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Chapter 1

Introduction

1.1 Multipole in Condensed Matter Physics

Multipole, which is a fundamental concept in physics, characterizes the angular depen-
dence of an electromagnetic distribution. It was originally introduced in a series expansion
of scalar and vector potentials in classical electromagnetism to describe an arbitrary distri-
bution of sources, such as the electric charge and current, systematically [1, 2]; any electric
charge and current distributions are usually described by using the electric and magnetic
multipoles. Typical examples of multipole are the electric dipole, magnetic dipole, and
electric quadrupole. The electric dipole appears by a polar alignment of positive and nega-
tive charges, as shown in Fig. 1.1(a), whose macroscopic alignment gives rise to an electric
polarization. The magnetic dipole correspond to a circular electric current known as the
Biot-Savart law, as shown in Fig. 1.1(b), which becomes a source of a magnetization. The
electric quadrupole in Fig. 1.1(c) describes a symmetric charge configuration consisting
of staggered pairs of the electric dipoles. Since the concept of multipole is suitable to
analyze any anisotropic angular dependences of electromagnetic objects, it has been used
in various fields, such as nuclear physics [3–5], metaphotonics [6–8], colloid science [9, 10],
and so on.

Figure 1.1: (a–c) Schematic pictures of (a) the electric dipole, (b) magnetic dipole, and
(c) electric quadrupole. (d) Electric quadrupole ordering in a periodic lattice system.

The concept of multipole can also be used to represent an atomic-scale angular depen-
dence of the wave functions of an electron in quantum mechanics. Notably, the quantum-
mechanical operator expressions of atomic-scale multipoles can be applicable to describe
various electronic degrees of freedom in solids, such as charge, spin, and orbital. Espe-
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1.1. MULTIPOLE IN CONDENSED MATTER PHYSICS

cially, it is useful in the situation where there is a mutual entanglement between them by
relativistic spin-orbit coupling, crystalline electronic field, electron-electron interaction,
and so on, since the multipole expression gives a unified way to describe the electronic
degrees of freedom. Indeed, it was shown that the multipole degree of freedom spans the
complete set in the Hilbert space for s, p, d, and f electrons without any deficiency [11–13].

The atomic-scale multipole has been used for d- and f -electron systems, since d- and
f -orbital electrons tend to be affected by the relativistic spin-orbit coupling and the crys-
talline electric field owing to their large orbital angular momenta [14–16]. In such a
situation, there is a chance of realizing the higher-rank multipole orderings as shown in
Fig. 1.1(d), whose electric and magnetic properties are different from the conventional
charge and magnetic orderings. The multipole orderings have been found in various
materials: electric quadrupole ordering in CeB6 [17–24], magnetic octupole ordering in
NpO2 [25–30], and electric hexadecapole ordering in PrRu4P12 [31, 32]. Since these higher
rank multipoles have no direct coupling to the electric and magnetic fields, an identifica-
tion of these multipole orderings is quite difficult compared to conventional charge and
magnetic orderings. To detect such multipole orderings directly, some microscopic probes,
such as the nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR)
have been used [17, 22, 24].

Figure 1.2: Relation of conventional/augmented multipoles and electronic degrees of
freedom in solids. The relevant Hilbert space is schematically shown in each bottom
panel.

The above multipoles have been usually discussed to describe atomic electronic de-
grees of freedom in a Hilbert space limited to the orbital space with a single orbital
angular momentum as schematically presented in the leftmost panel of Fig. 1.2. They
have long been studied in d or f -electron systems, which were denoted as “conventional
multipole”. Meanwhile, recent studies have extended the concept of multipole to describe
the electronic degrees of freedom over different orbitals and sites. For instance, a hybrid
multipole has been introduced to describe the atomic interorbital degrees of freedom with
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CHAPTER 1. INTRODUCTION

the different orbital angular momenta [12, 13, 33], where the concept of the atomic-scale
magnetic toroidal and electric toroidal multipoles has been established. Moreover, the
concept of multipole has been extended to describe the electronic degrees of freedom over
multi sites: a cluster multipole to describe the on-site sublattice degree of freedom [34, 35]
and a bond multipole to describe the off-site sublattice degree of freedom [36, 37] in a clus-
ter. Such a multipole degree of freedom in real space affects the electronic band structure,
which leads to the introduction of a k multipole describing the anisotropy in momentum
space [37–42]. Collectively, these multipoles are called “augmented multipole”, which are
summarized in Fig. 1.2 with the schematic illustration of the relevant Hilbert space. Im-
portantly, augmented multipole can describe any electronic degrees of freedom in solids in
a classified way, since the multipole degrees of freedom span the symmetry-adapted basis
in solids. Moreover, a systematic description by using augmented multipole enables us to
explore unconventional electronic order parameters and their related physical properties
from the microscopic viewpoint beyond the symmetry argument, as will be discussed in
this thesis.

In the remaining part of this section, we briefly review a recent development of aug-
mented multipoles and their physical properties. First, we present the four types of
multipoles and their quantum-mechanical operators in Sec. 1.2. After the short review of
the conventional atomic multipoles at the end of Sec. 1.2, we introduce augmented mul-
tipoles: hybrid multipole, cluster multipole, bond multipole, and k multipole in Sec. 1.3.
Finally, we summarize how these multipole degrees of freedom are relevant to the crys-
tallographic symmetry in solids in Sec. 1.4 and physical properties including multiferroic
responses in Sec. 1.5. Sections 1.6 and 1.7 are devoted to summarizing the purpose and
organization of this thesis, respectively.

1.2 Four Types of Multipoles

Figure 1.3: Multipole expansion of a source charge for a scalar potential.

We here review classical and quantum-mechanical representations of multipoles [1,
2, 11–13, 43–46]. In classical electromagnetism, multipole moments are introduced to
describe a source charge and current distributions of scalar and vector potentials in the
multipole expansion, which is schematically shown in Fig. 1.3 [1, 2, 43–46]. Starting
from the Maxwell equation for Gaussian-cgs units under the time-independent electric
and magnetic field with Coulomb gauge ∇·A(r)=0, scalar potential ϕ(r) and vector

3



1.2. FOUR TYPES OF MULTIPOLES

potential A(r) satisfy the following Poisson equations:

∇2ϕ(r)=−4πρe(r), (1.1)

∇2A(r)=−4π

c
je(r), (1.2)

where c is the speed of light and ρe(r) and je(r) represent a source electric charge ρe(r) and
current je(r), respectively. Any angle distributions of ϕ(r) and A(r) can be represented

by a superposition of spherical harmonics Ylm(r̂) and vector spherical harmonics Y
(l′)
lm (r̂)

(r̂=|r|/r, −l≤m≤l and l′=l, l±1), respectively, where l(′) is the azimuthal quantum
number and m is the magnetic quantum number1. Then, ϕ(r) and A(r), the solutions of
the Poisson equations in Eqs. (1.1) and (1.2), are given by

ϕ(r)=
∞∑
l=0

l∑
m=−l

√
4π

2l+1
Qlm

Ylm(r̂)

rl+1
, (1.4)

A(r)=
∞∑
l=0

l∑
m=−l

[√
4π(l+1)

(2l+1)l
Mlm

Y
(l)
lm (r̂)

irl+1
−
√

4π(l+1)Tlm
Y

(l+1)
lm (r̂)

rl+2

]
. (1.5)

The coefficient Qlm in Eq. (1.4) represents an electric (E) multipole moment with rank l,
which is expressed as

Qlm=

∫
drρe(r)Olm(r), (1.6)

where Olm(r)=
√
4π/(2l+1)rlY ∗

lm(r̂). Meanwhile, Mlm and Tlm in Eq. (1.5) represent
magnetic (M) and magnetic toroidal (MT) multipole moments, respectively, which are
described as

Mlm=
1

c(l+1)

∫
dr[r×je(r)]·∇Olm(r), (1.7)

Tlm=
1

c(l+1)

∫
dr[r·je(r)]Olm(r). (1.8)

MT multipole is sometimes neglected in the multipole expansion in classical electromag-
netism as it does not affect a magnetic field. Nevertheless, it is essential to describe a
distribution of the vortex-type magnetic field. Such current distributions are only rep-
resented by the time-reversal-odd polar quantity that corresponds to the MT multipole

1The vector spherical harmonics Y
(l′)
lm (r̂) (l′=l, l±1) are given by using the spherical harmonics Ylm(r̂)

and an operator l=−ir×∇ as follows [11, 43, 44, 47]:

Y
(l)
lm (r̂)=

lYlm(r̂)√
l(l+1)

, Y
(l+1)
lm (r̂)=−1

r

(l+1)rYlm(r̂)+ir×[lYlm(r̂)]√
(l+1)(2l+1)

, Y
(l−1)
lm (r̂)=

1

r

lrYlm(r̂)−ir×[lYlm(r̂)]√
l(2l+1)

.

(1.3)

It is noted that the vector spherical harmonics have several definitions, where Y
(l′)
lm (r̂) in Eq. (1.3) do

not have the orthogonal relation among l′=l, l−1, and l+1. The complete orthogonality is satisfied by

taking linear combination of Y
(l)
lm (r̂), Y

(l+1)
lm (r̂), and Y

(l−1)
lm (r̂).
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CHAPTER 1. INTRODUCTION

Tlm, which has different spatial inversion and time-reversal parities from the other two
multipoles. Qlm, Mlm, and Tlm are characterized by (P , T )=[(−1)l,+1], [(−1)l+1,−1],
[(−1)l,−1], respectively, since Olm(r) is characterized by the spatial inversion parity
P=(−1)l and the time-reversal parity T =+1 and ρe(r)[je(r)] is the scalar (polar vector)
quantity characterized by T =+1(−1). In other words, the E multipole corresponds to
the time-reversal-even polar tensor, the M multipole corresponds to the time-reversal-odd
axial tensor, and the MT multipole corresponds to the time-reversal-odd polar tensor.

In addition, the multipole corresponding to the time-reversal-even axial tensor can be
introduced by taking into account the magnetic current density jm(r) as a counterpart
of je(r) [12, 48, 49]. This fourth multipole is called an electric toroidal (ET) multipole,
which is represented as

Glm=
1

c(l+1)

∫
dr[r·jm(r)]Olm(r), (1.9)

with the parities (P , T )=[(−1)l+1,+1], since jm(r) is the axial vector characterized by
T =+1. The spatial inversion and time-reversal parities of four types of multipoles are
summarized in Table 1.1. The sources of each multipole are also shown.

Table 1.1: Four types of multipoles and their spatial inversion (P), time-reversal (T ),
and PT parities. The relevant sources are also presented.

type notation P T PT source
E Qlm (−1)l +1 (−1)l ρe (jm)
M Mlm (−1)l+1 −1 (−1)l je
MT Tlm (−1)l −1 (−1)l+1 je
ET Glm (−1)l+1 +1 (−1)l+1 jm

The four types of multipoles constitute a complete set to represent an arbitrary angle
dependence of electromagnetic charge and current in terms of spatial inversion and time-
reversal symmetries. For example, any vector quantities with different space-time inver-
sion symmetries are described by the E, ET, M, and MT dipoles, as shown in Fig. 1.4(a),
where the E dipole is transformed into the ET (MT) dipole by reversing the spatial inver-
sion (time-reversal) parity, while the M dipole is transformed into the MT (ET) dipole by
reversing the spatial inversion (time-reversal) parity. This argument holds for the higher-
rank multipoles with different rotational symmetries, such as quadrupole (l=2), octupole
(l=3), and so on, since they are described by the anisotropic spatial distribution of the
dipole, as shown in Fig. 1.4(b)2. In this way, the multipoles up to rank l→∞ can describe
any arbitrary anisotropic charge and current distributions.

Based on Eqs. (1.6)–(1.9), the quantum-mechanical operator expressions of four types

2Although E multipole was originally introduced to describe the anisotropic charge distribution ρe(r),
it can be used to describe the anisotropic E dipole distribution P (r) by using the relation ρe(r)=−∇·P (r)
in Eq. (1.6).
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1.2. FOUR TYPES OF MULTIPOLES

Figure 1.4: (a) Four types of dipoles with different spatial inversion and time-reversal
parities: electric (E), magnetic (M), electric toroidal (ET), and magnetic toroidal (MT)
dipoles. (b) Dipole distributions up to rank 3. The arrows represent the E, ET, M, or
MT dipoles in (a) (X=Q,G,M, or T ).

of multipoles are given by [11–13]

Q̂lm=−e
∑
i

Olm(ri), (1.10)

M̂lm=−µB

∑
i

ml(ri)·∇Olm(ri), (1.11)

T̂lm=−µB

∑
i

tl(ri)·∇Olm(ri), (1.12)

Ĝlm=−e
∑
i

x,y,z∑
αβ

gαβl (ri)∇α∇βOlm(ri), (1.13)

where −e and −µB are the electron charge and Bohr magneton, respectively, which are
taken to be unity hereafter, i.e., −e,−µB→1. ml(ri), tl(ri), and gαβl (ri) are the M
moment, MT moment, and ET tensor, respectively, which are expressed as

ml(ri)=
2li
l+1

+σi, (1.14)

tl(ri)=
ri
l+1

×
(

2li
l+2

+σi

)
, (1.15)

gαβl (ri)=m
α
l (ri)t

β
l (ri), (1.16)

where li and σi/2 are the dimensionless orbital and spin angular-momentum operators of
an electron at ri, respectively. Similar to the above discussion in the classical represen-
tation, these four types of multipoles constitute a complete set to describe an arbitrary
electronic degree of freedom, such as the charge, spin, and orbital, in an atomic site [11–
13].

In the following discussion for crystallographic systems characterized by a discrete
rotational symmetry rather than a continuous rotational symmetry, the real expressions

6



CHAPTER 1. INTRODUCTION

of Olm are often used [11, 39, 50]. The multipole notation up to the rank 4 is shown as

monopole (l=0): X0, (1.17)

dipole (l=1): Xx, Xy, Xz, (1.18)

quadrupole (l=2): Xu, Xv, Xyz, Xzx, Xxy, (1.19)

octupole (l=3): Xxyz, X
α
x , X

α
y , X

α
z , X

β
x , X

β
y , X

β
z , (1.20)

hexadecapole (l=4): X4, X4u, X4v, X
α
4x.X

α
4y, X

α
4z, X

β
4x, X

β
4y, X

β
4z. (1.21)

See also Appendix A for their specific expressions.

Figure 1.5: Spatial distributions of charge and orbital angular momentum when the expec-
tation value of multipole with rank 0–3 becomes nonzero in the five d-orbital system. The
color in the M multipoles represents the spatial distribution of l̃µ(r)≡−lµ(r) (µ=x, y, z),
where red (blue) stands for the positive (negative) value.

In quantum-mechanical systems, the types of active multipole degrees of freedom
depend on the low-energy Hilbert space. For example, in the situation where only the
five d orbitals are relevant with the Hilbert space, following 25 multipoles can be active:
E monopole Q0, M dipoles (Mx, My, Mz), E quadrupoles (Qu, Qv, Qyz, Qzx, Qxy), M
octupoles (Mxyz, M

α
x , M

α
y , M

α
z , M

β
x , M

β
y , M

β
z ), and E hexadecapoles (Q4, Q4u, Q4v, Q

α
4x,

Qα
4y, Q

α
4z, Q

β
4x, Q

β
4y, Q

β
4z). These atomic multipoles active within a single orbital angular

momentum are referred to as the conventional multipoles in Fig. 1.2. We can evaluate the
expectation values of active multipoles by using the d-orbital basis functions. We show the
spatial distributions of charge and orbital angular momentum in Eq. (1.6)–(1.9) when each
multipole takes a nonzero expectation value in Fig. 1.5. The shape of each wave function
in Fig. 1.5 represents the angular dependence of the electronic charge distribution. For
example, the charge distribution in the E monopole has the spherical form, while the
E quadrupoles have the anisotropic charge distribution satisfying the two-fold rotational
symmetry. Besides, the color in M multipoles stands for the spatial distribution of the
orbital angular momentum [l̃µ(r)≡−lµ(r) (µ=x, y, z)], where the red and blue describe

7



1.3. AUGMENTED MULTIPOLES

the opposite sign, positive and negative, respectively. For instance, the M dipole Mx

has the uniform distribution of l̃x, whereas the other components l̃y and l̃z have no net
value in whole. Meanwhile, the spatial distribution of l̃µ in active M octupoles leads
to no net orbital angular momentum, except for (Mα

x , M
α
y , M

α
z )

3. It is noted that all
the conventional multipoles active in the five d-orbital systems have the spatial inversion
symmetric electromagnetic distribution, since only even-parity multipoles become active
in a Hilbert space spanned by wave functions with a specific spatial-inversion parity.

1.3 Augmented Multipoles

In this section, we briefly introduce the augmented multipoles, which have been used
to describe the electronic degrees of freedom in the multi-orbital and multi-sublattice
systems that cannot be expressed by conventional multipoles. The augmented multipole
is divided into four classes depending on the electronic and site degrees of freedom: the
hybrid multipole in the multi-orbital system with different orbital angular momenta in
Sec. 1.3.1, the cluster multipole and the bond multipole in the multi-sublattice system in
Secs. 1.3.2 and 1.3.3, respectively, and the k multipole in momentum space in Sec. 1.3.4.

1.3.1 Hybrid Multipole

The hybrid multipole has been introduced to describe the atomic interorbital electronic
degrees of freedom in the multi-orbital system with different orbital angular momenta,
such as the s-p, p-d, d-f , and s-d orbitals [12, 13]. There are two main differences from
the conventional multipoles. One is that the hybrid multipole describes the odd-parity
multipole without the spatial inversion symmetry. In other words, the hybrid multipole
can describe the effect of the parity-mixing hybridization in the absence of the inversion
center at the atomic site. The other is that the hybrid multipole describes the ET and
MT multipoles, which are not activated in the single d or f -orbital system.

We show an example of the hybrid multipole by considering the s and pz orbitals.
The off-diagonal matrix elements in the Hilbert space spanned by the basis {ϕs, ϕpz}
correspond to the hybrid multipoles. Specifically, the real (imaginary) off-diagonal matrix
elements are represented by the odd-parity E dipole Qz and MT dipole Tz, which are
represented by

Q̂z=

(
0 1
1 0

)
, T̂z=

(
0 −i
i 0

)
. (1.22)

They have the nonzero expectation values when the s and pz orbitals are hybridized. In
this way, the atomic-scale odd-parity multipoles can be active in the hybridized orbital
systems.

A similar discussion holds for other systems; the odd-parity hybrid multipoles (in-
cluding ET and MT multipoles) can be active in the odd-parity hybridization, while the
even-parity hybrid multipoles (including ET and MT multipoles) can be active in the
even-parity hybridization. We show the spatial distribution of charge and orbital angular

3Mα
x , M

α
y , and Mα

z have a net orbital angular momentum, because active M octupole Mα
µ induces M

dipole Mµ.

8



CHAPTER 1. INTRODUCTION

momentum when each expectation value of multipole takes nonzero in the case of the odd-
parity p-d hybridization in Fig. 1.6 and in the case of the even-parity p-f hybridization
in Fig. 1.7.

Figure 1.6: Spatial distribution of charge and orbital angular momentum when each
expectation value of odd-parity hybrid multipole takes nonzero in the p-d orbital system.

The above hybrid multipole describing the interorbital electronic degrees of freedom
becomes important in the lattice structure without the local inversion symmetry [33,
51]. It can also describe interorbital electronic order parameters due to the interorbital
Coulomb interaction, such as an excitonic state [52–57].

1.3.2 Cluster Multipole

The cluster multipole can describe the on-site electronic degrees of freedom over several
atomic sites in a cluster [16, 34, 35, 58, 59]. The expressions of the cluster multipole can
be obtained by substituting ri in Eqs. (1.10)–(1.13) with the position vector of the ith

9



1.3. AUGMENTED MULTIPOLES

Figure 1.7: Spatial distribution of charge and orbital angular momentum when each
expectation value of even-parity hybrid multipole (up to rank 3) takes nonzero in the p-f
orbital system.

atom, Ri. For example, the cluster E multipole in the N -site cluster is represented by

Q̂
(c)
lm=

N∑
i=1

qiOlm(Ri), (1.23)

where the superscript (c) represents the cluster multipole and qi is the charge of the ith
atom.

We exemplify the E cluster multipole in a four-sublattice square cluster with qi=1
for i=1–4. By using Eq. (1.23) from the lower-rank components, four independent E
multipoles are obtained as follows:

Q̂
(c)
0 =+q1+q2+q3+q4, (1.24)

Q̂(c)
x =−q1+q2+q3−q4, (1.25)

Q̂(c)
y =−q1+q2−q3+q4, (1.26)

Q̂(c)
xy =+q1+q2−q3−q4, (1.27)

10



CHAPTER 1. INTRODUCTION

where Ri and the schematic charge configurations are illustrated in Fig. 1.8. Among
them, the E monopole Q̂

(c)
0 is characterized by the uniform charge distribution, while the

E dipoles Q̂
(c)
x and Q̂

(c)
y and the E quadrupole Q̂

(c)
xy are characterized by the anisotropic

charge distributions. The corresponding matrix elements for the basis {ϕi=1, ϕ2, ϕ3, ϕ4}
are given by

Q̂
(c)
0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Q̂(c)
x =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , Q̂(c)
y =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , Q̂(c)
xy =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,

(1.28)

where one finds that any four diagonal matrix elements are spanned by four independent
E multipoles.

Figure 1.8: Schematic pictures of the cluster multipoles representing the charge and spin
configurations in a four-sublattice square cluster.

Similarly, the spin configurations over multi sites can be described by cluster M and
MT multipoles, whose expressions are given by [35]

M̂
(c)
lm =

N∑
i=1

σi ·∇iOlm(Ri), (1.29)

T̂
(c)
lm =

1

l+1

N∑
i=1

(Ri×σi)·∇iOlm(Ri). (1.30)

We show that all the spin configurations in the four-sublattice square cluster, i.e., 3×4=12
spin configurations, are described by the cluster M and MT multipoles in the right panel
of Fig. 1.8.

11



1.3. AUGMENTED MULTIPOLES

The cluster multipole provides a systematic understanding of the physical phenomena
in complicated charge and spin orderings, such as the antiferromagnetic orderings. For
example, a cluster M octupole has been used for the understanding of the anomalous Hall
effect in Mn3Sn [34, 60] and the magneto-striction effect [61, 62], the cluster MT dipole for
the linear magnetoelectric effect in various antiferromagnetic insulators, e.g., Cr2O3 [63],
Ga2−xFexO3 [64, 65], LiCoPO4 [66, 67], Ba2CoGe2O7 [68], and antiferromagnetic metals,
e.g., UNi4B [69–71] and Ce3TiBi5 [72, 73], the cluster M quadrupole for the linear magne-
toelectric effect in Co4Nb2O9 [74–77] and KOsO4 [78] and the magnetopiezoelectric effect
in Ba1−xKxMn2As2 [38] and EuMn2Bi2 [79].

1.3.3 Bond Multipole

The bond multipole describes the bond degrees of freedom over multi sites, i.e., the off-site
electronic degrees of freedom in a cluster [37]. Similar to the cluster multipole, the bond
E multipole is expressed as

Q̂
(b)
lm=

Nbond∑
ij

q(ij)Olm(R(ij)), (1.31)

where the superscript (b) represents the bond multipole. (ij) stands for the bond between
ith and jth atoms with the real value q(ij). R(ij) is the position vector pointing from ith
atom to jth atom. Nbond is the number of the bonds.

We again consider the four-sublattice square cluster with q(ij)=1 to show the corre-
spondence between the bond degree of freedom and the bond E multipoles in Eq. (1.31).
The four nearest-neighbor bond degrees of freedom denoted as (b1) and the two next-
nearest-neighbor bond degrees of freedom denoted as (b2) are represented by

Q̂
(b1)
0 =+q(13)+q(32)+q(24)+q(41), (1.32)

Q̂(b1)
x =+q(32)−q(41), (1.33)

Q̂(b1)
y =+q(24)−q(13), (1.34)

Q̂(b1)
v =−q(13)+q(32)−q(24)+q(41), (1.35)

Q̂
(b2)
0 =+q(12)+q(34), (1.36)

Q̂(b2)
xy =+q(12)−q(34), (1.37)

where each matrix element for the basis {ϕ1, ϕ2, ϕ3, ϕ4} is given by

Q̂
(b1)
0 =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

, Q̂(b1)
x =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

, Q̂(b1)
y =


0 0 −1 0
0 0 0 1
−1 0 0 0
0 1 0 0

, Q̂(b1)
v =


0 0 −1 1
0 0 1 −1
−1 1 0 0
1 −1 0 0

,
(1.38)

Q̂
(b2)
0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, Q̂(b2)
xy =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

. (1.39)
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The E bond multipoles in the square cluster are shown in Fig. 1.9. The bond E multipoles
are useful to describe the real hopping of electrons in terms of multipoles in a systematic
way.

Figure 1.9: Schematic pictures of the bond multipoles in a four-sublattice square cluster.

In a similar way, the imaginary hopping of electrons is described by the bond M and
MT multipoles [37], which are given by

M̂
(b)
lm =

Nbond∑
(ij)

(n(ij)×t(ij))·Olm(R(ij)), (1.40)

T̂
(b)
lm =

Nbond∑
(ij)

t(ij) ·Olm(R(ij)), (1.41)

where Olm(r)=∇Olm(r) and n(ij)=R(ij)/|R(ij)|. t(ij) is the local MT dipole at the (ij)
bond defined as t(ij)=it(ij)n(ij) with the imaginary hopping it(ij). We show the imaginary
bond distributions in the square cluster in the right panel of Fig. 1.9, where the red arrow
stands for the imaginary hopping with i (imaginary unit).

The bond multipoles are related not only to the hopping in the Hamiltonian but also
the bond orders, such as a staggered flux state [80–83] and a loop-current state [36, 37, 84–
87]. Furthermore, more exotic bond orders corresponding to the active ET quadrupole
have been proposed in the 5d spin-orbit-coupled metal Cd2Re2O7 [36].

1.3.4 k Multipole

The k multipole describes the anisotropic band deformation and spin splittings in the
electronic states. The expressions within the single-band system in the case of k→0 limit

13



1.3. AUGMENTED MULTIPOLES

are given by [39]

Qlm(k)≡

{
σ0Olm(k) (l=0, 2, 4, 6, · · · )
(k×σ)·∇kOlm(k) (l=1, 3, 5, · · · )

(1.42)

Tlm(k)≡


0 (l=0)

(k×σ)·∇kOlm(k) (l=2, 4, 6, · · · )
σ0Olm(k) (l=1, 3, 5, · · · )

(1.43)

Mlm(k)≡

{
0 (l=0, 2, 4, 6, · · · )
σ·∇kOlm(k) (l=1, 3, 5, · · · )

(1.44)

Glm(k)≡


k·σ (l=0)

σ·∇kOlm(k) (l=2, 4, 6, · · · )
0 (l=1, 3, 5, · · · )

(1.45)

where k is the wave vector with parities (P , T )=(−1,−1) and σ is the spin with (P , T )=
(+1,−1). Although there are no expressions of the rank-0 MT monopole, even-rank M
multipoles, and odd-rank ET multipoles in the single-band case, they can be defined in
the multi-band case [88].

The k multipoles describe the Hamiltonian in momentum space under a periodic lattice
system. A general Hamiltonian in momentum space can be represented as follows:

H=
∑
kσσ′

[
εS(k)δσσ′+εA(k)δσσ′+fS

σσ′(k)+fA
σσ′(k)

]
c†kσckσ′ , (1.46)

where c†kσ (ckσ) is the creation (annihilation) operator of electron with wave vector k and
spin σ=↑, ↓. εS(k), fS

σσ′(k), εA(k), and fA
σσ′(k) has different momentum and spin de-

pendences, which satisfy the following relations for their space-time inversion symmetries
as

εS(k)=εS(−k), fS
σσ′(k)=fS

σσ′(−k), εA(k)=−εA(−k), fA
σσ′(k)=−fA

σσ′(−k). (1.47)

The band deformation and the spin splittings for these four dispersions are shown in
Fig. 1.10(a), where the presence/absence of P , T , and PT symmetries corresponding to
each band deformation and spin splitting is shown. These dispersions are related to the
k multipole as

εS(k)=
even∑
l

∑
m

Qext
lmQlm(k), (1.48)

εA(k)=
odd∑
l

∑
m

T ext
lm Tlm(k), (1.49)

fS
σσ′(k)=

odd∑
l

∑
m

M ext
lm Mσσ′

lm (k)+
even∑
l

∑
m

T ext
lm T σσ′

lm (k), (1.50)

fA
σσ′(k)=

even∑
l

∑
m

Gext
lmG

σσ′

lm (k)+
odd∑
l

∑
m

Qext
lmQ

σσ′

lm (k), (1.51)
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Figure 1.10: (a) Schematic dispersions in the presence of εS(k), fA
σσ′(k), fS

σσ′(k), and
εA(k). (b) Four examples of the antisymmetric spin splittings induced by odd-parity
E/ET multipoles.

whereXext
lm (X=Q,M,G, T ) is the conjugate field in each multipole. We show the example

of fA
σσ′(k) by taking the low-rank E and ET multipoles in Fig. 1.10(b).

In this way, the k multipoles give a systematic way to understand anisotropic band
deformations and spin splittings. Such information is useful to engineer desired electronic
band structures from the microscopic viewpoint. Indeed, interesting symmetric and an-
tisymmetric spin polarizations in the AFM orderings without the spin-orbit coupling have
been proposed based on multipoles [37, 41, 42, 89], e.g., κ-(BETD-TTF)2Cu[N(CN)2]Cl [89,
90] and Ba3MnNb2O9 [42, 91].

1.4 Multipoles under Point Group Symmetry

In the previous section, we reviewed that various electronic degrees of freedom, e.g.,
charge, spin, orbital, sublattice, and bond, can be described by using four types of aug-
mented multipoles. This microscopic description enables us to represent the order param-
eters with complicated charge or current distribution in a systematic manner. In addition,
the concept of augmented multipoles can be applied to any crystallographic point group
to understand the physical properties in solids. In this section, we show the classification
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of multipoles in crystallographic point group symmetry by using the representation the-
ory. Systematic classification of multipoles gives useful information for the understanding
of multiferroic physical phenomena, as discussed in the subsequent section [39, 40].

Figure 1.11: Correspondence between E multipoles and irreducible representations in Oh.

The crystallographic point group is the subgroup of the O(3) group with the 3-
dimensional continuous rotation and spatial inversion operations. It means that four types
of multipoles, which constitute a complete set of electromagnetic degrees of freedom in the
O(3) symmetry4, are also used as the symmetry-adapted basis in crystallographic point
groups.

In the spherical field, rank l corresponds to the index of the (2l+1)-dimensional irre-
ducible representation with the rank-l multipole Xlm (X=Q,G,M, T ) as the basis. When
the continuous rotational symmetry is lost and O(3) group is reduced to the crystallo-
graphic point group, multipoles are not well classified by rank l and need to use the
irreducible representations in the crystallographic point group. For example, we show the
irreducible representation of the E multipoles up to rank 4 in cubic m3̄m (Oh) symmetry
in Fig. 1.11, which are denoted as

Q0, Q4∈A1g, (Qu, Qv), (Q4u, Q4v)∈Eg, (1.52)

(Qα
4x, Q

α
4y, Q

α
4z)∈T1g, (Qyz, Qzx, Qxy), (Q

β
4x, Q

β
4y, Q

β
4z)∈T2g, (1.53)

Qxyz∈A2u, (Qx, Qy, Qz), (Q
α
x , Q

α
y , Q

α
z )∈T1u, (Q

β
x, Q

β
y , Q

β
z )∈T2u. (1.54)

One finds that the multipoles with different ranks, e.g., Q0 and Q4, belong to the same
irreducible representation. In the same way based on the representation theory, one
can classify the four types of multipoles under 32 crystallographic point group [39]. For
instance, we show the classification of multipoles up to rank 4 in tetragonal 4/mmm (D4h)
symmetry in Table 1.2.

The classification of multipoles has the advantage of obtaining the relevant microscopic
electronic degrees of freedom by the symmetry analysis. Let us take an example of a four-
sublattice square cluster in Sec. 1.3.2 under D4h symmetry. Since the representation of
the four site degrees of freedom is reducible as A1g⊕B2g⊕Eu by the symmetry analysis,
we map the cluster E multipole onto its irreducible representation by using Table 1.2:

4Strictly speaking, four types of multipoles including M and MT multipoles are the basis for the
RO(3)=O(3)×{E, θ} group, where E and θ are the identitical operation and the time-reversal operation,
respectively.
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Table 1.2: Multipole classification for the irreducible representations (irrep.) in tetragonal
4/mmm (D4h) symmetry.

irrep. E ET MT M
A1g Q0, Qu, Q4, Q4u — T0, Tu, T4, T4u —
A2g Qα

4z Gz, G
α
z T α

4z Mz,M
α
z

B1g Qv, Q4v Gxyz Tv, T4v Mxyz

B2g Qxy, Q
β
4z Gβ

z Txy, T
β
4z Mβ

z

Eg Qyz, Q
α
4x, Q

β
4x Gx, G

α
x , G

β
x Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x

Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y Tzx, T

α
4y, T

β
4y My,M

α
y ,M

β
y

A1u — G0, Gu, G4, G4u — M0,Mu,M4,M4u

A2u Qz, Q
α
z Gα

4z Tz, T
α
z Mα

4z

B1u Qxyz Gv, G4v Txyz Mv,M4v

B2u Qβ
z Gxy, G

β
4z T β

z Mxy,M
β
4z

Eu Qx, Q
α
x , Q

β
x Gyz, G

α
4x, G

β
4x Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x

Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y Ty, T

α
y , T

β
y Mzx,M

α
4y,M

β
4y

Q0∈A1g, Qxy∈B2g, and (Qx, Qy)∈Eu. Moreover, when additionally considering the spin
degrees of freedom, the irreducible representations of the electronic degrees of freedom
are

(A1g⊕B2g⊕Eu)site⊗(Eg⊕A2g)spin=A2g⊕B1g⊕2Eg⊕A1u⊕A2u⊕B1u⊕B2u⊕Eu, (1.55)

whereMz∈A2g, Tv∈B1g, (Mx,My), (Tyz, Tzx)∈Eg, M0∈A1u, Tz∈A2u, Mv∈B1u, Mxy∈B2u,
and (Tx, Ty)∈Eu. In this case, each spin configuration in Fig. 1.8 is obtained based on the
projection method in each irreducible representation.

Although the multipole is classified under 32 crystallographic point groups, the con-
sideration about the time-reversal symmetry is lacking. To complete the classification of
multipoles, one needs to start from the RO(3)=O(3)×{E, θ} symmetry with the explicit
time-reversal operation θ and classify multipoles under the 122 magnetic point groups. Es-
pecially, the classification of multipole is missing in the 58 black-and-white point groups,
which are related to a variety of antiferromagnets as summarized in Fig. 1.125. Thus, it
is highly desired to formulate a complete classification under the magnetic point group,
which becomes a reference to explore interesting physical properties related to the break-
ing of the time-reversal symmetry, as often found in antiferromagnets.

1.5 Relation between Multipole and Field Responses

In this section, we review the relation between multipoles and the physical property in
the crystallographic point group by focusing on the field responses. In general, physical
quantities, such as the electric polarization P and magnetization M , are induced by

5The classification of multipole in 32 gray point groups is straightforwardly obtained from the one in
32 crystallographic point groups with a few exceptions.
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Figure 1.12: Relation between the point groups with the spherical symmetry and magnetic
point groups.

corresponding conjugate fields, e.g., the electric field E(↔P ) and the magnetic field
H(↔M ). However, there are some situations where the physical response is induced by
a non-conjugate field under particular symmetry conditions, which is called a multiferroic
response (or cross-correlated response). Although possible multiferroic responses have
been discussed based on the symmetry analysis [92–95], we here discuss the relevance
with the multipoles, since it provides microscopic information to understand the origin of
the multiferroic responses based on the electronic degrees of freedom.

For example, a linear magnetoelectric effect, where the magnetization is induced by
an electric field, is represented by using the response tensor α̂ as follows:Mx

My

Mz

=

αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

Ex

Ey

Ez

 . (1.56)

Since α̂ is the rank-2 axial tensor with odd time inversion, α̂ is related to the 9 mul-
tipoles with the same spatial and time-inversion parities: M monopole M0, MT dipoles
(Tx, Ty, Tz), and M quadrupoles (Mu,Mv,Myz,Mzx,Mxy). By using the corresponding ten-
sor components, αM0 , (αTx , αTy , αTz), and (αMuαMv , αMyz , αMzx , αMxy), α̂ is represented
as αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

→

αM0−αMu+αMv αTz+αMxy −αTy+αMzx

−αTz+αMxy αM0−αMu−αMv αTx+αMyz

αTy+αMzx −αTx+αMyz αM0+2αMu

 , (1.57)

where αM0 is the symmetric component, αTx , αTy , αTz are the antisymmetric compo-
nents, and αMu , αMv , αMyz , αMzx , αMxy are the traceless symmetric components. Since
the nonzero response tensor component has a correspondence with the magnetic point
group symmetry according to Neumann’s principle [92, 96, 97], one can find nonzero
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tensor components when the expectation values of the corresponding multipole become
nonzero.

It is noted that the magnetoelectric effect can occur in metals even if the time-reversal
symmetry is preserved. Such a response is due to the different dissipation process from
the magnetoelectric response relevant to the M and MT multipoles in Eq. (1.57). In this
case, α̂ is related to the ET monopole, E dipoles, and ET quadrupoles asαG0−αGu+αGv αQz+αGxy −αQy+αGzx

−αQz+αGxy αG0−αGu−αGv αQx+αGyz

αQy+αGzx −αQx+αGyz αG0+2αGu

 . (1.58)

Figure 1.13: Heckmann diagram in Ref. [39]. Essential active multipoles in each multifer-
roic response are also shown.

The relation between other field responses and active multipoles can be obtained in
a similar discussion [39] as shown by the Heckmann diagram in Fig. 1.13, where σij, ζkl,
and J stand for the symmetric stress tensor, strain-rotation field, and electric current,
respectively. This systematic relation between the field responses and active multipoles
gives us comprehensive information about necessary electronic degrees of freedom inducing
the field response. In other words, the tensor analysis by using the multipole degrees of
freedom gives not only nonzero tensor components from the symmetry viewpoint but
also the microscopic origin and the related important model parameters in a systematic
way. Such an attempt based on multipole has been developed in recent years, which has
uncovered the origin of the anomalous Hall effect without a net magnetization [34, 98], the
magnetoelectric effect [58, 74–77, 99, 100], and the magnetic piezoelectric effect [36, 38,
79, 101]. Nevertheless, the discussion has been mainly limited to linear responses. Thus, it
is highly desirable to extend the multipole description into a nonlinear response to include
the nonreciprocal transport and the nonlinear Hall effect [102, 103] in a systematic way.
It is also important to clarify a microscopic essence of the nonlinear physical responses
induced by unconventional multipole ordered states with the MT and ET multipoles.
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1.6 Purpose of This Thesis

As discussed in the previous sections, the augmented multipole provides a powerful frame-
work to represent the electronic degrees of freedom in solids, e.g., charge, spin, orbital, and
sublattice, in a systematic and symmetry-adapted form. Recent studies have developed
the concept of multipole to describe not only the conventional multipole orders in d- and
f -electron systems but also various electronic states, such as antiferromagnetic ordered
states and bond ordered states beyond the symmetry argument [12, 13, 35–37, 39–42]. In
particular, the author and her collaborators classified four types of multipoles in all 32
crystallographic point groups [39]. Meanwhile, it is not enough to describe the order pa-
rameter and the multipole couplings in the absence of the time-reversal symmetry by the
external magnetic field and/or spontaneous magnetic orderings, as discussed in Sec. 1.4.
The systematic classification of multipoles to cover such a situation becomes a useful
reference to explore further exotic ordered phases and their driven physical phenomena,
which will stimulate a future study in both theory and experiment.

The main purpose of this thesis is to establish the classification of multipoles under
the 122 magnetic point groups and to open up a new research direction induced by un-
conventional multipole orderings. For that purpose, we apply the representation theory
of the nonunitary groups so as to include the time-reversal symmetry in magnetic point
groups. The complete classification of multipoles enables us to analyze the symmetry-
adapted order parameters in the magnetic materials, such as antiferromagnetic materials,
and to perform the systematic analysis of the physical properties from a microscopic view-
point. Moreover, we aim at extending the relationship between the multipoles and the
response tensors to cover up to the second-order nonlinear responses. We also study the
physical phenomena, such as the linear magnetoelectric effect and the nonlinear nonre-
ciprocal transport, under the odd-parity multipole orderings in the absence of the spatial
inversion symmetry on the basis of the augmented multipoles. We also aim at providing
a microscopic experimental method to detect odd-parity multipoles by the NMR/NQR
measurement.

1.7 Organization of This Thesis

This thesis is organized as follows. In Chap. 2, the classification of four types of multipoles
in 122 magnetic point groups is shown in a complete way. We also discuss the relation
between multipoles and the linear and nonlinear field responses. Based on the system-
atic classification of multipoles, we explore odd-parity multipole physics by studying the
following two systems. One is the MT dipole ordering induced by the collinear AFM
ordering on a zigzag chain in Chap. 3. We clarify the microscopic essence of the nonlinear
transport under the MT dipole ordering. The second is the odd-parity multipole order-
ings in the f -electron metal CeCoSi in Chap. 4. We discuss the stability of the odd-parity
multipole orderings and their phase transitions by using two effective models so as to
reproduce the phase diagram in CeCoSi. We also discuss the multiferroic phenomena and
the change of the NQR/NMR spectra in the presence of odd-parity multipoles.
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Chapter 2

Classification of Multipoles in 122
Magnetic Point Groups

In this chapter, we show a complete classification of multipoles in 122 magnetic point
groups toward a systematic understanding of the physical properties in magnetic materials
based on the concept of multipole. The contents in this chapter are based on Ref. [104]1.
This chapter is organized as follows. In Sec. 2.1, we introduce the physical properties in
magnetic materials with ferromagnetic and antiferromagnetic spin textures and describe
the purpose of the present study. In Sec. 2.2, we briefly give a short review of the three
types of magnetic point groups and the representation theory in a nonunitary group. In
Sec. 2.3, we perform the classification of multipoles in the 122 magnetic point groups. We
discuss the active multipoles belonging to the totally symmetric representation in each
magnetic point group in Sec. 2.4. In Sec. 2.5, we clarify the relation between the multipoles
and the response tensors by using the symmetry and microscopic analyses based on the
Kubo formula. We show the important multipole degrees of freedom to induce linear and
second-order nonlinear responses. Section 2.6 summarizes the results of this chapter.

2.1 Introduction

Magnetic orderings such as ferromagnetic (FM) and antiferromagnetic (AFM) orderings
provide a fertile field to bring about fascinating phenomena, e.g., the anomalous Hall
effect, Kerr effect, Nernst effect [105–108], multiferroicity like the magnetoelectric ef-
fect [109–114], nonreciprocal transports [115], and so on. To analyze these physical
properties in the FM and AFM materials systematically based on the concept of mul-
tipole, one needs to extend the classification of multipoles in the 32 crystallographic point
groups [39, 40] to the 122 magnetic point groups, which cover any types of the magnetic
orderings [92, 116–120].

For that purpose, we complete the classification of E, M, ET, and MT multipoles by
the irreducible representations in all 122 magnetic point groups by using the representa-
tion theory for nonunitary magnetic point groups. The established multipole classification
enables us to describe any AFM orderings and more exotic orderings, such as nematic, ex-

1Tables 2.2, 2.5–2.15, and D.1–D.3 in Appendix D and Figs. 2.1 and 2.2 are reproduced from Ref. [104]
(© 2021 by the American Physical Society).
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2.2. MAGNETIC POINT GROUP

citonic, and loop-current orderings, as ferroic augmented multipole orderings. The present
systematic classification is also useful for the understanding of the microscopic essential
model parameters relevant to multiferroic physical phenomena, as will be discussed in
Chap. 3. We also give a general relation between multipoles and the linear/second-order
nonlinear response functions based on the Kubo formula. This systematic study will help
the exploration and design of the functional multiferroic materials that can be utilized for
future electronics and spintronics devices.

2.2 Magnetic Point Group

Most of the magnetic point groups are nonunitary groups including the antiunitary and
antilinear operations accompanied by the time-reversal operation. In such a situation, the
representation in the nonunitary point groups is given by a different form from that in
the ordinary unitary crystallographic point groups [121]. After classifying the magnetic
point groups into the three types in Sec. 2.2.1, we briefly review the representation theory
of the magnetic point groups in Sec. 2.2.2.

2.2.1 Three Types of Magnetic Point Groups

The 122 magnetic point groups are classified into the following three types depending on
how they include the time-reversal operation θ [122]:

(I) ordinary crystallographic point groups (32),

(II) gray point groups (32),

(III) black-and-white point groups (58),

where the numbers in parentheses are the numbers of magnetic point groups. Type-(I)
ordinary crystallographic point group is the unitary point group including no antiunitary
operation accompanied by θ. When G represents the type-(I) crystallographic point
group, the type-(II) gray point group, M (II), is defined as

M (II)=G+θG, (2.1)

which includes the double elements of G. Meanwhile, the type-(III) black-and-white point
group, M (III), consists of half of the elements of M (II), which is represented as

M (III)=H+θ(G−H), (2.2)

where H is a halving unitary subgroup of G. The 58 type-(III) black-and-white point
groups are uniquely determined by the combination of G and H , as summarized in
Table 2.1. Hereafter, we use the primary, secondary, and tertiary axes for the point-group
operations as denoted in Table 2.2, unless otherwise mentioned.
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CHAPTER 2. CLASSIFICATION OF MULTIPOLES IN 122 MAGNETIC POINT GROUPS

Table 2.1: List of 58 black-and-white point groups M (III). H is the unitary subgroup
of G, which determines M (III). One of the antiunitary operations in M (III), A, and its
operation axis/plane are also shown.

M (III) G H A axis/plane
cubic m′3̄′m′ m3̄m (Oh) 432 (O) θI

m′3̄′m m3̄m (Oh) 4̄3m (Td) θI
m3̄m′ m3̄m (Oh) m3̄ (Th) θC ′

2 [110]
4′32′ 432 (O) 23 (T ) θC ′

2 [110]
4̄′3m′ 4̄3m (Td) 23 (T ) θσd ⊥[110]
m′3̄′ m3̄ (Th) 23 (T ) θI

hexagonal 6/m′m′m′ 6/mmm (D6h) 622 (D6) θI
6′/mmm′ 6/mmm (D6h) 6̄m2 (D3h) θI
6/m′mm 6/mmm (D6h) 6mm (C6v) θI
6/mm′m′ 6/mmm (D6h) 6/m (C6h) θC2x [100]
6′/m′mm′ 6/mmm (D6h) 3̄m (D3d) θC2 [001]

62′2′ 622 (D6) 6 (C6) θC2x [100]
6′22′ 622 (D6) 32 (D3) θC2 [001]
6̄m′2′ 6̄m2 (D3h) 6̄ (C3h) θC2y [010]
6̄′m2′ 6̄m2 (D3h) 3m (C3v) θσh ⊥[001]
6̄′m′2 6̄m2 (D3h) 32 (D3) θσh ⊥[001]
6m′m′ 6mm (C6v) 6 (C6) θσx ⊥[100]
6′mm′ 6mm (C6v) 3m (C3v) θC2 [001]
6/m′ 6/m (C6h) 6 (C6) θI
6′/m 6/m (C6h) 6̄ (C3h) θI
6′/m′ 6/m (C6h) 3̄ (S6) θC2 [001]
6̄′ 6̄ (C3h) 3 (C3) θσh ⊥[001]
6′ 6 (C6) 3 (C3) θC2 [001]

trigonal 3̄′m′ 3̄m (D3d) 32 (D3) θI
3̄′m 3̄m (D3d) 3m (C3v) θI
3̄m′ 3̄m (D3d) 3̄ (S6) θC ′

2 [010]
32′ 32 (D3) 3 (C3) θC ′

2 [010]
3m′ 3m (C3v) 3 (C3) θσv ⊥[010]
3̄′ 3̄ (S6) 3 (C3) θI

tetragonal 4/m′m′m′ 4/mmm (D4h) 422 (D4) θI
4′/m′m′m 4/mmm (D4h) 4̄2m (D2d) θI
4/m′mm 4/mmm (D4h) 4mm (C4v) θI
4/mm′m′ 4/mmm (D4h) 4/m (C4h) θC ′

2 [100]
4′/mmm′ 4/mmm (D4h) mmm (D2h) θC ′′

2 [110]
42′2′ 422 (D4) 4 (C4) θC ′

2 [100]
4′22′ 422 (D4) 222 (D2) θC ′′

2 [110]
4̄2′m′ 4̄2m (D2d) 4̄ (S4) θC ′

2 [100]
4̄′2m′ 4̄2m (D2d) 222 (D2) θσd ⊥[110]
4̄′m2′ 4̄2m (D2d) mm2 (C2v) θC ′′

2 [110]
4m′m′ 4mm (C4v) 4 (C4) θσv ⊥[100]

(Continue)
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2.2. MAGNETIC POINT GROUP

M (III) G H A axis/plane
4′mm′ 4mm (C4v) mm2 (C2v) θσd ⊥[110]
4′/m′ 4/m (C4h) 4̄ (S4) θI
4/m′ 4/m (C4h) 4 (C4) θI
4′/m 4/m (C4h) 2/m (C2h) θC4 [001]
4̄′ 4̄ (S4) 2 (C2) θIC4 [001]
4′ 4 (C4) 2 (C2) θC4 [001]

orthorhombic m′m′m′ mmm (D2h) 222 (D2) θI
mmm′ mmm (D2h) mm2 (C2v) θI
m′m′m mmm (D2h) 2/m (C2h) θC2x [100]
2′2′2 222 (D2) 2 (C2) θC2x [100]
m′m′2 mm2 (C2v) 2 (C2) θσx ⊥[100]
m′m2′ mm2 (C2v) m (C1h) θC2z [001]

monoclinic 2/m′ 2/m (C2h) 2 (C2) θI
2′/m 2/m (C2h) m (Cs) θI
2′/m′ 2/m (C2h) 1̄ (Ci) θC2 [010]
m′ m (Cs) 1 (C1) θσ ⊥[010]
2′ 2 (C2) 1 (C1) θC2 [010]

triclinic 1̄′ 1̄ (Ci) 1 (C1) θI

Table 2.2: Primary, secondary, and tertiary axes with respect to the symmetry operations
in the Cartesian coordinates.

primary secondary tertiary
cubic ⟨100⟩ ⟨111⟩ ⟨110⟩

tetragonal [001] [100] [110]
orthorhombic [100] [010] [001]
monoclinic [010] — —
triclinic — — —

hexagonal [001] [100] [010]
trigonal [001] [010] —

2.2.2 Irreducible Corepresentation of Magnetic Point Group

The irreducible representation of the type-(I) unitary crystallographic point group has
been presented in the previous literatures, e.g., Ref. [123]. On the other hand, the analysis
taking into account the antiunitary operation like θ is required to obtain the irreducible
representations of the type-(II) and (III) magnetic point groups. Generally, the type-
(II) and (III) magnetic point groups in Eqs. (2.1) and (2.2) are represented by using the
unitary subgroup G and the antiunitary operation A as

M=G+AG. (2.3)
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The time-reversal operation θ is generally chosen as A inM (II), althoughM is determined
irrespective of the choice of A. One of the choices of A in M (III) is summarized in
Table 2.1.

For the basis set of the irreducible representation Γ with dimension dΓ in G ,

⟨ψΓ|=⟨ψΓ
1 , · · · , ψΓ

dΓ
| , (2.4)

and another set

A⟨ψΓ|≡⟨ϕΓ|=⟨ϕΓ
1 , · · · , ϕΓ

dΓ
| , (2.5)

the representation in the nonunitary point group in Eq. (2.3) is given as follows [121, 124,
125]:

R⟨ψΓ, ϕΓ|=⟨ψΓ, ϕΓ|
(
∆Γ(R) 0

0
[
∆Γ(A−1RA)

]∗)≡⟨ψΓ, ϕΓ|DΓ(R), (2.6)

B ⟨ψΓ, ϕΓ|=⟨ψΓ, ϕΓ|
(

0 ∆Γ(BA)[
∆Γ(A−1B)

]∗
0

)
≡⟨ψΓ, ϕΓ|DΓ(A), (2.7)

whereR (B) represents the (anti)unitary point group operation in M and ∆Γ is the matrix
representation of Γ. The representation DΓ(R) [DΓ(A)] is the matrix representation of
the “corepresentation DΓ”.

The corepresentation DΓ is classified into three cases:

∑
B∈AG

χΓ(B2)=


+|G| : case (a),

−|G| : case (b),

0 : case (c),

(2.8)

where |G| is the order of G and χΓ(B2) is the character with respect to the unitary
operation B2 in Γ [122, 126–130]. In case (a), ∆Γ(R) and

[
∆Γ(A−1RA)

]∗
are equivalent

and DΓ is reducible by using a unitary transformation. The irreducible form of DΓ is
expressed as

DΓ(R)=

(
∆Γ(R) 0

0 ∆Γ(R)

)
for R∈G, (2.9)

DΓ(B)=
(
∆Γ(BA−1)N 0

0 −∆Γ(BA−1)N

)
for B∈AG, (2.10)

where N is the unitary matrix satisfying the relation ∆Γ(R)=N [∆Γ(A−1RA)]∗N−1 [122]
(See Appendix B in detail). Hereafter, we denote the irreducible corepresentation (IR-
REP) in case (a) characterized by ∆Γ(R) for R and ±∆Γ(BA−1)N for B as Γ±, e.g.,
A±

1g.
On the other hand, DΓ in case (b) composed as Eqs. (2.6) and (2.7) is irreducible,

but ∆Γ(R) and
[
∆Γ(A−1RA)

]∗
are equivalent as well as case (a). In this case, DΓ is

represented by the unitary transformation as

DΓ(R)=

(
∆Γ(R) 0

0 ∆Γ(R)

)
for R∈G, (2.11)

DΓ(B)=
(

0 −∆Γ(BA−1)N
∆Γ(BA−1)N 0

)
for B∈AG. (2.12)
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In case (c), ∆Γ(R) and
[
∆Γ(A−1RA)

]∗
are not equivalent and DΓ is irreducible.

Then, DΓ has the form in Eqs. (2.6) and (2.7)

DΓ(R)=

(
∆Γ(R) 0

0
[
∆Γ(A−1RA)

]∗) for R∈G, (2.13)

DΓ(B)=
(

0 ∆Γ(BA)[
∆Γ(A−1B)

]∗
0

)
for B∈AG. (2.14)

Since DΓ in cases (b) and (c) is not block-diagonal with respect to the antiunitary oper-
ation B, we denote their corepresentation as Γ for notational simplicity.

Finally, the Kronecker product of the IRREP is defined by using that of the unitary
subgroup, whose expression is given by

DΓi⊗DΓj=
∑
k

dij;kDΓk, (2.15)

where the coefficient dij,k is determined by [129, 131]

dij,k=

1

|G|
∑
R∈G

χΓi(R)χΓj(R)[χΓk(R)]∗

1

|G|
∑
R∈G

|χΓk(R)|2
. (2.16)

The specific expression of dij,k in the type-(II) and type-(III) magnetic point groups is
presented in Ref. [132]. In Appendix B, we present the details of the representation theory
in a nonunitary group.

2.3 Classification of Multipole

By using the IRREP in the previous section, we classify four types of multipoles under
122 magnetic point groups. First, we show the multipole classification in the type-(II)
gray point group by taking an example of the cubic gray point group m3̄m1′. Since the
unitary subgroup m3̄m has 10 irreducible representations: A1g/u, A2g/u, Eg/u, T1g/u, and
T2g/u, 10 types of corepresentations are constructed in m3̄m1′. By using Eq. (2.8), one
finds that all of the corepresentations consisting of A1g/u, A2g/u, Eg/u, T1g/u, and T2g/u

are classified into case (a). Thus, they are decomposed into two IRREPs, as shown in
Table 2.3, by using the unitary matrix N in Ref. [122], such as A1g→A±

1g. The sign in
the superscript of IRREPs stands for the parity about the time-reversal operation θ. We
show the classification of E, ET, M, and MT multipoles up to rank 4 for the 20 IRREPSs
as well as the reduction to the subgroups in Table 2.3. The reduction to each subgroup
describes the situation where the ferroic ordering of the multipoles presented in each left
column occurs. “P. axis” in Table 2.3 represents the primary axis of the point group
operations. For example, the symmetry operations of 4/mm′m′ with P. axis [001] are
represented as

E,C4z, C
3
4z, C

2
4z, θC

′
2x, θC

′
2y, θC

′′
2[110], θC

′′
2[1̄10],

I, IC4z, IC
3
4z, σ⊥z, θσ⊥x, θσ⊥y, θσ⊥[110], θσ⊥[1̄10], (2.17)
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Table 2.3: Irreducible corepresentations (IRREPs) of four types of multipoles: electric
(E), electric toroidal (ET), magnetic (M), and magnetic toroidal (MT) multipoles, in the
type-(II) gray point group m3̄m1′. The character table of the unitary subgroup m3̄m (Oh)
is also shown to clarify the symmetry of each multipole. The IRREPs are obtained from
the irreducible representation of the unitary subgroup. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 6C4 3C
2
4 6C ′

2 8C3 I 6IC4 3σh 6σd 8IC3 IRREP E ET MT M MPG P. axis
A1g 1 1 1 1 1 1 1 1 1 1 A+

1g Q0, Q4 m3̄m1′ ⟨100⟩
A−

1g T0, T4 m3̄m ⟨100⟩
A2g 1 −1 1 −1 1 1 −1 1 −1 1 A+

2g Gxyz m3̄1′ ⟨100⟩
A−

2g Mxyz m3̄m′ ⟨100⟩
Eg 2 0 2 0 −1 2 0 2 0 −1 E+

g Qu, Q4u 4/mmm1′ [001]
Qv, Q4v mmm1′ [100]

E−
g Tu, T4u 4/mmm [001]

Tv, T4v 4′/mmm′ [001]
T1g 3 1 −1 −1 0 3 1 −1 −1 0 T+

1g Qα
4x Gx, G

α
x 4/m1′ [100]

Qα
4y Gy, G

α
y 4/m1′ [010]

Qα
4z Gz, G

α
z 4/m1′ [001]

T−
1g T α

4x Mx,M
α
x 4/mm′m′ [100]

T α
4y My,M

α
y 4/mm′m′ [010]

T α
4z Mz,M

α
z 4/mm′m′ [001]

T2g 3 −1 −1 1 0 3 −1 −1 1 0 T+
2g Qyz, Q

β
4x Gβ

x mmm1′ [011]

Qzx, Q
β
4y Gβ

y mmm1′ [101]

Qxy, Q
β
4z Gβ

z mmm1′ [110]

T−
2g Tyz, T

β
4x Mβ

x 4′/mm′m [100]

Tzx, T
β
4y Mβ

y 4′/mm′m [010]

Txy, T
β
4z Mβ

z 4′/mm′m [001]
A1u 1 1 1 1 1 −1 −1 −1 −1 −1 A+

1u G0, G4 4321′ ⟨100⟩
A−

1u M0,M4 m′3̄′m′ ⟨100⟩
A2u 1 −1 1 −1 1 −1 1 −1 1 −1 A+

2u Qxyz 4̄3m1′ ⟨100⟩
A−

2u Txyz m′3̄′m ⟨100⟩
Eu 2 0 2 0 −1 −2 0 −2 0 1 E+

u Gu, G4u 4221′ [001]
Gv, G4v 4̄2m1′ [001]

E−
u Mu,M4u 4/m′m′m′ [001]

Mv,M4v 4′/m′m′m [001]
T1u 3 1 −1 −1 0 −3 −1 1 1 0 T+

1u Qx, Q
α
x Gα

4x 4mm1′ [100]
Qy, Q

α
y Gα

4y 4mm1′ [010]
Qz, Q

α
z Gα

4z 4mm1′ [001]
T−

1u Tx, T
α
x Mα

4x 4/m′mm [100]
Ty, T

α
y Mα

4y 4/m′mm [010]
Tz, T

α
z Mα

4z 4/m′mm [001]

T2u 3 −1 −1 1 0 −3 1 1 −1 0 T+
2u Qβ

x Gyz, G
β
4x 4̄m21′ [100]

Qβ
y Gzx, G

β
4y 4̄m21′ [010]

Qβ
z Gxy, G

β
4z 4̄m21′ [001]

T−
2u T β

x Myz,M
β
4x 4

′/m′mm′ [100]

T β
y Mzx,M

β
4y 4

′/m′mm′ [010]

T β
z Mxy,M

β
4z 4

′/m′mm′ [001]

where we explicitly denote the operation axis or plane in the subscript. Meanwhile, those
of 4/mm′m′ with P. axis [100] are transformed in cyclic in accordance with the change of
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the P. axis as

E,C4x, C
3
4x, C

2
4x, θC

′
2y, θC

′
2z, θC

′′
2[011], θC

′′
2[01̄1],

I, IC4x, IC
3
4x, σ⊥x, θσ⊥y, θσ⊥z, θσ⊥[011], θσ⊥[01̄1]. (2.18)

We perform a similar procedure to the other 31 type-(I) gray point groups. We present
the classification tables of multipoles in the other 31 type-(I) gray point groups in Ta-
bles C.1–C.31 in Appendix C.

Figure 2.1: (a) Diamond structure with two sublattices A and B (left panel). The
IRREPs and the corresponding potential distributions in the two sublattices are shown
in the right panel. (b) The staggered M dipole along y axis, which is regarded as the
cluster M quadrupole Mzx. (c) The staggered xyz-type M octupole, which is regarded as
the cluster M monopole M0. The arrows in (b) represent the spin direction and the color
in (c) represents the distribution of the M monopole charge defined by m·r.

These tables provide a guide to identifying an electronic order parameter and asso-
ciated symmetry reduction. For example, we suppose the two-sublattice ordering in the
diamond structure in Fig. 2.1(a) with the space group Fd3̄m and the magnetic point
group m3̄m1′. In the two-sublattice diamond structure, the IRREPs for the sublattice
degree of freedom, Γsub, are given by

Γsub=A+
1g⊕A+

2u, (2.19)

where A+
1g corresponds to the uniform alignment of the scalar variable and A+

2u corre-
sponds to the staggered one, as shown in the right panel of Fig. 2.1(a). Then, the spin
configurations in the two-sublattice diamond structure are characterized by the IRREPs
as follows:

Γsub⊗ΓM1=T−
1g⊕T−

2u, (2.20)

where ΓM1(=T−
1g) is the IRREPs for the spin degree of freedom, i.e., the M dipole

(Mx,My,Mz). In Eq. (2.20), the IRREP T−
1g represents the uniform alignment of the

M dipole, i.e., the FM order. On the other hand, the IRREP T−
2u, which corresponds to

the staggered magnetic structure shown in Fig. 2.1(b), is regarded as the ferroic ordering
of M quadrupole from the Table 2.32. In this way, one can easily identify the multipole

2Here and hereafter, we refer the name of the multipole orderings by adopting the lowest-rank multi-
poles belonging to the same irreducible (co)representation.
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order parameters, and then, predict the emergent physical phenomena, as discussed in
Sec. 1.5. In the present case of the staggered M dipole orderings in the diamond struc-
ture, one expects physical phenomena related to the M quadrupole, e.g., the transverse
magnetoelectric effect [78].

The classification in Table 2.3 can be used not only for the FM and AFM orderings
but also for the unconventional electronic orderings, such as the spin nematics [133–136],
excitonic states [52–57], staggered flux states [80–83], loop-current states [36, 37, 84–87],
and other higher-rank multipole orderings [14, 15, 35]. For example, when considering the
orderings of the atomic M octupoles (Mxyz,M

α
x ,M

α
y ,M

α
z ,M

β
x ,M

β
y ,M

β
z ) with the IRREPs

ΓM3=A−
2g⊕T−

1g⊕T−
2g in the diamond structure, the IRREPs corresponding to the two-

sublattice orderings are given by

Γsub⊗ΓM3=(A−
2g⊕T−

1g⊕T−
2g)uniform⊕(A−

1u⊕T−
1u⊕T−

2u)staggered. (2.21)

The former (latter) parentheses represent the uniform (staggered) alignment of the M
octupoles. From Table 2.3, one can find the corresponding multipole order parameters,
e.g., the staggeredMxyz ordering with A−

1u is regarded as the M monopoleM0, as schemat-
ically shown in Fig. 2.1(c). Then, one expects that the staggered Mxyz ordering exhibits
physical phenomena driven by M0, e.g., the longitudinal magnetoelectric effect.

Table 2.4: IRREPs of four types of multipoles in m′3̄′m′. The character table of the
irreducible representation of the unitary subgroup 432 is also presented. The superscript
“±” of IRREP stands for the parity with respect to the antiunitary operation A=θI.

E 6C4 3C2
4 6C ′

2 8C3 IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 A+

1 Q0, Q4 M0,M4 m′3̄′m′ ⟨100⟩
A−

1 G0, G4 T0, T4 432 ⟨100⟩
A2 1 −1 1 −1 1 A+

2 Gxyz Txyz m′3̄′ ⟨100⟩
A−

2 Qxyz Mxyz 4̄′3m′ ⟨100⟩
E 2 0 2 0 −1 E+ Qu, Q4u Mu,M4u 4/m′m′m′ [001]

Qv, Q4v Mv,M4v m′m′m′ [100]
E− Gu, G4u Tu, T4u 422 [001]

Gv, G4v Tv, T4v 4̄′2m′ [001]
T1 3 1 −1 −1 0 T+

1 Qα
4x Gx, G

α
x Tx, T

α
x Mα

4x 4/m′ [100]
Qα

4y Gy, G
α
y Ty, T

α
y Mα

4y 4/m′ [010]
Qα

4z Gz, G
α
z Tz, T

α
z Mα

4z 4/m′ [001]
T−

1 Qx, Q
α
x Gα

4x T α
4x Mx,M

α
x 4m′m′ [100]

Qy, Q
α
y Gα

4y T α
4y My,M

α
y 4m′m′ [010]

Qz, Q
α
z Gα

4z T α
4z Mz,M

α
z 4m′m′ [001]

T2 3 −1 −1 1 0 T+
2 Qyz, Q

β
4x Gβ

x T β
x Myz,M

β
4x m′m′m′ [011]

Qzx, Q
β
4y Gβ

y T β
y Mzx,M

β
4y m′m′m′ [101]

Qxy, Q
β
4z Gβ

z T β
z Mxy,M

β
4z m′m′m′ [110]

T−
2 Qβ

x Gyz, G
β
4x Tyz, T

β
4x Mβ

x 4̄′m′2 [100]

Qβ
y Gzx, G

β
4y Tzx, T

β
4y Mβ

y 4̄′m′2 [010]

Qβ
z Gxy, G

β
4z Txy, T

β
4z Mβ

z 4̄′m′2 [001]

The multipole classification in type-(III) black-and-white point group is derived by a
similar procedure in the case of type-(II) gray point group. We show the result for m′3̄′m′

as an example. Since m′3̄′m′ consists of the unitary operations in 432 (O) and their
combination to the antiunitary operation, e.g., the product of the spatial inversion and
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time-reversal operations θI, the IRREPs are obtained by the irreducible representations
of 432 as A±

1 , A
±
2 , E

±, T±
1 , and T±

2 , where the sign stands for the parity with respect
to θI. The multipole classification and reduction groups are summarized in Table 2.4.
The classifications for the other 57 type-(III) black-and-white point groups are given in
Tables C.32–C.88 in Appendix C.

