscopic viewpoint. Indeed, interesting symmetric and an-
tisymmetric spin polarizations in the AFM orderings without the spin-orbit coupling have
been proposed based on multipoles [37, 41, 42, 89], e.g., k-(BETD-TTF),Cu[N(CN),]Cl1 [89,
90] and BazgMnNb,yOq [42, 91].

1.4 Multipoles under Point Group Symmetry

In the previous section, we reviewed that various electronic degrees of freedom, e.g.,
charge, spin, orbital, sublattice, and bond, can be described by using four types of aug-
mented multipoles. This microscopic description enables us to represent the order param-
eters with complicated charge or current distribution in a systematic manner. In addition,
the concept of augmented multipoles can be applied to any crystallographic point group
to understand the physical properties in solids. In this section, we show the classification
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1.4. MULTIPOLES UNDER POINT GROUP SYMMETRY

of multipoles in crystallographic point group symmetry by using the representation the-
ory. Systematic classification of multipoles gives useful information for the understanding
of multiferroic physical phenomena, as discussed in the subsequent section [39, 40].

=3 1=4
07

Q 2020 Qw00 Qe Qo Oy O, 0. 05, 05 OF. Of

~ . N

Figure 1.11: Correspondence between E multipoles and irreducible representations in Oy,.

The crystallographic point group is the subgroup of the O(3) group with the 3-
dimensional continuous rotation and spatial inversion operations. It means that four types
of multipoles, which constitute a complete set of electromagnetic degrees of freedom in the
O(3) symmetry?, are also used as the symmetry-adapted basis in crystallographic point
groups.

In the spherical field, rank [ corresponds to the index of the (2{+1)-dimensional irre-
ducible representation with the rank-l multipole X, (X=Q, G, M, T) as the basis. When
the continuous rotational symmetry is lost and O(3) group is reduced to the crystallo-
graphic point group, multipoles are not well classified by rank [ and need to use the
irreducible representations in the crystallographic point group. For example, we show the
irreducible representation of the E multipoles up to rank 4 in cubic m3m (Oy,) symmetry
in Fig. 1.11, which are denoted as

Q07Q4€A1g7 (Qva)a (Q4U7Q4v)€Eg7 (1'52)
(@5, Q5 Q%) €Ty, (Qe, Qur, Quy), (QL, @l QL) ETog, (1.53)
wazeAQuu (Q$7Qy7Qz)a( g’ ;7Q?)€T1uu (Qg)Q57Qf)€T2u (154)

One finds that the multipoles with different ranks, e.g., Qg and ()4, belong to the same
irreducible representation. In the same way based on the representation theory, one
can classify the four types of multipoles under 32 crystallographic point group [39]. For
instance, we show the classification of multipoles up to rank 4 in tetragonal 4 /mmm (Dyy,)
symmetry in Table 1.2.

The classification of multipoles has the advantage of obtaining the relevant microscopic
electronic degrees of freedom by the symmetry analysis. Let us take an example of a four-
sublattice square cluster in Sec. 1.3.2 under Dy, symmetry. Since the representation of
the four site degrees of freedom is reducible as A1,®Bo; ®E, by the symmetry analysis,
we map the cluster E multipole onto its irreducible representation by using Table 1.2:

4Strictly speaking, four types of multipoles including M and MT multipoles are the basis for the
RO(3)=0(3)x{E, 0} group, where E and 6 are the identitical operation and the time-reversal operation,
respectively.
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Table 1.2: Multipole classification for the irreducible representations (irrep.) in tetragonal
4/mmm (Dyy,) symmetry.

irrep. E ET MT M
Ay Qo, Qu; Qu, Quu — 10, T, Ta, Tha —
AQg Q4az GZ7 G? sz MZ7 Mza
Big Qu, Quo Gry- Ty, Tay Mey.
BQg wa? sz Gg Twzﬁ sz Mzﬁ

E, Q.. Q5,0 G,, GG T, Te T M, M& M?

Qe Q4 Q4 Gy GGy T T4, Ty My, My, M
Alu o GoaGuaG47G4u - Mo,Mu,M4,M4u
A2u Qz; Q? GZCZ Tz, Tg Méffz
Blu Q:ﬁyz Gw G4v Ta:yz Mva M4v
B2u Qf Gwyv sz Tzﬁ Mxy; Mfz
B Qn@QQ) GGGy TTNT! My, Mi, M,
Q95 Q) G G3,Ghy Ty Ty Ty M, M, M,

Qo€Ay, Quy€Byg, and (Q, Q) €E,. Moreover, when additionally considering the spin
degrees of freedom, the irreducible representations of the electronic degrees of freedom
are

(A1g®Bag DE 0 )site @ (Eg D Agg )spin=A2; DB1;B2E, B A1, B Ay, ®B1,®B2y ®E,,  (1.55)

where M, €Ay, T, €B1g, (My, My), (Tyy2, Tr) €Eg, Mo€Ayy, T, €Agy, M, €Byy, My, €Boy,
and (T3, T,)€E,. In this case, each spin configuration in Fig. 1.8 is obtained based on the
projection method in each irreducible representation.

Although the multipole is classified under 32 crystallographic point groups, the con-
sideration about the time-reversal symmetry is lacking. To complete the classification of
multipoles, one needs to start from the RO(3)=0(3) x{E, 0} symmetry with the explicit
time-reversal operation # and classify multipoles under the 122 magnetic point groups. Es-
pecially, the classification of multipole is missing in the 58 black-and-white point groups,
which are related to a variety of antiferromagnets as summarized in Fig. 1.12°. Thus, it
is highly desired to formulate a complete classification under the magnetic point group,
which becomes a reference to explore interesting physical properties related to the break-
ing of the time-reversal symmetry, as often found in antiferromagnets.

1.5 Relation between Multipole and Field Responses

In this section, we review the relation between multipoles and the physical property in
the crystallographic point group by focusing on the field responses. In general, physical
quantities, such as the electric polarization P and magnetization M, are induced by

5The classification of multipole in 32 gray point groups is straightforwardly obtained from the one in
32 crystallographic point groups with a few exceptions.
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RO(33) = 0(3) X {E,0} = SO(3) X {E,I} X {E, 0}
le Glm Mlm Tl

m

|

0@3) = SO(3) x {E, I}
{ le’ Tlm} { Glm’ Mlm}

}

32 crystallographic | cpg x (E,9) | 32 gray point 58 black-and-white
point group (CPG) |——— | group (GPG) point group (BWPG)
[unitary] [nonunitary] [nonunitary]

Multipole classification . ope . . L
~ PRB 98, 165110 (2018). Multipole classification is missing.

| l
122 magnetic point groups

Figure 1.12: Relation between the point groups with the spherical symmetry and magnetic
point groups.

corresponding conjugate fields, e.g., the electric field E(<>P) and the magnetic field
H («+»M). However, there are some situations where the physical response is induced by
a non-conjugate field under particular symmetry conditions, which is called a multiferroic
response (or cross-correlated response). Although possible multiferroic responses have
been discussed based on the symmetry analysis [92-95], we here discuss the relevance
with the multipoles, since it provides microscopic information to understand the origin of
the multiferroic responses based on the electronic degrees of freedom.

For example, a linear magnetoelectric effect, where the magnetization is induced by
an electric field, is represented by using the response tensor & as follows:

My | =| s ayy E,|. (1.56)

Since & is the rank-2 axial tensor with odd time inversion, & is related to the 9 mul-
tipoles with the same spatial and time-inversion parities: M monopole M, MT dipoles
(T,T,,T,), and M quadrupoles (M,,, M, M,., M., M,,). By using the corresponding ten-
sor components, o (o= oTv o), and (aMeaM oMz oM oMev) | G is represented
as

Oy Ogy Oy O{MO—O[Mu+O[MU O[TZ+Oész —CYTy—f—O[MZI
Qg Olyy Oy | — —als oMoy qMo_qMu_ Mo Ty oMy | (1.57)
Qzgp Olzy Oy aTy+aMzw —CKTx‘i‘OéMyz CVMO‘FZOJM“

where o is the symmetric component, a’=, a’v, o’ are the antisymmetric compo-
nents, and oM« oMo oMz oMz qMev are the traceless symmetric components. Since
the nonzero response tensor component has a correspondence with the magnetic point
group symmetry according to Neumann’s principle [92, 96, 97], one can find nonzero
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tensor components when the expectation values of the corresponding multipole become
Nnonzero.

It is noted that the magnetoelectric effect can occur in metals even if the time-reversal
symmetry is preserved. Such a response is due to the different dissipation process from
the magnetoelectric response relevant to the M and MT multipoles in Eq. (1.57). In this
case, ¢ is related to the ET monopole, E dipoles, and ET quadrupoles as

OZGO _aGu +an an +any _aQy _|_an1
—a%: by QG —qfu_qf W4l || (1.58)
a4 —a@r v @G0 420
(P, T)

’.o'Magneto-current effect
"~ (Magneto-gyrotropic effect)

<G07 lea G2m>

Magneto-electric effect

(Mo, Ty, May,) Magneto-elastic effect

(Mlma TZm, MBm)

@< S ">"
(_7+)

Piezo-electric effect
(leaGQmaQZ’)m) (+’+)

Figure 1.13: Heckmann diagram in Ref. [39]. Essential active multipoles in each multifer-
roic response are also shown.

The relation between other field responses and active multipoles can be obtained in
a similar discussion [39] as shown by the Heckmann diagram in Fig. 1.13, where 05, (u,
and J stand for the symmetric stress tensor, strain-rotation field, and electric current,
respectively. This systematic relation between the field responses and active multipoles
gives us comprehensive information about necessary electronic degrees of freedom inducing
the field response. In other words, the tensor analysis by using the multipole degrees of
freedom gives not only nonzero tensor components from the symmetry viewpoint but
also the microscopic origin and the related important model parameters in a systematic
way. Such an attempt based on multipole has been developed in recent years, which has
uncovered the origin of the anomalous Hall effect without a net magnetization [34, 98], the
magnetoelectric effect [58, 7477, 99, 100], and the magnetic piezoelectric effect [36, 38,
79, 101]. Nevertheless, the discussion has been mainly limited to linear responses. Thus, it
is highly desirable to extend the multipole description into a nonlinear response to include
the nonreciprocal transport and the nonlinear Hall effect [102, 103] in a systematic way.
It is also important to clarify a microscopic essence of the nonlinear physical responses
induced by unconventional multipole ordered states with the MT and ET multipoles.
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1.6 Purpose of This Thesis

As discussed in the previous sections, the augmented multipole provides a powerful frame-
work to represent the electronic degrees of freedom in solids, e.g., charge, spin, orbital, and
sublattice, in a systematic and symmetry-adapted form. Recent studies have developed
the concept of multipole to describe not only the conventional multipole orders in d- and
f-electron systems but also various electronic states, such as antiferromagnetic ordered
states and bond ordered states beyond the symmetry argument [12, 13, 35-37, 39-42]. In
particular, the author and her collaborators classified four types of multipoles in all 32
crystallographic point groups [39]. Meanwhile, it is not enough to describe the order pa-
rameter and the multipole couplings in the absence of the time-reversal symmetry by the
external magnetic field and/or spontaneous magnetic orderings, as discussed in Sec. 1.4.
The systematic classification of multipoles to cover such a situation becomes a useful
reference to explore further exotic ordered phases and their driven physical phenomena,
which will stimulate a future study in both theory and experiment.

The main purpose of this thesis is to establish the classification of multipoles under
the 122 magnetic point groups and to open up a new research direction induced by un-
conventional multipole orderings. For that purpose, we apply the representation theory
of the nonunitary groups so as to include the time-reversal symmetry in magnetic point
groups. The complete classification of multipoles enables us to analyze the symmetry-
adapted order parameters in the magnetic materials, such as antiferromagnetic materials,
and to perform the systematic analysis of the physical properties from a microscopic view-
point. Moreover, we aim at extending the relationship between the multipoles and the
response tensors to cover up to the second-order nonlinear responses. We also study the
physical phenomena, such as the linear magnetoelectric effect and the nonlinear nonre-
ciprocal transport, under the odd-parity multipole orderings in the absence of the spatial
inversion symmetry on the basis of the augmented multipoles. We also aim at providing
a microscopic experimental method to detect odd-parity multipoles by the NMR/NQR
measurement.

1.7 Organization of This Thesis

This thesis is organized as follows. In Chap. 2, the classification of four types of multipoles
in 122 magnetic point groups is shown in a complete way. We also discuss the relation
between multipoles and the linear and nonlinear field responses. Based on the system-
atic classification of multipoles, we explore odd-parity multipole physics by studying the
following two systems. One is the MT dipole ordering induced by the collinear AFM
ordering on a zigzag chain in Chap. 3. We clarify the microscopic essence of the nonlinear
transport under the MT dipole ordering. The second is the odd-parity multipole order-
ings in the f-electron metal CeCoSi in Chap. 4. We discuss the stability of the odd-parity
multipole orderings and their phase transitions by using two effective models so as to
reproduce the phase diagram in CeCoSi. We also discuss the multiferroic phenomena and
the change of the NQR/NMR spectra in the presence of odd-parity multipoles.
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Chapter 2

Classification of Multipoles in 122
Magnetic Point Groups

In this chapter, we show a complete classification of multipoles in 122 magnetic point
groups toward a systematic understanding of the physical properties in magnetic materials
based on the concept of multipole. The contents in this chapter are based on Ref. [104]'.
This chapter is organized as follows. In Sec. 2.1, we introduce the physical properties in
magnetic materials with ferromagnetic and antiferromagnetic spin textures and describe
the purpose of the present study. In Sec. 2.2, we briefly give a short review of the three
types of magnetic point groups and the representation theory in a nonunitary group. In
Sec. 2.3, we perform the classification of multipoles in the 122 magnetic point groups. We
discuss the active multipoles belonging to the totally symmetric representation in each
magnetic point group in Sec. 2.4. In Sec. 2.5, we clarify the relation between the multipoles
and the response tensors by using the symmetry and microscopic analyses based on the
Kubo formula. We show the important multipole degrees of freedom to induce linear and
second-order nonlinear responses. Section 2.6 summarizes the results of this chapter.

2.1 Introduction

Magnetic orderings such as ferromagnetic (FM) and antiferromagnetic (AFM) orderings
provide a fertile field to bring about fascinating phenomena, e.g., the anomalous Hall
effect, Kerr effect, Nernst effect [105-108], multiferroicity like the magnetoelectric ef-
fect [109-114], nonreciprocal transports [115], and so on. To analyze these physical
properties in the FM and AFM materials systematically based on the concept of mul-
tipole, one needs to extend the classification of multipoles in the 32 crystallographic point
groups [39, 40] to the 122 magnetic point groups, which cover any types of the magnetic
orderings [92, 116-120].

For that purpose, we complete the classification of E; M, ET, and MT multipoles by
the irreducible representations in all 122 magnetic point groups by using the representa-
tion theory for nonunitary magnetic point groups. The established multipole classification
enables us to describe any AFM orderings and more exotic orderings, such as nematic, ex-

ITables 2.2, 2.5-2.15, and D.1-D.3 in Appendix D and Figs. 2.1 and 2.2 are reproduced from Ref. [104]
(© 2021 by the American Physical Society).
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2.2. MAGNETIC POINT GROUP

citonic, and loop-current orderings, as ferroic augmented multipole orderings. The present
systematic classification is also useful for the understanding of the microscopic essential
model parameters relevant to multiferroic physical phenomena, as will be discussed in
Chap. 3. We also give a general relation between multipoles and the linear /second-order
nonlinear response functions based on the Kubo formula. This systematic study will help
the exploration and design of the functional multiferroic materials that can be utilized for
future electronics and spintronics devices.

2.2 Magnetic Point Group

Most of the magnetic point groups are nonunitary groups including the antiunitary and
antilinear operations accompanied by the time-reversal operation. In such a situation, the
representation in the nonunitary point groups is given by a different form from that in
the ordinary unitary crystallographic point groups [121]. After classifying the magnetic
point groups into the three types in Sec. 2.2.1, we briefly review the representation theory
of the magnetic point groups in Sec. 2.2.2.

2.2.1 Three Types of Magnetic Point Groups

The 122 magnetic point groups are classified into the following three types depending on
how they include the time-reversal operation 6 [122]:

(I) ordinary crystallographic point groups (32),
(IT) gray point groups (32),
(III) black-and-white point groups (58),

where the numbers in parentheses are the numbers of magnetic point groups. Type-(I)
ordinary crystallographic point group is the unitary point group including no antiunitary
operation accompanied by 6. When G represents the type-(I) crystallographic point
group, the type-(II) gray point group, M is defined as

MY =G+6G, (2.1)

which includes the double elements of G. Meanwhile, the type-(III) black-and-white point
group, M consists of half of the elements of M which is represented as

M"W=—H1+0(G-H), (2.2)

where H is a halving unitary subgroup of G. The 58 type-(I1I) black-and-white point
groups are uniquely determined by the combination of G and H, as summarized in
Table 2.1. Hereafter, we use the primary, secondary, and tertiary axes for the point-group
operations as denoted in Table 2.2, unless otherwise mentioned.
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CHAPTER 2. CLASSIFICATION OF MULTIPOLES IN 122 MAGNETIC POINT GROUPS

Table 2.1:

List of 58 black-and-white point groups M™Y. H is the unitary subgroup

of G, which determines M. One of the antiunitary operations in M™D A, and its
operation axis/plane are also shown.

M G H A axis/plane
cubic m/'3'm/ m3m (Oy) 432 (0) 01
m'3'm m3m (Oy,) 43m (Ty) 01
m3m/ m3m (Oy) m3 (Ty,) 0C? [110]
432 432 (0) 23 (T)  6C,  [110]
13m/ 13m (Ty) 23 (T) oy  L[110]
m'3’ m3 (Th) 23 (T) 01
hexagonal ~ 6/m'm'm’ 6/mmm (Dey,) 622 (Dg) 01
6'/mmm’  6/mmm (Dg,) 6m2 (Dsy) 01
6/m'mm  6/mmm (Dg,) 6mm (Cg) 01
6/mm'm’  6/mmm (De,) 6/m (Cen) 0Co, [100]
6'/m'mm’  6/mmm (Dg,)  3m (Dsq)  0C, [001]
622 622 (Ds) 6 (Cs)  6Ch  [100]
6'22' 622 (De) 32 (Ds)  6C,  [001]
E_Sm’Q’ 6m2 (Dgh) 6 (Cgh) GC’gy [010]
6'm2’ 6m2 (Dy)  3m (Cy) 6o, L[001]
6'm'2 6m2 (Day) 32 (Dy) o, L[001]
6m'm’ 6mm (C@v) 6 (Cﬁ) (90'z J.[lOO]
6'mm/’ 6mm (Cey) 3m (Csy) 0C, [001]
6/m’ 6/m (Cep) 6 (Co) 01
6'/m 6/m (Cen) 6 (Csn) 01
6'/m’ 6/m (Cen) 3 (Se) 6C, [001]
6’ 6 (Csp) 3 (Cy) Oop, 1 [001]
6 6 (Cs) 3 (Cs) 6C; [001]
trigonal 3'm’ 3m (Dsq) 32 (Ds) 01
3’m 3m (ng) 3m (C?;v) 01
32/ 32 (D3) 3 (Cs) 6Cs [010]
3’ 3m (Csy) 3(Cy) 6o, L[010]
3 3 (Se) 3 (C3) 01
tetragonal — 4/m'm'm’  4/mmm (Dy,) 422 (Dy) 01
4 /m/'m'm  4/mmm (Dy)  42m (Daq) 01
4/m'mm  4/mmm (Dy,) 4mm (Cy) 01
4/mm'm’  4/mmm (Dy,) 4/m (Cy)  0C [100]
4 /mmm’  4/mmm (Dg,) mmm (D) 6CY [110]
42/ 422 (Dy) 4(Cy)  6C,  [100]
122! 422 (Dy) 222 (Dy)  6CY  [110]
1om’ 12m (Dsq) 222 (Dy) oy  L[110]
4'm2’ 42m (Doq) mm2 (Cy,)  6CY [110]
4m'm/ dmm (Cyy) 4 (Cy) Oo, 1 [100]
(Continue)
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M G H A axis/plane

A'mm/ dmm (Cyy) mm2 (Cyy)  fOoq 1[110]
4’/m’ 4/m (O4h) Zl (54) 01
4/m’ 4/m (O4h) 4 (04) 01

g 1(Sy) 2(Cy)  OIC,  [001]

y 4(Cy) 2(Cy)  0C,  [001]
orthorhombic — m/m'm/ mmm, (Day) 222 (Ds) 01
mmm/ mmm (Do) — mm2 (Cy) 01

m'm'm mmm (Dap) 2/m (Con)  0Cy, [100]

212/ 222 (Dy) 2 (Cy)  0Cs  [100]

m'm'2 mm2 (Cayy) 2 (Cy) o, 1 [100]

m'm2’ mm2 (Cyy) m (Cy) 0Cs, [001]
monoclinic 2/m/ 2/m (Cap) 2 (Cy) 01
2'/m 2/m (Cap) m (Cs) 01

2'/m/ 2/m (Caqp) 1(CY) 6C, [010]

m/ m (Cs) 1 (Ch) Oo 1[010]

2 2 (Cy) 1 (Ch) 6Cs [010]
triclinic i 1(C) 1 (Ch) 01

Table 2.2: Primary, secondary, and tertiary axes with respect to the symmetry operations

in the Cartesian coordinates.

primary secondary tertiary

cubic (100) (111) (110)

tetragonal [001] [100] [110]

orthorhombic ~ [100] [010] [001]
monoclinic [010] — —
triclinic — — —

hexagonal [001] [100] [010]
trigonal [001] [010] —

2.2.2 Irreducible Corepresentation of Magnetic Point Group

The irreducible representation of the type-(I) unitary crystallographic point group has
been presented in the previous literatures, e.g., Ref. [123]. On the other hand, the analysis
taking into account the antiunitary operation like # is required to obtain the irreducible
representations of the type-(II) and (III) magnetic point groups. Generally, the type-
(IT) and (IIT) magnetic point groups in Egs. (2.1) and (2.2) are represented by using the
unitary subgroup G and the antiunitary operation A as

M=G+AG. (2.3)
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CHAPTER 2. CLASSIFICATION OF MULTIPOLES IN 122 MAGNETIC POINT GROUPS

The time-reversal operation 6 is generally chosen as A in M although M is determined
irrespective of the choice of A. One of the choices of A in MM is summarized in
Table 2.1.

For the basis set of the irreducible representation I' with dimension dr in G

WJF’:(%F’ 7wgp‘7 (24)

and another set

A<¢F|E<¢F|:<¢ll—‘7 7¢5p|7 (25)

the representation in the nonunitary point group in Eq. (2.3) is given as follows [121, 124,
125]:

R o= o (M6 S ) ST R 26)
B =000 o (ar gy g ) =TT, 2

where R (B) represents the (anti)unitary point group operation in M and A is the matrix
representation of I'. The representation D' (R) [D'(A)] is the matrix representation of
the “corepresentation DI'.

The corepresentation DI is classified into three cases:

+|G| : case (a),
Z X' (B*)=¢ —|G| : case (b), (2.8)

BeAG 0 : case (c),

where |G| is the order of G and x'(B?) is the character with respect to the unitary
operation B% in I' [122, 126-130]. In case (a), AT(R) and [AT(ARA)]" are equivalent
and DI is reducible by using a unitary transformation. The irreducible form of DI is
expressed as

DF(R):<AF(§R) AF((’R)) for REG, (2.9)
D'(B)= (AF(BS‘_IW _AF(BOA_l)N> for Be AG, (2.10)

where N is the unitary matrix satisfying the relation A'(R)=N[AT(AT'RA)|*N~! [122]
(See Appendix B in detail). Hereafter, we denote the irreducible corepresentation (IR-
REP) in case (a) characterized by A'(R) for R and £AY(BA™Y)N for B as I'F, e.g.,
AE.

gOn the other hand, DI in case (b) composed as Egs. (2.6) and (2.7) is irreducible,
but AY'(R) and [AF(A’lRA)]* are equivalent as well as case (a). In this case, DI is
represented by the unitary transformation as

DF(R):(AF(SR) AF(()R)) for REG, (2.11)
DY (B)= (AF(Bil)N _AF(%A_l)N> for BEAG. (2.12)
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In case (c), AT(R) and [AF(A"'RA)]" are not equivalent and DI is irreducible.
Then, DI has the form in Egs. (2.6) and (2.7)

D' (R)= (AFSR) [AF(A—OlRA)]*) for REG, (2.13)
D" (B)= ([AFVE*B)}* Ar(f““)) for BEAG. (2.14)

Since DI in cases (b) and (c) is not block-diagonal with respect to the antiunitary oper-
ation B, we denote their corepresentation as I' for notational simplicity.

Finally, the Kronecker product of the IRREP is defined by using that of the unitary
subgroup, whose expression is given by

DI®DL;=Y dyjy. DT, (2.15)
k

where the coefficient d;;, is determined by [129, 131]

ézwwwmwwr
dij =" . (2.16)
1G]

o D XHR)P

ReG

The specific expression of d;;; in the type-(II) and type-(IIl) magnetic point groups is
presented in Ref. [132]. In Appendix B, we present the details of the representation theory
in a nonunitary group.

2.3 Classification of Multipole

By using the IRREP in the previous section, we classify four types of multipoles under
122 magnetic point groups. First, we show the multipole classification in the type-(II)
gray point group by taking an example of the cubic gray point group m3m1’. Since the
unitary subgroup m3m has 10 irreducible representations: A, Agg/u, Eg/u, T1g/m, and
Tog/u, 10 types of corepresentations are constructed in m3ml1’. By using Eq. (2.8), one
finds that all of the corepresentations consisting of Ay, y, Agg/us Eg/us Tig/u, and Tog/y
are classified into case (a). Thus, they are decomposed into two IRREPs, as shown in
Table 2.3, by using the unitary matrix N in Ref. [122], such as Alg—>A1ig. The sign in
the superscript of IRREPs stands for the parity about the time-reversal operation 6. We
show the classification of E, ET, M, and MT multipoles up to rank 4 for the 20 IRREPSs
as well as the reduction to the subgroups in Table 2.3. The reduction to each subgroup
describes the situation where the ferroic ordering of the multipoles presented in each left
column occurs. “P. axis” in Table 2.3 represents the primary axis of the point group
operations. For example, the symmetry operations of 4/mm'm’ with P. axis [001] are
represented as

HCQy, 0 é/[110]> 90;/[110]7

1,I1Cy.,IC},, 01,00 ,,001,,00 (110,00 [0, (2.17)

E,C,.,C3,,C3,0C,

2x)
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CHAPTER 2. CLASSIFICATION OF MULTIPOLES IN 122 MAGNETIC POINT GROUPS

Table 2.3: Irreducible corepresentations (IRREPs) of four types of multipoles: electric
(E), electric toroidal (ET), magnetic (M), and magnetic toroidal (MT) multipoles, in the
type-(I1) gray point group m3m1’. The character table of the unitary subgroup m3m (Oy)
is also shown to clarify the symmetry of each multipole. The IRREPs are obtained from
the irreducible representation of the unitary subgroup. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

TP M.y, MY 4'/m'mm’ [010
T M,

Y

E6C,3C36C58C; I 6ICy 30y, 60,8[C5 IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 1 1 1 1 AT, Qo Qs m3ml1” (100)
A, Ty, Ty m3m  (100)

Ayl -1 1 -1 1 1 -1 1 -1 1 Aj Gay- m31"  (100)
Ay, Myy. m3m’  (100)

E;2 0 2 0 -12 0 2 0 -1 Ef QuQu 4/mmm1’ [001]
Qv, Quo mmml1’  [100]

E, Ty, Tuu 4/mmm  [001]

Ty, T, 4’ /mmm’ [001]

T3 1 -1 -1 0 3 1 -1-10 T, QL GG 4/m1" [100]
Q;, G, Go 4/m1’ [010]

Qi G..Gh 4fm1’ [001]

T, Te My, M2 4/mm'm’ [100]

TS My, M2 4/mm'm’ [010]

TS M, M® 4/mm'm’ [001]

T3 -1 -1 1 0 3 -1 -1 1 0 Tf Qn.Q, & mmm1’ [011]
Qzz ny G mmml’  [101]

Quy, Q. GF mmml’  [110]

Ty, T,., Ty MZ 4 /mm'm [100]

T, Ty MP 4 /mm/m [010]

Toy Ty,  MP 4 /mm/m [001]

Ap,1 1 1 1 1 -1 -1 -1-1 -1 A}, Go, Gy 43217 (100)
AL, Moy, My m/3'm’  (100)

Ayl =1 1 =1 1 =1 1 =11 =1 AL,  Qup 43m1’ (100)
AZ, Ty m'3'm  (100)

E,20 2 0 -1-2 0 -20 1 Ef G, G 4221 [001]
Gy, Gas i2m1’ [001]

E; My, My, 4/m'm'm’ [001]

M,, My, 4/m'm'm [001]

T,.3 1 -1 -1 0 -3 -1 1 1 0 T, Q.Q% GS, 4dmm1  [100]
Q, Q2 G5, dmml’ [010]

Q. QF G, 4mm1  [001]

Th T,,T¢ My  4/m'mm [100]

T, Ty Mg, 4/m'mm  [010]

T, T M 4/m'mm [001]

Twd -1 -1 1 0-3 1 1 -1 0 T @ GGl Im21"  [100]
Q) G...GY, Am21’  [010]

Q% G, GY, 4m21’  [001]

T;, TP M., MJ 4 /m'mm’ [100]

|

]

My, 4 /m'mm’ [001

where we explicitly denote the operation axis or plane in the subscript. Meanwhile, those
of 4/mm/m’ with P. axis [100] are transformed in cyclic in accordance with the change of
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the P. axis as

E, 04:1:7 Cz{fmy CZg;? Hcéya Qcézv 005/[011]7 003[011]’
I,1C,,, ICZZ’I, Olx, QULW o, ., QUL[OH}; 90].[011]- (2-18)
We perform a similar procedure to the other 31 type-(I) gray point groups. We present

the classification tables of multipoles in the other 31 type-(I) gray point groups in Ta-
bles C.1-C.31 in Appendix C.

(a) (b) (©)
sz A;u ® ng = TE“ MO A;u ® Agg = AI“
— atomic
Mxyz
Em-r>0
4 BEm-r<0

5%

Figure 2.1: (a) Diamond structure with two sublattices A and B (left panel). The
IRREPs and the corresponding potential distributions in the two sublattices are shown
in the right panel. (b) The staggered M dipole along y axis, which is regarded as the
cluster M quadrupole M.,,. (c¢) The staggered zyz-type M octupole, which is regarded as
the cluster M monopole M. The arrows in (b) represent the spin direction and the color
in (c) represents the distribution of the M monopole charge defined by m-r.

These tables provide a guide to identifying an electronic order parameter and asso-
ciated symmetry reduction. For example, we suppose the two-sublattice ordering in the
diamond structure in Fig. 2.1(a) with the space group Fd3m and the magnetic point
group m3ml1’. In the two-sublattice diamond structure, the IRREPs for the sublattice
degree of freedom, I',,, are given by

Fsub:Afg@A”L (2.19)

2wy

where Afg corresponds to the uniform alignment of the scalar variable and Aj, corre-
sponds to the staggered one, as shown in the right panel of Fig. 2.1(a). Then, the spin
configurations in the two-sublattice diamond structure are characterized by the IRREPs
as follows:

Fsub®FM1:TIg@T5u’ (220)

where 'y (=T7,) is the IRREPs for the spin degree of freedom, i.e., the M dipole
(M, My, M.). In Eq. (2.20), the IRREP T}, represents the uniform alignment of the
M dipole, i.e., the FM order. On the other hand, the IRREP T4, which corresponds to
the staggered magnetic structure shown in Fig. 2.1(b), is regarded as the ferroic ordering

of M quadrupole from the Table 2.3%. In this way, one can easily identify the multipole

2Here and hereafter, we refer the name of the multipole orderings by adopting the lowest-rank multi-
poles belonging to the same irreducible (co)representation.
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order parameters, and then, predict the emergent physical phenomena, as discussed in
Sec. 1.5. In the present case of the staggered M dipole orderings in the diamond struc-
ture, one expects physical phenomena related to the M quadrupole, e.g., the transverse
magnetoelectric effect [78].

The classification in Table 2.3 can be used not only for the FM and AFM orderings
but also for the unconventional electronic orderings, such as the spin nematics [133-136],
excitonic states [52-57], staggered flux states [80-83], loop-current states [36, 37, 84-87],
and other higher-rank multipole orderings [14, 15, 35]. For example, when considering the
orderings of the atomic M octupoles (M., Mg, M, M, Mp?, M?ff, MP) with the IRREPs
Py =A@ T, BTy, in the diamond structure, the IRREPs corresponding to the two-
sublattice orderings are given by

11sub X I‘M3 - (AQ_g ¥ Tl_g @TQ_g>unif0rm S (Al_u @T;u ¥ T2_u>staggered . (2 2 1)

The former (latter) parentheses represent the uniform (staggered) alignment of the M
octupoles. From Table 2.3, one can find the corresponding multipole order parameters,
e.g., the staggered M,,, ordering with A} is regarded as the M monopole M, as schemat-
ically shown in Fig. 2.1(c). Then, one expects that the staggered M,,. ordering exhibits
physical phenomena driven by My, e.g., the longitudinal magnetoelectric effect.

Table 2.4: IRREPs of four types of multipoles in m'3'm’. The character table of the
irreducible representation of the unitary subgroup 432 is also presented. The superscript
“+” of IRREP stands for the parity with respect to the antiunitary operation A=61.

E 6C, 3C? 6C, 8Cs; IRREP E ET MT M MPG  P. axis
Ay 1 1 1 1 1 AT Qo, Q4 Mo, My m'3m’  (100)
A7 Go, Gy To, Ty 432 (100)
A 1 -1 1 -1 1 A Glaye Toy- m'3 (100)
Ay Quye M- ¥3m’ (100)
E 2 0 2 0 -1 Et  Qu Quu My, My, 4/m'm'm’  [001]
Qv, Quo My, My, m'm'm/ [100]
E- Gu,Grw Ty, T 422 [001]
Gy, Gao Ty, Ty 42m’ [001]
T, 3 1 -1 -1 0 T Qy, G, G* T,T* Mg 4/m’ [100]
Qs,  G,G: T, T¢ Mg, 4/m’ [010]
QL G.,G: T.T7 M, 4/m’ [001]
T, Q.,Q G, Te My, M 4m'm’  [100]
Q,, Q% GY, g My, M®  dm'm’ [010]
Q..Q* G4 Te M., M*  4Am/m’  [001]
T, 3 -1 -1 1 0 T Q,.Q) Gf TP My, M;,  m'm'm’  [011]
Q...Q;, GE 9 M., My, m'm'm’  [101]
Q:L’yv sz Gf Tzﬁ My, My, m'm'm/’ [110]
T, QF G,..GY T,..T. — MP m'2 [100]
Q) GGl T Ty — MP 'm/2 [010]
Q° G, GF T, T, M am'2 001

The multipole classification in type-(III) black-and-white point group is derived by a
similar procedure in the case of type-(II) gray point group. We show the result for m'3'm/
as an example. Since m'3'm’ consists of the unitary operations in 432 (O) and their
combination to the antiunitary operation, e.g., the product of the spatial inversion and
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time-reversal operations I, the IRREPs are obtained by the irreducible representations
of 432 as AT, AQi, E*, TF, and TQi, where the sign stands for the parity with respect
to #I. The multipole classification and reduction groups are summarized in Table 2.4.
The classifications for the other 57 type-(III) black-and-white point groups are given in
Tables C.32—C.88 in Appendix C.

By using Tables 2.3 and 2.4, we show the correspondence relation of the IRREPs for
the group-subgroup relation. For example, the staggered M,,.-type octupole ordering in
Fig. 2.1(c) leads to the symmetry reduction as m3m1’—m’3'm’. In this case, the IRREPs
of the parent point group m3m1’ are read by those of the subgroup m/3'm’ as follows:
(AL, ATL)—AT, (AL, AL) A, (B2, ET) B, (TE, TF,)— T3, (T4, T3,)—T5. Since
some of the multipoles belong to the same IRREP by the lowering of the symmetry,
additional crosscouplings between different multipoles are expected, e.g., the coupling
between the MT dipole (7,,7,,T.) and the ET dipole (G,,G,,G,) belonging to the
same IRREP T{. The classifications in all 122 magnetic point groups give useful and
systematic information about the multipole couplings when the symmetry is lowered by
the spontaneous phase transitions and the external fields.

2.4 Active Multipoles

Among the IRREPs, the totally symmetric IRREP represents nonzero multipole moments
in the system. As the electronic band structures and the multiferroic properties are closely
related to such active multipoles, it is important to show what types of multipoles belong
to the totally symmetric IRREP in each magnetic point group. In this section, we present
the active multipoles belonging to the totally symmetric IRREP in all 122 magnetic point
groups.

We first show the classification of the active multiples in each magnetic point group
in terms of the spatial inversion and time-reversal parities in Table 2.5. The E and ET
multipoles are active for all the magnetic point groups, while the M and MT multipoles
are active only for the type-(I) crystallographic point groups and type-(III) black-and-
white point groups without the time-reversal symmetry. The rank and types of the active
multipoles depend on the crystallographic symmetry, as will be discussed below.

We start with the discussion of the active multipoles under type-(I) crystallographic
point groups, where not only E and ET multipoles but also M and MT multipoles are
active because of the time-reversal symmetry (7)) breaking. The type of active multipoles
depends on the spatial parity, as shown in Table 2.5. In the 11 crystallographic point
groups with the spatial inversion symmetry (P): m3m, m3, 4/mmm, 4/m, mmm, 2/m,
1, 6/mmm, 6/m, 3m, and 3, even-parity E, ET, M, and MT multipoles are active. The
specific active multipoles up to rank 4 in each crystallographic point group are shown
in Table 2.6. On the other hand, in the 21 noncentrosymmetric crystallographic point
groups: 432, 43m, 23, 422, 42m, 4mm, 4, 4, 222, mm?2, 2, m, 1, 622, 6m2, 6mm, 6,
6, 32, 3m, and 3, odd-parity E, ET, M, and MT multipoles become active in addition
to the even-parity ones, which are summarized in Table 2.7. It is noted that the same
components of @y, and T}, (G, and My,) become active in the type-(I) crystallographic
point groups because of the absence of the antiunitary operations accompanied by the
time inversion.
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Table 2.5:  Active multipoles in the crystallographic point group (CPG), gray point group
(GPG), and black-and-white point group (BWPG) according to the spatial inversion sym-
metry (P), time-reversal symmetry (7), and spece-and-time inversion symmetry (PT).
“even/odd-parity” represents the spatial inversion parity of multipoles.

type magnetic point group P T PT even-parity odd-parity even-parity odd-parity
E, ET E, ET MT, M MT, M
(I) CPG m3m, m3, 4/mmm, 4/m, O x x v v

mmm, 2/m, 1,
6/mmm, 6/m, 3m, 3
432, 13m, 23, X X X v v v v
422, 42m, 4mm, 4, 4,
222, mm?2, 2, m, 1,
622, 6m2, 6mm, 6, 6, 32, 3m, 3
(I1) GPG  m3ml’, m3V, 4/mmm1’, 4/ml’, O O O v
mmm1’, 2/m1’, 11,
6/mmm1’, 6/m1’, 3m1’, 31
43217, 43m1’, 237, X O x v v
4221'. 12m1’, 4mm1’, 41, A1,
2221', mm21’, 21’, m1’, 11/,
6221', 6m21’, 6mml’,
61, 61', 321, 3m1’, 31/
(IIT) BWPG m3m/, 4/mm'm/, 4 /mm/m, 4/m, O x x v v
m'm'm, 2'/m/,
6/mm'm/, 6 /m'mm/, 6'/m/, 3m/
m'3m’, m'3'm, m'3, x x O v v
4/m'm'm’, 4 /m'm'm, 4/m'mm,
4 /m’ 4/m/,
m'm'm', m'mm, 2’ /m, 2/m’, 1/,
6/m'm'm’, 6/ /mmm’, 6/m'mm,
6'/m, 6/m’, 3'm’, 3m, 3
V37, I3, X XX 7 v v 7
422" 4'22! 42'm!, 42m/, 4'2'm,
dm'm!, 4m/m, 4, 4,
2'2'2, m'm/’2, m'm?2’, 2', m/,
6212 622, 6m'2, 6'm'2, 6'm2’,
6m'm’, 6'mm’, 6', 6, 32, 3m’

In the case of the type-(II) gray point groups, no M and MT multipoles become active
because of the presence of the time-reversal symmetry [39]. The even-parity E and ET
multipoles are active in all the type-(II) gray point groups, while the odd-parity E and
ET ones become active in the noncentrosymmetric 21 point groups: 4321’, 43m1’, 231’,
42217, 42m1’, 4mm1’, 41’ 41', 2221', mm21’, 21', m1’, 11’, 6221’, 6m21’, 6mm1’, 61’, 61,
321’, 3m1’, and 31’. The active even-parity E and ET multipoles in the centrosymmetric
11 gray point groups are summarized in Table 2.8, while the E and ET multipoles in the
noncentrosymmetric 21 gray point groups are shown in Table 2.9.

In the type-(III) black-and-white point groups, not only E and ET multipoles but
also M and MT multipoles become active, similar to the type-(I) crystallographic point
groups. In contrast to type-(I) crystallographic point groups, however, the different com-
ponents of Qy, and T, (G, and My,,) become active because of the difference in the
symmetry operations, i.e., the product operations of the time-reversal and unitary point-
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Table 2.6:  Active even-parity E, ET, MT, and M multipoles in the centrosymmetric
crystallographic point groups. The triclinic point group 1 (C}), in which all the even-
parity multipoles are active, is omitted.

even-parity even-parity
E ET MT M
=0 2 4 1 3 0 2 4 1 3
m3m (On) Qo Q4 Ty Ty
m3 (Th) QO Q4 Gmyz TO T, ]wa:yz
4/ mmim (D4h) Qo Qu Q4, Quu To T Ty, Thu
4/m (Can) Qo Qu Q4,Qu,Q%, G- G2 Ty T, Ty, Ty, Ty, M. M2
mmm (D2h) QO Qu7 Qv Q47 Q4u7 Q4v Gzyz TO Tu7 Tv T47 T4u7 T4v ]M-zyz
2/m (0211) QO Qu7 Qv7 Q47 Q4u7 Q4v7 Gy Gzy27 TO Tu7 Tm T47 T4u7 T4v7 ]\/Iy ]\4zyz7
Q. Qs,. QF, Ga, G5 Tow e, Ty, Mg, Mf
6/mmm (Den) Qo Qu Qo Ty T. Tho
6/ m (Osh) Qo Qu Qo G. G? Ty T, Tho M, M2
37@ (D3q) Qo Qu Q10, Qu G Ty T. Tho, Ty M3y,
3 (S6) Qo Qu Quo, G. GY, Ty T Tho, M, Mg,
Qua, Qup G4, G3p Tha, Ty Ms,, My,

group operations. The type-(III) black-and-white point groups are classified into three
types according to the presence/absence of the P and P7T symmetries. The first one is
the 10 black-and-white point groups with (P, PT)=(O, x): m3m/, 4/mm'm/, 4' /mm/m,
4 /m, m'm'm, 2'/m’, 6/mm'm’, 6 /m/mm’, 6'/m’, and 3m’, where the even-parity E, ET,
M, and MT multipoles are active, as shown in Table 2.10. The second one is the 21
black-and-white point groups with (P, PT)=(x,(): m'3'm’, m'3'm, m'3", 4/m'm'm’,
4 /m'm'm, 4/m/mm, 4 /m’, 4/m', m'm'm’, m'mm, 2’ /m, 2/m’, U, 6/m'm'm/, 6 /mmm/,
6/m'mm, 6'/m, 6/m’, 3m’, 3'm, and 3', where the even-parity E and ET multipoles and
the odd-parity M and MT multipoles become active, as shown in Table 2.11. The last one
is the 27 black-and-white point groups with (P, PT)=(x, x): 432", 43m/, 42'2', 422/,
42'm/, 42m/, 42'm, Am'm/, dm'm, 4, 4, 2'2'2, m'm/2, m'm?2’, 2', m’, 62'2', 6'22', 6m'2’,
6'm’2, 6'm2’', 6m'm’, 6'mm’, 6', 6, 32/, and 3m’. In this type of black-and-white point
groups, all types of the multipoles become active, as summarized in Table 2.12.

Let us remark on the active multipoles from the standpoint of the (magnetic) Laue
group, which has been often used for diffraction measurement. The even-parity E and
ET multipoles are well classified by 11 Laue groups: m3m, m3, 4/mmm, 4/m, mmm,
6/mmm, 6/m, 3m, 3, 2/m, and 1, whose correspondence to the magnetic point groups
is summarized in Table D.1 in Appendix D. Meanwhile, the even-parity M and MT
multipoles are well classified by 32 magnetic Laue groups: m3ml’, m31’, 4/mmml’,
4/m1’', mmml’, 6/mmml’, 6/ml’, 3m1’, 31, 2/m1’, 11, m3m, m3, 4/mmm, 4/m, mmm,
6/mmm, 6/m, 3m, 3, 2/m, 1, m3m/, 4/mm'm/, 4 /mm'm, 4/m, m'm'm, 6/mm'm’,
6'/m'mm’, 6'/m’, 3m’, and 2'/m’. The correspondence between the magnetic Laue groups
and magnetic point groups is shown in Tables D.2 and D.3 in Appendix D.

Tables 2.6-2.12 are useful to identify the type of the ferroic states with arbitrary
multipole moments [137]. For example, the ferroelectric, ferromagnetic, ferrotoroidal, and
ferroaxial states correspond to the states with active E dipole @Q; (i=z,y,z), M dipole
M;, MT dipole T;, and ET dipole G;, respectively [138-143]. One can easily find all the
magnetic point groups to possess these active dipoles from Tables 2.6-2.12 as follows:
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Table 2.7:

Active E; ET, MT, and M multipoles in the noncentrosymmetric crystallo-
graphic point groups. The triclinic point group 1 (C}), in which all the multipoles are

active, is omitted.

even-parity odd-parity even-parity odd-parity
E ET E ET MT M MT M
=0 2 4 1 3 1 3 0 2 4 0 2 4 1 3 1 3 0 2 4
432 (0) Qo Q4 Go Gy T T, M, M,
43m (Td) Qo Q4 szz Ty Ty szz
23 (T) QO Q4 Gzyz szz GO G4 TO T4 ]\/[zyz szz ]VIO ]\14
422 (Dy) Qo Qu Qu Go Gy Gy Ty T, Ty My M, M,
Q4u G4u T4u ]u-4u
42m (DQd) QO Qu Q4 Ql‘yz GU G4v TO Tu T4 Ttyz ]\/[v ALLU
Q4u T4u
dmm (C4v) QO Qu Q4 Qz Q? Gifz TO Tu T4 Tz T; A[Zixz
Q4u T4u
4(C)) Qo Qu Qu G. GY Q. QF Go Gy Gy Ty T, Ty M, M} T. T? My M, M,
Q4u G4u T4u ]V[4u
P Gi. T3, Mg,
ZL (34) QO Qu Q4 Gz G? erz Gv G4v TO T'u T4 Alz ]VI? TTyz ]\/fv ]\/1411
Q4u Qf Gmy ng T4u Tf ]V[zy Afllﬂz
1 T3,
222 (DQ) QO Qu Q4 Gzyz szz GO Gu CT‘4 TO Tu T4 ]\/[xyz Twyz ]‘/[O ]\/-[u A4-4
Qv Q4u Gv G4u Tv T4u ]\/-{v ]w—4u
Q4v G4v T4v A[41)
mm2 (Coy) Qo Qu Q4 Gy Q. Q2 Goy G, To Ty Ty Mgy, T. T7 My, ME,
Qv Q4u f sz Tv T4u Tzﬁ ]wfz
Q4’U T4v
2 (CZ) QO Qu Q4 Gy Gzyz Qy szz GO Gu G4 TO Tu T4 ]\/[y AIa:yz Ty szz JM-O ]\/[u ]u-4
Qv Q4u Gz Z Gv G4u Tv T4u ]LI; T;l A{v ]V[4u
sz Q4v G;j Q5 sz G4v sz T4v Aff Tyﬁ ]v-{zz ]\/-{41)
Qi Gg, T3, Mg,
Q4 G, sz Mg
m (Cs) QO Qu Q4 Gy Gzyz Qz Q? Gzy GZXZ TO Tu T4 Aly ]ijyz Tz Tza ]\{[zy ]w-zi!z
Qv Q4u Gg Qz Qg Gyz ng Tv T4u ]V[; Tz Tza Afyz ]Lﬂllz
Q2 Quo Gf Qf sz Teo T ]wgf Tzﬁ ]wfz
Qs Q7 Gl zi, r My,
ny T4y
_622 (DG) QO Qu Q40 GO Gu G40 TO Tu T40 ]\/[0 A4u ]V[40
6m2 (D3n) Qo Qu Quo Qsp Gy Ty T, Ty Ty My
6mm (Cov) Qo Qu Quo Q. Q2 Ty T, Ty T, 17
6(Cs) Qo Qu Quo G. G Q. QF Go Gy Gy To T, Ty M, M7 T, T My M, My
6 (Can) Qo Qu Quo G. G2 @34 Gia To Ty Ty M, M7 Tsa My,
Qs G Ty My,
32(Ds) Qo Qu Quo Gap Qs Go Gy Gy Ty T, Tio My Ty Mo M, My
Qu G Ty My
3m (Cyv) Qo Qu Quo Gs Q: Qsa Gia To Ty T My, T, Ts, Miq
Q4b ? Ty Tza
3 (CS) QO Qu Q40 Gz GSa Qz Q3a GO Gu G40 TO Tu T40 ]u-z ]\/1311 Tz TSa ]\/[0 ]\/[u ]\/140
Qua G Qb Gia Ty, M, Ty My,
Qu G¢ o Gy Ty M2 Ty My,
e E dipole:
dmml’, 41, mm?21’, 6mml’, 61’, 3m1’, 31’, 21, m1’, 11', 4mm, 4, mm?2, 6mm, 6,
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Table 2.8:  Active even-parity E and ET multipoles in the centrosymmetric gray point
groups. The triclinic point group 11’, in which all the even-parity E and ET multipoles
are active, is omitted.

even-parity

E ET
=0 2 4 1 3
m3ml’ Qo Q.
m31’ Qo Q4 Gay-
4/mmml’ Qo Qu Qu, Quu
4/m1/ QO Qu Q47 Q4u7 Q4az Gz G?
mmm1’ QO Qu7 Qv Q4’ Q4u7 Q4v Gzyz
2/m1/ QO Qu7 Qm sz Q47 Q4U7 Q4v7 Q4ay7 ny Gy Gmyzu Gj7 Gyﬁ
6/mmml’ Qo Qu Quo
6/ml" Qo Qu Quo G. G2
3ml Qo Qu Qu0, Qv Gsp
31/ QO Qu Q40a Q4a7 Q4b Gz G3a7 GSb’ G(;

Table 2.9: Active E and ET multipoles in the noncentrosymmetric gray point groups.
The triclinic point group 11’ in which all the E and ET multipoles are active, is omitted.

even-parity odd-parity
E ET E ET
(=0 2 4 1 3 1 3 0 2 4

4321 Qg Q4 Gy Gy
Zl?)ml, QO Q4 szz

231 QO Q4 Gzyz szz GO G4
4221 Qo Qu R4, Quu Go Gy Gy, Guu
42m1’ QO Qu Q47 Q4u szz Gv G4v
dmml’ QO Qu Q47 Q4u Qz Q? ng

41, QO Qu Q4a Q4u~, Q4az Gz G? Qz QS GO G’u, G47 G4u> GZZ

' Qo Qu  QuQu.0Q% G. G2 Quye, Q7 Gu, Goy G, G,
2221 QU Qu? QH Q4a Q4u7 Q4v nyz mez GO Gu7 Gv G4> G4ua G4v
mm2l" Qo Qu, Qv Qu, Quuy Quo Gy Q- ¢ QF Goy — G%..GI.

