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Chapter 1 

1. General Introduction 
 

“Genetic variation and developmental plasticity are fundamental properties of all living things: all 

individual organisms […] have distinctive genomes, and all of them have phenotypes that respond to 

genomic and environmental inputs.”   

– Mary Jane West-Eberhard (2005a) 

 

1.1 The Phenotype 

The diversity of organismal life on earth is stunning. Ranging from the simplest, single-celled bacteria 

to complex multi-cellular organisms, life is extremely versatile and it is almost impossible to conceive 

that it all evolved from the same ancestor some four billion years ago. Conceptually, an organism can 

be considered as a network of interconnected morphological, developmental, biochemical, 

physiological and behavioural phenotypic traits. Combined, these traits constitute a unique 

combination: the individual. Phenotypic traits differ not only between species but also between and 

within individuals (West-Eberhard 1989), and virtually every phenotypic trait is subject to change 

over the course of an individual’s life (DeWitt and Scheiner 2004). For example, experience and 

learning can affect behavioural traits, and developmental programming and exercise determine 

morphology. In spite of recent controversy (Nowak et al. 2010; Boomsma et al. 2011; Abbot et al. 

2011), the individual is generally considered to be the target of selection in evolutionary processes. 

However, it is the phenotype that constitutes the interface between individuals and evolution (West-

Eberhard 2003).  

Selection is non-random, directional change of trait frequencies in a natural population by differential 

survival and reproductive success of phenotypically different individuals. Evolution through 

adaptation and speciation is hence fuelled by continuously emerging phenotypic differences between 

individuals. To study evolution, it is thus necessary to assess what factors contribute and shape an 

organism’s phenotype, and how novel phenotypes can originate from these sources. 

 



2 

This thesis, covering various aspects of phenotypic evolution in the ant Cardiocondyla obscurior, 

focuses on three major factors that control an organism’s phenotype: The genome (Chapter 2), 

organismal susceptibility to the environment (phenotypic plasticity, Chapters 3 and 4) and, on the 

borderline between genetics and environment, endosymbionts (Chapter 5).  

Based on the analysis of the draft genome sequence of C. obscurior and the genomic comparison of 

two independent populations from Brazil and Japan, Chapter 2 centres on genetic and genomic 

mechanisms that allow the evolution of adaptive phenotypes in spite of low genetic diversity in 

founder populations of C. obscurior. In Chapter 3, divergent gene expression patterns underlying the 

polyphenic/polymorphic development of C. obscurior are used to illuminate the genetic basis of 

developmental plasticity in eusocial Hymenoptera, including a discussion on the potential origins of 

novel phenotypes through plasticity. Based on the results obtained in Chapter 3, Chapter 4 focuses on 

the molecular evolutionary consequences of plastic gene expression, with a discussion on underlying 

selection regimes. Chapter 5 contains the first description of the intracellular endosymbionts 

Candidatus Westeberhardia cardiocondylae, which is present in most analysed populations of 

C. obscurior and conveys novel phenotypic traits to its host by contributing its genetic repertoire to the 

symbiosis.  

The following paragraphs of this general introduction are intended to provide a synopsis of the most 

important aspects affecting phenotypes and their evolution, comprising a brief overview of genomes 

and genetic diversification, an introduction to phenotypic plasticity and its evolutionary significance, 

and a primer on the role of endosymbionts in insects. The last sections of this chapter introduce 

C. obscurior and aim to promote this species as a model for the study of phenotypic evolution, 

outlining its advantages regarding maintenance under laboratory conditions, and its high level of 

adaptability and plasticity. 

 

1.2 The Genome 

Containing an organism’s blueprint, the genome is fundamental in shaping an individual’s phenotype. 

The largest share of this blueprint is coded in the nuclear genome, complemented by the much smaller 

mitochondrial and plastidial genomes, present mostly but not exclusively in autotrophic organisms 

(SB Gould et al. 2008). Biochemically, genomes and any other genetic element are DNA molecules 

composed of 2-deoxyribose, phosphate groups, and the four nucleotides adenine (A), guanine (G), 

thymine (T) and cytosine (C). Beyond the mere biochemical makeup, genomes are structured 

semantically into discrete genetic elements (e.g. genes) and every element can itself again be highly 

sub-structured (e.g. genes can be sub-structured into exons and introns). In addition, groups of genetic 

elements can form a functional unit (e.g. operons) and cellular processes furthermore impose certain 

structural requirements (e.g. telomeres, centromeres) on genomes.  
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In spite of its rather simple biochemistry with only four different nucleotides, the coding potential of 

DNA is virtually infinite. In a recent effort, the ENCODE project revealed pervasive transcriptional 

activity across the human genome, with a remarkable 75 % of the human genome being transcribed to 

some extent (Djebali et al. 2012). With increasing effort to decipher the functionality of genomes, the 

list of different genetic elements is growing constantly, changing our understanding of genomic 

complexity and the diversity of transcripts.  

To date, the best-characterized genetic elements are protein-coding genes. In eukaryotes, a typical 

protein-coding gene contains regulatory elements, exons, and introns. While regulatory elements and 

in part introns mainly enable transcriptional control, exons contain the genetic code for a protein’s 

amino acid sequence. In contrast, so-called non-coding genes do not serve as templates for proteins 

but for functional, non-coding RNA (ncRNA) molecules (Eddy 2001). Well-known examples are 

RNA genes coding for enzymatically active ribosomal RNAs (rRNA) and transfer RNAs (tRNA) that 

play a crucial role in protein synthesis. However, following the discovery of rRNAs and their role in 

translation in the mid-fifties (Palade 1955), many other ncRNAs and their associated genes have been 

identified (Mattick 2006). While most ncRNAs have been implicated in regulating replication, 

transcription, splicing, and other nucleic acid metabolic processes for their high capability to interact 

with DNA and RNA molecules through base-pairing (Eddy 2001; Fatica and Bozzoni 2013), there are 

notable exceptions such as signal-recognition particle RNAs or vault RNAs involved in protein and 

xenobiotic translocation, respectively (Walter and Blobel 1982; van Zon et al. 2003; Gopinath et al. 

2005).  

Genetic elements can either serve as templates for RNA molecules and proteins, or they can 

themselves be functional, for example as binding sites for regulatory proteins (Wasserman and 

Sandelin 2004). Such regulatory genetic elements are composed of specific nucleotide sequences that 

allow for precise transcriptional regulation of gene expression through binding of regulatory 

molecules (e.g. transcription factors (TF), DNA methyltransferases (DNMT), histones). Some 

regulatory genetic elements are targeted for large-scale regulatory modifications through histones, 

changing the accessibility of an entire genomic region. Other regulatory elements provide target sites 

for long-term transcriptional regulation through methylation by DNMTs or for dynamic transcriptional 

regulation through binding of TFs (Latchman 2010; Jones 2012).  

 

1.2.1 Phenotypic Change through Genetic Mutations 

The heritability of genetic material is the mechanistic basis for evolution. Evolution can however only 

advance when mutations generate genetic differences between individuals. In an evolutionary context, 

mutations with phenotypic effects are assessed based on their impact on the mutant’s fitness  

(Eyre-Walker and Keightley 2007). Beneficial mutations increase a carrier’s fitness and deleterious 
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mutations decrease it, resulting in directional change in the respective mutation’s frequency in a 

population. Whether and how a mutation affects the phenotype depends on its magnitude and genomic 

location, with possible effects ranging from virtually no changes in the phenotype (silent or nearly 

neutral mutations) to substantial phenotypic aberrations. For example, most single nucleotide 

substitutions (“point mutations”) have very little effect on the phenotype, as they do not significantly 

affect the biochemical properties of the genetic element they occur in (Barrick and Lenski 2013). In 

contrast, mutational loss or duplication of single genes can have more severe phenotypic consequences 

(Conrad and Antonarakis 2007) and extreme mutational events such as whole genome duplications 

(WGD) provide grounds for adaptive radiations and evolutionary innovation (Edger and Pires 2009). 

 

Point mutations are in most cases a consequence of random mistakes during DNA replication and 

proofreading that get incorporated into the daughter strand. In spite of this randomness, their genomic 

distribution follows a strict pattern produced by purifying selection against deleterious and positive 

selection promoting beneficial mutations (Loewe and WG Hill 2010). Depending on their position, 

point mutations within coding genes (and similarly for point mutations in RNA genes) can affect the 

gene’s product. For protein coding genes, point mutations at exonic non-synonymous sites often have 

the highest potential to alter the gene’s function by changing the amino acid sequence of the coded 

protein or by introducing premature stop-codons. In contrast, point mutations at synonymous sites, 

introns, or other non-coding and regulatory sites in a genome are less likely to have strong phenotypic 

effects, as they do not alter a protein or RNA product but potentially affect expression and regulation 

(Wray 2007).  

The recurrent emergence of point mutations generates mild differences in traits between individuals of 

a population, forming the basis for gradual evolutionary progress through selection and adaptation. 

However, the paradigm of “evolution through gradual change”, a core concept of classic evolutionary 

theory, fails to explain episodes of rapid adaptation and organismal diversification (SJ Gould 1980). 

Among other mechanisms, large-scale mutations that affect entire genes, chromosomes or genomes 

hold the potential for such rapid evolutionary change (Singh et al. 2012). Similar to single nucleotide 

substitutions, large-scale mutations can result from aberrations in cellular processes. For example, 

genes or other genomic sequences can be duplicated or deleted by unequal crossing over and WGD 

can occur during incomplete meiosis (Brown 2002). In addition to direct and potentially severe 

phenotypic consequences, gene or whole genome duplications also increase a mutant’s long-term 

adaptive potential by introducing genetic redundancy (Flagel and Wendel 2009; Van de Peer et al. 

2009). Such genetic redundancy is expected to release constraints of purifying selection and 

pleiotropy, allowing duplicated loci to “escape from the ruthless pressure of natural selection”  

(Ohno 1970) and thus evolve new functions (Conant and Wolfe 2008).  

 



5 

1.2.2 An Emphasis on Transposable Elements 

While coding genes, RNA genes and regulatory elements are widely accepted as functionally integral 

parts of an organism’s genome, the role of another group of genetic elements discovered less than 

seventy years ago is still much more enigmatic: transposable elements (TEs). In 1947, Barbara 

McClintock, at the time a geneticist at Cold Spring Harbor, first mentioned that the Ds gene she was 

studying at the time “may change its position in the chromosome” (McClintock 1948). Until that 

point, genes were thought to be neatly aligned along the arms of the chromosomes (Ravindran 2012). 

With increasing research efforts over the last decades, TEs are today widely recognized as ubiquitous 

and influential genetic elements populating the genome of virtually every organism (Fedoroff 2012). 

Nevertheless, due to their still largely unresolved and likely underappreciated role in evolution they 

remain enigmatic, and we only begin to appreciate their potential as adaptive agents.  

 

1.2.2.1 TE structure and frequency in genomes 

With the emergence of whole genome studies, the diversity and commonness of TEs became even 

more apparent (Hurst and Werren 2001). Several thousand copies of different TEs typically populate a 

genome, making up approximately 85 % of the maize and 45 % of the human genome. TEs vary in 

length ranging from a few hundred to several thousand base pairs (Feschotte and Pritham 2007), 

depending on their mode of action to achieve replication. With less than 600 bp, MITEs (miniature 

inverted-repeat transposable elements) are among the shortest TEs discovered so far, consisting only 

of terminally inverted repetitive sequence at both ends (Feschotte et al. 2002). Longer TEs can 

however be much more complex, containing several protein-coding genes, regulatory sequence, and 

recognition sites. In general, TEs are flanked by repetitive sequence motifs that are recognized by 

transposases or polymerases, depending on the TEs mode of transposition. A unifying classification 

system was developed in 2007, dividing mobile genetic elements into two classes with nine orders and 

29 superfamilies based on mechanistic and enzymatic criteria (Wicker et al. 2007, Figure 1.1). Class I 

comprises retrotransposons, which rely on the activity of polymerases and reverse transcriptases for 

transposition via RNA intermediates. The classification system furthermore divides Class I elements 

into five orders in two subclasses (LTR (long terminal repeat) and non-LTR retrotransposons), based 

on mechanistic, structural and phylogenetic features (RK Slotkin and Martienssen 2007). DNA 

transposons belong to Class II, which is further divided into two subclasses based on the number of 

DNA strings that are cut during transposition. Most elements in Subclass 1 move by a “cut-and-paste” 

mechanism and contain terminal inverted repeats (TIR), which are recognized by transposase enzymes 

during transposition through cutting of both DNA strands (Fedoroff 2013). Subclass 2, which 

comprises two orders, Helitron-like elements and Maverick-like elements, holds DNA transposons 

that replicate by a “copy-and-paste” mechanism where only a single DNA strand is cut (Wicker et al. 

2007). 
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Figure 1.1: The classification system proposed for transposable elements by Wicker et al. 2007. The 
diverse transposable elements are grouped into classes, subclasses, orders, and superfamilies based on 
mechanistic and enzymatic criteria. DIRS, Dictyostelium intermediate repeat sequence; LINE, long 
interspersed nuclear element; LTR, long terminal repeat; PLE, Penelope-like elements; SINE, short 
interspersed nuclear element; TIR, terminal inverted repeat.  

 

TEs depend on the activity of proteins that recognize, mobilize and reintegrate the element, and TEs 

often contain the necessary genes to be autonomous. For example, Class I retrotransposons of the 

order LTR contain an ORF coding for a reverse transcriptase, a proteinase, an RNase and an integrase 

Nature Reviews | Genetics

C-INT, C-integrase CYP, Cysteine protease EN, EndonucleaseAP, Aspartic proteinase APE, Apurinic endonuclease ATP, Packaging ATPase

RT, Reverse transcriptasePOL B, DNA polymerase B RH, RNase H RPA, Replication protein A (found only in plants)
Tase, Transposase (* with DDE motif) YR, Tyrosine recombinase Y2, YR with YY motif

INT, Integrase ORF, Open reading frame of unknown functionENV, Envelope protein GAG, Capsid protein HEL, Helicase

Classification Structure TSD Code Occurrence

Order Superfamily

Class I (retrotransposons)

LTR Copia 4–6 RLC P, M, F, O

Gypsy 4–6 RLG P, M, F, O

Bel–Pao 4–6 RLB M

Retrovirus 4–6 RLR M

ERV 4–6 RLE M

DIRS DIRS 0 RYD P, M, F, O

Ngaro 0 RYN M, F

VIPER 0 RYV O

PLE Penelope Variable RPP P, M, F, O

LINE R2 Variable RIR M

RTE Variable RIT M

Jockey Variable RIJ M

L1 Variable RIL P, M, F, O

I Variable RII P, M, F

SINE tRNA Variable RST P, M, F

7SL Variable RSL P, M, F

5S Variable RSS M, O

Class II (DNA transposons) - Subclass 1

TIR Tc1–Mariner TA DTT P, M, F, O

hAT 8 DTA P, M, F, O

Mutator 9–11 DTM P, M, F, O

Merlin 8–9 DTE M, O

Transib 5 DTR M, F

P 8 DTP P, M

PiggyBac TTAA DTB M, O

PIF– Harbinger 3 DTH P, M, F, O

CACTA 2–3 DTC P, M, F

Crypton Crypton 0 DYC F

Class II (DNA transposons) - Subclass 2

Helitron Helitron 0 DHH P, M, F

Maverick Maverick 6 DMM M, F, O

Terminal inverted repeats Non-coding regionCoding region

P, Plants M, Metazoans F, Fungi O, Others

GAG YRAP RT

RT EN

Tase*

Tase*

Tase*

Tase*

YR

RPA Y2 HEL

Tase*

Tase

Tase

Tase* ORF2

Tase ORF2

RT EN

APE RT

APEORF1 RT

APEORF1 RT

APEORF1 RT RH

RH

GAG YRAP RT RH

GAG INT ENVAP RT RH

GAG INT ENVAP RT RH

GAG INTAP RT RH

GAG INTAP RT RH

GAG AP RT RH

GAG YRAP RT RH

INT

ATPC-INT CYP POL B

Region that can contain one or more additional ORFs

Long terminal repeats

Diagnostic feature in non-coding region

Structural features

Protein coding domains

Species groups

Figure 1 | Proposed classification system for transposable elements 
(TEs). The classification is hierarchical and divides TEs into two main 
classes on the basis of the presence or absence of RNA as a transposition 
intermediate. They are further subdivided into subclasses, orders and 
superfamilies. The size of the target site duplication (TSD), which is 
characteristic for most superfamilies, can be used as a diagnostic  

feature. To facilitate identification, we propose a three-letter code that 
describes all major groups and that is added to the family name of each 
TE. DIRS, Dictyostelium intermediate repeat sequence; LINE, long inter-
spersed nuclear element; LTR, long terminal repeat; PLE, Penelope-like 
elements; SINE, short interspersed nuclear element; TIR, terminal 
inverted repeat.

PERSPECT IVES

974 | DECEMBER 2007 | VOLUME 8  www.nature.com/reviews/genetics
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(Wicker et al. 2007). Mutational events can however impair the ability of TEs to independently 

produce their transpositional machinery, giving rise to non-autonomous elements. Yet, by exploiting 

the machinery produced by other TEs, non-autonomous elements remain mobile. MITEs for example 

are dramatically reduced non-autonomous TEs, consisting only of two TIRs that successfully recruit 

transposases from other, autonomous Class II DNA transposons. 

  

1.2.2.2 The effect of TEs on the genome and the phenotype 

Initially, TEs were considered as selfish parasitic elements that inflate genomes with “junk” sequence 

(Ohno 1972), without any benefit to the host. This poor reputation was bolstered by the ability of TEs 

to generate substantial mutations (e.g. Anxolabéhère et al. 1988) – either as a consequence of their 

mobility or of their high frequency in the genome. TE transposition can disrupt, modify or duplicate 

genes and regulatory elements, affect alternative splicing and expression patterns, or interfere with 

epigenetic regulation. In addition, with rising copy-numbers in a genome, the likelihood of aberrant 

transposition and ectopic recombination events increases, potentially causing large-scale chromosomal 

rearrangements (Hua-Van et al. 2010). It is thus not surprising that mechanisms evolved to constrain 

the activity and the disruptive potential of TEs in genomes. For example, TEs are often particularly 

abundant in genomic regions of low recombination frequency and gene density, and they are assumed 

to have driven the evolution of epigenetic silencing mechanisms (RK Slotkin and Martienssen 2007; 

Shabalina and Koonin 2008; Levin and JV Moran 2011). In spite of this apparent menace to genome 

integrity, the reputation of TEs changed substantially when evidence for TE-induced beneficial genetic 

innovation gathered (reviewed in Volff 2006; KR Oliver and Greene 2009; Fedoroff 2013). For 

example, TEs are suspected to be crucial to the evolution of the placenta of Eutheria (Mi et al. 2000) 

or the evolution of RNAi (RK Slotkin and Martienssen 2007) and long ncRNA (lncRNA, Kapusta et 

al. 2013). In Drosophila, telomeres are maintained not by telomerases but by two non-LTR 

retrotransposons, HeT-A and TART (Pardue and DeBaryshe 2003), and DNA transposons have been 

implicated in the radiation of the primate lineage (Pace and Feschotte 2007) and the success of 

invasive species (Stapley et al. 2015). 