By using Tables 2.3 and 2.4, we show the correspondence relation of the IRREPs for
the group-subgroup relation. For example, the staggered Mxyz-type octupole ordering in
Fig. 2.1(c) leads to the symmetry reduction as m3̄m1′→m′3̄′m′. In this case, the IRREPs
of the parent point group m3̄m1′ are read by those of the subgroup m′3̄′m′ as follows:
(A±

1g,A
∓
1u)→A±

1 , (A
±
2g,A

∓
2u)→A±

2 , (E
±
g ,E

∓
u )→E±, (T±

1g,T
∓
1u)→T±

1 , (T
±
2g,T

∓
2u)→T±

2 . Since
some of the multipoles belong to the same IRREP by the lowering of the symmetry,
additional crosscouplings between different multipoles are expected, e.g., the coupling
between the MT dipole (Tx, Ty, Tz) and the ET dipole (Gx, Gy, Gz) belonging to the
same IRREP T+

1 . The classifications in all 122 magnetic point groups give useful and
systematic information about the multipole couplings when the symmetry is lowered by
the spontaneous phase transitions and the external fields.

2.4 Active Multipoles

Among the IRREPs, the totally symmetric IRREP represents nonzero multipole moments
in the system. As the electronic band structures and the multiferroic properties are closely
related to such active multipoles, it is important to show what types of multipoles belong
to the totally symmetric IRREP in each magnetic point group. In this section, we present
the active multipoles belonging to the totally symmetric IRREP in all 122 magnetic point
groups.

We first show the classification of the active multiples in each magnetic point group
in terms of the spatial inversion and time-reversal parities in Table 2.5. The E and ET
multipoles are active for all the magnetic point groups, while the M and MT multipoles
are active only for the type-(I) crystallographic point groups and type-(III) black-and-
white point groups without the time-reversal symmetry. The rank and types of the active
multipoles depend on the crystallographic symmetry, as will be discussed below.

We start with the discussion of the active multipoles under type-(I) crystallographic
point groups, where not only E and ET multipoles but also M and MT multipoles are
active because of the time-reversal symmetry (T ) breaking. The type of active multipoles
depends on the spatial parity, as shown in Table 2.5. In the 11 crystallographic point
groups with the spatial inversion symmetry (P): m3̄m, m3̄, 4/mmm, 4/m, mmm, 2/m,
1̄, 6/mmm, 6/m, 3̄m, and 3̄, even-parity E, ET, M, and MT multipoles are active. The
specific active multipoles up to rank 4 in each crystallographic point group are shown
in Table 2.6. On the other hand, in the 21 noncentrosymmetric crystallographic point
groups: 432, 4̄3m, 23, 422, 4̄2m, 4mm, 4, 4̄, 222, mm2, 2, m, 1, 622, 6̄m2, 6mm, 6,
6̄, 32, 3m, and 3, odd-parity E, ET, M, and MT multipoles become active in addition
to the even-parity ones, which are summarized in Table 2.7. It is noted that the same
components of Qlm and Tlm (Glm andMlm) become active in the type-(I) crystallographic
point groups because of the absence of the antiunitary operations accompanied by the
time inversion.
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Table 2.5: Active multipoles in the crystallographic point group (CPG), gray point group
(GPG), and black-and-white point group (BWPG) according to the spatial inversion sym-
metry (P), time-reversal symmetry (T ), and spece-and-time inversion symmetry (PT ).
“even/odd-parity” represents the spatial inversion parity of multipoles.

type magnetic point group P T PT even-parity odd-parity even-parity odd-parity
E, ET E, ET MT, M MT, M

(I) CPG m3̄m, m3̄, 4/mmm, 4/m, ⃝ × × ✓ ✓
mmm, 2/m, 1̄,

6/mmm, 6/m, 3̄m, 3̄
432, 4̄3m, 23, × × × ✓ ✓ ✓ ✓

422, 4̄2m, 4mm, 4, 4̄,
222, mm2, 2, m, 1,

622, 6̄m2, 6mm, 6, 6̄, 32, 3m, 3
(II) GPG m3̄m1′, m3̄1′, 4/mmm1′, 4/m1′, ⃝ ⃝ ⃝ ✓

mmm1′, 2/m1′, 1̄1′,
6/mmm1′, 6/m1′, 3̄m1′, 3̄1′

4321′, 4̄3m1′, 231′, × ⃝ × ✓ ✓
4221′, 4̄2m1′, 4mm1′, 41′, 4̄1′,
2221′, mm21′, 21′, m1′, 11′,

6221′, 6̄m21′, 6mm1′,
61′, 6̄1′, 321′, 3m1′, 31′

(III) BWPG m3̄m′, 4/mm′m′, 4′/mm′m, 4′/m, ⃝ × × ✓ ✓
m′m′m, 2′/m′,

6/mm′m′, 6′/m′mm′, 6′/m′, 3̄m′

m′3̄′m′, m′3̄′m, m′3̄′, × × ⃝ ✓ ✓
4/m′m′m′, 4′/m′m′m, 4/m′mm,

4′/m′, 4/m′,
m′m′m′, m′mm, 2′/m, 2/m′, 1̄′,
6/m′m′m′, 6′/mmm′, 6/m′mm,

6′/m, 6/m′, 3̄′m′, 3̄′m, 3̄′

4′32′, 4̄′3m′, × × × ✓ ✓ ✓ ✓
42′2′, 4′22′, 4̄2′m′, 4̄′2m′, 4̄′2′m,

4m′m′, 4′m′m, 4′, 4̄′,
2′2′2, m′m′2, m′m2′, 2′, m′,

62′2′, 6′22′, 6̄m′2′, 6̄′m′2, 6̄′m2′,
6m′m′, 6′mm′, 6′, 6̄′, 32′, 3m′

In the case of the type-(II) gray point groups, no M and MT multipoles become active
because of the presence of the time-reversal symmetry [39]. The even-parity E and ET
multipoles are active in all the type-(II) gray point groups, while the odd-parity E and
ET ones become active in the noncentrosymmetric 21 point groups: 4321′, 4̄3m1′, 231′,
4221′, 4̄2m1′, 4mm1′, 41′, 4̄1′, 2221′, mm21′, 21′, m1′, 11′, 6221′, 6̄m21′, 6mm1′, 61′, 6̄1′,
321′, 3m1′, and 31′. The active even-parity E and ET multipoles in the centrosymmetric
11 gray point groups are summarized in Table 2.8, while the E and ET multipoles in the
noncentrosymmetric 21 gray point groups are shown in Table 2.9.

In the type-(III) black-and-white point groups, not only E and ET multipoles but
also M and MT multipoles become active, similar to the type-(I) crystallographic point
groups. In contrast to type-(I) crystallographic point groups, however, the different com-
ponents of Qlm and Tlm (Glm and Mlm) become active because of the difference in the
symmetry operations, i.e., the product operations of the time-reversal and unitary point-
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Table 2.6: Active even-parity E, ET, MT, and M multipoles in the centrosymmetric
crystallographic point groups. The triclinic point group 1̄ (Ci), in which all the even-
parity multipoles are active, is omitted.

even-parity even-parity
E ET MT M

l=0 2 4 1 3 0 2 4 1 3
m3̄m (Oh) Q0 Q4 T0 T4
m3̄ (Th) Q0 Q4 Gxyz T0 T4 Mxyz

4/mmm (D4h) Q0 Qu Q4, Q4u T0 Tu T4, T4u
4/m (C4h) Q0 Qu Q4, Q4u, Q

α
4z Gz Gα

z T0 Tu T4, T4u, T
α
4z Mz Mα

z

mmm (D2h) Q0 Qu, Qv Q4, Q4u, Q4v Gxyz T0 Tu, Tv T4, T4u, T4v Mxyz

2/m (C2h) Q0 Qu, Qv, Q4, Q4u, Q4v, Gy Gxyz, T0 Tu, Tv, T4, T4u, T4v, My Mxyz,

Qzx Qα
4y, Q

β
4y Gα

y , G
β
y Tzx T α

4y, T
β
4y Mα

y , M
β
y

6/mmm (D6h) Q0 Qu Q40 T0 Tu T40
6/m (C6h) Q0 Qu Q40 Gz Gα

z T0 Tu T40 Mz Mα
z

3̄m (D3d) Q0 Qu Q40, Q4b G3b T0 Tu T40, T4b M3b

3̄ (S6) Q0 Qu Q40, Gz Gα
z , T0 Tu T40, Mz Mα

z ,
Q4a, Q4b G3a, G3b T4a, T4b M3a, M3b

group operations. The type-(III) black-and-white point groups are classified into three
types according to the presence/absence of the P and PT symmetries. The first one is
the 10 black-and-white point groups with (P ,PT )=(⃝,×): m3̄m′, 4/mm′m′, 4′/mm′m,
4′/m, m′m′m, 2′/m′, 6/mm′m′, 6′/m′mm′, 6′/m′, and 3̄m′, where the even-parity E, ET,
M, and MT multipoles are active, as shown in Table 2.10. The second one is the 21
black-and-white point groups with (P ,PT )=(×,⃝): m′3̄′m′, m′3̄′m, m′3̄′, 4/m′m′m′,
4′/m′m′m, 4/m′mm, 4′/m′, 4/m′, m′m′m′, m′mm, 2′/m, 2/m′, 1̄′, 6/m′m′m′, 6′/mmm′,
6/m′mm, 6′/m, 6/m′, 3̄′m′, 3̄′m, and 3̄′, where the even-parity E and ET multipoles and
the odd-parity M and MT multipoles become active, as shown in Table 2.11. The last one
is the 27 black-and-white point groups with (P ,PT )=(×,×): 4′32′, 4̄′3m′, 42′2′, 4′22′,
4̄2′m′, 4̄′2m′, 4̄′2′m, 4m′m′, 4′m′m, 4′, 4̄′, 2′2′2, m′m′2, m′m2′, 2′, m′, 62′2′, 6′22′, 6̄m′2′,
6̄′m′2, 6̄′m2′, 6m′m′, 6′mm′, 6′, 6̄′, 32′, and 3m′. In this type of black-and-white point
groups, all types of the multipoles become active, as summarized in Table 2.12.

Let us remark on the active multipoles from the standpoint of the (magnetic) Laue
group, which has been often used for diffraction measurement. The even-parity E and
ET multipoles are well classified by 11 Laue groups: m3̄m, m3̄, 4/mmm, 4/m, mmm,
6/mmm, 6/m, 3̄m, 3̄, 2/m, and 1̄, whose correspondence to the magnetic point groups
is summarized in Table D.1 in Appendix D. Meanwhile, the even-parity M and MT
multipoles are well classified by 32 magnetic Laue groups: m3̄m1′, m3̄1′, 4/mmm1′,
4/m1′, mmm1′, 6/mmm1′, 6/m1′, 3̄m1′, 3̄1′, 2/m1′, 1̄1′, m3̄m, m3̄, 4/mmm, 4/m, mmm,
6/mmm, 6/m, 3̄m, 3̄, 2/m, 1̄, m3̄m′, 4/mm′m′, 4′/mm′m, 4′/m, m′m′m, 6/mm′m′,
6′/m′mm′, 6′/m′, 3̄m′, and 2′/m′. The correspondence between the magnetic Laue groups
and magnetic point groups is shown in Tables D.2 and D.3 in Appendix D.

Tables 2.6–2.12 are useful to identify the type of the ferroic states with arbitrary
multipole moments [137]. For example, the ferroelectric, ferromagnetic, ferrotoroidal, and
ferroaxial states correspond to the states with active E dipole Qi (i=x, y, z), M dipole
Mi, MT dipole Ti, and ET dipole Gi, respectively [138–143]. One can easily find all the
magnetic point groups to possess these active dipoles from Tables 2.6–2.12 as follows:
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Table 2.7: Active E, ET, MT, and M multipoles in the noncentrosymmetric crystallo-
graphic point groups. The triclinic point group 1 (C1), in which all the multipoles are
active, is omitted.

even-parity odd-parity even-parity odd-parity
E ET E ET MT M MT M

l=0 2 4 1 3 1 3 0 2 4 0 2 4 1 3 1 3 0 2 4
432 (O) Q0 Q4 G0 G4 T0 T4 M0 M4

4̄3m (Td) Q0 Q4 Qxyz T0 T4 Txyz
23 (T ) Q0 Q4 Gxyz Qxyz G0 G4 T0 T4 Mxyz Txyz M0 M4

422 (D4) Q0 Qu Q4 G0 Gu G4 T0 Tu T4 M0 Mu M4

Q4u G4u T4u M4u

4̄2m (D2d) Q0 Qu Q4 Qxyz Gv G4v T0 Tu T4 Txyz Mv M4v

Q4u T4u
4mm (C4v) Q0 Qu Q4 Qz Qα

z Gα
4z T0 Tu T4 Tz T α

z Mα
4z

Q4u T4u
4 (C4) Q0 Qu Q4 Gz Gα

z Qz Qα
z G0 Gu G4 T0 Tu T4 Mz Mα

z Tz T α
z M0 Mu M4

Q4u G4u T4u M4u

Qα
4z Gα

4z T α
4z Mα

4z

4̄ (S4) Q0 Qu Q4 Gz Gα
z Qxyz Gv G4v T0 Tu T4 Mz Mα

z Txyz Mv M4v

Q4u Qβ
z Gxy G

β
4z T4u T β

z Mxy Mβ
4z

Qα
4z T α

4z

222 (D2) Q0 Qu Q4 Gxyz Qxyz G0 Gu G4 T0 Tu T4 Mxyz Txyz M0 Mu M4

Qv Q4u Gv G4u Tv T4u Mv M4u

Q4v G4v T4v M4v

mm2 (C2v) Q0 Qu Q4 Gxyz Qz Qα
z Gxy G

α
4z T0 Tu T4 Mxyz Tz T α

z Mxy Mα
4z

Qv Q4u Qβ
z Gβ

4z Tv T4u T β
z Mβ

4z

Q4v T4v
2 (C2) Q0 Qu Q4 Gy Gxyz Qy Qxyz G0 Gu G4 T0 Tu T4 My Mxyz Ty Txyz M0 Mu M4

Qv Q4u Gα
y Qα

y Gv G4u Tv T4u Mα
y T α

y Mv M4u

Qzx Q4v Gβ
y Qβ

y Gzx G4v Tzx T4v Mβ
y T β

y Mzx M4v

Qα
4y Gα

4y T α
4y Mα

4y

Qβ
4y Gβ

4y T β
4y Mβ

4y

m (Cs) Q0 Qu Q4 Gy Gxyz Qz Qα
z Gxy G

α
4z T0 Tu T4 My Mxyz Tz T α

z Mxy Mα
4z

Qv Q4u Gα
y Qx Qα

x Gyz G
α
4x Tv T4u Mα

y Tx T α
x Myz Mα

4x

Qzx Q4v Gβ
y Qβ

z Gβ
4z Tzx T4v Mβ

y T β
z Mβ

4z

Qα
4y Qβ

x Gβ
4x T α

4y T β
x Mβ

4x

Qβ
4y T β

4y

622 (D6) Q0 Qu Q40 G0 Gu G40 T0 Tu T40 M0 Mu M40

6̄m2 (D3h) Q0 Qu Q40 Q3b G4b T0 Tu T40 T3b M4b

6mm (C6v) Q0 Qu Q40 Qz Qα
z T0 Tu T40 Tz T α

z

6 (C6) Q0 Qu Q40 Gz Gα
z Qz Qα

z G0 Gu G40 T0 Tu T40 Mz Mα
z Tz T α

z M0 Mu M40

6̄ (C3h) Q0 Qu Q40 Gz Gα
z Q3a G4a T0 Tu T40 Mz Mα

z T3a M4a

Q3b G4b T3b M4b

32 (D3) Q0 Qu Q40 G3b Q3b G0 Gu G40 T0 Tu T40 M3b T3b M0 Mu M40

Q4b G4b T4b M4b

3m (C3v) Q0 Qu Q40 G3b Qz Q3a G4a T0 Tu T40 M3b Tz T3a M4a

Q4b Qα
z T4b T α

z

3 (C3) Q0 Qu Q40 Gz G3a Qz Q3a G0 Gu G40 T0 Tu T40 Mz M3a Tz T3a M0 Mu M40

Q4a G3b Q3b G4a T4a M3b T3b M4a

Q4b Gα
z Qα

z G4b T4b Mα
z T α

z M4b

• E dipole:
4mm1′, 41′, mm21′, 6mm1′, 61′, 3m1′, 31′, 21′, m1′, 11′, 4mm, 4, mm2, 6mm, 6,
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Table 2.8: Active even-parity E and ET multipoles in the centrosymmetric gray point
groups. The triclinic point group 1̄1′, in which all the even-parity E and ET multipoles
are active, is omitted.

even-parity
E ET

l=0 2 4 1 3
m3̄m1′ Q0 Q4

m3̄1′ Q0 Q4 Gxyz

4/mmm1′ Q0 Qu Q4, Q4u

4/m1′ Q0 Qu Q4, Q4u, Q
α
4z Gz Gα

z

mmm1′ Q0 Qu, Qv Q4, Q4u, Q4v Gxyz

2/m1′ Q0 Qu, Qv, Qzx Q4, Q4u, Q4v, Q
α
4y, Q

β
4y Gy Gxyz, G

α
y , G

β
y

6/mmm1′ Q0 Qu Q40

6/m1′ Q0 Qu Q40 Gz Gα
z

3̄m1′ Q0 Qu Q40, Q4b G3b

3̄1′ Q0 Qu Q40, Q4a, Q4b Gz G3a, G3b, G
α
z

Table 2.9: Active E and ET multipoles in the noncentrosymmetric gray point groups.
The triclinic point group 11′, in which all the E and ET multipoles are active, is omitted.

even-parity odd-parity
E ET E ET

l=0 2 4 1 3 1 3 0 2 4
4321′ Q0 Q4 G0 G4

4̄3m1′ Q0 Q4 Qxyz

231′ Q0 Q4 Gxyz Qxyz G0 G4

4221′ Q0 Qu Q4, Q4u G0 Gu G4, G4u

4̄2m1′ Q0 Qu Q4, Q4u Qxyz Gv G4v

4mm1′ Q0 Qu Q4, Q4u Qz Qα
z Gα

4z

41′ Q0 Qu Q4, Q4u, Q
α
4z Gz Gα

z Qz Qα
z G0 Gu G4, G4u, G

α
4z

4̄1′ Q0 Qu Q4, Q4u, Q
α
4z Gz Gα

z Qxyz, Q
β
z Gv, Gxy G4v, G

β
4z

2221′ Q0 Qu, Qv Q4, Q4u, Q4v Gxyz Qxyz G0 Gu, Gv G4, G4u, G4v

mm21′ Q0 Qu, Qv Q4, Q4u, Q4v Gxyz Qz Qα
z , Q

β
z Gxy Gα

4z, G
β
4z

21′ Q0 Qu, Qv, Qzx Q4, Q4u, Q4v, Gy Gxyz, Qy Qxyz, G0 Gu, Gv, G4, G4u, G4v,

Qα
4y, Q

β
4y Gα

y , G
β
y Qα

y , Q
β
y Gzx Gα

4y, G
β
4y

m1′ Q0 Qu, Qv, Qzx Q4, Q4u, Q4v, Gy Gxyz, Qz, Qx Qα
z , Q

α
x , Gxy, Gyz Gα

4z, G
α
4x,

Qα
4y, Q

β
4y Gα

y , G
β
y Qβ

z , Q
β
x Gβ

4z, G
β
4x

6221′ Q0 Qu Q40 G0 Gu G40

6̄m21′ Q0 Qu Q40 Q3b G4b

6mm1′ Q0 Qu Q40 Qz Qα
z

61′ Q0 Qu Q40 Gz Gα
z Qz Qα

z G0 Gu G40

6̄1′ Q0 Qu Q40 Gz Gα
z Q3a, Q3b G4a, G4b

321′ Q0 Qu Q40, Q4b G3b Q3b G0 Gu G40, G4b

3m1′ Q0 Qu Q40, Q4b G3b Qz Q3a, Q
α
z G4a

31′ Q0 Qu Q40, Q4a, Q4b Gz G3a, G3b, G
α
z Qz Q3a, Q3b, Q

α
z G0 Gu G40, G4a, G4b

3m, 3, 2, m, 1, 4m′m′, 4′m′m, 4′, m′m′2, m′m2′, 6m′m′, 6′mm′, 6′, 3m′, 2′, m′,

• M dipole:
4/m, 4̄, 4, 6/m, 6̄, 6, 3̄, 3, 1̄, 1, 2/m, 2, m, 4/mm′m′, 42′2′, 4m′m′, 4̄2′m′, m′m′m,
2′2′2, m′m′2, m′m2′, 6/mm′m′, 62′2′, 6m′m′, 6̄m′2′, 3̄m′, 3m′, 32′, 2′/m′, 2′, m′,
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Table 2.10: Active even-parity E, ET, MT, and M multipoles in the centrosymmetric
black-and-white point groups.

even-parity even-parity
E ET MT M

l=0 2 4 1 3 0 2 4 1 3
m3̄m′ Q0 Q4 Mxyz

4/mm′m′ Q0 Qu Q4, Q4u T α
4z Mz Mα

z

4′/mmm′ Q0 Qu Q4, Q4u Tv T4v Mxyz

4′/m Q0 Qu Q4, Q4u, Q
α
4z Gz Gα

z Tv, Txy T4v, T
β
4z Mxyz, M

β
z

m′m′m Q0 Qu, Qv Q4, Q4u, Q4v Gxyz Txy T α
4z, T

β
4z Mz Mα

z , M
β
z

2′/m′ Q0 Qu, Qv, Qzx Q4, Q4u, Q4v, Gy Gxyz, Txy, Tyz T α
4z, T

α
4x, Mz, Mx Mα

z , M
α
x ,

Qα
4y, Q

β
4y Gα

y , G
β
y T β

4z, T
β
4x Mβ

z , M
β
x

6/mm′m′ Q0 Qu Q40 Mz Mα
z

6′/m′mm′ Q0 Qu Q40 T4a M3a

6′/m′ Q0 Qu Q40 Gz Gα
z T4a, T4b M3a, M3b

3̄m′ Q0 Qu Q40, Q4b G3b T4a Mz M3a, M
α
z

• MT dipole:
4mm, 4, mm2, 6mm, 6, 3m, 3, 2, m, 1, 4/m′mm, 4/m′, mmm′, 6/m′mm, 6/m′,
3̄′m, 3̄′, 2′/m, 2/m′, 1̄′, 42′2′, 4̄′2′m, 4̄′, 2′2′2, m′m2′, 62′2′, 6̄′m2′, 6̄′, 32′, m′, 2′,

• ET dipole:
4/m1′, 41′, 4̄1′, 6/m1′, 61′, 6̄1′, 3̄1′, 31′, 2/m1′, 21′, m1′, 1̄1′, 11′, 4/m, 4, 4̄, 6/m,
6, 6̄, 3̄, 3, 2/m, 2, m, 1̄, 1, 4′/m′, 4/m′, 4′/m, 4′, 4̄′, 6′/m′, 6/m′, 6′/m, 6′, 6̄′, 3̄′,
2′/m′, 2/m′, 2′/m, 2′, m′, 1̄′.

The above example means that our multipole classification includes the previous clas-
sification for the ferroelectric, ferromagnetic, ferrotoroidal, and ferroaxial states based
on the symmetry analyses [95, 141, 144–146]. Furthermore, Tables 2.6–2.12 unveil un-
conventional order parameters other than the dipoles, e.g., E/M/MT/ET quadrupoles
and octupoles. Thus, the present classification gives a complete guide to systematically
identifying the electronic order parameters.

Tables 2.6–2.12 also enable us to understand a clue of multiferroic phenomena through
the couplings between the multipoles at the microscopic level. Let us take an example of
the cubic crystal withm3̄m1′ symmetry, where the E monopole Q0 and E hexadecapole Q4

are active up to rank 4 as shown in Table 2.8. Once the spontaneous symmetry breaking
to m′3̄′m′ occurs, M monopole M0 and M hexadecapole M4 are additionally activated as
shown in Table 2.11. In such a situation, there are additional contributions including M0

and M4 to the free energy in the form of the multipole coupling between (Q0, Q4) and
(M0,M4). Similarly, one can always perform the Landau free energy expansion in terms
of any multipole order parameters systematically by using Tables 2.6–2.12 [11, 13].

Moreover, one can immediately find the additional active multipoles induced by ex-
ternal fields like electric and magnetic fields. For example, when the symmetry is lowered
from m′3̄′m′ to 4m′m′ under the magnetic field along the z axis, Hz, the additional active
multipoles up to rank 4 are represented by Qz, Qu, Q

α
z , Q4u, G

α
4z,Mz,Mu,M

α
z ,M4u, and

T α
4z, as shown in Table 2.12. Then, there are the additional multipole couplings, which

become the source of the field-induced multiferroic phenomena. For example, since Qz

and Qu, which correspond to the electric polarization Pz and the (3z2−r2)-type symmet-

35



2.5. FIELD RESPONSES

Table 2.11: Active even-parity E and ET multipoles and odd-parity MT and Mmultipoles
in the noncentrosymmetric black-and-white point groups with the PT symmetry. The
triclinic point group 1̄′ is omitted, where all the even-parity E and ET multipoles and
odd-parity MT and M multipoles are active.

even-parity odd-parity
E ET MT M

l=0 2 4 1 3 1 3 0 2 4
m′3̄′m′ Q0 Q4 M0 M4

m′3̄′m Q0 Q4 Txyz
m′3̄′ Q0 Q4 Gzyz Txyz M0 M4

4/m′m′m′ Q0 Qu Q4, Q4u M0 Mu M4, M4u

4′/m′m′m Q0 Qu Q4, Q4u Txyz Mv M4v

4/m′mm Q0 Qu Q4, Q4u Tz T α
z Mα

4z

4′/m′ Q0 Qu Q4, Q4u, Gz Gα
z Txyz, T

β
z Mv, Mxy M4v, M

β
4z

Qα
4z

4/m′ Q0 Qu Q4, Q4u, Gz Gα
z Tz T α

z M0 Mu M4, M4u,
Qα

4z Mα
4z

mmm′ Q0 Qu, Qv Q4, Q4u, Gxyz Tz T α
z , T

β
z Mxy Mα

4z, M
β
4z

Q4v

m′m′m′ Q0 Qu, Qv Q4, Q4u, Gxyz Txyz M0 Mu, Mv M4, M4u,
Q4v M4v

2′/m Q0 Qu, Qv, Q4, Gy Gxyz, Tz, Tx T α
z , T

α
x , Mxy, Myz Mα

4z, M
α
4x,

Qzx Q4u, Q4v, Gα
y , G

β
y T β

z , T
β
x Mβ

4z, M
β
4x

Qα
4y, Q

β
4y

2/m′ Q0 Qu, Qv, Q4, Gy Gxyz, Ty Txyz, M0 Mu, Mv, M4,
Qzx Q4u, Q4v, Gα

y , G
β
y T α

y , T
β
y Mzx M4u, M4v,

Qα
4y, Q

β
4y Mα

4y, M
β
4y

6/m′m′m′ Q0 Qu Q40 M0 Mu M40

6′/mmm′ Q0 Qu Q40 T3b M4b

6/m′mm Q0 Qu Q40 Tz T α
z

6′/m Q0 Qu Q40 Gz Gα
z T3a, T3b M4a, M4b

6/m′ Q0 Qu Q40 Gz Gα
z Tz T α

z M0 Mu M40

3̄′m′ Q0 Qu Q40, Q4b G3b T3b M0 Mu M40, M4b

3̄′m Q0 Qu Q40, Q4b G3b Tz T3a, T
α
z M4a

3̄′ Q0 Qu Q40, Gz Gα
z , Tz T α

z , M0 Mu M40,
Q4a, Q4b G3a, G3b T3a, T3b M4a, M4b

ric strain εu, respectively, become active, one expects that the magnetoelectric coupling
HzPz and magnetoelastic coupling Hzεu appear in the free energy expansion.

In addition, our result can be used when constructing the so-called hyperfine coupling
to investigate the field dependence of NQR/NMR spectra, which will be discussed in
Sec. 4.6 [147]. Besides, such multipole couplings in each magnetic point group are also
related to the band modulations [37, 41, 42, 88] and field responses [39, 40, 148].

2.5 Field Responses

According to Neumann’s principle, macroscopic physical responses are determined by the
crystallographic point group symmetry [96, 97]. This statement is generalized to magnetic
point groups; macroscopic responses in magnets, such as the linear magnetoelectric effect,
the Hall effect, and the nonlinear transport, are determined by the magnetic point group
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Table 2.12: Active multipoles in the noncentrosymmetric black-and-white point groups
without the PT symmetry.

even-parity odd-parity even-parity odd-parity
E ET E ET MT M MT M

l=0 2 4 1 3 1 3 0 2 4 0 2 4 1 3 1 3 0 2 4
4̄′3m′ Q0 Q4 Qxyz Mxyz M0 M4

4′32′ Q0 Q4 G0 G4 Mxyz Txyz
42′2′ Q0 Qu Q4 G0 Gu G4 T α

4z Mz Mα
z Tz T α

z Mα
4z

Q4u G4u

4′22′ Q0 Qu Q4 G0 Gu G4 Tv T4v Mxyz Txyz Mv M4v

Q4u G4u

4̄2′m′ Q0 Qu Q4 Qxyz Gv G4v T α
4z Mz Mα

z T β
z Mxy Mβ

4z

Q4u

4̄′2m′ Q0 Qu Q4 Qxyz Gv G4v Tv T4v Mxyz M0 Mu M4

Q4u M4u

4̄′m2′ Q0 Qu Q4 Qβ
z Gxy Gβ

4z Tv T4v Mxyz Tz T α
z Mα

4z

Q4u

4m′m′ Q0 Qu Q4 Qz Qα
z Gα

4z T α
4z Mz Mα

z M0 Mu M4

Q4u M4u

4′mm′ Q0 Qu Q4 Qz Qα
z Gα

4z Tv T4v Mxyz T β
z Mxy Mβ

4z

Q4u

4′ Q0 Qu Q4 Gz Gα
z Qz Qα

z G0 Gu G4 Tv T4v Mxyz Txyz Mv M4v

Q4u G4u Txy T
β
4z Mβ

z T β
z Mxy Mβ

4z

Qα
4z Gα

4z

4̄′ Q0 Qu Q4 Gz Gα
z Qxyz Gv G4v Tv T4v Mxyz Tz T α

z M0 Mu M4

Q4u Qβ
z Gxy Gβ

4z Txy T
β
4z Mβ

z M4u

Qα
4z Mα

4z

2′2′2 Q0 Qu Q4 Gxyz Qxyz G0 Gu G4 Txy T
α
4z Mz Mα

z Tz T α
z Mxy Mα

4z

Qv Q4u Gv G4u T β
4z Mβ

z T β
z Mβ

4z

Q4v G4v

m′m2′ Q0 Qu Q4 Gxyz Qz Qα
z Gxy Gα

4z Tzx T
α
4y My Mα

y Tx T α
x Myz Mα

4x

Qv Q4u Qβ
z Gβ

4z T β
4y Mβ

y T β
x Mβ

4x

Q4v

m′m′2 Q0 Qu Q4 Gxyz Qz Qα
z Gxy Gα

4z Txy T
α
4z Mz Mα

z Txyz M0 Mu M4

Qv Q4u Qβ
z Gβ

4z T β
4z Mβ

z Mv M4u

Q4v M4v

m′ Q0 Qu Q4 Gy Gxyz Qz Qα
z Gxy Gα

4z Txy T
α
4z Mz Mα

z Ty Txyz M0 Mu M4

Qv Q4u Gα
y Qx Qα

x Gyz Gα
4x Tyz T

α
4x Mx Mα

x T α
y Mv M4u

Qzx Q4v Gβ
y Qβ

z Gβ
4z T β

4z Mβ
z T β

y Mzx M4v

Qα
4y, Q

β
4y Qβ

x Gβ
4x T β

4x Mβ
x Mα

4y, M
β
4y

2′ Q0 Qu Q4 Gy Gxyz Qy Qxyz G0 Gu G4 Txy T
α
4z Mz Mα

z Tz T α
z Mxy Mα

4z

Qv Q4u Gα
y Qα

y Gv G4u Tyz T
α
4x Mx Mα

x Tx T α
x Myz Mα

4x

Qzx Q4v Gβ
y Qβ

y Gzx G4v T β
4z Mβ

z T β
z Mβ

4z

Qα
4y, Q

β
4y Gα

4y, G
β
4y T β

4x Mβ
x T β

x Mβ
4x

62′2′ Q0 Qu Q40 G0 Gu G40 Mz Mα
z Tz T α

z

6′22′ Q0 Qu Q40 G0 Gu G40 T4a M3a T3a M4a

6̄m′2′ Q0 Qu Q40 Q3b G4b Mz Mα
z T3a M4a

6̄′m′2 Q0 Qu Q40 Q3b G4b T4b M3b M0 Mu M40

6̄′m2′ Q0 Qu Q40 Q3b G4b T4a M3a Tz T α
z

6m′m′ Q0 Qu Q40 Qz Qα
z Mz Mα

z M0 Mu M40

6′mm′ Q0 Qu Q40 Qz Qα
z T4a M3a T3b M4b

6′ Q0 Qu Q40 Gz Gα
z Qz Qα

z G0 Gu G40 T4a M3a T3a M4a

T4b M3b T3b M4b

6̄′ Q0 Qu Q40 Gz Gα
z Q3a G4a T4a M3a Tz T α

z M0 Mu M40

Q3b G4b T4b M3b

3m′ Q0 Qu Q40 G3b Qz Q3a G4a T4a Mz M3a T3b M0 Mu M40

Q4b Qα
z Mα

z M4b

32′ Q0 Qu Q40 G3b Q3b G0 Gu G40 T4a Mz M3a Tz T3a M4a

Q4b G4b Mα
z T α

z
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symmetry [92–95, 149–159].
In this section, we present a relation between the physical response tensors and active

multipoles in magnetic point groups toward the understanding of the microscopic essence
in addition to the symmetry for the responses in the magnetic materials [148]. In the
following in this section, we first show the symmetry analysis of the response tensors
and the relation to multipoles in Sec. 2.5.1. Then, we discuss the role of the antiunitary
operation on the response function and how it relates the active multipoles by analyzing
the linear and second-order nonlinear Kubo formula in Secs. 2.5.2 and 2.5.3, respectively.

2.5.1 Tensor Analysis

We show the relation between the response tensor components and multipoles based on
the point group symmetry. The response tensor χ[nB×nF ] is defined as

B[nB ]=χ[nB×nF ]F [nF ], (2.22)

where B[nB ] and F [nF ] are the rank-nB output response and the rank-nF external in-
put field, respectively, which are typically represented by the electric, magnetic, elas-
tic, and their product degrees of freedom. For example, F [nF ] represents the electric
field E, the magnetic field H , the (symmetric) stress τ and their combination, while
B[nB ] represents the electric polarization P , the magnetization M , the symmetric strain
εij=(∂iuj+∂jui)/2, and the rotation ω=(∇×u)/2 where u is the displacement vector3.
B[nB ] also represents quantities for the transport phenomena, such as the electric (thermal)
current J (JQ) and the spin current J s

ij=σiJj. Each external field and response have the
correspondence to the multipoles, e.g., electric field E ↔ E dipole and symmetric strain
ε↔ E monopole and E quadrupole. The relation between the input field/output response
and multipoles is summarized in Table 2.13, where the upper (lower) panel stands for the
correspondence between the external field (response) and multipole.

In accordance with the spatial inversion parities of B[nB ] and F [nF ], χ[nB×nF ] represents
a polar or axial tensor; χ[nB×nF ] is the polar (axial) tensor with the parity

P=(−1)nB+nF [P=(−1)nB+nF+1]. (2.23)

In the following, we show the correspondence between multipoles and rank-1–4 tensor
components in Secs. 2.5.1–2.5.1, respectively. See also Appendix E for details of the
derivation. Here, we mainly focus on the response tensors in cubic, tetragonal, orthorhom-
bic, monoclinic, and triclinic systems, and show those in hexagonal and trigonal systems
in Appendix E.2.

Rank-1 tensor

The rank-1 response tensor χ[0×1] for the scalar response B[0]=(B) with nB=0 and vector
field F [1]=(Fx, Fy, Fz) with nF=1 is related with the dipole (Xx, Xy, Xz) as

χ[0×1]=
(
Xx Xy Xz

)
, (2.24)

3It is noted that ω in the long-wavelength limit does not contribute to the free energy, since it
corresponds to a uniform rotation of the crystal.
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Table 2.13: Correspondence of the external fields and the responses to the multipoles. The
spatial inversion parity of the external field or the response is shown in the column of P .
In the column of multipole, Xlm (l=0, 1, 2) means the rank-l multipole (X=Q,G,M, T ).

nF P external field multipole
1 + magnetic field H M dipole (M1m)

− electric field E E dipole (Q1m)
2 + (symmetric) stress τ E monopole (Q0)

E quadrupole (Q2m)
nB response
1 + magnetization M M dipole (M1m)

rotation ω ET dipole (G1m)
− electric polarization P E dipole (Q1m)

electric (thermal) current J(JQ) MT dipole (T1m)
2 + symmetric strain ε E monopole (Q0)

E quadrupole (Q2m)
− spin current J s ET monopole (G0)

E dipole (Q1m)
ET quadrupole (G2m)

whereX stands for the polar multipoles (Q or T ) [axial multipoles (G orM)] when χ[0×1] is

the polar (axial) tensor. The dipoles Xx, Xy, and Xz in Eq. (2.24) isXi=χ
[0×1]
0;i (i=x, y, z).

The response tensor χ[1×0] is obtained by transposing χ[0×1], which is expressed by the
same type of multipole as χ[0×1].

The electrocaloric (magnetocaloric) effect where the entropy variation ∆S is induced
by the electric field (the magnetic field) as ∆S=

∑
i piEi (∆S=

∑
i qiHi), is described by

one of the rank-1 polar (axial) response tensors. As ∆S corresponds to E monopole (Q0),
the tensor component of pi (qi) is described by the E dipole (Qx, Qy, Qz) or MT dipole
(Tx, Ty, Tz) [the ET dipole (Gx, Gy, Gz) or M dipole (Mx,My,Mz)]. Here and hereafter
in Sec. 2.5.1, we do not distinguish the multipoles with the opposite time-reversal parity
for simplicity, which depends on the microscopic process in the presence/absence of the
dissipation, which will be discussed in Secs. 2.5.2 and 2.5.3.

Rank-2 tensor

We consider two types of rank-2 tensors, χ[1×1] and χ[0×2]. χ[1×1] is the response tensor
for B[1]=(Bx, By, Bz) and F

[1]=(Fx, Fy, Fz), which is related to the rank-0 to 2 multipoles
as monopole X0, dipole (Yx, Yy, Yz), and quadrupole (Xu, Xv, Xyz, Xzx, Xxy). The tensor
component of χ[1×1] is given by

χ[1×1]=

X0−Xu+Xv Xxy+Yz Xzx−Yy
Xxy−Yz X0−Xu−Xv Xyz+Yx
Xzx+Yy Xyz−Yx X0+2Xu

 , (2.25)

where X=Q or T (G orM) and Y =G orM (Q or T ) for the polar (axial) tensor. See also
Appendix E.1.1 for details. When χ[1×1] is a polar tensor, such as the magnetic suscepti-
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bility tensor for F [1]=H and B[1]=M , the dielectric susceptibility tensor for F [1]=E and
B[1]=P , and the electric conductivity tensor for F [1]=E and B[1]=J , the corresponding
multipoles are the E (MT) monopole and E (MT) quadrupoles for X and ET (M) dipoles
for Y . Meanwhile, when χ[1×1] is an axial tensor, such as the magnetoelectric tensor
for F [1]=E and B[1]=M or F [1]=H and B[1]=P , the ET (M) monopole and ET (M)
quadrupoles for X and E (MT) dipoles for Y are relevant.

χ[0×2] is another rank-2 tensor for B[0]=(B) and F [2]=(Fxx, Fyy, Fzz, Fyz, Fzx, Fxy)
where Fij=Fji. As F [2] is decomposed into the monopole and quadrupole components,
the tensor component of χ[0×2] is given by

χ[0×2]=


X0−Xu+Xv

X0−Xu−Xv

X0+2Xu

Xyz

Xzx

Xxy



T

. (2.26)

Thus, the active monopole and quadrupole contribute to χ[0×2]. See Appendix E.1.2
for details. For example, the piezocaloric tensor for F [2]=τ and B[0]=∆S corresponds to
χ[0×2], where the E (MT) monopole and quadrupole are relevant. The multipole expression
of χ[2×0] is obtained by transposing χ[0×2].

Rank-3 tensor

We consider two types of rank-3 tensors, χ[1×2] and χ[0×3]. χ[1×2] is the rank-3 tensor
for B[1]=(Bx, By, Bz) and F

[2]=(Fxx, Fyy, Fzz, Fyz, Fzx, Fxy), which is expressed by dipole
(Xx, Xy, Xz), quadrupole (Yu, Yv, Yyz, Yzx, Yxy), and octupole (Xxyz, X

α
x , X

α
y , X

α
z , X

β
x , X

β
y , X

β
z )

as

χ[1×2]=


3Xx+2Xα

x 2(X ′
y−Yzx)+Xy−Xα

y −Xβ
y 2(X ′

z+Yxy)+Xz−Xα
z +X

β
z

2(X ′
x+Yyz)+Xx−Xα

x +X
β
x 3Xy+2Xα

y 2(X ′
z−Yxy)+Xz−Xα

z −Xβ
z

2(X ′
x−Yyz)+Xx−Xα

x −Xβ
x 2(X ′

y+Yzx)+Xy−Xα
y +X

β
y 3Xz+2Xα

z

Yu+Yv+Xxyz −X ′
z+Yxy+Xz−Xα

z −Xβ
z −X ′

y−Yzx+Xy−Xα
y +X

β
y

−X ′
z−Yxy+Xz−Xα

z +X
β
z −Yu+Yv+Xxyz −X ′

x+Yyz+Xx−Xα
x −Xβ

x

−X ′
y+Yzx+Xy−Xα

y −Xβ
y −X ′

x−Yyz+Xx−Xα
x +X

β
x −2Yv+Xxyz



T

.

(2.27)

It is noted that both Xi and X
′
i (i=x, y, z) stand for the dipole but they are independent

with each other. See Appendix E.1.3 for details. χ[1×2] is polar for the piezoelectric tensor
(F [2]=τ , B[1]=P ) and second-order nonlinear conductivity (F

[2]
ij =EiEj, B

[1]=J) where

X=Q or T and Y =G or M , while it is axial for the piezomagnetic tensor (F [2]=τ , B[1]=
M ) where X=G or M and Y =Q or T . The multipole expression of the tensor χ[2×1],
e.g., the spin conductivity tensor (F [1]=E, B[2]=J s), is obtained by transposing χ[1×2].

χ[0×3] is another rank-3 response tensor for the rank-0 response B[0]=(B) and rank-
3 field F [3]=(Fxxx, Fyyy, Fzzz, Fyyz, Fzzx, Fxxy, Fyzz, Fzxx, Fxyy, Fxyz) where Fijk=Fjik=Fikj .
As F [3] itself is decomposed into the dipole and octupole components, χ[0×3] is also related
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to them, which is shown as

χ[0×3]=



3Xx+2Xα
x

3Xy+2Xα
y

3Xz+2Xα
z

Xz−Xα
z −Xβ

z

Xx−Xα
x −Xβ

x

Xy−Xα
y −Xβ

y

Xy−Xα
y +X

β
y

Xz−Xα
z +X

β
z

Xx−Xα
x +X

β
x

Xxyz



T

. (2.28)

See Appendix E.1.4 for details. χ[0×3], such as the third-order electrocaloric effect, is
relevant with X=Q or T (G or M) for the polar (axial) tensor. The multipole expression
of χ[3×0] is obtained by transposing χ[0×3].

Rank-4 tensor

We consider two types of rank-4 tensors, χ[1×3] and χ[2×2]. χ[1×3] is the rank-4 response ten-
sor for B[1]=(Bx, By, Bz) and F

[3]=(Fxxx, Fyyy, Fzzz, Fyyz, Fzzx, Fxxy, Fyzz, Fzxx, Fxyy, Fxyz)
where Fijk=Fjik=Fikj . The relevant multipoles are ones with rank 0–4: monopole X0,
dipole (Yx, Yy, Yz), quadrupole (Xu, Xv, Xyz, Xzx, Xxy), octupole (Yxyz, Y

α
x , Y

α
y , Y

α
z , Y

β
x , Y

β
y , Y

β
z ),

and hexadecapole (X4, X4u, X4v, X
α
4x, X

α
4y, X

α
4z, X

β
4x, X

β
4y, X

β
4z). The tensor component of

χ[1×3] is given by

χ[1×3]=

3(X0−X̃u+X̃v)+2X4−X4u+X4v 3(−Yz−X̃xy+Y α
z −Y β

z )+Xα
4z−Xβ

4z 3(Yy−X̃zx−Y α
y −Y β

y )−Xα
4y−Xβ

4y

3(Yz−X̃xy−Y α
z −Y β

z )−Xα
4z−Xβ

4z 3(X0−X̃u−X̃v)+2X4−X4u−X4v 3(−Yx−X̃yz+Y α
x −Y β

x )+Xα
4x−Xβ

4x

3(−Yy−X̃zx+Y α
y −Y β

y )+Xα
4y−Xβ

4y 3(Yx−X̃yz−Y α
x −Y β

x )−Xα
4x−Xβ

4x 3(X0+2X̃u)+2X4+2X4u

−Yy−X̃zx−4Y α
y +2Y β

y +2Xβ
4y Yx+X̃ ′

yz−Y α
x +Y β

x +Xα
4x−Xβ

4x X0+X̃ ′′
u−5Xv−Yxyz−X4−X4u+X4v

X0+X̃ ′
u−X̃ ′

v−Yxyz−X4−X4u−X4v −Yz−X̃xy−4Y α
z +2Y β

z +2Xβ
4z Yy+X̃ ′

zx−Y α
y +Y β

y +Xα
4y−Xβ

4y

Yz+X̃ ′
xy−Y α

z +Y β
z +Xα

4z−Xβ
4z X0−X̃u+X̃ ′′

v−Yxyz−X4+2X4u −Yx−X̃yz−4Y α
x +2Y β

x +2Xβ
4x

Yz−X̃xy+4Y α
z +2Y β

z +2Xβ
4z X0+X̃ ′

u+X̃ ′
v+Yxyz−X4−X4u+X4v −Yx+X̃ ′

yz+Y α
x +Y β

x −Xα
4x−Xβ

4x

−Yy+X̃ ′
zx+Y α

y +Y β
y −Xα

4y−Xβ
4y Yx−X̃yz+4Y α

x +2Y β
x +2Xβ

4x X0+X̃ ′′
u+5Xv+Yxyz−X4−X4u−X4v

X0−X̃u−X̃ ′′
v+Yxyz−X4+2X4u −Yz+X̃ ′

xy+Y α
z +Y β

z −Xα
4z−Xβ

4z Yy−X̃zx+4Y α
y +2Y β

y +2Xβ
4y

5Xyz−2Y β
x +2Xβ

4x 5Xzx−2Y β
y +2Xβ

4y 5Xxy−2Y β
z +2Xβ

4z



T

.

(2.29)

Note that (X̃u, X̃
′
u, X̃

′′
u), (X̃v, X̃

′
v, X̃

′′
v ), and (X̃yz, X̃

′
yz) (cyclic) are introduced to express

the two independent quadrupoles. See Appendix E.1.5 for details. χ[1×3] corresponds to
the response tensors, such as the third-order nonlinear electric conductivity. The relevant
multipoles are X=Q or T and Y =G or M for the polar tensor, while those are X=G or
M and Y =Q or T for the axial tensor. The multipole expression of χ[3×1] is obtained by
transposing χ[1×3].

χ[2×2] is another rank-4 tensor for B[2]=(Bxx, Byy, Bzz, Byz, Bzx, Bxy) where Bij=Bji

and F [2]=(Fxx, Fyy, Fzz, Fyz, Fzx, Fxy) where Fij=Fji. The tensor component of χ[2×2] is
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related to the rank 0–4 multipoles, which is given by

χ[2×2]=

(
χll χlt

χtl χtt

)
, (2.30)

χll= X̃0+X̃u+X̃v+2X4−X4u+X4v X̃ ′
0+X̃ ′

u−2X
(−)
v +Xxyz−X4+2X4u X̃ ′

0+X̃
(+)
u +X̃

(−)
v −Xxyz−X4uv+

X̃ ′
0+X̃ ′

u+2X
(−)
v −Xxyz−X4+2X4u X̃0+X̃u−X̃v+2X4−X4u−X4v X̃ ′

0+X̃
(+)
u −X̃

(−)
v +Xxyz−X4uv−

X̃ ′
0+X̃

(−)
u +X̃

(+)
v +Xxyz−X4uv+ X̃ ′

0+X̃
(−)
u −X̃

(+)
v −Xxyz−X4uv− X̃0−2X̃u+2X4+2X4u

 ,

(2.31)

χlt= X̃
(+)
yz −2Y β

x +2Xβ
4x −2Yy+X̃

′(+)
zx +Y α

y +Y β
y −Xα

4y−Xβ
4y 2Yz+X̃

′(+)
xy −Y α

z +Y β
z +Xα

4z−Xβ
4z

2Yx+X̃
′(+)
yz −Y α

x +Y β
x +Xα

4x−Xβ
4x X̃

(+)
zx −2Y β

y +2Xβ
4y −2Yz+X̃

′(+)
xy +Y α

z +Y β
z −Xα

4z−Xβ
4z

−2Yx+X̃
′(+)
yz +Y α

x +Y β
x −Xα

4x−Xβ
4x 2Yy+X̃

′(+)
zx −Y α

y +Y β
y +Xα

4y−Xβ
4y X̃

(+)
xy −2Y β

z +2Xβ
4z

 ,

(2.32)

χtl= X̃
(−)
yz +2Y β

x +2Xβ
4x −2Yx+X̃

′(−)
yz +Y α

x −Y β
x +Xα

4x−Xβ
4x 2Yx+X̃

′(−)
yz −Y α

x −Y β
x −Xα

4x−Xβ
4x

2Yy+X̃
′(−)
zx −Y α

y −Y β
y −Xα

4y−Xβ
4y X̃

(−)
zx +2Y β

y +2Xβ
4y −2Yy+X̃

′(−)
zx +Y α

y −Y β
y +Xα

4y−Xβ
4y

−2Yz+X̃
′(−)
xy +Y α

z −Y β
z +Xα

4z−Xβ
4z 2Yz+X̃

′(−)
xy −Y α

z −Y β
z −Xα

4z−Xβ
4z X̃

(−)
xy +2Y β

z +2Xβ
4z

 ,

(2.33)

χtt=

3X0+3Xu−3Xv−X4uv− −Yz+3Xxy−2Y α
z +2Xβ

4z Yy+3Xzx+2Y α
y +2Xβ

4y

Yz+3Xxy+2Y α
z +2Xβ

4z 3X0+3Xu+3Xv−X4uv+ −Yx+3Xyz−2Y α
x +2Xβ

4x

−Yy+3Xzx−2Y α
y +2Xβ

4y Yx+3Xyz+2Y α
x +2Xβ

4x 3X0−6Xu−X4+2X4u

 , (2.34)

where X4uv±=X4+X4u±X4v. We also introduce (X̃0, X̃
′
0), (X̃u, X̃

(±)
u , X̃ ′

u), (X̃v, X̃
(±)
v ),

and (X̃
(±)
yz , X̃

′(±)
yz ) (cyclic) for notational simplicity. See Appendix E.1.6 for details. χ[2×2]

represents the rank-4 tensor, such as the elastic stiffness tensor and magneto-Seebeck
tensor, which is related to the multipoles X=Q or T and Y =G or M for the polar tensor
and to X=G or M and Y =Q or T for the axial tensor.

2.5.2 Linear Response Function

The multipoles with the opposite time-reversal parities, E and MT (ET and M), are
not completely distinguished by the above analyses based on the point group symmetry.
For the equilibrium physical properties, the relation between the time-reversal parities
of the response tensor and corresponding multipoles are determined by the time-reversal
parities of the input field and output response [92, 93], e.g., the linear magnetoelectric
tensor in an insulator is the time-reversal odd tensor with the relation to the M and
MT multipoles. Meanwhile, the restriction for the transport tensor by the time-reversal
symmetry is not so simple as mentioned in Sec. 1.5 and has been investigated by using the
Onsager’s reciprocal relations [149, 153, 154] and the Kubo formula [150, 156–158]; the
time-reversal property of the transport tensor is determined by the microscopic dissipation
processes. Thus, we demonstrate the relation of the multipoles and response tensors by
considering the dissipation processes based on the Kubo formula [38, 39].
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When we consider the external perturbation Hamiltonian Hext=−
∑

j ÂjFj(t), where

Fj(t)=
∫∞
−∞

dω
2π
Fj,ωe

−iωt+δt is the jth component of an external field for δ>0, the linear
complex susceptibility χi;j(ω) satisfies the relation

⟨B̂i,ω⟩=
∫ ∞

−∞

dω′

2π
δ(ω−ω′)χi;j(ω

′)Fj,ω′ . (2.35)

⟨B̂i,ω⟩ is the expectation value of the ω component of B̂i. Considering the uniform external
field with the wave vector q→0, and then taking the static limit ω→0, the linear response
function for the periodic system is represented as

χi;j≡χi;j(ω→0)

=− iℏ
V

∑
knm

f [εn(k)]−f [εm(k)]
εn(k)−εm(k)

Bnm
ik Ȧmn

jk

iℏδ+εn(k)−εm(k)
, (2.36)

where Ȧ=dA/dt. Xnm
k ≡⟨nk|X̂|mk⟩ is the matrix element between the Bloch states |nk⟩

and |mk⟩ with the band indices n and m, respectively, and the wave vector k. f [εn(k)]
is the Fermi distribution function with the eigenenergy εn(k) of the eigenstate |nk⟩. V ,
ℏ, and δ are the system volume, the reduced Planck constant, and the broadening factor,
respectively. We here assume the relaxation-time approximation and mimic the constant
1/δ as the relaxation time. χi;j can be decomposed as

χi;j=χ
(J)
i;j +χ

(E)
i;j , (2.37)

χ
(J)
i;j =−ℏ2δ

V

∑
knm

f [εn(k)]−f [εm(k)]
εn(k)−εm(k)

Bnm
ik Ȧmn

jk

(ℏδ)2+[εn(k)−εm(k)]2
, (2.38)

χ
(E)
i;j =− iℏ

V

̸=∑
knm

f [εn(k)]−f [εm(k)]
(ℏδ)2+[εn(k)−εm(k)]2

Bnm
ik Ȧmn

jk , (2.39)

where χ
(J)
i;j includes the intraband (dissipative) contribution proportional to 1/δ, while

χ
(E)
i;j is the interband (nondissipative) one, which remains finite in the clean limit of δ→0.

χ(J) and χ(E) have the opposite time-reversal property [38, 39]. When the time-reversal
symmetry is preserved, they are transformed as

χ
(J)
i;j =−tBi

tAj
χ
(J)
i;j , χ

(E)
i;j =tBi

tAj
χ
(E)
i;j , (2.40)

where Xnm
k =tXX

m̄n̄
−k for tX=±1 (X=Aj, Bi). The n̄th band stands for the time-reversal

partner of the nth band. Equation (2.40) means that χ
(J)
i;j [χ

(E)
i;j ] can be finite when

tBi
tAj

=−1(+1). In other words, χ
(J)
i;j [χ

(E)
i;j ] becomes nonzero when the M and MT (E and

ET) multipoles are active for tBi
tAj

=+1, while χ
(J)
i;j [χ

(E)
i;j ] becomes nonzero when the E

and ET (M and MT) multipoles are active for tBi
tAj

=−1. The multipoles contributing

to χ
(J)
i;j and χ

(E)
i;j are summarized in Table 2.14.

It is noted that the similar argument holds for the static isothermal susceptibility
such as the magnetic susceptibility, which is obtained by ω→0 and then q→0 for χi;j(ω)
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Table 2.14: Correspondence between the linear response functions χ(J,E) and multipoles
Xlm (l=1–4, X=Q,G, T,M). Nonzero χ(J,E) is indicated by the checkmark(✓). In the
rightmost column, the parentheses represent the corresponding multipoles to the response
B and the external field F (See also Table 2.13). Only the corresponding multipoles are
shown in the absence of the familiar response.

(P , T ,PT )= examples
rank tBi

tAj
multipole (⃝,⃝,⃝) (×,⃝,×) (⃝,×,×) (×,×,⃝) (×,×,×) (B↔F )

1 polar +1 χ(J) T1m ✓ ✓ electrocaloric tensor
χ(E) Q1m ✓ ✓ (Q0↔Q1m)

−1 χ(J) Q1m ✓ ✓ toroidalcaloric tensor
χ(E) T1m ✓ ✓ (Q0↔T1m)

axial +1 χ(J) M1m ✓ ✓
χ(E) G1m ✓ ✓ ✓ ✓ ✓ (Q0↔G1m)

−1 χ(J) G1m ✓ ✓ ✓ ✓ ✓ magnetocaloric tensor
χ(E) M1m ✓ ✓ (Q0↔M1m)

2 polar +1 χ(J) T0,M1m, T2m ✓ ✓ magnetic susceptibility
χ(E) Q0, G1m, Q2m ✓ ✓ ✓ ✓ ✓ (M1m↔M1m)

−1 χ(J) Q0, G1m, Q2m ✓ ✓ ✓ ✓ ✓ electric conductivity
χ(E) T0,M1m, T2m ✓ ✓ (T1m↔E1m)

axial +1 χ(J) M0, T1m,M2m ✓ ✓
χ(E) G0, Q1m, G2m ✓ ✓ (T1m↔M1m)

−1 χ(J) G0, Q1m, G2m ✓ ✓ magnetoelectric tensor
χ(E) M0, T1m,M2m ✓ ✓ (M1m↔E1m)

3 polar +1 χ(J) T1m,M2m, T3m ✓ ✓ piezoelectric tensor
χ(E) Q1m, G2m, Q3m ✓ ✓ (Q1m↔Q0, Q2m)

−1 χ(J) Q1m, G2m, Q3m ✓ ✓
χ(E) T1m,M2m, T3m ✓ ✓ (T1m↔Q0, Q2m)

axial +1 χ(J) M1m, T2m,M3m ✓ ✓ spin conductivity
χ(E) G1m, Q2m, G3m ✓ ✓ ✓ ✓ ✓ (G0, Q1m, G2m↔Q1m)

−1 χ(J) G1m, Q2m, G3m ✓ ✓ ✓ ✓ ✓ piezomagnetic tensor
χ(E)M1m, T2m,M3m ✓ ✓ (M1m↔Q0, Q2m)

4 polar +1 χ(J) T0,M1m, T2m, ✓ ✓ elastic stiffness tensor
M3m, T4m (Q0, Q2m↔Q0, Q2m)

χ(E) Q0, G1m, Q2m, ✓ ✓ ✓ ✓ ✓
G3m, Q4m

−1 χ(J) Q0, G1m, Q2m, ✓ ✓ ✓ ✓ ✓
G3m, Q4m (T0, T2m↔Q0, Q2m)

χ(E) T0,M1m, T2m, ✓ ✓
M3m, T4m

axial +1 χ(J) M0, T1m,M2m, ✓ ✓
T3m,M4m (G0, G2m↔Q0, Q2m)

χ(E) G0, Q1m, G2m, ✓ ✓
Q3m, G4m

−1 χ(J) G0, Q1m, G2m, ✓ ✓
Q3m, G4m (M0,M2m↔Q0, Q2m)

χ(E) M0, T1m,M2m, ✓ ✓
T3m,M4m

in Eq. (2.35) in the non-degenerate system. The general form of the static isothermal
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susceptibility χT
i;j is given by

χT
i;j=β

=∑
nm

wnB
nm
i Amn

j +

̸=∑
nm

wm−wn

En−Em

Bnm
i Amn

j , (2.41)

where β=1/kBT , wn is the Boltzmann weight of eigenstate n, and the notation = ( ̸=)
stands for the summation taken over En=Em (En ̸=Em). The first term corresponds to the
Curie term in the degenerate system. From the viewpoint of the time-reversal symmetry,
both terms of χT

i;j satisfy the relation χT
i;j=tBtAχ

T
i;j, which is the same as that of χ

(E)
i;j in

Eq. (2.40).

In the following, let us discuss χ
(J)
i;j and χ

(E)
i;j by taking an example. We consider the

uniform and staggered magnetic orderings with magnetic moments along the z axis in the
diamond structure in Secs. 2.5.2 and 2.5.2, respectively.

Figure 2.2: (a) Ferromagnetic ordering and (b) antiferromagnetic ordering in the dia-
mond structure. (a) is characterized by 4/mm′m′ with the spatial inversion symmetry
(P), whereas (b) is represented by 4′/m′mm′ with the spatial inversion and time-reversal
symmetry (PT ).

P-symmetric magnetic structure

The uniform magnetic structure in the T−
1g representation of m3̄m1′ as illustrated in

Fig. 2.2(a) reduces the symmetry to the P-symmetric 4/mm′m′. From Table 2.10,
one can find that the active multipoles up to rank 4 are the even-parity E multipoles
Q0 (monopole), Qu (quadrupole), Q4, Q4u (hexadecapole), even-parity M multipoles Mz

(dipole), Mα
z (octupole), and even-parity MT multipole T α

4z (hexadecapole). Thus, the
physical responses related to these active multipoles are expected to occur, such as the
magnetocaloric response, electric conductivity including the Hall effect, and piezomag-
netic response from Table 2.14.
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For example, the electric conductivity tensor Ji=
∑

j σi;jEj is given by

σi;j=− iℏ
V

∑
knm

f [εn(k)]−f [εm(k)]
εn(k)−εm(k)

Jnm
ik Jmn

jk

iℏδ+εn(k)−εm(k)
, (2.42)

which is decomposed into the dissipative part σ
(J)
i;j and the non-dissipative part σ

(E)
i;j as

σi;j=σ
(J)
i;j +σ

(E)
i;j , (2.43)

σ
(J)
i;j =−ℏ2δ

V

∑
knm

f [εn(k)]−f [εm(k)]
εn(k)−εm(k)

Jnm
ik Jmn

jk

(ℏδ)2+[εn(k)−εm(k)]2
, (2.44)

σ
(E)
i;j =− iℏ

V

̸=∑
knm

f [εn(k)]−f [εm(k)]
(ℏδ)2+[εn(k)−εm(k)]2

Jnm
ik Jmn

jk , (2.45)

where σ
(J)
i;j corresponds to the symmetric tensor component, whereas σ

(E)
i;j corresponds to

the antisymmetric tensor component. From Table 2.14, each component is related to the
multipoles as follows:

σ(J)↔

Q0−Qu+Qv Qxy Qzx

Qxy Q0−Qu−Qv Qyz

Qzx Qyz Q0+2Qu

 , σ(E)↔

 0 Mz −My

−Mz 0 Mx

My −Mx 0

 . (2.46)

By applying the active multipoles in the P-symmetric 4/mm′m′, the electric conductivity
tensor in the FM ordering in Fig. 2.2(a) is given as

σ(J)↔

Q0−Qu 0 0
0 Q0−Qu 0
0 0 Q0+2Qu

 , σ(E)↔

 0 Mz 0
−Mz 0 0
0 0 0

 . (2.47)

Thus, one expects that the system exhibits the anisotropic electric conductivity along the
xy and z directions and the anomalous Hall effect in the xy plane.

Let us take another example by considering the piezomagnetic effect where Mi=∑
jk Λi;jkτjk. In a similar way, the tensor component in Fig. 2.2(a) is given by

Λ(E)=



0 0 Λ
(E)
z;xx

0 0 Λ
(E)
z;xx

0 0 Λ
(E)
z;zz

0 Λ
(E)
y;yz 0

Λ
(E)
y;yz 0 0
0 0 0



T

↔


0 0 2M ′

z+Mz−Mα
z

0 0 2M ′
z+Mz−Mα

z

0 0 3Mz+2Mα
z

0 −M ′
z+Mz−Mα

z 0
−M ′

z+Mz−Mα
z 0 0

0 0 0



T

.

(2.48)

by using Eq. (E.49). We here omit Λ(J) by taking δ→0.

46



CHAPTER 2. CLASSIFICATION OF MULTIPOLES IN 122 MAGNETIC POINT GROUPS

PT -symmetric magnetic structure

The staggered magnetic structure belonging to the T−
2u representation in Fig. 2.2(b) is

characterized by the PT -symmetric 4′/m′mm′. In this case, the odd-parity M multipoles
Mxy (quadrupole), Mβ

4z (hexadecapole), and odd-parity MT multipole T β
z (octupole) be-

come active in addition to the even-parity E multipoles Q0, Qu, Q4, and Q4u, which are
obtained by appropriately replacing the mirror plane of 4′/m′m′m in Table 2.11. The
active odd-parity M and MT multipoles become sources of induceing the multiferroic
responses such as the magnetoelectric effect and the piezoelectric effect in Table 2.14.