21 QO Qm vi sz Q47 Q4u7 Q4v, Gy Gmyz> QU szZ7 GO Gm Gm G47 G4u7 G4va

@3, Q4 Gy, Gy 5,Qf G Gy, G,
m]-/ QO Qu7 Qv’ sz Q47 Q4u7 Q4v7 Gy Gzyz: Qzu Qz ?7 (;7 Gzy7 Gyz GZy szv
Q5 Q1 Gy, Gy Qf, Qf Gl Gl

62217 Qo Qu Quo Go G Gao
6m21" Qo Qu Qa0 Q3 G
6mml1" Qo Qu Qa0 Q- Q7

91/ QO Qu Q40 Gz G? Qz Q? GO Gu G40

61" Qo Qu Qo G. G2 Q34, Q3p Gia, G
321" Qo Qu Qa0, Qup G Q3 Go G, Gao, G
3ml" Qo Qu Qua0, Quo G Q- Q3q4, QF Gia

31, QO Qu Q40; Q4a7 Q4b Gz G3a> ng, G? Qz Qiiru Q3b7 Q(zl GO Gu G40> G4m G4b

3m, 3,2, m, 1, 4m'm’, m'm, 4, m'm’2, m'm2’, 6m'm’, 6/mm’, 6, 3m’, 2', m/,
e M dipole:
4/m, 4,4, 6/m, 6,6,3,3,1,1,2/m, 2, m, 4/mm'm’, 42'2', 4m'm’, 42'm’, m'm'm,

222, m/m/2, m'm2', 6/mm'm’, 62'2', 6m'm’, 6m'2’, 3m’, 3m’, 32, 2'/m’, 2/, m/,
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Table 2.10:  Active even-parity E, ET, MT, and M multipoles in the centrosymmetric
black-and-white point groups.

even-parity even-parity
E ET MT M
=0 2 4 1 3 0 2 4 1 3

m3m’” Qo Qs M,

4/mm'm’ Qo Qu Q4, Quu Ty, M, MY

Yfmmm’ Qy  Qu Qu, Quu T, T M,
4/m Qo Qu Qs Qu, Q5. G. G2 Ty, Ty Tiv, Ty, My, M?
mm'm Qo Qu, Qv Qu, Quuy Quo Gy T., T, Ty — M. M2 M?
2//ml QO QU7 Qw sz Q47 Q4u7 Q4v7 Gy GzyZ7 sz> Tyz Tz?z> sz, j\/[m ]sz A/f?» Af§7
Qs Q1 Gy, Gy TL, T, MY, M

6/mm'm’ Qo Qu Quo M, M2

6'/m'mm’ Qo Qu Qa0 Tha M3,
6’/m’ Qo Qu Quo G. G¢ Thay Ty M3, M3,
3m/ Qo Qu Qa0, Qu G m M, Mz, MY

e MT dipole:
dmm, 4, mm2, 6mm, 6, 3m, 3, 2, m, 1, 4/m'mm, 4/m’, mmm’, 6/m'mm, 6/m’,
3m, 3,2 /m, 2/m/, 1, 42'2' 4'2'm, &' 2'2'2, m'm2’, 62'2', 6/'m2’, 6, 32', m’, 2,

e ET dipole:
4/ml', 41, 4V, 6/m1’, 61, 61, 31, 31, 2/m1’, 2V, mV’, 1V, 1V, 4/m, 4, 1, 6/m,
6, 6, 3,3,2/m, 2, m, 1, 1, 4/m/, 4/m/, 4 /m, 4, 4 6/m/, 6/m', 6/m, 6, 6, 3,
2'/m/, 2/m!, 2" /m, 2" m/ 1.

The above example means that our multipole classification includes the previous clas-
sification for the ferroelectric, ferromagnetic, ferrotoroidal, and ferroaxial states based
on the symmetry analyses [95, 141, 144-146]. Furthermore, Tables 2.6-2.12 unveil un-
conventional order parameters other than the dipoles, e.g., E/M/MT/ET quadrupoles
and octupoles. Thus, the present classification gives a complete guide to systematically
identifying the electronic order parameters.

Tables 2.6-2.12 also enable us to understand a clue of multiferroic phenomena through
the couplings between the multipoles at the microscopic level. Let us take an example of
the cubic crystal with m3m1’ symmetry, where the E monopole @y and E hexadecapole Q4
are active up to rank 4 as shown in Table 2.8. Once the spontaneous symmetry breaking
to m’3'm’ occurs, M monopole M, and M hexadecapole M, are additionally activated as
shown in Table 2.11. In such a situation, there are additional contributions including M,
and M, to the free energy in the form of the multipole coupling between (Qo, Q4) and
(My, My). Similarly, one can always perform the Landau free energy expansion in terms
of any multipole order parameters systematically by using Tables 2.6-2.12 [11, 13].

Moreover, one can immediately find the additional active multipoles induced by ex-
ternal fields like electric and magnetic fields. For example, when the symmetry is lowered
from m/3'm’ to 4m’m’ under the magnetic field along the z axis, H, the additional active
multipoles up to rank 4 are represented by Q., Qu, @Y, Quu, GS., M., M,,, M, My, and
Ty, as shown in Table 2.12. Then, there are the additional multipole couplings, which
become the source of the field-induced multiferroic phenomena. For example, since (),
and Q,, which correspond to the electric polarization P, and the (322 —7?)-type symmet-
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Table 2.11:  Active even-parity E and ET multipoles and odd-parity MT and M multipoles
in the noncentrosymmetric black-and-white point groups with the P7 symmetry. The
triclinic point group 1’ is omitted, where all the even-parity E and ET multipoles and
odd-parity MT and M multipoles are active.

even-parity odd-parity
E ET MT M
(=0 2 4 1 3 1 3 0 2 4
m’g’m’ QO Q4 ]\/[0 Z\/f4
m'3m Qo Q4 Ty
m'3 Qo Q4 Gzyz szz M, M,
4/m’m’m’ Qo Qu Q4; Quu My M, My, My,
4//m/7n/m QO Qu Q47 Q4u szz Mv A{4v
4/m'mm  Q Qu Q4, Quu T, T Mg
4//m/ QO Qu Q4~, Q4U7 Gz Gf; sz27 Tzﬂ A[vv ]\/[zy M4v7 Affz
Q1.
4/m/ QO Qu Q4: Q4u7 Gz G? Tz Tza ]V[O Mu M4> A44u7
Qi M
mmm' Qo Quy Qv Qu, Quu, Gy T. T, T/ M, Mg, My,
Q411
m'm'm/ QO Qm QU Q47 Q4ua Gwyz Twyz ]WO ]Wu, AL; ]\/[47 M4ua
Q4v ]\/[411
2'/m Qo Qu, Qo, Qy, Gy Gayss T,,1, Ty TF, My, M. Mg, Mg,
sz Q4u-, Q4v7 Ggo;’ Gg Tz37 Tf Mfz? ]wfa
Q3 @1,
2/m/ Qo Qu, Qu, Qa, Gy Guyss T, Tiyzs My My, My, My,
sz Q4u-, Q4117 G;7 GS Tya7 Tyﬂ ]\/[zz A44u7 ]\/14117
Q1 Ql, Mg, M)
6/m’m’m’ Qo Qu Quo My M, My
6'/mmm’ Qo Qu Qa0 T3p My,
6/m’mm QO Qu Q40 Tz Tza
6'/m Qo Qu Qa0 G. G? Tsa, T3y Myq, My,
6/m/’ Qo Qu Quo G. G? T, Ty My M, My
3m/ Qo Qu Q10, Qu G T3 My M, Myy, My,
3im Qo Qu Quo0, Qu G T, T3q, T} My,
3 Qo Qu Quo, G. G?, T, T, My M, My,
Qua, Qup G'3q, G3p Tsq, T Mya, My,

ric strain g,, respectively, become active, one expects that the magnetoelectric coupling
H_. P, and magnetoelastic coupling H.e, appear in the free energy expansion.

In addition, our result can be used when constructing the so-called hyperfine coupling
to investigate the field dependence of NQR/NMR spectra, which will be discussed in
Sec. 4.6 [147]. Besides, such multipole couplings in each magnetic point group are also
related to the band modulations [37, 41, 42, 88] and field responses [39, 40, 148].

2.5 Field Responses

According to Neumann’s principle, macroscopic physical responses are determined by the
crystallographic point group symmetry [96, 97]. This statement is generalized to magnetic
point groups; macroscopic responses in magnets, such as the linear magnetoelectric effect,
the Hall effect, and the nonlinear transport, are determined by the magnetic point group
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Table 2.12: Active multipoles in the noncentrosymmetric black-and-white point groups
without the PT symmetry.

even-parity odd-parity even-parity odd-parity
E ET E ET MT M MT M
=0 2 4 1 3 1 3 0 2 4 02 4 1 3 1 3 0 2 4
lesm, QO Q4 szz ]\nyz ]w(] A14
4'32' QO Q4 CTYO G4 AJzuz szz
27 Qo Qu  Qu Go G, Gy Te M. Mo T. T¢ M
Q4u G4u,
422/ QO Qu Q4 CTYO Gu G4 T’o T4v ]\nyz Twyz A[v AL&U
Q4u G4u
2m Qy Qu  Qu Quy- G, G e M., M? 17 M, M}
Q4u,
Zl,Zm, QO Qu Q4 szz G’b G417 T’o T4v ]\/]xyz A/[O Alu A[4
Q4u ]\/141;
¥m2 Qo Qu  Qa Qf G, G. L T, M, L T¢ Mg,
Q/1u,
am'm’ Qy Qn Qs Q. Q° G2 Tg M, M? M, M, M,
Q4u ]\/]4u
Imm’ Qo Qu  Qa Q. Q° Gs, T, Tu M, 77 M,, My,
Q4u,
4 QO Qu Q4 Gz GS Qz Q? GO Gu G4 Tv T4v ]\/jzyz szz Ajv A‘wﬂlv
Quu G Toy T, M? 77 M,, My,
) Q. Gs.
4/ QO Qu Q4 Gz G;} szz Gz' G4v T‘v T41 ]\nyz Tz Tza ]LIO A/[u AL!
Qu QG GL T,TL M My,
Q4 M,
2'2'2 QO Qu Q-l Ga:yz mez GO Gu G4 Try sz AJZ ;\/[: Tz TZ(I A’[ry ]\Ifz
Qv Qu G, Gu Ty, MP T’ My,
Q4U G417
mm2 Qo Ow O Grpe Q. Q° G Gi. T, T% M, Mg T, T¢ M,. Mg
Ql’ Q4u Qf Giz T4y A/[yﬁ T:f A[fz
Q"iv
m'm'2 Qo Q. Q4 Gy Q. QF Gy GYL Toy Ty M, MY Toy. My M, My
Q@ Qu Q2 Gl . M M, M,
Q4v AL;,,
m Qo Qu Q4 Gy Guy: Q. Q2 Gy G, T, Ty M, My T,T,,. My M, My
Qv Q4u G(; QT Qs Gyz GZZL Tyz Tszg ]\/jx ]\Jf T;y A[ﬂ A‘W/Llu
Qe Qu G? 3 e s M? s M., My,
o, @, Q ¢t DY Mg,
7 Qo Qu Qi Gy Gy Q Quy Go Gu Gy T,, T& M, M T, T¢ M, Mg
Qv Qu G o G, G T,. Te M, M® T, T° M,. Mg
Qe Qu Gy Q@  Gu G . oM T My,
Q3. Qi G4, Gl T, M) 17 My,
622" Qo Qu  Quo Go Gy Gy M, Mz T, T9
6'22' QO Qu Q40 CTYO Gu G4O T4a ]\43(1 TSa A14a
6m'2 Qy Qu Qu Qsp Gy M, M T3, My,
(m'2 Qo Qu  Quo Qs G Ty M, My M, My
6'm2" Qo Qu  Quo Q3p Gy Ty, M, T, T¢
6777,/777/ Q() Qu Q4(] Qz Q: ]\/[z Aﬁ[za ]\/[(] A/[u ]\/[40
6'mm’ Qo Qu Quo Q. > Thq Ms, Ty, My,
6/ QO Qu Q4O Gz GS Qz Q? GO Gu CT‘40 T4a ]\JSQ T3a A/Lla
_ Ty M, T My
6 Qo Qu Qu G. GY Qsa Giua Thq My, T. T¢ My M, My
Qlib G4b T4b Aflib
3m’ QO Qu Q40 GSb Qz QSa G4a T4a ]\/[z ]wBa T3b ]\/[0 A/[u ]w40
Qup Q7 Mz My
32, QO Qu Q40 GSb QSb GO Gu G-’l() T4u ]\/]z ]\JS(L Tz TSu AL!(L
Qu Gy MY T
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symmetry [92-95, 149-159].

In this section, we present a relation between the physical response tensors and active
multipoles in magnetic point groups toward the understanding of the microscopic essence
in addition to the symmetry for the responses in the magnetic materials [148]. In the
following in this section, we first show the symmetry analysis of the response tensors
and the relation to multipoles in Sec. 2.5.1. Then, we discuss the role of the antiunitary
operation on the response function and how it relates the active multipoles by analyzing
the linear and second-order nonlinear Kubo formula in Secs. 2.5.2 and 2.5.3, respectively.

2.5.1 Tensor Analysis

We show the relation between the response tensor components and multipoles based on
the point group symmetry. The response tensor y"8*"#] is defined as

Blrsl =y nsxnr] plnr] (2.22)

where B8l and F["#! are the rank-ng output response and the rank-np external in-
put field, respectively, which are typically represented by the electric, magnetic, elas-
tic, and their product degrees of freedom. For example, FI"Fl represents the electric
field E, the magnetic field H, the (symmetric) stress 7 and their combination, while
B8l represents the electric polarization P, the magnetization M, the symmetric strain
g;j=(0yu;+0;u;)/2, and the rotation w=(V xu)/2 where w is the displacement vector?.
B8] also represents quantities for the transport phenomena, such as the electric (thermal)
current J (J?) and the spin current Jiy=0:J;. BEach external field and response have the
correspondence to the multipoles, e.g., electric field E <+ E dipole and symmetric strain
g« E monopole and E quadrupole. The relation between the input field /output response
and multipoles is summarized in Table 2.13, where the upper (lower) panel stands for the
correspondence between the external field (response) and multipole.

In accordance with the spatial inversion parities of BI"58! and Fl"rl y[rBx"r] represents
a polar or axial tensor; x"2*"#] is the polar (axial) tensor with the parity

P:(_l)ns-i-np [7):(_1)”5-0—”1?4-1]' (223)

In the following, we show the correspondence between multipoles and rank-1-4 tensor
components in Secs. 2.5.1-2.5.1, respectively. See also Appendix E for details of the
derivation. Here, we mainly focus on the response tensors in cubic, tetragonal, orthorhom-
bic, monoclinic, and triclinic systems, and show those in hexagonal and trigonal systems
in Appendix E.2.

Rank-1 tensor

The rank-1 response tensor x°*! for the scalar response Bl =(B) with np=0 and vector
field Fl=(F,, F,, F,) with np=1 is related with the dipole (X,, X,, X.) as

XOU=(X, X, X.), (2.24)

3Tt is noted that w in the long-wavelength limit does not contribute to the free energy, since it
corresponds to a uniform rotation of the crystal.
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Table 2.13: Correspondence of the external fields and the responses to the multipoles. The
spatial inversion parity of the external field or the response is shown in the column of P.
In the column of multipole, X, (I=0, 1,2) means the rank-/ multipole (X=Q, G, M, T).

ng P external field multipole
1 + magnetic field H M dipole (M)
- electric field E E dipole (Q1,,)
2 + (symmetric) stress T E monopole (Qy)
E quadrupole (Qa,)
ng response
1 + magnetization M M dipole (M)
rotation w ET dipole (Gy,,)
— electric polarization P E dipole (Q1m)
electric (thermal) current J(J®)  MT dipole (7},,)
2 + symmetric strain € E monopole (Qy)
E quadrupole (Q2,,)
— spin current J® ET monopole (Gy)

E dipole (Q1.)
ET quadrupole (Gs,,)

where X stands for the polar multipoles (Q or T') [axial multipoles (G or M)] when x[°*! is
the polar (axial) tensor. The dipoles X,, X,, and X, in Eq. (2.24) is Xizxg?;l] (i=z,y,2).
The response tensor y!'*Y is obtained by transposing !, which is expressed by the
same type of multipole as y0*1.

The electrocaloric (magnetocaloric) effect where the entropy variation AS is induced
by the electric field (the magnetic field) as AS=) . p,E; (AS=)",¢q;H;), is described by
one of the rank-1 polar (axial) response tensors. As AS corresponds to E monopole (Qy),
the tensor component of p; (g;) is described by the E dipole (Q., @y, Q.) or MT dipole
(T, T,,T.) [the ET dipole (G,,G,,G,) or M dipole (M,, M,, M,)]. Here and hereafter
in Sec. 2.5.1, we do not distinguish the multipoles with the opposite time-reversal parity
for simplicity, which depends on the microscopic process in the presence/absence of the
dissipation, which will be discussed in Secs. 2.5.2 and 2.5.3.

Rank-2 tensor

We consider two types of rank-2 tensors, x"*! and y[©*2. y[*1 is the response tensor
for Bl =(B,, B,, B,) and Fll=(F,, F,, F,), which is related to the rank-0 to 2 multipoles
as monopole Xy, dipole (Y;,Y,,Y,), and quadrupole (X, X,, Xy., X.s, X;y). The tensor
component of y["* is given by

XO_XU+XU Xa:y_‘_yvz Xz:r:_Y;/
X[lxl}: Xoy—Y, Xo—X,—X, Xyp.+Y, |, (2.25)
XoodY,  X,.—Y, Xo+2X,

where X=Q or T (G or M) and Y=G or M (Q or T) for the polar (axial) tensor. See also
Appendix E.1.1 for details. When y["* is a polar tensor, such as the magnetic suscepti-
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bility tensor for Fl'=H and B =M, the dielectric susceptibility tensor for Fl'=F and
BU =P, and the electric conductivity tensor for Fl!=F and B =J, the corresponding
multipoles are the E (MT) monopole and E (MT) quadrupoles for X and ET (M) dipoles
for Y. Meanwhile, when y'*" is an axial tensor, such as the magnetoelectric tensor
for F'=E and BM=M or Fl=H and BM=P, the ET (M) monopole and ET (M)
quadrupoles for X and E (MT) dipoles for Y are relevant.

x[9%? is another rank-2 tensor for BY=(B) and FP'=(F,,, F,,, F..,F,., F.., Fy,)
where Fj;=F};. As F 2 is decomposed into the monopole and quadrupole components,
the tensor component of y[°*? is given by
Xo— X+ X\

Xo—Xu— X,
X[OXQ]: Xo+2X,
X,
sz
X

zy

(2.26)

Thus, the active monopole and quadrupole contribute to y°*%. See Appendix E.1.2
for details. For example, the piezocaloric tensor for FPl=7 and BY=AS corresponds to
x°*2 where the E (MT) monopole and quadrupole are relevant. The multipole expression
of x*% is obtained by transposing x[°*?.

Rank-3 tensor

0x3] [1x2

We consider two types of rank-3 tensors, y!'*Z and y! Y2 is the rank-3 tensor
for Bl=(B,, B, B.) and FP'=(F,,, F,,, F.., F,., F.., ), which is expressed by dipole
(X2, Xy, X.), quadrupole (Y, Y}, Y,., V.., Yz, ), and octupole (X, X&', X, X2, XP X0 X7)
as

3X,+2X¢ 2(X)—Vo)+ Xy — X0 =X 2 X4V, )+ X. - X2+ X7
2(X.+Y, )+ X, — X+ X7 3X,+2X7 22X -V + X, —Xo—X?
Nl 2X! Y, )+ X, — X0 —XP 2(X;/+sz)+Xy_X;+X/§ , 3X,+2X¢
Yut Yot Xay: XY+ X XE = XD =X =V + X, - X+ X
— X, Yo + X, - X2+ X ~Yu+ Yo+ Xay: — X +Y,+ X, — X0 — X
— XVt Xy = X=X =X =Y+ X, — X+ X! —2Y,+ Xy
(2.27)

It is noted that both X; and X (i==x,y, z) stand for the dipole but they are independent
with each other. See Appendix E.1.3 for details. x!'*? is polar for the piezoelectric tensor
(FRPl=7, Bl =P) and second-order nonlinear conductivity (Fi[jﬂ:EiEj,B[”:J ) where
X=Q or T and Y =G or M, while it is axial for the piezomagnetic tensor (FIP'=7, Bl!l=
M) where X=G or M and Y=Q or T. The multipole expression of the tensor 2>,
e.g., the spin conductivity tensor (Fl=E, BZ'=J%), is obtained by transposing y!"*Z.
x©%3 is another rank-3 response tensor for the rank-0 response Bl’)=(B) and rank-
3 field F[g}:(mem Fyyy; Fzzza Fyyzy Fzz:cy mey, Fyzz; Fzrz; Fscyya Fzyz) where Ejk:Fjik:-Fikj-
As FPl itself is decomposed into the dipole and octupole components, y[°*? is also related
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to them, which is shown as

T

3X,+2X°
3X,+2X0
3X,+2X°
X, —Xo— X6
oxs_ | Xa= X5 = X7
| X, - Xxo-XP
X, —X3+X)
X.—Xo+XP
Xx_X.?_’_Xa:IB
Xxyz

(2.28)

See Appendix E.1.4 for details. x[°*3, such as the third-order electrocaloric effect, is
relevant with X =@ or T'(G or M) for the polar (axial) tensor. The multipole expression
of xB*% is obtained by transposing x[°*?.

Rank-4 tensor

We consider two types of rank-4 tensors, y*% and y?*. x[**3] is the rank-4 response ten-
sor for B! :(B;m Bya Bz) and Fl :(me;m Fyyy7 Fez Fyyza Fos Fmacya Fyzz; - nyy; F:vyz)
where Fjj,=Fjj,=Fj,;. The relevant multipoles are ones with rank 0-4: monopole X,
dipole (Y;,Y),Y>), quadrupole (X, Xy, X;., X.0, X)), octupole (Yo, V2, V0, VY2 VP VP,

and hexadecapole (X4,X4u,X4U,Xfx,Xfy,XfZ,Xfx,Xfy,sz). The tensor component of

%3 is given by

X[1><3]:
3(Xo— Xyt Xo) +2Xs—Xau+ Xgy  3(-Va— Koyt VO-YI)+ X8 - XY, 3(Y,—Xop— Y0 -Y))-X§ X}, B
3(Y,— Xy —YO-VYD) =X - X 3(Xo—Xu—X)+2Xs—Xau—Xao  3(—Yo—X,o+ Y-V )+ X2 - X1
(=Y~ KXot V=Y )+ X5~ Xy, 3(Yo—Xy— YO -YF)-X§, — X, 3(Xo+2Xy)+2X4+2X 4,
~Y,— Koo — AV +2Y) +2X)) Yot Xp, ~ YOV +Xg - XY Xo+ X0 —5X, Yoy — Xa— Xaut Xuo
Xo+ X, = X! Yoy = Xy—Xpu— X1y  —Yo—Xpy—av2+2Y y2x7 Y+ XL, YY) +Xg - X),
Yo+ XL, ~YO4YP+ X -X),  Xo—Xut+ X! ~Yop.—Xa+2X1, Y, Xy — AV p2v) 42X
Y~ Koy +4Y2 422 42X],  Xo+ X4 X)+Yey—Xa—Xau+ Xay  — Yot X +Y04+YF - Xg - XY,
~Y+ XL+ +Y) - Xg - Xy, Vo Xy HAY2 42V 42X Xo+ XU 4+5X,+Vays — Xa—Xau— X1y
Xo—Xu=XU4Yey—Xa42Xe, Yo+ XL +Y24Y) - X3 - X), Yy~ Xoo AV +2Y,) +2X,
5X,.—2Y) +2X75 5X.0—2Y, +2X}, 5X .y -2V +2X),
(2.29)

Note that (X,, X!, X"), (X,, X/, X"), and (Xyzale/z) (cyclic) are introduced to express
the two independent quadrupoles. See Appendix E.1.5 for details. x'*® corresponds to
the response tensors, such as the third-order nonlinear electric conductivity. The relevant
multipoles are X=@) or T"and Y=G or M for the polar tensor, while those are X =G or
M and Y=Q or T for the axial tensor. The multipole expression of y®*! is obtained by
transposing y!1*3,

x#*? is another rank-4 tensor for B?'=(B,,, By, B.., By., B.., B.,) where B;;=DBy;

yy» Yz
and FP=(F,,, Fyy, Fo., By, Fop, Fyy) where Fj;=Fj;,. The tensor component of Y2 s
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related to the rank 0—4 multipoles, which is given by

X[2><2}: (Xu Xlt) ’ (2.30)

X Xit

Xi=
XO+Xu+Xv +2X4_X4u+X4v X6+X{L_2X1(1_) +Xxyz_X4+2X4u X(l)‘l‘)h(j_) +X1(1_) _Xxyz_X4uU+
X6+X{L+2X1(;7)_Xxyz_X4+2X4u Xo+Xoy—Xo+2X4— X4 — Xgo X6+X7(¢+)_X1<)7)+Xzyz_X4uv— ’

X+ X4 X 4 X o= Xy X4+ X7 =X = Xy — X Xo—2X, 42X, 42Xy,
(2.31)
Xit=
X5 —ovfyox) —2Y, + X vy - xg, - XD, e X - vervP e xg - xf
2V, + X5 —vervP+ xo — X7 X3 oy roxy, 2V, + X0 ve v - xe —xP |
2V, + X ver vl - xg - X 2y, X5 ve vl xg, - X5 X —ovf4ox?
(2.32)
Xtl=
X vovf vox? Y+ X v vl xe —xP oy, 4+ X0 —ve-vP - xo - x8
oY, + X1 YY) - x5, - X1, X5 vavy vox)) oY, + X5y v e xg - Xy |
oY, + X 4ve—viexe —xP oy 4 X —ve—vPoxg - xP X5 vavPrax?
(2.33)

3X0+3Xy—3X,— Xaue — Vet 3Xay—2Y2+2XY, Yy +3X.0+2V, 0 +2X))
Xtt= | Yat3Xpy+2Y2+2X7  3X0+3X,+3X,— Xpuos —Yat3X,.—2Y2+2X] |, (2.34)
Y+ 3X -2V +2X), Yot3X,. 2V 4+2X),  3Xo—6X,—X4+2Xy,

where Xyyp+=X4+X4,+X4,. We also introduce (f(g,f({)), (Xu,f(l(f),f(;), (XU,X#)),
and (ngf), X{,(Zi)) (cyclic) for notational simplicity. See Appendix E.1.6 for details. y2*?
represents the rank-4 tensor, such as the elastic stiffness tensor and magneto-Seebeck

tensor, which is related to the multipoles X=0) or T"and Y =G or M for the polar tensor
and to X=G or M and Y =@ or T for the axial tensor.

2.5.2 Linear Response Function

The multipoles with the opposite time-reversal parities, E and MT (ET and M), are
not completely distinguished by the above analyses based on the point group symmetry.
For the equilibrium physical properties, the relation between the time-reversal parities
of the response tensor and corresponding multipoles are determined by the time-reversal
parities of the input field and output response [92, 93], e.g., the linear magnetoelectric
tensor in an insulator is the time-reversal odd tensor with the relation to the M and
MT multipoles. Meanwhile, the restriction for the transport tensor by the time-reversal
symmetry is not so simple as mentioned in Sec. 1.5 and has been investigated by using the
Omnsager’s reciprocal relations [149, 153, 154] and the Kubo formula [150, 156-158]; the
time-reversal property of the transport tensor is determined by the microscopic dissipation
processes. Thus, we demonstrate the relation of the multipoles and response tensors by
considering the dissipation processes based on the Kubo formula [38, 39].
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When we consider the external perturbation Hamiltonian Hex=— ) ; flij(t), where

Fit)=/" OOOO g:r’F et s the jth component of an external field for §>0, the linear
complex susceptibility x;.;(w) satisfies the relation

(Bi= [~ S0 ) P (2.3)

(Bi,) is the expectation value of the w component of B;. Considering the uniform external
field with the wave vector g— 0, and then taking the static limit w—0, the linear response
function for the periodic system is represented as

Xisi = Xij (w—0)
By A

- f (k)]
__Vl;n en(k)—em(k) ihd+e,(k)—en(k)’ (2.36)

where A=dA/dt. X=(nk|X|mk) is the matrix element between the Bloch states |nk)
and |mk) with the band indices n and m, respectively, and the wave vector k. f[e,(k)]
is the Fermi distribution function with the eigenenergy e, (k) of the eigenstate |nk). V,
h, and § are the system volume, the reduced Planck constant, and the broadening factor,
respectively. We here assume the relaxation-time approximation and mimic the constant
1/6 as the relaxation time. y;,; can be decomposed as

Xisi =X5y XL (2.37)

o 120 [lealk)] = fEm()] B Amn

Xig = 2,% en(k)—em(k)  (70)2+ [En(k)—em(K)2 (2.38)
L

R O ey L (2.59)

knm

where XE;]].)
XEE) is the interband (nondissipative) one, which remains finite in the clean limit of §—0.

includes the intraband (dissipative) contribution proportional to 1/4, while

) and y®) have the opposite time-reversal property [38, 39]. When the time-reversal
symmetry is preserved, they are transformed as

J J E E
X =—tpta xS, X =tptax, (2.40)

where X" =tx X™ for tx==+1 (X=A;, B;). The nth band stands for the time-reversal

partner of the nth band. Equation (2.40) means that Xz(';Jj) [Xg)] can be finite when

t,ta,=—1(+1). In other words, XE;JJ.) [Xf?] becomes nonzero when the M and MT (E and
ET) multipoles are active for tp;t4,=+1, while ngj) [XZ(F;)] becomes nonzero when the E
and ET (M and MT) multipoles are active for ¢p,t4,=—1. The multipoles contributing

to ngj) and XZ(E) are summarized in Table 2.14.
It is noted that the similar argument holds for the static isothermal susceptibility

such as the magnetic susceptibility, which is obtained by w—0 and then g—0 for y;.;(w)
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Table 2.14: Correspondence between the linear response functions y®) and multipoles

Xim (I=1-4, X=Q,G, T, M). Nonzero x""¥) is indicated by the checkmark(v’). In the
rightmost column, the parentheses represent the corresponding multipoles to the response
B and the external field F' (See also Table 2.13). Only the corresponding multipoles are
shown in the absence of the familiar response.

(P, T,PT)= examples
rank tp;ta, multipole (O, O, Q) (x,0O, x) (O, %, X) (X, x,0) (x, x, x) (B+F)
1 polar +1 xOW Tim v v electrocaloric tensor
X(E) le ‘/ ‘/ (QU Hle)
—1 XU Q1m v v toroidalcaloric tensor
X(E) Tim v v (Qo+Tim)
axial +1 M, v v
® Gim v v v v (Qo>Gim)
—1 U Gim v v v v magnetocaloric tensor
X(E) Aflm v v (Qo(—)]\/flm)
2 polar +1 XU Ty, Mipm, Tom v v magnetic susceptibility
X(E) Q07 G1m7 QQm ‘/ ‘/ ‘/ ‘/ (A/[1m<_>]\/[1m)
—1 XY Qo, Gims Qam v v v v electric conductivity
X(E) To, M1, Tom v v (Tim > E)
axial +1 ¥ My, Tim, Mom v v
X(E) G07 leu GQm v v (TlmHAIIm)
—1 X9 Gy, Qrm, Gom v v magnetoelectric tensor
X(E) ]\/[07 T1m7 ]\42m ‘/ ‘/ (Aflm <_>£?1m)
3 polar +1 XU T, Mopm, Tam v v piezoelectric tensor
X(E) Q1m7 G2m7 Qiﬂm v v (leHQ& QQm)
-1 X(J) le:G2m7Q3m \/ \/
X(E) T1m7 A42m7 TSm ‘/ ‘/ (TlmHQm QQm)
axial +1 X Mim, Tom, Man, v v spin conductivity
X(E) Glm7Q2m7G3m v v v v (G07Q1maG2m(_>le)
—1 X9 G, Qam, Gam v v v v piezomagnetic tensor
X(E) A[hru T2m7 Afiﬁm \/ ‘/ (]\/Ilm <_>QO> Q2m)
4 polar +1 ¥ Ty, My, Tom, v v elastic stiffness tensor
M, Tam (Qo, Qam <+ Qo, Qam)
X(E) QO7 Gl'nm QQma \/ \/ \/ \/
G3m7 Q4m
-1 X(I) QO7 Gl'rm QQma \/ v \/ v
G3m7 Q4m (T07 T2m<_>Q07 QQm)
X(E) T07 A{hm T2m-, v \/
A43m7 T47n
axial +1 x9 My, Tim, Mo, v N
T37n7 A447n (G07 G277L<_>Q07 Q277L)
X(E) G07Q1m7G2m7 ‘/ \/
Q3m7 G4m
-1 X(J) G07Q1m7G2m7 ‘/ \/
Q3m7 G4m (]\/[07 ]\JZWLHQW QQm)
X(E) A107T1m7A12'm7 \/ \/
T37n,7 A44'm,

in Eq. (2.35) in the non-degenerate system. The general form of the static isothermal
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susceptibility X;’j is given by

W —Wnp

= #
T nm pmn nm Amn
Xi;j_ﬁ Z U)nBZ- Aj +Z mBl Aj s (241)

where f=1/kgT, w, is the Boltzmann weight of eigenstate n, and the notation = (#)
stands for the summation taken over E,=FE,, (E,#E,,). The first term corresponds to the
Curie term in the degenerate system. From the viewpoint of the time-reversal symmetry,
both terms of x; satisfy the relation x;;=tptaxj,;, which is the same as that of XEE) in
Eq. (2.40).

In the following, let us discuss Xz(‘;Jj) and XES) by taking an example. We consider the
uniform and staggered magnetic orderings with magnetic moments along the z axis in the
diamond structure in Secs. 2.5.2 and 2.5.2, respectively.

(a) ferromagnetic ordering (b) antiferromagnetic ordering

4/mm'm’
(P, T,PT) = (O, x, x) (P, T,PT) =(x,%x,0)

Figure 2.2: (a) Ferromagnetic ordering and (b) antiferromagnetic ordering in the dia-
mond structure. (a) is characterized by 4/mm’'m’ with the spatial inversion symmetry
(P), whereas (b) is represented by 4'/m/mm’ with the spatial inversion and time-reversal
symmetry (PT).

P-symmetric magnetic structure

The uniform magnetic structure in the Tj, representation of m3m]1’ as illustrated in
Fig. 2.2(a) reduces the symmetry to the P-symmetric 4/mm/m’. From Table 2.10,
one can find that the active multipoles up to rank 4 are the even-parity E multipoles
Qo (monopole), @, (quadrupole), Q4, Q4. (hexadecapole), even-parity M multipoles M,
(dipole), M (octupole), and even-parity MT multipole T (hexadecapole). Thus, the
physical responses related to these active multipoles are expected to occur, such as the
magnetocaloric response, electric conductivity including the Hall effect, and piezomag-
netic response from Table 2.14.
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For example, the electric conductivity tensor J; =5 ; 0ij B is given by

ih ~ flen(B)] = flem (k)] Ji i
i =—— , 2.42
THT Ty ,;n en(k)—em(k)  iho+en(k)—em(k) (242)
which is decomposed into the dissipative part 02-(;‘]].) and the non-dissipative part JS;D-) as
0 =01 T (2.43)
2 o Jnm jmn
aif].):—h—d Z flen(k)] = flem (k)] ik Jjk | (2.44)
7 V —~ en(k)—em(k)  (h)2+en(k)—em(k)]?
A
W nm 1 2.45
9TV 2 BOP  nB)—en (E T (245)

J : E
where a§.j) corresponds to the symmetric tensor component, whereas a§.j) corresponds to

the antisymmetric tensor component. From Table 2.14, each component is related to the
multipoles as follows:

QO_QU+QU Q:cy sz‘ 0 MZ —My
oV Quy  Q0-Qu—Qs Q- |, o®ea| =M 0 M |. (246)
Qzac Qyz Q0+2Qu My _M:Jc 0

By applying the active multipoles in the P-symmetric 4/mm/m’, the electric conductivity
tensor in the FM ordering in Fig. 2.2(a) is given as

Qo—Q. 0 0 0 M. O
ARRES 0 Qo—Q. 0 L o®e | =M, 00 (2.47)
0 0 Qo+2Q. 0 00

Thus, one expects that the system exhibits the anisotropic electric conductivity along the
xy and z directions and the anomalous Hall effect in the xy plane.

Let us take another example by considering the piezomagnetic effect where M;=
>k NijaTjn- In a similar way, the tensor component in Fig. 2.2(a) is given by

E
0 0 AL 0 0 IM!+ M, — M2\ "
0o o AE, 0 0 OM! + M, — M2
() o
A®_] 0 83) Azze | 0 0 ) 3M,+2M¢
0 AE. 0 0 — M+ M, — M 0
AB o o —M'+M,—M° 0 0
0 0 0 0 0 0
(2.48)

by using Eq. (E.49). We here omit AY) by taking 6—0.
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PT-symmetric magnetic structure

The staggered magnetic structure belonging to the T, representation in Fig. 2.2(b) is
characterized by the PT-symmetric 4’/m/mm/. In this case, the odd-parity M multipoles
M,, (quadrupole), M}, (hexadecapole), and odd-parity MT multipole T (octupole) be-
come active in addition to the even-parity E multipoles Qq, Q., @4, and Qy4,, which are
obtained by appropriately replacing the mirror plane of 4'/m/m’m in Table 2.11. The
active odd-parity M and MT multipoles become sources of induceing the multiferroic
responses such as the magnetoelectric effect and the piezoelectric effect in Table 2.14.
For example, the magnetoelectric tensor «;; is given by

0 aff) o 0 M,, 0
aP = o oMy 0 0]. (2.49)
0 0 0 0 00

It is noted that o =0, as no odd-parity E and ET multipoles are active under the PT
symmetric magnetic point group 4'/m'm’m.

Meanwhile, in the inverse piezoelectric response, the response tensor d;j for €;;=
> x dij B [38, 79] is described by M, and TP as

0 0 dyv 0 0 2M.,,+T7
0 0 —dys 0 0  —2M,,—T?
0 0 0 0 0 0
() —
d 0 d., o |7 0 M,~T° 0 (2:50)
~dyey O 0 ~M,,+T% 0 0
0 0 0 0 0 0

Similar to a;,;, dgﬁ?c:() owing to the lack of odd-parity E and ET multipoles.

2.5.3 Second-Order Nonlinear Response Function

In a similar way to the linear response tensor x;.;, we discuss the relation between ac-
tive multipoles and the second-order nonlinear response tensor Y;.;r based on the Kubo
formula [160]. The nonlinear complex susceptibility x;.x(w’,w”) satisfies the relation

o0 d d 2
| e W B B =), (@251
oo J oo 2T

where x;.jx(w',w") is represented as

Xk (W', " ( h) / / dt'dt” Tr Bi[A;(—t), [Ap(—t'=t"), po]
1
z w'tw )t =26t zw”t”—ét”_{_(]’ ) (k‘, w//)7 (252)
where X (t) is the Heisenberg representation of an operator X. po is the density matrix for

the nonperturbative state, whose matrix element is represented by the Fermi distribution
function f(e,) as [polnm=/(n)0nm. When we suppose A as the well-defined operator in a
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periodic system, i.e., the matrix element of A includes no differential operator with respect
to the wave vector, the nonlinear response function in the static limit (g—0, w—0) is
given as follows.

Xi;jkEXi,jk(O 0)
W A;”,!A +AGAR) [ flea(k)] = flak)]  flek)]— flem(k)]
Z Z —em(k)+2iho {sn(k)—al(k)—l—ihé a 5l(k)—am(k)+ih5} '
(2.53)

Imn

The nonlinear response function is also decomposed into the two parts with different
time-reversal properties as

(Re) (Im)

Xisjk =Xk T Xisjk » (2.54)
where
(o1 Re (B AT AR, ) [en (k) (k)
Xigk =V 24 T e, (k) — e ()2 + (2R0)7
X({f{enwn—f[sl(k)]}[sn<k>—sz<k>1_{f[el< )= flem (ﬂ}[el(k)—sm(k)])
(e (k) —e1 () P+ (h0)? [e1(k) —em (k)2 -+ (h0)2
Comg . Be(Brajan) LT LT T B LT
Vo 2 Ten(k)—em®)P1200)° \nlk)—c1(®)Z+(h0)2  [e1(k)—em(R)P+(h0)? J
(2.55)
() _ 18 I ( By AGLAR,) (e (k) (k)] { flea®)—fla®)]  fleak)] = flem(R)) }
Xisk =V 2 T e, (k) e (K)P+ (20)° [en (k)1 (R))*+(10)?  [e1(k) —em (k)|2+(ho)2
2h5 Im (B ABLA)
V2 enlk)—em(R)P+(2h0)?
x <{f[€n(k)]—f[€z(k)]} [en (k) —u(k)) _ {fle0tk))—flem(k)1} Wk)‘ﬁm““”) (2.56)
[ (k)20 () +(R0)? [e1(k)—em (k)2+(ho)? =

In contrast to the linear response tensor Y;.;, there are complicated intraband and inter-

band processes in both XE?Z) and XEIJ?

It is noted that the nonlinear response function
for the electric field in the length gauge needs rederivation by applying A=—er (7: posi-
tion operator) in Eq. (2.52), since the matrix element of 7 in a periodic system includes
dlfferentlal operator of k*.

Xf JZ and ;. ]I,;) show the following relations in the presence of the time-reversal sym-
metry:

Re Re Im Im

4For example, the second-order nonlinear conductivity is obtained by applying B=—¢b (0: velocity
operator) and A=—ef, where its functional form is consistent to the w—0 limit of the second-order
nonlinear optical conductivity [161-164]. The second-order nonlinear conductivity has the following §
dependences in the clean limit: 6~2 and 6° with the time-inversion odd property of XS}Z) for the Drude

and intrinsic terms, respectively, and §~! with the time-inversion even property of xEIjn,l) for the Berry

curvature dipole term [102].
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Equation (2.57) indicates that XZ(?Z) and XZ(IJHI;) are represented by E and ET (M and MT)
multipoles and the M and MT (E and ET) multipoles, respectively, for tp,ta,t4, =+1(—1).
The multipoles relevant to the nonlinear response tensors are summarized in Table 2.15. In
the following, we show the correspondence between the nonlinear responses and multipoles
by considering again the FM and AFM orderings in the diamond structure in Figs. 2.2(a)
and 2.2(b).

Table 2.15:  Correspondence between the second-order nonlinear response functions
xBeIm) and multipoles. Nonzero y 8™ is shown by the checkmark (v').
(P, T,PT)= examples
rank tta;ta, multipole (O, 0, Q) (x,0, x) (O, x, x) (x, x,0) (%, X, X) (B+F)
3 pOIar +1 X(Im) Tlnm J\/[2m~, T3m ‘/ ‘/
X(RC) (glma G2m7 Qfﬂm ‘/ ‘/ (leHQ(h QQm)
-1 ™) Q1,, Gom, Qsm v v electric conductivity
X B T, Moy, Ty, v v (Tym < Qo, Qam)
axial  +1 X" My, Tom, Map, v v Nernst effect tensor
X(Re) Glmy Q2m7 G3m v v v v v (T1m<_>]wo~, Al?m)
-1 ™) G, Qom, Gam v v v v v magnetoelectric tensor
X M, Tom, May, v v (M4 Qo, Qam)
4 polar +1 ™ Ty, M, Tom, v v electric striction tensor
M3, Tam (Qo, Qam > Qo, Q2m)
X Qo, G, Qams v v v v v
G3m: Q4m
-1 X" Qy, Gim, Qam, v v v v v
G3m, Qum (Qo, Qam > To, Tom)
X B Ty, My, Tom, v v
Ajiim-, T4m
axial +1 X(Im) ]\/fo, Tlma Algm, \/ \/
T3, Mim (Qo, Qam<>Go, Gam)
X(Re) G07 erm G2m7 v v
Q3m7 G4m
-1 X™ Gy, Qim, Gam, v v
QS’UL? G4m (QOa Q277L<_>A107 A/me)
X(Re) A107 Tlma Al?my ‘/ ‘/
TSVVL? A14’VL

P-symmetric magnetic structure

In the P-symmetric FM structure in Fig. 2.2(a), the nonlinear responses, such as the
Nernst effect and the second-order nonlinear magnetoelectric effect, are expected. In the
case of the nonlinear magnetoelectric effect M;=> ik a1 B By, the tensor agg”,? becomes
nonzero in the presence of the even-parity M and MT multipoles in Table 2.15. Since M,
and M2 are active in the 4/mm/m’ symmetry, the tensor component of ozgz) is represented

49



2.6. SUMMARY

by
T
0 0 Of%)m 0 0 M+ M, — M2\
0 0 o 0 0 2M'+ M, — M°
(E) o

a(Re): 0 ((I)E) Az;zz o 0 / 0 . 3M2+2MZ

0 ayy. 0 / 0 —M;+M,—M; 0

B0 o || e o 0

0 0 0

(2.58)

where there are three independent matrix elements in o).

PT-symmetric magnetic structure

In the AFM ordering with the 4'/m/mm’ symmetry in Fig. 2.2(b), the second-order non-
linear conductivity, o, for J;=>" ik 0i.;k 0 By, becomes nonzero, which reflects the lack

of the spatial inversion symmetry. Among the two parts ag,? and 01-(.1;2), Ji(,l;{,i) becomes
nonzero in the presence of the odd-parity M and MT multipoles. The finite tensor com-

(Re)
ponent of o; ;" is shown as

(Re) \ T
0 0 oz 0 0 2M.,,+T7
0 0 —oi) 0 0  —2M,,—T°
0 0 0 0 0 0
(Re) _
o= — 2.59

0 o o 0 M,,—T? 0 (2.59)

R g —M+T? 0 0
0 0 0 0 0 0

Thus, the nonlinear conductivity, which is known as the nonlinear Drude and the intrinsic
terms, is expected in the AFM structure in Fig. 2.2(b) [102].

2.6 Summary

In summary, we have completed the classification of multipoles in the 122 magnetic point
groups by extending the classification to the nonunitary groups with the antiunitary op-
erations accompanied by the time-reversal operation. The present classification gives the
systematic way to identify the symmetry-adapted electronic order parameters not only
in the AFM orderings but also in unconventional nematic, chiral, excitonic, loop-current,
and anisotropic bond ordered states. Moreover, we have also clarified the relation be-
tween the multipoles and field responses to cover the second-order nonlinear response in
addition to the linear response in the previous studies [38, 39], which gives us an intuitive
understanding of the multiferroic phenomena and nonlinear transports based on the mi-
croscopic multipole couplings. The present comprehensive study will help the exploration
of the further exotic physical phenomena induced by the unconventional higher-rank mul-

tipoles, such as MT quadrupole and octupole, and the functional magnetic materials in
cooperation with the material database like MAGNDATA [165].
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Chapter 3

Nonlinear Transport in Magnetic
Toroidal Dipole Ordering

In this chapter, we investigate the microscopic essential model parameters of the nonlinear
transport property in the collinear AFM ordering with the MT dipole moment, which is
called the MT dipole ordering. The present chapter is based on Ref. [166].

This chapter is organized as follows. Section 3.1 describes the introduction of the M'T
dipole physics. In Sec. 3.2, we show the electronic multipole degrees of freedom acti-
vated in the tight-binding model on the two-sublattice zigzag chain. We also present the
response functions for the linear magnetoelectric effect, Hall effect, and second-order non-
linear conductivity. We discuss the conditions to cause the linear and nonlinear responses
under the MT dipole ordering based on the microscopic model calculations. We show the
essential model parameters in each response. Sec. 3.4 is devoted to the summary in this
chapter.

3.1 Introduction

An MT dipole, which is one of the odd-parity multipoles in the absence of the spatial
inversion and time-reversal symmetries, has attracted much attention as it induces various
multiferroic phenomena like the magnetoelectric effect [58, 113, 167, 168] and nonrecip-
rocal transport properties [103, 115, 169, 170]. Among them, the magnetoelectric effect
in the MT dipole orderings has been observed in the AFM insulators, e.g., CryO3 [63],
Gag_,Fe, O3 [64, 65], LiCoPOy [66, 67], and Bay;CoGeyO7 [68], and in the AFM metals,
e.g., UNiyB [69-71] and Ce;3TiBi5 [72, 73]. Theoretically, such a magnetoelectric effect
has been analyzed by using the linear response theory [69, 99, 171-176]. Meanwhile, there
are still few studies on the nonlinear transports [104, 170, 177, 178]. Especially, its mi-
croscopic understanding beyond the symmetry argument has not been fully understood.
One of the remaining problems is the lacking of the understanding of the essential model
parameters to induce the nonlinear transport. It is also important to understand how the
MT dipole plays a role in the nonlinear transport.

