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ABSTRACT 

Vertical profiles of planktonic and micronektonic biomass observed close 

to the sea-bed along a transect running up the continental slope on the southern 

flank of the Porcupine Seabight (to the southwest of Ireland) showed that a 

doubling in biomass concentration occurs from 100 to 10m above the sea-bed. 

Comparison with biomass concentrations at two deep water stations, one in 

the Seabight and the other in the Rockall Trough, showed that there was a 

consistent increase in standing crop close to the sea-bed over the slope. 

Supplementary data were collected on the northern flank of the Seabight. Analysis 

of both taxonomic groups and individual species showed that some taxa were more 

abundant near the sea floor and extended their vertical ranges to greater 

cepths over the slope than over deep water, other taxa were unaffected. 

The implications to the problem of assessing the safety of sea-bed 

disposal of high level radioactive waste are:- 1. Biological activity 

increases close to the sea-bed; 2. Slope regions are areas where the 

potential for vertical transport of material by biological processes is 

enhanced; 3. There may be dynamic links across slopes between deep-living 

communities and the shelf communities which are heavily exploited for living 

resources; 4. Hence any isotopes which might be transported by physical 

processes from a dumpsite and impinge on the slope may become incorporated into 

a highly dynamic system, but it is unclear as to whether the dominant flux 

would be up slope or back onto and into the sediment. 



INTRODUCTION 

The examination of whether it is feasible to safely dispose of high level 

radioactivo waste in the oceans involves basically two questions. Firstly, 

does t^o dumping create unacceptable risk of substantially damaging narine 

ecosystems and secondly will the dumping result in the risk of an unacceptable 

dose of isotopes either to individual critical groups of Man or to the population 

as a whole. Both these questions are essentially of a biological nature and if 

th^y are to be answered w%th precision a much more extensive understanding of 

marine ecosystems needs to be developed. However, by careful and thorough 

exploration of critical elements of the ecosystem - these are the 'bottlenecks' 

that essentially control the rates at which the whole system functions - it is 

possible to determine maximum limits to the risks. The acceptability of these 

limits will then be subject not to scientific judgements but to value judgements 

which will be based upon considerations such as financial costs, the environmental 

risks associated with energy sources, availability of resources for energy 

generation and the forecasts of global energy needs. However, a well-founded 

scientific evaluation is a prerequisite for these value judgements to be made 

sensibly. 

The first biological communities to encounter any isotopes released into the 

water from canisters of disposed waste will be the benthic organisms. Dispersal 

of the isotopes may then occur either via biological pathways or through 

physical transport processes of currents, diffusion and mixing. Simple models 

yive been developed (Robinson and Mullin, 1981; Needier, in press) which suggest 

chat at abyssal depths dispersal by physical mechanisms is likely to be several 

orders of magnitude greater than by biological processes. This can also be 

simply checked by assuming that all the organic material that reaches th^ sea-bed 

is converted into benthic production which is returned back to the surface. 

However, even by applying the highest concentration factors known, this 

hypothetical mechanism will transport several orders of magnitude less isotope 

back to the surface than the best estimates for physical processes. Thus the 

organic input into the deep sea sets the limit to what can be returned back to 

the surface. Angel (1983) has reviewed all the known mechanisms of vertical 

movement by organisms and concluded that any such transportation is relatively 

trivial, and that no critical fast pathways have yet been identified. Similarly 

physical transportation vertically is extremely slow compared with transport 



laterally by currents, eddies and diffusion. Lateral transport occur eithsr 

with the isotopes in solution, or bound onto suspended particulates or in 

bodies of organisms inhabiting the benthopelagic environment. This lateral 

transport may either result in the movement of isotopes along density surfaces 

which outcrop at the surface at high latitudes or may result in their icpinge^ent 

on the continental slope. Although in all probability most of the isotopes will 

be progressively dispersed and diluted along the lateral transport pathways and 

will also be subject to removal back onto the sea-bed by the chemical scavenging 

of the rain of sedimentary particulates, it is just conceivable that enough 

isotope to cause a measure of concern could arrive in the vicinity of a continen-

tal slope. Observations on the dispersion of isotopes after the Thule accident 

(Aarkrog, 1979) and at the Pallaron Islands dump site show that this lateral 

dispersion is still very slow (Dyer, 1976). 

Mishner (1980) demonstrated that the standing crop of plankton increases 

quite sharply within about 100m of the sea-bed at abyssal depths. A^gel amd 

Baker (1982) were able to provide further confirmation of this phenomenon off 

N.W. Africa. This increase leads to a doubling of the concentration of biomass 

in th^ overlying water at about 10m above the sea-bed and further enrich^^nt 

may occur even closer to the bottom. These populations are probably dependent 

on the rain of detritus from the surface layers which appears to amount to 

1-3% of primary production in tropical and subtropical seas (see Angel 1983 

for review), but at high latitudes sedimentation of blooms may result in higher 

but more seasonally-pulsed fluxes of organic matter to the sea-bed (Billett 

et al., 1983). The prime source of food will probably be at the sediment/water 

.nterface. However, predation pressure will probably be more intense at the 

^a floor and so organisms may use the overlying water as a refuge. Therefore 

biological processes will be more dynamic in close proximity to the sea-bed, 

and there may be an active interface between the deep sea systems and the shelf 

ecosystem up the continental slope. 

This study was aimed at having a first look at this interface in order 

to try to gain a feel for whether it will behave as a bottleneck Lo the 

movement of isotopes up the slope or whether there is a high probability 

any isotopes reaching the slope will move quickly up into the ncrii^c 

into much closer contact with Man's activities. 



In the Biology Department at lOS, a programed has been carried out over the 

last decade to examine the way in which the vertical profiles of pla^ktcn and 

micronekton vary with locality throughout the Northeast Atlantic. Consequently 

a considerable volume of background information has been accun^lated in th^ 

context of which it is possible to interpret any variations chat uay occur in 

the patterns of vertical distribution. The area chosen for a Discovery cruise, 

to examine and describe processes over the slope, was the Gobcn S:nr vhic^ lies 

on the southern flank of the Porcupine Seabight. In this region the is 

relatively smooth and is relatively gently sloping. The benthic ore p the 

lOS Biology Department had already conducted a number of cruises to t±^ Seabight, 

including a Challenger cruise when some preliminary near sea-bed sampling had 

been carried out. TWo deep water stations were studied during the same 

Discovery cruise, one well to the north in the Rockall Trough, the other just 

off-slope in the mouth of the Seabight. These two deep water stations have 

been used to provide comparable deep water profiles against which it has been 

possible to assess the changes in the profiles over the slope. 

The report is divided into two main sections. The first which is the most 

extensive describes the main block of data from Discovery Cruise 105. A smaller 

second section includes the results from the preliminary sampling carried out on 

the earlier Challenger cruise which, are less conclusive but did extend the 

observations to the north flank of the Seabight and into both deeper and 

shallower water. 



SECTION 1 

RRS DISCOVERY CRUISE 105, 1979 



i. 

1. a. MATERIALS AND METHODS 

Four stations (10108-10111) were worked in August/September 1979 on the 

Gcban Spur on the southern flank of the Porcupine Seabight over soundings 

ranging frca 900-1700m. T^^ deep water stations were also worked, one in the 

Rockall Trough (Station 10105) centred at 54*30'N, 13*W (sounding ~ 3000m) 

and another in the Porcupine Seabight (Station 10115) centred at 49*4C'N, 14*06'W 

(sounding ~ 4000m) (Fig. 1). 

At all of these stations samples were collected using a multiple Rectangular 

Midwater Trawl (RMT 1+8M), (Roe and Shale,1979; Roe et al., 1980). The mean 

mouth area of these nets varies with the towing speed but at a speed of two 

knots the mouth area of the RMT 8M is 8.4 square metres and of the RMT IM is 

C.7 square metres. The mesh sizes of the RMT 8M is 4.5mm and of the RMT IM is 

0.32mm. This opening/closing net system consecutively collects three pairs of 

plankton (in the RMT IM) and micronekton (in the RMT 8M) samples. The nets are 

operated acoustically, and data on depth of fishing, in situ water temperature, 

speed of net through the water and depth at which net is fishing are all 

telemetered back to the ship. For each haul, the meaa towing speed was used to 

calculate the average mouth angle using the formulae given by Roe et al., (1980). 

The volume of water was then estimated from the total distance run. During a 

one hour tow at two knots the RMT 8M filters approximately 28,000 cubic metres 

of water and the RMT IM filters approximately 2,500 cubic metres of water. 

At each slope station a series of horizontal tows were made within relatively 

nzrrow depth strata measured relative to height above the sea floor rather than 

j±^olute depth. The majority of hauls were collected within 100m of the bottom 

and several hauls were collected within 20m of the bottom (Fig. 2). Nets were 

towed parallel to the general line of the shelf break so that the change in 

sounding during the course of the tow was minimised. However, inevitably there 

were changes in soundings between different hauls at any one station; this was 

particularly noticeable at Station 10111. Initially a near-bottcc indicator 

streamed from the net weight bar was used to indicate the height of the net 

above the sea floor (Boxshall and Roe, 1980). However, although an clectrical 

fault prevented the indicator functioning effectively the calm conditions made 

it possible to pick up the weak bottom echoes of the acoustic signals transcitted 

tnu wet monitor reflected by the sea floor. These reflections were used to 
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Fig. 1. Bathymetric chart showing the station positions in the 

Rockall Trough and the Porcupine Seabight (Discovery Cruise 

105). 
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assess the height of the net above the sea flocr. Ar cf slope stations, 

in addition to the horizontal tows, an oblique Lo" the shallowest 

depth sampled in the near-bottom tows up to the %j^facc to chcck that 

there had been no substantial change in the near-surface cor.^^nities. 

At the two deep water stations in the Rockall itough z.c Seahlght the 

top 900m of the water column was sampled both by day and by night in 100% strata. 

Each stratum was fished for approximately one hour at a towinc speed of two 

knots. Below 900m it was assumed that there would be no significant dlel 

vertical migration, (Angel et al., 1982) and at these depths 2C0m straza »ere 

fished for two hours irrespective of the light cycle. The maximum depth of 

sampling was 1900m in the Rockall Trough and 1500m in the Porcupine Seabight. 

Tyofile data from these two deep water stations, where applicable, were used 

: - yardsticks by which the effect of the continental slope on the distributions 

of the midwater species could be assessed. 

The physical structure of the water column was measured using a Neil-Brown 

conductivity, temperature, depth (CTD) probe to a depth of 2940m in the Rockall 

Trough, 1900m in the Seabight. At each of the slope stations CTD observations 

were made to within 10m of the sea floor. Full station details are given in 

lOS Cruise Report 82, (Herring, 1979), and a summary of relevant station data 

Is given in appendix A of this paper. 

The samples were initially preserved in 5% formalin in sea-water, (100% 

formalin z 40% solution of formaldehyde buffered with 6g ^ ^ borax). On return 

the laboratory the samples were transferred to Steedman's preserving fluid 

.^teedman, 1976),prior to sorting and voluming. 

l.b. HYDROGRAPHIC CONDITIONS 

Temperature - salinity (T-S) profiles for deep water stations in the 

Rockall Trough (Station 10105) and in the Porcupine Seabight (Station 10115) 

are plotted in Fig. 3. The comparison of these data with Ellett's data for the 

Rockall Trough (Ellett, personal communication) shows that although the 

temperature data are similar these salinity data are approximately 0.05^ higher, 

probably the result of a minor instrumental error. The data are considered to 

be adequately accurate for the purpose of this paper. In the fuabigh^ vn almost 

isohaline surface layer extended down to just below 100m. Beneath this izc-^lirs 
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layer the T-S characteristics were typical of North Atlantic Central Water (KAClf: 

as defined by Sverdrup, Johnson and Fleming (1942). Below 300% salinicy 

relative to NACW and at 750-980m there was a salinity below thich salinity 

declined to values typical of Gulf of Gibraltar water. A secondary caxizua 

occurrcd at about 1140m. At greater depths T-S values gradually approachod eloper 

to the characteristic values of Labrador Sea Water. Just above ISOOm the 

section of the T-S curve indicated the influence of Iceland/Scotland overflow 

water. 

