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Abstract 

Dead foraminiferal assemblages within the sediment mixed layer provide an integrated, time-

averaged view of the foraminiferal fauna, while the relationship between dead and live 

assemblages reflects the population dynamics of different species together with taphonomic 

processes operating over the last few hundred years. Here, we analysed four samples for ‘live’ 

(Rose-Bengal-stained) and dead benthic foraminifera (0–1 cm sediment layer, >150 μm) from four 

sites in the area of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO; NE Atlantic, 

4850 m water depth). Two sites were located on abyssal hills and two on the adjacent abyssal 

plain. Our results indicate that the transition from live to dead benthic foraminiferal assemblages 

involved a dramatic loss of delicate agglutinated and organic-walled tests (e.g. Lagenammina, 

Nodellum, Reophax) with poor preservation potential, and to a lesser extent that of some relatively 

fragile calcareous tests (mostly miliolids), possibly a result of dissolution. Other processes, such 

as the transport of tests by bottom currents and predation, are unlikely to have substantially 

altered the composition of dead faunas. Positive live to dead ratios suggest that some species 

(notably Epistominella exigua and Bolivina spathulata) may have responded to recent 

phytodetritus input. Although the composition of live assemblages seemed to be influenced by 

seafloor topography (abyssal hills vs. plain), no such relation was found for dead assemblages. 

We suggest that PAP-SO fossil assemblages are likely to be comparable across topographically 

contrasting sites, and dominated by calcareous and some robust agglutinated forms with calcitic 

cement (e.g. Eggerella). 

Keywords:  

abyssal hills; agglutinated foraminifera; L/D ratio; Porcupine Abyssal Plain; taphonomic loss. 

 

Introduction 



2 
 

 

Benthic foraminifera are a hugely successful group of unicellular eukaryotes within the Supergroup 

Rhizaria (Ruggiero et al., 2015), most of which form a ‘test’ (shell) made of organic matter, 

agglutinated sediment particles or secreted calcium carbonate. They are extremely common in 

most marine sediments but particularly in the deep sea (>200 m water depth) where they often 

account for >50% of the meiofauna (32–300 μm) (Gooday, 2014; Snider et al., 1984) and a 

significant proportion of the macrofauna (>300 μm) (Gooday et al., 2007; Tendal and Hessler, 

1977). Robust secreted (calcitic) or agglutinated foraminiferal tests are preserved in marine 

sediments in excellent condition and provide a continuous fossil record starting in the early 

Cambrian (McIlroy et al., 2001). This characteristic, in combination with their high sensitivity to 

environmental conditions, which in the deep sea include bottom current velocities, oxygenation 

and carbonate corrosiveness of bottom waters, and organic matter flux to the seafloor (quantity, 

quality and seasonality), makes foraminiferal tests widely used as proxies for reconstructing 

ancient oceans (Fischer and Wefer, 1999; Gooday, 2003; Jorissen et al., 2007). 

The use of benthic foraminifera as tools in paleoceanographic studies necessitates a good 

knowledge of the ecology of modern species as well as the bias that is introduced during the 

transition from a living community into a dead and subsequently fossil assemblage. For a 

theoretical approach to assemblage formation see the works of Loubere and Gary (1990), Loubere 

et al. (1993) and Loubere (1997). Dead assemblages are found within the surface mixed layer 

where sediment is being bioturbated by macrofaunal and megafaunal organisms. A mixture of life 

and taphonomic processes controls dead assemblage composition. Life processes include 

species-specific rates of test production (i.e. reproduction and death), which dictate the 

contribution of tests from the living fauna to the sediment (de Stigter et al., 1999; Murray, 1976). 

Taphonomy occurs over the course of months to years and includes the following processes. 1) 

Microbial decomposition of fragile agglutinated tests that contain easily degradable organic 

cement (e.g. komokiaceans, organic-walled and most agglutinated taxa) (Schröder, 1988), and the 

dissolution of thin-walled calcareous tests within the lysocline (Berger et al., 1982) and below the 

carbonate compensation depth (CCD) (Saidova, 1965, 1966). (2) Post-mortem transport of small-

sized tests by bottom currents (Murray, 2003; Snyder et al., 1990). (3) Destruction of tests by 

metazoan predation, passive ingestion by deposit-feeding organisms, and other forms of biological 

activity (Culver and Lipps, 2003). (4) Mixing by bioturbation (Bouchet et al., 2009; Moodley, 1990). 

The surface mixed layer overlies the ‘fossil sediment’ where the dead assemblage, now buried 

below the reach of biological activity, is transformed into the fossil assemblage. Additional 

changes in faunal composition are predominantly governed by pore-water geochemistry and 

sediment compaction (Mackensen and Douglas, 1989; Schröder, 1988). 

The comparison of live and dead assemblages can provide important information about the 
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population dynamics of foraminiferal assemblages, as well as about taphonomic processes. 

However, most studies of this kind have been restricted to coastal (Goineau et al., 2015; Murray 

and Alve, 1999; Murray and Pudsey, 2004), shelf (Douglas et al., 1980; Mendes et al., 2013) or 

bathyal settings (Duros et al., 2012; Duros et al., 2014; Fontanier et al., 2014; Mackensen and 

Douglas, 1989; Schumacher et al., 2007), with only a handful conducted partly or entirely at 

abyssal depths (i.e. >3500 m) (Bernstein and Meador, 1979; Schröder, 1988; Mackensen et al., 

1990, 1993; Harloff and Mackensen, 1997; Loubere and Rayray, 2016). 

The area of the Porcupine Abyssal Plain Sustained Observatory (PAP-SO, Hartman et al., 

2012), located in the northeast Atlantic (4850 m water depth), has been studied for almost three 

decades (Lampitt et al., 2010a). Although the live foraminiferal faunas are well known (Gooday, 

1996; Gooday et al., 2010; Stefanoudis et al., 2016a), and post-glacial (the last 15,000 years) 

fossil faunas in a long core were analysed by Smart (2008), the dead faunas at the PAP-SO site 

have never been examined. Studies of dead core-top assemblages, and their relationship to 

corresponding live assemblages, provide insights into initial post-mortem changes unaffected by 

diagenetic effects. With this in mind, we analysed the top sediment layer (0–1 cm) of four samples 

for ‘live’ (Rose-Bengal-stained) and dead benthic foraminifera from four sites in the PAP-SO area, 

two on tops of abyssal hills and two on the adjacent abyssal plain. We then asked the following 

questions. (1) To what extent are dead foraminiferal assemblages representative of the original 

live fauna? (2) Based on these comparisons, which factors seem to influence the composition of 

dead assemblages? (3) Are faunal differences between the hill and plain settings reflected in the 

dead assemblages? 