These and countless other examples of TE-driven evolutionary innovations highlight that adaptive 

phenotypes can emerge from TE-induced genetic change. Like for other mutations, most TE-induced 

changes will be deleterious or nearly neutral and the ratio of beneficial to deleterious mutations is 

likely to be similar between single-nucleotide and TE-induced mutations (Akagi et al. 2013). 

However, the potential for major evolutionary innovations appears to be particularly high in  

TE-induced mutations due to stronger phenotypic effects (Feschotte and Pritham 2007). As 

transposon-induced genetic change often involves shuffling and rewiring of entire genetic elements, 

genotypic and thus also phenotypic consequences are often much more severe compared to the gradual 

changes induced by single nucleotide mutations.  
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This feature of TE-induced mutations constitutes the basis for the compelling “epi-transposon 

hypothesis” that advocates a key role for TEs in adaptive evolution and speciation through leaps of 

rapid phenotypic diversification (Zeh et al. 2009). The hypothesis is furthermore founded on the fact 

that TE activity fluctuates over evolutionary time and appears to peak during periods of stress (Capy et 

al. 2000). Either by directly activating transposition or by inhibiting genomic silencing mechanisms 

(RK Slotkin and Martienssen 2007), environmentally induced physiological or genomic stress 

liberates TEs, enabling them to restructure the genome. In response to changes in the environment 

(e.g. climatic), the physiological and genomic stress response thus triggers frequent genetically 

induced, random phenotypic variation that would provide the necessary diversity in a population for 

subsequent adaptation through natural selection (Zeh et al. 2009). 

 

1.3  The Environment 

Without external, environmental influence, genomic information alone does not suffice to produce fit 

phenotypes (SF Gilbert 2012b). For environmental cues to have an effect on the phenotype, organisms 

need to be susceptible and responsive to these stimuli, a phenomenon described as phenotypic 

plasticity.  

As a universal feature of living organism, phenotypic plasticity is a basic principle in biology and 

many attempts have been made to define its parameters and dimensions (e.g. Smith-Gill 1983; 

Schlichting and Pigliucci 1995; Via et al. 1995; Schlichting and Pigliucci 1998; West-Eberhard 2003; 

SF Gilbert and Epel 2009; Fusco and Minelli 2010; Forsman 2014). Even though these definitions 

often are oversimplifications of a complex and in most cases gradual phenomenon, they provide a 

useful vocabulary to conceptualize phenotypic plasticity.  

The phenomenon of different phenotypes arising from a single genotype can be divided into 

polyphenism (or phenotypic polymorphism) with discrete, discontinuous morphs and graded plasticity 

(in which a continuum of morphs is expressed) (Fusco and Minelli 2010). A prominent example of 

polyphenism is found in eusocial insects, where queens and workers are produced by the same 

genotype (usually) without intermediate phenotypes. In contrast, graded plasticity describes plastic 

responses to the environment where a phenotypic trait shows continuous variability, for example body 

size differences between workers in the same eusocial insect colony. Closely related to the distinction 

between polyphenisms and graded plasticity are the concepts of developmental conversions and 

phenotypic modulations (Smith-Gill 1983). Developmental conversion is defined as a phenotypically 

plastic response that is based on the activation of alternative genetic programs controlling the 

expression of certain traits (e.g. development) by the perception of specific environmental cues. 

Hence, developmental conversions can also be described as active, specific, often anticipating 

plasticities that are based on established and fine-tuned mechanisms to perceive, process and transduce 
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a particular cue, and subsequently alter an organism’s developmental (or physiological, or 

behavioural) state. In contrast, phenotypic modulation by definition describes nonspecific phenotypic 

variation in response to environmental stimuli or influences that affect trait expression without 

changing the underlying genetic program (Smith-Gill 1983). Phenotypic modulation is usually 

considered a passive, general and responsive plasticity in that the plastic response is a direct 

consequence of environmental conditions.  

While these distinctions provide a useful conceptual framework, they often fail to describe actual 

forms of phenotypic plasticity, for most cases usually settle between both extremes. For example, the 

discrete queen-worker dimorphism of social insects can be undermined by the occurrence of 

intercastes (Heinze 1998) that are thought to result from aberrant developmental processes producing 

graded phenotypes ranging between queens and workers. 

As any organismal trait, phenotypic plasticity is subject to selection and evolutionary change. A key 

aspect in describing phenotypic plasticity is thus to assess to what extent the plasticity of a trait has 

been shaped by selection and whether the plasticity itself is adaptive. An evolutionary perspective on 

phenotypic plasticity is important, because it can help to resolve conceptual inaccuracies resulting 

from such discriminations as active and passive or specific and unspecific.  

For example, if the plasticity of a trait is highly adaptive and has likely evolved under strong selection 

in a sufficiently predictable environment, it is likely to appear as an active, anticipatory and specific 

form of plasticity, with highly integrated underlying physiological or developmental networks 

involved. In contrast, passive phenotypic modulations that are unspecific physical responses to 

environmental conditions can often be considered neutral and non-adaptive (Schlichting and Pigliucci 

1995). However, any form of plasticity likely contains both active and passive components and, 

likewise, its effect on the phenotype can be adaptive or neutral (Via et al. 1995). Furthermore, 

phenotypic plasticity can also be maladaptive, in particular under aberrant environmental conditions 

(Langerhans and DeWitt 2002). Depending on the fitness effects of a phenotypically plastic response, 

selection will act to either buffer or canalize plasticity (Nijhout 2003). If the plastic response is 

detrimental, selection acts to decrease plasticity, thus stabilizing the phenotype (homeostasis). 

However, if the plasticity is beneficial, selection will increase the sensitivity to the inducing 

environmental stimulus, enabling the evolution of more elaborate responses to the cue – a process 

described as genetic accommodation (West-Eberhard 2005a). Similarly, exposure to stressful 

conditions can enable the evolution of adaptive phenotypic plasticity through directional selection, if 

the resulting phenotype is closer to a new phenotypic optimum than to the one originally favoured 

(Badyaev 2005; Ghalambor et al. 2007).  
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1.4  Endosymbionts 

It is difficult to apply the distinction between environmental and genetic contributors to the phenotype 

to endosymbionts. On the one hand, endosymbionts are external factors acquired from the 

environment, and on the other hand, by contributing their genome to the symbiosis, they can enrich 

their host’s available genetic repertoire.  

Endosymbioses have been key in major evolutionary transitions such as the evolution of eukaryotic 

and auto-phototrophic cells (Dyall 2004). Examples of lesser evolutionary significance are abundant, 

in particular in insects, where endosymbionts continue to push diversification, speciation and 

evolutionary innovation (Moya et al. 2008). 

The transition from incipient to obligate endosymbiosis is a long-lasting evolutionary process 

beginning with a loose association between independent partners and ending in complete inter-

dependency of host and symbiont. In general, this consolidation involves the emergence of novel, 

adaptive traits increasing host fitness (and thus also symbiont fitness), and the evolution of vertical 

transmission of endosymbionts from one host generation to the next (Toft and Andersson 2010; Gil et 

al. 2010). In addition, genomes of obligate endosymbionts tend to become highly reduced (Moya et al. 

2008) and hosts develop specialized, often morphological adaptations to control and foster their 

endosymbiont population (Toft and Andersson 2010).   

The diversity of endosymbionts is particularly well studied in insects, and many different levels of 

specialization and inter-dependency are recognized in extant symbioses (Kikuchi 2009). In insects, 

endosymbionts occur extracellularly in the gut, the body cavity or the hemolymph and intracellularly 

in various tissues or in specialized cells (bacteriocytes) and organs (bacteriome) (Kikuchi 2009; Gil et 

al. 2010). Bacteriocytes and bacteriomes usually harbour primary symbionts that are beneficial and 

obligate to the host. Secondary endosymbionts vary in their localization within the host and are 

considered facultative and non-essential, providing only conditional benefits to the host (Kikuchi 

2009).  

In general, costs and benefits apply to both partners in a mutualistic endosymbiosis (Herre et al. 1999). 

For endosymbionts, costs usually involve their loss of independence and benefits include nutrition and 

a protected microhabitat. Benefits to the host can be diverse. In most cases, endosymbionts provision 

rare nutrients to complement a host’s unbalanced diet, but other beneficial effects have been 

documented as well, including pathogen resistance (Kaltenpoth and Engl 2014) and increased stress-

resistance (JA Russell and NA Moran 2006). In general, these acquired phenotypic traits are expected 

to offer great fitness advantages to the host, so that benefits of the symbiosis outweigh the imposed 

costs (Feldhaar 2011). In addition to maintenance costs of providing nutrition and microhabitat, insect 

hosts often face costs resulting from a conflict of interest over reproductive output between 

endosymbionts and host. Conflicts arise as endosymbionts strive to bias the host’s sex-ratio towards 
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females through reproductive manipulation, because endosymbionts are in most cases transmitted only 

by female hosts (Werren et al. 2008; Cordaux et al. 2011). 

 

1.5 Cardiocondyla obscurior as a Laboratory Model  

Most ant species are challenging to work with in the laboratory, because their colonies require intense 

care if maintained in an artificial environment. In addition, colonies often comprise several thousand 

individuals and propagation is in many cases nearly impossible under laboratory conditions. However, 

among the many different ant species that are studied in laboratories across the world, there are some 

few exceptional species whose biology and life history allow consistent maintenance and controlled 

experimental manipulation under laboratory conditions. One of these exceptional species is 

C. obscurior (Figure 1.2). Originally from Southeast Asia, human commerce led to the spread of 

C. obscurior to different habitats in the tropics and subtropics (Heinze et al. 2006), but also in green 

houses and university offices. Colonies of C. obscurior are usually found in plant structures, 

occupying naturally formed cavities (Seifert 2003) and ephemeral and diverse nest sites, such as furled 

leaves, aborted fruits or loose bark, require frequent relocation and adaptation to alternative nesting 

conditions. In the laboratory, colonies of C. obscurior readily adapt to artificial nesting conditions in 

Petri dishes with plaster grounding in a damp climate at 23° C to 30° C. 
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Figure 1.2: The model system Cardiocondyla obscurior. (a) Queen of C. obscurior tending to a pile of 
eggs. (b) Colony of C. obscurior nesting inside a dried Nepenthes leaf. (c) Laboratory colony of C. 
obscurior in a Petri dish.  

 

Consisting of only few workers and a single queen, incipient colonies can be easily split from larger 

stock colonies (Heinze et al. 2006). Their minute body size (~2 mm) and frugality concerning nesting 

space and conditions allow for the maintenance and manipulation of several hundred independent 

colonies from different source populations in the laboratory. Propagation of colonies of C. obscurior is 

remarkably simple, because in contrast to most other ant species, mating in C. obscurior takes place 

regularly within the colony and in most cases between closely related individuals. Fully developed 

colonies contain multiple queens (polygyny) and, a rarity among ants, non-dispersing males (Kugler 

1983). Most species of ants produce winged males that leave the natal colony and disperse soon after 

reaching maturity (Hölldobler and Wilson 1990). In Cardiocondyla however, males remain in the 

colony where they mate with virgin queens (Kinomura and Yamauchi 1987). This mode of 

reproduction is linked to substantial adaptations in the male sex, culminating in a remarkable male 

diphenism with docile winged males and ergatoid fighter males in several species (Oettler et al. 2010). 

In C. obscurior, the vast majority of males produced by a colony develop into the ergatoid phenotype. 

a)

b)

c)
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While the winged male phenotype is rare, its expression can be triggered by altered rearing conditions 

(Schrempf and Heinze 2006).  

Confrontations between ergatoid males in a colony usually end fatally for one of the combatants, 

allowing a single victorious male to monopolise reproduction in its colony (Stuart et al. 1987). Such a 

life history imposes strong selection pressures on males, resulting in striking morphological, 

behavioural and developmental adaptations in the fighter (Heinze and Hölldobler 1993) but also in the 

winged phenotype (Cremer, Sledge, et al. 2002b). For example, ergatoid males of C. obscurior are 

long-lived and have life-long spermatogenesis and enlarged mandibles, while winged males mimic 

queen odour to evade aggression by ergatoid males.  

 

1.6 Cardiocondyla obscurior as a Model to Study Phenotypic 

Evolution and Plasticity 

In general, ants are rich models for studies on phenotypic evolution. For example, the discrete queen-

worker diphenism and worker polyethism provide sufficient substance for countless studies on the 

basis of developmental and phenotypic plasticity (e.g. DE Wheeler 1991; Chittka et al. 2012; Yan et 

al. 2014). In addition, ants are tremendously diverse and often show extreme levels of adaptations to 

ecological niches (Hölldobler and Wilson 1990; Guénard 2013). However due to the difficulties in 

cultivating ants under laboratory conditions, it is often difficult to study the mechanisms underlying 

phenotypic evolution. Among the ant species that are rather easily maintained in the laboratory, 

C. obscurior is particularly well suited to study both developmental plasticity and adaptation in ants. 

The species distribution of C. obscurior is wide, including habitats in Bahia (Brazil), Okinawa 

(Japan), Mississippi (USA), Holguin (Cuba), Chiapas (Mexico), Alajuela (Costa Rica), Al Bahah 

(Saudi Arabia), Fiji, and Tenerife (Spain) (AntWeb, Macgown 2012, A. Schrempf pers. comm.). Even 

though environmental differences between habitats might be small, each colonization event will 

require some level of local adaptation (Reznick and Ghalambor 2001). In incipient, introduced 

populations of C. obscurior, genetic diversity is expected to be extremely low due to genetic 

bottlenecks, high levels of inbreeding, and low effective population size (Ne) (Nei et al. 1975; D 

Charlesworth and Wright 2001; Romiguier et al. 2014). In spite of these constraints, C. obscurior 

appears to be able to establish stable populations following the introduction to novel habitats, 

indicating a high level of adaptability. The rapid production of locally adapted phenotypes is 

particularly important in invasive species that face different environmental conditions following 

introduction (Prentis et al. 2008).  

The possibility to maintain colonies from different source populations of C. obscurior offers the 

opportunity to study rapidly emerging phenotypic adaptations under controlled laboratory conditions. 
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In addition, the relatively short generation time of approximately 4 weeks, and the species’ disposition 

for inbreeding, allow for genetically isolated inbred lines to be maintained over several generations, 

enabling for example experimental evolution or studies on the genetic and environmental determinants 

of phenotypic traits. Similarly, the ability to extensively manipulate colonies and alter rearing 

conditions provides powerful tools to affect development in studies on the basis of (environmentally 

induced) polyphenism (Schrempf and Heinze 2006; Du et al. 2007).  

 

1.7 Aims of this Thesis 

The fields of ecology, development and evolution are growing closer, for an increasing appreciation of 

environmental effects on phenotype and evolution. The emerging field of eco-evo-devo (“ecological, 

evolutionary developmental biology”) aims at building an evolutionary concept that integrates 

development, environment, and genes to explain how novel phenotypes can evolve (Abouheif et al. 

2013). In essence, the concept revolves around the environment’s potential to induce novel phenotypic 

and genetic variants that are shaped by developmental processes and constraints. Novel phenotypes 

and genotypes are thus exposed to natural selection, allowing evolution to proceed.  

The aim of this thesis is to assess principles and mechanisms of phenotypic evolution in C. obscurior 

in the context of eco-evo-devo. Focusing on the genomic basis of rapid adaptation (Chapter 2), the 

genetics of developmental plasticity (Chapters 3 and 4), and the role of mutualism in adaptation 

(Chapter 5), this thesis provides insight into the interactions of environment, genes and development 

and their role in evolutionary progress. In addition, the genomic and transcriptomic resources 

developed in this thesis serve as valuable groundwork for further studies on the evolutionary biology 

of this astonishing species.  
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Abstract 

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here 

we sequenced two populations of an inbred ant that diverge in phenotype to determine how variability 

is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure 

suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of 

TEs (TE islands) comprising 7.18 % of the genome evolve faster than other regions with regard to 

single nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random 

distribution of gene families, larvae/adult specific gene expression, and signs of differential 

methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates, and 

coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history, 

and adaptation in an invasive species.  

  



17 

2.1  Introduction 

Depletion of genetic variation is detrimental to species evolution and adaptation (D Charlesworth and 

B Charlesworth 1987). Low genetic and phenotypic variation is common in founder populations, 

where only one or a few genotypes are isolated from a source population. Under such conditions, 

reduced effective population size (Ne) should decrease selection efficiency and increase genetic drift, 

resulting in only weak selection against mildly deleterious alleles, which can thus accumulate (Lynch 

2007). These effects should be even stronger in inbreeding species (D Charlesworth and Wright 2001) 

and taxa with generally low Ne such as social insects (Romiguier et al. 2014). Despite these 

constraints on adaptive evolution, many inbred or selfing species thrive and are able to invade novel 

habitats. This raises the question of how genetic variation as the raw material for adaptation is 

generated in such systems.  

Single nucleotide substitutions are an important factor in adaptation (McDonald and Kreitman 1991) 

and species diversification (Lanfear et al. 2010; Lynch 2010). However, other structural and regulatory 

units, such as transposable elements (TEs) and epigenetic modifications, may act as drivers in 

adaptation and evolution (Fontdevila 2011). TEs play a particularly vital role in genome evolution 

(Fedoroff 2013), and recurringly generate adaptive phenotypes (Madlung and Comai 2004; González 

et al. 2010; Rostant et al. 2012; Casacuberta and González 2013) primarily through (retro-

)transposition (Kazazian 2004), and secondarily through ectopic recombination and aberrant 

transposition (Hua-Van et al. 2010). 

The invasive, inbreeding ant Cardiocondyla obscurior (Figure 2.1) provides a suitable model to study 

how species adapt to novel habitats in spite of constraints imposed by invasion history, life history, or 

both. Originally from Southeast Asia, C. obscurior has established populations in warm climates 

around the globe from founder populations that presumably consisted of only one or a few inbred 

colonies, each with a few reproductive queens and several dozen sterile workers. In this species, 

related wingless males and females (queens) mate within the colony, after which queens leave the 

colony with a group of workers to found a new nest nearby. While greatly reducing the extent of gene 

flow between colonies, this behaviour enables sexual reproduction within the same colony and allows 

single founder colonies to rapidly colonize novel habitats. At the same time, the combination of 

prolonged inbreeding with severe genetic bottlenecks strongly reduces Ne in this species. Under such 

conditions, genetic drift is predicted to drastically deplete genetic variation, thus leaving little for 

selection to act on. 
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Here we explore the genomes of C. obscurior from two invasive populations (Brazil BR and Japan JP) 

to identify signatures of divergence on a genomic level and to determine how the species can rapidly 

adapt to different habitats. We find clear phenotypic differences between the populations and strong 

correlation between accumulations of TEs (“TE islands”) and genetic variation. Our results suggest 

that TE islands might function as spring-wells for genetic diversification in founder populations of this 

invasive species. The distinct organization of TE islands, their gene composition, and their regulation 

by the genome adds compelling evidence for the role of TEs as players in differentiation, adaptation, 

and speciation. 

