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Introduction 

In the early 1990s, tissue engineering emerged as a new concept to overcome the problem of 

tissue and organ failure. It proposed to supply engineered, yet biological, organ and tissue 

substitutes. It was anticipated that this technology would soon allow us to overcome donor 

shortages and graft rejection, the major limitations of tissue and organ transplantation. Tissue 

engineering approaches that were developed on the basis of this paradigm relied on the use of 

cells and stem cells, preferably of autologous origin, the application of growth factors and 

cytokines, the design of biodegradable scaffolds and bioreactor technology1, 2.  

Over the past decades, there has been tremendous progress towards the regeneration of tissues 

such as bone3, heart valves4, myocardial tissue5 and cartilage6. While these examples 

impressively show that tissue engineering technology holds great promise for the manufacture 

of tissue grafts, even more diverse applications have emerged in recent years. Tissue 

constructs have been used to investigate cellular and molecular mechanisms7, are used for in 

vitro drug screening and can be expected to reduce the number of time and cost intensive in 

vivo experiments in drug development8. Despite this success, one may still question, why 

tissue engineering has not progressed even faster and further. 

Obviously, we underestimated some of the obstacles on the way towards the development of 

functional tissue-engineered grafts. Frequently, the host tissue fails to support the integration 

of engineered tissue. In many cases wound healing processes leading to scar formation 

dominate over the intended tissue repair and biodegradable scaffolds frequently raise concerns 

due to the risk of inflammatory responses9. With increasing size, engineered tissues also 

suffer from insufficient nutrient availability and limited metabolic waste removal by passive 

diffusion, resulting in cell death and necrosis. A rapid and adequate vascularization of an 

implanted tissue has, therefore, been identified as an essential prerequisite for its survival and 

integration. Induction of angiogenesis is recognized as one of the most critical factors to the 

success of tissue engineering10, 11. Although growth factors, such as vascular endothelial 

growth factor (VEGF) or basic fibroblast growth factor (bFGF), are potent angiogenic factors, 

their use is associated with problems spanning from limited in vivo stability to an abnormal 

growth of blood vessels resembling the vascularization of tumor tissue12, 13. 

For the reasons outlined above, it would be advantageous to focus our tissue engineering 

efforts on systems that display less complexity. With these role models, it would be possible 

to gather experience that helps in the future to solve problems related to the regeneration of 

more complex tissues. Ocular tissues seem an ideal candidate for this strategy. Most of them, 

such as the corneal epithelium or the retinal pigment epithelium (RPE), are not vascularized 
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and resemble more sheet-like than three-dimensional structures. Nutrients and oxygen are 

sufficiently supplied by diffusion from adjacent tissues and, finally, parts of the eye enjoy an 

immune privilege that adds additional degrees of freedom with respect to the choice of 

materials and cells.  

Altogether, ocular tissues seem to be predestined for regeneration using tissue engineering 

approaches. But besides the scientific and strategic incentive for reconstructing ocular tissues, 

there is also a tremendous need for novel therapeutic options for treating numerous eye 

diseases related to tissue failure. Age-related macular degeneration (ARMD), glaucoma and 

diabetic retinopathy (DR) are leading causes of blindness. The prevalence of these diseases 

among persons aged over 50 is between 3 and 10 %14, illustrating the significance of the 

problem. Despite the tremendous medical progress made in recent years, especially in 

ophthalmology, the prevalence of age-related blindness is still increasing, spurred by 

demographic trends15, 16, outlining the need for alternative treatments. 

This article will review the state of the art in ocular tissue engineering. The goal is to illustrate 

the progress already made and the strides still necessary to create clinically relevant tissue 

substitutes. 

Corneal Tissue Engineering 

The cornea is the transparent barrier between the eye and the environment, protecting the eye 

from pathogenic microbes and dryness. The cornea is comprised of three major cellular 

layers: an outermost stratified squamous epithelium, a stroma with corneal fibroblasts 

(keratocytes), and an innermost monolayer of specialized endothelial cells17 (Figure 1). In 

severe diseases of the cornea, their transparency is no longer maintained, usually due to a 

malfunction of only one of the three parts of the cornea. Therefore, tissue engineering 

developments focus on the reconstruction of the damaged part to restore transparency of the 

whole cornea. These strategies, especially the regeneration of the corneal epithelium, will 

probably be clinically approved in the near future. 

Corneal Epithelium 

The corneal epithelium consists of five cell layers in the tissue center and about ten layers on 

its periphery. It shows a distinct physiological turnover; the cells are constantly renewed by 

proliferating cells of the basal epithelium, often termed transient amplifying cells18, 19. These 

cells can divide only a limited number of times20 and are themselves replaced by slowly 

proliferating stem cells of the limbus21. The limbus is surrounding the cornea; it was 
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demonstrated to be a reservoir of corneal epithelial stem cells, cells that are, therefore, also 

termed limbal stem cells. If these corneal epithelial stem cells are completely absent due to 

limbal disorders from severe trauma (for example thermal or chemical burns) or eye diseases 

(for example Stevens-Johnson syndrome), the source of corneal epithelial cells is exhausted, 

resulting in opacification of the cornea and severe visual impairment22. Therefore, in patients 

with unilateral limbal stem-cell deficiency, an autologous limbal transplantation is performed 

to restore the corneal epithelium23. However, there is an associated risk of inducing limbal 

stem cell deficiency in the healthy eye24. In patients with bilateral lesions, autologous limbal 

transplantation is rarely possible, due to the large number of cells necessary for 

transplantation. Limbal or corneal allograft transplantation, however, is limited by the number 

of organ donors and requires long-term immunosupression associated with severe side 

effects25. To overcome these limitations, strategies to cultivate autologous corneal epithelium 

in vitro based on tissue engineering concepts have been developed. The general idea is to 

cultivate physiological corneal epithelium including a sufficient number of stem cells for 

physiological regeneration in a culture dish, starting with a small sample of cells26. Corneal 

epithelial stem cells seemed to be an optimal cell source, as the corneal epithelial cells are 

physiologically renewed by these stem cells.  

 
Figure 1: Schematic survey of the three major cellular layers of the cornea: an outermost 
stratified epithelium, a stroma with corneal fibroblasts (keratocytes) and an innermost 
monolayer of endothelial cells. 

In 1997, Pellegrini et al. reported the first clinical success in two patients with complete loss 

of corneal-limbal epithelium of one eye using cultivated limbal stem cells27. After isolation 

and propagation of cells from a small biopsy of the limbus of the healthy eye, they cultured a 

sheet of cells for 19 days to prepare the epithelial graft. According to the authors, the resulting 

graft was microscopically similar to the cornea, stained positive for cytokeratin 3, a specific 

marker of the corneal lineage28 and, therefore, represented an authentic in vitro cultured 

corneal epithelium. After release of the sheet from the culture plastic using the protease 

Dispase II, they transplanted the cultured cornea onto the patient’s prepared eye and patched it 

tightly for three days. After grafting of the cultured epithelium, both patients developed a 

stable and transparent corneal epithelium without vascularization. More than two years after 
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grafting, the patients were clinically stable and the authors strongly suggest that this was due to 

a successful engraftment of the stem cells.  

In the following years, attempts were made to optimize this encouraging new therapy. The use 

of biomaterials was investigated to improve the handling and manipulability of the epithelial 

constructs, as well as their integration onto the corneal stroma29. Furthermore, as the use of 

proteolytic enzymes is associated with the destruction of cell-cell junctions and extracellular 

matrix, both critical to sheet integrity and function, new culture techniques were studied that 

allowed for the removal of the epithelial sheets from the culture plastic without using 

enzymes30.  

Searching for suitable biomaterials, amniotic membrane (AM) seemed suitable as a first cell 

carrier. AM is the inner layer of the fetal membranes and consists of a single layer of 

columnar cells firmly attached to an underlying basement membrane. It is known to suppress 

inflammation and scarring and serves as an anti-microbial barrier31. The successful 

transplantation of human AM to severely damaged rabbit cornea32 has been reported. In 2000, 

Tsai et al. took a small limbal-biopsy specimen from the healthy eyes of six patients suffering 

from unilateral limbal epithelial cell deficiency and expanded them on AM to form an 

epithelial-cell sheet33. After about three weeks of culture, they transplanted the resulting 

epithelial-cell sheet, together with the membrane, to the damaged eyes of the same patient. 

Complete reepithelialization of the corneal surface occurred within two to four days in all of 

the patients, followed by improved clarification of the cornea after one month. No patient had 

recurrent neovascularization or inflammation in the transplanted area during the follow-up 

period of about 15 months and all patients demonstrated improved vision. The authors 

concluded that the use of autologous limbal epithelial cells grown on AM had all the benefits 

of AM transplantation, including the facilitation of epithelialization, reduction of 

inflammation and scarring, and replacement of substrate when the underlying stromal tissue is 

destroyed. Furthermore, in contrast to the report of Pellegrini et al.34, the handling and 

suturing had been simplified.  

In contrast to the work of Tsai et al.35, Rama et al. used a fibrin glue for the preparation of 

epithelial cell sheets36. After transplantation of these sheets, all of these patients showed 

complete reepithelialization within the first week, similarly to the previous report. 

The introduction of biomaterials as a cell carrier showed several advantages, as for example 

improved handling of the constructs, however, post-transplant effects from the carrier were 

expected to influence the clinical outcome. This was confirmed by the observation of eye-

threatening complications in a patient after AM transplantation37. Therefore, Nishida et al. 
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focused again on the culture of epithelial sheets without a carrier. As temperature-responsive 

culture surfaces, established by Yamada et al. in 199038, were shown to allow the harvest of 

intact multilayered keratinocyte sheets without the use of proteolytic enzymes39, this 

technology was used for the culture of corneal epithelial sheet grafts40. This method enabled 

them to obtain a well-structured, compact multilayered cell sheet architecture with the 

expected native cell microstructure, such as tight junctions, desmosomes and basement 

membrane, comparable to those in native corneal tissue. The resulting convenient and robust 

tissues could be transplanted onto the cornea of rabbits and adhered strongly to the corneal 

stroma within minutes, making sutures unnecessary. According to the authors, the grafts 

remained stable at the initial placement, exhibited a normal appearance and expressed the 

typical corneal marker cytokeratin 3.  

This approach overcame a number of problems associated with other related techniques, 

however, there was still the need for autologous limbal stem cells for the culture of the 

corneal epithelium. To overcome this need, Konoshita et al. demonstrated the feasibility of 

using autologous mucosal epithelial cells for reconstruction of the ocular surface41, 42. Nishida 

et al. combined the culture of mucosal epithelial cells with the technique using temperature-

responsive surfaces and established an alternative replacement strategy for damaged corneal 

epithelium43 (Figure 2). According to the authors, the cultured sheets showed transparency 

equal to that of sheets originating from limbal stem cells and were microscopically similar to 

native corneal epithelium. The sheets could be transplanted onto the patients’ corneas without 

suturing. During the follow-up period of 14 months, corneal transparency was maintained, 

visual acuity was improved and complications could not be observed. Therefore, the sheets of 

tissue engineered epithelial cells fabricated ex vivo from autologous oral mucosal epithelium 

seemed effective for reconstruction of the ocular surface, providing a possible therapy even 

for patients with bilateral total stem-cell deficiencies. However, it is still unclear whether stem 

cells of the mucosa can differentiate into corneal epithelium. It is also possible that the 

therapeutic success in this study was due to a stimulation and re-proliferation of a small 

number of still remaining autologous epithelial stem cells in the recipient’s cornea44. Long-

term studies and a larger number of patients will, therefore, be necessary to assess the benefits 

and risks of this therapy. 

 



Chapter 1 Ocular Tissue Engineering 

- 11 - 

 
Figure 2: In vitro culture of a corneal epithelial transplant using mucosal epithelial cells. 
After isolation of autologous oral mucosal epithelial cells, the cells were cultured in the 
presence of a feeder layer onto temperature-responsive culture surfaces at 37°C. Reduction of 
the temperature to 20°C leads to the removal of the cell sheet, which can subsequently be 
transplanted to the patient without the need for suturing. Reprinted from Nishida et al.45 
Copyright © 2004 Massachusetts Medical Society. All rights reserved. 

Corneal Stroma 

The corneal stroma is the largest part of the cornea, underlying the epithelium and consisting 

of fibroblasts, also called keratocytes, embedded in a matrix of collagens and 

glycosaminoglycans. Blood vessels are absent in the central cornea in contrast to the limbus 

and conjunctiva, which are highly vascularized. Transparency of the tissue is caused by a 

small diameter and a distinct orientation of the collagen fibrils within the tissue46. Culture of 
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corneal stroma, in combination with epithelium, seems useful for clinical therapy of deep 

corneal lesions and failures in keratomileusis (the carving of the cornea to reshape it), 

furthermore the stroma displays the “backbone” of completely engineered cornea. Stroma 

engineering, however, could become a great challenge, as transparency of the stroma is 

essential because of the thickness of this corneal layer. 

The successful cultivation of corneal stroma, even in combination with corneal epithelium and 

endothelium, has been reported47, 48. However, in many of the reports immortalized cell lines 

were used, cells that seem unsuitable for a clinical therapy. In 1999, Germain et al. reported 

the successful engineering of human cornea cultured with primary keratocytes and epithelial 

cells49. They reconstructed the corneal stroma by culturing keratocytes within collagen and 

cultured them for four days. After this cultivation, they seeded the gels with epithelial cells 

and cultured them for three more days. The resulting corneas were histologically similar to 

native cornea and expressed components of the epithelial basement membrane at the 

epithelium-stroma junction, but data about the transparency of the systems are missing. In 

2004, Hu et al. reported the in vitro cultivation of corneal stroma for one week using rabbit 

keratocytes mixed with polyglycolic acid and the subsequent transplantation in vivo50. 

According to them, the tissue became transparent within eight weeks of transplantation of the 

cultured stroma and no differences in the diameters of native and engineered cornea could be 

observed. They confirmed that the cornea was formed by the cultured cells by transfecting 

them with GFP and detecting a green fluorescence within the whole stroma. Although the 

results for corneal stroma culture are encouraging, long-term in vivo data and clinical trials 

are still lacking.  

Corneal Endothelium 

The corneal endothelium consists centrally of a monolayer of endothelial cells underlying the 

corneal stroma and represents, from a medical point of view, the most important part of the 

cornea, as only an intact endothelium with a sufficient cell density can function properly and 

maintain clarity of the cornea by its dehydrating pump function51. In cases of intraocular 

surgery or inherited diseases, a drastic decrease in the number of cells can be observed. As the 

proliferative capacity of the endothelial cells is restricted52, transplantation of isolated and 

cultured corneal endothelial cells (CEC) has been studied, however, the success of these 

experiments was limited53 due to insufficient cell numbers or a lack of adherence. The first in 

vivo report of the transplantation of human CEC was published in 1991 by Insler and Lopez54, 

who seeded human neonatal CEC on human corneas that were denuded of their native 
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epithelium. After implantation of the cultured corneas into African green monkeys, 75 % of 

the corneas cleared up and showed a clear decrease in diameter (large diameter indicates 

edema of the cornea) for up to twelve months. Ishino et al. reported the first in vivo study 

using adult cultured human CEC55. After propagation of the cells, they transplanted the 

endothelial cells onto amniotic membrane; they reached a sufficient cell density on the 

membrane by gently centrifugating the cells onto the membrane. After cultivation of these 

endothelial sheets for two weeks, they transplanted the sheets into rabbits’ eyes and observed 

excellent transparency with little edema for at least seven days. Long-term consequences, 

however, could not be determined, as the corneal endothelium of rabbits proliferates in vivo, in 

contrast to human endothelium, and, therefore, this animal model seems not suitable for long-

term evaluation. Similar results were reported by Mimura et al.56 using adult human corneal 

endothelial cells in a rat model. Again, transparency of the cornea was restored by CEC after 

seeding them onto the excised cornea and subsequent transplantation of the cornea. In contrast 

to Ishino et al., no carrier membrane was used. Furthermore, Mimura et al. demonstrated that 

the corneal transparency was maintained for one month after transplantation. 

Mimura et al. also evaluated a novel approach for corneal endothelial regeneration57. They 

exposed cultured CEC to iron powder and injected the cells after endocytosis of the iron into 

the anterior chamber of rabbits’ eyes, subsequent to cryo-injury of the corneal endothelium. 

By fixing a magnet on the lid of animals, the injected CEC were attracted to the cornea for 

24 h. They could demonstrate that the cells adhered to the Descemet’s membrane, the native 

location of the CEC, resulting in decreased corneal edema over the whole investigation period 

of eight weeks. As this method could have several drawbacks associated with the iron powder, 

long-term observations have been performed. According to Mimura58, the iron powder was not 

detectable after twelve months, however, in contrast to a negative control, sufficient numbers 

of CEC could be detected in the study group, resulting in a decreased edema score. 

Drawbacks, such as increased intraocular pressure or other ocular complications, could not be 

detected. Therefore, the authors conclude, the magnetic attachment of iron-endocytosing CEC 

can be an effective and safe method for corneal endothelial repair. This therapeutic option was 

the first to effectively restore corneal endothelium simply by injecting cells into the anterior 

chamber of the patient, however, no reports on human studies are published yet.  

Besides the direct treatment of the patients’ cornea, there is another interesting application of 

CEC transplantation: the improvement of corneas from organ donors. About 40 % of the 

corneas could not be transplanted, because they failed the quality criteria of the cornea banks, 

mostly due to their low endothelial cell density. To overcome this problem, several 
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approaches were performed to increase the cell density by transplanting CEC onto the 

corneas. These strategies, such as suitable isolation and cultivation conditions for human 

CEC, the use of growth factors or the transfection of endothelial cells with viral genes to 

enhance the cell proliferation, are discussed in detail by Engelmann et al.59  

Summary 

To conclude, the tissue engineering of the cornea is a promising field. Especially the 

reconstruction of the corneal epithelium seems to be a promising therapeutic option for the 

treatment of patients suffering from limbal stem cell deficiencies. To completely substitute 

corneal transplants, the culture of all three corneal layers, including epithelium, stroma and 

corneal endothelium is necessary. This will probably remain a challenging task, as optimal 

culture conditions for all three layers have to be established. Furthermore, for clinical 

approval, the use of serum or feeder layers of cells likely becomes problematic.  

A future challenge will also be the innervation of the cultured cornea, as the cornea is one of 

the most innervated tissues and missing innervation could lead for example to the clinical 

syndrome of the “dry eye”60. Innervation of the cornea was already studied within 

biosynthetic tissue templates61; the control of complex interaction between materials, different 

corneal cell types and nerve conduits, however, remains a challenge ahead.  

Retinal Pigment Epithelium Engineering 

The retinal pigment epithelium (RPE) consists of a monolayer of cuboidal cells located 

between the choroidal layer of the eye and the neurosensory retina. It is part of the blood-

retinal barrier and responsible for the attachment of the retina to the choroidal layer by a net 

transport of ions and water in an apical to basal direction. Further functions of the RPE are the 

absorption of stray light, the uptake, processing and transport of retinoids, and the 

phagocytosis of rod and cone outer segment fragments. Once differentiated, the RPE is not 

able to regenerate itself by cell division62. 

Disorders of the RPE are implicated in the pathogenesis of age-related macular degeneration 

(ARMD), the leading cause of blindness in people aged over 5563, and other degenerative and 

hereditary ocular diseases. In “dry” (non-exudative) ARMD, which is the most common form, 

vision is impaired due to progressive atrophy of the RPE with subsequent loss of the 

choriocapillaris and photoreceptors within the macula. In contrast, loss of vision in “wet” 

(exudative) ARMD is associated with bleeding from abnormal blood vessels grown from the 

choriocapillaris beneath the RPE and macula (choroidal neovascularization, CNV). Currently, 
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there are no treatments for “dry” ARMD and the available therapies for “wet” ARMD, such 

as laser photocoagulation, are still controversially discussed because of their only moderate 

efficacy in preventing blindness64.  

As a potentially curative therapy, the concept of transplanting healthy RPE in the subretinal 

space has been extensively investigated in the past decades. Due to immune reactions, 

however, patients receiving transplants of homologous RPE had no visual benefit65, 66. Thus, 

the interest has been focused on autologous cells. The first prospective trials demonstrated 

that CNV membrane surgery combined with simultaneous transplantation of freshly isolated 

RPE cells resulted in clinically relevant improvements of vision compared to other surgical 

procedures. Potential drawbacks of this approach are the limited number of healthy cells that 

can be harvested from patients with degenerative eye diseases and the delivery of the cells in 

suspension67, 68. Since RPE cells are polar with distinct apical/basal characteristics and well 

established intracellular relationships69, the implantation of an organized sheet of RPE cells 

with appropriate orientation is thought to be an important factor for a successful graft. 

The concept of tissue engineering offers the chance to cope with the above mentioned 

problems: 1) Autologous cells are harvested from the patient and expanded in vitro to a 

sufficient number. 2) Dysfunctional donor cells can be manipulated to perform the required 

function in the retina by ex vivo gene manipulation70. 3) Culturing the cells under suitable 

conditions allows for the maintenance of a differentiated and epithelial phenotype of RPE. 4) 

Organized patches of tissue engineered RPE can be transplanted into the subretinal space of 

the patient in a proper orientation. 

 
 

Figure 3: Scanning electron micrographs of RPE cells adhering to plain PLGA films 
(adhesive) (A), PLGA surfaces modified with PEG/PLA (continuous region, non-adhesive) (B) 
and reversed patterns of PEG/PLA  modified with PLGA (continuous region) after 8 h of cell 
seeding at 15 000 cells/cm2. Cells on the micropatterned surfaces (B, C) exhibited typical 
round RPE cell morphology. Scale bars are 10 µm. Reprinted from Lu et al.71 Copyright © 
2001 with permission from Elsevier. 

In accordance with this concept, the group headed by A. G. Mikos proposed the use of 

biodegradable polymer films as temporary substrates for RPE cell culture and the subsequent 

transplantation of these polymer-cell complexes into the subretinal space. However, RPE cells 
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cultured on thin films made of poly(lactic-co-glycolic acid) (PLGA) lost their characteristic 

cuboidal morphology during a 7-day culture period72-77. To retain normal RPE cell 

morphology and function in vitro, Lu et al., therefore, developed novel degradable 

micropatterned substrates from PLGA and block copolymers of poly(ethylene glycol) (PEG) 

and poly(lactic acid) (PLA) using a microcontact printing technique. The film surfaces 

consisting of adhesive (PLGA) and non-adhesive (PEG/PLGA) domains affected cell 

attachment and spreading, and allowed the maintenance of differentiated cell phenotype 

throughout the 8-h period of the study (Figure 3). The polymer substrate was thought to 

facilitate the handling during transplantation and to ensure the correct orientation of the graft 

in the subretinal space. During a period of several weeks, the matrix will be degraded into 

non-toxic products, which can be removed from the body by metabolic pathways78-80. 

Although PLA and PLGA have been shown to be biocompatible, their degradation products 

(lactic acid and glycolic acid) arouse concern due to their acidic nature. To meet these 

concerns, several research groups investigated the use of amniotic membrane (AM) as an 

alternative matrix substrate that modulates proliferation and differentiation of RPE cells in 

culture81, 82. Transplanted AM act as a suitable substrate for proper epithelialization and are 

widely used in ophthalmology for the treatment of persisting epithelial defects83. Stanzel et al. 

demonstrated that epithelially denuded AM promotes the formation of a RPE monolayer with 

tight junctions and, therefore, recommended its use as basement membrane-containing matrix 

to facilitate the clinical transplantation of RPE in treating ARMD84. 

Attempts to use RPE cell sheets without any supportive matrix are associated with various 

drawbacks. First, it is more difficult to handle the patches during transplantation85. In 

addition, the non-specific enzymatic detachment (using trypsin/ EDTA, for example) of 

cultured RPE sheets leads to a substantial decrease in the retinoid metabolism86. A novel type 

of detachable tissue culture substrate, developed in the group of T. Okano, holds the potential 

to overcome the latter problem. Those surfaces are grafted with thermally responsive 

polymers, such as poly(N-isopropylacrylamide-co- cinnamoylcarbamidemethylstyrene) and 

allow the detachment of cells as a continuous sheet by simply lowering the temperature to 

20°C87. As von Recum et al. published later, the initial isolation of RPE cells using specific 

enzymes (such as collagenase type 3/ hyaluronidase) and the subsequent passaging on 

thermally responsive surfaces is an appropriate method to preserve metabolic activity in 

cultured RPE cells suitable for transplantation88. 

As an alternative approach, Ito et al. applied a novel methodology, termed “magnetic force-

based tissue engineering”, that also aims at the construction and delivery of RPE cell sheets. 
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Briefly, ARPE-19 cells, a human RPE cell line, were magnetically labeled using magnetic 

cationic liposomes and seeded on ultra-low-attachment plates. In the presence of a magnetic 

force perpendicular to the culture plate, ARPE-19 cells formed multilayered sheet-like 

constructs that could be easily transferred into another tissue culture dish by a magnetic iron 

wire89. Even if this methodology provides various opportunities, especially for the delivery of 

tissue-engineered grafts, one should keep in mind that the multilayered structure of the 

constructed RPE sheets does not resemble the physiologic situation. It is quite questionable, 

whether the function of an epithelial monolayer, such as RPE, will be restored after the 

transplantation of multilayered RPE cell patches. As it is known from animal experiments that 

thickening of the RPE graft due to folding may reduce the width of the overlaying 

photoreceptor layer90, further investigations using animal models will be necessary in order to 

evaluate the benefit of this recent approach. 

Despite many advances in the past decades, especially in the field of cell culturing and 

material sciences, guaranteeing the long-term survival of an RPE graft still poses a big 

challenge. As epithelial cells generally fail to survive in suspension, RPE cells must reattach 

to a substrate to avoid apoptosis91. Unfortunately, age-related alterations, pathological 

processes during ARMD, or surgical treatments may inhibit the repopulation of Bruch’s 

membrane (BM), the extracellular environment of RPE cells in the eye92, 93. To avoid graft 

failure and to enhance the medical benefit of RPE cell transplantation, Del Priore’s group 

investigated ways to reengineering BM. They suggest the transplantation of extracellular 

matrix (ECM) prior to the transplantation of RPE94 or the cleaning of BM with nonionic 

detergents and the subsequent coating with ECM proteins such as collagen, fibronectin, 

laminin and vitronectin95. However, the biological tolerability and the clinical applicability of 

these techniques have yet to be proven.  

Against this background, it remains unclear, whether the transplantation of RPE sheets 

without any supportive matrix is superior to the injection of cell suspensions or not. Along 

with the RPE patches themselves, the utility of biodegradable polymers and amniotic 

membrane as temporary substrates must be evaluated after implantation in the subretinal 

space. Therefore, in order to determine the medical benefit of these promising strategies, in 

vivo examinations using animal models are mandatory. 

Retina Regeneration 

The neural retina is the key tissue of the eye, responsible for the conversion of light into 

electric signals that can be processed by the brain. The retina represents a highly specialized 
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part of the central nervous system that is frequently subject to both traumatic and genetic 

conditions. Retinitis pigmentosa96 for example, the group of hereditary conditions involving 

death of retinal photoreceptors, is a common cause of blindness worldwide and effective 

therapeutic options are still lacking. As yet, only one report using tissue engineering strategies 

applied to retina regeneration has been published, however, the potential for retina tissue 

engineering will be addressed shortly in the following paragraph. 

The discovery of neural stem cells in adult mammals97, even in the eye98, 99, raised the 

possibility for the development of powerful new therapeutic strategies, as the existence of 

these cells indicated a potential regenerative capacity of the retina. First evidence for the 

potential of neural stem cell transplantation to replace lost retinal cells emerged with the 

observation that adult hippocampus derived neural stem cells survived and integrated into the 

host retina after injection in the vitreous cavity of rats100. The cells, however, failed to express 

any retina-specific markers. Progenitor cells, isolated from rat embryonic retina, were 

demonstrated to express photoreceptor-specific markers after transplantation101, but they did 

not show migration and integration into the host retina comparable to that of the 

hippocampus-derived stem cells. Therefore, conditions must be defined that promote 

structural as well as functional integration of the transplanted cells into the retina102. Injury-

induced cues, for example, were demonstrated to play a significant role in promoting the 

incorporation of ocular stem cells/progenitors regardless of their origin or their differentiation 

along specific retinal sub-lineage103. By optimization of isolation, expansion and 

transplantation procedures of retinal progenitor cells, Qiu et al. were able to reach extensive 

rhodopsin expression as well as apparent integration of the cells within the host retina 

following subretinal transplantation into retina degeneration models104. The functional 

connections between grafted cells and the host retina, however, were not evaluated. These few 

examples can only give an indication of the large field of neural stem cell transplantation and its 

potential for retina regeneration; for more detailed information, we recommend the reviews by 

Klassen et al.105 and Ahmad et al.106  

The simple cell injection of retinal progenitor cells into the subretinal space or the vitreous is 

the most prominent experimental approach at the moment. A first report using retinal 

progenitor cells seeded on a highly porous scaffold was published by Lavik et al.107 They 

could demonstrate that cells up-regulate markers of differentiation after seeding onto a 

scaffold with pores oriented normally to the plane of the scaffold. Therefore, they conclude 

that the scaffold likely provides a useful system for delivering retinal progenitor cells and may 

assist in the formation of photoreceptors. These first data suggest that further advances in 
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tissue engineering could play an important role in the development of strategies to treat 

complex retinal pathologies in the future. Towards a clinical application, the isolation of 

human retinal progenitor cells from fetal108 as well as post mortem retina109 were important 

steps. In our opinion, further characterization of these cells, using for example reaggregated 

neurospheres110, 111 or 3D retina-like structures created in a bioreactor112, combined with the 

improvements in the field of biomaterials research and scaffold technologies could result in 

retinal grafts that are able to restore vision.  