In the Rockall Trough the T-S values were generally lower than in the 

Seabight. There was a clearly distinguishable zone of typical NACW water at 

60-200m overlying water with an enhanced salinity content which indicated the 

influence of Gulf of Gibraltar water. Close to the bottom the hydrographic 

characteristics were closer to Labrador Sea Water and the Overflow Water. 

T-S diagrams for the four slope stations are given in Fig. 4 and are generally 

similar to the de&p water profiles from the Seabight. In Fig. 5 the data are 

compiled into a salinity section extending up the slope from the deep water 

station. The Gulf of Gibraltar salinity maximum occurred at between 900 and 

1000m add was most pronounced at the central slope stations (10108-10109). 

The presence of this core of higher salinity water over the slope suggests that 

a northward current may have occurred there (Ellett, Dooley and Hill, 1979). 

l.c RESULTS 

l.c.l Macroplankton and micronekton 

A total of 60 RMT 8M and 33 RMT IM samples,were analysed. RMT IM catches 

are time-consuming to analyse so effort has been concentrated on the near sea-bed 

samples (excluding the oblique hauls) from the slope stations and on the 

Porcupine Seabight deep water series (see Fig. 6). Even at this deep water 

station some groups (Chaetognatha, Polychaeta and Amphipoda) have only been 

examined from hauls below 800m. The RMT 1Mb from the Rockall Trough have 

not been examined in detail. All the RMT 8M samples from both deep water 

stations and from the slope stations have been analysed. The following sections 

look at biomass in RMT 8M and RMT IM samples separately and then at the data 

for a^^mal groups from appropriate nets. 
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Table 1. Taxa analysed for numerical abundance and/or bioaass from the 

macroplankton and micronekton samples collected during Discovery 

Cruise 105. 

Station 

Taxa 

10105 
10115 

10108-10111 

net RMT 8M 

10115 
10108-10111 

RMT IM 

Fish 

Medusae 

Siphonophora 

Decapoda 

Ctenophora 

Mysidacea 

Euphausiacea 

Chaetognatha 

Polychaeta 

Copepoda 

Ostracoda 

Amphipoda 

+ 
+ 

+ 
+ 

+ 

+ 

+ 

+ + * 

+ * 

+ 

+ * 

Analysed 

Not analysed 

Below 800m at Stn. 10115 
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I.e.2 Biomass - Micronekton (Figs 7,8,9) 

Values for RMT 8M total sample biomass, measured by #ec disnlaccrcn^ volu^^, 

are given in Pig. 7. Values for the near-bottom cZope hauls ar? plotted 

according to sampling depth rather than height abovf u\e bottom to airzct 

comparison with the deep water station data, consequently, there appears to be 

some overlap. Values plotted against average sampling height ^hc 

sea floor are shown in Fig. 9. In the Rockall Trough very little micron-ktcr 

occurred in the top 100m by day? biomass concentrations peaked at SOO-G-Cn 

(22m^s/1000m") and there was a further peak in the 1300-1500m haul (24m&3/lCCCz/^ 

At night there was only a slight migration up into the surface 100m, cons^v^r'^Ly 

at 300-900m biomass concentrations were similar by day and by night. The very 

low night-time catch at 200-300m was probably a^ artefact caused by a gear 

malfunction. 

By day in the Seabight biomass concentrations were variable with depth, 

values of >20mZs/1000m^ occurred in at least half of the hauls. The total 

integrated water coluon biomass was slightly greater in the Seabight than in the 

Rockal^ Trough. Below 500m biomass values were similar by day and by night, 

but there was evidence for the occurrence of some diel vertical migration. At 

night a high bioaass concentration of about SOmZs/lOOOm^ occurred in the lO-lOOm 

haul, but below the surface 100m zone biomass concentrations steadily decreased 

to a depth of approximately 500m. 

At the slope biomass concentrations were variable. At the shallowest 

-:ation (10110) biomass was slightly higher than at comparable depths at the 

ceep water stations but its concentration decreased slightly towards the bottom. 

At all the other three slope stations the biomass increased as the sampling 

approached the bottom. However, there was little difference between the biomass 

concentrations at the slope stations and comparable depths at the deep water 

stations (Fig. 7). 

At the deep water stations each biomass maximum in the profiles 

produced by the high abundance of a single taxonomic group e.g. 

or medusae. Biomass profiles for each of the major taxonomic grcvrr 

separately below. The relative biomass of each group expressed as r 

of the total biomass in each haul have been plotted (Fig. 9), to ccrpar^ 
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dominance near-bottom over the slope with group dominance at t^e deep water 

stations below 800m (excluding the 800-900m night hauls). While it iz 

acknowledged that the displacement volume estimate of bicaan^ is inaccurate 

because shrinkage during preservation varies not only between groups but zlro 

between species,the changes that occur down through the wacer column arc so 

large that this crude method does provide a useful indication of the changes 

in relative importance of the various groups. 

In most hauls below 800m at the deep water stations Medusae were an 

important component of the catch, and similarly over the slope this group was 

dominant in some hauls although their contribution to the total sample biomass 

tended to be slightly lower than at the deep water stations; values ranged 

J'rom 6%-30% over the slope and from 16%-45% at the deep water stations below 

100m. Siphonophores tended to form a greater percentage of the biomass 

near-bottom over the slope than over deep water and they were a particularly 

important part of the catch at the deep slope stations 10108 and 10111 where 

they comprised 12%-40% and 16%-40% respectively of the near-bottom catches. 

In'the slope hauls pelagic fish biomass varied considerably, but apart from 

at Station 10110, contributed a moderate proportion of the sample biomasses. 

However, fish biomass concentrations tended to be slightly lower over the slope 

than at the deep water stations possibly because of competition by bentho-

pelagic fishes not sampled by the RMT 8M. Data for Decapoda and Mysidacea have 

been grouped together in Figure 9. Below 300m over deep water these groups 

ogether comprised 9%-20% of the catch except in one sample in which they 

provided 34%. Over the slope their importance was often much greater where 

their contribution equalled or exceeded 20% in the near-bottom hauls at 

Stations 10108 and 10109; in one haul at the latter station they provided 43% 

of the sample biomass. Chaetognatha were present throughout; at the deep 

water stations they provided 4%-22% of the biomass and 4%-25% for the slope 

hauls. The highest values of 19% and 25% were in the shallowest haul at 

Station 10109 and the nearest bottom haul at Station 10108. Ctenophora were 

not abundant in the Rockall Trough, but they were quite abund&nt at the 

Seabight deep water station. Over the slope they were particulzzly 

ac the shallowest station (10110) where they formed 47% and Ic^ 

of the two hauls. Polychaeta were important at the shallowest sloro ^Laticn 

(10110) where they formed at least 10% of the biomass in each Lcul. 



I.e.3 Ricnass - Macroplankton 

The RMT IM macroplankton catches often include a few cicrcnektcnic animals 

which can form a significant percentage of the catch di&placc^ent volume. In 

one deep water Seabight haul a fish of 40m& and a medusa of cOnC between tho^ 

comprised a quarter of the total catch volume. Consequently the displacement 

volumes of the RMT IM samples were measured after the removal of these 

large animals i.e. animals with displacement volumes >lmZ. As for the 
3 

micronekton data, the plankton volumes have been corrected to mts/lOOOm , and 

have been plotted against depth in Figure 10. In general the concentration of 

macroplankton is greater than that of micronekton (Angel and Baker, 1982). 

In the Seabight the effects of diel vertical migration within the top 600m 

of the water column are clear. Between 600-1300m the day and night haul 

biomasses were fairly constant at 20-30mZ/1000m^ but declined to 14mZ/l000m^ at 

1300-1500m. 

At the deepest slope station (10111) the biomass in the haul fished 

closest to the sea-bed was three times greater than both,at the equivalent 

depth over deep water,and in a haul which was fished within 40m of bottom. 

There was a similar threefold increase in plankton biomass in the sample taken 

closest to the sea-bed at Station 10108 compared to the equivalent deep water 

sample. However, there was a slight increase in the observed planktonic biomass 

at 90-30m above the bottom, but a sharp decline at 90m above. At Station 10109 

there was yet again a threefold increase in plankton biomass in the two samples 

from closest to the sea-bed compared both with higher in the water column and 

over deep water, and this was repeated at the shallowest slope station (10110) 

but to a lesser degree. Thus at all four slope stations the biomasses in hauls 

taken within a few metres of the bottom were about three times greater than 

at comparable depth over deep water only a short distance from the slvr^ 

Generally in water of such depths sample error is less than a factor of two 

(Angel ut al., 1982). Hence despite the lack of replicate sampling this 

observ^U increase in plankton standing crop close to the sea-be^ unlikely 

to ^ .ampling artefact particularly as the effect was repeated at all four 

slope stations. Moreover, as can be seen for the total counts for rstracod^, 

copc^ou^. chaetognaths and polychaetes presented in Table 2, similar trends 
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Table 2. Macrozooplankton catch volumes and numbers of aii' of five taxa per lOOOm^ for 33 

hauls from the Porcupine Seabight. 

Station Depth Total catch Numbers of 
3 

animals per 1000m 
#haul (m) displacement 

volume ; per 
1000m" Ostracoda Copcpoda Chaetognatha Polychaeta Amphipoda 

Porcupine Seabight vertical mini-scries in deep water 

DAY HAULS 

10115#15 10-100 26 1262 82925 
#16 100-200 11 8503 38092 
#17 200-300 10 4024 17989 
# 5 300-400 12 1644 15595 
# 6 400-500 46 3245 32254 
# 7 500-600 33 139] 39939 
# 2 600-700 28 1545 39277 
# 3 700-800 22 912 20794 
# 4 800-900 25 1080 20813 823 55 13 
#18 910-1100 28 411 29723 286 224 13 
#19 1100-1300 29 748 30352 413 54 8 
#20 1300-1500 14 ' 366 17243 218 20 6 

NIGHT HAULS 

101 IS'^1 lJ-100 50 2191 146204 
iOJ-200 27 7814 34900 
]45-300 12 2635 14734 

%12 2^^-400 6 1688 8332 
4'1 j 100-500 34 2549 16057 

%oj_6no 24 1443 29337 
# y UOO-700 20 1328 22952 
#10 VUO-^00 26 1838 24622 
#11 810-^00 20 941 21812 813 54 7 

Metres above 
bottom 



Table 2 continued 

Station Depth 
# haul (m) 

Total catch Numbers of ̂ .nimals per 1000m' 
displacement 
volume per 
1000m3 Ostracoda Copepoda Chaetognatha Polychaeta 

Near-bottom hauls, Goban Spur slope stations 

Amphipoda 

Metres above 
bottom 

1011124 1480-1570 17 236 18739 129 118 8 
#5 1555-1570 28 369 34759 158 582 10 
*6 1580-1650 45 515 51034 143 631 21 
#3 1610-1670 31 328 39786 204 368 11 

1010846 1210-1350 22 498 25540 232 5 11 
8 #7 1350-1410 83 1141 87784 409 15 
11 
8 

#8 1410-1425 67 1158 101216 363 702 15 
10109#1 1000-1100 24 587 28305 370 17 6 

#2 1100-1155 71 990 72667 524 36 4 
#3 1140-1155 64 873 62904 355 110 9 

10110#4 800-900 51 1692 55935 565 130 8 
#5 935-1000 69 1650 64309 347 265 11 

40-90 
25-30 
10-25 
100-40 

TO within 90m 
90-30 
30-15 

To within 60m 
60-25 
25-15 

120-35 
40-15 

4̂  



occurred in the abundances of the numerically dominant groups. Only in the 

amphipods which were not numerically abundant in the sacples was the effect less 

apparent. 