 

Figure 2.1: Two workers of Cardiocondyla 
obscurior and the remains of a fly. Hidden 
in small cavities of plants, the 
inconspicuous colonies of this species are 
frequently introduced to new habitats by 
global commerce. In spite of strong genetic 
bottlenecks, even single colonies with few 
reproductive individuals suffice to 
establish stable populations. 
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2.2 Results 

Phenotypic differences between BR and JP lineages 

Colonies from the two populations contained similar numbers of workers (Mann-Whitney-U= 778.5, 

Z= -0.634, p= 0.526; BR: median= 28, quartiles 21.75 and 51.25, n= 27 colonies; JP: median= 29, 

quartiles 16 and 47, n= 64), but queen number was higher in Japan (Mann-Whitney-U= 501,  

Z= -3.084, p< 0.003; BR: 5 queens, quartiles 3, 8; JP: median= 10, quartiles 4 and 19). Body sizes of 

queens and workers from BR were significantly smaller than in JP individuals, yet wingless males did 

not differ in any of the measured characters (see Supplement).  

In ants, cuticular chemical compounds play a particular prominent role in kin recognition, which is 

crucial for species integrity but on a deeper level also a requirement for the maintenance of altruism 

(van Zweden et al. 2010). Analysis of cuticular compound extracts from BR and JP workers showed 

that compound composition differed significantly between the two lineages (MANOVA: df= 2,  

F= 10.33, R2= 0.39, p  < 0.001) and samples were classified correctly according to population of 

origin in 83.3 % of cases (Supplementary Table S1.1; Supplementary Figure S1.1). 

The lineages also differed in behaviour, with BR colonies being significantly more aggressive towards 

both workers and queens from their own lineage, while JP colonies more readily accepted JP workers 

and queens (pWorkers JPxJP vs. BRxBR= 0.000296, pQueens JPxJP vs. BRxBR= 7.98e-07, Supplementary 

Figure S1.2). Confronted with individuals from the other lineage, BR colonies were as aggressive as in 

within-population encounters (pWorkers BRxJP vs. BRxBR= 0.39, pQueens BRxJP vs. BRxBR= 0.94), 

while JP colonies were again significantly less aggressive (pWorkers JPxBR vs. BRxBR= 0.000131, 

pQueens BRxJP vs. BRxBR= 1.23e-07). Testing discrimination against workers of another ant species, 

Wasmannia auropunctata, evoked similarly high aggressive responses in both lineages, suggesting 

that the BR and JP populations do not generally differ in their aggressive potential. 

 

The C. obscurior genome is compact and rich in class I TEs 

Using MSR-CA version 1.4, we produced a 187.5-Mb draft reference genome based on paired-end 

sequencing of several hundred diploid females (454 Titanium FLX sequencing) and a 200-bp library 

made from five haploid males (Illumina HiSeq2000) (Supplementary Table S1.2), all coming from a 

single Brazilian colony. Automatic gene annotation using MAKER version 2.20 (Holt and Yandell 

2010) was supported by 454 RNAseq data of a normalized library made from a pool of all castes and 

developmental stages. We filtered the assembly for prokaryotic scaffolds and reduced the initial 

11,084 scaffolds to 1,854 scaffolds, containing all gene models and a total of 94.8 % (177.9 Mb) of the 

assembled sequence. The genome can be accessed under antgenomes.org and 

hymenopteragenome.org.  
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The final gene set contains 17,552 genes, of which 9,552 genes have a known protein domain as 

detected by IPRScan (ebi.ac.uk/interpro/), and falls within the range of recent estimates for eight other 

sequenced ant species (Weinstock et al. 2006; Werren et al. 2010; Bonasio et al. 2010; CR Smith et al. 

2011b; Suen et al. 2011; CD Smith et al. 2011a; Wurm et al. 2011; Nygaard et al. 2011; Oxley et al. 

2014). Of all genes, 72.5 % have an annotation edit distance of less than 0.5, which is consistent with 

a well-annotated genome (Yandell and Ence 2012) (Supplementary Table S1.3).  

The C. obscurior genome is the smallest so far sequenced ant genome (Weinstock et al. 2006; Werren 

et al. 2010; Bonasio et al. 2010; CR Smith et al. 2011b; Suen et al. 2011; CD Smith et al. 2011a; 

Wurm et al. 2011; Nygaard et al. 2011; Oxley et al. 2014). Although there is no physical genome size 

estimate for C. obscurior, assembled sequences and physical estimates are tightly correlated in seven 

ant genomes (LM in R: R2= 0.73, F1, 5= 13.7, p= 0.014, from Gadau et al. 2011), suggesting that 

C. obscurior has the smallest genome reported so far for an ant species (Tsutsui et al. 2008). Overall, 

draft genome size of the analysed sequenced ants is negatively correlated to relative exon content 

(GLM in R: df= 6, F= 150.55, p  < 0.001) but not to relative intron content (df= 5, F= 0.65, p= 0.460; 

Figure 2.2), indicative of stabilizing selection on coding sequence. In contrast, intron size distribution 

is diverse between ant genomes and is not correlated with genome size (Supplementary Figure S1.3; 

Supplementary Table S1.4). 

 

 

Figure 2.2: Assembly size in Mbp plotted against the relative proportion of exons, introns, and different 
repetitive elements. The analysed genomes show a negative correlation between relative exon but not 
intron content. Genome size is positively correlated with relative short simple repeat (SSR) but not Class 
I and II TE content. A= S. invicta, B= A. cephalotes, C= A. echinatior, D= H. saltator, E= C. floridanus, 
F= P. barbatus, G= L. humile, H= C. obscurior. 

 

We used a custom pipeline (see Supplementary Information) to identify simple repeats, Class I 

retrotransposons, and Class II DNA transposons in C. obscurior, seven ant genomes (Acromyrmex 

echinatior (Aech), Atta cephalotes (Acep), Solenopsis invicta (Sinv), Linepithema humile (Lhum), 

Pogonomyrmex barbatus (Pbar), Harpegnathos saltator (Hsal), Camponotus floridanus (Cflo)), the 

parasitic wasp Nasonia vitripennis (Nvit), and the honeybee Apis mellifera (Amel). Across the 

analysed ants, genome size is significantly correlated with relative simple repeat content  

(lm, R2= 0.66, F= 11.83, p= 0.014; Figure 2.2) but not with Class I and Class II TE content. However, 
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it appears that the larger genomes contain more relative Class II sequence. Relative Class I 

retrotransposon content was highest in C. obscurior  (7.6 Mb, 4.31 %, Supplementary Figure S1.4) 

and in particular, many Class I non-LTR retrotransposons (e.g. 14 types of LINEs) and several types 

of LTR transposons (Ngaro, Gypsy, DIRS, and ERV2), TIR elements (e.g. hAT, MuDR, P), and 

Helitrons are more abundant in C. obscurior (Supplementary Table S1.5).  

 

Genomic signatures of an inbred lifestyle 

Based on TE content calculations for 1- and 200-kb sliding windows, we identified 18 isolated “TE 

islands” located in “LDR” (low density regions) in the C. obscurior genome (Figure 2.3). These TE 

islands were defined containing TE accumulations in the 95-100 % quantile within scaffolds over 200 

kb (87 scaffolds, representing 96.02 % or 170.8 MB of the assembly). In total TE islands cover 12.78 

Mb of sequence (7.18 % of total sequence) and range between 0.19 and 1.46 Mb in size. The TE 

islands contain 27.54 % (4.92 Mb) of the assembly-wide TE sequence (17.87 Mb), 6.6 % of all genes 

(1,160), and have reduced exon content (TE islands 87.0 exon bp kb-1, LDRs 124.5 exon bp kb-1). 

Note that some larger scaffolds contain more than one TE island. 

Retroelements of the superfamilies BEL/Pao, DIRS, LOA/Loa, Ngaro, R1/R2, and RTE as well as 

DNA transposons of the superfamilies Academ, Kolobok-Hydra, Maverick, Merlin, on, and TcMar-

Mariner/-Tc1 populate TE islands with significantly higher copy numbers than other elements 

(Fisher’s exact test, FDR<0.05, Figure 2.4, Supplementary Table S1.6). Furthermore, both Class I and 

Class II elements show a length polymorphism, with elements in TE islands being significantly longer 

compared to elements in LDRs (U-tests, W= 109,089,018, p< 2e-16 for Class I and W= 152,340,067, 

p< 2e-16 for Class II, Bonferroni corrected, Figure 2.6a, Supplementary Figure S1.5). 
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We also assessed genome-wide TE distributions for seven published ant genomes, Amel v4.5, and Nvit 

v2.0  (Figure 2.3). The smaller ant genomes (Pbar, Lhum, and Cflo) and Amel are similar in TE 

sequence distribution. In contrast, the larger genomes (Aech, Acep, Sinv, and Hsal) are more variable, 

have higher median TE content, and a much broader and tailed TE frequency distribution with longer 

stretches of high or low TE content. The genome of C. obscurior is distinct from the other ant 

genomes, with low TE content in LDRs but exceptional clustering with high TE densities in TE 

islands. The genome of the inbred wasp N. vitripennis contains regions with up to 60 % TE content 

that are surrounded by LDRs containing much less TE sequence (~10 %), resembling the pattern 

observed in C. obscurior.  

 

Figure 2.4: The proportion of bases annotated in TE islands in C. obscurior against the log-scaled total 
base count in TE islands for each TE superfamily. Point size is relative to the copy number of the 
respective element found in TE islands (orange) and in LDRs (blue). Red circles indicate superfamilies 
with significantly higher frequency in TE islands than other superfamilies. Superfamilies with a 
significantly higher base count in TE islands are denoted by a red asterisk. 

 

TE islands diverge faster than LDRs in the two populations 

We mapped ~140 Gb of genomic DNA Illumina reads (~60 x coverage for each population) from 
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bio-bwa.sourceforge.net) and analysed local coverage ratios to detect genetic divergence. Deviations 

from the mean coverage ratio (Figure 2.5) are in part caused by sequence deletions, insertions and 

duplications (Medvedev et al. 2009). Such variations are particularly frequent in TE islands (Figure 

2.5, Figure 2.6b), suggesting accelerated divergence within islands (median deviation from mean 

coverage ratio: 0.288 in TE Islands, 0.163 in LDRs; U-test, W= 640,300,902; p< 2e-16, Bonferroni 

corrected). 

 

 

Figure 2.5: Genomic divergence and subgenomic structure of the 12 largest C. obscurior genome 
scaffolds (including all 18 TE islands). High TE content in TE islands correlates with deviations from the 
average coverage ratio, very high absolute coverage in both lineages, and high numbers of SNV calls. 
First track: Relative TE (blue and orange within TE islands) and exon content (green) per 200 kb. Second 
track: Coverage ratio BR/JP (blue and orange within TE islands). Third track: Absolute coverage for BR 
(top) and JP (bottom). Fourth track: Heterozygous SNV calls per kb in BR (top) and JP (bottom) relative 
to the reference genome. Fifth track: Homozygous SNV calls per kb in BR (top) and JP (bottom) relative 
to the reference genome. Black lines on x-axes indicate localization of TE islands. 
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Figure 2.6: Quantitative measures on the divergence of TE islands and LDRs. (a) Length polymorphism 
for Class I and Class II transposable elements in LDRs (blue) and TE islands (orange). U-tests, nLDR= 

54,950, nTE= 6,466 for Class I and nLDR= 59,054, nTE= 6,813 for Class II. (b) Deviations from the median 
coverage ratio calculated for 1 kb windows in LDRs (blue) and TE islands (orange). U-test, nLDR= 

157,296, nTE= 12,165. (c) Log2-scaled density plots of the coverage for all homozygous (solid black lines) 
and heterozygous SNV (dotted red lines) calls divided by the median coverage (orange= calls within TE 
islands; blue= calls in LDRs). Coverage at homozygous calls is not different from the median overall 
coverage, neither in TE islands nor in LDRs. The shift for heterozygous SNV calls within TE islands 
shows that most calls result from diverging duplicated loci. The bimodal distribution for heterozygous 
calls in other genomic regions suggests two distinct populations of SNV calls, i.e. true heterozygous loci 
(first peak) and diverging sequence in duplicated loci (second peak). (d) Bitscores for genes in LDRs 
(blue) and TE islands (orange) retrieved by BLASTx against annotated proteins from seven ant genomes. 
U-test, nLDR= 12,065, nTE= 902. (Continued on next page) 

0
20

0
40

0
60

0
80

0

LDR
TE Isl

LDR
TE Isl

Class I Class II

Le
ng

th
 (b

p)

*** ***

LDR TE Isl

0.
0

0.
5

1.
0

1.
5

lo
g2

 d
is

ta
nc

e 
of

 m
ed

ia
n 

co
ve

ra
ge

 ra
tio

***

0
50

0
10

00
15

00
20

00

LDR TE Isl

S'

***

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 −1 0 1 2 4
log2(covSNV mdn(cov))

D
en

si
ty

Hom
Het
LDR
TE Isl

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
dN

 ra
te

***

LDR TE Isl

0 25 50 75 100

0.
8

1.
0

1.
2

1.
4

C
pG

 o
/e

Expression rank

−.
07

−.
03

0
.0

3
.0

7

LDR TE Isl

C
pG

 o
/e

 ra
tio

 [B
R

/J
P]

***

a) b) d)

c) e)

f) g)

0
20

0
40

0
60

0
80

0

LDR
TE Isl

LDR
TE Isl

Class I Class II

Le
ng

th
 (b

p)

*** ***

LDR TE Isl

0.
0

0.
5

1.
0

1.
5

lo
g2

 d
is

ta
nc

e 
of

 m
ed

ia
n 

co
ve

ra
ge

 ra
tio

***

0
50

0
10

00
15

00
20

00

LDR TE Isl

S'

***

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−4 −2 −1 0 1 2 4
log2(covSNV mdn(cov))

D
en

si
ty

Hom
Het
LDR
TE Isl

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
dN

 ra
te

***

LDR TE Isl

0 25 50 75 100

0.
8

1.
0

1.
2

1.
4

C
pG

 o
/e

Expression rank

−.
07

−.
03

0
.0

3
.0

7

LDR TE Isl

C
pG

 o
/e

 ra
tio

 [B
R

/J
P]

***

a) b) d)

c) e)

f) g)



26 

Figure 2.6e-g: (e) Rates of non-synonymous substitutions (calculated as dN/(dN+dS)) in LDR (blue) and 
TE island genes (orange). U-test, nLDR= 6,806, nTE= 423. (f) Exon-wide CpG o/e values were plotted 
against the expression rank from 0 (least expressed) to 100 (most expressed) genes for LDRs (blue) and 
TE islands (orange). (g) Calculated ratios (BR/JP) for exon CpG o/e values in LDRs (blue) and TE 
islands (orange). F-test, nLDR= 16,379, nTE= 1,159. (***: p< 0.0001, boxplots show the median, 
interquartile ranges (IQR) and 1.5 IQR.) 

 

We retrieved SNV (single nucleotide variant) calls using consensus calls from samtools 

(samtools.sourceforge.net) and the GATK (broadinstitute.org/gatk/). Although TE islands only 

comprise 7.18 % of the genome, they combine 15.59 % (86,236 of 553,052) of all SNV calls.  Given 

that we sequenced haploid males from highly inbred lineages, heterozygous SNVs should be rare. A 

large fraction of heterozygous SNVs in both lineages are within TE islands (62.95 % of 62,879 in BR, 

50.52 % of 98,353 in JP), while rates of homozygous calls (Figure 2.5) are not increased (11.88 % of 

16,277 in BR, 6.91 % of 445,316 in JP). High numbers of false positive heterozygous SNV calls can 

arise in duplicated regions that collapsed into a single locus due to misassemblies (Treangen and 

Salzberg 2012). Accordingly, such SNVs can be identified by a two-fold increase in coverage and in 

fact mark diverging duplicated loci within the same lineage (Figure 2.6c).  

Genes in TE islands should also show signatures of accelerated divergence from orthologs if overall 

sequence evolution is increased in these regions. Indeed, BLASTp searches against seven ant 

proteomes produced significantly lower bit scores for genes within TE islands than for genes in LDRs 

(Figure 2.6d, U-test, W= 120,460,260, p< 2e-16). In accordance, SNV annotation revealed higher rates 

of non-synonymous substitutions between the BR and JP lineage in TE island genes (Figure 2.6e,  

U-test, W= 923,754, p< 2e-16). Surprisingly however, on average TE island genes contained less 

synonymous SNVs than LDR genes (LDR 0.67 kb-1, TE island 0.42 kb-1, U-test, W= 10,743,397,  

p< 2e-16).  

 

Copy number variation within and between TE islands  

We inspected 512 candidate loci (155 in TE islands) of 1 kb length, by plotting the coverage of each 

lineage relative to SNVs, genes and TEs at the respective position, to find genes potentially affected 

by deletion or copy number variation events and compiled a list of 89 candidate genes (Supplementary 

Table S1.7). Experimental proof-of-principle was conducted by PCR and Sanger sequencing for two 

deletion candidates (Cobs_13563 and Cobs_01070) and by real-time quantitative PCR for four 

duplication candidates (Cobs_13806, Cobs_17872, Cobs_13486, and Cobs_16853) (Supplementary 

Figure S1.7).  

A majority of these genes are located in TE islands (61.8%) and 34 genes show at least weak 

expression in BR individuals in RNAseq data (see below). The affected genes play roles in processes 

that may be crucial during invasion of novel habitats, such as chemical perception, learning, and 
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insecticide resistance. In particular, four different odorant/gustatory receptor genes show signs of 

either multiple exon (Cobs_05921, Cobs_13418, Cobs_14265) or whole gene duplication 

(Cobs_17892). A gene likely involved in olfactory learning, Cobs_13711 a homolog to pst (Dubnau et 

al. 2003), also shows signs of duplication. Three genes homologous to fatty acid synthase (FAS) 

genes, a key step in cuticular odour production, contain partial deletions (Cobs_16510, Cobs_14262) 

or duplications (Cobs_15866). Furthermore, we found differences in genes associated with insecticide 

response (Cobs_00487, a homologue of nAChR"6 (FBgn0032151) (Millar and Denholm 2007) and 

Cobs_17834, coding for a homologue to Cyp4c1 (EFN70878.1) (Hemingway and Ranson 2000). 

Other key genes affected are associated with circadian rhythm (Cobs_17789, homologue to 

per (FBgn0003068)), caste determination (Cobs_01070, with homology to Mrjp1 (gi406090) 

(Drapeau et al. 2006), development (Cobs_17755, coding for a homolog of VgR (Q6X0I2.1) (M-E 

Chen et al. 2004), and aging (Cobs_14758, with homology to Mth2 (FBgn0045637) (Duvernell et al. 

2003).  

De novo assembly of ~23 M Illumina paired-end reads from the JP lineage that could not be mapped 

to the BR reference genome resulted in 17 contigs after filtering with highly significant BLASTx hits 

against proteins of other ants, suggesting that these conserved sequences were lost in the BR lineage 

instead of being gained in the JP lineage. According to functional annotation, among others these 

contigs code for homologs involved in development (Vitellogenin-like (XP_003689693)) (LI Gilbert 

2012a), cellular trafficking (Sorting nexin-25 (EGI65030)) (Worby and Dixon 2002), immune 

response (Protein Toll (EGI66069)) (LI Gilbert 2012a), and neuronal organization  (Peripheral-type 

benzodiazepine receptor-associated protein 1 (EFN68490)) (Galiegue et al. 1999) (Supplementary 

Table S1.8).  