By performing the symmetry analysis and model calculation with the use of the second-
order nonlinear Kubo formula, we elucidate the microscopic essential model parameters
for the second-order nonlinear conductivity in the MT orderings with the P7 symmetry.
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3.2. MODEL

Based on the analysis of a minimal model on a two-dimensionally-stacked zigzag chain, we
show that an effective coupling between the MT dipole and the antisymmetric spin-orbit
interaction (ASOI) plays an essential role in inducing the longitudinal and transverse
components of the nonlinear conductivity. Moreover, we find that the nonlinear conduc-
tivities are highly enhanced near the transition temperature in the case that the AFM
molecular field is comparable to the ASOI in a multi-band system. We also discuss the
difference between the transverse nonlinear conductivity and the linear magnetoelectric
coefficient on the basis of the microscopic model parameters.

3.2 Model

We show the multipole degrees of freedom in a two-sublattice unit cell on a zigzag chain
from the symmetry viewpoint in Sec. 3.2.1. Then, we present a minimal two-band tight-
binding model in Sec. 3.2.2 and outline the linear and second-order nonlinear response
functions in Sec. 3.2.3.

3.2.1 Multipole Degrees of Freedom

(@) (b) uniform
M® (B3,) M (B3,) MY (Byp)

¢/’\¢@/\/@x

o
)

o~ OO

co l o
coco |
_/

(c) staggered

B, /\e T (B7,) MO (A7) TO (B3)
) «.-m ®/)\@/@\®
¢

TR T

Figure 3.1: (a) Zigzag chain with two sublattices A and B. The IRREPs and the corre-
sponding potential distributions are also shown below. (b,c) Magnetic structures of the
(b) uniform and (c) staggered alignments. The corresponding IRREPs, cluster multipoles,
and their matrix elements in the 4 x4 Hilbert space spanned by the spin and sublattice
degrees of freedom are also shown.
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We describe the six degrees of freedom consisting of the three spin components and
two sublattices by the symmetry-adapted cluster multipoles. The zigzag structure has
the orthorhombic symmetry mmm1’, where the corepresentation of the sublattice degrees
of freedom Iy, is decomposed into two IRREPs as Fsub:AgEBB;u. The former (latter)
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corresponds to the uniform (staggered) potential configuration on the sublattices A and
B as shown in Fig. 3.1(a). Since M dipole degrees of freedom have the symmetry I'yp=
B, ®B,,®B3, from Table C.24, the IRREPs of the magnetic structure with the ordering
vector q 0 are obtained as follows:

Lup @Tvp = (B1, © By, © B3, ) uniform @ (B1, O A, © B3, )staggered- (3.1)
The former three components By, ©B;, ®Bj3, stand for the ferromagnetlc structures [Fig. 3.1(b)],
which corresponds to the active cluster-type M dipoles: ch), My , and MZ . Meanwhile,
the latter three components B, @A, ®B;, are the collinear AFM structures [Fig. 3.1(c)].
From Table C.24, their corresponding multipoles are the MT dipoles T4 and T for Bs,
and By,
on the MT dipole 79 and examine the relevant nonlinear and multiferroic responses in-

dl(l(;ed by 7. The following discussion is straightforwardly applied to another MT dipole
TZC .

1w Tespectively, and M monopole Méc) for A, . In the following discussion, we focus

3.2.2 Minimal Two-Band Model

To examine the microscopic essence of the nonlinear conductivity in the presence of the
MT dipole in a solid, we consider a minimal two-band model where the zigzag chain along
the x direction [Fig. 3.2(a)] is stacked along the z direction [Fig. 3.2(b)].

(a) (b)

Figure 3.2: (a,b) Schematic pictures of (a) a two-sublattice zigzag chain and (b) its
stacking along the z direction.

The tight-binding Hamiltonian is given by

H=Hi +Huop+Hasor+ Hin, (3.2)
hop Z Z [ AB(k)cl gy crmo+Hec. ] , (3.3)
Hhop= Z Z CkAaCkAU+CkBaCkBG) (3.4)
Hasor= Z Z g(k CkAng:AJ CLBO—CICBO")’ (3.5)
Him=Jar Y _ MM, (3.6)

(i5)
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3.2. MODEL

where CLZU (Cris) is the creation (annihilation) operator of electrons at wave vector k,
sublattice [=A, B, and spin =1, ]. The hopping Hamiltonian Hﬁ‘(ﬁ in Eq. (3.3) includes
the nearest-neighbor hopping between A and B sublattices as e*8(k)=—2t, cos(k,a/2),
while Hy,op includes the hoppings within the same sublattices along the x and z directions
as e(k)=—2t5 cos (kya)—2ts cos (k,c). Hasor in Eq. (3.5) represents the ASOI that arises
from the relativistic spin-orbit coupling as g(k)=[—as sin (k,c), 0, oy sin (k,a)]. The ASOI
in Eq. (3.5) has the sublattice-dependent staggered form satisfying the global inversion
symmetry [171, 179]. Hiy in Eq. (3.6) represents the Ising-type AFM exchange interaction
of the nearest-neighbor A-B bond with Jxr>0 where MiZA(B):Zoa’ CZTA(B)UJ(;/CZ-A(B)UI is

the z component of the M dipole operator and CLU and ¢;, are the Fourier transforms of
.I.

Cro aNd Criy, respectively. We adopt the Hartree-type mean-field decoupling as
Tae 30 NN —Jar Y ((NR) M+ (0EE) M3 — (OER) (OER) ), (3.7)
(ig) i

where (- - -) represents the statistical average and J Ar=2Jar is the renormalized coupling
constant considering the two nearest-neighbor atomic sites. As presented in Sec. 3.2.1,
the staggered AFM moment along the z direction in the present system is equivalent to
the uniform cluster MT dipole along the z direction, TMF=((M3z)—(Mg))/2 [180], where
the superscript MF is used instead of (c¢) to explicitly represent the mean-field value in
the following.

3.2.3 Response Functions

The magnetic point group symmetry is reduced from mmm1’ to m'mm in the presence
of TMF from Table C.24. In the magnetic point group m/mm, the following even-parity E
and ET multipoles and odd-parity M and MT multipoles within rank 0-3 belong to the
totally symmetric IRREP:

QO; Qua Qva Gmym T, Ta TB MyZ> (38)

T x ) x )

as shown in Table 2.11. Due to the presence of the odd-parity multipoles like T}, T, T?

T x ) x

and M,,., the second-order nonlinear electric conductivity tensor is expected as follows:

Oose 0 0\
Oryy 0 0
Re Ozzz 0 0
o) = 50 o (3.9)
0 0 O zza
0 ooy O
3T, +2T° 0 0 B
2TL+M,,)+T,—Te+T7 0 0
- 2(T,— M)+ T, —T> TP 0 0
0 0 0 ’
0 0 —T!+ M, +T,-T>—TF
0 T — My +T,—To+T? 0

(3.10)
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where o8 includes the Drude-type intraband term and the intrinsic-type interband term

within the relaxation time approximation as mentioned in Sec. 2.5'. The former Drude-
type term is represented by the MT dipoles and octupoles as

D T
05:53: 31,4272 !

o T,—To+TP

0
(D) 0 T,-T*—TP
o Z x x

0

ol

0

(D) Ozzz

0
0
)

0 oyay

(3.12)

o O O O O

2

/BO o O O O
o O O

T,—Te+T5

T

while the latter intrinsic-type term is expressed by the MT dipoles and M quadrupoles as

T
(iont) 0 U 0 0 0 !
ﬂ(cyy) 0 0 2(Tx+Myz) 0 0
int
(int) _ | Txzz 0 0 2(Ta:_Myz) 0 0
? 0 0 0 < 0 0 0 (3.13)
0 0 ol 0 0  —Tu+M,,

Among them, we consider the Drude-type intraband contribution with the dissipation
d~2 by supposing the clean limit. The expression representing the Drude-type intraband
contribution eventually coincides with that obtained by the Boltzmann formalism [102,
170, 181], which is given as follows:

py €7°1 0%c, (k) Oe, (k) Of [en (k)]
¢ )A:__ZZ Ok, 0k, Oky  0Oc,(k) (3.14)

where e(>0), 7(=1/0), and V are the electron charge, relaxation time, and the system

volume, respectively. Among the nonlinear components in Eq. (3.12), ag(tyy and oym), vanish

owing to k,=0 in the present two-dimensional system. Moreover, o0 =5L) is satisfied

as shown in Eq (3 12). Hence, the present system has two independent components: the

longitudinal o'P) and transverse aézg Hereafter, we omit the superscript of O'/(W;

the scaled o, as Gua=0u/(*T2H73).

and use

I'The Drude-type and intrinsic-type terms have different symmetry with respect to the permutation
of the input and output directions; the former is totally symmetric and the latter is asymmetric. By
considering such a difference, the multipole expression of o) can be decomposed into the Drude-type
part o(®) and the intrinsic-type part o™ as follows:

3T, +2T8 T, —To~T5 T,-Te+T5\ " 0 2T, — M.,) 2(T-+ M)\ "
T, Ta+T5 3T +2T“ T,-T2— Tﬁ 2(Typ+M,.) 0 2(T, — My,)
S _ | Te=T3 = Tﬁ T,— Ta+Tﬂ 3T, +2T2 i) _ 2(T,—M,.) 2(Ty+M.,) 0
Toy.  T. TO‘ Tﬁ T, Ta+Tﬁ ’ M,+M, ~T.+M,, —T,—M.,,
T,—-TS+T8 Ty, Tx—Tf—Tf —T,—Myy —My+M, Tx+Myz
(3.11)
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3.3. RESULT

For later convenience, we show the expressions of two quantities, the linear magneto-
electric coefficient «,, and the linear Hall coefficient 0., both of which are calculated by
the linear response theory:

2Vi (k)4 (ha)2 vk ok

5n f[éfm(k)] —
0= ZZ 2R e T (R T (3.16)

m

eg,uBﬁ 5n f[&?m(k)] g ,mn
0y sz SR (3.15)

In Eq. (3.15), g(=2) and pp are the g factor and Bohr magneton, respectively. oy p'=
(nk|oy|mk) and vIy'=(mk|v.|nk) are the matrix elements of spin o, and the velocity
v =0H/(hOk,) for the eigenstate |nk). The interband process is important in both
tensors. We use the scaled a,,=a,./(eush) and ,.,=0,./(e*hH,).

3.3 Result

In this section, we discuss the microscopic essential model parameters for the physi-
cal properties in the MT dipole ordering by analyzing the minimal model presented in
Sec. 3.2.2. The numerical results of the band modulation, nonlinear conductivity, and the
linear magnetoelectric effect are discussed in Secs. 3.3.1, 3.3.2, and 3.3.3, respectively. We
set the model parameters as (ti,ta,t3, Jap)=(0.1,1,0.5,2.5), electron filling as 1/5, and
the lattice constant as a=c=1 in the following discussion; t; is set as the energy unit.

3.3.1 Band Modulation

(a) 0.4

0.3
Tr02

0.1}

%80 02 04 06 08 1.
TiTy k, (k, = 0)

Figure 3.3: (a) The temperature (7)) dependence of the MT dipole TMY at a;=0.4 and
a3=0.1. The MT dipole ordering along the z direction 7} is shown in the inset. (b) The
energy bands measured from the chemical potential p at k,=0 for three temperatures.

First, we show the T dependence of TMF at a;=0.4 and ay=0.1 in Fig. 3.3(a),
where TMF is self-consistently determined within the mean-field calculations for the two-
sublattice unit cell by taking over 200% grid points in the Brillouin zone. TMF becomes
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nonzero below the transition temperature Ty and saturates below T~0.27y. Almost the
same behavior is obtained for aq, as <S0.5.

As discussed in Sec. 1.3.4, the asymmetric band deformation is induced by the MT
dipole. In fact, Fig. 3.3(b) shows the asymmetric band deformation along the k, direc-
tion when TM¥£0 [171, 180]. This asymmetric band modulation is understood from the
effective coupling between TM¥ and the ASOI «;. We explicitly write down the band
dispersion e (k) as

e+ (k)=c(k)xX (k) with X(k’):\/(al sin k, —TMF)2 a2 sin? k, +4t2 cos? %, (3.17)

where TMF=J,pTMF. The double degeneracy of e.(k) is due to the P7 symmetry.
The factor (o sin k, —TMF)? includes the coupling between TMF and «; with the odd
function of k,, which clearly corresponds to the microscopic origin of the antisymmetric
band modulation. This asymmetric band modulation becomes a source of the nonlinear
transport as discussed in the subsequent section.

3.3.2 Second-Order Nonlinear Conductivity

-3
(a) X 10_3‘ ‘ ‘ (b) X 10 ‘

x 1073 4 |
3t —@— total ]
o | lower band |

S 1 upper band
et 1| 1

0 L

1t ;

00 02 04 06 08 10 12 00 02 04 06 08 10 12
TITy TITy

Figure 3.4: (a) The longitudinal second-order conductivity .., for a3 =0.1-0.5 as a func-
tion of T" at ap=0.1. The inset shows 7,../c1. (b) The upper- and lower-band contribu-
tions to 0., at oy =0.4.

We discuss the longitudinal nonlinear conductivity ¢,,,. Figure 3.4(a) shows 7., as
a function of T for various a;=0.1-0.5 at a;=0.1. The T dependence for different «;
shows a qualitatively similar behavior; 7,., is highly enhanced just below T'=Ty, and
shows maximum with a decrease of T'. While further decreasing T', 7,,, shows the sign
change, and then reaches a negative value at the lowest T'.

The nonzero o, is closely related to the formation of the asymmetric band structure
under TMF=£0. As the asymmetric band modulation is caused by the coupling between
T zMF and a1, they are indispensable for nonzero o,,,. In fact, .., vanishes for a;=0.
Furthermore, the numerical result in the inset of Fig. 3.4(a) shows that 7,,, is well scaled
by Gree/a at low temperatures T<0.77y.

Meanwhile, 7., is not scaled by «; for 0.7<ST/Tx<1, where 7,,, is drastically en-
hanced. This is attributed to the rapid increase of TyF and resultant drastic change of
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3.3. RESULT

the electronic band structure near the Fermi level. As o0,,, in Eq. (3.14) includes the
factors 9%, (k)/0k? and Os,(k)/0k,, the small X (k) appearing in the denominator of
0%c,(k)/Ok? and Oe,(k)/0k, gives a dominant contribution. When considering the small
order parameter compared to the ASOI, i.e., TMF <oy, X (k) can become small when the
Fermi wavenumber kY satisfies TMF ~q sin kY, which results in a large enhancement of
Ozzz- SUch an enhancement is remarkable when the upper and lower bands are closely
located in the paramagnetic state as shown in Fig. 3.3(b), which can be realized for small
t1=0.1 and a5=0.1. In short, there are two conditions for the realization of large 7 ,.;
One is the large essential model parameters, such as ai, 7™, and Jap, and the other is to
satisfy TyF:al sin kY when there is a drastic change of the band structure by the MTD
ordering in a multi-band system. These conditions might be experimentally controlled by
electron/hole doping and temperature.

The sign change of .., in T" dependence is owing to the multiband effect. As shown
in Fig. 3.3(b), the band bottom is shifted in the opposite direction for the upper and lower
bands, which means that the opposite sign of the coupling alﬁvm results in the opposite
contribution to 0,.,. This is demonstrated by decomposing &,,, into the upper- and
lower-band contributions, as shown in Fig. 3.4(b). The results indicate that the dominant
contribution of &,,, arises from the upper band for 0.9<T /Ty <1, while that arises from
the lower band for T'/Tx <0.9. The suppression of the upper-band contribution for low 7'
is because it becomes away from the Fermi level by the development of TMF.

-3
0.00 X190
__-0.01| j
%
1S C-10] o =a,=002 —
' 02| o
v§ -0.02} 37 0.08
I3 o0 =
B 00 02 04 0_.6 0.8 1.0 1.2
T
003602 04 06 08 10 12
T/Ty

Figure 3.5: The transverse second-order nonlinear conductivity o,,, for several oy and
o while keeping oy =ay. The inset represents 7., /(a3).

Next, let us discuss the transverse nonlinear conductivity 7,... Figure 3.5 shows the
T dependence of 7., for 0.02<aq, a3 <0.1 with a;=a5. The behavior of 7,.. against T
is similar to 7., except for the sign change; 7,.. becomes nonzero below Ty and shows
the maximum just below Tn. While decreasing 7', ., is suppressed and shows an almost
constant value.

Similar to 0., the origin of nonzero .., is the asymmetric band modulation under
TMF L0 via the effective coupling TMF ;. Besides, we find another contribution from s
for nonzero o,., in contrast to o,.,. This additional parameter dependence is owing to
an additional symmetry between k, and k,+m for ap=0, which gives the opposite-sign
contribution to o,., so that totally o,..=0. As shown in the inset of Fig. 3.5, 7,.. is well
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scaled by aja3.
3.3.3 Linear Magnetoelectric Effect and Hall Effect
x 1076
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Figure 3.6: (a) The magnetoelectric coefficient a,, and (b) the quantity &,,&,. with
the same parameters as Fig. 3.5. 7, is calculated by supposing the small magnetic field
H,=0.01. The insets of (a) and (b) represent a,,/as and 6,,,./(c103), respectively.

We also present another MT-moment-driven phenomena, the magnetoelectric response,
and compare the temperature and essential model parameter dependences between the
nonlinear conductivity and the linear magnetoelectric effect. Figure 3.6(a) shows the T’
dependence of &,, for 0.02<a;, @ <0.1 with a;=ay, whose behavior is similar to the
transverse nonlinear conductivity o, in Fig. 3.5 except for the sign. &,. is nonzero even
if ;=0 that is different from the nonlinear conductivities, whereas as and T;VIF are es-
sential to obtain the finite @,,. As shown in the inset of Fig. 3.6(a), &, is well scaled as
Q[ for small as.

Moreover, it is noteworthy to comment on the relation between the transverse non-
linear conductivity and a combination of the linear magnetoelectric and Hall coefficients,
since the nonlinear transverse transport in the P7T-symmetric AFMs can be understood
as the Hall transport driven by the induced magnetization through the linear magneto-
electric response at the phenomenological level [69, 169].

We show the T" dependence of 7,.a,,. in Fig. 3.6(b) for the same parameters in Fig. 3.5.
The small magnetic field H,=0.01 is introduced to mimic the induced magnetization via
ay.. Compared to the results in Fig. 3.5, one finds the resemblance between the T'
dependences of 7,., and 7,.4,., both of which are scaled by ajai. A good qualitative
correspondence in these responses indicates that the interpretation of dividing subsequent
two linear processes for nonlinear conductivity is reasonable in the present model. The
overall quantitative difference 7,.a,./ T2--~1072 may be ascribed to the magnitude of the
used internal magnetic field (H,=0.01) that should be replaced by the true internal field.
However, it is hard to estimate it quantitatively.

The above results clearly depend on the fact that the essential model parameters are
common in o,., and o,.,,. However, such a correspondence does not always hold by
introducing other model parameters. For example, we take into account the interlayer
hopping between sublattices A and B as shown in Fig. 3.7(a), which changes e*B(k) in
Eq. (3.3) as —2t; cos (k,ya/2)— —2[t1+2t4 cos (k,c)] cos (k,a/2). Figures 3.7(b) and 3.7(c)
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Figure 3.7: (a) Schematic picture of the interlayer hopping ¢, between A and B sublattices.
(b,c) The T" dependences of (b) 7., and (¢) 7., for (t4,a2)=(0.1,0), (0.1,0.1), and
(0.05,0.1).

show 0., and 0.0y, as functions of T', respectively, for £,=0.1,0.05 and ay=0, 0.1, where
a;=0.4 is used. As shown by the red dashed line in Fig. 3.7(b), .. still remains nonzero
even for ap=0, while 6,0, in Fig. 3.7(c) vanishes. Furthermore, the nonzero ¢, enhances
022, While it suppresses 0,.0,. while increasing t4. This is because the essential model
parameters are different for o,., and o0,.0,,. Indeed, in the presence of ¢, and as, the
essential model parameter of o,.. is represented by using the coefficients, ¢ and ¢, as
oy TMY (cadty+c'ty), which clearly shows that o,., has the additional contribution from t,
and does not vanish for a;=0. On the other hand, the essential model parameters of o,
and «,, does not show the change from o,,—aja9H, and ayzﬁagfyF, respectively; the
hopping 4 is not the essential model parameter for o,, and .. Thus, there is no simple
relation between them in this set of the model parameters.

Finally, we discuss the order estimate of the nonlinear conductivity for «;=0.5 and
a=0.1 by the ratio 0,.,/(0.,)? with being independent of the relaxation time in the
clean limit. By putting the typical values as a~0.5 [nm] and [t2|=0.2 eV, we obtain
Osan/(02z)?~1073ha?e |ty 1~ 1071 [m3 A~ for T—0 and 10717 [m3 A~!] near Ty,
which is comparable to the value in the 2D nonmagnetic Rashba system under the mag-
netic field [181]. Further enhancement can be achieved by tuning the model parameters
and electron filling.

3.4 Summary

In summary, we investigated the microscopic essential parameters for the second-order
nonlinear conductivity due to the MT dipole in the collinear AFM metal. Based on the
nonlinear Kubo formula in the clean limit, we found that the effective coupling between
the ASOI and the MT dipole is the essence to induce the nonlinear conductivity. By
analyzing both the longitudinal and transverse components of the nonlinear conductivity
while changing the ASOI and the temperature, we showed that their large enhancement
can be achieved near the transition temperature, provided that the AFM molecular field is
comparable to the ASOI. Moreover, we also showed that the physical phenomena charac-
terized by the same essential model parameters exhibit a similar temperature dependence
by comparing the linear magnetoelectric and Hall coefficients with the transverse nonlin-
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ear conductivity.

The similar analysis to extract essential model parameters can be applied to any MT
dipole orderings in the zigzag structure, e.g., CeRusAlyg [182, 183], Ce3TiBi5 [72, 73], and
a-YbAl;_,Mn,B, [184], and other ferrotoroidal metals/semiconductors with the locally
noncentrosymmetric crystal structures, such as MnpAu [178, 185], RB, (R=Dy, Er) [186,
187], CuMnAs [177, 188, 189], PrMnSbO [190], NdMnAsO [191], and X, Fe;_,Se; (X =K,
T1, Rb) [192-194], once the model Hamiltonian is constructed. The measurements and
comparison of the linear magnetoelectric effect and the nonlinear conductivity for these
materials are also useful to obtain the microscopic information of the electronic state.

61






Chapter 4

Odd-Parity Multipole Order in
f-electron Metal CeCoSi

We investigate the stability of the odd-parity multipole order and its multiferroic re-
sponses in the f-electron metal CeCoSi. We also study a way of detecting odd-parity
multipole orderings by the NQR/NMR measurement. The study in this chapter includes
the contents of Refs. [101, 147, 195]'. This chapter is organized as follows. In Sec. 4.1, we
briefly review the recent experimental results of the f-electron metal CeCoSi and present
the motivation of this study. We show the crystalline electric field level of the Ce ion in
Sec. 4.2 and present potential multipole order parameters in Sec. 4.3. We examine the
stability of the odd-parity multipole orderings, finite-temperature phase transitions, and
the physical properties by using an effective local model in Sec. 4.4. We also analyze
the stability and current-induced multiferroic responses in the presence of the odd-parity
multipoles based on an effective itinerant model in Sec. 4.5. In Sec. 4.6, we formulate the
theory of the NQR and NMR spectra to identify the odd-parity multipole orderings. We
summarize this chapter in Sec. 4.7.

4.1 Introduction

First, we give a short review of the crystal structure and the experimental results of the
ordered states in the f-electron metal CeCoSi [196-205]. CeCoSi has the CeFeSi-type
tetragonal crystal structure (P4/nmm, D}, , No. 129) presented in Fig. 4.1(a), where the
Ce and Si atoms are located at 2c¢ sites with point group symmetry 4mm (Cjy,), whereas
the Co atom is at 2a site with 4m2 (Daq) [206]. A unit cell includes two Ce ions denoted
as Cep and Cep as shown in Fig. 4.1(a). Although the local inversion symmetry is lacking
at all atomic sites, the inversion center exists between two Ce sites, which is illustrated in
Fig. 4.1(b). The lattice constants are a=0.4057 nm and ¢=0.6987 nm determined by the
x-ray diffraction measurement [200]. The crystalline electric field (CEF) ground state for

!Table 4.5 and Figs. 4.9 and 4.11 are reproduced from Ref. [101] ((©) (2020) The Physical Society of
Japan).
Figure 4.10 is reproduced from Ref. [195] ((©) (2020) The Physical Society of Japan).
Tables 4.2, 4.6-4.9, and F.1 in Appendix F and Figs. 4.12-4.15, F.1, and F.2 are reproduced from Ref. [147]
(© 2020 by the American Physical Society).
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Figure 4.1: (a) Tetragonal crystal structure of CeCoSi in a unit cell with the lattice
constants a and c¢. The nearest-neighbor Ce-Ce, Ce-Co, and Co-Si bonds are represented
by red, black, and gray solid lines, respectively. The rectangle represents a unit cell. (b)
Crystal structure viewed from the x axis. The red rectangle shows the unit cell where the
inversion centers are located at the center and vertices of the unit cell. (¢) Coa (top) and
Cog (bottom) sites surrounded by the Ce tetrahedron.

the Ce site was suggested to be the I'; Kramers doublet and the first and second excited
levels are separated by around 100 K and 150 K, respectively [198-200, 202].

60 T T T T T T 25 ——— I — T T
(a) . Present data | (b) o M (H//001)
s0 b CeCoSi I X T ] A M(HIM00) ]
* To q 20 & C (H=0) i
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0.0 25 3.0 20 25

Figure 4.2: (a) The temperature-pressure and (b) magnetic-field-temperature phase dia-
grams in Ref. [200]. “Present data”, “ Tanida et al.”, and “Lengyel et al.” in (a) stand
for the data of Refs. [200], [199], and [198], respectively. (Reproduced with permission from
Ref. [200]. (©) (2019) The Physical Society of Japan.)

From the measurements of the specific heat, electrical resistivity, and magnetization,
the physical properties in the low-temperature region have been investigated and clarified
the existence of two types of ordered phases. They are denoted as “II phase” and “III
phase” in the temperature-pressure (7-P) phase diagram [Fig. 4.2(a)] and the magnetic-
field-temperature (H-T') phase diagram [Fig. 4.2(b)], where “I phase” is the paramagnetic
phase without showing any electronic orderings [198-200].
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Figure 4.3: (a) Specific heat and (b) magnetization of CeCoSi and LaCoSi single crystals.
(Reproduced with permission from Ref. [200]. (© (2019) The Physical Society of Japan.) (c) Electric
resistivity of CeCoSi polycrystal under pressure [198]. (Reprinted figure with permission from
Ref. [198] (©) 2013 by the American Physical Society.)

The low-temperature III phase was identified as the AFM phase with the transition
temperature Ty ~9.5 K under ambient pressure. At Ty, the specific heat shows a sharp
anomaly [197, 198, 200, 202] [Fig. 4.3(a)], the magnetization has a cusp-like anomaly
[Fig. 4.3(b)] [197-200], and electric resistivity shows a clear kink [197-200, 203]. Under
pressure, the III phase disappears around P~1.3 GPa after the slight change of the tran-
sition temperature as shown in Fig. 4.2(a). The neutron diffraction measurement under
ambient pressure for the polycrystal indicated that the magnetic structure in the IIT phase
is the staggered AFM structure along the [100] direction as shown in Fig. 4.4(a) [202].

Meanwhile, the IT phase under ambient pressure shows the second-order phase tran-
sition at Th~12 K. One can recognize the slight anomaly at Tj in the heat capacity and
magnetization in Figs. 4.3(a) and 4.3(b), while no clear anomaly appears in the electric
conductivity [200]. This phase is referred to as “pressure induced ordered phase (PIOP)”,
because it was originally observed only under pressure in a polycrystal. Subsequently, it
was observed under ambient pressure in the single crystal [200]. The II phase is strongly
enhanced by the hydrostatic pressure; the transition temperature T reaches To~40 K at
P~1.5 GPa as shown in Fig. 4.2(a). In such a pressured region, a clear cusp-like anomaly
appears in the electric resistivity as shown in Fig. 4.3(c) [198, 199], which suggests the
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4.2. CRYSTALLINE ELECTRIC FIELD

existence of the superzone gap in the Fermi surface due to the antiferroic electronic or-
derings. By applying further pressure, the II phase is suppressed and disappears around
P~2.2 GPa. In a magnetic field, the transition temperature of the II phase is enhanced
as shown in Fig. 4.2(b); such magnetic-field dependence has been often recognized as the
onset of the antiferroquadrupole (AFQ) ordering, as found in CeBg [207-209]. Moreover,
the II phase was confirmed to be nonmagnetic from the NQR measurement for the **Co
nuclear surrounded by the four nearest-neighbor Ce ions as shown in Fig. 4.1(c) [205]; it
suggested that the I phase is higher-rank E multipole ordered phases in the 4 f electron
at Ce ion. The existence of the II phase has been also confirmed by the NMR spectra
with the clear splitting below T} [Fig. 4.4].
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Figure 4.4: (a) Magnetic structure in the III phase determined by the neutron powder
diffraction [202]. (b) NMR spectra under the magnetic field slightly tilted from the [100]
direction. (Reproduced with permission from Ref. [205]. (©) (2021) The Physical Society of Japan.)

The IT and III phases might show interesting multiferroic phenomena from the view-
point of the odd-parity multipole physics. It is because the antiferroic orderings with
the ordering vector g=0 in the locally noncentrosymmetric structure, which have been
suggested by the experiments, break the global inversion symmetry and induce the cluster
odd-parity multipoles. They become a source of the multiferroic responses, e.g., magne-
toelectric and elastic-electric effects. Especially, the cluster odd-parity multipole order
consisting of the atomic AFQ moment, which has been expected in the II phase, corre-
sponds to the unconventional augmented ET quadrupole and/or E dipole order. Thus,
it is important to investigate a microscopic origin of the odd-parity multipole orderings
and their related multiferroic responses from the microscopic viewpoint. Moreover, it is
desirable to establish a method of identifying the odd-parity multipole order parameter
by using microscopic measurement like the NQR and NMR measurements beyond the
conventional even-parity one [17, 22, 24].

4.2 Crystalline Electric Field

We discuss the CEF Hamiltonian and the basis wave function of 4f electron with f1
configuration in the Ce3" ion. The tetragonal CEF Hamiltonian at Ce site with Cj,
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Crystalline Electric Field
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Figure 4.5: The level splittings of J=5/2 multiplet in the cubic and tetragonal CEFs.
The CEF parameters (Bag, Bag, Bas)=(—0.95, —0.14, 3.8) K are used for “Tetragonal (1),
whereas (Bag, Bao, Baa)=(—1.26,0.487,1.36) K are used for “Tetragonal (2)”.

symmetry is given as
Herr=BagO2+ BiOuw+ BuOS, (4.1)

where By, and Oy, are the CEF parameter and Stevens operator [50], respectively. Here
we omit the Bgy and Bgy terms by supposing the J=5/2 basis. We also omit the con-
tribution of the local hybridization between d and f orbitals. In the CEF Hamiltonian
in Eq. (4.1), the sixfold J=5/2 basis split into one I's level and two I'; levels. The eigen
energies of I'g and I'7 levels, Er, and EF<71,2), are given by

EF6:_8320+12()B407 (42)
By =4B20~60B10— 6/ (Bay+20Bao )2+ 20 B3, (4.3)
By =4Ba~60Byg 164,/ (Bao+20B10)2+20B, (4.4)

whose wave functions are represented as

|r6,u>=‘i§>7 r9, 1) =i’

) i

q:g> (i=1,2), (4.5)

where cgi) and cgi) (1=1,2) are the linear combination coefficients determined by Bag, Bao,

and Byy. Two types of CEF parameters are proposed from experiments: (Bsg, Byg, Bas)=
(—0.95,—0.14,3.8) K [210] and (Bsg, Bao, B4a)=(—1.26,0.487,1.36) K [202]. The former
CEF parameter gives the ['; ground state and the I's first excited state with 90 K level
splitting denoted as “Tetragonal (1)” in Fig. 4.5, whereas the latter leads to the I'; ground
and first excited states with 125 K level splitting denoted as “Tetragonal (2)” in Fig. 4.5.

4.3 Multipole Degrees of Freedom

In the Kramers doublet, the electronic degrees of freedom are usually expressed as E
monopole (charge) and M dipole ones. It means that the active higher-rank multipole
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degrees of freedom, which might be a source of the AFQ order suggested for the II phase
in CeCoSi, appear only in the interorbital degrees of freedom between the CEF ground
state and the CEF excited state. Although the CEF excited levels are relatively separated
from the ground state, there is a chance of interorbital multipole orderings as found in
CeTe [208]. In the following, we focus on the possibility of the multipole orderings by
considering the four low-energy levels consisting of the CEF ground state and the first
excited state.

In this section, we present the atomic multipoles activated in the low-energy I'7-I'g
levels in Tetragonal (1) and Fgl)-FgQ) levels in Tetragonal (2) in Secs. 4.3.1 and 4.3.2,
respectively. We also show the correspondence to the cluster multipoles in a unit cell
within the two sublattice degrees of freedom.

4.3.1 I';-I's Level

We show the multipole degrees of freedom in the ['7-I'¢ subspace. By calculating each
matrix element by using Eqgs. (1.10) and (1.11)?, we obtain the 16 multipole degrees of
freedom as follows: E monopole @)y, M dipole (M,, M,, M,), E quadrupole (Q,, @y,
Qyzr Qzzy Quy), and M octupole (Myy., Mg, Mg, M2, MZ, M, M?). Among them,
the multipoles activated in the intraorbital space are the E monopole and M dipoles:

QO—JOTO, M (u=z,y) is represented by a linear combination of 90, 7,0,, and 7,0,
and M, is represented by a linear combination of 7yo, and 7,0, by using the identity
matrix oy (79) and the Pauli matrix o, (7,) (t=w,y, 2) in quasi-spin (I';-I's) space. It is
noted that the M dipole M, (M,) includes the interorbital component represented by 7,0,
(1,0,). Besides, there are further four types of intraorbital multipole degrees of freedom
due to the consideration of the two orbitals, an E quadrupole and three M octupoles: the
E quadrupole Qu is represented by a linear combination of 7oy and 7,09, M octupole
M ¢ (u=w,y) is represented by a linear combination of 7yo,, 0, and O and M !

represented by a linear combination of o, and 7,0,. Note that M;“ and Myo‘ include the

interorbital component as well as the M dipoles M, and My.

Meanwhile, there are eight types of interorbital degrees of freedom between the I';
and ['g orbltals the four E quadrupoles and four M octupoles. Their matrix elements are
given as Q, = 7200, Qxy 7,02, and (Qyz, sz) (Ty(fx, 1,0,) for the E quadrupoles, and
My, = TyUO and M = TwUz for the M octupoles. Besides, the other two M octupoles M p
(n=z y) are represented by a linear combination of T00 s T2 and 7,0, which 1nclude
the intraorbital contributions as well as the M dipoles M, and M Each matrix element
and the linear combination coefficients calculated for the Tetragonal (1) are summarized
in Table 4.1. In the table, we also present the higher-rank multipoles composed from the
same matrix elements, which have the different linear combination coefficients.

By taking into account the two sublattice degrees of freedom in Fig. 4.1(a), the cluster
multipole expressions are obtained. Under the symmetry 4 /mmm]1’, the sublattice degrees
of freedom is decomposed into the IRREPs I'su, =AY, ® A3, where Aj, represents the uni-
form potential configuration, while A, describes the staggered one. By taking the direct
product of 'y, and the IRREPs of the atomlc multipoles Q)o, QUEAlg, Q. EBlg, QxyEBQg,
(Qyz, Qze) EES, M., M €A,,, M,,.€B], MPeB;,, (M,, M,), (M, M), (M5, Mf)EE_

1g» 2g)

2The same result is obtained by using the spherical tensor operators [11].
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Table 4.1: Multipole degrees of freedom activated in the I'7-I'¢ subspace and their ex-
pressions. Each expression is normalized to satisfy Tr[X XT]=1. The linear combination
coefficients in the Tetragonal (1) with (Bagg, Bag, Baa)=(—0.95,—0.14, 3.8) and the rele-
vant higher-rank multipoles are also shown.

multipole matrix linear combination coefficient higher rank
M, &m0+t 0,  (cF, cE, c5)=(0.064, —0.41,-0.28)  Mg:, M2, M,
M, Aoy +eyroyteiro, (¢l ey, cd)=(0.064, —0.41,0.28) Mg, Mgz, Mg,
M, ETo0,+C5T,0, (%, c5)=(0.48,0.14) M M2?
Q. A Too0+ YT, 00 (¢}, c¥)=(—0.1,0.49) Q4, Quu
1
Qv §Tx00 Q4v
1
Qxy §Ty0'z sz
1
Qyz ETyam nga Qfx
1
Qzaz §Ty0y Qflyya ny
1
Mxyz §Ty00 M5U
MY oo+ T 0+ T 0, (A, B 5*)=(0.42,0.11,0.25)
My oyt .oty o, (6], 5%, c3”)=(0.42,0.11, -0.25)
MY 90+ T, 0, (3, c5%)=(0.09,0.49)
MP P o+ o+ ooy (67, 65°, 7)=(0.35, —0.062, —0.35)
M & oo+ o+ 0y, (AP %) =(-0.35,0.062, —0.35)
1
M? 570 Mg,
from Table C.17, the IRREPs of the cluster multipoles are given as follows:
(AT, ®A7,)®(2A, ®B{,®B3, ®E] ®2A;, B, ®B;, ®3E;)
=(2A}, @B}, ®B3, ®E; ®2A;, B, ®B3, ®3E; )uniform
©(24;, 0B, 083, 0 E; ©2A;, 0B, 8B, ®3E, )staggerca; (4.6)

where the subscript “uniform (staggered)” means the IRREPs with the uniform (stag-
gered) configuration of the atomic multipoles. By using Table C.17, the corresponding
multipoles and their IRREPs are obtained, as summarized in Table 4.23, where the IRREP

3The total M dipole is defined as MfLOt:TQO'#+T$O'# for p=x,y and M =730, so as to eliminate the
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of each multipole in a magnetic field is also shown.

Table 4.2: Cluster multipoles (CMP) consisting of the (a) uniform and (b) staggered
configurations of atomic multipoles in the I'7-I'¢ levels. The IRREPs of each CMP in
a magnetic field are also shown for the magnetic field along the [001] direction (H ||
[001]) with symmetry 4/mm'm’, the [100] direction (H ||[100]) with symmetry mm/'m/’,
and the [110] direction (H ||[110]) with symmetry mm’m’. The sign of IRREP in each
magnetic point group symmetry means that the parity for the time-reversal operation
0 in 4/mmml’, 0C,, in 4/mm'm’, and 0Cs, in mm'm’. The cluster multipoles in the
parentheses are used for H ||[110].

H=0 H|[001] H|[[100] H[L10]

type of CMP definition  4/mmm1’ 4/mm/m’ mm'm’ mm/m’
(a) uniform

E monopole Qéc) QO,A+QO,B Afg Ay Ag Ag
Mdipole NG (M M) Mk +Mis B E,  AF Af
Mg,(,C) ( Méc)_ M@SC)) M;"g + M;‘)g Bg B;r
M MIX+MEs Ay Ay By By
E quadrupole ngf) Qu,A+Qu,B A, Ag Ag Ag
5(0) Q(()) 5(©) Gt };% Egi igﬁ Eg
JoenTen) gearder BB
2 ( Ay(zc)_ 7 ) QZI,A—FQZI,B X ) 6 5
C?xy AQxy,A"‘QIy,B B2g Bg Bg Ag
M octupole M;EZ)Z Mx};z,A‘i_Mxyz,B B, By Ay By
A Mia+Miy By  Bf By A

(b) staggered
E dipole Qgc) QO,A _QO,B A;u AY By By
MT dipole 737 (T39+T37)  MPi—MS, By E; B AF
T (~TO+TE) NItk — NI Af By
M monopole Méc) M ;O/i —M ;O§ AT, AT Ay Ay
E dipole Qgc) Qu,A —Qu,B A;u AT By By
ET quadrupole GA:(uCy) QU,A —QU,B B;u B By AL
Edipole Q) (QF +Q)) Qua—Qup  Ef  Ef By AQ
QY (—QF +Q)) Quea—Qean Ay By
ET quadrupole Gl Qxy,A_Qxy,B B, B, AT B
M quadrupole M) Myyor—M,y. s Bay B, B, Ay
M MﬁA_MfB B, By Ay B,

component of the M octupole belonging to the same IRREP.

70



CHAPTER 4. ODD-PARITY MULTIPOLE ORDER IN F-ELECTRON METAL CECOSI

4.3.2 I'7-I';s Level

We show the atomic multipole degrees of freedom activated in Fgl)—Fg) space correspond-

ing to Tetragonal (2) in Fig. 4.5. The atomic multipoles and their matrix elements are
summarized in Table 4.3. There are several differences from the result in the I';-I'g sub-
space; M dipole M, has the interorbital component, E quadrupoles @), and @, and M
octupoles M,,, and M? are lacking, and the E hexadecapole Q%, and M triacontadipole
Ms,, can be active as the independent multipole degrees of freedom. Similarly, we present
the cluster multipoles consisting of two atomic sites in the unit cell in Table 4.4.

1 2
.

Table 4.3: Multipole degrees of freedom activated in the low-energy I' subspace in

the Tetragonal (2) with (Bsg, Bao, Bss)=(—1.26,0.487,1.36).

multipole matrix linear combination coefficient higher rank
M, T00:+C3T0,+CET20, (ct,c3,c3)=(0,—-0.29,—0.41) Mg Mg?2, M?x
M, ooy +cyToy+ im0y, (c¥,c8,¢4)=(0,0.29,0.41) Mg, , Mgy, Mfy

M, AETy0,+ T, 0, +CET,0, (%, c5,c5)=(—0.12,0.39, —0.28) Mgt M2

Q. AT000+CyT,00+ 4 TL00 (¥, ck, c4)=(0.28,—0.34,0.24) Q4, Quu
1

Q- 570 Qi QL
1

sz ETy(Ty QZya ny

M oo+ T00 4+ 0, (Y, 5%, c5*)=(0.26,0.41,0.13)

My "oy tcey ro ey oy (o], 65", e3”)=(—0.26,-0.41, —0.13)

(—0.49, —0.065, 0.048)

« Z0 2O ZO 2O Z0 ZQ
M¢ EOT00,+ T, 0, 3T 0, (G A5, C5%)

MP  Pryoe+ P rop+c o, (7,37, ¢EP)=(—0.189,0.093, 0.454)

MP APy +Pro, Ty, (PP P =(—0.189,0.093, 0.454)

Y
1
Q%z 5 yJZ
1
MSu 5 y00

4.4 Analysis Based on the Local Model

We investigate the stability and the physical property in the AFQ and AFM phases in
the presence of the large CEF splitting by using the self-consistent mean-field calculation
for the local model to clarify when the AFQ and AFM phase transitions are possible.
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Table 4.4: Cluster multipoles (CMP) consisting of the (a) uniform and (b) staggered
configurations of atomic multipoles in the Fgl)—I‘g) levels.

H=0 H|[001] H|[[100] H[[110]

type of CMP definition 4/mmm1’4/mm'm’ mm/m’ mm'm/
(a) uniform

E monopole A Qéc) A C?O,A—FQO,B A1+g A; A; A;r
M dipole ME; <M8+Mé;) M +Mss By E, AF o AS
S Bl B
M M§3§+M§°§ A, Af B, B,
E quadrupole Quc Qua+Qus AT, A7 A7 A
QP (QEtQs) QuatQus  Bf  EBf A By
QS (@7 —0%) QuoatQurp B, A
E hexadecapole g QiatQiy A, A, Bf Bl
M triacontadipole ]\Zféz) My a4 Msy Al AL A A

(b) staggered
E dipole QY Qoa—Qon  Aj, AL Bl B
MT dipole T3 (T39+T3) M\ —M9 By Eo B+  A¥
~T (T4 T37) Mok - M, AF BY
M monopole ]\Zféc) M ;Of\ M S AL At AL Ay
E dipole Qg(f) (Q;C) —l—Qz(f)) QyzA QyzB Ef Ef B, Ay
QY (—QY +Q) Qen—Quup Ay By
ET quadrupole GY Qua-Qhe AL AT AL A
MT dipole 7 Msua—Msup  Asy AL By B,

In the following discussion, we use the I'7-I'g level scheme for the CEF parameter of
Tetragonal (1), although one can also analyze the case for the I'; (1) F ) level scheme as
well.

In Sec. 4.4.1, we show the effective local model including the CEF level splitting and
multipole-multipole interactions. We discuss the stability of the multipole ordered states
and their finite-temperature phase transitions in Sec. 4.4.2 and magnetic and quadrupole
susceptibilities in Sec. 4.4.3.
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4.4.1 Model

We consider an effective local model, which includes the CEF level splitting, the Zeeman
term, and the multipole-multipole interaction. The model Hamiltonian is given as follows:

H:HCEF +HZeeman +Hint7 (47)

HCEF:AZ Z Z Fhiroo R0 (4.8)

R i=ABo=1,|

HZeeman:_g,uB Z Z H'jRi7 (49)

R i=AB

Hint :D Z |:5uQu,rQu,s +§va,er,s +5E+ (QyZ,TQyZ,s _'_sz,erx,s) + 5nyxy,ery,s
(r,s)

+5E* (Mx,rMLs +My7rMy,s) +5zMz,er,s
+5$?JZMCUZ/Z#"MWUZ,5 +5E;a (MzTMa?:S_{—MinTM;S) +6ZO<MZTMZS

+5Egﬁ(MQTMQS+M5TM;ZS)+5ZBM£TM§S , (4.10)
where f;ipﬁg (frires) and J ri are the creation (annihilation) operator of the f electron
with the quasi spin o =1, | in the I'g level and the total angular momentum, respectively, at
the sublattice i=A, B in the Rth unit cell. X,=Xpi=" 3 fhie X%, friver (X=Qu,
Quy Quzy Qray Quyy Myy My, My, Myy., My, M7, M, MpP, ]\/[5, MP) is the normalized
multipole operator at rth atomic site, where X f,l;, is the matrix element for the orbital
[,I'=T7,Ts and quasi spin o, 0’=1, | shown in Table 4.1. The first term Hcgr in Eq. (4.7)
is the CEF level splitting, where A is calculated from the CEF Hamiltonian in Eq. (4.1)
as A~90 K. The second term Hyzeeman i Eq. (4.7) is the Zeeman term, where ¢ is the g
factor with the value g=6/7 and the Bohr magneton pup is set as ug— up/kg=0.67 [K/T].
The Boltzmann factor kg is set as 1 in the following. The last term H;, in Eq. (4.7) is the
antiferroic multipole-multipole interaction term (D >0), where the summation is taken for
the eight neighbor Cea and Ceg sites, (r,s). dx stands for the weight of the multipole-
multipole interaction (0<dx<1). Hjy is derived based on the symmetry analysis®.

By applying the Hartree approximation for Hi, as

n.n. N
DY 6xX,X,—Dz ) ox({(Xa) Xpp+(Xp) Xpa—(Xa) (X5)), (4.11)
(r,s) R=1

the mean-field Hamiltonian is obtained. We take into account the interaction to the upper-
nearest-neighbor four sites and lower-nearest-neighbor four sites [See also Fig. 4.1(a)] as
a mean field and set z=8. We set D=Dz in the following discussion.

4.4.2 Phase Diagram

We investigate the stability of the AFM and AFQ phases by using the two-sublattice self-
consistent mean-field calculation for the local model in Eq. (4.7). We suppose that the

4We omit the coupling between different types of multipoles, such as M, and M2, for simplicity, while
it is allowed from the symmetry viewpoint.
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Figure 4.6: (a) Schematic picture of the low-energy four levels in the paramagnetic phase
(left), AFQ phase (middle), and AFM phase (right). The basis functions are also shown
except for the AFM phase, where o and [ are the linear combination coefficients and
g=—0. (b) The phase diagram while changings the temperature (7) and interaction D
in the absence of the AFM interaction. For 6,=0, 1, and 2, the AFQ ordering is stabilized
in the colored region above each bold line. The broken line describes the transition from
the Q.. (or Q,.)-type AFQ order to the Q,-type AFQ order when increasing D for §,=2.
Other nonzero parameters are og+=1 and 0,=0.8. (c¢) The phase diagram when 7" and the
ratio dg- /0g+ change, where the antiferroic order parameters in each phase are presented.

in-plane AFM order, which is suggested by the neutron diffraction of CeCoSi [202], and
the Qy.- or Q..-type AFQ order by setting 0,=0.30g-, dg+ =1, and 0,=0.8 in the present
calculation. Other interaction parameters are set 0 except for §, and dg- in the following.
Although the order parameters and the relevant multipoles have not been identified yet
in the II phase, we discuss a case of the y,-or Q).,-type AFQ orderings breaking the
tetragonal symmetry, whose symmetry violation has been recently implied by the x-ray
diffraction measurement [211].

First, we examine the multipole interaction to stabilize the AFM and AFQ phases
in a zero magnetic field. In the paramagnetic phase without any electronic orderings,
two CEF levels are separated by A as shown in the left panel of Fig. 4.6(a). When the
effect of the multipole-multipole interaction D is taken into account, the interorbital AFQ
ordering becomes possible. In the presence of the AF(Q ordering, the mixing of I'; and I'g
levels occurs like the middle panel of Fig. 4.6(a), where the two-fold degeneracy remains
due to the time-reversal symmetry. Temperature (7') and D required to stabilize the Q.-
or Q,,-type AFQ order are shown in Fig. 4.6(b) for three 6,=0,1, and 2, where we set
the AFM interaction dg-=0. In the colored region above the bold line, AFQ ordered
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state is stabilized for each §,. For 6,=0, the large value D~2A is needed to stabilize
the AFQ state, which is consistent with the theoretical study on the cubic system with
the I'; ground state® [212]. Meanwhile, nonzero §, suppresses the critical value of D to
stabilize the AF(Q phase as shown in Fig. 4.6(b). It is because the J, term renormalizes
the CEF splitting effectively through the development of the ferroic (), moment. It is
noted that the suppression of the CEF splitting depends on the temperature, as the ferroic
(), moment depends on the temperature. In the following discussion, we use §,=2 and
D=80, which gives a similar transition temperature to that of the II phase observed in
CeCoSi.