I.e.4 Fish (Figs 11, 12, 13) 

The vertical profiles of numerical abundance of pelagic fish at the two 

deep water stations are similar in pattern. Slightly higher concentrations 

occurred in the Seabight (Fig. 11), where at least part of the fish population 

undertook diel migrations; by day there was a peak in abundance at 500-600m 

(16 specimens/lOOOm^) whereas at night the peak occurred in the surface lOCm 

(34 specimens/lOOOm^). At 300-1000m the biomass profiles at both deep water 

- ations were roughly similar to the profiles of abundance, except at 500-600m 

the Rockall Trough where the biomass maximum was not reflected by a peak in 

numerical abunda^^e. However, below 1000m biomass increased relative to 

numerical abundance particularly in the 1300-1500m hauls (Fig. 12). Over the 

slope there was considerable variation in fish abundance and biomass,but the 

trends were similar in showing an increase with increasing proximity to the 

sea floor (Fig. 13). 

Generally both the abundances and the biomasses of the pelagic fish tended 

be slightly higher over the slope than in deep water. This is slightly unexpected 

since the presence of the benthopelagic fish community unsampled by the RMT 8M 

might have been expected to depress the pelagic populations. The Institute of 

Jc3a^ographic Sciences has been conducting an extensive survey on the ecology 

cnl seasonal distribution of the benthopelagic fishes in the region and once 

this is completed, it may be possible to show how the two fish communities interact 

I.e.5 Medusae (Figs 14, 15, 16, 17) 

The vertical abundance profiles of medusae taken in the RMT 8M samples from 

two deep water stations (Figs 14, 15 and 16) are relatively connioter^ i" r^tzcrn. 

The abundance profiles showed no evidence of migratory behaviour. ^ 

minor peak in abundance at 500-600m and a more intensi^^ r%imu^ at 

From the biomass profiles it can be seen that the shallc: -r abunds^^^ 

formed by large forms, mostly Atolla wyvillei, which had large dirplacc-^rt 

volumes, whereas the deeper more extensive numerical abundance 3eaks consi^ced 

of much smaller organisms, mostly Aglantha digitale. The slope scrcloz 
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showed numerical abundances increasing quite sharply in closc vicinity of the 

sea-bod, whereas the biomass trends are much less clrsr, except possibly at rhe 

deepest slopt station (10111). At the shallowest slrpe station four of the five 

most abundan- species increased in number as the sea-bed was approached. The 

exception waa the large species Atolla wyvillei. 

At Stac^on 10109, th^ situation was more complex. The cwo doain&nt medusae 

Aglantha digitale and Pantachogon haeckell increased in abundance in close 

proximity to the sea-bed. Whereas the other three cor=cn species, Aeginura 

grimaldi, Atolla parva and Aegina citrea, increased in abundance from 250-lGCa 

above the sea-bed, but then declined in abundance as the sampling got closer. 

At Station 10108 two of the dominant species showed marked increases In 

abundance close to the sea-bed, i.e. Pantachogon haeckeli and Aglantha dicitale. 

A. digitale reached densities of nearly 80/1000m^ close tc the sca-bed. Ir 

contrast Atolla parva, Aeginura grimaldi and Halicreas oiniouj, aocearcd not to 

respond to the proximity of the sea-bed (Fig. 17). At the deepest slope station 

(10111) most of the species became more abundant in the oJ hauls 

as the sampling approached the bottom. However, the hauls frc- higher in 

the water column contained almost as many specimens of cost species as the 

sample collected closest to the bottom. 

I.e.6 Siphonophora (Figs 18, 19) 

Siphonophora are widely distributed in the Atlantic Ocean, (Pugh, 1974, 

1^75; lOS Biological Data Bank). Only a very rough estimate of the population 

^lomass can be obtained by measuring the wet displacement volumes because they 

are subject to considerable shrinkage on preservation. Similarly because 

individuals of some species are composed of a variable number of ccrrcnent 

structures into which they readily fragment, it is not even possible to arrive 

at numerical estimates which are at all accurate. At both deep water zcationn 

peaks in biomass and abundance occurred at 500-600m and there were secondary 

peaks at 1300-1500m (Fig. 18). There was no evidence of the occurrence of 

significant diel vertical migration in the biomass profile diLa. At the slope 

stations, biomass estimates were Lo those from the dowp water stations 

(Fig. 19) in hauls farthest from t\^ bottom, there w^s quite a substantial 

increase close to the bottom the deeper two slope stations (10108-10111). 

Af both these stations the nev/--^^tom Luomass concentrations were somewhat higher 
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than over deep water; particularly at the deepest station (10111) where the 

siphonophore standing crop was three times that observed at a comparable depth 

in the Rockall Trough. There were three dominant species in the slope hauls, 

Lensia conoidea which reached peak numbers at about 100m above the bottom and 

Dimophyes arctica and Chuniphyes multidentata showed a general increase in 

abundance towards the bottom. 

I.e.7 Ctenophora (Figs 20, 21) 

The Ctenophora were represented solely by the species Beroe cucumis. 

few specimens were caught in the Rockall Trough. At the Seabight station 

the daytime distribution was patchy; the maximum concentration was 1 .3 specimens/ 

I'OOm^ at 1300-1500m (Fig. 2 0 ) . At night it was found mainly in the top 200m at 

jjncentrations of up to 4 . 0 specimens/lOOOm^ at 100-200m suggesting an extensive 

vertical migration occurred. Concentrations at most of the slope stations were 

low except at the shallowest station where a concentration of 3 .6 specimens/lOOOm^ 

occurred in the haul farthest from the bottom and there was a sharp reduction in 

concentration nearer the sea floor. At the three deeper slope stations concent-

rations' were very low but there was a consistent trend for abundance to increase 

close to the bottom (Fig. 21 ) . As with siphonophores and other gelatinous forns, 

considerable shrinkage occurs on preservation making displacement volume a poor 

method of estimating ctenophore biomass. However, displacement volumes were 

roughly proportional to numerical abundance throughout. 

' . C . 8 Copepoda (Fig. 22) 

Copepod data are based solely on the RMT IM samples. Copepods dominate the 

macroplankton both in terms of standing crop and numbers, generally occurring at 
3 

densities of)20/m ; for example at night in the shallowest sample at the Seabight 

station there were >146/m^\ The abundances have had to be based on subsamples of 

the catch, obtained using the Folsom splitter. This device can introduce a 

subsampling error which is not always trivial compared with the variation between 

samples, (van Guelpen, Markle and Duggan, 1982), but as these authors remark it 

remains a necessary evil. 

The slope samples contained significantly larger numbers of copepods than 

occurred in the equivalent samples from the deep-water station. Also, at all 



Hc'Ckall T r o u g h 

10105 

1 0 1 R 

Porcupine 

10111 

1 0 

10108 10109 10110 

1 0 1 0 

DAY 

• NIGHT 

0 

Ctenophora 
, , 3 3 

No. oi s p e c i m e n s / 1 0 m 

Fig. 20. Profiles of numerical abundance (Nos./lOOQm"') of Ctenophora in RMT 8M 

sonplcs aL the deep water and slope stations (see Fig. 10 for note on dcplrhs) 



CO 3 n 
3̂  (-f- ^ 

r t I—' 
C O 

Nos. of specimens / 10''m" 

N l\) 

D i s p l a c e m e n t v o l u m e ( m l s ; / i ( 

e 

o o o o 
o o o (0 CD 

"O % 

> 

f-t? 



500-

Deplh 
( m ) 

lOOOi 

150CH 

1 0 1 1 5 
iqOk 50k 0 SOk lOOk I50k 

10111 
lOOk 5Pk 0 

10108 
iqok 50k 0 inok SOk O 

10109 10110 
iQPk 5Dk 0 

# ; 

2000-

Fix. 

O DAY 

IIGHT 

Copepoda numbers/iuk, (RMT1) 



four slo^e stations the copepod concentrations increased substantially towards 

the sea-bed (Fig. 22). Indeed the near-bottom concentrations approached those 

observed in near-surface waters, especially at Station 10108 where over 100/m ^ 

were caught near the bottom; this abundance was nearly 20% more than Lhe 

daytime concentration in the surface 100m at the Seabight station 

and five times that observed at the equivalent depth. 

I.e.9 Ostracoda (Figs 23, 24) 

Ostracod data are based on the RMT IM samples. The ostracods were the 

second most abundant higher taxon represented in the macroplankton catches, but 

were an order of magnitude less abundant than the copepods. Except for the 

.iree large catches at the deep water station for which g subsamples were 

.nalysed, the analyses have been based on total samples. In all over 103,000 

specimens have been identified; 46 species were represented. 

Total ostracod abundance profiles are shown in figure 23. At most of 

the slcg^ stations ostracod densities tended to increase with increasing 

proximity to the sea-bed but only at Station 10108 was the near-bottom density 

notably higher than observed at comparable depths over deep water. At the 

shallowest slope station (10110) no bottom effect was observed but the densities 

in both hauls were greater than in equivalent samples from deep water. 

A detailed analysis of the ostracod data (Ellis, in prep.) refines this 

picture, and shows that the individual species have different responses to 

proximity to the sea-bed. Of the 46 species present in the samples, 14 normally 

.ve at relatively shallow depths and were rare or absent from the slope samples, 

and 13 were represented only sporadically. Table 3 lists the densities of the 

remaining 27 species all of which normally occur at depths equivalent to those 

sampled in the near-bottom hauls. Fig. 24 shows how the order of abundance of 

the ten commonest species varied in each of the hauls from below 700m both at 

the deep water station and in the near-bottom samples. Comparison between the 

day and night hauls from 700-800m and 800-900m at the deep water ^hich 

can be regarded as replicate hauls because diel vertical migration have 

had a relatively minor effect at these depths, can be used to judge the sampling 

variation in rank order of abundance. 
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In figure 24 three species have been picked out to emph^^iic h&w thsir 

relative abundances changed. C. stigmatica (species #7 in tJ.c ligcii-; tl:*; 

dominant species at nearly all depths >800m(Tw:rdeep water, alco c the 

slope. However, the species that was codominant with it belcv yCO* at the 

deep water station, C. discoveryi (#11) was only codominant at .10C-142Sn over 

the slope. C. borealis (#16) was increasingly important from down 5t 

deep water station, but was only codominant close to the sea floor ct one of 

the slope stations (10108). In general, the order of species abundance changed, 

relatively little towards the sea floor at the shallow slope station (10110), 

quite sharply at the middle two slope stations (10109, 10108), hardly at 

all between the four dominant species at the deepest station, but gui±e 

substantially between the lesser abundant species. 

From Table 3 it can be seen that many species were more abundant over the 

slope than at comparable depths over deep water, e.g. C. rhynchena and C. 

brachyaskos. In contrast two species C. subedentata and C. obtusata showed 

reductions in abundance over the slope. Another effect was the displacement 

of the depth ranges of some species over the slope. C. pusilla occurred shallower 

than expected, whereas A. cucullata, C. dichtoma and C. arcuata occurred deeper. 

Two species are of particular interest: 

C. dorsotuberculata was uncommon in the catches, only six specimens (three 

juveniles and three adult females) were taken. However, this species was 

caught only in the slope stations. Examination of 'Discovery' collection 

records for ostracods, held in the lOS database (Domanski, 1981) shows that 

-lis species has previously not been recorded north of 42°N. it is possible that 

\nis bathypelagic species is seasonal in its occurrence but its absence in the 

F^^bight suggests that more likely its presence over the slope may result from 

its advection into the region in a slope current. 

C. hystrix was found for the first time in these hauls (Angel a^d Ellis, 1981). 

It is probably a member of the suprabenthic community. Its gut contents, which 

included mineral particles as well as bacteria and unidentifiable material, 

suggested that the species may feed on the sea-bed. TWenty-four of 26 

specimens of C. hystrix taken, were caught in hauls within 30m of the sea floor. 