 

2. Materials and methods 

 

2.1 Characteristics of the study area 

The PAP-SO area is subject to seasonal fluctuations in surface ocean primary production and 

consequent fluxes of organic matter to the seafloor (Rice et al., 1994). Particle flux has been 

monitored since 1989 using sediment traps, with a peak typically occurring in summer (Frigstad et 

al., 2015; Lampitt et al., 2001; Lampitt et al., 2010b). Long-term sediment accumulation rates on 

the plain are around 3.5 cm ky-1 (Rice et al., 1991; Thomson et al., 1993), with oxygen penetrating 

to at least 25 cm sediment depth (Rutgers van der Loeff and Lavaleye, 1986), and the sediment 

mixed layer being around 11 cm thick (Smith and Rabouille, 2002). The lysocline has been 

estimated to lie between 4700–4900 m (Biscaye et al., 1976; Rutgers van der Loeff and Lavaleye, 

1986) and the CCD at about 5200 m (Biscaye et al., 1976). Ice-rafted dropstones are frequently 

exposed on hills but not on the plain (Durden et al., 2015; Ruhl, 2012). The silt and clay content of 

hill sediments is appreciably lower than plain sediments (Durden et al., 2015; Stefanoudis et al., 
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2016b). These observations strongly suggest significant winnowing of fine particles from hill 

sediments, and consequently reduced sediment accumulation rates on hills. The strong seasonal 

signal in organic matter supply to the seafloor (e.g. Bett et al., 2001), coupled with the substantial 

variation in the silt and clay content of hill and plain sediments, complicates the interpretation of 

sedimentary organic matter content (Turnewitsch et al., 2015). It appears that total organic carbon 

and nitrogen content of the sediment is less in hill than in plain sediments (Morris et al., 2016), 

possibly as a result of winnowing. However, phytodetritus cover is slightly higher, and the 

suspended particle concentration in the benthic boundary layer substantially higher, on the hills 

than on the plain. This, together with a ~3-fold increase in total megafaunal biomass (5-fold and 

2.5-fold for suspension and non-suspension feeders, respectively) on hill compared to plain 

locations suggests that the hills receive more organic matter from the water column (Durden et al., 

2015; Morris et al., 2016).  

 

2.2 Sample collection 

Samples were collected during RSS James Cook cruise 062 (JC062, 24 July to 29 August 2011; 

Ruhl, 2012) and were obtained using a Bowers and Connelly Megacorer (Gage and Bett, 2005) 

fitted with 59 mm internal diameter cores tubes, from two abyssal plain sites (P1, P2) and two 

abyssal hill sites (H1, H4) (Fig. 1). On recovery the cores were sliced into 0.5 cm layers to 2 cm 

sediment depth, followed by 1 cm layers from 2 to 10 cm depth, and each slice fixed in 10% Borax 

buffered formalin. The present contribution is based on material retained on a 150-μm sieve from 

the 0–1 cm sediment horizon from four samples, one from each site (Table 1). 
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Fig. 1. 3D topographic representation of the PAP-SO area (48.79 to 49.21 °N, -16.03 to -16.93 °E) indicating the 

approximate location and bathymetry of the four study sites, H1 and H4 (abyssal hill sites) and P3 and P4 (abyssal 

plain sites). The inset shows the general location (star) of the Porcupine Abyssal Plain in the Northeast Atlantic 

Ocean. 

 

 

Table 1. Site and station information. 

Site Station Topography 
Water depth 

(m) 

Latitude 

(°N) 

Longitude 

(°E) 

Date 

sampled 

H1 JC062-053 Abyssal Hill 4679 48.977 -16.727 05.08.2011 

H4 JC062-126 Abyssal Hill 4365 49.074 -16.264 22.08.2011 

P3 JC062-101 Abyssal Plain 4851 49.083 -16.667 17.08.2011 

P4 JC062-077 Abyssal Plain 4851 48.875 -16.293 11.08.2011 

 

2.3 Sample processing 

In the laboratory, the 0–0.5 cm and 0.5–1.0 cm slices of cores were gently washed through two 

sieves (300 μm and 150 μm) using filtered tap water. Residues >300 and 150–300 μm were 

stained with Rose Bengal (1 g dissolved in 1 L tap water) overnight (Murray and Bowser, 2000; 

Walton, 1952) and sorted for all ‘live’ (stained) and dead benthic foraminifera under a binocular 

microscope. We did not include komokiaceans or small dome-like foraminifera associated with 

planktonic foraminiferal shells and mineral grains (Stefanoudis and Gooday, 2015), with the 

exception of two easily recognizable morphotypes (Psammosphaera sp. 1 and ‘white domes’; see 

taxonomic notes in Appendix B). These forms are not taken into account, as they are difficult to 
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separate into species and are poorly stained with Rose Bengal, making the distinction between 

live and dead specimens difficult. For the rest of the picked material, in order to ensure that the 

stained material was foraminiferal protoplasm, specimens were transferred to glass slides with 

glycerin and examined under a transmission light microscope. This enabled the distinction of 

‘fresh’ cellular material from decayed cytoplasm, accumulations of bacteria, or other inhabiting 

organisms. Where necessary, thick-walled agglutinated tests were broken open to expose the 

material inside. Only specimens with most chambers stained were considered to be live. In the 

case of many monothalamids, the test contained numerous stercomata (waste pellets) that decay 

after death into a grey powder. Thus, the ‘fresh’ (undegraded) appearance of stercomata was an 

additional indication that specimens were alive when collected. Delicate taxa were either stored on 

glass cavity slides in glycerol or in 2 ml Nalgene cryovials in 10% buffered formalin (4% borax 

buffered formaldehyde solution). 

 

2.4 Light and scanning electron microscopy 

Specimens were photographed using either a NIKON Coolpix 4500 camera mounted on an 

Olympus SZX10 compound microscope, or a Canon EOS 60D mounted on an Olympus SZX7 

compound microscope, or a Canon EOS 350D mounted on a Leica Z16-APO incident light 

microscope. Selected specimens were dried onto aluminium stubs and examined by scanning 

electron microscopy (SEM) using a LEO 1450VP (variable pressure) or an environmental Zeiss 

EVO LS10 (variable pressure) instrument. 

 

2.5 Data processing 

The taxonomic scheme we followed was a combination of those proposed by Loeblich and 

Tappan (1987) and Pawlowski et al. (2013). For the purposes of analysis we partitioned our data 

in three ways: (a) ‘live’ (Rose-Bengal-stained) versus ‘dead’ specimens; (b) ‘entire’ (fossilisable 

plus non-fossilisable taxa) versus ‘potential fossil fauna’, the latter consisting of calcareous taxa 

and agglutinates with a calcitic cement, such as Eggerella and Karreriella (Harloff and Mackensen, 

1997; Mackensen et al., 1990; Mackensen et al., 1995; Schmiedl et al., 1997); and (c) ‘common’ 

versus ‘all’ (i.e. common plus rare) species, the former consisting of species having a relative 

abundance >5% in the live or dead fraction of at least one sample. Rarefied alpha diversity indices 

(species richness, exponential Shannon index, inverse Simpson index, Chao 1; see e.g. 

Magurran, 2004) were assessed via individual-based rarefaction (e.g. Colwell et al., 2012) 

implemented using EstimateS (9.1.0, viceroy.eeb.uconn.edu/estimates), based on count data for 

complete specimens. Community composition was examined on the basis of faunal dissimilarity 

(Bray-Curtis), calculated following a range of transformations (none; log [x+1]; square-root; fourth-

root; presence-absence) on the count data for complete specimens, visualised with non-metric 
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multi-dimensional scaling ordination (MDS), and assessed using analysis of similarities (ANOSIM) 

(PRIMER 6, Clarke and Gorley, 2006). Multivariate dispersion (MVDISP), a measure of community 

heterogeneity, was also estimated in PRIMER. 

