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ABSTRACT 
 

Lichens are organisms that have adapted to extreme environments by forming symbioses 

between fungi and algae, and are known as typical pioneer plants that expand into bare 

ground at the beginning of plant succession. The appearance of lichens is ancient, and 

fossil records indicate that they were already present in the early Devonian (Taylor et al., 

1995a,b; Honegger et al., 2013a,b). Recently, molecular phylogenetic analyses have 

reported that many lichens diversified with environmental changes during the Cretaceous; 

Gaya et al. (2015) used molecular phylogenetic analyses to report that the pigment 

phenotype of the lichen family Teloschistaceae changed during the Mid-Cretaceous, 

which may have resulted in strong UV tolerance, expansion and diversification into bare 

ground. On the other hand, the fossil record itself is rare in its production due to factors 

such as habitats that are difficult to preserve and biases such as the observation of 

microstructures necessary for identification and separation from sedimentary rocks. 

Therefore, paleoecological studies of lichens at the earth-history level have been limited 

to studies using extant lichens. Therefore, the objectives of this study were to search for 

lichen biomarkers, develop lichen vegetation indices and reconstruct paleoecology. As a 

first step, lipid analysis of extant lichens was performed to examine indicator organic 

molecules. As a result, we found that the lichens contained aliphatic hydrocarbons, 

including n-alkanes, alkenes, and long-chain branched alkanes, fernenes, diploptene, and 

hop-21-ene. Lichens with a green algae photobiont (photosynthetic symbiotic algae) 

contained 1,8-heptadecadiene or 6,9-heptadecadiene and 8- and 7-heptadecene, whereas 

lichens with cyanobacteria as a photobiont did not contain the heptadecadienes but did 

contain octadecene, nonadecene and nonadecadiene. These differences in characteristics 

could be attributed to phylogenetic differences in the photobionts that comprised the 

lichens, indicating that the alkene composition could be used for lichen chemotaxonomy. 

These results suggest a previously unknown origin for the C17–C19 alkenes in sediments 

and implied that these components could be used to reconstruct the past composition of 

lichens. As a next step, we focused on lichen secondary metabolites, known as lichen-

specific components. Among oxygen-containing aromatic compounds, dibenzofurans has 

been reported as a universal compound in lichens, and lichens are known to be the main 

producers in nature. Since lichens in nature have a methyl group specifically in the first 
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position of methyl dibenzofuran, this study examined 1-methyl dibenzofuran as a lichen 

biomarker and indicator. As a results for, The 1-MDBF index showed no abrupt changes 

at both sites. The ratios of aromatic terpenoids to perylene and higher plant origin 

terpenoids indicated a relative increase during the decay period of fungi and higher plants. 

The cold weather event is known to occur in the North American samples during the 

through-phase, suggesting that lichens of 1-MDBF origin are highly tolerant to 

environmental changes and are not affected by environmental fluctuations. Based on the 

findings obtained, we also evaluated the usefulness of oxygen-containing aromatic 

compounds as lichen tracers. Several aromatic furans were detected in the 

Mesoproterozoic (1.2-1.0 Ga) sedimentary rocks of the Qaanaaq Fm. in northwestern 

Greenland. The isomer ratios and abundances of the aromatic furans detected varied from 

stratigraphic level to stratigraphic level. This may be attributed to changes in the 

contribution of the source material at the time of deposition, rather than to the effect of 

maturity. Aromatic furans are suggested to be possible terrestrial sources, and these 

compounds in the Mesoproterozoic may be important evidence in discussing the 

evolutionary history of ecosystems and life at that time. 
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CHAPTER 1                                           
Introduction and General Background 
 
1.1. Fungi and Lichen 

 

Fungi, once regarded as a group of plants as "cryptophytes," are now known to be organisms with a 

diversity far surpassing that of higher plants. According to some research, there are an estimated 

400,000 species of higher plants (Paton et al., 2008; Joppa et al., 2017), while there are more than 2.2 

to 3.8 million species of fungi on earth (Hawksworth and Lücking, 2017). In the past, Myxomycetes, 

such as slime molds, and Oomycetes, including water molds, were treated as fungi. However, 

nowadays, they are called "Pseudofungi" and are considered to be a distinct lineage from the fungi. 

Recent developments in molecular genetics have shown that the lineage is more closely related to 

animals than plants, and fungi, along with animals, are now classified as Supergroup, Opisthokonta. 

Although the classification is still debated, fungi are broadly classified into Microsporidia, 

Chytridiomycota, Zygomycota, Glomeromycota, Ascomycota, and Basidiomycota (Fig.1.1). Many 

species of Microsporidia were once considered protozoa, and the Chytridiomycota species were 

generally considered to be the most primitive of the fungi, as they are often aquatic fungi. The species 

formerly referred to as "Zygomycota" were also considered primitive because of their simple 

structures. However, they are strongly independent of each other and are being considered for 

dissection into multiple taxa (cf. Blackwell, 2011). For example, some of them, initially included in 

the Zygomycota, have become independent Glomeromycota. On the other hand, Basidiomycota, 

which include most of what is commonly called mushrooms, and Ascomycota, which include species 

such as yeast and blue-green mold, are also called "higher fungi(Dikarya)" because they have a more 

complex structure and ecology than the phyla mentioned above. These higher fungi comprise the 

majority of fungi and are known to be highly diverse in terms of habitat and morphology. In general, 

fungi are heterotrophs and, together with prokaryotic bacteria, are known to play the role of 

"decomposers" in the ecosystem.  

On the other hand, among the higher fungi, there is a group of organisms called lichens, which have 

acquired a unique mode of nutritional acquisition. Lichens are obligate symbioses between fungi 

(mycobiont) and photosynthetic microalgae, including green algae and cyanobacteria (photobiont). 

Lichenization, in which fungi establish a symbiotic relationship with algae, is one of the most 

important fungal lifestyles. There are more than 19,000 species of lichenized fungi, accounting for 
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approximately 20% of all fungi and 30% of all basidiomycetes (Feuerer and Hawksworth, 2007; 

Lücking et al., 2016). Approximately 85% of lichens contain green algal photobionts (chlorolichens), 

10% contain cyanobacterial photobionts (cyanolichens), and approximately 4% contain both 

simultaneously (tripartite lichens) (Honegger et al., 2008). Lichens are found in a wide variety of 

terrestrial habitats and play important roles in terrestrial ecosystems (Elbert et al., 2012; Asplund and 

Wardle, 2017; Harris et al., 2018). Lichens are one of the most abundant life forms. According to 

Larson (1987) lichens dominate the vegetation on 8% of the Lichens are one of the most abundant life 

forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1 Fungal phyla and approximate number of species in each group. 
(modified from Blackwell, 2011) 
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1.2. Earth History of Fungi and Lichens 

 

 Fungi and lichens are considered to have appeared very early in the earth's history because of their 

high diversity, a wide range of habitats, and symbiotic relationships with many plants and animals. 

Molecular phylogenetic analysis indicates that animals and fungi diverged around 760 - 1060 Ma, and 

lichens appeared between 200 - 300 Ma (Lücking et al., 2009; Prieto and Wedin, 2013; Beimforde et 

al., 2014). However, unlike other organisms that multiple fossil records have calibrated, the fossil 

records for fungi and lichens are very scarce, and their appearance dates are subject to change 

significantly.  

 Although many researchers have believed that fungi may have been involved in the emergence of 

terrestrial plants, there was no direct evidence strongly supporting this hypothesis until Redecker et al. 

(2000) reported fossils of Glomalean fungi from the Ordovician. Especially in older samples, the 

debate often centers on whether the observed fossils are fungi. Recently, with the introduction of 

techniques such as electron microscopy and FTIR microspectroscopy, Loron et al. (2019) reported the 

oldest fossil fungi, Orasphaira giraldae, from a stratum of about 1000 Ma in the Canadian polar region 

(Fig. 1.2). 

Life history studies of fungi are often mentioned based on their current role in terrestrial ecosystems 

and mathematical simulations. Arbuscular mycorrhizal (AM) fungi are known to be endophytic 

parasites of many plants. Taylor et al. (2009, 2011) proposed that in addition to AM fungi, 

ectomycorrhizal (EM) fungi, which increased rapidly coincident with the rise in angiosperms in the 

earliest Cretaceous, promoted weathering and contributed significantly to the reduction of atmospheric 

CO2 since the middle Cretaceous (Fig. 1.3). The involvement of fungi in the carbon cycle has recently 

been discussed, and Pieńkowski et al. (2016) pointed out the possibility that the accelerated 

decomposition of organic carbon by terrestrial fungi during the Jurassic marine anoxic event 

accelerated warming during the Jurassic based on the results of palynomorph (organic microfossil) 

analysis. Similarly, palynomorph analyses suggest that fungi temporarily increased on land after the 

mass extinction during the P-T and K-Pg boundary periods and decomposed biological remains (e.g., 

Vajda and McLoughlin, 2004; Rampino and Eshet, 2018) (Fig. 1.4). 

 The fossil record of lichens is much smaller than the reported cases of fungal fossils, even including 

fossils suggested to be lichens. Researchers have mentioned that three conditions are required to be 

recognized as lichen fossils: (1) the presence of both fungi and photobionts, (2) evidence of 

physiological interactions (interdependence) between the two organisms, and (3) a body plan that is 
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different from either symbiont(Stein et al., 1993; Taylor et al., 1997; Taylor and Krings, 2005).   

Although reports of fossil lichens are scattered over a wide range of periods (Fig. 1.5), it is clear that 

the conditions are highly dependent on the state of preservation to be considered lichen. The oldest 

lichen fossils reported to date are Chlorolichenomycites salopensis and Cyanolichenomycites 

devonicus reported by Honegger et al. (2013a,b) at ca. 415 Ma (Early Devonian). The time lag between 

the fossil record and the molecular phylogenetic analysis may be due not only to the time calibration 

method but also to the fact that different fungal species from the present lichens constituted the early 

lichens. The lichen Winfrenatia reticulata, described by Taylor et al. (1997) from the Early Devonian, 

was subsequently reported to be composed of fungi related to Glomeromycota and two types of 

cyanobacteria, unlike Ascomycota and Basidiomycota that make up the lichens of today (Taylor et al., 

2004; Karatygin et al., 2009).  

 Some reports have proposed that lichen-like organisms existed in the Precambrian (Hallbauer et al., 

1977; Retallack 1994, 1995, 2007, 2012), while others have proposed the "Protolichen hypothesis" 

that early lichens, so-called Protolichens, appeared before 450 Ma, giving rise to a non-lichen lineage 

(Eriksson, 2005). Recently, the Protolichen hypothesis has received attention due to the discovery of 

lichen fossils Chlorolichenomycites salopensis and Cyanolichenomycites devonicus. On the other 

hand, Nelsen et al. (2019) reported that the appearance of lichen-forming fungi probably occurred at 

least after the appearance of Tracheophytes (425 Ma), based on the results of a molecular phylogenetic 

analysis that took into account new findings, and the timing of lichen appearance is still under 

debate. In addition to discussions of the timing of lichen emergence, many studies of lichens in the 

earth's history have been reported using molecular phylogenetic techniques in recent years. Gaya et al. 

(2015) reported that the pigment phenotype of the lichen family Teloschistaceae changed during the 

Middle Cretaceous and acquired UV tolerance, resulting in increased expansion and diversity on bare 

ground (Fig. 1.6).  

 Huang et al. (2019) also reported that molecular phylogenetic analyses suggest that lichen 

diversification may have accelerated from the Middle Cretaceous to the Paleogene, and that major 

environmental changes such as the Cretaceous Terrestrial Revolution, which is an event that led to 

rapid diversification of angiosperms, (KTR; from 125 to 80 Ma), the K-Pg event, and PETM, may 

have been a factor. On the other hand, the authors also mention the methods' limitations, noting that 

discrepancies in the time of spread between studies may be due to differences in strategies of 

phylogenetic taxon sampling and geological time among researchers and the need for further 

experimentation. 
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Fig.1.2 Geological ages of fungi. Estimates from molecular clocks (dashed lines) and fossil record (solid lines). 
      Perplexing fungal fossils are shown below the geological timeline. Some fossil records are not reflected  

in the upper age columns because of controversy over whether they are fungi or not and the possibility  
of contaminants. (from Berbee et al., 2020) 

Fig.1.3 Effects of changes in terrestrial vegetation on atmospheric CO2 concentrations over the past 200 million years.  
RCO2is the atmospheric CO2 concentration relative to modern values. "No angiosperm" represents the case for  
considering only gymnosperm; "EM vegetation" represents the case for considering AM and EM assisted  
weathering; "AM vegetation" represents the case only AM assisted weathering. The RCO2 variability  
reconstructed by "EM vegetation" in the right panel matches the RCO2 variability of GEOCARBSULF in the  
left panel. (modified from Taylor et al., 2011) 
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Fig.1.4 Schematic illustration of the mass extinction period, with Fungal spike reported at the P-T and K-Pg  
boundary. (from Vajda and Bercovici, 2014) 

Fig.1.5 Left: Geologic time of the lichen 
fossil record (modified from Honegger, 
2018). Above: SEM image of the oldest 
fossil lichen Chlorolichenomycites. Fungal 
hyphae and algae are observed (Honegger et 
al., 2013). 
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Fig.1.6 Time-calibrated phylogeny of the order Teloschistales of anthraquinone evolution. The colored squares on 
the right side of the tree represent phenotypes, the same classification as the colors indicated in the tree pie chart. 
The square next to it also indicates the presence or absence of the trait with black and white. 
From left, a sun for light exposure (shade column), a rock for rock substrate (rock column), a tree for epiphtism 
(bark column), and a letter C for growth form crustose-continuous (cont column). (modified from Gaya et al., 
2015) 
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1.3. Organic Geochemical Studies on Fungi and Lichens 

  

Organic geochemical approaches to studying the paleoecology of fungi include palynomorph 

analysis, as described above. However, except for studies in terrestrial sediments such as peat deposits, 

palynomorph analyses from marine sediments rarely preserve species-specific structures and makeup 

such a small proportion of the total palynomorphs that most discussions are limited to the extent that 

they indicate terrestrial input (e.g., Nakagawa et al., 2022). On the other hand, biomarker (molecular 

fossil) studies have reported the behavior of terrestrial fungi using perylene, which is believed to be 

derived from wood-rotting fungi and mycorrhizal fungi (Grice et al., 2009; Suzuki et al., 2010; Itoh et 

al., 2012; Marynowski et al., 2013, 2015; Hanke et al., 2019). Marynowski et al. (2013) proposed the 

conifer wood degradation index (CWDI) as an indicator of the degree of decay of wood fossils using 

perylene. Itoh et al. (2012) analyzed sediments and sclerotium samples from Lake Biwa. They found 

4,9-dihydroxyperylene-3,10-quinone(DHPQ) produced by Cenococcum geophilum, a rhizobium 

parasitic on plants, as one of the origins of perylene. Suzuki et al. (2010) reported that carbon isotope 

ratios and variations of perylene in sedimentary rocks from the Late Cretaceous to the Paleogene off 

the coast of Sanriku indicate that perylene is derived from fungi and increases in wet environments.  

 Many diverse and specific compounds have been reported from the extant lichens. On the other 

hand, organic geochemical studies of lichens have been mainly limited to studies using recent past 

peat samples (Ficken et al., 1998; Jia et al., 2008; Schellekens et al., 2015).  

Ficken et al. (1998) used n-alkane, n-alkanol, and n-alkanoic acid composition ratios of peat-

constituting plants, and Jia et al. (2008) used monosaccharide composition ratios to propose vegetation 

change indices, including lichens in peat-deposits. However, studies using these ratios use compounds 

common to many other organisms, so variation in their compositional ratios in sediments is also 

affected by multiple factors, complicating interpretation. Huang et al. (2012) suggested that C23 n-

alkane and long-chain 3-methylalkanes (anteiso-alkanes) could be used as indicators of the 

paleoenvironmental reconstruction as unique features of lichens based on analysis of extant lichen 

samples. However, attempts at chemotaxonomy based on n-alkane compositions of lichens have been 

unsuccessful (Zygadlo et al., 1993), and n-alkane compositions have been found to vary significantly 

with the environment, even if among the same species (Piervittori et al., 1996). In addition, it is 

considered that long-chain 3-methylalkane may be produced under limited conditions, as it may not 

be detected in some sampling locations, even among the same species in this paper. Schellekens et al. 

(2015) proposed that 3-methoxy-5-methylphenol could be used as a lichen biomarker based on the 



CHAPTER 1 

９ 
 

results of pyrolysis product analysis of plants and peat samples. 3-methoxy-5-methylphenol has been 

reported to be detected in some lichen extracts (ter Heide et al., 1975). Since it was detected in five of 

the six peat samples they examined, it may be possible to reconstruct lichen vegetation variation in 

peatlands. 

 On the other hand, organic geological studies for paleoecological reconstructions of lichens in 

geologic time using sedimentary rocks are extremely limited. Radke et al. (2000) analyzed 

alkyldibenzofurans in sedimentary rocks of the Upper Carboniferous from the Sakoa coal basin, 

Madagascar. They proposed 1-methyl dibenzofuran (1-MDBF) as a potential lichen biomarker 

because it behaved differently from other isomers. Many researchers agree that aromatic furans, 

including dibenzofurans in sedimentary rocks, are of terrestrial origin. Among the reports on detecting 

DBF in sedimentary rocks, the presence of abnormal concentrations of aromatic furans, including 

dibenzofurans, during the P-T boundary deserve special mention. This case was reported by several 

sites and is believed to have been a global event. However, the interpretation of this event is under 

debate. Some studies have supposed the origin of DBFs as thermal maturation products of lignins and 

polysaccharides from higher plants, which are interpreted as soil erosion events associated with 

terrestrial disturbance (Sephton et al., 2005; Fenton et al., 2007; Wang and Visscher, 2007; Biswas et 

al., 2020), while others have supposed the origin of aromatic furans, including DBF, as a lichen origin 

and interpreted it as an expansion of lichen vegetation event during the terrestrial collapse (Watson et 

al., 2005; Sawada et al., 2012). Palynomorph analysis has identified a stratigraphic level (Fungal spike) 

dominated by fungi called Reduviasporonites during the P-T boundary (Eshet et al., 1995; Steiner et 

al., 2003; Visscher et al., 2011; Rampino and Eshet, 2018). Sephton et al. (2009) reported that the 

detection of DBFs in pyrolysis products of Reduviasporonites, so aromatic furans in the P-T boundary 

might be attributable to fungi Reduviasporonites. Whether or not these fungi formed lichens is 

unknown, but in any case, this is likely a case of fungi (or lichens) responding to a robust 

environmental disturbance event. 
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Fig.1.7 Comparison of monosaccharide parameters with macrofossil records. (A) % lichen, (B) % vascular 
plants, (C) % Sphagna, (D) [Man:Xyl]; (E) [(Man+Gal):(Ara+Xyl)], (F) [(Rha + Fuc):(Man + Xyl)], (G) 
[%(Rha + Fuc)]. In this study, the proxy [(Man + Gal):(Ara + Xyl)] and [Man:Xyl] indicate the vegetation in 
the order of decreasing values: lichens > Sphagna > vascular plants. [(Rha + Fuc):(Man + Xyl)] and  
[%(Rha+Fuc)] are used as proxy for Sphagna. Shaded grey areas denote proxy values for modern Sphagna. 
 

A B

C

Fig.1.8 (A) Pyrolysis-gas chromatography traces 
for each sedimentary sample from Val Badia, 
northeastern Italy (modified from Sephton et al., 
2005); (B) Reduviasporonites schlanus. Scale bar 
represents 40μm, and (C) Pyrolysis gas 
chromatography-mass spectrometry total Ion 
chromatogram data for Reduviasporonites: A-
dibenzofuran; B-methyldibenzofuran (modified 
from Sephton et al., 2009). 