 

Gene composition and regulation of TE islands 

Increased TE activity may incur costs to fitness by disrupting gene function. A two-tailed Gene 

Ontology (GO) enrichment analysis revealed that 59 GO terms associated with conserved processes 

(e.g. cytoskeleton organization, ATP binding, organ morphogenesis) are underrepresented in TE 

islands, while 18 GO terms are enriched (Supplementary Tables S1.9 and S1.10). Four of the 

overrepresented terms relate to olfactory receptors (ORs) (GO:0004984, GO:0005549, GO:0050911, 

GO:0007187) and two terms relate to FAS genes (GO:0005835, GO:0016297). The remaining twelve 

terms most likely relate to TE derived genes. 

Gene body CpG depletion as a result of increased CpG to TpG conversion due to cytosine methylation 

is a measure for germline methylation (i.e. epigenetic regulation) in past generations. In TE island 

genes, the exon-wide median observed/expected (o/e) CpG ratio is significantly lower than in other 

genes (t-test, TE island genes: 1.05, LDR genes: 1.20, p< 1e-16). However, both sets of genes show 
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strikingly different correlations of expression and o/e CpG values (Figure 2.6f). For LDR genes, 

o/e CpG values are high in moderately expressed genes and low in highly expressed genes. In contrast, 

in TE islands, weakly to moderately expressed genes contain less CpG dinucleotides, while highly 

expressed genes have higher o/e CpG values. To furthermore identify traces of differential regulation 

of TE islands, we compared exon o/e CpG values between the lineages by calculating BR/JP ratios for 

each exon’s o/e CpG values and found higher variance in BR/JP ratios in TE islands than in LDRs 

(Figure 2.6g, F-test, F= 0.136, p< 2e-16, ratio of variances= 0.136, Bonferroni corrected). 

Finally, to assess whether gene expression levels differed between LDRs and TE islands we generated 

~14 Gb and ~17 Gb transcriptomic RNAseq data of seven queens and seven queen-destined larvae 

(3rd larval stage), respectively, from the BR lineage. We estimated mean normalized expression values 

for each gene using DESeq2 (bioconductor.org/packages/release/bioc/html/DESeq2.html), revealing 

that expression in TE islands was much lower than in LDRs (median expression of all  

LDR genes= 25.45; in TE islands: 0.49; U-test, W= 14,461,310, p< 2e-16). While larvae and adult 

queens did not differ in the expression of LDR genes (median expression in queens= 21.16; in larvae= 

23.72; U-test, W= 133,301,709, p= 0.221), TE island genes were more expressed in adult queens 

(median expression in queens= 0.84; in larvae= 0; W= 1,031,038, p< 2e-16) (Figure 2.7, see 

Supplementary Figure S1.6 for details on differential expression between queen and larvae).  

 

 

Figure 2.7: Mean normalized expression in 3rd instar queen larvae and mated adult queens for all Cobs1.4 
genes. Small triangles indicate genes with no expression in queens (plotted below the x axis) or larvae 
(plotted left to the y axis). Ninety-five TE island genes and 1,382 LDR genes were not expressed at all 
(orange= TE island genes; blue= LDR genes). 
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2.3 Discussion 

Cardiocondyla obscurior is a textbook example for successful biological invasion. Its small size 

allows for interspecific avoidance, it can rapidly establish colonies in disturbed habitats, and multiple 

generations per year allow for fast adaptation. While variation in CHCs and body size between the 

populations point to adaptations to different environments, higher queen number in the JP lineage is 

likely correlated with reduced intra-specific aggression.  

The small genome of C. obscurior differs markedly from the other analysed ant genomes in TE 

distribution and overabundance of several Class I subclasses. Importantly, the genome contains low 

frequencies of TEs in LDRs but well-defined islands with high densities of TEs. In these islands, TEs 

are on average longer than in LDRs, suggesting overall higher TE activity (Kaminker et al. 2002). 

Differences in mutation rates and sequence divergence between LDRs and TE islands reveal distinct 

evolutionary dynamics acting within the C. obscurior genome. Moreover, in TE islands, key genes are 

removed and the majority of genes are less expressed in larvae than adult queens. The non-random 

distribution of TEs suggests that intra-genomic differences in selection efficiency against TEs may 

have further supported the formation of such locally confined TE accumulations.  

Inbreeding can facilitate the accumulation of TEs (D Charlesworth and Wright 2001) and repeated 

exposure to stress induced by novel environmental conditions can further amplify TE proliferation 

(Capy et al. 2000). Small Ne is expected to increase the effects of genetic drift and in turn reduce 

selection efficiency against mildly deleterious mutations (Lynch 2007). Under such conditions, local 

accumulations of TEs might have formed in genomic regions under relaxed selection. Similarly, a 

reduction in Ne in inbred Drosophila leads to a shift in the equilibrium between TE proliferation and 

purifying selection against TEs, thus allowing TEs to accumulate (Nuzhdin et al. 1997). 

How can we explain extensive proliferation and diversification of TEs within islands, but purifying 

selection against TEs in LDRs? Coalescent effective population size of a genomic region is positively 

correlated with its recombination frequency and thus the local efficiency of selection and mutation rate 

(Casacuberta and González 2013). The initial foundation of TE islands could hence be facilitated in 

genomic regions with low recombination frequency, providing a refugium of relaxed selection for TE 

insertions. Indeed, elevated rates of non-synonymous substitutions suggest relaxed selection on 

TE island genes. Increased frequency of DNA repair processes as a consequence of higher DNA 

transposition frequencies in TE islands should lead to more errors in DNA replication and double 

strand break repair (Shee et al. 2012) in comparison to LDRs. Large-scale mutations on the other 

hand, such as exon or gene duplications/deletions or gene shuffling, can directly be introduced during 

TE transposition (Fedoroff 2012). TE islands may frequently produce genetic novelty and eventually, 

by chance but despite high stochastic drift, adaptive phenotypes, corroborating the view of TEs as 

genetic innovators.  
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The list of genes affected by duplications or deletions contains a number of candidates that might be 

key to the divergence of the lineages. For example, differences in homologs to genes involved in 

larval development (e.g. Mrjp1) might explain body-size differences. Two other candidates, 

Cobs_00487 and Cobs_17834, show homology to genes that are involved in pesticide resistance 

against Chlorpyrifos and Imidacloprid (nAChR!6) and Deltamethrin (Cyp4c) in different invertebrate 

species (Bergé et al. 1998; T Slotkin and Seidler 2009; Casida and Durkin 2013; Xu et al. 2013). 

Imidacloprid treatment of gall wasp infested Erythrina variegate coral trees of the Japan habitat 

occurred at least once the year prior to collection of the colonies in 2010 (pers. comm. S. Mikheyev). 

In the Brazil habitat Chlorpyrifos, Deltamethrin, and the organophosphate Monocrotophos have 

routinely been used over the last 10 years (pers. comm. J.H.C. Delabie).  

Furthermore, several within-island genes involved in the production (FAS, Blomquist et al. 1987) and 

perception (ORs) of chemical cues contained deletions or duplications in one of the lineages. These 

results suggest that variation in FAS genes may be responsible for diverging CHC profiles in 

C. obscurior (Foley et al. 2006) while variation in OR genes affects olfactory perception. 

Chemosensory neurons express highly sensitive ORs (Vosshall et al. 2000), which are particularly 

diverse (Zhou et al. 2012) and under strong selection in ants (Kulmuni et al. 2013). Gene loss and 

duplication in the OR gene family has been significantly frequent (Guo and J Kim 2007) and 

differences are assumed to be shaped by adaptive processes in response to a species’ ecological niche 

(CA Hill et al. 2002; Bohbot et al. 2007). Intriguingly, the diversification of OR genes is thought to be 

largely caused by gene duplications and interchromosomal transposition (Conceição and Aguade 

2008), two mechanisms known to be by-products of TE activity. While the distinct patterns of kin 

recognition and aggressive behaviour in the two lineages of C. obscurior may in part be explained by 

TE-mediated variation in these genes, they also suggest lineage-specific dynamics of the interaction of 

phenotype and genome evolution. Reduced aggression between colonies in the JP lineage should 

promote gene flow by exchange of reproductives and thus increase Ne, heterozygosity, and the 

efficiency of sexual recombination, facilitating the spread of novel arising genotypes. Our findings 

contrast the view of reduced aggression between colonies of invasive ants (Tsutsui et al. 2003), but so 

far it is unclear whether lineage specific differences are caused by variation in perception or 

downstream neuronal processes. 

Mechanisms controlling TEs are as old as prokaryotes (Fedoroff 2013) and in fact most TEs are 

epigenetically silenced (Feschotte 2008; Fedoroff 2012), through either methylation, histone 

modifications (Rebollo et al. 2012), or RNAi (Buchon and Vaury 2006). Even though many genes in 

TE islands are expressed, the overall expression is significantly lower than in LDRs. In line with 

previous correlations on methylation and expression in eusocial insects (Bonasio et al. 2012; BG Hunt, 

Glastad, et al. 2013a), o/e CpG ratios in C. obscurior LDR genes are negatively correlated with 

expression. However, TE island genes do not follow this trend, in that they are weakly expressed 
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while having low o/e CpG rates. Proximity to TEs can positively affect gene body methylation 

(Veluchamy et al. 2013), which could explain stronger methylation of TE island genes and thus CpG 

depletion. Also, relaxed selection in island genes should in general increase fixation frequency of base 

mutations, including CpG to TpG conversions thus depleting CpG content. Gene expression 

differences in TE island genes between larvae and adult queens suggest stronger regulation of these 

potentially disruptive genes during the sensitive developmental phase. Finally, key regulatory genes 

are underrepresented in TE islands. These gene set differences between TE islands and LDRs can 

either be explained by selection processes, removing vital genes from linkage to TE islands or, by 

selective restriction of TE accumulations to genomic regions devoid of such genes. 

The current understanding of TE activity dynamics in genomes is that periods of relative dormancy are 

followed by bursts of activity, often induced by biotic and abiotic stress, such as exposure to novel 

habitats. Frequent TE transposition during bursts leads to genomic rearrangements, thus producing 

new genetic variants and eventually even promoting speciation (Hurst and Werren 2001; Bailey et al. 

2003; Ungerer et al. 2006; de Boer et al. 2007). TE dynamics can also be strongly affected by mating 

system (D Charlesworth and B Charlesworth 1995; D Charlesworth and Wright 2001; Wright et al. 

2008; Boutin et al. 2011), and the life history of C. obscurior likely challenges the genomic integrity 

resulting in genomic regions with over 50 % TE content. In conclusion, TE dynamics in C. obscurior 

seem to have shifted from a serial to a parallel mode, where a fraction of the genome is reshaped 

repeatedly in a continuous burst of TE activity. Strikingly, the inbred parasitoid wasp N. vitripennis 

has similar TE frequency patterns suggesting that similar life history strategies and their consequences 

on Ne and drift can lead to convergent genomic organization. TEs represent a major force in evolution, 

contributing to the generation of genetic variation especially in species confronted with hurdles like 

inbreeding or repeated bottlenecks. They furthermore seem to play an important role in the rapid 

adaption of invasive species to novel environments, making it particularly crucial to understand their 

origin, function, and regulation. 
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2.4 Material and Methods 

Methods and any associated references are available in the Supplementary Material. All animal 

treatment guidelines applicable to ants under international and German law have been followed. 

Collecting the colonies that form the basis of the laboratory population used in this study was 

permitted by the Brazilian Ministry of Science and Technology (RMX 004/02). No other permits were 

required for this study. 

 

Data access 

Sequencing data from this study have been deposited in a NCBI bioproject 

(ncbi.nlm.nih.gov/bioproject/) under accession number 237579. 
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Abstract 

Developmental plasticity allows for the remarkable morphological specialization of individuals into 

castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste 

fates are typically determined by specific environmental stimuli that induce larvae to express and 

maintain distinct gene expression patterns. While most eusocial species express two castes, queens and 

workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a 

unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in 

ants. We sequenced and analysed the transcriptomes of 28 individual C. obscurior larvae of known 

developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect 

larvae. Clustering and transcription factor binding site analyses revealed that different transcription 

factors and functionally distinct sets of genes are recruited during larval development to induce the 

four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to 

sphingolipid metabolism, a conserved molecular pathway involved in development, obesity and aging.  
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3.1 Introduction 

Developmental plasticity is a core biological phenomenon through which a genotype can produce a 

variety of phenotypes in response to different environmental cues (West-Eberhard 2003; SF Gilbert 

and Epel 2009). This responsiveness requires a sensitivity to (external) environmental input and 

affects most, if not all, complex developmental processes (SF Gilbert 2005). Furthermore, in a 

fluctuating environment, developmental plasticity can induce phenotypic variation of different 

magnitude that can be either non-adaptive (e.g. teratogenesis, Hamdoun and Epel 2007) or adaptive 

(e.g. predator-induced defences in Daphnia (Boersma et al. 1998)) (West-Eberhard 1989; DeWitt et al. 

1998; SF Gilbert 2001; Ghalambor et al. 2007; Beldade et al. 2011). One specific form of 

developmental plasticity called polyphenism (or environmentally induced polymorphism) allows for 

the generation of two or more distinct phenotypes and underlies the evolutionary success of eusocial 

insects (ants, bees, wasps, termites). Eusocial insect colonies are founded on the principle of division 

of labour (Hölldobler and Wilson 1990), where morphologically and behaviourally specialized 

individuals are produced from the same genotype due to gene by environment interactions. In this 

way, the ontogeny of a superorganism (i.e. a eusocial insect colony) parallels the differentiation of 

cells or organs in a multicellular organism (Bourke 2011). Such polyphenism is a prime example of 

the flexibility of an organism’s genetic makeup (Schlichting and Pigliucci 1998; West-Eberhard 

2003).  

The stable differentiation of individual eusocial insect larvae into distinct adult castes is known to be 

affected by external stimuli (e.g. temperature, pheromones, nutrition, and tactile interactions 

(Hölldobler and Wilson 2009; Penick and Liebig 2012)), but we are only beginning to understand how 

such stimuli are transduced into neuronal, endocrine and metabolic signals that ultimately regulate 

gene expression to control caste fate. This molecular cascade is best resolved for the honeybee 

Apis mellifera, where development of the queen caste is induced by feeding larvae with “royal jelly”, a 

special glandular secretion produced by worker bees. Components of this secretion, including 

Royalactin, Major Royal Jelly proteins, and a fatty acid Histone Deacetylase inhibitor, likely activate 

epidermal growth factor receptor (EGFR) signalling in the larval fat body (Kamakura 2011), which in 

turn activates downstream pathways that directly or indirectly affect developmental trajectories 

(e.g. Insulin-like signalling, PI3K/TOR/S6K, Ras/Raf/MAPK (Patel et al. 2007; Wolschin et al. 2011; 

Kamakura 2011; Mutti et al. 2011; Badisco et al. 2013)). Experimental gene knock-downs, as well as 

comparative transcriptome and methylome studies, performed mostly in honeybees, have revealed 

extensive caste-dependent changes in gene expression and epigenetic regulation (Kucharski et al. 

2008; Elango et al. 2009; Bonasio et al. 2012; Shi et al. 2012; Simola, Ye, et al. 2013b) for a wide 

range of genes, e.g. hexamerins (Hoffman and Goodisman 2007; JH Hunt et al. 2007; Cameron et al. 

2013), cytochrome P450s, spliceosomal genes (Cameron et al. 2013), the hypoxia pathway (Azevedo 
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et al. 2011), and several other metabolic and developmental genes (Evans and D E Wheeler 2001; 

Barchuk et al. 2007; Hoffman and Goodisman 2007; J Li et al. 2010; Begna et al. 2011).  

The mechanisms regulating caste polyphenism in the evolutionarily independent lineage of ants are 

expected to be more sophisticated, owing to generally greater diphenism between queens and workers 

and the presence of extensive worker subcaste differentiation or queen polyphenism in some species 

(Hölldobler and Wilson 1990; Ruppell and Heinze 1999; Johnson and Linksvayer 2010). Furthermore, 

caste diphenism may be accompanied by striking morphological variation among males (Kugler 1983; 

Yamauchi et al. 1991; Heinze and Hölldobler 1993; Oettler et al. 2010).  

Though transcriptomes (Feldmeyer et al. 2013), methylomes (Bonasio et al. 2010; 2012), and 

chromatin structure (Simola, Ye, et al. 2013b) have been compared among different adult castes of 

ants, detailed studies about the molecular regulation of gene expression during larval ontogeny have 

not yet been conducted. This is partly due to an inherent difficulty in most ant species, as an 

individual’s caste-fate remains elusive until a late larval instar or the pupal stage. Yet, it is 

hypothesized that many of the key differences between adult castes emerge during larval development. 

Therefore, characterizing genes that are involved in this initial phase of caste divergence will help to 

unravel the ontogenetic and evolutionary underpinnings of caste determination and differentiation in 

eusocial insects. 

Here we used Cardiocondyla obscurior, a minute myrmicine ant, as a model to study genome-wide 

gene expression variation among larvae of known caste fate within a replicated experimental design 

based on individual whole larval samples. Colonies of C. obscurior can be reared easily in the 

laboratory, and in this controlled setting we are able to induce larval development along the desired 

caste-fate trajectory in a reproducible manner. 

Furthermore, C. obscurior offers a particularly promising system to unravel the mechanisms 

underlying developmental plasticity in both female and male sexes. In addition to female queens (QU) 

and workers (WO), C. obscurior colonies regularly express wingless males (ergatoid (literally 

“workerlike”) males, EM) and occasionally also winged disperser males under laboratory conditions 

(WM) (Figure 3.1, Table 3.1) (Heinze and Hölldobler 1993; Cremer and Heinze 2003; Schrempf and 

Heinze 2006; Cremer et al. 2010). The phenotypes of these two male forms differ substantially in 

many aspects (Table 3.1). Winged males resemble typical males of other ant species in morphology, 

physiology and behaviour, whereas ergatoid males have smaller eyes, a slender thorax, smaller brains, 

an unusually long life span and – unique for males of social Hymenoptera – a life-long 

spermatogenesis (Kugler 1983; Heinze and Hölldobler 1993). EMs also feature enlarged,  

sickle-shaped mandibles that are deployed in lethal fights with rival males over reproductive rights 

(Stuart et al. 1987; Kinomura and Yamauchi 1987).  



37 

 

Figure 3.1: Phenotypes of Cardiocondyla obscurior. Fertilized, diploid eggs develop either into a) queens 
(QU) or b) workers (WO), while unfertilized eggs remain haploid and develop into males of either the c) 
winged (WM) or d) wingless, ergatoid phenotype (EM). e) Development of a C. obscurior worker larva 
from egg to pupa. The red box indicates the approximate sampling period for RNAseq experiments. 

 

Table 3.1: General features of the four different adult phenotypes expressed in Cardiocondyla obscurior. QU= 
Queen, WO= Workers WM= Winged male, EM= Ergatoid male. 