We calculated live to dead ratios (L/D; Jorissen and Wittling, 1999) for all ‘common’ species 

in two ways: 1) using count (N) data (LN/DN), and 2) using relative abundance (%) data (L%/D%), 

the latter being less affected by the substantially higher numbers of tests in the dead fauna. Only 

the ratio based on relative abundance has been used for live-dead comparisons in previous 

studies (e.g. Jorissen and Wittling, 1999; Duros et al., 2014; Goineau et al., 2015). For the L/D 

ratios of potential fossil species, we first subtracted all non-fossilising agglutinated species (i.e. 

agglutinated species with an organic cement), and then calculated corrected relative abundances 

for all species in the living and dead assemblages. 

 

3. Results 

 

3.1 Density 

A total of 512 obviously complete live foraminiferal specimens, 85–163 (mean 128 ± 33 standard 

deviation) individuals per sample, was picked from the four samples. The Hormosinacea 

(agglutinated) and the Rotaliida (calcareous), both multichambered groups, together represented 

about half of these specimens. In addition, we recorded 43 fragmented stained tests (12–28 per 

sample, mean 11 ± 12), the majority (77%) of them tubular monothalamids. The same samples 

yielded a total of 4686 obviously complete, dead foraminiferal specimens, 571–2122 per sample 

(mean 1172 ± 722). Almost two-thirds (63%) of these were rotaliids, with the next most abundant 

group being the multichambered textulariids (agglutinated) (~8% of the total dead assemblage). 

Fragments of dead tests ranged from 261 to 528 per sample (total 1527, mean 382 ± 110), of 

which more than two-thirds (72%) were tubular and almost all of the rest (~25%) were members of 

the Miliolida (calcareous; mostly Pyrgo spp. and Quinqueloculina spp.). Densities per major 

grouping for the live and dead assemblages are given in Appendix A.1. 

 

3.2 Diversity 

The majority (~88%) of all complete live tests could be assigned to morphospecies (either 

described or undescribed), the remainder being indeterminate. In total, 76 species were identified, 

with 29–46 (mean 37 ± 7 standard deviation) species being present in each sample. Most (~86%) 

of the live fragments could be assigned to 10 morphospecies, mainly tubular monothalamids, with 

0–5 (mean 3 ± 2) species per sample. The total number of species with live tests (either complete 

or fragmentary) was 83. In the case of the dead assemblage, almost all (99%) of the specimens 

with complete tests could be assigned to a morphospecies. In total, 152 species were identified, 
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with 75–114 (mean 92 ± 17) per sample. Three quarters of the dead fragments could be assigned 

to 24 morphospecies (7–17 per sample, mean 11 ± 6), most of them tubular monothalamids. The 

total number of species with dead tests (either complete or fragmentary) was 163. The numbers of 

live and dead species in each major grouping are summarised in Appendix A.2. All species found 

in this study are briefly described and illustrated in Appendix B. 

Rarefied alpha diversity indices (species richness, exponential Shannon index, inverse 

Simpson index, Chao 1) were comparable (ANOVA, p<0.05) between the live and dead 

assemblages, for both the entire and the potential fossil fauna. Interestingly, we found that the 

rarefied number of live species was always linearly correlated with that of the dead fraction for (i) 

individual samples, (ii) samples grouped by setting (hills, plain), and (iii) all samples combined 

(Fig. 2). This was especially true for the potential fossil fauna, where most of the samples were 

fairly close to the best-fit line. 

 

Fig. 2. Biplot of rarefied estimated number of live and dead species for each individual sample (square), samples 

grouped by topography (hills, plain; triangle) and all samples combined (circle), for the entire (a) and potential fossil 

fauna (b), respectively. (Data shown as mean and 95% confidence interval; line: linear least squares fit). 
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3.3 Comparison of living and dead assemblages 

3.3.1 Species composition 

Live and dead assemblages were highly distinct in terms of their species composition (Fig. 3). 

When the entire assemblage was considered, ANOSIM assessment indicated a significant 

(p<0.05) difference in the assemblages regardless of prior data transformation. When only the 

common species were considered, ANOSIM again indicated a significant (p<0.05) difference in the 

assemblages except in the case of simple presence absence assessment. Multivariate dispersion 

was always less in the dead than in the live assemblage (MVDISPdead<MVDISPlive), indicating that 

the dead assemblages were more homogeneous in their composition. Identical results were 

obtained when only the potential fossil faunas were considered. The 2-d MDS plots suggested 

common ecological trends (e.g. plain to hill comparisons) in both the live and dead assemblages 

whether assessed in terms of the entire fauna (Fig. 3a) or only the fossilisable component (Fig. 

3b), although that trend was always more pronounced in the live fauna. Similarly, the live to dead 

trend (e.g. live plain to dead plain) in species composition appeared to be consistent between both 

plains and hills, whether assessed in terms of the total fauna or only the fossilisable component. 
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Fig. 3. 2-d Non-metric multi-dimensional scaling ordination plots of live (solid symbols) and dead (open symbols) 

foraminiferal assemblage composition from plain (P) and hill (H) sites on the PAP-SO area, based on Bray-Curtis 

dissimilarity of log (x+1) transformed data of all species (i.e. common plus rare). (a) Entire assemblage. (b) Potential 

fossil assemblage. Black arrows illustrate the degree of ecological variation (hills, plains) in assemblage composition 

within the living and dead fraction, while grey arrows indicate the amount of taphonomic change in assemblage 

composition per topographic setting. 

 

Table 2. Top 20 ‘live’ (Rose-Bengal-stained) species with complete tests per sample and in all samples combined (final column). N = total number 

of specimens. A. glomerata = Adercotryma glomerata, A. shanonni = Ammoglobigerina shannoni, B. aff. earleandi = Bolivina earleandi, B. 

spathulata = Bolivina spathulata, C. wuellerstorfi = Cibicides wuellerstorfi, E. bradyi = Eggerella bradyi, E. exigua = Epistominella exigua, G. 

subglobosa = Globocassidulina subglobosa, L. aff. arenulata = Lagenammina aff. arenulata, N. dentaliniformis = Nodulina dentaliniformis, N. 

umboniferus = Nuttaliides umboniferus, O. globosa = Oolina globosa, O. tenerus= Oridorsalis tenerus, O. umbonatus = Oridorsalis umbonatus, P. 

aurantiaca = Placopsilinella aurantiaca, P. murrayi = Portatrochammina murrayi, P. murrhina = Pyro murrhina, R. agglutinatus = Reophax 

agglutinatus, R. bilocularis = Reophax bilocularis, Q. venusta = Quinqueloculina venusta, S. bulloides = Sphaeroidina bulloides, S. tenuis = 

Spirosigmoilina tenuis, T. albicans = Thurammina albicans. 

 

 

Ra

nk 

H1  Ra

nk 

H4  Ra

nk 

P3  Ra

nk 

P4  Ra

nk 

Total 

  Species N   Species N   Species N   Species N   Species N 

1 White domes 1

5 

 1 A. glomerata 2

4 

 1 E. exigua 1

6 

 1 E. exigua 1

3 

 1 A. glomerata 4

6 

2 L. aff. 

arenulata 

1

4 

 2 Nodellum-like 

sp. 

9  2 Reophax sp. 

28 

1

4 

 2 A. glomerata 9  2 E. exigua 4

3 

3 A. glomerata 1

1 

 3 Reophax sp. 

21 

8  3 B. spathulata 1

0 

 3 R. bilocularis 6  3 Reophax sp. 

21 

3

0 

4 Reophax sp. 

21 

1

0 

 4 E. exigua 7  4 N. 

dentaliniform

is  

8  4 L. aff. 

arenulata 

4  4 L. aff. 

arenulata 

2

0 

5 E. exigua 7  4 S. bulloides 7  4 Reophax sp. 

21 

8  4 Reophax sp. 