CHAPTER 1 

１１ 
 

1.4. Summary of Chapter and Objectives of This Study 

 

Previous studies on the Earth's history of fungi and lichens have been based mainly on molecular 

clocks and fossils. However, as noted above, the estimation of the timing of evolution and 

diversification by molecular clocks is still subject to inconsistencies among studies due to differences 

in methods. Moreover, the reporting of new fossil evidence forces calibration of timing. In addition, 

especially in lichen fossils, taphonomy studies of extant lichens indicate that critical features of lichen 

thalli have been destroyed, suggesting that breakthrough fossils are unlikely to be obtained (Tomescu 

et al., 2010; Honegger et al., 2013; Graham et al., 2017; Lücking and Nelsen, 2018). 

 The survival strategy of lichenization, in which fungi associate with algae, is important in the 

evolutionary history of fungi, and it has long been pointed out that lichens may have had a significant 

impact on paleo-terrestrial ecosystems. However, many parts are still shrouded in mystery. Therefore, 

this study aimed to examine molecular fossils, develop indices using organic geochemical methods, 

and approach the reading of the evolutionary history of lichens and fungi from a new perspective. 
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CHAPTER 2                                           
Searching for lichen biomarkers using lipid analysis of extant 
lichen samples 
 
2.1. Introduction 

 

Lichens are obligate symbioses between fungi (mycobiont) and photosynthetic microalgae, 

including green algae and cyanobacteria (photobiont). Lichenization, in which fungi establish a 

symbiotic relationship with algae, is one of the most important fungal lifestyles. There are more 

than 19,000 species of lichenized fungi, accounting for one out of every five recognized fungal 

species (Feuerer and Hawksworth, 2007; Lucking et al., 2016). Approximately 85% of lichens 

contain green algal photobionts (chlorolichens), 10% contain cyanobacterial photobionts 

(cyanolichens), and approximately 4% contain both simultaneously (tripartite lichens) (Honegger 

et al., 2008). Lichens are found in a wide variety of terrestrial habitats and play important roles in 

terrestrial ecosystems (Elbert et al., 2012; Asplund and Wardle, 2017; Harris et al., 2018). The 

earliest known lichen fossils date back to the Early Devonian period (415 Ma) (Honegger et al., 

2013a, b), but the exact date of the first appearance of lichen is uncertain (e.g., Nelsen et al., 2020). 

Reports of lichen fossils are extremely rare because these remains are easily decomposed; 

consequently, most studies of their evolutionary history and response to the paleoenvironment 

have relied on a molecular clock approach (Printzen et al., 2000; Gaya et al., 2015; Kraichak et 

al., 2015; Huang et al., 2019; Nelsen et al., 2020).  

Several studies have attempted to reconstruct the paleoclimatic responses of lichens by 

employing biomarkers. Various components of lichen lipids have been reported, including n-

alkanes, alkanols, alkanoic acid, neutral monosaccharides, lichen secondary metabolites, 

carotenoids, steroids, and terpenoids (Huneck and Yoshimura, 1996), and certain compounds 

such as lichen secondary metabolites, n-alkanes, and alkanoic acid have been considered for use 

in the chemical classification of lichens (e.g., Zygadlo et al., 1993; Sassaki et al., 2001; Santos et 

al., 2015). Several studies have reported that lichens contain abundant n-alkenes (Corbier and 

Teisseire, 1974; Gavin et al., 1978; Solberg, 1986, 1987; Ikeda et al., 2018, 2021), but little has 

been reported regarding their composition. Through the analytical measurement of n-alkanes, n-

alkanols, and n-alkanoic acids in Scottish peat samples and peat-forming plants, Ficken et al. 

(1998) demonstrated that the lichen contribution to past biomass may have been greater than that 
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estimated by the fossil record. The authors concluded that the lichen contributions estimated by 

these lipid analyses were higher than previous quantitative estimations. Jia et al. (2008) used the 

composition of neutral monosaccharides in peat cores to reconstruct the variations in vegetation 

of the major peat-forming plants, including lichens. However, neutral monosaccharides are 

susceptible to microbial degradation (e.g., Amon et al., 2001), and there are many selective 

compositional changes of each monosaccharide, as indicated by the different degradation orders 

reported in previous studies (Hedges et al., 1985; Opsahl and Benner, 1999; Panagiotopoulos and 

Sempéré, 2007). 

In this study, we comprehensively analyzed aliphatic compounds, especially n-alkenes, in 

samples of lichen belonging to Lecanoromycetes and examined their potential for use as 

biomarkers and as a chemotaxonomic tool. 

 

2.2. Samples and methods 

2.2.1. Samples 

The 29 samples analyzed contained 27 species of lichens from the class Lecanoromycetes 

(orders Lecanorales, 16 species; Teloschistales, one species; Caliciales, four species; Peltigerales, 

six species) (Table 2.1). These specimens were collected from several locations in Japan. Lichen 

species were identified based on morphological and biochemical techniques. Chemical spot tests 

with paraphenylenediamine, potassium hydroxide, and calcium hypochlorite were used to 

determine the biochemical characteristics. A microcrystallization technique (Asahina and Shibata, 

1954; Huneck and Yoshimura, 1996) was also used to identify some specimens. These 

characteristics were compared to the descriptions of the species provided by Yoshimura (1994) 

and Yamamoto (2017). The nomenclature used followed the AlgaeBase (Guiry and Guiry, 2022) 

for symbiotic algae, and the MycoBank (http://www.mycobank.org/) for the lichenized fungi. 

Following collection, the samples were stored at −30°C in our laboratory. At the time of analysis, 

any non-lichen debris impurities were removed with tweezers, and the samples were washed with 

distilled water and lyophilized.  

 

2.2.2. Extraction and fractionation 

Lipid extraction and separation were performed according to Sawada et al. (2013) and 

Nakamura et al. (2015). To extract the free compounds, crushed samples were steeped with 

methanol and a mixture of methanol/dichloromethane (1:1, v/v) overnight. Tetracosane-d50 was 

http://www.mycobank.org/
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added to the crude extract as an internal standard. After adding distilled water, the combined 

extracts were shaken and centrifuged to separate the neutral lipids into the organic solvent layer, 

while water-soluble compounds were separated into the aqueous layer. The organic solvent layer 

was siphoned off and passed through an anhydrous Na2SO4 column. The eluate neutral lipids were 

dried in a rotary evaporator, re-dissolved in n-hexane, and then passed through a 95% activated 

silica gel column: hexane for alkane fraction, hexane and toluene (3:1, v:v) for aromatic fraction, 

hexane and ethyl acetate (EtOAc) (9:1, v:v) and MeOH and EtOAc (1:1, v:v) for polar fraction. 

The polar fractions were silylated by adding BSTFA [N,O – bis(trimethylsilyl)trifluoroacetamine] 

and heating at 70ºC for 30 min. After this treatment, a gas chromatography–mass spectrometry 

(GC-MS) analysis was conducted. 

 

2.2.3. Formation of DMDS adducts 

As described by Carlson et al. (1989), the hydrocarbon fraction was dissolved in hexane (200 

μL) and incubated at 40 °C for 4 h with 200 μL DMDS and 100 μL iodine solution (60 mg in 1 

mL diethyl ether). After adding Na2S2O3 to stop the reaction, the DMDS adducts were extracted 

three times with hexane. 

 

2.2.4. Lipid assignment and quantification 

Lipids were identified by GC-MS using an Agilent 7890B GC instrument equipped with a 30 

m × 0.25 mm i.d. DB-5HT fused silica column (Agilent, Santa Clara, CA, USA) directly coupled 

to an Agilent 5977A MSD quadruple mass spectrometer (electron voltage, 70 eV; scan range, m/z 

50–650 in 1.3 s). The oven temperature was programmed as follows: 50°C (held for 4 min) to 310 

C at 4°C/min (held for 20 min). The injection temperature was 310°C and the instrument was run 

in splitless mode with helium as the carrier gas. Alkanes and alkenes were quantified using a GC-

2025 GC-flame ionization detector (Shimadzu, Kyoto, Japan) equipped with the same DB-5HT 

column as that used for the GC-MS analysis. The injection temperature, temperature program, 

and carrier gas used were identical to those used in the GC-MS analysis. The precision of the 

measurements was calculated for some samples based on triplicate or quadruplicate analyses of 

the same lichen samples. 

 

2.2.5. Statistical analysis 

The statistical analysis and data visualization were performed in R version 4.2.0 (R Core Team, 
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2022). The optimal number of clusters was determined with the fpc package (Hennig, 2020), and 

a clustered heatmap was created using the pheatmap package (Kolde, 2019). 

 

2.3. Results and discussion 

2.3.1. Mass spectral characteristics of dimethyl disulfide (DMDS) derivatives of C17–C20 alkenes 

 Various C16 −C29 mono-, di-, and tri-unsaturated alkenes were detected in apolar fractions 

(Fig. 2.1). C17 alkadienes were particularly abundant in the Lecanorales, Teloschistales, and 

Peltigerales lichen samples. The positions of the double bonds in the alkenes and alkadienes (1–

10) were determined by analyzing DMDS adducts via gas chromatography–mass spectrometry 

(GC-MS) (Carlson et al., 1989; Rieley et al., 1998; Nakamura et al., 2015). Determining the 

double bond positions of unsaturated hydrocarbons by MS is challenging due to double bond 

migration during ionization (Wolff et al., 1966). To facilitate double bond detection, we applied a 

DMDS adduction method to attach methyl sulfides to the double bonds; this way, cleavage 

occurred between the two methyl sulfide groups during ionization, enabling deduction of the 

double bond positions (Fig. 2.2). The mass spectra of the DMDS adducts of the most abundant 

C17 alkadiene in Xanthoria mandschurica (Zahlbr.) Asahina indicated that methyl sulfides were 

attached to two double bonds in the alkadiene following DMDS adduction, and that one of the 

two double bonds was at position C-8 (ions at m/z 173 [C +], 251 [AB+], 203 [(AB – 48)+], 157 

[(AB – 94)+], and 155 [(AB – 96)+]) (Table 2.2, Fig. 2.2 and 2.3). The other double bond was 

assumed to be at position C-1 (ions at m/z 61 [A+], 363 [BC+], 315 [(BC – 48)+; i.e., BC – CH3SH], 

269 [(BC – 94)+; i.e., BC – DMDS], and 267 [(BC – 96)+; i.e., BC – 2CH3SH]) (Table 2.2, Fig. 

2.2 and 2.3). Although the ion at m/z 61 is universally found in mass fragments of DMDS adducts 

(Francis and Veland, 1981), the absence of prominent mass fragments originating from cleavage 

at potential positions other than C-1 suggests that the major C17 alkadiene in X. mandschurica 

was a 1,8-heptadecadiene (1). Although we could not determine the geometric structure of the 

double bonds of this compound in this study, an (8Z)-1,8-heptadecadiene was identified in lichens 

in previous studies (Corbier and Tesseire, 1974; Gavin et al., 1978). Thus, we expected the double 

bonds of this compound to be in the cis configuration. The mass spectra of DMDS adducts of the 

most abundant C17 alkadiene in Cladonia scabriuscula (Delise) Nyl. were obtained from 

derivatives containing methyl sulfide groups attached to one of the two double bonds. Tetrakis-

type adducts, including the DMDS adduct of 1,8-heptadecadiene (1), can only form when there 

are at least four methylene groups between each double bond; therefore, methyl sulfides can only 
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attach to one of two adjacent double bonds (three methylene groups or fewer between each double 

bond) (Carlson et al., 1989; Yamamoto et al., 1991; Shibamoto et al., 2016). Shibamoto et al. 

(2016) found that methyl sulfides only attach to one of two adjacent double bonds in unsaturated 

fatty acid methyl esters during DMDS adduction due to steric inhibition. In this study, the 

molecular ion at m/z 330 and the high intensity of the ions at m/z 282 [(M – 48)+; i.e., M - CH3SH] 

and m/z 235 [(M – 95)+; i.e., M - CH3SH – CH3S•] suggest that the methyl sulfides attached to 

one double bond; the presence of stable conjugated ions further indicate the presence of an 

unreacted double bond. The double bonds in the Cl. scabriuscula alkadiene were located at 

positions C-6 (ions at m/z 131 [A+] and 199 [C+]) and C-9 (ions at m/z 171 [A+] and 159 [C+]) 

(Table 2.2, Fig. 2.2 and 2.3), and thus were identified as 6,9-heptadecadiene (2). C17 alkenes 

(monoenes; 3–6) were another major group of compounds detected, and the positions of the 

monoene double bonds were again determined by DMDS adduction. The most abundant C17 

monoenes in Cl. scabriuscula (3,4) initially appeared to be a single compound, but subsequently 

generated two peaks after DMDS adduction, suggesting the co-elution of two compounds . The 

positions of the double bonds in the C17 monoenes (3, 4) were C-7 (ions at m/z 159 [A+] and 173 

[C+]) and C-8 (ions at m/z 145 [A+] and 187 [C+]) (Table 2.2, Fig. 2.2 and 2.3). The double bond 

positions of two C17 monoenes in X. mandschurica (5, 6) were determined to be C-1 (ions at m/z 

61 [A+] and 271 [C+]) and C-3 (ions at m/z 89 [A+] and 243 [C+]) (Table 2.2, Fig. 2.2 and 2.3), 

respectively. In several Peltigerales lichen samples, C18−C20 mono-unsaturated alkenes were 

found to be major compounds (7–9). The C18 monoene that was detected in Collema furfuraceum 

Du Rietz (7) was identified as a 1-octadecene, as the mass spectrum of its DMDS adducts revealed 

a double bond at position C-1 (ions at m/z 61 [A+] and 285 [C+]) (Table 2.2, Fig. 2.2 and 2.3). The 

position of the double bond in the C18 monoene found in Peltigera degenii Gyeln. was C-4 (ions 

at m/z 103 [A+] and 243 [C+]) and was identified as 4-octadecene (8). Furthermore, the double 

bond in the most abundant P. degenii C19 monoene was found at position C-5 (ions at m/z 117 

[A+] and 243 [C+]) (Table 2.2, Fig. 2.2 and 2.3), producing 5-nonadecene (9). The double bond 

position of the most abundant C20 monoene detected in P. degenii is C-6 (ions at m/z 131 [A+] 

and 243 [C+]) (Table 2.2, Fig. 2.2 and 2.3) and was identified as 6-eicosene (10). 
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2.3.2. Composition and concentration of aliphatic compounds 

2.3.2.1. n-Alkanes 

n-Alkanes with carbon numbers ranging between C13 and C42 were detected in all lichen 

samples (Fig. 3, Table 2, Table S1). All samples had an odd carbon number dominance of the 

long-chain n-alkanes (> C24), but the carbon number of the most prominent n-alkane varied (Fig. 

2.4, Table 2.3). In some samples, medium long-chain n-alkanes (C21–C23) were predominant, 

whereas a bimodal distribution with long-chain n-alkanes was observed in others. Among the 

short-chain n-alkanes, there were also samples with a prominent n-C17 peak, which exhibited 
bimodal/trimodal distributions along with the long-chain and medium long-chain n-alkanes. The 

n-C17 alkane was frequently detected in the cyanobacteria symbiotic genera Lobaria, Peltigera, 

and Collema, which may be attributed to the symbiotic alga Nostoc sp. Many cyanobacteria 

produce the n-C17 alkane (Gelpi et al., 1970; Ladygina et al., 2006; Coates et al., 2014), and the 

genus Nostoc is a prominent producer of the n-C17 alkane (e.g., Liu et al., 2013; Coates et al., 

2014). Based on separate cultures of the photobiont and mycobiont of Xanthoria parietina, Torres 

et al. (2003) reported that the medium- to long-chain n-alkanes are primarily derived from fungi, 

with the n-C17 alkane content being insignificant. The composition of short-chain n-alkanes in 

lichens is primarily influenced by the differences in photobiont species. In our samples, the genera 

Peltigera and Collema, which contain cyanobacteria as their exclusive photosymbiont, were more 

n-C17 dominant than the genus Lobaria, which has green algae as its primary photosymbiont and 

secondary photobiont cyanobacteria restricted to small structures called cephalodia that occur 

sporadically within their tissues. These results suggest that these structures were introduced by 

the symbiotic algae Nostoc sp. 

The differences in the distribution of long-chain n-alkanes may be influenced not only by 

mycobionts but also by environmental factors. According to Huang et al. (2012), the δ13C values 

of n-alkanes in some lichen samples from Dajiuhu and Qizimei, China, indicated that the > C23 n-

alkane homologs were derived from mycobionts, with a small contribution from photobionts. 

They also demonstrated that lichen-derived n-alkanes exhibited two distinct patterns depending 

on their environment, either a predominance of n-C29 alkanes or a bimodal distribution of n-C23 

and n-C29 alkanes. Similarly, Piervittori et al. (1996) reported that the n-alkane composition of 

lichens varied depending on the environmental variability. In our study, multiple distribution 

patterns were observed among samples collected at the same time and location, indicating that 
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differences in multiple parameters, such as interspecific chemotaxonomy and the 

microenvironment, may influence the n-alkane composition. 

 

2.3.2.2. n-Alkenes 

In our study, lichens were found to contain C16–C29 alkenes (Fig. 2.1, Tables 2.3, Table S2). 

The structural identification of the major alkenes was previously addressed in Ikeda et al. (2021). 

In most samples, 1,8-heptadecadiene or 6,9-heptadecadiene and 8- and 7-heptadecene were the 

most prominent peaks in the aliphatic fraction (Fig. 2.1, Table 2.3). In contrast, 4-octadecene and 

5-nonadecene were the most abundant alkenes in the genus Peltigera, while 1-octadecene and the 

C19:2 alkene were the most abundant alkenes in the genus Collema. Although there are few reports 

of alkenes in lichens, 1,8-heptadecadiene has been widely detected in the Parmeliaceae species 

Evernia prunastri and Cetraria islandica (Corbier and Teisseire, 1974; Gavin et al., 1978; Solberg, 

1986). Solberg (1987) additionally detected heptadecadiene and heptadecene in four 

Parmeliaceae lichens: Cetraria delisei, Lobaria pulmonaria, Stereocaulon tomentosum, and 

Usnea hirta. As discussed in Section 2.3.2.1, the n-alkane composition in lichen is susceptible to 

environmental influences. Similarly, a clear seasonal variation in the fatty acid composition of 

lichens has also been reported (e.g., Dembitsky et al., 1994a, b; Piervittori et al., 1995). In our 

study, the heptadecadiene and heptadecene compositions in Xanthoria mandschurica and Lobaria 

orientalis samples collected at two different sites were similar, although the concentrations of 

these compounds differed substantially between the two sites. These results indicate that the 

alkene composition of lichens may be more affected by taxonomic variations than environmental 

effects. 