 QU WO WM EM 
Sex female female male male 

Winged yes no yes no 
Average life span (weeks) 24 8 2 6 

Average size (mm) ~2 ~1.7 ~2.1 ~1.7 
Fertility high sterile low high1 

Individuals per colony 5 28 02 1 
Number of ocelli 3 0 3 0 

Antennae elbowed, long 
scape 

elbowed, long 
scape short scape elbowed, long 

scape 
Gaster pigmentation dark dark dark light 

Eye size medium medium large small 
Mandible type normal normal reduced enlarged 

1: Life long spermatogenesis 
2: Winged males are only produced under lab conditions 
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To deepen our understanding of the mechanisms underlying polyphenism in ants, we characterized the 

developmental transcriptomes of C. obscurior larvae by high throughput mRNA sequencing 

(RNAseq) using seven early third instar larvae from each of four known developmental trajectories 

(caste fate), rendering this study the first analysis of genome-wide gene expression differences of 

individual ant larvae. By analysing gene expression patterns based on caste fate, we identified the 

genes that are putatively functional during the early stages of caste divergence.  

 

Transcriptional regulation of gene expression is achieved through many factors, including 

transcription factors (TFs), DNA methylation, histone post-translational modifications and histone 

variants, and noncoding RNAs. Among these factors, TFs are perhaps the most well studied and are 

established regulators of development and phenotypic plasticity in eukaryotes (Carroll 2000; SF 

Gilbert and Epel 2009; Latchman 2010). By binding to canonical and often evolutionarily conserved 

binding sites (TFBSs) typically located in intergenic sequence proximal to genes (promoters) and in 

tandem groups of TFBSs distal to genes (enhancers), TFs can coordinately regulate transcription for 

groups of target genes, thereby driving specific developmental pathways. It was previously shown that 

there are significant evolutionary changes in the genome-wide TFBS landscape between solitary and 

eusocial insect genomes, suggesting that the regulation of gene transcription by TFs is a major 

mechanism facilitating caste differentiation in eusocial insects (Simola, Wissler, et al. 2013a). In 

support of this, we found enrichment of different TFBSs in promotor regions of genes exhibiting 

differential expression by caste fate, thereby relating specific TFs to early developmental divergence 

of ant castes.  

Sphingolipids are versatile structural compounds of cell membranes and have gained increasing 

interest in cancer research and developmental biology for their activity as second messengers affecting 

highly conserved molecular pathways, thus regulating cell growth, proliferation, differentiation, and 

apoptosis (Spiegel and Merrill 1996; Adachi-Yamada et al. 1999; Lebman and Spiegel 2008; Gault et 

al. 2010; Hamel et al. 2010; Kraut 2011; Zhu et al. 2013; Pepperl et al. 2013; Sasamura et al. 2013). 

Intriguingly, the sphingolipid metabolism is tightly interwoven with several pathways implicated in 

caste differentiation (TOR (Zhu et al. 2013), Wnt (Pepperl et al. 2013), Notch/EGF (Baker and 

Thummel 2007) and is also involved in the regulation of CytP450 expression (Merrill et al. 1999) and 

JH metabolism (Q Yang et al. 2010). These interactions led us to analyse expression patterns for genes 

involved in sphingolipid metabolism. We found differential regulation in all expressed key genes 

(Walls et al. 2013), indicating that developmental plasticity in ants is in part regulated by changes in 

sphingolipid homeostasis.  

Together, our findings confirm that significant gene expression differences emerge early in larval 

development, priming larvae for the vast morphological reorganization during metamorphosis as 

pupae. Furthermore, such changes likely are controlled by a specific set of TFs and prominent in 
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developmental toolkit genes (e.g. Wnt, EGFR, Notch), metabolic pathways (e.g. sphingolipids, 

oxidative phosphorylation), and cell-cycle processes (e.g. ribosomal and proteasomal proteins).  
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3.2 Results 

To assess gene expression differences at an early stage of caste fate divergence, we performed high 

throughput sequencing of mRNA complements (RNAseq) from 28 individual and morphologically 

indistinguishable early third instar larvae, sampled shortly after their commitment to each of the four 

mature phenotypes (Figure 3.1e) (Schrempf and Heinze 2006). By sequencing seven independent 

biological replicates per treatment, our experimental design explicitly incorporates inter-individual 

biological variation (Auer and Doerge 2010) (Figure 3.2a-c), which increases the sensitivity and 

specificity of our analyses (Y Liu et al. 2014b).   

 

 

Figure 3.2: a) Distribution of raw read coverage per gene. The red dashed line indicates mean read count 
per gene. b) Gene-wise mean-variance relationship suggesting high levels of biological variation between 
samples (Law et al. 2014). c) Multi dimensional scaling (MDS) plot for the top 500 most variable genes. 
d) Mean Euclidean distances (±SE) of MDS-scaled samples between all samples (overall) and within 
each caste fate.  

 

 

Differential gene expression and Gene set enrichment analyses  

The current official gene set of C. obscurior includes annotations for 17,552 protein-coding genes 

(Schrader et al. 2014). In our larval RNAseq data 10,012 of these genes (57 %) were expressed with a 

mean raw coverage of 9058.43 reads per gene (Figure 3.2a) and high-level biological variation as 

suggested by the mean-variance relationship (Figure 3.2b, Law et al. 2014). To assess whether 

transcriptome samples cluster according to their developmental trajectory, we performed a multi-

dimensional scaling (MDS) analysis with limma (Law et al. 2014) of the 500 most variable genes 

across all samples (Figure 3.2c) and calculated mean Euclidean distances between MDS-scaled data 

points (Figure 3.2d). This calculation of distance is conservative, as it relies on a lower dimensional 

projection of the data that does not account for the total variance. Compared to mean distances 

between pairs of all 28 samples, distances between EM and QU samples, respectively, did not differ 

significantly (t-tests, EM: df= 22.2, p= 0.67, QU: df= 22.58, p= 0.23). However, among WM and WO 
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samples, respectively, distances were significantly smaller (t-test, WM: df= 22.95, p= 0.01, WO: df= 

36.18, p< 0.0001). In addition, we found strong overlap between groups in the MDS analysis, in 

particular for QU and EM.  

 

Figure 3.3: a) Number of differentially expressed genes for the six possible pairwise comparisons at 
different FDR cut-offs. b) Summary of differential gene expression calls with six pairwise comparisons at 
an FDR of 0.05, NE= not expressed, NS= no significant difference in expression, 1-6: Number of genes 
with significant expression differences in 1 to 6 pairwise comparisons. c) MA plots showing the mean 
expression across all 28 samples on the x-axis and the log-fold change for one over three other groups. 
QU= queen, WO= worker, EM= ergatoid male, WM= winged male. Each dot represents one expressed 
gene, red dots show genes included in the compiled gene sets. Density plots show frequency distribution 
of all genes (blue) and of genes in the set genes (red) d) Venn diagrams comparing phenotype-specific 
expression differences in winged males (WM), ergatoid males (EM), queens (QU), and workers (WO). 
Each Venn diagram shows the number of genes with significantly higher (upper numbers) or lower 
expression (lower numbers) at an FDR < 0.05 in one, two or three pairwise comparisons per caste fate. 
For each caste fate, sets of genes differentially expressed in all three pairwise comparisons (i.e. the central 
intersection) were used for enrichment analyses. 

 

Using a false discovery rate (FDR) of 0.05 (Figure 3.3a), 5,172 genes showed differential expression 

in at least one of the six pairwise comparisons (EM/QU, EM/WO, EM/WM, QU/WO, QU/WM, 

WO/WM, Figure 3.3b). Since we were interested in phenotype-specific gene expression profiles, we 

retrieved the subsets of differentially expressed genes (at FDR < 0.05) that showed consistent changes 

in one group compared to the three others (Figure 3.3c, Supplementary Tables S2.1-S2.4), e.g. 311 
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genes showed significantly higher and 217 genes showed significantly lower expression in QU in each 

of the three pairwise comparisons with WO, EM and WM (Figure 3.3d). 

In the different gene sets, we assigned Drosophila orthologs to 69.70 %  (QU), 74.24 % (WO), 62.46 

% (EM) and 53.79 % (WM) of the genes using a reciprocal best alignment approach. When orthology 

was not resolved clearly, we assigned the closest homolog (BLASTp e-value < 1e-10). We then 

performed functional enrichment analyses using Gene Ontology (GO) terms (see Supplementary 

Material) and DAVID’s Functional Annotation Clustering (v6.7), which combines enrichment scores 

from different resources (e.g. GO terms, protein-protein interactions, homologies) based on common 

biological themes. DAVID analysis returned 25 distinct Annotation Clusters on the 152 EM-specific 

genes and fewer clusters for the other gene sets (QU 12 (199 genes), WO 5 (53), WM 0 (0)) (Table 

3.2). In QU, most clusters are associated with cell-cycle processes (e.g. mitosis, DNA replication, 

nucleosome organization, Table 3.2a). Furthermore, we found clusters associated with transcript 

splicing and diacylglycerol kinase activity. The functionally clustered gene set in QU contains twelve 

stronger expressed RpS, 14 RpL (13 overexpressed), and four mitochondrial ribosomal protein genes, 

which are significantly downregulated in QU. Furthermore, seven different histone genes (four H2A, 

one H1/H5, one H2b, and one H3) and the proteasome subunits "3, -6, -7 as well as #2, -4, -6 and -7 

are expressed to a significantly lower level in the QU gene set (Supplementary Table S2.1). As histone 

occupancy generally inhibits transcription factor binding to DNA (Boyle et al. 2008; J Wang et al. 

2012; Neph et al. 2012), these results are consistent with a model of caste differentiation in which 

queen destined larvae increase chromatin accessibility to increase gene expression and cell 

proliferation.  

 

Table 3.2a: Functional enrichment of genes significantly differentially expressed in queens (QU) (annotations by 
DAVID, AC= Annotation Cluster, ES= -log(penrichment)). 

Cluster ES Description 
AC 1 14.85 Mitosis 1 
AC 2 10.29 Mitosis 2 
AC 3 6.20 DNA replication 
AC 4 3.95 Protein-DNA interaction 
AC 5 3.76 Nucleotide binding 
AC 6 3.65 Proteasome 
AC 7 3.38 Mitosis 3 
AC 8 3.15 Nucleosome organization 
AC 9 2.83 Pre-replicative complex 

AC 10 2.71 Spindle organization 
AC 11 2.71 Splicing 
AC 12 2.56 Kinase activity 
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Table 3.2b: Functional enrichment of genes significantly differentially expressed in workers (WO) (annotations 
by DAVID, AC= Annotation Cluster, ES= -log(penrichment)). 

Cluster ES Description 
AC 1 11.34 Oxidative phosphorylation 
AC 2 6.69 Energy generation 
AC 3 4.01 ATP metabolism 
AC 4 2.86 Oxidoreductase activity 
AC 5 2.46 Valine, leucine and isoleucine degradation 

 

Table 3.2c: Functional enrichment of genes significantly differentially expressed in ergatoid males (EM) 
(annotations by DAVID, AC= Annotation Cluster, ES= -log(penrichment)). 

Cluster ES Description 
AC 1 11.70 Neurogenesis 
AC 2 10.12 Organogenesis 
AC 3 8.51 Cellular morphogenesis 
AC 4 7.47 Respiratory system development 
AC 5 6.61 Transcription factor activity 
AC 6 5.83 Imaginal disc differentiation 
AC 7 5.54 Exocrine System development 
AC 8 5.46 Limb & Wing morphogenesis 
AC 9 5.06 Organismal development & organogenesis 

AC 10 4.87 Axon guidance 
AC 11 4.68 Wnt pathway 
AC 12 4.67 Eye morphogenesis 
AC 13 4.64 Cell adhesion involved in morphogenesis 
AC 14 4.47 Homeobox 
AC 15 4.00 Cell-cell junction 
AC 16 3.80 EGF signalling 
AC 17 3.60 Gliogenesis 
AC 18 3.28 Compound eye pigmentation 
AC 19 3.02 Genitalia development 
AC 20 2.92 Vesicle formation 
AC 21 2.84 Immunoglobulin-like proteins 
AC 22 2.64 Frizzled 
AC 23 2.52 Metal ion binding 
AC 24 2.42 Gene expression 
AC 25 2.19 Apoptosis 

 

In WO, each of the five Annotation Clusters is associated with energy generation in mitochondria 

(e.g. oxidative phosphorylation, ATP metabolism, or valine, leucine and isoleucine degradation, Table 

3.2b). We found stronger expression of five mRp genes (L20, L21, L32, S14, S28) and three 

proteasome genes ("6, #3, #7). In addition, four different Cytochrome oxidase C subunits (IV, Vb, 

VIb, VIIc) were expressed significantly higher in WO (Supplementary Table S2.2).  
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Many of the 20 functional clusters in EM are associated with basic development (e.g. neurogenesis, 

imaginal disc development, exocrine system development, Table 3.2c). In addition, we found clusters 

indicating substantial changes in core molecular pathways (e.g. Wnt, EGFR) (Hurlbut et al. 2007). For 

example, six of eight annotated Wnt homologs (wg, Wnt10, 3 homologs of Wnt2, Wnt5, and a homolog 

of Wnt6) in the C. obscurior genome are significantly overexpressed in EM. In addition, orthologs of 

the Wnt receptors fz2 and fz4, the co-receptor arr, and associated genes like stan, arm, nkd, and four 

different Cadherins (ft, Cad87A, Cad74A, and a homolog to Cad96Ca) are upregulated. Apart from 

Wnt pathway genes, we found differential regulation in various genes involved in Notch  (N, Dl, H, 

Ser, shg, heph) or EGFR signalling (Egfr, Hh, Ptc) and also in three Toll-receptor homologs (Toll-6 

and two Tollo homologs). In addition, differential expression in EM was abundant in transcription 

factors, e.g. abd-b, castor, twist, Sp1, vielfältig, jumeau, jim, and homeobox genes (e.g. dll, en, smo) 

(see Supplementary Table S2.3).  

There were no significant Annotation Clusters for WM. However, some individual candidate genes 

might be of particular interest in the WM specific gene set. For instance a homolog to Edem1, a gene 

coding for an alpha-mannosidase affecting life span in D. melanogaster and Caenorhabditis elegans 

(Y-L Liu et al. 2009), is strongly downregulated in WM. In addition, we found differential expression 

in well-characterized developmental genes such as headcase, visgun, eyegone, as well as homologs to 

engrailed, prospero, AGO3, and capricious (Supplementary Table S2.4). 

Together, the enrichment analyses revealed strong functional differences between the gene sets, 

suggesting that development of the discrete phenotypes is regulated by distinct developmental 

programs in cell division (QU), energy generation (WO), and developmental toolkit genes (EM).  

 

Transcription factor binding site enrichment 

As TFs function as important regulators of developmental plasticity, we tested whether gene 

expression may be regulated by distinct sets of TFs for each caste fate (Figure 3.4). Significant 

binding sites (TFBSs) for 59 factors were predicted by scanning 2 kb promoter sequences using 

available position weight matrix models. Caste-biased gene sets were subsequently analysed for 

enrichment of each TFBS model individually using two measures (enrichment probability pE and 

presence probability pP). In the QU gene set, 13 TFBSs were either significantly enriched (pP< 0.01, 

Bonferroni corrected) or overrepresented (pP< 0.01, Bonferroni corrected), with five TFBSs being 

significant for both measures. Of eight significant TFBSs in the WO gene set, six were significant in 

both tests. The highest number of significantly enriched TFBSs was found in EM, with 19 TFBSs 

being significantly enriched (pE < 0.01, Bonferroni corrected) or overrepresented (pP< 0.01, 

Bonferroni corrected). Of these, ten TFBSs were significant in both tests. In contrast, we did not find 
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any TFBSs to be significantly overrepresented in the WM gene set and only one TFBS (OVO) was 

significantly enriched (pE < 0.01, Bonferroni corrected).  
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Figure 3.4: Transcription factor binding site 
enrichment for caste specific gene sets. The heat 
map shows the proportion of genes in the 
different gene sets that have at least one of the 
respective TFBSs in their promoter sequence. 
Numbers for significantly 
enriched/overrepresented TFBSs give the 
percentage of genes having the respective TFBS 
in their promotor. Asterisks indicate whether we 
found significant enrichment (pE<0.01, asterisk at 
first position), overrepresentation (pP<0.01, 
asterisk at second position), or both (two 
asterisks). 
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Sphingolipids  

Based on previous evidence suggesting that sphingolipid metabolism regulates pathways involved in 

caste differentiation, we analysed expression of sphingomyelin cycle genes in our dataset. 

Interestingly, we found significant expression differences in all eight key genes (Walls et al. 2013) 

involved in the metabolic cycle (Figure 3.5, Supplementary Table S2.5). Lace, which codes for a 

serine-palmitoyltransferase responsible for de novo synthesis of sphingolipids, was weaker expressed 

in WO. Following the formation of dihydrosphingosine, the dihydroceramide synthase schlank 

(significant differences in expression: WM>WO, WM>QU, WM>EM, QU>WO) and the sphingosine 

desaturase infertile crescent (ifc) (QU>EM) catalyse the production of the bioactive lipid ceramide. 

The conversion of ceramide to sphingosine involves different ceramidases coded by brain washing 

(bwa, with two homologs in C. obscurior. Bwa1: not expressed, bwa2: QU>WM), and ceramidase 

(CDase), which has two homologs in C. obscurior of which both show stronger expression in QU 

(CDase1: QU>EM, QU>WM and CDase2: QU>EM, QU>WM, QU>WO). Sphingosine is then 

converted to sphingosine-1-phosphate (S-1P) through the activity of a kinase coded by Sk2 (QU>EM, 

QU>WM, QU>WO). The membrane-bound S1P-lyase Sply, which is down regulated in EM, converts 

S-1P to an aldehyde and phosphoethanolamine, thus removing S-1P irreversibly from the cycle.  

In addition to the eight key genes of the sphingomyelin cycle, we also analysed expression of 

downstream genes affected by cellular sphingolipid levels. For example, we found differences in 

slipper (QU>WO), hemipterous (QU>WO, QU>WM) and basket (EM>WO, WM>WO), three genes 

that form a ceramide-sensitive MAP k3 $ JNK pathway involved in stress response and apoptosis in 

Drosophila (Kraut 2011). 
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Figure 3.5: Schematic representation of the sphingomyelin cycle (central box) and its involvement with 
other developmental pathways and mechanisms (left and right boxes). (a) The central metabolism in 
sphingolipid biosynthesis (Walls et al. 2013) with the involved genes (left of arrows) and metabolic 
products (between arrows) (b) Differential expression of key genes of the sphingomyelin cycle. The heat 
map shows significant (FDR < 0.05) positive (dark blue) or negative (light blue) log fold changes for 
each of the six pairwise comparisons in sphingomyelin cycle and downstream genes (basket (bsk), 
hemipterous (hep), slipper (slpr)). CDase2 and bwa2 are homologs to the Drosophila CDase and bwa 
genes, respectively. NH: no homolog identified in C. obscurior. NE: not expressed. NS: no significant 
difference. 
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3.3 Discussion 

The pronounced differences between queen and worker castes make ants and other social insects 

compelling models to study the regulation of developmental plasticity. However, genetic and 

molecular studies focusing on the divergence during larval and pupal development are still rare 

(Abouheif and Wray 2002; Ometto et al. 2011; X Chen et al. 2012; Berens et al. 2015). Studies on 

queen determination in different ant species have revealed differences in developmental switch points 

in caste differentiation during larval development, suggesting that the extent of queen-worker-

diphenism correlates with the timing of developmental divergence (Abouheif and Wray 2002; Penick 

et al. 2012). Furthermore, as shown in A. mellifera, caste determination might be a progressive process 

not controlled by a single fixed time point in development (Cameron et al. 2013). In the polyphenic 

ant C. obscurior, queen/worker and winged/ergatoid male determination has been studied in cross-

fostering experiments and by juvenile hormone analogue application (Schrempf and Heinze 2006; Du 

et al. 2007), indicating that in both males and females, caste fate is determined late in second larval 

instar development. In this study, we characterized gene expression during larval development shortly 

after the mature phenotype has been determined with high likelihood to unravel the genetic framework 

directing specific morphological differentiation into four distinct adult phenotypes. 