Next, we introduce the AFM interaction to describe the AFQ-AFM phase transition
observed in CeCoSi. The introduction of dg- replaces the AFQ ground state with the
AFM ground state owing to the lifting of the Kramers degeneracy as shown in the right
panel of Fig. 4.6(a). Figure 4.6(c) shows the phase diagram while changing 7" and the
ratio of the AFM and AF(Q interaction, dg- and dg+. The solid (dotted) line means the
second-order (first-order) phase transition. For the small - /dg+ <0.35, decreasing T'
leads to the Q.,(Qy:)-type AFQ ordering, followed by the M, (M,)-type AFM ordering
accompanied by the Q.. (Qy:)-type AFQ moment. In 0.35S0g-/0g+ S0.9, the AFM phase
shows further first-order phase transition to the (M,+M,)[(M,—M,)]-type AFM ordering
with the (Qy:—Q.2)[(Qy:+Qz:2)]-type AFQ moment. There are two differences in these
two AFM phases; one is the in-plane anisotropy between [100] and [110] directions, and
the other is the difference in angle relative to the AFQ moment. Especially, the latter
difference results in the different symmetry between two types of AFM phases. For large
dg- [0+ 20.9, only the AFM phase appears without the AFQ phase. In the end, the result
in the region dg- /dg+ S0.9 might correspond the situation observed in CeCoSi; AFQ and
AFM phases appear while changing the temperature. We set dp— =0.70g+ in the following
calculation.

We also investigate the AFQ and AFM phases in a magnetic field. Figures 4.7(a) and
4.7(b) are the phase diagrams against the magnetic field (H) and 7', where the Zeeman
field in Eq. (4.7) is directed along the [001] and [100] directions. The solid (dotted)
line represents the phase boundary characterized by the second-order (first-order) phase
transition. The filled square (Tp), filled circle (Ty), and empty circle (7)) in a zero
magnetic field stand for the AFQ transition temperature, AFM transition temperature,
and phase transition between two types of AFM states, respectively.

In the [001] magnetic field, the Q.,(Q,.)-type AFQ order is stabilized even in the
high-field region. The magnetic point group symmetry is 2'm'm (m’2'm) as presented in
the parentheses in Fig. 4.7(a). The transition temperature of the AF(Q phase is almost the
same when applying the [001] magnetic field. The transition at Ty in a zero magnetic field
disappears in the [001] magnetic field because of the same symmetry to the AFQ phase,
although the broad peak structure remains in the 7" derivative of the magnetization and
heat capacity, which is presented by the dashed thin line in Fig. 4.7(a). On the other
hand, the low-temperature AFM phase, which has the (M,+M,)[(M,—M,)]-type AFM
moment and the (Qy,—Q..)[(Qy:+Q:)]-type AFQ moment in a zero magnetic field, has
the symmetry m and remains in the [001] magnetic field as presented in Fig. 4.7(a). By
applying the magnetic field, these vertically coupled AFM and AFQ moments rotate in

°It is noted that the present study uses the normalized multipole moment unlike Ref. [212].
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Figure 4.7: (a—f) H-T phase diagrams in the (a,c,e) [001] and (b,d,f) [100] magnetic fields.
In addition to the effect of the Zeeman coupling in (a) and (b), the magnetic octupole
interaction (5E— is additionally considered in (c¢) and (d), and the effective multipole cou-

pling between the FM and AFQ moments is considered in (e) and (f). The solid (dotted)
line stands for the second-order (first-order) phase transition. The dashed thin line in the
[001] magnetic field represents the minimum in the 7" derivative of the magnetization [see
the main text in the details]. The phase boundaries in (a)[(b)] is shown by the thin black
lines in (¢) and (e) [(d) and (f)] for reference.

the zy plane and reach the parallel coupled M, (M,)-type AFM and Q.. (Qy)-type AFQ
moment, which means the phase transition to the AFQ phase.

The phase diagram in the [100] magnetic field in Fig. 4.7(b) shows that the Q,,-type
AFQ ordering is similar to the result in the [001] magnetic field (Note that @,.-type
AFQ has higher energy owing to the orthorhombic symmetry in the [100] magnetic field).
Different from the [001] magnetic field, the AFQ transition temperature shows a slight
enhancement by the magnetic field, whose difference might be attributed to the difference
of the matrix elements of jw(y) and J, determined by the CEF parameters. In the low-
temperature region under the [100] magnetic field, two types of the AFM phases survive
as shown in Fig. 4.7(b): one with the symmetry m’ and the other with the symmetry 1.

The present result shows that the AFQ and AFM phases remain stable in the magnetic
field, which is consistent with that observed in CeCoSi [Fig. 4.2(b)]. Meanwhile, there are
several differences between them; one of the difference is the slope of the phase boundary
between the AFQ and paramagnetic states by introducing the magnetic field. In other
words, the present result shows that there are no almost change in the phase boundaries,
whereas the AFQ transition temperature is enhanced by the magnetic fields especially for
the [001] direction in experiments.

To explain the behavior of the phase boundary between the AFQ and paramagnetic
states, we consider two scenarios. First, we additionally introduce the antiferroic octupole
(AFO) interaction, which describes an effective coupling between the FM and AFQ mo-
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ments [23]. We show the modified phase diagram in the presence of 5E§ﬁ20'5 in the [001]

and [100] magnetic fields in Figs. 4.7(c) and 4.7(d), respectively®. In the [001] magnetic
field, the AFO interaction slightly increases the AF(Q transition temperature as shown in
Fig. 4.7(c). Meanwhile, it suppresses the critical field of the AFM phase. This is because
5E3‘ﬁ affects the stability of the in-plane AFM phase due to the same symmetry of M 5 and
My, (p=z,y).

In the [100] magnetic field, 5E;,3 hardly affects the phase boundary of the AF(Q phase,

since M 5 (u=x,y) has a different symmetry from the coupling between the ferroic M,
moment and the antiferroic ()., moment. Meanwhile, the octupole interaction changes
the AFM phase drastically, which leads to additional three phases with different AFM
and AFQ moments. The symmetry in each AFM phase is presented in Fig. 4.7(d). In
summary, the AFO interaction for the present AFQ order is not sufficient to reproduce
the behavior of the phase boundaries in CeCoSi.

The second scenario is that an effective coupling between the M dipole and AFQ
moments in the presence of the magnetic field. We introduce the additional effective
coupling for the [001] magnetic field with the @.,-type AFQ moment within the mean-
field level

[001 —D Z 5[001] [ <Mz,B>)(sz,RA—sz,RB)+<<sz,A> <sz B>)( zR A+MzR B)

~

_(<M2,A>+<Mz,B>)<<sz,A>_<sz,B>) ) (412)

where (MZ,A)—HMZ,B) and <sz,A>—<sz,B> are the FM and the AFQ moments, re-
spectively. Figure 4.7(e) represents the phase diagram in the [001] magnetic field for
5{001]:—0.005. The result shows that the direct coupling between the FM and AFQ mo-
ments in Eq. (4.12) leads to the strong enhancement of the AFQ transition temperature by
the magnetic field. Meanwhile, the critical field of the AFM phase tends to be suppressed
as well as that in the presence of the AFO interaction.

Meanwhile, in the [100] magnetic field, we consider a different type of the effective
coupling as

[100 _D Z 5[100] [ <MI,B>)(Q2I,RA_QZI,RB)+<<QZI,A> <sz B>)( R, A+MLL‘R B)

~((Mya) (Mo ) (Qurp) = (Quep) | - (4.13)

The phase diagram for &f,,;=—0.005 is shown in Fig. 4.7(f). The result shows that
the phase boundary between the AFQ and paramagnetic phases moves to the high-
temperature side with an increase of the magnetic field. The AFM phase shows a mod-
ulation, where the critical field between the AFM and AFQ is slightly suppressed, in the
presence of the effective coupling in Eq. (4.13). Thus, the effective coupling induced under
the magnetic field is one of the important factors to reproduce the H dependence of the
AFQ transition temperature observed in CeCoSi.

6We neglected 5E; , which corresponds to another AFO interaction, as it mainly changes the AFM
phase boundary rather than the AFQ one.
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4.4.3 Susceptibility

We investigate behaviors of the magnetic and quadrupole susceptibilities under the multi-
pole orderings while changing the temperature. We calculate the magnetic and quadrupole
susceptibilities by using the following isothermal susceptibility

| n|X|m>]

Qan 5 E. kBT an n\X!n (an n]X]n) . (4.14)

where |n) is the electronic state with the eigenenergy FE,, and wn:ef’“%f is the Boltzmann
weight of the eigenstate n. For magnetic and quadrupole susceptibilities, XE (n=z,y,2)
and \@ (v=u,v,yz, zz, 1Y), We set X:g,ugjw (1=A,B) and Q,,,i, respectively. In the
following, we show the susceptibilities in the total two-sublattice system.
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Figure 4.8: (a,b) T dependences of the (a) magnetic and (b) quadrupole susceptibilities
at a zero magnetic field. (¢) H dependence of the quadrupole susceptibility in the [001]
magnetic field.

First, we discuss the magnetic susceptibility XE (u=x,y, z) in Fig. 4.8(a). The mag-
netic susceptibilities without any electronic ordered phases for dg+ =4§,=0 are also shown
by the broken lines for reference. X,]? shows the slight anomaly at the Q).,-type AFQ tran-
sition temperature Tp; x2 shows a little upturn from the paramagnetic phase, whereas XyD
and x? show the down-turn modulation below Tj. At the transition temperature Ty to
the M, type AFM order, x? shows a cusp-like anomaly as the conventional AFM order,
while X shows almost no anomaly and xP has the almost constant value below Ty. Below
T, X2 _X due to transition from the AFM order along the [100] direction to that along
the [110] direction.

We focus on the behavior of XE below Ty. The up- or down-turn behavior of XB
depends on the magnitude of the effective M dipole within the ground-state Kramers
doublet. To demonstrate that, we calculate a quantity of Tr[M:]srq—Tr[M?]jara, where
Tr[M 3] Arq 1s calculated for the Kramers doublet with nonzero but small ()., moment and

78



CHAPTER 4. ODD-PARITY MULTIPOLE ORDER IN F-ELECTRON METAL CECOSI

Tr[M ﬁ]para is for the CEF ground state. It is approximately given by

2[(c5)* —ci(cf+c5)] ,

Tr[M:E]AFQ_Tr[MxQ]paTa: AQ QZx—i_O(qu)? (415)
2c5(cY+c
TT[MS]AFQ_Tr[MyQ]para:_%qzm"'O(qu): (4.16)
2[(c2)2—c3(ci+c2
(Mg~ T (M= DD 2 g1, (417

where ¢.,=D0g+ Q... Asthe present CEF parameters in Table 4.1 give (¢%)2—c¥(cf +c%) >
0, c4(ci+cy)<0, and (c3)*—ci(ci+c3)<0, the up-turn behavior appears in X2 and the
down-turn behavior appears in XE and xP, as shown in Fig. 4.8(a). This result indicates
that the behavior of the magnetic susceptibility in the AFQ orderings gives information
about the CEF and the AFQ order parameter.

Besides, we also discuss the quadrupole susceptibility x9. Figure 4.8(b) shows the
quadrupole suceptibility —y® scaled as Y®=1 at T=0.2, in a zero magnetic field. The
low-temperature region is presented in the inset of Figure 4.8(b). All x& components
show the softening with decreasing 7' in the paramagnetic phase. In spite of the large
CEF splitting, their modulation in the AFQ ordered phase is similar to that seen in the
conventional AFQ ordered systems like CeBg [21]; x<, shows a cusp-like anomaly at Ty and
upturns with decreasing 7', while @, X?Z, and ng show almost constant values. In the
AFM phases, these four components mostly show the up-turn behavior with decreasing
T, although ng slightly decreases between Ty and T%. On the other hand, Y2 shows a
broad peak around T'~15, which roughly corresponds to half of the effective CEF splitting
described by A ~A—Dg, <QU7A(B)>N3O K. While decreasing T, XS shows anomaly at
the AFM transition temperature and reaches the constant value.

Moreover, we investigate the behavior of x? in a magnetic field by focusing on the
region below Ty. We here do not consider the octupole interaction and the effective
coupling discussed in the previous section, since they do not give a qualitative difference.
Figure 4.8(c) shows the x& in the [001] magnetic field at T=2, where HE is the critical
field of the AFM phase. X;Qz and Y% split by the magnetic field with the hardening, x
also shows the hardening, and X;?y shows the softening. Such various behaviors are due
to the rotation of the AFM and AFQ moments when increasing the magnetic field as
mentioned in the previous section. In other words, since the (Qy; —Q.2)[(Qy:+Q:2)]-type
AFQ moment is rotated to the Q.. (or @),.)-type one, ng and xS show the split and
different behaviors of XIQy and x9Q. Thus, the quadrupole susceptibility in a magnetic field
provides information about the coupling between the AFM and AFQ moments.

4.5 Analysis Based on the Itinerant Model

We investigate the multiferroic responses expected in the odd-parity multipole orderings
induced by the AFM and AFQ moments by using the itinerant model. In the present
section, we suppose the I';-I'g level scheme similar to the local model in the previous
section.

In Sec. 4.5.1, we present the effective tight-binding model with the multipole-multipole
interaction. By using the effective itinerant model, we investigate the stability of the
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multipole orderings at zero temperature in Sec. 4.5.2, the band modulation due to the
odd-parity multipole ordering in Sec. 4.5.3, and the multiferroic responses in Sec. 4.5.4.

4.5.1 Model
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Figure 4.9: (a) Schematic picture presenting the bond with hopping and multipole-
multipole interaction. (b) The ground-state phase diagram obtained from the self-
consistent mean-field calculations at g'¢=—0.4, ¢g'"=0.5, and ¢'=0.8. AFM(z) represents
the AFM phase with staggered M moments along the z direction. AFQ(v) and AFQ(zy)
stand for the @, and @,,-type AFQ phases, respectively. Other AFM and other AFQ1,
2, 3 are the AFM and AFQ phases characterized by more than one order parameter.
The phases are metallic (insulating) in the region below (above) the white dashed line.
(c) The intraorbital ASOI dependence of the AFM moments at J'/J=0.2, A=1, ¢’=0.8,
and ¢g's=—0.8¢"7. (d) The interorbital ASOI dependence of the interorbital multipole
moments at J'/J=0.7, A=0.5, g'6=—0.4, and ¢'"=0.5.

We investigate a tight-binding model constructed by considering two f orbitals at Ce
ions and a d orbital at Co ions and taking into account the atomic spin-orbit coupling,
CEF level splitting, f-f hopping, and d-f hybridization [195]. By tracing out the d-orbital
degree of freedom, an effective Hamiltonian with the multipole-multipole interaction is
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given by
0,z,y,2
H= AZZkalrﬁgfknF(;g‘i‘ZZ Z ZZ g;w puTu ij szlo’fk]mo'
o wy 1,3 lm

+Z Z Z SN g (k)b ()] pur Y07 £l frimar

k o0 py 4,5 ILm

+3° [ (MFe Mo M M) 4 X X (4.18)

where fi.  (frio) is a creation (annihilation) operator of an electron with the wave vector
k, sublattice i= A, B, orbital [=I¢,I'7, and quasi-spin o=1,]. p, (#=0,2,y,2) is the
Pauli matrix in sublattice spaces. The first term in Eq. (4.18) is the CEF level splitting
between the ['q and I'; levels. The second term is the symmetry-allowed hopping term; the
intraorbital hoppings, €qgo(k) and g, (k), and the interorbital hopping, ¢, (k), between the
same sublattices, and the intraorbital hoppings, €,0(k), €22(k), 40(k), and €,,(k), between
the different sublattices. By setting the positions of Cey and Cep as (a/2,a/2,c¢/2—0)
and (0,0,0) with the lattice constants a and ¢, and using the notations ¢,,(k)=le,0(k)+
p(l)e,z(k)]/2 where p(I)=+1(—1) for [=I'7 (I's), each ¢,, (k) is given by

co(k) :tﬁ (cos kya+cos kya), (4.19)
€0z (k) =t} (cos kya—cos kya), (4.20)
k.c k.c ky
en(k)= (tlL cos —- €08 k041" sin — 5 sin k (9) 2a (4.21)
k.c k.c ky k,
ey(k)= (tl cos —- sin k0 —t', sin —— 5 Cos k 0) cos TG cos TG (4.22)

The third term in Eq. (4.18) is the spin-dependent hopping term originating from
the atomic spin-orbit coupling. The antisymmetric contribution g, (k) with respect to
k corresponds to the ASOI, which includes the intraorbital contributions, g.o(k) and
g..(k), and the interorbital contribution, g..(k), between the same sublattices, which are
represented by

g.1(k)=g'(— sin kya, sin k,a, 0), (4.23)
g:2(k)=¢'(— sin k,a, — sin k,a, 0), (4.24)

where g.;(k)=[g.0(k)+p(l)g..(k)]/2. It is noted that the only staggered component of
the ASOI appears in the presence of the global inversion symmetry. The ASOI is mi-
croscopically derived from the off-site hybridization with the Co 3d electrons and the
atomic spin-orbit coupling. Meanwhile, the symmetric spin-dependent hoppings be-
tween the different sublattices with the different orbitals, are represented by h,,(k)=
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{lml[h, (k)], Im|hy (K)], =Re[h.(k)]} and hy,(k)={Relh.(k)], Re[h, (k)], Im|h.(k)]}, where

k. ~ . ki) k.a . k
hy (k)= Vg cos —C—H'ny sin 20 | ek cos ~2% gin La, (4.25)
2 2 2 2
kz Y . kz 4 . kix k
hy (k)= V,, cos —C—l—ﬂ/;y sin 25 ) ek sin 22% cog La, (4.26)
2 2 2 2
kz Y7 kz —q . kx . k.
h,(k)= (VZ Ccos TCJerZ sin TC) e~ k= gin 2a sin %a‘ (4.27)

The fourth term in Eq. (4.18) represents the effective antiferroic interactions between
the intraorbital multipoles J>0 and interorbital multipoles J'>0. The summation is
taken for the four nearest-neighbor A and B sites (r,s), as shown in Fig. 4.9(a). M!=
DI cr“"/f:lafrzg/ (I=T¢,T'7) and Xr:sz Zw/()z)ff”;,f:lafmaf are the M dipole and
the eight interorbital multipoles” at site r, respectively, where f:lg (frio) is the Fourier
transform of f,:ilg (frito)- We adopt the isotropic exchange interactions J and J’, which are
introduced to mimic the strong intraorbital and interorbital Coulomb interaction without
the spin-orbit coupling [213]. The intraorbital interaction J favors the AFM ordering,
while the interorbital interaction J’ favors the antiferroic interorbital multipole orderings,
such as the AFQ ordering. We note that the intraorbital states with (]\ngc, My, Mz) and
interorbital states with (Qv, me, Qyz, sz, Mxyz, Mf , M;, M;) are degenerate within the
J and J’ terms, respectively. Such a degeneracy is lifted by considering the effect of the
staggered ASOIs in Eqs. (4.23) and (4.24), as will be shown below.

Before we discuss the multiferroic responses, we investigate the ground-state phase di-
agram of the itinerant model in Eq. (4.18) by the self-consistent mean-field calculations.
We use the Hartree approximation for the two-body terms and consider supercells con-
sisting of 80 copies of the two sublattices under the periodic boundary conditions. The
numerical error of the self-consistent calculations is less than 10~%. We adopt the f! con-
figuration, i.e., the 1/4 filling, and set parameters tﬁ6:0.8, tﬁ7:1, th:O.l, ti6:ti720.15,
7 =#"7=0.05, V,,=0.15, V,,=0.05, V,=0.3, V,=0.1, J=2.5, and ¢/a=1.4. We set =0.
Although 6 is finite in CeCoSi, the effect of nonzero @ is taken into account for the hopping
and interaction parameters along the z direction.

4.5.2 Zero-Temperature Phase diagram

Figure 4.9(b) shows the ground-state phase diagram by changing .J'/J and A for g'c=
—0.4, ¢*7=0.5, and ¢’=0.8. For large A where the I's level is well-separated from the
CEF ground state I';, the intraorbital multipole instability occurs and the AFM state is
stabilized through the intraorbital interaction J. In a large portion of the AFM regions,
the M moments are along the z direction, where we denote the phase as AFM(z). This
phase is accompanied by the M quadrupole M, as shown in Table 4.2. In the phase
diagram, another AFM phase denoted as “other AFM” is realized around 0.8 SA<1.4,

7As the matrix representation X, we use E quadrupoles QU:%Tm{fo, me:féryaz, and (Qyz, Qm):
—%(TyJI,TyUy), M dipoles (MJ/:,M;):%(TQEJM —7,0y), and M octupoles szzz—%TyO'O and MP=r,0,
based on Table 4.1, where M octupoles M ;j"ﬁ (n==z,y) is considered as the interorbital component of the

M dipole for simplicity.
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where the staggered M dipole moments are tilted from the z direction. The obtained AFM
phases for A<1.56 are metallic, whereas the AFM(z) phase for A2>1.56 is insulating.

The magnetic anisotropy in the AFM phases results from the interplay between two
types of ASOIs in the present itinerant model. Especially, the AFM(z) state stabilized in
the insulating region for large A is presumably owing to the intraorbital ASOI. Note that
a similar tendency is obtained in magnetic insulators in the strongly correlated regime
where the effective out-of-plane anisotropic interaction appears [214]. In the metallic re-
gion, although the effective interaction by the ASOls is affected by the band structure and
can be more complicated, the mean-field results indicate that the intraorbital ASOI tends
to stabilize the AFM(z) state, whereas the interorbital ASOI, whose effect becomes im-
portant for large J'/.J, tends to stabilize the other AFM state with the in-plane moments,
as discussed below.

The AFM states are replaced with the AFQ states by decreasing A and increasing J'/.J
with a finite jump of order parameters. The stabilization of the nonmagnetic AFQ state at
T'=0 resembles the situation realized in the high-pressure region of the II phase in CeCoSi
[Fig. 4.2(a)], which did not realize in the local model calculation in the previous section.
The dominant AFQ instability in Fig. 4.9(b) is the @, channel with the ET quadrupole
Gzy. The other AFQ states denoted as AFQ(zy) and other AFQ1, 2, 3 in J'/JZ0.8
are characterized by the staggered orders of (),,, and linear combinations of (Q.y, Qy),
(Quy, Mey2), and (Qy, Quys My, MP), respectively. The stability of the interorbital orders
depends on the two types of ASOIs and the interorbital hopping. All the AFQ phases are
metallic in the present calculation.

To examine the effect of the ASOI on the AFM(z) state obtained in Fig. 4.9(b), we
show the intraorbital staggered ASOI ¢'7 dependence of the staggered AFM moments
while keeping ¢'6=—0.8¢'7 at J'/J=0.2, A=1, and ¢’=0.8 in Fig. 4.9(c). We compute
the 1 component of the AFM moment MAF=[(MEAF)2 4 (ML7A¥)2]Y2 for p=x,y, z and
Mty =[(M2F)? +(MF)?]'/? where the staggered component of multipoles X is defined
as XA =(X,—Xg)/2. It is noted that there is also interorbital contribution M ;f(*yF) for
the in-plane moments.

In Fig. 4.9(c), the AFM(z) phase is stabilized at ¢'7=0.5, as shown in Fig. 4.9(b).
While decreasing ¢'7, MAF is tilted from the z axis toward the [100] direction for
g'7<0.45, although MAY is larger than M ﬁ(g) and M ;‘?;) The appearance of M ﬁ‘(l;) and

M g’f(*;) corresponds to the emergence of the MT dipole T, (7}) as shown in Table 4.2. With

a further decrease of ¢'7, the in-plane moment direction changes from the [100] to [110]
direction at ¢g'7~0.275. Then, Mﬁfo] increases while decreasing ¢'7 and becomes com-
parable to MAY at g'7=0, whereas M, [’ﬁg] is suppressed when decreasing ¢'7. The result
indicates that the intraorbital ASOI favors the AFM(z) state. On the other hand, it also

indicates that the AFM state with the in-plane magnetic moments, such as the other
AFM state, can be stabilized by the interorbital ASOI [33, 180].

Next, we show the effect of the interorbital ASOI ¢’ on the AFQ(v) state at J'/J=0.7,
A=0.5, ¢""=0.5, and g's=—0.4. Figure 4.9(d) shows that four interorbital states are
stabilized while changing ¢’. The AFQ(v) phase is stabilized for 0.6 <S¢’ <1, the other
AFQ1 phase is stabilized for 0.425<¢'<0.6, the AFQ(zy) phase is stabilized for 0.225<
g’ <0.425, and the staggered M phase appears for 0<¢'<0.225. From the numerical
result, the interorbital ASOI ¢’ tends to favor the AFQ(v) state. On the other hand,
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the stability of the AFQ(zy) and the staggered M? states for small ¢’ depends on the
intraorbital ASOI g'® and ¢g'" and the interorbital hopping ¢|. The large ¢'7 and g'* tend

to favor the AFQ(zy) state for small ¢/, while ¢| tends to stabilize the MP state. Thus,
the stability of the interorbital phases is mainly related to ¢’, ¢'¢, ¢'7, and t°.

4.5.3 Electronic Band Structure
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Figure 4.10:  (Upper panel) The Fermi surfaces in the k,-k, plane at k,=0 in (a) the
staggered AFM ordering for Hapy=1 and Hapq=0 and (b) the staggered AFQ ordering
for Hapm=0 and Hapqg=1. See the text for other parameters. In (b), the red arrows
represent the in-plane spin polarizations at each k. (Lower panel) Schematic pictures of
(a) the AFM ordering with the moments along the x direction and (b) the @Q,-type AFQ
ordering.

We discuss the electronic band structure in the odd-parity multipole orderings by using
the tight-binding model in Eq. (4.18). Although the effect of the staggered ASOT is hidden
in the paramagnetic state because of the global inversion symmetry, asymmetric band
modulations occur in the presence of the AFM and AF(Q orderings due to the appearance
of the net ASOIs. For example, we suppose the AFM state with the staggered moments

8To stabilize the antiferroic states of (M, M) and/or (Qy=, Q) in the present model, factors other
than the intraorbital and interorbital ASOIs will be important, since two types of ASOIs those phases
do not give the energy gain in these states, which can be inferred from the effective Hamiltonian in the
strongly correlated limit (not shown).
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along the x direction and the AFQ state with the ), component. We introduce the
mean-field Hamiltonian instead of the multipole-multipole interaction term in Eq. (4.18)
to mimic the staggered AFM and AFQ states as

H=—Hapu Z <M£LA—M£LB) — Harq Z (Qv,kA_Qv,kB> ; (4.28)
k k

where M 5 i = fliiF7TfkiF7¢+f ,iim if kir.+ is the © component of the M dipole operator in the
I'; orbital with the wave number k and sublattice i=A and B and Qv,kizza( f,LTGU frirso+
f,iirw Jrirgo) 1s the Q,-type E quadrupole operator with the wave number k and sublattice
t=A and B. Hapy and Hapq are the magnitudes of the mean fields in the staggered AFM
and AFQ orders, respectively. We set the hopping parameters in Eqgs. (4.19)—(4.27) as
used in Sec. 4.5.2 and set ¢g'*=—-0.4, ¢'"=0.5, ¢=0.8, Af=1, and J=J'=0. We consider
the quarter-filling case (f* configuration).

The upper panel of Fig. 4.10(a) shows the Fermi surface in the k,-k, plane at k,=0 for
Hapvm=1 and Hapq=0 in the staggered AFM state. The schematic picture of the AFM
state is shown in the lower panel in Fig. 4.10(a). The result clearly shows that the Fermi
surface in the AFM state is asymmetric along the &, direction, while it is symmetric in
the absence of g'(k) and g’(k). This indicates that the interplay between the staggered
ASOI and the staggered AFM molecular field leads to the asymmetric band deformation,
which is regarded as the emergence of the odd-parity MT dipoles [69, 171].

On the other hand, the Fermi surface in the k,-k, plane at k,=0 for Hapy=0 and
Harg=1 in the AF(Q state is shown in the upper panel in Fig. 4.10(b). The lower panel of
Fig. 4.10(b) shows the schematic picture of the AF(Q state. The Fermi surface shows the
momentum-dependent antisymmetric spin splitting with the form of kyo,+k,0,, which
corresponds to the emergence of the odd-parity ET quadrupoles with the xy compo-
nent [36]. This spin-splitting band structure also vanishes in the absence of the ASOIs.

4.5.4 Multiferroic Responses

We discuss the magnetoelectric effect and elastic-electric effect, under the AFM and AFQ
phases with the odd-parity multipole moments. After presenting the nonzero tensor com-
ponents by the symmetry analysis, we discuss the T" dependence of the magnetoelectric
tensor for two types of odd-parity multipole phases.

Symmetry analysis

We show the nonzero components of the magnetoelectric () and elastic-electric (d,, )
tensors in each antiferroic multipole phase. We summarize the nonzero tensor components
in Table 4.5, where the superscripts (J) and (E) represent the intraotbital and interorbital
(dissipative and non-dissipative) components of the linear response function.

Response function

To investigate the multiferroic responses, we use the linear response function given by

_ch Flen(k)) = flem (k)] w0
=7 2 D TR e (B (B O] e (429)
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Table 4.5:  Nonzero components of the magnetoelectric (c,,,) and elastic-electric (d, )
tensors in each antiferroic multipole (MP) phase. The magnetic point groups (MPG) and
the odd-parity multipoles (OPMP) are also shown.

MPG MP OPMP U d,,
m2l Q, G, aW=a)  dB=—dF dP
2ml' Q. G, of=—al) dS=d%), dmyz

mm2l' Q. Q, o, o) df), db), dU?, ds2)
mm2l' Q.. Q. oW, o) df), d%, d%), d(ZEZ
mm'm M, T, oéx), ol dl)., dy), d), dSl.
m'mm M, T, o o2 d) d5), d%,, d
a/m'm'm' M, M, of=aoly) ol dil=—d),

& )m'mm My, M,, oy =aly) dii’xz—dyix, ds)

4’/m’m’m Mf M, OZ;E) = —Oég(/];) dg(;Jz)m —dzmy, dg/z

where we take e=h=1 and §=0.1. X} — (pk| X, |qgk) and v"L = (pk|i,k|gk) are the matrix

elements of the multipole X n and Velomty Oyt = oM/ (hOk,). When X x is the M dipole
M u, Xw corresponds to the magnetoelectric tensor «,,, where the magnetization M, is
induced by the electric field E, for u,v=x,y,z. Note that the magnetoelectric tensor
o, consists of three contributions of a,%), agf), and ay,,, as there are three types of

magnetizations MF6 MF7, and M, as shown in Sec. 4.5.1. On the other hand, when

X is the E quadrupole QM, X Corresponds to the elastic-electric (inverse piezo-electric)
tensor d,,,, where the symmetric distortion €, (p=wu,v,yz, zz, zy) is induced by E,.

Numerical calculation

We discuss the behavior of the magnetoelectric tensor «,,, in the AFM(z) and AFQ(v)

states in detail by using the self-consistent mean-field solution. Figure 4.11(a) shows ol

as a function of T'in the AFM(z) phase with the M quadrupole M (finite ol =al) and
ol at J'/J=0.2, A=1, "o =—0.4, ¢"7=0.5, and ¢'=0.8°. oy becomes nonzero below
the AFM transition temperature Tx~0.77 and decreases for 0.69 <7'<0.75 after showing
the peak structure at 7T'~0.75. While further decreasing T, ol grows and becomes the
largest at the lowest 7. The complicated temperature dependence of o' is due to the
orbital degree of freedom. Its qualitative behavior is characterized by each component
o F6), ag’n), and /> ), as also plotted in Fig. 4.11(a). aB7) increases with onset of
MAY in the inset of Fig. 4.11(a), since M2¥ mainly consists of the M dipole moment
in the I'; orbital. On the other hand, as a further increase of MA¥ leads to the large
energy gap between the up- and down spin bands of the I'; orbital, alBT7 decreases
and the interorbital contribution, ozm , becomes dominant for 7'<0.69. It means that
the interorbital M/ activated in I'¢-I'; space is significant for the large magnetoelectric

response in this multi-orbital system. The typical magnitude of the magnetoelectric tensor

9We here omit the result of agz), as the magnitude of o' is smaller than that of aly by the order
of 1072 because of the low conductivity in the z direction.
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(a) o1z 0.4 —e—afy)
0.08 0.2 - TM?F —A—aBTe)
0.0 P (E,T'7)
00 02 04 06 08 gz
0.04 T & o/®
0.00 |- --3F - -V WL

Figure 4.11:  (a,b) Temperature (7') dependences of magnetoelectric tensors in (a) the
AFM(z) state at J'/J=0.2 and A=1 and (b) the AFQ(v) state at .J'/J=0.7 and A=0.5.
The insets of the (a) and (b) stand for the 7" dependences of the order parameters. Other
model parameters are fixed at ¢'°=—0.4, ¢g'7=0.5, and ¢'=0.8.

is estimated as rle_llzfﬁ7 ~! ps m~! in the unit of |tﬁ7! eV.

We show nonzero o, in the AFQ(v) phase in Fig. 4.11(b) in addition to the order
parameter Q¥ in the inset of Fig. 4.11(b) at J'/J=0.7, A=0.5, g'=—0.4, g*"=0.5, and
g'=0.8. We find the finite-temperature phase transition between AFQ(v) state and the
AFO state with MAY at Ty~0.75. From the symmetry in Table 4.5, in the former AFQ

TYZ

state, odd-parity G, induces ag(/i):ag(g;), while M,, in the AFO state shows 043(,%):04(;2).

In the AFQ(v) state in Fig. 4.11(b), the amplitude of o2 increases from the lowest
T and it shows the peak at T'~0.25, where Q2 reaches almost full saturation. While
further increasing T, |041(j;)| gradually decreases and jumps at the phase boundary with the
AFO state. The temperature dependence of ag(j;) reflects the electronic state around the
Fermi surface, since the intraband contribution is dominant. For az(jg,;) in the AFQ(v) state,

the interorbital component a;(;;]) becomes dominant, while ag‘l,;rﬁ’ and aé‘l}n)

with each other, which also shows that the interorbital component oz;(;c]) is significant in
this multi-orbital system. The typical magnitude of ozz(,,}],;) in the AFQ(v) state is estimated
as ~107! |t‘1‘“7|*16*1 psm~! for |tﬁ7| eV and the broadening factor 6 s~'. On the other hand,
the electric conductivity is obtained as 10736~ uQ2~tem™!, which implies 6~1072-101
from the comparison with the experimental data [200]. Therefore, a large magnetoelectric
response might be expected in CeCoSi.

almost cancel
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4.6 NQR and NMR in Odd-Parity Multipole Order

In this section, we theoretically study NQR and NMR spectra in the presence of odd-
parity multipoles orderings, which will be useful to identify the unknown odd-parity order
parameters in the II phase of CeCoSi.

We introduce the effective electronic model for the 4f electron at the Ce ion in
Sec. 4.6.1. We show the hyperfine coupling between the nuclear spin at the Co atom
and the electronic multipole at the Ce ion in Sec. 4.6.2. By using the hyperfine Hamilto-
nian, we calculate the NQR and [001]-and [100]-field NMR spectra in the presence of the
odd-parity multipole orderings in Secs. 4.6.3, 4.6.4, and 4.6.5, respectively. We present the
correspondence between the NQR/NMR spectra and the odd-parity multipole orderings
in Sec. 4.6.6.

4.6.1 Electronic Model

We consider an effective multipole mean field to examine a hyperfine field on °*Co nucleus.
We here introduce a local Hamiltonian for Ce electron at the phenomenological level to
incorporate the effect of odd-parity multipoles. The Hamiltonian for :=A, B sublattice is
given by

Hee =AY fhoofiteo—HO-MFY " 15 X, (4.30)
o X

The first term is the CEF level splitting and set A=0.5 in the following calculation. The
second term in Eq. (4.30) is the Zeeman term for the external field H®) =ug H coupled
with the M dipoles M =(M,, M,, M,). We take the linear combination of intraorbital
components M56,Mg7 and interorbital component M,@ as MME(]\}[57+5P6]\;[56¢5’]\7[L)
[the sign is +(—) for p=x(y)] and M,=(M 746" M'e). The parameters ' and ¢’ are
introduced to represent the difference of the magnetic susceptibility per different orbitals
and are taken to be (§'¢,§")=(1/4,1/2) for simplicity'®. The last term in Eq. (4.30)
represents the multipolar mean fields leading to the multipole orderings with (X,>7é0,
which mimic the interaction terms in Eqs. (4.10) and (4.18), where X; is the multipole
operator at the ith site defined in the same way in Sec. 4.5.1. Besides, we redefine the E
quadrupole operator as Qu:%aorz. They originate from the mean-field decoupling for the
intraorbital and interorbital Coulomb interaction terms [15]; the multipoles activated in a
I'¢ or I'; level are relevant with the intraorbital Coulomb interaction, while those activated
between the I's and I'; levels are relevant with the interorbital Coulomb interaction, as
discussed in Sec. 4.5.2. As we focus on the cluster multipoles induced by the staggered
electronic orderings, we adopt the negative (positive) sign for the A (B) sublattice.

In the following discussion, we mainly consider three types of staggered orderings:
M,-type AFM, Q,-type AFQ, and Q,-type AFQ states, whose schematics are shown in
Figs. 4.12(a)-4.12(c), respectively. This is because the neutron diffraction has indicated

ONote that d'¢ and 6’ depend on the spin-orbit coupling and the CEF parameters as shown
in Table 4.1. In addition, we avoid the situation where some multipole moments, such as
Qyz, Qray Quys Muyz, T, Ty, My, and My, vanish by taking specific values, 6'6=4§"=1, in the Q,-type
AFQ state for the magnetic field in the plane normal to the [110] direction.
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the M,-type AFM state [202]. On the other hand, as the order parameter of the II phase
is still controversial, we discuss two types of AF(Q states as an example; one is the Q,-type
AFQ state and the other is the @Q,-type AFQ state. For completeness, we also investigate
other antiferroic multipole ordered states and the results are summarized in Sec. 4.6.6.
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Figure 4.12: (a—c) Schematics of local multipoles (MP) and cluster odd-parity multipoles
(OPMP) in the (a) Q,-type AFQ, (b) Q,-type AFQ, and (¢) M,-type AFM states. The
shape of the pictures in (a) and (b) represents the charge distribution. The blue and
red arrows in (c¢) represent the M dipole and MT dipole moments, respectively. (d-1)
The staggered mean field dependences of multipoles under (d—f) zero magnetic field, (g—i)
magnetic field H ||[001] and (j-1) H ||[100]. The data represent those in (d,g,j) Q.,-type
AFQ, (e,hk) Q,-type AFQ, and (fi,1) M,-type AFM states, respectively. Black solid and
dashed lines represent the even-parity multipole moments, whereas colored solid lines are
odd-parity multipole moments.

We show the behavior of the electronic multipole moments induced by the staggered
mean field with and without the external magnetic field. We evaluate the thermal ex-
pectation value of the multipole moments XE(X>:Zn (n|X|n) exp (—BE,)/Z, where
In) (n=1-8) is the eigenstate with energy F,, of the total Hamiltonian Hce, +Hcey, and
Z is a partition function. We set the inverse temperature S=10, which corresponds to
T/A=0.2.

Figures 4.12(d)—4.12(f) show all the nonzero multipole moments at zero magnetic field
as a function of the staggered fields hg, , hi,, , and hy, , respectively, where the definition
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of the cluster multipoles is given in Table 4.2. It is noted that Qz(f) becomes nonzero
irrespective of types of order parameters due to nonzero A in Eq. (4.30). When the mean
fields h% turn on, the corresponding cluster odd-parity multipole moments X become
Nonzero.

The results in the @,- and @Q,-type AFQ ordered states are shown in Figs. 4.12(d) and
4.12(e), respectively. The odd-parity ET quadrupole G&i} is induced in the @Q,-type AFQ
ordering, while the odd-parity E dipole Q,(ZC) is induced in the Q,-type AFQ ordering.
The mean-field dependence of the odd-parity moments are different from each other: Ggfy)
roughly increases as a function of Ay, , whereas Q,(ZC) increases as a function of (hau)i)‘ in
the small h% region. This is attributed to the nature of the odd-parity order parameters,
which is understood from the perturbation expansion for large A.

The power expansion of the multipole moments is given as follows

XO=X,—Xg=al (h%)+ald (h% )+ -, (4.31)

where X© =G ( (C)) for X=0Q,(Qu). ag?) are the coefficients, which depend on the
CEF level splitting A. It is noted that the even order of h% does not appear due to the
different parity with respect to the spatial inversion symmetry.

For large A, by treating the mean-field term in Eq. (4.30) perturbatively, the basis
function at Ce; site in the @Q,-type AFQ state changes into

~ 1 hSQv
¢F7a,i:N ¢F7U,iiﬂ¢f‘ﬁa,i ; (4.32)

where the sign +(—) is taken for i=A(B) and N is the normalization factor. o=1,| is
the quasi spin. Then, G;‘ij is obtained as

+ SQv o thv 1 hS, — 1 3<hs )3 (4 33)
2A 2A  2A @ \2A Qu/ '
(3)

As a(l)( 35 ) > a0 [=(55)%] is satisfied for kg, /A<, there is a linear dependence of GL)
in Flg 4.12(d).

On the other hand, in the Q,-type AFQ state, Q&C) becomes zero for large A, which
means that

1 hg
() = "Quv__
ny N 2A

Q=0 (A>hy,), (4.34)
QY =1 (A<hj),). (4.35)

Thus, the onset of Qgc) for small hy, in Fig. 4.12(e) is owing to the finite temperature
effect. Numerically, the opp081te relatlon (ag) <<aé2 ) to the Q,-type AFQ ordered case is

obtained for large A; aQ ~1072 a ) for A=0.5 and B=10. This implies that Qz increases
as a function of (h$ u) in the small hg, region in Fig. 4.12(e).

According to the development of G;(,f;) or Q(Zc), QSLC) is suppressed in both AFQ states
in different ways. In the case of the Q,-type AFQ ordered state, ng) is suppressed as
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CHAPTER 4. ODD-PARITY MULTIPOLE ORDER IN F-ELECTRON METAL CECOSI

(hSQU)2, while it is suppressed as (hZQu>4 in the Q,-type AFQ state. The different mean-
field dependences of the multipole moments give different multipole-field dependences of
the NQR and NMR frequency shifts, as discussed in Secs. 4.6.3, 4.6.4, and 4.6.5.

Figure 4.12(f) shows the result in the M,-type AFM state with the odd-parity MT
dipole moment Ty(c). The mean-field dependence of Ty(c) is similar to that in the Q,-
type AFQ ordering in Fig. 4.12(d). As a different point, the additional even-parity E
quadrupole Qﬁf) is induced in the AFM state due to the breaking of the fourfold rotational
symmetry.

Next, we discuss the effect of the magnetic field, whose magnitude is set to be
|HY|=0.01. The results are shown in Figs. 4.12(g)-4.12(i) in the case of the [001] field
and in Figs. 4.12(j)—4.12(1) in the case of the [100] field. There are two important observa-
tions under the magnetic field. The first one is that additional multipole moments other
than the M dipole moments M(© are induced according to the lowering of the magnetic
point group symmetry by the magnetic field. For example, in the @Q,-type AFQ state,
M quadrupole moment M. becomes nonzero for the field along the [001] direction in
Fig. 4.12(g), while nonzero QY. QY and Ty(c) are induced for that along the [100] direc-
tion in Fig. 4.12(j). The second one is that the additional multipole moments induced by
the magnetic field are much smaller than primary odd-parity multipole moments, which
indicates that the additional multipoles lead to the small quantitative change in the NQR
and NMR spectra. We summarize the active multipole moments induced by the AFQ
and AFM orderings at zero and nonzero fields in Table 4.6. The obtained results are
consistent with those given by the symmetry analysis.

Table 4.6: Multipole moments induced in the Q,-type AFQ, Q,-type AFQ, and M,-
type AFM ordered states as well as the paramagnetic (para) state. For nonzero fields,
additional multipoles induced by H are shown.

H para Q.- type AFQ Q,-type AFQ M, -type AFM
zero © G © 1,7, QY
[[001] MO M M —
I[oo] My QY QY 1@ G 1y QY. GY)

4.6.2 Hyperfine Field for *?Co Nucleus

The hyperfine field Hamiltonian up to the second order of the nuclear spin with I>1 is
given by [215]

e?qQ

Hz—vhH-I+—4[(21_1)

311240 (-1}, (4.36)
where ~ represents gyromagnetic ratio. I :(f X, fy, I z) is the nuclear spin operator with
respect to the principal axes of the local electric-field gradient at Co nuclear site, (X, Y,
7).

The magnitude of Iis given as [=7/2 for ®Co nucleus. The first term is the Zeeman
coupling term. The second term describes the nuclear quadrupole interaction; e is the
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electric charge, ¢ is the electric-field gradient parameter, () is the nuclear E quadrupole
moment, and 7 is the anisotropic parameter. The amplitudes of H, ¢, and n depend
on electronic multipole moments at neighboring four Ce sites [Fig. 4.1(c)] as well as the
external magnetic field and CEF potential. When we define H™=~hH, the energy scale
of the nuclear system is compared with that of the electronic system as H®™ /H () ~107%.
We rewrite the Hamiltonian in Eq. (4.36) in terms of the crystallographic axes coordinate
(x,y, z) [see also Fig. 4.1(a)] as

A

H=C-I+C\ I, +C,I4+Cyol+Crnloy+CoryLy, (4.37)

where

1l oon s VB
f== (312—12> : ioV3 (12—12) : (4.38)

A 3 /4 A S R N A 3 /25 s

i \é— (1 V3 (LL+1L), nyzé (Li+L0).  (39)
The coupling constants for the effective magnetic field and electric-field gradient are pa-
rameterized as C=(C,, Cy,C,) and (Cy, Cy, Cys, Cuy, Cyy), respectively. Among them,
C,(p=w,y,2) includes two contributions from the external field H,(Ln) and the internal
dipole field Cl‘jl from the electronic multipoles as

C,=—H"+C, (4.40)

whereas C, (v=u,v,yz, zz,xy) consists of two contributions from the CEF potential CS*
and the internal quadrupole field C from the electronic multipoles as

C,=CSF+Ce (4.41)

In Egs. (4.40) and (4.41), CF' and C' depend on types of multipole orderings, which
become nonzero through the effective hyperfine coupling between the electronic multipoles
and nuclear spins or quadrupoles.

In the following sections, we focus on the multipole contributions to the effective
hyperfine field by setting CS¥=0 for simplicity!’. We show an effective Hamiltonian
for Co nucleus under multipole fields from Ce sites at zero magnetic field and at finite
magnetic fields.

At a zero magnetic field

Before discussing the effect of odd-parity multipoles, we start from the hyperfine field
in the paramagnetic state. In the paramagnetic state at a zero magnetic field, only E
quadrupole Qq(f) becomes finite among electronic multipoles, which corresponds to the
second term in Eq. (4.37), as shown in Table 4.6. The nuclear Hamiltonian at single Co
site is given by

HparazczljuECZQq(f)jua (442)

UThe following result does not change for nonzero CSF in the present model.

92



CHAPTER 4. ODD-PARITY MULTIPOLE ORDER IN F-ELECTRON METAL CECOSI

where the coupling constant C¢ is represented by the product of the hyperfine coupling
constant ¢, and the thermal average of the cluster E quadrupole QSLC), CSIZCZQ(HC). Here
and hereafter, the superscript and subscript in ¢}, represent the even- or odd-parity (p=e
or o) multipoles and type of the coupled nuclear multipoles (u=x,y, z,u, v,yz, zx, xY),
respectively.

The other terms in Eq. (4.37) become nonzero once the electronic multipole orderings
occur, i.e., for nonzero h% in Eq. (4.30). One can derive the effective hyperfine field in
the multipole orderings on the basis of magnetic point group symmetry, as it consists of
the coupling terms belonging to the totally symmetric representation under 4m21’. We
display the IRREPs of the cluster multipoles and nuclear multipoles in Table 4.7.

The general form of the effective hyperfine field in the odd-parity multipole orders is
given by

= MO L (TOLATOL ) 4+ G T4 QO+, (AT~ QL)

(4.43)
grder :CE Mz(C) jz + CZ,Z’J (Mﬂ(?C) jﬂf + MZSC) fy> - C(;y Qg;) fmy + Cf; Q'E;C) jv + CSZ,zl‘ (Q?(JCZ) jyz + QE:(;:) jzac) ’
(4.44)

where HC 4o (HS.4e) stands for the hyperfine field in the presence of odd(even)-parity
multipoles. Interestingly, the effective hyperfine field includes the coupling between elec-
tronic odd-parity multipoles and nuclear even-parity multipoles owing to the lack of the
local inversion symmetry at the Co site. The hyperfine fields in Eqs. (4.42)—(4.44) are
summarized in Table 4.8(a).

In CeCoSi, there are two Co ions in the unit cell, which are connected by the fourfold
rotation. As the sign of the odd-parity CEF at two Co ions is opposite, while that of the

even-parity one is same, the total nuclear Hamiltonian in a unit cell is given by

HCO :HCOA +HCOB7 (445)
HCOA :Hpara+%grder+%§rder7 (446)
HCOB :Hpara - 3rder + H(e)rder : (447>

The different sign of Hg 4., for the different sublattices is an important outcome of odd-

parity multipoles. In other words, the presence of the sublattice-dependent splitting of
the resonant spectrum corresponds to the emergent odd-parity multipoles within the g=0
orders, as shown in Secs. 4.6.3, 4.6.4, and 4.6.5.