For example, the magnetoelectric tensor αi;j is given by

α(E)=

 0 α
(E)
x;y 0

α
(E)
x;y 0 0
0 0 0

↔

 0 Mxy 0
Mxy 0 0
0 0 0

 . (2.49)

It is noted that α(J)=0, as no odd-parity E and ET multipoles are active under the PT
symmetric magnetic point group 4′/m′m′m.

Meanwhile, in the inverse piezoelectric response, the response tensor dij;k for εij=∑
k dij;kEk [38, 79] is described by Mxy and T β

z as

d(J)=


0 0 dxx;x
0 0 −dxx;x
0 0 0
0 dyz;y 0

−dyz;y 0 0
0 0 0

↔


0 0 2Mxy+T

β
z

0 0 −2Mxy−T β
z

0 0 0
0 Mxy−T β

z 0
−Mxy+T

β
z 0 0

0 0 0

 . (2.50)

Similar to αi;j, d
(E)
ij;k=0 owing to the lack of odd-parity E and ET multipoles.

2.5.3 Second-Order Nonlinear Response Function

In a similar way to the linear response tensor χi;j, we discuss the relation between ac-
tive multipoles and the second-order nonlinear response tensor χi;jk based on the Kubo
formula [160]. The nonlinear complex susceptibility χi;jk(ω

′, ω′′) satisfies the relation

⟨B̂i,ω⟩=
∫ ∞

−∞

∫ ∞

−∞

dω′

2π

dω′′

2π
χi;jk(ω

′, ω′′)Fj,ω′Fk,ω′′δ(ω−ω′−ω′′), (2.51)

where χi;jk(ω
′, ω′′) is represented as

χi;jk(ω
′, ω′′)=

1

2

(
1

iℏ

)2 ∫ ∞

0

∫ ∞

0

dt′dt′′ Tr
[
B̂i[Âj(−t′), [Âk(−t′−t′′), ρ0]]

]
×ei(ω′+ω′′)t′−2δt′eiω

′′t′′−δt′′+(j, ω′)↔(k, ω′′), (2.52)

where X̂(t) is the Heisenberg representation of an operator X̂. ρ0 is the density matrix for
the nonperturbative state, whose matrix element is represented by the Fermi distribution
function f(εn) as [ρ0]nm=f(εn)δnm. When we suppose Â as the well-defined operator in a
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periodic system, i.e., the matrix element of Â includes no differential operator with respect
to the wave vector, the nonlinear response function in the static limit (q→0, ω→0) is
given as follows.

χi;jk≡χi;jk(0, 0)

=
1

2

1

V

∑
k

∑
lmn

Bnm
ik

(
Aml

jkA
ln
kk+A

ml
kkA

ln
jk

)
εn(k)−εm(k)+2iℏδ

{
f [εn(k)]−f [εl(k)]
εn(k)−εl(k)+iℏδ

− f [εl(k)]−f [εm(k)]
εl(k)−εm(k)+iℏδ

}
.

(2.53)

The nonlinear response function is also decomposed into the two parts with different
time-reversal properties as

χi;jk=χ
(Re)
i;jk +χ

(Im)
i;jk , (2.54)

where

χ
(Re)
i;jk ≡ 1

V

∑
klmn

Re
(
Bnm

ik Aml
jkA

ln
kk

)
[εn(k)−εm(k)]

[εn(k)−εm(k)]2+(2ℏδ)2

×
(
{f [εn(k)]−f [εl(k)]} [εn(k)−εl(k)]

[εn(k)−εl(k)]2+(ℏδ)2
−{f [εl(k)]−f [εm(k)]} [εl(k)−εm(k)]

[εl(k)−εm(k)]2+(ℏδ)2

)

− 2ℏ2δ2

V

∑
klmn

Re
(
Bnm

ik Aml
jkA

ln
kk

)
[εn(k)−εm(k)]2+(2ℏδ)2

{
f [εn(k)]−f [εl(k)]

[εn(k)−εl(k)]2+(ℏδ)2
− f [εl(k)]−f [εm(k)]

[εl(k)−εm(k)]2+(ℏδ)2

}
,

(2.55)

χ
(Im)
i;jk ≡ℏδ

V

∑
klmn

Im
(
Bnm

ik Aml
jkA

ln
kk

)
[εn(k)−εm(k)]

[εn(k)−εm(k)]2+(2ℏδ)2

{
f [εn(k)]−f [εl(k)]

[εn(k)−εl(k)]2+(ℏδ)2
− f [εl(k)]−f [εm(k)]

[εl(k)−εm(k)]2+(ℏδ)2

}

+
2ℏδ
V

∑
klmn

Im
(
Bnm

ik Aml
jkA

ln
kk

)
[εn(k)−εm(k)]2+(2ℏδ)2

×
(
{f [εn(k)]−f [εl(k)]} [εn(k)−εl(k)]

[εn(k)−εl(k)]2+(ℏδ)2
−{f [εl(k)]−f [εm(k)]} [εl(k)−εm(k)]

[εl(k)−εm(k)]2+(ℏδ)2

)
. (2.56)

In contrast to the linear response tensor χi;j, there are complicated intraband and inter-

band processes in both χ
(Re)
i;jk and χ

(Im)
i;jk . It is noted that the nonlinear response function

for the electric field in the length gauge needs rederivation by applying Â=−er̂ (r̂: posi-
tion operator) in Eq. (2.52), since the matrix element of r̂ in a periodic system includes
differential operator of k4.

χ
(Re)
i;jk and χ

(Im)
i;jk show the following relations in the presence of the time-reversal sym-

metry:

χ
(Re)
i;jk =tBi

tAj
tAk

χ
(Re)
i;jk , χ

(Im)
i;jk =−tBi

tAj
tAk

χ
(Im)
i;jk . (2.57)

4For example, the second-order nonlinear conductivity is obtained by applying B̂=−ev̂ (v̂: velocity
operator) and Â=−er̂, where its functional form is consistent to the ω→0 limit of the second-order
nonlinear optical conductivity [161–164]. The second-order nonlinear conductivity has the following δ

dependences in the clean limit: δ−2 and δ0 with the time-inversion odd property of χ
(Re)
i;jk for the Drude

and intrinsic terms, respectively, and δ−1 with the time-inversion even property of χ
(Im)
i;jk for the Berry

curvature dipole term [102].
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Equation (2.57) indicates that χ
(Re)
i;jk and χ

(Im)
i;jk are represented by E and ET (M and MT)

multipoles and the M and MT (E and ET) multipoles, respectively, for tBi
tAj
tAk

=+1(−1).
The multipoles relevant to the nonlinear response tensors are summarized in Table 2.15. In
the following, we show the correspondence between the nonlinear responses and multipoles
by considering again the FM and AFM orderings in the diamond structure in Figs. 2.2(a)
and 2.2(b).

Table 2.15: Correspondence between the second-order nonlinear response functions
χ(Re,Im) and multipoles. Nonzero χ(Re,Im) is shown by the checkmark (✓).

(P , T ,PT )= examples
rank tBi

tAj
tAk

multipole (⃝,⃝,⃝) (×,⃝,×) (⃝,×,×) (×,×,⃝) (×,×,×) (B↔F )

3 polar +1 χ(Im) T1m,M2m, T3m ✓ ✓
χ(Re) Q1m, G2m, Q3m ✓ ✓ (Q1m↔Q0, Q2m)

−1 χ(Im) Q1m, G2m, Q3m ✓ ✓ electric conductivity
χ(Re) T1m,M2m, T3m ✓ ✓ (T1m↔Q0, Q2m)

axial +1 χ(Im) M1m, T2m,M3m ✓ ✓ Nernst effect tensor
χ(Re) G1m, Q2m, G3m ✓ ✓ ✓ ✓ ✓ (T1m↔M0,M2m)

−1 χ(Im) G1m, Q2m, G3m ✓ ✓ ✓ ✓ ✓ magnetoelectric tensor
χ(Re) M1m, T2m,M3m ✓ ✓ (M1m↔Q0, Q2m)

4 polar +1 χ(Im) T0,M1m, T2m, ✓ ✓ electric striction tensor
M3m, T4m (Q0, Q2m↔Q0, Q2m)

χ(Re) Q0, G1m, Q2m, ✓ ✓ ✓ ✓ ✓
G3m, Q4m

−1 χ(Im) Q0, G1m, Q2m, ✓ ✓ ✓ ✓ ✓
G3m, Q4m (Q0, Q2m↔T0, T2m)

χ(Re) T0,M1m, T2m, ✓ ✓
M3m, T4m

axial +1 χ(Im) M0, T1m,M2m, ✓ ✓
T3m,M4m (Q0, Q2m↔G0, G2m)

χ(Re) G0, Q1m, G2m, ✓ ✓
Q3m, G4m

−1 χ(Im) G0, Q1m, G2m, ✓ ✓
Q3m, G4m (Q0, Q2m↔M0,M2m)

χ(Re) M0, T1m,M2m, ✓ ✓
T3m,M4m

P-symmetric magnetic structure

In the P-symmetric FM structure in Fig. 2.2(a), the nonlinear responses, such as the
Nernst effect and the second-order nonlinear magnetoelectric effect, are expected. In the
case of the nonlinear magnetoelectric effect Mi=

∑
jk αi;jkEjEk, the tensor α

(Re)
i;jk becomes

nonzero in the presence of the even-parity M and MT multipoles in Table 2.15. Since Mz

andMα
z are active in the 4/mm′m′ symmetry, the tensor component of α

(Re)
i;jk is represented
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by

α(Re)=



0 0 α
(E)
z;xx

0 0 α
(E)
z;xx

0 0 α
(E)
z;zz

0 α
(E)
y;yz 0

α
(E)
y;yz 0 0
0 0 0



T

↔


0 0 2M ′

z+Mz−Mα
z

0 0 2M ′
z+Mz−Mα

z

0 0 3Mz+2Mα
z

0 −M ′
z+Mz−Mα

z 0
−M ′

z+Mz−Mα
z 0 0

0 0 0



T

.

(2.58)

where there are three independent matrix elements in α(Re).

PT -symmetric magnetic structure

In the AFM ordering with the 4′/m′mm′ symmetry in Fig. 2.2(b), the second-order non-
linear conductivity, σi;jk, for Ji=

∑
jk σi;jkEjEk becomes nonzero, which reflects the lack

of the spatial inversion symmetry. Among the two parts σ
(Re)
i;jk and σ

(Im)
i;jk , σ

(Re)
i;jk becomes

nonzero in the presence of the odd-parity M and MT multipoles. The finite tensor com-
ponent of σ

(Re)
i;jk is shown as

σ(Re)=



0 0 σ
(Re)
x;xx

0 0 −σ(Re)
x;xx

0 0 0

0 σ
(Re)
y;zy 0

−σ(Re)
y;zy 0 0
0 0 0



T

↔


0 0 2Mxy+T

β
z

0 0 −2Mxy−T β
z

0 0 0
0 Mxy−T β

z 0
−Mxy+T

β
z 0 0

0 0 0

 . (2.59)

Thus, the nonlinear conductivity, which is known as the nonlinear Drude and the intrinsic
terms, is expected in the AFM structure in Fig. 2.2(b) [102].

2.6 Summary

In summary, we have completed the classification of multipoles in the 122 magnetic point
groups by extending the classification to the nonunitary groups with the antiunitary op-
erations accompanied by the time-reversal operation. The present classification gives the
systematic way to identify the symmetry-adapted electronic order parameters not only
in the AFM orderings but also in unconventional nematic, chiral, excitonic, loop-current,
and anisotropic bond ordered states. Moreover, we have also clarified the relation be-
tween the multipoles and field responses to cover the second-order nonlinear response in
addition to the linear response in the previous studies [38, 39], which gives us an intuitive
understanding of the multiferroic phenomena and nonlinear transports based on the mi-
croscopic multipole couplings. The present comprehensive study will help the exploration
of the further exotic physical phenomena induced by the unconventional higher-rank mul-
tipoles, such as MT quadrupole and octupole, and the functional magnetic materials in
cooperation with the material database like MAGNDATA [165].
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Chapter 3

Nonlinear Transport in Magnetic
Toroidal Dipole Ordering

In this chapter, we investigate the microscopic essential model parameters of the nonlinear
transport property in the collinear AFM ordering with the MT dipole moment, which is
called the MT dipole ordering. The present chapter is based on Ref. [166].

This chapter is organized as follows. Section 3.1 describes the introduction of the MT
dipole physics. In Sec. 3.2, we show the electronic multipole degrees of freedom acti-
vated in the tight-binding model on the two-sublattice zigzag chain. We also present the
response functions for the linear magnetoelectric effect, Hall effect, and second-order non-
linear conductivity. We discuss the conditions to cause the linear and nonlinear responses
under the MT dipole ordering based on the microscopic model calculations. We show the
essential model parameters in each response. Sec. 3.4 is devoted to the summary in this
chapter.

3.1 Introduction

An MT dipole, which is one of the odd-parity multipoles in the absence of the spatial
inversion and time-reversal symmetries, has attracted much attention as it induces various
multiferroic phenomena like the magnetoelectric effect [58, 113, 167, 168] and nonrecip-
rocal transport properties [103, 115, 169, 170]. Among them, the magnetoelectric effect
in the MT dipole orderings has been observed in the AFM insulators, e.g., Cr2O3 [63],
Ga2−xFexO3 [64, 65], LiCoPO4 [66, 67], and Ba2CoGe2O7 [68], and in the AFM metals,
e.g., UNi4B [69–71] and Ce3TiBi5 [72, 73]. Theoretically, such a magnetoelectric effect
has been analyzed by using the linear response theory [69, 99, 171–176]. Meanwhile, there
are still few studies on the nonlinear transports [104, 170, 177, 178]. Especially, its mi-
croscopic understanding beyond the symmetry argument has not been fully understood.
One of the remaining problems is the lacking of the understanding of the essential model
parameters to induce the nonlinear transport. It is also important to understand how the
MT dipole plays a role in the nonlinear transport.

By performing the symmetry analysis and model calculation with the use of the second-
order nonlinear Kubo formula, we elucidate the microscopic essential model parameters
for the second-order nonlinear conductivity in the MT orderings with the PT symmetry.
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Based on the analysis of a minimal model on a two-dimensionally-stacked zigzag chain, we
show that an effective coupling between the MT dipole and the antisymmetric spin-orbit
interaction (ASOI) plays an essential role in inducing the longitudinal and transverse
components of the nonlinear conductivity. Moreover, we find that the nonlinear conduc-
tivities are highly enhanced near the transition temperature in the case that the AFM
molecular field is comparable to the ASOI in a multi-band system. We also discuss the
difference between the transverse nonlinear conductivity and the linear magnetoelectric
coefficient on the basis of the microscopic model parameters.

3.2 Model

We show the multipole degrees of freedom in a two-sublattice unit cell on a zigzag chain
from the symmetry viewpoint in Sec. 3.2.1. Then, we present a minimal two-band tight-
binding model in Sec. 3.2.2 and outline the linear and second-order nonlinear response
functions in Sec. 3.2.3.

3.2.1 Multipole Degrees of Freedom

Figure 3.1: (a) Zigzag chain with two sublattices A and B. The IRREPs and the corre-
sponding potential distributions are also shown below. (b,c) Magnetic structures of the
(b) uniform and (c) staggered alignments. The corresponding IRREPs, cluster multipoles,
and their matrix elements in the 4×4 Hilbert space spanned by the spin and sublattice
degrees of freedom are also shown.

We describe the six degrees of freedom consisting of the three spin components and
two sublattices by the symmetry-adapted cluster multipoles. The zigzag structure has
the orthorhombic symmetry mmm1′, where the corepresentation of the sublattice degrees
of freedom Γsub is decomposed into two IRREPs as Γsub=A+

g ⊕B+
2u. The former (latter)
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corresponds to the uniform (staggered) potential configuration on the sublattices A and
B as shown in Fig. 3.1(a). Since M dipole degrees of freedom have the symmetry ΓMD=
B−

1g⊕B−
2g⊕B−

3g from Table C.24, the IRREPs of the magnetic structure with the ordering
vector q=0 are obtained as follows:

Γsub⊗ΓMD=(B−
1g⊕B−

2g⊕B−
3g)uniform⊕(B−

1u⊕A−
u ⊕B−

3u)staggered. (3.1)

The former three components B−
1g⊕B−

2g⊕B−
3g stand for the ferromagnetic structures [Fig. 3.1(b)],

which corresponds to the active cluster-type M dipoles: M
(c)
x ,M

(c)
y , andM

(c)
z . Meanwhile,

the latter three components B−
1u⊕A−

u ⊕B−
3u are the collinear AFM structures [Fig. 3.1(c)].

From Table C.24, their corresponding multipoles are the MT dipoles T
(c)
x and T

(c)
z for B−

3u

and B−
1u, respectively, and M monopole M

(c)
0 for A−

u . In the following discussion, we focus

on the MT dipole T
(c)
x and examine the relevant nonlinear and multiferroic responses in-

duced by T
(c)
x . The following discussion is straightforwardly applied to another MT dipole

T
(c)
z .

3.2.2 Minimal Two-Band Model

To examine the microscopic essence of the nonlinear conductivity in the presence of the
MT dipole in a solid, we consider a minimal two-band model where the zigzag chain along
the x direction [Fig. 3.2(a)] is stacked along the z direction [Fig. 3.2(b)].

Figure 3.2: (a,b) Schematic pictures of (a) a two-sublattice zigzag chain and (b) its
stacking along the z direction.

The tight-binding Hamiltonian is given by

H=HAB
hop+Hhop+HASOI+Hint, (3.2)

HAB
hop=

∑
k

∑
σ

[
εAB(k)c†kAσckBσ+H.c.

]
, (3.3)

Hhop=
∑
k

∑
σ

ε(k)(c†kAσckAσ+c
†
kBσckBσ), (3.4)

HASOI=
∑
k

∑
σσ′

g(k)·σσσ′
(c†kAσckAσ′−c†kBσckBσ′), (3.5)

Hint=JAF

∑
⟨ij⟩

M̂ z
iAM̂

z
jB, (3.6)
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where c†klσ (cklσ) is the creation (annihilation) operator of electrons at wave vector k,
sublattice l=A,B, and spin σ=↑, ↓. The hopping Hamiltonian HAB

hop in Eq. (3.3) includes
the nearest-neighbor hopping between A and B sublattices as εAB(k)=−2t1 cos(kxa/2),
while Hhop includes the hoppings within the same sublattices along the x and z directions
as ε(k)=−2t2 cos (kxa)−2t3 cos (kzc). HASOI in Eq. (3.5) represents the ASOI that arises
from the relativistic spin-orbit coupling as g(k)=[−α2 sin (kzc), 0, α1 sin (kxa)]. The ASOI
in Eq. (3.5) has the sublattice-dependent staggered form satisfying the global inversion
symmetry [171, 179]. Hint in Eq. (3.6) represents the Ising-type AFM exchange interaction
of the nearest-neighbor A-B bond with JAF>0 where M̂ z

iA(B)=
∑

σσ′ c
†
iA(B)σσ

z
σσ′ciA(B)σ′ is

the z component of the M dipole operator and c†ilσ and cilσ are the Fourier transforms of

c†klσ and cklσ, respectively. We adopt the Hartree-type mean-field decoupling as

JAF

∑
⟨ij⟩

M̂ z
iAM̂

z
jB→J̃AF

∑
i

(
⟨M̂ z

A⟩ M̂ z
iB+⟨M̂ z

B⟩ M̂ z
iA−⟨M̂ z

A⟩ ⟨M̂ z
B⟩
)
, (3.7)

where ⟨· · ·⟩ represents the statistical average and J̃AF=2JAF is the renormalized coupling
constant considering the two nearest-neighbor atomic sites. As presented in Sec. 3.2.1,
the staggered AFM moment along the z direction in the present system is equivalent to
the uniform cluster MT dipole along the x direction, TMF

x ≡(⟨M̂ z
A⟩−⟨M̂ z

B⟩)/2 [180], where
the superscript MF is used instead of (c) to explicitly represent the mean-field value in
the following.

3.2.3 Response Functions

The magnetic point group symmetry is reduced from mmm1′ to m′mm in the presence
of TMF

x from Table C.24. In the magnetic point group m′mm, the following even-parity E
and ET multipoles and odd-parity M and MT multipoles within rank 0–3 belong to the
totally symmetric IRREP:

Q0, Qu, Qv, Gxyz, Tx, T
α
x , T

β
x ,Myz, (3.8)

as shown in Table 2.11. Due to the presence of the odd-parity multipoles like Tx, T
α
x , T

β
x ,

and Myz, the second-order nonlinear electric conductivity tensor is expected as follows:

σ(Re)=


σxxx 0 0
σxyy 0 0
σxzz 0 0
0 0 0
0 0 σzzx
0 σyxy 0



T

(3.9)

↔


3Tx+2T α

x 0 0
2(T ′

x+Myz)+Tx−T α
x +T

β
x 0 0

2(T ′
x−Myz)+Tx−T α

x −T β
x 0 0

0 0 0
0 0 −T ′

x+Myz+Tx−T α
x −T β

x

0 −T ′
x−Myz+Tx−T α

x +T
β
x 0



T

,

(3.10)
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where σ(Re) includes the Drude-type intraband term and the intrinsic-type interband term
within the relaxation time approximation as mentioned in Sec. 2.51. The former Drude-
type term is represented by the MT dipoles and octupoles as

σ(D)=



σ
(D)
xxx 0 0

σ
(D)
xyy 0 0

σ
(D)
xzz 0 0
0 0 0

0 0 σ
(D)
zzx

0 σ
(D)
yxy 0



T

↔


3Tx+2T α

x 0 0
Tx−T α

x +T
β
x 0 0

Tx−T α
x −T β

x 0 0
0 0 0
0 0 Tx−T α

x −T β
x

0 Tx−T α
x +T

β
x 0



T

, (3.12)

while the latter intrinsic-type term is expressed by the MT dipoles and M quadrupoles as

σ(int)=



0 0 0

σ
(int)
xyy 0 0

σ
(int)
xzz 0 0
0 0 0

0 0 σ
(int)
zzx

0 σ
(int)
yxy 0



T

↔


0 0 0

2(Tx+Myz) 0 0
2(Tx−Myz) 0 0

0 0 0
0 0 −Tx+Myz

0 −Tx−Myz 0



T

. (3.13)

Among them, we consider the Drude-type intraband contribution with the dissipation
δ−2 by supposing the clean limit. The expression representing the Drude-type intraband
contribution eventually coincides with that obtained by the Boltzmann formalism [102,
170, 181], which is given as follows:

σ
(D)
µνλ=

e3τ 2

ℏ3
1

V

∑
k

∑
n

∂2εn(k)

∂kµ∂kν

∂εn(k)

∂kλ

∂f [εn(k)]

∂εn(k)
, (3.14)

where e(>0), τ(=1/δ), and V are the electron charge, relaxation time, and the system

volume, respectively. Among the nonlinear components in Eq. (3.12), σ
(D)
xyy and σ

(D)
yxy vanish

owing to ky=0 in the present two-dimensional system. Moreover, σ
(D)
xzz=σ

(D)
zzx is satisfied

as shown in Eq. (3.12). Hence, the present system has two independent components: the

longitudinal σ
(D)
xxx and transverse σ

(D)
xzz . Hereafter, we omit the superscript of σ

(D)
µνλ and use

the scaled σµνλ as σ̄µνλ=σµνλ/(e
3τ 2ℏ−3).

1The Drude-type and intrinsic-type terms have different symmetry with respect to the permutation
of the input and output directions; the former is totally symmetric and the latter is asymmetric. By
considering such a difference, the multipole expression of σ(Re) can be decomposed into the Drude-type
part σ(D) and the intrinsic-type part σ(int) as follows:

σ(D)=



3Tx+2Tα
x Ty−Tα

y −T β
y Tz−Tα

z +T β
z

Tx−Tα
x +T β

x 3Ty+2Tα
y Tz−Tα

z −T β
z

Tx−Tα
x −T β

x Ty−Tα
y +T β

y 3Tz+2Tα
z

Txyz Tz−Tα
z −T β

z Ty−Tα
y +T β

y

Tz−Tα
z +T β

z Txyz Tx−Tα
x −T β

x

Ty−Tα
y −T β

y Tx−Tα
x +T β

x Txyz



T

, σ(int)=


0 2(Ty−Mzx) 2(Tz+Mxy)

2(Tx+Myz) 0 2(Tz−Mxy)
2(Tx−Myz) 2(Ty+Mzx) 0
Mu+Mv −Tz+Mxy −Ty−Mzx

−Tz−Mxy −Mu+Mv −Tx+Myz

−Ty+Mzx −Tx−Myz −2Mv



T

.

(3.11)
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For later convenience, we show the expressions of two quantities, the linear magneto-
electric coefficient αyz and the linear Hall coefficient σxz, both of which are calculated by
the linear response theory:

αyz=
egµBℏ
2V i

∑
k

∑
n ̸=m

f [εn(k)]−f [εm(k)]
[εn(k)−εm(k)]2+(ℏδ)2

σnm
yk v

mn
zk , (3.15)

σxz=
e2ℏ
V i

∑
k

∑
n ̸=m

f [εn(k)]−f [εm(k)]
[εn(k)−εm(k)]2+(ℏδ)2

vnmxk v
mn
zk . (3.16)

In Eq. (3.15), g(=2) and µB are the g factor and Bohr magneton, respectively. σnm
yk =

⟨nk|σy|mk⟩ and vmn
zk =⟨mk|vzk|nk⟩ are the matrix elements of spin σy and the velocity

vzk=∂H/(ℏ∂kz) for the eigenstate |nk⟩. The interband process is important in both
tensors. We use the scaled ᾱyz=αyz/(eµBℏ) and σ̄xz=σxz/(e2ℏHy).

3.3 Result

In this section, we discuss the microscopic essential model parameters for the physi-
cal properties in the MT dipole ordering by analyzing the minimal model presented in
Sec. 3.2.2. The numerical results of the band modulation, nonlinear conductivity, and the
linear magnetoelectric effect are discussed in Secs. 3.3.1, 3.3.2, and 3.3.3, respectively. We
set the model parameters as (t1, t2, t3, JAF)=(0.1, 1, 0.5, 2.5), electron filling as 1/5, and
the lattice constant as a=c=1 in the following discussion; t2 is set as the energy unit.

3.3.1 Band Modulation

Figure 3.3: (a) The temperature (T ) dependence of the MT dipole TMF
x at α1=0.4 and

α2=0.1. The MT dipole ordering along the x direction Tx is shown in the inset. (b) The
energy bands measured from the chemical potential µ at kz=0 for three temperatures.

First, we show the T dependence of TMF
x at α1=0.4 and α2=0.1 in Fig. 3.3(a),

where TMF
x is self-consistently determined within the mean-field calculations for the two-

sublattice unit cell by taking over 2002 grid points in the Brillouin zone. TMF
x becomes
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nonzero below the transition temperature TN and saturates below T≃0.2TN. Almost the
same behavior is obtained for α1, α2≲0.5.

As discussed in Sec. 1.3.4, the asymmetric band deformation is induced by the MT
dipole. In fact, Fig. 3.3(b) shows the asymmetric band deformation along the kx direc-
tion when TMF

x ̸=0 [171, 180]. This asymmetric band modulation is understood from the
effective coupling between TMF

x and the ASOI α1. We explicitly write down the band
dispersion ε±(k) as

ε±(k)=ε(k)±X(k) with X(k)=

√
(α1 sin kx−T̃MF

x )2+α2
2 sin

2 kz+4t21 cos
2
kx
2
, (3.17)

where T̃MF
x =J̃AFT

MF
x . The double degeneracy of ε±(k) is due to the PT symmetry.

The factor (α1 sin kx−T̃MF
x )2 includes the coupling between T̃MF

x and α1 with the odd
function of kx, which clearly corresponds to the microscopic origin of the antisymmetric
band modulation. This asymmetric band modulation becomes a source of the nonlinear
transport as discussed in the subsequent section.

3.3.2 Second-Order Nonlinear Conductivity

Figure 3.4: (a) The longitudinal second-order conductivity σ̄xxx for α1=0.1–0.5 as a func-
tion of T at α2=0.1. The inset shows σ̄xxx/α1. (b) The upper- and lower-band contribu-
tions to σ̄xxx at α1=0.4.

We discuss the longitudinal nonlinear conductivity σ̄xxx. Figure 3.4(a) shows σ̄xxx as
a function of T for various α1=0.1–0.5 at α2=0.1. The T dependence for different α1

shows a qualitatively similar behavior; σ̄xxx is highly enhanced just below T=TN, and
shows maximum with a decrease of T . While further decreasing T , σ̄xxx shows the sign
change, and then reaches a negative value at the lowest T .

The nonzero σxxx is closely related to the formation of the asymmetric band structure
under TMF

x ̸=0. As the asymmetric band modulation is caused by the coupling between
T̃MF
x and α1, they are indispensable for nonzero σxxx. In fact, σ̄xxx vanishes for α1=0.

Furthermore, the numerical result in the inset of Fig. 3.4(a) shows that σ̄xxx is well scaled
by σ̄xxx/α1 at low temperatures T≲0.7TN.

Meanwhile, σ̄xxx is not scaled by α1 for 0.7≲T/TN≤1, where σ̄xxx is drastically en-
hanced. This is attributed to the rapid increase of T̃MF

x and resultant drastic change of
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the electronic band structure near the Fermi level. As σxxx in Eq. (3.14) includes the
factors ∂2εn(k)/∂k

2
x and ∂εn(k)/∂kx, the small X(k) appearing in the denominator of

∂2εn(k)/∂k
2
x and ∂εn(k)/∂kx gives a dominant contribution. When considering the small

order parameter compared to the ASOI, i.e., T̃MF
x ≲α1, X(k) can become small when the

Fermi wavenumber kFx satisfies T̃MF
x ≃α1 sin k

F
x , which results in a large enhancement of

σ̄xxx. Such an enhancement is remarkable when the upper and lower bands are closely
located in the paramagnetic state as shown in Fig. 3.3(b), which can be realized for small
t1=0.1 and α2=0.1. In short, there are two conditions for the realization of large σ̄xxx;
One is the large essential model parameters, such as α1, T

MF
x , and JAF, and the other is to

satisfy T̃MF
x ≃α1 sin k

F
x when there is a drastic change of the band structure by the MTD

ordering in a multi-band system. These conditions might be experimentally controlled by
electron/hole doping and temperature.

The sign change of σ̄xxx in T dependence is owing to the multiband effect. As shown
in Fig. 3.3(b), the band bottom is shifted in the opposite direction for the upper and lower
bands, which means that the opposite sign of the coupling α1T̃

MF
x results in the opposite

contribution to σ̄xxx. This is demonstrated by decomposing σ̄xxx into the upper- and
lower-band contributions, as shown in Fig. 3.4(b). The results indicate that the dominant
contribution of σ̄xxx arises from the upper band for 0.9≲T/TN≤1, while that arises from
the lower band for T/TN≲0.9. The suppression of the upper-band contribution for low T
is because it becomes away from the Fermi level by the development of TMF

x .

Figure 3.5: The transverse second-order nonlinear conductivity σ̄xzz for several α1 and
α2 while keeping α1=α2. The inset represents σ̄zxx/(α1α

2
2).

Next, let us discuss the transverse nonlinear conductivity σ̄xzz. Figure 3.5 shows the
T dependence of σ̄xzz for 0.02≤α1, α2≤0.1 with α1=α2. The behavior of σ̄xzz against T
is similar to σ̄xxx except for the sign change; σ̄xzz becomes nonzero below TN and shows
the maximum just below TN. While decreasing T , σ̄xzz is suppressed and shows an almost
constant value.

Similar to σxxx, the origin of nonzero σxzz is the asymmetric band modulation under
TMF
x ̸=0 via the effective coupling T̃MF

x α1. Besides, we find another contribution from α2

for nonzero σxzz in contrast to σxxx. This additional parameter dependence is owing to
an additional symmetry between kz and kz+π for α2=0, which gives the opposite-sign
contribution to σxzz so that totally σxzz=0. As shown in the inset of Fig. 3.5, σ̄xzz is well
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scaled by α1α
2
2.

3.3.3 Linear Magnetoelectric Effect and Hall Effect

Figure 3.6: (a) The magnetoelectric coefficient ᾱyz and (b) the quantity σ̄xzᾱyz with
the same parameters as Fig. 3.5. σ̄xz is calculated by supposing the small magnetic field
Hy=0.01. The insets of (a) and (b) represent ᾱyz/α2 and σ̄xzᾱyz/(α1α

2
2), respectively.

We also present another MT-moment-driven phenomena, the magnetoelectric response,
and compare the temperature and essential model parameter dependences between the
nonlinear conductivity and the linear magnetoelectric effect. Figure 3.6(a) shows the T
dependence of ᾱyz for 0.02≤α1, α2≤0.1 with α1=α2, whose behavior is similar to the
transverse nonlinear conductivity σxzz in Fig. 3.5 except for the sign. ᾱyz is nonzero even
if α1=0 that is different from the nonlinear conductivities, whereas α2 and T̃MF

x are es-
sential to obtain the finite ᾱyz. As shown in the inset of Fig. 3.6(a), ᾱyz is well scaled as
ᾱyz/α2 for small α2.

Moreover, it is noteworthy to comment on the relation between the transverse non-
linear conductivity and a combination of the linear magnetoelectric and Hall coefficients,
since the nonlinear transverse transport in the PT -symmetric AFMs can be understood
as the Hall transport driven by the induced magnetization through the linear magneto-
electric response at the phenomenological level [69, 169].

We show the T dependence of σ̄xzᾱyz in Fig. 3.6(b) for the same parameters in Fig. 3.5.
The small magnetic field Hy=0.01 is introduced to mimic the induced magnetization via
αyz. Compared to the results in Fig. 3.5, one finds the resemblance between the T
dependences of σ̄xzz and σ̄xzᾱyz, both of which are scaled by α1α

2
2. A good qualitative

correspondence in these responses indicates that the interpretation of dividing subsequent
two linear processes for nonlinear conductivity is reasonable in the present model. The
overall quantitative difference σ̄xzᾱyz/σ̄xzz∼10−2 may be ascribed to the magnitude of the
used internal magnetic field (Hy=0.01) that should be replaced by the true internal field.
However, it is hard to estimate it quantitatively.

The above results clearly depend on the fact that the essential model parameters are
common in σxzz and σxzαyz. However, such a correspondence does not always hold by
introducing other model parameters. For example, we take into account the interlayer
hopping between sublattices A and B as shown in Fig. 3.7(a), which changes εAB(k) in
Eq. (3.3) as −2t1 cos (kxa/2)→−2[t1+2t4 cos (kzc)] cos (kxa/2). Figures 3.7(b) and 3.7(c)
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Figure 3.7: (a) Schematic picture of the interlayer hopping t4 between A and B sublattices.
(b,c) The T dependences of (b) σ̄xzz and (c) σ̄xzᾱyz for (t4, α2)=(0.1, 0), (0.1, 0.1), and
(0.05, 0.1).

show σ̄xzz and σ̄xzᾱyz as functions of T , respectively, for t4=0.1, 0.05 and α2=0, 0.1, where
α1=0.4 is used. As shown by the red dashed line in Fig. 3.7(b), σ̄xzz still remains nonzero
even for α2=0, while σ̄xzᾱyz in Fig. 3.7(c) vanishes. Furthermore, the nonzero t4 enhances
σ̄xzz, while it suppresses σ̄xzᾱyz while increasing t4. This is because the essential model
parameters are different for σxzz and σxzαyz. Indeed, in the presence of t4 and α2, the
essential model parameter of σxzz is represented by using the coefficients, c and c′, as
α1T̃

MF
x (cα2

2t2+c
′t4), which clearly shows that σxzz has the additional contribution from t4

and does not vanish for α2=0. On the other hand, the essential model parameters of σxz
and αyz does not show the change from σxz→α1α2Hy and αyz→α2T̃

MF
x , respectively; the

hopping t4 is not the essential model parameter for σxz and αyz. Thus, there is no simple
relation between them in this set of the model parameters.

Finally, we discuss the order estimate of the nonlinear conductivity for α1=0.5 and
α2=0.1 by the ratio σxxx/(σxx)

2 with being independent of the relaxation time in the
clean limit. By putting the typical values as a∼0.5 [nm] and |t2|=0.2 eV, we obtain
σxxx/(σxx)

2∼10−3ℏa2e−1|t2|−1∼10−18 [m3 A−1] for T→0 and 10−17 [m3 A−1] near TN,
which is comparable to the value in the 2D nonmagnetic Rashba system under the mag-
netic field [181]. Further enhancement can be achieved by tuning the model parameters
and electron filling.

3.4 Summary

In summary, we investigated the microscopic essential parameters for the second-order
nonlinear conductivity due to the MT dipole in the collinear AFM metal. Based on the
nonlinear Kubo formula in the clean limit, we found that the effective coupling between
the ASOI and the MT dipole is the essence to induce the nonlinear conductivity. By
analyzing both the longitudinal and transverse components of the nonlinear conductivity
while changing the ASOI and the temperature, we showed that their large enhancement
can be achieved near the transition temperature, provided that the AFM molecular field is
comparable to the ASOI. Moreover, we also showed that the physical phenomena charac-
terized by the same essential model parameters exhibit a similar temperature dependence
by comparing the linear magnetoelectric and Hall coefficients with the transverse nonlin-
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ear conductivity.
The similar analysis to extract essential model parameters can be applied to any MT

dipole orderings in the zigzag structure, e.g., CeRu2Al10 [182, 183], Ce3TiBi5 [72, 73], and
α-YbAl1−xMnxB4 [184], and other ferrotoroidal metals/semiconductors with the locally
noncentrosymmetric crystal structures, such as Mn2Au [178, 185], RB4 (R=Dy, Er) [186,
187], CuMnAs [177, 188, 189], PrMnSbO [190], NdMnAsO [191], and XyFe2−xSe2 (X=K,
Tl, Rb) [192–194], once the model Hamiltonian is constructed. The measurements and
comparison of the linear magnetoelectric effect and the nonlinear conductivity for these
materials are also useful to obtain the microscopic information of the electronic state.
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Chapter 4

Odd-Parity Multipole Order in
f-electron Metal CeCoSi

We investigate the stability of the odd-parity multipole order and its multiferroic re-
sponses in the f -electron metal CeCoSi. We also study a way of detecting odd-parity
multipole orderings by the NQR/NMR measurement. The study in this chapter includes
the contents of Refs. [101, 147, 195]1. This chapter is organized as follows. In Sec. 4.1, we
briefly review the recent experimental results of the f -electron metal CeCoSi and present
the motivation of this study. We show the crystalline electric field level of the Ce ion in
Sec. 4.2 and present potential multipole order parameters in Sec. 4.3. We examine the
stability of the odd-parity multipole orderings, finite-temperature phase transitions, and
the physical properties by using an effective local model in Sec. 4.4. We also analyze
the stability and current-induced multiferroic responses in the presence of the odd-parity
multipoles based on an effective itinerant model in Sec. 4.5. In Sec. 4.6, we formulate the
theory of the NQR and NMR spectra to identify the odd-parity multipole orderings. We
summarize this chapter in Sec. 4.7.

4.1 Introduction

First, we give a short review of the crystal structure and the experimental results of the
ordered states in the f -electron metal CeCoSi [196–205]. CeCoSi has the CeFeSi-type
tetragonal crystal structure (P4/nmm, D7

4h, No. 129) presented in Fig. 4.1(a), where the
Ce and Si atoms are located at 2c sites with point group symmetry 4mm (C4v), whereas
the Co atom is at 2a site with 4̄m2 (D2d) [206]. A unit cell includes two Ce ions denoted
as CeA and CeB as shown in Fig. 4.1(a). Although the local inversion symmetry is lacking
at all atomic sites, the inversion center exists between two Ce sites, which is illustrated in
Fig. 4.1(b). The lattice constants are a=0.4057 nm and c=0.6987 nm determined by the
x-ray diffraction measurement [200]. The crystalline electric field (CEF) ground state for

1Table 4.5 and Figs. 4.9 and 4.11 are reproduced from Ref. [101] (© (2020) The Physical Society of
Japan).
Figure 4.10 is reproduced from Ref. [195] (© (2020) The Physical Society of Japan).
Tables 4.2, 4.6–4.9, and F.1 in Appendix F and Figs. 4.12–4.15, F.1, and F.2 are reproduced from Ref. [147]
(© 2020 by the American Physical Society).
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Figure 4.1: (a) Tetragonal crystal structure of CeCoSi in a unit cell with the lattice
constants a and c. The nearest-neighbor Ce-Ce, Ce-Co, and Co-Si bonds are represented
by red, black, and gray solid lines, respectively. The rectangle represents a unit cell. (b)
Crystal structure viewed from the x axis. The red rectangle shows the unit cell where the
inversion centers are located at the center and vertices of the unit cell. (c) CoA (top) and
CoB (bottom) sites surrounded by the Ce tetrahedron.

the Ce site was suggested to be the Γ7 Kramers doublet and the first and second excited
levels are separated by around 100 K and 150 K, respectively [198–200, 202].

Figure 4.2: (a) The temperature-pressure and (b) magnetic-field-temperature phase dia-
grams in Ref. [200]. “Present data”, “ Tanida et al.”, and “Lengyel et al.” in (a) stand
for the data of Refs. [200], [199], and [198], respectively. (Reproduced with permission from

Ref. [200]. © (2019) The Physical Society of Japan.)

From the measurements of the specific heat, electrical resistivity, and magnetization,
the physical properties in the low-temperature region have been investigated and clarified
the existence of two types of ordered phases. They are denoted as “II phase” and “III
phase” in the temperature-pressure (T -P ) phase diagram [Fig. 4.2(a)] and the magnetic-
field-temperature (H-T ) phase diagram [Fig. 4.2(b)], where “I phase” is the paramagnetic
phase without showing any electronic orderings [198–200].
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Figure 4.3: (a) Specific heat and (b) magnetization of CeCoSi and LaCoSi single crystals.
(Reproduced with permission from Ref. [200]. © (2019) The Physical Society of Japan.) (c) Electric
resistivity of CeCoSi polycrystal under pressure [198]. (Reprinted figure with permission from

Ref. [198] © 2013 by the American Physical Society.)

The low-temperature III phase was identified as the AFM phase with the transition
temperature TN∼9.5 K under ambient pressure. At TN, the specific heat shows a sharp
anomaly [197, 198, 200, 202] [Fig. 4.3(a)], the magnetization has a cusp-like anomaly
[Fig. 4.3(b)] [197–200], and electric resistivity shows a clear kink [197–200, 203]. Under
pressure, the III phase disappears around P∼1.3 GPa after the slight change of the tran-
sition temperature as shown in Fig. 4.2(a). The neutron diffraction measurement under
ambient pressure for the polycrystal indicated that the magnetic structure in the III phase
is the staggered AFM structure along the [100] direction as shown in Fig. 4.4(a) [202].

Meanwhile, the II phase under ambient pressure shows the second-order phase tran-
sition at T0∼12 K. One can recognize the slight anomaly at T0 in the heat capacity and
magnetization in Figs. 4.3(a) and 4.3(b), while no clear anomaly appears in the electric
conductivity [200]. This phase is referred to as “pressure induced ordered phase (PIOP)”,
because it was originally observed only under pressure in a polycrystal. Subsequently, it
was observed under ambient pressure in the single crystal [200]. The II phase is strongly
enhanced by the hydrostatic pressure; the transition temperature T0 reaches T0∼40 K at
P∼1.5 GPa as shown in Fig. 4.2(a). In such a pressured region, a clear cusp-like anomaly
appears in the electric resistivity as shown in Fig. 4.3(c) [198, 199], which suggests the
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existence of the superzone gap in the Fermi surface due to the antiferroic electronic or-
derings. By applying further pressure, the II phase is suppressed and disappears around
P∼2.2 GPa. In a magnetic field, the transition temperature of the II phase is enhanced
as shown in Fig. 4.2(b); such magnetic-field dependence has been often recognized as the
onset of the antiferroquadrupole (AFQ) ordering, as found in CeB6 [207–209]. Moreover,
the II phase was confirmed to be nonmagnetic from the NQR measurement for the 59Co
nuclear surrounded by the four nearest-neighbor Ce ions as shown in Fig. 4.1(c) [205]; it
suggested that the II phase is higher-rank E multipole ordered phases in the 4f electron
at Ce ion. The existence of the II phase has been also confirmed by the NMR spectra
with the clear splitting below T0 [Fig. 4.4].

Figure 4.4: (a) Magnetic structure in the III phase determined by the neutron powder
diffraction [202]. (b) NMR spectra under the magnetic field slightly tilted from the [100]
direction. (Reproduced with permission from Ref. [205]. © (2021) The Physical Society of Japan.)

The II and III phases might show interesting multiferroic phenomena from the view-
point of the odd-parity multipole physics. It is because the antiferroic orderings with
the ordering vector q=0 in the locally noncentrosymmetric structure, which have been
suggested by the experiments, break the global inversion symmetry and induce the cluster
odd-parity multipoles. They become a source of the multiferroic responses, e.g., magne-
toelectric and elastic-electric effects. Especially, the cluster odd-parity multipole order
consisting of the atomic AFQ moment, which has been expected in the II phase, corre-
sponds to the unconventional augmented ET quadrupole and/or E dipole order. Thus,
it is important to investigate a microscopic origin of the odd-parity multipole orderings
and their related multiferroic responses from the microscopic viewpoint. Moreover, it is
desirable to establish a method of identifying the odd-parity multipole order parameter
by using microscopic measurement like the NQR and NMR measurements beyond the
conventional even-parity one [17, 22, 24].

4.2 Crystalline Electric Field

We discuss the CEF Hamiltonian and the basis wave function of 4f electron with f 1

configuration in the Ce3+ ion. The tetragonal CEF Hamiltonian at Ce site with C4v
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Figure 4.5: The level splittings of J=5/2 multiplet in the cubic and tetragonal CEFs.
The CEF parameters (B20, B40, B44)=(−0.95,−0.14, 3.8) K are used for “Tetragonal (1)”,
whereas (B20, B40, B44)=(−1.26, 0.487, 1.36) K are used for “Tetragonal (2)”.

symmetry is given as

HCEF=B20Ô20+B40Ô40+B44Ô
(c)
44 , (4.1)

where Blm and Ôlm are the CEF parameter and Stevens operator [50], respectively. Here
we omit the B60 and B64 terms by supposing the J=5/2 basis. We also omit the con-
tribution of the local hybridization between d and f orbitals. In the CEF Hamiltonian
in Eq. (4.1), the sixfold J=5/2 basis split into one Γ6 level and two Γ7 levels. The eigen
energies of Γ6 and Γ7 levels, EΓ6 and E

Γ
(1,2)
7

, are given by

EΓ6=−8B20+120B40, (4.2)

E
Γ
(1)
7
=4B20−60B40−6

√
(B20+20B40)2+20B2

44, (4.3)

E
Γ
(2)
7
=4B20−60B40+6

√
(B20+20B40)2+20B2

44, (4.4)

whose wave functions are represented as

|Γ6, ↑↓⟩=
∣∣∣∣±1

2

〉
, |Γ(i)

7 , ↑↓⟩=c
(i)
1

∣∣∣∣±5

2

〉
+c

(i)
2

∣∣∣∣∓3

2

〉
(i=1, 2), (4.5)

where c
(i)
1 and c

(i)
2 (i=1, 2) are the linear combination coefficients determined by B20, B40,

and B44. Two types of CEF parameters are proposed from experiments: (B20, B40, B44)=
(−0.95,−0.14, 3.8) K [210] and (B20, B40, B44)=(−1.26, 0.487, 1.36) K [202]. The former
CEF parameter gives the Γ7 ground state and the Γ6 first excited state with 90 K level
splitting denoted as “Tetragonal (1)” in Fig. 4.5, whereas the latter leads to the Γ7 ground
and first excited states with 125 K level splitting denoted as “Tetragonal (2)” in Fig. 4.5.

4.3 Multipole Degrees of Freedom

In the Kramers doublet, the electronic degrees of freedom are usually expressed as E
monopole (charge) and M dipole ones. It means that the active higher-rank multipole
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degrees of freedom, which might be a source of the AFQ order suggested for the II phase
in CeCoSi, appear only in the interorbital degrees of freedom between the CEF ground
state and the CEF excited state. Although the CEF excited levels are relatively separated
from the ground state, there is a chance of interorbital multipole orderings as found in
CeTe [208]. In the following, we focus on the possibility of the multipole orderings by
considering the four low-energy levels consisting of the CEF ground state and the first
excited state.

In this section, we present the atomic multipoles activated in the low-energy Γ7-Γ6

levels in Tetragonal (1) and Γ
(1)
7 -Γ

(2)
7 levels in Tetragonal (2) in Secs. 4.3.1 and 4.3.2,

respectively. We also show the correspondence to the cluster multipoles in a unit cell
within the two sublattice degrees of freedom.

4.3.1 Γ7-Γ6 Level

We show the multipole degrees of freedom in the Γ7-Γ6 subspace. By calculating each
matrix element by using Eqs. (1.10) and (1.11)2, we obtain the 16 multipole degrees of
freedom as follows: E monopole Q0, M dipole (Mx, My, Mz), E quadrupole (Qu, Qv,
Qyz, Qzx, Qxy), and M octupole (Mxyz, M

α
x , M

α
y , M

α
z , M

β
x , M

β
y , M

β
z ). Among them,

the multipoles activated in the intraorbital space are the E monopole and M dipoles:
Q̂0=σ0τ0, M̂µ (µ=x, y) is represented by a linear combination of τ0σµ, τzσµ, and τxσµ,

and M̂z is represented by a linear combination of τ0σz and τzσz by using the identity
matrix σ0 (τ0) and the Pauli matrix σµ (τµ) (µ=x, y, z) in quasi-spin (Γ7-Γ6) space. It is
noted that the M dipoleMx (My) includes the interorbital component represented by τxσx
(τxσy). Besides, there are further four types of intraorbital multipole degrees of freedom
due to the consideration of the two orbitals, an E quadrupole and three M octupoles: the
E quadrupole Q̂u is represented by a linear combination of τ0σ0 and τzσ0, M octupole
M̂α

µ (µ=x, y) is represented by a linear combination of τ0σµ, τzσµ, and τxσµ, and M̂
α
z is

represented by a linear combination of τ0σz and τzσz. Note that M̂
α
x and M̂α

y include the

interorbital component as well as the M dipoles M̂x and M̂y.
Meanwhile, there are eight types of interorbital degrees of freedom between the Γ7

and Γ6 orbitals: the four E quadrupoles and four M octupoles. Their matrix elements are
given as Q̂v=

1
2
τxσ0, Q̂xy=

1
2
τyσz, and (Q̂yz, Q̂zx)=

1
2
(τyσx, τyσy) for the E quadrupoles, and

Mxyz=
1
2
τyσ0 andM

β
z =

1
2
τxσz for the M octupoles. Besides, the other two M octupoles M̂β

µ

(µ=x, y) are represented by a linear combination of τ0σµ, τzσµ, and τxσµ, which include

the intraorbital contributions as well as the M dipoles M̂x and M̂y. Each matrix element
and the linear combination coefficients calculated for the Tetragonal (1) are summarized
in Table 4.1. In the table, we also present the higher-rank multipoles composed from the
same matrix elements, which have the different linear combination coefficients.

By taking into account the two sublattice degrees of freedom in Fig. 4.1(a), the cluster
multipole expressions are obtained. Under the symmetry 4/mmm1′, the sublattice degrees
of freedom is decomposed into the IRREPs Γsub=A+

1g⊕A+
2u, where A

+
1g represents the uni-

form potential configuration, while A+
2u describes the staggered one. By taking the direct

product of Γsub and the IRREPs of the atomic multipoles Q0, Qu∈A+
1g, Qv∈B+

1g, Qxy∈B+
2g,

(Qyz, Qzx)∈E+
g , Mz,M

α
z ∈A−

2g, Mxyz∈B−
1g, M

β
z ∈B−

2g, (Mx,My), (M
α
x ,M

α
y ), (M

β
x ,M

β
y )∈E−

g

2The same result is obtained by using the spherical tensor operators [11].
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Table 4.1: Multipole degrees of freedom activated in the Γ7-Γ6 subspace and their ex-
pressions. Each expression is normalized to satisfy Tr[XX†]=1. The linear combination
coefficients in the Tetragonal (1) with (B20, B40, B44)=(−0.95,−0.14, 3.8) and the rele-
vant higher-rank multipoles are also shown.

multipole matrix linear combination coefficient higher rank

Mx cx1τ0σx+c
x
2τzσx+c

x
3τxσx (cx1 , c

x
2 , c

x
3)=(0.064,−0.41,−0.28) Mα1

5x ,M
α2
5x ,M

β
5x

My cy1τ0σy+c
y
2τzσy+c

y
3τxσy (cy1, c

y
2, c

y
3)=(0.064,−0.41, 0.28) Mα1

5y ,M
α2
5y ,M

β
5y

Mz cz1τ0σz+c
z
2τzσz (cz1, c

z
2)=(0.48, 0.14) Mα1

5z ,M
α2
5z

Qu cu1τ0σ0+c
u
2τzσ0 (cu1 , c

u
2)=(−0.1, 0.49) Q4, Q4u

Qv
1

2
τxσ0 Q4v

Qxy
1

2
τyσz Qβ

4z

Qyz
1

2
τyσx Qα

4x, Q
β
4x

Qzx
1

2
τyσy Qα

4y, Q
β
4y

Mxyz
1

2
τyσ0 M5v

Mα
x cxα1 τ0σx+c

xα
2 τzσx+c

xα
3 τxσx (cxα1 , cxα2 , cxα3 )=(0.42, 0.11, 0.25)

Mα
y cyα1 τ0σy+c

yα
2 τzσy+c

yα
3 τxσy (cyα1 , c

yα
2 , c

yα
3 )=(0.42, 0.11,−0.25)

Mα
z czα1 τ0σz+c

zα
2 τzσz (czα1 , c

zα
2 )=(0.09, 0.49)

Mβ
x cxβ1 τ0σx+c

xβ
2 τzσx+c

xβ
3 τxσx (cxβ1 , c

xβ
2 , c

xβ
3 )=(0.35,−0.062,−0.35)

Mβ
y cyβ1 τ0σy+c

yβ
2 τzσy+c

yβ
3 τxσy (cyβ1 , c

yβ
2 , c

yβ
3 )=(−0.35, 0.062,−0.35)

Mβ
z

1

2
τxσz Mβ

5z

from Table C.17, the IRREPs of the cluster multipoles are given as follows:

(A+
1g⊕A+

2u)⊗(2A+
1g⊕B+

1g⊕B+
2g⊕E+

g ⊕2A−
2g⊕B−

1g⊕B−
2g⊕3E−

g )

=(2A+
1g⊕B+

1g⊕B+
2g⊕E+

g ⊕2A−
2g⊕B−

1g⊕B−
2g⊕3E−

g )uniform

⊕(2A+
2u⊕B+

1u⊕B+
2u⊕E+

u ⊕2A−
1u⊕B−

1u⊕B−
2u⊕3E−

u )staggered, (4.6)

where the subscript “uniform (staggered)” means the IRREPs with the uniform (stag-
gered) configuration of the atomic multipoles. By using Table C.17, the corresponding
multipoles and their IRREPs are obtained, as summarized in Table 4.23, where the IRREP

3The total M dipole is defined as M̂ tot
µ =τ0σµ+τxσµ for µ=x, y and M̂ tot

z =τ0σz so as to eliminate the
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of each multipole in a magnetic field is also shown.

Table 4.2: Cluster multipoles (CMP) consisting of the (a) uniform and (b) staggered
configurations of atomic multipoles in the Γ7-Γ6 levels. The IRREPs of each CMP in
a magnetic field are also shown for the magnetic field along the [001] direction (H∥
[001]) with symmetry 4/mm′m′, the [100] direction (H∥[100]) with symmetry mm′m′,
and the [110] direction (H∥[110]) with symmetry mm′m′. The sign of IRREP in each
magnetic point group symmetry means that the parity for the time-reversal operation
θ in 4/mmm1′, θC ′

2x in 4/mm′m′, and θC2z in mm′m′. The cluster multipoles in the
parentheses are used for H∥[110].

H=0 H∥[001] H∥[100]H∥[110]
type of CMP definition 4/mmm1′ 4/mm′m′ mm′m′ mm′m′

(a) uniform

E monopole Q̂
(c)
0 Q̂0,A+Q̂0,B A+

1g A+
g A+

g A+
g

M dipole M̂
(c)
x (M̂

(c)
x +M̂

(c)
y ) M̂ tot

x,A+M̂
tot
x,B E−

g E−
g A+

g A+
g

M̂
(c)
y (M̂

(c)
x −M̂ (c)

y ) M̂ tot
y,A+M̂

tot
y,B B+

g B+
g

M̂
(c)
z M̂ tot

z,A+M̂
tot
z,B A−

2g A+
g B−

g B−
g

E quadrupole Q̂
(c)
u Q̂u,A+Q̂u,B A+

1g A+
g A+

g A+
g

Q̂
(c)
v Q̂v,A+Q̂v,B B+

1g B+
g A+

g B+
g

Q̂
(c)
yz (Q̂

(c)
yz +Q̂

(c)
zx ) Q̂yz,A+Q̂yz,B E+

g E+
g A−

g B−
g

Q̂
(c)
zx (Q̂

(c)
yz −Q̂(c)

zx ) Q̂zx,A+Q̂zx,B B−
g A−

g

Q̂
(c)
xy Q̂xy,A+Q̂xy,B B+

2g B−
g B+

g A+
g

M octupole M̂
(c)
xyz M̂xyz,A+M̂xyz,B B−

1g B−
g A−

g B−
g

M̂
β(c)
z M̂β

z,A+M̂
β
z,B B−

2g B+
g B−

g A−
g

(b) staggered

E dipole Q̂
(c)
z Q̂0,A−Q̂0,B A+

2u A+
u B+

u B+
u

MT dipole T̂
(c)
y (T̂

(c)
x +T̂

(c)
x ) M̂ tot

x,A−M̂ tot
x,B E−

u E−
u B+

u A+
u

−T̂ (c)
x (−T̂ (c)

x +T̂
(c)
x ) M̂ tot

y,A−M̂ tot
y,B A+

u B+
u

M monopole M̂
(c)
0 M̂ tot

z,A−M̂ tot
z,B A−

1u A+
u A−

u A−
u

E dipole Q̂
(c)
z Q̂u,A−Q̂u,B A+

2u A+
u B+

u B+
u

ET quadrupole Ĝ
(c)
xy Q̂v,A−Q̂v,B B+

2u B+
u B+

u A+
u

E dipole Q̂
(c)
y (Q̂

(c)
x +Q̂

(c)
y ) Q̂yz,A−Q̂yz,B E+

u E+
u B−

u A−
u

Q̂
(c)
x (−Q̂(c)

x +Q̂
(c)
y ) Q̂zx,A−Q̂zx,B A−

u B−
u

ET quadrupole Ĝ
(c)
v Q̂xy,A−Q̂xy,B B+

1u B−
u A+

u B+
u

M quadrupole M̂
(c)
xy M̂xyz,A−M̂xyz,B B−

2u B−
u B−

u A−
u

M̂
(c)
v M̂β

z,A−M̂
β
z,B B−

1u B+
u A−

u B−
u

component of the M octupole belonging to the same IRREP.
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4.3.2 Γ7-Γ7 Level

We show the atomic multipole degrees of freedom activated in Γ
(1)
7 -Γ

(2)
7 space correspond-

ing to Tetragonal (2) in Fig. 4.5. The atomic multipoles and their matrix elements are
summarized in Table 4.3. There are several differences from the result in the Γ7-Γ6 sub-
space; M dipole Mz has the interorbital component, E quadrupoles Qv and Qxy and M
octupoles Mxyz and Mβ

z are lacking, and the E hexadecapole Qα
4z and M triacontadipole

M5u can be active as the independent multipole degrees of freedom. Similarly, we present
the cluster multipoles consisting of two atomic sites in the unit cell in Table 4.4.

Table 4.3: Multipole degrees of freedom activated in the low-energy Γ
(1)
7 -Γ

(2)
7 subspace in

the Tetragonal (2) with (B20, B40, B44)=(−1.26, 0.487, 1.36).

multipole matrix linear combination coefficient higher rank

Mx cx1τ0σx+c
x
2τzσx+c

x
3τxσx (cx1 , c

x
2 , c

x
3)=(0,−0.29,−0.41) Mα1

5x ,M
α2
5x ,M

β
5x

My cy1τ0σy+c
y
2τzσy+c

y
3τxσy (cy1, c

y
2, c

y
3)=(0, 0.29, 0.41) Mα1

5y ,M
α2
5y ,M

β
5y

Mz cz1τ0σz+c
z
2τzσz+c

z
3τxσz (cz1, c

z
2, c

z
3)=(−0.12, 0.39,−0.28) Mα1

5z ,M
α2
5z

Qu cu1τ0σ0+c
u
2τzσ0+c

u
3τxσ0 (cu1 , c

u
2 , c

u
3)=(0.28,−0.34, 0.24) Q4, Q4u

Qyz
1

2
τyσx Qα

4x, Q
β
4x

Qzx
1

2
τyσy Qα

4y, Q
β
4y

Mα
x cxα1 τ0σx+c

xα
2 τzσx+c

xα
3 τxσx (cxα1 , cxα2 , cxα3 )=(0.26, 0.41, 0.13)

Mα
y cyα1 τ0σy+c

yα
2 τzσy+c

yα
3 τxσy (cyα1 , c

yα
2 , c

yα
3 )=(−0.26,−0.41,−0.13)

Mα
z czα1 τ0σz+c

zα
2 τzσz+c

zα
3 τxσz (c

zα
1 , c

zα
2 , c

zα
3 )=(−0.49,−0.065, 0.048)

Mβ
x cxβ1 τ0σx+c

xβ
2 τzσx+c

xβ
3 τxσx (cxβ1 , c

xβ
2 , c

xβ
3 )=(−0.189, 0.093, 0.454)

Mβ
y cyβ1 τ0σy+c

yβ
2 τzσy+c

yβ
3 τxσy (cyβ1 , c

yβ
2 , c

yβ
3 )=(−0.189, 0.093, 0.454)

Qα
4z

1

2
τyσz

M5u
1

2
τyσ0

4.4 Analysis Based on the Local Model

We investigate the stability and the physical property in the AFQ and AFM phases in
the presence of the large CEF splitting by using the self-consistent mean-field calculation
for the local model to clarify when the AFQ and AFM phase transitions are possible.
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Table 4.4: Cluster multipoles (CMP) consisting of the (a) uniform and (b) staggered

configurations of atomic multipoles in the Γ
(1)
7 -Γ

(2)
7 levels.

H=0 H∥[001] H∥[100]H∥[110]
type of CMP definition 4/mmm1′4/mm′m′ mm′m′ mm′m′

(a) uniform

E monopole Q̂
(c)
0 Q̂0,A+Q̂0,B A+

1g A+
g A+

g A+
g

M dipole M̂
(c)
x (M̂

(c)
x +M̂

(c)
y ) M̂ tot

x,A+M̂
tot
x,B E−

g E−
g A+

g A+
g

M̂
(c)
y (M̂

(c)
x −M̂ (c)

y ) M̂ tot
y,A+M̂

tot
y,B B+

g B+
g

M̂
(c)
z M̂ tot

z,A+M̂
tot
z,B A−

2g A+
g B−

g B−
g

E quadrupole Q̂
(c)
u Q̂u,A+Q̂u,B A+

1g A+
g A+

g A+
g

Q̂
(c)
yz (Q̂

(c)
yz +Q̂

(c)
zx ) Q̂yz,A+Q̂yz,B E+

g E+
g A−

g B−
g

Q̂
(c)
zx (Q̂

(c)
yz −Q̂(c)

zx ) Q̂zx,A+Q̂zx,B B−
g A−

g

E hexadecapole Q̂
α(c)
4z Q̂α

4z,A+Q̂
α
4z,B A+

2g A−
g B+

g B+
g

M triacontadipole M̂
(c)
5u M̂5u,A+M̂5u,B A−

1g A−
g A−

g A−
g

(b) staggered

E dipole Q̂
(c)
z Q̂0,A−Q̂0,B A+

2u A+
u B+

u B+
u

MT dipole T̂
(c)
y (T̂

(c)
x +T̂

(c)
x ) M̂ tot

x,A−M̂ tot
x,B E−

u E−
u B+

u A+
u

−T̂ (c)
x (−T̂ (c)

x +T̂
(c)
x ) M̂ tot

y,A−M̂ tot
y,B A+

u B+
u

M monopole M̂
(c)
0 M̂ tot

z,A−M̂ tot
z,B A−

1u A+
u A−

u A−
u

E dipole Q̂
(c)
y (Q̂

(c)
x +Q̂

(c)
y ) Q̂yz,A−Q̂yz,B E+

u E+
u B−

u A−
u

Q̂
(c)
x (−Q̂(c)

x +Q̂
(c)
y ) Q̂zx,A−Q̂zx,B A−

u B−
u

ET quadrupole Ĝ
(c)
u Q̂α

4z,A−Q̂α
4z,B A+

1u A+
u A+

u A+
u

MT dipole T̂
(c)
z M̂5u,A−M̂5u,B A−

2u A+
u B−

u B−
u

In the following discussion, we use the Γ7-Γ6 level scheme for the CEF parameter of
Tetragonal (1), although one can also analyze the case for the Γ

(1)
7 -Γ

(2)
7 level scheme as

well.