 

Gene expression patterns 

The great number of genes found to be differentially expressed in our comparison shows that distinct 

phenotypes adopt largely different gene expression profiles already during larval development, 

preceding morphological differentiation that occurs during metamorphosis. Therefore, the specific 

morphologies of queens, workers, ergatoid males, and winged males likely depend on gene expression 

patterns that are pre-established, as opposed to emerging first during pupation. 

Furthermore, despite the apparent morphological similarities between alate and wingless phenotypes 

between sexes (e.g. female workers and ergatoid males), we did not find consistent overlap in gene 

expression profiles (Figure 3.3d) or TFBS enrichment (Figure 3.5) comparing these phenotypes. 

Assessing whether analogous morphological traits (e.g. winglessness) do in fact emerge by separate 

developmental routes however requires detailed studies on the vestigial imaginal discs of EM and 

WO.  

Though an RNAseq experiment with whole body samples does not allow for a deeper analysis of 

tissue-specific expression profiles, it did allow for the identification of systemic gene expression 

changes. Furthermore, by sampling during early larval development when morphological differences 

have not yet emerged, we are able to minimize allometric bias in cell number or proportion of tissues.  
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Functional enrichment analysis revealed substantial ontogenetic differences between EMs and the 

other three phenotypes, driven by changes in pleiotropic and interconnected signalling networks 

(Notch, EGFR, Wnt, etc.). The general importance of Wnts in development and morphogenesis in 

arthropods is well known (e.g. in CNS, eye, genitalia, imaginal discs, mouthparts (Murat et al. 2010)) 

and it is also likely to be involved in wing loss in ants (Abouheif and Wray 2002; Rajakumar et al. 

2012). The great number of differentially expressed Wnt, Notch, and EGFR pathway genes in EM 

thus indicates that changes in timing and/or orchestration of gene expression in such evolutionarily 

conserved developmental circuits underlie the evolution of the ergatoid male phenotype in 

Cardiocondyla.  

In addition, absence of developmental toolkit pathways in DAVID analyses of the three other gene 

sets suggests that, during the particular period of sampling, basic developmental mechanisms 

experience differential regulation specifically in EMs. This is likely a consequence of strong sexual 

selection on EM specific traits. EMs attack and kill young rivals upon their eclosion, resulting in an 

evolutionary arms race over production of the first male in multi-queen colonies (Yamauchi et al. 

2006; Suefuji et al. 2008). Consequently, selection is predicted to favour the early emergence of EMs; 

accordingly, EMs do exhibit reduced developmental time compared to the other male phenotype 

(Schrempf and Heinze 2006). Thus, phenotype-specific expression profiles in our analysis might 

emerge from alternative developmental rates that are set by upstream changes in developmental 

signalling pathways, e.g. through Notch and Wnt signalling. In support of this, a recent study also 

found DNA methylation differences in Wnt genes between queen- and worker-destined honeybee 

larvae, indicating a prominent role for these networks in plastic development of eusocial insects (Shi 

et al. 2012).  

The prevalence of genes involved in mitosis and nucleosome organization in QU implies specific 

changes in cell cycle and chromatin structure. Many mitosis-related genes are downregulated in QU, 

potentially reflecting a state of arrested cell division. In fact, restrained growth in queen larvae is 

known from honeybees, where queen-destined larvae remain smaller during early differentiation and 

only later outgrow their worker-destined siblings (Stabe 1930). Conversely, the high frequency of 

overexpressed ATP metabolic genes in the WO-specific gene set indicates an increased energy 

requirement in worker larvae during early 3rd instar.  

This is in contrast to studies done in A. mellifera that suggest an increase in energy generation in 

queen-destined larvae (Corona et al. 1999; J Li et al. 2010; Begna et al. 2011; Cameron et al. 2013). 

However, in honeybees, growth rates of queen-destined larvae predominantly increase late in 

development and queens develop faster than workers (Page and Peng 2001). In C. obscurior 

(Schrempf and Heinze 2006) and likely other ants (Bowsher et al. 2007), queens develop at the same 

rate than workers but for a longer period. Thus, caste-specific energy requirements of larvae might not 

be conserved across these two distant taxa.  
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Transcription factor binding sites 

Testing for enrichment of TFBSs in cis-regulatory regions, we again found specific differences 

between QU, WO, EM, and WM. The lack of a single TFBS enriched in all four phenotypes suggests 

that larval development is not controlled by common TFs, but instead that each developmental 

phenotype recruits its own set of TFs to produce the respective gene expression signatures. Yet, we 

found five TFBSs (antennapedia [ANTP], bric a brac 1 [BAB1], fork head [FKH], giant [GT], and 

TATA-binding protein [TBP]) with significant enrichment in both QU and WO, potentially revealing 

TFs specifically recruited to female larval development, e.g., as shown for bab1 in Drosophila (Kopp 

et al. 2000). We did not find a similar overlap between the two male phenotypes, as WMs showed 

only one TFBS (OVO/Shavenbaby, a germline expressed factor shared with queens). How the 

interplay of different TFs directs gene expression and development in each caste remains elusive, in 

particular since significant overabundance of binding sites did not correlate with stronger TF gene 

expression in the respective larvae.  

 

Sphingomyelin cycle 

We discovered significant differences in the expression of most sphingolipid metabolism genes 

comparing all four phenotypes, suggesting a role for the sphingomyelin cycle in caste differentiation. 

In addition, previous studies revealed that mutations in sphingolipid metabolism genes in Drosophila 

and Caenorhabditis produce phenotypes that strikingly resemble differences observed between castes 

in eusocial insects, in particular concerning fecundity and longevity. For example, loss of bwa 

decreases longevity and increases larval developmental time in Drosophila, and pharmacological 

inactivation of Bwa increased Juvenile Hormone acid methyltransferase activity (Q Yang et al. 2010). 

Sterility was observed in ifc deficient Drosophila (Phan et al. 2007). Deletion of sply leads to flight 

muscle degradation and apoptosis in reproductive organs (Herr et al. 2003); similar defects were found 

in Sk2 mutants (Herr et al. 2004).  Schlank- mutant flies show defects in fat storage and larval growth, 

and corresponding mutants in C. elegans (hyl-1; lagr-1, hyl-1, and hyl-2) show significant lifetime 

extension (Tedesco et al. 2008; Menuz et al. 2009; Mosbech et al. 2013).  

Similarly, the four phenotypes of C. obscurior are characterized by considerable differences in 

longevity, fecundity, larval development, and morphology (Table 3.1). The distinct differential 

expression in most key genes in C. obscurior and their established regulatory functions and roles in 

Drosophila development strongly suggest previously unappreciated role for sphingolipids in caste fate 

differentiation in ants. We therefore propose to extend the current model of caste determination and 

differentiation in eusocial insects to include sphingolipids as important mediators of developmental 

plasticity. 
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Conclusion 

Eusocial insect castes illustrate the concept of developmental conversion (Smith-Gill 1983), in that 

plastic responses in development are not continuous reaction norms proportional to the environmental 

stimulus, but threshold dependent discrete phenotypes. Previous studies on caste differentiation and 

developmental plasticity in eusocial insects already showed that evolutionarily conserved 

developmental pathways are involved in this process and that the initial environmental signal is 

transduced to substantially alter gene expression profiles during development. In accordance, our 

comparison of gene expression patterns in early larvae of C. obscurior revealed that a large number of 

genes are differentially expressed between larvae of different caste-fate and that many developmental 

pathways and TFs appear to be involved in caste differentiation. Caste differentiation can be 

considered as active, regulatory plasticity involving versatile developmental and physiological 

changes rather than passive plasticity, a (largely non-adaptive) direct response to environmental 

influences (Schlichting and Pigliucci 1995; 1998; Whitman and Agrawal 2009; Forsman 2014). 

Eusocial insects evolved from monophenic ancestors and the worker-queen diphenism thus likely 

evolved from passive plasticity expressed by the solitary ancestors (JH Hunt and Amdam 2005). This 

transition from putatively non- or even mal-adaptive plasticity to highly adaptive plasticity is expected 

to occur, if the ancestral plasticity produces phenotypes that are close enough to a new phenotypic 

optimum for directional selection to act upon (Ghalambor et al. 2007), allowing for the evolution of a 

stable queen-worker diphenism as we see it today. In Cardiocondyla, a similar mechanism might have 

also enabled the evolution of male diphenism, in that the extant male phenotypes evolved from a 

single, merely passively plastic winged male phenotype (Tsuji et al. 1994). Intriguingly, the extent of 

male phenotypic plasticity is highly variable in the genus Cardiocondyla, with several species 

producing ergatoid males exclusively, others producing both morphs (Oettler et al. 2010), and some 

species additionally producing intermorphs between winged and wingless males (Cremer, 

Lautenschläger, et al. 2002a; Yamauchi et al. 2005; Heinze et al. 2013). Hence it appears that 

phenotypic plasticity in males evolved under species-specific selection regimes in Cardiocondyla, 

potentially rendering this genus a showcase for the role of genetic accommodation in the evolution of 

novelty (West-Eberhard 1989; 2005a; Pfennig et al. 2010; Moczek et al. 2011; Schlichting and Wund 

2014).  
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3.4 Material and Methods 

Organism 

Cardiocondyla obscurior is a cosmotropical tramp ant species with a presumed native range in 

Southeast Asia (Seifert 2003). Our experimental colonies used in this study are derived from colonies 

that were originally collected in an introduced population in Brazil (permitted by the Brazilian 

Ministry of Science and Technology (RMX 004/02)) and thereafter propagated in the lab for several 

years.. Experimental colonies were reared at 12 h 28° C light/12 h 23° C dark in plastered Petri dishes 

and fed twice a week with parts of cockroaches or Drosophila and honey-soaked shreds of paper. 

Water was provided ad libitum. All animal treatment guidelines applicable to ants under international 

and German law have been followed. 

 

Larvae sampling 

Experimental colonies of C. obscurior were treated to exclusively produce only one of the four 

different phenotypes. Production of worker larvae (WO) was achieved by establishing colonies 

comprised of one fertilized queen, one ergatoid male and ten workers. Larvae produced within the first 

two months after colony foundation will develop into workers (Suefuji et al. 2008). Queen larvae 

(QU) were produced by treating eggs from worker-producing colonies (see above) with the juvenile 

hormone analogue methoprene (Schrempf and Heinze 2006). Collected eggs were rinsed twice with 

1 mg/ml methoprene dissolved in acetone and transferred to a queen-less colony of 20 workers. To 

produce males, we reared virgin queens that only produce haploid eggs, which develop either into 

either ergatoid or winged males. Under standard conditions (see above), colonies produce ergatoid 

males. Winged males are rare. However, stressful environmental conditions can induce their 

production (Cremer and Heinze 2003). We established colonies consisting of two unfertilized queens 

and 10 workers and reared these at a constant 23° (colder than normal; see above). Some of these 

colonies ceased production of ergatoid males and exclusively produced winged males, especially in 

the later stage of their queens’ life (>30 weeks, (Heinze and Schrempf 2012)), which allowed us to 

sample winged male larvae (WM).  

We sampled larvae that had chitinized mandibles, a characteristic feature of the 3rd instar (Schrempf 

and Heinze 2006), and were smaller than 800 %m (Fig. 3.1e). All colonies that were used for sampling 

larvae were screened twice a week from two weeks before the first larva was sampled until three 

weeks after the last larva had been sampled to confirm the exclusive production of workers, queens, 

ergatoid males, or winged males. For RNAseq studies, sampled larvae were placed individually in 

1.5 ml Eppendorf tubes, snap-frozen in liquid nitrogen, and stored at -80° C.  
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Gene expression analysis with RNAseq 

Total RNA was extracted from 28 individuals during the early 3rd larval instar with the RNeasy Plus 

Micro kit (Qiagen), yielding 27 to 270 ng per individual larvae. 

Starting from 20 ng input RNA, double strand, unstranded, multiplexed cDNA libraries for single-end 

sequencing of the 28 separate samples were generated. Briefly, cDNA was generated by reverse 

transcription using pseudo-random and oligo-dT priming. Using single-primer isothermal linear 

amplification (SPIA), dsDNA was generated and amplified (Ovation RNAseq system V2, NuGEN). 

After clean up with QIAgen’s MinElute clean-up kit, 1.5 %g cDNA were fragmented to 100-300 bp by 

shearing (Covaris S2 AFA). Libraries from 150 ng cDNA were prepared with the Encore Rapid DR 

Multiplex System (NuGEN), quantified (KAPA library quantification kit), and distributed randomly 

across four different lanes (Auer and Doerge 2010). Sequencing was carried out at the in-house 

sequencing centre (KFB, University of Regensburg, Germany) on an Illumina HiSeq1000. Raw 

sequencing reads have been deposited in the NCBI short read archive (Accession no. SRX879674, 

SRX879676, SRX879678). Sequencing reads produced from QU were published previously 

(Schrader et al. 2014, SRX692538). Sequencing yielded ~532 M raw reads that were filtered for 

adapter contamination (cutadapt, Martin 2011), parsed through quality filtration (Trimmomatic v0.27, 

options: LEADING:10 TRAILING:10 SLIDING:4:10 MINLEN:15), and mapped against the 

reference genome (Schrader et al. 2014) using the tophat2 (v2.0.8) and bowtie2 (v2.1.0) package 

(Phan et al. 2007; Langmead and Salzberg 2012; D Kim et al. 2013, --b2-sensitive, default settings). 

On average a mapping rate of ~55 % was obtained. De novo assembly of unmapped reads with velvet 

(Zerbino and Birney 2008) and subsequent BLAST analyses did not yield contigs of traceable origin, 

suggesting the unmapped reads are of no biological significance. Indeed, similar mapping rates have 

been reported by other studies using the same or very similar library preparation protocols (H Chen et 

al. 2011; Beane et al. 2011; Leal et al. 2013; Malboeuf et al. 2013; Sun et al. 2013; Burruel et al. 

2013). Gene expression analysis was performed with limma (Smyth et al. 2002), DEseq (Anders and 

Huber 2010), and DEseq2 (Love et al. 2014) based on count tables produced with HTseq (Q Yang et 

al. 2010; Anders et al. 2015) against the Cobs1.4 official gene set (Schrader et al. 2014). Even though 

limma was originally designed for microarray data, it outcompetes some recently published software 

in RNAseq analysis (Rapaport et al. 2013). In addition, it more extensively supports modelling multi-

sample comparisons in the underlying generalized linear model, so that we chose limma for the 

analysis of gene expression differences in this particular experiment. Read counts were converted to 

log2 counts per million (“library size normalization”), quantile normalized and precision weighted 

with voom (Law et al. 2014) for subsequent modelling in limma.  
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Functional clustering and gene set enrichment 

We performed a reciprocal BLAST analysis against Drosophila annotated proteins (r5.39) to retrieve 

the ortholog or closest homolog (BLASTp, e-value cut-off 1e-10) for each C. obscurior gene. Caste 

specific gene sets were tested for functional clustering by parsing lists of the respective Drosophila 

closest homologs/orthologs through DAVID 6.7 (Database for Annotation, Visualization and 

Integrated Discovery, david.abcc.ncifcrf.gov; last accessed 22.02.2015) at an EASE cut-off of 0.01 

(Huang et al. 2008; 2009). Each retrieved Annotation Cluster received a descriptive name 

summarizing the annotation terms.  

 

Transcription factor enrichment analysis 

Transcription factor binding site (TFBS) annotations were obtained in promotor regions (0-2 kb 

upstream) of all 17,552 annotated protein-coding genes for 59 different transcription factors (TFs) 

using pwm_scan and a P-value cut-off of 2e-04 (Levy and Hannenhalli 2002; Simola, Wissler, et al. 

2013a). Caste specific gene sets were then analysed for enrichment of each TF individually using two 

measures (enrichment probability pE and presence probability pP) to identify TFs likely to be 

involved in the regulation of the query gene set (Veerla et al. 2010). The enrichment probability pE 

was estimated by bootstrap analysis using the total number of occurrences of a given TFBS in the 

promotors of a given gene set. A background distribution of occurrences was generated by randomly 

sampling gene lists of the same length as the query list (105 iterations). The probability pE of obtaining 

the number of occurrences of a TFBS by chance in the query gene set was then calculated as the 

percentile of the observed number compared to the background distribution (1/105 & pE & 1). 

Similarly, the presence probability pP was also estimated by bootstrap by computing the proportion of 

genes in a gene set (query or background) that contains at least one occurrence of a given TFBS in 

their promoters.  

 

3.5 Acknowledgements 

We would like to thank Mary Jane West-Eberhard for her encouraging comments on the manuscript 

and two anonymous reviewers for providing helpful comments. This work was funded by the 

Deutsche Forschungsgemeinschaft (He1623/31). DFS was supported by a Howard Hughes Medical 

Institute Collaborative Innovation Award (HCIA) #2009005. 

  



55 

Chapter 4 

4. Rates of Molecular Evolution Correlate with Gene Expression 

Bias during Larval Development in the Ant Cardiocondyla 

obscurior 

 

Lukas Schrader1,2, Heikki Helanterä3, Jan Oettler1 

 

1 Institut für Zoologie, Universität Regensburg, 93053 Regensburg, Germany 

3 Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, 00014 

Helsinki, Finland 

 

2 Corresponding author:  

Lukas Schrader 

Institut für Zoologie,  

Universität Regensburg,  

Universitätsstr. 31,  

93053 Regensburg, Germany Tel +49 9419432996, Fax +499419433304 

Lukas.Schrader@ur.de 

 

Running title: Evolutionary consequences of plastic gene expression  

Keywords: Cardiocondyla obscurior / gene evolution / caste-biased genes / developmental plasticity 

 

  



56 

Abstract 

Phenotypic plasticity is based on alternative gene expression in response to environmental cues. 