 

2.3.2.3. Branched alkanes 

Long-chain (C20–C31) anteiso-(3-methyl)-alkanes were identified in several lichens (Fig. 2.1, 

Table 2.3). The anteiso-alkanes were most prevalent in the genus Cladonia, while Stereocaulon 

japonicum, Ramalina yasudae, Pyxine endochrysina, and Collema complanatum also contained 

anteiso-alkanes with various chain lengths. Long-chain anteiso-alkanes have previously been 

detected only in the lichens Ramalina intermediella and Siphula ceratites (Gaskell et al., 1973; 

Huang et al., 2012). We found a wider occurrence of the compounds among seven species of the 

genus Cladonia. Huang et al. (2012) reported that R. intermediella collected from Qizimei 

Mountain, China, contained C24–C32 anteiso-alkanes and C27, C29, and C31 iso-alkanes. In addition, 
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they also detected long-chain branched alkanes in other lichens from Qizimei, but neither anteiso-

alkanes nor iso-alkanes were detected in R. intermediella collected from the Dajiuhu wetland, 

China. The previous findings suggest that these branched alkanes may be produced under specific 

environmental conditions, but our findings suggest that the influence of species variations rather 

than regional (environmental) differences may be more strongly associated with anteiso-alkane 

production. Long-chain anteiso-alkanes and iso-(2-methyl) alkanes have been detected in 

lacustrine sediments (Fukushima, 1996, 2005), Antarctic rock (Matsumoto et al., 1992), coal and 

ancient sediments (Chaffee, 1986; Summons et al., 1988; Cheng et al., 2019), insect wax 

(Blomquist et al., 1976; Nelson et al., 1981; Bernier et al., 1998), higher plants (Maffei, 1994; 

Rogge et al., 1994; Kavouras et al, 1998; Reddy et al., 2000; Grice et al., 2008; Pautler et al., 

2010; Huang et al., 2011; He et al., 2016), urban aerosol (Rogge et al., 1994; Kavouras et al., 

1998; Bi et al., 2005), and modern and Holocene microorganism mats (Shiea et al., 1990; Kenig 

et al., 1995; He et al., 2015). 

A symbiont of fungi and algae in lichen has recently been discovered to have symbiotic 

relationships with bacteria as a third symbiont (e.g., Cardinale et al., 2006). Bacteria are typical 

producers of iso- and anteiso-fatty acids (Kaneda, 1991), and it is possible that specific bacteria 

or bacterial symbioses synthesize these long-chain anteiso-alkanes in lichens. The origin of long-

chain anteiso-alkanes is unclear, but some higher plants also produce them (e.g., Grice et al., 

2008). Remarkably, Matsumoto et al. (1992) detected C20–C30 anteiso-alkanes in lichen-

dominated microbial communities, which were derived from unidentified heterotrophic bacteria 

or symbiotic processes in distinct microbial communities, growing on Antarctic rocks. 

Alphaproteobacteria comprise the majority of the internal bacterial communities in lichens 

(Cardinale et al., 2006, 2008; Bates et al., 2011; Pankratov, 2018). In our study, Cladonia lichens 

were the most prominent producers of the long-chain anteiso-alkanes, while some of the other 

lichens contained these compounds as a minor constituent. It is therefore possible that internal 

bacterial communities in lichens are responsible for the production of long-chain anteiso-alkanes, 

although the relationship of these bacteria to the mycobionts or photobionts is still unknown. 

Other branched alkanes, a squalene, and a compound c, were detected in some samples. 

Solberg (1987) reported the detection of squalene in several lichens, as well as a prominent 

polyunsaturated branched hydrocarbon in L. pulmonaria with an estimated C27 homologue. We 

tentatively identified compound c as a polyunsaturated compound with a similar cleavage pattern 

to the C27 polyunsaturated branched hydrocarbon reported by Solberg (1987). As in Solberg 



CHAPTER 2 

２０ 
 

(1987), this compound was found to be prominent in the genus Lobaria (Fig. 1), and it was also 

detected in some other lichen species (Fig. 2.1, Table 2.3). 

 

2.3.2.4. Other apolar compounds 

A series of hopanoids were detected in the lichen samples (Fig. 2.1, Table 2.3). Diploptene 

and its related compound hop-21-ene have been identified in soil, peat, lake, and marine sediments, 

and are produced by various types of bacteria, including cyanobacteria (Brassell et al., 1980; 

Brassell and Eglinton, 1981; Volkman et al., 1986; Venkatesan, 1988; van Winden et al., 2012; 

Méjanelle et al., 2017). This compound has also been found in ferns and mosses (Ageta and Arai, 

1983; Toyota et al., 1998; Huang et al., 2010; Li et al., 2022). Li et al. (2022) reported that the 

diploptene may be provided by the coexisting heterotrophic bacteria, methanotrophs, or 

methylotrophs on the basis of the carbon isotope ratios of the diploptene and long-chain n-alkanes 

of the epiphytic bryophytes. It is possible that the lichen symbiotic bacteria are involved in the 

production of hopanoids because these compounds have been detected prominently not only in 

cyanolichens but also in chlorolichens.  

 Fernene was also detected as a major terpenoid in all lichen samples. All samples contained 

varying amounts of two fernene isomers, and some samples contained a trace amount of 

fernadiene, but with a low reliability of identification. Fernene has been found in terrestrial plants, 

such as ferns (Ageta and Arai, 1983), gymnosperm Podocarpus species (Silva et al., 1972), and 

extinct pteridosperms (seed ferns) (Paull et al., 1998). However, some bacteria also produce these 

compounds (Volkman et al., 1986; Douka et al., 2001). It was therefore presumed that the internal 

bacterial communities in lichens synthesized the fernene compounds as well as diploptene. 

 

2.3.2.5. Polar compounds 

 Several compounds known as lichen secondary metabolites were detected in the polar fractions 

(Fig. 2.5). Lichen secondary metabolites are known as compounds that are particularly unique to 

lichens. Fallacinol and parietin, which have anthraquinone skeletons, were detected in several 

samples. Anthraquinones provide lichen with strong UV tolerance and are especially 

characteristic of lichens that thrive on bare soil exposed to intense solar radiation (Boustie et al., 

2011). Dibenzofurans were also successfully detected on several occasions, although with low 

reproducibility. Dibenzofurans, in particular, have been reported as compounds possessed by 

lichens in general (Millot et al., 2016). However, to the author's knowledge, there were no 
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reported cases detected by GC-MS because of their highly polar components. At this stage, a 

permanent method to detect these compounds could not be established. 

 

2.3.3. Taxonomic variability of aliphatic components 

Variations in the photobionts rather than the mycobionts were likely responsible for much of 

the difference in the aliphatic hydrocarbon composition. The predominant alkene in species 

belonging to the orders Lecanorales, Caliciales, and Teloschistales was 1,8-heptadecadiene (with 

the exception of the families Cladoniaceae and Stereocaulaceae). Furthermore, 6,9-

heptadecadiene was abundant in species belonging to the families Cladoniaceae and 

Stereocaulaceae in the order Lecanorales, and the genus Lobaria in the family Peltigeraceae 

(Peltigerales). These 6,9-heptadecadiene-producing species were also distinguished by their high 

concentrations of 8- and 7-heptadecenes. In contrast, the species belonging to Collemataceae and 

Peltigera in the family Peltigeraceae (Peltigerales) were distinguished by their high abundances 

of C18 and C19 alkenes and lack of heptadecadienes. Biosynthetic pathways that produce C17–C21 

alkenes are present in cyanobacteria and eukaryotic microalgae (Coates et al., 2014; Sorigué et 

al., 2016). Comparing the alkene composition of lichens with the photobiont taxonomies revealed 

that the C17 alkadienes were abundant in lichens with only green algae photobionts, whereas the 

C18 and C19 alkenes were more prevalent in lichens with only cyanobacterial photobionts. Lobaria 

species, which can harbor both green algae and cyanobacteria, exhibited a combination of the 

characteristics of both groups, containing both the C17 alkadiene and C19 alkene (5-nonadecene). 

It was therefore presumed that the differences in alkene composition were attributable to 

taxonomic variations among symbiotic algae. Furthermore, although the photobiont in the 

majority of chlorolichens was Trebouxia, Asterochloris sp. was the photobiont of Cladonia and 

Stereocaulon species (Škaloud and Peksa, 2010; Peksa and Škaloud, 2011; Moya et al., 2015; 

Pino-Bodas and Stenroos, 2021). We therefore hypothesized that the 1,8-heptadecadiene was 

derived from Trebouxia, and the 6,9-heptadecadiene, and 8- and 7-heptadecenes were derived 

from Asterochloris. Previous studies (Dembitsky et al., 1994a, b; Piervittori et al., 1995, 1996; 

Reis et al., 2005) have found that seasonality and habitats could influence the alkanoic acid and 

n-alkane composition of lichen lipids. However, it is unlikely that the alkene composition varied 

significantly due to environmental conditions, although our samples were collected from an 

uncontrolled environment. 
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We performed a cluster analysis to determine whether the composition of lichen aliphatic 

hydrocarbons could be used for lichen chemotaxonomy. The cluster analysis using only the n-

alkene composition, or n-alkane and n-alkene composition, of each sample resulted in clusters 

that reflected the differences among symbiotic algae well (Fig. 2.6). In contrast, the cluster 

analysis using the n-alkane composition of each sample did not permit a good interpretation of 

the cohesiveness of each cluster. The major difference between the two clusters of lichens with 

only Trebouxia as a symbiont may be due to the 1,8-heptadecadiene concentration. Cluster 'C' 

had high concentrations of 1,8-heptadecadiene (145.74–56.68 μg/g), whereas Cluster 'D' had 

relatively low concentrations (41.93–14.81 μg/g), indicating a difference between these two 

clusters. The amounts of the alkene produced by the mycobiont may have been influenced by 

other factors, given that two X. mandschurica samples from different collection sites were 

classified into distinct clusters despite containing identical symbiotic algae. The presence or 

absence of the two heptadecadienes and the major C17–C19 alkenes was a major cause of the 

differences between these clusters. Consequently, the differences in the alkene composition of the 

lichen samples was the primary factor reflecting the differences in lichen taxa, particularly the 

photobiont, rather than environmental factors. 

 

2.3.4. Potential biomarkers of lichen 

Several specific compounds in the lichen samples were determined to be aliphatic 

hydrocarbons. Huang et al. (2012) proposed that long-chain anteiso-alkanes could be used as a 

biomarker for lichens. We further confirmed the presence of long-chain anteiso-alkanes in lichens. 

These compounds were characteristic for some lichens, especially the genus Cladonia, which is 

an important lichen in polar peatlands and tundra regions (e.g., Payette and Delwaide, 2018), and 

could be used as a biomarker to evaluate lichen assemblages in peatlands and tundra. Our data 

showed that chlorolichens produce a substantial amount of alkadiene. Numerous studies have 

used the alkenes, particularly long-chain alkenes (> C20), preserved in sediments as biomarkers 

of terrestrial higher plants or algae for paleoenvironmental reconstructions (Matsumoto et al., 

1990; Jaffé et al., 1995; Zhang et al., 2004, 2007; Theissen et al., 2005; de Mesmay et al., 2007; 

van Bree et al., 2014). In contrast, the origin of short- to medium-chain alkenes has not been well 

documented (Matsumoto et al., 1990; Cardoso et al., 1983; Cranwell et al., 1987; Yongdong et 

al., 2015; Kaiser et al., 2016). There are few reports of the alkene composition of lichens, but as 

described in Section 2.3.2.2, lichens with green algae commonly produce heptadecadiene. In 
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addition, Matsumoto et al. (1992) discovered heptadecadiene in Antarctic rocks colonized by 

living and fossil cryptoendolithic lichens and fungi. Because heptadecadiene has been detected 

prominently in lichen in some studies (Corbier and Tesseire, 1974; Gavin et al., 1978; Solberg, 

1986, 1987), we propose that chlorolichens universally produce heptadecadienes.  

We assumed that the alkenes were produced in lichens by an algal photobiont or as a result of 

symbiosis with certain species of photobiont because the alkene composition was attributed to 

phylogenetic differences in the symbiotic algae. Green algae that are symbiotic with lichens, such 

as Trebouxia and Asterochloris, have adapted to the terrestrial environment and can occupy a 

wide variety of habitats as a result of their symbiosis with lichens. Laboratory experiments have 

shown that these algae have a heterotrophic tendency toward fungi (Ahmadjian, 1993). These 

green algae, which make up the majority of lichens, are rarely found in nature and are thought to 

have escaped from damaged lichen thalli (Ahmadjian, 1988). Thus, these alkenes, particularly 

heptadecadienes, may be used as lichen biomarkers. 

 

2.4. Conclusions 

We performed a lipid analysis on 29 samples of lichen belonging to the order Lecanorales. 

The samples contained alkenes, branched alkanes, and hopanoids in addition to n-alkanes. 

Alkenes were widely detected in all samples, indicating that their composition may have been 

strongly influenced by the differences in the photosynthetic organisms that make up the lichens. 

Although there are a limited number of alkene compositions reported for lichens, the 

compositions identified here were similar to those reported previously, suggesting that these 

compounds are common to many lichens. The origin of short- to medium-chain homologues in 

sediments has not been well documented, but our study provides an example of the origin of these 

organisms and presents a potential new biomarker for determining the past constituents of lichens. 
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Table 2.1 Mycobiont and photobiont classification of lichens used in the experiment. 
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Fig.2.1 Total ion chromatograms showing the distribution of aliphatic hydrocarbons detected from Usnea rubrotincta, 
Cladonia cryptochlorophaea, Pyxine endochrysina, Lobaria tuberculata, Peltigera degenii (after Ikeda et al., 2021), and 
Collema complanatum. std, standard (tetracosane-d50); •, n-alkanes; ○, n-alkenes with unknown double bond positions; x, 
contamination; Δ, hopanoid. 
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Fig.2.2 Fragmentation scheme for the formation of DMDS adducts of alkenes 

Fig.2.3 Mass spectra of 1,8-heptadecadiene (1), 6,9-heptadecadiene (2), 8-heptadecene (3), 7-heptadecene 
(4), 1-heptadecene (5), 3-heptadecene (6), 1-octadecene (7), 4-octadecene (8), 5-nonadecene (9), and 6-
eicosene (10) from lichens and mass spectra of their DMDS adducts. 
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Fig.2.3 (continued). 
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 Fig.2.3 (continued). 
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 Fig.2.4. n-Alkane distributions in lichens showing the averaged distribution values with the mean 

standard deviation of each sample. 
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Fig.2.4 (continued). 

Fig.2.5 (Captions are on the next page) 
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CHAPTER 3                                           
Lichen and fungal biomarker analysis of the sediments 
deposited across the Cenomanian/Turonian boundary: 
Reconstruction of fungal flora changes 
 

3.1. Introduction 

 

The Cretaceous is an interval of great interest for understanding the ecological evolution in terrestrial 

areas under hothouse conditions. There were no ice sheets in the polar regions, and especially the Late 

Cenomanian-Early Turonian was the Cretaceous ocean surface temperature maximum, known as the 

“Cretaceous thermal maximum” (Norris et al., 2002; Forster et al., 2007; O'Brien et al., 2017). A large 

environmental disturbance event, oceanic anoxic event (OAE2: ~94 Ma), is known to have occurred 

during the Cenomanian-Turonian boundary period and has been linked with large igneous province 

(LIP) volcanic activity. This environmental disturbance event occurred globally and lasted 

approximately 600-900 kyr, although studies vary in duration (Sageman et al., 2006; Eldrett et al., 

2015; Jenkyns et al., 2017; Li et al., 2017; Jones et al., 2019). The mechanism of marine anoxic events 

is thought to be the increase in biological production in the ocean surface layer due to igneous activity, 

resulting in the expansion of anoxic water masses and the deposition of large amounts of organic 

matter without decomposition. Black shales formed by the deposition of organic matter are distributed 

worldwide. Because large-scale igneous activity and subsequent deposition of organic matter also 

significantly impacted the carbon cycle, OAE2 has been used as a stratigraphic contrast tool even in 

areas where black shales cannot be identified, with positive isotopic excursions of carbonate and 

organic carbon being reported. OAE2 is the most studied of the Cretaceous OAEs and is subdivided 

into five stages based on variations in δ13C values. δ13C shows a positive shift at the beginning of 

OAE2 (1st build-up), followed by a negative spike (Trough interval), then a second positive shift (2nd 

build-up), and keeps to a heavier carbon isotope ratio (Plateau) and finally return to a lighter value 

(Recovery). The negative shift is synchronous with LIPs activity, and the positive shift is thought to 

be related to increased oceanic production. The Trough period is known to have experienced a "Plenus 

Cold Event," a cooling event caused by a decrease in pCO2. It is estimated that 33-55% of marine 

ecosystem species became extinct (Sepkoski, 1989), and the extinction of planktonic foraminifera, 

especially those that inhabit the ocean surface, suggests that the effects of the OAE extended to the 

ocean surface. Limited research suggests that this significant carbon cycle change event may have also 
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strongly affected terrestrial ecosystems (Eaton et al., 1997; Kuypers et al., 1999; Hay et al., 2012; 

Heimhofer et al., 2018). Heimhofer et al. (2018) used a palynomorph analysis of terrestrial 

paleovegetation changes during OAE2 in southern France. The results indicate that vegetation in 

southern France changed from a cold and dry savanna climate to a warmer and wetter climate and 

conifer-dominated forests during the OAE.  

As noted in Chapter 1, fungi, especially lichens, may have promoted diversification and allowed 

lichens to explore niche spaces during the mid-Cretaceous period. However, the only fossil record of 

lichens in the Cretaceous is the Honeggeriella complexa, reported in Matsunaga et al. (2013), and 

there is no direct evidence of environmental response and expansion of lichens. Therefore, this study 

examined lichen indicators using aromatic furans to elucidate the environmental response of lichens 

during the OAE2 period, which is known to have undergone major environmental changes. 

 

3.2. Samples and methods 

 3.2.1. Omagarisawa River Section 

 The samples are sedimentary rocks of the Yezo Group, which are distributed in the Omagarisawa 

River (OMZ) in the Tomamae area (Fig. 3.1). The Yezo Group, which is distributed north-south along 

the mid-axis of Hokkaido, is thought to have been deposited in the forearc basin on the eastern margin 

of the Asian continent from the mid-Cretaceous to the early Paleogene, with a total thickness of 

approximately 10,000 m (Takashima et al., 2004). This sample was collected during a joint survey 

with Professor Takashima of Tohoku University. The samples are sedimentary rocks collected during 

the August 2017 survey, some of which were previously collected and provided by Dr. Ando of Akita 

University. The Saku Formation of the Yezo Group exposed in the study area contains the OAE2 

equivalent formation that occurred near the Cenomanian-Turonian boundary, and the behavior of δ13C 

values of wood chips in sedimentary rocks and comparison with other areas indicate that the OAE2 

formation in this study area extends about 700 m thick. Plant fragments from terrestrial sources in the 

Yezo Formation are considered to have been intensely mixed during transport from terrestrial areas to 

the Yezo forearc basin. In addition, about 100 years have been mixed and averaged by bioturbation 

(Hasegawa, 2001; Hasegawa et al., 2003). The Saku Formation is composed of mudstone-dominated 

turbidite sandstone-mudstone alternation. As with other Yezo Formation samples, a detailed record of 

terrestrial vegetation changes during OAE2 events is expected because of the large terrestrial 

contribution and low maturity (Ando et al., 2017). The study area consisted mainly of alternating layers 

of sand and mud, and only mudstone was sampled. 
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 3.2.2. North Fork Cottonwood Creek Section 

 The samples are sedimentary rocks of the Budden Canyon Formation of the Great Valley Sequence 

(GVS) in the North Fork Cottonwood Creek (NFCC), northern California, U.S.A (Fig. 3.1). The GVS 

is a typical forearc basin sedimentary sequence deposited on the continental margin of North America 

at ~30-40°N. The Budden Canyon Formation records sedimentary deposits from the Berriasian to the 

Turonian. The Cenomanian-Turonian boundary stratigraphy at this site is dominated by dark-gray 

organic-rich terrigenous mudstone interbedded with some thin turbidite beds and minor conglomerate 

sandstone. The sample used in this study was provided by Prof. Takashima of Tohoku University and 

reported by Du Vivier et al. (2015) and Takashima et al. (2011), which compared each phase of OAE2 

with other sites. 

 

3.2.3. Biomarker analysis 

 Extraction and separation of bitumen were performed as described by Sawada et al. (1996). 