In Sec. 4.4.1, we show the effective local model including the CEF level splitting and
multipole-multipole interactions. We discuss the stability of the multipole ordered states
and their finite-temperature phase transitions in Sec. 4.4.2 and magnetic and quadrupole
susceptibilities in Sec. 4.4.3.
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4.4.1 Model

We consider an effective local model, which includes the CEF level splitting, the Zeeman
term, and the multipole-multipole interaction. The model Hamiltonian is given as follows:

H=HCEF+HZeeman+Hint, (4.7)

HCEF=∆
∑
R

∑
i=A,B

∑
σ=↑,↓

f †
RiΓ6σ

fRiΓ6σ (4.8)

HZeeman=−gµB

∑
R

∑
i=A,B

H ·ĴRi, (4.9)

Hint=D
n.n.∑
⟨r,s⟩

[
δuQ̂u,rQ̂u,s+δvQ̂v,rQ̂v,s+δE+(Q̂yz,rQ̂yz,s+Q̂zx,rQ̂zx,s)+δxyQ̂xy,rQ̂xy,s

+δE−(M̂x,rM̂x,s+M̂y,rM̂y,s)+δzM̂z,rM̂z,s

+δxyzM̂xyz,rM̂xyz,s+δE−
3α
(M̂α

x,rM̂
α
x,s+M̂

α
y,rM̂

α
y,s)+δzαM̂

α
z,rM̂

α
z,s

+δE−
3β
(M̂β

x,rM̂
β
x,s+M̂

β
y,rM̂

β
y,s)+δzβM̂

β
z,rM̂

β
z,s

]
, (4.10)

where f †
RiΓ6σ

(fRiΓ6σ) and ĴRi are the creation (annihilation) operator of the f electron
with the quasi spin σ=↑, ↓ in the Γ6 level and the total angular momentum, respectively, at
the sublattice i=A,B in the Rth unit cell. X̂r≡X̂Ri=

∑
ll′
∑

σσ′ f
†
RilσX̂

ll′

σσ′fRil′σ′ (X=Qu,
Qv, Qyz, Qzx, Qxy, Mx, My, Mz, Mxyz, M

α
x , M

α
y , M

α
z , M

β
x , M

β
y , M

β
z ) is the normalized

multipole operator at rth atomic site, where X̂ ll′

σσ′ is the matrix element for the orbital
l, l′=Γ7,Γ6 and quasi spin σ, σ′=↑, ↓ shown in Table 4.1. The first term HCEF in Eq. (4.7)
is the CEF level splitting, where ∆ is calculated from the CEF Hamiltonian in Eq. (4.1)
as ∆∼90 K. The second term HZeeman in Eq. (4.7) is the Zeeman term, where g is the g
factor with the value g=6/7 and the Bohr magneton µB is set as µB→µB/kB=0.67 [K/T].
The Boltzmann factor kB is set as 1 in the following. The last term Hint in Eq. (4.7) is the
antiferroic multipole-multipole interaction term (D>0), where the summation is taken for
the eight neighbor CeA and CeB sites, ⟨r, s⟩. δX stands for the weight of the multipole-
multipole interaction (0≤δX≤1). Hint is derived based on the symmetry analysis4.

By applying the Hartree approximation for Hint as

D

n.n.∑
⟨r,s⟩

δXX̂rX̂s→Dz

N∑
R=1

δX(⟨X̂A⟩ X̂RB+⟨X̂B⟩ X̂RA−⟨X̂A⟩ ⟨X̂B⟩), (4.11)

the mean-field Hamiltonian is obtained. We take into account the interaction to the upper-
nearest-neighbor four sites and lower-nearest-neighbor four sites [See also Fig. 4.1(a)] as
a mean field and set z=8. We set D̄≡Dz in the following discussion.

4.4.2 Phase Diagram

We investigate the stability of the AFM and AFQ phases by using the two-sublattice self-
consistent mean-field calculation for the local model in Eq. (4.7). We suppose that the

4We omit the coupling between different types of multipoles, such as Mx and Mα
x , for simplicity, while

it is allowed from the symmetry viewpoint.
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Figure 4.6: (a) Schematic picture of the low-energy four levels in the paramagnetic phase
(left), AFQ phase (middle), and AFM phase (right). The basis functions are also shown
except for the AFM phase, where α and β are the linear combination coefficients and
σ̄=−σ. (b) The phase diagram while changings the temperature (T ) and interaction D̄
in the absence of the AFM interaction. For δu=0, 1, and 2, the AFQ ordering is stabilized
in the colored region above each bold line. The broken line describes the transition from
the Qzx(or Qyz)-type AFQ order to the Qu-type AFQ order when increasing D̄ for δu=2.
Other nonzero parameters are δE+=1 and δv=0.8. (c) The phase diagram when T and the
ratio δE−/δE+ change, where the antiferroic order parameters in each phase are presented.

in-plane AFM order, which is suggested by the neutron diffraction of CeCoSi [202], and
the Qyz- or Qzx-type AFQ order by setting δz=0.3δE− , δE+=1, and δv=0.8 in the present
calculation. Other interaction parameters are set 0 except for δu and δE− in the following.
Although the order parameters and the relevant multipoles have not been identified yet
in the II phase, we discuss a case of the Qyz-or Qzx-type AFQ orderings breaking the
tetragonal symmetry, whose symmetry violation has been recently implied by the x-ray
diffraction measurement [211].

First, we examine the multipole interaction to stabilize the AFM and AFQ phases
in a zero magnetic field. In the paramagnetic phase without any electronic orderings,
two CEF levels are separated by ∆ as shown in the left panel of Fig. 4.6(a). When the
effect of the multipole-multipole interaction D̄ is taken into account, the interorbital AFQ
ordering becomes possible. In the presence of the AFQ ordering, the mixing of Γ7 and Γ6

levels occurs like the middle panel of Fig. 4.6(a), where the two-fold degeneracy remains
due to the time-reversal symmetry. Temperature (T ) and D̄ required to stabilize the Qyz-
or Qzx-type AFQ order are shown in Fig. 4.6(b) for three δu=0, 1, and 2, where we set
the AFM interaction δE−=0. In the colored region above the bold line, AFQ ordered
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state is stabilized for each δu. For δu=0, the large value D̄∼2∆ is needed to stabilize
the AFQ state, which is consistent with the theoretical study on the cubic system with
the Γ7 ground state5 [212]. Meanwhile, nonzero δu suppresses the critical value of D̄ to
stabilize the AFQ phase as shown in Fig. 4.6(b). It is because the δu term renormalizes
the CEF splitting effectively through the development of the ferroic Qu moment. It is
noted that the suppression of the CEF splitting depends on the temperature, as the ferroic
Qu moment depends on the temperature. In the following discussion, we use δu=2 and
D̄=80, which gives a similar transition temperature to that of the II phase observed in
CeCoSi.

Next, we introduce the AFM interaction to describe the AFQ-AFM phase transition
observed in CeCoSi. The introduction of δE− replaces the AFQ ground state with the
AFM ground state owing to the lifting of the Kramers degeneracy as shown in the right
panel of Fig. 4.6(a). Figure 4.6(c) shows the phase diagram while changing T and the
ratio of the AFM and AFQ interaction, δE− and δE+ . The solid (dotted) line means the
second-order (first-order) phase transition. For the small δE−/δE+≲0.35, decreasing T
leads to the Qzx(Qyz)-type AFQ ordering, followed by the Mx(My)-type AFM ordering
accompanied by the Qzx(Qyz)-type AFQ moment. In 0.35≲δE−/δE+≲0.9, the AFM phase
shows further first-order phase transition to the (Mx+My)[(Mx−My)]-type AFM ordering
with the (Qyz−Qzx)[(Qyz+Qzx)]-type AFQ moment. There are two differences in these
two AFM phases; one is the in-plane anisotropy between [100] and [110] directions, and
the other is the difference in angle relative to the AFQ moment. Especially, the latter
difference results in the different symmetry between two types of AFM phases. For large
δE−/δE+≳0.9, only the AFM phase appears without the AFQ phase. In the end, the result
in the region δE−/δE+≲0.9 might correspond the situation observed in CeCoSi; AFQ and
AFM phases appear while changing the temperature. We set δE−=0.7δE+ in the following
calculation.

We also investigate the AFQ and AFM phases in a magnetic field. Figures 4.7(a) and
4.7(b) are the phase diagrams against the magnetic field (H) and T , where the Zeeman
field in Eq. (4.7) is directed along the [001] and [100] directions. The solid (dotted)
line represents the phase boundary characterized by the second-order (first-order) phase
transition. The filled square (T0), filled circle (TN), and empty circle (T ′

N) in a zero
magnetic field stand for the AFQ transition temperature, AFM transition temperature,
and phase transition between two types of AFM states, respectively.

In the [001] magnetic field, the Qzx(Qyz)-type AFQ order is stabilized even in the
high-field region. The magnetic point group symmetry is 2′m′m (m′2′m) as presented in
the parentheses in Fig. 4.7(a). The transition temperature of the AFQ phase is almost the
same when applying the [001] magnetic field. The transition at TN in a zero magnetic field
disappears in the [001] magnetic field because of the same symmetry to the AFQ phase,
although the broad peak structure remains in the T derivative of the magnetization and
heat capacity, which is presented by the dashed thin line in Fig. 4.7(a). On the other
hand, the low-temperature AFM phase, which has the (Mx+My)[(Mx−My)]-type AFM
moment and the (Qyz−Qzx)[(Qyz+Qzx)]-type AFQ moment in a zero magnetic field, has
the symmetry m and remains in the [001] magnetic field as presented in Fig. 4.7(a). By
applying the magnetic field, these vertically coupled AFM and AFQ moments rotate in

5It is noted that the present study uses the normalized multipole moment unlike Ref. [212].

75



4.4. ANALYSIS BASED ON THE LOCAL MODEL

Figure 4.7: (a–f)H-T phase diagrams in the (a,c,e) [001] and (b,d,f) [100] magnetic fields.
In addition to the effect of the Zeeman coupling in (a) and (b), the magnetic octupole
interaction δE−

3β
is additionally considered in (c) and (d), and the effective multipole cou-

pling between the FM and AFQ moments is considered in (e) and (f). The solid (dotted)
line stands for the second-order (first-order) phase transition. The dashed thin line in the
[001] magnetic field represents the minimum in the T derivative of the magnetization [see
the main text in the details]. The phase boundaries in (a)[(b)] is shown by the thin black
lines in (c) and (e) [(d) and (f)] for reference.

the xy plane and reach the parallel coupled Mx(My)-type AFM and Qzx(Qyz)-type AFQ
moment, which means the phase transition to the AFQ phase.

The phase diagram in the [100] magnetic field in Fig. 4.7(b) shows that the Qzx-type
AFQ ordering is similar to the result in the [001] magnetic field (Note that Qyz-type
AFQ has higher energy owing to the orthorhombic symmetry in the [100] magnetic field).
Different from the [001] magnetic field, the AFQ transition temperature shows a slight
enhancement by the magnetic field, whose difference might be attributed to the difference
of the matrix elements of Ĵx(y) and Ĵz determined by the CEF parameters. In the low-
temperature region under the [100] magnetic field, two types of the AFM phases survive
as shown in Fig. 4.7(b): one with the symmetry m′ and the other with the symmetry 1.

The present result shows that the AFQ and AFM phases remain stable in the magnetic
field, which is consistent with that observed in CeCoSi [Fig. 4.2(b)]. Meanwhile, there are
several differences between them; one of the difference is the slope of the phase boundary
between the AFQ and paramagnetic states by introducing the magnetic field. In other
words, the present result shows that there are no almost change in the phase boundaries,
whereas the AFQ transition temperature is enhanced by the magnetic fields especially for
the [001] direction in experiments.

To explain the behavior of the phase boundary between the AFQ and paramagnetic
states, we consider two scenarios. First, we additionally introduce the antiferroic octupole
(AFO) interaction, which describes an effective coupling between the FM and AFQ mo-
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ments [23]. We show the modified phase diagram in the presence of δE−
3β
=0.5 in the [001]

and [100] magnetic fields in Figs. 4.7(c) and 4.7(d), respectively6. In the [001] magnetic
field, the AFO interaction slightly increases the AFQ transition temperature as shown in
Fig. 4.7(c). Meanwhile, it suppresses the critical field of the AFM phase. This is because
δE−

3β
affects the stability of the in-plane AFM phase due to the same symmetry of Mβ

µ and

Mµ (µ=x, y).
In the [100] magnetic field, δE−

3β
hardly affects the phase boundary of the AFQ phase,

since Mβ
µ (µ=x, y) has a different symmetry from the coupling between the ferroic Mx

moment and the antiferroic Qzx moment. Meanwhile, the octupole interaction changes
the AFM phase drastically, which leads to additional three phases with different AFM
and AFQ moments. The symmetry in each AFM phase is presented in Fig. 4.7(d). In
summary, the AFO interaction for the present AFQ order is not sufficient to reproduce
the behavior of the phase boundaries in CeCoSi.

The second scenario is that an effective coupling between the M dipole and AFQ
moments in the presence of the magnetic field. We introduce the additional effective
coupling for the [001] magnetic field with the Qzx-type AFQ moment within the mean-
field level

Heff
[001]=D̄

∑
R

δ′[001]

[
(⟨M̂z,A⟩+⟨M̂z,B⟩)(Q̂zx,RA−Q̂zx,RB)+(⟨Q̂zx,A⟩−⟨Q̂zx,B⟩)(M̂zR,A+M̂zR,B)

−(⟨M̂z,A⟩+⟨M̂z,B⟩)(⟨Q̂zx,A⟩−⟨Q̂zx,B⟩)
]
, (4.12)

where ⟨M̂z,A⟩+⟨M̂z,B⟩ and ⟨Q̂zx,A⟩−⟨Q̂zx,B⟩ are the FM and the AFQ moments, re-
spectively. Figure 4.7(e) represents the phase diagram in the [001] magnetic field for
δ′[001]=−0.005. The result shows that the direct coupling between the FM and AFQ mo-

ments in Eq. (4.12) leads to the strong enhancement of the AFQ transition temperature by
the magnetic field. Meanwhile, the critical field of the AFM phase tends to be suppressed
as well as that in the presence of the AFO interaction.

Meanwhile, in the [100] magnetic field, we consider a different type of the effective
coupling as

Heff
[100]=D̄

∑
R

δ′[100]

[
(⟨M̂x,A⟩+⟨M̂x,B⟩)(Q̂zx,RA−Q̂zx,RB)+(⟨Q̂zx,A⟩−⟨Q̂zx,B⟩)(M̂xR,A+M̂xR,B)

−(⟨M̂x,A⟩+⟨M̂x,B⟩)(⟨Q̂zx,A⟩−⟨Q̂zx,B⟩)
]
. (4.13)

The phase diagram for δ′[100]=−0.005 is shown in Fig. 4.7(f). The result shows that
the phase boundary between the AFQ and paramagnetic phases moves to the high-
temperature side with an increase of the magnetic field. The AFM phase shows a mod-
ulation, where the critical field between the AFM and AFQ is slightly suppressed, in the
presence of the effective coupling in Eq. (4.13). Thus, the effective coupling induced under
the magnetic field is one of the important factors to reproduce the H dependence of the
AFQ transition temperature observed in CeCoSi.

6We neglected δE−
3α
, which corresponds to another AFO interaction, as it mainly changes the AFM

phase boundary rather than the AFQ one.
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4.4.3 Susceptibility

We investigate behaviors of the magnetic and quadrupole susceptibilities under the multi-
pole orderings while changing the temperature. We calculate the magnetic and quadrupole
susceptibilities by using the following isothermal susceptibility

χX(T )=2
∑
nm

wn

∣∣∣⟨n|X̂|m⟩
∣∣∣2

Em−En

+
1

kBT

∑
n

wn ⟨n|X̂|n⟩
2
−

(∑
n

wn ⟨n|X̂|n⟩

)2
 , (4.14)

where |n⟩ is the electronic state with the eigenenergy En and wn=e
− En

kBT is the Boltzmann
weight of the eigenstate n. For magnetic and quadrupole susceptibilities, χD

µ (µ=x, y, z)

and χQ
ν (ν=u, v, yz, zx, xy), we set X̂=gµBĴµ,i (i=A,B) and Q̂ν,i, respectively. In the

following, we show the susceptibilities in the total two-sublattice system.

Figure 4.8: (a,b) T dependences of the (a) magnetic and (b) quadrupole susceptibilities
at a zero magnetic field. (c) H dependence of the quadrupole susceptibility in the [001]
magnetic field.

First, we discuss the magnetic susceptibility χD
µ (µ=x, y, z) in Fig. 4.8(a). The mag-

netic susceptibilities without any electronic ordered phases for δE±=δv=0 are also shown
by the broken lines for reference. χD

µ shows the slight anomaly at the Qzx-type AFQ tran-
sition temperature T0; χ

D
x shows a little upturn from the paramagnetic phase, whereas χD

y

and χD
z show the down-turn modulation below T0. At the transition temperature TN to

the Mx-type AFM order, χD
x shows a cusp-like anomaly as the conventional AFM order,

while χD
y shows almost no anomaly and χD

z has the almost constant value below TN. Below
T ′
N, χ

D
x =χ

D
y due to transition from the AFM order along the [100] direction to that along

the [110] direction.

We focus on the behavior of χD
µ below T0. The up- or down-turn behavior of χD

µ

depends on the magnitude of the effective M dipole within the ground-state Kramers
doublet. To demonstrate that, we calculate a quantity of Tr[M2

µ]AFQ−Tr[M2
µ]para, where

Tr[M2
µ]AFQ is calculated for the Kramers doublet with nonzero but small Qzx moment and
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Tr[M2
µ]para is for the CEF ground state. It is approximately given by

Tr[M2
x ]AFQ−Tr[M2

x ]para=
2[(cx3)

2−cx1(cx1+cx2)]
∆2

q2zx+O(q
4
zx), (4.15)

Tr[M2
y ]AFQ−Tr[M2

y ]para=−2cy2(c
y
1+c

y
2)

∆2
q2zx+O(q

4
zx), (4.16)

Tr[M2
z ]AFQ−Tr[M2

z ]para=
2[(cz3)

2−cz1(cz1+cz2)]
∆2

q2zx+O(q
4
zx), (4.17)

where qzx=D̄δE+Qzx. As the present CEF parameters in Table 4.1 give (cx3)
2−cx1(cx1+cx2)>

0, cy2(c
y
1+c

y
2)<0, and (cz3)

2−cz1(cz1+cz2)<0, the up-turn behavior appears in χD
x and the

down-turn behavior appears in χD
y and χD

z , as shown in Fig. 4.8(a). This result indicates
that the behavior of the magnetic susceptibility in the AFQ orderings gives information
about the CEF and the AFQ order parameter.

Besides, we also discuss the quadrupole susceptibility χQ
ν . Figure 4.8(b) shows the

quadrupole suceptibility −χ̄Q
ν scaled as χ̄Q

u =1 at T=0.2, in a zero magnetic field. The
low-temperature region is presented in the inset of Figure 4.8(b). All χQ

ν components
show the softening with decreasing T in the paramagnetic phase. In spite of the large
CEF splitting, their modulation in the AFQ ordered phase is similar to that seen in the
conventional AFQ ordered systems like CeB6 [21]; χ

Q
zx shows a cusp-like anomaly at T0 and

upturns with decreasing T , while χQ
v , χ

Q
yz, and χ

Q
xy show almost constant values. In the

AFM phases, these four components mostly show the up-turn behavior with decreasing
T , although χQ

xy slightly decreases between TN and T ′
N. On the other hand, χQ

u shows a
broad peak around T∼15, which roughly corresponds to half of the effective CEF splitting
described by ∆eff∼∆−D̄δu ⟨Q̂u,A(B)⟩∼30 K. While decreasing T , χQ

u shows anomaly at
the AFM transition temperature and reaches the constant value.

Moreover, we investigate the behavior of χQ in a magnetic field by focusing on the
region below TN. We here do not consider the octupole interaction and the effective
coupling discussed in the previous section, since they do not give a qualitative difference.
Figure 4.8(c) shows the χQ

ν in the [001] magnetic field at T=2, where H
[001]
c is the critical

field of the AFM phase. χQ
yz and χQ

zx split by the magnetic field with the hardening, χQ
v

also shows the hardening, and χQ
xy shows the softening. Such various behaviors are due

to the rotation of the AFM and AFQ moments when increasing the magnetic field as
mentioned in the previous section. In other words, since the (Qyz−Qzx)[(Qyz+Qzx)]-type
AFQ moment is rotated to the Qzx(or Qyz)-type one, χQ

yz and χQ
zx show the split and

different behaviors of χQ
xy and χ

Q
v . Thus, the quadrupole susceptibility in a magnetic field

provides information about the coupling between the AFM and AFQ moments.

4.5 Analysis Based on the Itinerant Model

We investigate the multiferroic responses expected in the odd-parity multipole orderings
induced by the AFM and AFQ moments by using the itinerant model. In the present
section, we suppose the Γ7-Γ6 level scheme similar to the local model in the previous
section.

In Sec. 4.5.1, we present the effective tight-binding model with the multipole-multipole
interaction. By using the effective itinerant model, we investigate the stability of the
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multipole orderings at zero temperature in Sec. 4.5.2, the band modulation due to the
odd-parity multipole ordering in Sec. 4.5.3, and the multiferroic responses in Sec. 4.5.4.

4.5.1 Model

Figure 4.9: (a) Schematic picture presenting the bond with hopping and multipole-
multipole interaction. (b) The ground-state phase diagram obtained from the self-
consistent mean-field calculations at gΓ6=−0.4, gΓ7=0.5, and g′=0.8. AFM(z) represents
the AFM phase with staggered M moments along the z direction. AFQ(v) and AFQ(xy)
stand for the Qv and Qxy-type AFQ phases, respectively. Other AFM and other AFQ1,
2, 3 are the AFM and AFQ phases characterized by more than one order parameter.
The phases are metallic (insulating) in the region below (above) the white dashed line.
(c) The intraorbital ASOI dependence of the AFM moments at J ′/J=0.2, ∆=1, g′=0.8,
and gΓ6=−0.8gΓ7 . (d) The interorbital ASOI dependence of the interorbital multipole
moments at J ′/J=0.7, ∆=0.5, gΓ6=−0.4, and gΓ7=0.5.

We investigate a tight-binding model constructed by considering two f orbitals at Ce
ions and a d orbital at Co ions and taking into account the atomic spin-orbit coupling,
CEF level splitting, f -f hopping, and d-f hybridization [195]. By tracing out the d-orbital
degree of freedom, an effective Hamiltonian with the multipole-multipole interaction is
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given by

H=∆
∑
k

∑
σ

∑
i

f †
kiΓ6σ

fkiΓ6σ+
∑
k

∑
σ

0,x,y,z∑
µ,ν

∑
i,j

∑
l,m

[εµν(k)ρµτν ]
lm
ij f

†
kilσfkjmσ

+
∑
k

∑
σ,σ′

∑
µ,ν

∑
i,j

∑
l,m

{[gµν(k)−hµν(k)] ρµτν}lmij ·σ
σσ′
f †
kilσfkjmσ′

+
∑
⟨r,s⟩

[
J
(
M̂Γ6

r ·M̂Γ6
s +M̂Γ7

r ·M̂Γ7
s

)
+J ′X̂r ·X̂s

]
, (4.18)

where f †
kilσ (fkilσ) is a creation (annihilation) operator of an electron with the wave vector

k, sublattice i= A, B, orbital l=Γ6,Γ7, and quasi-spin σ=↑, ↓. ρµ (µ=0, x, y, z) is the
Pauli matrix in sublattice spaces. The first term in Eq. (4.18) is the CEF level splitting
between the Γ6 and Γ7 levels. The second term is the symmetry-allowed hopping term; the
intraorbital hoppings, ε00(k) and ε0z(k), and the interorbital hopping, ε0x(k), between the
same sublattices, and the intraorbital hoppings, εx0(k), εxz(k), εy0(k), and εyz(k), between
the different sublattices. By setting the positions of CeA and CeB as (a/2, a/2, c/2−θ)
and (0, 0, 0) with the lattice constants a and c, and using the notations εµl(k)≡[εµ0(k)+
p(l)εµz(k)]/2 where p(l)=+1(−1) for l=Γ7 (Γ6), each εµν(k) is given by

ε0l(k)=t
l
∥(cos kxa+cos kya), (4.19)

ε0x(k)=t
′
∥(cos kxa−cos kya), (4.20)

εxl(k)=

(
tl⊥ cos

kzc

2
cos kzθ+t̃

l
⊥ sin

kzc

2
sin kzθ

)
cos

kxa

2
cos

kya

2
, (4.21)

εyl(k)=

(
tl⊥ cos

kzc

2
sin kzθ−t̃l⊥ sin

kzc

2
cos kzθ

)
cos

kxa

2
cos

kya

2
. (4.22)

The third term in Eq. (4.18) is the spin-dependent hopping term originating from
the atomic spin-orbit coupling. The antisymmetric contribution gµν(k) with respect to
k corresponds to the ASOI, which includes the intraorbital contributions, gz0(k) and
gzz(k), and the interorbital contribution, gzx(k), between the same sublattices, which are
represented by

gzl(k)=g
l(− sin kya, sin kxa, 0), (4.23)

gzx(k)=g
′(− sin kya,− sin kxa, 0), (4.24)

where gzl(k)≡[gz0(k)+p(l)gzz(k)]/2. It is noted that the only staggered component of
the ASOI appears in the presence of the global inversion symmetry. The ASOI is mi-
croscopically derived from the off-site hybridization with the Co 3d electrons and the
atomic spin-orbit coupling. Meanwhile, the symmetric spin-dependent hoppings be-
tween the different sublattices with the different orbitals, are represented by hxy(k)=
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{Im[hx(k)], Im[hy(k)],−Re[hz(k)]} and hyy(k)={Re[hx(k)],Re[hy(k)], Im[hz(k)]}, where

hx(k)=

(
Vxy cos

kzc

2
+iṼxy sin

kzc

2

)
e−iθkz cos

kxa

2
sin

kya

2
, (4.25)

hy(k)=

(
Vxy cos

kzc

2
+iṼxy sin

kzc

2

)
e−iθkz sin

kxa

2
cos

kya

2
, (4.26)

hz(k)=

(
Vz cos

kzc

2
+iṼz sin

kzc

2

)
e−iθkz sin

kxa

2
sin

kya

2
. (4.27)

The fourth term in Eq. (4.18) represents the effective antiferroic interactions between
the intraorbital multipoles J>0 and interorbital multipoles J ′>0. The summation is
taken for the four nearest-neighbor A and B sites ⟨r, s⟩, as shown in Fig. 4.9(a). M̂ l

r=
1
2

∑
σσ′ σσσ′

f †
rlσfrlσ′ (l=Γ6,Γ7) and X̂r=

∑
lm

∑
σσ′(X̂)lmσσ′f

†
rlσfrmσ′ are the M dipole and

the eight interorbital multipoles7 at site r, respectively, where f †
rlσ (frlσ) is the Fourier

transform of f †
kilσ (fkilσ). We adopt the isotropic exchange interactions J and J ′, which are

introduced to mimic the strong intraorbital and interorbital Coulomb interaction without
the spin-orbit coupling [213]. The intraorbital interaction J favors the AFM ordering,
while the interorbital interaction J ′ favors the antiferroic interorbital multipole orderings,
such as the AFQ ordering. We note that the intraorbital states with (M̂x, M̂y, M̂z) and

interorbital states with (Q̂v, Q̂xy, Q̂yz, Q̂zx, M̂xyz, M̂
β
z , M̂

′
x, M̂

′
y) are degenerate within the

J and J ′ terms, respectively. Such a degeneracy is lifted by considering the effect of the
staggered ASOIs in Eqs. (4.23) and (4.24), as will be shown below.

Before we discuss the multiferroic responses, we investigate the ground-state phase di-
agram of the itinerant model in Eq. (4.18) by the self-consistent mean-field calculations.
We use the Hartree approximation for the two-body terms and consider supercells con-
sisting of 803 copies of the two sublattices under the periodic boundary conditions. The
numerical error of the self-consistent calculations is less than 10−4. We adopt the f 1 con-
figuration, i.e., the 1/4 filling, and set parameters tΓ6

∥ =0.8, tΓ7

∥ =1, t′∥=0.1, tΓ6
⊥ =tΓ7

⊥ =0.15,

t̃Γ6
⊥ = t̃Γ7

⊥ =0.05, Vxy=0.15, Ṽxy=0.05, Vz=0.3, Ṽz=0.1, J=2.5, and c/a=1.4. We set θ=0.
Although θ is finite in CeCoSi, the effect of nonzero θ is taken into account for the hopping
and interaction parameters along the z direction.

4.5.2 Zero-Temperature Phase diagram

Figure 4.9(b) shows the ground-state phase diagram by changing J ′/J and ∆ for gΓ6=
−0.4, gΓ7=0.5, and g′=0.8. For large ∆ where the Γ6 level is well-separated from the
CEF ground state Γ7, the intraorbital multipole instability occurs and the AFM state is
stabilized through the intraorbital interaction J . In a large portion of the AFM regions,
the M moments are along the z direction, where we denote the phase as AFM(z). This
phase is accompanied by the M quadrupole Mu, as shown in Table 4.2. In the phase
diagram, another AFM phase denoted as “other AFM” is realized around 0.8≲∆≲1.4,

7As the matrix representation X̂, we use E quadrupoles Q̂v=
1
2τxσ0, Q̂xy=− 1

2τyσz, and (Q̂yz, Q̂zx)=

− 1
2 (τyσx, τyσy), M dipoles (M̂ ′

x, M̂
′
y)=

1
2 (τxσx,−τxσy), and M octupoles M̂xyz=− 1

2τyσ0 and M̂β
z =τxσz

based on Table 4.1, where M octupoles Mα,β
µ (µ=x, y) is considered as the interorbital component of the

M dipole for simplicity.
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where the staggered M dipole moments are tilted from the z direction. The obtained AFM
phases for ∆≲1.56 are metallic, whereas the AFM(z) phase for ∆≳1.56 is insulating.

The magnetic anisotropy in the AFM phases results from the interplay between two
types of ASOIs in the present itinerant model. Especially, the AFM(z) state stabilized in
the insulating region for large ∆ is presumably owing to the intraorbital ASOI. Note that
a similar tendency is obtained in magnetic insulators in the strongly correlated regime
where the effective out-of-plane anisotropic interaction appears [214]. In the metallic re-
gion, although the effective interaction by the ASOIs is affected by the band structure and
can be more complicated, the mean-field results indicate that the intraorbital ASOI tends
to stabilize the AFM(z) state, whereas the interorbital ASOI, whose effect becomes im-
portant for large J ′/J , tends to stabilize the other AFM state with the in-plane moments,
as discussed below.

The AFM states are replaced with the AFQ states by decreasing ∆ and increasing J ′/J
with a finite jump of order parameters. The stabilization of the nonmagnetic AFQ state at
T=0 resembles the situation realized in the high-pressure region of the II phase in CeCoSi
[Fig. 4.2(a)], which did not realize in the local model calculation in the previous section.
The dominant AFQ instability in Fig. 4.9(b) is the Qv channel with the ET quadrupole
Gxy. The other AFQ states denoted as AFQ(xy) and other AFQ1, 2, 3 in J ′/J≳0.8
are characterized by the staggered orders of Qxy, and linear combinations of (Qxy, Qv),
(Qxy,Mxyz), and (Qv, Qxy,Mxyz,M

β
z ), respectively. The stability of the interorbital orders

depends on the two types of ASOIs and the interorbital hopping. All the AFQ phases are
metallic in the present calculation.

To examine the effect of the ASOI on the AFM(z) state obtained in Fig. 4.9(b), we
show the intraorbital staggered ASOI gΓ7 dependence of the staggered AFM moments
while keeping gΓ6=−0.8gΓ7 at J ′/J=0.2, ∆=1, and g′=0.8 in Fig. 4.9(c). We compute
the µ component of the AFM moment MAF

µ ≡[(MΓ6AF
µ )2+(MΓ7AF

µ )2]1/2 for µ=x, y, z and

MAF
[110]=[(MAF

x )2+(MAF
y )2]1/2 where the staggered component of multipoles X is defined

as XAF=(XA−XB)/2. It is noted that there is also interorbital contribution M ′AF
x(y) for

the in-plane moments.

In Fig. 4.9(c), the AFM(z) phase is stabilized at gΓ7=0.5, as shown in Fig. 4.9(b).
While decreasing gΓ7 , MAF is tilted from the z axis toward the [100] direction for
gΓ7≲0.45, although MAF

z is larger than MAF
x(y) and M ′AF

x(y). The appearance of MAF
x(y) and

M ′AF
x(y) corresponds to the emergence of the MT dipole Ty(Tx) as shown in Table 4.2. With

a further decrease of gΓ7 , the in-plane moment direction changes from the [100] to [110]
direction at gΓ7∼0.275. Then, MAF

[110] increases while decreasing gΓ7 and becomes com-

parable to MAF
z at gΓ7=0, whereas M ′AF

[110] is suppressed when decreasing gΓ7 . The result

indicates that the intraorbital ASOI favors the AFM(z) state. On the other hand, it also
indicates that the AFM state with the in-plane magnetic moments, such as the other
AFM state, can be stabilized by the interorbital ASOI [33, 180].

Next, we show the effect of the interorbital ASOI g′ on the AFQ(v) state at J ′/J=0.7,
∆=0.5, gΓ7=0.5, and gΓ6=−0.4. Figure 4.9(d) shows that four interorbital states are
stabilized while changing g′. The AFQ(v) phase is stabilized for 0.6≲g′≲1, the other
AFQ1 phase is stabilized for 0.425≲g′≲0.6, the AFQ(xy) phase is stabilized for 0.225≲
g′≲0.425, and the staggered Mβ

z phase appears for 0≲g′≲0.225. From the numerical
result, the interorbital ASOI g′ tends to favor the AFQ(v) state. On the other hand,
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the stability of the AFQ(xy) and the staggered Mβ
z states for small g′ depends on the

intraorbital ASOI gΓ6 and gΓ7 and the interorbital hopping t′∥. The large g
Γ7 and gΓ6 tend

to favor the AFQ(xy) state for small g′, while t′∥ tends to stabilize the Mβ
z state. Thus,

the stability of the interorbital phases is mainly related to g′, gΓ6 , gΓ7 , and t′∥
8.

4.5.3 Electronic Band Structure

Figure 4.10: (Upper panel) The Fermi surfaces in the kx-ky plane at kz=0 in (a) the
staggered AFM ordering for HAFM=1 and HAFQ=0 and (b) the staggered AFQ ordering
for HAFM=0 and HAFQ=1. See the text for other parameters. In (b), the red arrows
represent the in-plane spin polarizations at each k. (Lower panel) Schematic pictures of
(a) the AFM ordering with the moments along the x direction and (b) the Qv-type AFQ
ordering.

We discuss the electronic band structure in the odd-parity multipole orderings by using
the tight-binding model in Eq. (4.18). Although the effect of the staggered ASOI is hidden
in the paramagnetic state because of the global inversion symmetry, asymmetric band
modulations occur in the presence of the AFM and AFQ orderings due to the appearance
of the net ASOIs. For example, we suppose the AFM state with the staggered moments

8To stabilize the antiferroic states of (M ′
x, M

′
y) and/or (Qyz, Qzx) in the present model, factors other

than the intraorbital and interorbital ASOIs will be important, since two types of ASOIs those phases
do not give the energy gain in these states, which can be inferred from the effective Hamiltonian in the
strongly correlated limit (not shown).
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along the x direction and the AFQ state with the Qv component. We introduce the
mean-field Hamiltonian instead of the multipole-multipole interaction term in Eq. (4.18)
to mimic the staggered AFM and AFQ states as

H=−HAFM

∑
k

(
M̂Γ7

x,kA−M̂
Γ7
x,kB

)
−HAFQ

∑
k

(
Q̂v,kA−Q̂v,kB

)
, (4.28)

where M̂Γ7
x,ki=f

†
kiΓ7↑fkiΓ7↓+f

†
kiΓ7↓fkiΓ7↑ is the x component of the M dipole operator in the

Γ7 orbital with the wave number k and sublattice i=A and B and Q̂v,ki=
∑

σ(f
†
kiΓ6σ

fkiΓ7σ+

f †
kiΓ7σ

fkiΓ6σ) is the Qv-type E quadrupole operator with the wave number k and sublattice
i=A and B. HAFM and HAFQ are the magnitudes of the mean fields in the staggered AFM
and AFQ orders, respectively. We set the hopping parameters in Eqs. (4.19)–(4.27) as
used in Sec. 4.5.2 and set gΓ6=−0.4, gΓ7=0.5, g′=0.8, ∆f=1, and J=J ′=0. We consider
the quarter-filling case (f 1 configuration).

The upper panel of Fig. 4.10(a) shows the Fermi surface in the kx-ky plane at kz=0 for
HAFM=1 and HAFQ=0 in the staggered AFM state. The schematic picture of the AFM
state is shown in the lower panel in Fig. 4.10(a). The result clearly shows that the Fermi
surface in the AFM state is asymmetric along the ky direction, while it is symmetric in
the absence of gl(k) and g′(k). This indicates that the interplay between the staggered
ASOI and the staggered AFM molecular field leads to the asymmetric band deformation,
which is regarded as the emergence of the odd-parity MT dipoles [69, 171].

On the other hand, the Fermi surface in the kx-ky plane at kz=0 for HAFM=0 and
HAFQ=1 in the AFQ state is shown in the upper panel in Fig. 4.10(b). The lower panel of
Fig. 4.10(b) shows the schematic picture of the AFQ state. The Fermi surface shows the
momentum-dependent antisymmetric spin splitting with the form of kxσy+kyσx, which
corresponds to the emergence of the odd-parity ET quadrupoles with the xy compo-
nent [36]. This spin-splitting band structure also vanishes in the absence of the ASOIs.

4.5.4 Multiferroic Responses

We discuss the magnetoelectric effect and elastic-electric effect, under the AFM and AFQ
phases with the odd-parity multipole moments. After presenting the nonzero tensor com-
ponents by the symmetry analysis, we discuss the T dependence of the magnetoelectric
tensor for two types of odd-parity multipole phases.

Symmetry analysis

We show the nonzero components of the magnetoelectric (αµν) and elastic-electric (dµν)
tensors in each antiferroic multipole phase. We summarize the nonzero tensor components
in Table 4.5, where the superscripts (J) and (E) represent the intraotbital and interorbital
(dissipative and non-dissipative) components of the linear response function.

Response function

To investigate the multiferroic responses, we use the linear response function given by

χµν=
eℏ
V i

∑
k

∑
nm

f [εn(k)]−f [εm(k)]
[εn(k)−εm(k)][εn(k)−εm(k)+iℏδ]

Xpq
µkv

qp
νk=χ

(J)
µν +χ

(E)
µν , (4.29)
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Table 4.5: Nonzero components of the magnetoelectric (αµν) and elastic-electric (dµν)
tensors in each antiferroic multipole (MP) phase. The magnetic point groups (MPG) and
the odd-parity multipoles (OPMP) are also shown.

MPG MP OPMP αµν dµν

4̄m21′ Q̂v Gxy α
(J)
yx =α

(J)
xy d

(E)
zxx=−d(E)yzy, d

(E)
vz

4̄2m1′ Q̂xy Gv α
(J)
xx =−α(J)

yy d
(E)
yzx=d

(E)
zxy, d

(E)
xyz

mm21′ Q̂yz Qy α
(J)
zx , α

(J)
xz d

(E)
xyx, d

(E)
uy , d

(E)
vy , d

(E)
yzz

mm21′ Q̂zx Qx α
(J)
zy , α

(J)
yz d

(E)
ux , d

(E)
vx , d

(E)
xyy, d

(E)
zxz

mm′m M̂x Ty α
(E)
zx , α

(E)
xz d

(J)
xyx, d

(J)
uy , d

(J)
vy , d

(J)
yzz

m′mm M̂y Tx α
(E)
zy , α

(E)
yz d

(J)
ux , d

(J)
vx , d

(J)
xyy, d

(J)
zxx

4/m′m′m′ M̂z Mu α
(E)
xx =α

(E)
yy , α

(E)
zz d

(J)
yzx=−d(J)zxy

4′/m′mm′M̂xyz Mxy α
(E)
yx =α

(E)
xy d

(J)
zxx=−d(J)yzx, d

(J)
vz

4′/m′m′m M̂β
z Mv α

(E)
xx =−α(E)

yy d
(J)
yzx=d

(J)
zxy, d

(J)
xyz

where we take e=ℏ=1 and δ=0.1. Xpq
µk=⟨pk|X̂µ|qk⟩ and vpqνk=⟨pk|v̂νk|qk⟩ are the matrix

elements of the multipole X̂µ and velocity v̂µk=∂Ĥ/(ℏ∂kµ). When X̂µ is the M dipole

M̂µ, χµν corresponds to the magnetoelectric tensor αµν , where the magnetization Mµ is
induced by the electric field Eν for µ, ν=x, y, z. Note that the magnetoelectric tensor
αµν consists of three contributions of α

(Γ6)
µν , α

(Γ7)
µν , and α′

µν , as there are three types of
magnetizations MΓ6

µ , MΓ7
µ , and M ′

µ as shown in Sec. 4.5.1. On the other hand, when

X̂µ is the E quadrupole Q̂µ, χµν corresponds to the elastic-electric (inverse piezo-electric)
tensor dµν , where the symmetric distortion ϵµ (µ=u, v, yz, zx, xy) is induced by Eν .

Numerical calculation

We discuss the behavior of the magnetoelectric tensor αµν in the AFM(z) and AFQ(v)

states in detail by using the self-consistent mean-field solution. Figure 4.11(a) shows α
(E)
xx

as a function of T in the AFM(z) phase with the M quadrupole Mu (finite α
(E)
xx =α

(E)
yy and

α
(E)
zz ) at J ′/J=0.2, ∆=1, gΓ6=−0.4, gΓ7=0.5, and g′=0.89. α

(E)
xx becomes nonzero below

the AFM transition temperature TN≃0.77 and decreases for 0.69≲T≲0.75 after showing

the peak structure at T≃0.75. While further decreasing T , α
(E)
xx grows and becomes the

largest at the lowest T . The complicated temperature dependence of α
(E)
xx is due to the

orbital degree of freedom. Its qualitative behavior is characterized by each component
α
(E,Γ6)
xx , α

(E,Γ7)
xx , and α

′(E)
xx , as also plotted in Fig. 4.11(a). α

(E,Γ7)
xx increases with onset of

MAF
z in the inset of Fig. 4.11(a), since MAF

z mainly consists of the M dipole moment
in the Γ7 orbital. On the other hand, as a further increase of MAF

z leads to the large

energy gap between the up- and down-spin bands of the Γ7 orbital, α
(E,Γ7)
xx decreases

and the interorbital contribution, α
′(E)
xx , becomes dominant for T≲0.69. It means that

the interorbital M ′
x activated in Γ6-Γ7 space is significant for the large magnetoelectric

response in this multi-orbital system. The typical magnitude of the magnetoelectric tensor

9We here omit the result of α
(E)
zz , as the magnitude of α

(E)
zz is smaller than that of α

(E)
xx by the order

of 10−2 because of the low conductivity in the z direction.
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Figure 4.11: (a,b) Temperature (T ) dependences of magnetoelectric tensors in (a) the
AFM(z) state at J ′/J=0.2 and ∆=1 and (b) the AFQ(v) state at J ′/J=0.7 and ∆=0.5.
The insets of the (a) and (b) stand for the T dependences of the order parameters. Other
model parameters are fixed at gΓ6=−0.4, gΓ7=0.5, and g′=0.8.

is estimated as ∼10−1|tΓ7

∥ |−1 ps m−1 in the unit of |tΓ7

∥ | eV.
We show nonzero αyx in the AFQ(v) phase in Fig. 4.11(b) in addition to the order

parameter QAF
v in the inset of Fig. 4.11(b) at J ′/J=0.7, ∆=0.5, gΓ6=−0.4, gΓ7=0.5, and

g′=0.8. We find the finite-temperature phase transition between AFQ(v) state and the
AFO state with MAF

xyz at T0∼0.75. From the symmetry in Table 4.5, in the former AFQ

state, odd-parity Gxy induces α
(J)
yx =α

(J)
xy , while Mxy in the AFO state shows α

(E)
yx =α

(E)
xy .

In the AFQ(v) state in Fig. 4.11(b), the amplitude of α
(J)
yx increases from the lowest

T and it shows the peak at T∼0.25, where QAF
v reaches almost full saturation. While

further increasing T , |α(J)
yx | gradually decreases and jumps at the phase boundary with the

AFO state. The temperature dependence of α
(J)
yx reflects the electronic state around the

Fermi surface, since the intraband contribution is dominant. For α
(J)
yx in the AFQ(v) state,

the interorbital component α
′(J)
yx becomes dominant, while α

(J,Γ6)
yx and α

(J,Γ7)
yx almost cancel

with each other, which also shows that the interorbital component α
′(J)
yx is significant in

this multi-orbital system. The typical magnitude of α
(J)
yx in the AFQ(v) state is estimated

as ∼10−1|tΓ7

∥ |−1δ−1 ps m−1 for |tΓ7

∥ | eV and the broadening factor δ s−1. On the other hand,

the electric conductivity is obtained as 10−3δ−1 µΩ−1cm−1, which implies δ∼10−2-10−1

from the comparison with the experimental data [200]. Therefore, a large magnetoelectric
response might be expected in CeCoSi.
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4.6 NQR and NMR in Odd-Parity Multipole Order

In this section, we theoretically study NQR and NMR spectra in the presence of odd-
parity multipoles orderings, which will be useful to identify the unknown odd-parity order
parameters in the II phase of CeCoSi.

We introduce the effective electronic model for the 4f electron at the Ce ion in
Sec. 4.6.1. We show the hyperfine coupling between the nuclear spin at the Co atom
and the electronic multipole at the Ce ion in Sec. 4.6.2. By using the hyperfine Hamilto-
nian, we calculate the NQR and [001]-and [100]-field NMR spectra in the presence of the
odd-parity multipole orderings in Secs. 4.6.3, 4.6.4, and 4.6.5, respectively. We present the
correspondence between the NQR/NMR spectra and the odd-parity multipole orderings
in Sec. 4.6.6.

4.6.1 Electronic Model

We consider an effective multipole mean field to examine a hyperfine field on 59Co nucleus.
We here introduce a local Hamiltonian for Ce electron at the phenomenological level to
incorporate the effect of odd-parity multipoles. The Hamiltonian for i=A,B sublattice is
given by

HCei=∆
∑
σ

f †
iΓ6σ

fiΓ6σ−H (el) ·M̂i∓
∑
X

hsXX̂i. (4.30)

The first term is the CEF level splitting and set ∆=0.5 in the following calculation. The
second term in Eq. (4.30) is the Zeeman term for the external field H(el)≡µBH coupled
with the M dipoles M=(Mx,My,Mz). We take the linear combination of intraorbital

components M̂Γ6
µ , M̂Γ7

µ and interorbital component M̂ ′
µ as M̂µ≡(M̂Γ7

µ +δΓ6M̂Γ6
µ ±δ′M̂ ′

µ)

[the sign is +(−) for µ=x(y)] and M̂z≡(M̂Γ7
z +δΓ6M̂Γ6

z ). The parameters δΓ6 and δ′ are
introduced to represent the difference of the magnetic susceptibility per different orbitals
and are taken to be (δΓ6 , δ′)=(1/4, 1/2) for simplicity10. The last term in Eq. (4.30)
represents the multipolar mean fields leading to the multipole orderings with ⟨X̂i⟩̸=0,
which mimic the interaction terms in Eqs. (4.10) and (4.18), where X̂i is the multipole
operator at the ith site defined in the same way in Sec. 4.5.1. Besides, we redefine the E
quadrupole operator as Q̂u=

1
2
σ0τz. They originate from the mean-field decoupling for the

intraorbital and interorbital Coulomb interaction terms [15]; the multipoles activated in a
Γ6 or Γ7 level are relevant with the intraorbital Coulomb interaction, while those activated
between the Γ6 and Γ7 levels are relevant with the interorbital Coulomb interaction, as
discussed in Sec. 4.5.2. As we focus on the cluster multipoles induced by the staggered
electronic orderings, we adopt the negative (positive) sign for the A (B) sublattice.

In the following discussion, we mainly consider three types of staggered orderings:
Mx-type AFM, Qu-type AFQ, and Qv-type AFQ states, whose schematics are shown in
Figs. 4.12(a)–4.12(c), respectively. This is because the neutron diffraction has indicated

10Note that δΓ6 and δ′ depend on the spin-orbit coupling and the CEF parameters as shown
in Table 4.1. In addition, we avoid the situation where some multipole moments, such as
Qyz, Qzx, Qxy,Mxyz, Tx, Ty,Mu, and Mxy, vanish by taking specific values, δΓ6=δ′=1, in the Qu-type
AFQ state for the magnetic field in the plane normal to the [1̄10] direction.
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the Mx-type AFM state [202]. On the other hand, as the order parameter of the II phase
is still controversial, we discuss two types of AFQ states as an example; one is the Qu-type
AFQ state and the other is the Qv-type AFQ state. For completeness, we also investigate
other antiferroic multipole ordered states and the results are summarized in Sec. 4.6.6.

Figure 4.12: (a–c) Schematics of local multipoles (MP) and cluster odd-parity multipoles
(OPMP) in the (a) Qv-type AFQ, (b) Qu-type AFQ, and (c) Mx-type AFM states. The
shape of the pictures in (a) and (b) represents the charge distribution. The blue and
red arrows in (c) represent the M dipole and MT dipole moments, respectively. (d–l)
The staggered mean field dependences of multipoles under (d–f) zero magnetic field, (g–i)
magnetic field H∥[001] and (j–l) H∥[100]. The data represent those in (d,g,j) Qv-type
AFQ, (e,h,k) Qu-type AFQ, and (f,i,l) Mx-type AFM states, respectively. Black solid and
dashed lines represent the even-parity multipole moments, whereas colored solid lines are
odd-parity multipole moments.

We show the behavior of the electronic multipole moments induced by the staggered
mean field with and without the external magnetic field. We evaluate the thermal ex-
pectation value of the multipole moments X≡⟨X̂⟩=

∑
n ⟨n|X̂|n⟩ exp (−βEn)/Z, where

|n⟩ (n=1–8) is the eigenstate with energy En of the total Hamiltonian HCeA+HCeB , and
Z is a partition function. We set the inverse temperature β=10, which corresponds to
T/∆=0.2.

Figures 4.12(d)–4.12(f) show all the nonzero multipole moments at zero magnetic field
as a function of the staggered fields hsQv

, hsQu
, and hsMx

, respectively, where the definition
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of the cluster multipoles is given in Table 4.2. It is noted that Q
(c)
u becomes nonzero

irrespective of types of order parameters due to nonzero ∆ in Eq. (4.30). When the mean
fields hsX turn on, the corresponding cluster odd-parity multipole moments X(c) become
nonzero.

The results in the Qv- and Qu-type AFQ ordered states are shown in Figs. 4.12(d) and

4.12(e), respectively. The odd-parity ET quadrupole G
(c)
xy is induced in the Qv-type AFQ

ordering, while the odd-parity E dipole Q
(c)
z is induced in the Qu-type AFQ ordering.

The mean-field dependence of the odd-parity moments are different from each other: G
(c)
xy

roughly increases as a function of hsQv
, whereas Q

(c)
z increases as a function of (hsQu

)3 in
the small hsX region. This is attributed to the nature of the odd-parity order parameters,
which is understood from the perturbation expansion for large ∆.

The power expansion of the multipole moments is given as follows

X̂(c)=XA−XB=a
(1)
X (hsX)+a

(3)
X (hsX)

3+· · · , (4.31)

where X̂(c)=G
(c)
xy (Q

(c)
z ) for X=Qv(Qu). a

(n)
X are the coefficients, which depend on the

CEF level splitting ∆. It is noted that the even order of hsX does not appear due to the
different parity with respect to the spatial inversion symmetry.

For large ∆, by treating the mean-field term in Eq. (4.30) perturbatively, the basis
function at Cei site in the Qv-type AFQ state changes into

ϕ̃Γ7σ,i=
1

N

(
ϕΓ7σ,i±

hsQv

2∆
ϕΓ6σ,i

)
, (4.32)

where the sign +(−) is taken for i=A(B) and N is the normalization factor. σ=↑, ↓ is

the quasi spin. Then, G
(c)
xy is obtained as

G(c)
xy =

1

N

hsQv

2∆
=

[
1+

(
hsQv

2∆

)2
]− 1

2 hsQv

2∆
∼ 1

2∆
hsQv

−
(

1

2∆

)3

(hsQv
)3. (4.33)

As a
(1)
Qv
(= 1

2∆
)≫a

(3)
Qv
[=( 1

2∆
)3] is satisfied for hsQv

/∆≪1, there is a linear dependence of G
(c)
xy

in Fig. 4.12(d).

On the other hand, in the Qu-type AFQ state, Q
(c)
z becomes zero for large ∆, which

means that

Q(c)
z =0 (∆>hsQu

), (4.34)

Q(c)
z =1 (∆<hsQu

). (4.35)

Thus, the onset of Q
(c)
z for small hsQu

in Fig. 4.12(e) is owing to the finite temperature

effect. Numerically, the opposite relation (a
(1)
Qu

≪a
(3)
Qu

) to the Qu-type AFQ ordered case is

obtained for large ∆; a
(1)
Qu

∼10−2a
(3)
Qu

for ∆=0.5 and β=10. This implies that Q
(c)
z increases

as a function of (hsQu
)3 in the small hsQu

region in Fig. 4.12(e).

According to the development of G
(c)
xy or Q

(c)
z , Q

(c)
u is suppressed in both AFQ states

in different ways. In the case of the Qv-type AFQ ordered state, Q
(c)
u is suppressed as
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(hsQv
)2, while it is suppressed as (hsQu

)4 in the Qu-type AFQ state. The different mean-
field dependences of the multipole moments give different multipole-field dependences of
the NQR and NMR frequency shifts, as discussed in Secs. 4.6.3, 4.6.4, and 4.6.5.

Figure 4.12(f) shows the result in the Mx-type AFM state with the odd-parity MT

dipole moment T
(c)
y . The mean-field dependence of T

(c)
y is similar to that in the Qv-

type AFQ ordering in Fig. 4.12(d). As a different point, the additional even-parity E

quadrupole Q
(c)
v is induced in the AFM state due to the breaking of the fourfold rotational

symmetry.
Next, we discuss the effect of the magnetic field, whose magnitude is set to be

|H(el)|=0.01. The results are shown in Figs. 4.12(g)–4.12(i) in the case of the [001] field
and in Figs. 4.12(j)–4.12(l) in the case of the [100] field. There are two important observa-
tions under the magnetic field. The first one is that additional multipole moments other
than the M dipole moments M (c) are induced according to the lowering of the magnetic
point group symmetry by the magnetic field. For example, in the Qv-type AFQ state,
M quadrupole moment M

(c)
v becomes nonzero for the field along the [001] direction in

Fig. 4.12(g), while nonzero Q
(c)
v , Q

(c)
z , and T

(c)
y are induced for that along the [100] direc-

tion in Fig. 4.12(j). The second one is that the additional multipole moments induced by
the magnetic field are much smaller than primary odd-parity multipole moments, which
indicates that the additional multipoles lead to the small quantitative change in the NQR
and NMR spectra. We summarize the active multipole moments induced by the AFQ
and AFM orderings at zero and nonzero fields in Table 4.6. The obtained results are
consistent with those given by the symmetry analysis.

Table 4.6: Multipole moments induced in the Qv-type AFQ, Qu-type AFQ, and Mx-
type AFM ordered states as well as the paramagnetic (para) state. For nonzero fields,
additional multipoles induced by H are shown.

H para Qv-type AFQ Qu-type AFQ Mx-type AFM

zero Q
(c)
u G

(c)
xy Q

(c)
z T

(c)
y , Q

(c)
v

∥[001] M
(c)
z M

(c)
v M

(c)
u —

∥[100] M
(c)
x , Q

(c)
v Q

(c)
z , T

(c)
y G

(c)
xy , T

(c)
y Q

(c)
z , G

(c)
xy

4.6.2 Hyperfine Field for 59Co Nucleus

The hyperfine field Hamiltonian up to the second order of the nuclear spin with I≥1 is
given by [215]

H=−γℏH ·Î+ e2qQ

4I(2I−1)

[
3Î2Z−Î2+η

(
Î2X−Î2Y

)]
, (4.36)

where γ represents gyromagnetic ratio. Î=(ÎX , ÎY , ÎZ) is the nuclear spin operator with
respect to the principal axes of the local electric-field gradient at Co nuclear site, (X, Y ,
Z).

The magnitude of Î is given as I=7/2 for 59Co nucleus. The first term is the Zeeman
coupling term. The second term describes the nuclear quadrupole interaction; e is the
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electric charge, q is the electric-field gradient parameter, Q is the nuclear E quadrupole
moment, and η is the anisotropic parameter. The amplitudes of H , q, and η depend
on electronic multipole moments at neighboring four Ce sites [Fig. 4.1(c)] as well as the
external magnetic field and CEF potential. When we define H(n)≡γℏH , the energy scale
of the nuclear system is compared with that of the electronic system as H(n)/H(el)∼10−4.
We rewrite the Hamiltonian in Eq. (4.36) in terms of the crystallographic axes coordinate
(x, y, z) [see also Fig. 4.1(a)] as

H=C ·Î+CuÎu+Cv Îv+Cyz Îyz+CzxÎzx+Cxy Îxy, (4.37)

where

Îu=
1

2

(
3Î2z−Î2

)
, Îv=

√
3

2

(
Î2x−Î2y

)
, (4.38)

Îyz=

√
3

2

(
Îy Îz+Îz Îy

)
, Îzx=

√
3

2

(
Îz Îx+ÎxÎz

)
, Îxy=

√
3

2

(
ÎxÎy+Îy Îx

)
. (4.39)

The coupling constants for the effective magnetic field and electric-field gradient are pa-
rameterized as C=(Cx, Cy, Cz) and (Cu, Cv, Cyz, Czx, Cxy), respectively. Among them,

Cµ(µ=x, y, z) includes two contributions from the external field H
(n)
µ and the internal

dipole field Cel
µ from the electronic multipoles as

Cµ=−H (n)+Cel
µ , (4.40)

whereas Cν (ν=u, v, yz, zx, xy) consists of two contributions from the CEF potential CCF
ν

and the internal quadrupole field Cel
ν from the electronic multipoles as

Cν=C
CF
ν +Cel

ν . (4.41)

In Eqs. (4.40) and (4.41), Cel
µ and Cel

ν depend on types of multipole orderings, which
become nonzero through the effective hyperfine coupling between the electronic multipoles
and nuclear spins or quadrupoles.

In the following sections, we focus on the multipole contributions to the effective
hyperfine field by setting CCF

ν =0 for simplicity11. We show an effective Hamiltonian
for Co nucleus under multipole fields from Ce sites at zero magnetic field and at finite
magnetic fields.

At a zero magnetic field

Before discussing the effect of odd-parity multipoles, we start from the hyperfine field
in the paramagnetic state. In the paramagnetic state at a zero magnetic field, only E
quadrupole Q

(c)
u becomes finite among electronic multipoles, which corresponds to the

second term in Eq. (4.37), as shown in Table 4.6. The nuclear Hamiltonian at single Co
site is given by

Hpara=C
el
u Îu≡ceuQ(c)

u Îu, (4.42)

11The following result does not change for nonzero CCF
ν in the present model.

92



CHAPTER 4. ODD-PARITY MULTIPOLE ORDER IN F -ELECTRON METAL CECOSI

where the coupling constant Cel
u is represented by the product of the hyperfine coupling

constant ceu and the thermal average of the cluster E quadrupole Q
(c)
u , Cel

u =c
e
uQ

(c)
u . Here

and hereafter, the superscript and subscript in cpµ represent the even- or odd-parity (p=e
or o) multipoles and type of the coupled nuclear multipoles (µ=x, y, z, u, v, yz, zx, xy),
respectively.

The other terms in Eq. (4.37) become nonzero once the electronic multipole orderings
occur, i.e., for nonzero hsX in Eq. (4.30). One can derive the effective hyperfine field in
the multipole orderings on the basis of magnetic point group symmetry, as it consists of
the coupling terms belonging to the totally symmetric representation under 4̄m21′. We
display the IRREPs of the cluster multipoles and nuclear multipoles in Table 4.7.

The general form of the effective hyperfine field in the odd-parity multipole orders is
given by

Ho
order=c

o
zM

(c)
v Îz+c

o
x,y

(
T (c)
y Îx+T

(c)
x Îy

)
+couG

(c)
xy Îu+c

o
vQ

(c)
z Îv+c

o
yz,zx

(
Q(c)

y Îyz−Q(c)
x Îzx

)
,

(4.43)

He
order=c

e
zM

(c)
z Îz+c

e
x,y

(
M (c)

x Îx+M
(c)
y Îy

)
+cexyQ

(c)
xy Îxy+c

e
vQ

(c)
v Îv+c

e
yz,zx

(
Q(c)

yz Îyz+Q
(c)
zx Îzx

)
,

(4.44)

where Ho
order (He

order) stands for the hyperfine field in the presence of odd(even)-parity
multipoles. Interestingly, the effective hyperfine field includes the coupling between elec-
tronic odd-parity multipoles and nuclear even-parity multipoles owing to the lack of the
local inversion symmetry at the Co site. The hyperfine fields in Eqs. (4.42)–(4.44) are
summarized in Table 4.8(a).

In CeCoSi, there are two Co ions in the unit cell, which are connected by the fourfold
rotation. As the sign of the odd-parity CEF at two Co ions is opposite, while that of the
even-parity one is same, the total nuclear Hamiltonian in a unit cell is given by

HCo=HCoA+HCoB , (4.45)

HCoA=Hpara+Ho
order+He

order, (4.46)

HCoB=Hpara−Ho
order+He

order. (4.47)

The different sign of Ho
order for the different sublattices is an important outcome of odd-

parity multipoles. In other words, the presence of the sublattice-dependent splitting of
the resonant spectrum corresponds to the emergent odd-parity multipoles within the q=0
orders, as shown in Secs. 4.6.3, 4.6.4, and 4.6.5.

At a magnetic field

At an external magnetic field, a Zeeman term is taken into account, which is given by

HZeeman=−H(n) ·Î. (4.48)

Although the Zeeman term induces the M dipole contribution, it also induces additional
electronic multipole contributions according to the lowering of the symmetry.
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Table 4.7: IRREPs of nuclear multipoles (NMP) and electronic cluster multipoles (CMP)
in the local symmetry of the Co site under zero and nonzero magnetic fields H . X±≡
Xx±nXy and X2±≡Xyz±nXzx for X=I,Q(c),M (c), T (c). n=i(1) for 4̄m′2′ (2′22′, 2′). For
H∥[001], the multipoles in the square brackets are also activated. The superscript ± of the
irreducible representation is the parity with respect to the antiunitary operation (even:
+, odd: −). The unitary subgroup of each magnetic point group is also shown in the
parentheses. The axes of the twofold rotation C2 of 2′22′ and T C2 of 2′ under H⊥[001]

(H⊥[1̄10]) are along to the [110] and [001] ([1̄10]), respectively. The mirror plane in m′ is
normal to the [010] direction.

magnetic field — H∥[001] H∥[100] H∥[110] H⊥[001] H⊥[010] H⊥[1̄10]

4̄m21′ 4̄m′2′ 2′mm′ 2′22′ 2′ m′ 2′

NMP CMP (4̄m2) (4̄) (m) (2) (1) (1) (1)

Iu Q
(c)
u , G

(c)
xy A+

1 A+ A′+ A+ A+ A+ A+

— G
(c)
v A+

2 A− A′′+ B− A+ A− A−

Ixy Q
(c)
xy B+

1 B+ A′′+ A+ A+ A− A+

Iv Q
(c)
v , Q

(c)
z B+

2 B− A′+ B− A+ A+ A−

Iyz Q
(c)
yz E+ — A′− — A− A− —

Izx Q
(c)
zx — A′′− — A− A+ —

— Q
(c)
x E+ — A′′− — A− A+ —

— Q
(c)
y — A′− — A− A− —

I2+ Q
(c)
2+ [iQ

(c)
+ ] — E(2)+ — B+ A− — A+

I2− Q
(c)
2− [iQ

(c)
− ] — E(1)+ — A− A− — A−

[iI2+] Q
(c)
+ [iQ

(c)
2+] — E(2)− — A− A− — A−

[iI2−] Q
(c)
− [iQ

(c)
2−] — E(1)− — B+ A− — A+

— M
(c)
xy A−

1 A− A′− A− A− A− A−

Iz M
(c)
z ,M

(c)
v A−

2 A+ A′′− B+ A− A+ A+

— M
β(c)
z ,M

(c)
u B−

1 B− A′′− A− A− A+ A−

— M
(c)
xyz B−

2 B+ A′− B+ A− A− A+

Ix M
(c)
x E− — A′+ — A+ A+ —

Iy M
(c)
y — A′′+ — A+ A− —

— T
(c)
x E− — A′′+ — A+ A− —

— T
(c)
y — A′+ — A+ A+ —

I+ M
(c)
+ [iT

(c)
− ] — E(1)− — A+ A+ — A+

I− M
(c)
− [iT

(c)
+ ] — E(2)− — B− A+ — A−

[iI−] T
(c)
+ [iM

(c)
− ] — E(2)+ — A+ A+ — A+

[iI+] T
(c)
− [iM

(c)
+ ] — E(1)+ — B− A+ — A−

By considering the magnetic field along the [001] direction, additional hyperfine field
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Table 4.8: (a) Hyperfine field at zero magnetic field. (b,c) Additional hyperfine field
terms in the magnetic field along the (b) [001] and (c) [100] directions. The coupling
constants are real.