At a magnetic field

At an external magnetic field, a Zeeman term is taken into account, which is given by
HZeeman: _H(n) j (448)

Although the Zeeman term induces the M dipole contribution, it also induces additional
electronic multipole contributions according to the lowering of the symmetry.
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Table 4.7:  IRREPs of nuclear multipoles (NMP) and electronic cluster multipoles (CMP)
in the local symmetry of the Co site under zero and nonzero magnetic fields H. X.=
X, +nX, and Xor =X, +nX,, for X=1,Q© M©) T n=i(1) for 4m'2' (2'22', 2'). For
H [p01], the multipoles in the square brackets are also activated. The superscript = of the
irreducible representation is the parity with respect to the antiunitary operation (even:
The unitary subgroup of each magnetic point group is also shown in the
parentheses. The axes of the twofold rotation Cy of 222" and TC5 of 2" under H ooy
(H | [110)) are along to the [110] and [001] ([110]), respectively. The mirror plane in m’ is

+, odd: —).

normal to the [010] direction.

magnetic field - 1;{\\[001} Hynog Hjniog Hipoy Hijoio HJ.[IlO]
4m21" 4m'2" 2'mm/ 222/ 2/ m’ 2/
NMP  CMP  (dm2) (1) (m) (2 (1) (1) (1)
L, QY GY Af A+ A+ A+ At At A+
e Af A~ A" BT AY AT A
L, QL) B Bt A" A A+ A- A+
L, QY.QY Bf B A+ B AF At A
I,. &) Bt — AT — A~ A- —
L, « — A AT AF -
_ g(CC) B+ o NG o A A+ -
- (o) —A- - A~ A- -
Ly Q¥ [QY) — E®r  —  Bf AT AF
Lo QY QY — EO+ A~ A- — A-
iL QY QY] — E®  — AT AT — AT
il.] QYY) — EO-  —  B¥ A~ — A+
— M) Ay A0 AT AT A A- A-
L MO MY Ay At A B A- AF AT
— MM By BT AT A A- At A-
— M), B, B* A~ Bt A~ A~ AT
I, M E- —AF - A+ A+ -
I, M Y - At A~ —
— T E- — A At A- —
. Ty(C) - A+ . A+ A+ .
I, MYErY —  EO- AT AT — At
. M9YETY —  E®@- — B- A+ — A~
i) T M) —  E®Y — AY AT — A*
ir] 79 UMY —  BEOF B- At — A~

By considering the magnetic field along the [001] direction, additional hyperfine field
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Table 4.8: (a) Hyperfine field at zero magnetic field. (b,c) Additional hyperfine field
terms in the magnetic field along the (b) [001] and (c) [100] directions. The coupling
constants are real.

(a) zero magnetic field

el el el el el el el el

cT Cc9 9 o7 0 oF cT g

Hpara — - C Q(C) — — — —

grder Cg,yT?EC) Cg,yTﬂ«EC) CgM’LEC) f(ECy COQ Zz zx ?(JC) _ng,zm ) T
(e)rder C;,yMI(C) CZ yM?SC) ch"EC) - & Q’U yz 2T gl(;) CZZ 2T (C) Qxy)

(b) [001] magnetic field

Oel Oel Oel Cel Cel Cel Oel Oel
Y g)a?r g - &e Qq(f) ce MZ(C) o ij . 7y
770[001] ~q C ~o ~o0,(C) ~o c o c c) ~o ¢
ﬂo%ﬁfj o C%y) 26y M Mﬁ(( )> i wT(( )> Cyz’”Ty(( )) e
7-[order sz o (; e M yz zx Myc 622 z:vac 6Zny?CJZ

(c) [100] magnetic field
Cel Oel Oel

_ Y
LT el — =
7:[0[100] 52,1@20) +6Z’2G:(rc ;o 1G c) ~o 2T(C) ;o 1Q(C) +6o ZM(C)

order

ﬁggﬁg o e thcy +Ce 2M e IQ(C —|—Ce 2Mﬁ( c)

Cel cd cl ca ce
leagoa] ~e, 1Q +ce QM(C ~e 1Q(C ce 2M . — —
H o[100] o 1Qz +CO QTy(C) ~0 lGrCy) +EO 2Ty(C) ~0,1 Z(/C) +CD QMz(y) ~0 IM(C) o 2M co 1G(C D’QTz(C)

H“ZOOJ — — yzQyz ~‘”Mgﬁyz celMC)+~e2M”5 E‘;yMZSC?
terms appear as follow.
HO = QO L +EE MO, (4.49)
Hon =GO L+ a5, (QUL-QY1,)
+E MO [+ MO+, <T9§C)fyz+T?§C)IAzx) , (4.50)
Hiwl=e:, (QL+Q1,)
28, MY, Lo+ 8 MIO 425, (MOLo+ MOL,) (4.51)

where 7:[para is the additional hyperfine field induced by the magnetic field in the param-
agnetic state, while Hzﬁg (Hggg]) is the additional hyperfine field in the presence of the
odd(even)-parity multipole orderings. ch (p=eor o, p=u,v,yz, zx, ry) is a magnetic-field

dependent coupling constant, which vanishes without the magnetic field.
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The appearance of various multipole contributions in Eqgs. (4.49)—(4.51) is due to the
reduction of the local symmetry at Co site 4m21’—4m/2’. Reflecting the breaking of the
time-reversal symmetry, the effective couplings between electronic and nuclear multipoles
with opposite time-reversal parity appear as discussed in Sec. 2.4. In other words, the E
(M) multipole at Ce site is coupled with the nuclear dipole (quadrupole) at Co site. From
the microscopic viewpoint, such a coupling originates from the M multipoles with spatially
anisotropic distributions, such as M octupole, which are described by the coupling between
the anisotropic charge distribution and M dipole moment [22, 216]. For instance, in
the case of the Q,-type ordering under the magnetic field along the [001] direction, the
M quadrupole M. with time-reversal odd is induced as shown in Fig. 4.12(g). Since
M belongs to the same IRREP A* as I, with time—reversal even under the magnetic
point group 4m’2’ from Table 4.7, the field-induced M. affects the 322 —r2-type charge
distribution and results in the effective coupling between M and L,.

Similarly, the additional hyperfine fields in the [100] magnetic field are given by

HIO = (&' +&%QY) m+( QW+ M) I+ (81 QY+ &2 MO I, (4.52)

7_22&22]_ (~o 1Q(c)+5o zG(c ) ( o,lG o,QT( )) fy+(~2’1Qg(cc)+5g’2Muc)) fz

+( olQ(C)+Co2T(C)) i, +( ve c)+~02T( )) i,

GG (B M+ 2P o (G 42T ey

(4.53)
- (105 ) (0202
( Q e 2M$y)z) jyz+ (&’6,1M(C)+~e 2M5(C)) sz"‘ée M(C)Ixy, <454)

where the local symmetry at Co site reduces as 4m21’—2'mm/. For in-plane fields, the
I, term additionally contributes to %Lﬁ% due to the breaking of the fourfold improper
rotational symmetry.

The additional hyperfine field Hamiltonian at the external magnetic field is summa-
rized in Tables 4.8(b) and 4.8(c). One can obtain the hyperfine field Hamiltonian for
other field directions by using the IRREPs in Table 4.7.

In the end, the total Hamiltonian in a unit cell under the magnetic field is given by

Heo=Hcop +Hcop+Hcop +Hcop (4.55)
Hcon Hzeeman+7'lpara+7'lorder+7-lorder, (4.56)
Hcop =HZeeman + Hpara = Horder T Horders (4.57)
Hon =Hparat Horder+ Hirder (4.58)
Heop =Hpara = Hopger + Hirder- (4.59)

We use above nuclear Hamiltonian H¢, to examine the NMR spectra in the odd-parity
multipole orderings in the following sections.

4.6.3 NQR Spectra

We examine how odd-parity multipole moments affect the NQR spectrum. In the param-
agnetic state, the nuclear Hamiltonian given by Eq. (4.45) leads to three NQR frequencies,

f=vq, 2vq, and 3vq, where FLI/Q:?)CZQSLC). We take vg=1 as the frequency unit.
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In the following, we show the resonance frequencies in odd-parity multipole orderings:
the Q,-type AFQ state with Ggfy), the Q,-type AFQ state with Q,(ZC), and the M,-type
AFM state with Ty(c). In the calculations, we set the coupling constant in Eqs. (4.42)
and (4.43) as ¢ =cq, which is estimated from the NQR frequency in Ref. [205] as cq=
0.13 when setting yh=1, while the coupling constants are set to be ¢ for the primary-
induced multipoles and to be ¢ for the secondary-induce multipoles as the unknown model
parameters for simplicity.

Staggered (),-type AFQ

We discuss the NQR spectrum in the staggered Q,-type AFQ state, where the effec-
tive nuclear Hamiltonian is represented by considering the finite electronic multipoles in
Eqgs. (4.42)—(4.44) as

Heoy = (@ £cGY)) I,.. (4.60)

The positive (negative) sign in the second term corresponds to Heo, (Hcog)-

The NQR frequencies of Coa and Cog sites as a function of G(;g with fixed ¢=0.02
are shown in Fig. 4.13(a). The color scale in Fig. 4.13 shows the intensity of the NQR
spectrum, which is calculated by the magnitude of the matrix element of I, between

. 2 .
yw| = am)
x,y, z) represents the normalized I, satisfying Tr[/, uf;ﬂ] =1.

The result shows that the NQR frequencies for Co, and Cog have different values and

show the spectral splittings and shift in the Q,-type AFQ state. The sublattice-dependent
splitting is owing to the effective coupling between Géﬁ) and [, with different signs for

2 A
different nuclear state i and j at Coxp site, , where [, (p=

different sublattices. In other words, the odd-parity multipole moment Gg(;:;,) in Eq. (4.60)
plays a significant role in splitting of the NQR frequencies. In fact, the splittings of the
NQR frequencies are proportional to G’gfy) On the other hand, the shift of the frequency
to smaller f is due to the decrease of dominant CQQ&C) (cq>c) term in Eq. (4.60) by the
suppression of ng) while increasing G§fy) as shown in Fig. 4.12(d).

It is noted that it might be difficult to detect the splitting due to the odd-parity
multipoles even for a saturated multipole moment G5fy)~0.5 when the coupling constant

c is small, since the splittings are proportional to cG,(,f;).

Staggered (Q),-type AFQ

In the staggered Q,-type AFQ state with QS”, the effective nuclear Hamiltonians of Cox
and Cop are represented by

HCOA/BZCQQSLC)juj:CQ,(ZC)jv' (461)

The NQR spectrum for the coupling constant ¢=0.02 is shown in Fig. 4.13(b). In
contrast to the result in the Q,-type AFQ state, there is no splitting in the NQR spectrum.
This is because the different sign of Q,(ZC) in Eq. (4.61) is not relevant to the splitting, which

is consistent with the symmetry argument that there is no linear coupling between Q,(ZC)
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Figure 4.13: The odd-parity multipole (upper scale) and its hyperfine field (lower scale)
dependences of the NQR frequency f in the staggered (a) Q,-type AFQ, (b) Q.-type
AFQ, and (c¢) M,-type AFM states. The coupling constants ¢, ¢y, and cj , are set as

cp=c;=c=0.02 in the AFQ states and ¢, ,=c=0.3 in the AFM state. Other coupling
. 2

I;{A(B) is shown by
the counter plot in red (blue) for Coa (Cop) site. When the spectra from Co, and Cog
are equivalent, their intensities are shown by violet.

constants are set to be ¢=0.02. As an intensity of the spectrum,

and Qq(f) in the free energy expansion at Co site. In the end, nonzero Qé") just affects the
spectral shift.

In addition to the splitting, the difference is found in the odd-parity multipole depen-
dence of the frequency shift. The frequencies in the Q,-type AFQ state in Fig. 4.13(b)

decrease with increasing QS) faster than those in the Q,-type AFQ state in Fig. 4.13(a).
This is understood from the different dependences on the multipole moments as discussed
in Sec. 4.6.1; Q' in the Q,-type AFQ state decreases by N[Q,Ef)]‘*/ 3 while that in the
Q.-type AFQ state decreases by N[GS;)]Q.

Staggered M, ,-type AFM
In the staggered M, -type AFM state, the nuclear Hamiltonian is represented by
Heop p=+CT) L+cqQ T+ QY. (4.62)

It is noted that nuclear dipole contribution in the M,-type AFM appears even without
the net magnetization nor the magnetic field.

98



CHAPTER 4. ODD-PARITY MULTIPOLE ORDER IN F-ELECTRON METAL CECOSI

Figure 4.13(c) shows the NQR spectrum for the coupling constants ¢=0.3 and ¢/=0.02
in the M,-type AFM state, where c is estimated from the magnitude of the internal mag-
netic field in Ref. [205]. The NQR frequencies are split into seven due to the contribution
from the internal magnetic field arising from the first term in Eq. (4.62). Meanwhile, the
NQR frequencies for Con and Cop sites are the same, which indicates that there is no
sublattice-dependent splitting in the presence of the odd-parity Ty(c). This means that
T, y(c) does not linearly couple with Qq(f) in the free energy expansion, which is consistent
with the symmetry argument. Thus, it is difficult to conclude the presence of T, y(c) only
from the seven splittings in Fig. 4.13(c). In fact, the NQR spectra split into seven can be

obtained in the even-parity M dipole order, such as M;,(;C), in Table 4.2.

4.6.4 [001]-Field NMR Spectra

In this section, we discuss the [001] field NMR spectra in the odd-parity multipole or-
derings. We set vyh=1 and |H |—1 in the following. The coupling constants are set as
¢, =cq=0.13 as well as that in NQR in Sec. 4.6.3. The other coupling constants are set to
be ¢ for the primary-induced multipoles and to be ¢ for the secondary-induced multipoles
for simplicity. The field-swept spectra are shown in Appendix F.1. We discuss the NMR
spectra in the paramagnetic state, Q),-type AFQ state, Q,-type AFQ state, and M,-type
AFM state.

Paramagnetic state

In the paramagnetic state at the [001] magnetic field, H®™ =(0,0, H. z(n)), the effective
nuclear Hamiltonian is represented by

7-[COA/B:(_I—]z(n)—i_cljwz((:)) jz+cQQ5LC)ju’ (463)
7:[COA/B:c’QEf)IAZ—l—c’MZ(C)IAu. (4.64)

The first term in Eq. (4.63) includes the Zeeman term from the external magnetic field.
The sum of the external magnetic field and the hyperfine field in Eqgs. (4.63) and (4.64)
results in the seven spectral peaks separated by the same interval in the NMR measure-
ment.

Staggered (),-type AFQ

In the @Q,-type AFQ state, the effective nuclear Hamiltonian is obtained as

Heoy = (—H+ M) L+ (cqQ £cGL)) I, (4.65)
Heoyn=C (QY£GE) M) L+ (MM )I (4.66)

The frequency-swept NMR spectrum for c=¢’=0.02 is shown in Fig. 4.14(a), where the
color scale represents the intensity of the [001]-field NMR spectrum. Figure 4.14(a) shows
that G leads to sublattice-dependent spectral splittings due to the different frequencies
of Coyp and Cog as well as the result in NQR. The NMR spectrum is mainly determined by
the following dominant contributions: Zeeman term, CQQSLC) term, and primarily induced
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4.6. NQR AND NMR IN ODD-PARITY MULTIPOLE ORDER

Ggfy) terms. The spectral splittings originate from the odd-parity multipoles G&‘;) and M

which are coupled with Q'Y and M., though the contribution from M. is much smaller
than that of Gg;,), as discussed in Sec. 4.6.1. Additionally, each spectrum is shifted by
(G5

Fi 21 §i (2 © VAN
(@) G,E;) PANRVEN (b) 0! =A®L ) Ty(c)
4,00 0.25 050 | 0.00 0.25 050 | 0.0 05 1.0
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4r 1 - 1004 4T 1 0.04 4f 0.04
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0 : 0.00 0 ‘ 0.00 0 : : ~—0.00
0.000 0.005 0.010 0.000 0.005 0.010 0.0 0.1 0.2 0.3
O ©) o 7(c)
Cu ny C‘? Q;C) Cx,yTy

Figure 4.14: (a—c) The odd-parity multipole dependences of the NMR frequency f under
the [001] magnetic field. The data are for the (a) Q,-type AFQ, (b) Q,-type AFQ, and

(¢) M,-type AFM states. The color scales represent the intensities with ‘I A(B )‘ The

coupling constants are set as ¢, =c,=c=0.02 in the AFQ states and ¢ ,=c=0.3 in the
AFM state. Other coupling constants are set to be ¢=0.02.

Staggered Q),-type AFQ

In the @Q,-type AFQ state, the effective nuclear Hamiltonian is described as

HCOA/B: (_H(n)+C/M(C)) jz+CQQELC)ju:ECQ£C)fv’ (467)
Heop n—C QO LA MOT, 2 MO, (4.68)

The NMR spectrum for ¢=¢=0.02 is shown in Fig. 4.14(b). The seven frequencies
have no additional split for both Co sites, since the mduced odd-parity multipoles, Q and
Ml(t ), in the ordered state do not couple with Qu or M;¢ (©) Meanwhlle each frequency is
shifted by [Qz ]4/ 3 which is understood by the behavior of Qu , as discussed in Sec. 4.6.3.

For full-saturated Q(C) 0.5, all the NMR frequencies become f~5.2, Wthh corre-
sponds to the frequency only in the external magnetic field. This is because Qu in the
CEF term vanishes for Q' =0.5, as shown in Fig. 4. 12(h).

Staggered M, ,-type AFM

In the M, -type AFM state, the effective nuclear Hamiltonian for the Co nucleus is repre-
sented as

’HCOA/BZ (—H§H)+C’MZ(C)) fzic’T( m—i—cQQ u+cQ (4.69)
7:[C0A/B :c’fo)IAerc'Mz(c)fuic'Ty( ., (4.70)

The NMR spectra for ¢=0.3 and ¢=0.02 is shown in Fig. 4.14(c). The spectra show
no sublattice-dependent splitting, which is similar to those in NQR spectra in Sec. 4.6.3,
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CHAPTER 4. ODD-PARITY MULTIPOLE ORDER IN F-ELECTRON METAL CECOSI

as T does not couple with Qu or MZ(C). The shift of the resonance frequency against
Ty(c) is small compared to that in the Q,-type AFQ state in Fig. 4.14(b), which reflects
the different behavior of Q' as shown in Fig. 4.12(i).

4.6.5 [100]-Field NMR Spectra

We show the [100]-field NMR spectrum in the paramagnetic state, @Q,-type AFQ state,
Q.-type AFQ state, and M, -type AFM state.

Paramagnetic state

In the paramagnetic state at the [100] magnetic field, the effective nuclear Hamiltonian
at Co nucleus is represented by

HCOA/B ( +CM)> +CQQ +CQ (4.71)
7m%m—%Q@+Q M>M(Qg+ng@ﬂ4Q9+Mp)y (4.72)

The nuclear Hamiltonian in Egs. (4.71) and (4.72) leads to the seven spectra similar to
those at the [001] magnetic field. However, the intervals between the resonance frequencies
are not equivalent, since the magnetic field normal to the z axis leads to the emergence

of QI

Staggered (),-type AFQ

I,
(a) GY \Z5 L5 1” (o) Q© (c) T
0.00 0.25 050] | 0.00 0.25 0.50 0.0 05 1.0
7 ‘ 010 7 ‘ 010 8 —— 0.12

6 — 0.08 6 1 0.08 _
o :% 0.06 0.06 6 1 0.08
5F = ’ 5r TS —
_— 0.04 4 0.04 4+ \\, 0.04
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Figure 4.15: (a—c) The odd-parity multipole dependences of the NMR frequency f under
the [100] magnetic field. The data are for the (a) Q,-type AFQ, (b) Q,-type AFQ, and

(c) M,-type AFM states. The color scales represent the intensities with ‘I B)) The

coupling constants are set as ¢, =c;=c=0.02 in the AFQ states and ¢} ,=c=0.3 in the
AFM state. Other coupling constants are set to be ¢=0.02.

In the @Q,-type AFQ state, the effective nuclear Hamiltonian is described as

Heop = (—HM + M) I+ (cqQ +cGL)) I+ QV1,, (4.73)
Hoorn= [ (QP+QV0 QU +G) 4T I,
+ (QY+MOLQYET)) I +¢ (QV+MO+Q G £T ) I,.  (4.74)
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4.6. NQR AND NMR IN ODD-PARITY MULTIPOLE ORDER

Figure 4.15(a) shows the [100]-field NMR spectra for c=¢'=0.02, ¢j;=0.3, where the
color scale represents the intensity of the NMR spectra. The result indicates that sublattice-
dependent spectral splitting occurs as well as the results in NQR and [001]-field NMR.
Also in the [100]-field NMR, the spectrum is mainly determined by the following dom-

inant contributions: Zeeman term, cQng) term, and primarily induced Gg(fy) terms. In
other words, among the odd-parity multipoles, Géi), QS), and T, 156), the important con-
tribution comes from G;Cy), since the magnitudes of Q' and Ty(c) are much smaller than
that of Gg;), as shown in Fig. 4.12(j). Meanwhile, the shift of the spectra is dominated

by QY.

Staggered (),-type AFQ

The effective nuclear Hamiltonian in the @Q,-type AFQ state is

Heoy = (—H+ M) Lt Qi T+ (¢ QY £cQY) 1., (4.75)
Heopn= ¢ (QY+QV+QV+GE)) £\ T I
+ (QU+MO+G)+QOT) [+ (QO+MO+G)+TO) [, (4.76)

which is the same as that in the Q,-type AFQ state in Eqs. (4.73) and (4.74), as the
magnetic point group symmetry under the magnetic field is the same as 2'mm’ with each
other. Thus, in contrast to the results for the NQR [Sec. 4.6.3] and [001]-field NMR
[Sec. 4.6.4], the sublattice-dependent splittings occur under the [100] magnetic field as
shown in the NMR spectra for c=¢'=0.02, ¢};=0.3 in Fig. 4.15(b).

However, the mean-field dependence of the spectra is different from that in the Q-
type AFQ state, since the magnitude of Qgc) is much larger than that of other multipoles.
Especially, the spectral shift reflects the different mean-field dependence of Qi(f’), as already
discussed in Sec. 4.6.3.

Staggered M, ,-type AFM

The nuclear Hamiltonian in the M, -type AFM state is

HCOA/B: (_H:Ecn)—f—c,M;gc)iCTéc)) fg;‘f‘CQQELC)IAu—FC,QgC)IAU, (477)
Heo, p=¢ (QV+Q+QV+£GY)) I,

1 QUM £G QO LTO) ¢ (QE+ MO +G)+QO+TO) I,
(4.78)

where the same multipoles appear in the two AFQ states in Eqgs. (4.73)—(4.76), since the
magnetic point group symmetry under the [100] magnetic field reduces to 2'mm’ also in
this case. Thus, the sublattice-dependent NMR splittings occur, which is similar to those
in the AFQ states. However, the dominant odd-parity multipole to induce the spectral
splitting is given by T y(c). The [100]-field NMR spectra for ¢=0.3 and ¢=0.02 is shown in
Fig. 4.15(c).
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4.6.6 Spectral Splittings under Odd-parity Multipoles

So far, we have focused on the NQR and NMR spectra in the two AFQ and the AFM
ordered states under the magnetic fields along the [001] and [100] directions as well as
the zero magnetic field. In a similar way, possible NQR and NMR splittings in other
odd-parity multipole orderings under any field directions can be calculated. We show the
presence or absence of the sublattice-dependent NQR and NMR splittings for the other
candidate odd-parity multipole orders in CeCoSi, which are expected from the low-energy
two CEF levels. The present analysis is applicable once the phase transition occurs in the
magnetic field unless the second excited levels are involved in the phase transition. It is
noted that our analysis can be extended to other electronic orderings in the I'7-I'g level
scheme and the Fgl)—f‘g) level scheme, where the latter is discussed in Appendix F.3.

The present results for the I';-I'g level scheme are summarized in Table 4.9. We list
the other candidates; two AFM states, three AFQ states, and two AFO states. We also
include the results in the Q,- and @Q,-type AFQ states and the M,-type AFM state
discussed in Secs. 4.6.3, 4.6.4, and 4.6.5 under the other magnetic-field directions. The
table exhibits when the sublattice-dependent spectral splittings occur in the presence of
odd-parity multipoles.

For example, in the AFQ phase, the NMR measurement in the zz(yz)-plane mag-
netic field is useful to identify the odd-parity multipole order parameter; the sublattice-
dependent splittings which always appear when the magnetic field direction is rotated
in the zx(yz)-plane indicate the emergence of G;‘;) Meanwhile, in the AFM phase, the
sublattice-dependent splittings under the magnetic field along the x direction will indi-
cate the presence of Ty(c). In this way, as the different spectral splittings are found in
the different odd-parity multipole orderings depending on the magnetic field directions,
the detailed investigation of the field angle dependence enables us to identify the order
parameter in CeCoSi.

Table 4.9: The sublattice-dependent NQR and NMR splittings in the AFM, AFQ, and
AFO states under the six field directions [001], [100], [110], ,[001], ,[010], and ,[110].
The local multipoles (LMP) at Ce site and cluster odd-parity multipoles (OPMP) are
shown in second and third columns, respectively. The mark v* represents the presence of
the sublattice-dependent splittings.

NQR NMR
LMP OPMP  —  Hjooy Hjpooy Hypig Hipoy Hijiop Hijfiig
AFM M, 1, — — v v v 7 v
M, T — — — v v — v
M, M, — — - - = v =
AFQ Qu Q. — v — v v —
Q. Gy v v v v v v v
Q;ty GU o T o T ‘/ T T
Qu=:  Qy — — — — — — v
sz QJ} - o - - - ‘/ ‘/
AFO M,,. M, — — - - = = =
MM, v v
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4.7. SUMMARY

4.7 Summary

We investigated the odd-parity multipole orderings that corresponds to the staggered mul-
tipole orderings in the f electron metal CeCoSi with the locally noncentrosymmetric crys-
tal structure. We examined three different models to investigate the finite-temperature
phase transition, multiferroic properties, and NQR/NMR spectra.

First, we examined the relation between the AFM and AFQ ordered states and the
odd-parity multipole moment. By using the self-consistent mean-field calculation for the
effective local model, we clarified the important interaction parameters to stabilize the
AFM and AFQ phases while changing the temperature. We showed that the interorbital
AFQ ordering is possible by the relatively small interaction even in the case of the large
CEF level splitting when taking into account the effect of the multipole interaction for
the (322 —7?)-type E quadrupole. We also discussed the behaviors of the magnetic suscep-
tibility and the quadrupole susceptibility. We showed that the magnetic susceptibility is
closely related to the AFQ order parameter and CEF, while the quadrupole susceptibility
in a magnetic field is related to the coupling between the AFM and AFQ moments.

Second, we examined the itinerant model to investigate the stability of the multipole
orderings at the zero temperature and the multiferroic responses. Different from the local
model, we showed that the itinerant model can realize the nonmagnetic AFQ ground state,
which might correspond to the situation in the high-pressure region of CeCoSi. Moreover,
it was clarified that the types of the AFM and interorbital higher-rank multipole phases
are mainly related to the two types of ASOIs and the interorbital hoppings. We also
investigated the band modulation and the multiferroic responses in the presence of the
odd-parity multipole orderings. Especially, we discussed the temperature dependence
of the magnetoelectric coefficients with the complicated 1" dependence, which originates
from the multi-orbital effect.

Third, we investigated the NQR and NMR spectra in the presence of the odd-parity
multipole orderings. We introduced the hyperfine field Hamiltonian based on the sym-
metry analysis for the zero magnetic field, [001] magnetic field, and [100] magnetic field,
and calculated them under the odd-parity multipole orderings. As a result, we clarified
that the odd-parity multipole leads to the sublattice-dependent spectral splitting of the
NQR and NMR. As the presence/absence of the spectral splittings depends on the odd-
parity order parameter and the direction of the magnetic field, the present results provide
information for the identification of the unknown order parameter in CeCoSi.

Although the present study focused on the odd-parity multipole order of the specific
material CeCoSi, the theoretical results, such as the stability of the multipole orderings
in the presence of the large CEF level splitting, multiferroic responses in the multi-orbital
system with the unconventional odd-parity multipole order, and the way to identify the
odd-parity multipole order parameter by the NMR measurement, can be applicable to
other materials hosting odd-parity multipoles. Thus, the result will be useful to explore for
future exploration of functional materials in the absence of the spatial inversion symmetry.
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Chapter 5

Summary

In this dissertation, we have investigated multipole physics in condensed matter physics.
We already gave a summary of the results in each chapter. We here conclude this disser-
tation by wrapping up the main results from a broader viewpoint.

In Chap. 2, we completed the classification of multipoles in the 122 magnetic point
groups. We systematically classified four types of multipoles, i.e., electric, magnetic, elec-
tric toroidal, and magnetic toroidal multipoles, based on the representation theory in a
nonunitary group. The symmetry-adapted four types of multipoles can express any elec-
tronic degrees of freedom including not only atomic-scale ones, such as the charge, spin,
and orbital, but also sublattice one. Thus, the present classification of multipoles will en-
able us to understand electronic order parameters, entanglement among the charge, spin,
and orbital, multiferroic phenomena, and transport properties in a systematic way. Es-
pecially, the multipole description in the magnetic point groups including the antiunitary
operations accompanied by the time-inversion operation becomes a powerful tool when
clarifying microscopic essences for various physical phenomena in magnetic materials with
the complicated magnetic structures and exotic higher-rank multipole structures. Indeed,
we uncovered the parity-violating physical phenomena based on the multipole concept in
Chaps. 3 and 4.

In Chap. 3, we investigated the second-order nonlinear transport in the magnetic
toroidal dipole ordering with an emphasis on the necessary model parameters to induce
the nonlinear transport. By analyzing the staggered antiferromagnetic ordering with the
magnetic toroidal dipole on a two-dimensional zigzag chain, we obtained the important
antisymmetric spin-orbit interaction and hopping parameters for the second-order non-
linear transport in the ferrotoroidal metal/semiconductor. We also showed that a large
enhancement of the nonlinear conductivity can occur near the transition temperature in
a multi-band system.

In Chap. 4, we investigated one of the candidate materials to host odd-parity multi-
poles, CeCoSi. We discussed the potential odd-parity multipoles in the antiferromagnetic
and antiferroquadrupole ordered phases from the viewpoint of both local and itinerant
models. By analyzing the local model, we constructed the finite-temperature phase di-
agram by the self-consistent mean-field calculation, which gave the similar result to the
experimental one in the low-pressure region. We gave a physical interpretation of the in-
terorbital multipole ordering in the presence of the large crystalline-electric-field splitting
by considering the multipole-multipole interaction. Meanwhile, in the itinerant model,
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we showed that not only the antiferromagnetic ordering but also the antiferroquadrupole
ordering can be stabilized even in the ground state, which might explain the emergent
antiferroquadrupole ordering in the high-pressure region of CeCoSi. We also investigated
the multiferroic response driven by the odd-parity multipole orderings by focusing on the
importance of the interorbital degree of freedom. Furthermore, we developed the theory
of the NQR and NMR spectra in order to microscopically detect the odd-parity multipole
orderings.

For future work, there is the further exploration of multiferroic responses and lin-
ear/nonlinear transport properties in terms of the unconventional order parameters, e.g.,
magnetic toroidal quadrupole and octupole, by the systematic analysis based on the
present multipole classification. It might open the way to use various functional ma-
terials with antiferromagnetic states and the unconventional spin, orbital, and current
ordered states for the novel electronics and spintronics devices. Meanwhile, the theoreti-
cal study on the multipole orderings in CeCoSi also remains several issues to explain the
experimental result. For example, the high critical magnetic field in the temperature-field
phase diagram and the behavior of the magnetization depending on the higher-order mag-
netic field. To examine them, the theoretical analysis taking into account the additional
effect beyond the present effective mean-field model will be necessary.

106



Appendix A

Multipole Notation under Point
Group Symmetry in Crystals

We adopt the real expressions of Oy, (r), which are given by [50]

),
O (r)=0y(r),
1)m

O(C)(r)z<

Im

[Om (1) + O ()],

(s) :Z(_1>m
Olm(r)— \/5

Sl

[Om (1) = Opp ()]

(A1)
(A.2)

(A.3)

We use the linear combination of Ol(frz('r) and Ol(;z(r) for the expressions of multipoles in

crystallographic systems.

The cubic harmonics are used for the cubic groups and its subgroups, where Oy, (r)

up to rank 4 is represented as follows. The rank-0 monopole is
the rank-1 dipole is

the rank-2 quadrupole is

(Oy2702x70 ) \/_(yzvzxuxy)7
the rank-3 octupole is
Owyzzx/ﬁxyz,
o (0% (e 1
(02,05,0%)= 5 (z(52*—3r?), y(5y>—3r?), 2(52°—3r?))

NE

(07,0,,00) ==

(2(y®=2),y(2* =), 2(2 —?)) |
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(A.4)

(A.5)

(A.9)

(A.10)

(A.11)



and the rank-4 hexadecapole is

V21
O4=5T <x4+y4+z4—§r4> ,
VIS, Yt 3 5 o
O4U_T [2 B E— (3z—r) |,
5 6
O4U:T |:x4_y4_?r2($2_y2):| :
o Na Ao V35
(O4$7O4y7042):_2 (yz(y*—2°), za(2* —2?), 2y (2® —y?)) |
)
(Ofx’ Ofy’ sz> :\/7_ (yz(T2*—r?), za(Ty* —r?), 2y (72" —17))

where we denote Oy, (1) — Oy, for notational simplicity.

(A.12)
(A.13)
(A.14)

(A.15)

(A.16)

For the hexagonal and trigonal groups, we adopt different notations for four rank-3
octupoles O, O, OF and OF in Egs. (A.10) and (A.11) and all the rank-4 hexadecapoles

in Egs. (A.12)-(A.16) by

On= (a3,
OgbZ@y(?’ﬁQ—yQ%
(O34, 031)):? (z(52°=1?),y(52"—1%))
and
O4gzé(35z4—30227"2+3r4),
V70

Oyo= T?JZ<31’2 _92);

Op= @ZQJ(I‘Z —3y2),

V1
(Ol Ofv):TO (2a(722—312), y2(722~3r%))
V35
<Of“1’ OZ}) =— (@' =627y 4y Ay (@®—y))

(022,02) =2 (@ =) (722 =), 20y 7 —1%)

with the use of the tesseral harmonics.
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Appendix B

Corepresentation of Nonunitary
Group

We review the representation theory of nonunitary groups to use the irreducible repre-
sentation in type-(IT) and type-(III) nonunitary magnetic point groups [121, 122, 124—
127, 129, 130]. In Sec. B.1, we introduce the corepresentation of a nonunitary group in
detail. After presenting the unitary transformation of the corepresentation in Sec. B.2,
we show the irreducible corepresentation in Sec. B.3. In Sec. B.4, the Kronecker product
of the irreducible corepresentation is briefly reviewed.

B.1 Corepresentation

A nonunitary group M is expressed as
M=G+AG, (B.1)

where G is the unitary subgroup and A is the antiunitary operation. When M is a
type-(II) [(IIT)] magnetic point group, G is a crystallographic point group and A is the
time-reversal operation (combination of the time-inversion and unitary crystallographic
point group operations). For the basis set of the irreducible representation I' in G with
dimension dr

<1/JF|:<77Z){7 a¢§r|a (BQ)
and another set obtained as
A<¢F’:<¢F|:< I{v 7¢51"‘7 (B?))
the representations with respect to a unitary operation R€G are given as
R W= AN (R), (B.4)
R(¢'|[=A(ATRA) (' |[=A (1| AT(ATTRA)=(¢" | [AT (AT RA)T", (B.5)

respectively. Meanwhile, an antiunitary operation B=AR (B€AG) for (¢'| and (¢ are
represented as

B [=AR (P [=A (U1 AN (R)=(¢" | [A"(AT'B)]",
B (¢ |=BA W' |=("| AT (BA).

—~~
© @
~N O
~— ~—
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B.2. UNITARY TRANSFORMATION OF COREPRESENTATION

Thus, a unitary operation R and an antiunitary operation B for the set basis (1', ¢*| are
represented by the following unitary matrices D' (R) and D'(B), which satisfy

RUNSI=6 (0 (sl S0P R) e ReG. (B

B, ¢ |=(y", ¢ <[AF(£_1B>]* A ((?A)>E<¢F,¢F|DF(B) for BEAG, (B.9)

respectively. Such a representation composed for the basis set (¢!, ¢'|, which will be
denoted as DI in the following discussion, is called “corepresentation”. From Eqs. (B.8)
and (B.9), DI satisfies the following relations for R,S€G, B,C€ AG:

DY (R)D"(S)=D"(RS), (B.10)
DY(R)D"(B)=D"(RS), (B.11)
DY(B)[D"(R)]*=D"(BR), (B.12)
DY(B)[D"(C)]*=D"(BC). (B.13)

B.2 Unitary Transformation of Corepresentation

We show a unitary transformation of a corepresentation. For a unitary matrix U which
transforms basis (7, ¢ as

W, ¢ I=", o, (B.14)

the corepresentation DI is transformed as
D"(R)=U"'D"(R)U, (B.15)
D"(B)=U"'D"(B)U*, (B.16)

where ReG, BEAG. Above relations are derived as follows:

Rw", ¢" =@, ¢"| D" (R)=R (', ¢' |U=(¥",¢'| D" (R)U, (B.17)
BT, ¢ =", oM DN (B)=B W', ¢ [U=(y", ¢"| D' (B)U". (B.18)

Thus, there is an equivalent corepresentation when the unitary matrix U satisfying Eqgs. (B.15)
and (B.16) exists.

B.3 Irreducible Corepresentation (IRREP)

The derivation of an irreducible corepresentation (IRREP) is shown with the use of a
unitary transformation. By assuming that the corepresentation DI is reducible by the

(CZ Z), DI satisfies the relation

(Z Z) (AFSR) [AF(AOWA)}*) = (X(OR) Y(OR)> (CCL Z) , (B.19)
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APPENDIX B. COREPRESENTATION OF NONUNITARY GROUP

where X(R) and Y (R) are equivalent to AT(R) and [AT(A7'RA)]", respectively. The
respective matrix elements have the following relations

aA"(R)=X(R)a, (B.20)
b [AT(ATRA)] =X (R)b, (B.21)
cA'(R)=Y (R)c, (B.22)
d[AT(ATRA)| =Y (R)d, (B.23)
which result in
a b [AT(AT'RA)] =AT(R)a™"b, (B.24)
¢ ld [AT(ATITRA)] =AT(R)c . (B.25)

To clarify when the unitary matrix satisfying Egs. (B.24) and (B.25) block-diagonalizes
the corepresentation DI for all components in a nonunitary group, we examine two cases;
AT(R) and [AF(A7'RA)]" are equivalent or not equivalent.

First, we examine the case when AT(R) and [AT(A™RA)]" are not equivalent. From
Schur’s lemma (1), matrices a, b, ¢, and d satisfy’

a 'b=c"'d=0, (B.26)
" b=c=0, (B.27)
which results in
-1_[a 0
i (00). 29

The unitary matrix U in Eq. (B.28) cannot block-diagonalize the corepresentation matrix
with respect to the antiunitary operation

y AF(BA)) . (B.29)

26~y

It means that the corepresetation DI is irreducible when AT(R) and [AT(AT'RA)] " are
not equivalent.

Next, we present the case when A'(R) and [AF(A’lRA)]* are equivalent. In this
case, the unitary matrix N satistying

AT(R)=N [A"(AT'RA)] N1, (B.30)
exists as Egs. (B.24) and (B.25). By a unitary matrix U= (é ](\)]), DY(R) is transformed
as

st rn-(13) (T ) ()
:(AFéR> AF[()R)) , (B.31)

La,d#0, as we set X(R) and Y(R) are the equivalent representations of AT'(R) and [AT(A7IRA)]",
respectively.
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B.3. IRREDUCIBLE COREPRESENTATION (IRREP)

where [ is the identity matrix. Meanwhile, the corepresentation with respect to an antiu-
nitary operation A is transformed by U as follows:

D’F(A)EU_lDF(A)U*:(é ](\][) (? AFE)AZ)) (é [Noll*)

_ (](\][ AF(Az())[N_l]*) . (B.32)
Further decomposition of D'"(A) into IRREP needs the unitary matrix that keeps D' (R)
in the block-diagonalized form and block-diagonalizes D" (A). Such a unitary matrix
denoted as V is required to be commutative with D'"(R). When we set V1= <?; ?),
the following relation

VDY (R)=D"(R)V 1, (B.33)
is satisfied, i.e.,
aAY(R) BAT(R)\ _ [AT(R)a AT (R)A
(wm) MF(R)) B (AF(RM AF(R)&) ' (B.34)

Since AT'(R) is the irreducible representation of the unitary group G, matrices a, f3, v,
and A can be represented by using complex numbers k, u, v, p as a=rl, B=ul, v=vl,
A=pl because of Schur’s lemma (2). By using V, the corepresentation D'"(A) can be
transformed as

D”F(A)zv—lDfr(A)v*:(g /;D (](\)[ AF(A23[N‘1]*> (;ﬁ ;D

(A ) STV g
AT AN ol (A AN ) B

In order to obtain the block-diagonalized D" (A) in Eq. (B.35), the following relations
need to be satisfied.

kpAY (A [N +purN=0, (B.36)
v AN (A [N +kpN =0, (B.37)
[(uv)? = (pr)?]=0. (B.38)

In addition, u, v, p, and & have the further restriction pv#ps when D" (A) is block-
diagonalized, since the unitary matrix V satisfies det[V ~!]=0. It results in

UV =—pK. (B.39)

When we set k=pu=p=1/+/2 and v=—1/1/2, the relations in Eq. (B.39) is satisfied and
D' (A) is block-diagonalized as follows:

o 1 (AT(A2)[NIF N 0
b <““>‘5( 0 —<AF<A2>[N1]*+N>)
:(]OV _ON> (B.40)
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APPENDIX B. COREPRESENTATION OF NONUNITARY GROUP

where we used Eq. (B.36). Thus, the corepresentation matrix for BEAG is block-
diagonalized as

D”F(B):D”F(BA‘l)D”F(A):(AF(BA_I) 0 )(N 0)

0 A'(BA™H )\ 0 =N
AT'(BA YN 0
:( ’ _AF(BA1>N) | (B.41)

Meanwhile, above block-diagonalization is not always possible even if AY(A?) and
[AT(A'RA)]" are quivalent. Whether D™ (B) can be block-diagonalized or not is deter-
mined by whether the unitary matrix N satisfies

NN*=A(A4?), (B.42)

from Egs. (B.36) and (B.39), while NN*=+A!(A?) is possible for the equivalent AT'(.A4?)
and [AT(A7'RA)]"2. When D" (B) cannot be block-diagonalized because of NN*=
—AY(A?%), which is given as

pB)-p B =T A ) (V)

:<AF(Z§)A_1) AF([?A*)) <](\)f _év )

0 ~AN(BAYHYN
_ (AF sy ) . (B.50)

In summary, the corepresentation DI' in a nonunitary group M =G+ AG obtained
by the irreducible representation I' in G is classified into three cases (a)(c):

2When A'(A?) and [AF(A_lR.A)}* are equivalent,

AT (R)=N [AT(AT'RA)] NTI=N [N [AT(ATTATIRAA)] N ] TN (B.43)
=(NN*[AV(AH)] ) AT(R) (AT (A INTI*N ). (B.44)
Thus, Schur’s lemma (2) leads to

NN*[AV(A%)]) 7t =), (B.45)
NN*

A 7
where X is a complex number. Moreover, by setting R=A4% in AY(R)=N [AT(A7IRA)] * N—1, we obtain
the relation

AT (AN =

(B.46)

AV (A =N[AT (AN (B.47)

which results in

NN* NN*NN-! NN*
=AU (A*)=N[AT(A*)]*N 1= = , (B.48)
A A* A*
i.e., A=\*. In addition, A=41, since |A\|=1 for the unitary matrices N and A (A?). Therefore,
NN*=+A(A%). (B.49)

113



B.3. IRREDUCIBLE COREPRESENTATION (IRREP)

(a)

The irreducible representation matrix AY(R) is equivalent to [AY(AT'RA)]*. In
addition, the unitary matrix /N satisfying

AY(R)=N[AY(AT"RA)]* N, (B.51)

has the relation with AT'(A?%) as
NN*=AT(A?). (B.52)
In this case, the corepresentation matrix composed from AY(R) (R€G) can be

block-diagonalized as D"' (R)=V U DY (R)UV and D" (B)=V U DY (B)U*V*

by the unitary matrices

U1:<é 2) V1:% (_[[ ﬁ) (B.53)

It results in the two IRREPs DI't and DI~

DIt AY(R) for ReG, +A"(BA™')N for REAG, (B.54)
DI~ —AY(R) for REG, —A"(BA™M)N for REAG. (B.55)

The irreducible representation matrix A"(R) is equivalent to [AT(A7'RA)]*. In
addition, the unitary matrix N satisfies

AT (R)=N[AT(AT'RA)*N . (B.56)
It follows the relation
NN*=—A"(A?). (B.57)

In this case, the corepresentation is already irreducible. Meanwhile, the matrix rep-
resentation can be transformed into the form which explicitly presents the equiv-
alence between A'(R) and [AT(A7'RA)]* by the unitary matrix U. Thus, one
IRREP DT is obtained as follows:

AY(R) 0 0 ~AN'(BAY)N
DF—)( 0 AF(R)) for ReG, (AF(BAl)N 0 for Re AG.
(B.58)

The irreducible representation matrix A"(R) is not equivalent to [AT'(ATIRA)]*.
In this case, the corepresentation DI’ is already irreducible, whose representation
matrix is described as

AY(R) 0 0 AT (BA)
DI‘—>< 0 [AF(A_IRA)}*> for ReG, <[AF(.A_1B)}* 0 > for Re AG.

(B.59)
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Finally, we show the way to examine in which cases a corepresentation is classified by
using the character. Generally,

> ANBY)=)  AT(ARAR),,
BeAG ReG
=Y AY(ALATRAR),,
ReG

= AT(A) AT (ATRA) AT (R), (B.60)

ReG

for BEAG. For equivalent AT(R) and [AT(A'RA)]* [case (a) or (b)],
> ATBY = AN, AT (R)yy Ny AT (R,

BeAG ReG

= AT (A [N T NG Y [AT(R)pg]" AT (R).r (B.61)

ReG

By using the orthogonal relation for the irreducible representation in a unitary group,

G

S AT(R)AT(R)],= = OrOradim, (B.62)
ReG
where |G| is the order of G,
A(B2), = AT (A2), [N [N, G5 o
Z ( )rr— ( )7"8[ ][ qt] T ptqr
BeAG
G —17* *
Gl ar ), v
G
|d |AF(A2)TS[ N,)* Ny (B.63)

Since the relation [N,¢]* Ny =+[AV(A?),,]* =+Al (—A?),, is satisfied for cases (a)(positive
sign) and (b)(negative sign), respectively,

> ABY), _i|G|AF(A2)mAF( A%,

BeAG

—4|G|. (B.64)

Here, £ is the identical operation.

In case (¢), > peaq A (B?)»=0 in Eq. (B.60) because of the orthogonality between
inequivalent representations A"'(A7'R.A) and AT(R).

Therefore, one can examine three cases as

+|G| :case (a),
ZXF(BQ)Z —|G| :case (b), (B.65)

BeAG 0 :case (c).
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B.4 Kronecker Product of IRREP

We present the Kronecker product between IRREPs. The Kronecker product between
irreducible representations I'; and I'; in a unitary group can be decomposed as

Fi®FjZZ Cijkl'k, (B.66)
k

where the Clebsch-Gordan coefficient ¢;;x is represented by the character in I';, " (R)=
Tr[AT(R)], as

:ﬁ S T (R (R)[U (R)) (B.67)

ReG

In the same manner, the Kronecker product between IRREPs DI'; and DI'; consisting of
I'; and I'; can be decomposed as

DI;@DU;=Y " dyj DT (B.68)
k

The coefficient d;;; is given by the relation among " (R), ¥'7(R), and "*(R), since
IRREPs in a nonunitary group are uniquely determined by the unitary subgroup.

As IRREPs D'*(R) include the same (different) multiple irreducible representations
for case (b) [(c)], the character of IRREP, ' (R), satisfies the relation as

Tr[AT(R)]=¢"(R) :case (a),
Y'(R)=Tr[D"(R)]=4 Tr[AT(R)]+Tr[AT(R)]|=2¢"(R) ) -case (b),
Tr[AY(R)|+ Tr{[AT (AT RA) " }=vT (R)+y"(R)  :case (c),
(B.69)
. 1 :case (a),
G Z IX"*(R)?=4 4 :case (b), (B.70)

Re@ 2 :case (c).

We set [AF(A*IRA)]*EAF(R) in Eq. (B.69). By generalizing Eq. (B.67) in the consid-
eration of the relation in Eq. (B.70), the coefficient d;;; can be obtained as [129, 131]
; @1 2rea X (RIX(R)X*(R))
ik =
j TS rea R

(B.71)

Since the character of IRREP, x*(R), is relevant to ¢, d;; . also can be represented by
the Clebsch-Gordan coefficient ¢;; 5, whose general relation is summarized in the previous
literatures, e.g., Ref. [129]. In addition, the specific decomposition of the Kronecker
product for black-and-white point groups is given in Ref. [132].
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Appendix C

Tables of Multipole Classification

The multipole classification for 32 gray point groups is summarized in Table 2.3 in Sec. 2.3
and Tables C.1-C.31 in Sec. C.1. Meanwhile, the classification of 58 black-and-white point
groups is summarized in Table 2.4 in Sec. 2.3 and Tables C.32-C.88 in Sec. C.2.