Regeneration of the Lens 

The bulk of the human lens is composed of lens fibers. These fibers are derived from an 

epithelial monolayer, which covers the anterior face of the lens. Opacification of the lens, 

termed cataract, is the most common cause of visual impairment world-wide113. In addition to 

genetic disposition, cataracts are induced as a result of aging. At present, cataracts are only 

treatable by surgical removal of the opacified lens and the subsequent replacement by an 

artificial substitute, which is held in place by the remaining lens capsule114. The major 

complication of cataract surgery is posterior capsule opacification (PCO). PCO is usually 

secondary to the proliferation and migration of remaining lens epithelial cells and often 

necessitates another surgery115. If lens regeneration were to be successful in humans, there 

would be no need for such an operation116. 

Among vertebrates, however, only some urodeles and fish can regenerate their lens into their 

adult life. After lensectomy, lens regeneration in the adult newt, for example, begins with the 

dedifferentiation and proliferation of dorsal iris pigment epithelial (PE) cells. Then these cells 

differentiate into lenticular cells and produce a new lens. The whole process of 

dedifferentiation and differentiation into another cell type has been called 

transdifferentiation117. In mammals, lens regeneration has been observed in rabbits, cats and 

mice, but only if the lens capsule is left behind. Obviously, lens regeneration is not achieved 

by transdifferentiation as in newts, but by differentiation of lens epithelial cells that remain 

attached to the lens capsule118. However, the potential of PE cells to transdifferentiate is not 

restricted to urodeles and corresponding culture systems using PE cells from embryonic chick 

retina have been well established (see the reviews by Eguchi et al. for further information)119, 

120. 

In 2001, Tsonis et al. first reported on the differentiation of a human dedifferentiated retinal 

PE cell line (H80HrPE-6) into lentoids and lens-like structures. H80HrPE-6 cells cultured in 

MATRIGEL®, a commercially available basement membrane preparation extracted from a 
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murine tumor, were induced to synthesize crystallins and to form transparent structures 

resembling lentoids in vitro121. According to the authors, this cell line might provide an useful 

system for investigating the regeneration of the lens by human PE cells. Nevertheless, 

therapies based on these fascinating findings are still far away and one may question, if we 

will succeed in reconstructing the human lens with its outstanding abilities in the foreseeable 

future. Furthermore, with respect to the excellent outcomes achievable by the implantation of 

synthetic intraocular lenses, developing new therapeutic strategies in order to supersede 

cataract surgery may not be the urgent aim of the current research. 

Concluding Remarks 

The specific characteristics of the human eye, such as the sheet-like structure of many tissues 

and their diffusion-based nutrient supply, make it an ideal candidate for regeneration of 

diseased tissues using tissue engineering strategies. Consequently, significant progress has 

been made especially towards the regeneration of corneal epithelium. It seems feasible that 

engineered corneal grafts may be introduced into clinical therapy in the near future. Another 

promising field is the reconstruction of dysfunctional RPE. This could provide a curative 

therapy for degenerative diseases, such as ARMD. Long-term studies using animal models are 

currently under way. 

Surprisingly, there are only few initiatives towards the regeneration of the vitreous body. 

Consisting mainly of collagens and glycosaminoglycans, this avascular gel-like system would 

be an ideal tissue to be regenerated using tissue engineering strategies. Elucidating the role of 

hyalocytes, the only cell-type lining the cortex of this tissue, which is currently investigated 

by our group, will be a first step towards that goal122. 

However, despite of these fascinating perspectives, we should still be aware of the numerous 

obstacles to be overcome in bringing this technology to the clinics. Minimally invasive 

techniques that require clever approaches to properly place delicate tissues or persisting 

disease-related factors that may also damage the regenerated tissue are just two examples of 

the numerous obstacles that have to be overcome. 
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The eye is, undoubtedly, a fascinating and important organ, as it enables the perception of 

light and, therefore, the surrounding environment. Its structure and anatomy is thus 

completely dedicated to the task of focusing light onto the retina, the primary photosensitive 

tissue. 

 

Vitreous body

Hyalocytes

 
Figure 1: Schematic picture of a human eye 

The vitreous body occupies two-thirds of the eye and, therefore, represents its main 

compartment (Figure 1). It has a volume of about 4 ml and is located in the posterior eye 

between the lens and the retina1. This unique tissue consists of different collagens, especially 

type II, V/XI and IX, and glycosaminoglycans, the most important one being hyaluronic acid2. 

The center of the vitreous body is free of cells1, 3, however, in the cortex of the vitreous body, 

as well as in the vitreous base, there are a sparse number of cells, designated as hyalocytes4, 5. 

This gel-like system with a water content of about 98 % exhibits viscoelastic properties, with 

clearly elastically dominated behavior6. Therefore, the vitreous body is of significance for the 

eye due to its mechanical properties; it supports the shape of the eye and assists in holding the 

retinal tissues in place. 

In an increasing number of clinical situations, mostly related to the dramatically growing 

number of diabetes patients, removal of the vitreous body becomes necessary to prevent 

blindness7. This is either due to dysfunctionality of the vitreous body itself due to such 

problems as opacification or hemorrhage, or more often, due to detachment of the retina8. 

Subsequent to this surgical procedure, the removed tissue has to be replaced by an artificial 

substitute8, 9. Currently, highly purified silicon oils or perfluorocarbons are in clinical use, 

however, these materials are associated with a plethora of side effects including retinal 
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toxicity, especially in the long-term use9. To overcome these limitations, a variety of 

alternative biomaterials have been studied over the last decades8, 9, but none of them met 

clinical standards. The materials either showed severe side effects (found primarily in the 

hydrophobic materials studied) or they were degraded over time, thereby loosing their 

functionality (mainly observed for hydrophilic materials). 

During the last 15 years, tissue engineering emerged as an interdisciplinary science dedicated 

to the regeneration or replacement of tissues and organs. This young discipline has 

successfully introduced several new therapeutic options into the clinic, including advances in 

ophthalmology (Chapter 1). Based on these techniques, an innovative concept for vitreous 

replacement was developed in our group. By incorporation of the native cells of the vitreous 

body, namely hyalocytes, into a suitable and biocompatible material, a cellular vitreous 

substitute can eventually be developed. The combination of the vitreous body’s own cells 

with a biocompatible, hydrophilic biomaterial could overcome the commonly observed 

progressive loss in functionality associated with replacements that elicit only minimal side 

effects, since the substitute may be reorganized by the embedded cells. The proposed cell-

based vitreous substitute could thus yield a biocompatible vitreous replacement with long-

term stability, providing a novel therapeutic option after vitrectomy in the future. 

To pursue this promising development, it is mandatory to develop extensive knowledge about 

hyalocytes to precisely control them within a vitreous substitute. However, information about 

hyalocyte characteristics, their physiological and pathophysiological roles, as well as their 

suitability for tissue engineering applications is almost completely missing. To overcome 

these limitations, the presented work addresses some basic aspects of hyalocytes that are of 

importance for tissue engineering applications. 

As a basis for these studies, optimal in vitro culture conditions for hyalocytes needed to be 

defined. Therefore, the first study aimed to establish isolation and propagation conditions that 

reliably result in the growth of a sufficient number of hyalocytes within a limited number of 

propagation steps (Chapter 3). Furthermore, to facilitate hyalocyte characterization, markers 

indicating the functional properties of hyalocytes needed to be identified, since no such 

markers have been reported in the literature. The metabolic activity of the cells, namely the 

accumulation of glycosaminoglycans and collagens, seemed to represent suitable candidates 

that would concomitantly aid the assessment of these cells for tissue engineering applications. 

To that end, analytical methods that quantify these extracellular matrix components (ECM) 

accumulated by hyalocytes were established (Chapter 4). The culture conditions as well as 

the analytical tools to characterize the cells provided the basis for the following studies. 
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Using the methods developed, the influence of bioactive substances and growth factors on 

hyalocytes was elucidated. Since high concentrations of ascorbic acid (vitamin C) are a 

characteristic of the vitreous body and, furthermore, this vitamin is widely acknowledged to 

be an important supplement for cell cultivation, the next study was dedicated to the effect of 

vitamin C on hyalocytes (Chapter 5). The influence of the vitamin on cell proliferation and 

accumulation of extracellular matrix components (ECM) was investigated in two different 

culture systems, each of them mimicking some aspects of the native environment of 

hyalocytes. Additionally, the mRNA expression levels of various collagen genes was 

characterized using RT-PCR techniques. Because the effect of ascorbic acid on hyalocyte 

proliferation was found to be dependent upon the presence of pyruvate in the culture medium, 

a follow-up study was conducted to elucidate the interdependency of ascorbic acid and 

pyruvate on hyalocyte proliferation as well as ECM accumulation (Chapter 6). 

Control of hyalocyte behavior, especially with respect to proliferation and ECM 

accumulation, represents an important step towards the development of a cell-based vitreous 

substitute. Because basic fibroblast growth factor (bFGF) and transforming growth factor β-1 

(TGF-β1) are reported to manipulate these parameters in other cell types, the effects of the 

two factors on hyalocytes were investigated in the next study (chapter 7). In addition to 

proliferation and ECM production of the cells, hyalocyte morphology and internal actin 

organization were addressed. Because the ultimate goal of this research is clinical use of 

hyalocytes, fast cell expansion is desirable to minimize patient waiting times. To address this 

goal, sequential supplementation of bFGF followed by TGF-β1 was investigated. 

Subsequent to these first steps towards the control of essential hyalocyte functions, the 

necessity for hyalocyte culture systems that allow for investigations into cell-biomaterial 

interactions became obvious, since such interactions represent a key issue in developing a 

cell-based vitreous substitute. To this end, the goal of the next chapter was to establish a 

hyalocyte culture system that allows investigations into cell-biomaterial interactions under 

conditions similar to the native environment of hyalocytes (Chapter 8). Therefore, different 

hyalocyte in vitro culture systems were developed and studied using collagen type I as a 

model biomaterial. Furthermore, to clarify the suitability of the systems for studying growth 

factor effects, the influence of TGF-β1 on hyalocytes cultivated in these systems was 

elucidated. 

To further characterize the potential of hyalocytes for tissue engineering applications, more 

detailed information about characteristics such as their exact metabolic activity or 

differentiation markers is required. Hyalocytes, however, may not represent a homogeneous 
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population, according to some reports in the literature, and no precise isolation method for 

these different populations is available at the moment. To overcome this limitation, the last 

study (Chapter 9) focused on the development of an isolation and separation method for 

distinct hyalocyte populations using fluorescence-activated cell sorting (FACS). 
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Abstract 

The eye is a highly specialized organ that has been heavily investigated over the last several 

decades. The main compartment of the eye, the vitreous body, is associated with 

physiological as well as pathophysiological processes within the eye. However, there is only 

limited knowledge about the physiology and pathology of the tissue itself, as well as the cells 

within, named hyalocytes. Because in vitro cell culture is widely used for the investigation of 

cells, this could be a useful tool to study hyalocytes. However, there are only sparse reports 

about in vitro cultivation of these cells. 

The goal of the present study was the establishment of a reliable culture system for primary 

hyalocytes. To this end, a method based on enzymatic digestion of the vitreous body was 

established to isolate hyalocytes. Subsequently, the effects of different culture surfaces, 

culture media, seeding densities, and concentrations of fetal calf serum (FCS) on the 

proliferation of primary hyalocytes were elucidated. Although no differences between the 

culture surfaces or seeding densities investigated were observed, the culture medium clearly 

influenced hyalocyte proliferation. α-MEM or DMEM supplemented with 50 µg/ml ascorbic 

acid proved best. Furthermore, supplementation of 15% FCS favoured cell proliferation, 

whereas 5% FCS was more suitable for investigations on growth factor effects. Optimization 

of the investigated factors led to a cultivation method that allows for reliable in vitro 

cultivation of hyalocytes. The established culture conditions may enable further investigations 

into the characteristics of hyalocytes. 
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Introduction 

Vision is, undoubtedly, the most important human sense. Since optimal vision is obviously 

connected to a healthy eye, this highly specialized organ has been thoroughly investigated, 

and many physiological and pathological processes of the eye are well understood1, 2. This 

knowledge has even resulted in a variety of therapeutic options to treat a number of 

ophthalmic diseases3, 4. However, although the cornea, lens and retina are well-described 

ocular tissues, there is much less known about the vitreous body. Its anatomical structure has 

been thoroughly described5-8, but the physiology and pathology of the vitreous body and the 

cells within this tissue remain unclear9. 

The vitreous body is mechanically important for the shape of the eye because it fills the space 

between the lens and the retina. Furthermore, the viscoelastic system holds the retina in 

position, thus supplying the retina’s nutritional requirements from the underlying choroid 

membrane. In addition to these purely mechanical functions, the vitreous body inhibits the 

infiltrative growth of cells from adjacent tissues. This inhibition is achieved by a) the dense 

collagen structure of the vitreous cortex that acts as a mechanical barrier for ingrowing cells7 

and b) the vitreous body itself10, an effect that is probably caused by cytokines produced by 

hyalocytes11. Besides these physiological functions, the vitreous body is pathologically 

associated with vision-threatening ophthalmic diseases such as retinal detachment, which can 

be caused by mechanical forces induced by a degraded vitreous body12, 13. Furthermore, 

vitreous opacification inhibits light perception by the retina and can lead to blindness in 

severe cases14, 15. 

Although the vitreous body is associated with physiological as well as pathophysiological 

processes within the eye, there is little known about the physiology of this tissue and its cells. 

Hyalocytes are associated with the maintenance of the vitreous body as an avascular and 

transparent tissue16-18 and are probably involved in vitreoretinal diseases such as epiretinal 

membrane formation19, 20. Since hyalocytes are the only cells within the vitreous body, it is 

reasonable to assume that they are responsible for at least some of the physiological functions 

of the vitreous body. Although initial steps have been taken to characterize hyalocytes, much 

information, including characteristic markers for the cells and their metabolic activity, is still 

unknown. Therefore, additional knowledge about these cells could be the key to a better 

understanding of the physiology of the vitreous body. Frequently the basis for the 

understanding and treatment of pathological situations is firmly built on a complete 

knowledge of normal physiological processes.  
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In vitro cell culture is widely used for investigations into a plethora of cellular characteristics, 

cell functions, and molecular factors influencing cell processes21-24. Because more in-depth 

knowledge about hyalocytes could be the key to understanding and treating several ocular 

diseases, we intended to use in vitro culture of hyalocytes to study their characteristics and 

functions. However, widely accepted culture conditions for hyalocytes are not described in 

current literature. Because of this, we established conditions that reliably allow cultivation of 

freshly isolated, primary hyalocytes. This study addresses the influence of culture surface, 

basal medium, seeding density and concentration of fetal calf serum on the proliferation of 

primary hyalocytes that were isolated using an enzymatic digestion of vitreous gels.  

Materials and Methods 

Materials 

Dulbecco’s modified Eagle medium (DMEM, low glucose, with glutamine and pyruvate) was 

obtained from Biochrom (Berlin, Germany). Fetal calf serum was bought from Gemini Bio-

Products Inc. (Calabasas, CA, USA). Dulbecco’s phosphate buffered saline (PBS), 

penicillin/streptomycin, 0.25 % Trypsin-EDTA, Minimum essential medium α-modification 

(α-MEM) and DMEM/Ham’s-F12 were purchased from Invitrogen (Karlsruhe, Germany). 

Hoechst 33258 dye was obtained from Polysciences (Warrington, PA, USA). Papainase and 

collagenase type II were bought from Worthington (Lakewood, NJ, USA). L-Ascorbic acid in 

cell culture quality and hyaluronidase were obtained from Sigma (Steinheim, Germany). Cell 

culture plastics were purchased from Corning (Bodenheim, Germany) unless otherwise stated. 

Buffer for papainase digestion (PBE) was composed of 100 mmol Na2HPO4 (Merck, 

Darmstadt) and 10 mmol Na2EDTA (Merck, Darmstadt) in water, adjusted to pH 6.5.  

Methods 

Freshly isolated porcine eyes were kindly provided by a local abattoir. Within 4 hours of 

slaughter, the adherent eye muscles were removed and the eyes were washed in PBS buffer 

containing penicillin/streptomycin. Under aseptic conditions, the vitreous bodies were 

excised, examined macro- and microscopically, and subsequently digested with different 

amounts of collagenase type II and, in some cases, hyaluronidase for 3 hours in culture 

medium on an orbital shaker. After digestion, cells from about 20 vitreous bodies were 

pooled, centrifuged at 200 g for 7 min to remove the enzyme solution, and subsequently 

cultured in culture medium containing 15% fetal calf serum (FCS) and 100 IU/ml penicillin/ 

100 µg/ml streptomycin. For the investigation of FCS effects, the indicated concentrations of 



Chapter 3 Culture conditions for hyalocytes 

- 41 - 

FCS were used. Pictures of the primary cell isolate were taken after sedimentation of the cells 

for 1.5 hours in a T-25 flask using a Leica DM IRB inverted microscope with a phase contrast 

filter. Cells were cultured in an incubator at 37°C and 5% CO2 in a humidified environment. 

Detailed concentrations of digesting enzyme solution, as well as the culture medium used for 

each study, are displayed in Table 1. The first medium exchange was performed as indicated 

in Table 1.  

Varied 
parameter Digestion solution Culture medium First medium 

exchange after 
Culture 
period 

Determination 
of cell number 

Culture 
surface 

Collagenase type II 
(0.5 mg/ml) 

Hyaluronidase  
(0.1 mg/ml) 

DMEM 7 days 16 days DNA-
quantification 

Culture 
medium 

Collagenase type II 
(0.5 mg/ml) 

DMEM /  
α-MEM / 

DMEM-F12 
7 days 9 days Neubauer 

chamber 

Seeding 
density 

Collagenase type II 
(1.0 mg/ml) α-MEM 5 days 12 days DNA-

quantification 

Serum 
concentration 

Collagenase type II 
(1.0 mg/ml) 

DMEM/50 µg/ml 
ascorbic acid 2 days 9 days Neubauer 

chamber 

Table 1: Detailed culture parameters used in each study 

After the first medium exchange, media was renewed three times a week. The cells were 

cultured until the sample proliferating most rapidly reached confluency (see Table 1) and 

were then harvested using trypsin. Cell number was determined either by counting the cell 

number using a Neubauer chamber or by measuring the DNA amount of the samples (Table 

1). Prior to determination of the DNA amount of the samples, any residual proteins were 

digested for 16 hours in 125 µg/ml papainase in PBE buffer containing 5 mmol cysteine at 

60°C. DNA was quantified using the intercalating Hoechst dye 33258. Fluorescence of this 

dye is correlated with the amount of DNA in the sample. To extrapolate the number of cells 

from the amount of DNA measured in each sample, it was assumed there was 9.96 pg of DNA 

per cell, an amount, determined in a separate experiment correlating cell counts of a Neubauer 

chamber with DNA measurements (data not shown).  

Culture surface 

To study the influence of the culture surface, commercially available tissue culture plastics 

(TCP) from two different companies (Corning, Bodenheim, Germany, and Greiner Bio-One, 

Frickenhausen, Germany) and a collagen-coated surface were used. To coat TCP surfaces 
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with collagen, 100 µl of a 1 mg/ml Collagen A solution (Biochrom AG, Berlin, Germany) 

was used per 25 cm² of TCP and incubated at 37°C. After 10 min, the collagen solution was 

removed.  

Culture medium 

Dulbecco’s modified eagle medium (DMEM), DMEM mixed with Ham’s F12 in a ratio of 

1 : 1 (DMEM-F12), and Minimum Essential Medium Alpha Modification (α-MEM) were 

used to elucidate the effect of the basal media on hyalocyte proliferation during the primary 

culture.  

Cell seeding density 

To elucidate the effect of different seeding densities on hyalocyte proliferation, cells isolated 

out of 14 porcine eyes were suspended in 1.9 ml of medium. 100, 200 and 300 µl of this cell 

suspension were seeded in each well of a 6-well plate and cultured in 2 ml of medium 

containing 15% FCS.  

Concentration of fetal calf serum 

Concentrations of 5, 10 and 15% fetal calf serum in DMEM containing 100 IU/ml penicillin, 

100 µg/ml streptomycin, and 50 µg/ml ascorbic acid were used to investigate the influence of 

these serum concentrations on cell proliferation. After 9 days, cells were detached using 

trypsin and the cell number was determined using a Neubauer chamber. The influence of the 

serum concentration on hyalocyte proliferation was studied further after the first passage. 

Cells cultivated with 15% serum in the primary culture were subsequently cultured with 5%, 

10% or 15% serum. Cells cultivated with 5% or 10% serum in the first proliferation phase 

were cultured again with 5% or 10% serum after the first passage. Therefore, hyalocytes were 

seeded in a density of 2 000 cells/cm². Medium was exchanged after 2 days, and the cells 

were harvested after 4 days. After digestion of the samples, the cell number was determined 

using Hoechst dye 33258.  

Statistics 

If not otherwise stated, all data are presented as the mean ± standard deviation. Single-factor 

analysis of variance (ANOVA) was used in conjunction with a multiple comparisons test 

(Tukey’s test) to assess statistical significance at levels indicated in the figure captions. 
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Results & Discussion 

Hyalocytes are assumed to play an important role within the vitreous body, however, there is 

still not much known about these cells’ basic characteristics. To overcome these limitations, a 

number of parameters that influence primary cultures of hyalocytes were studied to establish a 

reliable in vitro hyalocyte culture system. 

Isolation of hyalocytes 

There are currently no known molecular markers specific for the cells of the vitreous body, 

known as hyalocytes. Lacking this basic tool for hyalocyte characterization, it was crucial to 

avoid any cross-contamination with cells from adjacent tissues during hyalocyte isolation. 

Cross-contamination was avoided by precise preparation of the tissues and subsequent 

washing of the excised vitreous bodies with sterile phosphate buffered saline. Because 

hyalocytes are attached to the vitreous gel, they were retained, while other cell types were 

washed away. This method yielded a preparation of vitreous bodies devoid of cells from 

adjacent tissues, such as the retinal pigment epithelium (RPE), as verified macro- and 

microscopically.  

A widely used cultivation technique for hyalocytes was described by Francois et al.25, 26 and 

was further improved by Kobuch et al.27. This isolation method, which requires mechanical 

dissociation of the tissue, did not reliably yield a sufficient number of hyalocytes within an 

acceptable culture time. We thus decided to digest the collagen structure of the vitreous body 

with collagenase type II and isolate the hyalocytes by centrifugation of the cell suspension. A 

similar method was described by Hilwig et al.28 and is widely used for the isolation of 

chondrocytes from native cartilage29, 30. Digestion of the isolated vitreous bodies approached 

completion after 3 hours, and digestion for 24 hours showed no beneficial effects. Addition of 

hyaluronidase to the digesting enzyme solution, as done in previous isolation methods, clearly 

did not enhance digestion. However, increasing the concentration of collagenase type II from 

0.5 mg/ml to 1 mg/ml increased the number of hyalocytes retrieved after centrifugation of the 

digested vitreous bodies. Therefore, after testing a series of enzyme solutions (Table 1), for all 

further studies hyalocytes were isolated by digesting vitreous bodies using a 1 mg/ml collagen 

type II solution for 3 hours. 
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Culture surface 

After successful isolation of hyalocytes, it was next necessary to determine the most suitable 

culture surface for cultivation and proliferation of the cells. Therefore, we studied the 

effectiveness of two different commercially available tissue culture plastics (TCP) as well as a 

collagen coating for primary culture of hyalocytes. 
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Figure 1: Adhesion and proliferation of primary hyalocytes on different culture surfaces, 
 n = 3. No significant differences could be observed. 

We did not observe any significant differences in cell adhesion and proliferation between the 

three different culture surfaces. In all groups, about 250 000 cells could be detected after 

16 days of culture (Figure 1). Therefore, we decided to use TCP plates from Corning® for 

further experiments. The high standard deviations observed in all primary culture experiments 

were due to the proliferation behavior of hyalocytes, since only a couple of cells started to 

proliferate during the primary culture, but these cells showed a high proliferation capacity and 

built large colonies (cf. Figure 3 in Chapter 9). The small standard deviation observed for the 

collagen-coated surface is assumed to be caused by chance. This behaviour has been 

previously described26, 31 and was also observed in subsequent studies. In this set of 

experiments, we exchanged medium for the first time after 7 days, because we wanted to give 

the cells additional time for adhesion to the culture surface. In subsequent studies, we 

shortened the time between cell seeding and first medium exchange to two days because we 

found the cells already attached to the culture surface by this time. 
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Culture medium 

The next important factor for hyalocyte culture was the choice of a suitable culture medium. 

We tested three different media that are all widely used for the cultivation of primary cells 

and cell lines. Dulbecco’s modified eagle medium32 (DMEM) was chosen as the medium with 

the smallest amount of nutrients, containing a low level of glucose (1.0 g/l), a small range of 

amino acids, some vitamins, and pyruvate. In addition, DMEM mixed with Ham’s F1232, 33 

(DMEM-F12) in ratio of 1:1 was tested. It contains smaller amounts of the same amino acids 

and vitamins, but more glucose (3.15 g/l), additional vitamins, such as biotin and vitamin 

B12, and more inorganic salts, such as cupric sulphate and zinc sulphate. Minimum Essential 

Medium Alpha Modification (α-MEM)34 was the culture medium with the highest level of 

nutrients studied; this medium contained the highest concentrations of amino acids as well as 

a broad range of vitamins, most notably 50 µg/ml of ascorbic acid.  
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Figure 2: Hyalocytes obtained after primary cultivation of the cells in different culture 
media; n = 3; * indicates statistical significance with p < 0.05. Greatest cell proliferation 
was observed in Alpha-MEM, probably due to the amount of ascorbic acid in this medium. 

After cultivation for 9 days, we observed no statistically significant difference between 

DMEM and DMEM-F12 (Figure 2). However, α-MEM significantly increased the cell 

number obtained after primary culture four-fold. This increase could be due to a variety of 

factors within the culture medium. As the native vitreous body contains about 100 µg/ml of 

ascorbic acid35, 36, and both other media lack ascorbic acid, the increase in the cell number 

could have been caused by this vitamin. To clarify this assumption, further studies on the 

effect of ascorbic acid on hyalocytes were performed (cf. chapter 5). 
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Cell density 

Another very important parameter for cell culture is the initial cell density. Cell seeding at 

very low densities theoretically supports optimum cell proliferation, because proliferation-

inhibiting cell-cell interactions are minimized. However, it is known from a variety of cell 

types that some minimum cell density is necessary to induce cell proliferation, probably 

caused by factors secreted into the culture medium37. To elucidate a seeding density that 

allows for optimal hyalocyte proliferation, this parameter was investigated by changing the 

initial cell density. For this study, the absolute number of primary isolated hyalocytes had to 

be determined. However, this could not be done reliably, as the primary cell isolate is made 

up of a mixture of different cells. 

 
Figure 3: Primary cell isolate out of porcine vitreous bodies. The cells were allowed to 
sediment for 1.5 hours. The image was taken on a phase-contrast microscope. Scale bar 
represents 50 µm. The primary isolate contains cells of different sizes and shapes. 

Figure 3 shows the primary cell isolate from vitreous bodies using phase-contrast microscopy 

after 1.5 hours of cell sedimentation. Cell sedimentation was necessary to obtain a clear 

picture of a high number of isolated cells while avoiding a second centrifugation step. 

According to Figure 3, the isolate contained both very small and large bright cells, as well as 

some dark cells that had already adhered to the culture surface. Because of this variety, it was 

difficult to reliably quantify the absolute cell number using non-destructive methods such as 

the Neubauer chamber. To that end, instead of a known cell number, different volumes 

(100µl, 200 µl, and 300 µl) of the same primary hyalocyte suspension were seeded in culture 

plates and cultivated using α-MEM as basal medium. This method allowed the variation of 

relative seeding densities. After 12 days of cultivation, in groups seeded with 100 or 200 µl of 

primary hyalocyte suspension, about 400 000 cells were found, as determined by 
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quantification of the DNA amount, whereas about 700 000 cells were observed in the 300 µl 

group (Figure 4, black bars). Because all of the groups started with a different number of 

cells, we divided the cell number determined after cultivation by the initial volume of cell 

suspension to calculate their proliferation rate (Figure 4, grey bars). The lowest seeding 

density showed the highest proliferation rate, however there was no statistically significant 

differences among the different seeding densities. In this study, standard deviations were once 

again very high, especially in the group with the lowest seeding density. This was due to the 

proliferation behavior of the primary cells mentioned above.  
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Figure 4: Effect of the relative seeding density on the number of hyalocytes obtained after 
primary culture, n = 3. Black bars and left y-axis indicate the absolute cell number; grey bars 
and right y-axis indicate the relative cell number (absolute cell number divided through the 
relative seeding density). No significant influence of the seeding density could be observed. 