The majority were taken at station 10108. This species was the only ostracod 

which seemed to be associated with the benthopelagic environmen-. 4C002 off 



Table 3. Doiisities of some ostracod spccles tor hauls bolow 700m ever tho Klope and aL the Porcupine Soabiglit deep water station 

Deep Water 

Species Kumbers/lOOOa" 

Station 10115 

Sample depth (a) 700- GOO- 700- 000-
800D SOON 900W 900N 
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C\ . 7 23 3 

c. - -

2 13 34 30 213 
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& - - 26 

c ulata - - - -

C. ' '.r 12 9 2? 13 
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2 3 2 ) 1 
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c 7 3 1 2 
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chc Northwest African coast similar near-bottom hauls contained an endemic 

cc^^unity of 25 species all of which are new to sci^rcc (Discovery unpublished 

Thus there may be an important distinction between the abyssal near 

aea-bed communities which have no species in ccmmon with pelagic coKmcnitics, 

and the slope communities which are essentially modified mic^ater communities. 

I.e.10 Amphipoda (Fig. 25) 

The data for these crustaceans are derived from the RKT IM samples. 

Their abundances were relatively low reaching a maximum of only 21/10033^. 

At all four slope stations their density increased towards the bettor. At the 

deeper two slope stations (10111 and 10108) densities were higher than at 

parable depths over deep water but slightly lower at the othzr scaticns. Many 

-.'r:;hipods are commensal or parasitic at some stage c: their life histories with 

gelatinous plankton, so their densities here probably relate to the distribution 

patterns of siphonophores, ctenophores and medusae. Specific analysis nay show 

that some of the species responsible for the near-botco% Incraasc in ^^phipod 

density may be associated with benthic coelenterates. 

I.e.11 Decapoda (Figs 26, 27, 28, 29) 

In the Rockall Trough maximum numbers occurred by Cay at 5C3-?CDn 

(>6 specimens/lOOOm^) (Fig. 26) with a secondary maxinuc at 15C3-17CD3. At 

night large numbers of juvenile Decapoda (mainly Sergestas) occurred in the top 

lOOm, the result of diel migration. At the Seabight station decapods occurrcc 

^%inly below 500m with a maximum of 10-11 specimens/IOC?^^ at 703-900^. At 

;ijXt about 4 specimens/lOOOm^ occurred in the surface ICO^, then deeper 

down there was a gradual decrease in concentration to about 500- belcv ^h*ch 

there was a steady increase to 6 specimens/lOOOm^ at J30-9CTku 

Over the slope most of the hauls from well abov^ the cea floor ccncained 

decapods in numbers similar to those at comparable depths at the deep water 

ctations. However, relatively high concentrations of occurrci in sc%* 

cf the hauls close to the sea-bed particularly at stations 10108 and 10109 

(Fig. 27). Generally at both deep water stations at depths abcvo bicmasc 

profiles were similar to those for concentration. Hclow SOOm bicmess 

concentrations ^^re erratic but there was a tendency for bic^^zs to increase 
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relatlve to numerical abundance, i.e. specimens tended to be larger,in the 

deeper layers (Fig. 28). Over the slope there was generally cn increase in 

biomass with increased proximity to the sea floor (Fig. 27). 

There were four dominant species throughout the survey arsa Scrgestcs 

arcticus, Serqia species (robustus group), Gennadas elenann and Hycenodora 

gracilis. S. arcticus is a strong diel migrant occurring in the ^ockall Trough 

and the Seabight deep water stations at 200-10c0m during the day (up to 6 

speciaens/lOOOm^ at 500-600m in the Rockall Trough). At night 72 and 3 specin^ns/ 

lOOOm^ occurred in the surface 100m in the Rocltall Trough and Seabight respectively, 

Relatively few specimens were found below 1000m. Over the slope this species 

occurred in similar concentrations well above the bottom, but in much higher 

concentrations close to the sea-bed. This increase was particularly noticeable 

at Station 10109 when the sounding was around 1200m (Fig. 29A). Thus over the 

slope the vertical distribution of this species extended deeper than at the 

deep water stations. By day at the deep water stations G. elegans was found 

predominantly at 500-1000m and 700-1100m respectively with maximum concentrations 

of about 6 specimens/lOOOm^ at 700-800m. There was limited diel migration ci part 

of the*population towards the surface at night. Over the slope most samples 

contained similar concentrations to those in deep water. However, exceptionally 

large concentrations occurred in near-bottom hauls at Station 10108 (Fig. 25S;. 

In contrast to the Sergestes and Gennadas species, H. gracilis did 

occur at the two shallowest slope stations (10109 and 10110), but wes found in 

zolatively low concentrations at Station 10108 and in higher concentrations at 

the deepest slope station (10111). Its distribution over the slope was similar 

to that in deep water. 

The data for the decapods will be described in detail in a separate 

publication (Hargreaves, in press). 

I.e.12 Mysidacea (Figs 30, 31, 32, 33) 

The distributions of oceanic pelagic mysids in the Atlantic have been 

-cvicwsd by Mauchline and Nurano (1977). Most of the species recorded in 

this survey %gre described by Tatter&all (1955). At both deep water stations 

they K^inly occurred below 600m but the depths of the maximum concentrations 
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differed between the two stations; in Rockall Trough maximum concentrations 

of approximately 8 specimens/lOOOm^ occurred at 1100-1500m, whereas at the 

Seabight station similar concentrations occurred at 800-1100m (Fig. 30). 

Over the slope at Station 10110 abundances were slightly greater than thoso 

at similar depths at the Seabight station but decreased slightly close to the 

bottom (Fig. 31). At Station 10109 concentrations were low at the shallowest 

haul but increased to >10 specimens/lOOOm^ closer to the sea-bed. At Station 

10108 the concentrations (6-8 specimens/lOOOm^) were generally similar to those 

observed at comparable depths over deep water, but in one haul there were >10 

specimens/lOOOm^. At the deepest slope station (10111) concentrations were 

relatively low (< 4 specimens/lOOOm^) but slightly increased close to the bottom. 

Biomass profiles were similar to numerical abundance profiles at the 

Seabight station, but at the Rockall station there were some differences in that 

there was a decrease in biomass relative to concentration at 700-900m and at 

1100-1300m (Fig. 32) resulting from the presence of large numbers of small 

immature specimens. Biomass profiles over the slope were similar to the 

concentration profiles, except in the haul closest to the sea floor at Station 

10110, where there was an increase in biomass relative to abundance. Two 

species of mysid formed the bulk of the mysid populations, Eucopia hanseni 

and Eucopia grimaldii. The distribution of E. hanseni is given in Fig. 33. 

At both deep water stations this species comprised nearly the whole of the 

mysid catch above 1100m. Below 1500m in the Rockall Trough E. grimaldii was 

dominant while at 1100-1500m both species were present. The distribution of 

:^°se two species over the slope reflected their vertical distribution in 

^±dwater over deep water. E. hanseni was found in relatively large numbers in 

the shallow near-botton hauls at stations 10109-10110; at Station 10110 despite 

the decrease in concentration close to the sea-bed, the values were still within 

the range observed at similar depths at the deep water stations. At Station ICIO: 

there appeared to be a peak in concentrations at just about the deepest samplirc 

depth. Farther down the slope at Station 10108 concentrations w&re similar r̂ 

slightly greater to those at the deep water szation^, buL acaAr. t&udcd to 

decrease towards the bottom. Hardly any specimnnc wt-rc "ocnd the ccepo&t 

station (10111). 

the slope the distribution of E. grimaldii was quite unlike that of 

E. hanseni. Concentrations of E. grimaldii were extrc^elv ]ow at the shallcror 



slope stations 10109-10110, but further down the slope at Station 10108 most 

observed values were lower than at similar depths over deep water; the notable 

exception occurred about 60m above the bottom where values were sinilar to those 

at the deep water stations. At Station 10111 haul values were similar to those 

at the deep water stations. 

I.e.13 Euphausiacea (Figs 34, 35, 36, 37, 38) 

In the Rockall Trough in daytime euphausiids were found mainly from 

200-600m at maximum concentrations of 31 speclmens/lOOOm^ at 300-400m (Fig. 34). 

At night very large numbers occurred in the surface 200m (116 and 58 specimens/ 

lOOOm^ respectively in the O-lOOm and 100-200m hauls). Below 600m abundances 

were low both by day and night, but there was a small maximum at 800-900m. 

At the Seabight station euphausiid vertical distribution was similar to that in 

the Rockall Trough but in general abundances were greater. By day maximum 

concentrations of 49-59 speclmens/lOOOm^ occurred at 300-500m; by night the 

maximum moved up into the surface 300m; 254 speclmens/lOOOm^ occurred at lO-lOOm. 

At both deep water stations above 900m biomass profiles were similar to those 

for numerical abundance. However, below 900m in the Seabight there were small 

but erratic increases in blomass relative to concentration (Fig. 35). Abundances 

in many of the near-bottom hauls at the slope stations were comparable to those 

at similar depths at the deep water stations (Figs 34 and 36). In the haul 

closest to the sea floor at Station 10110 there was a two-fold increase in 

numerical abundance and biomass. At Station 10109 there was again a slight 

Increase close to the sea-bed but values were relatively low. At Station 10108 

high abundances occurred in some hauls farthest from the bottom; at Station 10111 

vilues were consistent with those at the deep water stations. 

Presence of some of the specimens of euphausiids in deep hauls probably 

resulted from contamination. Small specimens can pass through the meshes when 

t±^ net is closed and slight leakage can occur between the closed bars of the ret 

particularly when the net is plunging at the surface during recovery. The kno;r 

vertical ranges of the species were used to judge which were probable 

contaminants. Only three of the euphausiid species are well-known as inhabitants 

of relatively deep water, Bentheuphausia amblyops, Thysanopoda microphthalma arc 

Thysanopoda acutlfrons (James, personal communication; Hargreaves, in prep.). 

Bĉ low 500m in the Seabight B. amblyops occurred in very low concentrations 

(<1 specimen/lOOOm^) (James, personal communication). At the ^hullcwcr cl^^c 
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stations (10109-10110) it was either absent or sparse, but in the hauls farthest 

above the sea floor at stations 10108 and 10111 concentrations were slightly 

higher than those at comparable depths at the deep water station. Closer to 

the bottom they tended to decrease in concentration except in the deepest haul 

at Station 10108 (Fig. 37). 

Adults of T. microphthalma at the Seabight station occurred mainly at 

depths of 600-800m; their concentrations were always <0.3/1000m^. A very few 

specimens were taken below 800m. Concentrations at the slope stations were also 

very low. 

Similarly concentrations of T. acutifrons were very low throughout the 

water column in the Seabight but tended to increase slightly with depth. 

-Ais pattern was repeated at the slope stations (Fig. 38). 

I.e.14 Polychaeta (Figs 39, 40, 41, 42) 

The profiles for biomass and concentration in the RMT 8M samples were 

reasonably similar at the two deep water stations (Fig. 39). In the Rockall 

Trough polychaetes were broadly distributed at 10-900m. By day, maximum 
3 3 

numbers (25/1003m ) occurred at 100-200m but by night around 65/lOOOm occurred 

in the surface lOOm. Thus, at least part of the population undertook a diel 

vertical migration. A secondary abundance peak occurred at about 500-9G0m by 

day and 50G-60Gm at night, but below 900m concentrations were irregular. 

At the Seabight station the vertical range of polychaetes was deeper by 

^^y; most specimens occurred between 500-1100m with maximum concentrations of 

about lO/lOOOm^ at 500-700m. At night at least part of the population undertook 

a diel migration into the surface 200m, but the vertical pattern remained much 

the same as during the day at 500-900m. 

At the deeper two slope stations (10108 and 10111) the concentration profiles 

were broadly similar to those at comparable depths at the deep water stations 

showing a sharp reduction in concentration below 1100m. However, at the 

shallowest slope station (10110) large concentrations of polychaetes occurred 

in both hauls particularly the one farthest above the sea-bed (Fig. 40). In the 

shallower hauls at Station 10109 polychaetes were relatively sparse but their 

concentration increased towards the sea flccir. Generally polychaete bicmass 
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profiles were similar to the concentration profiles except in t±e deepest haul 

at Station 10108 in which the animals were somewhat larger (Fig. 41). 