C.1

Gray Point Groups

Table C.1: Irreducible corepresentations (IRREPs) of four types of multipoles: electric
(E), electric toroidal (ET), magnetic (M), and magnetic toroidal (MT) multipoles, in the
type-(II) gray point group 4321’. The character table of the unitary subgroup 432 (O) is
also shown to represent the symmetry of each multipole. The IRREPs are obtained from
the irreducible representations of the unitary subgroup. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E 6C; 3C% 6Cy 8C; IRREP E ET MT M MPG P. axis

A, 1 1 1 1 1 AT Qo, Q4 Go, G4 4321 (100)
A7 To, Ty My, M, 432 (100)

Ay 1 -1 1 -1 1 A} Quy- Gy 231’ (100)
A, Toye M- 432" (100)

E2 0 2 0 -1 E* Qu, Quu G, G 4221" [001]
Qm Q4v va G4v 2221 [100]

E- Ty, Tha My, My, 422 [001]

T,, Ty M,, My, 422" [001]

T, 3 1 -1 -1 0 TV Q.,Q%,Q% G, G GY, 41 [100]
Q. Q2,Q3, Gy, G, GS, 41 [010]

Q- Q7@ G., GGy, 417 [001]

T T, T, T2 My, M2, M 42'2  [100]

T, T, T3, M, Me Mg, 422 [010]

T, T®,T¢ M, M M 422 [001]

Ty, 3 -1 -1 1 0 TF Q.. Q°.Q) G,..GE G 2221 [011]
Q:0, Q5 Q) Gea, GEL Gl 2221'  [101]

Quyy @2, Q1. Gy, G2, G, 2221 [110]

T, Ty, TP, TS M,., ME, MJ  4'2'2  [100]

T, TP, Ty, Mo, MJ, My, 422 [010]

sz,Tf,Tﬁ M, MP, My, 4'2'2  [001]
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Table C.2: IRREPs of four types of multipoles in 43m1’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E6IC,3C260,8C; IRREP E ET MT M MPG P. axis
AT 1T 1T 1 1 AF Qo Quysr Qu 23m1” (100)
A7 To, Ty T 43m  (100)

Ayl —1 1 -1 1 A} Go, Gayr Gu 231" (100)
Ay My, My, My 3m’ (100)

E2 0 2 0 -1 Ef Qu; Quu G, Guy 42m1" [001]
Quvs Quo G, Gau 2221’ [100]

E- Ty, T M,, My, 42m  [001]

T, Ty M, My, 22m’ [001]

T3 1 —-1-10 T Q%,Q%,  G.,G,.,Go Gl 41 [100]
Q%.Q3,  Gy.G...GoGY, 41 [010]

Q7,05 G.,Gay, G2,GY, ' [oo1]

T, TP, Ty My, M,., M2, M, 42'm' [100]

T8, T8, My, M., M&, My, 42'm/ [010]

T2, T M,, My, M®, My, 42'm’ [001]

To3 =1 =1 1 0 Tf Q.Q,..Q%Q%  G° a3, mm21’ [011]
Q. Q. Q2,Q5,  GI.GY, mm21’ [101]

QzanU’Q?’sz GfaGZz mm21’ [110]

T, Ty, T T MP M, 2'm  [100]

v Toay T2, T, Mg, Mg, 22'm  [010]

L Ty, T T MP MY 22'm [001]

118



APPENDIX C. TABLES OF MULTIPOLE CLASSIFICATION

Table C.3: IRREPs of four types of multipoles in m31’. The superscript “+” of case-(a)
IRREP stands for the parity with respect to the antiunitary operation A=#0. E,,, without
superscript is the case-(c) IRREP.

E3C,4C54C2 T 30,41C541C2 IRREP E ET MT M MPG P. axis
A;,11 1 111 1 1 Ay Qo, Q4 Gay- m31” (100)
Ag? T'()7 T4 szz m3 <100>

Egl 1l w w1 1 w W E, Qus Quu mmm1’ [100]
11 w?w 1 1 W w } Qv, Quo mmm1’ [100]
Ty, Ty mmm  [100]

Ty, Ty, mmm  [100]

T,3-10 0 3 -1 0 0 TY Q.. Q%,. QL GuGoGE 2/m1’ [100]
Q:, Q3. Q, Gy, G2, GY 2/m1’ [010]

Quy, Q5. QL G-, G2, G 2/m1’ [001]

T, Tye, T, TS, My, MO, MP mm/m/ [100]

Teo, T3, Ty, My, MO, MP m/mm’ [100]

Ty, T, Ty, M., M2, MP m/m'm [100]

AT 1 1 1 —1-1 -1 -1 Af Quy- Go, G4 2317 (100)
AJ Txyz ]\{[07 ]\/f4 ml?)/ <100>

Eul 1 w w?-1-1-w —w?) E, G, G 2221'  [100]
11 w? w —-1-1-w? —w} Gy, Gy 2221" [100]
My, My, m/m'm’ [100]

My, My,  m'm'm’ [100]

Ty3-10 0-31 0 0 T Q. Q% Q8 G,.,GY,, G 2mm1’ [100]
Q,,Q2,Q8 G...GS,,GY, m2m1’ [100]

Q-,Q2,Q% Guy, GY, G, mm21' [100]

T; Ty, T, TP M., Mg, My, m'mm [100]

Ty, Te, TP M.y, Mg, My, mm'm  [100]

T,,T* TP M,,, M2, ML mmm' [100]

w=exp(—27i/3)
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Table C.4: TRREPs of four types of multipoles 231’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E 3C, 4C5 4C2  IRREP E ET MT M MPG P. axis
Al 1 1 1 AT Q0,Quys Qi Go, Gy, Gy 2317 (100)
A- To, Ty, Ty My, My, My 23 (100)
El 1 w u? E Qu, Qua eI e 2221' [100]
1w w } Qu, Quo Gy, Gy 2221 [100]
Ty, T M, My, 222 [100]
T,, T, M,, My, 222 [100]
T3 -1 0 0 T+ Qur Qye, G., Gy, 21’ [100]
2, Q% Q5. Q1, G2,G1, G4, GY,
Qys Q2o Gy, G, 21" [010]
5 Q. Q4. Qly Gy, Gy, G4, G,
zy Ty zy My, 21/ [001]
©,Q%,05., Q1. G2,G2,Gs., Gl
T T, Ty, M,, M,., 22'2"  [100]
7o, T8, Tg, Ty, M2, M2, Mg, M,
T, Tsa, M, M., 222" [100]
T, TP, T3, Ty, Mo, M, Mg, M)
T., Ty, M., M,,, 2'2'2 (100
T, T8 T T M* MP M, M.

w=exp(—27i/3)
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Table C.5: IRREPs of four types of multipoles in 6/mmm1’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=6.

E2Cs2C5 Cy 3C5,3Cy, I 21C621Cs 04, 30,30, IRREP  E ET MT M MPG P. axis
Al 1 1T 1 1 1 1 1 1 1 1 1 Af, QQu 6/mmm1’ [001]
Q40
Ay, To, Ty, 6/mmm  [001]
Tyo
Al 1 1 1 -1 =11 1 1 1-1-1 Aj G.,Ge 6/ml’  [001]
A, M., M2 6/mm'm’ [001]
Byl-11-11 -11 -1 1 -11-1 Bf, Qu Gu 3m1’ [001]
By, Ta Ms, 6 /m'mm’ [001]
Byyl -1 1 -1-1 1 1 -1 1 —-1-11 B; Qu G 3ml" [001]
By, T Mz, 6 /m'm'm [001]
Eg2 1 -1-2 0 0 2 1 -1-20 0 Ej, QQ% G Gs 2/m1’" [100]
Qe Q% Gy G 2/m1’  [010]
E;, Tye, T My, Ms, mm'm’  [100]
T, T, My, Ms, m'mm’ [100]
Esy2-1-12 0 0 2 -1 -1 2 0 0 E;’g Qo, Gy mmml1  [100]
e Qe
Quy, G2 2/m1" [001]
Bl B2
4vs w4
E5, Ty, M. mmm  [100]
o T
Ty, M? m'm'm  [100]
i Ti
Al 1 1 1 1 1 —1 -1 —1-1-1-1 Aj, Go, G 62217 [001]
Gy
A7, My,  6/m'm'm’ [001]
M., My
Ayl 1 1 1 =1 —1-1-1 -1-11 1 A} Q.Q° 6mm1’  [001]
As, T,T 6/m'mm  [001]
Bul-11-11 —-1-11 -1 1-11 Bf, Qs G 62m1’  [001]
B T3, My, 6 /mm'm [001]
Byul -1 1-1-1 1 -1 1 =11 1 -1 Bj, Qs G 6m21"  [001]
BZ_u Tgb Af4b 6’/mmm’ [001}
E,21 -1-2 0 0 -2-1 1 20 0 Ef, Q.Qs G, G% 2mm1’ [100]
Q> Qsv Gz, GS, m2m1’  [100]
EL Ty, T3y My, Mg m'mm [100]
Ty, Tsy M, Mg, mm'm  [100]
Epu2-1-12 0 0 —-21 1 =20 0 Ef Qu: G 2221 [100]
Gl Gl
QY Gy, mm21’ [100]
Gl Gl
Es. Toy- M, m'm'm’  [100]
My M
T’ M,,, mmm’  [100]
My, My

1'We partially revised the classification from Ref. [104] to follow the standard character table of Dgy,.
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Table C.6: IRREPs of four types of multipoles in 6221’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E 2C; 2C5 Cy 3Cy, 3C,, IRREP E ET MT M MPG P. axis
A, 1 1 1 1 1 1 AT Qo Qu.Qu Go,Gu,Guo 62217 [001]
AT To, T, Tao Mo, My, Myy 622 [001]
A, 11 1 1 -1 -1 A Q.,Q G.,G 61" [001]
Ay T.,T* M, M 622 [001]
B, 1 -1 1 -1 1 -1 Bf Q30, Q1 Ga, Gua 321" [001]
B; Tsa,Tha Mg, My, 622" [001]
B, 1 -1 1 -1 -1 1 BJ Qs, Qe Gap, Gap 321" [001]
B; Tay, Ty My, My, 6'2'2 [001]
E, 2 1 -1 -2 0 0 Ef Qu, Qyey GGy, 21" [100]
Q3u7 sz G3u> va
Qy> Qzes Gy, G, 21" [010]
Q3U7 Qzu G3va GZu
E; T, Ty, My, M,., 222 [100]

T3u7 Tzﬁ; ]‘/{31” M40fu
T, T.. M, M., 222 [100]
Ts,, Ty, Ms,, Mg,

E2 2 -1 -1 2 0 0 E; Qv» szz> Gm Gzym 2221, [100]
h Qi Gl Gy
Quy, @7, Gay,G7, 21’ [001]
E; Ty Tayey My, My,., 222 [100]
Ty Ty My, My,
Ty, TP, My, MP, 222 [100]

81 2 1 2
T4v /Téﬁj ]\/ffv 7va
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Table C.7: IRREPs of four types of multipoles in 6mm1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E 2Cs 2C5 Cy 30, 30, IRREP E ET MT M MPG P. axis
Ay T 1T 1 1 1 1 Al Qo, Q= Qu, 6mm1’ [001]
Q37Q4O
AT Ty, T,,T,, 6mm  [001]
T, Ty
A, 1 1 1 1 -1 -1 A} Gy, G, G, 61 [001]
G¢,Gao
Ay Mo, M, M,, 6m'm’ [001]
M2, My
B1 1 -1 1 -1 1 -1 B1+ Q3b7Q4a G3a7G4b 3ml’ [001]
B; T3b, T4a A{gm ]\/.[41, 6’m/m [001]
B2 1 -1 1 -1 -1 1 B;ﬁ Q3a7Q4b G3b7G4a 3m1’ [001]
Bg T};a7 T4b M’Sb~, j\/[4a 6'mm/’ [001]
EL 2 1 -1 -2 0 0 Ef Qy, Qs Gz, G, ml’ [100]
Q3177 QZ; GSua qu
Qu. Qo Gy G, ml'  [010]
Q3u7 qu G3va GZ(U
Ef T,.T,.. M, M.,, mm'2 [100]

ZFB’U: ng ]\/[311,7 Mfu
Ty Tees M, M., m'm2 [100]
T3u7 Tzf; ]\431)7 A44ﬁ;

E; 2 -1 -1 2 0 0 E; Qu, Q% Gy, Guye, mm21’  [100]
3 3 3 3
QGG

Quy, Quyzy G, G2, 21" [001]
3 2 1 B2
Qi GGl

Ey T, TP, Mgy, Myy,., mm2  [100]

Tia: Thw My, My

Toys Toyey My, MP, m'm’2  [100]
T M2 M?

4u >
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Table C.8: IRREPs of four types of multipoles in 6m21’t. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E 21Cq 2C5 oy, 3Cyy 30, IRREP E ET MT M MPG P. axis
AT 1 1 1 1 1 AfF Qo, Qu, G 6m21” [001]
Q3b7Q40 _
A Ty, T, My, 6m2  [001]
T3y, Tao
Ab1 1 1 1 —1 =1 ALY Q34 G.,G%, Gy, 61" [001]
Al Ts., M., M& My, 6m'2 [001]
AV1 -1 1 -1 1 —1 AJf Qu Gy, G, 321" [001]
Gy, Gao B
Ve Tuw My, M, 6'm’2  [001]
My, Myo
A1 -1 1 -1 -1 1 AY Q.,Q% Qu Gsq 3ml’ [001]
Al T., T Ty, Ms, 6'm2’  [001]
E'2 1 —-1-2 0 0 E" Q.Q%Q% G. Gy Gsy, ml’  [100]
Gt G
QZ{IH mez7 qu G;w GU: G31)7 21/ [010]
G, G
E’- Ty, T2, T3 My, Mgy, Ms,, m2'm’ [100]

51 B2
A44v 7A44v

Te, Tayer TS, My, My, My, m/'2m’  [100]
MY M2
E2 -1 -12 0 0 ET QQuQs Gu, Gy, GY, m2m1’ [100]
B1 B2
4ur W 4u
vagxmg?)u GyZ7G§7va ml’ [001]
4v 4o
- T,.T,, Tsy M.y, My,., ME, m2m [100]
T )
4u v~ 4u

Ty, Tyy, Ty Myz,Mf,va m'2'm  [100]
U
4v r * v
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Table C.9: IRREPs of four types of multipoles in 6/m1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E Gy C3CoC2 Co 1 ICy IC; 0, IC2 ICT IRREP  E ET  MT M MPG P. axis
AT 1 111 1 1 1 1 1 1 1 A QnQs G.G° 6/m1" [001]
Qo
A To.Tw, M., M 6/m [001]
Ty B
Byl =1 1—11 =1 1 =1 1 =1 1 =1 Bf Qi Qu Gaa,Gao 31 [001]
BgT T4a7T4b Mga,]\/fgb 6//777,/ [001]
Epl ww—1lw-w 1 —w w -1 w —w? E Qu Q% Gu Gsy 11 —
1 —w?w—-1w? —w 1 —w? w -1 w? —w } Q:z, Q% Gy, Gy 11 —
T, T3 M,, Ms, 2/m’ [001]
T, Ty, My, Ms, 2'/m’ [001]
Bl w ol w w? 1 w w1 w o Eoq Qo Gly- 2/m1’ [001]
w2w1w2w1w2w1w2w} fi,fz
Quy, G*? 2/m1’ [001]
Bl B2
4us wdv
T,, My, 2/m [001]
Ty Tia
T,  MP  2/m [001]
0 T2
A,1 1T 111 1 -1-1-1-1-1-1 AF Q.,Q° Go,G., 617 [001]
Gy
Ac T..T® My, M, 6/m' [001]
My
Byl -11-11 -1-11 -1 1 -1 1  BY Qs Qu GiGu 61 [001]
B; T3a7T3b A{élm]‘iélb 6’/m [001]
Enl ww?—1w—-w?—1 w —w? 1l —w w? Ein  Qu Qsu Gy, GS, m1l’  [001]
1—-ww—-1w —w-1uw —w 1l -w w } Qy, Q3v G.p, G, ml1" [001]
Ty, Ty M., Mg, 2 /m [001]
T, Ty, M., Mg, 2/m [001]
Euwl w w?1l w w? -1 —w—-w?-1—-w —-w?] Ey Quy- Gy, 21" [001]
1 w? wlw w —1-w-—w-1-w? fw} ey
Q) Gy, 21" [001]
Ghy» Gl
Ty M, 2/m' [001]
MPY M2
T’ M, 2/m' [001]

My My

w=exp(—2mi/3)
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Table C.10: IRREPs of four types of multipoles in 61’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E Cg C3 Oy Cg Cg’ IRREP E ET MT M MPG P. axis
A1l 1 1 1 1 1 AT Qo,Q., Qu, Go, G, Gy, 61’ [001]
%, Quo GY, Gy
A- To.T.,Ta, Mo, M.,M,, 6  [001]
T T M2, My
B 1 -1 1 -1 1 -1 Bt Qs Qm G, Gap, 31 [001]
Q10,Qu Gua, Gy
B- TyusTopy  Mag, Mgy, 6 [001]
Tyo, Ty Mya, My,
E, 1 —w w? -1 w —w? E, Quy Qyzs Ga, Gyzs 11 —
1 —uw? w -1 w? —w } Q3u, QF, G4, G,

va sz> Gya Gzza 1 *
Qi}m Q4au G31)7 GZH

TmTym A[mMym
SN M, M3,
Ty, Tz, My, M., 2 [001]
15, Ty, Ms,, Mg,

2 [001]

E;c 1 w W 1 w } E, Qu, Quyz,  Guy Gaye,s 21" [001]
1w w 1w w e QG Gl
Quy, @2, Gay, G2, 21" [001]

QGG
T’UyTZ’y27 ]\/[’Uy Afzyzv 2 [001]
Tp T My, My

Toy, Tf, sz, Mf, 2 [001]
1o To My, Mj:

w=exp(—2mi/3)
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Table C.11: IRREPs of four types of multipoles in 61’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E ICs C5 oy, Cg IC’g IRREP E ET MT M MPG P. axis
AT 1 11 1 1 AT Qo O, G, G, 617 [001]
Q3a7 Q?)b? Q40 G4a7 G4b B
A Ty, T, M., M, 6 [001]
T3a7 T3b7 T40 M4a7 M4b
A1 -1 1-11 -1 A" Q.Q° Go, G, 31" [001]
Q4a7 Q4b G3a7 G3b7 G4O _
A T.,Te, My, M,, & [001]
T4a7T4b M3a7]\/[3b7M40
EFl w w1l w } E' Qu Qv Qsus Gz, Guye, G, ml" [001]
I w? w1l w w fi,fﬁ
Qy7 sz7 Q?»vu Gzam G/; GZU mll [001]
81 32
quy Yo

Tz7 Tm T3u7 Myzu szz7 Alzﬁ) m [001]
Tfl T4[32

Ty, Toy Too, My, MP M2, m [001]
T, 1o

E'1l —w w? -1 w wa} E"  Qyz, Quyzr QY Ga, Gy, Gz, 11 —
1 —w? w —-1w? —w Gf}t.,sz
szaQ§7Q4au Gy>Gavy7G3'ua 11/ 7
Gl Gl
Tym Tty27 Tzﬁ) Mma ]\/j’m M3ua m, [001]

Myt My,

Tz.m Tzﬁa Tzﬁl A[y, A/[rya Miim m, [001]
My, My

w=exp(—27i/3)
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Table C.12: IRREPs of four types of multipoles in 3m1’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E 2C5 3Cy, I 2ICs 30, IRREP E ET MT M MPG P. axis
Alg 1 1 1 1 1 1 Afg Qo,Qu, ng 3m1’ [001]
Q407Q4b B
Al Ty, T, Mg, 3m  [001]
T407T4b -
Ay 1 1 -1 1 1 -1 A} Qua G.,G% G, 31 [001]
A, Tha M,, M2 M, 3m’ [001]
E, 2 -1 0 2 -1 0 Ef Qyey Quy,  Guy Gy, G? 11 —
Q5. @, Qs
sza?m ) Gy7G3v7Gzyz 2/m1’ [010]
QZIU iHQf’u
E; Tye, Toyy My, Ma,, MP 2" /m’ [010]

T, Toy s Thy
Tz.m ,T;u A/Lu ]\431)7 ]V[ryz 2/m [010]

T5 Tiws T
A,1 1 1 -1 -1 -1 A, Qs Go, G, 321" [001]
G0, G )
AL, Ty My, M, 3m’ [001]
My, My,
Ay 11 =1 =1 =1 1 Af,  Q.,Q2,Qs Gua 3m1’ [001]
Agy 1., 12, Ts, My, 3m  [001]
E, 2 -1 0 =2 1 0 B! QunQ:uQ Gy, Gy, ml" [010]
G4, G, Gl
Qy7 Q3v> szz Gzz~, va 21/ [010]
G4 Gl G
El: Tm7T3u7T£ ]V[yzvjumw 2,/m [010]

Mg, MPY M2
Ty Ty, Toye Moy, M, 2/m/ [010]
Mg, My, My

4u >

Table C.13: IRREPs of four types of multipoles in 321’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E2C53C,, IRREP E ET MT M MPGP. axis
Al 11 1 AT Q07 Qu7 Q3b7 G07 Gu7 G3b7 321/ [001]
Q407 Q4b CTY407 G4b
AT To, Ty, T3, My, M,,, M3y, 32 [001]
Tyo, Ty Myo, My,

Ayl 1 =1 A Q.,0%Q34,Qua  G.,G% Gs4,Gua 31 [001]
A7 T, T T3, Tae M., M2, Ms,, My, 32" [001]

E2-1 0 E* vaQmezy»QSuu GmGymGasquSw Ny 7

Q2,Q%,Qn, Qe G2.G,,GL, Gy
anszQanSva Gy7GZI7GU7G31H 21 [010]
meza ng fi’ ffi Gmym Ggu? Gfi7 Gfi

E~- TD) Yz TJy« T3’u,a A/[w A4yz7 ]\/[wya Aliiw 2/ [010]

T8, T2 T T2 M8, M2, MPY, M2
,Ty> Tz,m Tm Tsm A{ua ]‘sza Mm A[Ziv-/ 2 [010]
Ty T2, T TP M., M2, MPY M2

4u Yz 4w
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Table C.14: IRREPs of four types of multipoles in 3m1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E2C330, IRREP E ET MT M MPGP. axis
Al 11 1 AT Qo, Qz: Qu7 ng, G4a 3m1’ [001]
Q?a Q3a7 Q407 Q4b
AT T, T.,T,, My, My, 3m [001]
e, Tsq, Tho, Ty
A1 1 =1 Af Q3p, Qua Go, G, Gy, 31" [001]
G¢,G3q,Gao, Gy
AS T3y, The My, M, M,, 3m/ [001]
MY, Ms,, My, My,
E2-10 E+ Qy7Qyz7me7Q3Ua GwanwaGmGiiua 11, 7
Quyz Q4 Qi Qi G2, G5, G, G
Q:m Qz,m Qm QSua Gy7 Gyz7 Gmgp G3u7 ml, [010]
Q2 Q4 Qs Qliy Gy G5, G, G2
E- Ty, Tyes Toy, Tapy My, Moy, My, Ms,,,  m’  [010]
Toye, T2, TEY, T2 MP MG, MPY M

T777 sz7 T'v: T3u7 AI?N ‘]\/[.UZ7 ‘]\/L”?N ng,, m [010]
T2, T3, Tow, Tow My, Mgy, M) MY

Table C.15: IRREPs of four types of multipoles in 31’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

EC3C2 I 1C3 IC2 IRREP E ET MT M MPGP. axis
A;11 11 1 1 Ag Qo, Qu, G.,GS, G54, Gap 31 [001]
Q405 Qaar Qup -
A To, T, M,, M2, Ms,, M3, 3 [001]
Tho; Tha, Ty
Eelww?l w w? E, Qyzs Quy, Gy, Gsy, GP 11 —
lw?w 1 w? w } Q. QN QY
szv Qva ny G3v~, Gzyz 11, -
(% /81 ﬂz
4ur 4w Wiu
Tyer Ly, M, Ms,, M? 1 —
T5, T3 T
T, Ty, My, Ms,, My, 1 —
Tgos T T
Ayl 1 1-1-1 -1 Al Q.Q2,Q3,Qn  Go, Gy, 31" [001]
G0, Gaa, Gap ~
AL T., T Tsa, Tsp My, M, 3 [001]
Myy, My, My,
E.lww?-1-w-w?) E, Qu, Qsu, QF Gz, Gay, 11 —
lw? w—-1-w? —w } Gi‘v,Gfi,fo
an QSm waz sz-, Gva 1 7
G, G, Gl
Ty, Tay, TP M,., My, 1 —
Mg, M M2
T;_p T31z> Ttyz ]V[za» A/[m i/ -
Mg, My, M

w=exp(—27i/3)
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Table C.16: IRREPs of four types of multipoles in 31’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

EC3C% IRREP E ET MT M MPGP. axis
Al 11 At Qo, Q, Qu, Go, G, Gy, 31 [001]
Q?7 Q3a7 QBbu Ggy GBa: CTV3b7
Q407 Q4a7 Q4b G407 G4a7 G4b
A~ 16,1, T, Moy, M, M, 3 [001]
T, T30, T, M7, M3q, May,
T4O7 T4a7 T4b A440~, j\/[4a~, j\/[4b
Elw (’JZ E Qma Qyza me7 Q3u,7 GT Gyz> Gmy7 G3u7 11, -
1w? w } QE Q4 Qf&v Qd‘f va E Gi}v Gfg
anervaaQi’)m Gy:szGmG?)m 1 7

Quyer Q4 Qi Qi Gy, G5, Gl Gl
Ty, Tye, Toys Tsuy My, Myo, My, Ms,, 1 —
T8, T2, T TP M8 M, MEY, M2
Ty Ty, Ty, Tsy, My, Moy, My, Ms,, 1 —
Ty T2, T T2 M., M, MY, MY?

w=exp(—27i/3)
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Table C.17: IRREPs of four types of multipoles in 4/mmm]1’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=6.

E 2C, C3 2C5 2CY I 2IC, oy, 20, 20, IRREP  E ET  MT M MPG  P. axis
A1 1 1 1 1 1 1 1 1 1 Af, QoQ. 4/mmm1’ [001]
Q47Q4u
Al Ty, T, 4/mmm  [001]
Ty, Ty,
Ayl 1 1 -1 -1 1 1 1 -1-1 A}, Q1 G.G 4/m1" [001]
A, Te M., M® 4/mm'm’ [001]
Byl -1 1 1 -1 1 -1 1 1 -1 Bf, Qu.Qu G mmm1’ [100]
By, Ty, Tay Mgy, 4'/mmm’ [001]
Byyl =1 1 =1 1 1 -1 1 -1 1 Bf Qu,QL G’ mmm1’ [110]
B3, Ty, T2 MP 4 /mm/m  [001]
E,2 0 -20 0 2 0 -20 0 E' Q. G, 2/m1’  [100]
Q5. Q1. G567
Qza, Gy, 2/ml’  [010]
Qs @1y GGy
E; T, M,, mm'm’  [100]
T T) M, MP
T.ws M,, m'mm’  [100]
T3, Ty, Mo, MS
A1 1 1 1 1 —1 -1 —1-1 -1 A, Go, G, 42217 [001]
G4~,G4u
AL, Mo, M, 4/m'm'm’ [001]
M47M4u
Apy1 1 1 -1 -1 -1 -1 -1 1 1 A}, Q.Q* G 4mm1’  [001]
As, T, 7 Mg  4/m'mm [001]
B,1-11 1 —-1-1 1 —-1-11 B, Q. GG 42m1’ [001]
B Tyy My, My, 4/m'm'm [001]
By 1 -1 1 -1 1 -1 1 -1 1 -1 B, Q° GGl 4m21" [001]
B;, TP My, My 4 /m'mm’ [001]
E.2 0 20 0 -2 0 2 0 0 Ef Q. Gyzs 2mm1’ [100]
Q! Gy, G,
Qy, Gz, m2m1’  [100]
5.Qy G, Gl
E; T, M,., m'mm  [100]

To, T8 Mg, ML

Ty M., mm'm  [100]
« B
e, 1) Mg, My,
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Table C.18: IRREPs of four types of multipoles in 4221’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=§.

E2C, C2 2C} 2CY IRREP E ET MT M MPG P. axis
Arl 1 1 1 1 AT Q0 Quy Qs Quu Go, G, Gy, Gy 4221" [001]
AT To, Ty Ty, Tay - My, My, My, My, 422 [001]
A1 1 1 -1 -1 A} Q.,Q%,Q%, G,,GY,GY, 41" [001]
Ay T, T, TS M, Mo, Mg 42'2° [001]
Bil—-11 1 =1 B  QuQuQu Gy Gays Gy 2221" [100]
By Ty, Toyer Tay My, My, My, 422 [001]
Byl -1 1 -1 1 Bf Q.,,0QQ) GGG 2221' [110]
B, Ty, T2, TS M, MP, ML 422 [001]
E2 0 -20 0 Ef Qur Qy Gy, Gy, 21" [100]
2,Q7, Q.. Q4 G2,G1.GY,, G,
Qy: Qza Gy, Gog, 21" [010]
5 Q. Q4 Q4 Gy, Gy G, Gy
E- Ty, T, M,, M,., 22'2" [100]
T, T8 T TP M MP, M2, MY,
Ty, Tea, M,, M., 222" [100]
T, TP, Ty, T Mo, MP, Mg, M,

Table C.19: IRREPs of four types of multipoles in 4mm1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E2C, C? 20, 204 IRREP E ET MT M MPG P. axis
Al 1 1 1 1 AF  QuQ.Q. Ge. 4mm1’” [001]
Q?7Q47Q4u
Ay To, T, Ty, Mg Amm  [001]
T2, Ty, Ty,
Ayl 1 1 —1-1 Af Qe Go. G-, G, 41" [001]
G¢, Gy, Gy
Ay TS My, M., M,,  4m'm’ [001]
M, My, My,
B,1-11 1 -1 Bf Qu, Q% Quy  Gay, Gaye, G mm21’ [100]
B; Ty T8 Ty My, My, M &'mam’ [001]
Byl -1 1 -1 1 Bf  QupQur @i Gy, GE Gy mm21’ [110]
B, Ty Taye, T, My, MP My, 4'm/m [001]
E2 0 -20 0 B Qy, Qye, Gy, G, m1l [100]
5. Q). Q4. Q1 G2, G, G5, G,
Qus Q-a, Gy, Gy, ml  [010]
Q3.Q7.Q5,.Q4, Gy. G G4, G,
E- Ty, Tye M,, M.,, mm'2 [100]
T, T8, T, Ty, M2, ME, Mg, M},
Ty, Teo, My, M,., m'm2 [100]
T, T, T Ty Mo, MP, Mg, My,
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Table C.20: IRREPs of four types of multipoles in 42m1’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E2IC, C?2C} 20, IRREP E ET MT M MPG P. axis
Al 1 1 1 1 Af Qo, Qus Gy, Gap 42m1" [001]
szQO47Q4u _
A7 Ty, T, M,, My, 42m  [001]
Tmy27T4aT4u
Ayl 1 1 -1 -1 Af Q%,Qy.  G. G, G GY, 41" [001]
Ay TP, Tg M., M,, M® M} 42'm’ [001]
Byl -1 1 1 —1 Bf Qv Quo Go, G, 2221"  [100]
Gzy27G47G4u
By Ty, T My, M,, a2m’ [001]
My, My, My,
Bol -1 1 -1 1 B Q.Q.,,Q%Q), G aGs mm21’ [110]
B, Ty, Ty, T, TS MP, Mg, ¥2'm  [001]
E2 0 —20 0 Ef Qu, Qys, Gy, Gy, 21’ [100]
¢.Q1 Q% Q1, G2, G, Gy, G,
Qy: Qza, Gy, Ga, 21" [010]
b @y Q5 Qly Gy, Gy, G By
E- T, T, M,, M,., 22'2"  [100]
T, T8 T2 TP M MP M, ML
Ty, Te, My, M., 222" [100]
T, TP, T, Ty, Mg, MP, Mg, My,

Table C.21: IRREPs of four types of multipoles in 4/m1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

EC,C?C% I 2IC, 0, IC? IRREP E ET MT M MPG P. axis
A,171 111 1 1 1 Af Qo, Qu, G.,GY 4/m1” [001]
Q4 Quu, QF,
A; To., T, M.,M*  4/m [001]
Ty, Ty, T,
Byl-11-11 -1 1 -1 B  QuQu, Glays, GP 2/m1’ [001]
Quo. Q1.
B, Ty, Toyy  Myye, MP 4 /m [001]
T, TP,
Eg1l—i—-14 1 —i -1 i E, Q. Q%,Q% G, G GP 11
1i—1—i1 i —1 ,i} Q:0,Q%,. QY Gy GS,GE -

Tye, T, TY, My, MO, ME 2/ /m! [001]
Ty, T, Ty, My, M2, MP 2 /m/ [001]

Ayl 1 1 1 -1 -1 —-1-1 AJ Q.,Q° Go, G, 417 [001]
Gy, Gy, G
A T, T My, M,,  4/m’ [001]
My, My, Mg,
Byl1-11-1-1 1 -1 1 Bf  Qu @ GGy, 41" [001]
G, Gl
B; Toyes TP My, My, 4'/m’ [001]
M, My,
E,1—i—-1i -1 i 1 =i\ B, Q.Q%,Q° G,.,G%,G1, m1l [001]
1 i —1—i—-1 —i 1 i } Q,,Q2,Q0 G..,GS,,GY, ml [001]
Ty, T2, TP M,., Mg, My 2'/m [001]
T, Te, TP M., Mg, My, 2'/m [001]
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Table C.22: IRREPs of four types of multipoles in 41’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E C, C2 C? IRREP E ET MT M MPG P. axis
Al 1 1 1 AT Q0,Q., Q.. Q% Gy G.,G,.G°, 417 [001]
Qu, Quu, Q. Gy, G, G,
A To,T., T, T*, My, M., M,, M*, 4 [001]
Ty, Ty, TS, My, My, M2,
B1-11 -1 B* Q’Usz?ﬂszzv GmGzvazyZv 21 [001]
Q?v Q4v7 sz G§7 G4v7 sz
B- Ty, Toys Tayzr My, Myy, M., 4 [001]
T8 Ty, T MP, My, MY,
E1—i-1i E Qur Qye, Ga, Gy, 1
1i -1 fz'} 2,07, 0%, Qf, G2, G, G, G,
vaQZZ7 Gvazw 1 o
5 Q. Q4. Qly Gy, G, Gy, Gl
Ty, Ty, M,, M,., 2 [001]
7o, T8, T2 T2 M*, M8, M2, M,
Ty, Tea, M,, M., 2 [001]
T, TP, Tg, Ty, M2, MP, Mg, M,

Table C.23: IRREPs of four types of multipoles in 41’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

EIC, C’Z [C’jf IRREP E ET MT M MPG P. axis
Al 1 1 1 A* QO: Qua waza Q?u Gza Gva G.Ly 41 [001}
Q47 Q4u~, Q4az va G41}7 sz _
A7 T(h Eu Twyza Tf? ]Wz, Mw ]\/[J‘ya 4 [001}
Ty, Ty, T2 M, My, M7,
B1-11 -1 B* szQmQﬂcw G07G1L7G:EyzaG£7 21 [001}
?7 Q4v7 sz G47 G4u7 ng B
B~ TZ7 T;n Trya A407 ]\411.’ Mryza Mzﬁ7 4 [001}
T8 Tw, Ty, My, Muy, M5,
E1 —i—1 i } E Qur Qe Ga, Gy, n -
Lo 1 —i Q2. Q7. Q%. Qi G2.G1.GY,. G,
Qy: Quas Gy, G, 1 —
e Qﬂ Qa QB Go GB. Ge Gﬂ
Yy Xy Wy wdy My My My My
T:, Ty, M,, ]Wyz, 2/ [001]
Te, 17, 5, Ty, Mg, MJ, Mg, M7,
Ty, T.s, My, M., 2 [001]
Te, 1), 15, Ty, Mg, MJ, Mg, My,

134



APPENDIX C. TABLES OF MULTIPOLE CLASSIFICATION

Table C.24: TRREPs of four types of multipoles in mmml’.
IRREP stands for the parity with respect to the antiunitary operation A=4.

The superscript “+” of

EC,, Cy Cyy I 0. 0, 0, IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 1 1 AF QoQuQu, Glry- mmm1’ [100]
Q15 Quus Quo
Ag To, Ty, T, My mmm  [100]
T47T4u7T4v

Byl 1 -1-11 1-1-1 B, Q,,0%,Q.. G. GG’ 2/m1" [001]
Bi, Ty, T, TE M., M2, MP m'm/m [100]

Byl =1 1 =1 1 =11 -1 Bf, Q..Q%,Qi G,G3 Gl 2/m1’ [010]
B3, T.o,T5y, Ty, My, M, MY m/mm’ [100]

Bjyl -1-11 1 -1-11 Bj, Q.Q%. QL G. GG’ 2/m1’ [100]
B;, Tye, T8, T, My, M, ME mm/m’ [100]

AT 1 1 1 —1-1-1-1 A] Quye Go, G, Gy, 22217 [100]

G47G4u7G4v
Ay Tyy. Mo, My, M,, m'm'm’ [100]
My, My, My,

Bu1 1 -1-1-1-11 1 B, Q.Q%Q% G,,,G%,GY, mm21’ [100]
B, T,, T, T8 M,,, M, My, mmm' [100]

Byl -1 1 -1-11-11 B @,QQ G..,Gs,.GY, m2m1’ [100]
B;, Ty, T8, TP Mo, Mg, My, mm'm  [100]

By 1 -1 -1 1 —-11 1 -1 Bj Q.Q%Q% G,.,G%,Gh, 2mm1’  [100]
B;, Ty, T, TP M., Mg, My, m'mm  [100]

Table C.25: IRREPs of four types of multipoles in 2221’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E Cy. Cy, Cy, IRREP E ET MT M MPG P. axis
AT 1T 1 1 A" QouQuQuQup GoGu, Gy, Gy, 22217 [100]
Q47 Q4u7 Q4v G47 G4u7 G4v
A- To, Tu, Ty, Tayz, Mo, My, My, M., 222 [100]
Tu. Tuws Tio My, My, My,
B,1 1 —-1-1 Bf Q2 Quys G., Gy, 21’ [001]
©,0Q7,Q5., Q1. G2,G2, Gy, Gl
B; T, Thy, M,, M,,, 2'2'2 [100]
T, T8 T2 T2 Mo, MP M, M.,
By1-11 -1 Bf Qys Qe Gy, G, 21’ [010]
5.Q.Q1,.Ql, G5.Gy,GY,. G,
B; Ty, Tia, M,, M., 222" 100
Te, T8, Ty, Ty, Mo, MS, Mg, My,
Bs1 -1 -1 1 B} Qu, Qe G,, Gy, 21’ [100]
°,Q8,Q4,,Q1, G3,G2,G4,,Gl,
B; T, Ty, M,, M,., 22'2" [100]

To, T8, T2 TP M*, MP M, M.

xIrTx)
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Table C.26: IRREPs of four types of multipoles in mm21’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E Cy. 0, 0, IRREP E ET MT M MPG P. axis
Ayl 1 1 1 AT Q0,Q.,0Q.,Q., Gay, Gayzs mm21’ [100]
QL G, Gy,
Q1, Quu, Quo
Ay To, T., T, T, My, My, mm2  [100]
T, 75, Mg, ML
T4~,T4u7T4v
Ayl 1 —1-1 Af Quys Quyzy Go, G, G, Gy, 21’ [001]
Q5. Q1. G2, a8,
G47G4u~,G4v
Ay Toys Toyey Mo, M, M, M, m'm'2 [001]
T, T M, MP,
M47M4u7]\/[4v
B,1-11-1 B Qu. Qs Gy, Gy, ml [010]
e, Q7,Q5, Q4 G3,GI,Ge,, Gl
B; Ty, Ton, M,, M,., m'm2 [100]
T, T8, Ty, Ty Mo, MP, Mg, My,
By1-1-11 B} Qys Qs Gy, G, ml [100]
o, Q5 Q%,, Q1. G2,GE,Gs,, Gl
By T,, Ty, M,, M.,, mm'2 [100]

1o, T8, Ty, Ty, MS, ME, Mg, My,

Table C.27: IRREPs of four types of multipoles in 2/m1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

EC,, I o, IRREP E ET MT M MPG P. axis
ATT 11 A Q00uQu Q. Gy, Gayer 2/m1” [010]
Q4> Q4ua Q4v7 Gga Gg
Q3. Ql,
Ay To, T, Ty, Te, M,, My, 2/m  [010]
Tu, Tr, Tio, Mg, MP
Tg, Ty, )
By1-11-1 B} Qyes Quys G, G, I —
Q%,,0%., QL. QL. G2,G2,G,GE
B, Ty, Ty, M,, M., 2'/m’ [010]
T T T2 TP Mo M, MP, MP
Ayl 1 —1-1 A7 Qys Quyer Go, Gu. Gy, G, 217 [010]
5’ Qe G47 G4u,, G4v7
Gs,.GY,
A Ty, Tryes Mo, My, My, M., 2/m’ [010]
Te, TP My, My, My,
Mg, My,
B,1-1-11 B Q.. Q., Gz, Gy, m1’ [010]
2,02,Q4,Q7 Gs,,G5., G, Gl
B; T,,T., M,., M,,, 2 /m  [010]
T, T TP TP Mg, My, My M.
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Table C.28: IRREPs of four types of multipoles in 21’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E C5, IRREP E ET MT M MPG P. axis
Al 1 A* QOquuQanszxvGO:Gvavauszu 21 [010]
Quy=» Q5 Q3 Gy, Gy, Gl
Q47 Q4ua Q4v7 G4a G4u7 G4va
Ie} 3 a 3
Q4y7 Q{ly G4y7 Gfly
A7 TOyTyaTuvTvyszv]V[07A{y7Mu7]\/[’U7A1217 2 [010]
Ty, Ty T My, My, M,
T47T4u7T41)7 ]\/[47M4u7]\/j4’u7
e, T, Mg, My,
B1-1 Bt Qx7QzaQyzawaa Gw-,GmGyz:nya 1 T
:1‘(),[7 g?Q(LB'7 Qf? GS? G?’ GE7G§7
Q1 Q1. Q1 Q. G, G, Gl Gl
B~ T.’L‘>TZ7Tyz7T1‘y7 ]memA[ym]wwyv 2 [010]
To, T, T8, TP, M2, M2, MP, M?,

B8
ngmTzf,‘wawTﬁ' ]wmefzaMfmaMélz

Table C.29: IRREPs of four types of multipoles in m1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=4.

E o0, IRREP E ET MT M MPG P. axis
AT 11 A Q07 Qma Qz7 Gya GyZ7 Gmy7 ml’ [010}
Q'U/7 QU? QZ.’L" nyz? G7C;7 Gg?
7 QOO G, GGl Gl

x)

Q47 Q4u7 Q4v7
Q3. Q4
A To, Ty, T, My, M,., M,, m  [010]
T, Ty, T, Moy, M3, M
7o, T2, T2, T8, Mg, Mg, My, My,
T47T4'LL7T4U7
T3, Ty,
A’ 1 -1 A Qyr Qs Quy, Go, G, G, S
szQO;7Q57 GU7G’07GZI7
Q5. Q% Q1. Q. G2,G2,GE,GE,
G4, G4’u,~, G41)7
Gy, GY,
A~ Ty, Ty Ty, Mo, M, M., m' [010]
Tpye, T2, TP M,, M,, M,,,
T, T TP TP Me M, MP, MP,
My, My, My,
Mg, My,
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Table C.30: IRREPs of four types of multipoles in 11’. The superscript
stands for the parity with respect to the antiunitary operation A=4.

“+” of IRREP

E 1 IRREP E ET MT M MPG P. axis
A, 1 1 A7 Q0,Qu, Qu, G, G, G, 17
Qyz: sz> sz7 Gwyza
Q1 Quu, Quo, G5, Gy, G,
Q217Q%7Q227 GGG
Qfma Q4y7 QZZ _
A; To,Tu,T,, M, M,, M., 1
Ty27 Tzzv sz7 ]\/-{zyzn,
Ty, Ty Ta, M2, M, M,
T, T, T,  MS,MJ, M?
7. Tf;, T
A, 1 -1 AT Q.,Q,,Q., G, G, Gy, 11
sz27 Gy27 Gzza Gzya
g7Q;7 ?7 G47G4U7G4’U7
Q5,Q0.QF  G4,.Gy, G,
GGGl
Ay Ty, T, T., My, My, M,, il
Ty, M., My, My,
T, T, T8, My, My, My,,
T, TP, TP Mg, Mg, Mg,
My, My, M},

Table C.31: IRREPs of four types of multipoles in 11’. The superscript
stands for the parity with respect to the antiunitary operation A=4.

“+” of IRREP

E IRREP E ET MT M MPG P. axis
ﬁ A+ Q07QxaanQz> G0>G;v7Gy7Gz7 11/
Qu7 Qva Qyz: sz7 wa» Guu Gw GyZ7 Gzz7 Gwyu
Quyz, 07, Qy, Q% Gaye, G3, Gy, G2,
Q5,Q8,Q7, Gh,GP.GY,
Q47 Q4u7 Q4v7 G4~, G4u7 G4U>
Qi Q%w Q1. (€ Gil;y, Gy,
wa Q4y7 foz Gi” G4y7 sz
A- Ty, Ty, T, T, My, M,,, My, M., 1
T Ty, Ty, To, Ty, My, My, My, My, M,
Ty, T TE TS, Myys, M2, Mg, M2,
T8, 10,17, Mg, ME,M?,
Ty, Ty, T, My, Myy, My,,
Te. Tg TS, M2 M M2
T, Tﬁ,, T My, My, My,
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C.2 Black-and-White Point Groups

Table C.32: IRREPs of four types of multipoles in m/3'm. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=601I.

E 6IC, 3C? 6oy 8C; IRREP E ET MT M MPG  P. axis
A1 1 1 1 1 AT Qo, Qa4 Toys m'3'm (100)
Ay Quy- To, Ty 43m (100)
Ay 1 -1 1 -1 1 A Gy My, M, m'3’ (100)
Ay Go, Gy M, 432 (100)
E 2 0 2 0 -1 Et  Qu Qu M,, My, 4 /m'm'm  [001]
Qu, Quo M, My, — m'm'm’ [100]
E- GU, G4U T'u7 T4u 212717, [001}
Gu,Gau Ty, Ty, 422/ [001]
T 3 1 -1 -1 0 T Q4. G,,Go TP M, M) 4w [100]
Q3, G,,GS TP M., My, 4w 010]
Q% G.,Ge T° M, M, 4/ (001]
Ty QF GGl Ty M, M*  Am'2 [100]
Q) GGy T8 MM Am'2 [010]
QF G, Gl T M, M*  Am'2 (001]
T, 3 -1 -1 1 0 T Q. Qi  GP T, T M, mmm’  [011]
Q.. Q3 Go T, Tg Mg, mmm’ [101]
Quy, Q. G? T, T Mg, mmm’ [110]
T,  Q.QF Gi  TeT, M, Am'm - [100]
Qy. Q2 Gy, T Ty M 4'm'm 010]
Q.,Q* G T, T, M Am'm  [001]
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Table C.33: IRREPs of four types of multipoles in m3m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C (about [110] axis).

The basis of case-(a) IRREP Eg/f)i consists of the linear combination of the multipoles
shown in the right side of a close brace.

E 3C, 4C5 ACZ I 30, 41C5 4IC2 IRREP E ET  MT M MPG P axis
A, T 1 1 1 1 1 1 1 A7 Qo, Qa M,,.  m3m’ (100)
Ay Guy To,Tu m3  (100)

E, 1 1 w w 1 1 w Eg%+ Qu, Quu 4" /mmm’  [001]
1 1 w? w 1 1 w? w Eg” }QWQ% mmm  [100]
EL- T, Ty, mmm  [100]

EX~ } T,, Th, 4 /mmm’  [001]

T, 3 -1 0 0 3 -1 0 0 T} Qy, GG T, TS —MP 4/m  [100]
Qs,  Gy.Go T..T, M 4/m  [010]

Q. GGt T, T, M &/m  [001]

T, Q- Q5. GP e M, MY m'm'm [011]

Q. Qy, GY Tg M, MY m'm'm  [101]

Qup Qi G2 Tg M, M2 m'm'm_ [110]

A, 1 1 1 1 —1 -1 -1 -1 A] Go, Gy Ty 327 (100)
A Quye My, My #3m’  (100)

E,1 1 w w -1 -1 —w —w? EPF eaem 422 [001]
1 1 o w -1-1 - —w EPF Gy, Gy Yom'  [001]
EW- My, My,  ¥2m’  [001]

EQ~ M,, My, 422 [001]

T.3 -1 0 0 -3 1 0 0 T Q.,Qx G, T M., M ~4mm’  [100]
Q. Q5 G, 9 M, My, 4mm’  [010]

Q:,Q:  GL 17 My, My, 4mm’  [001]

T, QY Gy, Gy T, T Mg ¥m2  [100]

Q) G..Gi, T, Ty Mg Am2 [010]

Q° GGl T.T> M Im2  [001]

w=exp(—27i/3)

Table C.34: IRREPs of four types of multipoles 4'32’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C (about [110] axis).

E 3C, 4C3; 4C? IRREP E ET MT M MPG P. axis
A1 1 1 1 At Qo, Q4 Go, G4 Try- M,,. 4’32"  (100)
A~ Quy- Gly- Ty, Ty My, M, 23 (100)

E 1w W? EM+ Qu, Quu Gy, Guy 422" [001]
1 1 W ow E®@+ } Quv, Quv Gy, Gy 222 [100]
EM- Ty, Th M, My, 222 [100]

E®- } T,, Tuy My, My, 422" [001]

T 3 -1 0 0 T Qm7 :7 foz Grv Gg7 GZZ TUZ7 Tzﬁ7 Télli A[yzv Affa Mfm 4 [100]
Q. Q2,Q%, G,.Go.GY, T.., TP, T, M., M My 4  [010]

Qza ?a taz Gz7 Gga ng Twy’ Tf? T4z ]w»ry’ ]\/{,257 M4z 4 [001]

T- Q- Q2 QL Gy, GLGY, T, T, Tg, My, Mg, Mg, 222 [011]

Qze, QY ny G, G, ny T, Ty, Ty M, Mg, Mg 222 [101]

Qmw Qfa sz GTUa Gfa sz T27 Tza7 sz Mz> ]V[37 Mz?z 2'2'2 [110]

w=exp(—27i/3)
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Table C.35: IRREPs of four types of multipoles 4'3m’. The superscript “&” of IRREP
stands for the parity with respect to the antiunitary operation A=60o,; (normal to the
[110] direction).

E 3C, 4C5 4C? IRREP E ET MT M MPG P. axis
Al 1 1 1 A+ QQ,szZ,Q4 ]\/-[0-,Afzymj\/-[4 ZL’Bm’ <100
A- Go, Gy, Ga Ty, Tays, T 23 (100
El 1 w w? EOF Qu, Quau M, My, 42m’ (001
1 w? w EO®+ } Qs Quv M, My, 222 [100
EM- Gu, G Ty, Thu 222 [100
E®- } Gy, Gy Ty, T 4'2m’ [001
T3 -1 0 0 TF Q2. Q%, G, Gy, G4 GE T, T, T TY, MP, M2, 4 [100
Q2,Q%, Gy G.o,GSGYy, T, Ty, T2, T, MP, Mg, 7 (o010
Q2.Qs.  G..Gu GG T..T,, T Ty, MZ Mg & oot
T QuQy, Q. Q1 GG, TP, T My, My., M2, My, m'm'2 [011
Q. Q0. Q2,Q5,  GU.GY, TP, T8, My, M.y, M2, My m'm'2 (101
Q- Qay, Q2, Q5GP G, TP T M., M,,, M® M. m'm'2 [110

w=exp(—27i/3)

Table C.36: IRREPs of four types of multipoles m/3’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=601I.