Consequently, recruitment to the expression of a plastic trait leads to changes in the selection 

pressures under which a gene evolves. In most cases, plastically expressed genes have higher rates of 

molecular evolution and current efforts attempt to dissect underlying selection regimes. Social insects 

are well-suited model systems to study the evolution and expression of biased genes, because of 

discrete phenotypes (queens and workers) that are produced from the same genetic background. Here 

we study the relationship between gene evolution/regulation and expression bias in the ant 

Cardiocondyla obscurior that expresses four discrete phenotypes. In addition to queens and workers, 

C. obscurior produces winged males and fighter males, rendering this species well suited for 

comparative analyses. By applying a high-resolution dataset of gene expression patterns from 

28 individual larvae of known developmental fate, we found that strong expression bias during larval 

development is negatively correlated with expression level and positively correlated with inter-

individual expression variation and molecular evolution of genes. Furthermore, using 

observed/expected (o/e) CpG ratios, we show that CpG dinucleotides are more conserved in 

phenotype-biased genes, suggesting higher rates of germline gene body methylation in unbiased 

genes. Comparing gene expression biases in two different contexts, we found that genes biased in one 

context are more likely to be biased in a different context as well.  Together, our study constitutes a 

detail-rich analysis of the correlations between gene expression, sequence evolution and gene 

regulation in eusocial insects.  
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4.1 Introduction 

Phenotypic plasticity plays an important role in adaptive evolution (Schlichting and Pigliucci 1998; 

West-Eberhard 2003). Such plasticity is driven by changes in gene expression in response to 

environmental cues, directing differentiation from a single genotype into discrete phenotypes. 

Adaptive phenotypic plasticity thus decreases the necessity for mutation based genetic adaptation. 

However, phenotypic plasticity is also expected to promote sequence evolution through genetic 

accommodation in response to different selection regimes acting on alternative phenotypes and by 

exposing cryptic genetic variation to selection (West-Eberhard 2003; Price et al. 2003; West-Eberhard 

2005a; Schlichting 2008; Schlichting and Wund 2014). Gene expression bias towards a particular 

(environmentally induced) morph or sex and the rate of sequence evolution of these genes have been 

shown to be positively correlated (see Helanterä and Uller 2014 for a review). However disentangling 

evolutionary causes and consequences of this correlation is difficult, because of opposing and 

frequently changing selection regimes, and confounding correlates of evolutionary rates (Helanterä 

and Uller 2014). Furthermore, since most studies so far have used pooled samples, the extent and 

importance of variation among individuals within morphs is poorly understood. As a consequence, the 

signal to noise ratio in genome wide correlative analyses remains low, hampering the dissection of the 

selection regimes driving the molecular evolution of biased genes. 

The propensity for a gene to initially become involved in the expression of a plastic trait is predicted 

to be negatively correlated with the strength of purifying selection controlling both the genotype and 

the unsteadiness of expression of a given gene (Helanterä and Uller 2014). Consequently, genes under 

relaxed selection with accelerated evolutionary rates are more likely to be recruited to phenotypic 

plasticity (BG Hunt et al. 2011; Leichty et al. 2012). In addition, morph-biased genes should 

experience relaxed pleiotropic constraints (and vice versa genes with multiple functions should be less 

likely to evolve morph-specificity), further reducing the strength of purifying selection (Mank et al. 

2008; Snell-Rood et al. 2010). In accordance, relaxed selection preceding the evolution of eusociality 

has been suggested to be the main factor for accelerated molecular evolution of morph-biased genes in 

fire ants (BG Hunt et al. 2011). Similarly, higher rates of molecular evolution of biased genes in 

polymorphic aphids have been suggested to result mainly from relaxed purifying selection (Purandare 

et al. 2014). However, genes evolving under relaxed selection might become both subject to 

directional (e.g. Harpur et al. 2014) and purifying selection, following their recruitment to the 

expression of plastic traits (Helanterä and Uller 2014).  

In the ant Cardiocondyla obscurior reproductive queens (QU) and sterile workers (WO) occur next to 

winged (WM) and ergatoid (EM) males, providing an unrivalled complex system within the social 

hymenoptera with four distinct morphs developing from the same genetic background. Even though 

the foundation of phenotypic differentiation in eusocial insects lies in different developmental 

trajectories (D E Wheeler 1986), studies on the molecular evolutionary rates of biased genes have not 
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been conducted in larvae. In this study, we used gene expression data from larvae of C. obscurior with 

known developmental fate (Schrader et al. 2015) to study transcriptome-wide evolutionary dynamics 

and correlations between biased gene expression and intra- and interspecific evolutionary rates, 

methylation target sites, expression level, variation across biological replicates, and expression bias 

between larvae and adult queens, respectively. Overall, our study contributes to our understanding of 

the evolutionary underpinnings and consequences of developmental plasticity in social insect castes 

and polymorphic species in general. In essence, we found that strong expression bias during larval 

development is positively correlated with the rate of molecular evolution of genes. Furthermore, we 

show that CpG dinucleotides are more conserved in morph-biased genes, suggesting higher rates of 

germline gene body methylation in unbiased genes. Our analysis of gene expression also shows that 

the variation of expression across seven biological replicates is significantly stronger in biased genes 

than unbiased genes and that expression levels are negatively correlated with expression bias. Finally, 

comparing gene expression biases in two different contexts (adult vs. larva and larva vs. larva), we 

found that genes biased in one context are more likely to be biased in a different context as well.   
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4.2 Material and Methods 

Gene expression data generated by RNAseq from 28 individual third instar larvae of C. obscurior 

(seven QU, seven WO, seven EM and seven WM) were used for this study (Schrader et al. 2015). The 

unambiguous identification of genes with true phenotype-specific expression biases is generally 

difficult. For one, expression biases can arise if morphological differences (e.g. in organ size) are 

strong, so that constitutively expressed organ-specific genes appear as differentially expressed when 

analysing data from whole body samples. By sampling larvae that are not yet distinguishable by 

morphology, we reduced this confounding effect. In addition, using independent individual biological 

replicates substantially increases statistical power and allows for the analysis of individual-level 

variation in gene expression. 

We used average expression levels of genes in each of the four morphs to calculate log2 fold changes 

(logFC) for each of six possible pairwise comparisons between the four morphs (EM/QU, EM/WO, 

EM/WM, QU/WO, QU/WM, WO/WM). Each gene’s expression pattern is summarized in a three-

dimensional vector with the following fold change measures: QU/WO, EM/WM and EM/QU. From 

these, each of the remaining pairwise fold changes can be inferred. To get a single measure for a 

gene’s overall expression bias, we calculated the Euclidean length (EL) of its vector (Formula 1, 

Figure 4.1). As a measure of a gene’s morph-specific expression bias, we calculated the EL of a vector 

defined by the three respective pairwise comparisons (e.g. for EM the vector’s dimensions were 

EM/QU, EM/WO and EM/WM, Formula 2). 

 

(1) !" ! ! !"#$%!"!!"
! ! ! !"#$%!"!!"

!!!!!"#$%!"!!"!! 

 

(2) !"!" ! ! !"#$%!"!!"
! ! ! !"#$%!"!!"

!!!!!"#$%!"!!"!! 

 

As a measure of intra-morph variation in gene expression, we calculated the coefficient of variance for 

each gene across each of the seven biological replicates. To assess divergence from homologous 

genes, we performed BLASTx searches of all annotated protein-coding genes from the C. obscurior 

genome (Cobs1.4, Schrader et al. 2014) against protein sequences from seven ant species (Solenopsis 

invicta, Pogonomyrmex barbatus, Harpegnathos saltator, Camponotus floridanus, Acromyrmex 

echinatior, Atta cephalotes, Linepithema humile) downloaded from antgenomes.org. BLAST identity 

scores (iS%), as a primer of divergence, indicate to which extent two sequences (i.e. the C. obscurior 
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protein and its closest ant homologue) share the same amino acid residues in the BLAST alignment 

(i.e. a score of 100 indicates full identity).  

 

 

Figure 4.1: Euclidean length (EL) of a three-dimensional vector as a measure of expression bias. The 
three dimensional space is defined by the three independent dimensions logFCEM/WM, logFCQU/WO and 
logFCEM/QU. Each blue dot represents one of 1000 randomly sampled genes from the data set and the red 
arrow illustrates the concept of Euclidean length of three-dimensional vector. Black dots show two-
dimensional projections of each three-dimensional data point. 

 

Synonymous and non-synonymous homozygous single nucleotide variant (SNV) calls were retrieved 

from a genomic comparison of two populations of C. obscurior from Brazil and Japan (Schrader et al. 

2014). From these, we calculated SNV rates per kb for each gene (dS). Intraspecific rates of non-

synonymous SNVs were calculated as the number of non-synonymous SNVs divided by the sum of 

synonymous and non-synonymous SNVs (N/(N+S)). We retrieved CpG observed/expected (o/e) ratios 

(CpGexon o/e) and log fold change expression values between adult queens and larvae (|logFCA/L|) from 

Schrader et al. 2014. Lastly, we calculated pairwise Dn/Ds rates for orthologous gene pairs from 

C. obscurior and P. barbatus, which we chose because the same annotation pipeline was used. (CR 

Smith et al. 2011b). We identified P. barbatus orthologs for 9,405 C. obscurior genes by a reciprocal 

best BLAST approach. Pairwise alignments generated with clustalw2 (Larkin et al. 2007) were 
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trimmed to a multiple of three and up to in-frame internal stop codons in either sequence. 

Subsequently, we used the yn00 algorithm implemented in PAML (Z Yang 2007) to estimate pairwise 

Dn/Ds rates for each ortholog pair with a pairwise alignment longer than 100 bp (6,764 ortholog 

pairs). 

To test for monotonic positive or negative correlations, genes were sorted in 500 groups based on their 

EL with the first group containing genes with the lowest and the last group containing genes with the 

strongest expression bias. We then calculated group-wise medians, inter-quartile ranges (IQR) and 

1.5xIQR of average gene expression (ExprAve), ExprVar, |logFCA/L|, dS, N/(N+S), iS%, Dn/Ds, and 

CpGexon o/e. To assess whether evolutionary dynamics differ between genes with specific morph-

biases, we compiled sets of highly biased genes for each morph. For this, we sampled all genes with a 

morph-specific Euclidean length above the 90 % quantile and a positive expression bias towards the 

respective morph. For example, the highly EM-biased gene set comprises genes with higher 

expression in EM compared to QU, WO and WM, respectively and a Euclidean length ELEM > 1.51. 

The set of unbiased genes (“not biased”, nb) is comprised of the 250 least biased genes (based on 

overall EL) in the dataset. We chose a cut-off of 250 to have similar sample sizes for the unbiased and 

the biased gene sets (see Results). For statistical analyses we calculated correlations and semi-partial 

correlations using Kendall’s rank correlation coefficient ' and two-tailed pairwise Mann-Whitney  

U-tests, adjusted for multiple testing with a Bonferroni correction.  
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4.3 Results 

Among the 17,552 genes annotated in the C. obscurior genome, 10,012 were expressed in larvae. The 

250 least biased genes had on average an expression bias of EL= 0.11. Strong morph-bias  

(ELmorph 90 – 100 % quantile) was found in 280 (QU), 259 (WO), 247 (QU), and 217 (WM) genes, 

respectively. On average, genes included in the unbiased set had absolute logFC values of 0.05 across 

all six pairwise comparisons and genes in the biased sets on average had logFC values of 1.13 

(Figure 4.2a). Euclidean length values were increased over ten-fold in the unbiased compared to the 

biased gene sets (EL: nb 0.17, QU 1.87, WO 2.07, WM 1.70, EM 1.79, Figure 4.2b).  

 

 

Figure 4.2: Gene expression bias in the unbiased and highly biased gene sets. (a) Boxplots show absolute 
logFC values for the unbiased genes in all six pairwise comparisons and logFC for each of the three 
pairwise comparisons used for calculating ELmorph. (b) Differences in EL of the unbiased and biased gene 
sets. Boxplots show median, inter-quartile range (IQR, box) and 1.5xIQR (whiskers). 
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measured by EL, and average gene expression levels ExprAve (Figure 4.3, Table 4.1). As expression 

levels are known to be negatively correlated with evolutionary rates (Drummond et al. 2005), we used 

semi-partial correlations with Kendall’s coefficients for each following correlative analysis, excluding 

the effect of expression levels (S-H Kim and Yi 2006). To further assess the relationship of gene 
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between expression bias and expression variation (EL vs. ExprVar) and found a strong significant 

positive correlation (Figure 4.3, Table 4.1).  

Figure 4.3: Relationship between gene expression bias during larval development and gene 
regulation/evolution in C. obscurior. Genes were sorted in 500 groups based on their overall expression 
bias (EL). For each group, median (blue dots), inter-quartile ranges (IQR, grey shading) and 1.5xIQR 
(grey lines) were calculated and plotted. Red dashed lines illustrate the general trend of the relationship 
and are based on Lowess-smoothed lines (f=0.9). 

 

Table 4.1: Simple correlation between expression bias (EL) and average expression (ExprAve) and semi-partial 
correlations (ExprAve) with Kendall’s correlation coefficient. 

 Estimate (!) p-value Statistic n Method 
ExpAve -0.391 < 2.2e-16 -12.757 10,012 Correlation 
ExprVar 0.352 < 2.2e-16 52.849 10,012 Semi-partial correlation 
|logFCA/L| 0.183 2.86E-166 27.482 10,012 Semi-partial correlation 
dS 0.007 0.32 0.999 10,012 Semi-partial correlation 
N/(N+S) 0.058 3.08E-10 6.295 5,196 Semi-partial correlation 
iS% -0.022 1.70E-03 -3.138 9,071 Semi-partial correlation 
Dn/Ds 0.056 2.93E-12 6.981 6,981 Semi-partial correlation 
CpGexon o/e 0.085 4.03E-37 12.730 10,012 Semi-partial correlation 
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An in-depth analysis of inter-individual variation in gene expression revealed that weakly biased genes 

also exhibit little variation between individuals of the same morph. In contrast, genes strongly biased 

between morphs also showed much higher variation in expression between individuals of the same 

morph (Figure 4.4a, Table 4.2a). However, in each of the four gene sets, inter-individual variation was 

lowest among samples of the respective focal morph (e.g. lowest variation in EM samples in the EM 

gene set, Figure 4.4b, Table 4.2b). This decrease was significant in three of four gene sets (WO, WM, 

EM).   

 

The semi-partial correlation between gene expression biases in two different contexts 

(EL vs. logFCA/L) was also highly significant (Figure 4.3, Table 4.1). With regard to sequence 

evolution, we found no significant semi-partial correlation between overall SNV rates and expression 

bias (Figure 4.3, Table 4.1). However, we found significant monotonic semi-partial correlations 

between expression bias and intraspecific non-synonymous SNV rates, BLAST identity scores, and 

inter-specific Dn/Ds rates (Figure 4.3, Table 4.1). In addition, there was a significant and positive 

monotonic correlation between expression bias and exon CpG o/e rates (Figure 4.3, Table 4.1). 

 

Figure 4.4: Inter-individual gene expression variation for each morph between strongly biased and 
unbiased genes. (a) Comparison of average within-morph expression variation between the unbiased (nb) 
and biased gene sets (QU, WO, WM, EM). (b) Comparison of expression variation in the biased gene sets 
among QU, WO, WM and EM samples. Boxplots show median, inter-quartile range (IQR, box) and 
1.5xIQR (whiskers). 
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Table 4.2a: Bonferroni-corrected p-values from two-tailed pairwise Mann-Whitney U-tests on variance between 
unbiased and morph-biased gene sets 

 EM ns QU WM 
ns < 2e-16 - - - 

QU 5.90E-06 < 2e-16 - - 
WM 8.30E-11 < 2e-16 0.27 - 
WO < 2e-16 < 2e-16 < 2e-16 1.30E-08 

 

Table 4.2b: Bonferroni-corrected p-values from two-tailed pairwise Mann-Whitney U-tests on variance between 
morphs in the morph-biased gene sets 

QU gene set EM QU WM 
QU 0.35 - - 

WM 1 1 - 
WO 0.11 1 1 

    
WO gene set EM QU WM 

QU 0.904 - - 
WM 8.50E-06 0.001 - 
WO <2e-16 1.90E-14 5.10E-05 

    
WM gene set EM QU WM 

QU 0.2 - - 
WM 4.30E-06 5.70E-11 - 
WO 1 0.02 3.40E-05 

    
EM gene set EM QU WM 

QU 0.039 - - 
WM 1 0.219 - 
WO 0.089 1 0.479 

 

In accordance with the correlation analyses, strongly morph biased genes had higher intra- (median 

N/(N+S): nb 0, QU 0.25, WO 0.25, WM 0.33, EM 0.13, Figure 4.5, Table 4.3) and interspecific rates 

of non-synonymous substitutions (median Dn/Ds: nb 0.11, QU 0.14, WO 0.17, WM 0.14, EM 0.14, 

Figure 4.5, Table 4.3), and higher relative CpG content (median CpGexon o/e: nb 1.09, QU 1.23, 

WO 1.17, WM 1.21, EM 1.25, Figure 4.5, Table 4.3) than unbiased genes. In addition, strongly  

WO-biased genes had higher overall SNV rates compared to unbiased genes (dS: WO 0.48 kb-1,  

others 0 kb-1, Figure 4.5, Table 4.3). Between morphs, EM-biased genes had significantly lower rates 

of intra-specific non-synonymous substitutions than WM-biased genes. There were no significant 
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differences between morphs in inter-specific Dn/Ds rates in strongly biased genes. CpGexon o/e ratios 

were significantly increased in QU- and EM-biased genes compared to WO-biased genes.  
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Table 4.3: Bonferroni-corrected p-values from two-tailed pairwise Mann-Whitney U-tests testing for significant 
differences in dS, N/(N+S), Dn/Ds and CpGexon o/e rates between the unbiased and morph-biased gene sets. 

dS EM nb QU WM 
nb 1 - - - 

QU 1 0.891 - - 
WM 1 0.178 1 - 
WO 0.544 0.011 1 1 

     
N/(N+S) EM nb QU WM 

Nb 1 - - - 
QU 1 0.160 - - 

WM 0.006 2.60E-04 0.6114 - 
WO 0.910 0.102 1 0.4139 

     
Dn/Ds EM nb QU WM 

nb 0.04363 - - - 
QU 1 0.169 - - 

WM 1 6.50E-04 1 - 
WO 1 1.20E-04 0.50499 1 

     
CpGexon o/e EM nb QU WM 

nb 2.00E-16 - - - 
QU 0.732 5.10E-11 - - 

WM 0.051 1.00E-05 1 - 
WO 3.40E-06 0.022 0.007 0.659 
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4.4 Discussion 

Our study for the first time shows a correlation between gene expression bias during larval 

development and changes in gene sequence evolution in a polymorphic insect, while similar studies 

thus far focused on adult (BG Hunt et al. 2010; BG Hunt, Ometto, et al. 2013b; Purandare et al. 2014) 

or adult and pupal individuals (BG Hunt et al. 2011). By using data from unpooled, replicated samples 

and by accounting for the confounding effect of expression level on molecular evolutionary rates in 

the correlations, our analyses advances on our understanding of the evolution of polyphenism and 

biased gene expression. Overall, our detailed analyses of genes expressed in a developmental context 

support previous studies suggesting a prominent role for relaxed selection in accelerating rates of 

molecular evolution in biased genes. However, accurately disentangling selection regimes under 

which biased genes evolve poses a particular challenge to evolutionary biology and additional efforts 

are required to improve our understanding of the complex mechanisms directing a genes molecular 

evolution. 