Full species analyses have not yet been completed, but polychaetes are 

easily divisible into two main groups, the Tomopterus spp. aad the scale worms 

Lagisca spp. The tomopterids comprised the bulk of the polychaete population 

and as a group showed rather similar vertical profiles throughout the sampling 

area. In the Rockall Trough there were two abundance maxima by day at 100-200m 

and 500-600m and at night in the surface 100m and at 500-900%u In the Seabight 

both by day and by night tomopterids were present below 500m, but at night a 

small number had moved up into the surface 100m. Very high concentrations 

occurred at the shallowest slope station (10110) and there was a slight decrease 

close to the bottom. Farther down the slope abundances decreased. 

The scale worms were less abundant than the tomopterids in the Rockall 

Trough occurring mainly at 500-900m during the day and at 200-900m by night. 

In the Seabight they occurred deeper during the day (600-1300m). Over the 

slope their abundances were generally similar to those at comparable depths at 

Seabight station. On the slope the highest concentrations occurred at 

Station 10110, where there was a very slight decrease close to the bottom. At 

the deeper stations (10103-10109) fewer specimens were caught but abundances 

increased slightly near the bottom. 

Rather different results emerged from the analyses of the RMT IM samples 

in which the slope hauls showed that there was a substantial increase in 

%rmerical abundance of small specimens with increased proximity to the sea-bed 

:ig. 42). At Station 10111, for example, the_ numerical abundance 10-25m above 

the bottom was sixfold the abundance 40-90m above. Similarly at Station 10108 

the abundance 15-30m above the bottom was 47-times the abundance to within 90m 

of the bottom. The numerical abundances observed in the near sea-bed samples 

were considerably higher than in the vertical series especially at the two 

deeper slope stations. 

I.e.15 Chaetognatha (Figs. 43, 44, 45, 46) 

Chaetognaths have been analysed from both the RMT BM's which samples only 

the larger forms and the RMT iM's. In the RMT 8M samples from the Rockall Trough 

station by day they occurred from 200m to the limit of sampling. The maximum 
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concentrations were at 200-300m (44/lOOOm^), a^d there was a secondary peak at 

500-600m (36/lOOOm^). At night the distribution was more or less similar but 

several specimens were taken at 100-200m (Fig. 43), indicating a limited diel 

migration. 

At the Seabight station concentrations were higher. In daytime specimens 

were found throughout the water column with maxima occurring at 500-600m and 

800-900m (approximately 60/1000m^). At night concentrations were generally 

slightly greater than in the day hauls, but otherwise the profile was similar. 

Chaetognaths were present in all slope hauls. At the shallowest stations 

(10109 and 10110) concentrations were similar to those at the deep water stations 

and showed a slight increase towards the bottom. At Station 10108 the increase in 

concentration was more pronounced towards the sea-bed and abundances were higher 

than over deep water, whereas at 10111 values were similar to those at the 

deep water stations (Fig. 43). 

In terms of biomass at the deep water station down to 900a the profiles 

were similar to those for abundance, in some hauls below 900a there was a 

substantial increase in the average size of the specimens resulting in an 

increase in biomass relative to abundance (Fig. 44). Over the slope generally 

biomass profiles were very similar to those for concentration (Fig. 45). 

In the RMT IM catches chaetognaths were the third cost abundant group. 

Tnere was an increase in their numerical abundance close to the sea-bed at 

%^ree of the slope stations, which was particularly pronounced at Station 10108. 

This increase did not occur at the shallowest slope station (10110) (Fig. 46). 

Generally the numerical abundance at all the slope stations differed little 

from comparable depchs at the Scacight station. 



SECTION 2 

RRS CHALLENGER CRUISE 9/1979 



2.a MATERIALS AND METHODS - RRS CHALLENGER CRUISE 9/1979 

In July 1979 a series of 6 single samples were collected within 30m 

of the sea-bed in the Porcupine Seabight along a north - sout^ transect at 

longitude 14°W between latitudes of approximately 49*54'-51°40'N (Fig. 47), 

sampling spanned soundings of 380-4000m. The sampling strategy is shown in 

Fig. 48 and full details given in Appendix A. 

Samples were obtained with the RMT 1+8 (Baker, Clarke and Harris, 1973). 

The operation of this net is similar to that of the RMT 1+8M except that only 

a single pair of nets, the RMT 1 and the RMT 8 are operated at each tow. Once 

again the height of fishing above the bottom was measured by th^ bottom echo 

of the monitor signals from the sea-bed, the height was considered to be half 

the separation between the direct pulse from the monitor and bottom echo. 

Sample processing was the same as for the Discovery Cimise 105 material. 

2.b RESULTS - RRS CHALLENGER CRUISE 9/1979 

2.b.l Kicronekton biomass 

R^T 1 samples have not been analysed so only results from the RMT 8 are 

available. Data on the total RMT 8 biomass are plotted in Figure 49. Most of 

the sampling was carried out by day and there appeared to be a maa±mum of 

>'40mZs/1000mr over a bottom sounding of 686m (Fig. 49). There was a gradual 

incline in biomass in the deeper hauls to <7mfs/1000m^ at 2750m. At 460-495m 

biomass in the daytime haul was approximately 60mZs/1000m^ but at 380-395m 

which was sampled at night biomass sharply increased to >210mZs/ lOOOm^; this 

large concentration at night may have been partially due to a reverse diel 

vertical migration from shallow depth by day on to the sea-bed at night. The 

data for the hauls taken between 800-1500m compared to biomass data for Cruise 105 

near-bottom hauls show an increase in biomass during the Challenger hauls of 

2-3 fold. The high biomass values for all of the Challenger hauls above 1200m 

were the result of large concentrations of medusae. 
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2.b.2 Medusae (Fig. 50) 

This group was extremely abundant over this slope especially in 380-395m 

night haul and the 460-495m and 655-680m day hauls in each of which >1800 specimens/ 

lOOOm^ were taken. Deeper down there was a gradual decline in abundance (Fig. 50). 

The specific identifications are listed in Table 4. Aglantha diqitale reached 

densities well in excess of 1/m^ at all but the deepest stations. Otherwise the 

only species that exceeded lO/lOOOm^ was Haliscera bigelowi at shallowest 

station. 

TabJ^ 4. Numbers of Medusae/luOOm identified from Challenger samples obtained 

during July 1979. 

Mid-depth of Haul (m) 385 480 675 1120 

Species 

Aglantha digitale 2G33.0 1894.0 2725.0 679.C 

Pantachogon haeckeli 1.63 2.49 2.47 1.74 

Aegina citrea 3.08 1.00 0.05 0.C3 

Haliscera bigelowi 17.21 3.00 

Halicreas minimum - 0.5 - 0.35 

Colobenema sp. C.47 0.5 

Atolla parva - - 0.45 0.09 

Aeginura grimaldi - - 1.53 

'Lmissus incisa 2.73 - 0.45 

2.b.3 Decapoda (Figs 51, 52, 53, 54, 55) 

In daytime maximum abundances occurred in the 460-495m and the 655-680m 

haul (11 and 14 specimens/lOOOm^ respectively). Below these depths there was 

a shar^ decrease in abundance. In the one night tow at 380-395m there was 

a considerably higher abundance (>77 specimens/lOOOm^), (Fig. 51). specific 

data are summarised in Table 5. 

Gennadas elegans was generally infrequent and its abundance never exceeded _ 

1 specimen/lOOOm" (Fig. 52), values which were lower than in the Discovery 
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Ta±ile 5. Numbers of specimens/lOOOm of decapod crustaceans taken during the 

Challenger Cruise 1979. (P = pelagic species, B = benthic species, 

B/P = benthopelagic species). 

Approximate depth of sea-bed (m) 

Taxa 408 512 686 1195 2770 3980 

Sergestes arcticus (P) 40.IC 8.92 5.30 0.62 0.16 0 

Gennadas elegans (P) 1.00 - 0.99 0.31 o.o; 0.02 

Sergia spp. (P) 8.11 0.64 2.91 0.10 0.02 C.32 

Hymenodora spp. (P) - - - - 0.23 

Acanthephyra pelagica (P) - - 0.05 0.03 - -

Ephyrina sp. (P) - - - 0.C3 - -

Plesionika sp. (P) - - 0.01 - - -

Caridion sp. (B/P) 3.17 - - - - — 

Pandalus sp. (B/P) 1.35 - 0.21 0.01 - -

Pasiphaea sp. (B/P) 0.17 - 0.40 C.07 - -

decapod c^galopas (B) 20.60 1.C5 4.72 0.07 :.02 

Philocheras sp. (B) 0.11 - 0.03 - -

Calocaris sp. (B) - - 0.01 - - -

Unidentified larvae 0.23 G.23 0.18 -
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samples. Sergestes arcticus was much more abundant. During t^^ day maximum 

concentrations of nearly 9 specimens/lOOOm^ occurred in the 460-495m haul (Fig. 

53), but much higher concentrations (40/l000m^) occurred in t^^ 380-395m night 

haul. Below 495m, there was a gradual decrease in abundance. in t±ie shallower 

hauls this species was more abundant than at comparable depths at t±^ Seabight 

stations during Cruise 105 but it was less abundant in hauls frcm below 1100m. 

Sergia spp. were present in relatively low concentrations (Fig. 54). 

The large 380-395m night haul was particularly interesting in that it 

contained numerous larval and post larval forms (of which the smaller ones were 

difficult to identify), including decapod zoeas and megalopas (Fig. 55) and 

also young specimens attributed to the genus Caridion. These groups are deep-

"/ u.ng benthic or benthopelagic species as adults and their high abundance in 

relatively shallow water may be a seasonal phenomenon. Relatively few 

post-larvae and no Caridion species occurred in the Discovery samples collected 

a few months later. Although we tentatively consider this to be a seasonal 

effect, it could also be the result of swarming or the passive aggregation of 

these larvae by water currents. 

2.b.4 Mysidacea (Pigs 56, 57, 58) 

This group was only abundant in the 655-680m haul (14 specimens/lOOOa/) 

(Fig. 56). The majority of specimens were Eucopia hansenl (Fig. 57) which was 

slightly more abundant in these Challenger samples than in the later Discovery 

samples but many of the specimens were Immature. At least four species of the 

.-js Boreomysls (Fig. 58) occurred. This genus is known to have a wide vertical 

r jge and this was apparent from its distribution. Several other genera were 

represented but only in very low concentrations. 

2.b.5 Euphauslacea (Figs 59, 60) 

Euphausiids were most abundant in t±^ 380-395m night haul, the shallowest 

station sampled (>20 specimens/lOOOm^), and there was a gradual decrease in 

abundance with depth (Fig. 59). Ten species occurred in the shallow haul with 

a Thysanopoda sp. the dominant form (Fig. 60). These Thysanopoda specimens 

could not be identified to species because of their immaturity, but they may bmve 

been Thysanopoda acutifrons, adults of which occurred in the 1090-1160m haul. 
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2.b.6 Polychaeta (Fig. 61) 

Polychaetes were most abundant in the 655-680m haul, deeper there was a gradual 

decrease in abundance to a minimum at approximately 2900m (Fig. 61). These 

specimens have not been identified to species level. 

3. DISCUSSION 

Wishner (1980) in her report on plankton collected by a small net attached 

to 'Deep-Tow' was the first to describe an increase in plankton abundance in 

:'3se proximity to the sea-bed in deep water. This was also observed by Angel and 

y .ker (1982) in one of their total water column profiles froa a depth of 4000m 

off N W Africa. The biological significance of this observation is that the sea-

bed, by acting as a collector of sedimenting large and snail particles becoaes a 

zone relatively enriched with organic material. There is some debate as to 

whether it is the rain either of very fine particulates as collected by sedicent 

traps, or of coarser particulates such as large faecal material or 'snow' 

aggregates, or even large corpses which provide the ^ost important input of 

organic material into the benthic and benthopelagic ecosystems, (e.g. A^gel in 

press). However, it is clear that the distribution of biocass from the sea-bed 

up into the water column is an analogue of the distribution down from the 

surface, but with a sharper rate of decrease because of the countering influence 

gravity. In deep midwater regions, probably from depths of about 2000-2500m 

to within 100m of the sea-bed, the influence of the surface is uncoupled from the 

"luence of the sea floor, whereas in shallow neritic seas the systems are closely 

coupled. The depth down the continental slope at which the de-coupling occurs is 

unknown but is deeper than the slope samples taken in this study. 