E 3C, 4C5 4C2  IRREP E ET MT M MPG  P. axis
Al 1 1 1 AT Q07Q4 Gzyz szz A{(),]Vﬂl m’g’ <100>
A Quy- Go, Ga To. Ty M,,. 23 (100)

E1 1 w E Qu, Quu My, My, — m'm'm’ [100]
1 1 w w } Qu, Quo M,, My, m'm'm’  [100]
eem Ty, Tha 222 [100]

Gy, G Ty, Tho 222 [100]

T3 -1 0 0 T Q. Q4,Q4  GoGe,GY T, T2 T My, Mg, My, 2/m' [100]
Q-0,Q5,,Q4, Gy, Gy, Go T, T, T M.y, Mg, My, 2/m’  [010]

Quy Q. Q%.  G..G2,GP T, T, TP M,, M2, M. 2/m’  [001]

T QnQ2.Q) Gy..G$,.GY, Ty T Ty My, MM 2m'm’  [100]

Q. Q2,Q0  G.p,GY,. Gy Too, T2, Ty, My, M3, MP m'2m’  [100]

sz Sva szGszsz sz7sz7T4z A{mM?“A{f m/m/Q [100}

w=exp(—27i/3)

141



C.2. BLACK-AND-WHITE POINT GROUPS

Table C.37: IRREPs of four types of multipoles in 6/m'm'm’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=01.

E2Cs2C5 Cy 3C,; 3Cy, IRREP E ET MT M MPG P. axis
A1 11 1 1 1 1 AIL Qo, Qu, Q40 Afo, ]Vju, ]VLLO G/m’m’m’ [001]
Al_ G07 Gu, G40 TO7 Tu, T40 622 [001]
Ayl 1 1 1 —1 -1 A} G.,G° T. T 6/m’  [001]
Ay Q.,Q° M., M© 6m'm’  [001]
Bl 1 -1 1 -1 1 -1 BT Q4a Gga Tga M4a ?/m’ [001]
B; Q3a G4a T4a ]\43(1 6/27’77,/ [001]
Bgl -1 1 -1 -1 1 B%L Q4b ng T3b ]Lf4b 3’m’ [001]
B2_ Q3b G4b T4b ]VL;b GIWLIQ [001]
E;2 1 -1-2 0 0 E Q.Q5 G,, Gy, Ty, Ts M,., M2, 2/m’ [100]
Q-0, Q2 G, G, Ty, Ts, M.,, M2, 2/m’ [010]
E; Q., Qs Gy, G, T, T2 M,, M, 2m'm’  [100]
Qy. Q3o Gow,G9, Tou, T2, M,, Ms, m'2m’  [100]
E2 2-1-1-20 0 E; Qmeqiv 53 Gwyz Twyz ]\/jvv Mzﬁ}a ]\Jzﬁ? m'm'm’ [100]
Q1 Ql G TP My, My, My 2/m' - [001]
E; Qu.  Gu, Gl G T, Ty Ty M. 222 [100]
Qs Gy, GY G2 T, TOY T2 M7 m'm'2  [100]

Table C.38: IRREPs of four types of multipoles in 6/m'mm. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=601.

E 2Cs 2C3 Cy 30y 30, IRREP E ET MT M MPG P. axis
Ay1T 1 1 1 1 1 AT Qo, T, T 6/m'mm _[001]

QU7Q4O
AT Q., Q2 To, 6mm  [001]

Tu7T40
Ayl 1 1 1 -1 -1 Af G,.,G¢ My, 6/m’  [001]
M, My
Ay Go, M., M 622" [001]
Gu7G4O

Bl 1 -1 1 -1 1 -1 B}L Q4a Gga Tgb ]\4-4[7 3’m [001}
By Qs G Tha M, 6'2'm  [001]
BQ 1 -1 1 —-1-11 B; Q4b ng Tga Aﬂm g’m [001}
BQ_ an G4a T4b ]ngb 6/7”2/ [001}
Et2 1 -1-20 0 Ef Qy-, Q% Gy, Gsy T, T, M., Mg, 2'/m  [100]
szu Qitu Gy7 G?m T:tu TSu ]\/[yZ7 ]\/[fu 2//m [010}
Er Qy, Q30 G, GS, Ty, Tg, M,, Ms, m2'm’  [100]
Qz, Qsu Gy, GY, T Ty, M,, Ms, 2mm’  [100]
E2 2 -1-1-20 0 E; Qw fiv ES Gzyz Tzﬁ sz7M£u17MéﬁJ2 mmm/ [001}
Quy, Q1 Q1 G2 Tope My, My, MG 2/m’ [001]
Es Q7 Gmy,Gﬁ,G{fg TU,TE,Tff Moy mm2  [100]
Quy G, G G2 T, T T M? 222 [100]
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Table C.39: IRREPs of four types of multipoles in 6'/mmm’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=61.

E 2IC; 2C5 o), 3Cy, 30, IRREP E ET MT M MPG P. axis
Al 1 1 1 1 1 AT Qo, Qu, Quo Ty My, 6'/mmm’ [001]
AT Q3 Gy Ty, T, Tyo 6m2 [001]
Ayl 1 1 1 -1 -1 A G.,Ge Tsa My, 6'/m  [001]
AL @s3a Gia M,, M2 62'm’  [001]
All/ 1 -1 1 —1 1 -1 A/1/+ Q4b ng ]V[o,]\{u7M40 g’m’ [001]
A= Go, Gu, Gao Tw M, 6'2'2  [001]
A1 -1 1 -1 -1 1 ALt Qua G T, T2 3Im [001]
A5~ Q.,Q° Tha Ms, 6'mm/ [001]
E'2 1 —-1-2 0 0 E"" Q,.,Q%  Gu Gsu TF My, MY, MP? 2/ /m [100]
Q. Q). Gy, Gy Toy- My, MY M2 2/m’ [010]
E'- Q? gzy,& Tyer TS M, Ma, mm'2 [100]
G4U7G4’U
Quye e Too, TS, M, Ms, 222" [100]
Gl a2

E 2 -1 -1 -2 0 0 E+ ﬁ?”’m Glye T,, Ts, M., M, mm'm  [100]

4u7Q4u,
gwm G* T, Ty, M,,, Mg, 2'/m  [001]

4v C4v
E- Q,Qs  G.,GS T, T T2 M,,. m2m  [100]
Qu,Qsu Gy, G, Ty, TN T M?P 2m'm  [100]
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Table C.40: IRREPs of four types of multipoles in 6/mm'm’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=60C5,.

E Cs C3C,C2 CE T 1C IC; 0, ICZICZIRREP  E ET  MT M MPG D. axis

A,11 111 1 11 1 11 1 A Qo, M,, M2 6/mm’m’ [001]
Qu7Q4O
A; G., G T, 6/m  [001]
Tu, To
Bgl1-11-11-11-11-11 -1 B} Qi Gsa Ty My, 3m’ [001]
B, Qu G Tha Ms, 3m/  [001]
Epl —ww—lw-w 1l —w w? -1 w —w? ng+ }Qyz,QZv G, Gay 2'/m’  [100]
1-w?w—-lw? —w 1 -w? w 1w —w Eg?’ Q:z, Q% Gy, Gs, 2'/m’ (010
B Tye, T, My, Ms,  2'/m’ [010]
Eg2g)7 Tzam Tfu My7 M?m QI/m/ [100}
Eoel w w?l w w? 1 w w1 w w? E%H Qy Gay» m'm'm  [100]
Bl B2
4ur wiu
lw wlw w 1w w 1 W w E%H Quy, GY 2/m  [001]
s Qi
Eby T,, M. 2/m [001]
Tin T
EQ)” Ty,  ME  m'm'm  [100]
o T2
AT 1 111 1 —1-1-1-1-1-1 AF Go, T.,T° 622 [001]
G, G
A7 Q., Q2 Mo, 6m/m’  [001]
M,, My
B,1-11-11-1-11 -11-1 1 B Qs Gu Ty My, — 62m'  [001]
By Q3 G T3, Mya 6m’2"  [001]
Enl ww?—1lw —w?-1 w —w?1 —w w? E&H Qz, Qzu Gyz, G, 2m'm  [100]
l-w?w—-1w? —w-10w? —w 1 —w? w EPT }Qngv G.., GS, m'2'm  [100]
EM- Ty, T My, M, m/2'm  [100]
E2~ } Ty, Tsy M.y, M2, 2'm'm  [100]
Eol w w?1 w w? —1-w—-w?-1-w-w? EVT ) Q. G, 22'2  [100]
Gl Gl
1w wlw w-l-w?—w-l-w—w EZ" [ @ G, m'm'2  [100]
Gl Gl
B Tpp M, m'm'2 [100]
MY M2
EQ)~ T® M, 222 [100]
Mgy, My

w=exp(—27i/3)
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Table C.41: IRREPs of four types of multipoles in 6’/m/mm’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=60C5.

E 205 3Cy, I 2IC5 30, IRREP E ET MT M MPG  P. axis
Alg 1 1 1 1 1 1 Az—g Q07Q1L,Q40 T4a ]\/[3(1 6’/m’mm' [001]
A;g Q4a Gga 71(]7 jju7 T40 3m [001]
Agg 1 1 —1 1 1 —1 A2+g GZ,GE( T4b J\/[gb 6//771/ [001]
A2_g Q4b ng ]\/[2,7 Mg ?)T)’Ll [001]
E, 2 -1 0 2 -1 0 Ef Quy el T, TS, M, M,  2/m’  [001]

81 B2

4vr W4v
Q@ . Gay Ty T8 My, Ms, — mm'm/  [100]

4ur 4u
Eg Qyz7 Qity Gm7 G3u EJ Afa:yz 2/m [100]

Tiws T
Q:0, Q% Gy, Gy Ty M?B 2'/m’  [010]
70 T
AL, 1 1 1 -1 -1 -1 Aj, Go,Gu.Gao Tha M 622 [001]
A;u an G4a ]\/[07 Mu, ]V[40 G/Qm/ [001]
Ay 11 -1 -1 -1 1 A3, Q- Q2 Ty, My, 6'mm’  [001]
Agy Qs Gap T..T? 6'm2  [001]
E, 2 -1 0 -2 1 0 Ef Q° Gy Ty, Ty M., M2 mm'2  [100]
Gfl,sz
Qa:yz Gu Tm T3u ]wym ]wﬁ; 22'2' [100]
G, G
E; Qe Q3 Gy, G, Ty M, 2m'm/  [100]
My, Mi}

Qy. Qs G.p, GY, TS My, m2'm’  [100]

MY M
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Table C.42: IRREPs of four types of multipoles in 62’2’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=0C,,.

E Cs C; C, CZ2 C2 IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 A Qo Qu,Quo Go,Gu, Gy 1., T° M., M> 622" [001]
A~ Q.,Q° G.,G® Ty, T, T My, My, Myy 6  [001]
B 1 -1 1 -1 1 —1 B+ Q3a~,Q4a G3a,G4a T3b7T4b ]\431,,]\4417 32/ [001]
B~ Qsp, Qu Gsp, Gy TsayTaa  Mse, My, 32 [001]
Ei 1 —w w? -1 w —w? EWPT Qu, Qyey Gay Gy, 2 [100]
Q3u7 ng G3u7 va
1 —w? w -1 w? —w E(12>+ } Qy, Qza, Gy, G 2’ [010]
Q3v> Q4au G3v> Q4au
E(M™ Ty, Ty, My, M, 2 [010]
Tou, TS Msy, M2,
E®- T, Ty My, M, 2  [100]
T3m Tzﬁ;, ]\431)7 ]\/[X(u
E; 1 w w1 w w? EM Qu, Quyer Gy Gy 222 [100]
e Qhn GhL, Gl
1 o w 1 w? w EPF Quy. Q? Gy, GF 2 [001]
0 Qh GL.GL
ELM- Ty Toyey My, My,., 2 [001]
Ton Toe My, My,
EQ~ T, TP, M,,, M  2'2'2  [100]

81 52
T4v ) T4v

M2 M2

w=exp(—27i/3)

Table C.43: IRREPs of four types of multipoles in 6'22’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C5.

E 2C; 3C, IRREP E ET MT M MPG P. axis
A, 11 1 AT Q0,Qu,Qu Go,GuGao TsaTia Msy, My, 6227 [001]
AT @30, Qua G3a, Gaa To,Tu, Tho Mo, My, My 32 [001]
Ay 11 -1 AS Q.,Q° G.,Ge Ton, Tap My, My, 6 001]
AS Q3p, Quv Gy, Gy T, T M, M2 32/ [001]
E 2 -1 0 Bt Qe Q°,  GupGP, T, T.., M, M., 2 [001]
Qi GLLGR o Ty, TR Mg, Mg,
Quv, Quyzs Gy, Gayz, 1., Ty, My, M,., 222 [100}
Qi GLLGR T, T My, M,
E~ Qz, Qyz, G, Gys, Ty, Tyy-, M, My, 2 [100]
Q3u7 sz G3u7 G4au Tf;lv Tfu2 ]\/[ful’ Mfuz
Qy, Qe Gy, G, Toy, TP, My, M5, 2 [010]
QBm Qitu G3v7 Ggu Tful’ Tf? ]\4461/11 1”4%2
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Table C.44: IRREPs of four types of multipoles in 6'm/2. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=~0aoy,.

E 2C5 3Cy IRREP E ET MT M MPG P. axis
A1 1 1 1 A-l'— Qo, Qw G4b T4b ]\/fo, ]V[u, 6'm'2 [001]
Q3p, Quo My, Myo
AT Qu Go, G, To, T, My, 32 [001]
Gy, Gao T3y, Tho
Ay 1 1 -1 A; Q34 G, G, Gy T, T3 Ty, Ms, 6’ [001]
A5 Q2 QY, Qi Gz, T3, M, M, My, 3m’ [001]
E 2 -1 0 E* Qzs Quy, Q3us Gy, Ty, My, Moy, Ms,, m/ [001]
Qi  Glas,  ThTh My, My
Qy, Qu, Q30 G.., T, M, My, Ms,, m’2m’  [100]
e Qhn GoyeGS Tl T, Moy, MY
E~ Qy27 Gza Gzy~, G3u Tz~, Ty T3u7 My27 m’ [100]
QLQ%  GL.GL TR TR MIMG,
(@7 Gy, Gy, G3yy, T, Ty, Tsy, M., 2 [010]

1 2 1 2
szz7 QZu/ Giﬂ Gfu Téﬁb ) Tfu ]szm ‘]w-fu

Table C.45: IRREPs of four types of multipoles in 6'm2’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=0gy,.

E 2C; 30, IRREP E ET MT M MPG P. axis
A1 1 1 1 AT Q07 Qu, G4b Tz, T;‘., T4a ]V[ga 6'm?2’ [001}
Q3b7Q40
A; Q27 Q?. Q4a Gga To, Tu, ]V[4b 3m [001}
T3, Tho
Ay 11 -1 Af Q34 G.,G% Gy, Ty My, M, 6' [001]
My, Myo
Ay Qu Go, Gy, Ts, M,, M& My, — 32 [001]
G, Gao
E 2 -1 0 ET  Qu Quy, Qsu, Gy, Too, My, My, M3,, — m’ [001]
o Qi G2.GS, T Tg, My, ML
Qys Qu, Q30 e Ty, My, Myy, Ms,, m2'm’  [100]
o Qte GGy, TOTS MG MY
E- Qye Gy, Gy, Gau T, Ty, T3, M., m [100]
Q7. Q5, Gho,Ghy  TolTol Moy, Mg,
Qzzs Gy, Gy, Gay Ty, Ty, Ts M,., 2 [010]
wazaQZu,? quia Gfg Téﬁ'l’TE)Q ]ijﬂ’ ]\/ﬁz
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Table C.46: IRREPs of four types of multipoles in 6m'2’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=0C,.

E ICs Cs 0, C2 ICS TRREP E ET MT M MPG P. axis
Al 1 1 1 1 1 AT Q07Qu7 G4b Tga AIZ,M Aﬂm 6m’2’ [001]
Q3I}7Q40 B
A~ Q3a G.,GY Gy Ty, Ty, My, 6  [001]
T3b7T40
A1 -1 1 -1 1 -1 A™ Qu Go, Gy, T, T Ti, Ms, 32’ [001]
G:%b-,GALO
A”_ Q27 Q?, Q4a Gga T4b ]V[07 Mw 3TTLI [001]
My, My

EFl ww 1 w w2 EOF)Q, 41“ Gay- Ty, Ty, M., Mg m'2'm [100]
1 w? w 1 w? w EO }sz, 4v, v G*? Ty Ty M., M2, m  [001]
- Qs Osa G,.,GY T, TP T2 My m [001]

E/(@)- } Qy, Qs0 Gow, Gy Toy, Tl T2 M?P m'2'm  [100]

E'1 —w w? -1 w —w? EMF Quy- G, G G2 T, Ty M,, Ms, 2 [010]
1 —w? w —1w? —w E@F } Qs Gy, GIY G2 T, T2 M, Ms, m' [100]
E"0- Qy:, QS een Toye M, Mﬁj,Mﬁ? m'  [100]

Ell(z)i } sz7 Q4u Gy7 G3U TzB A41y7 ]\451}7 ALLBUZ 2/ [010]

w=exp(—2mi/3)

Table C.47: IRREPs of four types of multipoles in 6’mm’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C,.

E 2C5; 30, IRREP E ET MT M MPG P. axis
Ay 11 1 AT Qo, Qz; Qu, T3q, Ty Mzy, Mys  6'mm’  [001]
% Qo
AT @30, Quo Gsp,Gae 10,17, T, 3m [001]
7, Tho
Ay 11 -1 A} Go, Gy Gy Top T Maa, My, 6 [001]
G2, Gy
A; Q3b7 Q4a Gga, G4b ]w-o, ]\/[z, ]\IU, 3m/ [001]
M, My
E 2 -1 0 EY  QupQupes  GoGY Ty T, M, M,, 2  [001]

nQy GG Ty TR My, Mg,
Qv, Qf, Gy, Gays, Ty, Ty, M., M,,, mm'2" [100]
NP GILGE T, T My, MS,

E” Qy7 Qyz: Gm sz Tv» Tzﬂv Afzyy szm m [100]
Q3U7 Z{v G3u: GZu Tful7 T45u2 val7 J\/féﬁ?
Qm sz: Gyv Gy27 sz7 szZ7 M,, Afﬁ m' [010]

1 2 1 2
Q3u7 quv G3’U7 GZ'U va ’ Tﬁ) Mfu ) Mfu
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Table C.48: IRREPs of four types of multipoles in 6m/m/. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=6o,.

E C; C3 C, C2 C7 IRREP E ET MT M MPG P. axis
Al 1 1 1 1 1 —A* Qo, Q.. Qu, Mo, M., M,, 6m/m’ [001]
¢, Quo M, My
A Go, G, Guy T, T, T, 6 [001]
G2, Gy T Tho

B1-11-11 -1 Bt Q3b7Q4a Gga,G4b Tga,T4b ]\/[3{,7]\/[4(1 3m’ [001]
B~ Q34, Qu Gy, Gaa T3, Thq Msq, My, 3m'  [001]

E; 1 —ww?—1w —w? EN? Qy-r Q3 G, G, T,, Ts, M., M m/  [100]
1 —w? w —1w? —w EP* } Q-0 Q2 Gy, G, T,, Ts, M., M2, m' [010]
EM- } Q.. Qs G,.. G, T,.. TS, M,, M, m' [010]

E®- Qy Q&, ees Tow, T2, M,, Ms, m' [100]

Byl w w1 w o? EM? Gy Ty My, MY MP m/m/2 [100]
1 v w 1w w EPT } Quy ’” G? TP sz,ij,Mﬁf 2 [001]
E&- QW Gy, GE;G” T, TB1 T2 M,,. 2 [001]

EQ- } Q° Gmy,Gful,foi TWTE,TQ2 MP m'm'2 [100]

w=exp(—27i/3)

Table C.49: IRREPs of four types of multipoles in 6’/m. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=601I.

E ICs Cs 0, C2 ICS IRREP E ET MT M MPG P. axis
A/ 1 1 1 1 1 1 AH— Q07Q1u GZ,G? Tga,Tgb Af4a7]\/[4b 6'/m [001}
Quo )
A~ an, ng G4a, G4b To, Tu, J\/[Z, ]\/fg 6 [001}
T40 _
A1 =1 1 =11 =1 A" Qu,Qu Glsa, Gy T, T My, M,,, 3 [001]
AH_ QZ? Q? GO, Gu7 T4(l7 T4b ]\/[3(17 A{Sb 6 [001}
Gyo
EFl w w1l w o E Q,QN Q7 Glaye T,, Ts, M., M2, 2'/m [001]
W w 1w w Quy, Q31 Hﬁ G Ty, Tsu M,., Mg 2'/m [001]
Qy, Q3o G.e, Gy, Ty, TON T M,,. m  [001]
QuQsu  GyenGhy Toy Ty T0 M m  [001]
E'l —ww? -1 w —w?) E Qyz, Q% G, Gy T8 My, MpH M2 17—
1 —w? w —1w? —w Q) Q1 Gy,va Ty M,, Mful,MB2 iy —
Q° Gy, GIY G2 T, TS M,, Ms, 2 [001]
szz va Gi,lu Gf’fb Tzz7 T4u ]\/'{w 1\/ij 2/ [001}

w=exp(—2mi/3)

149



C.2. BLACK-AND-WHITE POINT GROUPS

Table C.50: IRREPs of four types of multipoles in 6/m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=01I.

E C; Cs Cy C? C3  IRREP E ET MT M MPG P. axis
Al 1 1 1 1 1 AT Qo,Qu,Q40 GZ7G§ TZ7TZQ Afo,]\/L“]\/Llo 6/777,/ [001}
A~ Q, QY Go, G, Gao T, T, Tho M,, M 6  [001]
B1 -1 1-11 -1 Bt Qua, Qup Gsa, G Ty, Ty Mg, My, 3 [001]
B~ @34, Q31 Gia, Gy Tha, Ty Msq, Msy, 6 [001]
E; 1 —w w? -1 w —uw? E; Qyz, Q% Gz, Gy T, T, M,., Mg iy —
sza qu Gya G3’U ﬂJ7 T311 ]wzmy ]wfu i/ -
1 —w? w -1 W —w Qz, Qs G,.,GS, Ty, T4 M,, Ms, m'  [001]
Qy, Q3o G, GS, T.o, T, M, M, m' [001]
E; 1 w w1 w ? E, QI QY Goye Thye M, MJY MP2 2/m! 001
Qu, Q4. Q1 G2 TP My, My, M 2/m’ [001]
1 w1 W ow Quye G, G G T, TH T M,,. 2 [001]
QF Gy Gh,Gh T, Ty T4 M? 2 [001]

w=exp(—2mi/3)

Table C.51: IRREPs of four types of multipoles in 6’/m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C,.

EC3 C2 T ICs IC? IRREP E ET MT M MPG P. axis
A, T 1 1 1 1 1 Af Qo, Qu, G.,G° Tia> T Mg, My, 6/ /m’ [001]
Q40 _
A; Qua, Quy Glaa, Gap Ty, T, M,, M® 3 [001]
Tyo
Egl wwl w o E, Qy:, Q% G.,Gs, T, TO TP M,,. T —
lww 1 W w } Qo Q% Gy, Gsy Ty, T T2 M?P [—
Q., Q5 Q2 Glye Ty, TS, My, Ms, — 2'/m’ [001]
Quy, Q21 QT G? Too, TS, M,, M3,  2'/m’ [001]
A1 1 1 -1 -1 —1 AT Q.,Q° Go, G, Tsa, Tsp My,, My, 6 [001]
Gao B
A]: an, ng G4£L7 G4b TZ7 Tza Al(h ]‘/Iu7 6, [001]
My
E,1 w w? -1 —w —w?] E, Qur Qsu Gy, G, Toy- My, MY MP2 m/ [001]
1ow? w —1—-w? —w } Qy, Q30 G, GS, T? M, MJY, M?
Quyer G,,G3L G2 T, Ty, M,., Mg, 2 [001]
QF° Gy, Got G2 T, Ty, M., M2,

w=exp(—2mi/3)
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Table C.52: IRREPs of four types of multipoles in 6’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=~0o,.

E Cs Cg IRREP E ET MT M MPG P. axis
A1 1 1 At Qo, Qu, G.,GY, T, T, My, M, 6’ [001}
@34, Q3v, Qo Gua, Gy Tha, Tap M3a, My, My
A~ Qza ?7 G07G1t7 TOvTLw ]\/[27ng 3 [001}

Q4a7 Q4b G3a7 G3b7 G40 T3ll7 T3b7 T40 j\/j4a7 M4b

E 1 w w? } E Q.. ;an Q@Su Gye,Gayes GS Tyoi Toyen T2 M, é\lzfv, %fg“’ m' (001
1w w > Qi MEY MY
Qy7 sz-, Q3U7 sza Gf; G4au sz7 Tzﬁa Tzfqtb ]\/[y7 Mxyu 1\/va7
1 Qi My, , My,
Qyz; szz7 onfv Gm Gm G3u7 Tz7 Tvu TSua ]\/[yza ]\411/27 ]\/Lﬁ; 1
GG T T
QZI? Qf~ onfu Gyu Gmyu G3v7 Tyu Y T3v7 ]L[zw7 A[£7 AL?U,
G Gho  T0 Ti

w=exp(—2mi/3)

Table C.53: IRREPs of four types of multipoles in 6. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C5.

E C3 C2 IRREP E ET MT M MPG P. axis
Al 1 1 AT Qo, Q2. Qu, Go, G, Gy T, Ton, My, My, 6 [001]
Q% Quo G¢, Gy Tia, Tay Myq, My,
A~ @30, Q3 Gsa, G, Ty, T.,T,, My, M., M, 3 [001]
Qua, Qup Gaq, Gy T, Ty Mg, My
Elww) E QuQuy Qi Qy Gu Gy, Gy, Gl Toy Ty Tou, Ty My, Mo, My, Mg, 2 [001]
1 w? w Quy, Q2. Q1 QY Gy, G G G Ty Tey, Ty, T, My, Moy, May, M,

Qus Ques Q3 Q% Gy Gz, Giaut, G5y T T, Ty Ty My, Mo, My, My 1 —
Y 4v Y 4v Y 4u s 4y Y 4du 4u
Qy7 sza Q3m fou Gya sza G3m qu Twya T,QB7 Tzﬁ;lv Tff M¢y> ]\/[fa ]wzﬁ;la ]\/[fu?

w=exp(—27i/3)
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Table C.54: IRREPs of four types of multipoles in 3'm’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=601I.

E 205 3Cy, IRREP E ET MT M MPG P. axis
A1 11 AT Qo Qu, G Tw Mo, M, Im’ [001]
Q10, Qup My, My,
A] Q3 Go, Gy, To, To, Ms, 32 [001]
G0, Gy Ty, Ty
Ay 11 -1 Af Qua G.,G Gye T, T Tia M 3 [001]
AZ_ Qz~, Q?> Q3a G4a T4a ]\/[27 ]Vf A[Sa 3m/ [001}
E 2 -1 0 E* QyZ,Q,y, G, Gsu, G2 Ty, T3, TP M,., M, 1 —
Q4va 41/7 /33 A[zﬁ;a ]valv A/[zﬁ?
erv Qm Gy7 Gy, Gmyz ﬂ/a T3y, Tm/z M., M, Q/ml [010}
Q4u7 4u7 65 ]\/[fuv Mfulv JWBQ
E™ Q..Q3,.Q° G Gy, Tye. Toy, My, Msy, Mf m' [010]
G, Gl Glie Ti T T4
Qy: Q3v7 erz sz, Gm Tzam Tm ]wy A43Ua A{zyz 2 [010}

B2 Bl B2
GZN G4u7 G4u Tﬁw T4u ’ T4u

Table C.55: IRREPs of four types of multipoles in 3'm. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=01.

E 2C3 30, IRREP E ET MT M MPG P. axis
A, 1T 1 1 AT Qo> Qu, Gy T.,T% Ts, My, 3m  [001]
Q407Q4b
Al_ Qz7 Q?7 Q3(L G4a T0> Et’ j\/jdb 3m [001]
Tho, Thp
Ay 11 -1 AT Qua G.,G% G3, Ty My, M, 3 [001]
Myo, My,
Ay Qs Go, G, Tha M., M2 My, 32 [001]
G4O,G4b

E 2 -1 0 Et Qyz,Qw, Gy, Gsu, G5 T, Ty, Ty M., M,, 1 —

Q4v7 4v7 ﬁ2 Affwﬂfﬁj>ﬂff§
Qs Qq, Gy, Gsp, Guye Ty T, TP M., My, 2'/m  [010]

Q4u7 4u» ﬁi Afﬁ),f\ffvl,]\fff
E- Q. Qs0: Quy- G.o, Gy, Tyer Ty, M,, M3, M? 2 [010]

Gy GILGE Tg, T T

Qu, Qsu, QF Gyz, Guy, Ty, T, My, M3y, My, m [010]

Bl B2 Bl nB2
fov, G4v7 G4v Téﬁu T4u ’ T
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Table C.56: IRREPs of four types of multipoles in 3m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=0C,.

EC5 C2 I IC; IC? IRREP E ET MT M MPG P. axis
A, 1111 1 1 A7 Qo, Qu, G Tha M., M% M, 3m’ [001]
Q407Q4b B
Ag Q4a sz va G3a TO7 Tm MSb 3 [001}
T40:T4b
E, 1 ww?l w o EMF Qyer Quyy G, Gy, GF J—
Q5. Qi Qi
lww 1 w? w EPF Qo:Qu, Gy, Gy, Gy 2 /m’ [010]
Q. Qlar Qi
B~ Tye, Tays My, Mgy, ME 2/ /m/ [010]
T, Ty Tay
EP- T.p.T,, M, Mgy, My, 1 — —
Tou Tow s T
Al 1 1 -1-1 -1 A7 Q= Go,Gu,  1.,T° T, M 327 [001]
G4O>G4b
A; Q27 Qg/ an G4(L Tgb Mo, ]\/f“, 3m’ [001]
Myo, My,
E.1lww?-1-w —w? EPT Qu, Q34, Q% Gy, Gay m'  [010]
G5, Gy, Gl
1w?w —1-w? —w EPT [ Q)05 Qu: GGy 2 [010]
G4,.Gh, G
EW- To,Tsu, TP M., My, 2 [010]
Mg, MPY M2
EP- Ty, Ty, Toye My, M, m' [010]
Mg, My M2

w=exp(—2mi/3)

Table C.57: IRREPs of four types of multipoles in 32’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60CY,.

E C3; C? 1IRREP E ET MT M MPG P. axis
A1 1 1 AT Qo, Qu, Qsp,  Go, Gy, Gy, T., T, M,, M2, 32" [001]
Q407 Q4b G407 G4b T3a7 T4a ]\/[3117 ]\/[4a
A~ Q.. QF, G., G2, To, Ty, Ty, Mo, My, M, 3 [001]
Q3a7 Q4a G3a7 G4a T4O7 T4b j\/[40~, jwzib
E 1 w w? E®OF Qu, Qe Quyy Gy Gyzy Gy 1 —
Q3u7 va GSu Gf
Q%,, Q4. Q4 G5,.GL, G
1 w? w E@+ Qs Quzy Quy, Gy Goy, Gy, 2" [010]
Q3v7 sz27 G3v7 Gzy27
Q5. Q, Qi G5, G, G
E®- To,Tyo, Toyy My, My, My, 2 [010]
T3, TP, M, MP,
T3, Ty, Tol Mgy, My, My
E®- Ty, Tows Ty, My, M., M,, 1 —
T3U7 T:L'yz7 ]\/[31)7 Alwym
Tp Ty Tow Mgy, My, My

w=exp(—27i/3)
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Table C.58: IRREPs of four types of multipoles in 3’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=601I.

E C; C: IRREP E ET MT M MPG P. axis
A1 1 1 AT Q0. Qu, G, GY o, Gy To, T Tso, Tay M,, M,, 3 [001]
Q10; Quar Qv Mo, Maq, My,
AT Q.,Q%,Q34, Qs Go, G, To, Ty, M., M2, Mo, My, 3 [001]
G40-, G4a7 G4b T40-, T4a7 T4b
E 1l w w? E Quer Quy, GGy, GP Ty, T, TP M,., M,,, -
N B i LN
Q217 Qm Gya G3v7 Gzyz Tya T3v7 szz MZI7 ]\/-[m
Q4 Q- Qi Mg, My, My,
Qz7 Q3u7 Qg GyZ7 Gzy-, Ty27 sza Mx7 ]\4311,7 A{f 1 7
G, Gy Gy T8, 10 T
Qy7 Q3v7 szz Gzcm Gvu Tzcm Tv7 1\/[y7 ]\/{3117 szz
G G Gl T8 T, T

w=exp(—27i/3)

Table C.59: IRREPs of four types of multipoles in 3m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=~60o,.

E Cs 6’32 IRREP E ET MT M MPG P. axis
A 11 1 A+ 6207 Qz, Qu., G3b7 G4a, Tga, T4a, ]Vfo, Mz, ]\41,‘7 3m' [001}
Q2, Q3a, Quo, Qup M2, Msa, Myo, My
A~ Q3p, Qua Go, G-, Gy, T, T., Ty My, Mya 3 [001]
G2, G3a, Gao, Gap T3, T, Tho, Tap
El w w? EOF Qyzs Quys Gz,Ggu,Gf T$7T3U7Tf M., Mgy, 1 —
Q,, Q4 Qs Mg, My, My
1w? w E®t Qzy Qu, Gy, Gy, Gy Ty T, Ty M., M,, m’  [010]
Q5. Qs Qs Mg, Mjy, My:
EMW- Qu, Q3u, QP Gz, Guy,s Tyz, Ty M, Mz, M? m'  [010]
Gy, GG T T T
4vs Tdvr 4o 4vr T dv o H 4o
E(2)7 an Q3v7 Qz‘yz sza Gm Tzz‘7 Tvu ]\Jya M317> szz 1 7
G G Gl T3 Ti T

w=exp(—27i/3)
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Table C.60: IRREPs of four types of multipoles in 4/m/m’'m’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=01.

E 2C, CZ 20, 207 IRREP E ET MT M MPG  P. axis
A, 11 11 1 AT Qo, Qu: My, M, 4/m'm/m’ [001]
Q4a Q4u ]V147 A44u
A7 Go, G, Tp, T, 422 [001]
G47G4u T47T4u
A, 11 1 -1 -1 Af Q.  G..GY, T.T°® Mg 4/m/ [001]
A, Q.Q Gs. T M, M*  4m/m/  [001]
B, 1 -1 1 1 -1 B Qu,Qu  Gay Ty My, My, — m'm'm’  [100]
By Qup: Go,Gay T, Ty, M,y rom/ [001]
B, 1 -1 1 -1 1 Bf  Q.,Qi Gf T M, M. m'm'm  [110]
E 2 0 -2 0 0 E* Qy-, G, T, M,., 2/m/ [100]
Q%,Q% GG T T) Mg, Mj
sz7 Gya Tyu Mzzv 2/m/ [010}
Qs,.Qy, Go.GE T TS Mg, M),
E- Q. Gy Tye, M,, om'm’  [100]
.Q0 GL.GL T Th  Mp M!
Qy, G.a, T, M,, m'2m’ [100]
« Qb G$,Gh To Ty Mg M
Table C.61: IRREPs of four types of multipoles in 4’/m/m’m. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=61.
E 2IC; C? 2C, 20, IRREP E ET MT M MPG  P. axis
A1 1 1 1 1 AT Qo, Qu, Toy- M,, My, 4 /m'm'm  [001]
Q4, Quu ~
Al Quy: Go,Gay T, T, 42m [001]
T47T4u
Ay 11 1 -1 -1 A Q5. G.,G T M, M, 4/ [001]
Ay QGG Ty M., M2 am'2' [001]
B, 1 -1 1 1 -1 BfYf  Quy,Qu  Gap My, M,, m/m'm’  [100]
My, My,
By Go, Gy, Ty Ty My, 422/ [001]
G47G4u
B, 1 -1 1 -1 1 Bf  Q.,Q. Gf T, T* M mmm’  [110]
B, Q.Q Gy T,T. M 4mm [001]
E 2 0 -2 0 0 E* Qye» G, T, M,., 2/m/ [100]
Q5. QL Go.GI  TeT) Mg, M,
(O Gy, T, M., 2/m’ [010]
Q5,Q, GGy T TY Mg, M,
E- Qu, Gy, T,., M, 2m'm/’ [100]
Q7 G4..Gh T Th Mp M]
Qz,u Gzzv Tzz7 ]\/[y, m'?m’ [100}
°QF G,.GY, To. T, Mo MP
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Table C.62: IRREPs of four types of multipoles in 4/m'mm. The superscript “£” of
IRREP stands for the parity with respect to the antiunitary operation A=01.

E 2C, C? 20, 20, IRREP E ET MT M MPG  P. axis
A1 11 11 AT Qo, Qu; T, T Mg, 4/m'/mm  [001]
Q4, Quu
Ay Q., Q2 Gy, To, Tus dmm [001]
Ty, Thy
A, 11 1 -1 -1 A Qs G.,Go Mo, M,,  4/m’ [001]
My, My,
Ay Go, G, T2 M., M> 42/ [001]
G47G4u
B, 1 -1 1 1 -1 Bf  Q,,Qu  Guy TP My, M. mmm'  [100]
By Q° G, Gi T, Ti, M, Im2  [001]
B, 1 -1 1 -1 1 BY Q. QL G? Tyye My, My,  mmm’  [110]
B; Quy: G, Gay  Tuy, T M?P 12Ym [001]
E 2 0 -2 0 0 E* Qy-; G, T,, M., 2 /m [100]
ngv fz Gg’Gg Tg?(’Tzf M&’Mfy
Q.a Gy, T, M,., 2 /m [010]
Q%, Q4 G5,GI T TS Mg, M,
E- Q. Gy, T.., M,, 2mm’  [100]
©.Q! Gy,.Gi, T, Ty Mg, M)
Qy7 Gz17 Ty27 M@, m2’m' [100]
°Q Gy,.Gh, Te.Ty Mo MP?
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Table C.63: IRREPs of four types of multipoles in 4/mm'm’. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=60C) (about
[100] axis).

E C; C? C3 I 2IC, o, IC? IRREP E ET MT M MPG  P. axis
A, 11 1 1 1 1 1 1 AS Qo Qu, T M, M 4/mm/m/ [001]
Q47Q4u
A; Q. G.,G° Ty,T, 4/m  [001]
T47T4u
B, 1 -1 1 -1 1 -1 1 -1 B} Qu,Que  Gaye Ty, T MP m'm'm  [100]
B, Q@3 GP T, Ty M, m'm'm [110]
By 1 —i ~1 & 1 —i -1 i EW* Qy-, G, 2/m'  [100]
Q% QL G2.GY
1 i -1 —i 1 & -1 —i EP* Qs G, 2/m'  [010]
5, Q1 GGy
- Ty, M,, 2'/m’  [010]
T, Ty Mo, MP
E®- T.., M,, 2/m'  [100]
T3, Ty, Mo, MS
A, 1 1 1 1 -1 -1 -1 -1 A] Go, G, T.,T® Mg 4227 [001]
G47G4u
Ay Q. Q% G¢, Mo, M, 4m'm’  [001]
My, My,
B, 1 -1 1 -1-1 1 -1 1 B} Quye Go,Gay TP My, MY 42m'  [001]
By Q° Gup Gl Tup My, M, 4’2 [001]
E, 1 —i -1 i -1 4 1 —i EP* Q. Gy Ym'm  [100]
8.Q7 Gi. Gl
1 i -1 —i -1 —i 1 i E@F Q,, Cia m'2m  [100]
5Qy G, Gl
E&- T, M.,  m'2m  [100]
EP- T,, M.,  2m'm  [100]
T, T Mg, My,
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Table C.64: TIRREPs of four types of multipoles in 4’ /mmm’. The superscript “+” of

IRREP stands for the parity

[110] axis).

with respect to the antiunitary operation A=60CY (about

E Cy. Oy Cy, I 0. 0, 0, IRREP E ET MT M MPG P. axis
A, 1 1 1 1 1 1 1 1 Al Q0. Qu, Ty, Ty M. & Jmmm’ [001]
Q4>Q4u

A; Qm Q411 G:I:yz TO, Tu,-, mmm [100}
T47T4u
By, 1 1 -1 -1 1 1 —1-1 B, Q..Qi G¢ T M., M® m'm'm  [110]
B, Q.  G..GY T, T M 4'/m [001]
By 1 -1 1 -1 1 -1 1 -1 Ba, Q. Gy, Ton, M,, 2/m  [010]
(03 5 '« (e} B y/ K%
Q4y7 Q4y Gy7 ij T4y; T4y ]\/[y ; M,‘f
By 1 -1 =1 1 1 —1-1 1 e G., T,., M,, 2/m  [100]
Q3,,Qs G3.GE Tg Tp, Mg, M!
A, 1 1 1 1 —1-1-1-1 AT Go, Gy, Tuy. M, My, 4227 [001]
G4aG4u B
Ay Quy: Gy, Gay My, M,, 42m’  [001]
My, My,
B, 1 1 -1 -1-1-11 1 B, Q°  G.,GY T..T® Mg Im2  [001]
B, Q.Qf Gf, TP My, My, 4mm’  [001]
By 1 -1 1 -1 -1 1 -1 1 Ba., Qy G, T, M,,, m2m  [100]
[e% « 6 (o] « ﬁ
E Qg G4y7 G4y Ty ) Tf ]\/{41“ ]\/[43,/
Bsjuu 1 =1 -1 1 -1 1 1 —1 Q.. o T, M,., 2mm  [100]
©.Q% G,.Gi, T TP Mg, My,

Table C.65: IRREPs of four types of multipoles in 42’2". The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60CY (about [100] axis).

E C, C? C? IRREP E ET MT M MPG P. axis
A1 1 1 1 AT Qo, Qu, Go, Gy, T., M., 422" 001]
Q47 Q4u G47 G4u Tzuv sz AI;7 Méﬁz
A~ Q.. G, Ty, Ty, My, M, 4 [o01]
Q?v ng G?v foz T47 T4u Aféh ]V[4u
B1-11 -1 Bt Q., G,, Ty, M,,, 2'2'2 [100]
sz27 Q4v Gmy27 G4v T£7 T4BZ ]\/[,57 ]V[fz
B- Quy Gy T,, M,, 222 [110]
va sz va sz szlv Ty A{zyzv My,
E1 —i—-1i EY* )Q,Q.Q%Q% G, G,., G, G, 2" [100]
Q5. QL G, G,
1 i =1 —i E@ [Q,Q..,QQ Gy G..,GS,GY, 2" [010]
ng’ ny Gg?ﬂ ny
EW- Ty, Tye, T2, TS, My, My, M2, ME, 2 [010]
E®@- Ty, Tow, T3, TS, My, Mo, Mg, MS, 2 [100]
18,1y, Mg, My,
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Table C.66: IRREPs of four types of multipoles in 4'22’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C% (about [110] axis).

E C,, ng Coy IRREP E ET MT M MPG P. axis
A1 1 1 1 At Qo, Qu, Gy, Gy, T,, M,, 422" 1001]
Q47 Q4u G47 G4u sz27 T4v ]u-zyz: ]\/1411
A~ Q., G,, Ty, Tu, My, My, 222 [100]
szz: Q4u Gzym G4v T4> T4u ]V[47 M4u
B, 1 1 -1 -1 B Quy Gy, T., M,, 2'2'2  [110]
Q7. Q1. G?.GY. 1o T3, M, Mg,
By Q-, G, Tyy Mmy, 4/ [001]
Q% G2, Gs, 18,7y, M?, My,
B, 1 -1 1 -1 By Qz,Qyz, o Gz,Gyz,Gg, TI,TW,Tf7 Mz,Myz,Mf, 2 [10()]
Q2,Q%,.Q1, G8.GY,.Gh, TP, To. Ty, MP Mg, My,
B; 1 -1 -1 1 Qy: Qy=, QS, Gy, Goo, G, Ty, Ty, TS, My, My, MY, 2 [010]
Q). Q4, Qs Gy.G5,Gyy T] T3, Ty, M] Mg, My,

Table C.67: IRREPs of four types of multipoles in 42'm/. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C (about [100] axis).

E IC, C? IC} IRREP E ET MT M MPG P. axis
AT 1 1 1 At Qo, Qu, Gy, G T2, Ty M., M,,, 42'm’ [001]
wau Q47 Q4u ]\/{,37 Mfz
A~ Q% Q%. G.,Gyy, To, T, M,, My, 4 [o01]
G?7 sz szZ7 T47 T4u
B1-11 -1 B* Qu; Quo Go, Gy, T, Tyy, MP, Mg 2/2'2 [100]
GryerGa, Gy T2 Ty,
B- Q2 Quys G8,GS, Ty, Taw My, M,, m'm'2 [110]
QL My, My, My,
E1 —i -1 i EO* )Q,Q,.,0%0% G,,G,.,Ge, G5, 2" [100]
Q5 Qls G, G,
1 i =1 =i E®" [Q,,Q.,Q% Q) Gy,G..,GS, Gl 2" [010]
ng’ ny Ggyv ny
EM- T, Ty, TS, TP, My, M, M2, M2, 2" [010]
T, TY Mg, M),
E®- Ty T, T3 TP, My, Moy, Mg, MP, 2" [100]
18, Ty, Mg, My,
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Table C.68: IRREPs of four types of multipoles in 42m/. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60o, (o4 [110]).

E Oy, Cyy Coyy IRREP E ET MT M MPG P. axis
Al 1 1 1 A+ Q07 Qu> Gva G4?) ﬂ)a T4’U AIO? ]\/{m 4,2777,, [001]
Ql‘yza Q4a Q4u ]\/{wyu A447 A44u
A7 QU? Q4’U G07 Gu7 TO', Tu7 Mv7 ]\/‘{41) 222 [100]
GzyZ7 G47 G4u szZ7 T47 T4u
B, 1 1 -1 -1 B} Q2. Quy, G?, G T8, TS M., M,,, m'm'2 [110]
¢ QL. Mg, My,
By Q°,Q%, G.,Gey, 1., Tyy, M8 Mg 4 [001]
GGl T
B2 1 -1 1 -1 B2 Qy7Qsz ;;7 GvaZI7G(y¥7 TvazmvT;7 Myvj\/[zz-,]\/-[;v 2 [010]
« 3 « o a 3
ng Q4y7 Qfly Ggﬂ G4y7 ny Tyﬂ7 T4y7 Tfy ]V[yﬁv ]\/147;7 Miy
B3 1 _]- _]- ]- Z7Qy27Qg7 GZ7GyZ7G(;7 TIvamT;y A[Z7Myz~,j\/1$7 2 [100]

Q%,0%,.Q5, G8.Gy,.Gh, TP Tg, Ty MPS Mg, My,

Table C.69: IRREPs of four types of multipoles in 4'm2’. The superscript “£” of IRREP
stands for the parity with respect to the antiunitary operation A=60C% (about [110] axis).

E Cyp. o0, o, IRREP E ET MT M MPG P. axis
A, 11 1 1 AT Qo, Qu, Gy, G, T.,T,, Mgy, Mg 4m2" [001]
Q2. Qu, Quu T, Ty,

AT Q-,Q., Glyer G5, Ty, T, My, My mm2  [100]
(;7 Q4v TZB T47 T4u
Ay 11 -1 -1 A Quy, QL Go, G, Ty TS M, M,, 222 [110]
G?,Gy, Gy M, My,
Ay QusQt GG, Ty, T My, M,, & [001]
G, Gy M8 My, My,
B, 1 -1 1 -1 Bl QuQu Q% Gy Gy, G, TuTop, T, My, My, M2, m  [010]

Q1LQ5, @1, GG, Gy TP T3, Ty My, My, M,
BZ 1 -1 -1 1 Qy7QyZ7 za GmszG?» TyaTyz-,Tyaa ]wzvﬂfzz7]\/[£7 m [100}

a o ] B Y el B
an Q4zv Qflgz va G4y7 ny T57 T4z7 T4z A[£7 ‘]V[4y7 ‘N[4y

Table C.70: IRREPs of four types of multipoles in 4m’m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60a, (o,-L[100]).

E C, C? C? IRREP E ET MT M MPG  P. axis
A1 1 1 1 AT Q0. >, Q. Gs. e My, M., M,, 4m/m’ [001]
Q2,Q4, Quu M2, My, My,
A~ sz G0~, sz GU7 TO; T27 Tu-, Afzi!z 4 [001]
G, Gy, Gay T2, Ty, Ty,
B1 -1 1 -1 B+ Qo Gy Ty, M,, m'm'2  [100]
57 Q4u GzyZ7 sz szz: sz Mzﬁ7 A[4v
B~ Quy, Gy, T,, My, m'm'2  [110]
sz27 sz G?v G4v Tzﬁ T4v Afzyza Mfz
E 1 —i -1 i  EO" | QQ4.Qf, G.G3Gl T, T8T/ M, Mg, My, m'  [100]
1 i -1 —i  E@F }Qm,%,@fy G,,Go,GE T, T, T} M., Mg, M, —m'  [010]
D } Q.,Q3,Q0 Gy, G, Gy Ty, T4, Ty My, ME,MP m - [010]
E®- Q,,Q2,Q0  G..,Gs,.GY, T Tg. Ty M, MM m'  [100]
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Table C.71: IRREPsS of four types of multipoles in 4’mm/. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60c, (o4L[110]).

E Cy oy o, IRREP E ET MT M MPG P. axis

A1 1 1 1 AT Qo,Q:, Qu, GS. T, M,,, 4'mm’ [001]
Q2,Q1, Quu TP Ty May., M,

Ay Qus Gy, Ty, Ty, Ty, Mg mm2  [100]

Q2. Quo Guye,GY, T2, T4, Ty,

Ay, 11 -1 -1 Ay Qs G, T Moy, M, M,, m'm'2 [110]
Quy= Q1. GG Mg, My, My,

Ay Q5. Go, G, G, Ty, M,, 4 ool
G2 Gy, Gy Ty, TY MP5 | My,

B, 1 -1 1 -1 B Qu Q. Q% Gy, Gy, Gy, Ty Ty, TS, My, My, M, m [010]
Q?,Q5,Q4, GI.GS,.Gy, TP T, Ty MJ, Mg, My,

B, 1 -1 -1 1 Qy: Qy:, Q% Go, Gon, G2, T, Ty TS, My, My, M2, m [100]
Q) 0%, Q1 G2,Ge,Gh, TP Tg T, MJ, Mg, My,

Table C.72: IRREPs of four types of multipoles in 4’/m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=01I.