Sediments were extracted with methanol (MeOH), dichloromethane (DCM) and DCM/MeOH (1/1, 

v/v). As an internal standard, tetracosane-d50 was added, and the extract was dried in a rotary 

evaporator and re- dissolved in hexane. The hexane extract was passed through a silica gel column 

(95% activated); the aliphatic and aromatic hydrocarbon fractions were eluted consecutively with 

hexane and hexane/toluene (3/1, v/v) and analyzed using gas chromatography-mass spectrometry 

(GC-MS). Lipids were identified by GC-MS using an Agilent 7890B GC instrument equipped with a 

30 m × 0.25 mm i.d. DB-5HT fused silica column (Agilent, Santa Clara, CA, USA) directly coupled 

to an Agilent 5977A MSD quadruple mass spectrometer (electron voltage, 70 eV; scan range, m/z 50–

650 in 1.3 s). The oven temperature was programmed as follows: 50°C (held for 4 min) to 310 C at 

4°C/min (held for 20 min). The injection temperature was 310°C and the instrument was run in 

splitless mode with helium as the carrier gas. 

 

3.3. Results and discussion 

3.3.1. Maturity and depositional environment indicator of biomarker 

All samples detected ββ hopane characteristics of low maturity samples. The C32 22S/(22S+22R) 

hopane ratio, an indicator of maturity, ranged from 0.13 to 0.39 for OMZ samples and from 0.07 to 

0.32 for CNFF samples. The ββ hopane ratios (ββ/(ββ+αβ+βα) C30 hopane) were 0.17-0.26 and 0.18-

0.48, respectively. Both were very low maturity, approximately 0.4% Ro when converted to vitrinite 
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reflectance. 

The pristane (Pr)/phytane (Ph) ratio is commonly used as a redox indicator. It is known that phytol, 

formed from chlorophyll, undergoes oxidation and decarboxylation to become pristane  under 

oxidative conditions and becomes phytane by reduction and dehydration reactions under anoxic 

conditions by diagenetic processes (Didyk et al. 1978). While excessive input of terrestrial organic 

matter also increases Pr/Ph values (Powell, 1988). In this study, following Waseda and Nishita (1998) 

and Sawada (2006), we estimated the depositional environment by plotting the values of the 

C27/(C27+C29) regular sterane ratio and Pr/Ph ratio, which is used as an indicator of terrestrial/marine 

ratio (Fig. 3.2). The results indicate a high contribution of terrigenous organic matter at both sites, 

except for some of the OMZ samples. These results are also consistent with previous studies (e.g., 

Hasegawa, 2001; Fernando et al., 2011) that have found a high contribution from terrestrial source 

sediments. 

 

3.3.2. Reconstruction of paleovegetation based on biomarker analysis 

 In this study, two vegetation indices were used to reconstruct the vegetation changes of terrestrial 

higher plants. 

The first, ar-AGI (Nakamura et al., 2010), indicates the ratio of aromatic triterpenoids (ar-TTs) of 

angiosperm origin to aromatic diterpenoids (ar-DTs) of gymnosperm origin and is an indicator of the 

angiosperm/ gymnosperm ratio (Fig.3.3). The second, HPP (Higher Plant Parameter) (van Aarssen et 

al., 2000) is the ratio of Retene, which is mainly derived from conifers, to Cadalene, which is a 

common present in higher plants, and is an indicator of the expansion of coniferous vegetation. 

In the OMZ, the ar-AGI values were high in the middle of the 1st build-up and decreased sharply at 

the end; in the Trough, they decreased temporarily in the middle but increased gradually; in the 2nd 

build-up, they decreased temporarily in the early phase; in the Plateau, maintained high values, and 

returned to the same value as before OAE in the Recovery. The HPP values in the OMZ varied as 

follows: in the 1st build-up, decreasing in the middle and rapidly increasing in the end: gradually 

decreasing in the Trough phase; in the 2nd build-up, rapidly increasing in the end; taking a low value 

in the Plateau phase; and stabilizing at a slightly higher value in the Recovery phase. The opposite 

trend of ar-AGI and HPP from 1st build-up to Trough suggests that there may have been environmental 

changes (e.g., aridification) at the end of the 1st build-up that resulted in strong environmental 

disturbances on land that led to the dominance of gymnosperms, especially conifers. van Aarssen et 

al. (2000) reconstructed HPP variability in Jurassic Australian marine sedimentary rocks. They 
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proposed HPP as an indicator of global climate change because it is synchronized with other 

paleoclimate data and global sea-level changes. Subsequently, Hautevelle et al. (2006) reported that 

retenes are derived primarily from drought-tolerant Pinaceae, and that other paleoclimate data showed 

increased HPP in response to desiccation. The trend of the rapid increase in HPP at the end of the 2nd 

build-up was not in sync with the change in ar-AGI. This case may indicate an increase in the relative 

share of conifers due to the attenuation of terrestrial plants other than seed plants (Bryophytes, 

Lycophytes, and Pteridophytes). More detailed studies are needed, but in any case, the results suggest 

that in the OMZ section, some environmental changes at the end of the 1st build-up and 2nd build-up 

strongly affected the terrestrial vegetation as well. 

In the NFCC, ar-AGI values were temporarily high in the middle of the 1st build-up phase, then 

declined sharply in the last phase; in the Trough, fluctuated violently but increased progressively; in 

the 2nd build-up, declined in the middle of the phase then increased sharply; in the Plateau, remained 

high; declined sharply in the middle of the Recovery phase, and stabilized at lower values than before 

OAE. The HPP values in the NFCC showed an inverse trend to ar-AGI, behaving as follows: in the 

1st build-up, decreased in the middle and rapidly increased at the end of the phase: took a low value 

in the Trough phase; in the 2nd build-up, temporarily increased in the middle; remained low value 

from the Plateau phase to the first half of the Recovery phase, increasing rapidly in the second half of 

the Recovery phase, and then stabilizing at a higher value than before OAE. 

The variability of these indices in the NFCC was very high, ranging from 0.12-0.74 for ar-AGI and 

0.09-0.83 for HPP in the NFCC, compared to 0.44-0.81 and 0.14-0.64 in the OMZ, respectively. The 

ar-AGI fluctuations themselves were similar at both sites but differed from the OMZ section in that 

HPP spiked at the end of the 2nd build-up at OMZ. In contrast, at NFCC, it spiked temporarily in the 

middle of the 2nd build-up and took a high value after the latter half of the Recovery phase. In 

particular, the NFCC showed a small range of HPP variability throughout most of the OAE period, 

and the contribution of conifers increased only after the latter part of the Recovery period. This 

difference between the OMZ and NFCC sections can be attributed to differences in the original 

vegetation of the hinterland. As shown in Fig. 3.4, the biomes in the Cenomanian-Turonian are thought 

to have been warm moist forest vegetation in the OMZ section, while the NFCC section was dry 

savanna vegetation (Sewall et al., 2007; Heimhofer et al., 2018). This may suggest that the OMZ was 

a transition of dominant forest species, whereas the NFCC shows the expansion and contraction of 

conifers in savanna vegetation. Few studies have reconstructed terrestrial vegetation during OAE2. 

However, Heimhofer et al. (2018) conducted palynomorph and biomarker analyses (TEX86) in the 
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OAE2 section of the Southern Provençal Basin, France. They found that coniferous vegetation may 

have expanded due to exceptional warming and wetting caused by OAE2 with a period of temporary 

interruption due to the expansion of the dominant angiosperm savanna-type vegetation rich in 

angiosperms caused by a cold event (Plenus Cold Event) during the Trough period. In the NFCC 

section, the savanna vegetation, probably dominated by non-woody angiosperms, was temporarily 

dominated by coniferous vegetation in the 1st and 2nd build-ups, and the impact of the exceptional 

warming caused by the OAE on the terrestrial ecosystem may have promoted a permanent expansion 

of coniferous vegetation afterward. No major vegetation transition was observed in the OMZ section 

before and after OAE2, while in the NFCC section, suggesting that a significant vegetation transition 

with conifer expansion may have occurred after OAE2 by biomarker analysis in this study. 

 

3.3.3. Examination of fungal indices and reconstruction of fungal flora 

A prominent perylene peak was detected in the aromatic fraction of samples from both sites (Fig. 

3.5). Perylene has been reported to be a biomarker derived from wood-degrading fungi and 

mycorrhizae (Jiang et al., 2000; Grice et al., 2009; Itoh et al., 2012; Marynowski et al., 2013, 2015; 

Hanke et al., 2019). In this study, the following indices were used to reconstruct the variation in the 

contribution of these fungi to terrestrial ecosystems: (1) the perylene/(perylene+pyrene) index, which 

uses the ratio of perylene to pyrene, a PAH (polycyclic aromatic hydrocarbon) of which perylene is 

also a class. (2) perylene/(perylene+phenathrene) using the ratio of perylene to phenanthrene, a PAHs 

(polycyclic aromatic hydrocarbon), and (3) perylene/(perylene+ar-DTs+ar-TTs) using the ratio of 

perylene to ar-DTs and ar-TTs of higher plant origin to indicate the relative contribution of fungi to 

higher plants. In the OMZ section, these indicators remained permanently high, and temporarily low 

in the 1st and 2nd build-up. Notably, these indicators also varied considerably during the period when 

significant changes in terrestrial vegetation occurred. These all showed similar behavior, suggesting 

that the fungal activity itself declined during the 1st build-up and especially the 2nd build-up period, 

rather than relative changes due to the decline of terrestrial vegetation.  

 In the NFCC section, there was a marked decrease in the middle of the Recovery period in these 

indicators. This timing coincides with the time between the low value of ar-AGI and the increase in 

the value of HPP. This may indicate that the plants themselves associated with fungi, such as wood-

degrading fungi and ectomycorrhizae, the origin organisms of perylene, have declined, and the 

contribution of the fungi themselves has also declined. The variation of perylene/(perylene+ar-

DTs+ar-TTs) differs from the other two indicators, remaining slightly lower than its value before the 
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Plateau period even after the conifer expansion and showing a behavior similar to that of ar-AGI. This 

suggests that the fungi may have been strongly associated with plants that thrived in the pre-Recovery 

vegetation, or they may have become less active in the new environment with expanded coniferous 

vegetation. In the NFCC, the decrease in the Recovery phase of these indices was remarkable, but the 

two indices, which are the ratio of perylene to PAHs, showed a slight decreasing trend from the end 

of the 1st build-up phase to the Trough phase as well. A strong cold event (Plenus Cold Event; PCE) 

is known to have occurred in the Tethys Sea, Paleo-Atlantic, and Western Interior Seaway during this 

period (O'Conner et al., 2019). Although there are no direct reconstructions of this cold event in the 

Pacific, the temporary decrease in pCO2 associated with the PCE has been recorded in variations in 

δ13C values at Pacific sites (Nemoto and Hasegawa, 2011; Du Vivier et al., 2015), suggesting that the 

cold event may have been a global event.The decrease in indicators during the Trough period may 

indicate a decline in fungal activity due to the effects of this cold event. 

 

3.3.4. Examination of lichen indices and reconstruction of lichen behavior 

  Several dibenzofuran series were detected in the aromatic fractions of samples from both sites. 

Each compound was identified as dibenzofuran (DBF), methyl dibenzofuran (4-/2-/3-/1-MDBF), 

and dimethyldibenzofuran/ethyl dibenzofuran (4-EDBF/4,6-/2,4 -/3,6-/2,7-/1,4- and 1,6-

DMDBF) (Fig. 3 Fig. 3.6). The origin of dibenzofurans in sedimentary rocks has been proposed 

as a terrestrial higher plant origin (Born et al., 1989; Hatcher and Clifford, 1997; Sephton et al., 

2005; Fenton et al., 2007; Wang and Visscher, 2007; Biswas et al., 2020), while others have 

suggested a lichen origin (Radke et al., 2000; Watson et al., 2005; Sawada et al., 2012). 

 The theory of terrestrial higher plant origin has been proposed based on the synthesis of 

dibenzofuran in laboratory maturation experiments of polysaccharides and biphenyls produced 

by higher plants. 

 Watanabe (2000) showed that dibenzofurans are formed from lignin, cellulose and phenol 

produced by higher plants through simulated maturation experiments. In contrast, alkyl 

dibenzofurans were not found to be produced in this study. Radke et al. (2000) used multivariate 

analysis to estimate the origin of methyl dibenzofurans in sedimentary rocks. Their results suggest 

that 1-MDBF differs in origin from other dibenzofurans (dibenzofurans, 2-/3-/4-MDBF) in 

moderately mature samples. They argue that lichen dibenzofurans may be the origin of 1-MDBF 

because lichen-produced dibenzofurans are the only alkyl dibenzofurans reported to be produced 

under other natural conditions that have an alkyl chain specifically at position 1 (position 9). In 
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the samples of our study, the degree of maturity is low, and the phenomenon of increased relative 

amounts of 1-MDBF isomers (Radke et al., 2000), which is known to occur in the high maturity 

zone (Ro>1.0 %), is not considered to have occurred. Based on the above, 1-MDBF was examined 

as an indicator as a lichen biomarker in this study. 

The isomer ratio (1-MDBF/(1- +2- +3- +4-MDBF)) index showed a slightly increasing trend 

toward the top in the samples from both sites, but there were no significant fluctuations in increase 

or decrease. On the other hand, the 1-MDBF/(1-MDBF+perylene) ratio showed a marked increase 

during the period when the fungal contribution indicator showed a decrease. The 1-MDBF/(1-

MDBF/ar-DTs+ar-TTs) ratio also increased during the same period as the perylene indicator. This 

suggests that while no expansion or contraction of lichen vegetation occurred, the relative 

contribution of lichens to the terrestrial ecosystem increased relative to the attenuation of fungi 

and higher plants.  

The increase in the 1-MDBF/(1-MDBF+ar-DTs+ar-TTs) ratio in the NFCC samples during the 

Trough may indicate that lichens have shown tolerance to certain environmental stresses, such as 

cold weather, in response to the attenuation of higher plant vegetation itself, which was not 

captured by ar-AGI or HPP. While several previous studies using lichen fossils have suggested 

that lichens thrived in warm or wet vegetation (e.g., Wang et al., 2010; Kaasakainen et al., 2017), 

the present study suggests that lichens in the Mid-Cretaceous were as resistant to environmental 

stresses as modern lichens. 

 

3.4. Conclusions 

 Sediments from the North American (NFCC) and eastern margin of Asia (OMZ) sites, which 

record the mid-Cretaceous environmental disturbance event OAE2, were used to reconstruct 

vegetation change and fungal and lichen behavior based on biomarker analysis. We found that 

there were significant vegetation changes during OAE2 at both sites, and that coniferous 

vegetation in the OMZ temporarily expanded during the 1st and 2nd build-up, suggesting that the 

contribution of fungi to the vegetation change was also greatly affected by the vegetation change. 

On the other hand, the lichen index using 1-MDBF indicated that the vegetation increased relative 

to higher plants and fungi during environmental disturbance and may have been highly tolerant 

to environmental stresses. The NFCC site showed similar vegetation changes in the 1st and 2nd 

build-up. On the other hand, unlike the OMZ, vegetation at this site changed significantly before 

and after the OAE, indicating that coniferous vegetation expanded. This significant vegetation 
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transition period was detrimental to fungi, which showed significant attenuation, but had little 

effect on lichens. Paleoecological reconstructions of lichens in geological time have so far been 

based on limited lichen fossils. In this study, we were able to reconstruct differences in 

environmental responses from other terrestrial ecosystems at high resolution by using biomarkers. 
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Fig.3.2.(Upper) Maturity indicator and, (below) Depositional environment calculated by  
biomarker from each sample (modified from Ando et al., 2017). 

Fig.3.3. Diterpenoids and triterpenoids detected in the samples 
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Fig.3.5.TIC of aromatic fraction 

Fig.3.4. Palaeogeographic map illustrating Cenomanian–Turonian biome distribution.  
(A)tropical moist, open canopy mixed forest with shrub understory; (B) savanna-type dry low understory with sparse 
trees; (C) deciduous dry/ warm shrubland; (D) mid-latitude evergreen closed canopy conifer forest; (E) Normapolles 
province; (F) evergreen wet/cool shrubland; (G) high-latitude moist, open canopy forest with shrub understory; (H) 
boreal closed canopy conifer forest. (modified from Heimhofer et al., 2018) 
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 Fig.3.7. Origin of DBF in sedimentary rocks mentioned in previous studies 

Fig.3.6. Dibenzofuran series detected in the samples.  
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Table 3.1. List of indicator values used in this chapter in the OMZ section 
Sampl No. depth(m) Phase S/(S+R) C32

hopane
ββhopan ratio C27/(C27+C29)STN Pr/Ph ar-AGI HPP Perylene/(Perylen

e+Pyrene)
Perylene/(Perylene

+Phenanthrene)
Perylene/(Perylene

+ar-DT+ar-TT)
1-/(1-,2-,3-,4-
MDBF) ration

1-MDBF/(1-
MDBF+Perylene)

1-MDBF/(1-
MDBF+ar-DT+ar-TT)