To summarize, starting cell density had no significant effect on the proliferation behavior of 

the cells (Figure 4). One possibility for this null effect is that it could simply be a property of 

hyalocyte proliferation; hyalocyte proliferation may be independent of the starting cell 

density. Another possibility is that the seeding densities used were too low to allow for 

interactions between the cells. Since this second explanation seemed more plausible, we tried 

to optimize the primary culture for our subsequent studies by seeding approximately 900 µl of 

primary hyalocyte suspension on a comparable culture surface. We also cultivated all isolated 

cells in one culture flask to exclude possible variations between different flasks and, therefore, 

to provide a more homogeneous cell pool for subsequent experiments. This cultivation 

method yielded a reliable and reproducible primary culture of hyalocytes. 
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Fetal calf serum concentrations 

In all of the above studies, the culture medium was supplemented with 15% fetal calf serum 

(FCS). Since FCS is a protein mixture containing a plethora of different growth factors, it 

seems advantageous to use high levels of serum to improve cell proliferation. However, for 

the investigation of growth factor supplements, high concentrations of FCS could be 

disadvantageous, since a high level of an uncharacterized mixture of growth factors could 

mask the effect of the supplemented factor. Therefore, we studied the influence of different 

concentrations of FCS on the proliferation of hyalocytes during primary culture (passage 0), 

as well as during the first passage. Since this study was also to provide a baseline for the 

investigation of ascorbic acid effects on hyalocytes (cf. chapter 5), ascorbic acid-free DMEM 

was used as basal medium instead of α-MEM. However, due to preliminary studies indicating 

that ascorbic acid enhances hyalocyte proliferation, we supplemented the media with 

50 µg/ml of ascorbic acid during the first passages. 
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Figure 5: Influence of different serum concentrations on the proliferation of hyalocytes. A) 
Cell numbers obtained after primary culture of hyalocytes with different amounts of fetal calf 
serum (FCS). B) Cell numbers obtained after proliferation of first-passage hyalocytes with 
different amount of FCS. The two-digit combinations indicate the concentration of FCS 
during the primary culture (first digit) and after the first passage (second digit); 
concentrations of 15% of FCS during both passages clearly showed best results 

During the primary culture we observed an 8-fold increase in the cell number upon 

supplementation of 15% FCS to the medium when compared to supplementation of 5% or 

10% FCS (Figure 5A). After passage 1 (Figure 5B), we again observed the highest cell 

proliferation with 15% serum supplementation (15-15). Supplementation of 10% or 5% FCS 

during the second passage, after cultivation with 15% FCS during passage 0 (groups 15-10 

and 15-5), clearly decreased cell proliferation compared to the optimal conditions. The groups 

receiving 10% FCS (10-10) or 5% FCS (5-5) during both passages showed only a low 
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proliferation rate, however, the cells were still viable and showed proliferation. These results 

clearly indicate that 15% FCS in the culture medium is appropriate for augmentation of 

hyalocyte proliferation, as the cells are highly proliferative under these conditions. 

Supplementation of 5% serum, in contrast, is sufficient to keep the cells alive and 

proliferating slowly. Therefore, this low FCS concentration seems ideal for the investigation 

of growth factor effects on hyalocytes.  

Summary 

As a result of the above-mentioned studies, the following conditions were deemed optimal for 

primary culture of hyalocytes:  

• Hyalocyte isolation is best done by digestion of excised vitreous bodies using a 

1 mg/ml solution of collagenase type II for 3 h at 37°C while shaking;  

• Hyalocytes should be seeded in a relatively high concentration on commercially 

available tissue culture treated plastics subsequent to centrifugation of the primary cell 

suspension for 7 min at 200 g; 

• Primary cell culture is ideally performed in α-MEM (or DMEM supplemented with 

50 µg/ml ascorbic acid, according to chapter 5) containing 15% fetal calf serum with 

the first medium change after two days; 

• After first passage, 15% FCS should be supplemented to promote further hyalocyte 

proliferation. 

Conclusions 

To conclude, enzymatic digestion of vitreous bodies represents a useful technique for the 

isolation of hyalocytes. Furthermore, primary culture of these cells was optimized by studying 

various factors, such as culture surface, culture medium, seeding density and serum 

concentration. Taken together, the established cultivation procedure results in the reliable in 

vitro cultivation of hyalocytes. This allows for further investigations into the characteristics of 

hyalocytes, the determination of identification and differentiation markers for these cells, and 

the identification of influential factors on cell behavior. 
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Abstract 

Although the vitreous body represents the main compartment of the eye, knowledge about the 

physiology of this tissue remains limited. Since it is speculated that hyalocytes, the cells of the 

vitreous body, are involved in the physiological functions of the vitreous body, a more 

complete characterization of these cells might yield a better understanding of the vitreous 

body. However, markers indicating the functional properties of the cells are still missing. 

Since hyalocytes are reported to produce glycosaminoglycans and collagens, the accumulation 

rate of these extracellular matrix components may provide a surrogate marker. Therefore, the 

work presented here aimed at the establishment of analytical methods to quantify the small 

amounts of these components accumulated by the cells. The commercially available 

ClinRep® Kit proved unsuitable for quantification of hyalocyte collagen accumulation. In 

contrast, the widely used method described by Woessner et al. was found satisfactory after 

downscaling to a microplate method, which decreased the detection limit by one order of 

magnitude. To achieve this, however, several influential factors such as the salt- and reagent-

concentrations had to be optimized. For quantification of the accumulation of 

glycosaminoglycans, the method described by Farndale et al. proved adequate when 

chondroitin sulfate was used as a standard.  

To conclude, in the present work, analytical tools that quantify glycosaminoglycan and 

collagen accumulation by hyalocytes were developed. These methods may allow for further 

characterization of hyalocytes, especially with respect to their potential for tissue engineering 

applications. 
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Introduction 

The vitreous body represents the main compartment of the mammalian eye. This transparent, 

gel-like tissue consists of different collagens and glycosaminoglycans (GAG) and has a water 

content of about 98%1. The predominant collagen in the vitreous is the fibrillar type II 

collagen, accounting for approximately 75% of the total collagen, whereas the fibrillar 

collagen type V/XI, as well as the non-fibrillar collagen type IX, represent minor 

components1. Among the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan 

sulfate were observed in the vitreous1. Non-sulfated hyaluronan is the predominant GAG in 

the mammalian vitreous body, whereas chondroitin sulfate predominates in avian vitreous2. In 

its center, the vitreous is an acellular system, however the vitreous cortex and the basal 

vitreous contain a low concentration of cells named hyalocytes3. 

Hyalocytes were shown to be derived from the bone marrow4 and are thought to belong to the 

monocyte/macrophage lineage5. However, they differ significantly from other tissue 

macrophages in that they express S100 protein and do not express CD686. Physiologically, 

these cells are thought to be involved in the maintenance of the vitreous as an avascular and 

transparent tissue7-9; pathologically, they are probably involved in diseases of the vitreoretinal 

interface8. Therefore, hyalocytes may have a house-keeping function within the vitreous.  

Although hyalocytes are well-described histo- and microscopically, many of their 

fundamental functional properties remain to be elucidated. In this context, markers related to 

functional cell properties are necessary. Since hyalocytes were shown to produce the 

extracellular matrix (ECM) components that the vitreous body is built on, especially GAG10-12 

and collagens13; 14, accumulation of these components by hyalocytes may be a suitable marker 

for the characterization of some functional cell properties, with important implications for 

tissue engineering applications.  

For quantification of collagens and GAG in tissue samples, the methods described by 

Woessner et al.15 and Farndale et al.16 are widely used in cartilage tissue engineering17; 18. The 

amount of hydroxyproline (HYP), an amino acid that is present in significant amounts 

exclusively in collagen, is determined as a measure for collagen; the content of negatively 

charged GAG is quantified by a color reaction with a positively charged dye. However, these 

colorimetric methods showed limitations for the analysis of hyalocyte samples. The small 

amounts of HYP accumulated by hyalocytes were below the detection limit of the method. To 

quantify the GAG amounts accumulated by hyalocytes, a suitable standard substance is 

necessary. Therefore, the goal of the present study was to establish analytical methods that 
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allow for the quantification of ECM components produced by hyalocytes. To achieve this, an 

HPLC-based analytical method for HYP determination was developed. An alternative to this 

was also developed; the colorimetric quantification of HYP after oxidation with chloramine T 

and coupling with dimethylamino benzaldehyde as described by Woessner was downscaled to 

a microplate scale. For investigations into glycosaminoglycan accumulation by hyalocytes, a 

standard substance suitable for GAG quantification by the method of Farndale et al. was 

established.  

Materials and Methods 

Materials: 

Unless otherwise stated, reagents were obtained from Sigma (Steinheim, Germany). 

ClinRep® Kit for determination of hydroxyproline in urine was an appreciated gift from 

Recipe® (Munich, Germany). Hydrochloric acid, dimethylaminobenzaldehyde, chloramine T, 

Na2EDTA, Na2HPO4 and sodium chloride were bought from Merck (Darmstadt, Germany). 

Papainase was purchased from Worthington (Lakewood, NJ, USA). Phosphate buffer EDTA 

(PBE) was composed of 100 mmol Na2HPO4 and 10 mmol Na2EDTA in water, adjusted to 

pH 6.5.  

Methods: 

To test the linearity of the established analytical methods, samples of hyalocytes cultivated 

with different amounts of ascorbic acid were analyzed. The cells were harvested and freeze-

dried (Christ Beta 2-16, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, 

Germany) at 20°C and 0.120 mbar for 16 hours. The dry samples were, subsequently, 

digested in 300 µl of a 125 µg/ml papainase solution in PBE buffer containing 5 mmol 

cysteine for 18 hours at 60°C. 

Hydroxyproline determination using the ClinRep® Kit 

The hydroxyproline content, an accepted measurement for collagen, of hyalocyte samples 

cultivated with 200 µg/ml ascorbic acid was determined using the reagents and the HPLC-

column provided in the ClinRep® Kit according to the manufacturer’s instructions. In brief, 

after addition of an internal standard, 100 µl of the samples were completely hydrolyzed with 

hydrochloric acid for 16 hours at 95°C, followed by a first derivatization at pH 8.5 – 9.0 and 

room temperature. Subsequent to a second derivatization with a UV/VIS-detectable 



Chapter 4 Analytics of ECM components 
 

- 57 - 

compound for 10 min at 70°C in a water bath, the samples were diluted and 20 µl of each 

sample were analyzed using an HPLC system with UV/VIS detection at 471 nm (Shimadzu, 

Duisburg, Germany). To identify the obtained peaks, different amounts of HYP up to 4 µg 

were supplemented to the cell sample prior to HYP quantification. For data acquisition and 

analysis, the ClassVP 6.12 software (Shimadzu) was used. 

Photometric determination of hydroxyproline 

Unless otherwise stated, 100 µl of HYP-containing sample were oxidized with 50 µl of a 

0.05 M solution of chloramine T in a citrate buffer (pH = 6) in a microtiter plate at room 

temperature for 20 min. Subsequent to the addition and mixing of 50 µl of a 15% (m/m) 

dimethylaminobenzaldehyde solution in 4 mol perchloric acid in 70 % isopropanol/water 

(m/m), the plate was incubated for 30 min at 60°C. After cooling the plate to room 

temperature, the absorbance of the samples was immediately measured at 557 nm on a 

microplate reader (CS-9301 PC, Shimadzu, Duisburg, Germany). 

To study the influence of the salt concentration on this analytical method, absorption of 

increasing amounts of HYP in different concentrations of sodium chloride were measured. To 

elucidate the effect of cysteine on the color formation, varying amounts of HYP either in 

water, in PBE containing 5 mM cysteine (PBE/cysteine), or in PBE/cysteine supplemented 

with an additional 10 mg/ml cysteine were analyzed. Furthermore, for investigations on the 

effect of chloramine T, the resulting absorptions of increasing amounts of HYP in 

PBE/cysteine after treatment with different concentrations of chloramine T (0.05 M, 0.1 M 

and 0.25 M) were determined. 

Hydroxyproline determination in cell samples 

One and two equivalents, exactly 50 and 100 µl, of cell samples cultivated with different 

amounts of ascorbic acid (Control, 50 and 200 µg/ml, n=3) were hydrolyzed with equal 

amounts of fuming hydrochloric acid at 105°C for 16 hours. After hydrolysis, hydrochloric 

acid was evaporated under a constant flow of nitrogen at about 40°C. The dry samples were 

dissolved in 500 µl double distilled water. Standard dilutions of hydroxyproline were 

prepared in PBE/cysteine buffer including 125 µg/ml papainase and treated under identical 

hydrolyzation conditions. Subsequent to hydrolysis, 100 µl of each cell sample and standard 

were analyzed as described above.  
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Determination of glycosaminoglycans 

Glycosaminoglycan (GAG) content was measured photometrically as previously described16; 

19. In brief, after digestion of interfering proteins with papainase, the glycosaminoglycan 

content was determined by a color reaction with dimethylmethylene blue at pH = 3, followed 

by measurement of the absorption at 525 nm after exactly 15 s. Standard curves were 

prepared with either chondroitin sulfate or hyaluronic acid.  

To discriminate between sulfated glycosaminoglycans and hyaluronic acid as non-sulfated 

GAG, the sulfated compounds were removed by adsorption to diethylaminoethylsepharose 

CL-6B (DEAE) as previously described20. Therefore, equal amounts of sample and DEAE-

sepharose [20 % (v/v) suspension in 1 M NaCl, 10 mM Tris, pH=7.4] were incubated for 

15 min and, subsequently, centrifuged for 5 min at 13000g. Remaining GAGs in the 

supernatant were due to hyaluronic acid and quantified using the color reaction described. 
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Figure 1: HPLC chromatograms of the hydroxyproline determination using the ClinRep® 
Kit. Hydroyproline was eluated after 2.6 min, the internal standard after 4.2 min, as indicated 
by the control. Pure cell samples showed besides the internal standard a small peak after 2.9 
min (Hyalocyte sample). This peak was not due to HYP, as supplementation of different 
amounts of HYP showed an additional increasing peak eluted after 2.6 min (Hyalocyte 
samples + HYP). 
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Results 

ClinRep® Kit for determination of hydroxyproline 

The derivatisation conditions as well as the HPLC method for samples analysis were 

successfully established using calibration samples as well as controls provided by Recipe® 

(data not shown). The obtained chromatogram of the provided control showed, as denoted by 

the manufacturer, a peak for HYP eluted after 2.6 min and a peak of the internal standard 

eluted after 4.2 min (Figure 1). In chromatograms of hyalocyte samples, besides a distinct 

peak at 4.2 minutes indicating the internal standard, a small peak at 2.9 minutes could be 

observed (Figure 1). To clarify, whether this peak was due to HYP, different amounts of HYP 

up to about 4 µg were supplemented to the hyalocyte samples. Due to HYP addition an 

additional, increasing peak eluted after the expected 2.6 min was found. This indicates that the 

small peak in the hyalocyte sample observed at 2.9 min does not represent HYP. 

Influence factors on colorimetric hydroxyproline determination 

According to Woessner et al.15, the concentrations of salts as well as some amino acids, 

foremost cysteine, within the sample have a clear impact on the colorimetric deterimation of 

HYP, as they influence the oxidation as well as coupling reaction with dimethylaminobenz-

aldehyde. Therefore, these parameters were studied to establish the analytical method with 

minimized sample volumes.  

Sodium chloride in concentrations up to 1 mol/l in the sample exhibited no influence on the 

colorimetric detection of HYP (Figure 2). A linear relation between the HYP amounts and the 

absorptions of the built dye could be observed in a range of 0.01 to 0.2 µg HYP per sample, 

independent of the NaCl concentration.  

In contrast to sodium chloride, cysteine clearly affected the dye formation (Figure 3). 

Compared to HYP in water, identical amounts of HYP in PBE containing 5 mmol cysteine 

(PBE/cysteine) led to a clearly decreased absorption. Further supplementation of 10 mg/ml 

cysteine to PBE/cysteine blocked the color reaction almost completely, indicated by minimal 

absorptions even in the sample containing 0.3 µg HYP.  
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Figure 2: Influence of different NaCl concentrations on the determination of hydroxyproline; 
similar absorptions of different hydroxyproline amounts were observed, independent of the 
NaCl concentrations within the samples. 

Chloramine T also influenced the colorimetric determination of HYP (Figure 4). Compared to 

0.05 M chloramine T, concentrations of 0.1 and 0.25 mM decreased the measured absorptions 

of the built dye. However, even in the highest concentration of chloramine T tested, a 

dependency of the measured absorption to the HYP amount was observed. 

Determination of hydroxyproline in cell samples 

After hydrolysis and evaporation of the hydrochloric acid, the hydroxyproline content of 

different hyalocyte samples could reliably be determined using the established assay. As 

indicated in Figure 5, the HYP measurements of different cell samples led to consistent 

amounts of hydroxyproline per group, no matter whether one or two equivalents of the sample 

volume were used for the assay. Moreover, amounts of hydroxyproline as small as 0.1 µg in 

the control group could clearly be detected. 
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Figure 3: Influence of cysteine on the measured absorption of hydroxyproline after 
colorimetric reaction; cysteine clearly decreased the absorptions of HYP samples measured 
after color reaction. 

Determination of glycosaminoglycans 

Both important types of glycosaminoglycans (GAG) present in the vitreous body, hyaluronic 

acid and chondroitin sulfate, could be determined using the method previously described 

(Figure 6)16. Equal amounts of chondroitin sulfate showed, thereby, clearly higher absorptions 

compared to hyaluronic acid. Up to 5 µg, a linear relationship between the amounts of each 

glycosaminoglycan and the measured absorption were observed. 

Glycosaminoglycans in cell samples 

Clear amounts of GAG could be determined in hyalocyte samples after papainase digestion 

(Figure 7). By standardization of the measured absorptions to hyaluronic acid, significant 

differences in the amounts of glycosaminoglycans were observed, ranging from 30 to 90 µg in 

the group with 200 µg/ml ascorbic acid supplementation, dependent on the volume used for 

the analytics (Figure 7 A). After removal of the sulfated glycosaminoglycans in the samples 

by treatment with diethylaminoethylsepharose (DEAE), these differences could not be found. 

However, the measured amounts of hyaluronic acid were determined to be 25 µg in the group 

with ascorbic acid, and therefore, were significantly smaller compared to the untreated 

samples. In contrast to the standardization to hyaluronic acid, standardization to chondroitin 

sulfate exhibited reproducible amounts of glycosaminoglycan per sample independent of the 

used analytic volume even in the untreated sample (Figure 7 B). Using chondrotin sulfate as 
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standard, we found 30 µg of glycosaminoglycans in the cell samples cultivated with 

200 µg/ml ascorbic acid.  
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Figure 4: Influence of different chloramine T concentrations on the color formation used for 
hydroxyproline determination; concentrations above 0.05 M decreased the absorption of the 
built dye. 

Discussion 

The production of extracellular matrix components by hyalocytes seems to be a suitable 

marker that indicates some functional properties of the cells. This study describes the 

establishment of analytical methods that allow for the determination of collagens and 

glycosaminoglycans accumulated by hyalocytes.  

For collagen determination, most of the commonly used methods quantify hydroxyproline as 

marker for collagen, as this amino acid is present in considerable amounts exclusively in 

collagen. Quantification of HYP using the method described by Woessner et al.15, however, 

was not suitable for hyalocyte samples due to its high detection limit of about 1 µg HYP per 

sample. The commercially available ClinRep® Kit, an HPLC based method for the clinical 

determination of HYP in urine, seemed to be an useful alternative, as this method, according 

to the manufacturer, has a lower detection limit of about 0.25 µg HYP per sample. Therefore, 

this analytical method was successfully established using controls and calibration samples 

provided by the manufacturer (data not shown). Hyalocyte samples, however, showed besides 

the peak for the internal standard only a small peak eluted at about 2.9 min (Figure 1). 

Addition of different amounts of HYP to the cell samples clarified this peak not to be related 

to HYP. This indicated that the peak at 2.9 min may be due to any other substance present 
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within the vast matrix of substances after digestion of the cell sample. However, as no clear 

peak at 2.6 min could be observed, the ClinRep® method seemed not suitable for 

determination of HYP in hyalocyte samples.  
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Figure 5: Determination of hydroxyproline in hyalocyte samples cultured with different 
amounts of ascorbic acid using the down-scaled method according to Woessner et al.; similar 
amounts of HYP were calculated for the samples in one group, independent of the analytical 
volume of 1 or 2 equivalents.  

As alternative to the HPLC based method, the photometrical method by Woessner15 was 

downscaled to allow detection of amounts as small as 0.05 µg HYP per sample. Therefore, the 

volume of analytical sample was reduced to a microplate scale with 100 µl. To achieve the 

necessary neutral pH of the sample after hydrolysis with HCl, the acid was evaporated under a 

flow of nitrogen at about 40°C instead of neutralization of the sample, as suggested by 

Woessner. This led to a dry sample and allowed, therefore, dissolution of the hydrolysed 

sample in small, distinct volumes of distilled water. As, according to Woessner, the salt as 

well as some amino acid concentrations, thereby most important cysteine, within the sample 

interfere with the color formation, this solution volume had to be optimized. Therefore, 

investigations into the influence of different concentrations of sample ingredients on the 

subsequent color reaction of HYP were performed; in detail, the effects of varying sodium 

chloride, cysteine, and chloramine T concentrations were studied. According to figure 2, 

different sodium chloride concentrations up to 1 M exhibited no influence on the color 

reaction of HYP. In contrast to this result, Woessner describes a slight decrease of about 3.5% 

in color formation due to 1 M NaCl. This discrepancy may be caused by the different amounts 

of HYP measured in the respective study; in the present study amounts up to 0.2 µg HYP 

were used whereas 5 µg were used in Woessner’s experiments.  
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Figure 6: Absorptions of different amounts of chondroitin sulfate and hyaluronic acid 
measured after addition of dimethylmethylene blue dye; both glycosmaminoglycans could be 
quantified using the method described by Farndale et al.16, chondroitin sulfate showed higher 
absorptions compared to hyaluronic acid. 

In contrast to sodium chloride, cysteine included in the digestion buffer PBE/cysteine clearly 

decreased the measured absorption of HYP subsequent to color formation (Figure 3); addition 

of 10 mg/ml of cysteine even blocked the color formation completely. This was most 

probably due to the reducing potential of the cysteine that counteracts the chloramine T. To 

overcome this problem, removal of cysteine prior to HYP determination seemed to be 

obvious. This, however, was not possible as cysteine represented a necessary cofactor for 

papainase digestion and this digestion, again, displayed a mandatory step for quantification of 

glycosaminoglycans within the hyalocyte sample. Because of this, increased amounts of 

chloramine T should compensate the cysteine effect. Chloramine T, for its part, however, was 

found to decrease the color formation itself in concentrations higher than 0.05 M (Figure 4). 

To this end, a compromise between the cysteine amount in the analytics, the used chloramine 

T concentration, and the necessary detection limit for HYP had to be found. This compromise 

could be achieved by dissolving the dry hydrolysate in 500 µl of water and subsequently, 

using 100 µl of this solution for the photometric assay and a 0.05 M chloramine T solution for 

oxidation.  
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Figure 7: Determination of glycosaminoglycans in hyalocyte samples cultured without or 
with 200 µg/ml of ascorbic acid; A) Values before and after removal of sulfated 
glycosaminoglycans with DEAE calculated after determination of 1 or 2 equivalents of 
analysis sample standardized to hyaluronic acid; B) Calculated values after determination of 
1 or 2 equivalents of analysis sample standardized to chondroitin sulfate; GAG of untreated 
sample should be standardized to chondroitin sulfate, after treatment with DEAE 
standardization to both substances showed reproducible results. 

Determination of the hydroxyproline contents of hyalocyte samples that were cultivated with 

different amounts of ascorbic acid assured that the established analytical method reliably 

worked using the digested cell sample as analytical matrix (Figure 5). Furthermore, the 

linearity of the HYP determination was verified by analysis of different volumes of each 

sample and subsequent calculation of the whole amounts of HYP within the samples 

(Figure 5). Therefore, the outlined assay, a down-scaled variant of the method described by 

Woessner, enabled quantification of the HYP content of hyalocyte samples even in amounts 

as small as 0.1 µg per sample. 

Besides accumulation of collagen, the production of GAG seems to be a suitable marker for 

functional characterization of hyalocytes. Using the widely accepted method described by 

Farndale et al.16, clear amounts of GAG produced by hyalocytes could be determined. 

However, as accumulated GAGs probably present not a single defined substance, the question 

arose, which type of GAG suits best for standardization of the measured values. Chondroitin 

sulfate as well as hyaluronic acid showed both clear absorptions in the mentioned assay and, 

therefore, contribute both to the measured absorptions (Figure 6); the observed absorptions of 

chondroitin sulfate, however, were higher compared to equal amounts hyaluronic acid. To 

identify the better suited standard substance for characterization of GAGs accumulated by 

hyalocytes, samples of digested cells cultivated under different conditions were analyzed and 

the observed absorptions were subsequently standardized to chondroitin sulfate as well as to 

hyaluronic acid (Figure 7). Similar to the collagen analytics outlined above, again one and 
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two equivalents of sample volume were analyzed and the whole amount of GAG per sample 

was calculated. Identical values of GAG per whole sample indicated linearity of the analytical 

method. As, in contrast to hyaluronic acid, standardization to chondroitin sulfate resulted in 

comparable amounts of GAG per sample (Figure 7), this type of GAG seems to be a suitable 

standard to characterize the complete amount of GAG accumulated by hyalocytes. To further 

characterize the accumulation of GAGs by hyaloyctes, differentiation between sulfated and 

non-sulfated GAGs seemed useful. This was possible after removal of sulfated GAGs by 

DEAE treatment. The remaining amount of hyaluronic acid per sample could also be 

quantified using the method by Farndale. 

Conclusions 

The present work outlines analytical methods that allow for quantification of collagen and 

glycosaminoglycans accumulated by hyalocytes. As these ECM components seem to be 

markers that enable conclusions to the functional properties of hyalocytes, the established 

analytics may allow for functional characterization of hyalocytes. Moreover, a better 

knowledge about ECM accumulation of hyalocytes and influence factors thereon probably 

enable the elucidation of their potential for tissue engineering.  
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Abstract 

Ascorbic acid is known to modulate the proliferation and functional properties of several 

intraocular cell types. In this study, the effect of ascorbic acid on the proliferation and 

functional properties of hyalocytes was evaluated. To this end, hyalocytes were cultured with 

different amounts of ascorbic acid in classical 2-D cultures and a 3-D pellet culture system. 

Ascorbic acid enhanced hyalocyte proliferation dose-dependently in concentrations between 

0.1 and 3 µg/ml; proliferation was constant over a wide concentration range up to 150 µg/ml, 

concentrations of 500 µg/ml showed toxic effects. In 2-D hyalocyte culture, the accumulation 

of glycosaminoglycans and collagens was increased in response to ascorbic acid 

supplementation of 10 or 200 µg/ml. Normalized to the cell number, GAG production was not 

influenced, whereas collagen production was increased. These results could be verified in a 

pellet-like 3-D culture system. Ascorbic acid also influenced hyalocytes on the mRNA-level; 

the expression of COL11A1 was clearly enhanced by ascorbic acid. To conclude, ascorbic 

acid modulates proliferation and collagen accumulation of hyalocytes; it also influences 

mRNA expression of the cells. Taken together with the fact that ascorbic acid influences 

several other intraocular cell types, this study further establishes its role as a modulator of the 

intraocular environment. 
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Introduction 

The vitreous body is the main component of the vertebrate eye. This gel-like system with a 

water content of about 98% consists mainly of collagens and glycosaminoglycans1 with a 

single layer of cells in the cortex of the vitreous2, 3. The most abundant collagen in the 

vitreous is the fibrillar collagen type II, accounting for approximately 75% of the total 

collagen. Other important collagens are the fibrillar collagen type V/XI, containing α1(XI) 

and α2(V) chains, and collagen type IX, a non fibrillar collagen. Among the 

glycosaminoglycans (GAG) within the vitreous, the non-sulfated hyaluronic acid plays a 

predominant role, whereas the sulfated GAGs, such as chondroitin sulfate or heparan sulfate, 

represent only minor components1. Because of its simplicity and the lack of blood vessels 

within the tissue, the vitreous body seems to be an ideal target for regeneration via tissue 

engineering strategies. Furthermore, the cells within the vitreous seem to hold potential for 

reorganization of this transparent tissue4. 

The cells in the cortex of the vitreous body were described for the first time by Hannover in 

18405 and Henle in 18416. These so-called hyalocytes show a macrophage-like structure7-9, 

express antigens typical for monocytes and macrophages, and are, therefore, thought to 

belong to the reticuloendothelial system10. Recent studies investigating rodents with green 

fluorescent protein transfected bone marrow demonstrated the cells to be derived from the 

bone marrow and to be replaced totally within 7 months11. Although hyalocytes were 

identified over one and a half centuries ago, there is limited knowledge about the function of 

the cells within the adult vitreous. In the literature, hyalocytes are often referred to as resting 

cells8, 12, 13, however, they have been demonstrated to produce extracellular matrix (ECM) 

components like hyaluronic acid14-19 and collagen4, 20. Physiologically hyalocytes are 

associated with the maintenance of the vitreous as an avascular and transparent tissue7, 21-23; 

pathologically the cells are thought to be involved in diseases of the vitreoretinal interface22. 

The cells may, therefore, have a house-keeping function within the adult vitreous. 

A characteristic of the mammalian vitreous body is its ability to accumulate ascorbic acid to 

about 150 µg/ml, a concentration about ten times higher than that in plasma24-26. These high 

concentrations of ascorbic acid play a major role in oxidative protection of the eye27. 

However, ascorbic acid also has an effect on cell proliferation in tissues adjacent to the 

vitreous body, such as retinal pigment epithelial cells (RPE). Ascorbic acid was shown to 

inhibit proliferation of RPE cells28-30 as well as proliferation of cultured lens epithelial cells 31 

and vascular endothelial cells32. Ascorbic acid has also been shown to influence the functional 
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properties of different cell types in the eye. Trabecular meshwork cells, for example, showed 

an increase in collagen type I expression due to ascorbic acid33 and the pigmentation of RPE 

cells, a differentiation marker for these cells, was enhanced by ascorbic acid30.  