The importance of these relationships to the problems of the safety of 

sea-bed disposal of radioactive waste is centred around how deep-sea systems 

link with neritic systems in slope regions. At present no evidence has yet come 

to light of any biological processes in midwater which can transport significant 

quantities of isotopes from the sea floor up through the water column to the 

surface, either in terms of dose to Man or of critical pathways (Angel, in press; 

Needier, in press). This has been supported by the admittedly simplistic, but 

purposely conservative model developed by Robinson and Mullin (1981) which led to 
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the conclusion that physical processes were likely to be around seven orders of 

magnitude more important in determining the back flux of waste isotope than 

biological processes. 

The data described here demonstrate the increase in standing crop of both 

plankton and micronekton associated with close proximity to sea-bed in slope 

regions. The amount of increase was much more dramatic in some taxa than in 

others, for example in the plankton the polychaetes showed a much greater 

response than the ostracods. However, it was the response of a few dominant 

groups such as the copepods and decapod crustaceans which determined the pattern 

of the total community response. These dominant organises are important 

constituents of the diets of certain commercial fishes and so their presence could 

attract these fishes down into deeper water. The only other group for which 

detailed information is presently available, the mysids, showed a limited response 

to the proximity to the sea floor and are relatively unimportant in fish diets 

(Mauchline, 1982). Initial data for some of the decapod species suggest that 

some of the shallow mesopelagic species appreciably extend their vertical ranges 

to much greater depths down the slope, than in open water. Moreover, some cf 

these d^ecies are well-known as diel vertical migrants in open water. 

There was no evidence found in these sa^^les of their undertaking such 

migrations up from the lower part of their extended vertical ranges of the 

slope. However, the sampling was not designed to investigate such probler^, 

moreover, if such migrations were asynchronous they would be indetectable by 

present sampling techniques (Pearre, 1979). Amy diel migrations which do occur 

could provide an important mechanism directly coupling the deep-sea ecosystems 

^:th those on the shelf or shallow oceanic water which are either exploited 

(e.g. for mackerel) or have potential for exploitation (e.g. for blue whiting). 

Exploratory fishing has already shown that there are stocks of fishes occurring 

quite well down the slope to depths of 800m or more which may prove commercially 

exploitable in the future (Bridger, 1978). 

The material collected at somewhat shallower depths on the slope during the 

Challenger cruise provides evidence for another mechanism that could be important. 

The catches of large numbers of the medusa Aglantha digitale which is known to 

breed in the upper 100m during the summer months (Williams and Conway, 1981) remind 

us of importance and extent of seasonal migrations at high latitudes (i.e. 

> 40°N). Many planktonic organisms overwinter in a state of diapause in deep 



water and migrate up into shallow water in the spring. In opem water such 

migrations are vertical but on the slope where the organisms may maintain contact 

with the sea floor the migrations may be up slope, such migrations are well-known 

in crayfish off Florida (Herrnkind and Kanciruk, 1978) and evidence based on the 

size distribution of breeding cycles of benthopelagic fishes (Merrett personal 

communication) implies extensive cross-slope migrations are a notable feature 

in the life-history of many of these fishes. The abundance of larval Thysanopoda 

high up on the slope was another example of probable seasonal or ontogenetic 

migration. 

The timing of these seasonal migrations is subject to some year-to-year 

variation. For example, in the case of Aglantha digitale the main peak of 

abundance in the surface 100m occurred in June between 1952 and 1963. In 

1:^3 (Killiams and Conway 1931) large mature specimens appeared in the surface 

100m in May migrating up from depths of >500m, presumably to breed because at the 

same time abundant small larval forms suddenly appeared in the surface layers. 

The larvae continued to build up in both abundance and size through June and into 

July. In mid-July the vertical range was extended down below 100m to at least 

5C0n (^he lower limit of sampling); this was probably the downward migration to 

the overwintering depths. Angel et al., (1982) observed large numbers at depths 

of 1000m at 42°N 17°W which were possibly a population about to make the migration 

up into the surface layers. Williams and Conway (1981) found densities of mature 

medusae of 1/lOm' amassing at the surface. The maximum dry weight value of the 

mature fcrms 4mg (= 2% wet weight), so the upward flux of Agla^tha biomass 
2 

only totals about 40mg/m of sea surface. The reverse flux down out of the 

^^rface 100m in late summer is probably larger by a factor of at least two. 

Although the flux for this particular organism is relatively trivial, the 

integrated community movement may be more significant. Either of these migrations 

down into deep water or up towards the surface may be important mechanisms for 

transporting isotopes into or out of the surface water. These seasonal variations 

in the direction of the flux could be a significant factor in the management of 

waste disposal, although such short time scale events may prove irrelevant. 

Continental slopes are probably important regions for sedimentation of 

organic material (Walsh, 1983) and this is borne out by the accumulations of 

phytoplankton detritus that have been observed in the Porcupine Seabight 

(Billett et al., 1983) which must have rapidly sedimented out of the water 

column soon after the onset of the Spring Bloom. 



During the cruise by RRS Challenger this spring (1983) am attempt was made 

to try to follow the dynamics of this phytodetritus formation. However, the 

high frequency of storms kept the surface 500m of the water col^mm w%ll mixed 

throughout the duration of the cruise and so inhibited the development of the 

Spring Bloom. Layers of turbid water were identified with a transmissometer at 

depths of at least 500m which were shown to have a relatively high chlorophyll 

fluorescence. It is thought that this turbidity was caused by surface water 

containing phytoplankton being mixed down isopycnals (Fasham, personal communicat-

ion). Fine mesh net samples of phytoplankton and also core samples of the 

underlying sediments were collected for thorium analyses by Dr. R. Lampitt (lOS) 

in collaboration with Dr. C. Lambert (CNEXO, Paris). Initial results (Lambert, 

personal communication) indicate that thorium is bound onto the phytoplankton 

and other organic particulates in the surface waters. During the course of the 

cruise (one month) concentrations in the superficial bottom sediments of a 

thorium isotope with a half life of only 16 days increased by an order of 

magnitude. So despite the delayed onset of the Spring Bloom substantial and 

rapid sedimentation of organic material had already begun to occur, carrying 

dcwn isotopes scavenged out of the water column. Thus active sedimentation 

processes in slope regions (e.g. Walsh 1983) may be accelerating the deposition 

of isotopes on to the bottom which are scavenged and bound onto the surface of 

phytoplankton detritus. The fate of the organic material in the phytodetritus 

is still unknown, but as only a relatively small proportion gets permanently 

incorporated into the sediments (Muller and Suess, 1979) the majority probably 

gets utilised by benthic respiration (e.g. Hinga et al., 1979) kmt seme could 

r recycled back into the surface layers. Consequently the high level of 

..ological activity in the near-bottom zone on the slope and its possible links 

with exploited stocks needs more thorough investigation. 

The seasonality of the organic input also needs to be investigated as this 

is almost certainly the mechanism which triggers the synchronised reproductive 

activity of many of the echinoderms at these depths (Tyler etaJL, 1982). It may 

also be an important environmental factor in stimulating the migrations of fishes. 

Similarly the trend for biomass to increase in close proximity to the sea-bed in 

most micronektonic groups at the majority of the slope stations (see Table 6) 

may be a seasonal phenomenon. Two types of seasonal migration may occur, one a 

feeding migration to exploit the abundance of organic material sedimenting onto 

the sea-bed during the season of high surface productivity, the other a life-cycle 



Table 6. A summary of relative changes in biomass in hauls at slc%x» 

stations (Cruise 105) with increasing proximity to the sea floor. 

Net Stations 

(RMTM) 10111 10108 10109 10110 

Total biomass 

Fish 

Medusae 

Chaetognatha 

Chaetognatha 

Siphonophora 

Mysidacea 

Decapoda 

Polychaeta 

Polychaeta 

Copepoda 

Amphipoda 

+ 

+ 

+ 

4" 

4-
+ 

4-
+ 

+ 

* 

4-
* 

4-

4-

4-

4-

4-

+ 
4-

4-

4-
+ 

4-

4-

+ 
4-

4-

4-

4-

+ increase decrease variable 



migration during which the deep water is 'used' as a sanctuary frcm the 

predation pressure of shallow depths, by resting or diapausing orgar^sms, 

particularly during the seasons oE low surface production. The latter migration 

is likely to be less significant because diapausing organisms do not feed, so 

they would only take up isotopes from solution and would not be exposed to 

particulate-bound isotopes. 

The examination of the data for individual species gives further insight 

in±o th^ processes that may be taking place. In deep water (i.e. depths of 

>4000m) there is a considerable novel element in the near-bottom plankton 

community; for example, the hauls taken very close to the sea-bed at a depth 

of 4000m at 20°N 21°W in 1978 by RRS Discovery contained a totally novel fauna 

including at least 25 new species of planktonic ostracod. In contrast the 

^tracod material from the Porcupine Seabight contained only a single novel 

"p^cies C. hystrix (Angel and Ellis, 1961). At present there is no material 

available to assess whether there are direct faunistic links between the 

abyssal and the slope near sea-bed communities. What has been established here 

is that there are faunistic links between ^idwater communities inhabiting the 

water columns over potential du^p-sites i.e. KTF and GME, many cf the species 

sampled over the slope in the Porcupine Seabight region are well-known as species 

inhabiting much of the temperate and subtropical Northeast Atlantic (e.g. ICS 

Biological Database). Furthermore, there is evidence of quite marked changes 

in vertical distrioution ranges over the slope in a number of taxonomic groups 

for which detailed analyses of their specific compositions have been carried out 

(i.e. ostracods and decapods). In the majority of examples there is an extension 

' ̂  the vertical range of normally mesopelagic species down into bathypelagic 

^jths, but in one ease (Conchoecia pusilla) it is the emergence of a shallow 

bathypelagic species up into mesopelagic depths. 

In the vicinity of continental slopes the links between the surface 

community and the deeper living community are probably more dynamic than over 

deep water. At present there are insufficient data to establish whether these 

links extend right to the base of the slope, and so may provide faster transport 

pathways for isotope movement than occur in midwater between abyssal communities 

and those in more direct contact with Man via his exploitation of living resources. 

Similarly vertical mixing by physical processes are more dynamic in slope regions 

than in open ocean conditions, although there are few available quantitative 

data. So it is still an open question as to just how important the more dynamic 



c 

interactions are in slope regions as compared with the physic^il mixing relative 

to the movement of isotopes within the oceanic ecosystem. 

4. CONCLUSIONS 

1. There is a marked increase in planktonic and micronektonic biomass within 

100m of the sea-bed in bhe slope region. 

2. This increase is probably the result of the greater availability of food 

created by the sedimentation of surface production accumulating on the sea-bed. 

3. On the slope the biomass consisted almost totally of species familiar as 

mesopelagic and bathypelagic species in deep water. There was no evidence, 

down to the maximum sampling depth of about 1600m, of the appearance of the 

highly novel fauna encountered at abyssal depths of 400Cm off N W Africa. 

4. Several species familiar as mesopelagic species over deep water extended 

their vertical ranges down the slope, but only one bathypelagic species extended 

its vertical range shallower up the slope. 

5. Large concentrations cf the medusa Aglantha digitale were encountered 

and these were probably a population which had undertaken a seasonal migration 

down from t.he surface 100m the previous summer a^d would have probably been 

returning to the surface co breed later on. Seasonal migrations may either 

result from diapausing organisms seek refuge at depth during the non-productive 

ison, or the result of the increased food availability on the sea-bed 

associated with the substantial quantities of detritus sinking out during bloom 

conditions at the surface. 

6. Slope regions are likely to Le sites of a dynamic interface between the 

deep-living benthic and benthopelagic deep water communities and the shallower 

living shelf communities. Thus if substantial quantities of isotopes do get 

transported onto the slope biological systems could play a significant part in 

moving them up slope onto the shelf. However, at present there is no way of 

assessing the importance of such biological transport relative to transportation 

by physical processes. 