OMZ275 741.5 Post-OAE 0.39 0.19 0.41 1.51 0.47 0.38 0.61 0.78 0.71 0.37 0.04 0.10
OMZ273 734.1 Post-OAE 0.21 0.21 0.42 2.15 0.55 0.38 0.67 0.83 0.72 0.39 0.04 0.09
OMZ271 722.8 Post-OAE 0.20 0.22 0.44 2.12 0.59 0.34 0.71 0.86 0.71 0.33 0.02 0.05
OMZ269 709.7 Post-OAE 0.22 0.23 0.34 1.88 0.49 0.44 0.68 0.86 0.70 0.41 0.02 0.05
OMZ267 697.9 Post-OAE 0.21 0.22 0.37 0.75 0.62 0.50 0.78 0.92 0.74 NA NA NA
OMZ266 686.0 Post-OAE 0.20 0.22 0.43 2.27 0.54 0.45 0.64 0.77 0.59 0.35 0.05 0.07
OMZ264 673.1 Recovery 0.18 0.22 0.41 2.05 0.61 0.25 0.66 0.82 0.63 0.35 0.03 0.05
OMZ263 665.3 Recovery 0.18 0.20 0.39 2.25 0.55 0.32 0.74 0.83 0.74 0.27 0.04 0.09
OMZ689 643.6 Recovery 0.23 0.20 0.39 2.01 0.62 0.50 0.63 0.80 0.64 0.34 0.04 0.06
OMZ259 632.8 Recovery 0.22 0.19 0.40 2.27 0.60 0.53 0.70 0.84 0.62 0.32 0.02 0.04
OMZ258 621.6 Recovery 0.23 0.18 0.44 1.54 0.59 0.46 0.61 0.80 0.59 NA NA NA
OMZ687 611.1 Recovery 0.22 0.21 0.41 2.28 0.57 0.40 0.72 0.83 0.75 0.29 0.04 0.10
OMZ255 603.9 Recovery 0.23 0.19 0.40 1.88 0.60 0.52 0.69 0.83 0.73 0.36 0.02 0.06
OMZ254 593.7 Recovery 0.23 0.20 0.36 1.97 0.57 0.47 0.73 0.88 0.69 0.35 0.02 0.05
OMZ680 580.4 Recovery 0.24 0.19 0.44 1.95 0.64 0.48 0.75 0.86 0.76 0.30 0.02 0.07
OMZ678 570.2 Recovery 0.27 0.21 0.36 NA 0.62 NA 0.62 0.91 0.56 NA NA NA
OMZ251 561.3 Recovery 0.27 0.17 0.43 1.62 0.46 0.22 0.37 0.48 0.40 0.35 0.15 0.10
OMZ674 552.2 Recovery 0.26 0.21 0.35 NA 0.78 0.54 0.77 0.91 0.76 NA NA NA
OMZ673 544.4 Plateau 0.25 0.22 0.39 2.10 0.62 0.21 0.70 0.74 0.72 0.24 0.05 0.12
OMZ672 533.8 Plateau 0.23 0.21 0.38 2.11 0.62 0.36 0.69 0.80 0.72 0.30 0.04 0.09
OMZ670 526.9 Plateau 0.25 0.24 0.46 1.27 0.74 0.31 0.87 0.92 0.81 0.23 0.01 0.04
OMZ667 510.8 Plateau 0.22 0.20 0.44 2.25 0.67 0.24 0.72 0.82 0.71 0.26 0.04 0.08
OMZ666 507.8 Plateau 0.26 0.22 0.37 1.93 0.79 0.25 0.67 0.79 0.73 NA NA NA
OMZ663 495.8 Plateau 0.22 0.24 0.46 2.19 0.59 0.20 0.72 0.84 0.73 0.30 0.03 0.08
OMZ662 488.6 Plateau 0.23 0.24 0.49 2.66 0.64 0.26 0.68 0.81 0.75 0.28 0.03 0.10
OMZ660 481.8 Plateau 0.26 0.23 0.35 2.04 0.69 0.33 0.78 0.88 0.78 0.23 0.02 0.05
OMZ659 474.0 Plateau 0.26 0.19 0.37 2.06 0.58 0.37 0.67 0.78 0.71 0.29 0.05 0.11
OMZ657 462.3 Plateau 0.21 0.24 0.43 2.73 0.70 0.39 0.81 0.87 0.76 0.28 0.02 0.07
OMZ656 453.7 Plateau 0.21 0.25 0.38 1.48 0.75 0.37 0.59 0.73 0.65 0.27 0.04 0.07
OMZ655 443.6 Plateau 0.25 0.21 0.42 1.64 0.50 0.32 0.69 0.76 0.73 0.29 0.04 0.11
OMZ654 438.0 Plateau 0.22 0.26 0.39 1.63 0.71 0.27 0.76 0.83 0.74 0.23 0.06 0.15
OMZ653 428.7 Plateau 0.20 0.25 0.39 1.99 0.68 0.30 0.77 0.85 0.77 0.25 0.02 0.06
OMZ652 416.4 Plateau 0.23 0.23 0.45 2.43 0.66 0.25 0.76 0.84 0.79 0.28 0.03 0.11
OMZ651 413.0 Plateau 0.28 0.19 0.39 1.95 0.73 0.37 0.83 0.85 0.79 NA NA NA
OMZ649 399.5 Plateau 0.24 0.25 0.43 1.62 0.71 0.18 0.70 0.80 0.79 0.27 0.04 0.13
OMZ647 389.9 Plateau 0.21 0.25 0.36 2.02 0.71 0.36 0.72 0.80 0.67 0.29 0.03 0.06
OMZ645 377.8 Plateau 0.23 0.22 0.38 1.71 0.58 0.46 0.67 0.82 0.69 NA NA NA
OMZ644 368.0 Plateau 0.18 0.23 0.47 2.11 0.45 0.35 0.63 0.81 0.66 NA NA NA
OMZ643 364.0 Plateau 0.16 0.23 0.44 3.17 0.61 0.29 0.77 0.87 0.81 0.27 0.03 0.10
OMZ641 349.7 Plateau 0.21 0.24 0.81 2.09 0.57 0.47 0.78 0.87 0.78 0.25 0.02 0.06
OMZ640 340.1 Plateau 0.22 0.22 0.36 1.90 0.64 0.44 0.76 0.86 0.71 0.25 0.02 0.05
OMZ638 325.9 Plateau 0.22 0.19 0.36 1.82 0.50 0.47 0.76 0.84 0.72 0.28 0.03 0.07
OMZ637 317.3 Plateau 0.21 0.20 0.39 1.95 0.64 0.55 0.73 0.81 0.71 0.26 0.02 0.06
OMZ635 307.2 Plateau 0.21 0.21 0.38 1.63 0.59 0.64 0.83 0.82 0.64 0.28 0.03 0.05
OMZ633 294.0 2nd-BU 0.23 0.19 0.42 1.64 0.65 0.44 0.83 0.90 0.79 0.26 0.01 0.04
OMZ632 291.5 2nd-BU 0.22 0.20 0.85 2.52 0.69 0.34 0.62 0.71 0.64 0.23 0.06 0.10
OMZ006 279.8 2nd-BU 0.21 0.19 0.54 1.82 0.55 0.19 0.65 0.75 0.73 0.26 0.05 0.13
OMZ009 271.3 2nd-BU 0.23 0.22 0.44 1.76 0.71 0.19 0.70 0.83 0.74 NA NA NA
OMZ012 262.9 2nd-BU 0.16 0.21 0.43 2.98 0.65 0.27 0.60 0.66 0.65 0.25 0.06 0.11
OMZ016 253.0 2nd-BU 0.21 0.23 0.45 1.77 0.49 0.14 0.51 0.57 0.67 0.27 0.11 0.19
OM053 239.3 Trough 0.21 0.24 0.41 2.03 0.69 0.33 0.19 0.30 0.05 NA NA NA
OM044 232.7 Trough 0.21 0.22 0.38 2.06 0.77 0.23 0.47 0.58 0.85 0.21 0.09 0.35
OM039 228.3 Trough 0.20 0.23 0.40 2.25 0.67 0.39 0.33 0.51 0.42 0.29 0.05 0.04
OM033 223.4 Trough 0.16 0.23 0.38 2.48 0.64 0.38 0.40 0.54 0.73 0.22 0.10 0.23
OM026 218.8 Trough 0.24 0.22 0.41 2.04 0.52 0.49 0.35 0.49 0.72 0.25 0.13 0.27
OM019 214.1 Trough 0.22 0.22 0.42 2.15 0.57 0.43 0.52 0.68 0.87 0.23 0.05 0.25
OM001 204.5 Trough 0.20 0.20 0.47 2.45 0.62 0.48 0.79 0.89 0.68 NA NA NA
OM006 199.0 Trough 0.18 0.22 0.39 2.11 0.57 0.58 0.77 0.88 0.78 NA NA NA
OM010 195.2 Trough 0.21 0.21 0.38 1.75 0.61 0.54 0.50 0.66 0.45 0.25 0.06 0.05
OM015 190.6 Trough 0.16 0.20 0.34 1.81 0.55 0.58 0.50 0.62 0.53 0.25 0.07 0.08
OM016 189.8 Trough 0.25 0.18 0.48 2.18 0.44 0.52 0.67 0.80 0.69 0.34 0.04 0.09
OM018 188.1 Trough 0.24 0.22 0.38 1.85 0.50 0.56 0.61 0.73 0.82 0.24 0.04 0.17
OM056 186.6 1st-BU 0.20 0.20 0.42 1.90 0.56 0.51 0.40 0.61 0.06 NA NA NA
OM060 183.9 1st-BU 0.18 0.25 0.40 2.44 0.73 0.38 0.44 0.61 0.77 0.23 0.07 0.20
OM064 180.6 1st-BU 0.19 0.24 0.34 2.54 0.78 0.28 0.63 0.77 0.55 NA NA NA
OM066 179.6 1st-BU 0.16 0.24 0.39 1.89 0.77 0.29 0.65 0.79 0.76 0.24 0.03 0.09
OM067 178.9 1st-BU 0.18 0.22 0.38 2.22 0.71 0.26 0.55 0.69 0.88 0.23 0.05 0.30
OM068 177.5 1st-BU 0.16 0.24 0.34 2.99 0.77 0.24 0.39 0.51 0.62 0.23 0.12 0.18
OM069 176.9 1st-BU 0.17 0.25 0.39 2.80 0.76 0.25 0.47 0.60 0.20 NA NA NA
OM070 176.0 1st-BU 0.13 0.22 0.38 2.63 0.79 0.23 0.43 0.56 0.67 0.25 0.10 0.19
OM071 175.2 1st-BU 0.21 0.23 0.41 1.64 0.75 0.26 0.46 0.58 0.86 0.22 0.08 0.37
OM076 171.4 1st-BU 0.17 0.22 0.31 2.80 0.81 0.24 0.74 NA 0.20 NA NA NA
OM080 167.2 1st-BU 0.20 0.25 0.41 2.28 0.72 0.27 0.62 0.76 0.46 NA NA NA
OM085 162.5 1st-BU 0.20 0.25 0.40 2.22 0.69 0.35 0.45 0.67 0.31 NA NA NA
OM090 159.1 1st-BU 0.19 0.24 0.41 1.75 0.70 0.42 0.51 0.67 0.78 0.24 0.06 0.18

OMZ508 147.4 Pre-excursion 0.19 0.22 0.38 2.90 0.74 0.30 0.77 0.87 0.79 0.26 0.03 0.09
OMZ512 138.4 Pre-excursion 0.21 0.22 0.39 2.99 0.71 0.28 0.71 0.85 0.75 0.29 0.03 0.09
OMZ517 128.3 Pre-excursion 0.21 0.22 0.37 1.44 0.72 0.26 0.48 0.38 0.12 NA NA NA
OMZ525 113.4 Pre-excursion 0.23 0.21 0.44 2.32 0.56 0.44 0.77 0.88 0.78 0.26 0.02 0.08
OMZ526 102.5 Pre-excursion 0.19 0.23 0.43 2.95 0.65 0.30 0.58 0.72 0.69 0.24 0.06 0.12
OMZ531 95.2 Pre-excursion 0.18 0.24 0.42 2.98 0.79 0.26 0.67 0.80 0.65 0.29 0.03 0.05
OMZ603 84.6 pre-OAE 0.19 0.24 0.45 2.47 0.62 0.35 0.76 0.88 0.76 0.29 0.03 0.09
OMZ606 75.5 pre-OAE 0.24 0.22 0.68 2.20 0.67 0.38 0.71 0.83 0.69 0.25 0.03 0.05
OMZ610 64.6 pre-OAE 0.21 0.21 0.46 2.01 0.54 0.44 0.70 0.83 0.73 0.28 0.03 0.08
OMZ614 49.7 pre-OAE 0.17 0.21 0.42 2.57 0.67 0.48 0.82 0.91 0.80 0.26 0.01 0.06
OMZ616 40.8 pre-OAE 0.23 0.22 0.48 2.20 0.61 0.19 0.69 0.79 0.77 0.28 0.05 0.16
OMZ618 30.5 pre-OAE 0.25 0.22 0.42 2.13 0.64 0.26 0.61 0.78 0.69 0.29 0.04 0.08
OMZ621 22.2 pre-OAE 0.30 0.20 0.37 1.32 0.70 0.48 0.77 0.80 0.71 0.26 0.03 0.06
OMZ625 10.4 pre-OAE 0.25 0.18 0.46 2.06 0.49 0.40 0.80 0.83 0.79 0.27 0.04 0.13
OMZ627 3.6 pre-OAE 0.21 0.20 0.38 1.27 0.50 0.48 0.84 0.78 0.81 0.25 0.03 0.00
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Sampl No. depth(m) Phase S/(S+R) C32

hopane
ββhopan ratio C27/(C27+C29)STN Pr/Ph ar-AGI HPP Perylene/(Perylen

e+Pyrene)
Perylene/(Perylen
e+Phenanthrene)

Perylene/(Perylen
e+ar-DT+ar-TT)

1-/(1-,2-,3-,4-
MDBF) ration

1-MDBF/(1-
MDBF+Perylene)

1-MDBF/(1-
MDBF+ar-DT+ar-TT)

US096 425.5 post-OAE 0.32 0.38 0.19 1.62 0.20 0.59 0.52 0.65 0.34 0.30 0.09 0.05

US094 400 post-OAE 0.22 0.42 0.21 3.50 0.25 0.67 0.60 0.76 0.51 0.28 0.03 0.03

US093 382.5 post-OAE 0.27 0.37 0.22 1.73 0.31 0.49 0.67 0.79 0.56 0.33 0.03 0.04

US092 338.5 post-OAE 0.27 0.41 0.17 1.24 0.30 0.47 0.63 0.70 0.52 0.23 0.04 0.05

US913 328 post-OAE 0.26 0.34 0.20 1.36 0.12 0.83 0.49 0.78 0.16 0.42 0.04 0.01

US091 315 Recovery 0.24 0.36 0.21 1.68 0.23 0.54 0.63 0.73 0.45 0.33 0.06 0.05

US907 308 Recovery 0.23 0.36 0.20 2.34 0.23 0.39 0.65 0.75 0.46 0.32 0.05 0.04

US906 306 Recovery 0.22 0.41 0.20 2.53 0.23 0.64 0.67 0.80 0.48 0.34 0.03 0.03

US904 299 Recovery 0.22 0.40 0.21 0.72 0.18 0.59 0.66 0.80 0.48 0.27 0.03 0.03

US090 291 Recovery 0.24 0.35 0.33 1.80 0.26 0.07 0.17 0.08 0.27 0.27 0.63 0.38

US603 282.5 Recovery 0.28 0.39 0.21 0.67 0.25 0.30 0.51 0.58 0.38 0.31 0.13 0.08

US605 276.1 Recovery 0.19 0.35 0.31 2.56 0.31 0.09 0.37 0.32 0.30 0.33 0.33 0.17

US608 270.7 Recovery 0.21 0.33 0.31 2.00 0.28 0.11 0.15 0.07 0.15 0.29 0.74 0.33

US611 263.6 Recovery 0.14 0.38 0.17 2.52 0.76 0.07 0.88 0.94 0.86 0.36 0.03 0.15

US615 257.6 Recovery 0.12 0.36 0.19 2.60 0.76 0.22 0.75 0.80 0.64 0.37 0.03 0.05

US619 250.2 Plateau 0.12 0.32 0.11 2.80 0.51 0.14 0.64 0.83 0.64 0.32 0.05 0.08

US620 249.2 Plateau 0.20 0.33 0.20 2.90 0.50 0.26 0.77 0.81 0.71 0.34 0.05 0.12

US622 241.8 Plateau 0.13 0.44 0.20 1.75 0.56 0.21 0.75 0.82 0.81 0.31 0.04 0.14

US624 234 Plateau 0.16 0.35 0.12 2.07 0.70 0.13 0.78 0.84 0.76 0.27 0.05 0.13

US087 224 Plateau 0.10 0.31 0.13 1.94 0.74 0.10 0.85 0.87 0.84 0.33 0.03 0.15

US631 215.1 Plateau 0.13 0.34 0.18 2.58 0.65 0.22 0.70 0.81 0.59 0.30 0.06 0.09

US635 204 Plateau 0.15 0.37 0.12 3.12 0.48 0.37 0.70 0.84 0.57 0.29 0.04 0.05

US086 194.5 Plateau 0.15 0.41 0.23 3.50 0.37 0.36 0.74 0.81 0.64 0.27 0.04 0.07

US642 183.8 Plateau 0.11 0.33 0.18 1.45 0.56 0.30 0.70 0.80 0.67 0.30 0.05 0.09

US647 177.5 Plateau 0.12 0.36 0.13 2.31 0.66 0.09 0.73 0.82 0.75 0.32 0.05 0.14

US650 170.2 Plateau 0.15 0.40 0.20 1.86 0.53 0.29 0.73 0.84 0.77 0.24 0.02 0.08

US652 162 Plateau 0.15 0.32 0.15 2.52 0.53 0.33 0.74 0.85 0.75 0.26 0.03 0.09

US655 150 Plateau 0.11 0.43 0.22 3.67 0.62 0.17 0.77 0.82 0.89 0.27 0.02 0.14

US656 148 Plateau 0.11 0.33 0.18 2.20 0.72 0.23 0.70 0.83 0.70 0.24 0.03 0.08

US658 139.2 Plateau 0.15 0.36 0.21 1.46 0.47 0.24 0.72 0.74 0.77 0.24 0.05 0.16

US661 127 Plateau 0.16 0.34 0.24 2.44 0.64 0.15 0.72 0.86 0.76 0.29 0.03 0.09

US664 115 Plateau 0.12 0.48 0.28 3.45 0.71 0.16 0.85 0.91 0.89 0.25 0.02 0.11

US665 110.7 2nd BU 0.07 0.35 0.26 2.32 0.58 0.19 0.70 0.85 0.70 0.30 0.04 0.09

US667 100.8 2nd BU 0.12 0.34 0.20 1.60 0.32 0.33 0.76 0.83 0.70 0.23 0.02 0.05

US669 96.4 2nd BU 0.16 0.42 0.23 1.82 0.28 0.43 0.73 0.85 0.69 0.27 0.03 0.06

US672 92.7 2nd BU 0.14 0.32 0.16 1.82 0.39 0.31 0.68 0.75 0.65 0.24 0.05 0.09

US673 90.1 2nd BU 0.18 0.33 0.21 2.88 0.42 0.42 0.66 0.83 0.61 0.32 0.05 0.08

US061 82 2nd BU 0.20 0.33 0.36 1.25 0.51 0.17 0.68 0.74 0.79 0.27 0.04 0.15

US676 78.9 Trough 0.18 0.28 0.22 1.34 0.55 0.10 0.55 0.71 0.71 0.34 0.10 0.21

US678 72.3 Trough 0.14 0.40 0.26 0.87 0.46 0.12 0.71 0.72 0.83 0.25 0.06 0.24

US062 68.5 Trough 0.43 0.18 0.54 1.12 0.35 0.20 0.64 0.57 0.75 0.27 0.08 0.21

US679 65 Trough 0.18 0.39 0.30 1.92 0.55 0.11 0.75 0.63 0.82 0.30 0.07 0.25

US680 60.7 Trough 0.13 0.44 0.16 3.02 0.37 0.40 0.71 0.88 0.74 0.29 0.02 0.06

US682 59.9 Trough 0.13 0.33 0.23 1.85 0.30 0.11 0.42 0.56 0.45 0.32 0.08 0.07

US684 58.9 1st BU 0.12 0.38 0.31 1.32 0.47 0.10 0.60 0.57 0.64 0.30 0.10 0.17

US688 55.71 1st BU 0.15 0.47 0.27 1.92 0.58 0.10 0.76 0.82 0.86 0.25 0.03 0.16

US066 54.2 1st BU 0.14 0.34 0.28 1.56 0.41 0.09 0.63 0.74 0.69 0.34 0.07 0.15

US691 51.6 1st BU 0.10 0.30 0.29 0.82 0.53 0.26 0.80 0.93 0.72 0.42 0.02 0.05

US693 49 1st BU 0.13 0.42 0.26 2.65 0.35 0.23 0.77 0.86 0.74 0.26 0.02 0.05

US070 47.7 1st BU 0.11 0.39 0.22 1.83 0.52 0.09 0.59 0.65 0.71 0.31 0.08 0.18

US071 45.2 Negative shift 0.11 0.37 0.24 1.42 0.60 0.11 0.70 0.83 0.79 0.37 0.05 0.17

US1001 43.3 Negative shift 0.13 0.39 0.27 1.74 0.59 0.21 0.79 0.85 0.80 0.27 0.02 0.08

US074 38.5 Negative shift 0.11 0.37 0.24 1.35 0.38 0.26 0.62 0.73 0.66 0.40 0.06 0.12

US1006 36.7 Pre excursion 0.10 0.35 0.12 2.38 0.48 0.28 0.81 0.78 0.82 0.25 0.02 0.08

US1009 27 Pre excursion 0.14 0.35 0.23 2.43 0.42 0.26 0.76 0.81 0.77 0.21 0.03 0.08

US1011 22.1 Pre excursion 0.15 0.30 0.21 2.53 0.45 0.34 0.81 0.92 0.77 0.33 0.01 0.03

US076 11 Pre excursion 0.20 0.38 0.26 1.81 0.52 0.21 0.75 0.81 0.77 0.20 0.02 0.07

US077 0 Pre excursion 0.11 0.33 0.24 2.69 0.56 0.23 0.73 0.87 0.78 0.35 0.03 0.10

Table 3.2. List of indicator values used in this chapter in the NFCC section 
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CHAPTER 4                                           
Reconstruction of fungal flora changes by fungal palynomorph 
analysis in the sediments deposited during the Cretaceous 
Oceanic Anoxic Events 
 
4.1. Introduction 

 Fungi, which associate with many species as decomposers or symbionts in terrestrial ecosystems, 

have been reported to be the dominant strata in Earth's history immediately after several mass 

extinction events known as the Fungal spike, which is interpreted as a surge of fungi as 

decomposers on land after the devastation of the (Vajda & McLoughlin, 2004; Rampino & Eshet, 

2018). On the other hand, it has been suggested that even under normal conditions, fungi, which 

account for a large biomass in terrestrial ecosystems, may have had a significant impact on the 

carbon cycle (Pieńkowski et al., 2016; Taylor et al., 2009, 2011). Thus, reconstructing changes in 

terrestrial ecosystems, including the behavior of fungi, will be important in discussing terrestrial 

paleoenvironments. In this study, organic microfossils (palynomorphs) were isolated from 

sedimentary rocks that recorded Oceanic Anoxic Events (OAEs), known as major environmental 

disturbance events that occurred multiple times during the Mid-Cretaceous, and fluorescence 

microscopic observations were made with particular attention to the transition of the fungal flora. 