9 

4  5 Reophax sp. 

28 

2

0 

6 Reophax sp. 

19 

6  6 A. shannoni  5  6 G. 

subglobosa 

5  4 Reophax sp. 

21 

4  6 White domes 1

9 

6 T. albicans 6  7 Psammospha

era sp. 1  

4  6 Reophax sp. 

19 

5  7 Lagenammin

a sp. 89 

3  7 Reophax sp. 

19 

1

4 

8 G. 

subglobosa 

5  7 Reophax sp. 

9 

4  8 White domes 4  7 Reophax sp. 

19 

3  8 G. 

subglobosa 

1

3 

8 Lagenammin

a sp. 19  

5  7 P. murrhina 4  9 C. 

wuellerstorfi 

3  7 T. albicans 3  8 Nodellum-

like sp. 

1

3 

8 O. 

umbonatus 

5  10 P. murrayi 3  9 S. bulloides 3  10 M. 

barleeanus 

2  8 N. 

dentaliniform

is  

1

3 

8 P. murrhina 5  10 R. 

agglutinatus 

3  9 T. albicans 3  10 P.murrhina 2  8 P. murrhina 1

3 

8 Reophax sp. 

23 

5  10 R. bilocularis 3  12 A. glomerata 2  20 Multiple (18) 

spp. 

1  8 Reophax sp. 

9 

1

3 

8 Reophax sp. 

28 

5  13 C. 

wuellerstorfi 

2  12 B. aff. 

earleandi 

2      13 S. bulloides 1

2 

8 Reophax sp. 

110/111 

5  13 E. bradyi 2  12 E. bradyi 2      13 T. albicans 1

2 

15 Bathysiphon 

sp. 1 

4  13 G. 

subglobosa 

2  12 L. aff. 

arenulata 

2      15 B. spathulata 1

0 

15 Reophax sp. 

9 

4  13 N. 

umboniferus 

2  12 Lagenammin

a sp. 19  

2      16 C. 

wuellerstorfi 

8 

17 Nodellum-

like sp. 

3  13 O. tenerus 2  12 O. globosa 2      16 Lagenammin

a sp. 19 

8 

17 N. 

dentaliniformi

s  

3  13 P. aurantiaca  2  12 P. murrhina 2      16 O. 

umbonatus 

8 

17 Q. venusta  3  13 S. tenuis  2  12 Reophax sp. 

27 

2      16 R. bilocularis 8 
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17 Reophax 

sp.8 

3  20 Multiple (21) 

spp. 

1  20 Multiple (15) 

spp. 

1      20 Reophax sp. 

23 

7 

 
 
 
 
Table 3. Top 20 dead species with complete tests per sample and in all samples combined (final column). N = total number of specimens. A. 
glomerata = Adercotryma glomerata, C. wuellerstorfi = Cibicides wuellerstorfi, E. bradyi = Eggerella bradyi, E. exigua = Epistominella exigua, E. 
foliaceus = Eratidus foliaceus, G. subglobosa = Globocassidulina subglobosa, G. polia = Gyroidina polia, G. aff. soldanii = Gyroidina aff. soldanii, G. 
umbonata = Gyroidina umbonata, K. apicularis = Karrerulina apicularis, M. barleeanus = Melonis barleeanus, M. pombilioides = Melonis 
pombilioides, N. dentaliniformis = Nodulina dentaliniformis, N. umboniferus = Nuttaliides umboniferus, O. globosa = Oolina globosa, O. umbonatus 
= Oridorsalis umbonatus, P. aurantiaca = Placopsilinella aurantiaca, P. murrayi = Portatrochammina murrayi, P. murrhina = Pyro murrhina, Q. 
venusta = Quinqueloculina venusta, S. bulloides = Sphaeroidina bulloides. 
Ra
nk 