Furthermore, in diseases like proliferative diabetic rethinopathy or proliferative 

vitreorethinopathy, both caused by an abnormal proliferation and differentiation behavior of 

retinal cells, especially RPE cells34, a reduced level of ascorbic acid within the vitreous could 

be detected35. These findings give rise to the hypothesis that ascorbic acid is an important 

factor for the regulation of the intraocular environment. However, the influence of ascorbic 

acid on hyalocytes, cells that seem responsible for the physiological properties of the vitreous, 

has hardly been studied so far4. Finally, as the vitreous body seems to be a candidate for 

regeneration, it appears obvious to elucidate the effect of ascorbic acid, an acknowledged 

factor widely used in tissue engineering, on these cells. 

Therefore, the present study addressed the effect of ascorbic acid on the proliferation and 

functional properties of porcine hyalocytes. Proliferation was studied in a classical two-

dimensional (2-D) cell culture system. The influence of ascorbic acid on functional cell 

properties was studied using a 2-D culture system and the results were verified in a three-

dimensional (3-D) hyalocyte pellet culture system. As markers for the functional properties of 

the cells, we investigated the production of glycosaminoglycans (GAG) and collagens. To 

further characterize the production of collagen in 2-D culture, mRNA expression of collagen 

type I, type II and type V/XI was evaluated semi-quantitatively. 

Materials and Methods 

L-Ascorbic acid in cell culture quality, cysteine, hematoxylin, eosin, chondroitin sulfate A 

from bovine trachea, dimethylmethylene blue, and highly polymerized deoxyribonucleic acid 

from calf thymus were purchased from Sigma (Steinheim, Germany). Fetal calf serum (South 

America, Batch Nr. 40A0044K), Dulbecco’s phosphate buffered saline (PBS), 

penicillin/streptomycin, 0.25% Trypsin-EDTA, and agarose in electrophoresis grade were 

obtained from Invitrogen (Karlsruhe, Germany). Dulbecco’s modified Eagle medium 

(DMEM, low glucose, with glutamine and pyruvate) as well as Trizol Reagent were obtained 

from Biochrom (Berlin, Germany). Dimethylaminobenzaldehyde, chloramine T, 

formaldehyde, isopropanol, Na2HPO4, and Na2EDTA were bought from Merck (Darmstadt, 

Germany); hydroxyproline and perchloric acid were purchased from Fluka (Neu-Ulm, 

Germany). Hoechst 33258 dye was obtained from Polysciences (Warrington, PA, USA), 

papainase and collagenase type II were purchased from Worthington (Lakewood, NJ, USA). 
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Tissue Tek was bought from Sakura Finetek Europe (Zoeterwoude, The Nederlands). All 

other cell culture materials were purchased from Corning (Bodenheim, Germany). Buffer for 

papainase digestion (PBE) was composed of 100 mmol Na2HPO4, 10 mmol Na2EDTA, and 

5 mmol cysteine in water, adjusted to pH 6.5. 

Cell culture 

Freshly enucleated porcine eyes were kindly provided by a local abattoir. Within 3 hours, the 

vitreous bodies were dissected, washed once in PBS buffer, and examined microscopically. 

Vitreous bodies were subsequently digested in 1 mg/ml collagenase type II solution in 

standard culture medium (SCM) for 3 hours under shaking in an incubator at 37°C. SCM was 

composed of DMEM supplemented with 15% fetal calf serum (FCS) and 100 IU/ml 

penicillin/streptomycin. Digested vitreous bodies from about 20 eyes were pooled. Following 

centrifugation at 200 g for 7 min, cells were seeded for primary culture in a 25 cm² flask and 

cultured at 37°C and 5% CO2. Media was exchanged three times a week. Primary culture was 

performed in SCM supplemented with 50 µg/ml ascorbic acid. After 9 days, the proliferating 

cells were detached using Trypsin-EDTA for 5 min and centrifuged at 200 g for 5 min. These 

cells were used for RT-PCR experiments after the first passage. For proliferation studies and 

for 2-D as well as for 3-D hyalocyte culture, cells were used after the second passage. To this 

end, during the first passage cells were plated at 2 000 cells per cm² in a new flask for further 

proliferation. After the first passage, hyalocytes were cultured in SCM without ascorbic acid 

supplementation and allowed to grow until almost reaching confluency.  

Proliferation assay 

Hyalocytes were seeded with 2 000 cells per cm² in 25 cm² culture flasks and cultured in 

SCM supplemented with different amounts of ascorbic acid up to 500 µg/ml; SCM without 

ascorbic acid served as control. Media were exchanged for fresh, ascorbic acid containing 

media after 2 days. After 4 days, the cells were harvested by trypsinization for 30 min in 

Trypsin-EDTA. After digestion of the cells in 125 µg/ml papainase solution in PBE buffer for 

18 hours at 60°C, the cell number was determined by quantifying the DNA content as 

described below.  

2-D hyalocyte culture 

Identically to the proliferation assay, hyalocytes were seeded with 2 000 cells per cm² in 

25 cm² culture flasks and cultured as described above. SCM was supplemented with 10 or 
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200 µg/ml of ascorbic acid, SCM without ascorbic acid served as control. Media were 

exchanged after 2 days, after 4 days the cells were harvested by mechanical dissociation. 

Subsequently, the samples were freeze dried (Christ Beta 2-16, Martin Christ 

Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) at 20°C and 0.120 mbar for 

16 hours. The dry samples were digested in 300 µl papainase solution as described above. 

Cell numbers as well as extracellular matrix (ECM) contents were determined as described 

below. 

3-D hyalocyte culture: 

600 000 hyalocytes harvested after the second passage were suspended in SCM containing 0, 

10, or 200 µg/ml of ascorbic acid and centrifuged for 5 min at 200 g in a 15 ml Falcon tube. 

The resulting cell aggregates were cultured in the same Falcon tube with loosened lid in an 

incubator for 30 days. Media were exchanged three times a week; ascorbic acid was added 

with each medium change. After 30 days, pellets were washed once with water and 

subsequently freeze dried. The dry samples were digested with papainase as described above. 

The cell number and ECM contents were determined as described below.  

For histological analysis, pellets were fixed in 10% formaldehyde and embedded in Tissue 

Tek. Histological sections with 10 µm thickness were obtained using a Microm Cryotom 

HM 550 (Walldorf, Gemany) and subsequently stained using Meyers hematoxylin followed 

by eosin counterstaining. 

Determination of cell number and ECM content 

Cell number was determined by measuring the DNA amount using Hoechst 33258 dye36-38. In 

brief, the emission intensity of the intercalating dye was measured at 458 nm upon excitation 

at 365 nm. The fluorescence of Hoechst 33258 dye is correlated with the absolute amount of 

DNA in the sample. To calculate the cell number, an average amount of 9.96 pg DNA per cell 

was assumed. This value was determined in a separate experiment correlating DNA 

measurement results of proliferating hyalocytes after second passage with cell counts using a 

Neubauer chamber (data not shown) and correlates well with values published for other cell 

types39-41. 

Glycosaminoglycan content was measured spectroscopically as previously described42, 43. In 

brief, after digestion of interfering proteins with papainase, the glycosaminoglycan content 

was determined by a colorimetric reaction with dimethylmethylene blue followed by 
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measurement of absorption at 525 nm. Chondroitin sulfate was used to produce the standard 

curve. 

The collagen content was determined by measuring the amount of hydroxyproline, an amino 

acid that exists in significant amounts exclusively in collagen, according to Woessner et al.44 

with some modifications. 100 µl digested sample from 2-D or 3-D culture was hydrolyzed 

with 100 µl 12 N hydrochloric acid for 16 h at 105°C. After hydrolysis, hydrochloric acid was 

evaporated under a constant flow of nitrogen at about 40°C. The dry samples were dissolved 

in 500 µl double distilled water. Standard dilutions of hydroxyproline were prepared in 

PBE/papainase solution and treated under the same hydrolysis conditions. In a microtiter plate 

100 µl of each sample as well as 100 µl of each standard sample were oxidized by 50 µl of a 

0.05 M solution of chloramine T in a citrate buffer (pH 6) for 20 min. Afterwards, 50 µl of a 

15% (m/m) dimethylaminobenzaldehyde solution in 4 M perchloric acid in 70% 

isopropanol/water (m/m) was added and after shaking the plate was incubated for 30 min at 

60°C. The plate was cooled to room temperature and the absorbance of the samples was 

immediately measured at 557 nm on a microplate reader (CS-9301 PC, Shimadzu, Duisburg, 

Germany).  

Reverse transcription – polymerase chain reaction (RT-PCR) 

To study mRNA-expression of hyalocytes, cells from the first passage were seeded at a 

density of 10 000 cells per cm² in 6-well plates and cultured for 4 days in SCM with 0, 1, 10, 

and 200 µg/ml of ascorbic acid. After 2 days the media were exchanged against fresh SCM, 

and ascorbic acid was again supplemented in the same amounts. Total RNA was harvested 

from the cells using Trizol® reagent according to the manufacturer’s instructions. First-strand 

cDNA was synthesized from total RNA using random hexamers (Roche Diagnostics, 

Mannheim, Germany) and Superscript II Rnase H Reverse Transcriptase (Invitrogen, 

Karlsruhe, Germany). Samples were incubated at 42°C for 50 min and then heated at 70°C for 

15 min to inactivate the enzyme. Subsequently, polymerase chain reaction was performed 

using Sawady Taq-DNA-Polymerase (PeqPab, Erlangen, Germany); initial denaturation 

occured at 94°C for 120 s, final extension at 72°C for 30 s. Amplification was performed 

under the following conditions: Denaturation at 94°C for 45 s, annealing for 45 s at 55°C and 

elongation at 72°C for 60 s. The amplification was carried out using the oligonucleotides and 

number of cycles indicated in Table 1.  
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Gene 
Sense-Primer  

(5’ – 3’) 

Antisense-Primer 

(5’ – 3’) 
Cycles 

Product 

length 

β-Actin gtgcccatctacgaggggta atggtgatgacctggccgtc 34 263 bp 

COL1A1 ctgctcctcttagcggccac cagtgtctcccttgggtccc 33 334 bp 

COL2A1 ggtcttcctggcaaagatgg cctgggaaacctcgttcacc 33 227 bp 

COL11A1 ggtcacaggggtgaacgagg gttcccttttggtcctgggg 33 204 bp 

 

Table 1: Primers and cell cycles used for the analysis of mRNA expression of hyalocytes. 

The housekeeping gene β-Actin served as reference for comparison. Reverse transcription and 

polymerase chain reaction were performed using a Mastercycler Gradient (Eppendorf AG, 

Hamburg, Germany). The amplified products were analyzed by electrophoresis in 2% agarose 

gels and stained with ethidium bromide. Finally, the gels were subjected to imaging and 

densitometric scanning of the resulting bands under UV light (λ = 312 nm) using a Kodak 

EDAS 290 (Fisher Scientific, Schwerte, Germany). To assure specificity of the 

amplifications, the amplified products as well as an amplification product of a positive control 

for COL2A1 (porcine cartilage) were sequenced (data not shown).  

Statistics 

All data are presented as means ± standard deviation. Single-factor analysis of variance 

(ANOVA) was used in conjunction with a multiple comparisons test (Tukey’s test) to assess 

statistical significance at levels of p < 0.05 or p < 0.01 as indicated.  
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Figure 1: Proliferation of hyalocytes in 2-D culture with various concentrations of ascorbic 
acid supplemented to the media; n=3; for all groups p < 0.01 compared to control; except for 
the plateau between 3.0 and 150 µg/ml, all groups showed statistically significance to each 
other (p < 0.01); experiment was performed in triplicate, representative data are shown. 

Results 

Hyalocyte isolation and proliferation 

After dissection halocytes were present mainly on the surface of the vitreous bodies, as 

described in the literature3. Due to the preparation method and subsequent washing with PBS, 

no pigmented cells could be observed on the isolated vitreous bodies either macro- or 

microscopically. After digestion of the vitreous bodies and cell seeding, most of the cells 

attached to the culture surface within 48 h. After 9 days, colonies of highly proliferating cells 

could be detected in the culture flask. After the first passage the cells grew homogenously on 

the culture surface and reached confluency within 7 days. Microscopically, cells showed 

fibroblast-like morphology with many lysosome-like granules mostly near the nucleus, as 

described earlier45. After the second passage, 8 – 10 million cells, a sufficient cell number for 

2-D as well as for 3-D experiments, could be obtained. 
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250 µm

Control 10 µg/ml 200 µg/ml

250 µm
 

Figure 2: Hyalocyte pellets after 30 days of cultivation. Pictures above were taken using a 
reflecting light magnifier, pictures below show histological sections of the pellets after H&E 
staining in 100-fold magnification; n = 3; each experiment was done in duplicate, 
representative data are shown. 

Ascorbic acid effect on proliferation of hyalocytes 

Proliferation of hyalocytes in 2-D cell culture was significantly increased due to ascorbic acid 

supplementation (Fig. 1). Even in the minute concentration of 0.1 µg/ml, the proliferation of 

hyalocytes was significantly enhanced. In a concentration range up to 3.0 µg/ml, a dose-

dependent effect of ascorbic acid on hyalocyte proliferation was observed. A wide plateau of 

constant cell proliferation (3-fold compared to control) was observed up to 150 µg/ml. 

Though concentrations of 300 µg/ml showed a significant increase in proliferation compared 

to the control, the proliferation was significantly decreased relative to the plateau. When 

adding 500 µg/ml ascorbic acid to the culture media, no cells could be detected after the 

cultivation time of 4 days.  
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Figure 3: GAG accumulation of hyalocytes, measured as chondroitin sulfate, depending on 
ascorbic acid supplementation. In both diagrams, black bars and left y-axis indicate absolute 
GAG content, whereas grey bars and right y-axis indicate the GAG amount accumulated per 
100 000 cells; A) Influence of ascorbic acid on hyalocytes in 2-D culture, n = 4; B) Influence 
of ascorbic acid on hyalocytes in 3-D pellet culture after 30 days of cultivation; n = 3; 
* indicates p<0.01 compared to control; each experiment was performed in duplicate, 
representative data are shown. 

Pellet culture 

For 3-D pellet culture, cells were centrifuged and subsequently cultured in Falcon tubes. After 

centrifugation of the cells, the resulting cell aggregates formed a spheroid within 48 hours. 

After the cultivation time of 30 days, pellets cultured without ascorbic acid reached a diameter 

of 350 µm. The pellet size was noticably increased due to ascorbic acid supplementation 

(Fig. 2). Supplementing 10 µg/ml ascorbic acid, the resulting pellet diameter was about 

500 µm. 200 µg/ml ascorbic acid in the culture media increased the diameter of the pellets to 

about 750 µm, a more than 2-fold increase in diameter compared to the control. Calculations 

based on a spherical shape revealed that the increase in diameter corresponds to an 8-fold 

volume increase.  

All pellets were dense and surrounded by a small, capsule-like structure, as indicated by 

histological sections (Fig. 2). However, the relation between cells in the cortex of the pellets 

and cells in the center of the pellets changed with increasing diameter of the pellets. 

Furthermore, with increasing pellet diameter a more distinct pellet core with densely packed 

cell nuclei could be observed. 

GAG accumulation 

The total amount of glycosaminoglycans accumulated by hyalocytes was enhanced by 

ascorbic acid in both culture systems. By adding 10 or 200 µg/ml ascorbic acid to the culture 

media, the absolute content of glycosaminoglycans, evaluated using a chondroitin sulfate 

standard curve, was increased to a similar extent (Fig. 3, black bars). As ascorbic acid 
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enhanced the proliferation of hyalocytes, we also calculated the amount of 

glycosaminoglycans accumulated per cell. This amount was differently affected by ascorbic 

acid in the two culture systems. In 2-D culture, the amount of glycosaminoglycans 

accumulated per cell was not influenced by ascorbic acid, whereas in the 3-D culture system 

this amount was significantly decreased (Fig. 3, grey bars). As observed for the absolute 

amounts of glycosaminoglycans, there was no significant difference between the two 

concentrations of ascorbic acid, 10 and 200 µg/ml. 
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Figure 4: Collagen accumulation of hyalocytes, measured as hydroxyproline, depending on 
ascorbic acid supplementation. In both diagrams, black bars and left y-axis indicate absolute 
collagen content, grey bars and right y-axis indicate collagen accumulation per 100 000 
cells; A) Influence of ascorbic acid on hyalocytes in 2-D culture, n = 4; B) Influence of 
ascorbic acid on hyalocytes in 3-D pellet culture after 30 days of cultivation; n = 3; 
* indicates statistical significance (p<0.01) compared to control, ** compared to all groups; 
‡ indicates statistical significance (p<0.05) compared to control; each experiment was 
performed in duplicate, representative data are shown. 

Collagen accumulation 

The collagen accumulation of hyalocytes was influenced by ascorbic acid similarly in both 

culture systems (Fig. 4). Without ascorbic acid in the media, only small amounts of 

hydroxyproline could be detected. We observed an approximately 3-fold increase in the 

hydroxyproline content of the samples due to 10 µg/ml ascorbic acid supplementation. After 

adding 200 µg/ml ascorbic acid to the culture media, the absolute hydroxyproline content was 

even higher than in the 10 µg/ml group. In contrast to the GAG accumulation per cell, the 

hydroxyproline content normalized to the cell number was significantly increased by ascorbic 

acid in both culture systems. In 2-D culture, supplementation of 200 µg/ml ascorbic acid led 

to a 3-fold increase in hydroxyproline accumulation per cell. In the 3-D pellet system, this 

increase was about 1.5 fold.  
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Ratio of extracellular matrix components 

To further characterize the influence of ascorbic acid on the composition of the accumulated 

ECM, we calculated the ratio of accumulated hydroxyproline to accumulated 

glycosaminoglycans. This value was clearly increased in both culture systems due to ascorbic 

acid supplementation. In 2-D culture, the ratio of ECM components produced by hyalocytes 

was increased by ascorbic acid supplementation up to a 5-fold value compared to control, in 

the 3-D pellet culture this value was enhanced 3-fold by supplementing the culture media with 

200 µg/ml ascorbic acid (Fig. 5).  
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Figure 5: Collagen to GAG ratio of accumulated extracellular matrix depending on ascorbic 
acid concentration; A) 2-D cell culture, n = 4; B) 3-D hyalocyte pellets after 30 days of 
cultivation; n = 3; ‡‡ indicates statistical significance (p<0.05) compared to all groups, * 
indicates statistical significance (p<0.01) compared to control; each experiment was 
performed in duplicate, representative data are shown. 

Expression of mRNA 

To further investigate the effect of ascorbic acid on the collagen production of hyalocytes, 

semi-quantitative RT-PCR was performed in 2-D culture. COL1A1, coding for the α-1 chain 

in collagen type I, was clearly expressed in all groups, however, its expression was not 

affected by ascorbic acid (Fig. 6). No expression of COL2A1, coding for the α-1 chain in 

collagen type II, could be detected in any of the samples. In contrast, ascorbic acid enhanced 

the expression of COL11A1, a gene coding for the α-1 chain in collagen type V/XI. A slight 

increase in the expression level was detectable at a concentration as low as 1 µg/ml; at higher 

concentrations (10 and 200 µg/ml ascorbic acid), the increase in COL11A1 expression was 

distinct and significant. 
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Figure 6: Assessment of expression of genes COL1A1 and COL11A1 dependent on the 
ascorbic acid concentration using semi-quantitative RT-PCR technique; β-actin served as 
housekeeping-gene; A) Band intensity of representative bands; B) Data from semi-
quantitative image analysis; n=3; * indicates statistical significance (p<0.01) compared to 
control; each experiment was performed in duplicate, representative data are shown 
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Discussion 

Ascorbic acid, one of the most important antioxidants in the eye, modulates proliferation and 

differentiation properties of several intraocular cell types and is, therefore, discussed as an 

intrinsic modulator of the intraocular environment30, 46. In the present study, we demonstrated 

that hyalocytes, cells that seem to modulate the functional properties of the vitreous, were also 

clearly influenced by ascorbic acid. Moreover, we elucidated the importance of ascorbic acid 

for in vitro hyalocyte culture. 

The cells in the peripheral or cortical region of the vitreous body are designated as hyaloyctes; 

a widely used isolation technique for these cells is described by Francois et al.47 and was 

further improved by Kobuch et al4. With this isolation method, however, we could not obtain 

a sufficient number of hyalocytes within a few passages to establish a three-dimensional pellet 

culture. As it is widely acknowledged that cells dedifferentiate more with increasing number 

of passages48, 49, we intended to limit the number of propagation steps. Therefore, we used an 

isolation method based on enzymatic digestion of the vitreous gels, as described earlier50. This 

enabled us to harvest sufficient numbers of hyalocytes for our experiments after the second 

passage. Supplementation of ascorbic acid to the primary cells was performed because we 

observed a clear increase in hyalocyte proliferation in preliminary experiments. As we 

intended to study the influence of ascorbic acid on hyalocytes after second passage, we 

cultured the cells without ascorbic acid during the first passage. This assured that we do not 

measure the influence of ascorbic acid withdrawal in our experiments, but rather the effect of 

ascorbic acid supplementation. 

As hyalocytes show a physiological turnover11, we were first interested in the influence of 

ascorbic acid on their proliferation. To minimize the extent to which hyalocyte proliferation 

was influenced by cell-cell contact in the 2-D proliferation studies, we only allowed the cells 

to proliferate for 4 days, reaching about 90% confluency in the most rapidly proliferating 

groups. In contrast to many other intraocular cells types28, 31, 32, in our experimental setup the 

proliferation of hyalocytes was clearly increased by ascorbic acid over a wide concentration 

range. As hyalocyte proliferation could be increased as much as 3-fold and even minute 

concentrations of 0.1 µg/ml of ascorbic acid showed significant effects (Fig. 1), ascorbic acid 

seems to be an important modulator of hyalocyte proliferation. In a concentration of 

500 µg/ml, toxic effects on the cells could be observed. Despite the pronounced effects of 

ascorbic acid on hyalocytes, the exact mechanism remains to be elucidated. Furthermore, the 

behavior of the cells may be prone to modulations caused by the applied culture conditions. 
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In addition to proliferation, we also wanted to study the effect of ascorbic acid on functional 

properties of hyalocytes. As hyalocytes are known to produce the ECM components that form 

the vitreous body14, 20, we studied the quantitative accumulation of extracellular matrix by 

hyalocytes. We found that ascorbic acid clearly affected the ECM accumulation of 

hyalocytes. This effect could be observed in two different culture systems: a classical 2-D as 

well as a novel 3-D hyalocyte culture system.  

Neither of these two systems mimic the natural environment of hyalocytes completely, but 

each system displays some typical aspects of the physiological context. The classical  

2-dimensional culture system mimics the natural environment of hyalocytes in terms of their 

isolated position in the vitreous and a minimum of cell-cell interactions. However, a 

disadvantage of the system is the partial interaction between cells and an unnatural synthetic 

culture surface. A disadvantage of the newly established 3-D hyalocyte pellet system is the 

unphysiological high cell density. In this system, however, the cells have only contact to one 

another and to the extracellular matrix they produced, which also partially imitates the natural 

environment.  

Although the two culture systems were very different, we found comparable effects of 

ascorbic acid on hyalocytes; while it was not possible to distinguish between different types 

of GAGs, such as chondroitin sulfate, heparan sulfate or hyaluronic acid, ascorbic acid 

increased the absolute amounts of GAG and collagen that were accumulated by the cells. 

Furthermore, the production of collagen per cell was clearly enhanced by ascorbic acid, 

whereas the accumulation of GAG per cell was not affected. Regarding GAG-accumulation, 

however, there seems to be a difference between the two culture systems: while the 

accumulation of GAG per cell was constant in the 2-D culture, in the pellet culture this value 

was decreased upon ascorbic acid supplementation (Fig. 3, grey bars). This difference was 

most probably caused by a different nutrition supply of the cells within the pellet, as the pellet 

size was clearly increased by supplementation of ascorbic acid (Fig. 2). This is confirmed by 

the accumulated amounts of hydroxyproline per cell (Fig. 4, grey bars), which were affected 

in a similar way. In 2-D culture, there was a 3-fold increase in the accumulation of 

hydroxyproline per cell upon supplementation with 200 µg/ml ascorbic acid, while this 

increase was only 1.5-fold in the pellet culture. Furthermore, histological sections of the 

pellets indicate that cells on the edge of the pellets were clearly embedded in extracellular 

matrix, whereas cells in the middle of the pellets were densely packed and possibly necrotic 

(Fig. 2). The enhanced volume of the pellets in the ascorbic acid containing groups was due to 
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an increased cell number in the pellets (data not shown) as well as an increase in accumulated 

ECM.  

Comparing the values for absolute and per cell ECM accumulation measured in the two 

systems, we observed clear distinctions. However, these differences were related to the 

culture conditions rather than in response to ascorbic acid supplementation. The higher values 

of absolute ECM contents in 2-D culture were due to the higher cell number in this system; 

the higher values of accumulated ECM per cell in the 3-D culture system could be explained 

by the longer cultivation time.  

In both culture systems, ascorbic acid shifted the ratio of total hydroxyproline to total 

glycosaminoglycans towards the hydroxyproline and, therefore, to the collagen side (Fig. 5). 

That means, in two different culture systems ascorbic acid influenced hyalocytes in a similar 

way. This strongly supports the hypothesis that functional properties of hyalocytes are 

modified by ascorbic acid.  

We could demonstrate that vitamin C affects hyalocyte properties influencing collagen 

accumulation. As ascorbic acid is an acknowledged cofactor in the synthesis of 

hydroxyproline51, it is likely that in our experiments the enhanced collagen synthesis was at 

least partly due to a cofactor function of ascorbic acid. However, ascorbic acid is also known 

to modulate the mRNA expression of cells52. To clarify whether hyalocytes were also 

influenced on the molecular level with regard to the collagen production, we investigated the 

expression of mRNA coding for different types of collagen. The expression of collagen type I 

was not affected by ascorbic acid. The fact that we could detect any COL1A1 mRNA is likely 

due to the experimental setup including one passage, possibly leading to partial 

dedifferentiation of the cells. This is also known for other cell types, for example 

chondrocytes53. In our experimental setup, no expression of collagen type II, the most 

abundant collagen in vitreous, could be detected. This could also be explained by 

dedifferentiation of the cells caused by the proliferation step. However, we found evidence 

that the expression of COL11A1, coding for the α-1(XI) chain in collagen type V/XI, was 

strongly enhanced by ascorbic acid (Fig. 6). The fibrillar collagen type V/XI found in the 

vitreous body is composed of α-1(XI) chains and α-2(V) chains, but the exact stoichiometry 

remains unknown54. As the α-1(XI) chain is exclusively a part of the mixed collagen type 

V/XI and not part of any other type of collagen in the vitreous, it is reasonable to assume that 

the expression of COL11A1 is highly related to collagen type V/XI.  

The function of collagen type V/XI in vitreous is not exactly known at the moment, however, 

there are hints that this type of collagen is involved in stabilizing the collagen network. The 
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Stickler syndrome, for example, an autosomal dominant disorder known to involve mutations 

in the COL11A1 gene, is associated, amongst others, with sparse and irregularly thickened 

bundles of fibers throughout the vitreous55. Furthermore, in cartilage the α-1(XI) chain is part 

of collagen type XI, a type of collagen important for stabilizing the collagen fibrils of 

cartilage56. Therefore, it appears likely that the vitreous collagen type V/XI is important for 

stabilizing the collagen type II fibrils of the vitreous. The observation that ascorbic acid has a 

clear influence on the expression of the COL11A1 coding for a part of collagen type V/XI 

suggests that ascorbic acid may influence the stability of the vitreous collagen fibers 

accumulated by hyalocytes. Whether these findings have any clinical significance remains to 

be elucidated. However, our experiments strongly support the hypothesis that ascorbic acid 

influences hyalocyte function on the gene expression level; not only the quantity, but also the 

quality of collagen produced by hyalocytes was influenced by ascorbic acid.  

To conclude, we demonstrated that ascorbic acid has a significant influence on proliferation 

and functional properties of hyalocytes. Therefore, ascorbic acid seems to be a useful tool for 

in vitro hyalocyte culture and a key factor for reconstruction of the vitreous body using tissue 

engineering techniques. Furthermore, ascorbic acid is known to modulate proliferation and 

differentiation properties of cells within tissues close to the vitreous body30-32. This study 

clearly indicates that ascorbic acid is also an important factor influencing the cells of the 

vitreous body. These findings support the hypothesis that ascorbic acid is not only an 

important antioxidant for the eye, but also a modulator of the intraocular environment. 
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Abstract 

In vitro cell culture systems are widely employed to enable investigations into cells. Because 

the culture conditions have a significant influence on the obtained results, they have to be 

described exactly to allow evaluation of the results. In that context, the present study indicates 

that the label “DMEM” does not always describe identical media; the effects of ascorbic acid 

on hyalocytes, the cells of the vitreous body, were observed to be dependent on the DMEM 

type used. As this observation could be ascribed to pyruvate, the interdependent effects of 

ascorbic acid and pyruvate were further elucidated. Specifically, 200 µg/ml ascorbic acid was 

demonstrated to enhance hyalocyte proliferation in the presence of 110 µg/ml pyruvate, 

whereas it clearly inhibited cell proliferation in the absence of pyruvate. Pyruvate 

supplementation without ascorbic acid in the medium showed no effects. Furthermore, the 

accumulation of collagens and glycosaminoglycans was increased by supplementation of 

ascorbic acid without pyruvate in the medium. Pyruvate diminished this effect dose-

dependently; with 110 µg/ml pyruvate in the medium, no effect of ascorbic acid on the 

accumulation of extracellular matrix by hyalocytes was apparent. The present study thus 

emphasizes the importance of the applied culture conditions on the results of in vitro studies. 