 

4.2. Samples and methods 

4.2.1. OAE samples from southern France 

 Preparation of kerogen-treated samples provided by Dr. Takuto Ando of Akita University was used 

for the analysis, and light to dark gray marls and black shales from the Marbourg Formation (Aptian-

early Cenomanian) in southeastern France were used for the OAE1a~1d strata. Of the OAE1a (Goguel 

level) and OAE1b formations, outcrop samples from the Sauzeries area were used for the Jacob and 

Leenhardt formations, core samples collected in 2004 at St. Andre-les Alpes were used for the Kilian 

Formation, and samples from the Paquier and OAE1d, OAE2 (Thomel) samples are massive limestone 

to marl and black shale samples collected from outcrops in the Lambruisse area (Fig. 4.1). 

 

4.2.2. OAE samples from Brazil 

 The preparation of kerogen-treated samples provided by Dr. Takuto Ando of Akita University was 

used for the analysis. Sedimentary rock samples were from the Santana Formation of the Araripe Basin, 
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which corresponds to the OAE1b level in Estiva, provided by Dr. Heimhofer of the University of 

Hannover, Germany. The lithology is sandy, and the sedimentary field is predicted to have been very 

close to land (Fig. 4.2). 

 

4.2.3. OAE samples from Japan and North America 

 The samples from the Yezo Formation in Japan and the Great Valley Sequence in North America 

are the same as those used in Chapter 3 and are not described here. For the Yezo Formation, samples 

from the Hakkin-gawa and Shumarinai-gawa sections, which are also OAE2 stratigraphic sections, 

were also used for comparison, in addition to the OMZ section. 

 

4.2.4. Kerogen separation  

Crushed rock samples (5-10 g) were extracted with ultrasonication by subsequent treatment with 

methanol and dichloromethane. After that, residues were treated sequentially in a water bath shaker as 

follows: HCl 6M (100 ml, 60 ℃, 6 h), HCl 12 M/HF 46% (1/1 v/v) (100 ml, 60 ℃, 48 h). After each 

treatment, the supernatant was removed after centrifugation (3000 rpm, 10 min). The residue, kerogen, 

was sequentially and repeatedly washed with distilled water. 

 

4.2.5. Methods of identification 

In this study, we used grazing incidence differential interference observation and transmission/ 

fluorescence microscopy to identify the fungi in our analysis of fungal palynomorphs. Matsuoka 

(1992) reported that the fluorescent color of fungal palynomorphs by the UV excitation method did 

not show autofluorescence (blackish brown), and in this study, neither mycelium nor spores showed 

autofluorescence. In addition to the characteristics mentioned above, the presence or absence of septa 

and the structure of the spore surface were observed using grazing differential interferometry to 

identify the fungal palynomorphs. Unlike the present fungi, fungal spores in palynomorphs are broadly 

classified based on the number and shape of spore-forming cells. The classification method 

summarized by Taylor et al. (2015) was applied in this study (Fig. 4.3). 

 

4.3. Results and discussion 

 4.3.1. Effects of changes in sedimentary environments on fungal palynomorphs 

  In the Vocontian Basin of southeastern France, few fungal palynomorphs were observed from 

OAE1a (Goguel level), and more mycelia and spores were observed in OAE1b (Kilian and 
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Paquier level), OAE1d (Breistroffer) and OAE2 (Thomel). Fungal palynomorphs, such as mycelia 

and fungal spores, were abundant in the OAE1d (Breistroffer) and OAE2 (Thomel) (Fig 4.4, Fig. 

4.5). Biomarker and palynomorph analyses have reported that in the Vocontian Basin, the 

contribution of terrestrial source organic matter was small in OAE1a and large in OAE1b, 

especially at Killian and Paquier levels (Herrle et al. ., 2003; Okano et al. 2007; Ando, 2016). In 

addition, at Breistroffer level (OAE 1d), terrestrial origin palynomorphs increased in the black 

shale layer, suggesting that terrestrial organic matter transport may have increased with the 

humidification of the terrestrial environment (Bornemann et al., 2005). It is inferred that the 

increase or decrease in fungal palynomorphs in this study is particularly influenced by terrestrial 

runoff. In particular, the black shales of OAE1d, where the contribution of terrestrial sources is 

considered high, also produced microspores and fruiting bodies similar to Callimothallus spp. and 

showed a high diversity of fungal palynomorphs. The same trend was observed in the OAE1b 

stage (Estiva section) in Brazil, which was a sedimentary field closer to land than the southeastern 

French section, strongly suggesting that the increase and decrease of fungal palynomorph are high 

attributable to the inflow of terrestrial organic matter.  

 

4.3.2. Effects of changes in terrestrial paleoenvironment on fungal palynomorphs 

As discussed in the previous chapter, the results showed that the increase in fungal palynomorphs 

is strongly influenced by the amount of terrestrial runoff. On the other hand, even among the same 

Vocontian basin sediments, the observed trends of fungal palynomorphs differed significantly, 

with the majority of mycelia up to OAE1b having septate walls characteristic of basidiomycetes 

and ascomycetes. In contrast, only more primitive, septate-free mycelia were produced after 

OAE1d (Fig. 4.9). The appearance of capsular pollen during the same period, and the prominence 

of septate mycelium in the Yezo Group, which is thought to have been forest vegetation in contrast 

to Thomel, where the hinterland was predominantly herbaceous vegetation during OAE2, suggest 

that the change in fungal flora in the fungal palynomorphs reflects the change in vegetation (Fig. 

4.6) 

 In the GVS, previous studies such as pollen reported that herbaceous savanna vegetation had 

spread in the hinterland. The biomarker results indicate that the vegetation changed to woody 

dominated with the spread of conifers at the end of the OAE, and the mycelial changes observed 

in the GVS were associated with this conifer expansion, which may indicate that the 

coccolithophores and basidiomycetes associated with woody vegetation expanded with the 



CHAPTER 4 

５５ 
 

vegetation change in the hinterland (Fig. 4.8). This may indicate that the presence of woody plant-

associated coccolithophores and basidiomycetes has been accompanied by vegetation changes in 

the hinterland. 

 In OMZ, unlike the fungal palynomorphs OAE1d-2 in VB and the first half of OAE2 in GVS, a 

mycelium with septate walls was detected through OAE2. This suggests that the hinterland of the 

Yezo Formation at that time was forest vegetation (see Chapter 3), and that the contribution of the 

ascomycetes and basidiomycetes (with their characteristic septate mycelia) in the forest 

vegetation was significant. 

 The appearance of septate mycelia in the fungal palynomorphs was sympathetic to the expansion 

of woody vegetation in terrestrial environments. It was interpreted as an increase in 

basidiomycetes and ascomycetes, such as wood-degrading fungi and ectomycorrhiza, while not 

necessarily consistent with the reconstruction using fungal biomarkers. 

 

4.4. Conclusions 

 During OAEs, the increase in fungal palynomorphs was generally sympatric with the influx of 

terrestrial sources, especially in strata where the contribution of terrestrial sources was significant, 

and the variety of fungal palynomorphs, including not only mycelia but also spores and fruiting 

bodies, was diverse. In OAE2 of each section, fungal palynomorphs were significantly more 

abundant during normal periods than during periods of environmental disturbance, suggesting 

that they may reflect changes in the terrestrial environment. The appearance of septate mycelia in 

the fungal palynomorphs was synchronous with the expansion of woody vegetation in terrestrial 

environments and was interpreted as an increase in basidiomycetes and ascomycetes such as wood 

decay fungi and ectomycorrhizas. On the other hand, although the timing of the increase and 

decrease was synchronous with the fungal biomarker reconstruction, the increase and decrease in 

contribution did not always coincide with the fungal biomarker reconstruction. 

Although more detailed studies are needed in the future, the results indicate the possibility of 

vividly reconstructing environmental changes in terrestrial environments by comparing fungal 

biomarkers and palynomorph analysis. 
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 Fig.4.1. Index map showing location of Vocontian basin in southeastern France (Upper) and  
Columnar diagram of each layer level and samples used in this study (Lower) (Ando et al., 2017). 
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Fig.4.2. Index map showing location of Estiva area of Brazil and schematic geological map of study area (modified 
from Heimhofer et al., 2008). 

Fig.4.2. Fungal spore taxonomic groups used in this study (Taylor et al., 2015). 
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Fig.4.4. Fungal palynomorphs detected in OAE1a-1d samples. 
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Fig.4.5. Fungal palynomorphs detected in Thomel samples 

Fig.4.6. Vegetation biome changes from OAE1a to OAE2 

(Takashima et al.,2009)
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Fig.4.8. Changes in fungal contributions recovered from fungal palynomorphs detected in each phase of OAE2 and 
biomarker indices in the NFCC section. 

Fig.4.7. Changes in fungal contribution recovered from fungal palynomorphs detected in each phase of OAE2  
and biomarker indicators in the OMZ section.  
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CHAPTER 5                                           
The evolutionary history of lichens using molecular fossils: 
Possibility of terrestrial life in the Proterozoic 
 
5.1. Introduction 

 The Proterozoic (2500-541 Ma) is considered the era of major breakthroughs in the evolution 

of the global environment and life, including the atmosphere and oceans (Craig et al., 2013). The 

Proterozoic is divided into three eras (Paleoproterozoic, Mesoproterozoic, and Neoproterozoic) 

and further divided into ten periods with names reflecting large-scale tectonic depositional events. 

In the Paleoproterozoic (2500-1600 Ma) and Neoproterozoic (1000-541 Ma), the distribution of 

glacial deposits has been reported worldwide, suggesting that multiple global glacial events 

(Snowball Earth) may have occurred (e.g., Hoffman and Schrag, 2002; Tang and Chen, 2013). 

Likewise, two atmospheric oxygen-elevation events have been reported to have occurred in these 

epochs: the Great Oxidation Event (GOE), which occurred about 2.5-2.0 Ga, and the 

Neoproterozoic Oxygenation Event (NOE), which occurred 700-500 Ma (e.g., Kump, 2008; 

Lyons et al., 2014). In recent years, the link between these global events and the emergence and 

evolution of eukaryotes has been actively discussed based on molecular clocks, fossil records, 

biomarkers, and geochemical studies (e.g., Craig et al., 2013; Cohen and Kodner, 2022)(Fig. 5.1). 

Thus, while the Paleoproterozoic and Neoproterozoic are known to have been major events in the 

global environment and life evolution, the Mesoproterozoic (1600-1000 Ma) is considered to have 

been a very stable period, characterized by the fact that no events that dramatically changed the 

global environment were recorded. Because of this and the lack of geochemical variations such 

as carbon isotope ratios, Buick et al. (1995) called the Mesoproterozoic "The dullest time in 

Earth's history." The Mesoproterozoic is considered a very warm period, as glacial sediments were 

rarely found for over 600 million years (Young, 2018). The middle Proterozoic (1.8 - 0.8 Ga), 

which was sandwiched between two major oxidation events (GOE and NOE), has also been called 

the "barren billion" because of the lack of carbon isotope excursions and glaciations (Young, 

2013). However, molecular phylogenetic analyses suggest that the emergence and rapid dispersal 

of a common eukaryotic ancestor occurred (Parfrey et al., 2011; Eme et al., 2014), and 

geochemical evidence suggests that microbes may have preceded higher plants on land during 

this period, promoting terrestrial weathering (e.g., Kump, 2014). In the present study, we discuss 

the origin of aromatic furans detected in Mesoproterozoic sedimentary rocks in northwestern 
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Greenland and their potential as biomarkers. 

 

5.2. Samples and methods 

5.2.1 Samples 

 The shaley mudstones of the Qaanaaq Formation, Baffin Bay Group, distributed in 

northwestern Greenland, were used for the biomarker analysis in this study. The Qaanaaq 

Formation is composed of sand-dominated sand and mud alternations. Previous studies suggest it 

is considered dep an alluvial plain to marine shoreline deposit in the late Mesoproterozoic (ca 1.2- 

1.0 Ga) (Samuelsson et al., 1999; Dawes, 2006).  

These were surveyed and collected by Dr. Takuto Ando in July and August 2018 and 2019 as part 

of the Arctic Challenge for Sustainability (ArCS) project. The Thule Supergroup, which includes 

the Qaanaaq Formation, is a widely preserved middle Mesoproterozoic to early Neoproterozoic 

deposit extending into western Canada, with a maximum thickness of 6 km. The Thule Basin was 

formed on the Laurentia. The Qaanaaq Formation is the uppermost member of the Baffin Bay 

Group in the Thule Basin and consists of weakly weathered sandstone, shale, and siltstone. Based 

on these lithologies, it is considered to be deposited in a coastal plain and an alluvial plain. 

Furthermore, the clay layer increases upward upper of the Qaanaaq Formation and gradually shifts 

to the Dundas Formation, composed of deltaic sediments immediately above it. This suggests a 

continuous change in the depositional environment (Dawes, 1997). On the other hand, a reddish 

layer above the Qaanaaq Formation in the northern outcrop suggests that a regional retreat may 

have occurred (Dawes, 2006). The outcrops in the study area (Fig. 5.2) consist mainly of thick 

sandstone layers and sandstone-shale-mudstone alternations, and the shale-mudstone part was 

used for analysis. The continuous sandstone-mudstone alternation between thick sandstone layers 

was defined as BSI-1 through BSI-5 from the bottom; BSI-2 and BSI-3 are thick beds of mudstone 

interbedded with thin sandstone layers, so they were numbered U for the upper part and L for the 

lower part. Samples of the same stratigraphic level but collected in different years were analyzed 

as separate samples rather than the same sample. 

 

5.2.2. Biomarker analysis 

 Extraction and separation of bitumen were performed as described by Sawada et al. (1996). 

Sediments were extracted with methanol (MeOH), dichloromethane (DCM) and DCM/MeOH 

(1/1, v/v). As an internal standard, tetracosane-d50 was added, and the extract was dried in a rotary 
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evaporator and re- dissolved in hexane. The hexane extract was passed through a silica gel column 

(95% activated); the aliphatic and aromatic hydrocarbon fractions were eluted consecutively with 

hexane and hexane/toluene (3/1, v/v) and analyzed using gas chromatography-mass spectrometry 

(GC-MS). Lipids were identified by GC-MS using an Agilent 7890B GC instrument equipped 

with a 30 m × 0.25 mm i.d. DB-5HT fused silica column (Agilent, Santa Clara, CA, USA) directly 

coupled to an Agilent 5977A MSD quadruple mass spectrometer (electron voltage, 70 eV; scan 

range, m/z 50–650 in 1.3 s). The oven temperature was programmed as follows: 50°C (held for 4 

min) to 310 C at 4°C/min (held for 20 min). The injection temperature was 310°C and the 

instrument was run in splitless mode with helium as the carrier gas. 

 

5.3. Results and discussion 

5.3.1. Effect of sample maturity on isomer ratios of aromatic furans 

 In these samples, Tmax varies from about 500 °C to 450 °C from the lower to the upper levels, 

and the degree of maturation is 2.0 (Ro %) in the lower level and 1.0 (Ro %) in the upper level, 

indicating a gradual change in the degree of maturation within the 70m level. The thin sections of 

the samples show chlorite, suggesting that metamorphism itself is relatively low (Fig. 5.3). 

 Although their distribution varied, several aromatic furans, which are oxygen-containing 

aromatic compounds, were detected in each sample (Fig. 5.4, Fig. 5.5).  

 Due to the high degree of maturity in this sample, it is likely that the original information on the 

position of methyl groups and isomer ratios of MDBF, as discussed in Chapter 3, is not preserved 

due to methyl shifts. Among MDBFs, 1-MDBF and 4-MDBF have been reported to gradually 

undergo a methyl shift to 1-MDBF, especially in the higher maturity range, due to the difference 

in thermal stability of the isomers. However, a cross plot of the 1-MDBF/4-MDBF ratio versus 

maturity for this sample showed no change with maturity(Fig. 5.5). This result suggests that the 

variation in isomeric diversity of these aromatic furans may be other than due to differences in 

maturation. 

 

5.3.2. Origin of the aromatic furans 

The origin of dibenzofurans, in particular, has been discussed in several ways, including lignin 

from higher plants and polysaccharides from terrestrial soils (Sephton et al., 2005; Fenton et al., 

2007; Wang & Visscher, 2007) and secondary metabolites from lichens (Radke, 2000; Watson et 

al., 2005; Sawada et al., 2012). Fullana and Sidhu (2005) reported that dibenzofurans are produced 
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from fluorene and biphenyl in catalytic combustion experiments. As a natural product, 

dibenzofurans have been reported as antimicrobial agents produced by higher plants (Kokubun et 

al., 1995; Dixon, 2001) and lichens (e.g., Millot et al., 2016). In this sample, the origin of higher 

plants can be dismissed among these theories. Watanabe (2000) reported that dibenzofurans were 

produced from cellulose, lignin, and saccharide in heating experiments simulating maturation in 

sediments. However, dibenzofurans with alkyl groups were not produced. Therefore, we believe 

that the origin of polysaccharides is also unlikely.  

In addition, the distribution of isomers of alkyl dibenzofurans fluctuates each sample, suggesting 

that they may be derived from compounds that originally have aromatic furan structures and thus 

from specific organisms of origin. When looking at changes in the concentration of aromatic 

furans, TOC increases upward. However, these oxygen-containing aromatic furans are higher in 

the lower stratigraphic levels and become lower or undetectable in the upper levels (Fig. 5.6). 

Previous studies using organic microfossils have indicated that the inflow of terrestrial water is 

high in the lower stratigraphic levels and that the upper stratigraphic levels are transitioning to a 

more marine environment (Hara, 2022). The change in concentration itself from lower to higher 

is more consistent with the oxygen-containing aromatic furans detected being produced from 

terrestrial sources or near terrestrial areas. In addition, in the present sample, we found 

microfossils similar to the oldest fungi described from Canadian Mesoproterozoic-

Neoproterozoic sedimentary rocks in Loron et al. (2019). Of course, there is no direct evidence 

that these fungi are the organisms of origin for dibenzofurans. However, it does indicate that the 

hinterland where the samples were collected was a habitat that could support these fungi. 

 

5.3.3. Lichens as a possible origin of aromatic furans 

As mentioned above, fungi and slime molds are known to produce dibenzofurans in nature, in 

addition to higher plants. However, these species produce only a minimal number of 

dibenzofurans, and only a few species are known to produce dibenzofurans. The major 

dibenzofuran-producing species in nature today are lichens, which are known to produce a great 

variety of dibenzofurans (Millot et al., 2016). 