H1  Ra
nk 

H4  Ra
nk 

P3  Ra
nk 

P4  Ra
nk 

Total 

  Species N   Species N   Species N   Species N   Species N 

1 E. exigua 2
1
6 

 1 S. bulloides 5
6
4 

 1 E. exigua 1
4
6 

 1 E. exigua 1
2
9 

 1 E. exigua 6
6
9 

2 G. 
subglobosa 

1
1
2 

 2 E. exigua 1
7
8 

 2 G. 
subglobos
a 

3
4 

 2 G. 
subglobosa 

5
7 

 2 S. bulloides 6
3
4 

3 E. bradyi 8
7 

 3 G. 
subglobosa 

8
6 

 2 E. bradyi 3
4 

 3 A. glomerata 2
7 

 3 G. 
subglobosa 

2
8
9 

4 O. 
umbonatus 

7
9 

 4 P. murrhina 8
2 

 4 N. 
umbonifer
us 

2
9 

 3 M. 
barleeanus 

2
7 

 4 P. murrhina 1
9
9 

5 M. 
pompilioides 

6
9 

 5 M. 
barleeanus 

8
0 

 5 P. 
murrhina 

2
7 

 5 P. murrhina 2
6 

 5 M. 
barleeanus 

1
9
1 

6 P. murrhina 6
4 

 6 C. 
wuellerstorfi 

7
6 

 6 C. 
wuellersto
rfi 

2
2 

 6 E. bradyi 2
4 

 6 O.umbonatu
s 

1
8
6 

7 M. 
barleeanus 

6
3 

 7 M. 
pompilioides 

7
4 

 6 O. 
umbonatu
s 

2
2 

 6 L. aff. 
arenulata 

2
4 

 7 E. bradyi 1
8
4 

8 C. 
wuellerstorfi 

4
6 

 8 O. 
umbonatus 

7
0 

 8 M. 
barleeanu
s 

2
1 

 8 S. bulloides 2
2 

 8 M. 
pompilioides 

1
8
3 

8 L. aff. 
arenulata 

4
6 

 9 N. 
umboniferus 

6
0 

 8 M. 
pompilioid
es 

2
1 

 9 M. 
pompilioides 

1
9 

 9 C. 
wuellerstorfi 

1
5
9 

10 A. glomerata 4
5 

 10 G. polia  4
5 

 10 A. 
glomerata 

1
6 

 10 C. 
wuellerstorfi 

1
5 

 10 N. 
umboniferus 

1
3
0 

11 S. bulloides  3
5 

 11 Pullenia sp. 1 4
4 

 11 L. aff. 
arenulata 

1
4 

 10 O. 
umbonatus 

1
5 

 11 A. glomerata 1
1
2 

12 N. 
dentaliniform
is  

3
0 

 12 E. bradyi 3
9 

 12 S. 
bulloides 

1
3 

 12 N. 
umboniferus 

1
3 

 12 L. aff. 
arenulata 

1
0
4 

13 N. 
umboniferus 

2
8 

 13 P. aurantiaca   3
0 

 13 Gyroidina 
sp. 1 

1
2 

 13 Hormosina 
sp. 1 

1
2 

 13 G. polia  8
0 

14 G. polia  2
4 

 13 Psammospha
era sp. 1 

3
0 

 14 N. 
dentalinifo
rmis  

9  14 G. aff. 
soldanii 

1
0 

 14 Gyroidina sp. 
1 

6
0 

14 Gyroidinoina 
sp. 1 

2
4 

 15 E. foliaceus 2
5 

 14 Oolina sp. 
4 

9  14 Oolina sp. 4 1
0 

 15 Pullenia sp. 
1 

5
6 

16 Recurvoides 
sp. 1 

2
1 

 16 A. glomerata 2
4 

 14 G. aff. 
soldanii  

9  14 Parafissurina 
sp. 3 

1
0 

 16 Recurvoides 
sp. 1 

5
3 

17 K. apicularis 1
4 

 17 P. murrayi 2
3 

 17 G. polia  8  14 Quinquelocul
ina sp. 2 

1
0 

 17 N. 
dentaliniform
is  

5
0 

18 O. globosa 1
3 

 18 Q. venusta  2
1 

 18 G. 
umbonata 

6  18 Recurvoides 
sp. 1 

9  18 Parafissurina 
sp. 3 

3
8 

18 Quinquelocul
ina sp. 2  

1
3 

 19 Multiple (3) 
spp. 

2
0 

 19 Multiple 
(5) spp. 

5  18 Reophax sp. 
19 

9  19 G. aff. 
soldanii 

3
6 

20 Multiple (5) 
spp. 

1
2 

         20 Lagenammin
a sp. 19  

8  19 Quinquelocul
ina sp. 2 

3
6 
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3.3.2 Abundant species  

The 20 top-ranked species from the entire assemblage, per sample and in all samples 

combined, are summarised in Table 2. The four most common species with consistently 

high rankings across all four samples were Adercotryma glomerata (ranked in the top three 

in three out of four samples), Epistominella exigua (ranked in the top five in all four 

samples), Reophax sp. 21 (ranked in the top four in all four samples) and Lagenammina aff. 

arenulata (ranked in the top four in two out of four samples). Other species had high 

rankings in one or two samples. For example, ‘white domes’ (distinctive form with a thick, 

white test made of finely agglutinated particles resembling the well-known agglutinated 

genus Crithionina) was ranked 1st and 8th in two samples but was entirely absent in others; 

Reophax sp. 28 was ranked in the top 8 twice; Nodellum-like sp. was ranked 2nd in one 

sample and 17th in another; Sphaeroidina bulloides was ranked 4th in one sample and 9th in 

another, and Bolivina spathulata was ranked 3rd in only one sample. 

The top 20 species for the potential fossil fauna are summarised in Table 3. 

Epistominella exigua and Globocassidulina subglobosa were ranked 1st and 2nd in three out 

of four samples, and 2nd and 3rd in the fourth sample. Other species with consistently high 

rankings were Pyrgo murrhina, Cibicides wuellerstorfi, Melonis barleeanus, M. pompilioides 

and Oridorsalis umbonatus, all of which featured in the top 10 of all four samples. 

Sphaeroidina bulloides was usually a medium-ranked species in three out of four samples 

(mean rank 10, mean density 23 specimens per sample), but it achieved the highest 

abundance (564 specimens per sample) of any single species at site H4, which is located 

on top of a relatively large (~500 m high) abyssal hill (see Fig. 1). Only two species with 

poor fossilisation potential were amongst the top 20 species in the dead assemblage: 

Adercotryma glomerata (top 10 in three out of four samples) and Lagenammina aff. 

arenulata (top 8 in two out of four samples). 

 

3.3.3 L/D ratios 

Considering the entire assemblage, a total of 17 species had a relative abundance >5% in 

the living and/or dead fauna (see Appendix A.4). Both count and relative abundance data 

were subsequently used for estimating the L/D ratios of these species (LN/DN and L%/D%, 

respectively; Table 4). Nine species had finely agglutinated walls and were inferred to have 

poor fossilisation potential. Four of these, Nodellum-like sp., ‘white domes’, Reophax sp. 9 

and Reophax sp. 21, were consistently more common in the live than in the dead 

assemblage, in terms of both counts and relative abundances (Table 4). Another four 
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species (Lagenammina aff. arenulata, Nodulina dentaliniformis, Reophax sp. 28, 

Aderctotryma glomerata) were more common in the dead assemblage (LN/DN<1), although 

their relative abundance was usually greater in the live assemblage (L%/D%>1). Reophax 

bilocularis had mixed patterns. All of the 8 species with good fossilisation potential, except 

for Bolivina spathulata, were always more abundant in the dead that in the live assemblage 

(LN/DN and L%/D% <1, Table 5). B. spathulata had by far the highest LN/DN ratio, even in 

comparison with the easily-degradable species (Table 4). 

 

Table 4 Live/dead (L/D) ratios for all major species (i.e. relative abundance >5% in at least one sample), 

considering the ‘entire’ (fossilisable plus non-fossilisable) assemblage. L/D ratios are calculated based on 

counts (N; LN/DN) and relative abundance (%; L%/D%). Lonly = only live (Rose-Bengal-stained) specimens 

found, Donly = only dead specimens found, A = absent from both live and dead fraction. Lag = Lagenammina, 

Nod = Nodellum-like group, Sph = Spheres (no aperture), Hor = Hormosinacea, Rot = Rotaliida, Tex = 

Textulariida, Tro = Trochamminacea. 

  H1 H4 P3 P4 

Group Species LN/DN L%/D% LN/DN L%/D% LN/DN L%/D% LN/DN L%/D% 

 Poor fossilisation potential         

Lag Lagenammina aff. arenulata 0.30 2.56 Donly Donly 0.14 0.74 0.17 1.48 

Nod Nodellum-like sp. Lonly Lonly 9 156.18 Lonly Lonly Donly Donly 

Sph White domes 3 25.22 A A Lonly Lonly A A 

Hor Nodulina dentaliniformis  0.10 0.84 0.14 2.48 0.89 4.59 0.25 2.22 

Hor Reophax bilocularis Donly Donly 3 52.06 Donly Donly 1.67 14.79 

Hor Reophax sp. 9 4 33.63 0.29 4.96 Lonly Lonly 2 17.74 

Hor Reophax sp. 21 5 42.04 0.89 15.43 Lonly Lonly 4 35.49 

Hor Reophax sp. 28 0.83 7.01 Donly Donly 4.67 24.10 0.33 2.96 

Tro Adercotryma glomerata 0.24 2.06 1 17.35 0.13 0.65 0.33 2.96 

          

 High fossilisation potential         

Rot Bolivina spathulata A A A A 10 51.64 A A 

Rot Epistominella exigua 0.03 0.27 0.04 0.68 0.11 0.57 0.10 0.89 

Rot Globocassidulina subglobosa 0.04 0.38 0.02 0.40 0.15 0.76 0.02 0.16 

Rot Melonis pompilioides Donly Donly Donly Donly 0.05 0.25 0.05 0.47 

Rot Nuttallides umboniferus 0.04 0.30 0.03 0.58 0.03 0.18 0.08 0.68 

Rot Oridorsalis umbonatus 0.06 0.53 0.01 0.25 0.05 0.23 0.07 0.59 

Rot Sphaeroidina bulloides 0.06 0.48 0.01 0.22 0.23 1.19 Donly Donly 

Tex Eggerella bradyi Donly Donly 0.05 0.89 0.06 0.30 Donly Donly 

 

When considering only the potential fossil foraminifera, a total of 17 species had a 

relative abundance >5% in the living and/or dead fauna (see Appendix A.5). Except for B. 

spathulata, LN/DN ratios were all <1, reflecting a greater abundance in the dead than in the 

live assemblage (Table 5). However, L%/D% indicated that in addition to B. spathulata, a 
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further 5 species (Pyrgo murrhina, Cibicides wuellerstorfi, Epistominella exigua, 

Globocassidulina subglobosa, Oridorsalis tenerus), were relatively more abundant in the 

live than in the dead assemblages (L%/D%>1; Table 5). The remaining species had mixed 

patterns. 