C R U I S E 105 
29/ 8 / 7 V - 2 3 / 1 U / 7 9 

STN. DATE S T A R T P O S I T I O N END 

LAT LAT 

jlTIUN 

LUNG 
GEAR SAMPLER 

u E P T H ( H ) 

D U R A T I O N flUA/LUG MATFH 

GMT D I S T . ( K H ) D E P T H ( M ) 

10105/ 1 31/ a 

50 37.7N 12 2 2 . IW 5Q 34.7N 12 2 o . 8 W liMTlH/1 

54 37^^ 12 22J^ 50 34^^ l2 2B^m HMTAMM 

, DU^ 
9 0 0 - 1 1 0 0 1953-2153 

9 U Q - n O O 1953-2153 

2841 

h.61 FLUW 

6.61 FLUW 

1 0 X 1 5 / 2 31/ a 

50 3 4 J ^ 12 2 8 ^ ^ 54 3 K o N 12 3 5 ^ ^ H M n M / 2 

54 3 4 ^ ^ 12 2 8 ^ ^ 54 3 1 ^ ^ 12 3 5 ^ ^ N ^ ^ M / 2 

NMiHT 
1 0 9 0 - 1 2 9 0 2 1 5 3 - 2 3 5 3 6.8l FLUW 

1 0 9 0 - 1 ^ 9 0 2 1 5 3 - 2 3 5 3 h.Rl FLUM 

2 8 6 4 

1 0 U I 5 / 3 31/ m 

54 31.6N 12 35.7W 54 2 8 . 3 N 12 4^.7w W M f l M / A 

54 31.6% 12 35J^ 54 28^^ 12 42U^ WM^^/3 

NIGHT 

1 2 9 0 - 1 5 0 0 2 3 5 3 - 153 7.39 t L U W 

1290-lb0u 2353- 153 7.39 FLUW 

2 8 7 5 

10105/ 5 1/ q 
54 35^^ 12 25U^ 54 33^^ 12 23^^ HMMM/l 
54 3 5 ^ ^ 12 2 5 J ^ 54 3 % 5 N 12 2y,5W 

DAY 

600- 700 1051-1151 

6 0 0 - 700 1051-1151 

3.51 PLUM 

3.51 F L U * 

2866 

10105/ 6 1 / 1 

54 33^^ 12 23^^ 54 31 ̂ ^ 12 2lJ^ 
54 3 3 ^ ^ 12 2 3 ^ ^ 54 31 ̂ ^ 12 2 1 ^ ^ 

PAY 

700- 010 1151-1255 

7on- 81U 1 1 5 1 - 1 255 

3.82 F L U W 

3.82 FLUW 

101 OS/ 7 1 / 9 
54 3l.bN 12 21.7W 54 29.bN 12 20.0W l<M?lH/3 

54 3 K b N 12 21.7 w 54 29.6N 12 2 0 X M 

DAY 

8 0 0 - 900 1 2 5 5 - 1 355 

m u O - 900 1 2 5 5 ^ ^ 5 5 

3.64 FLUW 

3.64 FLUM 

10105/ 8 1/ 9 

54 28. IN 12 19.2M 54 2 o . 0 N 12 18.2N R 4 T U V 1 

5 4 ? 8 ^ N 1 2 I 9 . 2 M 54 2 b X W 12 1 8 ^ ^ 

DAY 

300- 4tu 1529-1629 

3uO- 410 1529-1629 

2883 
4.05 FLuW 

4.05 FLUW 

10X15/ 9 1/ 9 

54 26^m 12 18^^ 54 24^^ 12 16 KMnM/2 
54 12 18.2w 54 12 1 6 ^ ^ H M T 8 M ^ ! 

405. 

405-

500 

500 

DAY 

I b 2 9 - l 7 2 9 

1629-1729 

3.78 FLUW 

3.78 F L O W 

2 8 8 3 

10105/10 1/ 9 

54 2 4 ^ ^ I 2 l b j ^ 54 2 2 ^ ^ 12 15 H ^ ^ M / 3 

54 24^^ 12 16^^ 54 22^m 12 15^^ Rm^M/3 
500-

500-

600 
600 

DAY 

1 7 2 9 - 1 8 2 9 

1729-1829 

2884 

3. 8 2 F L U * 

3.82 FLOW 

10105/11 1 / 9 
54 3 5 . O N 12 2 7 . 8 w 54 35.3N 12 32.9M H M T I M / 1 

54 35^^ 12 27^^ 54 35^W 12 32^^ 
6 0 0 -
600-

700 
700 

NIGHT 

2 3 0 2 - 2 

2 3 0 2 - 2 

3.73 FLUW 

3.73 FLUW 

1 0 1 0 5 / 1 2 2 / 9 
54 35^W 12 32^^ 54 36^m 12 4o^^ H^nH/2 
54 3 5 ^ ^ 12 3 2 ^ ^ 5 4 3 6 ^ ^ 1 2 * 0 ^ ^ H ^ ^ H / 2 

700-

700-

UIO 

8 1 0 

NIGHT 

2 - 141 

2 - 141 

6.71 FLUW 

6.71 FLUW 

1 0 1 0 5 / 1 3 2 / 9 
54 3 6 ^ ^ 12 4 0 J ^ 54 3 7 x ^ I2 45XIW H M f U V j 

54 3 o ^ M 12 4 0 J ^ 54 37.bN 12 4 5 ^ ^ K ^ ^ M / 3 

770-

770-

9 0 0 

900 

NIGHT 

141- 241 

141- 241 

3.16 FLUW 

3.16 FLUW 0 
r 
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l O K W / 0 6 / 9 
49 13.jN l2 5 l ^ W 49 I I H M n M / a 
49 14^^ 12 49 11^^ 12 52^W KMT^-W 

PAWN 1432 
1100-1230 45b- 5bb 4.qb PLUW 
1100-1230 45b- 556 4.45 PLUM 

IQIOM/ 5 6/ 9 
49 12 52J^ 49 9^^ 12 55^M Hm^M/3 
49 1U2N 12 52J^ 49 9^^ 12 55^W 

DAWN 
1230-1300 55b- hbh 4.45 fLUW 
1230-1300 55b- 656 4.4% FLOW 

1584 
ESTIMATED TO WITHIN 125M OF 
BOTTOM 

lOlOH/ 6 6/ 9 
49 27^^ 12Q7.0M 49 25^^ 12 09^^ WwUHM 
49 27^w 12 47.8W 49 25^^ 12 49^^ 

DAY 
1210-135U 1147-1247 3.5l PLUM 
1210-1350 1147̂ 4̂7 3.5i piu* 

1415 
ESTIMATED TO WITHIN DOM OF 
BOTTOM 

^IM/7 b/9 
49 25^^ 12 49J^ 49 23^^ 12 49.bW K4nM/2 
49 25^^ 12 49U^ 49 12 49^^ 

DAY 1414 
1350-1410 1247-1347 3.73 FLUW ESTIMATED 90-)OM OFF BWrOM 
1350-1410 1247-1347 3.73 FLOW 

lOH^/n a/ 9 
49 2 3 ^ ^ 12 49.0W 49 2 ^ ^ ^ 12 4 9 ^ ^ m ^ U M / 3 
4^23^^ 12 49^^ 49 22.6% 12 49^W K^^H/3 

DAY 1411 
1410-1425 134/-14:;0 1.39 PLOW KSTIMATED 30-lSM OFF OOTrOM 
14in-M25 1347-14̂ 0 1.39 FLOW 

KUM/ 1 o/9 
49 19.9N 12 24^^ 49 IB.bN 12 27 ̂ ^ NMnM/1 
49 |9^w 12 24^^ 49 18.GN 12 27 ̂ ^ KMlRMM 

nuŝ  
lOuO-llOv 1814-19)4 3.28 FLOW 
lOOO-llOO 1814-1914 3.28 FLU* 

U96 
ESTIMATED TO WITHIN 60M OF 

BOTTOM 

10^19/2 b/9 
49 18^^ 12 2A,4W 49 17^W 12 3u^^ I^U^V2 
49 18^^ 12 27^^ 49 17^^ 12 30^^ HW^^/2 

DUSR 1180 
1 100-1 155 1914-2014 3.15 FLOW ESTIMATED 25-COM OFF BOTTOM 
11U0-U55 1914-2014 3.15 FLOW 

10^19/ 3 n / 9 

49 17^^ 12 30.3H 49 I0.2N 12 3%^W HwnH/3 
49 17^M 12 30^^ 49 12 33^^ ^^RM/3 

NlCn 1175 
1 140-1155 2014-2114 5.75 FLOW ESTIMATED 25-15M OFF BOTTOM 
1140-1155 2014-2114 5.75 FLOW 

10K)9/4 o/9 
49 14^^ 12 37 ̂ ^ 49 |y,bN 12 41^^ 
49 14^^ 12 37^^ 49 Ij.bN 12 41^^ 

MGMT 
10- 900 2237-2357 4.09 FLOW 
m- 900 2237-2357 4.09 FLOW 

1192 

10109/ b/ 9 
49 13.bN 12 41^^ 49 13^^ 12 45XW H^^M/2 
49 l%bN 12 41.UN 49 13^^ 12 45^^ HWU^/2 

MIGHT 
780- 94U 2357- 57 4.09 FLOW 
780- 940 2357- 57 4.09 FLOW 

1227 
:TTMATLD 200-310M OFF BOTTOM 

IOHW/6 7/9 
49 13^^ 12 45.UW 49 12 48^^ wmiM/3 
49 13XU 12 45.UW 49 12^^ 12 48^^ H^^M/3 

NIGHT 
910-1150 57- 15? 4.23 FLOW 
910-1150 57-157 4.23 FLOW 

1276 
Npr 3 DID NOT FISH 

lOUO/3 7/9 
49 II 45^w 49 11 48.3M HMMM/1 
49 Ib.hN 11 49 10^^ 11 4o^^ ^^AH/l 

NK^T 
10- 010 2029-2124 

90̂  
.65 FLOW 

10- 810 2u29-2124 2.65 FLOW 
ESTIMATED TO WIT1!IN 120M OP 
liOTTOM 
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11/ q 
49 4 5 ^ ^ 14 14 H M n M / 2 

49 4 5 ^ ^ 14 7 ^ W 49 4 3 ^ ^ 14 5 ^ ^ N M T G M / 2 
400-

400-

you 
bOU 

DAY 

1̂ 20-1620 
1S20-1620 

40̂ , 
3.4b FLUW 

3.46 FLUM 

1QU5/7 lu" q 
49 4 3 ^ ^ 14 5 ^ ^ 49 41.9N |4 4.2W R M n M / 3 

49 4 3 ^ ^ 14 5 ^ ^ 4 9 q i . 9 N |4 4.2W W M T A M / j 
500. 
500-

bOu 
bOO 

OAY 

lb2U-|720 

162U-1720 

3.33 FLUW 

3.33 PLUM 

4 0 9 5 

IOHS/9 11/9 
49 4,!.QN 14 3.3M 49 44.fN 14 4.9w HHIlM/l 
49 4 2 ^ ^ |4 3 ^ ^ 49 4 4 . 2 N 14 4.9w K W ^ t M ^ I 

6uQ. 
6 0 0 -

700 
/OO 

N I G H T 

2102-2202 
2102-22U2 

^^5 
3.4b FLOW 

3.Ub FLUW 

lQllS/10 1 1 / 9 
49 4 4 ^ ^ 14 4 / ^ 4 9 q b . 3 N 14 b / ^ W M n M / 2 

49 4 4 ^ ^ 14 4 ^ W 49 4 0 . 3 N 14 b ^ ^ 
7U0. 
7uO. 