Ascorbic acid and pyruvate were demonstrated to be important factors for in vitro cultivation 

of hyalocytes.  
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Introduction 

The vitreous body is the main compartment of the mammalian eye. It displays a transparent 

hydrogel consisting of different collagens, especially type II, and glycosaminoglycans with a 

water content of about 98 %1. The center of the vitreous body is free of cells, however, in the 

cortex of the tissue and near the vitreous base, there are a sparse number of cells referred to as 

hyalocytes2-4. Although these cells were described for the first time in the middle of the 

19th century5, they are still only poorly characterized6. Hyalocytes were shown to be derived 

from the bone marrow7 and belong to the monocyte/macrophage lineage2. Physiologically, the 

cells are thought to be involved in the maintenance of the vitreous as a transparent tissue8, 9, 

probably due to their ability to accumulate collagens10, 11 and glycosaminoglycans12-14. 

Pathologically, hyalocytes are connected to severe vitreoretinal diseases such as epiretinal 

membrane formation, macular holes, and diabetic macular edema15, 16. However, further 

investigations into hyalocyte characteristics are needed to clarify both their physiological and 

pathological roles within the vitreous body. 

In vitro cell culture systems are widely employed to investigate both cell characteristics and 

cell functions17, 18. In vitro cell culture is thus a valuable tool for further investigations into 

hyalocytes. It has to be kept in mind, however, that the culture conditions can have a 

significant influence on the performed study. To this end, a precise and detailed description of 

the culture conditions employed is mandatory within a scientific publication. In most of the 

recently published reports about in vitro hyalocyte culture, Dulbecco’s modified Eagle 

medium (DMEM) was used as culture medium. However, as there are many DMEM 

variations provided by several companies (for example, high or low glucose, with or without 

glutamine and pyruvate), the name “DMEM” is not clear. In a preliminary study, the effect of 

ascorbic acid on hyalocyte proliferation differed when two different DMEM variations were 

used. Therefore, the present study addressed the influence of different DMEM compositions 

on the influence of ascorbic acid on hyalocyte proliferation. Because the preliminary data 

clearly indicated that pyruvate played a role in the observed differences, the effect of pyruvate 

in combination with ascorbic acid was studied on hyalocyte proliferation. Additionally, the 

effect of the two factors on accumulation of extracellular matrix components was addressed. 
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Materials and Methods 

Materials 

L-Ascorbic acid (cell culture quality), cysteine, chondroitin sulfate A from bovine trachea, 

dimethylmethylene blue, and highly polymerized deoxyribonucleic acid from calf thymus 

were purchased from Sigma (Steinheim, Germany). Fetal calf serum (South America, Batch 

Nr. 40A0044K), Dulbecco’s phosphate buffered saline (PBS), penicillin/streptomycin, 

Dulbecco’s modified Eagle medium (DMEM) without pyruvate [abbr. DMEM 2] (DMEM, 

4.5 g/l glucose, with glutamine, without pyruvate), low glucose DMEM with pyruvate [abbr. 

DMEM 3] (DMEM, 1.0 g/l glucose, with glutamine and pyruvate), low glucose DMEM with 

pyruvate and glutamax® [abbr. DMEM 4] (DMEM, 1.0 g/l glucose, with glutamax® and 

pyruvate), and 0.25 % Trypsin-EDTA were obtained from Invitrogen (Karlsruhe, Germany). 

DMEM including pyruvate [abbr. DMEM 1] (DMEM, low glucose, with glutamine and 

pyruvate) was obtained from Biochrom (Berlin, Germany). Dimethylaminobenzaldehyde, 

chloramine T, isopropanol, sodium chloride, glucose, Na2HPO4, and Na2EDTA were bought 

from Merck (Darmstadt, Germany). Hydroxyproline and perchloric acid were purchased from 

Fluka (Neu-Ulm, Germany). Hoechst 33258 dye was obtained from Polysciences 

(Warrington, PA, USA). Papainase and collagenase type II were purchased from Worthington 

(Lakewood, NJ, USA). All other cell culture materials were purchased from Corning 

(Bodenheim, Germany). Buffer for papainase digestion (PBE) was composed of 100 mmol 

Na2HPO4, 10 mmol Na2EDTA, and 5 mmol cysteine in water, adjusted to pH 6.5. 

Cell culture 

Hyalocytes from freshly enucleated eyes were isolated as previously described (cf. chapters 3 

and 5). In brief, after dissection of the vitreous bodies, the cells were isolated by enzymatic 

digestion of the tissue using collagenase type II. After centrifugation, hyalocytes obtained 

from about 20 eyes were pooled and seeded in a T-25 culture flask for cultivation in standard 

culture medium (SCM) supplemented with 50 µg/ml ascorbic acid. SCM was composed of 

DMEM 1 containing 15 % fetal calf serum and 100 IU penicillin/100 µg/ml streptomycin. 

Medium was exchanged three times a week. After 9 days the cells were passaged using 

trypsin and, subsequent to seeding with 2000 cells/cm², cultivated for another 7 days in SCM 

without ascorbic acid supplementation. To elucidate the influence of different DMEM 

compositions as well as the effects of ascorbic acid and pyruvate on hyalocytes, 50 000 cells 

after second passage were seeded per T-25 flask and cultured for 4 days with medium 

exchange after 2 days. After 4 days, the cells were completely trypsinized for 30 min, freeze-
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dried and digested using papainase as previously described (cf. chapter 5). Cell number as 

well as glycosaminoglycan and collagen content were determined as described below.  

For investigations into the influence of different DMEM compositions on the ascorbic acid 

effect on hyalocytes, four different DMEM compositions (displayed in Table 1) were used. 

Furthermore, 3.5 g/l glucose or 0.03 % NaCl was added to DMEM 1. To study pyruvate in 

combination with ascorbic acid, different concentrations (pyruvate: 0, 20, 110 µg/ml; ascorbic 

acid: 0, 10, 200 µg/ml) of the two factors alone, as well as in combination with each other, 

were supplemented in DMEM 2. 

 Glucose [g/l] Glutamine 
Pyruvate 

[110 mg/l] 
Osmolarity 

DMEM 1 1.0 + + 310 mOsmol 

DMEM 2 4.5 + - 336 mOsmol 

DMEM 1 + gluc 4.5 + + 330 mOsmol 

DMEM 1 + NaCl 1.0 + + 335 mOsmol 

DMEM 3 1.0 + + 317 mOsmol 

DMEM 4 1.0 Glutamax® + 322 mOsmol 

Table 1: Variations in DMEM media composition and osmolarity. 

Determination of cell number and ECM contents 

Cell number was determined by measuring the DNA amount using Hoechst 33258 dye19-21. In 

brief, the emission intensity of the intercalating dye was measured at 458 nm upon excitation 

at 365 nm. The fluorescence of Hoechst 33258 dye is correlated with the absolute amount of 

DNA in the sample. To calculate the cell number, an average amount of 9.96 pg DNA per cell 

was assumed22. 

Glycosaminoglycan content was measured spectroscopically as previously described23, 24. In 

brief, after digestion of interfering proteins with papainase, the glycosaminoglycan content 

was determined by a colorimetric reaction with dimethylmethylene blue followed by 

measurement of absorption at 525 nm. Chondroitin sulfate was used to produce the standard 

curve (cf. chapter 4). 

The collagen content was determined by measuring the amount of hydroxyproline, an amino 

acid that exists in significant amounts exclusively in collagen, according to Woessner et al. 25 

with some modifications described earlier (cf. chapter 4 and 5). In brief, after hydrolysis of 

the sample, hydroxyproline was oxidized with chloramine T and, subsequent to the coupling 
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reaction with dimethylaminobenzaldehyde, the absorption of the resulting dye was measured. 

A standard curve of hydroxyproline in the PBE/cysteine served as reference. 

Statistics 

All data are presented as means ± standard deviation. One-way or two-way ANOVA analysis 

was used in conjunction with a subsequent post-hoc test (Tukey’s test) to analyze the obtained 

results. SigmaStat for Windows (version 3.0.1) was used to calculate these statistics. 
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Figure 1: Effect of ascorbic acid on hyalocyte proliferation is dependent on the composition 
of DMEM used in culture, n=4. A) Ascorbic acid supplementation to DMEM 1 clearly 
increased the cell number; B) Ascorbic acid supplementation to DMEM 2 had varied effects 
on the cell number: whereas 10 µg/ml increased the cell number, addition of 200 µg/ml 
decreased the cell number compared to control. 

Results 

Effect of ascorbic acid on hyalocytes is dependent on the DMEM composition 

Ascorbic acid influenced hyalocyte proliferation differently depending on which DMEM 

variation was used in cell culture. When using DMEM 1 as basal culture medium, ascorbic 

acid supplementation clearly enhanced the cell proliferation (Figure 1 A). Adding 10 µg/ml of 

ascorbic acid doubled the cell number, and the presence of 200 µg/ml within the culture 

medium led to an almost 3-fold increase. In contrast, addition of ascorbic acid to DMEM 2 

resulted in a different effect (Figure 1 B). Although 10 µg/ml significantly enhanced 

hyalocyte proliferation, supplementation of 200 µg/ml clearly decreased the cell number 

compared to the control. To determine whether the high glucose or the osmotic pressure of 

DMEM 2 caused this effect, DMEM 1 was supplemented with glucose and sodium chloride. 

Furthermore, two DMEM types with low glucose levels were investigated. In all of these 
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media, a comparable increase in the cell number was observed when supplementing with 

either 10 or 200 µg/ml ascorbic acid (Figure 2), except when DMEM 2 was used. Here again, 

a decrease in cell proliferation was observed upon supplementation with 200 µg/ml ascorbic 

acid. Moreover, the increase in the cell number due to the addition of 10 µg/ml ascorbic acid 

was significantly smaller in DMEM 2 compared to all other DMEM types.  
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Figure 2: Effect of ascorbic acid on hyalocytes is dependent on the variation of DMEM used, 
n=4; * indicates statistically significant difference compared to all other DMEM types 
supplemented with the same amount of ascorbic acid; ascorbic acid affected hyalocyte 
proliferation differently in DMEM 2 compared to all other DMEM types. 

Effect of varying ascorbic acid/ pyruvate supplementation on hyalocyte proliferation 

Because ascorbic acid supplementation of DMEM 2 did not produce the same effect on 

hyalocytes as the other compositions of DMEM (Figure 2), and the only difference between 

DMEM 2 and all other DMEM compositions investigated is its lack of pyruvate, it seemed 

logical to investigate the effect of varying ascorbic acid/pyruvate concentrations on hyalocyte 

proliferation (Figure 3). For clarity, the obtained values are displayed in two different ways; 

Figure 3 A displays the effect of pyruvate with respect to the ascorbic acid concentration 

present in the medium, whereas Figure 3 B shows the effect of ascorbic acid with respect to 

the pyruvate concentration within the medium. Without ascorbic acid present in the culture 

medium, supplementation of pyruvate showed no effect on the cell proliferation (Figure 3 A). 

With 10 µg/ml ascorbic acid in the medium, 20 µg/ml pyruvate exhibited a slight, but not 

significant increase in the cell number, whereas this increase was clear and significant upon 

110 µg/ml pyruvate supplementation. Moreover, pyruvate drastically increased hyalocyte 

proliferation in DMEM containing 200 µg/ml ascorbic acid up to a 4-fold value. Looking at 
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the data from a different perspective, ascorbic acid modulated the cell proliferation differently 

depending on the pyruvate concentration in the medium (Figure 3 B). Without pyruvate in the 

medium, 10 µg/ml ascorbic acid slightly increased the cell number, whereas 200 µg/ml 

decreased the obtained number of cells. In medium containing 20 µg/ml pyruvate, similar 

effects of ascorbic acid were observed. In contrast, with 110 µg/ml pyruvate in the medium, 

the measured cell number was about double due to supplementation of either 10 or 200 µg/ml 

of ascorbic acid.  

According to the two way analysis of variance, the difference in the mean values among the 

different levels of ascorbic acid or pyruvate, respectively, were greater than would be 

expected by chance after allowing for the effects of the other factor (p<0.001), indicating both 

factors influence hyalocyte proliferation. Furthermore, the effects of different levels of 

ascorbic acid depended on the pyruvate level present in the medium, indicating a statistically 

significant interaction between both factors (p<0.001). 
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Figure 3: Influence of combinations of ascorbic acid and pyruvate concentrations on the 
proliferation of hyalocytes, n=3. The study was performed in duplicate; representative data 
are shown. A) Effect of varying pyruvate concentrations dependent on the ascorbic acid 
concentration. B) Effect of varying ascorbic acid concentrations dependent on the pyruvate 
concentration. Both factors influenced cell proliferation, and a clear interaction between the 
factors was observed. 

Effect of varying ascorbic acid/ pyruvate supplementation on ECM production of hyalocytes 

Pyruvate exhibited no effect on the GAG accumulation per cell if no or only 10 µg/ml 

ascorbic acid was available in the culture medium (Figure 4). However, with 200 µg/ml of 

ascorbic acid in the medium and without pyruvate, a significantly higher production of GAG 

per cell was observed compared to the groups with low ascorbic acid. Increasing amounts of 

pyruvate decreased these high GAG levels to values observed in the groups with no or 

10 µg/ml of ascorbic acid in the medium. In other words, pyruvate diminished the enhancing 

effect of ascorbic acid on the GAG accumulation per cell. 
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Two way ANOVA indicated both factors significantly influence the GAG production per cell 

(p<0.001). Furthermore, a significant interaction between ascorbic acid and pyruvate was 

found (p<0.001).  
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Figure 4: Influence of ascorbic acid/pyruvate combinations on the GAG accumulation per 
100 000 hyalocytes, n=3. Study was performed in duplicate; representative data are shown. 
With 200 µg/ml ascorbic acid in the medium, an enhanced GAG production per cell was 
observed; increasing amounts of pyruvate, however, diminished this enhancing effect of 
ascorbic acid. 

As seen with GAG accumulation, varying ascorbic acid/pyruvate supplementation affected 

the collagen accumulation per hyalocyte (Figure 5). When no more than 10 µg/ml of ascorbic 

acid was present in the medium, increasing amounts of pyruvate showed no influence on the 

collagen production per cell. In contrast, without pyruvate in the medium, 200 µg/ml ascorbic 

acid enhanced the collagen production of the cells significantly. Addition of 20 µg/ml 

pyruvate diminished the enhancing effect of ascorbic acid slightly, whereas supplementation 

of 110 µg/ml pyruvate completely eliminated the enhancing effect. 

According to two way analysis of variance, ascorbic acid (p<0.001) as well as pyruvate 

(p<0.005) significantly influenced the collagen accumulation per cell. Furthermore, the 

interaction between these two factors was again significant (p<0.005). 
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Figure 5: Influence of ascorbic acid/pyruvate combinations on the collagen accumulation per 
hyalocyte, n=3. With 200 µg/ml ascorbic acid in the medium, an enhanced collagen 
production per cell was observed; increasing amounts of pyruvate, however, diminished this 
enhancing effect of ascorbic acid. 

Discussion 

In a previous study performed in our lab, proliferation of hyalocytes was demonstrated to be 

clearly influenced by ascorbic acid (Chapter 5). However, as indicated by a preliminary study 

using slightly different DMEM variations (Figure 1), this influence was affected by the 

culture medium the study was performed with. To clarify which property of the media caused 

this discrepancy, a variety of factors were studied. Neither the glucose level nor the osmotic 

pressure played a role in the effect of ascorbic acid on hyalocyte proliferation, as no 

differences between DMEM 1 supplemented with glucose or sodium chloride and pure 

DMEM 1 were obvious (Figure 2). The identical effects of ascorbic acid on hyalocytes 

cultivated in DMEM 1, DMEM 3 and DMEM 4 (Figure 2) led to the hypothesis that pyruvate 

was responsible for the modified effects of ascorbic acid in DMEM 2, as this factor 

represented the only difference between DMEM 2 and all other tested variations. This 

assumption could be verified by supplementation of pyruvate in different combinations with 

ascorbic acid to DMEM 2 (Figure 3).  

More detailed investigations into ascorbic acid/pyruvate combinations indicated hyalocyte 

proliferation to be highly dependent on both factors; fastest cell proliferation was observed 

when the highest pyruvate concentration (110 µg/ml) was used in combination with either 10 

or 200 µg/ml ascorbic acid (Figure 3 A). Pyruvate alone had no significant impact on 

proliferation, however, its presence was mandatory for ascorbic acid to exert its significant 



Chapter 6 Pyruvate modulates effect of ascorbic acid on hyalocytes 

- 101 - 

enhancing effect on proliferation. In the absence of pyruvate, high ascorbic acid 

concentrations no longer enhanced cell proliferation but actually had a negative effect (Figure 

3 B). In similar studies devoted to investigating the influence of pyruvate alone on cell 

proliferation, effects were dependent on the cell type under study; whereas proliferation of 

Ehrlich’s ascites tumor cells, for example, was inhibited by high concentrations of pyruvate26, 

small concentrations of pyruvate were essential for cell growth and survival in osteoblast 

cultures27. In both studies, however, the effect of pyruvate without ascorbic acid was 

measured and the media used did not contain ascorbic acid at all. Moreover, although there 

are a number of studies on the effect of pyruvate on cell proliferation28-30, to the best of our 

knowledge, no work addressing the interaction between ascorbic acid and pyruvate has been 

published to date.  

In addition to affecting hyalocyte proliferation, ascorbic acid and pyruvate combinations 

modified the accumulation of extracellular matrix components (Figure 4 and 5). For the two 

measured ECM components, GAG and collagen, pyruvate exhibited no influence when no or 

only small amounts of ascorbic acid were present. However, with 200 µg/ml of ascorbic acid 

present in the medium, pyruvate clearly decreased the accumulation of GAG and collagen per 

cell. Therefore, provided that high amounts of ascorbic acid were available, pyruvate seemed 

to favor cell proliferation (Figure 3) while inhibiting the accumulation of ECM components 

(Figure 4 and 5). Similar results were observed by Wasilenko and Marchok studying primary 

cultures of rat trachea epithelial cells31. For these cells, cultivated in Waymouth’s medium 

MB 752/1 which contains 17.5 µg/ml ascorbic acid, pyruvate promoted proliferation of the 

epithelial cells while inhibiting their differentiation.  

According to the presented data, pyruvate seems to modulate ascorbic acid’s effects on 

hyaloycte proliferation as well as ECM accumulation. Although the exact mechanism of this 

interaction remains to be elucidated, some possibilities will be discussed below. Pyruvate is 

known to be an alternative energy substrate for certain cells, such as, for example, retina 

pigment epithelial cells32. Therefore, the observed effects might be linked to hyalocyte 

metabolism. However, because this study was performed in DMEM containing 4.5 g/l 

glucose, one of the most important energy sources for cells, it seems unlikely that the effect is 

related to pyruvate’s ability to serve as an alternative cellular energy source. 

In addition to its function as an energy source, pyruvate exhibits oxidative protection in 

several cell types such as neurons33, thymocytes34, and bovine pulmonary epithelial cells35. 

This is at least partially due to its ability to scavenge reactive oxygen species (ROS)36. 
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Pyruvate reacts non-enzymatically with hydrogen peroxide to form carbon dioxide, water and 

carboxylic acid, thereby preventing the formation of hydroxyl radicals (Figure 6)37. 

CH3

O

O

O + H2O2
non-enzymatic

CH3 O

O
+ OH2 + CO2

 
Figure 6: Non-enzymatic detoxification of hydrogen peroxide by reaction with pyruvate 

Ascorbic acid, a widely acknowledged antioxidant, can also act prooxidatively38-40, especially 

when aided catalytically by trace amounts of copper41. To that end, it is important to consider 

whether the observed interaction with the antioxidative pyruvate is at least partly based on 

redox processes. Redox processes may explain the observed effects on the ECM accumulation 

of hyalocytes. With media containing 200 µg/ml ascorbic acid, a concentration double the 

physiological one and, therefore, eventually prooxidative42, 43, the antioxidative pyruvate 

exerted an effect on the ECM production per cell. However, this assumption does not explain 

the observed effects on hyalocyte proliferation, since proliferation was already affected by 

pyruvate with only 10 µg/ml ascorbic acid in the medium. This small amount represents only 

one-tenth of the physiological concentration of ascorbic acid and is therefore unlikely to 

exhibit any prooxidative effect. Mechanisms other than redox processes must thus be 

considered when seeking to explain the interplay between ascorbic acid and pyruvate. 

In a prior study (chapter 5), the accumulation of collagen per cell was significantly increased 

by the addition of 200 µg/ml ascorbic acid to media (DMEM 1) containing 110 µg/ml of 

pyruvate. This is in direct contrast to the results obtained in the presently described study 

(Figure 5). As the medium in the prior study contained only 1.0 g/l glucose compared to 

4.5 g/l in the present study, glucose may be playing a role in the observed cellular processes. 

This assumption is supported by the fact that the inhibition of the proliferation of Ehrlich’s 

ascites tumor cells was found to depend on the presence of glucose in the medium26. 

As a last hypothesis, ascorbic acid and pyruvate could influence the cellular uptake of each 

other and, thereby induce the observed cellular effects. The cellular uptake of radiolabeled 

ascorbate into osteoblast-like cells44 and astrocytes45, however, was not affected by pyruvate 

in concentrations similar to the ones used in the present study. Therefore, these observations 

contradict the hypothesis that pyruvate inhibits the cellular uptake of ascorbic acid. The other 

alternative is that ascorbic acid modulated the cellular uptake of pyruvate, as the effects of 

pyruvate were only observed in the presence of ascorbic acid. Recent studies investigating the 

radical scavenger effect of pyruvate identified monocarboxylate transporters (MCT), 
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especially the MCT 1 to MCT 4 isoforms, as mediating the transport of pyruvate across 

plasma membranes46, thereby playing a pivotal role in mechanisms related to the 

cytoprotective property of pyruvate47, 48. However whether ascorbic acid has any influence on 

the transport of pyruvate via MCTs is currently unknown. 

To summarize the possible mechanisms proposed above, the observed effects of ascorbic acid 

and pyruvate seem to be, at least in part, due to their ability to influence processes induced by 

radicals such as reactive oxygen species. Furthermore, there are also indications that other 

mechanisms, dependent on glucose and/or on transport processes across the plasma 

membrane, are involved. To verify or reject these hypotheses, further investigations into the 

exact mechanisms are necessary. Moreover, it should be determined whether the displayed 

effects of ascorbic acid and pyruvate have any clinical relevance for the treatment of the 

vitreoretinal diseases that hyalocytes are assumed to be involved in6. Pyruvate, for example, 

was shown to inhibit the cataract-inducing effect of high galactose concentrations on lens 

epithelial cells in vitro49, 50 and in vivo51. Additionally, α-keto-carboxylates, especially 

pyruvate, were shown to enhance the antioxidant power of ascorbic acid and thereby prevent 

oxidation of low-density lipoproteins as well as cell death of macorphages in vitro52. 

According to the authors of that study, the combination of ascorbic acid and pyruvate could, 

therefore, have implications for strategies aimed at attenuating atherosclerosis. 

Conclusions 

The proliferation of hyalocytes, as well as their accumulation of glycosaminoglycans and 

collagens, was found to be influenced by ascorbic acid and pyruvate. This has significant 

implications for the choice of cell culture media such as DMEM that may contain both 

factors. Moreover, a clear interaction between the two factors could be observed. The 

mechanism of this interaction remains to be clarified, however, the present study indicates 

that both ascorbic acid and pyruvate modulate hyalocyte behavior and are both, therefore, 

important for in vitro hyalocyte culture. Even more importantly, since pyruvate is being 

studied for the prevention of cataracts, a disorder connected to opacifications of the 

physiologically clear lens, it may also have implications for diseases of the vitreous body. 
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Abstract 

In some cases of severe retinal diseases, the vitreous body has to be removed surgically and, 

subsequently, replaced by a suitable biomaterial. Currently, however, no satisfying long-term 

vitreous substitute is in clinical use. A novel therapeutic concept represents the combination 

of hyalocytes, the cells of the vitreous body, with suitable biomaterials. To this end, control of 

hyalocyte proliferation and accumulation of extracellular matrix (ECM) seems to be a key 

issue. Therefore, the present study elucidated the effect of bFGF and TGF-β1 on hyalocyte 

morphology, proliferation and ECM production. 

Both growth factors affected hyalocyte morphology; small, round cells could be observed 

after bFGF supplementation, whereas the cells appeared more completely spread when 

cultured in the presence of TGF-β1. Hyalocyte proliferation was increased 3-fold by 10 ng/ml 

bFGF; 1 ng/ml TGF-β1 in contrast reduced cell proliferation to about 40 % of the control. 

Converse effects of the two growth factors could also be observed on the ECM accumulation 

of hyalocytes; whereas bFGF halved their accumulation, TGF-β1 enhanced the ECM 

production up to 3-fold. Precultivation of hyalocytes with bFGF for two passages had no 

influence on their subsequent accumulation of glycosaminoglycans. However, cells 

precultivated with bFGF exhibited a doubled accumulation of collagen compared to controls. 

Moreover, supplementation of 1 ng/ml TGF-β1 doubled the ECM accumulation, independent 

of the precultivation conditions. 

To conclude, the observed opposite effects of bFGF and TGF-β1 on hyalocyte proliferation 

and ECM accumulation may allow for the control of hyaloycte properties. Therefore, these 

two growth factors seem to be valuable tools towards the development of a cell-based vitreous 

substitute.  
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Introduction 

The vitreous body, the main compartment of the posterior eye, is a gel-like structure 

consisting mainly of collagen type II and hyaluronic acid with a water content of about 98%. 

Minor components of the vitreous are collagen type V/XI and type IX as well as chondroitin 

sulfate1. While the center of this highly transparent and avascular tissue is free of cells, the 

cortex of the vitreous is occupied by a single layer of cells, named hyalocytes2, 3. Although 

these cells have been identified for more than a century4, their exact physiological function 

still remains unclear. While hyalocytes are often referred to as resting cells5-7 in the older 

literature, more recent studies show that the cells are physiologically renewed every several 

months8 and belong to the monocyte-macrophage lineage9. Physiologically, hyalocytes are 

thought to be involved in maintaining the vitreous as a transparent and avascular tissue10-13. 

Pathologically, the cells are associated with some vitreoretinal diseases, such as epiretinal 

membrane formation, diabetic macular endema, and macular holes14, 15. Hyalocytes have been 

shown to produce extracellular matrix components, such as the vitreous typical collagen 

type II, in in-vitro cell culture16. Furthermore, our group has demonstrated hyalocyte functions 

to be dependent on ascorbic acid in a previous study17. To sum up, these data indicate that 

hyalocytes may have a house-keeping function within the adult vitreous. 

In some cases of severe ophthalmic diseases, the vitreous body has to be removed surgically18, 

19. In the treatment of severe retinal detachment, for example, removal of the vitreous is 

necessary to allow for the reattachment of the retina. At the end of this procedure, the excised 

vitreous body must be replaced by a suitable biomaterial to stabilize the treated retina in its 

position. Although in recent decades a plethora of biomaterials has been studied as vitreous 

replacements, no satisfying substitute is currently available on the market20. Some of the 

biomaterials in use are degraded over time and lose thereby their functionality within the eye; 

others are associated with severe side effects, such as retinal toxicity20. Novel therapeutic 

options could emerge from the field of tissue engineering. This approach is used to regenerate 

or replace tissues using combinations of cells, biomaterials, and growth factors. A key issue in 

tissue engineering is the control of cell behavior, especially regarding proliferation and 

extracellular matrix accumulation. To achieve this goal, growth factors are of utmost 

importance, as they possess the ability to modulate cell function in a variety of aspects. The 

use of these delicate substances in vivo, however, is enabled by sophisticated release systems 

that allow for their controlled delivery to the site of need. 



Chapter 7 Effect of bFGF and TGF-β1 on hyalocytes 

- 112 - 

Among the plethora of growth factors utilized in tissue engineering, basic fibroblast growth 

factor (bFGF), for example, is known to enhance proliferation of many cell types, including 

mesenchymal stem cells21, osteoblasts22, adipocytes23 and chondrocytes24. In addition to 

enhancing cell proliferation, bFGF also enabled the retention of the differentiation potential of 

different cell types25-28. Transforming growth factor β1 (TGF-β1) has also been shown to 

elicit versatile effects on cells dependent on the cell type and the characteristics of the 

extracellular matrix the cells are in contact with29, 30. Although TGF-β inhibited epithelial cell 

and leucocyte proliferation, it stimulated the proliferation of smooth muscle cells, skin 

fibroblasts, and stromal fibroblasts31-34. Aside from cell proliferation, TGF-β1 reportedly 

stimulates the extracellular matrix production of some cells like chondrocytes35 and 

osteoblasts36.  

The goal of the present study was to evaluate the potential of bFGF and TGF-β1 as tools to 

control hyalocyte proliferation and the accumulation of extracellular matrix. To this end, we 

used an established two dimensional in-vitro hyalocyte culture system to characterize the 

effect of supplementation of either bFGF or TGF-β1 on hyalocyte morphology and 

proliferation as well as the accumulation of glycosaminoglycans and collagen. Furthermore, 

we also investigated the influence of sequential supplementation of bFGF and TGF-β1 on 

hyalocyte behavior. 