(a) zero magnetic field

Cel
x Cel

y Cel
z Cel

u Cel
v Cel

yz Cel
zx Cel

xy

Hpara — — — ceuQ
(c)
u — — — —

Ho
order c

o
x,yT

(c)
y cox,yT

(c)
x cozM

(c)
v couG

(c)
xy covQ

(c)
z coyz,zxQ

(c)
y −coyz,zxQ

(c)
x —

He
order c

e
x,yM

(c)
x cex,yM

(c)
y cezM

(c)
z — cevQ

(c)
v ceyz,zxQ

(c)
yz ceyz,zxQ

(c)
zx cexyQ

(c)
xy

(b) [001] magnetic field

Cel
x Cel

y Cel
z Cel

u Cel
v Cel

yz Cel
zx Cel

xy

H̃[001]
para — — c̃ezQ

(c)
u c̃euM

(c)
z — — — —

H̃o[001]
order c̃

o
x,yQ

(c)
x −c̃ox,yQ

(c)
y c̃ozG

(c)
xy c̃ouM

(c)
v c̃ovM

(c)
u c̃oyz,zxT

(c)
x c̃oyz,zxT

(c)
y —

H̃e[001]
order c̃

e
x,yQ

(c)
zx c̃ex,yQ

(c)
yz — — c̃evM

β(c)
z c̃eyz,zxM

(c)
y c̃eyz,zxM

(c)
x c̃exyM

(c)
xyz

(c) [100] magnetic field

Cel
x Cel

y Cel
z

H̃[100]
para c̃e,1x Q

(c)
u +c̃e,2x Q

(c)
v — —

H̃o[100]
order c̃

o,1
x Q

(c)
z +c̃o,2x G

(c)
xy c̃o,1y G

(c)
v +c̃o,2y T

(c)
x c̃o,1z Q

(c)
x +c̃o,2z M

(c)
u

H̃e[100]
order — c̃e,1y Q

(c)
xy+c̃e,2y M

(c)
y c̃e,1z Q

(c)
zx+c̃e,2z M

β(c)
z

Cel
u Cel

v Cel
yz Cel

zx Cel
xy

H̃[100]
para c̃e,1u Q

(c)
v +c̃e,2u M

(c)
x c̃e,1v Q

(c)
u +c̃e,2v M

(c)
x — — —

H̃o[100]
order c̃o,1u Q

(c)
z +c̃o,2u T

(c)
y c̃o,1v G

(c)
xy+c̃o,2v T

(c)
y c̃o,1yz Q

(c)
y +c̃o,2yz M

(c)
xy c̃o,1zxM

(c)
u +c̃o,2zxM

(c)
v c̃o,1xyG

(c)
v +c̃o,2xy T

(c)
x

H̃e[100]
order — — c̃e,1yzQ

(c)
yz +c̃e,2yzM

(c)
xyz c̃e,1zxM

(c)
z +c̃e,2zxM

β(c)
z c̃exyM

(c)
y

terms appear as follow.

H̃[001]
para=c̃

e
zQ

(c)
u Îz+c̃

e
uM

(c)
z Îu, (4.49)

H̃o[001]
order =c̃

o
zG

(c)
xy Îz+c̃

o
x,y

(
Q(c)

x Îx−Q(c)
y Îy

)
+c̃ouM

(c)
v Îu+c̃

o
vM

(c)
u Îv+c̃

o
yz,zx

(
T (c)
x Îyz+T

(c)
y Îzx

)
, (4.50)

H̃e[001]
order =c̃

e
x,y

(
Q(c)

zx Îx+Q
(c)
yz Îy

)
+c̃exyM

(c)
xyz Îxy+c̃

e
vM

β(c)
z Îv+c̃

e
yz,zx

(
M (c)

y Îyz+M
(c)
x Îzx

)
, (4.51)

where H̃[001]
para is the additional hyperfine field induced by the magnetic field in the param-

agnetic state, while H̃o[001]
order (H̃e[001]

order ) is the additional hyperfine field in the presence of the
odd(even)-parity multipole orderings. c̃pµ (p=e or o, µ=u, v, yz, zx, xy) is a magnetic-field
dependent coupling constant, which vanishes without the magnetic field.
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The appearance of various multipole contributions in Eqs. (4.49)–(4.51) is due to the
reduction of the local symmetry at Co site 4̄m21′→4̄m′2′. Reflecting the breaking of the
time-reversal symmetry, the effective couplings between electronic and nuclear multipoles
with opposite time-reversal parity appear as discussed in Sec. 2.4. In other words, the E
(M) multipole at Ce site is coupled with the nuclear dipole (quadrupole) at Co site. From
the microscopic viewpoint, such a coupling originates from the M multipoles with spatially
anisotropic distributions, such as M octupole, which are described by the coupling between
the anisotropic charge distribution and M dipole moment [22, 216]. For instance, in
the case of the Qv-type ordering under the magnetic field along the [001] direction, the

M quadrupole M
(c)
v with time-reversal odd is induced as shown in Fig. 4.12(g). Since

M
(c)
v belongs to the same IRREP A+ as Iu with time-reversal even under the magnetic

point group 4̄m′2′ from Table 4.7, the field-induced M
(c)
v affects the 3z2−r2-type charge

distribution and results in the effective coupling between M
(c)
v and Iu.

Similarly, the additional hyperfine fields in the [100] magnetic field are given by

H̃[100]
para=

(
c̃e,1x Q(c)

u +c̃e,2x Q(c)
v

)
Îx+

(
c̃e,1u Q(c)

v +c̃e,2u M (c)
x

)
Îu+

(
c̃e,1v Q(c)

u +c̃e,2v M (c)
x

)
Îv, (4.52)

H̃o[100]
order =

(
c̃o,1x Q(c)

z +c̃o,2x G(c)
xy

)
Îx+

(
c̃o,1y G(c)

v +c̃o,2y T (c)
x

)
Îy+

(
c̃o,1z Q(c)

x +c̃o,2z M (c)
u

)
Îz

+
(
c̃o,1u Q(c)

z +c̃o,2u T (c)
y

)
Îu+

(
c̃o,1v G(c)

xy+c̃
o,2
v T (c)

y

)
Îv

+
(
c̃o,1yz Q

(c)
y +c̃o,2yz M

(c)
xy

)
Îyz+

(
c̃o,1zxM

(c)
u +c̃o,2zxM

(c)
v

)
Îzx+

(
c̃o,1xyG

(c)
v +c̃o,2xy T

(c)
x

)
Îxy,

(4.53)

H̃e[100]
order =

(
c̃e,1y Q(c)

xy+c̃
e,2
y M (c)

y

)
Îy+

(
c̃e,1z Q(c)

zx+c̃
e,2
z Mβ(c)

z

)
Îz

+
(
c̃e,1yzQ

(c)
yz +c̃

e,2
yzM

(c)
xyz

)
Îyz+

(
c̃e,1zxM

(c)
z +c̃e,2zxM

β(c)
z

)
Îzx+c̃

e
xyM

(c)
y Îxy, (4.54)

where the local symmetry at Co site reduces as 4̄m21′→2′mm′. For in-plane fields, the
Îv term additionally contributes to H̃[100]

para due to the breaking of the fourfold improper
rotational symmetry.

The additional hyperfine field Hamiltonian at the external magnetic field is summa-
rized in Tables 4.8(b) and 4.8(c). One can obtain the hyperfine field Hamiltonian for
other field directions by using the IRREPs in Table 4.7.

In the end, the total Hamiltonian in a unit cell under the magnetic field is given by

HCo=HCoA+HCoB+H̃CoA+H̃CoB , (4.55)

HCoA=HZeeman+Hpara+Ho
order+He

order, (4.56)

HCoB=HZeeman+Hpara−Ho
order+He

order, (4.57)

H̃CoA=H̃para+H̃o
order+H̃e

order, (4.58)

H̃CoB=H̃para−H̃o
order+H̃e

order. (4.59)

We use above nuclear Hamiltonian HCo to examine the NMR spectra in the odd-parity
multipole orderings in the following sections.

4.6.3 NQR Spectra

We examine how odd-parity multipole moments affect the NQR spectrum. In the param-
agnetic state, the nuclear Hamiltonian given by Eq. (4.45) leads to three NQR frequencies,

f=νQ, 2νQ, and 3νQ, where ℏνQ=3ceuQ
(c)
u . We take νQ=1 as the frequency unit.
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In the following, we show the resonance frequencies in odd-parity multipole orderings:
the Qv-type AFQ state with G

(c)
xy , the Qu-type AFQ state with Q

(c)
z , and the Mx-type

AFM state with T
(c)
y . In the calculations, we set the coupling constant in Eqs. (4.42)

and (4.43) as ceu=cQ, which is estimated from the NQR frequency in Ref. [205] as cQ=
0.13 when setting γℏ=1, while the coupling constants are set to be c for the primary-
induced multipoles and to be c′ for the secondary-induce multipoles as the unknown model
parameters for simplicity.

Staggered Qv-type AFQ

We discuss the NQR spectrum in the staggered Qv-type AFQ state, where the effec-
tive nuclear Hamiltonian is represented by considering the finite electronic multipoles in
Eqs. (4.42)–(4.44) as

HCoA/B
=
(
cQQ

(c)
u ±cG(c)

xy

)
Îu. (4.60)

The positive (negative) sign in the second term corresponds to HCoA (HCoB).

The NQR frequencies of CoA and CoB sites as a function of G
(c)
xy with fixed c=0.02

are shown in Fig. 4.13(a). The color scale in Fig. 4.13 shows the intensity of the NQR
spectrum, which is calculated by the magnitude of the matrix element of Ix between

different nuclear state i and j at CoA(B) site,
∣∣∣Î ijx,A(B)

∣∣∣2≡∣∣∣⟨i|Îx,A(B)|j⟩
∣∣∣2, where Îµ (µ=

x, y, z) represents the normalized Iµ satisfying Tr[ÎµÎ
†
µ]=1.

The result shows that the NQR frequencies for CoA and CoB have different values and
show the spectral splittings and shift in the Qv-type AFQ state. The sublattice-dependent
splitting is owing to the effective coupling between G

(c)
xy and Iu with different signs for

different sublattices. In other words, the odd-parity multipole moment G
(c)
xy in Eq. (4.60)

plays a significant role in splitting of the NQR frequencies. In fact, the splittings of the
NQR frequencies are proportional to G

(c)
xy . On the other hand, the shift of the frequency

to smaller f is due to the decrease of dominant cQQ
(c)
u (cQ≫c) term in Eq. (4.60) by the

suppression of Q
(c)
u while increasing G

(c)
xy as shown in Fig. 4.12(d).

It is noted that it might be difficult to detect the splitting due to the odd-parity
multipoles even for a saturated multipole moment G

(c)
xy ∼0.5 when the coupling constant

c is small, since the splittings are proportional to cG
(c)
xy .

Staggered Qu-type AFQ

In the staggered Qu-type AFQ state with Q
(c)
z , the effective nuclear Hamiltonians of CoA

and CoB are represented by

HCoA/B
=cQQ

(c)
u Îu±cQ(c)

z Îv. (4.61)

The NQR spectrum for the coupling constant c=0.02 is shown in Fig. 4.13(b). In
contrast to the result in the Qv-type AFQ state, there is no splitting in the NQR spectrum.
This is because the different sign of Q

(c)
z in Eq. (4.61) is not relevant to the splitting, which

is consistent with the symmetry argument that there is no linear coupling between Q
(c)
z
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Figure 4.13: The odd-parity multipole (upper scale) and its hyperfine field (lower scale)
dependences of the NQR frequency f in the staggered (a) Qv-type AFQ, (b) Qu-type
AFQ, and (c) Mx-type AFM states. The coupling constants cou, c

o
v, and cox,y are set as

cou=c
o
v=c=0.02 in the AFQ states and cox,y=c=0.3 in the AFM state. Other coupling

constants are set to be c′=0.02. As an intensity of the spectrum,
∣∣∣Î ijx,A(B)

∣∣∣2 is shown by

the counter plot in red (blue) for CoA (CoB) site. When the spectra from CoA and CoB
are equivalent, their intensities are shown by violet.

and Q
(c)
u in the free energy expansion at Co site. In the end, nonzero Q

(c)
z just affects the

spectral shift.

In addition to the splitting, the difference is found in the odd-parity multipole depen-
dence of the frequency shift. The frequencies in the Qu-type AFQ state in Fig. 4.13(b)

decrease with increasing Q
(c)
z faster than those in the Qv-type AFQ state in Fig. 4.13(a).

This is understood from the different dependences on the multipole moments as discussed
in Sec. 4.6.1; Q

(c)
u in the Qu-type AFQ state decreases by ∼[Q

(c)
z ]4/3, while that in the

Qv-type AFQ state decreases by ∼[G
(c)
xy ]2.

Staggered Mx-type AFM

In the staggered Mx-type AFM state, the nuclear Hamiltonian is represented by

HCoA/B
=±cT (c)

y Îx+cQQ
(c)
u Îu+c

′Q(c)
v Îv. (4.62)

It is noted that nuclear dipole contribution in the Mx-type AFM appears even without
the net magnetization nor the magnetic field.
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Figure 4.13(c) shows the NQR spectrum for the coupling constants c=0.3 and c′=0.02
in the Mx-type AFM state, where c is estimated from the magnitude of the internal mag-
netic field in Ref. [205]. The NQR frequencies are split into seven due to the contribution
from the internal magnetic field arising from the first term in Eq. (4.62). Meanwhile, the
NQR frequencies for CoA and CoB sites are the same, which indicates that there is no
sublattice-dependent splitting in the presence of the odd-parity T

(c)
y . This means that

T
(c)
y does not linearly couple with Q

(c)
u in the free energy expansion, which is consistent

with the symmetry argument. Thus, it is difficult to conclude the presence of T
(c)
y only

from the seven splittings in Fig. 4.13(c). In fact, the NQR spectra split into seven can be

obtained in the even-parity M dipole order, such as M
(c)
x , in Table 4.2.

4.6.4 [001]-Field NMR Spectra

In this section, we discuss the [001]-field NMR spectra in the odd-parity multipole or-
derings. We set γℏ=1 and |H(n)|=1 in the following. The coupling constants are set as
ceu=cQ=0.13 as well as that in NQR in Sec. 4.6.3. The other coupling constants are set to
be c for the primary-induced multipoles and to be c′ for the secondary-induced multipoles
for simplicity. The field-swept spectra are shown in Appendix F.1. We discuss the NMR
spectra in the paramagnetic state, Qv-type AFQ state, Qu-type AFQ state, and Mx-type
AFM state.

Paramagnetic state

In the paramagnetic state at the [001] magnetic field, H(n)=(0, 0, H
(n)
z ), the effective

nuclear Hamiltonian is represented by

HCoA/B
=
(
−H(n)

z +c′M (c)
z

)
Îz+cQQ

(c)
u Îu, (4.63)

ĤCoA/B
=c′Q(c)

u Îz+c
′M (c)

z Îu. (4.64)

The first term in Eq. (4.63) includes the Zeeman term from the external magnetic field.
The sum of the external magnetic field and the hyperfine field in Eqs. (4.63) and (4.64)
results in the seven spectral peaks separated by the same interval in the NMR measure-
ment.

Staggered Qv-type AFQ

In the Qv-type AFQ state, the effective nuclear Hamiltonian is obtained as

HCoA/B
=
(
−H(n)

z +c′M (c)
z

)
Îz+

(
cQQ

(c)
u ±cG(c)

xy

)
Îu, (4.65)

ĤCoA/B
=c′

(
Q(c)

u ±G(c)
xy±M (c)

v

)
Îz+c

′ (M (c)
z ±M (c)

v

)
Îu. (4.66)

The frequency-swept NMR spectrum for c=c′=0.02 is shown in Fig. 4.14(a), where the
color scale represents the intensity of the [001]-field NMR spectrum. Figure 4.14(a) shows

that G
(c)
xy leads to sublattice-dependent spectral splittings due to the different frequencies

of CoA and CoB as well as the result in NQR. The NMR spectrum is mainly determined by
the following dominant contributions: Zeeman term, cQQ

(c)
u term, and primarily induced
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G
(c)
xy terms. The spectral splittings originate from the odd-parity multipoles G

(c)
xy andM

(c)
v

which are coupled with Q
(c)
u and M

(c)
z , though the contribution from M

(c)
v is much smaller

than that of G
(c)
xy , as discussed in Sec. 4.6.1. Additionally, each spectrum is shifted by

[G
(c)
xy ]2.

Figure 4.14: (a–c) The odd-parity multipole dependences of the NMR frequency f under
the [001] magnetic field. The data are for the (a) Qv-type AFQ, (b) Qu-type AFQ, and

(c) Mx-type AFM states. The color scales represent the intensities with
∣∣∣Î ijx,A(B)

∣∣∣2. The

coupling constants are set as cou=c
o
v=c=0.02 in the AFQ states and cox,y=c=0.3 in the

AFM state. Other coupling constants are set to be c′=0.02.

Staggered Qu-type AFQ

In the Qu-type AFQ state, the effective nuclear Hamiltonian is described as

HCoA/B
=
(
−H(n)

z +c′M (c)
z

)
Îz+cQQ

(c)
u Îu±cQ(c)

z Îv, (4.67)

ĤCoA/B=c
′Q(c)

u Îz+c
′M (c)

z Îu±c′M (c)
u Îv. (4.68)

The NMR spectrum for c=c′=0.02 is shown in Fig. 4.14(b). The seven frequencies

have no additional split for both Co sites, since the induced odd-parity multipoles, Q
(c)
z and

M
(c)
u , in the ordered state do not couple with Q

(c)
u or M

(c)
z . Meanwhile, each frequency is

shifted by [Q
(c)
z ]4/3, which is understood by the behavior of Q

(c)
u , as discussed in Sec. 4.6.3.

For full-saturated Q
(c)
z =0.5, all the NMR frequencies become f∼5.2, which corre-

sponds to the frequency only in the external magnetic field. This is because Q
(c)
u in the

CEF term vanishes for Q
(c)
z =0.5, as shown in Fig. 4.12(h).

Staggered Mx-type AFM

In the Mx-type AFM state, the effective nuclear Hamiltonian for the Co nucleus is repre-
sented as

HCoA/B
=
(
−H(n)

z +c′M (c)
z

)
Îz±c′T (c)

y Îx+cQQ
(c)
u Îu+cQ

(c)
v Îv, (4.69)

ĤCoA/B
=c′Q(c)

u Îz+c
′M (c)

z Îu±c′T (c)
y Îzx. (4.70)

The NMR spectra for c=0.3 and c′=0.02 is shown in Fig. 4.14(c). The spectra show
no sublattice-dependent splitting, which is similar to those in NQR spectra in Sec. 4.6.3,
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as T
(c)
y does not couple with Q

(c)
u or M

(c)
z . The shift of the resonance frequency against

T
(c)
y is small compared to that in the Qu-type AFQ state in Fig. 4.14(b), which reflects

the different behavior of Q
(c)
u , as shown in Fig. 4.12(i).

4.6.5 [100]-Field NMR Spectra

We show the [100]-field NMR spectrum in the paramagnetic state, Qv-type AFQ state,
Qu-type AFQ state, and Mx-type AFM state.

Paramagnetic state

In the paramagnetic state at the [100] magnetic field, the effective nuclear Hamiltonian
at Co nucleus is represented by

HCoA/B
=
(
−H(n)

x +c′M (c)
x

)
Îx+cQQ

(c)
u Îu+c

′Q(c)
v Îv. (4.71)

ĤCoA/B
=c′

(
Q(c)

u +Q(c)
v

)
Îx+c

′ (Q(c)
v +M (c)

x

)
Îu+c

′ (Q(c)
u +M (c)

x

)
Îv. (4.72)

The nuclear Hamiltonian in Eqs. (4.71) and (4.72) leads to the seven spectra similar to
those at the [001] magnetic field. However, the intervals between the resonance frequencies
are not equivalent, since the magnetic field normal to the z axis leads to the emergence
of Q

(c)
v .

Staggered Qv-type AFQ

Figure 4.15: (a–c) The odd-parity multipole dependences of the NMR frequency f under
the [100] magnetic field. The data are for the (a) Qv-type AFQ, (b) Qu-type AFQ, and

(c) Mx-type AFM states. The color scales represent the intensities with
∣∣∣Î ijy,A(B)

∣∣∣2. The

coupling constants are set as cou=c
o
v=c=0.02 in the AFQ states and cox,y=c=0.3 in the

AFM state. Other coupling constants are set to be c′=0.02.

In the Qv-type AFQ state, the effective nuclear Hamiltonian is described as

HCoA/B
=
(
−H(n)

x +c′M (c)
x

)
Îx+

(
cQQ

(c)
u ±cG(c)

xy

)
Îu+c

′Q(c)
v Îv, (4.73)

ĤCoA/B
=
[
c′
(
Q(c)

u +Q(c)
v ±Q(c)

z ±G(c)
xy

)
±c′MT (c)

y

]
Îx

+c′
(
Q(c)

v +M (c)
x ±Q(c)

z ±T (c)
y

)
Îu+c

′ (Q(c)
u +M (c)

x ±Q(c)
z ±G(c)

xy±T (c)
y

)
Îv. (4.74)
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4.6. NQR AND NMR IN ODD-PARITY MULTIPOLE ORDER

Figure 4.15(a) shows the [100]-field NMR spectra for c=c′=0.02, c′M=0.3, where the
color scale represents the intensity of the NMR spectra. The result indicates that sublattice-
dependent spectral splitting occurs as well as the results in NQR and [001]-field NMR.
Also in the [100]-field NMR, the spectrum is mainly determined by the following dom-

inant contributions: Zeeman term, cQQ
(c)
u term, and primarily induced G

(c)
xy terms. In

other words, among the odd-parity multipoles, G
(c)
xy , Q

(c)
z , and T

(c)
y , the important con-

tribution comes from G
(c)
xy , since the magnitudes of Q

(c)
z and T

(c)
y are much smaller than

that of G
(c)
xy , as shown in Fig. 4.12(j). Meanwhile, the shift of the spectra is dominated

by Q
(c)
u .

Staggered Qu-type AFQ

The effective nuclear Hamiltonian in the Qu-type AFQ state is

HCoA/B
=
(
−H(n)

x +c′M (c)
x

)
Îx+cQQ

(c)
u Îu+

(
c′Q(c)

v ±cQ(c)
z

)
Îv, (4.75)

ĤCoA/B
=
[
c′
(
Q(c)

u +Q(c)
v ±Q(c)

z ±G(c)
xy

)
±c′MT (c)

y

]
Îx

+c′
(
Q(c)

v +M (c)
x ±G(c)

xy±Q(c)
z ±T (c)

y

)
Îu+c

′ (Q(c)
u +M (c)

x ±G(c)
xy±T (c)

y

)
Îv, (4.76)

which is the same as that in the Qv-type AFQ state in Eqs. (4.73) and (4.74), as the
magnetic point group symmetry under the magnetic field is the same as 2′mm′ with each
other. Thus, in contrast to the results for the NQR [Sec. 4.6.3] and [001]-field NMR
[Sec. 4.6.4], the sublattice-dependent splittings occur under the [100] magnetic field as
shown in the NMR spectra for c=c′=0.02, c′M=0.3 in Fig. 4.15(b).

However, the mean-field dependence of the spectra is different from that in the Qv-
type AFQ state, since the magnitude of Q

(c)
z is much larger than that of other multipoles.

Especially, the spectral shift reflects the different mean-field dependence of Q
(c)
u , as already

discussed in Sec. 4.6.3.

Staggered Mx-type AFM

The nuclear Hamiltonian in the Mx-type AFM state is

HCoA/B
=
(
−H(n)

x +c′M (c)
x ±cT (c)

y

)
Îx+cQQ

(c)
u Îu+c

′Q(c)
v Îv, (4.77)

ĤCoA/B
=c′

(
Q(c)

u +Q(c)
v ±Q(c)

z ±G(c)
xy

)
Îx

+c′
(
Q(c)

v +M (c)
x ±G(c)

xy±Q(c)
z ±T (c)

y

)
Îu+c

′ (Q(c)
u +M (c)

x ±G(c)
xy±Q(c)

z ±T (c)
y

)
Îv,

(4.78)

where the same multipoles appear in the two AFQ states in Eqs. (4.73)–(4.76), since the
magnetic point group symmetry under the [100] magnetic field reduces to 2′mm′ also in
this case. Thus, the sublattice-dependent NMR splittings occur, which is similar to those
in the AFQ states. However, the dominant odd-parity multipole to induce the spectral
splitting is given by T

(c)
y . The [100]-field NMR spectra for c=0.3 and c′=0.02 is shown in

Fig. 4.15(c).
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4.6.6 Spectral Splittings under Odd-parity Multipoles

So far, we have focused on the NQR and NMR spectra in the two AFQ and the AFM
ordered states under the magnetic fields along the [001] and [100] directions as well as
the zero magnetic field. In a similar way, possible NQR and NMR splittings in other
odd-parity multipole orderings under any field directions can be calculated. We show the
presence or absence of the sublattice-dependent NQR and NMR splittings for the other
candidate odd-parity multipole orders in CeCoSi, which are expected from the low-energy
two CEF levels. The present analysis is applicable once the phase transition occurs in the
magnetic field unless the second excited levels are involved in the phase transition. It is
noted that our analysis can be extended to other electronic orderings in the Γ7-Γ6 level
scheme and the Γ

(1)
7 -Γ

(2)
7 level scheme, where the latter is discussed in Appendix F.3.

The present results for the Γ7-Γ6 level scheme are summarized in Table 4.9. We list
the other candidates; two AFM states, three AFQ states, and two AFO states. We also
include the results in the Qv- and Qu-type AFQ states and the Mx-type AFM state
discussed in Secs. 4.6.3, 4.6.4, and 4.6.5 under the other magnetic-field directions. The
table exhibits when the sublattice-dependent spectral splittings occur in the presence of
odd-parity multipoles.

For example, in the AFQ phase, the NMR measurement in the zx(yz)-plane mag-
netic field is useful to identify the odd-parity multipole order parameter; the sublattice-
dependent splittings which always appear when the magnetic field direction is rotated
in the zx(yz)-plane indicate the emergence of G

(c)
xy . Meanwhile, in the AFM phase, the

sublattice-dependent splittings under the magnetic field along the x direction will indi-
cate the presence of T

(c)
y . In this way, as the different spectral splittings are found in

the different odd-parity multipole orderings depending on the magnetic field directions,
the detailed investigation of the field angle dependence enables us to identify the order
parameter in CeCoSi.

Table 4.9: The sublattice-dependent NQR and NMR splittings in the AFM, AFQ, and
AFO states under the six field directions [001], [100], [110], ⊥[001], ⊥[010], and ⊥[1̄10].
The local multipoles (LMP) at Ce site and cluster odd-parity multipoles (OPMP) are
shown in second and third columns, respectively. The mark ✓ represents the presence of
the sublattice-dependent splittings.

NQR NMR
LMP OPMP — H∥[001] H∥[100] H∥[110] H⊥[001] H⊥[010] H⊥[1̄10]

AFM Mx Ty — — ✓ ✓ ✓ ✓ ✓
My Tx — — — ✓ ✓ — ✓
Mz Mu — — — — — ✓ —

AFQ Qu Qz — — ✓ — ✓ ✓ —
Qv Gxy ✓ ✓ ✓ ✓ ✓ ✓ ✓
Qxy Gv — — — — ✓ — —
Qyz Qy — — — — — — ✓
Qzx Qx — — — — — ✓ ✓

AFO Mxyz Mxy — — — — — — —
Mβ

z Mv — ✓ — — — ✓ ✓
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4.7 Summary

We investigated the odd-parity multipole orderings that corresponds to the staggered mul-
tipole orderings in the f electron metal CeCoSi with the locally noncentrosymmetric crys-
tal structure. We examined three different models to investigate the finite-temperature
phase transition, multiferroic properties, and NQR/NMR spectra.

First, we examined the relation between the AFM and AFQ ordered states and the
odd-parity multipole moment. By using the self-consistent mean-field calculation for the
effective local model, we clarified the important interaction parameters to stabilize the
AFM and AFQ phases while changing the temperature. We showed that the interorbital
AFQ ordering is possible by the relatively small interaction even in the case of the large
CEF level splitting when taking into account the effect of the multipole interaction for
the (3z2−r2)-type E quadrupole. We also discussed the behaviors of the magnetic suscep-
tibility and the quadrupole susceptibility. We showed that the magnetic susceptibility is
closely related to the AFQ order parameter and CEF, while the quadrupole susceptibility
in a magnetic field is related to the coupling between the AFM and AFQ moments.

Second, we examined the itinerant model to investigate the stability of the multipole
orderings at the zero temperature and the multiferroic responses. Different from the local
model, we showed that the itinerant model can realize the nonmagnetic AFQ ground state,
which might correspond to the situation in the high-pressure region of CeCoSi. Moreover,
it was clarified that the types of the AFM and interorbital higher-rank multipole phases
are mainly related to the two types of ASOIs and the interorbital hoppings. We also
investigated the band modulation and the multiferroic responses in the presence of the
odd-parity multipole orderings. Especially, we discussed the temperature dependence
of the magnetoelectric coefficients with the complicated T dependence, which originates
from the multi-orbital effect.

Third, we investigated the NQR and NMR spectra in the presence of the odd-parity
multipole orderings. We introduced the hyperfine field Hamiltonian based on the sym-
metry analysis for the zero magnetic field, [001] magnetic field, and [100] magnetic field,
and calculated them under the odd-parity multipole orderings. As a result, we clarified
that the odd-parity multipole leads to the sublattice-dependent spectral splitting of the
NQR and NMR. As the presence/absence of the spectral splittings depends on the odd-
parity order parameter and the direction of the magnetic field, the present results provide
information for the identification of the unknown order parameter in CeCoSi.

Although the present study focused on the odd-parity multipole order of the specific
material CeCoSi, the theoretical results, such as the stability of the multipole orderings
in the presence of the large CEF level splitting, multiferroic responses in the multi-orbital
system with the unconventional odd-parity multipole order, and the way to identify the
odd-parity multipole order parameter by the NMR measurement, can be applicable to
other materials hosting odd-parity multipoles. Thus, the result will be useful to explore for
future exploration of functional materials in the absence of the spatial inversion symmetry.
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Chapter 5

Summary

In this dissertation, we have investigated multipole physics in condensed matter physics.
We already gave a summary of the results in each chapter. We here conclude this disser-
tation by wrapping up the main results from a broader viewpoint.

In Chap. 2, we completed the classification of multipoles in the 122 magnetic point
groups. We systematically classified four types of multipoles, i.e., electric, magnetic, elec-
tric toroidal, and magnetic toroidal multipoles, based on the representation theory in a
nonunitary group. The symmetry-adapted four types of multipoles can express any elec-
tronic degrees of freedom including not only atomic-scale ones, such as the charge, spin,
and orbital, but also sublattice one. Thus, the present classification of multipoles will en-
able us to understand electronic order parameters, entanglement among the charge, spin,
and orbital, multiferroic phenomena, and transport properties in a systematic way. Es-
pecially, the multipole description in the magnetic point groups including the antiunitary
operations accompanied by the time-inversion operation becomes a powerful tool when
clarifying microscopic essences for various physical phenomena in magnetic materials with
the complicated magnetic structures and exotic higher-rank multipole structures. Indeed,
we uncovered the parity-violating physical phenomena based on the multipole concept in
Chaps. 3 and 4.

In Chap. 3, we investigated the second-order nonlinear transport in the magnetic
toroidal dipole ordering with an emphasis on the necessary model parameters to induce
the nonlinear transport. By analyzing the staggered antiferromagnetic ordering with the
magnetic toroidal dipole on a two-dimensional zigzag chain, we obtained the important
antisymmetric spin-orbit interaction and hopping parameters for the second-order non-
linear transport in the ferrotoroidal metal/semiconductor. We also showed that a large
enhancement of the nonlinear conductivity can occur near the transition temperature in
a multi-band system.

In Chap. 4, we investigated one of the candidate materials to host odd-parity multi-
poles, CeCoSi. We discussed the potential odd-parity multipoles in the antiferromagnetic
and antiferroquadrupole ordered phases from the viewpoint of both local and itinerant
models. By analyzing the local model, we constructed the finite-temperature phase di-
agram by the self-consistent mean-field calculation, which gave the similar result to the
experimental one in the low-pressure region. We gave a physical interpretation of the in-
terorbital multipole ordering in the presence of the large crystalline-electric-field splitting
by considering the multipole-multipole interaction. Meanwhile, in the itinerant model,
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we showed that not only the antiferromagnetic ordering but also the antiferroquadrupole
ordering can be stabilized even in the ground state, which might explain the emergent
antiferroquadrupole ordering in the high-pressure region of CeCoSi. We also investigated
the multiferroic response driven by the odd-parity multipole orderings by focusing on the
importance of the interorbital degree of freedom. Furthermore, we developed the theory
of the NQR and NMR spectra in order to microscopically detect the odd-parity multipole
orderings.

For future work, there is the further exploration of multiferroic responses and lin-
ear/nonlinear transport properties in terms of the unconventional order parameters, e.g.,
magnetic toroidal quadrupole and octupole, by the systematic analysis based on the
present multipole classification. It might open the way to use various functional ma-
terials with antiferromagnetic states and the unconventional spin, orbital, and current
ordered states for the novel electronics and spintronics devices. Meanwhile, the theoreti-
cal study on the multipole orderings in CeCoSi also remains several issues to explain the
experimental result. For example, the high critical magnetic field in the temperature-field
phase diagram and the behavior of the magnetization depending on the higher-order mag-
netic field. To examine them, the theoretical analysis taking into account the additional
effect beyond the present effective mean-field model will be necessary.
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Appendix A

Multipole Notation under Point
Group Symmetry in Crystals

We adopt the real expressions of Olm(r), which are given by [50]

O
(c)
l0 (r)≡Ol0(r), (A.1)

O
(c)
lm(r)≡ (−1)m√

2
[Olm(r)+O

∗
lm(r)], (A.2)

O
(s)
lm(r)≡i

(−1)m√
2

[Olm(r)−O∗
lm(r)]. (A.3)

We use the linear combination of O
(c)
lm(r) and O

(s)
lm(r) for the expressions of multipoles in

crystallographic systems.
The cubic harmonics are used for the cubic groups and its subgroups, where Olm(r)

up to rank 4 is represented as follows. The rank-0 monopole is

O0=1, (A.4)

the rank-1 dipole is

(Ox, Oy, Oz)=(x, y, z), (A.5)

the rank-2 quadrupole is

Ou=
1

2
(3z2−r2), (A.6)

Ov=

√
3

2
(x2−y2), (A.7)

(Oyz, Ozx, Oxy)=
√
3(yz, zx, xy), (A.8)

the rank-3 octupole is

Oxyz=
√
15xyz, (A.9)(

Oα
x , O

α
y , O

α
z

)
=
1

2

(
x(5x2−3r2), y(5y2−3r2), z(5z2−3r2)

)
, (A.10)(

Oβ
x , O

β
y , O

β
z

)
=

√
15

2

(
x(y2−z2), y(z2−x2), z(x2−y2)

)
, (A.11)
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and the rank-4 hexadecapole is

O4=
5
√
21

12

(
x4+y4+z4−3

5
r4
)
, (A.12)

O4u=
7
√
15

6

[
z4−x4+y4

2
−3

7
r2(3z2−r2)

]
, (A.13)

O4v=
7
√
5

4

[
x4−y4−6

7
r2(x2−y2)

]
, (A.14)

(
Oα

4x, O
α
4y, O

α
4z

)
=

√
35

2

(
yz(y2−z2), zx(z2−x2), xy(x2−y2)

)
, (A.15)(

Oβ
4x, O

β
4y, O

β
4z

)
=

√
5

2

(
yz(7x2−r2), zx(7y2−r2), xy(7z2−r2)

)
, (A.16)

where we denote Olm(r)→Olm for notational simplicity.
For the hexagonal and trigonal groups, we adopt different notations for four rank-3

octupoles Oα
x , O

α
y , O

β
x , and O

β
y in Eqs. (A.10) and (A.11) and all the rank-4 hexadecapoles

in Eqs. (A.12)–(A.16) by

O3a=

√
10

4
x(x2−3y2), (A.17)

O3b=

√
10

4
y(3x2−y2), (A.18)

(O3u, O3v)=

√
6

4

(
x(5z2−r2), y(5z2−r2)

)
, (A.19)

and

O40=
1

8
(35z4−30z2r2+3r4), (A.20)

O4a=

√
70

4
yz(3x2−y2), (A.21)

O4b=

√
70

4
zx(x2−3y2), (A.22)

(Oα
4u, O

α
4v)=

√
10

4

(
zx(7z2−3r2), yz(7z2−3r2)

)
, (A.23)(

Oβ1
4u , O

β1
4v

)
=

√
35

8

(
x4−6x2y2+y4, 4xy(x2−y2)

)
, (A.24)(

Oβ2
4u , O

β2
4v

)
=

√
5

4

(
(x2−y2)(7z2−r2), 2xy(7z2−r2)

)
, (A.25)

with the use of the tesseral harmonics.
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Appendix B

Corepresentation of Nonunitary
Group

We review the representation theory of nonunitary groups to use the irreducible repre-
sentation in type-(II) and type-(III) nonunitary magnetic point groups [121, 122, 124–
127, 129, 130]. In Sec. B.1, we introduce the corepresentation of a nonunitary group in
detail. After presenting the unitary transformation of the corepresentation in Sec. B.2,
we show the irreducible corepresentation in Sec. B.3. In Sec. B.4, the Kronecker product
of the irreducible corepresentation is briefly reviewed.

B.1 Corepresentation

A nonunitary group M is expressed as

M=G+AG, (B.1)

where G is the unitary subgroup and A is the antiunitary operation. When M is a
type-(II) [(III)] magnetic point group, G is a crystallographic point group and A is the
time-reversal operation (combination of the time-inversion and unitary crystallographic
point group operations). For the basis set of the irreducible representation Γ in G with
dimension dΓ

⟨ψΓ|=⟨ψΓ
1 , · · · , ψΓ

dΓ
| , (B.2)

and another set obtained as

A⟨ψΓ|=⟨ϕΓ|=⟨ϕΓ
1 , · · · , ϕΓ

dΓ
| , (B.3)

the representations with respect to a unitary operation R∈G are given as

R⟨ψΓ|=⟨ψΓ|∆Γ(R), (B.4)

R⟨ϕΓ|=A(A−1RA) ⟨ψΓ|=A⟨ψΓ|∆Γ(A−1RA)=⟨ϕΓ| [∆Γ(A−1RA)]∗, (B.5)

respectively. Meanwhile, an antiunitary operation B=AR (B∈AG) for ⟨ψΓ| and ⟨ϕΓ| are
represented as

B ⟨ψΓ|=AR⟨ψΓ|=A⟨ψΓ|∆Γ(R)=⟨ϕΓ| [∆Γ(A−1B)]∗, (B.6)

B ⟨ϕΓ|=BA⟨ψΓ|=⟨ψΓ|∆Γ(BA). (B.7)
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B.2. UNITARY TRANSFORMATION OF COREPRESENTATION

Thus, a unitary operation R and an antiunitary operation B for the set basis ⟨ψΓ, ϕΓ| are
represented by the following unitary matrices DΓ(R) and DΓ(B), which satisfy

R⟨ψΓ, ϕΓ|=⟨ψΓ, ϕΓ|
(
∆Γ(R) 0

0
[
∆Γ(A−1RA)

]∗)≡⟨ψΓ, ϕΓ|DΓ(R) for R∈G, (B.8)

B ⟨ψΓ, ϕΓ|=⟨ψΓ, ϕΓ|
(

0 ∆Γ(BA)[
∆Γ(A−1B)

]∗
0

)
≡⟨ψΓ, ϕΓ|DΓ(B) for B∈AG, (B.9)

respectively. Such a representation composed for the basis set ⟨ψΓ, ϕΓ|, which will be
denoted as DΓ in the following discussion, is called “corepresentation”. From Eqs. (B.8)
and (B.9), DΓ satisfies the following relations for R,S∈G, B, C∈AG:

DΓ(R)DΓ(S)=DΓ(RS), (B.10)

DΓ(R)DΓ(B)=DΓ(RS), (B.11)

DΓ(B)[DΓ(R)]∗=DΓ(BR), (B.12)

DΓ(B)[DΓ(C)]∗=DΓ(BC). (B.13)

B.2 Unitary Transformation of Corepresentation

We show a unitary transformation of a corepresentation. For a unitary matrix U which
transforms basis ⟨ψΓ, ϕΓ| as

⟨ψ′Γ, ϕ′Γ|=⟨ψΓ, ϕΓ|U, (B.14)

the corepresentation DΓ is transformed as

D′Γ(R)=U−1DΓ(R)U, (B.15)

D′Γ(B)=U−1DΓ(B)U∗, (B.16)

where R∈G, B∈AG. Above relations are derived as follows:

R⟨ψ′Γ, ϕ′Γ|≡⟨ψ′Γ, ϕ′Γ|D′Γ(R)=R⟨ψΓ, ϕΓ|U=⟨ψΓ, ϕΓ|DΓ(R)U, (B.17)

B ⟨ψ′Γ, ϕ′Γ|≡⟨ψ′Γ, ϕ′Γ|D′Γ(B)=B ⟨ψΓ, ϕΓ|U=⟨ψΓ, ϕΓ|DΓ(B)U∗. (B.18)

Thus, there is an equivalent corepresentation when the unitary matrix U satisfying Eqs. (B.15)
and (B.16) exists.

B.3 Irreducible Corepresentation (IRREP)

The derivation of an irreducible corepresentation (IRREP) is shown with the use of a
unitary transformation. By assuming that the corepresentation DΓ is reducible by the

unitary matrix U−1=

(
a b
c d

)
, DΓ satisfies the relation

(
a b
c d

)(
∆Γ(R) 0

0
[
∆Γ(A−1RA)

]∗)=(X(R) 0
0 Y (R)

)(
a b
c d

)
, (B.19)
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where X(R) and Y (R) are equivalent to ∆Γ(R) and
[
∆Γ(A−1RA)

]∗
, respectively. The

respective matrix elements have the following relations

a∆Γ(R)=X(R)a, (B.20)

b
[
∆Γ(A−1RA)

]∗
=X(R)b, (B.21)

c∆Γ(R)=Y (R)c, (B.22)

d
[
∆Γ(A−1RA)

]∗
=Y (R)d, (B.23)

which result in

a−1b
[
∆Γ(A−1RA)

]∗
=∆Γ(R)a−1b, (B.24)

c−1d
[
∆Γ(A−1RA)

]∗
=∆Γ(R)c−1d. (B.25)

To clarify when the unitary matrix satisfying Eqs. (B.24) and (B.25) block-diagonalizes
the corepresentation DΓ for all components in a nonunitary group, we examine two cases;
∆Γ(R) and

[
∆Γ(A−1RA)

]∗
are equivalent or not equivalent.

First, we examine the case when ∆Γ(R) and
[
∆Γ(A−1RA)

]∗
are not equivalent. From

Schur’s lemma (1), matrices a, b, c, and d satisfy1

a−1b=c−1d=0, (B.26)

∴ b=c=0, (B.27)

which results in

U−1=

(
a 0
0 d

)
. (B.28)

The unitary matrix U in Eq. (B.28) cannot block-diagonalize the corepresentation matrix
with respect to the antiunitary operation

DΓ(B)=
(

0 ∆Γ(BA)[
∆Γ(A−1B)

]∗
0

)
. (B.29)

It means that the corepresetation DΓ is irreducible when ∆Γ(R) and
[
∆Γ(A−1RA)

]∗
are

not equivalent.
Next, we present the case when ∆Γ(R) and

[
∆Γ(A−1RA)

]∗
are equivalent. In this

case, the unitary matrix N satisfying

∆Γ(R)=N
[
∆Γ(A−1RA)

]∗
N−1, (B.30)

exists as Eqs. (B.24) and (B.25). By a unitary matrix U=

(
I 0
0 N

)
, DΓ(R) is transformed

as

D′Γ(R)≡U−1DΓ(R)U=

(
I 0
0 N

)(
∆Γ(R) 0

0
[
∆Γ(A−1RA)

]∗)(I 0
0 N−1

)
=

(
∆Γ(R) 0

0 ∆Γ(R)

)
, (B.31)

1a, d ̸=0, as we set X(R) and Y (R) are the equivalent representations of ∆Γ(R) and
[
∆Γ(A−1RA)

]∗
,

respectively.
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where I is the identity matrix. Meanwhile, the corepresentation with respect to an antiu-
nitary operation A is transformed by U as follows:

D′Γ(A)≡U−1DΓ(A)U∗=

(
I 0
0 N

)(
0 ∆Γ(A2)
I 0

)(
I 0
0 [N−1]∗

)
=

(
0 ∆Γ(A2)[N−1]∗

N 0

)
. (B.32)

Further decomposition of D′Γ(A) into IRREP needs the unitary matrix that keeps D′Γ(R)
in the block-diagonalized form and block-diagonalizes D′Γ(A). Such a unitary matrix

denoted as V is required to be commutative with D′Γ(R). When we set V −1=

(
α β
γ δ

)
,

the following relation

V −1D′Γ(R)=D′Γ(R)V −1, (B.33)

is satisfied, i.e., (
α∆Γ(R) β∆Γ(R)
γ∆Γ(R) δ∆Γ(R)

)
=

(
∆Γ(R)α ∆Γ(R)β
∆Γ(R)γ ∆Γ(R)δ

)
. (B.34)

Since ∆Γ(R) is the irreducible representation of the unitary group G, matrices α, β, γ,
and λ can be represented by using complex numbers κ, µ, ν, ρ as α=κI, β=µI, γ=νI,
λ=ρI because of Schur’s lemma (2). By using V , the corepresentation D′Γ(A) can be
transformed as

D′′Γ(A)≡V −1D′Γ(A)V ∗=

(
κI µI
νI ρI

)(
0 ∆Γ(A2)[N−1]∗

N 0

)(
κI νI
µI ρI

)
,

=

(
κµ(∆Γ(A2)[N−1]∗+N) κρ∆Γ(A2)[N−1]∗+µνN
µν∆Γ(A2)[N−1]∗+κρN νρ(∆Γ(A2)[N−1]∗+N)

)
. (B.35)

In order to obtain the block-diagonalized D′′Γ(A) in Eq. (B.35), the following relations
need to be satisfied.

κρ∆Γ(A2)[N−1]∗+µνN=0, (B.36)

µν∆Γ(A2)[N−1]∗+κρN=0, (B.37)

i.e.,

[(µν)2−(ρκ)2]=0. (B.38)

In addition, µ, ν, ρ, and κ have the further restriction µν ̸=ρκ when D′′Γ(A) is block-
diagonalized, since the unitary matrix V satisfies det[V −1] ̸=0. It results in

µν=−ρκ. (B.39)

When we set κ=µ=ρ=1/
√
2 and ν=−1/

√
2, the relations in Eq. (B.39) is satisfied and

D′′Γ(A) is block-diagonalized as follows:

D′′Γ(A)=
1

2

(
∆Γ(A2)[N−1]∗+N 0

0 −(∆Γ(A2)[N−1]∗+N)

)
=

(
N 0
0 −N

)
, (B.40)
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where we used Eq. (B.36). Thus, the corepresentation matrix for B∈AG is block-
diagonalized as

D′′Γ(B)=D′′Γ(BA−1)D′′Γ(A)=

(
∆Γ(BA−1) 0

0 ∆Γ(BA−1)

)(
N 0
0 −N

)
=

(
∆Γ(BA−1)N 0

0 −∆Γ(BA−1)N

)
. (B.41)

Meanwhile, above block-diagonalization is not always possible even if ∆Γ(A2) and[
∆Γ(A−1RA)

]∗
are quivalent. Whether D′Γ(B) can be block-diagonalized or not is deter-

mined by whether the unitary matrix N satisfies

NN∗=∆Γ(A2), (B.42)

from Eqs. (B.36) and (B.39), while NN∗=±∆Γ(A2) is possible for the equivalent ∆Γ(A2)
and

[
∆Γ(A−1RA)

]∗2. When D′Γ(B) cannot be block-diagonalized because of NN∗=
−∆Γ(A2), which is given as

D′Γ(B)=D′Γ(BA−1)D′Γ(A)=

(
∆Γ(BA−1) 0

0 ∆Γ(BA−1)

)(
0 ∆Γ(A2)[N−1]∗

N 0

)
=

(
∆Γ(BA−1) 0

0 ∆Γ(BA−1)

)(
0 −N
N 0

)
=

(
0 −∆Γ(BA−1)N

∆Γ(BA−1)N 0

)
. (B.50)

In summary, the corepresentation DΓ in a nonunitary group M=G+AG obtained
by the irreducible representation Γ in G is classified into three cases (a)–(c):

2When ∆Γ(A2) and
[
∆Γ(A−1RA)

]∗
are equivalent,

∆Γ(R)=N
[
∆Γ(A−1RA)

]∗
N−1=N

[
N
[
∆Γ(A−1A−1RAA)

]∗
N−1

]∗
N−1 (B.43)

=
(
NN∗[∆Γ(A2)]−1

)
∆Γ(R)

(
∆Γ(A2)[N−1]∗N−1

)
. (B.44)

Thus, Schur’s lemma (2) leads to

NN∗[∆Γ(A2)]−1=λI, (B.45)

∴ ∆Γ(A2)=
NN∗

λ
, (B.46)

where λ is a complex number. Moreover, by setting R=A2 in ∆Γ(R)=N
[
∆Γ(A−1RA)

]∗
N−1, we obtain

the relation

∆Γ(A2)=N [∆Γ(A2)]∗N−1, (B.47)

which results in

NN∗

λ
=∆Γ(A2)=N [∆Γ(A2)]∗N−1=

NN∗NN−1

λ∗ =
NN∗

λ∗ , (B.48)

i.e., λ=λ∗. In addition, λ=±1, since |λ|=1 for the unitary matrices N and ∆Γ(A2). Therefore,

NN∗=±∆Γ(A2). (B.49)
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(a) The irreducible representation matrix ∆Γ(R) is equivalent to [∆Γ(A−1RA)]∗. In
addition, the unitary matrix N satisfying

∆Γ(R)=N [∆Γ(A−1RA)]∗N−1, (B.51)

has the relation with ∆Γ(A2) as

NN∗=∆Γ(A2). (B.52)

In this case, the corepresentation matrix composed from ∆Γ(R) (R∈G) can be
block-diagonalized asD′′Γ(R)=V −1U−1DΓ(R)UV andD′′Γ(B)=V −1U−1DΓ(B)U∗V ∗

by the unitary matrices

U−1=

(
I 0
0 N

)
, V −1=

1√
2

(
I I
−I I

)
. (B.53)

It results in the two IRREPs DΓ+ and DΓ−

DΓ+→∆Γ(R) for R∈G, +∆Γ(BA−1)N for R∈AG, (B.54)

DΓ−→∆Γ(R) for R∈G, −∆Γ(BA−1)N for R∈AG. (B.55)

(b) The irreducible representation matrix ∆Γ(R) is equivalent to [∆Γ(A−1RA)]∗. In
addition, the unitary matrix N satisfies

∆Γ(R)=N [∆Γ(A−1RA)]∗N−1. (B.56)

It follows the relation

NN∗=−∆Γ(A2). (B.57)

In this case, the corepresentation is already irreducible. Meanwhile, the matrix rep-
resentation can be transformed into the form which explicitly presents the equiv-
alence between ∆Γ(R) and [∆Γ(A−1RA)]∗ by the unitary matrix U . Thus, one
IRREP DΓ is obtained as follows:

DΓ→
(
∆Γ(R) 0

0 ∆Γ(R)

)
for R∈G,

(
0 −∆Γ(BA−1)N

∆Γ(BA−1)N 0

)
for R∈AG.

(B.58)

(c) The irreducible representation matrix ∆Γ(R) is not equivalent to [∆Γ(A−1RA)]∗.
In this case, the corepresentation DΓ is already irreducible, whose representation
matrix is described as

DΓ→
(
∆Γ(R) 0

0
[
∆Γ(A−1RA)

]∗) for R∈G,
(

0 ∆Γ(BA)[
∆Γ(A−1B)

]∗
0

)
for R∈AG.

(B.59)
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Finally, we show the way to examine in which cases a corepresentation is classified by
using the character. Generally,∑

B∈AG

∆Γ(B2)rr=
∑
R∈G

∆Γ(ARAR)rr

=
∑
R∈G

∆Γ(A2A−1RAR)rr

=
∑
R∈G

∆Γ(A2)rs∆
Γ(A−1RA)st∆

Γ(R)tr, (B.60)

for B∈AG. For equivalent ∆Γ(R) and [∆Γ(A−1RA)]∗ [case (a) or (b)],∑
B∈AG

∆Γ(B2)rr=
∑
R∈G

∆Γ(A2)rs[N
−1
sp ∆Γ(R)pqNqt]

∗∆Γ(R)tr

=∆Γ(A2)rs[N
−1
sp ]∗[Nqt]

∗
∑
R∈G

[∆Γ(R)pq]
∗∆Γ(R)tr. (B.61)

By using the orthogonal relation for the irreducible representation in a unitary group,∑
R∈G

∆Γ(R)rl[∆
Γ̃(R)]∗sm=

|G|
dΓ

δΓΓ̃δrsδlm, (B.62)

where |G| is the order of G,∑
B∈AG

∆(B2)rr=∆Γ(A2)rs[N
−1
sp ]∗[Nqt]

∗ |G|
dΓ

δptδqr

=
|G|
dΓ

∆Γ(A2)rs[N
−1
st ]∗[Nrt]

∗

=
|G|
dΓ

∆Γ(A2)rs[Nrt]
∗Nts. (B.63)

Since the relation [Nrt]
∗Nts=±[∆Γ(A2)rs]

∗=±∆Γ(−A2)sr is satisfied for cases (a)(positive
sign) and (b)(negative sign), respectively,∑

B∈AG

∆(B2)rr=±|G|
dΓ

∆Γ(A2)rs∆
Γ(−A2)sr

=±|G|
dΓ

∆Γ(E)rr,

=±|G|. (B.64)

Here, E is the identical operation.
In case (c),

∑
B∈AG ∆Γ(B2)rr=0 in Eq. (B.60) because of the orthogonality between

inequivalent representations ∆Γ(A−1RA) and ∆Γ(R).
Therefore, one can examine three cases as

∑
B∈AG

χΓ(B2)=


+|G| :case (a),

−|G| :case (b),

0 :case (c).

(B.65)
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B.4 Kronecker Product of IRREP

We present the Kronecker product between IRREPs. The Kronecker product between
irreducible representations Γi and Γj in a unitary group can be decomposed as

Γi⊗Γj=
∑
k

cij,kΓk, (B.66)

where the Clebsch–Gordan coefficient cij,k is represented by the character in Γi, ψ
Γi(R)=

Tr[∆Γ(R)], as

cij,k=
1

|G|
∑
R∈G

ψΓi(R)ψΓj(R)[ψΓk(R)]∗. (B.67)

In the same manner, the Kronecker product between IRREPs DΓi and DΓj consisting of
Γi and Γj can be decomposed as

DΓi⊗DΓj=
∑
k

dij,kDΓk. (B.68)

The coefficient dij,k is given by the relation among ψΓi(R), ψΓj(R), and ψΓk(R), since
IRREPs in a nonunitary group are uniquely determined by the unitary subgroup.

As IRREPs DΓk(R) include the same (different) multiple irreducible representations
for case (b) [(c)], the character of IRREP, χΓ(R), satisfies the relation as

χΓ(R)=Tr[DΓ(R)]=


Tr[∆Γ(R)]=ψΓ(R) :case (a),

Tr[∆Γ(R)]+Tr[∆Γ(R)]=2ψΓ(R) :case (b),

Tr[∆Γ(R)]+Tr{[∆Γ(A−1RA)]∗}=ψΓ(R)+ψΓ̄(R) :case (c),

(B.69)

i.e.,

1

|G|
∑
R∈G

|χΓk(R)|2=


1 :case (a),

4 :case (b),

2 :case (c).

(B.70)

We set
[
∆Γ(A−1RA)

]∗≡∆Γ̄(R) in Eq. (B.69). By generalizing Eq. (B.67) in the consid-
eration of the relation in Eq. (B.70), the coefficient dij,k can be obtained as [129, 131]

dij,k=

1
|G|
∑

R∈G χ
Γi(R)χΓj(R)[χΓk(R)]∗

1
|G|
∑

R∈G |χΓk(R)|2
. (B.71)

Since the character of IRREP, χΓ(R), is relevant to ψΓ, dij,k also can be represented by
the Clebsch–Gordan coefficient cij,k, whose general relation is summarized in the previous
literatures, e.g., Ref. [129]. In addition, the specific decomposition of the Kronecker
product for black-and-white point groups is given in Ref. [132].
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Appendix C

Tables of Multipole Classification

The multipole classification for 32 gray point groups is summarized in Table 2.3 in Sec. 2.3
and Tables C.1–C.31 in Sec. C.1. Meanwhile, the classification of 58 black-and-white point
groups is summarized in Table 2.4 in Sec. 2.3 and Tables C.32–C.88 in Sec. C.2.

C.1 Gray Point Groups

Table C.1: Irreducible corepresentations (IRREPs) of four types of multipoles: electric
(E), electric toroidal (ET), magnetic (M), and magnetic toroidal (MT) multipoles, in the
type-(II) gray point group 4321′. The character table of the unitary subgroup 432 (O) is
also shown to represent the symmetry of each multipole. The IRREPs are obtained from
the irreducible representations of the unitary subgroup. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 6C4 3C2
4 6C ′

2 8C3 IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 A+

1 Q0, Q4 G0, G4 4321′ ⟨100⟩
A−

1 T0, T4 M0,M4 432 ⟨100⟩
A2 1 −1 1 −1 1 A+

2 Qxyz Gxyz 231′ ⟨100⟩
A−

2 Txyz Mxyz 4′32′ ⟨100⟩
E 2 0 2 0 −1 E+ Qu, Q4u Gu, G4u 4221′ [001]

Qv, Q4v Gv, G4v 2221′ [100]
E− Tu, T4u Mu,M4u 422 [001]

Tv, T4v Mv,M4v 4′22′ [001]
T1 3 1 −1 −1 0 T+

1 Qx, Q
α
x , Q

α
4x Gx, G

α
x , G

α
4x 41′ [100]

Qy, Q
α
y , Q

α
4y Gy, G

α
y , G

α
4y 41′ [010]

Qz, Q
α
z , Q

α
4z Gz, G

α
z , G

α
4z 41′ [001]

T−
1 Tx, T

α
x , T

α
4x Mx,M

α
x ,M

α
4x 42′2′ [100]

Ty, T
α
y , T

α
4y My,M

α
y ,M

α
4y 42′2′ [010]

Tz, T
α
z , T

α
4z Mz,M

α
z ,M

α
4z 42′2′ [001]

T2 3 −1 −1 1 0 T+
2 Qyz, Q

β
x, Q

β
4x Gyz, G

β
x, G

β
4x 2221′ [011]

Qzx, Q
β
y , Q

β
4y Gzx, G

β
y , G

β
4y 2221′ [101]

Qxy, Q
β
z , Q

β
4z Gxy, G

β
z , G

β
4z 2221′ [110]

T−
2 Tyz, T

β
x , T

β
4x Myz,M

β
x ,M

β
4x 4′2′2 [100]

Tzx, T
β
y , T

β
4y Mzx,M

β
y ,M

β
4y 4′2′2 [010]

Txy, T
β
z , T

β
4z Mxy,M

β
z ,M

β
4z 4′2′2 [001]
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Table C.2: IRREPs of four types of multipoles in 4̄3m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 6IC4 3C
2
4 6σd 8C3 IRREP E ET MT M MPG P. axis

A1 1 1 1 1 1 A+
1 Q0, Qxyz, Q4 4̄3m1′ ⟨100⟩

A−
1 T0, Txyz, T4 4̄3m ⟨100⟩

A2 1 −1 1 −1 1 A+
2 G0, Gxyz, G4 231′ ⟨100⟩

A−
2 M0,Mxyz,M4 4̄′3m′ ⟨100⟩

E 2 0 2 0 −1 E+ Qu, Q4u Gv, G4v 4̄2m1′ [001]
Qv, Q4v Gu, G4u 2221′ [100]

E− Tu, T4u Mv,M4v 4̄2m [001]
Tv, T4v Mu,M4u 4̄′2m′ [001]

T1 3 1 −1 −1 0 T+
1 Qβ

x, Q
α
4x Gx, Gyz, G

α
x , G

β
4x 4̄1′ [100]

Qβ
y , Q

α
4y Gy, Gzx, G

α
y , G

β
4y 4̄1′ [010]

Qβ
z , Q

α
4z Gz, Gxy, G

α
z , G

β
4z 4̄1′ [001]

T−
1 T β

x , T
α
4x Mx,Myz,M

α
x ,M

β
4x 4̄2′m′ [100]

T β
y , T

α
4y My,Mzx,M

α
y ,M

β
4y 4̄2′m′ [010]

T β
z , T

α
4z Mz,Mxy,M

α
z ,M

β
4z 4̄2′m′ [001]

T2 3 −1 −1 1 0 T+
2 Qx, Qyz, Q

α
x , Q

β
4x Gβ

x, G
α
4x mm21′ [011]

Qy, Qzx, Q
α
y , Q

β
4y Gβ

y , G
α
4y mm21′ [101]

Qz, Qxy, Q
α
z , Q

β
4z Gβ

z , G
α
4z mm21′ [110]

T−
2 Tx, Tyz, T

α
x , T

β
4x Mβ

x ,M
α
4x 4̄′2′m [100]

Ty, Tzx, T
α
y , T

β
4y Mβ

y ,M
α
4y 4̄′2′m [010]

Tz, Txy, T
α
z , T

β
4z Mβ

z ,M
α
4z 4̄′2′m [001]

118



APPENDIX C. TABLES OF MULTIPOLE CLASSIFICATION

Table C.3: IRREPs of four types of multipoles in m3̄1′. The superscript “±” of case-(a)
IRREP stands for the parity with respect to the antiunitary operation A=θ. Eg/u without
superscript is the case-(c) IRREP.

E3C24C34C
2
3 I 3σh4IC34IC

2
3 IRREP E ET MT M MPG P. axis

Ag 1 1 1 1 1 1 1 1 A+
g Q0, Q4 Gxyz m3̄1′ ⟨100⟩

A−
g T0, T4 Mxyz m3̄ ⟨100⟩

Eg 1 1 ω ω2 1 1 ω ω2 } Eg Qu, Q4u mmm1′ [100]
1 1 ω2 ω 1 1 ω2 ω Qv, Q4v mmm1′ [100]

Tu, T4u mmm [100]
Tv, T4v mmm [100]

Tg 3 −1 0 0 3 −1 0 0 T+
g Qyz, Q

α
4x, Q

β
4x Gx, G

α
x , G

β
x 2/m1′ [100]

Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y 2/m1′ [010]

Qxy, Q
α
4z, Q

β
4z Gz, G

α
z , G

β
z 2/m1′ [001]

T−
g Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x mm′m′ [100]

Tzx, T
α
4y, T

β
4y My,M

α
y ,M

β
y m′mm′ [100]

Txy, T
α
4z, T

β
4z Mz,M

α
z ,M

β
z m′m′m [100]

Au 1 1 1 1 −1−1 −1 −1 A+
u Qxyz G0, G4 231′ ⟨100⟩

A−
u Txyz M0,M4 m′3̄′ ⟨100⟩

Eu 1 1 ω ω2 −1−1 −ω −ω2 } Eu Gu, G4u 2221′ [100]
1 1 ω2 ω −1−1 −ω2 −ω Gv, G4v 2221′ [100]

Mu,M4u m′m′m′ [100]
Mv,M4v m′m′m′ [100]

Tu 3 −1 0 0 −3 1 0 0 T+
u Qx, Q

α
x , Q

β
x Gyz, G

α
4x, G

β
4x 2mm1′ [100]

Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y m2m1′ [100]

Qz, Q
α
z , Q

β
z Gxy, G

α
4z, G

β
4z mm21′ [100]

T−
u Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x m

′mm [100]

Ty, T
α
y , T

β
y Mzx,M

α
4y,M

β
4y mm

′m [100]

Tz, T
α
z , T

β
z Mxy,M

α
4z,M

β
4z mmm

′ [100]

ω=exp(−2πi/3)
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Table C.4: IRREPs of four types of multipoles 231′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 3C2 4C3 4C2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 1 A+ Q0, Qxyz, Q4 G0, Gxyz, G4 231′ ⟨100⟩
A− T0, Txyz, T4 M0,Mxyz,M4 23 ⟨100⟩

E 1 1 ω ω2 } E Qu, Q4u Gu, G4u 2221′ [100]
1 1 ω2 ω Qv, Q4v Gv, G4v 2221′ [100]

Tu, T4u Mu,M4u 222 [100]
Tv, T4v Mv,M4v 222 [100]

T 3 −1 0 0 T+ Qx, Qyz, Gx, Gyz, 21′ [100]

Qα
x , Q

β
x, Q

α
4x, Q

β
4x G

α
x , G

β
x, G

α
4x, G

β
4x

Qy, Qzx, Gy, Gzx, 21′ [010]

Qα
y , Q

β
y , Q

α
4y, Q

β
4y G

α
y , G

β
y , G

α
4y, G

β
4y

Qz, Qxy, Gz, Gxy, 21′ [001]

Qα
z , Q

β
z , Q

α
4z, Q

β
4z G

α
z , G

β
z , G

α
4z, G

β
4z

T− Tx, Tyz, Mx,Myz, 22′2′ [100]

T α
x , T

β
x , T

α
4x, T

β
4x M

α
x ,M

β
x ,M

α
4x,M

β
4x

Ty, Tzx, My,Mzx, 2′22′ [100]

T α
y , T

β
y , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4y,M

β
4y

Tz, Txy, Mz,Mxy, 2′2′2 [100]

T α
z , T

β
z , T

α
4z, T

β
4z M

α
z ,M

β
z ,M

α
4z,M

β
4z

ω=exp(−2πi/3)

120



APPENDIX C. TABLES OF MULTIPOLE CLASSIFICATION

Table C.5: IRREPs of four types of multipoles in 6/mmm1′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θ.