 

Table 5 Live/dead (L/D) ratios for all major species (i.e. relative abundance >5% in at least one sample), 

considering potential fossil species only. L/D ratios are calculated based on counts (N; LN/DN) and relative 

abundance (%; L%/D%). Lonly = only live (Rose-Bengal-stained) specimens found, Donly = only dead specimens 

found, A = absent from both live and dead fractions. Mil = Milioliida, Rot = Rotaliida, Tex = Textulariida. 

  H1 H4 P3 P4 

Group Species LN/DN L%/D% LN/DN L%/D% LN/DN L%/D% LN/DN L%/D% 

Mil Pyrgo murrhina 0.08 2.06 0.05 2.17 0.07 0.69 0.08 1.30 

Mil Quinqueloculina venusta 0.33 8.79 0.05 2.12 Donly Donly Donly Donly 

Mil Quinqueloculina sp. 2 0.15 4.06 Donly Donly Donly Donly Donly Donly 

Rot Spirosigmoilina tenuis  0.08 2.20 0.67 29.62 Donly Donly Donly Donly 

Rot Alabaminella weddellensis 0.29 7.54 Donly Donly Donly Donly A A 

Rot Bolivina spathulata A A A A 10 93.6 A A 

Rot Cibicides wuellerstorfi 0.04 1.15 0.03 1.17 0.14 1.28 0.07 1.13 

Rot Epistominella exigua 0.03 0.85 0.04 1.75 0.11 1.03 0.10 1.70 

Rot Globocassidulina subglobosa 0.04 1.18 0.02 1.03 0.15 1.38 0.02 0.30 

Rot Gyroidina sp. 1 0.08 2.20 0.05 2.34 Donly Donly Donly Donly 

Rot Melonis barleeanus Donly Donly Donly Donly Donly Donly 0.07 1.25 

Rot Melonis pompilioides Donly Donly Donly Donly 0.05 0.45 0.05 0.89 

Rot Nuttallides umboniferus 0.04 0.94 0.03 1.48 0.03 0.32 0.08 1.30 

Rot Oridorsalis tenerus Donly Donly 0.5 22.22 A A 0.2 3.38 

Rot Oridorsalis umbonatus 0.06 1.67 0.01 0.63 0.05 0.43 0.07 1.13 

Rot Sphaeroidina bulloides 0.06 1.51 0.01 0.55 0.23 2.16 Donly Donly 

Tex Eggerella bradyi Donly Donly 0.05 2.28 0.06 0.55 Donly Donly 

 

4. Discussion  

 

4.1 Limitations 

Our study was limited to foraminiferal tests retained on a 150-μm mesh sieve. Analysing the 

63–150-μm fraction of abyssal samples is extremely time consuming, especially when 

taking into account dead foraminifera, and could not be accomplished during the time frame 

of this study. These finer size fractions often include some abundant, opportunistic species 

that are absent or under-represented in the >150-μm fraction (Gooday, 1988; 1993; Sun et 

al., 2006). Nevertheless, many small species that appear among the top 20 in Gooday et 

al’s (2010) time-series data at the PAP central site (e.g. Alabaminella weddellensis and 
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Epistominella exigua, although not the most abundant species Trochammina sp. 126), are 

represented in the residues retained on coarser-meshed sieves (125 or 150 μm). We also 

note that coarser sieves are commonly used in paleoceanographic (Gooday, 2003) and 

modern deep-sea research (Murray, 2007, 2015), and size-fractioned data from the NE 

Atlantic (>150 and >63 μm) resulted in similar correlations between diversity measures and 

benthic foraminiferal densities (Gooday et al., 2012). 

 

4.2 To what extent are dead benthic foraminiferal assemblages representative of the 

original live fauna? 

Previous comparisons of live and dead foraminiferal faunas demonstrated varying degrees 

of correspondence between the two assemblages. Most of the discrepancies were 

attributed to taphonomic destruction of agglutinated species (de Stigter et al., 1999; 

Mackensen et al., 1990), calcite dissolution of calcareous species (Murray and Alve, 1999; 

Murray and Pudsey, 2004), transport of dead tests (Douglas et al., 1980; Duros et al., 

2012), population dynamics (Gooday and Hughes, 2002), microhabitat occupancy (Loubere 

and Rayray, 2016) or an interplay between multiple factors (Duros et al., 2014; Mackensen 

and Douglas, 1989). 

Our results revealed a significant change between the ‘entire’ live and the dead 

assemblages in the surface 0–1 cm at each station (Fig. 3a). This trend persisted even 

when we restricted our comparisons to potential fossil species (Fig. 3b). A mixture of 

taphonomic processes and biological factors (population dynamics) (see sections 4.3–4.4) 

is likely responsible for these differences in composition. Similarities in species composition 

between samples were greater for the dead compared to the live assemblages, even when 

we did not consider delicate agglutinated taxa (MVDISPdead<MVDISPlive in both entire and 

fossilisable cases). This likely reflects the fact that dead assemblages provide a time 

averaged record integrating different seasonal conditions and possibly changing 

environmental conditions over longer time scales (Glover et al., 2010). In the present case 

the dead assemblage in the 0–1 cm layer consists of a mixture of specimens that could be 

anywhere from 300 to 3100 years old, given sedimentation rates of 3.5 cm ky-1 and the 

depth (11 cm) of the sediment mixed layer (Billett and Rice, 2001; Smith and Rabouille, 

2002). Integration over time also potentially explains the greater number of species in the 

dead compared to the live assemblage (163 versus 83). Nevertheless, rarefied alpha 

diversity (species richness, exponential Shannon index, inverse Simpson index, Chao 1) 

was always similar. In fact, the rarefied number of species in the live assemblage was 
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linearly correlated with that of both the entire and the potential fossil dead assemblage (Fig. 

2). Thus, for the PAP-SO area, the number of live species is a good indicator of the number 

of dead species and vice versa. 

 

4.3 Taphonomic processes affecting the composition of dead assemblages 

The main taphonomic processes that can modify dead foraminiferal faunas in the area of 

PAP-SO are i) post-mortem physicochemical destruction of tests, ii) transportation of tests 

and iii) predation. 

 

4.3.1 Post-mortem physicochemical destruction of tests  

Selective destruction of organic-walled tests and agglutinated tests with organic cement 

may result in the poor representation or absence of certain taxa in the dead assemblage 

(Denne and Sen Gupta, 1989; Douglas et al., 1980; Schröder, 1988). In the present study 

fragile species, including Lagenammina spp., Nodellum-like sp., Saccammina spp. and 

Reophax spp., as well as species with more robust tests (e.g. A. glomerata), all of which 

have organic cement, were found mainly in the living fauna (Tables 2, 4), suggesting that 

significant post-mortem destruction took place. These taxa are known from previous studies 

to be substantial and persistent components of the ‘live’ PAP foraminiferal fauna (Gooday, 

1996; Gooday et al., 2010), making it very unlikely that the live vs dead differences reflect 

recently established populations. Their abundance in the live assemblage contrasts with 

agglutinated species with calcitic cement, notably Eggerella bradyi, which were mainly 

found in the dead assemblages (Table 3). This is consistent with previous evidence that the 

use of calcitic cement by agglutinating foraminifera enhances the preservation potential of 

their tests (Bender, 1989; de Stigter et al., 1999; Harloff and Mackensen, 1997). 