Materials and Methods 

L-Ascorbic acid in cell culture quality, chondroitin sulfate A from bovine trachea, 

dimethylmethylene blue, fluorescein-phalloidin, and highly polymerized deoxyribonucleic 

acid from calf thymus were purchased from Sigma (Steinheim, Germany). Fetal calf serum 

(Batch Nr. 40A0044K), Dulbecco’s phosphate buffered saline (PBS), penicillin/streptomycin, 

and 0.25% trypsin-EDTA were obtained from Invitrogen (Karlsruhe, Germany). Dulbecco’s 

modified eagles medium (DMEM, low glucose, with glutamine and pyruvate) was obtained 

from Biochrom (Berlin, Germany); bovine serum albumin was bought from Serva 

(Heidelberg, Germany). Basic fibroblast growth factor (bFGF) was purchased from R&D 

Systems (Minneapolis, MN, USA); transforming growth factor β1 (TGF-β1) was obtained 

from Peprotech (London, UK). Dimethylamino benzaldehyde, chloramine T, isopropanol, 

formaldehyde and Triton X-100 were bought from Merck (Darmstadt, Germany); 

hydroxyproline and perchloric acid were purchased from Fluka (Neu-Ulm, Germany). 

Hoechst 33258 dye was obtained from Polysciences (Warrington, PA, USA); papainase and 

collagenase type II were purchased from Worthington (Lakewood, NJ, USA). All other cell 
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culture materials were purchased from Corning (Bodenheim, Germany). The buffer used 

during the papainase digestion (PBE) was composed of 100 mmol Na2HPO4 (Merck) and 

10 mmol Na2EDTA (Merck) in water, adjusted to pH 6.5. 

Cell culture 
Hyalocytes were isolated from freshly enucleated porcine eyes as previously described17. In 

brief, vitreous bodies were excised from porcine eyes, washed once in PBS buffer and 

examined microscopically. They were subsequently digested with a 1 mg/ml collagenase 

type II solution in standard culture medium (SCM) while shaking in an incubator at 37°C. 

SCM was composed of DMEM supplemented with 15% fetal calf serum (FCS), 100 IU/ml 

penicillin, and 100 µg/ml streptomycin. After 3 hours, digested vitreous bodies from about 

20 eyes were pooled and subsequently centrifuged at 200 g for 7 minutes. The obtained 

hyalocytes were seeded for primary culture in a 25 cm² flask and cultured at 37°C and 5% 

CO2 in SCM supplemented with 50 µg/ml ascorbic acid. Media was exchanged three times a 

week. After 9 days, the proliferating cells were detached with trypsin-EDTA for 5 minutes 

and centrifuged at 200 g for 5 minutes. For further proliferation, hyalocytes were seeded again 

at a density of 2000 cells/cm² and cultured for 5 days in SCM containing 50 µg/ml ascorbic 

acid. For investigation of growth factor effects, cells were used after the second passage. 

Cell morphology 

To study the influence of the two growth factors on hyalocyte morphology, cells were seeded 

at 1000 cells/cm² in 8-well Lab-TekTM chamber-slides (Nunc, Wiesbaden, Germany) after the 

second passage and cultivated in DMEM containing 5% FCS, 100 IU/ml penicillin, 

100 µg/ml streptomycin and 50 µg/ml ascorbic acid supplemented with different 

concentrations of each growth factor. Cells cultured in media without growth factor 

supplementation served as a control. After two days, the media was exchanged, and after four 

days the cells were washed once with PBS buffer and fixed with a 3.7% formaldehyde 

solution for 10 min at room temperature. After cell fixation, the actin structure of the cells 

was stained using fluorescein-labeled phalloidin. The cells were permeabilized with a 0.1% 

Triton X-100 solution in PBS buffer for 5 minutes. To reduce nonspecific background 

staining, cells were first blocked with a 1% bovine serum albumin (BSA) solution was added 

for 30 minutes. Subsequently, 200 µl of a 2 U/ml dilution of fluorescein-phalloidin in 

PBS/1% BSA was added to each chamber. After incubation for 20 minutes in the dark, excess 

dye was removed by washing twice with PBS. For storage, the chambers of the slides were 

removed and the stained cells were coverslipped using the mounting medium Vectashield H-
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1000 (Vector Laboratories, Burlingame, CA, USA). Stained cells were photographed on a 

Zeiss Axiovert 200M microscope coupled to an AxioCam HRc digital camera.  

Cell proliferation and ECM accumulation 

To study the effect of bFGF and TGF-β1 on hyalocyte proliferation and ECM accumulation, 

50000 cells after the second passage were seeded in a 25 cm² culture flask and cultured in 

DMEM containing 5% FCS, penicillin/streptomycin, and 50 µg/ml ascorbic acid 

supplemented with different concentrations of each growth factor. Cells cultivated in non-

supplemented media served as a control. Medium was exchanged for fresh, growth factor-

containing media after two days. After four days the cells were harvested by complete 

trypsinization for 30 minutes. Subsequently, the samples were freeze dried (Christ Beta 2-16, 

Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) at 20°C and 

0.120 mbar for 16 hours. The dry samples were digested in 300 µl of a 125 µg/ml papainase 

solution in PBE buffer for 18 hours at 60°C. Cell number and ECM content were determined 

as described below.  

Precultivation with bFGF 

To investigate the influence of bFGF precultivation on hyalocytes, bFGF was supplemented 

to hyalocytes during the first two passages, while cells cultivated without bFGF served as 

control group. Freshly isolated cells were seeded for primary culture in two 6-wells and 

cultivated with (F) or without (C) 10 ng/ml bFGF in SCM containing 50 µg/ml ascorbic acid. 

After first passage, each group was split and, subsequently, cultured again with (F) and 

without (C) supplementation of 10 ng/ml bFGF, starting with a cell density of 2000 cells/cm². 

The four resulting groups of cells are indicated by a two-letter combination, according to their 

cultivation conditions (Figure 1). After the second passage the effect of 1 ng/ml TGF-β1 on 

the cells of each groups was studied using the culture conditions described above.  
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After 2. passage Study the effect of 1 ng/ml TGF-β1 on the cells  
Figure 1: Cultivation plan to study the influence bFGF precultivation on hyalocytes. During 
the primary culture, cells were divided into a control group (C) and a group supplemented 
with 10 ng/ml bFGF (F). After primary culture, each group was again split into a control 
group and a bFGF group. In the two-letter combinations, the first letter indicates conditions 
during primary culture, the second one the conditions after the first passage. 

Determination of cell number 

Cell number was determined by measuring the DNA amount using Hoechst 33258 dye as 

previously described37-39. In brief, emission of the intercalating dye at 458 nm was measured 

using an excitation wavelength of 365 nm. The fluorescence of Hoechst 33258 dye is 

correlated with the absolute amount of DNA in the sample. To calculate the cell number, an 

average amount of 9.96 pg DNA per cell was assumed17. 

Glycosaminoglycan determination 

The glycosaminoglycan content was measured photometrically as previously described40, 41. 

In brief, after digestion of interfering proteins with papainase, the glycosaminoglycan content 

was determined by a color reaction with dimethylmethylene blue followed by measurement of 

absorption at 525 nm. Chondroitin sulfate was used to prepare the standard curve. 

Collagen determination 
Collagen content was determined by measuring the amount of hydroxyproline, an amino acid 

that exists in significant amounts exclusively in collagen, according to a protocol described by 

Woessner et al.42 with some modifications described elsewhere17. In brief, after hydrolysis of 

the sample, hydroxyproline was oxidized with chloramine T and, subsequent to coupling 

reaction with dimethylamino benzaldehyde, the absorption of the formed dye was measured. 

Hydroxyproline was dissolved in PBE/cysteine solution to prepare the standard curve. 
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Statistics 

All data are presented as means ± standard deviation with n = 3. Single-factor analysis of 

variance (ANOVA) was used in conjunction with a multiple comparisons test (Tukey’s test) 

to assess statistical significance at levels of p < 0.05 (*) or p < 0.01 (**). 

Results 

Cell morphology and actin organization 
Hyalocytes were stained with fluorescein-phalloidin in order to asses the cell shape and the 

actin filament organization of the cells. Cells in the control group showed a spread and 

flattened phenotype with long and thick actin filaments (Figure 2). Upon 10 ng/ml bFGF 

supplementation, a higher number of small, rounded cells with diffuse actin staining appeared 

(arrows in the upper picture). Furthermore, these round cells showed small, bubble-like actin 

aggregations at the rim of the cells (arrows in the lower picture). Cells in the TGF-β1 group 

were well spread with clear and thick actin filaments; almost no rounded cells could be 

observed. Morphologically, cells cultured with 1 ng/ml TGF-β1 appeared similar to the 

control cells, however, the actin fibers within the cells seemed to be clearer and thicker 

compared to the control. 
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Control 10 ng/ml bFGF 1 ng/ml TGF-β1  
Figure 2: Influence of bFGF or TGF-β1 on cell morphology of hyalocytes after staining of F-
actin using fluorescein-phalloidin. Scale bar in the upper pictures represents 500 µm, scale 
bar in the lower pictures represents 100 µm. Due to bFGF supplementation, an increased 
number of small, round and non-spread cells could be observed (arrows in the upper 
picture); furthermore, these cells showed bubble-like adhesion sites (arrows in the lower 
picture). TGF-β1 supplementation induced little enlargement in cell-spreading, however, 
compared to the control, actin filaments were more distinct. 

Hyalocyte proliferation 

Hyalocyte proliferation was affected differently by the two growth factors studied. While 

0.1 ng/ml bFGF supplemented to the culture medium induced only a small increase in the cell 

number, the increase was clear and significant upon supplementation with 1 ng/ml bFGF 

(Figure 3 A). The maximum effect of bFGF was observed with supplementation of 10 and 

100 ng/ml bFGF, resulting in a 3-fold increase in proliferation. In contrast to bFGF, TGF-β1 

inhibited cell proliferation even at concentrations as low as 0.1 ng/ml. Supplementation of 1 – 

20 ng/ml TGF-β1 inhibited hyalocyte proliferation with a maximum effect of about 0.4 times 

the proliferation rate compared to control (Figure 3 B). However, starting with a cell number 

of 50 000 per sample, there was still about a 4-fold increase in the absolute cell number 

during the cultivation period. 
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Figure 3: Proliferation of hyalocytes dependent on the concentration of bFGF (A) and TGF-
β1 (B) supplemented to the medium. Proliferation of hyalocytes was clearly enhanced due to 
supplementation of bFGF, whereas TGF-β1 inhibited the cell proliferation; study was 
performed in triplicate, representative data are shown 

Accumulation of extracellular matrix 

Similarly to the cell proliferation, the production of extracellular matrix by hyalocytes was 

affected differently by the two growth factors. However, each factor influenced the 

production of glycosaminoglycans and collagen in a similar way.  

The production of GAG per cell was clearly inhibited by bFGF (Figure 4 A). Concentrations 

of 0.1 ng/ml of bFGF decreased the GAG production per cell slightly, while supplementation 

of 1 – 100 ng/ml showed maximal inhibitory effect. In response to bFGF supplementation, the 

production of GAG per cell was decreased to half the value of the control. Similar results 

were obtained by measuring the collagen accumulation per cell (Figure 4 B). Under 

conditions of maximum inhibition, bFGF supplementation resulted in one third of the 

collagen production of the control. This effect of bFGF was also achieved with concentrations 

of 1 – 100 ng/ml.  

In contrast to the inhibition of ECM accumulation per cell due to bFGF supplementation, 

TGF-β1 enhanced the production of both GAG and collagen per cell (Figures 4 C and D). 

Whereas supplementation of 0.1 ng/ml of TGF-β1 showed no effect on the GAG production 

of hyalocytes, concentrations of 1 – 20 ng/ml enhanced the GAG production of the cells up to 

a 1.5-fold value. Collagen accumulation was enhanced in a dose-dependent manner until 

1 ng/ml and reached utmost values (up to an almost 3-fold increase) at concentrations of 1 – 

20 ng/ml. 
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Figure 4: Accumulation of extracellular matrix components dependent on the 
supplementation of bFGF and TGF-β1. Supplementation of bFGF reduced accumulation of 
glycosaminoglycans (A) and collagens (B); in contrast, TGF-β1 enhanced the accumulation 
of glycosaminoglycans (C) as well as of collagens (D); study was performed in triplicate, 
representative data are shown. 

Influence of bFGF during cell expansion 

To study the effect of bFGF during hyalocyte expansion, 10 ng/ml of the growth factor was 

supplemented for two passages (Table 1). Subsequently, the influence of 1 ng/ml TGF-β1 on 

hyalocyte proliferation and ECM accumulation was investigated. In two independent studies, 

the number of hyalocytes obtained after primary culture was enhanced 1.5-fold due to 

supplementation of 10 ng/ml bFGF (data not shown). After trypsin detachment and seeding 

the cells of all groups at an equal density, proliferation was almost doubled upon bFGF 

supplementation. Again, compared to the control groups without supplementation of bFGF 

after the first passage (CC and FC) cell proliferation was clearly increased in the groups with 

10 ng/ml bFGF supplementation (CF and FF). Precultivation with or without bFGF during the 

primary culture showed no effect on cell proliferation after the first passage (data not shown). 

After the second passage of all groups, we investigated the response of hyalocytes to 

supplementation of 1 ng/ml TGF-β1 dependent on the precultivation conditions. TGF-β1 

inhibited the cell proliferation comparably in all groups, we observed no differences related to 

the precultivation conditions (Figure 5). Furthermore, the GAG accumulation of the cells was 
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comparably increased in all groups due to TGF-β supplementation; the precultivation 

conditions also showed no effect on the GAG production of hyalocytes (Figure 6 A). In 

contrast to the GAG accumulation, the collagen accumulation of hyalocytes was clearly 

influenced by the precultivation conditions (Figure 6 B). Whereas TGF-β supplementation 

increased the collagen production similarly in all groups compared to control, the groups 

receiving bFGF partially (CF and FC) or completely (FF) during cell expansion showed 

significantly higher levels of collagen accumulation per cell. Compared to the cells that were 

expanded completely without bFGF during the first two passages (CC), all other groups 

showed an almost doubled level of collagen production. In these groups, the levels of the 

controls as well as the levels of the TGF-supplemented groups were identically increased, 

indicating that the time interval of bFGF supplementation during the cell augmentation had no 

influence on the collagen accumulation of the cells. 
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Figure 5: Effect of 1 ng/ml TGF-β1 on the proliferation of hyalocytes after second passage, 
dependent on the precultivation with (F) or without (C) 10 ng/ml of bFGF. Black bars 
indicate controls; grey bars indicate supplementation of TGF-β1. The first letter indicates 
conditions during primary culture, the second one the conditions after the first passage. No 
differences related to the precultivation conditions could be observed; study was performed in 
duplicate, representative data are shown. 

Discussion 

Novel concepts for vitreous replacement are needed to improve clinical therapy after 

vitrectomy20. Tissue engineering seems to be a promising strategy that could lead to the 

development of a suitable vitreous substitute in the future. For the development of a tissue-

engineered, cell-based vitreous substitute, however, the control of hyalocyte behavior seems 

to be necessary. The presented study indicates that bFGF and TGF-β1 conversely influence 
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hyalocyte proliferation and their extracellular matrix accumulation. Therefore, these growth 

factors could be valuable tools to specifically control hyalocyte properties. 

Hyalocytes are known as the cells of the vitreous body. To minimize individual variations 

between the cells of different animals, cells from about 20 eyes were pooled for each study. 

As ascorbic acid was previously demonstrated to be an important factor for the in vitro culture 

of hyalocytes17, 50 µg/ml of ascorbic acid was supplemented to the media throughout the 

culture period. During the first two passages, the use of 15% FCS in the culture medium 

assured sufficient hyalocyte proliferation. However, during the investigation into the 

influence of the two growth factors, the FCS amount within the media was reduced to 5% in 

order to prevent the relatively uncharacterized mixture of growth factors in FCS from 

masking the effects of the supplemented growth factors. All investigations were performed 

using the culture system previously described by our group17. This system uses sub-confluent 

cell densities in two-dimensional culture, thereby mimicking the native environment of 

hyalocytes by ensuring an isolated position and a minimum of cell-cell contact.  
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Figure 6: Effect of 1 ng/ml TGF-β1 on the extracellular matrix accumulation of hyalocytes 
after second passage, dependent on the precultivation with (F) or without (C) 10 ng/ml of 
bFGF. Black bars indicate controls; grey bars indicate supplementation of TGF-β1. The first 
letter indicates conditions during primary culture, the second one the conditions after the first 
passage. Production of glycosaminoglycans per cell was not influenced by the precultivation 
conditions (A). In contrast, precultivation with bFGF enhanced the production of collagen 
per cell in the control groups as well as in the TGF-β1 supplemented cells (B); study was 
performed in duplicate, representative data are shown. 

The present study indicates that both the cell morphology and the actin structure of the cells 

are clearly affected by the investigated growth factors (Figure 2). TGF-β1 increased the 

thickness of the actin filaments within the cells, but had little effect on the morphology of 

hyalocytes, whereas bFGF increased the number of small, rounded cells displaying diffuse 

actin staining. Similar effects of TGF-β1 on the structure of the actin fibers are reported for 

example for mesenchymal stem cells43 and for Leydig cells44. The observed effect of bFGF on 
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morphology and actin organization of the cells is also in accordance with other cell types, for 

example chondrocytes25 or bone marrow-derived progenitor cells27, 45. FGFs are known to 

induce disassembly of actin filaments46, 47, an effect that we observed with hyalocytes. 

Moreover, in the presented study small, bubble-like actin structures were partially observed at 

the rim of the cells after four days of cultivation with bFGF. These actin structures are 

probably linked to adhesion areas of the cells and, therefore, suggest that bFGF might change 

the adhesion behavior of hyalocytes. It is not unusual for chondrocytes, a well characterized 

and, due to its similar native environment consisting of collagen type II and GAG probably 

closely related cell type, to correlate cell morphology and actin fiber organization with the 

differentiation state of the cell48-50. However, as the characteristics of a differentiated 

hyalocyte are sill unclear, similar correlations for hyalocytes do not seem appropriate. An 

improved knowledge about hyalocytes may allow a more precise interpretation of these 

results in the future.  

The present study clearly demonstrates that cell proliferation can be modulated by the use of 

bFGF and TGF-β1, as these two growth factors showed opposite effects on the proliferation 

of hyalocytes (Figure 3). Although TGF-β1 clearly decreased the obtained cell numbers 

compared to the controls, there was still an increase in the absolute cell number detectable 

after the cultivation time. Therefore, we conclude that the observed effect of TGF-β1 was due 

to inhibition of the cell proliferation. The described effects of bFGF and TGF-β1 on hyalocyte 

proliferation are in agreement with a report by Sakamoto et al.51 and were similarly observed 

for other cell types, notably chondrocytes45 and mesenchymal stem cells36, 52. Particularly 

retinal pigment epithelial cells (RPE) showed a comparable increase in their proliferation due 

to supplementation of 10 ng/ml bFGF, however, in contrast to the effect of TGF-β1 on 

hyalocytes, TGF-β2 showed no influence on proliferation of RPE cells53.  

In addition to cell proliferation, we were interested in the effect of the two growth factors on 

functional properties of the cells. As the cells are known to produce extracellular matrix, 

especially glycosaminoglycans54 and collagens16, 55, we quantified the accumulation of ECM 

per cell as a marker for the cell functions. We again found again opposite effects of the two 

growth factors on these markers. We could demonstrate that the bFGF-induced increase in the 

proliferation rate is associated with a decrease in the production of ECM components per cell 

(Figure 4). In contrast, the inhibition in cell proliferation due to TGF-β1 was correlated with 

an enhancement in the production of GAG and collagen per cell. Each growth factor affected 

the accumulation of GAG and collagen similarly by trend, however, the magnitude of the 

effect was not identical. As, for example, bFGF decreased the GAG accumulation per cell to 
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about half the value of control, the collagen accumulation was decreased to one third of the 

control. These differences were most probably due to the test system. It is known for 

chondrocytes, that the accumulation rate of GAG and collagen per cell changes with time 

during the cultivation period56. Furthermore, these ECM components show a different 

turnover. Therefore, the cultivation time that we limited to four days had a clear impact on the 

absolute amounts of accumulated ECM components. Although the absolute values measured 

are closely connected to the culture system, we observed clear effects of each investigated 

factor. As the factors affected the cells in an opposite manner, sensible use of bFGF and TGF-

β1 would appear to allow for the control of ECM production of hyalocytes. Further studies 

are needed to clarify to what extend ECM production and, moreover, which specific types of 

GAG and collagens are ideal for the therapeutic use of the cells. In addition, as the presented 

data display the sum of all accumulated types of GAG and collagens, it remains to be 

elucidated whether the growth factors favor accumulation of some special subtype of these 

ECM components.  

For the development of a tissue-engineered vitreous substitute, a sufficient population of 

hyalocytes of suitable quality will be needed. Supplementation with bFGF during cell 

expansion appears to be a promising approach to gaining sufficient cell numbers in a short 

timeframe, as bFGF clearly enhanced hyalocyte proliferation. However, it remains unclear 

whether this enhancement in the proliferation rate has an influence on the subsequent ECM 

accumulation of hyalocytes. To elucidate this, we studied the effect of TGF-β1 on hyalocyte 

proliferation and accumulation of extracellular matrix dependent on the precultivation with or 

without bFGF. To induce the maximum effects from the growth factors, we used, in 

accordance with the presented data (Figure 3 and 4), 10 ng/ml of bFGF during the 

precultivation phase and, subsequently, investigated the effect of 1 ng/ml of TGF-β1. To 

ensure the best conditions during the cell expansion phase for two passages, we used 15% 

FCS supplemented with bFGF; after the second passage the functional properties of the cells 

were investigated in 5% FCS to make differences between the studied groups clear. As 

expected, bFGF clearly enabled enhanced cell propagation, as higher cell numbers were 

detected in all groups receiving 10 ng/ml bFGF (F in primary culture, CF and FF after first 

passage) compared to controls (data not shown). Interestingly, measures of both cell 

proliferation and accumulation of GAG per cell (Figure 5 and 6 A) were comparable for all 

groups following supplementation with TGF-β, irrespective of their precultivation conditions. 

However, higher amounts of collagen per cell were observed upon precultivation with bFGF 

(Figure 6 B). Thus, the time point of bFGF supplementation does not seems to influence the 
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collagen production of the cell. These data suggest that an enhancement in the cell 

proliferation due to bFGF has no adverse effects on the ECM production of the cells. On the 

contrary, bFGF precultivation even appeared to induce positive effects on the total collagen 

production. To asses this observation, the pattern of accumulated types of collagens will need 

to be investigated. However, bFGF seems to be a useful tool for effective and sensible 

hyalocyte augmentation. Similar effects of bFGF have been reported for other cell types, 

including chondrocytes25, 26 and mesenchymal stem cells27, 28. In addition to the 

supplementation of bFGF alone, there are also reports about combinations of growth factors, 

such as bFGF and TGF-β1, during cell propagation and differentiation45, 57, 58. Therefore, it 

seems obvious to systematically investigate the use of different growth factor combinations to 

further optimize hyalocyte expansion in the future. Moreover, further studies should clarify 

the mechanism of the influence of bFGF precultivation on hyalocytes. This could be either 

due to a direct effect on the cells, as for example an increase in the expression of certain 

genes, or due to preferential proliferation of a subpopulation of hyalocytes. However, our data 

demonstrate a successful step towards improving hyalocyte expansion, important progress not 

only towards a tissue-engineered vitreous substitute, but also an improvement for in vitro-

cultivation of hyalocytes. 

The sensitivity of growth factors to denaturation, connected with the loss of bioactivity, 

represents an important obstacle for their use. As bFGF was demonstrated to be a valuable 

tool for in vitro cell propagation, it may be predominantly used in vitro. Therefore, this 

limitation can easily be overcome using pump systems that supplement the factor 

continuously to the media. In contrast to bFGF, TGF-β1 seems to also display useful 

properties for in vivo use. In that setting, however, suitable intraocular release systems that 

allow for controlled delivery of the growth factor would be needed. Therefore, the 

appropriateness of the known intraocular release devices, for example implants, micospheres 

or rods59 - 61, for the delivery of TGF-β1 should be evaluated in the future. Moreover, the 

development of biomaterials that combine suitability as a vitreous substitute with the ability to 

release drugs would represent significant progress.  

Conclusions 

To conclude, we identified bFGF and TGF-β1 as inducing converse effects on hyalocytes. 

Therefore, these two growth factors represent useful tools to influence functional properties of 

hyalocytes. For the development of a vitreous substitute based on tissue engineering 

strategies, it will be necessary to control hyalocyte functions, especially their proliferation and 
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the production of extracellular matrix. For that reason, bFGF and TGF-β1 may represent key 

factors towards this promising development. 
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Abstract 

Hyalocytes, the cells of the vitreous body, seem to hold a significant potential for vitreous 

regeneration using tissue engineering techniques. Therefore, in order to overcome the 

limitations of currently available vitreous substitutes, the development of a cell-based 

approach may represent a promising concept. Towards this, the characterization of hyalocyte 

loaded biomaterials is necessary, as the interaction with a biomaterial could have an important 

influence on cells. To that end, the present study aimed at the development of a 3D culture 

system that allows for the characterization of hyalocytes in contact with biomaterials under 

conditions similar to the vitreal environment. 

To achieve this, vitreous-like densities of hyalocytes were seeded in collagen type I gels with 

mechanical properties comparable to the mammalian vitreous. To mimic the native vitreous 

cortex, cells were seeded into the gels exclusively in a small layer near the surface or the 

bottom of the constructs. A homogenous distribution of cells served as a control. Furthermore, 

to elucidate the suitability of the culture system to study growth factor effects, TGF-β1 was 

supplemented to the media. During 30 days of cultivation, the impact of gel contraction 

became obvious. The highest rates of gel contraction were observed in the homogenous 

culture, whereas the systems that mimic the native environment of hyalocytes showed little or 

no contraction. The changed mechanical properties of the gels, caused by their contraction, 

seemed to exhibit an effect on the cell proliferation as well as their accumulation of 

extracellular matrix. This hypothesis, however, has to be clarified in the future. 

To conclude, the presented systems seemed to allow for investigations into hyalocyte-

biomaterial-interactions under conditions similar to the native environment of the cells. 

Furthermore, they seemed suitable to study growth factor effects on the cells. However, the 

usefulness of the established systems to mimic the in vivo environment remains to be 

elucidated. 
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Introduction 

Tissue engineering represents a promising technique that aims for the regeneration of tissues 

and organs1, 2. This young scientific field combines knowledge from different disciplines, 

such as cell biology, biomaterials science, and engineering, to develop novel concepts for the 

treatment of diseases associated with cell-, tissue- or organ-failure3, 4. In a plethora of tissue 

engineering studies, the importance of the interplay between cells, biomaterials, and growth 

factors has become apparent5, 6. 

According to earlier studies (chapters 5, 6, 7), the cells of the vitreous body, termed 

hyalocytes, seem to hold potential for tissue engineering applications. As there is a 

tremendous need for novel vitreous substitutes7, the development of a cell-based vitreous 

substitute using tissue engineering techniques seems promising. Towards this, however, 

characterization of hyalocytes within a three-dimensional (3D) material becomes necessary as 

cells are generally known to exhibit a different behavior when embedded in a biomaterial 

compared to 2D culture8-10. Furthermore, in vitro test systems for cell-biomaterial interactions 

are necessary for the development of such a cell-based vitreous substitute.  

In the literature, studies on hyalocytes cultured in 3D collagen gels are reported11, 12. 

However, in these studies the hyalocyte-collagen-constructs were only used to quantify the 

contraction forces exhibited by the cells by measuring the gel contraction. Further data about 

the effects of hyalocytes on the gels and vice versa the effects of the material on the cells are 

missing.  

Therefore, the present study aimed at the development of a 3D culture system that allows for 

the characterization of hyalocytes, the effect of growth factors on the cells, and hyalocyte-

biomaterial-interactions under conditions similar to the vitreal environment. To achieve this, 

collagen type I gels with viscoelastic properties comparable to those found in the vitreous 

body were seeded with hyalocytes either homogenously or in a thin layer, mimicking the 

native position of the cells (Figure 1). After 7 and 30 days of dynamic cultivation, the 

constructs were characterized with regards to their cell numbers as well as their amounts of 

collagen and glycosaminoglycans. To furthermore characterize hyalocyte functions, the 

expression of mRNA of different collagen types was analyzed after 7 days of culture. 

Moreover, to elucidate the possibility of investigating growth factor effects using the studied 

systems, the influence of 1 ng/ml TGF-β1 on hyalocytes was analyzed. 
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Materials and Methods 

Materials: 

L-Ascorbic acid in cell culture quality, cysteine, chondroitin sulfate A from bovine trachea, 

dimethylmethylene blue, hematoxylin, FeCl3, eosin, safranin O, nuclear fast green, 

SigmaCoat®, and highly polymerized deoxyribonucleic acid from calf thymus were 

purchased from Sigma (Steinheim, Germany). Fetal calf serum (South America, Batch Nr. 

40A0044K), penicillin/streptomycin, phosphate buffer saline (PBS), and 0.25% Trypsin-

EDTA were obtained from Invitrogen (Karlsruhe, Germany). Dulbecco’s modified Eagle 

media (DMEM, low glucose, with glutamine and pyruvate) and TriZol® were obtained from 

Biochrom (Berlin, Germany). Dimethylaminobenzaldehyde, chloramine T, isopropanol, 

ethanol, xylene, acetic acid, Na2HPO4, and Na2EDTA were bought from Merck (Darmstadt, 

Germany); hydroxyproline and perchloric acid were purchased from Fluka (Neu-Ulm, 

Germany). Tissue Tek was bought from Sakura Finetek Europe (Zoeterwoude, The 

Nederlands). Hoechst 33258 dye was obtained from Polysciences (Warrington, PA, USA); 

papainase, and collagenase type II were purchased from Worthington (Lakewood, NJ, USA). 