Extant lichens are composed of higher fungi, basidiomycetes, and ascomycetes. Until the early 

2000s, their molecular phylogeny indicates that they appeared during the Carboniferous to the 

Permian. However, the oldest known fossil lichens are from the lower Devonian, and their 

structural characteristics indicate that more primitive fungi and cyanobacteria formed the lichens 
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at that time. In particular, these results suggest that the fungi could be lichenized even before the 

appearance of the fungi, or at least the common ancestor of basidiomycetes and ascomycetes. In 

light of the above case, Nelsen et al. (2019), based on a new age calibration in the molecular clock, 

which also takes into account the appearance of primitive lichens, concluded that the appearance 

of lichens was after the appearance of terrestrial vascular plants (Silurian). Dibenzofurans act as 

growth inhibitors to other organisms and UV protectants from intense solar radiation. 

Dibenzofurans are known to be ubiquitous in extant lichens. The timing of the acquisition of the 

ability of lichens to produce dibenzofurans is unknown, but they were likely capable of doing so 

from very early times. 

 The results suggested by this study are much older than the age range given by Nelsen et al. 

(2019), so the possibility that there were extinct species that synthesized aromatic furans cannot 

be dismissed. However, although lichen fossils are not currently recognized, some fossils from 

the Neoproterozoic suggest the possibility of symbiosis between fungi and algae (Yuan et al., 

2005), so it is not surprising that "lichens" exist in the context of fungal-algal symbiosis. As 

mentioned in the introduction to this paper, many studies consider the appearance of early 

terrestrial life forms to be during the Mesoproterozoic to Neoproterozoic periods and point to 

lichens as the early life forms (e.g., Kennedy et al., 2006) et al. In any case, although more detailed 

studies are needed, the present results may suggest that the existence of early terrestrial life forms 

could have been dibenzofuran-producing, possibly lichen-like, life forms. 

 

5.4. Conclusions 

 Various aromatic furans were detected in the Mesoproterozoic (1.2-1.0 Ga) sedimentary rocks 

of the Qaanaaq Fm. in northwestern Greenland. The isomer ratios and abundances of the aromatic 

furans detected vary from stratigraphic level to stratigraphic level, and are more likely due to 

changes in the contribution of the source material at the time of deposition than to the effect of 

maturity. Many previous studies have suggested that aromatic furans are of terrestrial origin 

(especially higher plants). In this sample, however, the higher plant origin is dismissed, and other 

life forms that produce these aromatic furan compounds are assumed. In particular, the fact that 

fossils similar to the oldest fungal fossils reported by Loron et al. (2019) were found at this study 

site and that the results of palynomorph analysis showed higher concentrations of aromatic furans 

in the lower layers, where the environment was more influenced by terrestrial, suggest that a 

terrestrial ecosystem may have already been formed. At this stage, it is not possible to identify the 
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organisms from which these compounds originated. However, there may have been organisms 

similar to lichens, which are the primary producers of aromatic furans found in the present. 

Although more detailed studies are needed in the future, these compounds from the 

Mesoproterozoic (Boring Billion) may provide important evidence in discussing the evolutionary 

history of ecosystems and life at that time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.1. Overview of major trends and proxies in the Proterozoic evolution of eukaryotes (Cohen and Kodner, 2022) 
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Fig.5.3. Maturity (Tmax) of the sample and chlorite observed by thin section observation 

Fig.5.4. Selected ion chromatograms and major mass fragmentograms of aromatic furans detected in the samples. 
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Fig.5.5. Selected ion chromatograms and major mass fragmentograms of aromatic furans detected in the samples. 

Fig.5.6. Variation of TOC and each aromatic furan concentration (μg/g TOC) in samples. 
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Fig.5.7. Palynomorphs tentatively identified as Ourasphaira sp. detected in this sample(Top left) 
and the oldest fossil fungi reported in Loron et al. (2019)(Bottom left) 



CHAPTER 5 

７２ 
 

 

 
BN

21
F

BN
12

F
12

23
D

N
F

1-
Ph

D
BF

4-
Ph

D
BF

2-
Ph

D
BF

3-
Ph

D
BF

D
BF

4-
M

D
BF

3-
+2

-M
D

BF
1-

M
D

BF
BS

I-
5

67
0.

30
45

6
N

D
N

D
N

D
0.

02
0.

04
0.

18
0.

04
0.

16
0.

24
0.

52
0.

23
BS

I4
U

61
0.

27
44

9
N

D
N

D
N

D
0.

04
0.

13
0.

50
0.

07
0.

17
0.

40
0.

66
0.

39
BS

I3
-1

8
44

0.
14

46
7

N
D

1.
46

0.
16

0.
15

0.
42

2.
08

0.
47

1.
57

2.
48

3.
33

2.
69

BS
I3

U1
9

41
0.

30
48

6
N

D
0.

19
0.

03
0.

03
0.

06
0.

19
0.

05
0.

30
0.

46
0.

34
0.

45
BS

I2
U1

9
26

0.
12

46
8

N
D

7.
36

N
D

0.
58

2.
27

9.
47

3.
02

0.
91

4.
49

5.
28

4.
98

BS
I2

U1
8

26
0.

14
48

9
N

D
0.

25
0.

04
0.

03
0.

08
0.

23
0.

06
0.

02
0.

15
0.

09
0.

19
BS

I2
L1

8
23

0.
13

50
4

1.
47

6.
36

1.
33

0.
48

1.
39

5.
10

1.
65

5.
93

6.
80

7.
95

6.
63

BS
I2

L1
9

21
0.

06
48

6
2.

17
7.

21
2.

67
0.

61
1.

53
3.

49
1.

27
1.

24
2.

79
3.

68
3.

32
BS

I-
1

2
0.

09
49

9
N

D
1.

73
0.

24
0.

21
0.

53
1.

22
0.

31
1.

61
3.

12
3.

10
3.

05

μg
/g

 T
O

C
Tm

ax
(℃

)
Sa

m
pl

e
na

m
e

de
pt

h(
m

)
To

ta
l O

rg
an

c
Ca

rb
on

(%
)

Ta
bl

e.
5.

1.
 T

O
C

 (%
), 

Tm
ax

 a
nd

 a
ro

m
at

ic
 fu

ra
ns

 c
om

po
si

tio
n 

(㎍
/g

 T
O

C
) f

or
 e

ac
h 

sa
m

pl
e 



List of Figures 

７３ 
 

List of Figures 
 Figure 1.1. Fungal phyla and approximate number of species in each group. (modified from 

Blackwell, 2011) 
 
 Figure 1.2. Geological ages of fungi. Estimates from molecular clocks (dashed lines) and fossil  

record (solid lines). Perplexing fungal fossils are shown below the geological  
timeline. Some fossil records are not reflected in the upper age columns because of  
controversy over whether they are fungi or not and the possibility of contaminants.  
(from Berbee et al., 2020)  
 

Figure 1.3. Effects of changes in terrestrial vegetation on atmospheric CO2 concentrations over  
the past 200 million years. RCO2is the atmospheric CO2 concentration relative to  
modern values. "No angiosperm" represents the case for considering only  
gymnosperm; "EM vegetation" represents the case for considering AM and EM  
assisted weathering; "AM vegetation" represents the case only AM assisted  
weathering. The RCO2 variability reconstructed by "EM vegetation" in the right panel  
matches the RCO2 variability of GEOCARBSULF in the left panel. (modified from  
Taylor et al., 2011) 
 

Figure 1.4. Schematic illustration of the mass extinction period, with Fungal spike reported at the  
P-T and K-Pg boundary. (from Vajda and Bercovici, 2014) 
 

Figure 1.5. Left: Geologic time of the lichen fossil record (modified from Honegger, 2018).  
Above: SEM image of the oldest fossil lichen Chlorolichenomycites. Fungal hyphae  
and algae are observed (Honegger et al., 2013). 
 

Figure 1.6. Time-calibrated phylogeny of the order Teloschistales of anthraquinone evolution. The  
colored squares on the right side of the tree represent phenotypes, the same  
classification as the colors indicated in the tree pie chart. The square next to it also  
indicates the presence or absence of the trait with black and white. From left, a sun for  
light exposure (shade column), a rock for rock substrate (rock column), a tree for  
epiphtism (bark column), and a letter C for growth form crustose-continuous (cont  
column). (modified from Gaya et al., 2015) 
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Figure 1.7. Comparison of monosaccharide parameters with macrofossil records. (A) % lichen,  
(B) % vascular plants, (C) % Sphagna, (D) [Man:Xyl]; (E) [(Man+Gal):(Ara+Xyl)],  
(F) [(Rha + Fuc):(Man + Xyl)], (G) [%(Rha + Fuc)]. In this study, the proxy [(Man +  
Gal):(Ara + Xyl)] and [Man:Xyl] indicate the vegetation in the order of decreasing  
values: lichens > Sphagna > vascular plants. [(Rha + Fuc):(Man + Xyl)] and   
[%(Rha+Fuc)] are used as proxy for Sphagna. Shaded grey areas denote proxy values  
for modern Sphagna. 

 
Figure 1.8. (A) Pyrolysis-gas chromatography traces for each sedimentary sample from Val Badia,  

northeastern Italy (modified from Sephton et al., 2005); (B) Reduviasporonites  
schlanus. Scale bar represents 40μm, and (C) Pyrolysis gas chromatography-mass  
spectrometry total Ion chromatogram data for Reduviasporonites: A-dibenzofuran; B- 
methyldibenzofuran (modified from Sephton et al., 2009). 
 

Figure 2.1. Total ion chromatograms showing the distribution of aliphatic hydrocarbons detected  
from Usnea rubrotincta, Cladonia cryptochlorophaea, Pyxine endochrysina, Lobaria  
tuberculata, Peltigera degenii (after Ikeda et al., 2021), and Collema complanatum.  
std, standard (tetracosane-d50); •, n-alkanes; ○, n-alkenes with unknown double bond  
positions; x, contamination; Δ, hopanoid. 

 
Figure 2.2. Fragmentation scheme for the formation of DMDS adducts of alkenes 
 
Figure 2.3. Mass spectra of 1,8-heptadecadiene (1), 6,9-heptadecadiene (2), 8-heptadecene (3), 7- 

heptadecene (4), 1-heptadecene (5), 3-heptadecene (6), 1-octadecene (7), 4- 
octadecene (8), 5-nonadecene (9), and 6-eicosene (10) from lichens and mass spectra  
of their DMDS adducts. 

 
Figure 2.4. n-Alkane distributions in lichens showing the averaged distribution values with the  

mean standard deviation of each sample. 
 
Figure 2.5. TIC of polar fractions and mass spectra of oxygen-containing aromatic compounds  

detected from some lichen samples. 
 

Figure 2.6. Heatmap of the loge-transformed alkene concentration in lichens. Species (columns)  
and alkenes (rows) are clustered based on the Euclidean distance and Ward D2  
minimum variance clustering. For convenience, loge(0), i.e., not detected, is indicated  
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on the heatmap with a value one order of magnitude smaller than the smallest value. 
 
Figure 3.1. Index map showing location of Tomamae area of Hokkaido and Ono Quadrangle of Shasta  

County and schematic geological map of study area, respectively. 
 
Fig.3.2.(Upper) Maturity indicator and, (below) Depositional environment calculated by  

biomarker from each sample (modified from Ando et al., 2017). 
 

Fig.3.3. Diterpenoids and triterpenoids detected in the samples. 
 
Fig.3.4. Palaeogeographic map illustrating Cenomanian–Turonian biome distribution.  

(A) tropical moist, open canopy mixed forest with shrub understory; (B) savanna-type 
dry low understory with sparse trees; (C) deciduous dry/ warm shrubland; (D) mid-
latitude evergreen closed canopy conifer forest; (E) Normapolles province; (F) evergreen 
wet/cool shrubland; (G) high-latitude moist, open canopy forest with shrub understory; 
(H) boreal closed canopy conifer forest. (modified from Heimhofer et al., 2018) 
 

Fig.3.5.TIC of aromatic fraction. 
 
Fig.3.6. Dibenzofuran series detected in the samples.  
 
Fig.3.7. Origin of DBF in sedimentary rocks mentioned in previous studies 
 
Fig.3.8. List of δ13C variation, each phase of OAE2 and behavior of each indicator in OMZ 
 
Fig.3.9. List of δ13C variation, each phase of OAE2 and behavior of each indicator in NFCC 
 
Fig.4.1. Index map showing location of Vocontian basin in southeastern France (Upper) and  

Columnar diagram of each layer level and samples used in this study (Lower) (Ando et al.,  
2017). 

 
Fig.4.2. Index map showing location of Estiva area of Brazil and schematic geological map  

of study area (modified from Heimhofer et al., 2008). 
 
Fig.4.3. Fungal spore taxonomic groups used in this study (Taylor et al., 2015). 
 
Fig.4.4. Fungal palynomorphs detected in OAE1a-1d samples. 
 
Fig.4.5. Fungal palynomorphs detected in Thomel samples 
 
Fig.4.6. Vegetation biome changes from OAE1a to OAE2 
 
Fig.4.7. Changes in fungal contribution recovered from fungal palynomorphs detected in each phase  
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of OAE2 and biomarker indicators in the OMZ section.  
 
Fig.4.8. Changes in fungal contributions recovered from fungal palynomorphs detected in each phase  

of OAE2 and biomarker indices in the NFCC section. 
 
Fig.4.9. Type and number of fungal palynomorphs detected in each sample. Red boxes indicate data  

from the Vocontian Basin. 
 
Fig.5.1. Overview of major trends and proxies in the Proterozoic evolution of eukaryotes (Cohen and  

Kodner, 2022) 
 
Fig.5.2. Index map showing the location of the Qaanaaq region of Greenland and columnar map of  

outcrops. 
 
Fig.5.3. Maturity (Tmax) of the sample and chlorite observed by thin section observation 
 
Fig.5.4. Selected ion chromatograms and major mass fragmentograms of aromatic furans detected in  

the samples. 
 

Fig.5.5. Selected ion chromatograms and major mass fragmentograms of aromatic furans detected in  
the samples. 
 

Fig.5.6. Variation of TOC and each aromatic furan concentration (μg/g TOC) in samples. 
 
Fig.5.7. Palynomorphs tentatively identified as Ourasphaira sp. detected in this sample(Top left) and  

the oldest fossil fungi reported in Loron et al. (2019)(Bottom left) 
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Table S1

Compositions and concentrations of alkanes in lichen samples (μg/g dry wt).  Mean ± SD.

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
Platismatia interrupta (n = 1) 0.46 NA 0.22 NA 0.36 NA 0.30 NA 0.53 NA 0.60 NA

Flavoparmelia caperata  (n = 3) 0.23 ± 0.07 0.31 ± 0.02 0.75 ± 0.03 0.28 ± 0.07 0.42 ± 0.09 0.47 ± 0.13

Parmotrema clavuliferum (n = 1) 0.24 NA 0.24 NA 0.19 NA 0.16 NA

Usnea bismolliuscula (n = 1) 0.05 NA 0.14 NA 0.10 NA 0.11 NA 0.14 NA

Usnea rubrotincta (n = 3) 0.02 ± 0.01 0.02 ± 0.02 0.04 ± 0.01 0.06 ± 0.01 0.15 ± 0.04 0.11 ± 0.03 0.12 ± 0.03 0.08 ± 0.03

Usnea mutabilis (n = 3) 0.01 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 0.17 ± 0.03 0.12 ± 0.03 0.13 ± 0.02 0.10 ± 0.01

Cladonia scabriuscula  (n = 1) 0.09 NA 0.08 NA 0.19 NA 1.58 NA 0.94 NA 0.92 NA 0.65 NA

Cladonia vulcani  (n = 1) 0.03 NA 0.08 NA 0.12 NA 0.82 NA 0.20 NA 0.49 NA 0.23 NA

Cladonia fruticulosa (n = 3) 0.02 ± 0.02 0.11 ± 0.03 0.09 ± 0.01 2.69 ± 0.46 0.13 ± 0.03 0.59 ± 0.06 0.46 ± 0.04

Cladonia stellaris (n = 3) 0.01 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.60 ± 0.08 0.11 ± 0.02 0.17 ± 0.02 0.17 ± 0.03

Cladonia cryptochlorophaea (n = 3) 0.01 ± 0.02 0.16 ± 0.06 0.16 ± 0.04 2.67 ± 0.60 0.79 ± 0.11 2.43 ± 0.33 2.50 ± 0.34

Cladonia ramulosa (n = 3) 0.02 ± 0.02 0.18 ± 0.08 0.15 ± 0.05 2.27 ± 0.35 0.54 ± 0.11 1.65 ± 0.24 1.63 ± 0.28

Cladonia rangiferina (n = 3) 0.04 ± 0.01 0.03 ± 0.00 0.68 ± 0.07 0.07 ± 0.00 0.30 ± 0.01 0.25 ± 0.02

Stereocaulon japonicum (n = 1) 0.05 NA 1.05 NA 0.42 NA 8.96 NA 0.55 NA 1.47 NA 1.53 NA

Ramalina sinensis (n = 3) 0.10 ± 0.02 1.56 ± 0.27 0.25 ± 0.04 1.37 ± 0.16 0.41 ± 0.05

Ramalina yasudae (n = 1) 0.17 NA 0.19 NA 0.19 NA 0.20 NA 0.15 NA

Xanthoria mandschurica 1 (n = 1) 0.09 NA 0.57 NA 0.56 NA 1.44 NA 0.50 NA 0.74 NA 1.02 NA

Xanthoria mandschurica 2  (n = 3) 0.13 ± 0.04 2.76 ± 0.58 0.82 ± 0.35 3.05 ± 0.70 1.74 ± 0.54 3.59 ± 0.88 5.99 ± 1.52

Pyxine endochrysina (n =1) 3.28 NA 9.19 NA 0.45 NA 0.42 NA 1.26 NA 0.50 NA 0.42 NA 0.68 NA

Heterodermia subascendens (n = 1) 0.70 NA 3.04 NA 0.73 NA 1.49 NA 1.11 NA

Heterodermia obscurata (n = 1) 0.38 NA 1.71 NA 0.42 NA 0.38 NA

Anaptychia isidiza (n = 1) 0.23 NA 0.59 NA 0.63 NA 1.65 NA 2.67 NA 3.02 NA 1.84 NA 1.78 NA

Lobaria spathulata (n = 4) 0.14 ± 0.08 0.19 ± 0.11 11.70 ± 1.74 0.16 ± 0.12 0.18 ± 0.11 0.32 ± 0.18

Lobaria orientalis 1 (n = 1) 0.79 NA 1.10 NA 0.48 NA 7.37 NA 0.24 NA 0.68 NA 0.63 NA

Lobaria orientalis 2 (n = 3) 0.02 ± 0.01 0.07 ± 0.05 0.07 ± 0.05 2.96 ± 0.45 0.12 ± 0.06 0.27 ± 0.22 0.14 ± 0.02

Lobaria tuberculata (n = 3) 0.10 ± 0.03 0.15 ± 0.04 11.24 ± 1.87 0.08 ± 0.02 0.10 ± 0.01 0.11 ± 0.01

Peltigera degenii (n = 1) 0.07 NA 0.26 NA 30.56 NA 0.96 NA 0.41 NA 0.27 NA

Collema furfuraceum (n = 3) 0.04 ± 0.05 0.07 ± 0.10 0.57 ± 0.15 1.57 ± 0.29 225.28 ± 53.27 1.14 ± 0.15 0.66 ± 0.13 0.33 ± 0.13

Collema complanatum (n = 3) 0.34 ± 0.26 1.60 ± 1.05 192.07 ± 125.41 2.01 ± 1.09 1.01 ± 0.62 0.56 ± 0.37