Since the PAP-SO area is located above the CCD but close to or within the lysocline 

(Biscaye et al., 1976; Rutgers van der Loeff and Lavaleye, 1986), dissolution could have 

affected some calcareous tests (Berger, 1968, 1970), including those of miliolids, a group 

that is particularly sensitive to dissolution (Douglas, 1983; Jorissen and Wittling, 1999). 

Typical visual indicators of carbonate dissolution are etching of the wall surface, test 

breakage, and the translucent or opaque appearance of hyaline test walls that are normally 

transparent (Murray, 1967; Murray and Wright, 1970). Corliss and Honjo (1981) found a 

good statistical correlation between the proportion of broken benthic foraminiferal tests and 

bottom-water carbonate undersaturation. Our samples yielded numerous miliolid fragments 

(constituting 32% of all picked fragments; Appendix A.1), mostly belonging to the genera 
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Pyrgo and Quinqueloculina, which may have resulted from dissolution. Gooday and Alve 

(2001) considered carbonate dissolution a potentially important environmental factor in this 

area. However, the consistently low L/D ratios of most major calcareous species (Table 5) 

as well as the transparent walls of most hyaline species, indicates that this process is 

unlikely to have been particularly important in the present case. 

 

4.3.2 Transport of tests  

The transport of dead foraminifera tests in the deep sea can be caused by bottom currents 

(bed- and suspended load), turbidity currents and submarine slides (Murray, 1976; Murray, 

2006). Living foraminifera are less likely to be transported, at least by bottom currents, since 

they can utilise their reticulopodial network to anchor among sediment particles (Goldstein, 

1999).  

Visual inspection of the sediment cores from which our samples were taken provides 

information on the sedimentary processes operating at each site (Ruhl, 2012; Durden et al., 

2015, Appendix C.1). The P3 core, which was collected adjacent to a large, (~900 m high) 

steep hill, had a uniform light greyish colour, and was poorly consolidated for its full length 

(c. 40 cm) – common characteristics for cores collected in that area, but very distinct from 

other locations on the Porcupine Abyssal Plain (Appendix C.1; Ruhl, 2013). It is possible 

that run out of slope failures from the large, steep-sided hill could have transported some 

benthic foraminiferal tests to this site. In a more detailed comparison of live benthic 

foraminiferal assemblages from hill and plain sites in the PAP-SO area (Stefanoudis et al., 

2016a), including the data used in this study, we found that site P3 was more similar to hill 

samples (especially H1) than site P4, which is located >10 km away from the nearest hill 

(Fig. 1). The core from P4, in common with most cores from the Porcupine Abyssal Plain, 

had a dark band ~25 cm below the sediment surface (Appendix C.1). This is interpreted as 

a turbidite deposit (Thomson et al., 1987) and/or chemical oxidation front (Wallace et al., 

1988), potentially dating to the glacial/Holocene transition. Cores from the hills (H1, H4) 

were more variable (Appendix C.1); in general, they were light brown in colour with the 

lower quarter to a third being somewhat darker but with no evidence of a turbidite layer.  

The abyssal hills in the PAP-SO area have coarser (greater proportion of particles 

>63 μm) sediments than the plain (Durden et al., 2015; Stefanoudis et al., 2016b; 

Turnewitsch et al., 2004, 2013, 2015), a winnowing effect of the stronger bottom currents 

above the hills that preferentially remove fine particles and redeposit them on the adjacent 

plain. It is possible that some dead tests could be transported in this way. This might 
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contribute to the enhanced homogeneity between dead foraminiferal faunas (Fig. 3), 

although current-induced transport is thought to mainly influence tests <150 μm (Jorissen 

and Wittling, 1999; Murray, 2006). 

 

4.3.3 Predation 

Etching and boring by fungi, protozoans and metazoan meiofauna and macrofauna can 

lead to the weakening or complete destruction of foraminiferal tests (Culver and Lipps, 

2003; Hickman and Lipps, 1983; Lipps, 1983; Mageau and Walker, 1976). In our samples, 

a total of 60 dead tests (42 Pyrgo, 10 Quinqueloculina, 7 Melonis, 1 Eggerella) displayed 

rather irregular punctures, reminiscent of holes observed in other benthic foraminiferal tests 

that were suggested to be a result of nematode predation (Sliter, 1971; Douglas, 1983; Fig. 

1 therein). However, some of the etching we observed could be the result of carbonate 

dissolution (see section 4.2.1). For example, Bé et al. (1975) and Hecht et al. (1975) 

illustrated similar-shaped holes in planktonic foraminiferal tests caused by carbonate 

undersaturation in a series of dissolution experiments. Freiwald (1995) has also reported 

etching on C. lobatulus tests, presumed to result from bacterially-induced carbonate 

degradation. In any case, borings and or signs of etching were rare, occurring in only 

~0.01% of all dead specimens of the present study. We conclude that predation and 

dissolution were unlikely to have had a major influence on the composition of the observed 

dead assemblage. 

 

4.4. The influence of population dynamics on the composition of dead assemblages 

Living foraminiferal faunas vary throughout the year in response to inputs of organic matter 

(phytodetritus) from primary production that may trigger reproductive events (e.g. Gooday, 

1988; Kitazato et al., 2000; Gooday and Hughes, 2002; Fontanier et al., 2003; Smart, 

2008). After such events, certain species may show a sudden increase in population size 

(Gooday, 1993) or a change in their microhabitat occupancy (Jorissen et al., 1995; Ohga 

and Kitazato, 1997), leading to considerable differences between the living and time-

averaged dead assemblages. Our samples were collected on 5–22 August 2011, after the 

spring phytoplankton bloom and the subsequent peak in particulate organic carbon flux that 

occurred in June 2011 (Frigstad et al., 2015). Phytodetritus was visible on the surface of 

some of our studied cores, mainly from P3 and less so from H4 (Appendix C.2–C.3). 

Epistominella exigua, an opportunistic species that reproduces rapidly in response to 

pulsed fluxes of phytodetritus, was common in both the live and dead assemblages (Tables 
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2–3) with counts being substantially higher in the latter. However, considering only the 

potential fossil fauna, its relative abundance was consistently higher in the live assemblage 

(L%/D%>1, Table 5). This may indicate that we captured part of the reproductive period of 

this highly opportunistic species. The high abundance of E. exigua in the dead assemblage 

(Table 3), suggests that the ‘phytodetrital signal’ will also be expressed in the fossil fauna 

(Smart, 2008). Alabaminella weddellensis, another rotaliid species often associated with 

phytodetritus deposits in the PAP-SO area (Gooday, 1988, 1993; Smart and Gooday, 

1997), was relatively scarce in our samples (Appendix A.3). Epistominella exigua and A. 

weddellensis appear to have distinct ecologies, the former being associated with regions of 

high seasonality, the latter with areas of high productivity (Fariduddin and Loubere, 1997; 

Hayward et al., 2002; Loubere, 1996; Sun et al., 2006). However, the relative scarcity of this 

small species probably also reflects the fact that we analysed the relatively coarse 150-μm 

fraction in which A. weddellensis is poorly represented because of its small size. 