Collagen type I from bovine skin was bought from IBFB Pharma (Leipzig, Germany). 

Transwells (12 mm diameter polyester membrane with 3.0 µm pore size) as well as all other 

cell culture materials were purchased from Corning (Bodenheim, Germany). Buffer for the 

papainase digestion (PBE) was composed of 100 mmol Na2HPO4, 10 mmol Na2EDTA, and 

5 mmol cysteine in water, adjusted to pH 6.5. 

Rheological characterization of collagen gels 

To prepare collagen gels with concentrations of 0.75, 1.0 and 2.0 mg/ml collagen in 

phosphate buffer saline (PBS), suitable amounts of a 4 mg/ml collagen solution in 0.1 M 

acetic acid were diluted in PBS followed by neutralization with a 1 M sodium hydroxide 

solution under ice cooling; small volumes of DMEM served as a pH indicator. Subsequently, 

gelation of 1 ml of each collagen solution was investigated using a rheometer (AR 2000, TA 

Instruments, Alzenau, Germany) with a 20 mm steel plate and a gap of 500 µm. The 

temperature was increased from room temperature to 37°C while measuring the viscoelastic 

properties, namely G’ (storage modulus) and G’’ (loss modulus), of the aqueous solutions 

under a constant strain of 1% and a frequency of 1 Hz. After complete gelation of the sample, 

the mechanical properties of the gels were characterized in stress controlled mode by a strain 

sweep from 0.1 to 10% strain.  
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Cell culture 

Hyalocytes were isolated enzymatically from freshly excised vitreous bodies as previously 

described (chapters 3 and 5). Subsequent to isolation, cells were propagated for two passages 

in standard culture medium (SCM) supplemented with 50 µg/ml ascorbic acid in a humidified 

atmosphere at 37°C and 5% CO2; media was exchanged three times a week. SCM was 

composed of DMEM supplemented with 15% fetal calf serum, 100 IU/ml penicillin, and 

100 µg/ml streptomycin. For cell-biomaterial studies, hyalocytes were used after the second 

passage. 

Homogenous Sandwich Transwell

Culture mediumCulture medium BiomaterialBiomaterial HyalocytesHyalocytes

Cells 2D

 
Figure 1: Schematic picture of the different 3D culture systems as well as the cell control 
(2D); in the homogenous culture system, hyalocytes were evenly distributed throughout the 
biomaterial, although a small layer of pure biomaterial inhibited cell contact to the culture 
surface; in both the sandwich and transwell systems, the cells were cultivated in a small layer 
within the biomaterial, mimicking the native position of the cells in the vitreous; hyalocytes 
cultured on a thin layer of collagen served as control (Cells 2D). All systems were cultivated 
under three-dimensional shaking on a modified orbital shaker. 

Each 3D hyalocyte culture system consisted of 4 500 cells combined with 375 µl of a 0.75% 

collagen gel in DMEM and a small collagen layer of equal concentration (35 µl) with a 

calculated height of about 30 µm (Figure 1). Hyalocytes cultured on the small collagen layer 

without any additional biomaterial served as control (Cells 2D). Consistent with the transwell 

insert with an inner diameter of 12 mm, the homogenous and sandwich cultures were seeded 

in glass rings with an equal inner diameter; the glass rings were coated SigmaCoat prior to 

use. In all culture systems, the first sheet of collagen (the small layer in all systems except for 

the sandwich culture) was prepared in DMEM instead of PBS as described above and gelled 

for 1 h in an incubator at 37°C. Subsequently, the cells were seeded on the collagen. After 5 h 

of cell adherence under static conditions in an inbubator, the cells were capped with the 

second collagen sheet and again incubated for 1 h to allow for gelation. For homogenous cell 

cultivation, the cells were embedded in the neutralized collagen solution prior to gelation. 

After preparation of the cell-biomaterial-combinations, they were cultivated in SCM/50 µg/ml 

ascorbic acid with or without supplementation of 1 ng/ml TGF-β1 on a slightly inclined 

orbital shaker that enabled shaking in three dimensions; media (2 ml for all systems except the 
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transwells, which required 1.5 ml in the lower chamber and 100 µl medium above the 

biomaterial) was exchanged three times a week. After 30 days, macroscopic pictures were 

taken with a commercial digital camera to determine gel contraction. Constructs were 

harvested after 7 and 30 days, followed by freeze drying and digestion of the samples in 

300 µl of papainase buffer as previously described (cf. chapter 5). Cell number as well as 

collagen and glycosaminoglycan content were analyzed as follows. 

Determination of cell number and ECM contents 

Cell number was determined by measuring the DNA amount using Hoechst 33258 dye13-15. In 

brief, the emission intensity of the intercalating dye was measured at 458 nm upon excitation 

at 365 nm. The fluorescence of Hoechst 33258 dye is correlated with the absolute amount of 

DNA in the sample. An average amount of 9.96 pg DNA per cell was assumed for the cell 

number calculations.  

Glycosaminoglycan content was measured spectroscopically as previously described16; 17. In 

brief, after digestion of interfering proteins with papainase, the glycosaminoglycan content 

was determined by a colorimetric reaction with dimethylmethylene blue followed by 

measurement of absorption at 525 nm. Chondroitin sulfate was used to produce the standard 

curve (cf. chapter 4). 

The collagen content was determined by measuring the amount of hydroxyproline, an amino 

acid that exists in significant amounts exclusively in collagen, according to Woessner et al.18 

with some modifications described earlier (cf. chapters 4 and 5). In brief, after hydrolysis of 

the sample, hydroxyproline was oxidized with chloramine T and, subsequent to the coupling 

reaction with dimethylaminobenzaldehyde, the absorption of the newly formed dye was 

measured. A standard curve of hydroxyproline in the PBE/cysteine served as reference. 

Histology 

For histological analysis, samples cultivated for 30 days were washed once in PBS and fixed 

for 1 hour in 10% formalin at room temperature followed by embeddeding in Tissue Tek. 

Histological sections of 20 µm thickness were obtained using a Microm Cryotom HM 550 

(Walldorf, Gemany) and subsequently stained with Meyers hematoxylin followed by eosin 

counterstaining. Additionally, sections were stained with safranin O for the detection of GAG 

and counterstained with fast green.  
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Semiquantitative mRNA analysis 

For analysis of hyalocyte gene-expression, constructs were harvested after seven days in 1 ml 

TriZol®; mRNA was subsequently isolated according to the manufacturer’s instructions. 

Reverse transcription as well as amplifications of COL1A1, COL2A1 and COL11A1 were 

performed using conditions and pairs of primers as described in chapter 5; β-actin served as a 

reference for comparisons. In contrast to chapter 5, COL11A1 was amplified for 38 cycles. 

Statistics 

All data are presented as means ± standard deviation with n=3. Single-factor analysis of 

variance (ANOVA) was used in conjunction with a multiple comparisons test (Tukey’s test) 

to assess statistical significance with p < 0.05. A * indicates a statistical significance between 

day seven and day thirty, ‡ between control media and media supplemented with 1 ng/ml 

TGF-β1. Statistically significant differences compared to all other culture systems at identical 

time points and with the same media is indicated by +. As assessed by ANOVA followed by a 

Dunnett’s test, º indicates statistical significance compared to the pure collagen gels cultured 

for the same period of time. 

Results 

Rheological characterization of collagen gels 

After preparation and neutralization of solutions with varying collagen concentrations, all 

solutions gelled within a few minutes of increasing their temperature to 37°C. After 

15 minutes, no change in the viscoelastic properties of the gels could be observed, indicating 

that the gelation was complete (data not shown). All obtained gels exhibited a primarily 

elastic behavior within their linear viscoelastic region, indicated by a storage modulus (G’) 

about one order of magnitude higher than the loss modulus (G’’) (Figure 2). Both moduli of 

the gel samples were clearly dependent the collagen concentration: whereas the storage 

modulus of gels with 2.0 mg collagen was found to be 200 Pa, G’ of 0.75% gels was about 

45 Pa. A similar trend between 20 and 5 Pa was observed for the loss moduli G’’. Signs of 

structural perturbations, indicated by increasing values for both moduli, were first observed at 

strains of about 5%; they were again dependent on the collagen concentration. 
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Figure 2: Rheological characterisation of gels with different concentrations of collagen; all 
gels showed elastic dominated behavior, indicated by the clearly higher values of the storage 
modulus (G’) compared to the loss modulus (G’’); the gel with 0.75% collagen exhibited a 
storage modulus of about 45 Pa, a value similar to published data about the storage modulus 
of the vitreous body19. 

Gel contraction 

After 30 days of cultivation, some of the gels were clearly contracted by the embedded cells 

(Figure 3); control gels consisting of pure collagen, in contrast, showed no macroscopic signs 

of size alteration during the cultivation period. The cell controls cultivated without additional 

growth factor were still attached to the collagen coating, whereas cells cultured with TGF-β1 

were clearly detached and built three-dimensional cell clusters (arrows in Figure 3). Among 

the 3D culture systems, the homogenous ones were most contracted, whereas in the transwell 

system no macroscopic gel contraction was observed. Furthermore, TGF-β1 supplementation 

seemed to enhance the contraction of the gels, as in the homogenous as well as the sandwich 

system the gels were more contracted compared to the non-supplemented controls.  
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Figure 3: Macroscopic pictures of the cell systems after 30 days of cultivation; whereas pure 
collagen gels appeared unaltered, some of the gels containing hyalocytes were clearly 
contracted (arrows); TGF-β1 seemed to enhance gel contraction. 

Histology 

Due to the very high water content of the samples, it was difficult to obtain histological 

sections. Ruptures in the sections or the lifting of the cell sheet or the transwell membrane off 

the pure gel were unavoidable (Figure 4), probably caused by their different mechanical 

properties. Nevertheless, it was possible to get a crude picture of the microstructure of the 

samples by histological analysis. According to H&E-staining, hyalocytes were homogenously 

distributed throughout the gel in the homogenous culture system, whereas a small layer of 

cells adjacent to the gel surface in the sandwich culture or near the transwell membrane in 

these culture systems was observed (Figure 4). This indicated that the cells were 

predominantly present in the region in which they were seeded (compare to Figure 1). 

After safranin O staining, regions with a slight red staining, mainly near the cells, were 

observed, indicating that small amounts of GAG must have been produced (Figure 5). 

Furthermore, regions with a green staining of the collagenous matrix were found in all 

constructs. No clear differences between the different culture systems or the growth factor 

supplementation on the GAG accumulation were obvious. However, histological analysis 

demonstrated GAG to be predominantly present near hyalocytes. 



Chapter 8 3D Hyalocyte culture systems 

- 138 - 

Homogenous Sandwich Transwell  
Figure 4: Histological sections of samples from different culture systems after H&E-staining; 
samples cultivated in control media are displayed above, pictures below show samples 
cultivated with 1 ng/ml TGF-β1; scale bar represents 200 µm; in the homogenous culture, 
hyalocytes (indicated by the arrows) were distributed throughout the gels, whereas in the 
sandwich and transwell systems, cells were predominantly present in a single layer near the 
surface of the constructs or near the transwell membrane, respectively (compare to Figure 1). 

Homogenous Sandwich Transwell  
Figure 5: Histological sections of samples from different culture systems after safranin O 
staining; samples cultivated in control media are displayed above, pictures below show 
samples cultivated with 1 ng/ml TGF-β1; scale bar represents 200 µm; glycosaminoglycans 
were stained in red, collagenous structures in green; GAGs were predominantly observed 
near hyalocytes (indicated by the arrows). 
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Cell numbers 

The number of cells within the constructs was clearly dependent on the time point and the 

culture system as well as the supplementation of TGF-β1 (Figure 6). In the 2D as well as in 

the homogenous and sandwich cultures, the cell number increased from day 7 to day 30, 

independent of the growth factor supplementation. In contrast, in the transwell system the 

number of cells obtained after 30 days was decreased compared to the number after 7 days. 

With the exception of the transwell system without TGF supplementation, all 3D culture 

systems showed a reduced cell proliferation compared to the 2D cells at day 7. At day 30, the 

cell numbers were also lower compared to the 2D cells when using control media. However, 

with TGF in the media, this trend was only clear for the transwell system, as the values for the 

other two 3D systems exhibited large standard deviations. Focusing on the effect of TGF-β1 

on the cell number, the growth factor clearly decreased the number of cells in 2D, the 

sandwich, and the transwell systems at day 7 compared to control media, whereas it increased 

the cell number in the homogenous culture. After 30 days of cultivation, no influence of TGF-

β1 on the cell number could be observed. 
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Figure 6: Cell numbers obtained after cultivation of hyalocytes in different culture systems 
for 7 and 30 days with or without 1 ng TGF-β1 supplemented to the culture medium; signs 
indicating statistical significance are explained above. 

Glycosaminoglycan content 

The GAG content within the samples was dependent on the cultivation period and the 

supplementation of TGF-β1. Among the cultivation systems, however, only the transwell 

system differed from the other systems (Figure 7). Similar to the cell numbers, the GAG 

contents were also increased from day 7 to day 30 in all culture systems except the transwell. 
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This tendency was not as distinct when TGF-β1 was supplemented. In contrast, the GAG 

amount within the transwell samples was clearly decreased at day 30 compared to day 7. 

Focusing on the culture systems, after day 7 higher values were measured in the transwell 

constructs compared to all other systems, independent on cultivation without or with TGF. At 

day 30 this trend was reverted; the GAG content of the transwell samples was apparently 

lower compared to the other systems. With the exception of the sandwich culture at day 7 and 

the transwell at day 30, GAG accumulation was increased due to supplementation of TGF-β1. 
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Figure 7: Amounts of GAG measured after cultivation of hyalocytes in different culture 
systems for 7 and 30 days with or without 1 ng TGF-β1 supplemented to the culture media; 
signs indicating statistical significance are explained above. 

Collagen content 

Whereas small amounts of hydroxyproline were observed in the 2D cell culture, clearly 

higher amounts of collagen were found in the 3D systems (Figure 8). This was due to the 

cultivation method, as the 3D systems started with about 10 times more collagen than the cell 

controls. Among the 3D systems, distinctly decreased hydroxyproline values were measured 

after 30 days of cultivation with TGF-β1 in the homogenous system. The other 3D groups 

produced values similar to the pure collagen samples cultivated without cells. The significant 

differences observed at day 7 in the sandwich and transwell systems seemed to be caused by 

chance, as they could not be repeated at 30 days. Regarding the different cultivation time 

points, there is a first slight, but not significant hint that cells seemed to decrease the collagen 

amount in the homogenous as well as the sandwich culture due to cultivation for 30 days 

compared to 7 days, whereas in the transwell system the cells seemed to enhance the collagen 

amounts. For the 2D cells cultivated with control media, the collagen amounts were doubled 
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during cultivation from day 7 to day 30. This tendency, however, was not apparent upon 

cultivation with TGF-β1. Focusing on the effect of TGF-β1 supplementation on hyalocytes 

cultured in the 3D systems, no influence was observed after 7 days, whereas after 30 days a 

decrease in the collagen amount was apparent, most prominently in the homogenous and the 

sandwich systems.  
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Figure 8: Amounts of hydroxyproline as a measure for collagen determined after cultivation 
of hyalocytes in different culture systems for 7 and 30 days with or without 1 ng TGF-β1 
supplemented to the culture media; pure collagen cultivated without cells served as control. 
Signs indicating statistical significance are explained above. 

mRNA expression 

To further elucidate the influence of the different cultivation systems on hyalocytes, we 

studied the expression of different types of collagen after 7 days (Figure 9) using the 

housekeeping gene β-actin as reference. However, no differences between the culture systems 

or the growth factor supplementation were observed. In all groups, clear amounts of 

COL1A1, coding for the α-1 chain in collagen type I, and COL11A1, coding for the α-1 chain 

in the mixed collagen type V/XI, were observed. In contrast, no expression of COL2A1, 

coding for the α-1-chain in collagen type II, was found.  
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Figure 9: mRNA expression of collagen type I (COL1A1) and collagen type V/XI (COL11A1) 
by hyalocytes after 7 days dependent on the culture system as well as TGF-β1 
supplementation; C indicates control media, T indicates supplementation of 1 ng/ml TGF-β1; 
expression of the investigated genes was not influenced by the tested factors. 

Discussion 

For the development of a “vitreous-like” in vitro culture system, the systems were modeled on 

the native environment of the cells. To this end, two different culture systems, namely the 

sandwich and the transwell systems, were developed (Figure 1). To mimic the cell density in 

the cortex of the vitreous20, the seeding density was calculated providing a spherical shape of 

the vitreous with a volume of 4 ml and 50 000 cells per vitreous, a number determined from 

cell measurements of isolated vitreous bodies. As hyalocytes are natively present mostly in 

the cortex of the vitreous21, 22, this situation was mimicked by embedding the cells into the 

biomaterial in a small layer either near the surface or near the bottom. Thereby, diffusion of 

nutrients was only inhibited by a small biomaterial layer with a calculated thickness of about 

30 µm, similar to the physiological situation within the vitreous, where the cells mainly live 

on nutrients supplied by diffusion from the retinal blood vessels. Furthermore, as the eye is 

exposed to mechanical stress caused by the movement of the eye, this was imitated by 

shaking the samples continuously in all three dimensions. As control groups for the outlined 

“vitreous-like” culture systems, hyalocytes were on the one hand seeded homogenously into 

the biomaterial (homogenous) as performed in many other tissue engineering systems23, 24. In 

addition, cells were seeded on top of a small biomaterial layer, allowing the cells, thereby, 

only to adhere and interact with the material in a 2D manner in contrast to the other tested 

systems. 

As the vitreous body mainly consists of collagens, especially collagen type II25, it seemed 

reasonable to investigate collagen as a first biomaterial. Due to the poor availability of 

collagen type II, collagen type I was used as biomaterial for this initial study. Because it is 
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widely acknowledged that in addition to the chemical makeup of a biomaterial, the mechanics 

of a biomaterial have a tremendous impact on the cellular response6, the mechanical 

properties of the collagen gels had to be adapted to that of native vitreous body. Using 

oscillatory rheology, storage moduli of 20 to 50 Pa and loss moduli between 4.5 and 11 Pa 

have been determined for vitreous bodies, dependent on the species the tissues were obtained 

from19. Furthermore, a recent report indicated that these values decline by roughly a factor of 

five to steady state values within an hour after removal from the eye26. Collagen gels with a 

concentration of 0.75% collagen exhibited viscoelastic properties similar to these reported 

values (Figure 2). Therefore, gels with this concentration of collagen were used as 

biomaterial. 

After cultivation of the different systems for 30 days, cells were mainly present in the regions 

where they were seeded, as indicated by histological sections (Figures 4 and 5). This indicates 

the cells not to migrate within the gels. However, contraction of the collagen gels could be 

observed in most of the samples with exception of the transwell system (Figure 3). 

Contraction of collagen gels is a commonly used assay for characterization of cell-matrix 

interactions 27 and already reported for hyalocytes11, 12. However, for studying cell-biomaterial 

interactions, this is a critical phenomenon, as both the mechanical and diffusion properties of 

the material are dramatically changed, which has to be taken into consideration for the 

interpretation of the data. 

The investigated hyalocyte culture systems led to different cellular responses regarding 

proliferation (Figure 6) and accumulation of glycosaminoglycans (Figure 7) and collagen 

(Figure 8). Whereas the sandwich and the homogenous culture showed similar results to the 

cell control, in the transwell system the opposite effects were observed. However, no 

differences in the gene expression were apparent; at day 7 the cells of all culture systems 

exhibited a similar expression pattern of varying collagen genes (Figure 9). As gel contraction 

was observed in all systems except the transwell (Figure 3), the changes in the cellular 

environment due to gel contraction might have had an important influence on the cell 

behavior. The systems with contracted gels, for example, seemed to favor hyalocyte 

proliferation over 30 days, whereas in the transwell system the high proliferation rate up to 

day 7 was even inversed, resulting in a lower cell number after 30 days compared to day 7. 

Similar effects were observed for the GAG content. Moreover, the systems showing the 

highest rate of contraction, the homogenous and sandwich systems with TGF-β1 

supplementation, also exhibited the highest rate of collagen degradation. In contrast, in the 

transwell system the amount of collagen seems to have increased from 7 to 30 days of 
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cultivation. This observation was confirmed by preliminary studies investigating hyalocytes in 

more rigid gels with a collagen concentration of 2.0 mg/ml; a drastic decrease in the collagen 

content was observed in all groups in this study (unpublished data). As a result of the 

presented data, the hypothesis was developed, that hyalocytes take a housekeeping function 

within the systems and reorganize their environment. Thereby, the cells degrade non-

physiological rigid collagen matrices in conjunction with an increased cell proliferation, 

whereas proliferation was inhibited and collagen accumulated under more physiological 

conditions. However, it has to be emphasized that the presented data give just a slight hint 

towards this hypothesis, which has to be substantiated in further studies. However, the report 

by Park et al.28 supports this hypothesis, as they found chondrocytes to increase their 

expression of matrix metalloproteinase-13, an ECM-degrading enzyme, in non-degradable 

gels compared to degradable ones. 

In addition to studying the different culture systems, the influence of 1 ng/ml TGF-β1 on 

hyalocytes was investigated in the different culture systems. The apparent effect of TGF-β1 

on hyalocytes was overall comparable to the one observed in 2D culture experiments 

performed earlier on tissue culture treated plastic (cf. chapter 7). In general, TGF-β1 inhibited 

cell proliferation and enhanced the accumulation of glycosaminoglycans. In the previous 

studies the collagen accumulation of the cells was also increased by the growth factor. This 

effect could only be observed in the 2D cells after 7 days; in all other systems at this time 

point no differences due to TGF-β1 were found. Moreover, after 30 days the amounts of 

collagen within the samples were decreased in the TGF supplemented groups compared to 

controls in all systems. There was also a slight dependency of the TGF effect on the culture 

system; whereas the cell number obtained after 7 days, for example, was increased due to 

TGF supplementation in the homogenous one, in all other systems it was decreased. This 

dependency could again rely on the gel contraction, as TGF-β1 is known to enhance collagen 

gel contraction caused by fibroblasts 29 or tendon cells 30. 

Conclusions 

In the presented study, two different in vitro hyalocyte culture systems were established 

allowing for investigations into cell-biomaterial interactions under near-native conditions. 

Furthermore, the systems allow for investigations into growth factor effects on the cells in 

combination with biomaterials. During the first study on collagen type I as a biomaterial, the 

importance of gel contraction caused by the cells became obvious. At least partly due to that 

fact, the observed cellular response was found to be dependent on the culture system used. As 
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a possible explanation for these observations, the hypothesis that hyalocytes remodel the 

systems towards conditions similar to their physiological environment was developed. To 

clarify the validity of this hypothesis, additional studies will be necessary. Moreover, to 

elucidate the relevance of the established cell culture systems to predict in vivo situations, 

studies comparing in vitro results with in vivo observations should be performed. 
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Abstract 

Hyalocytes, the cells of the vitreous body, are assumed to be involved in physiological as well 

as pathophysiological processes within the eye. However, current knowledge about the cells is 

still limited. As different morphological types of hyalocytes are described in literature, it 

seems reasonable to try to isolate individual populations prior to characterization of single cell 

types. To achieve this, the present study investigated the utility of fluorescence activated cell 

sorting (FACS) for hyalocyte separation. 

Subsequent to digestion of vitreous bodies using collagenase, the resulting cell suspension 

was analyzed and separated using FACS without any additional staining. Two-parameter dot 

plots of forward scatter (indicating size) against sideward scatter (indicating granularity) 

showed two distinct cell populations; staining with propidium iodide confirmed that both 

populations represent living cells. After sorting, cells of both populations were seeded on 

tissue culture plastic. Only one population attached and proliferated, whereas the other 

population was non-adherent. Even when seeding the native cell mix, only one population of 

cells was observed after two passages, as indicated by FACS. Furthermore, ascorbic acid 

increased proliferation of these cells similarly to the proliferation of the separated cell 

population. These data point out that only one of the two populations adheres and proliferates 

on tissue culture plastic. 

To conclude, the established isolation technique allows for separation of clearly defined 

hyalocyte populations. Moreover, clear hints were obtained that only one of the two 

populations adheres and proliferates under the commonly applied culture conditions. 
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Introduction 

The vitreous body is the main compartment of the mammalian eye. This transparent, 

hydrogel-like substance consists of different types of collagens and glycosaminoglycans1 and 

is free of cells in its center; however, the cortex is lined by a single layer of cells, termed 

hyalocytes2. These cells exhibit two distinct morphologies, dependent on their localization on 

the vitreous surface. Hyalocytes on the inner limiting lamina appear elongated with a few 

stout processes, whereas cells on the epithelial surface of the ciliary body exhibit a stellate 

appearance with some short processes3. The elongated hyalocytes of the posterior vitreous are 

furthermore substantially larger than the cells on the ciliary epithelium3. Both cell types show 

a macrophage-like structure 4, 5 and are, therefore, thought to belong to the reticuloendothelial 

system6. According to older literature, the cells are often referred to as resting cells5, 7, 8, 

however, in more recent publications their physiological role becomes apparent. The cells of 

the posterior vitreous body are associated with the maintenance of the vitreous body as a 

transparent and avascular system9, 10. Pathophysiologically, these cells are thought to be 

involved in diseases of the vitreoretinal interface, such as epiretinal membrane formation, 

diabetic macular endema, and macular holes11, 12. Furthermore, hyalocytes have been shown 

to be able to produce the extracellular matrix components the vitreous is built of, especially 

collagens13, 14 and glycosaminoglycans15, 16. Although these studies indicate that hyalocytes 

may have a housekeeping function within the vitreous, the knowledge about hyalocytes is still 

limited.  

To close this information gap, in vitro cell culture can be used to study cellular characteristics, 

cell functions, or the influence of specific factors on cells17, 18. In vitro cultivation of primary 

hyalocytes seems, thereby, to be a useful tool for investigations into these cells. As 

histological examinations indicated that these cells do not represent a homogenous 

population3, 19, it seems reasonable to try to separate these different populations prior to 

characterization of each single cell type. However, no precise isolation method for different 

types of hyalocytes is published. The commonly used isolation technique is based on 

mechanical dissociation of the posterior part of the vitreous and assumes that only a single 

type of hyalocytes is present in the excised tissue10, 14. 

The present study investigated the utility of fluorescence activated cell sorting (FACS) for 

hyalocyte characterization and separation. To this end, the primary cell suspension obtained 

after digestion of porcine vitreous bodies was studied using FACS. Subsequent to sorting the 

cells into distinct cell populations, adhesion and proliferation of the different populations was 
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studied. To compare adherent and proliferating cells with each other, the influence of ascorbic 

acid on their proliferation behaviour was investigated.  

Materials & Methods 

Materials 

Fetal calf serum (South America, Batch Nr. 40A0044K), Dulbecco’s phosphate buffered 

saline (PBS), penicillin/streptomycin, and 0.25% trypsin-EDTA were obtained from 

Invitrogen (Karlsruhe, Germany). Dulbecco’s modified Eagle medium (DMEM, low glucose, 

with glutamine and pyruvate) was obtained from Biochrom (Berlin, Germany). L-Ascorbic 

acid in cell culture quality, methylene blue, formaldehyde, boric acid, and propidium iodide 

were purchased from Sigma (Steinheim, Germany). Hoechst 33258 dye was obtained from 

Polysciences (Warrington, PA, USA); both collagenase type II and papainase were bought 

from Worthington (Lakewood, NJ, USA). All other cell culture materials were purchased 

from Corning (Bodenheim, Germany). Buffer for the papainase digestion (PBE) was 

composed of 100 mmol Na2HPO4 (Merck, Darmstadt) and 10 mmol Na2EDTA (Merck) in 

water, adjusted to pH 6.5. 

Cell isolation  

Freshly enucleated porcine eyes were kindly provided by a local abattoir. Within 4 hours of 

slaughter, the vitreous bodies were excised under aseptic conditions, washed once in sterile 

PBS, and examined macro- and microscopically for adherent cells from adjacent tissues. 

Subsequently, the vitreous bodies were digested in a 1 mg/ml solution of collagenase type II 

in standard culture medium (SCM) with shaking at 37°C in a humidified atmosphere. SCM 

was composed of DMEM containing 15% fetal calf serum (FCS), 100 IU/ml of penicillin, and 

100 µg/ml streptomycin. After digestion for 3 hours, the cell suspensions from about 20 

vitreous bodies were pooled and centrifuged for 7 min at 200 g. To remove serum proteins, 

the cells were washed once with sterile PBS, followed by centrifugation at 200 g for 5 min. 

Cells were suspended in 1 ml PBS prior to further characterization. 

FACS analysis and cell sorting 

The primary cell isolate was analyzed without any additional staining using a FACSAria Flow 

Cytometer (BD Biosciences, Heidelberg, Germany) and WinMDI 2.8 software. For the 

determination of different cell populations, two-parameter density plots representing forward 

scatter against sideward scatter were used; events with a very low forward scatter were 
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assumed to be fragments and disregarded. The two observed populations of cells were gated 

out and, combined with quantification of the cell numbers, the cells within these gates were 

sorted into 1 ml of DMEM by a sort enhancement module (BD Biosciences, Heidelberg, 

Germany). After addition of 1 µg/ml propidium iodide to a fraction of the primary isolated 

cells, the gated cells were depicted in a two-parameter dot plot of forward scatter against the 

red fluorescence of propidium iodide measured with a 670 nm longpass filter (PE-Texas Red-

A channel). Cells that showed a red fluorescence clearly above their autofluorescence at 

670 nm were counted as dead cells. 