E IC, C? IC3 IRREP E ET MT M MPG P. axis
A1 1 1 1 AT Qo, Qu, G..G° Ty TP M,, M,,,  4/m" [001]
Qu, Quuy QS My, M,
A_ szz7 Q? sz Gzy7 T0> T1u A{zv M? Zl [001]
G4’U7G§z T47T4’U,7ngz
B1 -1 1 -1 B* Qu, Quy, Goyzy GP T, T My, M, 2/m’  [001]
Q4v7 sz A{4, ]\/[41“ ]V[fz
B- Q., Q% Go, G, Ty, T,y M,,., M? 4’ [001]
G, G GS, Tu Ty
E 1 —i -1 i E  Q,.0%.Q) G.GG° T, T TP M, M, M) T —
1 i -1 —i Q. Q%, Q4 G,.GoGE T, Te TP M., Mg, M, T
Q. Q%,Q% Gy, G, GY T, T TE My, M2, ME m/ [001]
Q. Q2,Q0  G..,G$,.GY, T T3 Ty, M, M, M m/  [001]
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Table C.73: IRREPs of four types of multipoles in 4/m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=01I.

E C, C? C3 IRREP E ET MT M MPG P. axis
A1l 1 1 1 AT Qo, Qu, G.,G° T., T My, M, 4/m’ [001]
Q47Q4U7Q4az ]V[4,A{4u,MfZ
A~ Q., Q7 Go, G, To, Ty, M,, M2 4 [001]
Gy, G, GY, Ty, T, T}
B 1 -1 1 -1 B+ Qu, Quy, Gy G Ty, TP My, My, 2/m’  [001]
Qun, Q. My, M
B_ sz27 Qf Gm Gzyz Tv7 sz7 ]V[xym A{f Z’L/ [001]
G, G Ty, TS,

E 1 —i -1 i } B Q..00.Q0 GGG T, Te. TP M., Mg ML T —
. - e} B8 re% le% y « B T o
Qz;m Q4y7 Q4y Gy7 Gy? Gq[j Tya Ty ) T‘yﬁ ]uzau ]w4y7 ]wzly v
Q.,Q%,Q%  G,.,GY,, Gy Ty, T TS My, MO, MP m/ [001]
Q,,Q2,Q0  G..,GY,Gh, T, T8, Ty, M, M M m'  [001]

4y M4y zx) + 4y

Table C.74: IRREPs of four types of multipoles in 4’/m. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C).

E C,, I 0. IRREP E ET MT M MPG P. axis
A, 11 1 1 Af Qo; Qu, G.,G® Ty, Ty, M., MP 4 /m  [001]
Q4aQ4’mQ4az T41)7sz

AL Quvs Quy, Goysy G2 To, Ty, M,, M2 2/m  [001]
Qu, QL. Ty, Ty, T,

B, 1 -1 1 -1 By Q,,Q0%.Q% G.GGE T, Te, Ty M, Me,MP 1 —

Q.0,Q5%,,Q1, G, Go.GS T, Tg, Ty MMM 1 —
A, 1T 1 -1 -1 AF Q., Q2 Go, Gy, Ty, TP M, My,, 4 [001]

Gy, Gy, G, My, M2,
A; szm Qf Gm Gzy7 Tm Tza ]V[07 ]Wu, Zl/ [001]
ees My, My, M2

B, 1 -1 -1 1 B, Q.,Q%,Q% G, G, Gh T, T TP M,., Mg, My, m  [001]
Qy, Q5. Q% G, G4, Gy, T, Te, T M., Mg, My, m  [001]

Table C.75: IRREPs of four types of multipoles in 4’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=01C}.

E C,, IRREP E ET MT M MPG P. axis
AT 1 AT Qos Qu, G.,Gy, Gy 1., T, Tyy, My, M, 4’ [001]
Quy, Q7 G2, G, Gy, T T, Ty, My, M,
Q4, Quu, QF, My, My, Mg,
A Q2y Quy Qs Go, G, T, T., M., My, M,,, 2 [001]
Q?v Q4v7 sz Gmyza va Tmyza Tzﬁ A4§7 M4v7 Affz
Gy, Gay, G, Ty, Ty, T},
B 1 -1 B Qs Qy-, Go, Gy, Ty, Ty, M,, M., 1 —
°,Q8,Q%,,Q1, G3,.GE,Gs,, Gy, T, T8, Tg, Ty, M2, M, Mg, M},
ansza Gy>Gz:17> EJ7TZ.L(;5 ]\/[yaMzwa 1 7
©Q5,Q%,Q5, Go.GS.Ge,GY, T, TP Tg Ty Mo MP Mg, M),
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Table C.76: IRREPs of four types of multipoles in 4’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C}.

E C,, IRREP E ET MT M MPG P. axis
A1 1 At Qo,Q-, Go, G, Ty, Thy, M,, M,,, 4’ [001]
Qua 37 GwG?’ szmTzﬂv Mxym]w£7
Qu, Quu, Q5. Gy, Gau, GS, T, Ty, My, My,
A~ Qo, QW Gy, GW Ty, T, My, M, 2 [001]
Quy=> Q7 Glysr G, T, T2, M,, M2,
Quos QL Gy, Gy Ty, T, TS My, My, Mg,
B 1 -1 B Q$7Qyz, GmGyz, 1., Ty, My, M,., 1
©.Q1.Q%..Q1, GS.GE.GS,. G, T2 T8, T¢g, Ty, Mg, M2 Mg, My,
Qy7 QZI) Gy7 GZI7 Ty7 szu A4y7 ]\’4ZI7 1
5.Qy. Q4,Q4, Gy .Gy Gy, Gy Ty 1), T5, Ty, Mg, My, Mg, My,
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Table C.77: TIRREPs of four types of multipoles in m’m'm’/. The superscript “+” of
IRREP stands for the parity with respect to the antiunitary operation A=61.

E Gy, Cy Cy IRREP E ET MT M MPG P. axis
A1 1 1 1 At Qo, Qu, Qu, Gay- Tuy- My, My, M,,, m/m'm’  [100]
Q47 Q4ua Q41) ]‘/Lb ]Vjélua ]\/[41J
A7 szz G07 Gua Gm T07 Tua Tm ]\/fzyz 222 [100]
G47 G4ua G4’U T47 T4u-, T4v
By 1 1 -1 -1 BT Qay, G, T, My, 2/m’ [001]
Q% QY. Ge,GE T, 17 Mg, My,
BT Q., , Gzy,ﬁ sz’g M., , m'm'2  [100]
g’ Qz GZ(H G4z wa T4z A437 ]\/jz
B, 1 -1 1 —1 B2+ QZI7/3 Gy7 Ty, M., , 2/m’ [010]
_ Q4ay7 Q4y GZ’ G,fj Tz?? Ty Mfy’ M4y -
B, Qy; , Gzz75 Tzz7ﬁ M,, m'2m’  [100]
+ 37 Qy G4ay’ G4y T‘ﬁ/’ T4y ]Wz‘/)’ ]fo ,
B; 1 -1 -1 1 B3 Qy-, Gy, T, M,., 2/m [100]
Q5.Qn  GLGI  TeT! Mg, My
B; Q., Gy, Ty, M,, 2m/m’  [100]
0.Qf GL.GY, T T Mg M

Table C.78: IRREPs of four types of multipoles in m/m/m. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C,,.

E Cy, I o, IRREP E ET MT M MPG  P. axis
A, 11 1 1 A7 Qo, Qu, Qy, Gay- Ty, M., m'm'm  [100]
Q1, Qs Qo 1.7y, Mg, M?
Ay Qay G. Ty, T., T, M,y. 2/m  [001]
ng fiz G?a GE T47 T4u~, T4v
B, 1 -1 1 -1 B/ Qy= G, T.a, M,, 2/m! [100]
(0% 5 (e} [0 ﬁ «
Q4x7 Q4$ Gw7 Gg T4y7 T4y My ’ j\/ff
Bg sza Gy> Tym Mwa 2//ml [010]
Qs,. Q% Ge,GY T TS M2, MP
A, 1T 1 -1 -1 AF Quy- Go, G, G, T., M,,, 22’2 [100]
G, G, Gay  TOTS My, MY,
A Q., Gy Trye Mo, My, M,, m/m'2  [100]
°Q° G4..GY. My, My, My,
B, 1 -1 -1 1 B/ Q. Gy, T,, M., Pm'm  [100]
°Qf Ge,.GL,  TeT¢ Mg, My,
Bl: Qy» Gzzv T17 Alyz7 m/2/m [100]
Q8 G4, GY, T, TP M2, MY
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Table C.79: IRREPsS of four types of multipoles in mmm/. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=01I.

E Cy. 0, o0, IRREP E ET MT M MPC  P. axis
A1 1 1 1 Af Qo, Qu, Qo Gayz T,, Moy, mmm’  [100]
Q47 Q4u7 Q4v T:7 Tzﬁ ]\/[4&7 A[fz
Ar Q= Gy, To, T, T, My mm2  [100]
Q2, Q7 G, G, Ty, Ty, T
Ay 1 1 —1 —1 AF Quy: G., Type My, My, M,, 2/m’  [001]
Q5. Q1. Ge,G8 My, My, My,
A; szz G07 Gu7 G’U7 sz7 Mz7 2/2/2 [100}
Gy,Gau, Gy T2, TY Mo, MP
B, 1 -1 1 -1 B/ Q. G, T, M,., 2/m  [010]
Q3,01 Go,GS T T¢ Mg, M,
Bl_ QT Gyz Tz:]: ]\/fy 2'mm/’ [100}
o QP Ge,, G e, Ty, Mg, MP
B, 1 -1 -1 1 B Qyer G, T,, M., 2/m  [100]
Q% Qs Ge,GY To,T¢ Mg, M,
BQ_ QZ]? Gos Tyz> M,, m2'm/ [100}
. Qf Gy.Gy, T Tp Mo MP

Table C.80: IRREPs of four types of multipoles in 2'2’2. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=0C,,.

E C,. IRREP E ET MT M MPG P. axis
Al 1 AT Qo, Qu, O, Go, Gy, G, 1., 1., T, TP, M,, M,,, M* MP, 2722 [100]
erza Q47 Q4m Q4v G.’L‘yz7 G47 G4ua G4v szv sz ]wzfz? waz

AT Q.,0Q.,,Q%,0° G.,G. G2 GE Ty, T, T, My, My, M,, 2 [001]
ng sz G4aza sz Tty2> T47 T4u7 T4v j\/{tyza A[4a A[4717 A[41)
B1 -1 Bt Q.,Qy.,Q2,Q8  G.,Gy.,GY,GE, T, Toy, T TP, My, Mo, Mg, MJ, 20 [100]
Q5 Ql G, G, T3, Ty, Mg, My,
B~ Q,,Q.,Q5Q) GGGy, G, T, T, T TP, My, My, Mg, M, 2 [010]
Qs @, G4y Gy Tg Th, Mg, My,

Table C.81: IRREPs of four types of multipoles in m/m’2. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60o,.

E Cy, IRREP E ET MT M MPG P. axis
A1 1 At Qo, Q, Qu, Qy, Gy, Gayzs Toy, Toyz, Moy, M, M,,, M,, m'm’2 [100]
Q7 G4, Gy T3, Ty, Mg, M?,
Q47 Q4u7 Q4v ]V[éh A44u~, M4v
A~ me, sz, Gy, G., G, Gy, Ty, T.,T,T,, Ml,y, My, 2 [001]
Q%., Q1. G2,GY, Te.77, Mg, My,

G47 G4'u7 G4v T47 T4u7 T4'U
B 1 -1 B* anQyz>Q$7Q§a Gm7sz7Gg7G£a Tmszan?Tfa ]\/{;w]wym]w;aMﬁ m/ [100]

Yy

o e o o B
Q4z7 Qfx G4y7 ny T4y7 Tfy ]\/'{4@7 J\/[4z )
B~ Qwa@z:m %7625’ Gy7GyZ7G%7G§a Ty7TyZaT;JO;7T‘5a ]‘JMJWZMJWJC; Mq:ja m' [010]
Q(z@ﬂ Q4y GZ;N G4z sz/ T4x ijﬂ ]W-4y
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C.2. BLACK-AND-WHITE POINT GROUPS

Table C.82: IRREPs of four types of multipoles in m/m2’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C5..

E o0, IRREP E ET MT M MPG P. axis
A1 1 A QOa QZ7 Qm Qv Gwyv ngz» Txa Tzw-, ]\/{ya ]‘/[yza 5 m'm2' [010}
°,Q%, GL., GL. T T TG, Ty, Mg, MJ, Mg, My,
Q47 Q4u7 Q4u
A,_ Qz7 sz7 Gy> Gy27 T07 Tu Tu7 Tm j\/[zy7 Aimyza m [010}
¢.Q%,Q4,.Ql G5.G). Gy Gy, T T M., My,
T47 T4u7 T4’U
A" 1 -1 A//+ szv szzv GOv sz Gm va Tyv Tyz-, j\/fzv ]\/[ZI7 2/ [001}
Q5. QL Ge,G8, Te TP, T8, Ty, M2, ME, Mg, My,
G4> G4u7 G411
A" Qy: Qy27 Gwv Gzaw Txy7 Tacyza Mo7 Afm ]Wu, ]\/fm m/ [100}
5.Q) Q5. Q1 G3,GLG,.GL, TR Mg, MY

A[47 ]\/[41/,7 M41)
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Table C.83: IRREPs of four types of multipoles in 2'/m. The superscript “+” of IRREP

stands for the parity with respect to the antiunitary operation A=01I.
E o0, IRREP E ET MT M MPG P. axis
AT 1 AT Qo Qu Qv Qo G, T,. T, M,., My, 2/m  [010]
Q4 Quus Quo, Guye, GS,GE To, T2, TP TP Mg, Mg, My, My,
@1, Qly
A~ s @z, Gys, Gy, 10, T, Ty, Ty M,, m [010]
2.00,Q0QF GL.GL. GGl Ta T Ty Mays, My, M
T3, T, ]
A" 1 -1 A Qe Quys G.,G., T,, My, My, My, M, T’
tangQOfvafz vavavaef Twy%T;vaﬁ My, My, My,
Mg, My,
A" Qy, Go, Gy, Gy, G4, Tz, Ty, M,, M., m’  [010]
Qo Q5. Q) Ga,Gaw Gy T TE T3 Ty My, M2, M, MY
Gs,, G,

Table C.84: IRREPs of four types of multipoles in 2’/m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C,.

E I IRREP E ET MT M MPG P. axis
A, 11 Ag Qo, Qu, Qv, Q.z, Gy, Tyz, Ty, M,, M., 2'/m’ [010]
Q47 Q4u7 Q4’u> Gwyz7 Gga ij Tzf.;ca sz? sz? sz Mga ]M;la NIE? ]Wf
b Qly ]
Ag Yz X TY> Gl‘7Gza TOvTu7T'177TzaL‘> ]\/[ya 1
4 Q5. Q1. Q1. G2.G.GELGE Ty Ty, T Moy, M, M
T4O£/’ T4y
Au 1 -1 A: Qy7 G07GU:G’U7GZZ7 szTzv Aiyvazyv 2/ [010]
szmQ;ng G47G4u7G4’l}7 Twaqu(y’Tx[):Tf Affw7]\/fzfz/fovaz
a B
G4y7 G4y
A; sz Q27 Gyzv Gzya T, ]wOa ]\/Iu Mm A{zz-, m/ [010]

Y
9(:'7 ?7 Qf/ Qf G?fw7 GZz? GZ{,? sz Txyz: T;t, Tyﬂ

]\447 ]\/[4u7 1V[4v7
Mg, My,

Table C.85: IRREPs of four types of multipoles in 2/m’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=601I.

FE C’gy IRREP E ET MT M MPG P. axis
AT 1 AT Qo, Qu, Qv, @z, Gy, T,, My, M, M,,, M., 2/m’ [010]
Q4a Q4'u,7 Q41)a Gmyz, Gg, GE T1:yz> T;é7 Tf A147 ]\/[4ua ]‘/14117
Q1. Q4 Mg, My,
A~ s Go, Gy, Gy, Gy, To, Ty, Ty, e, My, 2 [010}
Quysr Q2. Q8 G1,GuuyGaoy  TuTo Tape My, MO, MP
G4, Gl T3, T, )
B1 -1 Bt QyuQW 5 G2, T,,T,, M., My, 1
Q% Q5. Q1. Q1. G9.G2,GE.GP T2, T TP, TP Mg, Mg, M}, My,
B~ Q:, Q-, Gyz,ny, Tz, Toy, M., M,, m’ [010]

5 Q2,Q7, Q7

G4,.G%., G, G, T 1o, To T, M2, M, M2 MP
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C.2. BLACK-AND-WHITE POINT GROUPS

Table C.86: IRREPs of four types of multipoles in m/. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60o.

FE IRREP E ET MT M MPG P. axis
A1l At Qo, Qs, Q. Gy, Gyz, Gzy, Ty, Tyz, Ty, Moy, My, M., m’ [010]

QU7QU7Q217 Gzy27Gz7G57 TmyzyT;:Tfa ]\/{u:A[m]VIzza

0QQ5,Q8 GY,.Gs..GY,, GY, Tg, T, Ty, Ty, M2, M, M MP,
Q47Q4u7@4v7 J\/[47]\/{4u-,j\/-[4v7

Q5 Qi Mg, My,
A~ Qys Qyz, Quy,s Gy, Go, G, To, Ty, T, M,, M., M,,, 1

mesza Q57 Gvaa Gz;m Tu,vasza Z\nyza ]\/[37]\/[57

Q%,,Q%.,Q4,. Q1. G9.Ge.GS,GE, T, Te TP, TP, Mg, Mg, My, My,

G47 G4u7 G4v7 T47 T4U7 T4v7
G4, Gh, T8, Ty,

Table C.87: IRREPs of four types of multipoles in 2’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=60C,.

E  IRREP E ET MT M MPG P. axis
Al AT Qo, @y, Go, Gy, T, T, Ty, Ty My, M., My, My, 2 [010]
Qu, Qu, Qe G, G, Gegy T3, T2 T2 T2, M, M2, MY, MY,
Qo= @5, Qs Gays G, Gy T3, T T, T M, M, My, My
Q4’ Q4u7 Q4v7 G47 G4u: G4v7
Qi iy Gy, Gy
A~ Qm7 Qza Qyzv me, Ga:7 Gz7 Gyza Gry TO, T,

s My, M, 1
g7 37Q57Q§7 Gz7G?>G£7G£a T'LHTU?TZ(E? ]\/{U'/A/[U?]\/IZ(E?

3 3 3 3
Q1. Q4. Q1. QL. G3,.G5.. G, G, Ty TO TS, Moy, MO, MY,

T4, Thu, Tho, My, My, My,
18,1y, Mg, My,

Table C.88: IRREPs of four types of multipoles in 1’. The superscript “+” of IRREP
stands for the parity with respect to the antiunitary operation A=601I.

FE IRREP E ET MT M MPG P. axis
Al At QOa G:vay7G27 Tl‘aTy7TZ7 M07 r
Qu7QU7QyZ7Qz1'7Q1'y7 Gzyszvazth?7 Tl‘yzuTgca7TyauTza7 A[u7jvjvaA/[yZ7j\/fzz7Mxyu
Q47 Q4u7 Q4v7 G£7 G57 GE Tzﬁa Tf~ Tzﬂ A{47 ]\/[4u7 A44va
Ga @iy Q5 M, Mg, M,
fm Qéjﬁ z{fz Affz>]\/[§pj\/[fz
A7 szvasz G07 T07 A[vavazv 1
sz‘ng? Z> ?7 GquvvGy2>G217Gzy7Tu7Tv:Ty2>sz7Tmy> ]\/[zy27M57A457M§7
Q£7 Q57 Qf G47 G4u7 G4’U7 T47 T4U7 T41J7 ]\/-[57 Afyﬁ7 ]\4’5
Gi,, G, GY, Ty Ty, T3
Gﬁ Gd Gﬂ T8 Té T8
4 M4y M4z 4y 4y ~4z
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Appendix D

Laue and Magnetic Laue Groups

The correspondence between Laue groups and magnetic point groups is summarized in
Table D.1. The correspondence between magnetic Laue groups and magnetic point groups
is also listed for the case with the 7 and/or P7T symmetries in Table D.2 and for the case

without the P7T symmetry in Table D.3.

Table D.1: Laue group (LG) and the corresponding gray point group (GPG), crystallo-

graphic point group (CPG), and black-and-white point group (BWPG).

LG GPG CPG BWPG
m3m m3ml’ m3m m'3'm’, m3m’, m'3'm
4321’ 432 4’32
43m1’ 43m 4'3m’
m3 m31’, 231" m3, 23 m'3’
4/mmm  4/mmml 4/mmm  4/m'm'm’, 4/mm'm’ 4 /m'm'm, 4 /mm'm, 4/m'mm
4221’ 422 422" 422
42m1’ 42m 42'm/, 4'2m/, 42'm
4mm1’ 4dmm dm'm’, 4m'm
4/m 4/ml’ 4/m 4/m/, 4/m!, 4 /m
41', 41 4, 4 44
mmm mmm1’ mmm m'm'm’, m'm'm, m'mm
2221 222 2/2'2
mm21’ mma2 m'm'2, m'm2’
2/m 2/ml’ 2/m 2/m’, 2/m!, 2" /m
21, ml’ 2, m 2, m’
1 11/, 11 1,1 1
6/mmm  6/mmml  6/mmm  6/m'm'm’, 6/mm'm’, 6 /m'mm/, 6/mmm’, 6/m'mm
6221’ 622 62'2', 6'22
6m21’ 6m?2 6m'2’, 6'm2’, 6'm’2
6mm1’ 6mm 6m'm’, 6'mm/
6/m 6/ml’ 6/m 6'/m', 6/m’, 6'/m
61, 61’ 6, 6 6, 6
3m 3m1’ 3m 3m/, 3'm/, 3'm
321 32 32/
3ml’ 3m 3m’
3 31, 31 3,3 3
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Table D.2:

symmetric black-and-white point group (BWPG).

Magnetic Laue group (MLG) for gray point group (GPG) and the PT-

MLG GPG BWPG
m3m1’ m3ml’, 4321, 43m1’ m'3'm’, m'3'm
m31’ m31’, 231’ m'3’
4/mmml’  4/mmml’, 4221, 422m1’, 4mm1"  4/m'm'm/, 4 /m'm'm, 4/m'mm
4/m1’ 4/ml’, 41, 11’ & m 4w/
mmm1’ mmml’; 2221", mm21’ m/m'm’, m'mm
2/ml’ 2/m1’, 21", m1’ 2'/m,2/m/
1 1, 11 i
6/mmml  6/mmml’, 6221, 6m21’, 6mml’"  6/m'm'm’,6'/mmm/, 6/m'mm
6/ml’ 6/ml1’, 61, 61’ 6'/m,6/m'
3ml’ 3ml’, 321", 3m1’ 3m', 3'm
31" 31/, 31/ 3
Table D.3:

Magnetic Laue group (MLG) for crystallographic point group (CPG) and

the PT-breaking black-and-white point group (BWPG).

MLG CPG MLG BWPG
m3m m3m, 432, 43m m3m’ m3m/’, 432, 43m’
m3 m3, 23 4/mm'm’  4/mm'm/, 42'2' 42'm’ 4m'm’
4/mmm 4/mmm, 422, 42m, 4mm 4 /mm'm 4 /mm'm, 422" 42m/ 42'm, Ym'm
4/m 4/m, 4, 4 4'/m 4 /m, 4,4
mmm mmm, 222, mm?2 m'm'm m'm'm, 2'2'2, m'm’2, m'm2’
2/m 2/m, 2, m 2'/m/ 2'/m/ 2" m/
1 1,1 6/mm/m/ 6/mm'm’, 62'2', 6m'2’', 6m'm’
6/mmm 6/mmm, 622, 6m2, 6mm 6’ /m'mm’ 6 /m'mm’, 622", 6'm2’,6'm'2, 6/'mm’
6/m 6/m, 6, 6 6 /m’ 6 /m’, 6, 6
3m 3m, 32, 3m 3m’ 3m’, 32", 3m’
3 3,3
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Appendix E

Relation between Multipoles and
Response Tensors

E.1 Derivation of Multipoles in Response Tensors

We present the correspondence between response tensor components and multipoles in
detail. The rank-2 tensors are shown in Secs. E.1.1 and E.1.2, the rank-3 tensors in
Secs. E.1.3 and E.1.4, and the rank-4 tensors in Secs. E.1.5 and E.1.6.

E.1.1 1

We decompose the rank-2 tensor x™*! into the monopole, dipole, and quadrupole com-
ponents, which are given as

1
XM(1><1):g ZXEZ‘XI]7 (El)
D(1x1 1 1x1
RO =3 Y el B2
jk
Q(1x1 1 1x1 1x1 Q(1x1
X )25 <X£;j>< G ]):in( ", (E.3)

respectively, where i, j=x,y, z. €, is the totally antisymmetric tensor (Levi-Civita sym-
bol). The superscript of yX(*lr) (X=M, D, Q) represents the ranks of the response
(output), g, and the external field (input), [r, in terms of the spherical tensors. By
using Eqs. (E.1)—(E.3), the tensor components represented by multipoles in Eq. (2.25) are
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E.1. DERIVATION OF MULTIPOLES IN RESPONSE TENSORS

expressed as

XOZX (1X1)7 (E4)
(Ya, Yy, Vo) = (DD, x DD\ DXy (E.5)
1
X _6 <3Xzz(1><1)_ Xg(bd))J
1
Q(1x1 Q(1x1
Xv_§ (X;Ugg x )_ny( x ))7
(Xyey X Xy ) = (xHID QXD QX)) (E.6)

E.1.2 (02

The tensor components represented by monopole and quadrupole in x©*Z of Eq. (2.26)
have the following forms:

L/ jox2 0x2] | . [0x2
Xo=3 (b 02 (E.7)
1 0x2 0x2
Ko (b)),
1 0x2 _ [0x2]
_5 X0z — X0y ) s
0x2] _ [0x2] _ [0x2
(Xyo X o) = (X0 s X0t Xty )- (E8)
E.1.3 x2
%2 consists of the dipole, quadrupole, and octupole components, which are represented
by Xgﬁf]( XEI,;Q}) as follows:
1
D(1x0 1x2
J
D(1x2) I nx2  [xg
xi =) (gXi;jj —Xjsij > : (E.10)
J
1x2) 1 1x2 1x2 1x2
X?j( ) )25 Z (le}(][c;lxj ]‘l"fjleL;; }>:X?i( ) )7 (E.11)
Kl
1
0O(1x2 2 2 1x2 O(1x2 0(1x2
o >:§ (xﬂﬁc bl })Z Oxa) _, 0f1x2) (E.12)

It is noted that there are two dipole components in y['*%, as the symmetric tensor field
FlI= (Fya, Fyy, Frozy Fysy Fog, Fyy) is decomposed into the components with (=0 and with

lp=2. The lp=0 component in F? leads to X?uxo) in Eq. (E.9), whereas the [p=2

component in F©2 leads to x>, X3(1x2) and le,ng2) in Egs. (E.10)-(E.12).
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APPENDIX E. RELATION BETWEEN MULTIPOLES AND RESPONSE TENSORS

The corresponding multipoles in Eq. (E.49) are expressed by X?(IXO), X?axz)? 3(“2),

and X o) in Egs. (E.9)-(E.12) as

1
(X:U,Xsz) 15 (5XD(1><0) 2XxD(1X2)a 5X5(1X0)_2XyD(1X2)75XZD(1XO) 2XD(1><2)) (El?))
(X0, X}, X2)= 2 (2200 202 9y D0 DD 9 D0 1 D12 (E.14)
Y 6 <3XQ(1><2 X2(1X2)> 7
1 1x2 1x2
Y= E(X:p%x) XZ%(X)),
1
(}/g;za}/;xay ) 3(X§;1X2)>X8é1X2)>X§3§1X2))a (E15)
Xayz= Xzy(;XQ)v

a a a 1 (1x2) 1><2 (1x2) O(1x2) (1x2) O(1x2)
(X X X ) 20 <5Xm:x>< 3ZX1‘1’L yyy>< 32 yu 5Xzzz>< 32 Xzii )

1
(X7 X XD =2 (o™ =2 g =Xy e -

o)) (E.16)

nyZ

E.1.4 03]

[3]

The multipoles in Eq. (2.28) are represented by x.;:

permutation of 7, 7, and k, as follows:

, which is totally symmetric for the

(X, Xy, X) (Z X([)Oii’],ZX%O;‘Z’],ZXEOZ‘:’) 7 (E.17)
Xpyo= xé”j;l,

(X3, X5, X2 =15 < 5 X brmn — 32%0537 EOZ;;—?’ZXB(];;?]ﬁXoO:i 3ZX002‘:’]> ,

(X2, X0, X0)=5 (X000t ol ol (E.18)

2 O;zyy

E.1.5 [

The monopole, dipole, quadrupole, octupole, and hexadecapole components of y!'*3l are
represented by Xi.lﬁj’], which is totally symmetric with respect to the permutation of j, k,
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E.1. DERIVATION OF MULTIPOLES IN RESPONSE TENSORS

and [. Those components are

1
M(1x1)_ + [1x3]
XT=3 ZZin;ijw (E.19)
1
X?(lxl)zé S e, (E.20)
jkl
Qaxy 1 1x3 1x3 Q(1x1
g P=2 3 (o) =, (B.21)
k
1 2
1x3 1x3 1x3 1x3 1x3 1x3
=5 3 () -3 () | e (E.22)
k
1
0(1x3 1x3 1x3 1x3 0(1x3 o(1x3
Xijgﬁ ) ):6 Z (Eklle[;;mg+€ille[;j>;7,}L+€jlle[;kal> :Xjk(i ) ):ingﬁ ) )> (E.23)
Im
H(1x3) 1 [ [1x3 1x3 1x3 1x3 H(1x3 H(1x3
Xijgclx ):Z <X£;j>l<cl]+X£‘;:li]+XL;l>;j}+X£;i§k]):Xjk(lz'X ):ingclx ) (E.24)

The field FB =(F,.., F,yy, Flzz, Foye, Fovos Frny, Fyezy Fova, Fryy, Fiy) 1s decomposed into

yyy»
the lp=1 and lp=3 components. The [p=1 field in F? leads to the monopole, dipole,
and quadrupole components, YMI*D A\ POXD) and QXD whereas the [p=3 field in F?!
results in the quadrupole, octupole, and hexadecapole components, Y@ *3) yO(1x3) “and

AHx3),
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APPENDIX E. RELATION BETWEEN MULTIPOLES AND RESPONSE TENSORS

By using Egs. (E.19)-(E.24), the multipoles in Eq. (2.29) are shown as

XOI XM(1X1)7 (E25)

(Ix1) . D(1x1)

(Y., Y,,Y2)= D 2D (E.26)

(xz

1 1x3)
X,=— |3 Q(1x3) Q(1x 7
42 ( XZZ - XZZ

1 Q(1x3 1x3
42 (XIJEX) X?(J‘Qy(X))’

U!I»—to—!l»—

Xy=

1
(Xyer Xy Xoy) = o (2 XD ) (E.27)

1
Ky (e ).

3
/
Xi=15(

3
(qu;wX;a:»X/ ) 5 (X?(ng(lxl)’sz(lxl)’xxy(lxl)) : (E28)

Q(1x1)

& Q(lxl)) ’

— Xyy

nyz ngy(; x3) )

«a ey ey 1 O( O(1x3
(Y Y Yz) 20 (5X:L’:cl><3 _3 xul><3 5ny1><3 3ZXy”1X3 5Xzoz(zl><3) 3 XziEX)>)

1
(V7Y Y= (o - Xzz(ixg),xyﬁi”’) XOUB Q08— O8] | (E.29)

1 | H(1x3
Xi=1z oD =3 (x10x3) 1 1) 4 HLx 3))] ,

%

) -
X4u:_ 3XIz_Iz(zlz><3)_Z Xzzz(zlxg)+6 (QXEQE;/;?)) ny(21Z><3) Xzz(;;g))] )

%

Xpp=— H(1x3) (1><3)+6( H(1x3) H(1><3))} :

4 [X;m:xx nyyy nyzz  Xzzax

(X,

4z

Xﬁ(lly7X:1Xz): (1x3) _  H(1x3) . H(1x3) . H(1x3) . H(1x3) _ (1><3)> ’

1
1
5 (nyyz Xyzzz 1 Xzzza Xzezzz 1 Xzzay Xayyy
H(1x3 H(1x3 H(1x3
(Xfx’Xwafy) ]_4 (7XI$1;<3 ZX”(ZX ) 7nyl><3 Z zzixx ) 7Xzzalz><3 Xii;yx )) .

(E.30)
For notational simplicity, we set

(Xut X, 4X0— X)), XI'=Xu— X,
(3X,+X,2X,— X), X'=X,+2X,
(2X,.—X,.,8X,.+X,.), (cyclic). (E.31)

Yz

(Xu, X7)
(X, X7)
(Xye, X5.)
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E.1. DERIVATION OF MULTIPOLES IN RESPONSE TENSORS

E.1.6

For the rank-4 tensor

X Xt
Xt Xtt

X[2><2} _ (

consisting of the following 3 x 3 tensors

)

[2x2] _ [2x2] _ [2x2] [2x2] _ [2x2] _ [2x2]

zrzr XxTyy XTx;zz zxyz Xzxx;zx Xzx;xry

_ [2x2] _ [2x2] _ [2x2] _ [2x2] _ [2x2] _ [2x2]
Xu= | Xyyzz Xyysyy Xyyizz | o Xut= | Xyyiyz Xyyize Xyyszy | o

2x2] _ [2x2] _ [2x2] [2x2] _ [2x2] _ [2x2]

zzixx Xzzyy Xzz2z zziyz Xzzze Xzzey

[2x2] _[2x2] _ [2x2] [2x2] _[2x2] _ [2x2]

Yz xx AYZYYy AYzizz vzyz Xyzzz Xyzzy

_ 2x2] _[2x2] _ [2x2] _ 2x2] _[2x2] _ [2x2]
Xtl= zrixxr Xzxyyy Xzz;zz y Xtt= zxyyz Xzzizx Xzz,xy 9

[2x2] _[2x2] _ [2x2] [2x2] _[2x2] _ [2x2]

zyzr Xwyyy Xayzz zyyz Xayze Xzyzy

(E.32)

(E.33)

the monopole, dipole, quadrupole, octupole, and hexadecapole components are expressed

by using the tensor component ng,j](: ﬁxlj]: Xgﬁ]) as
1
M(0x0) __ [2x2]
X _3iszii;jj7 (E.34)
1
0x2,% 2x2 2x2
i ):g > (Xi[ckx;ij] ngxkk]) : (E.35)
k
1 1
M(2x2) _ 2x2] 1 [2x2]
X —3; (Xij;ji 3 Niiiji )a (E.36)
1
jkl
2x2) 1 2x2 2x2 2 [ [ax2 2x2 2x2
2( - ):2 Z (Xz[kxk]]‘FngXm}) _g <X£j;xkk]+XLkX;ij]> = 2’( ) ), (E'38)
k
1
0(2x2 2x2 2x2 2x2 2x2 2%2 2x2
ijé . ):6 Z (lexg-l:nll+€jzmxélj;¢l+€klmxgl;;} "‘Eilm)(][d;xml"I'EjlmXEz;n]l'f‘Eklng'l;sz])
lm
0(2x2 0(2x2
:Xjk(i : ):ingg ), (E.39)
HEx2) 1 [ @x2, _2x2, . 2x2, . 2x2, . [2x2] , . 2x2_ . H@x2) __ H(2x2)
ijle =5 <Xij;>;cl +Xik;le +Xil;>k<:j +ij>;<il +le;€¢ +Xkl;>;j )* jkliX *ij'k-zx (E.40)
Since both B =(B,,, Byy, B.., By:, Box, B,) and FA=(F,,, F,, F.., F,., F.,, F,,) con-
tain g, lr=0,2 components, there are two types of monopole components y™(©*% and
YME*2) and three types of quadrupole components X%(om,i) and XS(QXZ) By using
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Egs. (E.34)—(E.40), the multipoles in Eqs. (2.31)—(2.34) are represented as

1
Xo—— 2><2) X/ M(OXO) E.41
0 ].OX 3 ) ( )

1
(Y2, ¥y, Vo) =< (XD yDEx2) (DR (B.42)

1
Xu_ Q(2x2) Q(2x2)
42 ( XZZ ZXH, ?
1
14 (
1
(X s Xons Xuy) = = (X§;2x2),xgé2x2),Xwa(2x2)) : (E.43)

X () :1 <3XQ(O><2,ﬁ:) . Xg(ow,t))
u 6 zz x3 )

i

Xv Q(2x2) Q(2><2)) ,

Xaw "~ Xyy

|
+ 0x2,+ 0x2,+
X =2 (@ H =g )

(X(i) P Xé;t)) (X;QZ(OXQj:)’XZQI(O><2,j:)7XQ(O><2,:t))7 (E.44)

yz ) “tzx Ty
Ya:yz me(z2><2)7
1 (2x2) (2x2) O2 2)
20 (5Xm:i><2 -3 Zsz : 5ny2><2 -3 ZXyzz : 5Xzzz2><2 -3 Xzii :

(Xx;;iXQ) - X,(z)z(m2><2) ) Xyz(zzxz)

H(2x2) 3 H(2x2)
Z Xiiii 5 Z Xiijj ) )

% i

(st )25 ()|

% i

[ 6
H(2x2) . H(2x2) 9 H(2x2) _ H(2x2)
Xa:xz: nyy;;< 7 Z (sz::c Xiiyy )] ’

(2

(Y2, Yo, Y=

z

(V7Y YP)= Xy G =) (E-45)

nyz

s
|
| = [ A Y

2
i

2%2 H(2x2) . H(2x2 2%2 (2x2) . H(2x2)
(P22 H2x2) (HEx2)_ HEx2) H@x2) o\ JE2))

1 1
(2x2) H(2x2) ~ H(2x2) H(2x2) (2x2)
<6Xm: : ? Z Xyzii ) 6nyz;< 7 Z X zaii ) zz:cgj< Z ) '
(E.46)

(XG Xiyy Xi2)=

4y

DO | = l\DI»— N —

(Xfam X4By7 sz) =

We use the notation
(Xo, X)) =(4X0+ X}, —2X0+ X)),
—4X,—2XP) —4X, + X 13X)), X/ =—XH X,
4X,+2X D, —4x, + XD+ X)),
)

—AX, AXPEX 22X, 4+ XPE X)), (eylic), (E.47)

yz

—

><jz
<

?

~

H_

T

S— S~— N—

Il

for simplicity.
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E.2 Tensor Expression in Hexagonal /Trigonal System

In the hexagonal and trigonal systems, it is convenient to use the tesseral harmonics to
describe multipoles rather than the cubic harmonics. Since the tesseral harmonics have
the different functional form from the cubic harmonics for the rank >3 (See Appendix A),
we show the rank-3 and -4 response tensors in the hexagonal and trigonal systems as

3X, 4 Xa,—3Xa,\ |

3X,— X3, —3X3,
3X,+2X¢
XZ—X;“—XZ/,B
VUL Xo+4X3,
Xy+X3b_X3v ’
X, +4Xs3,
X - X0+ X!
Xx_X3a_X3u
X:vyz

(E.48)

3X,+X30,—3X3, 2(X} =Yoo )+ X+ Xy — X 2(XL4Y)+ X, — X2+ XT
2X! Yy )+ Xy — Xz — X, 3X, — Xa—3X3, 2(X! — Yy )+ X, — X~ X7

[1x2] _ 2<X:;_}/yz)+Xx+4X3u Q(X?;+}/z:x)+Xy+4X3v 3<X2+X?)
T Yo+ Y+ Xay- XA Yoyt X XX XY+ X, +4 X,
— XY+ X, - X0+ X7 —Y,+Y,+ X0y — X! +Y,.+ X, +4X5,
XY Xyt Xy — Xy — XL =Yyt X, — Xpu— Xa, —2Y,+ Xy
(E.49)
X[1><3]:

3(Xo—XutXo)+3Xa0+ X5, — X 3(=Ya—= Xy +Y 0 =YP)+ X0 = X027 3(V, =X +Yay—Vay )+ Xup—3XE,
B(Ye—Xay—YO-YE) = X[ - XJ7 3(Xo—Xy—X,)+3Xa0+ X0, + X0 3(—Yo— Xyt Vsa+Ys0)— X4a—3X5,

—3(Yy+ X, +4Y3,) +4XE, 3(Y,— X, +4Y3,) +4X 3(Xo+2X,)+8X 40
Yy~ Koo+ Yyt 11Y3y—Xap— X3, Vot X, —Vao—Vau—X4a—3X5,  Xo+XI—5X,~Yoy—4Xs0— X,
Xo+ X! = X!~V —4Xs0+ X2 V.= X,,—4Y24+2YP+2X)? Y+ X, +4Y3,+4X5,

Yo+ XL, ~Yo+YP+ X0 -X02 Xo- X+ X0 Yoyt Xao- X}y —Vo-Xyo—3Vaat Vaut Xaa— X5, |
Y. — Xy +4Y 242V 42X 12 Xo+ X!+ X! 4V, —4X 10— X2 ~Y,+ X, —4Y3, +4X3,

Y+ XL Yoyt Yoo+ X5 —3X, Yoo XyotV3a—11Vaut Xag—X§,  Xo+ XU/ 45X, +Yey: —4X10+ X},
Xo= X=X+ Yo+ Xao—Xpy  ~Vaot X +YO+YP X[ -X[2 V=X, 33— V3— Xup— X§,

5X .+ Y30 +5Yau+ Xaa— X3, 5X p+Yay—5Y3, — Xpp— X§, 5Xpy—2YP +2X02
(E.50)
X[2><2]: Xu Xit ’ (E.51)
Xt Xit
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Xo+ Xy + Xy 43X+ X0 - X2 X0+ X —2X ) 4+ Xao—XPY X4+ X0+ X0 -y, —4X 0+ X2

xu=| Xp+X 42X Yot Xao-Xf Xo+Xu—Xo+3Xao+ Xph+X52  Xp+ X - X7 4V, —4Xa0— X2

X(/)+X1(L7)+X1()+>+Yzyz_4X40+X45uz X6+X1§7)_Xl(l+)_Yzyz_4X4O_Xfu2 XO_QXu+8X4O
(E.52)
X Yot 6Ya0+ Xaa—X§, =2V, + K57 Vi 4 Vo + X0y —3X3, 2V 4 X057 Vo4 v/ X)) - X7
Xie=| 2+ Xy Yoo Yau—Xaa—3X5, XD 4Ya—5Ya-Xo—X§,  —2V+ X +YeavP X -x[ |
—2Y, + X1 — 4V, +4X3, 2V, + X157 44V, +4X3, X5 —ovPox?
(E.53)
X V- 5Ya 4 Xga— X8, =2V + X150 4+ Va4 Yy — Xua —3XE, 2V, + X0 +4Ys, +4X2
xu=| 2V + X 4V~ Vo, + X0y —3X2, X Ve +5Ya,—Xpp—X$, -2V, + X1 —4Ys,+4X2, |,
V4 X 4 ve XD X oy 4 X —veoyAoxPoxi? X)) yovBax?
(E.54)
3X0+3X,—3X,—4X 40— X2 —Y, 43X,y -2V +2X52 Yy 43X .0 —Yap—3Va, — Xgp— X,
Xtt= Y. 43X,,+2Y 42X 02 3X0+3Xu 43X, —4X40+ X2 Y, +3X,.—Yau+3Vau+ X4a— X3, | .
Y 43X+ Vi +3Yay — Xgy— X&, Yy +3X .+ Va0 —3Yay + Xgo— X2, 3Xo—6X, +X40— X1
(E.55)

where the following relations with respect to the octupoles and hecadecapoles are used as
1 a B 1 a B ! o B 1 a B
Vie= (32 =3YY), Ya=— 3 (¥, 43Y), You=— 3 (VI HY)), Yao=— (Y7 —Y)),
1 1 1 1
Xao=7 (Xt X)) X5, =7 ( =X, w=—7( X0, X5521(5X4—7X4u)>

1
1 2 2
va - Zz’ Xfu :_X4'U7 va :szv X4a:__

4( rm_’?Xfx)’ X4b:_

S HTXL),
(E.56)

1
1
in y[0%3 43 and 2% while

]' [0 ]' [0 1 (0% ]' «
X3a:1(5Xw—3Xf), ng:—Z(SXerSXf), Xgu:—Z(Xx + X5, ng:—zl(Xy—Xf),

(E.57)

in X[1X2]'
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Appendix F
Other NMR Spectra

F.1 Field-Swept NMR Spectra

We show the field-swept NMR spectra for the resonance frequency w=1.1vy at the [001]
and [100] magnetic fields. We set y=1 and the coupling constant as well as that in
Secs. 4.6.4 and 4.6.5. Figures F.1(a)-F.1(c) show the spectra in the [001] magnetic field,
whereas Figs. F.1(d)-F.1(f) show those in the [100] magnetic field. The results show a
similar tendency in the cases of the frequency-swept spectra in Figs. 4.14 and 4.15.

F.2 [110]-Field NMR Spectra

We show the effective hyperfine fields and NMR spectra in the case of the [110] magnetic
field in the @,- and Q,-type AFQ states and M, -type AFM state. The hyperfine field
Hamiltonian is given by

HI = (6, Q)+ “)(}Jrfy)

+[a Q)+ (M + M) ] Lot [ Q1+ (M + M)

u

Ly, (F.1)
Hotodd =e2,68) (Lot )+ [0 (T -T0) @0+ 6] (L1, ) 422 (@0 Q) 1
4+ (T(C)—i—T( )) I,+ [60’1G C)+50,2 (T(c)_T(c))] i,

+[e zimM“)w;me;")] (L= L)+ [752, (Q QW) et M (Lt Iy )

+[ey G5 ey (T T L (F.2)
Horaer = 25 (M£C>—M;C>>+ce4@< ] (f —I) [ (Q+Q) +eEtMi)] 1.

iy (MO 0P) 32 M2 (1, L)
(620 (QW+Q) +a? MO+t M (It L) (F.3)

We set the coupling constants as ¢;, =cq=0.13, ¢; ,=0.3, and the others are set to be
0.02 for simplicity.

Figures F.2(a)-F.2(c) show the frequency-swept NMR spectra for the magnetic field
|H™|=1, whereas Figs. F.2(d)-F.2(f) are the field-swept NMR spectra for the resonance
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F.2. [110]-FIELD NMR SPECTRA
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Figure F.1: The odd-parity multipole dependences of the field-swept NMR spectra at
the (a—c) [001] magnetic field and (d-f) [100] magnetic field. The data are for the (a,d)
Q.-type AFQ, (b,e) Q.-type AFQ, and (c,f) M,-type AFM states. The color scales

. 2 o 2
I;] A(B)‘ and (d-f) I;] A(B)’ . The coupling constants

are ¢, =cy=c=0.02 in the AFQ states and ¢ ,=c=0.3 in the AFM state. Other coupling
constants are set to be ¢/=0.02.

represent the intensities with (a—c)

frequency w=1.1v, where v is set to be 1. The intensity of the spectra is calculated by
» 2
][ijlo],A(B)‘ for Iy =(I.—1,)/2.
In the Q,-type AFQ [Figs. F.2(a) and F.2(d)] and M,-type AFM states [Figs. F.2(d)
and F.2(f)], the splittings in the [110] field show a similar tendency to those in the [100]

field in Sec. 4.6.5. Their splittings are dominantly characterized by Ggﬁ) and T, y(c), respec-
tively. On the other hand, in the Q,-type AFQ state in Figs. F.2(b) and F.2(e), there
are no spectral splittings in contrast to the result under the [100] field in Sec. 4.6.5. The
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APPENDIX F. OTHER NMR SPECTRA

reason why no splittings occur under the [110] field is attributed to the difference of the
site symmetry at Co site. As the present site symmetry is 2'22’; which is different from
2'mm’ in the [100] direction, there is no coupling between odd-parity Qgc) and any of
I,+1,, I, and I,, in Eq. (F.2).
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Figure F.2: The odd-parity multipole dependences of the (a—c) frequency-swept NMR

spectra and (d—f) field-swept NMR spectra under the [110] magnetic field. The data are
for the (a,d) Q,-type AFQ, (b,e) Q,-type AFQ, and (c,f) M,-type AFM states. The color
2

scales represent the intensities with ’f [iijw]’ A(B)‘ . The coupling constants are ¢, =c;=0.02

in the AFQ states and ¢ ,=0.3 in the AFM state. Other coupling constants are set to
be ¢=0.02.
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F.3. SPECTRAL SPLITTINGS FOR I'\")-1®) LEVELS

F.3 Spectral Splittings for Fgl)-F(f) Levels

The different low-energy crystal-field levels activate different types of odd-parity multipole
orderings. In this appendix, we show the expected sublattice-dependent splittings in
NQR and NMR spectra by supposing the low-energy CEF level consisting of the two I';
doublets [202]. In this case, other two multipole orderings become possible: Q% -type
antiferroic E hexadecapole ordering (AFH) with the odd-parity ET quadrupole G, and
Ms5,~type antiferroic M triacontadipole ordering (AFT) with the MT dipole T, where the
functional forms of @, and M;, are shown in Ref. [39].

By performing a similar procedure in Secs. 4.6.2—4.6.5, the presence or absence of the
sublattice-dependent spectral splittings in NQR and NMR is obtained. The results are
summarized in Table F.1. The common multipoles appearing in both the two I'; doublets
and I'¢-I'; doublets, T, T,, M,, @Q., @, and Q,, give the same result in Table 4.9.
Note that electric toroidal quadrupole G,,G,, and magnetic quadrupole M, M,, are
not activated within the low-energy crystal-field levels unless the first-excited state is I'g
doublet.

Table F.1: The sublattice-dependent NQR and NMR splittings in the AFM, AFQ, AFH,
and AFT states under the six field directions [001], [100], [110], ; [001], ; [010], and , [110],
when the crystal-field first-excited state is I'; doublet. The local multipoles (LMP) at Ce
site and cluster odd-parity multipoles (OPMP) are shown in second and third columns,
respectively. The mark v* represents the presence of the sublattice-dependent splittings.

NQR NMR
LMP OPMP —  Hyjooy Hjpooy Hypig Hipoy Hipwg Hipo
AFM M, T, - v v v v v
M, T, -y v - v
M. M, e
AFQ Q. Q. — — v — v v —
Qy- Qy — — — — — — v
AFH Q3 G, — — — v v — v
AFT M,, T. e — - - v
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