Name
C13 C14 C15 C16 C17 C18 C19 C20



mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
2.30 NA 1.06 NA 13.46 NA 0.53 NA 3.55 NA 0.43 NA 7.63 NA 0.47 NA 4.79 NA 0.25 NA

0.86 ± 0.15 0.73 ± 0.19 0.88 ± 0.24 0.37 ± 0.10 1.11 ± 0.35 0.18 ± 0.08 1.59 ± 0.66 0.19 ± 0.10 2.67 ± 1.23 0.14 ± 0.12

0.33 NA 0.27 NA 0.40 NA 0.19 NA 0.51 NA 0.10 NA 0.64 NA 0.15 NA 1.59 NA

0.23 NA 0.17 NA 0.27 NA 0.15 NA 0.37 NA 0.17 NA 0.64 NA 1.08 NA 0.18 NA

0.15 ± 0.04 0.12 ± 0.03 0.19 ± 0.06 0.06 ± 0.03 0.18 ± 0.06 0.04 ± 0.02 0.25 ± 0.12 0.03 ± 0.01 0.27 ± 0.11 0.02 ± 0.01

0.24 ± 0.04 0.19 ± 0.03 0.55 ± 0.11 0.10 ± 0.02 0.30 ± 0.07 0.06 ± 0.02 0.36 ± 0.10 0.07 ± 0.02 0.28 ± 0.09 0.04 ± 0.01

0.81 NA 0.60 NA 0.99 NA 0.48 NA 1.04 NA 0.55 NA 2.09 NA 0.75 NA 3.71 NA 0.47 NA

0.43 NA 0.66 NA 0.51 NA 0.12 NA 0.32 NA 0.07 NA 0.58 NA 0.07 NA 0.48 NA

1.40 ± 0.12 1.18 ± 0.11 2.96 ± 0.33 1.25 ± 0.14 2.90 ± 0.51 1.37 ± 0.29 3.76 ± 1.05 1.57 ± 0.37 5.14 ± 1.46 0.65 ± 0.10

0.28 ± 0.05 0.30 ± 0.05 0.30 ± 0.05 0.15 ± 0.02 0.33 ± 0.04 0.16 ± 0.02 0.61 ± 0.12 0.26 ± 0.08 1.85 ± 0.56 0.33 ± 0.14

5.24 ± 0.67 5.29 ± 0.65 5.40 ± 0.54 3.55 ± 0.40 4.85 ± 0.61 4.79 ± 0.68 8.09 ± 1.29 7.61 ± 1.66 17.44 ± 5.52 3.67 ± 1.26

3.74 ± 0.59 3.68 ± 0.60 4.27 ± 0.69 2.11 ± 0.31 2.63 ± 0.40 2.29 ± 0.34 3.52 ± 0.49 2.41 ± 0.37 3.64 ± 0.71 0.63 ± 0.12

0.65 ± 0.07 0.69 ± 0.06 1.02 ± 0.10 0.39 ± 0.03 0.97 ± 0.08 0.48 ± 0.06 2.22 ± 0.26 0.62 ± 0.06 7.38 ± 4.43 0.55 ± 0.06

4.75 NA 3.67 NA 4.77 NA 2.30 NA 3.09 NA 0.98 NA 3.37 NA 1.34 NA 13.59 NA 1.01 NA

0.96 ± 0.08 0.96 ± 0.13 1.44 ± 0.16 0.43 ± 0.06 4.22 ± 0.90 0.48 ± 0.08 8.92 ± 1.82 0.53 ± 0.09 4.88 ± 0.83 0.15 ± 0.07

0.54 NA 0.27 NA 0.89 NA 0.22 NA 1.05 NA 0.14 NA 0.79 NA 0.12 NA 1.41 NA

3.64 NA 2.97 NA 3.25 NA 0.71 NA 1.80 NA 0.55 NA 2.07 NA 0.47 NA 1.79 NA 0.46 NA

20.03 ± 2.04 14.48 ± 2.38 9.78 ± 1.60 1.21 ± 0.36 1.38 ± 0.18 0.21 ± 0.05 0.97 ± 0.30 0.06 ± 0.02 0.54 ± 0.21

1.44 NA 1.10 NA 2.26 NA 0.66 NA 2.20 NA 0.79 NA 6.09 NA 1.49 NA 18.64 NA 1.70 NA

2.54 NA 2.10 NA 3.54 NA 1.24 NA 3.46 NA 0.61 NA 5.29 NA 0.96 NA 20.57 NA 0.92 NA

1.17 NA 0.67 NA 2.45 NA 1.54 NA 0.26 NA 1.66 NA 2.29 NA

2.34 NA 1.75 NA 1.95 NA 0.72 NA 1.74 NA 0.80 NA 3.37 NA 1.01 NA 6.67 NA 1.39 NA

1.02 ± 0.34 0.81 ± 0.33 1.65 ± 0.68 0.43 ± 0.18 1.70 ± 0.72 0.12 ± 0.08 0.97 ± 0.63 0.08 ± 0.09 1.80 ± 0.37 0.03 ± 0.04

2.37 NA 1.06 NA 0.96 NA

0.46 ± 0.06 0.30 ± 0.03 0.61 ± 0.08 0.13 ± 0.02 0.59 ± 0.08 0.09 ± 0.02 1.04 ± 0.30 0.12 ± 0.03 2.08 ± 0.75 0.05 ± 0.02

0.41 ± 0.05 0.29 ± 0.04 0.53 ± 0.04 0.18 ± 0.01 0.72 ± 0.06 0.25 ± 0.03 1.27 ± 0.29 0.42 ± 0.12 1.78 ± 0.54 0.15 ± 0.05

0.52 NA 0.30 NA 2.49 NA 0.27 NA 5.50 NA 0.50 NA 12.21 NA 0.46 NA 6.97 NA 0.09 NA

0.63 ± 0.08 0.48 ± 0.04 0.96 ± 0.04 0.28 ± 0.11 0.68 ± 0.15 0.26 ± 0.12 1.56 ± 0.39 0.36 ± 0.08 3.75 ± 1.26 0.34 ± 0.16

0.52 ± 0.17 0.27 ± 0.13 0.41 ± 0.12 0.06 ± 0.05 0.15 ± 0.11 0.01 ± 0.02 0.08 ± 0.11 0.24 ± 0.34

C25 C26 C27 C28C21 C22 C23 C24 C29 C30



mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.
3.24 NA 0.11 NA 0.47 NA

1.27 ± 1.02 0.06 ± 0.09 0.10 ± 0.14

0.71 NA

0.72 NA 0.22 NA

0.09 ± 0.04 0.01 ± 0.01 0.03 ± 0.02

0.12 ± 0.04 0.02 ± 0.01 0.06 ± 0.02

2.97 NA 0.18 NA 0.69 NA

0.32 NA

3.07 ± 0.57 0.22 ± 0.03 1.80 ± 0.68 0.03 ± 0.02 0.33 ± 0.18 0.02 ± 0.03

5.84 ± 2.36 0.10 ± 0.04 0.75 ± 0.38

15.09 ± 5.93 0.79 ± 0.37 3.48 ± 1.83

3.55 ± 1.23 0.19 ± 0.08 1.53 ± 0.83

9.23 ± 1.31 0.27 ± 0.06 3.30 ± 1.01

15.66 NA 0.48 NA 5.17 NA

2.83 ± 0.85 0.06 ± 0.03 0.28 ± 0.21

0.57 NA

1.45 NA 0.33 NA 0.43 NA 0.20 NA 0.15 NA 0.12 NA 0.09 NA 0.06 NA 0.03 NA 0.04 NA

0.07 ± 0.11 0.04 ± 0.06

17.87 NA 1.15 NA 3.03 NA

9.61 NA 0.44 NA 1.68 NA

1.19 NA

8.53 NA 0.87 NA 1.83 NA

0.58 ± 0.16

0.67 ± 0.29 0.01 ± 0.01 0.06 ± 0.05

0.44 ± 0.14 0.01 ± 0.01 0.01 ± 0.01

3.25 NA 0.05 NA 0.32 NA

3.83 ± 1.34 0.10 ± 0.14 0.88 ± 0.23

C31 C32 C33 C34 C35 C36 C37 C38 C39 C40



mean s.d. mean s.d. mean s.d.

40.75 NA

12.61 ± 4.50

5.71 NA

4.73 NA

2.05 ± 0.67

3.02 ± 0.61

19.77 NA

5.55 NA

31.74 ± 4.87

12.40 ± 4.05

94.01 ± 22.11

40.62 ± 5.78

29.14 ± 6.72

74.20 NA

29.83 ± 4.99

6.92 NA

0.02 NA 0.02 NA 25.59 NA

66.84 ± 10.54

74.61 NA

60.05 NA

14.12 NA

45.39 NA

21.87 ± 4.97

15.67 NA

9.86 ± 2.25

18.24 ± 1.56

65.47 NA

243.770 ± 49.98

199.35 ± 128.43

Total alkane conc.
(μg/g dry wt)C41 C42



Table S2

Compositions and concentrations of alkenes in lichen samples (μg/g dry wt).  Mean ± SD.  tr.; trace 

mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

Platismatia interrupta (n = 1) 0.33 NA tr. NA tr. NA 0.08 NA 41.93 NA

Flavoparmelia caperata * (n = 3) 0.31 ± 0.14 0.26 ± 0.04 0.18 ± 0.04 67.93 ± 3.19 2.48 ± 0.41

Parmotrema clavuliferum (n = 1) 0.29 NA tr. NA 56.68 NA 0.98 NA

Usnea bismolliuscula * (n = 1) 0.26 NA 0.18 NA 58.47 NA 0.71 NA

Usnea rubrotincta (n = 3) 70.41 ± 16.09 2.87 ± 1.91

Usnea mutabilis (n = 3) 98.55 ± 10.87

Cladonia scabriuscula * (n = 1) 0.09 NA 5.28 NA tr. NA

Cladonia vulcani  (n = 1) 10.61 NA tr. NA

Cladonia fruticulosa (n = 3) 3.08 ± 1.53

Cladonia stellaris (n = 3) 12.18 ± 2.28 1.40 ± 0.36

Cladonia cryptochlorophaea (n = 3) 2.06 ± 0.64

Cladonia ramulosa (n = 3) 4.75 ± 1.13

Cladonia rangiferina (n = 3) 4.50 ± 0.68

Stereocaulon japonicum (n = 1) 0.10 NA tr. NA tr. NA 16.48 NA tr. NA

Ramalina sinensis (n = 3) 0.20 ± 0.05 tr. NA 1.18 ± 0.45 14.81 ± 2.50

Ramalina yasudae * (n = 1) 0.21 NA 30.33 NA 0.61 NA

Xanthoria mandschurica  1 * (n = 1) 37.71 NA

Xanthoria mandschurica 2  (n = 3) 0.33 ± 0.24 145.74 ± 63.96

Pyxine endochrysina (n =1) 0.59 NA 0.08 NA 37.32 NA

Heterodermia subascendens (n = 1) 0.85 NA 0.65 NA 27.08 NA

Heterodermia obscurata (n = 1) 1.22 NA 30.94 NA

Anaptychia isidiza (n = 1) 19.24 NA 1.76 NA

Lobaria spathulata * (n = 4) 46.55 ± 7.54 5.25 ± 3.74

Lobaria orientalis 1 (n = 1) 30.87 NA 5.10 NA

Lobaria orientalis 2 (n = 3) 27.59 ± 3.26 1.06 ± 0.36

Lobaria tuberculata (n = 3) 44.38 ± 3.32 2.91 ± 0.59

Peltigera degenii * (n = 1)

Collema furfuraceum * (n = 3)

Collema complanatum (n = 3)

*modified from Ikeda et al., 2021

C17:2

Samples C16:1_1 C16:1_2 C16:1_3

C16:1

C16:1_4

C17:4

C17:1_4

C17:3

C17:3_2C17:3_1 C17:2_5C17:2_4C17:2_36,9-C17:21,8-C17:2



mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

1.07 NA 0.65 NA 0.04 NA 0.11 NA

1.32 ± 0.13

2.24 NA

2.77 NA

tr. NA 0.93 ± 0.26

tr. NA 0.61 ± 0.10 3.59 ± 1.59

17.43 NA 0.31 NA tr. NA

22.20 NA 0.85 NA tr. NA

16.68 ± 6.40 0.08 ± 0.00 0.28 ± 0.02 tr. NA

18.47 ± 2.78 0.12 ± 0.03

9.77 ± 2.62 0.18 ± 0.07 0.22 ± 0.07

12.21 ± 2.83 0.19 ± 0.01 0.22 ± 0.01

26.31 ± 1.81 0.06 ± 0.01 0.18 ± 0.03 0.05 ± 0.00

15.79 NA 0.45 NA 1.67 NA 0.27 NA 0.30 NA 0.26 NA

1.30 ± 0.23 0.25 ± 0.03 0.03 ± 0.01

0.96 NA

1.05 NA 0.65 NA 0.45 NA 0.25 NA

2.05 ± 0.14 0.28 ± 0.12 2.49 ± 1.08 0.94 ± 0.12 0.23 ± 0.04

2.26 NA 0.70 NA 0.04 NA tr. NA

1.46 NA

2.50 NA

0.73 NA

19.72 ± 1.99 8.07 ± 5.22 0.34 ± 0.20

40.41 NA 6.39 NA 0.53 NA

9.83 ± 2.51 0.20 ± 0.28 0.15 ± 0.02 0.26 ± 0.36 0.42 ± 0.04 0.18 ± 0.04

15.16 ± 3.29 0.39 ± 0.55 0.70 ± 0.40 1.03 ± 0.14 0.71 ± 0.59 0.46 ± 0.11

20.32 NA 0.63 NA 77.47 NA 0.41 NA 3.51 NA

2.12 ± 0.49 3.17 ± 0.81 384.56 ± 132.79

54.88 ± 35.65 3.09 ± 1.81 450.80 ± 313.15 14.87 ± 15.00

C18:1_34-C18:11-C18:18-,7-C17:1C17:2_6

C17:1

C17:1_7C17:1_6C17:1_5C17:1_43-C17:11-C17:1 C18:1_6C18:1_5C18:1_4



mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

0.10 NA 0.05 NA 0.33 NA

0.12 ± 0.02 0.07 ± 0.01

0.13 ± 0.02 0.13 ± 0.02

0.11 ± 0.04 0.15 ± 0.02

0.05 ± 0.02 0.05 ± 0.00

0.15 NA 0.17 NA 0.33 NA

0.05 NA

0.55 ± 0.44 0.39 ± 0.24 13.50 ± 4.59

0.36 NA 0.26 NA 0.68 NA

0.12 ± 0.05 0.22 ± 0.02 1.86 ± 1.22

2.52 ± 0.85 0.27 ± 0.07 6.14 ± 2.30

4.29 NA 178.76 NA 0.27 NA 1.94 NA 1.79 NA

3.73 ± 1.99 2.31 ± 0.64 8.01 ± 4.14 9.92 ± 3.59

0.59 ± 0.32 25.13 ± 24.14 5.26 ± 3.40 76.33 ± 49.26 1.91 ± 1.36

C18:1_10 C19:1_4C19:1_3C19:1_2C18:1_9C18:1_8C18:1_7 5-C19:1

C19:2

C19:2_3C19:2_2C19:2_1

C18:1

C18:1_13C18:1_12C18:1_11



mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

0.33 NA 0.12 NA

0.76 ± 0.46

0.27 ± 0.08 0.04 ± 0.01

0.18 ± 0.02 0.37 ± 0.04 0.16 ± 0.01

0.08 ± 0.01 0.26 ± 0.05 0.10 ± 0.02

0.03 ± 0.00 0.07 ± 0.00 0.01 ± 0.00

0.84 NA 0.10 NA

0.13 ± 0.02 0.04 ± 0.01

0.07 NA

0.80 NA 0.27 NA 0.27 NA 0.17 NA

1.34 ± 0.33 0.11 ± 0.03 0.87 ± 1.24 0.52 ± 0.11 tr. NA 0.24 ± 0.04

0.05 NA 0.43 NA 0.20 NA tr. NA 0.08 NA

0.45 NA 0.17 NA

1.21 NA

0.04 ± 0.03

0.31 ± 0.16

0.98 NA 15.22 NA 0.62 NA 0.17 NA

0.80 ± 0.49 1.32 ± 0.60 1.79 ± 0.73

2.33 ± 1.65 9.78 ± 4.72 tr. NA tr. NA 1.01 ± 0.29

C20:1_7

C20:1

C21:1_2C21:1_1C20:1_6C20:1_5C20:1_4C20:1_3C20:1_26-C20:1

C19:1

C19:1_9C19:1_8C19:1_7C19:1_6C19:1_5



mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

0.12 NA 0.13 NA 0.07 NA 0.06 NA

0.14 ± 0.07

0.06 ± 0.01

0.09 ± 0.02

0.16 NA

0.21 ± 0.00 0.05 ± 0.01 0.02 ± 0.01 0.04 ± 0.03 0.05 ± 0.04 0.08 ± 0.07

0.02 ± 0.00

0.25 ± 0.01 0.21 ± 0.01 0.07 ± 0.01 0.20 ± 0.03 0.17 ± 0.05 0.38 ± 0.14

0.20 ± 0.05 0.11 ± 0.02 0.03 ± 0.00 0.08 ± 0.01 0.05 ± 0.00 0.09 ± 0.02

0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.03 ± 0.00 0.01 ± 0.01 0.08 ± 0.03

0.19 NA 0.09 NA 0.02 NA 0.04 NA 0.03 NA

0.09 ± 0.01 0.04 ± 0.01 0.07 ±  0.03

0.83 NA

0.12 ± 0.01 1.66 ± 0.21 0.24 ± 0.03 1.40 ± 0.12 1.08 ± 0.06

0.06 NA 0.09 NA 0.20 NA 0.02 NA 0.08 NA

0.49 NA 0.06 NA

0.18 NA

0.11 ± 0.06

0.03 ± 0.00

0.07 ± 0.01 0.10 ± 0.08

0.14 NA 0.07 NA 0.10 NA 0.12 NA 0.21 NA 0.18 NA

0.19 ± 0.14

C26:1

C26:1_1C23:1_2C23:1_1

C25:1C22:1C21:1

C21:1_6C21:1_5C21:1_4C21:1_3 C25:1_3C25:1_2C25:1_1

C24:1

C24:1_1

C23:1

C22:1_3C22:1_2C22:1_1



mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d. mean s.d.

45.51 NA

73.37 ± 2.30

60.19 NA

62.40 NA

74.27 ± 16.90

102.84 ± 9.36

23.52 NA

33.82 NA

20.87 ± 7.85

32.37 ± 5.44

0.30 ± 0.13 0.30 ± 0.18 15.07 ± 4.00

0.05 ± 0.01 18.69 ± 4.02

0.02 ± 0.00 31.51 ± 2.45

0.04 NA 37.31 NA

18.14 ± 3.23

32.18 NA

tr. NA 42.29 NA

159.67 ± 63.32

0.12 NA 0.42 NA 0.10 NA 1.10 NA 0.08 NA 0.12 NA 0.03 NA 0.63 NA 0.10 NA 44.95 NA

31.22 NA

34.85 NA

22.95 NA

94.49 ± 11.05

84.60 NA

41.95 ± 4.54

75.14 ± 10.30

0.41 NA 0.19 NA 307.79 NA

417.74 ± 146.01

646.17 ± 441.24

C29:1

C29:1_2C29:1_1

C29:2

C29:2_1

C29:3

C29:3_1

C27:2

C27:2_1

C27:3

C27:3_1

C28:1

C28:1_2C28:1_1

C27:1

C27:1_2C27:1_1
Total alkene conc.

(μg/g dry wt)