E2C62C3 C2 3C2x3C2y I 2IC62IC3 σh 3σx3σy IRREP E ET MT M MPG P. axis
A1g 1 1 1 1 1 1 1 1 1 1 1 1 A+

1g Q0, Qu, 6/mmm1′ [001]
Q40

A−
1g T0, Tu, 6/mmm [001]

T40
A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 A+

2g Gz, G
α
z 6/m1′ [001]

A−
2g Mz,M

α
z 6/mm′m′ [001]

B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 B+
1g Q4a G3a 3̄m1′ [001]

B−
1g T4a M3a 6′/m′mm′ [001]

B2g 1 −1 1 −1 −1 1 1 −1 1 −1−1 1 B+
2g Q4b G3b 3̄m1′ [001]

B−
2g T4b M3b 6′/m′m′m [001]

E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 E+
1g Qyz, Q

α
4v Gx, G3u 2/m1′ [100]

Qzx, Q
α
4u Gy, G3v 2/m1′ [010]

E−
1g Tyz, T

α
4v Mx,M3u mm′m′ [100]

Tzx, T
α
4u My,M3v m′mm′ [100]

E2g 2 −1 −1 2 0 0 2 −1 −1 2 0 0 E+
2g Qv, Gxyz mmm1′ [100]

Qβ1
4u, Q

β2
4u

Qxy, Gβ
z 2/m1′ [001]

Qβ1
4v , Q

β2
4v

E−
2g Tv, Mxyz mmm [100]

T β1
4u , T

β2
4u

Txy, Mβ
z m′m′m [100]

T β1
4v , T

β2
4v

A1u 1 1 1 1 1 1 −1 −1 −1 −1−1 −1 A+
1u G0, Gu, 6221′ [001]

G40

A−
1u M0, 6/m′m′m′ [001]

Mu,M40

A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 A+
2u Qz, Q

α
z 6mm1′ [001]

A−
2u Tz, T

α
z 6/m′mm [001]

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 B+
1u Q3a G4a 6̄2m1′ [001]

B−
1u T3a M4a 6′/mm′m [001]

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 B+
2u Q3b G4b 6̄m21′ [001]

B−
2u T3b M4b 6′/mmm′ [001]

E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 E+
1u Qx, Q3u Gyz, G

α
4v 2mm1′ [100]

Qy, Q3v Gzx, G
α
4u m2m1′ [100]

E−
1u Tx, T3u Myz,M

α
4v m′mm [100]

Ty, T3v Mzx,M
α
4u mm′m [100]

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0 E+
2u Qxyz Gv, 2221′ [100]

Gβ1
4u, G

β2
4u

Qβ
z Gxy, mm21′ [100]

Gβ1
4v , G

β2
4v

E−
2u Txyz Mv, m′m′m′ [100]

Mβ1
4u ,M

β2
4u

T β
z Mxy, mmm′ [100]

Mβ1
4v ,M

β2
4v

1We partially revised the classification from Ref. [104] to follow the standard character table of D3h.
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Table C.6: IRREPs of four types of multipoles in 6221′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 2C6 2C3 C2 3C2x 3C2y IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 1 A+

1 Q0, Qu, Q40 G0, Gu, G40 6221′ [001]
A−

1 T0, Tu, T40 M0,Mu,M40 622 [001]
A2 1 1 1 1 −1 −1 A+

2 Qz, Q
α
z Gz, G

α
z 61′ [001]

A−
2 Tz, T

α
z Mz,M

α
z 62′2′ [001]

B1 1 −1 1 −1 1 −1 B+
1 Q3a, Q4a G3a, G4a 321′ [001]

B−
1 T3a, T4a M3a,M4a 6′22′ [001]

B2 1 −1 1 −1 −1 1 B+
2 Q3b, Q4b G3b, G4b 321′ [001]

B−
2 T3b, T4b M3b,M4b 6′2′2 [001]

E1 2 1 −1 −2 0 0 E+
1 Qx, Qyz, Gx, Gyz, 21′ [100]

Q3u, Q
α
4v G3u, G

α
4v

Qy, Qzx, Gy, Gzx, 21′ [010]
Q3v, Q

α
4u G3v, G

α
4u

E−
1 Tx, Tyz, Mx,Myz, 22′2′ [100]

T3u, T
α
4v M3u,M

α
4v

Ty, Tzx, My,Mzx, 2′22′ [100]
T3v, T

α
4u M3v,M

α
4u

E2 2 −1 −1 2 0 0 E+
2 Qv, Qxyz, Gv, Gxyz, 2221′ [100]

Qβ1
4u, Q

β2
4u Gβ1

4u, G
β2
4u

Qxy, Q
β
z , Gxy, G

β
z , 21′ [001]

Qβ1
4v , Q

β2
4v Gβ1

4v , G
β2
4v

E−
2 Tv, Txyz, Mv,Mxyz, 222 [100]

T β1
4u , T

β2
4u Mβ1

4u ,M
β2
4u

Txy, T
β
z , Mxy,M

β
z , 2′2′2 [100]

T β1
4v , T

β2
4v Mβ1

4v ,M
β2
4v
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Table C.7: IRREPs of four types of multipoles in 6mm1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 2C6 2C3 C2 3σy 3σx IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 1 A+

1 Q0, Qz, Qu, 6mm1′ [001]
Qα

z , Q40

A−
1 T0, Tz, Tu, 6mm [001]

T α
z , T40

A2 1 1 1 1 −1 −1 A+
2 G0, Gz, Gu, 61′ [001]

Gα
z , G40

A−
2 M0,Mz,Mu, 6m′m′ [001]

Mα
z ,M40

B1 1 −1 1 −1 1 −1 B+
1 Q3b, Q4a G3a, G4b 3m1′ [001]

B−
1 T3b, T4a M3a,M4b 6′m′m [001]

B2 1 −1 1 −1 −1 1 B+
2 Q3a, Q4b G3b, G4a 3m1′ [001]

B−
2 T3a, T4b M3b,M4a 6′mm′ [001]

E1 2 1 −1 −2 0 0 E+
1 Qy, Qyz, Gx, Gzx, m1′ [100]

Q3v, Q
α
4v G3u, G

α
4u

Qx, Qzx, Gy, Gyz, m1′ [010]
Q3u, Q

α
4u G3v, G

α
4v

E−
1 Ty, Tyz, Mx,Mzx, mm′2′ [100]

T3v, T
α
4v M3u,M

α
4u

Tx, Tzx, My,Myz, m′m2′ [100]
T3u, T

α
4u M3v,M

α
4v

E2 2 −1 −1 2 0 0 E+
2 Qv, Q

β
z , Gxy, Gxyz, mm21′ [100]

Qβ1
4u, Q

β2
4u Gβ1

4v , G
β2
4v

Qxy, Qxyz, Gv, G
β
z , 21′ [001]

Qβ1
4v , Q

β2
4v Gβ1

4u, G
β2
4u

E−
2 Tv, T

β
z , Mxy,Mxyz, mm2 [100]

T β1
4u , T

β2
4u Mβ1

4v ,M
β2
4v

Txy, Txyz, Mv,M
β
z , m′m′2 [100]

T β1
4v , T

β2
4v Mβ1

4u ,M
β2
4u
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Table C.8: IRREPs of four types of multipoles in 6̄m21′1. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 2IC6 2C3 σh 3C2y 3σx IRREP E ET MT M MPG P. axis
A′

1 1 1 1 1 1 1 A′+
1 Q0, Qu, G4b 6̄m21′ [001]

Q3b, Q40

A′−
1 T0, Tu, M4b 6̄m2 [001]

T3b, T40
A′

2 1 1 1 1 −1 −1 A′+
2 Q3a Gz, G

α
z , G4a 6̄1′ [001]

A′−
2 T3a Mz,M

α
z ,M4a 6̄m′2′ [001]

A′′
1 1 −1 1 −1 1 −1 A′′+

1 Q4b G0, Gu, 321′ [001]
G3b, G40

A′′−
1 T4b M0,Mu, 6̄′m′2 [001]

M3b,M40

A′′
2 1 −1 1 −1 −1 1 A′′+

2 Qz, Q
α
z , Q4a G3a 3m1′ [001]

A′′−
2 Tz, T

α
z , T4a M3a 6̄′m2′ [001]

E′′ 2 1 −1 −2 0 0 E′′+ Qyz, Q
β
z , Q

α
4v Gx, Gxy, G3u, m1′ [100]

Gβ1
4v , G

β2
4v

Qzx, Qxyz, Q
α
4u Gy, Gv, G3v, 21′ [010]

Gβ1
4u, G

β2
4u

E′′− Tyz, T
β
z , T

α
4v Mx,Mxy,M3u, m2′m′ [100]

Mβ1
4v ,M

β2
4v

Tzx, Txyz, T
α
4u My,Mv,M3v, m′2m′ [100]

Mβ1
4u ,M

β2
4u

E′ 2 −1 −1 2 0 0 E′+ Qy, Qv, Q3v Gzx, Gxyz, G
α
4u m2m1′ [100]

Qβ1
4u, Q

β2
4u

Qx, Qxy, Q3u Gyz, G
β
z , G

α
4v m1′ [001]

Qβ1
4v , Q

β2
4v

E′− Ty, Tv, T3v Mzx,Mxyz,M
α
4u m2m [100]

T β1
4u , T

β2
4u

Tx, Txy, T3u Myz,M
β
z ,M

α
4v m′2′m [100]

T β1
4v , T

β2
4v
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Table C.9: IRREPs of four types of multipoles in 6/m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C6 C3 C2 C
2
3 C5

6 I IC6 IC3 σh IC
2
3 IC

5
6 IRREP E ET MT M MPG P. axis

Ag 1 1 1 1 1 1 1 1 1 1 1 1 A+
g Q0, Qu, Gz, G

α
z 6/m1′ [001]

Q40

A−
g T0, Tu, Mz,M

α
z 6/m [001]

T40
Bg 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 B+

g Q4a, Q4b G3a, G3b 3̄1′ [001]
B−

g T4a, T4b M3a,M3b 6′/m′ [001]
E1g 1 −ω ω2 −1 ω −ω2 1 −ω ω2 −1 ω −ω2 } E1g Qyz, Q

α
4v Gx, G3u 1̄1′ —

1 −ω2 ω −1 ω2 −ω 1 −ω2 ω −1 ω2 −ω Qzx, Q
α
4u Gy, G3v 1̄1′ —

Tyz, T
α
4v Mx,M3u 2′/m′ [001]

Tzx, T
α
4u My,M3v 2′/m′ [001]

E2g 1 ω ω2 1 ω ω2 1 ω ω2 1 ω ω2 } E2g Qv, Gxyz 2/m1′ [001]

1 ω2 ω 1 ω2 ω 1 ω2 ω 1 ω2 ω Qβ1
4u, Q

β2
4u

Qxy, Gβ
z 2/m1′ [001]

Qβ1
4v , Q

β2
4v

Tv, Mxyz 2/m [001]

T β1
4u , T

β2
4u

Txy, Mβ
z 2/m [001]

T β1
4v , T

β2
4v

Au 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 A+
u Qz, Q

α
z G0, Gu, 61′ [001]

G40

A−
u Tz, T

α
z M0,Mu, 6/m′ [001]

M40

Bu 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 B+
u Q3a, Q3b G4a, G4b 6̄1′ [001]

B−
u T3a, T3b M4a,M4b 6′/m [001]

E1u 1 −ω ω2 −1 ω −ω2 −1 ω −ω2 1 −ω ω2 } E1u Qx, Q3u Gyz, G
α
4v m1′ [001]

1 −ω2 ω −1 ω2 −ω −1 ω2 −ω 1 −ω2 ω Qy, Q3v Gzx, G
α
4u m1′ [001]

Tx, T3u Myz,M
α
4v 2′/m [001]

Ty, T3v Mzx,M
α
4u 2′/m [001]

E2u 1 ω ω2 1 ω ω2 −1 −ω −ω2 −1 −ω −ω2 } E2u Qxyz Gv, 21′ [001]

1 ω2 ω 1 ω2 ω −1−ω2 −ω −1−ω2 −ω Gβ1
4u, G

β2
4u

Qβ
z Gxy, 21′ [001]

Gβ1
4v , G

β2
4v

Txyz Mv, 2/m′ [001]

Mβ1
4u ,M

β2
4u

T β
z Mxy, 2/m′ [001]

Mβ1
4v ,M

β2
4v

ω=exp(−2πi/3)
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Table C.10: IRREPs of four types of multipoles in 61′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C6 C3 C2 C2
3 C5

6 IRREP E ET MT M MPG P. axis
A 1 1 1 1 1 1 A+ Q0, Qz, Qu, G0, Gz, Gu, 61′ [001]

Qα
z , Q40 Gα

z , G40

A− T0, Tz, Tu, M0,Mz,Mu, 6 [001]
T α
z , T40 Mα

z ,M40

B 1 −1 1 −1 1 −1 B+ Q3a, Q3b, G3a, G3b, 31′ [001]
Q4a, Q4b G4a, G4b

B− T3a, T3b, M3a,M3b, 6′ [001]
T4a, T4b M4a,M4b

E1 1 −ω ω2 −1 ω −ω2 } E1 Qx, Qyz, Gx, Gyz, 11′ —
1 −ω2 ω −1 ω2 −ω Q3u, Q

α
4v G3u, G

α
4v

Qy, Qzx, Gy, Gzx, 11′ —
Q3v, Q

α
4u G3v, G

α
4u

Tx, Tyz, Mx,Myz, 2′ [001]
T3u, T

α
4v M3u,M

α
4v

Ty, Tzx, My,Mzx, 2′ [001]
T3v, T

α
4u M3v,M

α
4u

E2 1 ω ω2 1 ω ω2 } E2 Qv, Qxyz, Gv, Gxyz, 21′ [001]

1 ω2 ω 1 ω2 ω Qβ1
4u, Q

β2
4u Gβ1

4u, G
β2
4u

Qxy, Q
β
z , Gxy, G

β
z , 21′ [001]

Qβ1
4v , Q

β2
4v Gβ1

4v , G
β2
4v

Tv, Txyz, Mv,Mxyz, 2 [001]

T β1
4u , T

β2
4u Mβ1

4u ,M
β2
4u

Txy, T
β
z , Mxy,M

β
z , 2 [001]

T β1
4v , T

β2
4v Mβ1

4v ,M
β2
4v

ω=exp(−2πi/3)
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Table C.11: IRREPs of four types of multipoles in 6̄1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E IC6 C3 σh C
2
3 IC

5
6 IRREP E ET MT M MPG P. axis

A′ 1 1 1 1 1 1 A′+ Q0, Qu, Gz, G
α
z , 6̄1′ [001]

Q3a, Q3b, Q40 G4a, G4b

A′− T0, Tu, Mz,M
α
z , 6̄ [001]

T3a, T3b, T40 M4a,M4b

A′′ 1 −1 1 −1 1 −1 A′′+ Qz, Q
α
z , G0, Gu, 31′ [001]

Q4a, Q4b G3a, G3b, G40

A′′− Tz, T
α
z , M0,Mu, 6̄′ [001]

T4a, T4b M3a,M3b,M40

E′ 1 ω ω2 1 ω ω2 } E′ Qx, Qv, Q3u, Gyz, Gxyz, G
α
4v m1′ [001]

1 ω2 ω 1 ω2 ω Qβ1
4u, Q

β2
4u

Qy, Qxy, Q3v, Gzx, G
β
z , G

α
4u m1′ [001]

Qβ1
4v , Q

β2
4v

Tx, Tv, T3u, Myz,Mxyz,M
α
4v m [001]

T β1
4u , T

β2
4u

Ty, Txy, T3v, Mzx,M
β
z ,M

α
4u m [001]

T β1
4v , T

β2
4v

E′′ 1 −ω ω2 −1 ω −ω2 } E′′ Qyz, Qxyz, Q
α
4v Gx, Gv, G3u, 11′ —

1 −ω2 ω −1 ω2 −ω Gβ1
4u, G

β2
4u

Qzx, Q
β
z , Q

α
4u Gy, Gxy, G3v, 11′ —

Gβ1
4v , G

β2
4v

Tyz, Txyz, T
α
4v Mx,Mv,M3u, m′ [001]

Mβ1
4u ,M

β2
4u

Tzx, T
β
z , T

α
4u My,Mxy,M3v, m′ [001]

Mβ1
4v ,M

β2
4v

ω=exp(−2πi/3)
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Table C.12: IRREPs of four types of multipoles in 3̄m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 2C3 3C2y I 2IC3 3σy IRREP E ET MT M MPG P. axis
A1g 1 1 1 1 1 1 A+

1g Q0, Qu, G3b 3̄m1′ [001]
Q40, Q4b

A−
1g T0, Tu, M3b 3̄m [001]

T40, T4b
A2g 1 1 −1 1 1 −1 A+

2g Q4a Gz, G
α
z , G3a 3̄1′ [001]

A−
2g T4a Mz,M

α
z ,M3a 3̄m′ [001]

Eg 2 −1 0 2 −1 0 E+
g Qyz, Qxy, Gx, G3u, G

β
z 1̄1′ —

Qα
4v, Q

β1
4v , Q

β2
4v

Qzx, Qv, Gy, G3v, Gxyz 2/m1′ [010]

Qα
4u, Q

β1
4u, Q

β2
4u

E−
g Tyz, Txy, Mx,M3u,M

β
z 2′/m′ [010]

T α
4v, T

β1
4v , T

β2
4v

Tzx, Tv, My,M3v,Mxyz 2/m [010]

T α
4u, T

β1
4u , T

β2
4u

A1u 1 1 1 −1 −1 −1 A+
1u Q3b G0, Gu, 321′ [001]

G40, G4b

A−
1u T3b M0,Mu, 3̄′m′ [001]

M40,M4b

A2u 1 1 −1 −1 −1 1 A+
2u Qz, Q

α
z , Q3a G4a 3m1′ [001]

A−
2u Tz, T

α
z , T3a M4a 3̄′m [001]

Eu 2 −1 0 −2 1 0 E+
u Qx, Q3u, Q

β
z Gyz, Gxy, m1′ [010]

Gα
4v, G

β1
4v , G

β2
4v

Qy, Q3v, Qxyz Gzx, Gv, 21′ [010]

Gα
4u, G

β1
4u, G

β2
4u

E−
u Tx, T3u, T

β
z Myz,Mxy, 2′/m [010]

Mα
4v,M

β1
4v ,M

β2
4v

Ty, T3v, Txyz Mzx,Mv, 2/m′ [010]

Mα
4u,M

β1
4u ,M

β2
4u

Table C.13: IRREPs of four types of multipoles in 321′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E2C33C2y IRREP E ET MT M MPGP. axis
A1 1 1 1 A+

1 Q0, Qu, Q3b, G0, Gu, G3b, 321′ [001]
Q40, Q4b G40, G4b

A−
1 T0, Tu, T3b, M0,Mu,M3b, 32 [001]

T40, T4b M40,M4b

A2 1 1 −1 A+
2 Qz, Q

α
z , Q3a, Q4a Gz, G

α
z , G3a, G4a 31′ [001]

A−
2 Tz, T

α
z , T3a, T4a Mz,M

α
z ,M3a,M4a 32′ [001]

E 2 −1 0 E+ Qx, Qyz, Qxy, Q3u, Gx, Gyz, Gxy, G3u, 11′ —

Qβ
z , Q

α
4v, Q

β1
4v , Q

β2
4v Gβ

z , G
α
4v, G

β1
4v , G

β2
4v

Qy, Qzx, Qv, Q3v, Gy, Gzx, Gv, G3v, 21′ [010]

Qxyz, Q
α
4u, Q

β1
4u, Q

β2
4uGxyz, G

α
4u, G

β1
4u, G

β2
4u

E− Tx, Tyz, Txy, T3u, Mx,Myz,Mxy,M3u, 2′ [010]

T β
z , T

α
4v, T

β1
4v , T

β2
4v Mβ

z ,M
α
4v,M

β1
4v ,M

β2
4v

Ty, Tzx, Tv, T3v, My,Mzx,Mv,M3v, 2 [010]

Txyz, T
α
4u, T

β1
4u , T

β2
4u Mxyz,M

α
4u,M

β1
4u ,M

β2
4u
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Table C.14: IRREPs of four types of multipoles in 3m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E2C33σy IRREP E ET MT M MPGP. axis
A1 1 1 1 A+

1 Q0, Qz, Qu, G3b, G4a 3m1′ [001]
Qα

z , Q3a, Q40, Q4b

A−
1 T0, Tz, Tu, M3b,M4a 3m [001]

T α
z , T3a, T40, T4b

A2 1 1 −1 A+
2 Q3b, Q4a G0, Gz, Gu, 31′ [001]

Gα
z , G3a, G40, G4b

A−
2 T3b, T4a M0,Mz,Mu, 3m′ [001]

Mα
z ,M3a,M40,M4b

E 2 −1 0 E+ Qy, Qyz, Qxy, Q3v, Gx, Gzx, Gv, G3u, 11′ —

Qxyz, Q
α
4v, Q

β1
4v , Q

β2
4v Gβ

z , G
α
4u, G

β1
4u, G

β2
4u

Qx, Qzx, Qv, Q3u, Gy, Gyz, Gxy, G3v, m1′ [010]

Qβ
z , Q

α
4u, Q

β1
4u, Q

β2
4u Gxyz, G

α
4v, G

β1
4v , G

β2
4v

E− Ty, Tyz, Txy, T3v, Mx,Mzx,Mv,M3u, m′ [010]

Txyz, T
α
4v, T

β1
4v , T

β2
4v Mβ

z ,M
α
4u,M

β1
4u ,M

β2
4u

Tx, Tzx, Tv, T3u, My,Myz,Mxy,M3v, m [010]

T β
z , T

α
4u, T

β1
4u , T

β2
4u Mxyz,M

α
4v,M

β1
4v ,M

β2
4v

Table C.15: IRREPs of four types of multipoles in 3̄1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

EC3C
2
3 I IC3 IC

2
3 IRREP E ET MT M MPGP. axis

Ag 1 1 1 1 1 1 A+
g Q0, Qu, Gz, G

α
z , G3a, G3b 3̄1′ [001]

Q40, Q4a, Q4b

A−
g T0, Tu, Mz,M

α
z ,M3a,M3b 3̄ [001]

T40, T4a, T4b
Eg 1 ω ω2 1 ω ω2 } Eg Qyz, Qxy, Gx, G3u, G

β
z 1̄1′ —

1 ω2 ω 1 ω2 ω Qα
4v, Q

β1
4v , Q

β2
4v

Qzx, Qv, Gy, G3v, Gxyz 1̄1′ —

Qα
4u, Q

β1
4u, Q

β2
4u

Tyz, Txy, Mx,M3u,M
β
z 1̄ —

T α
4v, T

β1
4v , T

β2
4v

Tzx, Tv, My,M3v,Mxyz 1̄ —

T α
4u, T

β1
4u , T

β2
4u

Au 1 1 1 −1 −1 −1 A+
u Qz, Q

α
z , Q3a, Q3b G0, Gu, 31′ [001]

G40, G4a, G4b

A−
u Tz, T

α
z , T3a, T3b M0,Mu, 3̄′ [001]

M40,M4a,M4b

Eu 1 ω ω2−1 −ω −ω2} Eu Qx, Q3u, Q
β
z Gyz, Gxy, 11′ —

1 ω2 ω −1−ω2 −ω Gα
4v, G

β1
4v , G

β2
4v

Qy, Q3v, Qxyz Gzx, Gv, 11′ —

Gα
4u, G

β1
4u, G

β2
4u

Tx, T3u, T
β
z Myz,Mxy, 1̄′ —

Mα
4v,M

β1
4v ,M

β2
4v

Ty, T3v, Txyz Mzx,Mv, 1̄′ —

Mα
4u,M

β1
4u ,M

β2
4u

ω=exp(−2πi/3)
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Table C.16: IRREPs of four types of multipoles in 31′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C3C
2
3 IRREP E ET MT M MPGP. axis

A 1 1 1 A+ Q0, Qz, Qu, G0, Gz, Gu, 31′ [001]
Qα

z , Q3a, Q3b, Gα
z , G3a, G3b,

Q40, Q4a, Q4b G40, G4a, G4b

A− T0, Tz, Tu, M0,Mz,Mu, 3 [001]
T α
z , T3a, T3b, Mα

z ,M3a,M3b,
T40, T4a, T4b M40,M4a,M4b

E 1 ω ω2 } E Qx, Qyz, Qxy, Q3u, Gx, Gyz, Gxy, G3u, 11′ —

1 ω2 ω Qβ
z , Q

α
4v, Q

β1
4v , Q

β2
4v Gβ

z , G
α
4v, G

β1
4v , G

β2
4v

Qy, Qzx, Qv, Q3v, Gy, Gzx, Gv, G3v, 11′ —

Qxyz, Q
α
4u, Q

β1
4u, Q

β2
4uGxyz, G

α
4u, G

β1
4u, G

β2
4u

Tx, Tyz, Txy, T3u, Mx,Myz,Mxy,M3u, 1 —

T β
z , T

α
4v, T

β1
4v , T

β2
4v Mβ

z ,M
α
4v,M

β1
4v ,M

β2
4v

Ty, Tzx, Tv, T3v, My,Mzx,Mv,M3v, 1 —

Txyz, T
α
4u, T

β1
4u , T

β2
4u Mxyz,M

α
4u,M

β1
4u ,M

β2
4u

ω=exp(−2πi/3)
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Table C.17: IRREPs of four types of multipoles in 4/mmm1′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θ.

E 2C4 C
2
4 2C ′

2 2C ′′
2 I 2IC4 σh 2σv 2σd IRREP E ET MT M MPG P. axis

A1g 1 1 1 1 1 1 1 1 1 1 A+
1g Q0, Qu, 4/mmm1′ [001]

Q4, Q4u

A−
1g T0, Tu, 4/mmm [001]

T4, T4u
A2g 1 1 1 −1 −1 1 1 1 −1 −1 A+

2g Qα
4z Gz, G

α
z 4/m1′ [001]

A−
2g T α

4z Mz,M
α
z 4/mm′m′ [001]

B1g 1 −1 1 1 −1 1 −1 1 1 −1 B+
1g Qv, Q4v Gxyz mmm1′ [100]

B−
1g Tv, T4v Mxyz 4′/mmm′ [001]

B2g 1 −1 1 −1 1 1 −1 1 −1 1 B+
2g Qxy, Q

β
4z Gβ

z mmm1′ [110]

B−
2g Txy, T

β
4z Mβ

z 4′/mm′m [001]
Eg 2 0 −2 0 0 2 0 −2 0 0 E+

g Qyz, Gx, 2/m1′ [100]

Qα
4x, Q

β
4x Gα

x , G
β
x

Qzx, Gy, 2/m1′ [010]

Qα
4y, Q

β
4y Gα

y , G
β
y

E−
g Tyz, Mx, mm′m′ [100]

T α
4x, T

β
4x Mα

x ,M
β
x

Tzx, My, m′mm′ [100]

T α
4y, T

β
4y Mα

y ,M
β
y

A1u 1 1 1 1 1 −1 −1 −1 −1 −1 A+
1u G0, Gu, 4221′ [001]

G4, G4u

A−
1u M0,Mu, 4/m′m′m′ [001]

M4,M4u

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 A+
2u Qz, Q

α
z Gα

4z 4mm1′ [001]
A−

2u Tz, T
α
z Mα

4z 4/m′mm [001]
B1u 1 −1 1 1 −1 −1 1 −1 −1 1 B+

1u Qxyz Gv, G4v 4̄2m1′ [001]
B−

1u Txyz Mv,M4v 4′/m′m′m [001]

B2u 1 −1 1 −1 1 −1 1 −1 1 −1 B+
2u Qβ

z Gxy, G
β
4z 4̄m21′ [001]

B−
2u T β

z Mxy,M
β
4z 4′/m′mm′ [001]

Eu 2 0 −2 0 0 −2 0 2 0 0 E+
u Qx, Gyz, 2mm1′ [100]

Qα
x , Q

β
x Gα

4x, G
β
4x

Qy, Gzx, m2m1′ [100]

Qα
y , Q

β
y Gα

4y, G
β
4y

E−
u Tx, Myz, m′mm [100]

T α
x , T

β
x Mα

4x,M
β
4x

Ty, Mzx, mm′m [100]

T α
y , T

β
y Mα

4y,M
β
4y
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Table C.18: IRREPs of four types of multipoles in 4221′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 2C4 C
2
4 2C ′

2 2C
′′
2 IRREP E ET MT M MPG P. axis

A1 1 1 1 1 1 A+
1 Q0, Qu, Q4, Q4u G0, Gu, G4, G4u 4221′ [001]

A−
1 T0, Tu, T4, T4u M0,Mu,M4,M4u 422 [001]

A2 1 1 1 −1 −1 A+
2 Qz, Q

α
z , Q

α
4z Gz, G

α
z , G

α
4z 41′ [001]

A−
2 Tz, T

α
z , T

α
4z Mz,M

α
z ,M

α
4z 42′2′ [001]

B1 1 −1 1 1 −1 B+
1 Qv, Qxyz, Q4v Gv, Gxyz, G4v 2221′ [100]

B−
1 Tv, Txyz, T4v Mv,Mxyz,M4v 4′22′ [001]

B2 1 −1 1 −1 1 B+
2 Qxy, Q

β
z , Q

β
4z Gxy, G

β
z , G

β
4z 2221′ [110]

B−
2 Txy, T

β
z , T

β
4z Mxy,M

β
z ,M

β
4z 4′2′2 [001]

E 2 0 −2 0 0 E+ Qx, Qyz, Gx, Gyz, 21′ [100]

Qα
x , Q

β
x, Q

α
4x, Q

β
4x G

α
x , G

β
x, G

α
4x, G

β
4x

Qy, Qzx, Gy, Gzx, 21′ [010]

Qα
y , Q

β
y , Q

α
4y, Q

β
4y G

α
y , G

β
y , G

α
4y, G

β
4y

E− Tx, Tyz, Mx,Myz, 22′2′ [100]

T α
x , T

β
x , T

α
4x, T

β
4x M

α
x ,M

β
x ,M

α
4x,M

β
4x

Ty, Tzx, My,Mzx, 2′22′ [100]

T α
y , T

β
y , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4y,M

β
4y

Table C.19: IRREPs of four types of multipoles in 4mm1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 2C4 C
2
4 2σv 2σd IRREP E ET MT M MPG P. axis

A1 1 1 1 1 1 A+
1 Q0, Qz, Qu, Gα

4z 4mm1′ [001]
Qα

z , Q4, Q4u

A−
1 T0, Tz, Tu, Mα

4z 4mm [001]
T α
z , T4, T4u

A2 1 1 1 −1 −1 A+
2 Qα

4z G0, Gz, Gu, 41′ [001]
Gα

z , G4, G4u

A−
2 T α

4z M0,Mz,Mu, 4m′m′ [001]
Mα

z ,M4,M4u

B1 1 −1 1 1 −1 B+
1 Qv, Q

β
z , Q4v Gxy, Gxyz, G

β
4z mm21′ [100]

B−
1 Tv, T

β
z , T4v Mxy,Mxyz,M

β
4z 4′mm′ [001]

B2 1 −1 1 −1 1 B+
2 Qxy, Qxyz, Q

β
4z Gv, G

β
z , G4v mm21′ [110]

B−
2 Txy, Txyz, T

β
4z Mv,M

β
z ,M4v 4′m′m [001]

E 2 0 −2 0 0 E+ Qy, Qyz, Gx, Gzx, m1′ [100]

Qα
y , Q

β
y , Q

α
4x, Q

β
4x G

α
x , G

β
x, G

α
4y, G

β
4y

Qx, Qzx, Gy, Gyz, m1′ [010]

Qα
x , Q

β
x, Q

α
4y, Q

β
4y G

α
y , G

β
y , G

α
4x, G

β
4x

E− Ty, Tyz, Mx,Mzx, mm′2′ [100]

T α
y , T

β
y , T

α
4x, T

β
4x M

α
x ,M

β
x ,M

α
4y,M

β
4y

Tx, Tzx, My,Myz, m′m2′ [100]

T α
x , T

β
x , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4x,M

β
4x
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Table C.20: IRREPs of four types of multipoles in 4̄2m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E 2IC4 C
2
4 2C

′
2 2σd IRREP E ET MT M MPG P. axis

A1 1 1 1 1 1 A+
1 Q0, Qu, Gv, G4v 4̄2m1′ [001]

Qxyz, Q4, Q4u

A−
1 T0, Tu, Mv,M4v 4̄2m [001]

Txyz, T4, T4u
A2 1 1 1 −1 −1 A+

2 Qβ
z , Q

α
4z Gz, Gxy, G

α
z , G

β
4z 4̄1′ [001]

A−
2 T β

z , T
α
4z Mz,Mxy,M

α
z ,M

β
4z 4̄2′m′ [001]

B1 1 −1 1 1 −1 B+
1 Qv, Q4v G0, Gu, 2221′ [100]

Gxyz, G4, G4u

B−
1 Tv, T4v M0,Mu, 4̄′2m′ [001]

Mxyz,M4,M4u

B2 1 −1 1 −1 1 B+
2 Qz, Qxy, Q

α
z , Q

β
4z Gβ

z , G
α
4z mm21′ [110]

B−
2 Tz, Txy, T

α
z , T

β
4z Mβ

z ,M
α
4z 4̄′2′m [001]

E 2 0 −2 0 0 E+ Qx, Qyz, Gx, Gyz, 21′ [100]

Qα
x , Q

β
x, Q

α
4x, Q

β
4xG

α
x , G

β
x, G

α
4x, G

β
4x

Qy, Qzx, Gy, Gzx, 21′ [010]

Qα
y , Q

β
y , Q

α
4y, Q

β
4y G

α
y , G

β
y , G

α
4y, G

β
4y

E− Tx, Tyz, Mx,Myz, 22′2′ [100]

T α
x , T

β
x , T

α
4x, T

β
4xM

α
x ,M

β
x ,M

α
4x,M

β
4x

Ty, Tzx, My,Mzx, 2′22′ [100]

T α
y , T

β
y , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4y,M

β
4y

Table C.21: IRREPs of four types of multipoles in 4/m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C4 C
2
4 C

3
4 I 2IC4 σh IC

3
4 IRREP E ET MT M MPG P. axis

Ag 1 1 1 1 1 1 1 1 A+
g Q0, Qu, Gz, G

α
z 4/m1′ [001]

Q4, Q4u, Q
α
4z

A−
g T0, Tu, Mz,M

α
z 4/m [001]

T4, T4u, T
α
4z

Bg 1 −1 1 −1 1 −1 1 −1 B+
g Qv, Qxy, Gxyz, G

β
z 2/m1′ [001]

Q4v, Q
β
4z

B−
g Tv, Txy, Mxyz,M

β
z 4′/m [001]

T4v, T
β
4z

Eg 1 −i −1 i 1 −i −1 i } Eg Qyz, Q
α
4x, Q

β
4x Gx, G

α
x , G

β
x 1̄1′ —

1 i −1 −i 1 i −1 −i Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y 1̄1′ —

Tyz, T
α
4x, T

β
4x Mx,M

α
x ,M

β
x 2′/m′ [001]

Tzx, T
α
4y, T

β
4y My,M

α
y ,M

β
y 2′/m′ [001]

Au 1 1 1 1 −1 −1 −1 −1 A+
u Qz, Q

α
z G0, Gu, 41′ [001]

G4, G4u, G
α
4z

A−
u Tz, T

α
z M0,Mu, 4/m′ [001]

M4,M4u,M
α
4z

Bu 1 −1 1 −1−1 1 −1 1 B+
u Qxyz, Q

β
z Gv, Gxy, 4̄1′ [001]

G4v, G
β
4z

B−
u Txyz, T

β
z Mv,Mxy, 4′/m′ [001]

M4v,M
β
4z

Eu 1 −i −1 i −1 i 1 −i } Eu Qx, Q
α
x , Q

β
x Gyz, G

α
4x, G

β
4x m1′ [001]

1 i −1 −i −1 −i 1 i Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y m1′ [001]

Tx, T
α
x , T

β
x Myz,M

α
4x,M

β
4x 2′/m [001]

Ty, T
α
y , T

β
y Mzx,M

α
4y,M

β
4y 2′/m [001]
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Table C.22: IRREPs of four types of multipoles in 41′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C4 C
2
4 C3

4 IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qz, Qu, Q

α
z , G0, Gz, Gu, G

α
z , 41′ [001]

Q4, Q4u, Q
α
4z G4, G4u, G

α
4z

A− T0, Tz, Tu, T
α
z , M0,Mz,Mu,M

α
z , 4 [001]

T4, T4u, T
α
4z M4,M4u,M

α
4z

B 1 −1 1 −1 B+ Qv, Qxy, Qxyz, Gv, Gxy, Gxyz, 21′ [001]

Qβ
z , Q4v, Q

β
4z Gβ

z , G4v, G
β
4z

B− Tv, Txy, Txyz, Mv,Mxy,Mxyz, 4′ [001]

T β
z , T4v, T

β
4z Mβ

z ,M4v,M
β
4z

E 1 −i −1 i } E Qx, Qyz, Gx, Gyz, 11′ —

1 i −1 −i Qα
x , Q

β
x, Q

α
4x, Q

β
4x G

α
x , G

β
x, G

α
4x, G

β
4x

Qy, Qzx, Gy, Gzx, 11′ —

Qα
y , Q

β
y , Q

α
4y, Q

β
4y G

α
y , G

β
y , G

α
4y, G

β
4y

Tx, Tyz, Mx,Myz, 2′ [001]

T α
x , T

β
x , T

α
4x, T

β
4x M

α
x ,M

β
x ,M

α
4x,M

β
4x

Ty, Tzx, My,Mzx, 2′ [001]

T α
y , T

β
y , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4y,M

β
4y

Table C.23: IRREPs of four types of multipoles in 4̄1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E IC4 C
2
4 IC

3
4 IRREP E ET MT M MPG P. axis

A 1 1 1 1 A+ Q0, Qu, Qxyz, Q
β
z , Gz, Gv, Gxy, 4̄1′ [001]

Q4, Q4u, Q
α
4z Gα

z , G4v, G
β
4z

A− T0, Tu, Txyz, T
β
z , Mz,Mv,Mxy, 4̄ [001]

T4, T4u, T
α
4z Mα

z ,M4v,M
β
4z

B 1 −1 1 −1 B+ Qz, Qv, Qxy, G0, Gu, Gxyz, G
β
z , 21′ [001]

Qα
z , Q4v, Q

β
4z G4, G4u, G

α
4z

B− Tz, Tv, Txy, M0,Mu,Mxyz,M
β
z , 4̄′ [001]

T α
z , T4v, T

β
4z M4,M4u,M

α
4z

E 1 −i −1 i } E Qx, Qyz, Gx, Gyz, 11′ —

1 i −1 −i Qα
x , Q

β
x, Q

α
4x, Q

β
4x Gα

x , G
β
x, G

α
4x, G

β
4x

Qy, Qzx, Gy, Gzx, 11′ —

Qα
y , Q

β
y , Q

α
4y, Q

β
4y Gα

y , G
β
y , G

α
4y, G

β
4y

Tx, Tyz, Mx,Myz, 2′ [001]

T α
x , T

β
x , T

α
4x, T

β
4x M

α
x ,M

β
x ,M

α
4x,M

β
4x

Ty, Tzx, My,Mzx, 2′ [001]

T α
y , T

β
y , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4y,M

β
4y
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Table C.24: IRREPs of four types of multipoles in mmm1′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θ.

E C2z C2y C2x I σz σy σx IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 1 1 1 1 A+

g Q0, Qu, Qv, Gxyz mmm1′ [100]
Q4, Q4u, Q4v

A−
g T0, Tu, Tv, Mxyz mmm [100]

T4, T4u, T4v
B1g 1 1 −1 −1 1 1 −1−1 B+

1g Qxy, Q
α
4z, Q

β
4z Gz, G

α
z , G

β
z 2/m1′ [001]

B−
1g Txy, T

α
4z, T

β
4z Mz,M

α
z ,M

β
z m′m′m [100]

B2g 1 −1 1 −1 1 −1 1 −1 B+
2g Qzx, Q

α
4y, Q

β
4y Gy, G

α
y , G

β
y 2/m1′ [010]

B−
2g Tzx, T

α
4y, T

β
4y My,M

α
y ,M

β
y m′mm′ [100]

B3g 1 −1 −1 1 1 −1−1 1 B+
3g Qyz, Q

α
4x, Q

β
4x Gx, G

α
x , G

β
x 2/m1′ [100]

B−
3g Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x mm′m′ [100]

Au 1 1 1 1 −1−1−1−1 A+
u Qxyz G0, Gu, Gv, 2221′ [100]

G4, G4u, G4v

A−
u Txyz M0,Mu,Mv, m

′m′m′ [100]
M4,M4u,M4v

B1u 1 1 −1 −1 −1−1 1 1 B+
1u Qz, Q

α
z , Q

β
z Gxy, G

α
4z, G

β
4z mm21′ [100]

B−
1u Tz, T

α
z , T

β
z Mxy,M

α
4z,M

β
4z mmm

′ [100]

B2u 1 −1 1 −1 −1 1 −1 1 B+
2u Qy, Q

α
y , Q

β
y Gzx, G

α
4y, G

β
4y m2m1′ [100]

B−
2u Ty, T

α
y , T

β
y Mzx,M

α
4y,M

β
4y mm

′m [100]

B3u 1 −1 −1 1 −1 1 1 −1 B+
3u Qx, Q

α
x , Q

β
x Gyz, G

α
4x, G

β
4x 2mm1′ [100]

B−
3u Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x m′mm [100]

Table C.25: IRREPs of four types of multipoles in 2221′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C2z C2y C2x IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qu, Qv, Qxyz, G0, Gu, Gv, Gxyz, 2221′ [100]

Q4, Q4u, Q4v G4, G4u, G4v

A− T0, Tu, Tv, Txyz, M0,Mu,Mv,Mxyz, 222 [100]
T4, T4u, T4v M4,M4u,M4v

B1 1 1 −1 −1 B+
1 Qz, Qxy, Gz, Gxy, 21′ [001]

Qα
z , Q

β
z , Q

α
4z, Q

β
4z Gα

z , G
β
z , G

α
4z, G

β
4z

B−
1 Tz, Txy, Mz,Mxy, 2′2′2 [100]

T α
z , T

β
z , T

α
4z, T

β
4z M

α
z ,M

β
z ,M

α
4z,M

β
4z

B2 1 −1 1 −1 B+
2 Qy, Qzx, Gy, Gzx, 21′ [010]

Qα
y , Q

β
y , Q

α
4y, Q

β
4y Gα

y , G
β
y , G

α
4y, G

β
4y

B−
2 Ty, Tzx, My,Mzx, 2′22′ [100]

T α
y , T

β
y , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4y,M

β
4y

B3 1 −1 −1 1 B+
3 Qx, Qyz, Gx, Gyz, 21′ [100]

Qα
x , Q

β
x, Q

α
4x, Q

β
4x Gα

x , G
β
x, G

α
4x, G

β
4x

B−
3 Tx, Tyz, Mx,Myz, 22′2′ [100]

T α
x , T

β
x , T

α
4x, T

β
4x M

α
x ,M

β
x ,M

α
4x,M

β
4x
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Table C.26: IRREPs of four types of multipoles in mm21′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C2z σy σx IRREP E ET MT M MPG P. axis
A1 1 1 1 1 A+

1 Q0, Qz, Qu, Qv, Gxy, Gxyz, mm21′ [100]

Qα
z , Q

β
z , Gα

4z, G
β
4z

Q4, Q4u, Q4v

A−
1 T0, Tz, Tu, Tv, Mxy,Mxyz, mm2 [100]

T α
z , T

β
z , Mα

4z,M
β
4z

T4, T4u, T4v
A2 1 1 −1 −1 A+

2 Qxy, Qxyz, G0, Gz, Gu, Gv, 21′ [001]

Qα
4z, Q

β
4z Gα

z , G
β
z ,

G4, G4u, G4v

A−
2 Txy, Txyz, M0,Mz,Mu,Mv, m′m′2 [001]

T α
4z, T

β
4z Mα

z ,M
β
z ,

M4,M4u,M4v

B1 1 −1 1 −1 B+
1 Qx, Qzx, Gy, Gyz, m1′ [010]

Qα
x , Q

β
x, Q

α
4y, Q

β
4y G

α
y , G

β
y , G

α
4x, G

β
4x

B−
1 Tx, Tzx, My,Myz, m′m2′ [100]

T α
x , T

β
x , T

α
4y, T

β
4y M

α
y ,M

β
y ,M

α
4x,M

β
4x

B2 1 −1 −1 1 B+
2 Qy, Qyz, Gx, Gzx, m1′ [100]

Qα
y , Q

β
y , Q

α
4x, Q

β
4x G

α
x , G

β
x, G

α
4y, G

β
4y

B−
2 Ty, Tyz, Mx,Mzx, mm′2′ [100]

T α
y , T

β
y , T

α
4x, T

β
4x M

α
x ,M

β
x ,M

α
4y,M

β
4y

Table C.27: IRREPs of four types of multipoles in 2/m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C2y I σy IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 A+

g Q0, Qu, Qv, Qzx, Gy, Gxyz, 2/m1′ [010]
Q4, Q4u, Q4v, Gα

y , G
β
y

Qα
4y, Q

β
4y

A−
g T0, Tu, Tv, Tzx, My,Mxyz, 2/m [010]

T4, T4u, T4v, Mα
y ,M

β
y

T α
4y, T

β
4y

Bg 1 −1 1 −1 B+
g Qyz, Qxy, Gx, Gz, 1̄1′ —

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

x , G
α
z , G

β
x, G

β
z

B−
g Tyz, Txy, Mx,Mz, 2′/m′ [010]

T α
4x, T

α
4z, T

β
4x, T

β
4z Mα

x ,M
α
z ,M

β
x ,M

β
z

Au 1 1 −1−1 A+
u Qy, Qxyz, G0, Gu, Gv, Gzx, 21′ [010]

Qα
y , Q

β
y G4, G4u, G4v,

Gα
4y, G

β
4y

A−
u Ty, Txyz, M0,Mu,Mv,Mzx, 2/m′ [010]

T α
y , T

β
y M4,M4u,M4v,

Mα
4y,M

β
4y

Bu 1 −1 −1 1 B+
u Qx, Qz, Gyz, Gxy, m1′ [010]

Qα
x , Q

α
z , Q

β
x, Q

β
z Gα

4x, G
α
4z, G

β
4x, G

β
4z

B−
u Tx, Tz, Myz,Mxy, 2′/m [010]

T α
x , T

α
z , T

β
x , T

β
z Mα

4x,M
α
4z,M

β
4x,M

β
4z
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Table C.28: IRREPs of four types of multipoles in 21′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E C2y IRREP E ET MT M MPGP. axis
A 1 1 A+ Q0, Qy, Qu, Qv, Qzx, G0, Gy, Gu, Gv, Gzx, 21′ [010]

Qxyz, Q
α
y , Q

β
y , Gxyz, G

α
y , G

β
y ,

Q4, Q4u, Q4v, G4, G4u, G4v,

Qα
4y, Q

β
4y Gα

4y, G
β
4y

A− T0, Ty, Tu, Tv, Tzx, M0,My,Mu,Mv,Mzx, 2 [010]
Txyz, T

α
y , T

β
y , Mxyz,M

α
y ,M

β
y ,

T4, T4u, T4v, M4,M4u,M4v,

T α
4y, T

β
4y Mα

4y,M
β
4y

B 1 −1 B+ Qx, Qz, Qyz, Qxy, Gx, Gz, Gyz, Gxy, 11′ —
Qα

x , Q
α
z , Q

β
x, Q

β
z , Gα

x , G
α
z , G

β
x, G

β
z ,

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

4x, G
α
4z, G

β
4x, G

β
4z

B− Tx, Tz, Tyz, Txy, Mx,Mz,Myz,Mxy, 2′ [010]
T α
x , T

α
z , T

β
x , T

β
z , Mα

x ,M
α
z ,M

β
x ,M

β
z ,

T α
4x, T

α
4z, T

β
4x, T

β
4z Mα

4x,M
α
4z,M

β
4x,M

β
4z

Table C.29: IRREPs of four types of multipoles in m1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E σy IRREP E ET MT M MPG P. axis
A′ 1 1 A′+ Q0, Qx, Qz, Gy, Gyz, Gxy, m1′ [010]

Qu, Qv, Qzx, Gxyz, G
α
y , G

β
y ,

Qα
x , Q

α
z , Q

β
x, Q

β
z , Gα

4x, G
α
4z, G

β
4x, G

β
4z

Q4, Q4u, Q4v,

Qα
4y, Q

β
4y

A′− T0, Tx, Tz, My,Myz,Mxy m [010]
Tu, Tv, Tzx, Mxyz,M

α
y ,M

β
y

T α
x , T

α
z , T

β
x , T

β
z , M

α
4x,M

α
4z,M

β
4x,M

β
4z

T4, T4u, T4v,

T α
4y, T

β
4y

A′′ 1 −1 A′′+ Qy, Qyz, Qxy, G0, Gx, Gz, 11′ —
Qxyz, Q

α
y , Q

β
y , Gu, Gv, Gzx,

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

x , G
α
z , G

β
x, G

β
z ,

G4, G4u, G4v,

Gα
4y, G

β
4y

A′′− Ty, Tyz, Txy, M0,Mx,Mz, m′ [010]
Txyz, T

α
y , T

β
y , Mu,Mv,Mzx,

T α
4x, T

α
4z, T

β
4x, T

β
4z Mα

x ,M
α
z ,M

β
x ,M

β
z ,

M4,M4u,M4v,

Mα
4y,M

β
4y
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Table C.30: IRREPs of four types of multipoles in 1̄1′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E I IRREP E ET MT M MPG P. axis
Ag 1 1 A+

g Q0, Qu, Qv, Gx, Gy, Gz, 1̄1′ —
Qyz, Qzx, Qxy, Gxyz,
Q4, Q4u, Q4v, Gα

x , G
α
y , G

α
z ,

Qα
4x, Q

α
4y, Q

α
4z, Gβ

x, G
β
y , G

β
z

Qβ
4x, Q

β
4y, Q

β
4z

A−
g T0, Tu, Tv, Mx,My,Mz, 1̄ —

Tyz, Tzx, Txy, Mxyz,
T4, T4u, T4v, Mα

x ,M
α
y ,M

α
z ,

T α
4x, T

α
4y, T

α
4z, Mβ

x ,M
β
y ,M

β
z

T β
4x, T

β
4y, T

β
4z

Au 1 −1 A+
u Qx, Qy, Qz, G0, Gu, Gv, 11′ —

Qxyz, Gyz, Gzx, Gxy,
Qα

x , Q
α
y , Q

α
z , G4, G4u, G4v,

Qβ
x, Q

β
y , Q

β
z Gα

4x, G
α
4y, G

α
4z,

Gβ
4x, G

β
4y, G

β
4z

A−
u Tx, Ty, Tz, M0,Mu,Mv, 1̄′ —

Txyz, Myz,Mzx,Mxy,
T α
x , T

α
y , T

α
z , M4,M4u,M4v,

T β
x , T

β
y , T

β
z Mα

4x,M
α
4y,M

α
4z,

Mβ
4x,M

β
4y,M

β
4z

Table C.31: IRREPs of four types of multipoles in 11′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θ.

E IRREP E ET MT M MPGP. axis
A 1 A+ Q0, Qx, Qy, Qz, G0, Gx, Gy, Gz, 11′ —

Qu, Qv, Qyz, Qzx, Qxy, Gu, Gv, Gyz, Gzx, Gxy,
Qxyz, Q

α
x , Q

α
y , Q

α
z , Gxyz, G

α
x , G

α
y , G

α
z ,

Qβ
x, Q

β
y , Q

β
z , Gβ

x, G
β
y , G

β
z ,

Q4, Q4u, Q4v, G4, G4u, G4v,
Qα

4x, Q
α
4y, Q

α
4z, Gα

4x, G
α
4y, G

α
4z,

Qβ
4x, Q

β
4y, Q

β
4z Gβ

4x, G
β
4y, G

β
4z

A− T0, Tx, Ty, Tz, M0,Mx,My,Mz, 1 —
Tu, Tv, Tyz, Tzx, Txy,Mu,Mv,Myz,Mzx,Mxy,
Txyz, T

α
x , T

α
y , T

α
z , Mxyz,M

α
x ,M

α
y ,M

α
z ,

T β
x , T

β
y , T

β
z , Mβ

x ,M
β
y ,M

β
z ,

T4, T4u, T4v, M4,M4u,M4v,
T α
4x, T

α
4y, T

α
4z, Mα

4x,M
α
4y,M

α
4z,

T β
4x, T

β
4y, T

β
4z Mβ

4x,M
β
4y,M

β
4z
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C.2 Black-and-White Point Groups

Table C.32: IRREPs of four types of multipoles in m′3̄′m. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E 6IC4 3C2
4 6σd 8C3 IRREP E ET MT M MPG P. axis

A1 1 1 1 1 1 A+
1 Q0, Q4 Txyz m′3̄′m ⟨100⟩

A−
1 Qxyz T0, T4 4̄3m ⟨100⟩

A2 1 −1 1 −1 1 A+
2 Gxyz M0,M4 m′3̄′ ⟨100⟩

A−
2 G0, G4 Mxyz 4′32′ ⟨100⟩

E 2 0 2 0 −1 E+ Qu, Q4u Mv,M4v 4′/m′m′m [001]
Qv, Q4v Mu,M4u m′m′m′ [100]

E− Gv, G4v Tu, T4u 4̄2m [001]
Gu, G4u Tv, T4v 4′22′ [001]

T1 3 1 −1 −1 0 T+
1 Qα

4x Gx, G
α
x T β

x Myz,M
β
4x 4′/m′ [100]

Qα
4y Gy, G

α
y T β

y Mzx,M
β
4y 4′/m′ [010]

Qα
4z Gz, G

α
z T β

z Mxy,M
β
4z 4′/m′ [001]

T−
1 Qβ

x Gyz, G
β
4x T α

4x Mx,M
α
x 4̄m′2′ [100]

Qβ
y Gzx, G

β
4y T α

4y My,M
α
y 4̄m′2′ [010]

Qβ
z Gxy, G

β
4z T α

4z Mz,M
α
z 4̄m′2′ [001]

T2 3 −1 −1 1 0 T+
2 Qyz, Q

β
4x Gβ

x Tx, T
α
x Mα

4x mmm′ [011]

Qzx, Q
β
4y Gβ

y Ty, T
α
y Mα

4y mmm′ [101]

Qxy, Q
β
4z Gβ

z Tz, T
α
z Mα

4z mmm′ [110]

T−
2 Qx, Q

α
x Gα

4x Tyz, T
β
4x Mβ

x 4′m′m [100]

Qy, Q
α
y Gα

4y Tzx, T
β
4y Mβ

y 4′m′m [010]

Qz, Q
α
z Gα

4z Txy, T
β
4z Mβ

z 4′m′m [001]
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Table C.33: IRREPs of four types of multipoles in m3̄m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′

2 (about [110] axis).

The basis of case-(a) IRREP E
(1,2)±
g/u consists of the linear combination of the multipoles

shown in the right side of a close brace.

E 3C2 4C3 4C2
3 I 3σh 4IC3 4IC2

3 IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 1 1 1 1 A+

g Q0, Q4 Mxyz m3̄m′ ⟨100⟩
A−

g Gxyz T0, T4 m3̄ ⟨100⟩
Eg 1 1 ω ω2 1 1 ω ω2 E

(1)+
g } Qu, Q4u 4′/mmm′ [001]

1 1 ω2 ω 1 1 ω2 ω E
(2)+
g Qv, Q4v mmm [100]

E
(1)−
g } Tu, T4u mmm [100]

E
(2)−
g Tv, T4v 4′/mmm′ [001]

Tg 3 −1 0 0 3 −1 0 0 T+
g Qα

4x Gx, G
α
x Tyz, T

β
4x Mβ

x 4′/m [100]

Qα
4y Gy, G

α
y Tzx, T

β
4y Mβ

y 4′/m [010]

Qα
4z Gz, G

α
z Txy, T

β
4z Mβ

z 4′/m [001]

T−
g Qyz, Q

β
4x Gβ

x T α
4x Mx,M

α
x m′m′m [011]

Qzx, Q
β
4y Gβ

y T α
4y My,M

α
y m′m′m [101]

Qxy, Q
β
4z Gβ

z T α
4z Mz,M

α
z m′m′m [110]

Au 1 1 1 1 −1 −1 −1 −1 A+
u G0, G4 Txyz 4′32′ ⟨100⟩

A−
u Qxyz M0,M4 4̄′3m′ ⟨100⟩

Eu 1 1 ω ω2 −1 −1 −ω −ω2 E
(1)+
u } Gu, G4u 4′22′ [001]

1 1 ω2 ω −1 −1 −ω2 −ω E
(2)+
u Gv, G4v 4̄′2m′ [001]

E
(1)−
u } Mu,M4u 4̄′2m′ [001]

E
(2)−
u Mv,M4v 4′22′ [001]

Tu 3 −1 0 0 −3 1 0 0 T+
u Qx, Q

α
x Gα

4x T β
x Myz,M

β
4x 4′mm′ [100]

Qy, Q
α
y Gα

4y T β
y Mzx,M

β
4y 4′mm′ [010]

Qz, Q
α
z Gα

4z T β
z Mxy,M

β
4z 4′mm′ [001]

T−
u Qβ

x Gyz, G
β
4x Tx, T

α
x Mα

4x 4̄′m2′ [100]

Qβ
y Gzx, G

β
4y Ty, T

α
y Mα

4y 4̄′m2′ [010]

Qβ
z Gxy, G

β
4z Tz, T

α
z Mα

4z 4̄′m2′ [001]

ω=exp(−2πi/3)

Table C.34: IRREPs of four types of multipoles 4′32′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′

2 (about [110] axis).

E 3C2 4C3 4C2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 1 A+ Q0, Q4 G0, G4 Txyz Mxyz 4′32′ ⟨100⟩
A− Qxyz Gxyz T0, T4 M0,M4 23 ⟨100⟩

E 1 1 ω ω2 E(1)+ } Qu, Q4u Gu, G4u 4′22′ [001]
1 1 ω2 ω E(2)+ Qv, Q4v Gv, G4v 222 [100]

E(1)− } Tu, T4u Mu,M4u 222 [100]
E(2)− Tv, T4v Mv,M4v 4′22′ [001]

T 3 −1 0 0 T+ Qx, Q
α
x , Q

α
4x Gx, G

α
x , G

α
4x Tyz, T

β
x , T

β
4x Myz,M

β
x ,M

β
4x 4′ [100]

Qy, Q
α
y , Q

α
4y Gy, G

α
y , G

α
4y Tzx, T

β
y , T

β
4y Mzx,M

β
y ,M

β
4y 4′ [010]

Qz, Q
α
z , Q

α
4z Gz, G

α
z , G

α
4z Txy, T

β
z , T

β
4z Mxy,M

β
z ,M

β
4z 4′ [001]

T− Qyz, Q
β
x, Q

β
4x Gyz, G

β
x, G

β
4x Tx, T

α
x , T

α
4x Mx,M

α
x ,M

α
4x 2′2′2 [011]

Qzx, Q
β
y , Q

β
4y Gzx, G

β
y , G

β
4y Ty, T

α
y , T

α
4y My,M

α
y ,M

α
4y 2′2′2 [101]

Qxy, Q
β
z , Q

β
4z Gxy, G

β
z , G

β
4z Tz, T

α
z , T

α
4z Mz,M

α
z ,M

α
4z 2′2′2 [110]

ω=exp(−2πi/3)
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Table C.35: IRREPs of four types of multipoles 4̄′3m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσd (normal to the
[110] direction).

E 3C2 4C3 4C2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 1 A+ Q0, Qxyz, Q4 M0,Mxyz,M4 4̄′3m′ ⟨100⟩
A− G0, Gxyz, G4 T0, Txyz, T4 23 ⟨100⟩

E 1 1 ω ω2 E(1)+ } Qu, Q4u Mu,M4u 4̄′2m′ [001]
1 1 ω2 ω E(2)+ Qv, Q4v Mv,M4v 222 [100]

E(1)− } Gu, G4u Tu, T4u 222 [100]
E(2)− Gv, G4v Tv, T4v 4̄′2m′ [001]

T 3 −1 0 0 T+ Qβ
x, Q

α
4x Gx, Gyz, G

α
x , G

β
4x Tx, Tyz, T

α
x , T

β
4x Mβ

x ,M
α
4x 4̄′ [100]

Qβ
y , Q

α
4y Gy, Gzx, G

α
y , G

β
4y Ty, Tzx, T

α
y , T

β
4y Mβ

y ,M
α
4y 4̄′ [010]

Qβ
z , Q

α
4z Gz, Gxy, G

α
z , G

β
4z Tz, Txy, T

α
z , T

β
4z Mβ

z ,M
α
4z 4̄′ [001]

T− Qx, Qyz, Q
α
x , Q

β
4x Gβ

x, G
α
4x T β

x , T
α
4x Mx,Myz,M

α
x ,M

β
4x m

′m′2 [011]

Qy, Qzx, Q
α
y , Q

β
4y Gβ

y , G
α
4y T β

y , T
α
4y My,Mzx,M

α
y ,M

β
4y m

′m′2 [101]

Qz, Qxy, Q
α
z , Q

β
4z Gβ

z , G
α
4z T β

z , T
α
4z Mz,Mxy,M

α
z ,M

β
4z m

′m′2 [110]

ω=exp(−2πi/3)

Table C.36: IRREPs of four types of multipoles m′3̄′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E 3C2 4C3 4C2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 1 A+ Q0, Q4 Gxyz Txyz M0,M4 m′3̄′ ⟨100⟩
A− Qxyz G0, G4 T0, T4 Mxyz 23 ⟨100⟩

E 1 1 ω ω2 } E Qu, Q4u Mu,M4u m′m′m′ [100]
1 1 ω2 ω Qv, Q4v Mv,M4v m′m′m′ [100]

Gu, G4u Tu, T4u 222 [100]
Gv, G4v Tv, T4v 222 [100]

T 3 −1 0 0 T+ Qyz, Q
α
4x, Q

β
4x Gx, G

α
x , G

β
x Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x 2/m′ [100]

Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y Ty, T

α
y , T

β
y Mzx,M

α
4y,M

β
4y 2/m′ [010]

Qxy, Q
α
4z, Q

β
4z Gz, G

α
z , G

β
z Tz, T

α
z , T

β
z Mxy,M

α
4z,M

β
4z 2/m′ [001]

T− Qx, Q
α
x , Q

β
x Gyz, G

α
4x, G

β
4x Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x 2m′m′ [100]

Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y Tzx, T

α
4y, T

β
4y My,M

α
y ,M

β
y m′2m′ [100]

Qz, Q
α
z , Q

β
z Gxy, G

α
4z, G

β
4z Txy, T

α
4z, T

β
4z Mz,M

α
z ,M

β
z m′m′2 [100]

ω=exp(−2πi/3)
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Table C.37: IRREPs of four types of multipoles in 6/m′m′m′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θI.

E 2C6 2C3 C2 3C2x 3C2y IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 1 A+

1 Q0, Qu, Q40 M0,Mu,M40 6/m′m′m′ [001]
A−

1 G0, Gu, G40 T0, Tu, T40 622 [001]
A2 1 1 1 1 −1 −1 A+

2 Gz, G
α
z Tz, T

α
z 6/m′ [001]

A−
2 Qz, Q

α
z Mz,M

α
z 6m′m′ [001]

B1 1 −1 1 −1 1 −1 B+
1 Q4a G3a T3a M4a 3̄′m′ [001]

B−
1 Q3a G4a T4a M3a 6̄′2m′ [001]

B2 1 −1 1 −1 −1 1 B+
2 Q4b G3b T3b M4b 3̄′m′ [001]

B−
2 Q3b G4b T4b M3b 6̄′m′2 [001]

E1 2 1 −1 −2 0 0 E+
1 Qyz, Q

α
4v Gx, G3u Tx, T3u Myz,M

α
4v 2/m′ [100]

Qzx, Q
α
4u Gy, G3v Ty, T3v Mzx,M

α
4u 2/m′ [010]

E−
1 Qx, Q3u Gyz, G

α
4v Tyz, T

α
4v Mx,M3u 2m′m′ [100]

Qy, Q3v Gzx, G
α
4u Tzx, T

α
4u My,M3v m′2m′ [100]

E2 2 −1 −1 −2 0 0 E+
2 Qv, Q

β1
4u, Q

β2
4u Gxyz Txyz Mv,M

β1
4u ,M

β2
4u m′m′m′ [100]

Qxy, Q
β1
4v , Q

β2
4v Gβ

z T β
z Mxy,M

β1
4v ,M

β2
4v 2/m′ [001]

E−
2 Qxyz Gv, G

β1
4u, G

β2
4u Tv, T

β1
4u , T

β2
4u Mxyz 222 [100]

Qβ
z Gxy, G

β1
4v , G

β2
4v Txy, T

β1
4v , T

β2
4v Mβ

z m′m′2 [100]

Table C.38: IRREPs of four types of multipoles in 6/m′mm. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θI.

E 2C6 2C3 C2 3σy 3σx IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 1 A+

1 Q0, Tz, T
α
z 6/m′mm [001]

Qu, Q40

A−
1 Qz, Q

α
z T0, 6mm [001]

Tu, T40
A2 1 1 1 1 −1 −1 A+

2 Gz, G
α
z M0, 6/m′ [001]

Mu,M40

A−
2 G0, Mz,M

α
z 62′2′ [001]

Gu, G40

B1 1 −1 1 −1 1 −1 B+
1 Q4a G3a T3b M4b 3̄′m [001]

B−
1 Q3b G4b T4a M3a 6̄′2′m [001]

B2 1 −1 1 −1 −1 1 B+
2 Q4b G3b T3a M4a 3̄′m [001]

B−
2 Q3a G4a T4b M3b 6̄′m2′ [001]

E1 2 1 −1 −2 0 0 E+
1 Qyz, Q

α
4v Gx, G3u Ty, T3v Mzx,M

α
4u 2′/m [100]

Qzx, Q
α
4u Gy, G3v Tx, T3u Myz,M

α
4v 2′/m [010]

E−
1 Qy, Q3v Gzx, G

α
4u Tyz, T

α
4v Mx,M3u m2′m′ [100]

Qx, Q3u Gyz, G
α
4v Tzx, T

α
4u My,M3v 2′mm′ [100]

E2 2 −1 −1 −2 0 0 E+
2 Qv, Q

β1
4u, Q

β2
4u Gxyz T β

z Mxy,M
β1
4v ,M

β2
4v mmm′ [001]

Qxy, Q
β1
4v , Q

β2
4v Gβ

z Txyz Mv,M
β1
4u ,M

β2
4u 2/m′ [001]

E−
2 Qβ

z Gxy, G
β1
4v , G

β2
4v Tv, T

β1
4u , T

β2
4u Mxyz mm2 [100]

Qxyz Gv, G
β1
4u, G

β2
4u Txy, T

β1
4v , T

β2
4v Mβ

z 2′2′2 [100]
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Table C.39: IRREPs of four types of multipoles in 6′/mmm′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θI.