Cell adhesion and proliferation 

To study adhesion and proliferation of the two cell populations, 125 µl of cells of each sorted 

population (about 25 000 cells from population 1 and 12 500 cells from population 2) were 

seeded per 24-well either alone (population 1 and population 2) or mixed with each other 

(mixed populations) and subsequently cultivated in SCM supplemented with 50 µg/ml 

ascorbic acid. An equal amount of unsorted cells served as additional control group. Media 

was exchanged for the first time after two days in all groups, with the exception of the wells 

containing population 2. In two of four independent experiments, the population 2 media was 

first exchanged was exchanged after seven days to allow the cells more time to adhere to the 

culture plastic. After first media exchange, media was changed three times a week. After 14 

days of cultivation, the cells present within the wells were fixed with 10% formaldehyde and 

stained with 1 ml of a 1% methylene blue solution in 10 mM borate buffer for 30 minutes. 

After washing of the wells three times with water, they were completely dried and 

photographed using a digital camera.  

Effect of ascorbic acid on proliferating cells / FACS analysis of propagated cells 

After nine days of cell cultivation, one well with proliferating cells from each group 

(population 1, mixed populations and native cell mix) was trypsinized followed by seeding of 

the cells at a density of 2 000 cells / cm² on tissue culture plastic. For further propogation, the 

cells were cultivated in SCM without ascorbic acid supplementation for seven days followed 

by trypsinization of the cells. An aliquot of trypsinized cells of the unsorted cell isolate 

(“native cell mix”) was investigated using FACS as described above and analyzed by a two-

parameter density plot of forward scatter against sideward scatter. Cells of all groups were 

seeded with 2000 cells / cm² in T-25 flasks and cultured in SCM containing 0, 10 or 

200 µg/ml ascorbic acid. Subsequent to media exchange after two days, the cells were 
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harvested after four days by complete trypsinization for 30 minutes. After freeze drying the 

samples (Christ Beta 2-16, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am 

Harz, Germany) at 20°C and 0.120 mbar for 16 hours, the dry samples were digested in 

300 µl of a 125 µg/ml papainase solution in PBE for 18 hours at 60°C. Cell number was 

determined by measuring the DNA amount using Hoechst 33258 dye as previously 

described20-22. In brief, emission of the intercalating dye at 458 nm was measured at an 

excitation wave length of 365 nm. The fluorescence of Hoechst 33258 dye is correlated with 

the absolute amount of DNA in the sample. An average amount of 9.96 pg DNA per cell was 

assumed for the cell number calculations23. Obtained cell numbers were normalized to the cell 

number determined in the control groups. 

Statistics 

Cell sorting experiments as well as the adhesion and proliferation studies were reproduced 

independently four times, the influence of ascorbic acid on propagated cells was performed in 

duplicate. Representative data of each study are shown. All data are presented as means ± 

standard deviations. Single-factor analysis of variance (ANOVA) was used in conjunction 

with a multiple comparisons test (Tukey’s test) to assess statistical significance at levels of 

p < 0.01. 

Results & Discussion 

In vitro cell culture proved to be a useful tool for the characterization of hyalocytes. As 

previous studies demonstrated that hyalocytes within the vitreous exhibit different 

morphologies3, 19, a method to precisely isolate and separate these cells was deemed 

necessary. The present study demonstrated that FACS provides a means to separate two 

distinct populations of hyalocytes subsequent to digestion of vitreous bodies. Furthermore, the 

first evidence was found that only one of the two populations is cultivated under the 

commonly used culture conditions. 
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Figure 1: Two-parameter density plot of forward light scatter (FSC, indicating cell size) 
against sideward light scatter (SSC, indicating cell granularity) of cells isolated out of 
vitreous bodies. Measurement of a single cell represents one event; dot colors indicate 
incidence of events, ranging from blue (low) to red (high). Two clearly distinguished regions 
with high event density were observed, indicating two populations of cells with different size 
and granularity. 

Isolation of primary hyalocytes 

In contrast to the widely used hyalocyte cultivation technique described by Francois et al.24, 

the established enzymatic digestion of the collagen structure of the vitreous led to a 

suspension of free floating cells and enabled, thereby, investigation and sorting of single cells 

using FACS. As displayed in Figure 1, two distinct populations of hyalocytes with different 

size (indicated by the forward scatter) and granularity (indicated by the sideward scatter) were 

detected in the primary cell isolate. The ratio of the larger cells of population 1 to the smaller 

cells of population 2 was reproducibly determined as 2:1. After gating for these two 

populations and staining with propidium iodide, the portion of dead cells within each 

population was quantified (Figure 2). As only about 3% of the cells of each group were 

identified as dead, we concluded that the established method allows isolation of two 
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populations of living hyalocytes, probably representing the morphologically different types 

described previously3, 19. The sufficient differences in size and granularity of the two 

populations allowed sorting of the cells without any additional staining and their subsequent 

cultivation. 
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Figure 2: Left: Two-parameter dot plot of forward light scatter (FSC) against sideward light 
scatter (SSC) of cells isolated out of vitreous bodies. Each dot indicates a single measurement 
representing a cell or a cell fragment. The observed populations of cells (according to Figure 
1) were gated out; population 1 is displayed in red, population 2 in blue. Right: Two-
parameter dot plot of forward light scatter (FCS) against red fluorescence measured at 
670 nm of the gated populations. Living cells are indicated by a low fluorescence at 670 nm, 
dead cells by a high fluorescence. As only 3% of cells of each population were dead, both 
populations represented living cells. 

Cultivation of the different hyalocyte populations 

Cells of population 1 adhered to the culture surface within two days and started to proliferate 

within seven days. After 14 days, colony-like proliferation was visible after methylene blue 

staining of the cells in an average of 60% of the seeded wells (Figure 3). In contrast, 

population 2 showed no adherence to the culture surface, regardless of the time point of first 

media exchange. Due to the cultivation method, this non-adherent population was 

subsequently lost during the media changes. A control group containing both populations in 

their native ratio exhibited adhesion and proliferation similar to population 1 (Figure 3). This 

indicated on the one hand that the sorting process does not kill the cells; on the other hand, 

interactions between the populations do not appear to influence adhesion and proliferation. 

Unsorted cells also showed adhesion and proliferation similar to population 1 (Figure 3). 
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These data gave a first hint that, even in the native cell mixture, only cells of population 1 

adhere and proliferate under the applied culture conditions. 

0

0.25

0.5

0.75

1

Population 1 Population 2 Mixed
populations

Nativ cell mix

W
el

ls
 w

ith
 p

ro
lif

er
at

in
g 

ce
lls

 [%
]

Population 1

Population 2

Mixed populations
(after sorting)

Nativ cell mix
(prior to sorting)

Population 1

Population 2

Mixed populations
(after sorting)

Nativ cell mix
(prior to sorting)

 
Figure 3: Left: Macroscopic picture of proliferating cells of different populations after 
cultivation for 14 days followed by fixation and methylene blue staining. Wells seeded with 
population 1 showed colony-like proliferation of the cells, whereas in the wells seeded with 
population 2 no proliferation could be observed. Control groups with both populations mixed 
in their native ratio as well as the unsorted, native cell mix exhibited cell proliferation similar 
to population 1. Right: Quantification of wells with proliferating cells after the cultivation 
period dependent on the seeded population. Average and standard deviation of four 
independent experiments, each n = 4, is displayed. Proliferation of population 1 was 
comparable to the two control groups, however, population 2 showed no adhesion and 
proliferation. 

FACS of proliferated cells / Effect of ascorbic acid on proliferating and adherent cells 

To address this assumption, we studied the cells obtained after proliferation of the native mix 

of isolated cells for two passages using FACS. As indicated in a two-parameter density plot of 

forward scatter against sideward scatter (Figure 4), only one distinct population of cells could 

be observed. To further support the hypothesis that only cells of population 1 adhere and 

proliferate, we compared the adherent cells of all groups with each other. To this end, we 

studied the effect of ascorbic acid on the proliferation rate of the cells after their propagation 

for two passages, as ascorbic acid was demonstrated to clearly influence the proliferation rate 

of hyalocytes23. Vitamin C increased the proliferation rate of all groups comparably up to a  

3-fold value upon supplementation of 200 µg/ml ascorbic acid (Figure 5). This obviously 

similar response of all adherent cells to ascorbic acid furthermore substantiates the hypothesis 

that all propagated cells were derived from population 1. 
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Figure 4: Two-parameter density plot of forward light scatter (FSC, indicating cell size) 
against sideward light scatter (SSC, indicating cell granularity) of the native cell mix isolated 
out of vitreous bodies and proliferated for two passages. Measurement of a single cell 
represents one event; dot colors indicate incidence of events, ranging from blue (low) to red 
(high). Only one population could be observed after propagation of the native cell mix. 

To summarize, only cells of population 1 adhered to the culture surface and proliferated, 

whereas cells of population 2 showed no adherence to tissue culture plastics. Cell 

combinations of both populations as well as the native cell mix showed proliferation 

comparable to population 1 (Figure 3). Furthermore, after proliferation of the native mixture 

of two populations of hyalocytes (“native cell mix”) for two passages, only one population of 

cells could be observed (Figure 4). Moreover, all proliferating cells reacted similarly to 

supplementation of ascorbic acid (Figure 5). These data indicate that only cells of 

population 1 are cultivated under the culture conditions that are proposed by the contemporary 

literature. We assume that population 1 consists of hyalocytes from the posterior part of the 

vitreous body, as according to FACS this population is larger compared to the second one and 

hyalocytes within the posterior part of the vitreous are described to be larger than the ones 

observed near the ciliary body3. Additionally, in previous reports hyalocytes within the 

posterior part of the vitreous were cultivated using adherent cell culture10, 25. This fits well 

with our assumption that population 1 is derived from the posterior part of the vitreous. 
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Figure 5: Influence of ascorbic acid on the proliferation rate of the different populations after 
cell augmentation for two passages. Cell numbers were normalized to the control. Each 
group was investigated with n = 3; * indicates statistically significance to all groups except 
the ones supplemented with identical amounts of ascorbic acid. All populations exhibited 
similar response to ascorbic acid. 

Conclusions 

To conclude, the established isolation technique using enzymatic digestion of the vitreous 

followed by FACS allows separation of clearly defined hyalocyte populations. The first 

evidence for different in vitro-characteristics of the previously described hyalocyte 

populations was found. Moreover, clear hints were obtained that only one of the two 

populations, probably the one observed in the posterior part of the vitreous, adhere and 

proliferate on tissue culture plastics. The presented isolation method, therefore, displays a 

valuable tool for characterization of distinct hyalocyte populations. A more complete 

characterization of hyalocyte properties, including their functions and their metabolic activity, 

may lead to a better understanding of physiological and pathophysiological processes within 

the eye. 
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Summary 

Tissue engineering emerged as applied research in the 1970s1 and gained increasing 

popularity in the late 1980s2. Since then, this interdisciplinary discipline developed a variety 

of approaches for the engineering of skin, bone, cartilage, liver, and many other tissues. In the 

field of ophthalmology, tissue engineering strategies gave birth to novel therapeutic concepts, 

especially for the treatment of the cornea (Chapter 1). The vitreous body initially seemed to 

represent an ideal target for tissue engineering due to its simplicity and its lack of blood 

vessels, however, as of yet, no satisfactory approach for vitreous regeneration has been 

developed. This is all the more surprising, since, despite the clinical demand, no satisfying 

vitreous substitute is currently available3. This may be due, in part, to the limited knowledge 

about the cells of the vitreous body, known as hyalocytes. 

To investigate hyalocyte cellular characteristics and functions, in vitro cultivation of 

hyalocytes under optimal culture conditions promises to be a useful tool. In vitro culture 

systems for hyalocytes have been reported in the literature, however, they have the distinct 

disadvantage of requiring a large number of propagation steps (4 – 8 passages) to obtain a 

sufficient number of cells for study4. Since cell propagation is widely known to result in 

dedifferentiation of cells, it is imperative to minimize the number of propagation steps. The 

established isolation and culture system outlined in this thesis is based on enzymatic digestion 

of vitreous bodies and guarantees a suitable yield of porcine hyalocytes after second passage 

(Chapter 3). 

In addition to defining suitable culture conditions, it was critical to identify markers that allow 

for the assessment of cell function, since differentiation markers for hyalocytes were still 

unknown. The quantitative accumulation of extracellular matrix components (ECM), of which 

the vitreous is made, was hypothesized to be a suitable surrogate. To that end, analytical tools 

that allowed quantification of glycosaminoglycans (GAG) and collagen accumulation by the 

cells were developed (Chapter 4). A side benefit of this study was that the detection limit for 

hydroxyproline, indicative of collagen levels, was lowered by one order of magnitude 

compared to the widely used method by Woessner et al.5  

These established methods enabled detailed investigations into the effects of bioactive 

substances or growth factors on hyalocytes. It was thus determined that ascorbic acid clearly 

increased hyalocyte proliferation and collagen accumulation (Chapter 5) in a two-

dimensional (2D), as well as in a three-dimensional (3D) culture system. Further 

investigations into the mechanism of the ascorbic acid effect indicated that the enhanced 
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collagen production was at least partly due to an enhanced expression of mRNA coding for 

collagen type V/XI. Ascorbic acid was thus hypothesized to be an important modulator of the 

intraocular environment since the vitreous body physiologically accumulates ascorbic acid to 

concentrations several times higher than in plasma, and furthermore, this vitamin is known to 

inhibit proliferation of cells from tissues adjacent to the vitreous. In a follow-up study, the 

observed effect of ascorbic acid was found to be dependent upon the presence of pyruvate 

within the medium (Chapter 6). Although the exact mechanism of this interaction remains to 

be elucidated, these two factors were identified as important supplements for in vitro 

hyalocyte culture. Moreover, combinations of the factors may allow for the modulation of 

hyalocyte behavior. 

Further improvements in control of hyalocyte behavior were achieved by supplementation of 

basic fibroblast growth factor (bFGF) or transforming growth factor β-1 (TGF-β1) to the 

culture medium (Chapter 7). Both factors were demonstrated to clearly affect the cell 

morphology as well as the actin organization. Furthermore, bFGF was demonstrated to 

enhance cell proliferation, thereby decreasing the ECM production, whereas TGF-β1 

increased the accumulation of ECM while inhibiting cell proliferation. Moreover, accelerated 

cell expansion due to the use of bFGF was found to increase collagen production in the 

propagated cells, while the GAG accumulation remained unaffected. 

In developing a cell-based vitreous substitute using tissue engineering strategies (chapter 2), 

interactions between hyalocytes and biomaterials are important to consider. To enable 

investigations into these cell-biomaterial interactions, in vitro culture systems that mimic the 

native environment of hyalocytes were designed and tested with collagen type I gels of a 

mechanical stiffness similar to the native vitreous body (chapter 8). The established systems 

proved suitable for studying cell-biomaterial interactions, although their relevance to in vivo 

situations remained to be elucidated. Furthermore, the importance of collagen gel contraction 

caused by the embedded hyalocytes became obvious. 

According to current scientific literature, hyalocytes obtained from vitreous bodies represent a 

single cell population. However, using electron microscopy, two morphologically different 

types of hyalocytes were observed6, 7. Therefore, it seemed reasonable to separate these 

populations prior to cultivation and/or characterization. Using the already established 

enzymatic digestion of the vitreous (Chapter 3) in conjunction with fluorescence activated 

cell sorting (FACS), separation of clearly defined hyalocyte populations became possible 

without any additional staining (Chapter 9). Further studies of the two populations indicated 

that only one population of cells adheres to and proliferates on tissue culture plastics. This 
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improved isolation method yielded a valuable tool for characterization of distinct hyalocyte 

populations. 

 

Conclusions 

In conclusion, the present thesis provided fundamental methods and techniques that allow for 

in vitro investigations into hyalocyte characteristics and functions in 2D, as well as 3D, 

culture systems. The quantitative accumulation of glycosaminoglycans and collagens, 

representative of the functional properties of hyalocytes, were studied for the first time. Using 

these methods, ascorbic acid and pyruvate were demonstrated to be key factors for in vitro 

cultivation. Furthermore, bFGF and TGF-β1 were identified as tools that may allow for the 

control of hyalocyte proliferation as well as accumulation of ECM. bFGF proved to be an 

especially valuable factor because it not only accelerates cell expansion but also increases the 

collagen production of the propagated cells. The new 3D hyalocyte culture system contributes 

significantly to the use of hyalocytes in future tissue engineering applications, because it 

allows for studies of cell-biomaterial interactions under conditions similar to the native 

environment of the cells. Finally, the outlined isolation and separation method using FACS 

enabled cultivation and characterization of distinct hyalocyte populations instead of a mixture 

of cells. More importantly, this resulted in the characterization of distinct cell populations 

isolated from the vitreous body in their native state for the first time.  

In future studies, the complete expression of mRNA of both native populations should be 

screened using DNA array technology to gain insight into hyalocyte characteristics. This may 

lead to a better understanding of the physiological and pathological roles of the cells. A 

thorough understanding of the adhesion receptors or metabolic enzymes of hyalocytes could 

enable the rational design of a biomaterial that is tailored to the demands of the cells as well 

as to the intraocular environment. The detailed knowledge presented here regarding hyalocyte 

isolation, cultivation, and functional modulatory factors, as well as the analytical tools to 

analyze the accumulated ECM components, when combined with a rational biomaterial 

design, may help to establish a cell-based vitreous substitute in the future. 
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List of Abbreviations 

2D 2-dimensional 

3D 3-dimensional 

AM amniotic membrane 

α-MEM Minimum Essential Medium Eagle, α-Modification 

ANOVA analysis of variance 

ARMD age-related macular degeneration 

bFGF basic fibroblast growth factor 

BM Bruch’s membrane 

BSA bovine serum albumine 

CEC corneal endothelial cell(s) 

CNV choroidal neovascularization 

CO2 carbon dioxide 

COL1A1 gene coding for the α1-chain of collagen type I 

COL2A1 gene coding for the α1-chain of collagen type II 

COL11A1 gene coding for the α1-chain of collagen type I 

cDNA complementary deoxyribonucleic acid 

DAB dimethylamino benzaldehyde 

DEAE diethylaminoethylseparose 

DMEM Dulbecco’s Modified Eagle Medium 

DNA deoxyribonucleic acid 

DR diabetic rethinopathy 

ECM extracellular matrix 

EDTA ethylenediaminetetraacetic acid 

FACS fluorescence activated cell sorting 

FeCl3 Iron(III) chloride 

FCS fetal calf serum 

FSC forward scatter 

GAG glycosaminoglycans(s) 

G’ storage modulus 

G’’ loss mudulus 

H&E hematoxylin & eosin 

HPLC high performance liquid chromatography 
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HYP hydroxyproline 

mRNA messenger ribonucleic acid 

MSC mesenchymal stem cell 

NaCl sodium chloride 

PBE  phosphate buffer with EDTA 

PBS phosphate buffered saline 

PCO posterior capsule opacification 

PCR polymerase chain reaction 

PE pigment epithelium 

PEG polyethylene glycol 

PI propidium iodide 

PLA  poly(lactic acid) 

PLGA poly(lactic-co-glycolic acid) 

RPE retinal pigment epithelium 

RT-PCR reverse transcriptase – polymerase chain reaction 

SafO safranin O 

SCM standard culture medium 

SSC sideward scatter 

T25-flask 25 cm² cell culture flask 

Taq thermus aquaticus 

TGF-β transforming growth factor β 

Tris tris(hydroxymethyl)aminomethane 

UV/VIS ultra violet / visible 

VEGF vascular endothelial growth factor 



Appendices 

- 173 - 

Curriculum vitae 

Name: Florian Sommer 

Date of birth: April 30, 1978 

Place of birth: Memmingen 

Nationality: German 

 

Education: 

1984 – 1986 Elementary School, Hawangen 

1986 – 1988 Elementary School, Ottobeuren 

1988 – 1994 Grammar School: Rupert-Neß-Gymnasium,  

Ottobeuren 

1994 – 1997 Grammar School: Bernhard-Strigel-Gymnasium, 

Memmingen 

07/97 University-entrance diploma (Abitur) 

 

Professional Training and Experiences: 

11/97 – 09/01 Study of Pharmacy at the University of Regensburg, 

Regensburg 

11/01 – 04/02 Pharmaceutical Traineeship: “Mohren-Apotheke”, 

Memmingen 

05/02 – 10/02 Pharmaceutical Traineeship: Bayer AG, Leverkusen 

11/02 Acquisition of the license to practise as pharmacist 

01/03 – 09/06 PhD program at the Department of Pharmaceutical 

Technology, University of Regensburg, Regensburg, 

Prof. Dr. Achim Göpferich 

10/06 – present Post-Doc: Boehringer Ingelheim, Biberach 

 

Scholarships: 

Scholarship of the Konrad-Adenauer-Foundation for highly talented students during the 

pharmacy studies 

Scholarship of the Bavarian Ministry of Sciences, Research and Arts at the beginning of the 

PhD programm 



Appendices 

- 174 - 

 



Appendices 

- 175 - 

List of Publications 
 

Publications 

 
Sommer F, Brandl F, Göpferich A. ‘Ocular Tissue Engineering’. Series: Adv Exp Med Biol, 

Fisher J P (ed.), 585 (2006); in press (chapter 1). 

 

Sommer F, Kobuch K, Brandl F, Wild B, Weiser B, Gabel V-P, Blunk T, Göpferich A. 

‘Ascorbic acid modulates proliferation and extracellular matrix accumulation of hyalocytes’. 

Submitted to Tissue Eng (chapter 5). 

 

Sommer F, Pollinger K, Brandl F, Weiser B, Teßmar J, Blunk T, Göpferich A. ‘Modulation of 

hyalocyte proliferation and ECM accumulation via bFGF and TGF-β1’. To be submitted to 

Eur J Pharm Biopharm (chapter 7). 

 

Sommer F, Brandl F, Teßmar J, Blunk T, Göpferich A. ‘Pyruvate modulates the effect of 

ascorbic acid on hyalocytes’. To be submitted (chapter 6). 

 

Sommer F, Brandl F, Weiser B, Teßmar J, Blunk T, Göpferich A. ‘FACS as useful tool to 

study distinct hyalocyte populations’. To be submitted (chapter 9). 

 

Brandl F, Sommer F, Göpferich A. ‘Rational design of hydrogels for tissue engineering: 

Impact of physical factors on cell behavior’. Biomaterials (2007); 28: 134-146 

doi:10.1016/j.biomaterials.2006.09.017 



Appendices 

- 176 - 

Abstracts 

2003 

Sommer F, Kobuch K, Wild B, Blunk T, Gabel V-P, Göpferich A. ‘Influence of ascorbic acid 

on hyalocytes’. DPhG Jahrestagung 2003, Würzburg, Germany (Poster) 

 

2004 

Sommer F, Kobuch K, Wild B, Blunk T, Gabel V-P, Göpferich A. ‘Influence of ascorbic acid 

on 2-D and 3-D cultured hyalocytes’. 1st Conference on Strategies in Tissue Engineering, 

Würzburg, Germany [Cytotherapy 6 (3) 290] (Poster) 

 

Sommer F, Kobuch K, Wild B, Weiser B, Blunk T, Gabel V-P, Göpferich A. ‘First Steps 

towards a biological vitreous substitute – The influence of ascorbic acid on hyalocytes’. 

DPhG Jahrestagung 2004 / Joint Meeting, Regensburg Germany (Talk) 

 

Weiser B, Neubauer M, Sommer F, Göpferich A, Blunk T. ‘Ascorbic acid enhances 

adipogenesis of rat marrow stromal cells’. DPhG Jahrestagung 2004 / Joint Meeting, 

Regensburg Germany 

 

2005 

Kobuch K, Wild B, Sommer F, Fischbach C, Göpferich A, Gabel V-P. ’On the way to a cell-

based vitreous substitute: proliferation and redifferentiation of hyalocytes in vitro’. 103rd 

Congress of the German Ophthalmic Society / 15th Congress of the European Society of 

Ophthalmology, Berlin, Germany 

 

Kobuch K, Wild B, Sommer F, Fischbach C, Göpferich A, Gabel V-P. ’Development of a 

cell-based vitreous substitute: proliferation, redifferentiation and expression of extracellular 

matrix of hyalocytes’. 2nd International Conference on Tissue Engineering, Crete, Greece 

 

Sommer F, Kobuch K, Brandl F, Wild B, Weiser B, Gabel V-P, Blunk T, Göpferich A. 

‚Ascorbic acid for in vitro hyalocyte culture – an important factor towards a cellular vitreous 

substitute’. 2nd International Conference on Tissue Engineering, Crete, Greece (Poster) 



Appendices 

- 177 - 

Sommer F, Kobuch K, Brandl F, Wild B, Weiser B, Gabel V-P, Blunk T, Göpferich A. 

‘Ascorbic acid influences hyalocytes on the molecular level – increased expression of 

collagen type V/XI’. European Tissue Engineering Society Conference, Munich, Germany 

(Poster) 

 

2006 

Sommer F, Brandl F, Weiser B, Teßmar J, Blunk T, Göpferich A. ’Hyalocytes within the 

vitreous body – a homogenous population? First evidence for two distinct populations’. 2nd 

International Conference on Strategies in Tissue Engineering, Würzburg, Germany 

[Cytotherapy 8 (Supp2) 53] (Poster) 

 

Brandl F, Sommer F, Lungwitz U, Blunk T, Teßmar J, Göpferich A. ’In situ-gelling hydrogels 

based on poly(ethylene glycol)’. Interface Biology of Implants, Rostock, Germany 

 

Sommer F, Pollinger K, Brandl F, Weiser B, Teßmar J, Blunk T, Göpferich A. ‘Towards a 

cell-based vitreous substitute – The effect of bFGF and TGF-β1 on hyalocytes’. 33rd Annual 

Meeting & Exposition of the Controlled Release Society, Vienna, Austria (Talk) 

 

Grants 

Prof. Dr. Achim Göpferich, Dr. Torsten Blunk, Florian Sommer. ‘Development of a cell-

based vitreous substitute for the therapy of vitreoretinal diseases’. Cooperation of the 

Pharmaceutical Technology as well as the Ophthalmology Department of the University of 

Regensburg with industrial partners. Bavarian Research Foundation, No 616/04 



Appendices 

- 178 - 

 



Appendices 

- 179 - 

Danksagung 

 

An dieser Stelle möchte ich mich ganz herzlich bei allen bedanken, die zu dieser Arbeit und 

der unvergesslichen Zeit in Regensburg beigetragen haben. 

 

Mein besonderer Dank gilt Herrn Prof. Dr. Achim Göpferich, der meine Arbeit am Lehrstuhl 

ermöglicht und stets vielfältig unterstützt hat. Vielen Dank für die zahlreichen fachlichen 

Diskussionen und die Möglichkeit der selbständigen Entfaltung meiner Arbeiten, aber auch 

für die vielen außerfachlichen Anregungen und Hilfestellungen. Ganz besonders möchte ich 

mich für die Möglichkeit bedanken, meine Ergebnisse auf nationalen und internationalen 

Konferenzen zu präsentieren. 

 

Herzlich danken möchte ich Herrn Dr. Torsten Blunk für viele hilfreiche, wissenschaftliche 

Diskussionen und unzählige konstruktive Ratschläge. Insbesondere für die vielfältige, 

freundschaftliche Unterstützung möchte ich mich besonders bedanken. 

 

Mein Dank gilt auch Frau Dr. Karin Kobuch, Herrn PD Dr. Carsten Framme, Brigitte Wild 

und Petra Eberl für die gute Zusammenarbeit innerhalb des Glaskörper-Projektes. 

 

Für die finanzielle Unterstützung des Projektes möchte ich mich bei der Bayerischen 

Forschungsstiftung bedanken. 

 

Weiterhin möchte ich mich bei allen momentanen und ehemaligen Kollegen am Lehrstuhl für 

das gute Arbeitsklima und die konstruktive Zusammenarbeit bedanken.  

 

Mein besonderer Dank gilt insbesondere: 

• Ferdinand Brandl für die gute und motivierte Zusammenarbeit im Glaskörper-Projekt 

sowie für die Durchführung von rheologischen Messungen 

• Klaus Pollinger für die große Unterstützung bei der Untersuchung der 

Wachstumsfaktoren 

• Anna Jobst für die hilfreiche Mitarbeit in Zellkultur und Analytik 

• PD Dr. Leoni Kunz-Schughart und Marit Hoffmann für die Durchführung der 

Zellsortierung mittels FACS 



Appendices 

- 180 - 

• Dr. Jörg Teßmar für hilfreiche Diskussionen und zahlreiche Ratschläge 

• Dr. Michael Hacker und Dr. Markus Neubauer für die wertvollen Diskussionen und 

Hilfestellungen, sowie besonders für das „an der Hand nehmen“ zu Beginn meiner 

Arbeit 

• Barbara Weiser für die wertvollen Diskussionen rund um die Zellkultur und die 

Unterstützung beim Zellen füttern 

• Miriam Breunig und Renate Liebl für die Durchführung von FACS-Messungen 

• Allison Dennis und Leslie LaConte für die exakte und schnelle Durchsicht vieler 

Manuskripte inklusive dieser Arbeit 

• Stefan Kolb, Lydia Frommer, Liane Öttl, Edith Schindler, Angelika Berié und Renate 

Liebl für vielerlei technische und organisatorische Hilfe 

• Andrea Blaimer für die Organisation des Zelllabors 

• Dem gesamten Bits&Bytes-Team für die lehrreiche Zusammenarbeit und die 

weitreichende Unterstützung 

• Christian Becker und Dr. Angelika Maschke für die heitere Zeit gemeinsam im Labor 

• Und allen nicht namentliche Erwähnten, die in irgendeiner Form zum Gelingen dieser 

Arbeit beigetragen haben. 

• Vielen Dank! 

 

 

 