MOu 
hOU 

UIGHT 

2 2 0 2 - 2 3 0 2 

2 2 0 2 - 2 3 0 2 

3.64 fLUW 
3.64 hLUW 

lons^^ 11/ 9 
49 4b.lN 14 O.bw 49 4a^m 14 b^W K'̂ UM/j 
U9UW.3N 14 49U8^m 14 a^W Kt̂ M̂/3 

RuO-
AOO-

400 
%no 

NIGHT 

2302- 2 

P 3 0 2 - 2 

3.64 FLUW 

3.6U PLUW 

iailS/l2 12/ 9 
4* S r . 9 N M 1 0 . 4 9 5 3 . 1 4 U . b W KMTlM/1 
40 5 1 ^ M 14 1 0 ^ ^ 4 9 S 3 . 9 N 14 lr,bw 

295-

245-
uOu 
400 

NIGHT 

140- 24A 

14U- 248 

3945 
3.69 H.UM 

3.69 F L U * 

10U5^^ 12/9 
49 14 1 1 ^ ^ 49 5 b . 9 N 14 12.3W W H n M / 2 

49 5 3 ^ ^ 1% tK,bW 49 5 5 ^ m 14 1 2 ^ ^ W M T R M ^ ! 

400-

400-

50u 

500 

NIGHT 

240- 34P 

ĉ U- 34m 

398: 
3.51 KLUW 

3.51 f l U W 

1 0 1 1 5 /14 12/ 9 

4955^^ iq 12^* 4957^^ 14 12J^ WMnH/3 
49 5 5 . U N 14 12.3w 49 5 7 . U N 14 12.7W H M T m H / 3 

500-

500-
h,Ou 
bOO 

NIGHT 
34b- 44R 
34b- 44B 

3.20 F L U M 

3.28 F L U W 

3930 

I 0 U 5 / I 5 12/ 9 

49 13 5 U ^ ^ 49 43^m 13 57 ̂ ^ 

49 05^^ 13 50^^ 49 43^^ 13 57^^ 
1 0 -

1 0 -
1 0 0 
100 

PAY 
0 0 4 - 904 
604- 904 

3.64 FLUW 

3.64 FLUW 

10U5^^ 12/9 
4 9 4 3 ^ ^ 13 57.bW 49 41 .bN l3 5 b . 5 h H H n M / 2 

49 43.bN 13 57.oW 49 41.oN 13 5 b . 5 w R M T m w / 2 
1 0 0 - 2 0 0 
1 0 0 - 2 0 0 

DAY 

9 0 4 - 1 0 0 4 

9 0 4 - 1 0 0 4 
3.73 F L O W 

3.73 FLUW 

10115/17 12/ 9 

49 41 ̂ ^ 13 5 b . b W 49 3 9 X W l3 5 5 X ^ H M n M / 3 

4 9 a i U ^ 13 5 b ^ ^ 49 3 9 ^ ^ 13 5 5 X ^ K ^ M M / 3 
2 0 0 - 300 

200- 300 

DAY 

1004-1104 

1004-1104 

4 0 2 0 

3.64 FLUW 

3.64 fLUW 

10115/18 12/ 9 

49 38.bN 13 Y K B W 49 3 b . b N 14 4.0W H M T U - V ^ 

49 3b.bN 13 5 7 . 8 W 49 3b.bN 14 4.UW l«MTPH/l 

9 1 0 - 1 1 0 0 

9 1 0 - 1 1 0 0 

DAY 

1212-1414 

1212-1414 

6.5b F L O W 

6.5o F L U W 



3 3 3 3 

lA 
LA 

O O 
ru rJ 

Z Z 

r z 

ir» _n 
g. (y. o o 

<r o 

c-
9 3 

lA LA 

f\j nj 

<33 

AJ Af »- I * r -n -n la lA tr — -\j u z ru rv 

IT ir O O" 

.n 

O O" 

J1 

in in 

/ c 9 



3 O" 

nj 

ir m 

3 O 

(C (C 
I # 3 O - ru rc 

. O 3 

» e 

z z 
5 m 
IT IT 

a e 

3-

tT LT ? ? 
3 3 

Zr IT :r ir 

ji 
3- ;> 



REFERENCES 

A. 1979. Plutonium levels in the marine evironment at Thule 

Greenland. In: Proceedings of the Third NEA Seminar on Marine Radioecology, 

Tokyo, 1, 5 October 1979. NEA Org. for Economic Co-op. and Dev. 409pp. 

ANGEL, M.V. (1983). Detrital organic fluxes through pelagic ecosystems. 

In: Flows of Energy and Materials in Marine Ecosystems: Theory and 

Practice, Ed. M.J.R. FASHAM, New York: Plenum Press. 

ANGEL, M.V. and ELLIS, C. 1981. Conchoecia hystrix n. sp. A new halocyprid 

ostracod for the Porcupine Bight region of the Northeastern Atlantic. 

Bull. Br. Mus. nat. Hist. (Zool.), (4), 129-135. 

ANGEL, M.V., HARGREAVES, P.M., KIRKPATRICK, P. and DOMANSKI, P. 1982. Low 

variability in planktonic and micronektonic populations at lOOC^ depth 

in the vicinity of 42°N 17°W; evidence against ciel migratory behaviour 

in the majority of species. Biol. Ocean., 297-319. 

ANGEL, M.V. BAKER, A. de C. 1982. Vertical distribution of the standing 

crop of plankton and micronekton at three stations in the Northeast 

Atlantic. Biol. Ocean., 2' 1-30. 

BAKER, A. de C., CLARKE, M.R. and HARRIS, M.J. 1973. The NIO combination net 

(RMT 1+8) and further developments of rectangular midwater trawls. 

J. mar, biol. Ass. U.K., 53^ 167-184. 

BILLETT, D.S.M., LAMPITT, R.S., RICE, A.L. and MANTOURA, R.F.C. 1983. Seasonal 

sedimentation of phytoplankton to the deep-sea benthos. Nature, Lond., 

302, 520-522. 

BOXSHALL, G.A. and ROE, H.S.J. 1980. The life history and ecology of the 

aberrant bathypelagic genus Benthomisophria Sars, 1909 (Copepoda: 

Misophrioida. Bull. Br. Mus. nat. Hist. (Zool.), 9-41. 

BRIDGER, J.P. 1978. New deep-water trawling grounds to the west of Britain. 

Ministry of Agriculture, Fisheries and Food, Lowestoft, Laboratory Leaflet, 

41, 40pp. 



DOMANSKI, P. 1981. BIOS: a data base for marine biological data. 

J. Plankt. Res., 3y 475-491. 

DYERf R.S. 1976. Environmental surveys of two deep-sea radio-active waste 

disposal sites using submersibles. Pp. 317-338 in Management of 

radioactive wastes from the nuclear fuel cycle. Vol. II, Viena: IAEA. 

ELLETT, D.J., DOOLEY, H.D. and HILL, H.W. 1979. Is there a North-east Atlantic 

slope current? ICES, CM 1979 (C:35), 11pp. (Unpublished manuscript). 

HARGREAVES, P.M. In prep. The distribution of Decapoda (Crustacea) in the open 

ocea^ and near-bottom over an adjacent slope in the northern North-east 

Atlantic during 1979. 

HARGREAVES, P.M. In prep. The vertical distribution of Decapoda, Euphausiacea 

and Mysidacea (Crustacea) at 42°N, 17°W. 

HZRRXKIHD, M. and KANCIRUK, P. 1978. Mass migration of spiny lobster Panulirus 

argus (Crustacea: Palinuridae): synopsis and orientation. Pp. 430-439 

in Animal migration, navigation and learning, Eds. K. SCHMIDT-KOENIG and 

W.J. KEETON. Berlin: Springer Verlag. 

HERRING, P.J. 1979. RRS 'Discovery' Cruise 105, 1979. Midwater and benthic 

sampling in the regions of the Rockall Trough, Porcupine Seahight and 

North-west African Coast with associated physiological investigations. 

Institute of Oceanographic Sciences Cruise Report No. 82, 42pp. 

(Unpublished manuscript). 

HINGA, K.R., SIEBURTH, J.McN. and HEATH, G.R. 1979. The supply and use of 

organic material at the deep-sea floor. J. mar. Res., 32, 557-579. 

MAUCHLINE, J. 1982. The predation of mysids by fish of the Rockall Trough, 

northeastern Atlantic Ocean. Hydrobiologia, 9Gy 85-99. 

MAUCHLINE, J. and MURANO, M. 1977. World list of the Mysidacea, Crustacea. 

J. Tokyo Univ. Fish., 64, 1, 39-88. 



MULLER, P.J. and SUESS, E. 1979. Productivity, sedimentation rate and 

sedimentary organic matter in the oceans. Organic carbon preservation. 

Deep—Sea Res., (12A), 1347—1362. 

NEEDLER, G. (Ed.) In press. Oceanographic model for dispersion of waste 

disposed in deep sea. Report of GESAMP Working Group, IAEA, Vienna. 

PEAfW^^ S. 1979. Problems of detection and interpretation of vertical migration. 

J. Plankt. Res., 29-44. 

PUGH, P.R. 1974. The vertical distribution of the siphonophores collected 

during the SOND cruise 1965. J. mar, biol. Ass. U.K., 5^^ (1), 25-90. 

PUGH, P.R. 1975. The distribution of siphonophores in a transect across the 

North Atlantic at 32°N. J. exp. mar. Biol. Ecol., 20 UU, 77-99. 

RICE, A.L. et al. 1980. RRS "Challenger" Cr^^se 9/79. 29 June - 11 July 1979. 

Benthic and midwater biology of the Porcupine Seabight, and the Rockall 

TYough. Institute of Oceanoqraphic Sciences Cruise Report, No. 89, 24pp. 

ROBINSON, A.R. and MULLIN, M.M. 1981. A model for physical-biological transfer. 

Pp. 29-32 in: Biological and related chemical research concerning sub 

sea-bed disposal of high-level nuclear waste. (Report of a workshop at 

Jackson Hole, Wyoming). (Sandia Report 81-0012). 

rOE, H.S.J, and SHALE, D.M. 1979. A new multiple rectangular midwater trawl 

(R#T 1+8M) and some modifications to the Institute of Occanographic Sciences' 

RMT 1+8. Mar. Biol., 50, 283-288. 

ROE, H.S.J., BAKER A. de C., CARSON, R.M., WILD, R. and SHALE, D.M. 1980. 

Behaviour of the Institute of Oceanographic Sciences' rectangular midwater 

trawls: theoretical aspects and experimental observations. Mar. Biol., 

56y 247-269. 

STEEDMAN, H.F. 1976. General and applied data on formaldehyde fixation and 

preservation of marine zooplankton. Pp. 103-154 in: Zooplankton fixation 

and preservation, Ed. H.F. STEEDMAN. Paris: Unesco Press. (Unesco 

Monographs on Oceanographic Methodology, 4) 



I ( 

SVERDRUP, H.U., JOHNSON, M.W. and FLEMING, R.H. 1942. The oceans: their 

physics, chemistry, and general biology. New York: Prentice-Hall Inc. 

1087pp. 

TATTERSALL, O.S., 1955. Mysidacea. Discovery Reports, XXVIII, 1-190. 

TYLER, P.A., GRANT, A., PAIN, S.L. and GAGE, J.D. 1982. Is annual reproduction 

in deep-sea echinoderms a response to variability in their environment? 

Nature, Lond., 300 (5894), 747-750. 

VAN GUELPEN, L., MARKLE, D.F. and DUGGAN, D.J. 1982. An evaluation of accuracy, 

precision, and speed of several zooplankton subsampling techniques. 

J. Cons, int. Explor. Mer., 4^^ 226-236. 

WALSH, J.J. 1983. Death in the sea: enigmatic phytoplankton losses. 

Prog. Oceanog. ^2y (1), 1-86. 

WILLIAMS, R. and CONWAY, D.V.P. 1981. Vertical distribution and seasonal 

abundance of Aglantha digitale (O.P. Muller) (Coelenterata: Trachyaedusae) 

and other planktonic coelenterates in the northeast Atlantic Ocean. 

J. Plankt. Res. 3̂  (4), 633-643. 

WISHNER, K.F. 1980. T^^ biomass of the deep-sea benthopelagic plankton. 

Deep-Sea Res., 27, 203-216. 