E 2IC6 2C3 σh 3C2y 3σx IRREP E ET MT M MPG P. axis
A′

1 1 1 1 1 1 1 A′+
1 Q0, Qu, Q40 T3b M4b 6′/mmm′ [001]

A′−
1 Q3b G4b T0, Tu, T40 6̄m2 [001]

A′
2 1 1 1 1 −1 −1 A′+

2 Gz, G
α
z T3a M4a 6′/m [001]

A′−
2 Q3a G4a Mz,M

α
z 6̄2′m′ [001]

A′′
1 1 −1 1 −1 1 −1 A′′+

1 Q4b G3b M0,Mu,M40 3̄′m′ [001]
A′′−

1 G0, Gu, G40 T4b M3b 6′2′2 [001]
A′′

2 1 −1 1 −1 −1 1 A′′+
2 Q4a G3a Tz, T

α
z 3̄′m [001]

A′′−
2 Qz, Q

α
z T4a M3a 6′mm′ [001]

E′′ 2 1 −1 −2 0 0 E′′+ Qyz, Q
α
4v Gx, G3u T β

z Mxy,M
β1
4v ,M

β2
4v 2′/m [100]

Qzx, Q
α
4u Gy, G3v Txyz Mv,M

β1
4u ,M

β2
4u 2/m′ [010]

E′′− Qβ
z Gxy, Tyz, T

α
4v Mx,M3u mm′2′ [100]

Gβ1
4v , G

β2
4v

Qxyz Gv, Tzx, T
α
4u My,M3v 2′22′ [100]

Gβ1
4u, G

β2
4u

E′ 2 −1 −1 −2 0 0 E′+ Qv, Gxyz Ty, T3v Mzx,M
α
4u mm′m [100]

Qβ1
4u, Q

β2
4u

Qxy, Gβ
z Tx, T3u Myz,M

α
4v, 2′/m [001]

Qβ1
4v , Q

β2
4v

E′− Qy, Q3v Gzx, G
α
4u Tv, T

β1
4u , T

β2
4u Mxyz m2m [100]

Qx, Q3u Gyz, G
α
4v Txy, T

β1
4v , T

β2
4v Mβ

z 2′m′m [100]
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Table C.40: IRREPs of four types of multipoles in 6/mm′m′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θC2x.

E C6 C3 C2 C
2
3 C

5
6 I IC6 IC3 σh IC

2
3 IC

5
6 IRREP E ET MT M MPG P. axis

Ag 1 1 1 1 1 1 1 1 1 1 1 1 A+
g Q0, Mz,M

α
z 6/mm′m′ [001]

Qu, Q40

A−
g Gz, G

α
z T0, 6/m [001]

Tu, T40
Bg 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 B+

g Q4a G3a T4b M3b 3̄m′ [001]
B−

g Q4b G3b T4a M3a 3̄m′ [001]

E1g 1 −ω ω2−1 ω −ω2 1 −ω ω2 −1 ω −ω2 E
(1)+
1g }Qyz, Q

α
4v Gx, G3u 2′/m′ [100]

1−ω2 ω −1ω2 −ω 1 −ω2 ω −1 ω2 −ω E
(2)+
1g Qzx, Q

α
4u Gy, G3v 2′/m′ [010]

E
(1)−
1g } Tyz, T

α
4v Mx,M3u 2′/m′ [010]

E
(2)−
1g Tzx, T

α
4u My,M3v 2′/m′ [100]

E2g 1 ω ω2 1 ω ω2 1 ω ω2 1 ω ω2 E
(1)+
2g } Qv Gxyz m′m′m [100]

Qβ1
4u, Q

β2
4u

1 ω2 ω 1 ω2 ω 1 ω2 ω 1 ω2 ω E
(2)+
2g Qxy, Gβ

z 2/m [001]

Qβ1
4v , Q

β2
4v

E
(1)−
2g } Tv, Mxyz 2/m [001]

T β1
4u , T

β2
4u

E
(2)−
2g Txy, Mβ

z m′m′m [100]

T β1
4v , T

β2
4v

Au 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 A+
u G0, Tz, T

α
z 62′2′ [001]

Gu, G40

A−
u Qz, Q

α
z M0, 6m′m′ [001]

Mu,M40

Bu 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 B+
u Q3a G4a T3b M4b 6̄2′m′ [001]

B−
u Q3b G4b T3a M4a 6̄m′2′ [001]

E1u 1 −ω ω2−1 ω −ω2−1 ω −ω2 1 −ω ω2 E
(1)+
1u } Qx, Q3u Gyz, G

α
4v 2′m′m [100]

1−ω2 ω −1ω2 −ω −1 ω2 −ω 1 −ω2 ω E
(2)+
1u Qy, Q3v Gzx, G

α
4u m′2′m [100]

E
(1)−
1u } Tx, T3u Myz,M

α
4v m′2′m [100]

E
(2)−
1u Ty, T3v Mzx,M

α
4u 2′m′m [100]

E2u 1 ω ω2 1 ω ω2 −1 −ω −ω2−1 −ω −ω2 E
(1)+
2u } Qxyz Gv, 2′2′2 [100]

Gβ1
4u, G

β2
4u

1 ω2 ω 1 ω2 ω −1−ω2 −ω −1−ω2 −ω E
(2)+
2u Qβ

z Gxy, m′m′2 [100]

Gβ1
4v , G

β2
4v

E
(1)−
2u } Txyz Mv, m′m′2 [100]

Mβ1
4u ,M

β2
4u

E
(2)−
2u T β

z Mxy, 2′2′2 [100]

Mβ1
4v ,M

β2
4v

ω=exp(−2πi/3)
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Table C.41: IRREPs of four types of multipoles in 6′/m′mm′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θC2.

E 2C3 3C2x I 2IC3 3σx IRREP E ET MT M MPG P. axis
A1g 1 1 1 1 1 1 A+

1g Q0, Qu, Q40 T4a M3a 6′/m′mm′ [001]
A−

1g Q4a G3a T0, Tu, T40 3̄m [001]
A2g 1 1 −1 1 1 −1 A+

2g Gz, G
α
z T4b M3b 6′/m′ [001]

A−
2g Q4b G3b Mz,M

α
z 3̄m′ [001]

Eg 2 −1 0 2 −1 0 E+
g Qxy Gβ

z Tzx, T
α
4u My,M3v 2′/m′ [001]

Qβ1
4v , Q

β2
4v

Qv Gxyz Tyz, T
α
4v Mx,M3u mm′m′ [100]

Qβ1
4u, Q

β2
4u

E−
g Qyz, Q

α
4v Gx, G3u Tv Mxyz 2/m [100]

T β1
4u , T

β2
4u

Qzx, Q
α
4u Gy, G3v Txy Mβ

z 2′/m′ [010]

T β1
4v , T

β2
4v

A1u 1 1 1 −1 −1 −1 A+
1u G0, Gu, G40 T3a M4a 6′22′ [001]

A−
1u Q3a G4a M0,Mu,M40 6̄′2m′ [001]

A2u 1 1 −1 −1 −1 1 A+
2u Qz, Q

α
z T3b M4b 6′mm′ [001]

A−
2u Q3b G4b Tz, T

α
z 6̄′m2′ [001]

Eu 2 −1 0 −2 1 0 E+
u Qβ

z Gxy Ty, T3v Mzx,M
α
4u mm′2′ [100]

Gβ1
4v , G

β2
4v

Qxyz Gv Tx, T3u Myz,M
α
4v 22′2′ [100]

Gβ1
4u, G

β2
4u

E−
u Qx, Q3u Gyz, G

α
4v Txyz Mv 2m′m′ [100]

Mβ1
4u ,M

β2
4u

Qy, Q3v Gzx, G
α
4u T β

z Mxy m2′m′ [100]

Mβ1
4v ,M

β2
4v
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Table C.42: IRREPs of four types of multipoles in 62′2′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2x.

E C6 C3 C2 C2
3 C5

6 IRREP E ET MT M MPG P. axis
A 1 1 1 1 1 1 A+ Q0, Qu, Q40 G0, Gu, G40 Tz, T

α
z Mz,M

α
z 62′2′ [001]

A− Qz, Q
α
z Gz, G

α
z T0, Tu, T40 M0,Mu,M40 6 [001]

B 1 −1 1 −1 1 −1 B+ Q3a, Q4a G3a, G4a T3b, T4b M3b,M4b 32′ [001]
B− Q3b, Q4b G3b, G4b T3a, T4a M3a,M4a 32′ [001]

E1 1 −ω ω2 −1 ω −ω2 E
(1)+
1 } Qx, Qyz, Gx, Gyz, 2′ [100]

Q3u, Q
α
4v G3u, G

α
4v

1 −ω2 ω −1 ω2 −ω E
(2)+
1 Qy, Qzx, Gy, Gzx 2′ [010]

Q3v, Q
α
4u G3v, Q

α
4u

E
(1)−
1 } Tx, Tyz, Mx,Myz 2′ [010]

T3u, T
α
4v M3u,M

α
4v

E
(2)−
1 Ty, Tzx, My,Mzx 2′ [100]

T3v, T
α
4u M3v,M

α
4u

E2 1 ω ω2 1 ω ω2 E
(1)+
2 } Qv, Qxyz, Gv, Gxyz 2′2′2 [100]

Qβ1
4u, Q

β2
4u Gβ1

4u, G
β2
4u

1 ω2 ω 1 ω2 ω E
(2)+
2 Qxy, Q

β
z Gxy, G

β
z 2 [001]

Qβ1
4v , Q

β2
4v Gβ1

4v , G
β2
4v

E
(1)−
2 } Tv, Txyz, Mv,Mxyz, 2 [001]

T β1
4u , T

β2
4u Mβ1

4u ,M
β2
4u

E
(2)−
2 Txy, T

β
z , Mxy,M

β
z 2′2′2 [100]

T β1
4v , T

β2
4v Mβ1

4v ,M
β2
4v

ω=exp(−2πi/3)

Table C.43: IRREPs of four types of multipoles in 6′22′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2.

E 2C3 3C2x IRREP E ET MT M MPG P. axis
A1 1 1 1 A+

1 Q0, Qu, Q40 G0, Gu, G40 T3a, T4a M3a,M4a 6′22′ [001]
A−

1 Q3a, Q4a G3a, G4a T0, Tu, T40 M0,Mu,M40 32 [001]
A2 1 1 −1 A+

2 Qz, Q
α
z Gz, G

α
z T3b, T4b M3b,M4b 6′ [001]

A−
2 Q3b, Q4b G3b, G4b Tz, T

α
z Mz,M

α
z 32′ [001]

E 2 −1 0 E+ Qxy, Q
β
z , Gxy, G

β
z , Ty, Tzx, My,Mzx, 2′ [001]

Qβ1
4v , Q

β2
4v Gβ1

4v , G
β2
4v T3v, T

α
4u M3v,M

α
4u

Qv, Qxyz, Gv, Gxyz, Tx, Tyz, Mx,Myz, 22′2′ [100]

Qβ1
4u, Q

β2
4u Gβ1

4u, G
β2
4u T3u, T

α
4v M3u,M

α
4v

E− Qx, Qyz, Gx, Gyz, Tv, Txyz, Mv,Mxyz, 2 [100]

Q3u, Q
α
4v G3u, G

α
4v T β1

4u , T
β2
4u Mβ1

4u ,M
β2
4u

Qy, Qzx, Gy, Gzx, Txy, T
β
z , Mxy,M

β
z , 2′ [010]

Q3v, Q
α
4u G3v, G

α
4u T β1

4v , T
β2
4v Mβ1

4v ,M
β2
4v
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Table C.44: IRREPs of four types of multipoles in 6̄′m′2. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσh.

E 2C3 3C2y IRREP E ET MT M MPG P. axis
A1 1 1 1 A+

1 Q0, Qu, G4b T4b M0,Mu, 6̄′m′2 [001]
Q3b, Q40 M3b,M40

A−
1 Q4b G0, Gu, T0, Tu, M4b 32 [001]

G3b, G40 T3b, T40
A2 1 1 −1 A+

2 Q3a Gz, G
α
z , G4a Tz, T

α
z , T4a M3a 6̄′ [001]

A−
2 Qz, Q

α
z , Q4a G3a T3a Mz,M

α
z ,M4a 3m′ [001]

E 2 −1 0 E+ Qx, Qxy, Q3u, Gyz, Tyz, Mx,Mxy,M3u, m′ [001]

Qβ1
4v , Q

β2
4v Gβ

z , G
α
4v T β

z , T
α
4v Mβ1

4v ,M
β2
4v

Qy, Qv, Q3v Gzx, Tzx, Mx,Mv,M3v, m′2m′ [100]

Qβ1
4u, Q

β2
4u Gxyz, G

α
4u Txyz, T

α
4u Mβ1

4u ,M
β2
4u

E− Qyz, Gx, Gxy, G3u Tx, Txy, T3u, Myz, m′ [100]

Qβ
z , Q

α
4v Gβ1

4v , G
β2
4v T β1

4v , T
β2
4v Mβ

z ,M
α
4v

Qzx, Gy, Gv, G3v, Ty, Tv, T3v, Mzx, 2 [010]

Qxyz, Q
α
4u, Gβ1

4u, G
β2
4u T β1

4u , T
β2
4u Mxyz,M

α
4u

Table C.45: IRREPs of four types of multipoles in 6̄′m2′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσh.

E 2C3 3σx IRREP E ET MT M MPG P. axis
A1 1 1 1 A+

1 Q0, Qu, G4b Tz, T
α
z , T4a M3a 6̄′m2′ [001]

Q3b, Q40

A−
1 Qz, Q

α
z , Q4a G3a T0, Tu, M4b 3m [001]

T3b, T40
A2 1 1 −1 A+

2 Q3a Gz, G
α
z , G4a T4b M0,Mu, 6̄′ [001]

M3b,M40

A−
2 Q4b G0, Gu, T3a Mz,M

α
z ,M4a 32′ [001]

G3b, G40

E 2 −1 0 E+ Qx, Qxy, Q3u, Gyz, Tzx, My,Mv,M3v, m′ [001]

Qβ1
4v , Q

β2
4v Gβ

z , G
α
4v Txyz, T

α
4u Mβ1

4u ,M
β2
4u

Qy, Qv, Q3v Gzx, Tyz, Mx,Mxy,M3u, m2′m′ [100]

Qβ1
4u, Q

β2
4u Gxyz, G

α
4u T β

z , T
α
4v Mβ1

4v ,M
β2
4v

E− Qyz, Gx, Gxy, G3u Ty, Tv, T3v Mzx, m [100]

Qβ
z , Q

α
4v Gβ1

4v , G
β2
4v T β1

4u , T
β2
4u Mxyz,M

α
4u

Qzx, Gy, Gv, G3v Tx, Txy, T3u Myz, 2′ [010]

Qxyz, Q
α
4u, Gβ1

4u, G
β2
4u T β1

4v , T
β2
4v Mβ

z ,M
α
4v
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Table C.46: IRREPs of four types of multipoles in 6̄m′2′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2y.

E IC6 C3 σh C2
3 IC

5
6 IRREP E ET MT M MPG P. axis

A′ 1 1 1 1 1 1 A′+ Q0, Qu, G4b T3a Mz,M
α
z ,M4a 6̄m′2′ [001]

Q3b, Q40

A′− Q3a Gz, G
α
z , G4a T0, Tu, M4b 6̄ [001]

T3b, T40
A′′ 1 −1 1 −1 1 −1 A′′+ Q4b G0, Gu, Tz, T

α
z , T4a M3a 32′ [001]

G3b, G40

A′′− Qz, Q
α
z , Q4a G3a T4b M0,Mu, 3m′ [001]

M3b,M40

E′ 1 ω ω2 1 ω ω2 E′(1)+ } Qv, Q
β1
4u, Q

β2
4u Gxyz Tx, T3u Myz,M

α
4v m′2′m [100]

1 ω2 ω 1 ω2 ω E′(2)+ Qxy, Q
β1
4v , Q

β2
4v Gβ

z Ty, T3v Mzx,M
α
4u m [001]

E′(1)− } Qx, Q3u Gyz, G
α
4v Tv, T

β1
4u , T

β2
4u Mxyz m [001]

E′(2)− Qy, Q3v Gzx, G
α
4u Txy, T

β1
4v , T

β2
4v Mβ

z m′2′m [100]

E′′ 1 −ω ω2 −1 ω −ω2 E′′(1)+ } Qxyz Gv, G
β1
4u, G

β2
4u Tyz, T

α
4v Mx,M3u 2′ [010]

1 −ω2 ω −1 ω2 −ω E′′(2)+ Qβ
z Gxy, G

β1
4v , G

β2
4v Tzx, T

α
4u My,M3v m′ [100]

E′′(1)− } Qyz, Q
α
4v Gx, G3u Txyz Mv,M

β1
4u ,M

β2
4u m′ [100]

E′′(2)− Qzx, Q
α
4u Gy, G3v T β

z Mxy,M
β1
4v ,M

β2
4v 2′ [010]

ω=exp(−2πi/3)

Table C.47: IRREPs of four types of multipoles in 6′mm′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2.

E 2C3 3σx IRREP E ET MT M MPG P. axis
A1 1 1 1 A+

1 Q0, Qz, Qu, T3a, T4b M3b,M4a 6′mm′ [001]
Qα

z , Q40

A−
1 Q3a, Q4b G3b, G4a T0, Tz, Tu, 3m [001]

T α
z , T40

A2 1 1 −1 A+
2 G0, Gz, Gu, T3b, T4a M3a,M4b 6′ [001]

Gα
z , G40

A−
2 Q3b, Q4a G3a, G4b M0,Mz,Mu, 3m′ [001]

Mα
z ,M40

E 2 −1 0 E+ Qxy, Qxyz, Gv, G
β
z , Tx, Tzx, My,Myz, 2′ [001]

Qβ1
4v , Q

β2
4v Gβ1

4u, G
β2
4u T3u, T

α
4u M3v,M

α
4v

Qv, Q
β
z , Gxy, Gxyz, Ty, Tyz, Mx,Mzx, mm′2′ [100]

Qβ1
4u, Q

β2
4u Gβ1

4v , G
β2
4v T3v, T

α
4v M3u,M

α
4u

E− Qy, Qyz, Gx, Gzx, Tv, T
β
z , Mxy,Mxyz, m [100]

Q3v, Q
α
4v G3u, G

α
4u T β1

4u , T
β2
4u Mβ1

4v ,M
β2
4v

Qx, Qzx, Gy, Gyz, Txy, Txyz, Mv,M
β
z , m′ [010]

Q3u, Q
α
4u, G3v, G

α
4v T β1

4v , T
β2
4v Mβ1

4u ,M
β2
4u
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Table C.48: IRREPs of four types of multipoles in 6m′m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσx.

E C6 C3 C2 C
2
3 C5

6 IRREP E ET MT M MPG P. axis
A 1 1 1 1 1 1 A+ Q0, Qz, Qu, M0,Mz,Mu, 6m′m′ [001]

Qα
z , Q40 Mα

z ,M40

A− G0, Gz, Gu, T0, Tz, Tu, 6 [001]
Gα

z , G40 T α
z , T40

B 1 −1 1 −1 1 −1 B+ Q3b, Q4a G3a, G4b T3a, T4b M3b,M4a 3m′ [001]
B− Q3a, Q4b G3b, G4a T3b, T4a M3a,M4b 3m′ [001]

E1 1 −ω ω2 −1 ω −ω2 E
(1)+
1 } Qyz, Q

α
4v Gx, G3u Tx, T3u Myz,M

α
4v m′ [100]

1 −ω2 ω −1 ω2 −ω E
(2)+
1 Qzx, Q

α
4u Gy, G3v Ty, T3v Mzx,M

α
4u m′ [010]

E
(1)−
1 } Qx, Q3u Gyz, G

α
4v Tyz, T

α
4v Mx,M3u m′ [010]

E
(2)−
1 Qy, Q3v Gzx, G

α
4u Tzx, T

α
4u My,M3v m′ [100]

E2 1 ω ω2 1 ω ω2 E
(1)+
2 } Qv, Q

β1
4u, Q

β2
4u Gxyz Txyz Mv,M

β1
4u ,M

β2
4u m′m′2 [100]

1 ω2 ω 1 ω2 ω E
(2)+
2 Qxy, Q

β1
4v , Q

β2
4v Gβ

z T β
z Mxy,M

β1
4v ,M

β2
4v 2 [001]

E
(1)−
2 } Qxyz Gv, G

β1
4u, G

β2
4u Tv, T

β1
4u , T

β2
4u Mxyz 2 [001]

E
(2)−
2 Qβ

z Gxy, G
β1
4v , G

β2
4v Txy, T

β1
4v , T

β2
4v Mβ

z m′m′2 [100]

ω=exp(−2πi/3)

Table C.49: IRREPs of four types of multipoles in 6′/m. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E IC6 C3 σh C2
3 IC

5
6 IRREP E ET MT M MPG P. axis

A′ 1 1 1 1 1 1 A′+ Q0, Qu, Gz, G
α
z T3a, T3b M4a,M4b 6′/m [001]

Q40

A′− Q3a, Q3b G4a, G4b T0, Tu, Mz,M
α
z 6̄ [001]

T40
A′′ 1 −1 1 −1 1 −1 A′′+ Q4a, Q4b G3a, G3b Tz, T

α
z M0,Mu, 3̄′ [001]

M40

A′′− Qz, Q
α
z G0, Gu, T4a, T4b M3a,M3b 6 [001]

G40

E′ 1 ω ω2 1 ω ω2 } E′ Qv, Q
β1
4u, Q

β2
4u Gxyz Ty, T3v Mzx,M

α
4u 2′/m [001]

1 ω2 ω 1 ω2 ω Qxy, Q
β1
4v , Q

β2
4v Gβ

z Tx, T3u Myz,M
α
4v 2′/m [001]

Qy, Q3v Gzx, G
α
4u Tv, T

β1
4u , T

β2
4u Mxyz m [001]

Qx, Q3u Gyz, G
α
4v Txy, T

β1
4v , T

β2
4v Mβ

z m [001]

E′′ 1 −ω ω2 −1 ω −ω2 } E′′ Qyz, Q
α
4v Gx, G3u T β

z Mxy,M
β1
4v ,M

β2
4v 1̄′ —

1 −ω2 ω −1 ω2 −ω Qzx, Q
α
4u Gy, G3v Txyz Mv,M

β1
4u ,M

β2
4u 1̄′ —

Qβ
z Gxy, G

β1
4v , G

β2
4v Tyz, T

α
4v Mx,M3u 2′ [001]

Qxyz Gv, G
β1
4u, G

β2
4u Tzx, T

α
4u My,M3v 2′ [001]

ω=exp(−2πi/3)
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Table C.50: IRREPs of four types of multipoles in 6/m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E C6 C3 C2 C2
3 C5

6 IRREP E ET MT M MPG P. axis
A 1 1 1 1 1 1 A+ Q0, Qu, Q40 Gz, G

α
z Tz, T

α
z M0,Mu,M40 6/m′ [001]

A− Qz, Q
α
z G0, Gu, G40 T0, Tu, T40 Mz,M

α
z 6 [001]

B 1 −1 1 −1 1 −1 B+ Q4a, Q4b G3a, G3b T3a, T3b M4a,M4b 3̄′ [001]
B− Q3a, Q3b G4a, G4b T4a, T4b M3a,M3b 6̄′ [001]

E1 1 −ω ω2 −1 ω −ω2 } E1 Qyz, Q
α
4v Gx, G3u Tx, T3u Myz,M

α
4v 1̄′ —

Qzx, Q
α
4u Gy, G3v Ty, T3v Mzx,M

α
4u 1̄′ —

1 −ω2 ω −1 ω2 −ω Qx, Q3u Gyz, G
α
4v Tyz, T

α
4v Mx,M3u m′ [001]

Qy, Q3v Gzx, G
α
4u Tzx, T

α
4u My,M3v m′ [001]

E2 1 ω ω2 1 ω ω2 } E2 Qv, Q
β1
4u, Q

β2
4u Gxyz Txyz Mv,M

β1
4u ,M

β2
4u 2/m′ [001]

Qxy, Q
β1
4v , Q

β2
4v Gβ

z T β
z Mxy,M

β1
4v ,M

β2
4v 2/m′ [001]

1 ω2 ω 1 ω2 ω Qxyz Gv, G
β1
4u, G

β2
4u Tv, T

β1
4u , T

β2
4u Mxyz 2 [001]

Qβ
z Gxy, G

β1
4v , G

β2
4v Txy, T

β1
4v , T

β2
4v Mβ

z 2 [001]

ω=exp(−2πi/3)

Table C.51: IRREPs of four types of multipoles in 6′/m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2.

E C3 C
2
3 I IC3 IC2

3 IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 1 1 A+

g Q0, Qu, Gz, G
α
z T4a, T4b M3a,M3b 6′/m′ [001]

Q40

A−
g Q4a, Q4b G3a, G3b T0, Tu, Mz,M

α
z 3̄ [001]

T40
Eg 1 ω ω2 1 ω ω2 } Eg Qyz, Q

α
4v Gx, G3u Tv, T

β1
4u , T

β2
4u Mxyz 1̄ —

1 ω2 ω 1 ω2 ω Qzx, Q
α
4u Gy, G3v Txy, T

β1
4v , T

β2
4v Mβ

z 1̄ —

Qv, Q
β1
4u, Q

β2
4u Gxyz Tyz, T

α
4v Mx,M3u 2′/m′ [001]

Qxy, Q
β1
4v , Q

β2
4v Gβ

z Tzx, T
α
4u, My,M3v 2′/m′ [001]

Au 1 1 1 −1 −1 −1 A+
u Qz, Q

α
z G0, Gu, T3a, T3b M4a,M4b 6′ [001]

G40

A−
u Q3a, Q3b G4a, G4b Tz, T

α
z M0,Mu, 6̄′ [001]

M40

Eu 1 ω ω2 −1 −ω −ω2 } Eu Qx, Q3u Gyz, G
α
4v Txyz Mv,M

β1
4u ,M

β2
4u m′ [001]

1 ω2 ω −1 −ω2 −ω Qy, Q3v Gzx, G
α
4u T β

z Mxy,M
β1
4v ,M

β2
4v

Qxyz, Gv, G
β1
4u, G

β2
4u Tx, T3u Myz,M

α
4v 2′ [001]

Qβ
z Gxy, G

β1
4v , G

β2
4v Ty, T3v Mzx,M

α
4u

ω=exp(−2πi/3)
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Table C.52: IRREPs of four types of multipoles in 6̄′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσh.

E C3 C2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 A+ Q0, Qu, Gz, G
α
z , Tz, T

α
z , M0,Mu, 6̄′ [001]

Q3a, Q3b, Q40 G4a, G4b T4a, T4b M3a,M3b,M40

A− Qz, Q
α
z , G0, Gu, T0, Tu, Mz,M

α
z , 3 [001]

Q4a, Q4b G3a, G3b, G40 T3a, T3b, T40 M4a,M4b

E 1 ω ω2 } E Qx, Qv, Q3u, Gyz, Gxyz, G
α
4v Tyz, Txyz, T

α
4v Mx,Mv,M3u, m′ [001]

1 ω2 ω Qβ1
4u, Q

β2
4u Mβ1

4u ,M
β2
4u

Qy, Qxy, Q3v, Gzx, G
β
z , G

α
4u Tzx, T

β
z , T

α
4u My,Mxy,M3v,

Qβ1
4v , Q

β2
4v Mβ1

4v ,M
β2
4v

Qyz, Qxyz, Q
α
4v Gx, Gv, G3u, Tx, Tv, T3u, Myz,Mxyz,M

α
4v 1 —

Gβ1
4u, G

β2
4u T β1

4u , T
β2
4u

Qzx, Q
β
z , Q

α
4u Gy, Gxy, G3v, Ty, Txy, T3v, Mzx,M

β
z ,M

α
4u

Gβ1
4v , G

β2
4v T β1

4v , T
β2
4v

ω=exp(−2πi/3)

Table C.53: IRREPs of four types of multipoles in 6′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2.

E C3 C
2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 A+ Q0, Qz, Qu, G0, Gz, Gu T3a, T3b, M3a,M3b, 6′ [001]
Qα

z , Q40 Gα
z , G40 T4a, T4b M4a,M4b

A− Q3a, Q3b, G3a, G3b, T0, Tz, Tu, M0,Mz,Mu, 3 [001]
Q4a, Q4b G4a, G4b T α

z , T40 Mα
z ,M40

E 1 ω ω2 } E Qv, Qxyz, Q
β1
4u, Q

β2
4u Gv, Gxyz, G

β1
4u, G

β2
4u Tx, Tyz, T3u, T

α
4v Mx,Myz,M3u,M

α
4v 2′ [001]

1 ω2 ω Qxy, Q
β
z , Q

β1
4v , Q

β2
4v Gxy, G

β
z , G

β1
4v , G

β2
4v Ty, Tzx, T3v, T

α
4u My,Mzx,M3v,M

α
4u

Qx, Qyz, Q3u, Q
α
4v Gx, Gyz, G3u, G

α
4v Tv, Txyz, T

β1
4u , T

β2
4u Mv,Mxyz,M

β1
4u ,M

β2
4u 1 —

Qy, Qzx, Q3v, Q
α
4u Gy, Gzx, G3v, G

α
4u Txy, T

β
z , T

β1
4v , T

β2
4v Mxy,M

β
z ,M

β1
4v ,M

β2
4v

ω=exp(−2πi/3)

151



C.2. BLACK-AND-WHITE POINT GROUPS

Table C.54: IRREPs of four types of multipoles in 3̄′m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E 2C3 3C2y IRREP E ET MT M MPG P. axis
A1 1 1 1 A+

1 Q0, Qu, G3b T3b M0,Mu, 3̄′m′ [001]
Q40, Q4b M40,M4b

A−
1 Q3b G0, Gu, T0, Tu, M3b 32 [001]

G40, G4b T40, T4b
A2 1 1 −1 A+

2 Q4a Gz, G
α
z , G3a Tz, T

α
z , T3a M4a 3̄′ [001]

A−
2 Qz, Q

α
z , Q3a G4a T4a Mz,M

α
z ,M3a 3m′ [001]

E 2 −1 0 E+ Qyz, Qxy, Gx, G3u, G
β
z Tx, T3u, T

β
z Myz,Mxy, 1̄′ —

Qα
4v, Q

β1
4v , Q

β2
4v Mα

4v,M
β1
4v ,M

β2
4v

Qzx, Qv, Gy, G3v, Gxyz Ty, T3v, Txyz Mzx,Mv, 2/m′ [010]

Qα
4u, Q

β1
4u, Q

β2
4u Mα

4u,M
β1
4u ,M

β2
4u

E− Qx, Q3u, Q
β
z Gyz, Gxy, Tyz, Txy, Mx,M3u,M

β
z m′ [010]

Gα
4v, G

β1
4v , G

β2
4v T α

4v, T
β1
4v , T

β2
4v

Qy, Q3v, Qxyz Gzx, Gv, Tzx, Tv, My,M3v,Mxyz 2 [010]

Gα
4u, G

β1
4u, G

β2
4u T α

4u, T
β1
4u , T

β2
4u

Table C.55: IRREPs of four types of multipoles in 3̄′m. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E 2C3 3σy IRREP E ET MT M MPG P. axis
A1 1 1 1 A+

1 Q0, Qu, G3b Tz, T
α
z , T3a M4a 3̄′m [001]

Q40, Q4b

A−
1 Qz, Q

α
z , Q3a G4a T0, Tu, M3b 3m [001]

T40, T4b
A2 1 1 −1 A+

2 Q4a Gz, G
α
z , G3a T3b M0,Mu, 3̄′ [001]

M40,M4b

A−
2 Q3b G0, Gu, T4a Mz,M

α
z ,M3a 32′ [001]

G40, G4b

E 2 −1 0 E+ Qyz, Qxy, Gx, G3u, G
β
z Ty, T3v, Txyz Mzx,Mv, 1̄′ —

Qα
4v, Q

β1
4v , Q

β2
4v Mα

4u,M
β1
4u ,M

β2
4u

Qzx, Qv Gy, G3v, Gxyz Tx, T3u, T
β
z Myz,Mxy, 2′/m [010]

Qα
4u, Q

β1
4u, Q

β2
4u Mα

4v,M
β1
4v ,M

β2
4v

E− Qy, Q3v, Qxyz Gzx, Gv, Tyz, Txy, Mx,M3u,M
β
z 2′ [010]

Gα
4u, G

β1
4u, G

β2
4u T α

4v, T
β1
4v , T

β2
4v

Qx, Q3u, Q
β
z Gyz, Gxy, Tzx, Tv, My,M3v,Mxyz m [010]

Gα
4v, G

β1
4v , G

β2
4v T α

4u, T
β1
4u , T

β2
4u
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Table C.56: IRREPs of four types of multipoles in 3̄m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′

2.

E C3 C
2
3 I IC3 IC2

3 IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 1 1 A+

g Q0, Qu, G3b T4a Mz,M
α
z ,M3a 3̄m′ [001]

Q40, Q4b

A−
g Q4a Gz, G

α
z , G3a T0, Tu, M3b 3̄ [001]

T40, T4b
Eg 1 ω ω2 1 ω ω2 E

(1)+
g } Qyz, Qxy, Gx, G3u, G

β
z 1̄ —

Qα
4v, Q

β1
4v , Q

β2
4v

1 ω2 ω 1 ω2 ω E
(2)+
g Qzx, Qv, Gy, G3v, Gxyz 2′/m′ [010]

Qα
4u, Q

β1
4u, Q

β2
4u

E
(1)−
g } Tyz, Txy, Mx,M3u,M

β
z 2′/m′ [010]

T α
4v, T

β1
4v , T

β2
4v

E
(2)−
g Tzx, Tv, My,M3v,Mxyz 1̄ —

T α
4u, T

β1
4u , T

β2
4u

Au 1 1 1 −1 −1 −1 A+
u Q3b G0, Gu, Tz, T

α
z , T3a M4a 32′ [001]

G40, G4b

A−
u Qz, Q

α
z , Q3a G4a T3b M0,Mu, 3m′ [001]

M40,M4b

Eu 1 ω ω2 −1 −ω −ω2 E
(1)+
u } Qx, Q3u, Q

β
z Gyz, Gxy m′ [010]

Gα
4v, G

β1
4v , G

β2
4v

1 ω2 ω −1 −ω2 −ω E
(2)+
u Qy, Q3v, Qxyz Gzx, Gv 2′ [010]

Gα
4u, G

β1
4u, G

β2
4u

E
(1)−
u } Tx, T3u, T

β
z Myz,Mxy 2′ [010]

Mα
4v,M

β1
4v ,M

β2
4v

E
(2)−
u Ty, T3v, Txyz Mzx,Mv m′ [010]

Mα
4u,M

β1
4u ,M

β2
4u

ω=exp(−2πi/3)

Table C.57: IRREPs of four types of multipoles in 32′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′

2.

E C3 C2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 A+ Q0, Qu, Q3b, G0, Gu, G3b, Tz, T
α
z , Mz,M

α
z , 32′ [001]

Q40, Q4b G40, G4b T3a, T4a M3a,M4a

A− Qz, Q
α
z , Gz, G

α
z , T0, Tu, T3b, M0,Mu,M3b, 3 [001]

Q3a, Q4a G3a, G4a T40, T4b M40,M4b

E 1 ω ω2 E(1)+ } Qx, Qyz, Qxy, Gx, Gyz, Gxy 1 —
Q3u, Q

β
z , G3u, G

β
z

Qα
4v, Q

β1
4v , Q

β2
4v Gα

4v, G
β1
4v , G

β2
4v

1 ω2 ω E(2)+ Qy, Qzx, Qv, Gy, Gzx, Gv, 2′ [010]
Q3v, Qxyz, G3v, Gxyz,

Qα
4u, Q

β1
4u, Q

β2
4u Gα

4u, G
β1
4u, G

β2
4u

E(1)− } Tx, Tyz, Txy, Mx,Myz,Mxy, 2′ [010]
T3u, T

β
z , M3u,M

β
z ,

T α
4v, T

β1
4v , T

β2
4v Mα

4v,M
β1
4v ,M

β2
4v

E(2)− Ty, Tzx, Tv, My,Mzx,Mv, 1 —
T3v, Txyz, M3v,Mxyz,

T α
4u, T

β1
4u , T

β2
4u Mα

4u,M
β1
4u ,M

β2
4u

ω=exp(−2πi/3)
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Table C.58: IRREPs of four types of multipoles in 3̄′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E C3 C2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 A+ Q0, Qu, Gz, G
α
z , G3a, G3b Tz, T

α
z , T3a, T3b M0,Mu, 3̄′ [001]

Q40, Q4a, Q4b M40,M4a,M4b

A− Qz, Q
α
z , Q3a, Q3b G0, Gu, T0, Tu, Mz,M

α
z ,M3a,M3b 3 [001]

G40, G4a, G4b T40, T4a, T4b
E 1 ω ω2 } E Qyz, Qxy, Gx, G3u, G

β
z Tx, T3u, T

β
z Myz,Mxy, 1̄′ —

1 ω2 ω Qα
4v, Q

β1
4v , Q

β2
4v Mα

4v,M
β1
4v ,M

β2
4v

Qzx, Qv, Gy, G3v, Gxyz Ty, T3v, Txyz Mzx,Mv,

Qα
4u, Q

β1
4u, Q

β2
4u Mα

4u,M
β1
4u ,M

β2
4u

Qx, Q3u, Q
β
z Gyz, Gxy, Tyz, Txy, Mx,M3u,M

β
z 1 —

Gα
4v, G

β1
4v , G

β2
4v T α

4v, T
β1
4v , T

β2
4v

Qy, Q3v, Qxyz Gzx, Gv, Tzx, Tv, My,M3v,Mxyz

Gα
4u, G

β1
4u, G

β2
4u T α

4u, T
β1
4u , T

β2
4u

ω=exp(−2πi/3)

Table C.59: IRREPs of four types of multipoles in 3m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσv.

E C3 C
2
3 IRREP E ET MT M MPG P. axis

A 1 1 1 A+ Q0, Qz, Qu, G3b, G4a T3a, T4a M0,Mz,Mu, 3m′ [001]
Qα

z , Q3a, Q40, Q4b Mα
z ,M3a,M40,M4b

A− Q3b, Q4a G0, Gz, Gu, T0, Tz, Tu M3b,M4a 3 [001]
Gα

z , G3a, G40, G4b T
α
z , T3b, T40, T4b

E 1 ω ω2 E(1)+ } Qyz, Qxy, Gx, G3u, G
β
z Tx, T3u, T

β
z Myz,Mxy, 1 —

Qα
4v, Q

β1
4v , Q

β2
4v Mα

4v,M
β1
4v ,M

β2
4v

1 ω2 ω E(2)+ Qzx, Qv, Gy, G3v, Gxyz Ty, T3v, Txyz Mzx,Mv, m′ [010]

Qα
4u, Q

β1
4u, Q

β2
4u Mα

4u,M
β1
4u ,M

β2
4u

E(1)− } Qx, Q3u, Q
β
z Gyz, Gxy, Tyz, Txy, Mx,M3u,M

β
z m′ [010]

Gα
4v, G

β1
4v , G

β2
4v T α

4v, T
β1
4v , T

β2
4v

E(2)− Qy, Q3v, Qxyz Gzx, Gv, Tzx, Tv, My,M3v,Mxyz 1 —

Gα
4u, G

β1
4u, G

β2
4u T α

4u, T
β1
4u , T

β2
4u

ω=exp(−2πi/3)
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Table C.60: IRREPs of four types of multipoles in 4/m′m′m′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θI.

E 2C4 C2
4 2C ′

2 2C ′′
2 IRREP E ET MT M MPG P. axis

A1 1 1 1 1 1 A+
1 Q0, Qu, M0,Mu, 4/m′m′m′ [001]

Q4, Q4u M4,M4u

A−
1 G0, Gu, T0, Tu, 422 [001]

G4, G4u T4, T4u
A2 1 1 1 −1 −1 A+

2 Qα
4z Gz, G

α
z , Tz, T

α
z Mα

4z 4/m′ [001]
A−

2 Qz, Q
α
z Gα

4z T α
4z Mz,M

α
z 4m′m′ [001]

B1 1 −1 1 1 −1 B+
1 Qv, Q4v Gxyz Txyz Mv,M4v m′m′m′ [100]

B−
1 Qxyz Gv, G4v Tv, T4v Mxyz 4̄′2m′ [001]

B2 1 −1 1 −1 1 B+
2 Qxy, Q

β
4z Gβ

z T β
z Mxy,M

β
4z m′m′m′ [110]

B−
2 Qβ

z Gxy, G
β
4z Txy, T

β
4z Mβ

z 4̄′m′2 [001]
E 2 0 −2 0 0 E+ Qyz, Gx, Tx, Myz, 2/m′ [100]

Qα
4x, Q

β
4x Gα

x , G
β
x T α

x , T
β
x Mα

4x,M
β
4x

Qzx, Gy, Ty, Mzx, 2/m′ [010]

Qα
4y, Q

β
4y Gα

y , G
β
y T α

y , T
β
y Mα

4y,M
β
4y

E− Qx, Gyz, Tyz, Mx, 2m′m′ [100]

Qα
x , Q

β
x Gα

4x, G
β
4x T α

4x, T
β
4x Mα

x ,M
β
x

Qy, Gzx, Tzx, My, m′2m′ [100]

Qα
y , Q

β
y Gα

4y, G
β
4y T α

4y, T
β
4y Mα

y ,M
β
y

Table C.61: IRREPs of four types of multipoles in 4′/m′m′m. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θI.

E 2IC4 C2
4 2C ′

2 2σd IRREP E ET MT M MPG P. axis
A1 1 1 1 1 1 A+

1 Q0, Qu, Txyz Mv,M4v 4′/m′m′m [001]
Q4, Q4u

A−
1 Qxyz Gv, G4v T0, Tu, 4̄2m [001]

T4, T4u
A2 1 1 1 −1 −1 A+

2 Qα
4z Gz, G

α
z T β

z Mxy,M
β
4z 4′/m′ [001]

A−
2 Qβ

z Gxy, G
β
4z T α

4z Mz,M
α
z 4̄m′2′ [001]

B1 1 −1 1 1 −1 B+
1 Qv, Q4v Gxyz M0,Mu, m′m′m′ [100]

M4,M4u

B−
1 G0, Gu, Tv, T4v Mxyz 4′22′ [001]

G4, G4u

B2 1 −1 1 −1 1 B+
2 Qxy, Q

β
4z Gβ

z Tz, T
α
z Mα

4z mmm′ [110]

B−
2 Qz, Q

α
z Gα

4z Txy, T
β
4z Mβ

z 4′m′m [001]
E 2 0 −2 0 0 E+ Qyz, Gx, Tx, Myz, 2/m′ [100]

Qα
4x, Q

β
4x Gα

x , G
β
x T α

x , T
β
x Mα

4x,M
β
4x

Qzx, Gy, Ty, Mzx, 2/m′ [010]

Qα
4y, Q

β
4y Gα

y , G
β
y T α

y , T
β
y Mα

4y,M
β
4y

E− Qx, Gyz, Tyz, Mx, 2m′m′ [100]

Qα
x , Q

β
x Gα

4x, G
β
4x T α

4x, T
β
4x Mα

x ,M
β
x

Qy, Gzx, Tzx, My, m′2m′ [100]

Qα
y , Q

β
y Gα

4y, G
β
4y T α

4y, T
β
4y Mα

y ,M
β
y
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Table C.62: IRREPs of four types of multipoles in 4/m′mm. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θI.

E 2C4 C2
4 2σv 2σd IRREP E ET MT M MPG P. axis

A1 1 1 1 1 1 A+
1 Q0, Qu, Tz, T

α
z Mα

4z 4/m′mm [001]
Q4, Q4u

A−
1 Qz, Q

α
z Gα

4z T0, Tu, 4mm [001]
T4, T4u

A2 1 1 1 −1 −1 A+
2 Qα

4z Gz, G
α
z M0,Mu, 4/m′ [001]

M4,M4u

A−
2 G0, Gu, T α

4z Mz,M
α
z 42′2′ [001]

G4, G4u

B1 1 −1 1 1 −1 B+
1 Qv, Q4v Gxyz T β

z Mxy,M
β
4z mmm′ [100]

B−
1 Qβ

z Gxy, G
β
4z Tv, T4v Mxyz 4̄′m2′ [001]

B2 1 −1 1 −1 1 B+
2 Qxy, Q

β
4z Gβ

z Txyz Mv,M4v mmm′ [110]

B−
2 Qxyz Gv, G4v Txy, T

β
4z Mβ

z 4̄′2′m [001]
E 2 0 −2 0 0 E+ Qyz, Gx, Ty, Mzx, 2′/m [100]

Qα
4x, Q

β
4x Gα

x , G
β
x T α

y , T
β
y Mα

4y,M
β
4y

Qzx, Gy, Tx, Myz, 2′/m [010]

Qα
4y, Q

β
4y Gα

y , G
β
y T α

x , T
β
x Mα

4x,M
β
4x

E− Qx, Gyz, Tzx, My, 2′mm′ [100]

Qα
x , Q

β
x Gα

4x, G
β
4x T α

4y, T
β
4y Mα

y ,M
β
y

Qy, Gzx, Tyz, Mx, m2′m′ [100]

Qα
y , Q

β
y Gα

4y, G
β
4y T α

4x, T
β
4x Mα

x ,M
β
x
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Table C.63: IRREPs of four types of multipoles in 4/mm′m′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θC ′

2 (about
[100] axis).

E C4 C2
4 C3

4 I 2IC4 σh IC3
4 IRREP E ET MT M MPG P. axis

Ag 1 1 1 1 1 1 1 1 A+
g Q0, Qu, T α

4z Mz,M
α
z 4/mm′m′ [001]

Q4, Q4u

A−
g Qα

4z Gz, G
α
z T0, Tu, 4/m [001]

T4, T4u
Bg 1 −1 1 −1 1 −1 1 −1 B+

g Qv, Q4v Gxyz Txy, T
β
4z Mβ

z m′m′m [100]

B−
g Qxy, Q

β
4z Gβ

z Tv, T4v Mxyz m′m′m [110]

Eg 1 −i −1 i 1 −i −1 i E
(1)+
g } Qyz, Gx, 2′/m′ [100]

Qα
4x, Q

β
4x Gα

x , G
β
x

1 i −1 −i 1 i −1 −i E
(2)+
g Qzx, Gy, 2′/m′ [010]

Qα
4y, Q

β
4y Gα

y , G
β
y

E
(1)−
g } Tyz, Mx, 2′/m′ [010]

T α
4x, T

β
4x Mα

x ,M
β
x

E
(2)−
g Tzx, My, 2′/m′ [100]

T α
4y, T

β
4y Mα

y ,M
β
y

Au 1 1 1 1 −1 −1 −1 −1 A+
u G0, Gu Tz, T

α
z Mα

4z 42′2′ [001]
G4, G4u

A−
u Qz, Q

α
z Gα

4z M0,Mu, 4m′m′ [001]
M4,M4u

Bu 1 −1 1 −1 −1 1 −1 1 B+
u Qxyz Gv, G4v T β

z Mxy,M
β
4z 4̄2′m′ [001]

B−
u Qβ

z Gxy, G
β
4z Txyz Mv,M4v 4̄m′2′ [001]

Eu 1 −i −1 i −1 i 1 −i E
(1)+
u } Qx, Gyz, 2′m′m [100]

Qα
x , Q

β
x Gα

4x, G
β
4x

1 i −1 −i −1 −i 1 i E
(2)+
u Qy, Gzx, m′2′m [100]

Qα
y , Q

β
y Gα

4y, G
β
4y

E
(1)−
u } Tx, Myz, m′2′m [100]

T α
x , T

β
x Mα

4x,M
β
4x

E
(2)−
u Ty, Mzx 2′m′m [100]

T α
y , T

β
y Mα

4y,M
β
4y
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Table C.64: IRREPs of four types of multipoles in 4′/mmm′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θC ′′

2 (about
[110] axis).

E C2z C2y C2x I σz σy σx IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 1 1 1 1 A+

g Q0, Qu, Tv, T4v Mxyz 4′/mmm′ [001]
Q4, Q4u

A−
g Qv, Q4v Gxyz T0, Tu, mmm [100]

T4, T4u
B1g 1 1 −1 −1 1 1 −1 −1 B+

1g Qxy, Q
β
4z Gβ

z T α
4z Mz,M

α
z m′m′m [110]

B−
1g Qα

4z Gz, G
α
z Txy, T

β
4z Mβ

z 4′/m [001]
B2g 1 −1 1 −1 1 −1 1 −1 } B2g Qzx, Gy, Tzx, My, 2/m [010]

Qα
4y, Q

β
4y Gα

y , G
β
y T α

4y, T
β
4y Mα

y ,M
β
y

B3g 1 −1 −1 1 1 −1 −1 1 Qyz, Gx, Tyz, Mx, 2/m [100]

Qα
4x, Q

β
4x Gα

x , G
β
x T α

4x, T
β
4x Mα

x ,M
β
x

Au 1 1 1 1 −1 −1 −1 −1 A+
u G0, Gu, Txyz Mv,M4v 4′22′ [001]

G4, G4u

A−
u Qxyz Gv, G4v M0,Mu, 4̄′2m′ [001]

M4,M4u

B1u 1 1 −1 −1 −1 −1 1 1 B+
1u Qβ

z Gxy, G
β
4z Tz, T

α
z Mα

4z 4̄′m2′ [001]

B−
1g Qz, Q

α
z Gα

4z T β
z Mxy,M

β
4z 4′mm′ [001]

B2u 1 −1 1 −1 −1 1 −1 1 } B2u Qy, Gzx, Ty, Mzx, m2m [100]

Qα
y , Q

β
y Gα

4y, G
β
4y T α

y , T
β
y Mα

4y,M
β
4y

B3u 1 −1 −1 1 −1 1 1 −1 Qx, Gyz, Tx, Myz, 2mm [100]

Qα
x , Q

β
x Gα

4x, G
β
4x T α

x , T
β
x Mα

4x,M
β
4x

Table C.65: IRREPs of four types of multipoles in 42′2′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′

2 (about [100] axis).

E C4 C2
4 C3

4 IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qu, G0, Gu, Tz, Mz, 42′2′ [001]

Q4, Q4u G4, G4u T α
z , T

α
4z Mα

z ,M
α
4z

A− Qz, Gz, T0, Tu, M0,Mu, 4 [001]
Qα

z , Q
α
4z Gα

z , G
α
4z T4, T4u M4,M4u

B 1 −1 1 −1 B+ Qv, Gv, Txy, Mxy, 2′2′2 [100]

Qxyz, Q4v Gxyz, G4v T β
z , T

β
4z Mβ

z ,M
β
4z

B− Qxy Gxy Tv, Mv, 2′2′2 [110]

Qβ
z , Q

β
4z Gβ

z , G
β
4z Txyz, T4v Mxyz,M4v

E 1 −i −1 i E(1)+ } Qx, Qyz, Q
α
x , Q

β
x, Gx, Gyz, G

α
x , G

β
x, 2′ [100]

Qα
4x, Q

β
4x Gα

4x, G
β
4x

1 i −1 −i E(2)+ Qy, Qzx, Q
α
y , Q

β
y , Gy, Gzx, G

α
y , G

β
y , 2′ [010]

Qα
4y, Q

β
4y Gα

4y, G
β
4y

E(1)− } Tx, Tyz, T
α
x , T

β
x , Mx,Myz,M

α
x ,M

β
x , 2′ [010]

T α
4x, T

β
4x Mα

4x,M
β
4x

E(2)− Ty, Tzx, T
α
y , T

β
y , My,Mzx,M

α
y ,M

β
y , 2′ [100]

T α
4y, T

β
4y Mα

4y,M
β
4y
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Table C.66: IRREPs of four types of multipoles in 4′22′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′′

2 (about [110] axis).

E C2z C2y C2x IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qu, G0, Gu, Tv, Mv, 4′22′ [001]

Q4, Q4u G4, G4u Txyz, T4v Mxyz,M4v

A− Qv, Gv, T0, Tu, M0,Mu, 222 [100]
Qxyz, Q4v Gxyz, G4v T4, T4u M4,M4u

B1 1 1 −1 −1 B+
1 Qxy, Gxy, Tz, Mz, 2′2′2 [110]

Qβ
z , Q

β
4z Gβ

z , G
β
4z T α

z , T
α
4z Mα

z ,M
α
4z

B−
1 Qz, Gz, Txy Mxy, 4′ [001]

Qα
z , Q

α
4z Gα

z , G
α
4z T β

z , T
β
4z Mβ

z ,M
β
4z

B2 1 −1 1 −1 } B2 Qx, Qyz, Q
α
x , Gx, Gyz, G

α
x , Tx, Tyz, T

α
x , Mx,Myz,M

α
x , 2 [100]

Qβ
x, Q

α
4x, Q

β
4x Gβ

x, G
α
4x, G

β
4x T β

x , T
α
4x, T

β
4x Mβ

x ,M
α
4x,M

β
4x

B3 1 −1 −1 1 Qy, Qyz, Q
α
y , Gy, Gzx, G

α
y , Ty, Tzx, T

α
y , My,Mzx,M

α
y , 2 [010]

Qβ
y , Q

α
4y, Q

β
4y Gβ

y , G
α
4y, G

β
4y T β

y , T
α
4y, T

β
4y Mβ

y ,M
α
4y,M

β
4y

Table C.67: IRREPs of four types of multipoles in 4̄2′m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′

2 (about [100] axis).

E IC4 C
2
4 IC

3
4 IRREP E ET MT M MPG P. axis

A 1 1 1 1 A+ Q0, Qu, Gv, G4v T β
z , T

α
4z Mz,Mxy, 4̄2′m′ [001]

Qxyz, Q4, Q4u Mα
z ,M

β
4z

A− Qβ
z , Q

α
4z Gz, Gxy, T0, Tu, Mv,M4v 4̄ [001]

Gα
z , G

β
4z Txyz, T4, T4u

B 1 −1 1 −1 B+ Qv, Q4v G0, Gu, Tz, Txy, Mβ
z ,M

α
4z 2′2′2 [100]

Gxyz, G4, G4u T α
z , T

β
4z

B− Qz, Qxy, Gβ
z , G

α
4z Tv, T4v M0,Mu, m′m′2 [110]

Qα
z , Q

β
4z Mxyz,M4,M4u

E 1 −i −1 i E(1)+ } Qx, Qyz, Q
α
x , Q

β
x, Gx, Gyz, G

α
x , G

β
x, 2′ [100]

Qα
4x, Q

β
4x Gα

4x, G
β
4x

1 i −1 −i E(2)+ Qy, Qzx, Q
α
y , Q

β
y , Gy, Gzx, G

α
y , G

β
y , 2′ [010]

Qα
4y, Q

β
4y Gα

4y, G
β
4y

E(1)− } Tx, Tyz, T
α
x , T

β
x , Mx,Myz,M

α
x ,M

β
x , 2′ [010]

T α
4x, T

β
4x Mα

4x,M
β
4x

E(2)− Ty, Tzx, T
α
y , T

β
y , My,Mzx,M

α
y ,M

β
y , 2′ [100]

T α
4y, T

β
4y Mα

4y,M
β
4y
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Table C.68: IRREPs of four types of multipoles in 4̄′2m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσd (σd⊥[110]).

E C2z C2y C2x IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qu, Gv, G4v Tv, T4v M0,Mu, 4̄′2m′ [001]

Qxyz, Q4, Q4u Mxyz,M4,M4u

A− Qv, Q4v G0, Gu, T0, Tu, Mv,M4v 222 [100]
Gxyz, G4, G4u Txyz, T4, T4u

B1 1 1 −1 −1 B+
1 Qz, Qxy, Gβ

z , G
α
4z T β

z , T
α
4z Mz,Mxy, m′m′2 [110]

Qα
z , Q

β
4z Mα

z ,M
β
4z

B−
1 Qβ

z , Q
α
4z Gz, Gxy, Tz, Txy, Mβ

z ,M
α
4z 4̄′ [001]

Gα
z , G

β
4z T α

z , T
β
4z

B2 1 −1 1 −1 } B2 Qy, Qzx, Q
α
y , Gy, Gzx, G

α
y , Ty, Tzx, T

α
y , My,Mzx,M

α
y , 2 [010]

Qβ
y , Q

α
4y, Q

β
4y Gβ

y , G
α
4y, G

β
4y T β

y , T
α
4y, T

β
4y Mβ

y ,M
α
4y,M

β
4y

B3 1 −1 −1 1 Qx, Qyz, Q
α
x , Gx, Gyz, G

α
x , Tx, Tyz, T

α
x , Mx,Myz,M

α
x , 2 [100]

Qβ
x, Q

α
4x, Q

β
4x Gβ

x, G
α
4x, G

β
4x T β

x , T
α
4x, T

β
4x Mβ

x ,M
α
4x,M

β
4x

Table C.69: IRREPs of four types of multipoles in 4̄′m2′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC ′′

2 (about [110] axis).

E C2z σy σx IRREP E ET MT M MPG P. axis

A1 1 1 1 1 A+
1 Q0, Qu, Gxy, G

β
4z Tz, Tv, Mxyz,M

α
4z 4̄′m2′ [001]

Qβ
z , Q4, Q4u T α

z , T4v
A−

1 Qz, Qv, Gxyz, G
α
4z T0, Tu, Mxy,M

β
4z mm2 [100]

Qα
z , Q4v T β

z , T4, T4u
A2 1 1 −1 −1 A+

2 Qxy, Q
β
4z G0, Gu, Txyz, T

α
4z Mz,Mv, 2′2′2 [110]

Gβ
z , G4, G4u Mα

z ,M4v

A−
2 Qxyz, Q

α
4z Gz, Gv, Txy, T

β
4z M0,Mu, 4̄′ [001]

Gα
z , G4v Mβ

z ,M4,M4u

B1 1 −1 1 −1 } B1 Qx, Qzx, Q
α
x , Gy, Gyz, G

α
y , Tx, Tzx, T

α
x , My,Myz,M

α
y , m [010]

Qβ
x, Q

α
4y, Q

β
4y Gβ

y , G
α
4x, G

β
4x T β

x , T
α
4y, T

β
4y Mβ

y ,M
α
4x,M

β
4x

B2 1 −1 −1 1 Qy, Qyz, Q
α
y , Gx, Gzx, G

α
x , Ty, Tyz, T

α
y , Mx,Mzx,M

α
x , m [100]

Qβ
y , Q

α
4x, Q

β
4x Gβ

x, G
α
4y, G

β
4y T β

y , T
α
4x, T

β
4x Mβ

x ,M
α
4y,M

β
4y

Table C.70: IRREPs of four types of multipoles in 4m′m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσv (σv⊥[100]).

E C4 C2
4 C3

4 IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qz, Qu, Gα

4z T α
4z M0,Mz,Mu, 4m′m′ [001]

Qα
z , Q4, Q4u Mα

z ,M4,M4u

A− Qα
4z G0, Gz, Gu, T0, Tz, Tu, Mα

4z 4 [001]
Gα

z , G4, G4u T α
z , T4, T4u

B 1 −1 1 −1 B+ Qv, Gxy, Txy, Mv, m′m′2 [100]

Qβ
z , Q4v Gxyz, G

β
4z Txyz, T

β
4z Mβ

z ,M4v

B− Qxy, Gv, Tv, Mxy, m′m′2 [110]

Qxyz, Q
β
4z Gβ

z , G4v T β
z , T4v Mxyz,M

β
4z

E 1 −i −1 i E(1)+ } Qyz, Q
α
4x, Q

β
4x Gx, G

α
x , G

β
x Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x m′ [100]

1 i −1 −i E(2)+ Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y Ty, T

α
y , T

β
y Mzx,M

α
4y,M

β
4y m′ [010]

E(1)− } Qx, Q
α
x , Q

β
x Gyz, G

α
4x, G

β
4x Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x m′ [010]

E(2)− Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y Tzx, T

α
4y, T

β
4y My,M

α
y ,M

β
y m′ [100]

160



APPENDIX C. TABLES OF MULTIPOLE CLASSIFICATION

Table C.71: IRREPs of four types of multipoles in 4′mm′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσd (σd⊥[110]).

E C2z σy σx IRREP E ET MT M MPG P. axis
A1 1 1 1 1 A+

1 Q0, Qz, Qu, Gα
4z Tv, Mxy, 4′mm′ [001]

Qα
z , Q4, Q4u T β

z , T4v Mxyz,M
β
4z

A−
1 Qv, Gxy, T0, Tz, Tu, Mα

4z mm2 [100]

Qβ
z , Q4v Gxyz, G

β
4z T α

z , T4, T4u
A2 1 1 −1 −1 A+

2 Qxy, Gv, T α
4z M0,Mz,Mu, m′m′2 [110]

Qxyz, Q
β
4z Gβ

z , G
β
4z Mα

z ,M4,M4u

A−
2 Qα

4z G0, Gz, Gu, Txy, Mv, 4′ [001]

Gα
z , G4, G4u Txyz, T

β
4z Mβ

z ,M4v

B1 1 −1 1 −1 } B1 Qx, Qzx, Q
α
x , Gy, Gyz, G

α
y , Tx, Tzx, T

α
x , My,Myz,M

α
y , m [010]

Qβ
x, Q

α
4y, Q

β
4y Gβ

y , G
α
4x, G

β
4x T β

x , T
α
4y, T

β
4y Mβ

y ,M
α
4x,M

β
4x

B2 1 −1 −1 1 Qy, Qyz, Q
α
y , Gx, Gzx, G

α
x , Ty, Tyz, T

α
y , Mx,Mzx,M

α
x , m [100]

Qβ
y , Q

α
4x, Q

β
4x Gβ

x, G
α
4y, G

β
4y T β

y , T
α
4x, T

β
4x Mβ

x ,M
α
4y,M

β
4y

Table C.72: IRREPs of four types of multipoles in 4′/m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E IC4 C2
4 IC3

4 IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qu, Gz, G

α
z Txyz, T

β
z Mv,Mxy, 4′/m′ [001]

Q4, Q4u, Q
α
4z M4v,M

β
4z

A− Qxyz, Q
β
z Gv, Gxy, T0, Tu, Mz,M

α
z 4̄ [001]

G4v, G
β
4z T4, T4u, T

α
4z

B 1 −1 1 −1 B+ Qv, Qxy, Gxyz, G
β
z Tz, T

α
z M0,Mu, 2/m′ [001]

Q4v, Q
β
4z M4,M4u,M

α
4z

B− Qz, Q
α
z G0, Gu, Tv, Txy, Mxyz,M

β
z 4′ [001]

G4, G4u, G
α
4z T4v, T

β
4z

E 1 −i −1 i } E Qyz, Q
α
4x, Q

β
4x Gx, G

α
x , G

β
x Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x 1̄′ —

1 i −1 −i Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y Ty, T

α
y , T

β
y Mzx,M

α
4y,M

β
4y 1̄′ —

Qx, Q
α
x , Q

β
x Gyz, G

α
4x, G

β
4x Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x m′ [001]

Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y Tzx, T

α
4y, T

β
4y My,M

α
y ,M

β
y m′ [001]
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Table C.73: IRREPs of four types of multipoles in 4/m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E C4 C2
4 C3

4 IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qu, Gz, G

α
z Tz, T

α
z M0,Mu, 4/m′ [001]

Q4, Q4u, Q
α
4z M4,M4u,M

α
4z

A− Qz, Q
α
z G0, Gu, T0, Tu, Mz,M

α
z 4 [001]

G4, G4u, G
α
4z T4, T4u, T

α
4z

B 1 −1 1 −1 B+ Qv, Qxy, Gxyz, G
β
z Txyz, T

β
z Mv,Mxy, 2/m′ [001]

Q4v, Q
β
4z M4v,M

β
4z

B− Qxyz, Q
β
z Gv, Gxy, Tv, Txy, Mxyz,M

β
z 4̄′ [001]

G4v, G
β
4z T4v, T

β
4z

E 1 −i −1 i } E Qyz, Q
α
4x, Q

β
4x Gx, G

α
x , G

β
x Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x 1̄′ —

1 i −1 −i Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y Ty, T

α
y , T

β
y Mzx,M

α
4y,M

β
4y 1̄′ —

Qx, Q
α
x , Q

β
x Gyz, G

α
4x, G

β
4x Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x m′ [001]

Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y Tzx, T

α
4y, T

β
4y My,M

α
y ,M

β
y m′ [001]

Table C.74: IRREPs of four types of multipoles in 4′/m. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC4.

E C2z I σz IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 A+

g Q0, Qu, Gz, G
α
z Tv, Txy, Mxyz,M

β
z 4′/m [001]

Q4, Q4u, Q
α
4z T4v, T

β
4z

A−
g Qv, Qxy, Gxyz, G

β
z T0, Tu, Mz,M

α
z 2/m [001]

Q4v, Q
β
4z T4, T4u, T

α
4z

Bg 1 −1 1 −1 Bg Qyz, Q
α
4x, Q

β
4x Gx, G

α
x , G

β
x Tyz, T

α
4x, T

β
4x Mx,M

α
x ,M

β
x 1̄ —

Qzx, Q
α
4y, Q

β
4y Gy, G

α
y , G

β
y Tzx, T

α
4y, T

β
4y My,M

α
y ,M

β
y 1̄ —

Au 1 1 −1 −1 A+
u Qz, Q

α
z G0, Gu, Txyz, T

β
z Mv,Mxy, 4′ [001]

G4, G4u, G
α
4z M4v,M

β
4z

A−
u Qxyz, Q

β
z Gv, Gxy, Tz, T

α
z M0,Mu, 4̄′ [001]

G4v, G
β
4z M4,M4u,M

α
4z

Bu 1 −1 −1 1 Bu Qx, Q
α
x , Q

β
x Gyz, G

α
4x, G

β
4x Tx, T

α
x , T

β
x Myz,M

α
4x,M

β
4x m [001]

Qy, Q
α
y , Q

β
y Gzx, G

α
4y, G

β
4y Ty, T

α
y , T

β
y Mzx,M

α
4y,M

β
4y m [001]

Table C.75: IRREPs of four types of multipoles in 4̄′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θIC4.

E C2z IRREP E ET MT M MPG P. axis
A 1 1 A+ Q0, Qu, Gz, Gv, Gxy Tz, Tv, Txy, M0,Mu, 4̄′ [001]

Qxyz, Q
β
z , Gα

z , G4v, G
β
4z T α

z , T4v, T
β
4z Mxyz,M

β
z ,

Q4, Q4u, Q
α
4z M4,M4u,M

α
4z

A− Qz, Qv, Qxy, G0, Gu, T0, Tu, Mz,Mv,Mxy, 2 [001]

Qα
z , Q4v, Q

β
4z Gxyz, G

β
z , Txyz, T

β
z , Mα

z ,M4v,M
β
4z

G4, G4u, G
α
4z T4, T4u, T

α
4z

B 1 −1 B Qx, Qyz, Gx, Gyz, Tx, Tyz, Mx,Myz, 1 —

Qα
x , Q

β
x, Q

α
4x, Q

β
4x Gα

x , G
β
x, G

α
4x, G

β
4x T α

x , T
β
x , T

α
4x, T

β
4x Mα

x ,M
β
x ,M

α
4x,M

β
4x

Qy, Qzx, Gy, Gzx, Ty, Tzx, My,Mzx, 1 —

Qα
y , Q

β
y , Q

α
4y, Q

β
4y Gα

y , G
β
y , G

α
4y, G

β
4y T α

y , T
β
y , T

α
4y, T

β
4y Mα

y ,M
β
y ,M

α
4y,M

β
4y
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Table C.76: IRREPs of four types of multipoles in 4′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC4.