Like those of E. exigua, the L%/D% ratios for Cibicidoides wuellerstorfi and 

Globocassidulina subglobosa were consistently >1. Jorissen and Wittling (1999) suggested 

that C. wuellerstorfi might be positively related to phytodetritus, and Gooday (1988) reports 

that this species inhabits phytodetrital aggregates, but a link with seasonal food input was 

not confirmed by other studies (Corliss et al., 2006; Smart, 2008). In the PAP area, G. 

subglobosa has also been found embedded within phytodetritus aggregates (Gooday, 

1988, 1993, 1996), while in the Southern Ocean it has been shown to feed selectively on 

phytodetritus (Suhr et al., 2003; Suhr and Pond, 2006). However, Sun et al. (2006) again 

reported a negative correlation between G. subglobosa and seasonality in primary 

production. Our results provide some evidence that these two species (C. wuellerstorfi, G. 

subglobosa) behave in a manner similar to that of E. exigua by rapidly reproducing once 

food becomes available. However, the magnitude of their response is much less evident, at 

least for the size fraction >150 μm, as evidenced by their considerably lower contribution to 

the living and dead assemblages in comparison to E. exigua (Tables 2–3).  

The case of Sphaeroidina bulloides also warrants attention. L%/D% ratios showed 

that it was relatively more abundant in the live assemblages of two of the three samples in 

which it occurred, the exception being H4 (Table 5). The density of this species in the dead 

assemblage at site H4 was at least an order of magnitude higher than at other PAP-SO 

sites (Table 3). Topographic features, such as the abyssal hill on which H4 was located, are 

characterised by stronger currents, potentially enhanced organic matter supply, as well as 

by coarser sediments. These factors could influence the composition of modern 
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foraminiferal faunas (Stefanoudis et al., 2016a). Interestingly, small patches of phytodetritus 

were present on the surface of the sediment core from H4 (Appendix C.3). Sphaeroidina 

bulloides has been suggested to be positively associated with high organic carbon fluxes 

(Altenbach et al., 2003), which might explain its unusually high densities at H4. Linke and 

Lutze (1993) found that S. bulloides rapidly changed its habit from epifaunal to infaunal 

depending on food supply and environmental conditions. The infaunal tests were often 

enclosed within agglutinated mud coatings (‘cysts’), a behaviour commonly observed 

among live specimens in our study area (Stefanoudis and Gooday, 2016), Additional 

information on the ecology of this species would be valuable in interpreting its relative 

abundance in the living and dead fractions in the PAP-SO area. 

Miliolid species (Pyrgo murrhina, Quinqueloculina auberiana, Quniqueloculina sp. 2, 

Spirosigmoilina tenuis) had positive L%/D% ratios at hill locations (H1, H4), but were absent 

from the living fauna in samples from the plain (Table 5). Moreover, their densities in the 

living and dead fractions were generally higher on the hills (Appendix A.3). A previous study 

at the PAP-SO central site found that an unnamed Quinqueloculina species, probably 

identical to Quinqueloculina sp. 2 of the present study, moved towards the sediment 

surface when food availability was high and retreated back into deeper layers once food 

resources had been exhausted (Gooday et al., 2010). As previously indicated, food supply 

is probably higher on the hills (e.g. Morris et al., 2016), which may help to explain the larger 

populations of Quinqueloculina spp. there in comparison to the plain. 

Bolivina spathulata was absent from the living and dead fractions of all samples 

except for P3. Here, it was 10 times more abundant in absolute terms (i.e. LN/DN values) in 

the live than in the dead assemblage (Table 5), although the actual numbers of specimens 

(10 live and 1 dead) were fairly low (Appendix A.3). Bolivina species are generally 

considered to be indicative of low oxygen, high productivity environments (Altenbach et al., 

1999; Jorissen et al., 1992; Schmiedl et al., 1997), typically at bathyal depths. In the 

southern Adriatic Sea, de Stigter et al. (1998) found B. spathulata penetrating deep into the 

sediment and efficiently exploiting the subsurface food resources available there, mainly 

degraded organic material. Nevertheless, in the PAP-SO area this species occurred in the 

upper sediment layer, suggesting that it is also able to exploit fresh organic material in well-

oxygenated, abyssal settings. This is consistent with the fact that the surface of the core 

from the P3 site had a visible phytodetritus layer (Appendix C.2). It appears that B. 

spathulata was able to flourish in a local patch of fresh organic matter. The opportunistic 

species Epistominella exigua was also common in this sample (Table 2). 
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4.5. Concluding remarks 

Our results from the PAP-SO area indicate that the transition from live to dead benthic 

foraminiferal assemblages involves a dramatic loss of delicate agglutinated and organic-

walled tests (e.g. Lagenammina, Nodellum, Reophax), and to a lesser extent of some 

fragile calcareous tests (mostly miliolids), the latter possibly the result of dissolution. Other 

processes, such as hydrodynamically induced transport of tests and predation by 

metazoans, are unlikely to have significantly modified the dead assemblages. Relatively 

high live to dead ratios in some samples suggest that a few species (e.g. Bolivina 

spathulata, Cibicidoides wuellerstorfi, Epistominella exigua, Globocassidulina subglobosa) 

may have responded to recent food deposition with rapid reproduction. 

In the PAP-SO area it seems that, for foraminifera in the >150 μm fraction of surficial 

sediments, taphonomic rather than life processes are largely responsible for the 

composition of dead assemblages. The magnitude of these processes is comparable 

between samples from the plain and the hills, suggesting that the preservation potential of 

benthic foraminifera is not markedly affected by local topography (Fig. 4). Particularly 

notable is the fact that the composition of the dead assemblages is quite similar between 

samples from the hills and the plain, despite the fact that live faunas are more distinct 

between these two settings, particularly between H4 and all other samples (Figs. 3–4; 

Stefanoudis et al., 2016a). This suggests that it may not be possible to differentiate 

between foraminiferal faunas originating from (modestly) topographically contrasting sites in 

the fossil record, despite potentially substantial differences in organic matter supply 

between such sites (Durden et al., 2015; Morris et al., 2016). 
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Fig. 4. 2-d Non-metric multi-dimensional scaling ordination plots of live (L) and dead (D) foraminiferal 

assemblage composition in samples from the PAP-SO area, based on Bray-Curtis dissimilarity of log (x+1) 

transformed relative abundance data (entire fauna; all species). Note compositional shift related to 

topographic setting (hills, H; plain, P), and striking difference between live and dead assemblages. (HL, hills 

live [H1L+H4L]; PL, plain live [P3L+P4L]), HD, hills dead [H1D+H4D]; PD, plain dead [P3D+P4D]; L, live 

[HL+PL]; D, dead [HD+PD]). 
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Highlights 

 We compared ‘live’ (stained) and dead benthic foraminiferal faunas in the NE Atlantic 

 During transition from live to dead faunas there was a dramatic loss of delicate forms 

 Other factors (e.g. dissolution, predation) had a minor impact on the composition of 

dead faunas 
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 L/D ratios indicated that some species responded to recent food input. 

 Unlike ‘live’, composition of dead assemblages was not influenced by seafloor 

topography 

 Differentiating fossil faunas from contrasting topographies might not be possible 

 

 