E C2z IRREP E ET MT M MPG P. axis
A 1 1 A+ Q0, Qz, G0, Gz, Tv, Txy, Mv,Mxy, 4′ [001]

Qu, Q
α
z , Gu, G

α
z , Txyz, T

β
z , Mxyz,M

β
z ,

Q4, Q4u, Q
α
4z G4, G4u, G

α
4z T4v, T

β
4z M4v,M

β
4z

A− Qv, Qxy, Gv, Gxy, T0, Tz, M0,Mz, 2 [001]
Qxyz, Q

β
z , Gxyz, G

β
z , Tu, T

α
z , Mu,M

α
z ,

Q4v, Q
β
4z G4v, G

β
4z T4, T4u, T

α
4z M4,M4u,M

α
4z

B 1 −1 B Qx, Qyz, Gx, Gyz, Tx, Tyz, Mx,Myz, 1 —

Qα
x , Q

β
x, Q

α
4x, Q

β
4x Gα

x , G
β
x, G

α
4x, G

β
4x T α

x , T
β
x , T

α
4x, T

β
4x Mα

x ,M
β
x ,M

α
4x,M

β
4x

Qy, Qzx, Gy, Gzx, Ty, Tzx, My,Mzx, 1 —

Qα
y , Q

β
y , Q

α
4y, Q

β
4y Gα

y , G
β
y , G

α
4y, G

β
4y T α

y , T
β
y , T

α
4y, T

β
4y Mα

y ,M
β
y ,M

α
4y,M

β
4y
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Table C.77: IRREPs of four types of multipoles in m′m′m′. The superscript “±” of
IRREP stands for the parity with respect to the antiunitary operation A=θI.

E C2z C2y C2x IRREP E ET MT M MPG P. axis
A 1 1 1 1 A+ Q0, Qu, Qv, Gxyz Txyz M0,Mu,Mv, m′m′m′ [100]

Q4, Q4u, Q4v M4,M4u,M4v

A− Qxyz G0, Gu, Gv, T0, Tu, Tv, Mxyz 222 [100]
G4, G4u, G4v T4, T4u, T4v

B1 1 1 −1 −1 B+
1 Qxy, Gz, Tz, Mxy, 2/m′ [001]

Qα
4z, Q

β
4z Gα

z , G
β
z T α

z , T
β
z Mα

4z,M
β
4z

B−
1 Qz, Gxy, Txy, Mz, m′m′2 [100]

Qα
z , Q

β
z Gα

4z, G
β
4z T α

4z, T
β
4z Mα

z ,M
β
z

B2 1 −1 1 −1 B+
2 Qzx, Gy, Ty, Mzx, 2/m′ [010]

Qα
4y, Q

β
4y Gα

y , G
β
y T α

y , T
β
y Mα

4y,M
β
4y

B−
2 Qy, Gzx, Tzx, My, m′2m′ [100]

Qα
y , Q

β
y Gα

4y, G
β
4y T α

4y, T
β
4y Mα

y ,M
β
y

B3 1 −1 −1 1 B+
3 Qyz, Gx, Tx, Myz, 2/m′ [100]

Qα
4x, Q

β
4x Gα

x , G
β
x T α

x , T
β
x Mα

4x,M
β
4x

B−
3 Qx, Gyz, Tyz, Mx, 2m′m′ [100]

Qα
x , Q

β
x Gα

4x, G
β
4x T α

4x, T
β
4x Mα

x ,M
β
x

Table C.78: IRREPs of four types of multipoles in m′m′m. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2x.

E C2z I σz IRREP E ET MT M MPG P. axis
Ag 1 1 1 1 A+

g Q0, Qu, Qv, Gxyz Txy, Mz, m′m′m [100]

Q4, Q4u, Q4v T α
4z, T

β
4z Mα

z ,M
β
z

A−
g Qxy Gz T0, Tu, Tv, Mxyz 2/m [001]

Qα
4z, Q

β
4z Gα

z , G
β
z T4, T4u, T4v

Bg 1 −1 1 −1 B+
g Qyz, Gx, Tzx, My, 2′/m′ [100]

Qα
4x, Q

β
4x Gα

x , G
β
x T α

4y, T
β
4y Mα

y ,M
β
y

B−
g Qzx, Gy, Tyz, Mx, 2′/m′ [010]

Qα
4y, Q

β
4y Gα

y , G
β
y T α

4x, T
β
4x, Mα

x ,M
β
x

Au 1 1 −1 −1 A+
u Qxyz G0, Gu, Gv, Tz, Mxy, 2′2′2 [100]

G4, G4u, G4v T α
z , T

β
z Mα

4z,M
β
4z

A−
u Qz, Gxy, Txyz M0,Mu,Mv, m′m′2 [100]

Qα
z , Q

β
z Gα

4z, G
β
4z M4,M4u,M4v

Bu 1 −1 −1 1 B+
u Qx, Gyz, Ty, Mzx, 2′m′m [100]

Qα
x , Q

β
x Gα

4x, G
β
4x T α

y , T
β
y Mα

4y,M
β
4y

B−
u Qy, Gzx, Tx, Myz, m′2′m [100]

Qα
y , Q

β
y Gα

4y, G
β
4y T α

x , T
β
x Mα

4x,M
β
4x
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Table C.79: IRREPs of four types of multipoles in mmm′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E C2z σy σx IRREP E ET MT M MPG P. axis
A1 1 1 1 1 A+

1 Q0, Qu, Qv, Gxyz Tz, Mxy, mmm′ [100]

Q4, Q4u, Q4v T α
z , T

β
z Mα

4z,M
β
4z

A−
1 Qz, Gxy, T0, Tu, Tv, Mxyz mm2 [100]

Qα
z , Q

β
z Gα

4z, G
β
4z T4, T4u, T4v

A2 1 1 −1 −1 A+
2 Qxy, Gz, Txyz M0,Mu,Mv, 2/m′ [001]

Qα
4z, Q

β
4z Gα

z , G
β
z M4,M4u,M4v

A−
2 Qxyz G0, Gu, Gv, Txy, Mz, 2′2′2 [100]

G4, G4u, G4v T α
4z, T

β
4z Mα

z ,M
β
z

B1 1 −1 1 −1 B+
1 Qzx, Gy, Tx, Myz, 2′/m [010]

Qα
4y, Q

β
4y Gα

y , G
β
y T α

x , T
β
x Mα

4x,M
β
4x

B−
1 Qx Gyz Tzx My 2′mm′ [100]

Qα
x , Q

β
x Gα

4x, G
β
4x T α

4y, T
β
4y Mβ

y ,M
β
y

B2 1 −1 −1 1 B+
2 Qyz, Gx, Ty, Mzx, 2′/m [100]

Qα
4x, Q

β
4x Gα

x , G
β
x T α

y , T
β
y Mα

4y,M
β
4y

B−
2 Qy, Gzx, Tyz, Mx, m2′m′ [100]

Qα
y , Q

β
y Gα

4y, G
β
4y T α

4x, T
β
4x Mα

x ,M
β
x

Table C.80: IRREPs of four types of multipoles in 2′2′2. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2x.

E C2z IRREP E ET MT M MPG P. axis
A 1 1 A+ Q0, Qu, Qv, G0, Gu, Gv, Tz, Txy, T

α
z , T

β
z , Mz,Mxy,M

α
z ,M

β
z , 2′2′2 [100]

Qxyz, Q4, Q4u, Q4v Gxyz, G4, G4u, G4v T α
4z, T

β
4z Mα

4z,M
β
4z

A− Qz, Qxy, Q
α
z , Q

β
z , Gz, Gxy, G

α
z , G

β
z , T0, Tu, Tv, M0,Mu,Mv, 2 [001]

Qα
4z, Q

β
4z Gα

4z, G
β
4z Txyz, T4, T4u, T4v Mxyz,M4,M4u,M4v

B 1 −1 B+ Qx, Qyz, Q
α
x , Q

β
x, Gx, Gyz, G

α
x , G

β
x, Ty, Tzx, T

α
y , T

β
y , My,Mzx,M

α
y ,M

β
y , 2′ [100]

Qα
4x, Q

β
4x Gα

4x, G
β
4x T α

4y, T
β
4y Mα

4y,M
β
4y

B− Qy, Qzx, Q
α
y , Q

β
y , Gy, Gzx, G

α
y , G

β
y , Tx, Tyz, T

α
x , T

β
x , Mx,Myz,M

α
x ,M

β
x , 2′ [010]

Qα
4y, Q

β
4y Gα

4y, G
β
4y T α

4x, T
β
4x Mα

4x,M
β
4x

Table C.81: IRREPs of four types of multipoles in m′m′2. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσx.

E C2z IRREP E ET MT M MPG P. axis
A 1 1 A+ Q0, Qz, Qu, Qv, Gxy, Gxyz, Txy, Txyz, M0,Mz,Mu,Mv, m′m′2 [100]

Qα
z , Q

β
z , Gα

4z, G
β
4z T α

4z, T
β
4z Mα

z ,M
β
z ,

Q4, Q4u, Q4v M4,M4u,M4v

A− Qxy, Qxyz, G0, Gz, Gu, Gv, T0, Tz, Tu, Tv, Mxy,Mxyz, 2 [001]

Qα
4z, Q

β
4z Gα

z , G
β
z , T α

z , T
β
z , Mα

4z,M
β
4z

G4, G4u, G4v T4, T4u, T4v
B 1 −1 B+ Qy, Qyz, Q

α
y , Q

β
y , Gx, Gzx, G

α
x , G

β
x, Tx, Tzx, T

α
x , T

β
x , My,Myz,M

α
y ,M

β
y , m′ [100]

Qα
4x, Q

β
4x Gα

4y, G
β
4y T α

4y, T
β
4y Mα

4x,M
β
4x

B− Qx, Qzx, Q
α
x , Q

β
x, Gy, Gyz, G

α
y , G

β
y , Ty, Tyz, T

α
y , T

β
y , Mx,Mzx,M

α
x ,M

β
x , m′ [010]

Qα
4y, Q

β
4y Gα

4x, G
β
4x T α

4x, T
β
4x Mα

4y,M
β
4y

165



C.2. BLACK-AND-WHITE POINT GROUPS

Table C.82: IRREPs of four types of multipoles in m′m2′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2z.

E σy IRREP E ET MT M MPG P. axis
A′ 1 1 A′+ Q0, Qz, Qu, Qv Gxy, Gxyz, Tx, Tzx, My,Myz, m′m2′ [010]

Qα
z , Q

β
z , Gα

4z, G
β
4z T α

x , T
β
x , T

α
4y, T

β
4y Mα

y ,M
β
y ,M

α
4x,M

β
4x

Q4, Q4u, Q4v

A′− Qx, Qzx, Gy, Gyz, T0, Tz, Tu, Tv, Mxy,Mxyz, m [010]

Qα
x , Q

β
x, Q

α
4y, Q

β
4y Gα

y , G
β
y , G

α
4x, G

β
4x T α

z , T
β
z , Mα

4z,M
β
4z

T4, T4u, T4v
A′′ 1 −1 A′′+ Qxy, Qxyz, G0, Gz, Gu, Gv, Ty, Tyz, Mx,Mzx, 2′ [001]

Qα
4z, Q

β
4z Gα

z , G
β
z , T α

y , T
β
y , T

α
4x, T

β
4x Mα

x ,M
β
x ,M

α
4y,M

β
4y

G4, G4u, G4v

A′′− Qy, Qyz, Gx, Gzx, Txy, Txyz, M0,Mz,Mu,Mv, m′ [100]

Qα
y , Q

β
y , Q

α
4x, Q

β
4x Gα

x , G
β
x, G

α
4y, G

β
4y T α

4z, T
β
4z Mα

z ,M
β
z

M4,M4u,M4v
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Table C.83: IRREPs of four types of multipoles in 2′/m. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E σy IRREP E ET MT M MPG P. axis
A′ 1 1 A′+ Q0, Qu, Qv, Qzx, Gy, Tx, Tz, Myz,Mxy, 2′/m [010]

Q4, Q4u, Q4v, Gxyz, G
α
y , G

β
y T α

x , T
α
z , T

β
x , T

β
z Mα

4x,M
α
4z,M

β
4x,M

β
4z

Qα
4y, Q

β
4y

A′− Qx, Qz, Gyz, Gxy, T0, Tu, Tv, Tzx, My, m [010]

Qα
x , Q

α
z , Q

β
x, Q

β
z Gα

4x, G
α
4z, G

β
4x, G

β
4z T4, T4u, T4v, Mxyz,M

α
y ,M

β
y

T α
4y, T

β
4y

A′′ 1 −1 A′′+ Qyz, Qxy, Gx, Gz, Ty, M0,Mu,Mv,Mzx, 1̄′ —

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

x , G
α
z , G

β
x, G

β
z Txyz, T

α
y , T

β
y M4,M4u,M4v,

Mα
4y,M

β
4y

A′′− Qy, G0, Gu, Gv, Gzx, Tyz, Txy, Mx,Mz, m′ [010]

Qxyz, Q
α
y , Q

β
y G4, G4u, G4v, T α

4x, T
α
4z, T

β
4x, T

β
4z Mα

x ,M
α
z ,M

β
x ,M

β
z

Gα
4y, G

β
4y

Table C.84: IRREPs of four types of multipoles in 2′/m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2.

E I IRREP E ET MT M MPG P. axis
Ag 1 1 A+

g Q0, Qu, Qv, Qzx, Gy, Tyz, Txy, Mx,Mz, 2′/m′ [010]

Q4, Q4u, Q4v, Gxyz, G
α
y , G

β
y T α

4x, T
α
4z, T

β
4x, T

β
4z Mα

x ,M
α
z ,M

β
x ,M

β
z

Qα
4y, Q

β
4y

A−
g Qyz, Qxy, Gx, Gz, T0, Tu, Tv, Tzx, My, 1̄ —

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

x , G
α
z , G

β
x, G

β
z T4, T4u, T4v, Mxyz,M

α
y ,M

β
y

T α
4y, T

β
4y

Au 1 −1 A+
u Qy, G0, Gu, Gv, Gzx, Tx, Tz, Myz,Mxy, 2′ [010]

Qxyz, Q
α
y , Q

β
y G4, G4u, G4v, T α

x , T
α
z , T

β
x , T

β
z Mα

4x,M
α
4z,M

β
4x,M

β
4z

Gα
4y, G

β
4y

A−
u Qx, Qz, Gyz, Gxy, Ty, M0,Mu,Mv,Mzx, m′ [010]

Qα
x , Q

α
z , Q

β
x, Q

β
z Gα

4x, G
α
4z, G

β
4x, G

β
4z Txyz, T

α
y , T

β
y M4,M4u,M4v,

Mα
4y,M

β
4y

Table C.85: IRREPs of four types of multipoles in 2/m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E C2y IRREP E ET MT M MPG P. axis
A 1 1 A+ Q0, Qu, Qv, Qzx, Gy, Ty, M0,Mu,Mv,Mzx, 2/m′ [010]

Q4, Q4u, Q4v, Gxyz, G
α
y , G

β
y Txyz, T

α
y , T

β
y M4,M4u,M4v,

Qα
4y, Q

β
4y Mα

4y,M
β
4y

A− Qy, G0, Gu, Gv, Gzx, T0, Tu, Tv, Tzx, My, 2 [010]
Qxyz, Q

α
y , Q

β
y G4, G4u, G4v, T4, T4u, T4v, Mxyz,M

α
y ,M

β
y

Gα
4y, G

β
4y T α

4y, T
β
4y

B 1 −1 B+ Qyz, Qxy, Gx, Gz, Tx, Tz, Myz,Mxy, 1̄′ —

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

x , G
α
z , G

β
x, G

β
z T α

x , T
α
z , T

β
x , T

β
z Mα

4x,M
α
4z,M

β
4x,M

β
4z

B− Qx, Qz, Gyz, Gxy, Tyz, Txy, Mx,Mz, m′ [010]

Qα
x , Q

α
z , Q

β
x, Q

β
z Gα

4x, G
α
4z, G

β
4x, G

β
4z T α

4x, T
α
4z, T

β
4x, T

β
4z Mα

x ,M
α
z ,M

β
x ,M

β
z
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Table C.86: IRREPs of four types of multipoles in m′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θσ.

E IRREP E ET MT M MPG P. axis
A 1 A+ Q0, Qx, Qz, Gy, Gyz, Gxy, Ty, Tyz, Txy, M0,Mx,Mz, m′ [010]

Qu, Qv, Qzx, Gxyz, G
α
y , G

β
y , Txyz, T

α
y , T

β
y , Mu,Mv,Mzx,

Qα
x , Q

α
z , Q

β
x, Q

β
z , Gα

4x, G
α
4z, G

β
4x, G

β
4z T α

4x, T
α
4z, T

β
4x, T

β
4z Mα

x ,M
α
z ,M

β
x ,M

β
z ,

Q4, Q4u, Q4v, M4,M4u,M4v,

Qα
4y, Q

β
4y Mα

4y,M
β
4y

A− Qy, Qyz, Qxy, G0, Gx, Gz, T0, Tx, Tz, My,Myz,Mxy, 1 —
Qxyz, Q

α
y , Q

β
y , Gu, Gv, Gzx, Tu, Tv, Tzx, Mxyz,M

α
y ,M

β
y ,

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

x , G
α
z , G

β
x, G

β
z , T α

x , T
α
z , T

β
x , T

β
z , Mα

4x,M
α
4z,M

β
4x,M

β
4z

G4, G4u, G4v, T4, T4u, T4v,

Gα
4y, G

β
4y T α

4y, T
β
4y

Table C.87: IRREPs of four types of multipoles in 2′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θC2.

E IRREP E ET MT M MPG P. axis
A 1 A+ Q0, Qy, G0, Gy, Tx, Tz, Tyz, Txy, Mx,Mz,Myz,Mxy, 2′ [010]

Qu, Qv, Qzx, Gu, Gv, Gzx, T α
x , T

α
z , T

β
x , T

β
z , Mα

x ,M
α
z ,M

β
x ,M

β
z ,

Qxyz, Q
α
y , Q

β
y , Gxyz, G

α
y , G

β
y , T α

4x, T
α
4z, T

β
4x, T

β
4z Mα

4x,M
α
4z,M

β
4x,M

β
4z

Q4, Q4u, Q4v, G4, G4u, G4v,

Qα
4y, Q

β
4y Gα

4y, G
β
4y

A− Qx, Qz, Qyz, Qxy, Gx, Gz, Gyz, Gxy, T0, Ty, M0,My, 1 —
Qα

x , Q
α
z , Q

β
x, Q

β
z , Gα

x , G
α
z , G

β
x, G

β
z , Tu, Tv, Tzx, Mu,Mv,Mzx,

Qα
4x, Q

α
4z, Q

β
4x, Q

β
4z Gα

4x, G
α
4z, G

β
4x, G

β
4z Txyz, T

α
y , T

β
y , Mxyz,M

α
y ,M

β
y ,

T4, T4u, T4v, M4,M4u,M4v,

T α
4y, T

β
4y Mα

4y,M
β
4y

Table C.88: IRREPs of four types of multipoles in 1̄′. The superscript “±” of IRREP
stands for the parity with respect to the antiunitary operation A=θI.

E IRREP E ET MT M MPGP. axis
A 1 A+ Q0, Gx, Gy, Gz, Tx, Ty, Tz, M0, 1̄′ —

Qu, Qv, Qyz, Qzx, Qxy, Gxyz, G
α
x , G

α
y , G

α
z , Txyz, T

α
x , T

α
y , T

α
z , Mu,Mv,Myz,Mzx,Mxy,

Q4, Q4u, Q4v, Gβ
x, G

β
y , G

β
z T β

x , T
β
y , T

β
z M4,M4u,M4v,

Qα
4x, Q

α
4y, Q

α
4z, Mα

4x,M
α
4y,M

α
4z,

Qβ
4x, Q

β
4y, Q

β
4z Mβ

4x,M
β
4y,M

β
4z

A− Qx, Qy, Qz, G0, T0, Mx,My,Mz, 1 —
Qxyz, Q

α
x , Q

α
y , Q

α
z , Gu, Gv, Gyz, Gzx, Gxy, Tu, Tv, Tyz, Tzx, Txy, Mxyz,M

α
x ,M

α
y ,M

α
z ,

Qβ
x, Q

β
y , Q

β
z G4, G4u, G4v, T4, T4u, T4v, Mβ

x ,M
β
y ,M

β
z

Gα
4x, G

α
4y, G

α
4z, T α

4x, T
α
4y, T

α
4z,

Gβ
4x, G

β
4y, G

β
4z T β

4x, T
β
4y, T

β
4z
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Appendix D

Laue and Magnetic Laue Groups

The correspondence between Laue groups and magnetic point groups is summarized in
Table D.1. The correspondence between magnetic Laue groups and magnetic point groups
is also listed for the case with the T and/or PT symmetries in Table D.2 and for the case
without the PT symmetry in Table D.3.

Table D.1: Laue group (LG) and the corresponding gray point group (GPG), crystallo-
graphic point group (CPG), and black-and-white point group (BWPG).

LG GPG CPG BWPG
m3̄m m3̄m1′ m3̄m m′3̄′m′, m3̄m′, m′3̄′m

4321′ 432 4′32′

4̄3m1′ 4̄3m 4̄′3m′

m3̄ m3̄1′, 231′ m3̄, 23 m̄′3̄′

4/mmm 4/mmm1′ 4/mmm 4/m′m′m′, 4/mm′m′, 4′/m′m′m, 4′/mm′m, 4/m′mm
4221′ 422 42′2′, 4′22′

4̄2m1′ 4̄2m 4̄2′m′, 4̄′2m′, 4̄′2′m
4mm1′ 4mm 4m′m′, 4′m′m

4/m 4/m1′ 4/m 4′/m′, 4/m′, 4′/m
41′, 4̄1′ 4, 4̄ 4′, 4̄′

mmm mmm1′ mmm m′m′m′, m′m′m, m′mm
2221′ 222 2′2′2
mm21′ mm2 m′m′2, m′m2′

2/m 2/m1′ 2/m 2′/m′, 2/m′, 2′/m
21′, m1′ 2, m 2′, m′

1̄ 1̄1′, 11′ 1̄, 1 1̄′

6/mmm 6/mmm1′ 6/mmm 6/m′m′m′, 6/mm′m′, 6′/m′mm′, 6′/mmm′, 6/m′mm
6221′ 622 62′2′, 6′22′

6̄m21′ 6̄m2 6̄m′2′, 6̄′m2′, 6̄′m′2
6mm1′ 6mm 6m′m′, 6′mm′

6/m 6/m1′ 6/m 6′/m′, 6/m′, 6′/m
61′, 6̄1′ 6, 6̄ 6′, 6̄′

3̄m 3̄m1′ 3̄m 3̄m′, 3̄′m′, 3̄′m
321′ 32 32′

3m1′ 3m 3m′

3̄ 3̄1′, 31′ 3̄, 3 3̄′
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Table D.2: Magnetic Laue group (MLG) for gray point group (GPG) and the PT -
symmetric black-and-white point group (BWPG).

MLG GPG BWPG
m3̄m1′ m3̄m1′, 4321′, 4̄3m1′ m′3̄′m′,m′3̄′m
m3̄1′ m3̄1′, 231′ m′3̄′

4/mmm1′ 4/mmm1′, 4221′, 4̄2m1′, 4mm1′ 4/m′m′m′, 4′/m′m′m, 4/m′mm
4/m1′ 4/m1′, 41′, 4̄1′ 4′/m′, 4/m′

mmm1′ mmm1′, 2221′, mm21′ m′m′m′,m′mm
2/m1′ 2/m1′, 21′, m1′ 2′/m, 2/m′

1̄1′ 1̄1′, 11′ 1̄′

6/mmm1′ 6/mmm1′, 6221′, 6̄m21′, 6mm1′ 6/m′m′m′, 6′/mmm′, 6/m′mm
6/m1′ 6/m1′, 61′, 6̄1′ 6′/m, 6/m′

3̄m1′ 3̄m1′, 321′, 3m1′ 3̄′m′, 3̄′m
3̄1′ 3̄1′, 31′ 3̄′

Table D.3: Magnetic Laue group (MLG) for crystallographic point group (CPG) and
the PT -breaking black-and-white point group (BWPG).

MLG CPG
m3̄m m3̄m, 432, 4̄3m
m3̄ m3̄, 23

4/mmm 4/mmm, 422, 4̄2m, 4mm
4/m 4/m, 4, 4̄
mmm mmm, 222, mm2
2/m 2/m, 2, m
1̄ 1̄, 1

6/mmm 6/mmm, 622, 6̄m2, 6mm
6/m 6/m, 6, 6̄
3̄m 3̄m, 32, 3m
3̄ 3̄, 3

MLG BWPG
m3̄m′ m3̄m′, 4′32′, 4̄′3m′

4/mm′m′ 4/mm′m′, 42′2′, 4̄2′m′, 4m′m′

4′/mm′m 4′/mm′m, 4′22′, 4̄′2m′, 4̄′2′m, 4′m′m
4′/m 4′/m, 4′, 4̄′

m′m′m m′m′m, 2′2′2, m′m′2,m′m2′

2′/m′ 2′/m′, 2′, m′

6/mm′m′ 6/mm′m′, 62′2′, 6̄m′2′, 6m′m′

6′/m′mm′ 6′/m′mm′, 6′22′, 6̄′m2′, 6̄′m′2, 6′mm′

6′/m′ 6′/m′, 6′, 6̄′

3̄m′ 3̄m′, 32′, 3m′
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Appendix E

Relation between Multipoles and
Response Tensors

E.1 Derivation of Multipoles in Response Tensors

We present the correspondence between response tensor components and multipoles in
detail. The rank-2 tensors are shown in Secs. E.1.1 and E.1.2, the rank-3 tensors in
Secs. E.1.3 and E.1.4, and the rank-4 tensors in Secs. E.1.5 and E.1.6.

E.1.1 χ[1×1]

We decompose the rank-2 tensor χ[1×1] into the monopole, dipole, and quadrupole com-
ponents, which are given as

χM(1×1)=
1

3

∑
i

χ
[1×1]
i;i , (E.1)

χ
D(1×1)
i =

1

2

∑
jk

ϵijkχ
[1×1]
j;k , (E.2)

χ
Q(1×1)
ij =

1

2

(
χ
[1×1]
i;j +χ

[1×1]
j;i

)
=χ

Q(1×1)
ji , (E.3)

respectively, where i, j=x, y, z. ϵijk is the totally antisymmetric tensor (Levi-Civita sym-
bol). The superscript of χX(lB×lF ) (X=M, D, Q) represents the ranks of the response
(output), lB, and the external field (input), lF , in terms of the spherical tensors. By
using Eqs. (E.1)–(E.3), the tensor components represented by multipoles in Eq. (2.25) are
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expressed as

X0=χ
M(1×1), (E.4)

(Yx, Yy, Yz)=(χD(1×1)
x , χD(1×1)

y , χD(1×1)
z ), (E.5)

Xu=
1

6

(
3χQ(1×1)

zz −
∑
i

χ
Q(1×1)
ii

)
,

Xv=
1

2

(
χQ(1×1)
xx −χQ(1×1)

yy

)
,

(Xyz, Xzx, Xxy)=(χQ(1×1)
yz , χQ(1×1)

zx , χQ(1×1)
xy ). (E.6)

E.1.2 χ[0×2]

The tensor components represented by monopole and quadrupole in χ[0×2] of Eq. (2.26)
have the following forms:

X0=
1

3

(
χ
[0×2]
0;xx +χ

[0×2]
0;yy +χ

[0×2]
0;zz

)
, (E.7)

Xu=
1

6

(
3χ

[0×2]
0;zz −

∑
i

χ
[0×2]
0;ii

)
,

Xv=
1

2

(
χ
[0×2]
0;xx −χ[0×2]

0;yy

)
,

(Xyz, Xzx, Xxy)=(χ
[0×2]
0;yz , χ

[0×2]
0;zx , χ

[0×2]
0;xy ). (E.8)

E.1.3 χ[1×2]

χ[1×2] consists of the dipole, quadrupole, and octupole components, which are represented
by χ

[1×2]
i;jk (=χ

[1×2]
i;kj ) as follows:

χ
D(1×0)
i =

1

3

∑
j

χ
[1×2]
i;jj , (E.9)

χ
D(1×2)
i =

∑
j

(
1

3
χ
[1×2]
i;jj −χ[1×2]

j;ij

)
, (E.10)

χ
Q(1×2)
ij =

1

2

∑
kl

(
ϵiklχ

[1×2]
k;lj +ϵjklχ

[1×2]
k;li

)
=χ

Q(1×2)
ji , (E.11)

χ
O(1×2)
ijk =

1

3

(
χ
[1×2]
i;jk +χ

[1×2]
j;ki +χ

[1×2]
k;ij

)
=χ

O(1×2)
jki =χ

O(1×2)
jik . (E.12)

It is noted that there are two dipole components in χ[1×2], as the symmetric tensor field
F [2]=(Fxx, Fyy, Fzz, Fyz, Fzx, Fxy) is decomposed into the components with lF=0 and with

lF=2. The lF=0 component in F [2] leads to χ
D(1×0)
i in Eq. (E.9), whereas the lF=2

component in F [2] leads to χ
D(1×2)
i , χ

Q(1×2)
ij , and χ

O(1×2)
ijk in Eqs. (E.10)–(E.12).
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The corresponding multipoles in Eq. (E.49) are expressed by χ
D(1×0)
i , χ

D(1×2)
i , χ

Q(1×2)
ij ,

and χ
O(1×2)
ijk in Eqs. (E.9)–(E.12) as

(Xx, Xy, Xz)=
1

15
(5χD(1×0)

x −2χD(1×2)
x , 5χD(1×0)

y −2χD(1×2)
y , 5χD(1×0)

z −2χD(1×2)
z ), (E.13)

(X ′
x, X

′
y, X

′
z)=

1

6
(2χD(1×0)

x +χD(1×2)
x , 2χD(1×0)

y +χD(1×2)
y , 2χD(1×0)

z +χD(1×2)
z ), (E.14)

Yu=
1

6

(
3χQ(1×2)

zz −
∑
i

χ
Q(1×2)
ii

)
,

Yv=
1

6

(
χQ(1×2)
xx −χQ(1×2)

yy

)
,

(Yyz, Yzx, Yxy)=
1

3
(χQ(1×2)

yz , χQ(1×2)
zx , χQ(1×2)

xy ), (E.15)

Xxyz=χ
O(1×2)
xyz ,

(Xα
x , X

α
y , X

α
z )=

1

20

(
5χO(1×2)

xxx −3
∑
i

χ
O(1×2)
xii , 5χO(1×2)

yyy −3
∑
i

χ
O(1×2)
yii , 5χO(1×2)

zzz −3
∑
i

χ
O(1×2)
zii

)
,

(Xβ
x , X

β
y , X

β
z )=

1

4

(
χO(1×2)
xyy −χO(1×2)

zzx , χO(1×2)
yzz −χO(1×2)

xxy , χO(1×2)
zxx −χO(1×2)

yyz

)
. (E.16)

E.1.4 χ[0×3]

The multipoles in Eq. (2.28) are represented by χ
[0×3]
0;ijk , which is totally symmetric for the

permutation of i, j, and k, as follows:

(Xx, Xy, Xz)=
1

5

(∑
i

χ
[0×3]
0;xii ,

∑
i

χ
[0×3]
0;yii ,

∑
i

χ
[0×3]
0;zii

)
, (E.17)

Xxyz=χ
[0×3]
0;xyz,

(Xα
x , X

α
y , X

α
z )=

1

10

(
5χ

[0×3]
0;xxx−3

∑
i

χ
[0×3]
0;xii , 5χ

[0×3]
0;yyy−3

∑
i

χ
[0×3]
0;yii , 5χ

[0×3]
0;zzz−3

∑
i

χ
[0×3]
0;zii

)
,

(Xβ
x , X

β
y , X

β
z )=

1

2

(
χ
[0×3]
0;xyy−χ

[0×3]
0;zzx, χ

[0×3]
0;yzz−χ

[0×3]
0;xxy, χ

[0×3]
0;zxx−χ

[0×3]
0;yyz

)
. (E.18)

E.1.5 χ[1×3]

The monopole, dipole, quadrupole, octupole, and hexadecapole components of χ[1×3] are
represented by χ

[1×3]
i;jkl , which is totally symmetric with respect to the permutation of j, k,
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and l. Those components are

χM(1×1)=
1

3

∑
ij

χ
[1×3]
i;ijj , (E.19)

χ
D(1×1)
i =

1

2

∑
jkl

ϵijkχ
[1×3]
j;kll , (E.20)

χ
Q(1×1)
ij =

1

6

∑
k

(
χ
[1×3]
i;jkk +χ

[1×3]
j;ikk

)
=χ

Q(1×1)
ji , (E.21)

χ
Q(1×3)
ij =

1

2

∑
k

[(
χ
[1×3]
k;ijk +χ

[1×3]
k;jik

)
−2

5

(
χ
[1×3]
i;jkk +χ

[1×3]
j;ikk

)]
=χ

Q(1×3)
ji , (E.22)

χ
O(1×3)
ijk =

1

6

∑
lm

(
ϵklmχ

[1×3]
l;ijm+ϵilmχ

[1×3]
l;jkm+ϵjlmχ

[1×3]
l;kim

)
=χ

O(1×3)
jki =χ

O(1×3)
jik , (E.23)

χ
H(1×3)
ijkl =

1

4

(
χ
[1×3]
i;jkl +χ

[1×3]
j;kli +χ

[1×3]
k;lij +χ

[1×3]
l;ijk

)
=χ

H(1×3)
jkli =χ

H(1×3)
jikl . (E.24)

The field F [3]=(Fxxx, Fyyy, Fzzz, Fyyz, Fzzx, Fxxy, Fyzz, Fzxx, Fxyy, Fxyz) is decomposed into
the lF=1 and lF=3 components. The lF=1 field in F [3] leads to the monopole, dipole,
and quadrupole components, χM(1×1), χD(1×1), and χQ(1×1), whereas the lF=3 field in F [3]

results in the quadrupole, octupole, and hexadecapole components, χQ(1×3), χO(1×3), and
χH(1×3).
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By using Eqs. (E.19)–(E.24), the multipoles in Eq. (2.29) are shown as

X0=
1

5
χM(1×1), (E.25)

(Yx, Yy, Yz)=
1

5

(
χD(1×1)
x , χD(1×1)

y , χD(1×1)
z

)
, (E.26)

Xu=
1

42

(
3χQ(1×3)

zz −
∑
i

χ
Q(1×3)
ii

)
,

Xv=
1

42

(
χQ(1×3)
xx −χQ(1×3)

yy

)
,

(Xyz, Xzx, Xxy)=
1

21

(
χQ(1×3)
yz , χQ(1×3)

zx , χQ(1×3)
xy

)
, (E.27)

X ′
u=

1

10

(
3χQ(1×1)

zz −
∑
i

χ
Q(1×1)
ii

)
,

X ′
v=

3

10

(
χQ(1×1)
xx −χQ(1×1)

yy

)
,

(X ′
yz, X

′
zx, X

′
xy)=

3

5

(
χQ(1×1)
yz , χQ(1×1)

zx , χQ(1×1)
xy

)
, (E.28)

Yxyz=χ
O(1×3)
xyz ,

(Y α
x , Y

α
y , Y

α
z )=

1

20

(
5χO(1×3)

xxx −3
∑
i

χ
O(1×3)
xii , 5χO(1×3)

yyy −3
∑
i

χ
O(1×3)
yii , 5χO(1×3)

zzz −3
∑
i

χ
O(1×3)
zii

)
,

(Y β
x , Y

β
y , Y

β
z )=

1

4

(
χO(1×3)
xyy −χO(1×3)

zzx , χO(1×3)
yzz −χO(1×3)

xxy , χO(1×3)
zxx −χO(1×3)

yyz

)
, (E.29)

X4=
1

15

[∑
i

χ
H(1×3)
iiii −3

(
χH(1×3)
yyzz +χH(1×3)

zzxx +χH(1×3)
xxyy

)]
,

X4u=
1

42

[
3χH(1×3)

zzzz −
∑
i

χ
H(1×3)
iiii +6

(
2χH(1×3)

xxyy −χH(1×3)
yyzz −χH(1×3)

zzxx

)]
,

X4v=
1

14

[
χH(1×3)
xxxx −χH(1×3)

yyyy +6
(
χH(1×3)
yyzz −χH(1×3)

zzxx

)]
,

(Xα
4x, X

α
4y, X

α
4z)=

1

2

(
χH(1×3)
yyyz −χH(1×3)

yzzz , χH(1×3)
zzzx −χH(1×3)

zxxx , χH(1×3)
xxxy −χH(1×3)

xyyy

)
,

(Xβ
4x, X

β
4y, X

β
4y)=

1

14

(
7χH(1×3)

xxyz −
∑
i

χ
H(1×3)
iiyz , 7χH(1×3)

yyzx −
∑
i

χ
H(1×3)
iizx , 7χH(1×3)

zzxy −
∑
i

χ
H(1×3)
iixy

)
.

(E.30)

For notational simplicity, we set

(X̃u, X̃
′
u)≡(Xu+X

′
u, 4Xu−X ′

u), X̃
′′
u≡X̃u−X̃ ′

u,

(X̃v, X̃
′
v)≡(3Xv+X

′
v, 2Xv−X ′

v), X̃
′′
v ≡X̃v+2X̃ ′

v,

(X̃yz, X̃
′
yz)≡(2Xyz−X ′

yz, 8Xyz+X
′
yz), (cyclic). (E.31)
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E.1.6 χ[2×2]

For the rank-4 tensor

χ[2×2]=

(
χll χlt

χtl χtt

)
, (E.32)

consisting of the following 3×3 tensors

χll=

χ
[2×2]
xx;xx χ

[2×2]
xx;yy χ

[2×2]
xx;zz

χ
[2×2]
yy;xx χ

[2×2]
yy;yy χ

[2×2]
yy;zz

χ
[2×2]
zz;xx χ

[2×2]
zz;yy χ

[2×2]
zz;zz

 , χlt=

χ
[2×2]
xx;yz χ

[2×2]
xx;zx χ

[2×2]
xx;xy

χ
[2×2]
yy;yz χ

[2×2]
yy;zx χ

[2×2]
yy;xy

χ
[2×2]
zz;yz χ

[2×2]
zz;zx χ

[2×2]
zz;xy

 ,

χtl=

χ
[2×2]
yz;xx χ

[2×2]
yz;yy χ

[2×2]
yz;zz

χ
[2×2]
zx;xx χ

[2×2]
zx;yy χ

[2×2]
zx;zz

χ
[2×2]
xy;xx χ

[2×2]
xy;yy χ

[2×2]
xy;zz

 , χtt=

χ
[2×2]
yz;yz χ

[2×2]
yz;zx χ

[2×2]
yz;xy

χ
[2×2]
zx;yz χ

[2×2]
zx;zx χ

[2×2]
zx;xy

χ
[2×2]
xy;yz χ

[2×2]
xy;zx χ

[2×2]
xy;xy

 , (E.33)

the monopole, dipole, quadrupole, octupole, and hexadecapole components are expressed
by using the tensor component χ

[2×2]
ij;kl (=χ

[2×2]
ji;kl =χ

[2×2]
ij;lk ) as

χM(0×0)=
1

3

∑
ij

χ
[2×2]
ii;jj , (E.34)

χ
Q(0×2,±)
ij =

1

6

∑
k

(
χ
[2×2]
kk;ij ±χ

[2×2]
ij;kk

)
, (E.35)

χM(2×2)=
1

3

∑
ij

(
χ
[2×2]
ij;ji −

1

3
χ
[2×2]
ii;jj

)
, (E.36)

χ
D(2×2)
i =

1

2

∑
jkl

ϵijkχ
[2×2]
lj;kl , (E.37)

χ
Q(2×2)
ij =

1

2

∑
k

[(
χ
[2×2]
ik;kj +χ

[2×2]
jk;ki

)
−2

3

(
χ
[2×2]
ij;kk +χ

[2×2]
kk;ij

)]
=χ

Q(2×2)
ji , (E.38)

χ
O(2×2)
ijk =

1

6

∑
lm

(
ϵilmχ

[2×2]
jl;mk+ϵjlmχ

[2×2]
kl;mi+ϵklmχ

[2×2]
il;mj+ϵilmχ

[2×2]
kl;mj+ϵjlmχ

[2×2]
il;mk+ϵklmχ

[2×2]
jl;mi

)
=χ

O(2×2)
jki =χ

O(2×2)
jik , (E.39)

χ
H(2×2)
ijkl =

1

6

(
χ
[2×2]
ij;kl +χ

[2×2]
ik;jl +χ

[2×2]
il;kj +χ

[2×2]
kj;il +χ

[2×2]
lj;ki +χ

[2×2]
kl;ij

)
=χ

H(2×2)
jkli =χ

H(2×2)
jikl . (E.40)

Since both B[2]=(Bxx, Byy, Bzz, Byz, Bzx, Bxy) and F
[2]=(Fxx, Fyy, Fzz, Fyz, Fzx, Fxy) con-

tain lB, lF=0, 2 components, there are two types of monopole components χM(0×0) and
χM(2×2) and three types of quadrupole components χ

Q(0×2,±)
ij and χ

Q(2×2)
ij . By using
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Eqs. (E.34)–(E.40), the multipoles in Eqs. (2.31)–(2.34) are represented as

X0=
1

10
χM(2×2), X ′

0=
1

3
χM(0×0), (E.41)

(Yx, Yy, Yz)=
1

5

(
χD(2×2)
x , χD(2×2)

y , χD(2×2)
z

)
, (E.42)

Xu=
1

42

(
3χQ(2×2)

zz −
∑
i

χ
Q(2×2)
ii

)
,

Xv=
1

14

(
χQ(2×2)
xx −χQ(2×2)

yy

)
,

(Xyz, Xzx, Xxy)=
1

7

(
χQ(2×2)
yz , χQ(2×2)

zx , χQ(2×2)
xy

)
, (E.43)

X(±)
u =

1

6

(
3χQ(0×2,±)

zz −
∑
i

χ
Q(0×2,±)
ii

)
,

X(±)
v =

1

2

(
χQ(0×2,±)
xx −χQ(0×2,±)

yy

)
,

(X(±)
yz , X

(±)
zx , X

(±)
xy )=

(
χQ(0×2,±)
yz , χQ(0×2,±)

zx , χQ(0×2,±)
xy

)
, (E.44)

Yxyz=χ
O(2×2)
xyz ,

(Y α
x , Y

α
y , Y

α
z )=

1

20

(
5χO(2×2)

xxx −3
∑
i

χ
O(2×2)
xii , 5χO(2×2)

yyy −3
∑
i

χ
O(2×2)
yii , 5χO(2×2)

zzz −3
∑
i

χ
O(2×2)
zii

)
,

(Y β
x , Y

β
y , Y

β
z )=

1

4

(
χO(2×2)
xyy −χO(2×2)

zzx , χO(2×2)
yzz −χO(2×2)

xxy , χO(2×2)
zxx −χO(2×2)

yyz

)
, (E.45)

X4=
1

6

(∑
i

χ
H(2×2)
iiii −3

5

∑
ij

χ
H(2×2)
iijj

)
,

X4u=
1

6

[(
3χH(2×2)

zzzz −
∑
i

χ
H(2×2)
iiii

)
−6

7

∑
i

(
2χ

H(2×2)
iizz −χH(2×2)

iixx −χH(2×2)
iiyy

)]
,

X4v=
1

2

[
χH(2×2)
xxxx −χH(2×2)

yyyy −6

7

∑
i

(
χ
H(2×2)
iixx −χH(2×2)

iiyy

)]
,

(Xα
4x, X

α
4y, X

α
4z)=

1

2

(
χH(2×2)
yyyz −χH(2×2)

yzzz , χH(2×2)
zzzx −χH(2×2)

zxxx , χH(2×2)
xxxy −χH(2×2)

xyyy

)
,

(Xβ
4x, X

β
4y, X

β
4z)=

1

2

(
6χH(2×2)

xxyz −1

7

∑
i

χ
H(2×2)
yzii , 6χH(2×2)

yyzx −1

7

∑
i

χ
H(2×2)
zxii , 6χH(2×2)

zzxy −1

7

∑
i

χ
H(2×2)
xyii

)
.

(E.46)

We use the notation

(X̃0, X̃
′
0)≡(4X0+X

′
0,−2X0+X

′
0),

(X̃u, X̃
(±)
u )≡(−4Xu−2X(+)

u ,−4Xu+X
(+)
u ±3X(−)

u ), X̃ ′
u≡−X̃(+)

u −X̃(−)
u ,

(X̃v, X̃
(±)
v )≡(4Xv+2X(+)

v ,−4Xv+X
(+)
v ±X(−)

v ),

(X̃(±)
yz , X̃

′(±)
yz )≡(−4Xyz+X

(+)
yz ±X(−)

yz , 2Xyz+X
(+)
yz ±X(−)

yz ), (cyclic), (E.47)

for simplicity.
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E.2 Tensor Expression in Hexagonal/Trigonal System

In the hexagonal and trigonal systems, it is convenient to use the tesseral harmonics to
describe multipoles rather than the cubic harmonics. Since the tesseral harmonics have
the different functional form from the cubic harmonics for the rank l≥3 (See Appendix A),
we show the rank-3 and -4 response tensors in the hexagonal and trigonal systems as

χ[0×3]=



3Xx+X3a−3X3u

3Xy−X3b−3X3v

3Xz+2Xα
z

Xz−Xα
z −Xβ

z

Xx+4X3u

Xy+X3b−X3v

Xy+4X3v

Xz−Xα
z +X

β
z

Xx−X3a−X3u

Xxyz



T

, (E.48)

χ[1×2]=


3Xx+X3a−3X3u 2(X ′

y−Yzx)+Xy+X3b−X3v 2(X ′
z+Yxy)+Xz−Xα

z +X
β
z

2(X ′
x+Yyz)+Xx−X3a−X3u 3Xy−X3b−3X3v 2(X ′

z−Yxy)+Xz−Xα
z −Xβ

z

2(X ′
x−Yyz)+Xx+4X3u 2(X ′

y+Yzx)+Xy+4X3v 3(Xz+X
α
z )

Yu+Yv+Xxyz −X ′
z+Yxy+Xz−Xα

z −Xβ
z −X ′

y−Yzx+Xy+4X3v

−X ′
z−Yxy+Xz−Xα

z +X
β
z −Yu+Yv+Xxyz −X ′

x+Yyz+Xx+4X3u

−X ′
y+Yzx+Xy+X3b−X3v −X ′

x−Yyz+Xx−X3a−X3u −2Yv+Xxyz



T

.

(E.49)

χ[1×3]=

3(X0−X̃u+X̃v)+3X40+Xβ1
4u−Xβ2

4u 3(−Yz−X̃xy+Y α
z −Y β

z )+Xβ1
4v −Xβ2

4v 3(Yy−X̃zx+Y3b−Y3v)+X4b−3Xα
4u

3(Yz−X̃xy−Y α
z −Y β

z )−Xβ1
4v −Xβ2

4v 3(X0−X̃u−X̃v)+3X40+Xβ1
4u+Xβ2

4u 3(−Yx−X̃yz+Y3a+Y3u)−X4a−3Xα
4v

−3(Yy+X̃zx+4Y3v)+4Xα
4u 3(Yx−X̃yz+4Y3u)+4Xα

4v 3(X0+2X̃u)+8X40

−Yy−X̃zx+Y3b+11Y3v−X4b−Xα
4u Yx+X̃ ′

yz−Y3a−Y3u−X4a−3Xα
4v X0+X̃ ′′

u−5Xv−Yxyz−4X40−Xβ2
4u

X0+X̃ ′
u−X̃ ′

v−Yxyz−4X40+Xβ2
4u −Yz−X̃xy−4Y α

z +2Y β
z +2Xβ2

4v Yy+X̃ ′
zx+4Y3v+4Xα

4u

Yz+X̃ ′
xy−Y α

z +Y β
z +Xβ1

4v −Xβ2
4v X0−X̃u+X̃ ′′

v −Yxyz+X40−Xβ1
4u −Yx−X̃yz−3Y3a+Y3u+X4a−Xα

4v

Yz−X̃xy+4Y α
z +2Y β

z +2Xβ2
4v X0+X̃ ′

u+X̃ ′
v+Yxyz−4X40−Xβ2

4u −Yx+X̃ ′
yz−4Y3u+4Xα

4v

−Yy+X̃ ′
zx−Y3b+Y3v+X4b−3Xα

4u Yx−X̃yz+Y3a−11Y3u+X4a−Xα
4v X0+X̃ ′′

u+5Xv+Yxyz−4X40+Xβ2
4u

X0−X̃u−X̃ ′′
v +Yxyz+X40−Xβ1

4u −Yz+X̃ ′
xy+Y α

z +Y β
z −Xβ1

4v −Xβ2
4v Yy−X̃zx−3Y3b−Y3v−X4b−Xα

4u

5Xyz+Y3a+5Y3u+X4a−Xα
4v 5Xzx+Y3b−5Y3v−X4b−Xα

4u 5Xxy−2Y β
z +2Xβ2

4v



T

,

(E.50)

χ[2×2]=

(
χll χlt

χtl χtt

)
, (E.51)
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χll=

 X̃0+X̃u+X̃v+3X40+Xβ1
4u−Xβ2

4u X̃ ′
0+X̃ ′

u−2X̃
(−)
v +Yxyz+X40−Xβ1

4u X̃ ′
0+X̃

(+)
u +X̃

(−)
v −Yxyz−4X40+Xβ2

4u

X̃ ′
0+X̃ ′

u+2X̃
(−)
v −Yxyz+X40−Xβ1

4u X̃0+X̃u−X̃v+3X40+Xβ1
4u+Xβ2

4u X̃ ′
0+X̃

(+)
u −X̃

(−)
v +Yxyz−4X40−Xβ2

4u

X̃ ′
0+X̃

(−)
u +X̃

(+)
v +Yxyz−4X40+Xβ2

4u X̃ ′
0+X̃

(−)
u −X̃

(+)
v −Yxyz−4X40−Xβ2

4u X̃0−2X̃u+8X40

 ,

(E.52)

χlt=

 X̃
(+)
yz +Y3a+5Y3u+X4a−Xα

4v −2Yy+X̃
′(+)
zx −Y3b+Y3v+X4b−3Xα

4u 2Yz+X̃
′(+)
xy −Y α

z +Y β
z +Xβ1

4v −Xβ2
4v

2Yx+X̃
′(+)
yz −Y3a−Y3u−X4a−3Xα

4v X̃
(+)
zx +Y3b−5Y3v−X4b−Xα

4u −2Yz+X̃
′(+)
xy +Y α

z +Y β
z −Xβ1

4v −Xβ2
4v

−2Yx+X̃
′(+)
yz −4Y3u+4Xα

4v 2Yy+X̃
′(+)
zx +4Y3v+4Xα

4u X̃
(+)
xy −2Y β

z +2Xβ2
4v

 ,

(E.53)

χtl=

 X̃
(−)
yz −Y3a−5Y3u+X4a−Xα

4v −2Yx+X̃
′(−)
yz +Y3a+Y3u−X4a−3Xα

4v 2Yx+X̃
′(−)
yz +4Y3u+4Xα

4v

2Yy+X̃
′(−)
zx +Y3b−Y3v+X4b−3Xα

4u X̃
(−)
zx −Y3b+5Y3v−X4b−Xα

4u −2Yy+X̃
′(−)
zx −4Y3v+4Xα

4u

−2Yz+X̃
′(−)
xy +Y α

z −Y β
z +Xβ1

4v −Xβ2
4v 2Yz+X̃

′(−)
xy −Y α

z −Y β
z −Xβ1

4v −Xβ2
4v X̃

(−)
xy +2Y β

z +2Xβ2
4v

 ,

(E.54)

χtt=

 3X0+3Xu−3Xv−4X40−Xβ2
4u −Yz+3Xxy−2Y α

z +2Xβ2
4v Yy+3Xzx−Y3b−3Y3v−X4b−Xα

4u

Yz+3Xxy+2Y α
z +2Xβ2

4v 3X0+3Xu+3Xv−4X40+Xβ2
4u −Yx+3Xyz−Y3a+3Y3u+X4a−Xα

4v

−Yy+3Xzx+Y3b+3Y3v−X4b−Xα
4u Yx+3Xyz+Y3a−3Y3u+X4a−Xα

4v 3X0−6Xu+X40−Xβ1
4u

 ,

(E.55)

where the following relations with respect to the octupoles and hecadecapoles are used as

Y3a=
1

4
(5Y α

x −3Y β
x ), Y3b=−1

4
(5Y α

y +3Y β
y ), Y3u=−1

4
(Y α

x +Y β
x ), Y3v=−1

4
(Y α

y −Y β
y ),

X40=
1

4
(X4+X4u), X

α
4u=

1

4
(Xα

4y−X
β
4y), X

α
4v=−1

4
(Xα

4x+X
β
4x), X

β1
4u=

1

4
(5X4−7X4u),

Xβ1
4v =X

α
4z, X

β2
4u=−X4v, X

β2
4v =X

β
4z, X4a=−1

4
(Xα

4x−7Xβ
4x), X4b=−1

4
(Xα

4y+7Xβ
4y),

(E.56)

in χ[0×3], χ[1×3] and χ[2×2], while

X3a=
1

4
(5Xα

x −3Xβ
x ), X3b=−1

4
(5Xα

y +3Xβ
y ), X3u=−1

4
(Xα

x +X
β
x ), X3v=−1

4
(Xα

y −Xβ
y ),

(E.57)

in χ[1×2].
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Appendix F

Other NMR Spectra

F.1 Field-Swept NMR Spectra

We show the field-swept NMR spectra for the resonance frequency ω=1.1γ at the [001]
and [100] magnetic fields. We set γ=1 and the coupling constant as well as that in
Secs. 4.6.4 and 4.6.5. Figures F.1(a)–F.1(c) show the spectra in the [001] magnetic field,
whereas Figs. F.1(d)–F.1(f) show those in the [100] magnetic field. The results show a
similar tendency in the cases of the frequency-swept spectra in Figs. 4.14 and 4.15.

F.2 [110]-Field NMR Spectra

We show the effective hyperfine fields and NMR spectra in the case of the [110] magnetic
field in the Qv- and Qu-type AFQ states and Mx-type AFM state. The hyperfine field
Hamiltonian is given by

H̃[110]
para=

(
c̃e,1x,yQ

(c)
u +c̃e,2x,yQ

(c)
xy

) (
Îx+Îy

)
+
[
c̃e,1u Q(c)

xy+c̃
e,2
u

(
M (c)

x +M (c)
y

)]
Îu+

[
c̃e,1xyQ

(c)
u +c̃e,2xy

(
M (c)

x +M (c)
y

)]
Îxy, (F.1)

H̃o[110]
order =c̃

o,1
x,yG

(c)
xy

(
Îx+Îy

)
+
[
c̃o,2x,y

(
T (c)
x −T (c)

y

)
+c̃o,3x,yQ

(c)
z +c̃o,4x,yG

(c)
v

] (
Îx−Îy

)
+c̃oz

(
Q(c)

x −Q(c)
y

)
Îz

+c̃ou
(
T (c)
x +T (c)

y

)
Îu+

[
c̃o,1v G(c)

v +c̃o,2v

(
T (c)
x −T (c)

y

)]
Îv

+
[
c̃o,1yz,zxM

(c)
u +c̃o,2yz,zxM

(c)
xy

] (
Îyz−Îzx

)
+
[
c̃o,3yz,zx

(
Q(c)

x −Q(c)
y

)
+c̃o,4yz,zxM

(c)
v

] (
Îyz+Îzx

)
+
[
c̃o,1xyG

(c)
xy+c̃

o,2
xy

(
T (c)
x +T (c)

y

)]
Îxy, (F.2)

H̃e[110]
order =

[
c̃e,3x,y

(
M (c)

x −M (c)
y

)
+c̃e,4x,yQ

(c)
v

] (
Îx−Îy

)
+
[
c̃e,1z

(
Q(c)

yz +Q
(c)
zx

)
+c̃e,2z M (c)

xyz

]
Îz

+c̃ev
(
M (c)

x −M (c)
y

)
Îv+c̃

e,1
yz,zxM

β(c)
z

(
Îyz−Îzx

)
+
[
c̃e,2yz,zx

(
Q(c)

yz +Q
(c)
zx

)
+c̃e,3yz,zxM

(c)
z +c̃e,4yz,zxM

(c)
xyz

] (
Îyz+Îzx

)
. (F.3)

We set the coupling constants as ceu=cQ=0.13, cox,y=0.3, and the others are set to be
0.02 for simplicity.

Figures F.2(a)–F.2(c) show the frequency-swept NMR spectra for the magnetic field
|H(n)|=1, whereas Figs. F.2(d)–F.2(f) are the field-swept NMR spectra for the resonance
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Figure F.1: The odd-parity multipole dependences of the field-swept NMR spectra at
the (a–c) [001] magnetic field and (d–f) [100] magnetic field. The data are for the (a,d)
Qv-type AFQ, (b,e) Qu-type AFQ, and (c,f) Mx-type AFM states. The color scales

represent the intensities with (a–c)
∣∣∣Ĩ ijx,A(B)

∣∣∣2 and (d–f)
∣∣∣Ĩ ijy,A(B)

∣∣∣2. The coupling constants

are cou=c
o
v=c=0.02 in the AFQ states and cox,y=c=0.3 in the AFM state. Other coupling

constants are set to be c′=0.02.

frequency ω=1.1γ, where γ is set to be 1. The intensity of the spectra is calculated by∣∣∣Ĩ ij[1̄10],A(B)

∣∣∣2 for I[1̄10]=(Ix−Iy)/2.

In the Qv-type AFQ [Figs. F.2(a) and F.2(d)] and Mx-type AFM states [Figs. F.2(d)
and F.2(f)], the splittings in the [110] field show a similar tendency to those in the [100]

field in Sec. 4.6.5. Their splittings are dominantly characterized by G
(c)
xy and T

(c)
y , respec-

tively. On the other hand, in the Qu-type AFQ state in Figs. F.2(b) and F.2(e), there
are no spectral splittings in contrast to the result under the [100] field in Sec. 4.6.5. The
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reason why no splittings occur under the [110] field is attributed to the difference of the
site symmetry at Co site. As the present site symmetry is 2′22′, which is different from
2′mm′ in the [100] direction, there is no coupling between odd-parity Q

(c)
z and any of

Ix+Iy, Iu, and Ixy in Eq. (F.2).

Figure F.2: The odd-parity multipole dependences of the (a–c) frequency-swept NMR
spectra and (d–f) field-swept NMR spectra under the [110] magnetic field. The data are
for the (a,d) Qv-type AFQ, (b,e) Qu-type AFQ, and (c,f) Mx-type AFM states. The color

scales represent the intensities with
∣∣∣Ĩ ij[1̄10],A(B)

∣∣∣2. The coupling constants are cou=c
o
v=0.02

in the AFQ states and cox,y=0.3 in the AFM state. Other coupling constants are set to
be c′=0.02.
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(1)
7 -Γ

(2)
7 LEVELS

F.3 Spectral Splittings for Γ
(1)
7 -Γ

(2)
7 Levels

The different low-energy crystal-field levels activate different types of odd-parity multipole
orderings. In this appendix, we show the expected sublattice-dependent splittings in
NQR and NMR spectra by supposing the low-energy CEF level consisting of the two Γ7

doublets [202]. In this case, other two multipole orderings become possible: Qα
4z-type

antiferroic E hexadecapole ordering (AFH) with the odd-parity ET quadrupole Gu and
M5u-type antiferroic M triacontadipole ordering (AFT) with the MT dipole Tz, where the
functional forms of Qα

4z and M5u are shown in Ref. [39].
By performing a similar procedure in Secs. 4.6.2–4.6.5, the presence or absence of the

sublattice-dependent spectral splittings in NQR and NMR is obtained. The results are
summarized in Table F.1. The common multipoles appearing in both the two Γ7 doublets
and Γ6-Γ7 doublets, Tx, Ty, Mu, Qz, Qx, and Qy, give the same result in Table 4.9.
Note that electric toroidal quadrupole Gv, Gxy and magnetic quadrupole Mv,Mxy are
not activated within the low-energy crystal-field levels unless the first-excited state is Γ6

doublet.

Table F.1: The sublattice-dependent NQR and NMR splittings in the AFM, AFQ, AFH,
and AFT states under the six field directions [001], [100], [110], ⊥[001], ⊥[010], and ⊥[1̄10],
when the crystal-field first-excited state is Γ7 doublet. The local multipoles (LMP) at Ce
site and cluster odd-parity multipoles (OPMP) are shown in second and third columns,
respectively. The mark ✓ represents the presence of the sublattice-dependent splittings.

NQR NMR
LMP OPMP — H∥[001] H∥[100] H∥[110] H⊥[001] H⊥[010] H⊥[1̄10]

AFM Mx Ty — — ✓ ✓ ✓ ✓ ✓
My Tx — — — ✓ ✓ — ✓
Mz Mu — — — — — ✓ —

AFQ Qu Qz — — ✓ — ✓ ✓ —
Qyz Qy — — — — — — ✓
Qzx Qx — — — — — ✓ ✓

AFH Qα
4z Gu — — — ✓ ✓ — ✓

AFT M5u Tz — — — — — — ✓
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[18] B. Lüthi, S. Blumenröder, B. Hillebrands, E. Zirngiebl, G. Güntherodt, and
K. Winzer, Z. Phys. 58, 31 (1984).

[19] J. Effantin, J. Rossat-Mignod, P. Burlet, H. Bartholin, S. Kunii, and T. Kasuya, J.
Magn. Magn. Mater. 47-48, 145 (1985).

185



REFERENCE

[20] W. Erkelens, L. Regnault, P. Burlet, J. Rossat-Mignod, S. Kunii, and T. Kasuya,
J. Magn. Magn. Mater. 63-64, 61 (1987).

[21] S. Nakamura, T. Goto, S. Kunii, K. Iwashita, and A. Tamaki, J. Phys. Soc. Jpn.
63, 623 (1994).

[22] O. Sakai, R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66, 3005 (1997).

[23] R. Shiina, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 66, 1741 (1997).

[24] R. Shiina, O. Sakai, H. Shiba, and P. Thalmeier, J. Phys. Soc. Jpn. 67, 941 (1998).

[25] P. Santini and G. Amoretti, Phys. Rev. Lett. 85, 2188 (2000).

[26] J. A. Paixão, C. Detlefs, M. J. Longfield, R. Caciuffo, P. Santini, N. Bernhoeft,
J. Rebizant, and G. H. Lander, Phys. Rev. Lett. 89, 187202 (2002).

[27] O. Sakai, R. Shiina, and H. Shiba, J. Phys. Soc. Jpn. 74, 457 (2005).

[28] Y. Tokunaga, D. Aoki, Y. Homma, S. Kambe, H. Sakai, S. Ikeda, T. Fujimoto, R. E.
Walstedt, H. Yasuoka, E. Yamamoto, A. Nakamura, and Y. Shiokawa, Phys. Rev.
Lett. 97, 257601 (2006).

[29] N. Magnani, S. Carretta, R. Caciuffo, P. Santini, G. Amoretti, A. Hiess, J. Rebizant,
and G. H. Lander, Phys. Rev. B 78, 104425 (2008).

[30] M.-T. Suzuki, N. Magnani, and P. M. Oppeneer, Phys. Rev. B 82, 241103(R) (2010).

[31] Y. Kuramoto, J. Otsuki, A. Kiss, and H. Kusunose, Prog. of Theor. Phys. Suppl.
160, 134 (2005).

[32] T. Maehira and T. Hotta, J. Phys. Soc. Jpn. 75, 262 (2006).

[33] M. Yatsushiro and S. Hayami, J. Phys. Soc. Jpn. 88, 054708 (2019).

[34] M.-T. Suzuki, T. Koretsune, M. Ochi, and R. Arita, Phys. Rev. B 95, 094406 (2017).

[35] M.-T. Suzuki, T. Nomoto, R. Arita, Y. Yanagi, S. Hayami, and H. Kusunose, Phs.
Rev. B 99, 174407 (2019).

[36] S. Hayami, Y. Yanagi, H. Kusunose, and Y. Motome, Phys. Rev. Lett. 122, 147602
(2019).

[37] S. Hayami, Y. Yanagi, and H. Kusunose, Phys. Rev. B 102, 144441 (2020).

[38] H. Watanabe and Y. Yanase, Phys. Rev. B 96, 064432 (2017).

[39] S. Hayami, M. Yatsushiro, Y. Yanagi, and H. Kusunose, Phys. Rev. B 98, 165110
(2018).

[40] H. Watanabe and Y. Yanase, Phys. Rev. B 98, 245129 (2018).

[41] S. Hayami, Y. Yanagi, and H. Kusunose, J. Phys. Soc. Jpn. 88, 123702 (2019).

186



REFERENCE

[42] S. Hayami, Y. Yanagi, and H. Kusunose, Phys. Rev. B 101, 220403(R) (2020).

[43] C. Schwartz, Phys. Rev. 97, 380 (1955).

[44] J. M. Blatt and V. F. Weisskopf: Theoretical Nuclear Physics (Dover Publications,
New York, 1991).

[45] V. Dubovik and A. Cheshkov, Sov. J. Part. Nucl. 5, 318 (1974).

[46] S. Nanz: Toroidal Multipole Moments in Classical Electrodynamics: An Analysis of
Their Emergence and Physical Significance (Springer, 2016).

[47] R. G. Barrera, G. A. Estevez, and J. Giraldo, 6, 287 (1985).

[48] V. Dubovik, L. Tosunyan, and V. Tugushev, Zh. Eksp. Teor. Fiz. 90, 590 (1986).

[49] V. Dubovik and V. Tugushev, Phys. Rep. 187, 145 (1990).

[50] M. T. Hutchings, Solid State Phys. 16, 227 (1964).

[51] S. Watanabe and K. Miyake, J. Phys. Soc. Jpn. 88, 033701 (2019).
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