Polyphenisms are invaluable for studying phenotypic plasticity. However, most if not all of an 

organism’s traits are plastic to some extent as the environment has an effect on every biological 

process (DeWitt and Scheiner 2004). Fluctuating gene expression in response to changing 

environmental conditions (“allelic sensitivity”) accounts for modulations or passive plasticity of an 

organism’s phenotype (Schlichting and Pigliucci 1995). Passive plasticity is usually considered to be 

evolutionarily neutral and simply a consequence of the genotype’s responsiveness to a heterogeneous 

environment (Whitman and Agrawal 2009; Chevin et al. 2012). Thus, genes with fluctuating 

expression accounting for passive plasticity should evolve faster due to relaxed selection (Helanterä 

and Uller 2014). Prior to the evolution of reproductive division of labour in eusocial insects, their 

solitary ancestors putatively expressed genes under relaxed selection involved in regulation of 

passively plastic phenotypes thereby setting the stage for the evolution of discrete morphs (Nijhout 

2003; Linksvayer and Wade 2005; Amdam et al. 2006). Consequently, it seems likely that by 

establishing discrete expression profiles for these genes under relaxed selection, the decisive step in 

the initial evolution of active plasticity and polyphenism was made (Ghalambor et al. 2007; Ruden et 

al. 2015). In support, relaxed selection has been suggested as a precursor to the evolution of 

polyphenism in social hymenoptera (BG Hunt et al. 2011) and in general, genes under relaxed 

selection are expected to be more prone to become co-opted in the expression of a plastic trait  (BG 

Hunt et al. 2010; BG Hunt, Ometto, et al. 2013b; Helanterä and Uller 2014; Purandare et al. 2014).   

By analysing intraspecific divergence between populations we show that biased genes continue to 

evolve at a higher rate even after biased expression patterns have evolved in a species. If natural and 

sexual selection pressures are similar in the two studied populations from Brazil and Japan, sequence 

divergence of biased genes could be attributed to relaxed selection and drift. Alternatively,  

population-specific adaptations under positive selection could lead to sequence divergence. Our 
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findings on strong inter-individual variation of gene expression are in support of a prominent role of 

relaxed selection in accelerating sequence evolution in biased genes, because genes under strong 

positive selection should be simultaneously subject to precise gene regulation where expressed 

(Helanterä and Uller 2014). However, that biased genes tend to be least variable in their expression in 

the morph towards which they are biased might indicate that restriction of spurious transcription can 

occur, potentially as a result of stabilizing selection on caste specific functionality. 

Several theoretical and empirical studies suggest that passive, non-adaptive plasticity that produces a 

phenotype close enough to a new fitness optimum, can form the basis for the evolution of adaptive and 

eventually active plasticity (Denver 1997; Nijhout 2003; Ghalambor et al. 2007; Gomez-Mestre et al. 

2008; Leichty et al. 2012), resulting in genetic accommodation, release from pleiotropic constraint for 

the genes with a biased expression pattern, and an increase of directional positive selection of genes 

co-opted for caste- or morph-specific function. In support, a study on adaptive evolution in the 

honeybee revealed that genes with worker-biased brain expression evolve under strong positive 

selection (Harpur et al. 2014). Similarly, studies in Drosophila showed signatures of strong positive 

selection in sex-biased genes (Ellegren and Parsch 2007). These apparently conflicting results on the 

role of relaxed and positive selection in molecular evolution of biased genes emphasize that there is 

not a simple model for explaining underlying selection regimes, and teasing apart adaptive and neutral 

contributions to sequence evolution of morph-biased genes is difficult.  

 

In Hymenoptera, gene-body methylation is assumed to play a role in epigenetically regulating 

alternative splicing and gene expression by supressing spurious transcription (Bonasio 2012; Chittka 

et al. 2012). Exon-wide o/e CpG rates are used as an indirect measure of epigenetic regulation in the 

germ line (Glastad et al. 2012). Since methylated CpG dinucleotides are particularly prone to mutate 

to TpG, reduction in o/e CpG rates are expected to occur over time in germ line methylated genes over 

several generations. In honeybees, CpG rates are reduced in genes involved in basic biological 

processes, and increased in genes involved in development and caste-biased genes (Elango et al. 

2009). In accordance, we found a significant positive correlation between CpG o/e ratios and 

expression bias in the C. obscurior genome, supporting the idea that plastically expressed genes tend 

to be less methylated in social Hymenoptera. In addition, we found differences between genes biased 

towards a particular morph, with WO-biased genes having the lowest and EM-biased genes having the 

highest average CpGexon o/e rates. These between-morph differences suggest that morphs require 

different levels of epigenetic regulation by methylation to develop properly. In favour of this concept, 

a study in honeybees revealed lower methylation levels in queen than worker larvae (Shi et al. 2012). 

EM-biased genes appear to be significantly less methylated in the germline than WO-biased genes, 

suggesting less restrictive transcriptional regulation in WO-biased genes. This however is in contrast 

to our analysis of inter-individual variation in gene expression, which showed that WO-biased gene 
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expression is significantly more variable compared to EM-biased genes. By comparing evolutionary 

rates in highly morph-biased genes, we found a significant difference in intra-specific non-

synonymous SNV rates between EM- and WM-biased genes indicating differences in selection 

regimes. WMs only occur rarely, thus genes biased towards this morph should evolve under relaxed 

selection as they are only rarely expressed and less exposed to natural selection (Van Dyken and Wade 

2010; Purandare et al. 2014). EMs in contrast are produced regularly and have evolved several 

adaptations to rivalry and multiple mating that are unique in the social Hymenoptera, indicating strong 

sexual selection. We hypothesize that this effect results in only mild population genetic divergence in 

EMs, while at the same time acts on relative stronger regulation of expression.  

 

In eusocial insects, queen fitness depends on performance of the non-reproductive workers, so that 

selection acts indirectly on the non-reproducing workers (Hamilton 1964). In general, this indirect 

mode of selection should increase relaxed selection in worker-biased genes (Linksvayer and Wade 

2009), even though no study, including ours, so far succeeded to verify this prediction. Even though 

we did not find a significant correlation between expression bias and overall SNV rates, our analysis 

of highly morph-biased gene sets revealed higher SNV rates in WO-biased genes. Given that increased 

mutation rates are known to co-occur with increased recombination rates in genomes (Cutter and 

Payseur 2013), the increased SNV rates in WO-biased genes can be explained if they are 

predominantly localized in high-recombining regions (H Liu et al. 2014a). Intriguingly in the non-

reproductive workers, CpG to TpG mutations in methylated genes are not transmitted, as workers do 

not harbour a germline. Thus, transcriptional regulation by methylation to reduce gene expression 

variation could occur in workers without any effects on the frequency of CpG sites in subsequent 

generations. In accordance, our analysis of inter-individual variation in gene expression revealed that 

WO-biased genes tend to be least variable among workers and inter-individual variation of WO-biased 

genes was much higher in queens and males, suggesting that expression of WO-biased genes is less 

tightly controlled in these morphs.  

 

Conclusion 

A particular challenge in our and similar studies is functional pleitropy of genes. Even though we find 

a strong positive correlation of gene expression biases in two alternative contexts, genes experiencing 

expression bias in one context might possibly be constitutively expressed in a different, unaccounted 

context. Thus, deductions about a gene’s evolutionary trajectory will ultimately remain impaired due 

to incomplete data, until extensive maps of gene expression profiles across life stages, tissues and 

environmental conditions are available. In addition, biased genes can simultaneously be subject to 

purifying, positive and relaxed selection depending on the respective context and it is difficult to 
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resolve these selection regimes (Helanterä and Uller 2014). Where expressed, biased genes should 

evolve under purifying or positive selection, depending on the imposed selection pressures. In 

contrast, if expressed weakly, these genes are expected to be under relaxed selection, and the 

expression pattern itself may potentially change the selective regime (Linksvayer and Wade 2009; Van 

Dyken and Wade 2010).  

Even though functional pleiotropy and the complexity and flexibility of the selection regimes remain 

difficult to account for in studies focusing on the evolutionary forces acting on biased genes, 

transcriptome-wide analyses have proven to be useful in illuminating the forces affecting the sequence 

evolution of biased genes. A deeper understanding of the fidelity of gene expression variation and 

sequence evolution will help to disentangle the roles of positive and relaxed selection in the 

evolutionary trajectory of biased genes. With additional high-resolution transcriptomic data sets 

becoming available, we will be able to address the phenomenon of increased evolutionary rates of 

biased genes in detail, substantiating our understanding of the evolution of adaptive plasticity and 

polyphenism.  
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Abstract 

The evolution of eukaryotic organisms is often strongly influenced by microbial symbionts that confer 

novel traits to their hosts. Here we describe the intracellular Enterobacteriaceae symbiont of the 

invasive ant Cardiocondyla obscurior, ‘Candidatus Westeberhardia cardiocondylae’. Upon 

metamorphosis Westeberhardia is found in gut-associated bacteriomes that deteriorate following 

eclosion. Only queens maintain Westeberhardia in the ovarian nurse cells from where the symbionts 

are transmitted to late-stage oocytes during nurse cell depletion. Functional analyses of the 

streamlined genome of Westeberhardia (533 kb, 23.41 % GC-content) indicate that neither vitamins 

nor essential amino acids are provided for the host. However, the genome encodes for an almost 

complete shikimate pathway leading to 4-hydroxyphenylpyruvate, which could be converted into 

tyrosine by the host. Together with increasing titres of Westeberhardia during pupal stage, this 

suggests a contribution of Westeberhardia to cuticle formation. Despite a widespread occurrence of 

Westeberhardia across host populations, one ant lineage was found to be naturally symbiont-free, 

pointing to the loss of an otherwise obligate endosymbiont. This study yields insights into a novel 

intracellular mutualist that could play a role in the invasive success of C. obscurior.  
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5.1 Introduction 

Interactions between organisms drive biological complexity (Maynard Smith and Szathmáry 1997), 

shaping life as we know it. Symbioses with prokaryotes are considered to promote eukaryote 

diversification (Brucker and Bordenstein 2012), particularly in insects (Moya et al. 2008; Gil et al. 

2010). Some bacterial symbionts provide novel ecological traits to their insect hosts, e.g. defence 

against pathogens or parasitoids (KM Oliver et al. 2003; Kaltenpoth et al. 2005), enhanced stress 

tolerance (JA Russell and NA Moran 2006), or nutrients (Douglas 2009). Nutrient-providing 

symbionts are commonly found in hosts with restricted diets, e.g. aphids feeding on phloem sap 

(Baumann 2005), blood-feeding Diptera (Jingwen Wang et al. 2013a), or grain-weevils (Heddi et al. 

1999). Symbionts can provide essential amino acids, vitamins or help in nitrogen recycling 

(Nakabachi et al. 2005; Feldhaar et al. 2007; Michalkova et al. 2014; Patino-Navarrete et al. 2014). 

Such bacteria are commonly harboured in bacteriocytes, specialized host cells that sometimes form 

special organ-like structures, the bacteriomes (Baumann 2005), or are confined to the insect gut (Engel 

and NA Moran 2013). Provisioning with nutrients can lead to increased fitness (Himler et al. 2011; 

Michalkova et al. 2014), which may enable invasive species to exploit novel habitats or food sources 

(Feldhaar 2011). 

Cardiocondyla obscurior (Wheeler, 1929) is an invasive ant that forms small multi-queen colonies in 

disturbed, arboreal habitats throughout the tropics. A peculiarity of the genus Cardiocondyla is the 

occurrence of wingless males, which mate with closely related queens in their maternal nest (Oettler et 

al. 2010). New colonies are established via colony splitting (“budding”) (Heinze et al. 2006). This 

unique life history with frequent genetic bottlenecks and high levels of inbreeding makes it an 

interesting model for the study of rapid adaptation to novel environments (Schrader et al. 2014).  

Here we describe a so far unknown intracellular symbiont of C. obscurior, for which we propose the 

name ’Candidatus Westeberhardia cardiocondylae’ strain obscurior (from here on referred to as 

Westeberhardia). We analysed its distribution within and across host populations, and compared 

infection of individual ants depending on morph and age. Furthermore, we localized Westeberhardia 

in the host and scrutinized its genome focusing on its metabolic functions. Westeberhardia has lost 

many metabolic capabilities, but retained most of the shikimate pathway and the ability to synthesize 

the tyrosine precursor 4-hydroxyphenylpyruvate. We suggest that its localization in gut-associated 

bacteriomes of pupae and the increased titres during pupal development point to a role for 

Westeberhardia in cuticle formation.  
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5.2 Material and Methods 

Ant colonies 

We keep C. obscurior colonies from Brazil (BR), Japan (JP) and Spain (SP) in the laboratory. The BR 

colonies originated from two collection sites approximately 70 km apart, a cacao plantation in Ilhéus 

(2009 and 2013) and a citrus plantation near Una (2012) (Brazilian Ministry of Science and 

Technology, permits 20324-1/40101-1). JP colonies were collected from two coral trees 100 m apart 

(lineages “OypB”, “OypC”) in the Oonoyama park in Naha, Okinawa (2011) and from additional trees 

of the same park (“OypU”, 2013). SP colonies were collected at a campsite in Los Realejos, Tenerife 

in 2012 and 2013. All colonies were housed in plaster nests under 12 h 28 °C light/12 h 23 °C dark 

cycles, with constant humidity and ad libitum provided honey and pieces of cockroaches. All animal 

treatment guidelines applicable to ants under international and German law have been followed.  

 

Westeberhardia detection and phylogenomic analyses  

During analyses of the C. obscurior genome (Schrader et al. 2014), we identified prokaryotic scaffolds 

and candidates for horizontal gene transfers (HGT) (David Wheeler et al. 2013). These were then 

further characterized by blasting (BLASTx) all annotated genes against a database of prokaryotic 

proteins. Besides Wolbachia, we identified six scaffolds of an unknown Enterobacteriaceae. Following 

de novo genome assembly and annotation (see below), we used translated CDS sequences for 

phylogenetic placement following (Husník et al. 2010). Briefly, we performed Dayhoff6 recoding 

followed by a phylogenomic reconstruction with PhyloBayes v3.3f (Lartillot et al. 2009), based on 64 

single-copy protein clusters (Supplementary Material). 

We detected one prokaryotic gene incorporated into the host genome. After manual correction of the 

HGT gene model, we used BLASTx analyses against NCBI’s non-redundant database to identify 

homologs. RNAseq data was used to verify expression in seven larval and seven adult queens by 

mapping reads against the C. obscurior genome (Schrader et al. 2014). We generated count tables with 

HTseq (Anders et al. 2015) against C. obscurior gene annotations (including the manually corrected 

gene) and calculated untransformed, size factor-normalized read counts. 

 

Genome assembly, annotation, and functional analyses 

Paired-end Illumina reads from (Schrader et al. 2014) were used for de novo assembly of the 

Westeberhardia genome. We removed Wolbachia sequences based on their BLASTx result and then 

assembled remaining prokaryotic reads using SOAPdenovo2 (Luo et al. 2012). The resulting contigs 

were scaffolded using a custom-modified version of SSPACE v2.0 (Boetzer et al. 2011). Raw reads 
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were then mapped back to the contigs using MIRA 4.0.1 (Chevreux et al. 1999) and manually joined. 

Scaffold corroboration and visual inspection of contigs were performed in the Staden Package (Staden 

et al. 1999). Inconsistencies were broken and manually re-assembled. Base-calling correction was 

done using POLISHER (LaButti et al. 2008). No corrections were made to the consensus, which 

consisted of a single 532,684-bp contig (average coverage 204.5x). 

The replication origin was predicted using originX (Worning et al. 2006). A first round of open 

reading frame (ORF) prediction was performed using Prodigal v2.5 (Hyatt et al. 2010) and the 

predicted ORFs were annotated using the BASys server (Van Domselaar et al. 2005). tRNAs were 

predicted using the “COVE only” algorithm of tRNAscan-SE v1.3.1 (Lowe and Eddy 1997), and 

checked with TFAM v1.4 (Tåquist et al. 2007). tmRNAs and their tag-peptides were predicted using 

ARAGORN v1.2.36 (Laslett and Canback 2004). The genome was searched against Rfam v11 (Burge 

et al. 2013) using Infernal v1.1 (Nawrocki and Eddy 2013), and the resulting ncRNAs were manually 

integrated into the annotation following the INSDC's conventions (insdc.org/files/feature_table.html). 

Ribosome-binding sites were predicted using RBSfinder (Suzek et al. 2001) and signal peptides were 

predicted using SignalP v4.1 (Petersen et al. 2011). The resulting annotation was manually curated in 

Artemis (Rutherford et al. 2000). 

Metabolic functions were automatically predicted and analysed using Pathway Tools v17.5 (Karp et 

al. 2009) against BioCyc and MetaCyc databases (Caspi et al. 2012), following manual curation. 

Functional information was retrieved from the EcoCyc (Keseler et al. 2013), KEGG (Ogata et al. 

2000), and BRENDA (Scheer et al. 2010) databases. 

 

Coverage analyses 

For comparison of Westeberhardia infection between the sequenced reference colonies from BR 

(Ilhéus, 2009) and JP (OypB) (Schrader et al. 2014), we mapped genomic reads from pools of 30 BR 

and 26 JP males (140 million reads each) against the C. obscurior and Westeberhardia genomes, and 

compared coverage between BR and JP with samtools’ depth algorithm (H Li 2011) and custom 

bash/perl/R scripts as described in (Schrader et al. 2014).  

 

Analyses of intraspecific infection dynamics by PCR and real-time quantitative PCR (qPCR)  

To assess Westeberhardia presence across host populations, we screened 42 C. obscurior samples 

collected worldwide and the sister species Cardiocondyla wroughtonii (Forel, 1890) by performing a 

diagnostic PCR assay on a 204-bp fragment of the nrdB (ribonucleoside-diphosphate reductase 1 

subunit beta) gene of Westeberhardia (WEOB_403) (nrdBfor: 5’-GGAAGGAGTCCTAATGTTGCG-

3’, nrdBrev: 5’-ACCAGAAATATCTTTTGCACGTT-3’), using the ant housekeeping gene 
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elongation factor 1-alpha 1 (Cobs_01649) (EF1for: 5’-TCACTGGTACCTCGCAAGCCGA-3’, 

EF1rev: 5’-AGCGTGCTCACGAGTTTGTCCG-3’, 104-bp fragment) as a control. We used DNA 

from a previous study (Oettler et al. 2010), samples from laboratory colonies, and stored tissue from 

which we extracted DNA using a chloroform-based method (Sambrook and DW Russell 2001) (Table 

5.1). To verify infection with the same Westeberhardia species, we sequenced a  

917-bp fragment of the 16S rRNA gene of Westeberhardia (WEOB_122) (WE16Sfor:  

5’-CATTTGAATATGTAGAATGGACC-3’, WE16Srev: 5’-AACTTTTACAAGATCGCTTCTC-3’) 

from one individual each of the BR, JP and SP populations and of C. wroughtonii (see Supplementary 

Information for PCR details). 

 

We assessed inter- and intrapopulational Westeberhardia prevalence in laboratory colonies using PCR 

and qPCR assays for workers and queens, respectively (Supplementary Information). For this purpose, 

we sampled 6-10 dealate queens and 9-10 workers from 6-8 colonies from three lineages from BR and 

JP respectively, and from the SP population, resulting in a total of 538 analysed workers and 517 

queens. Worker and queen DNA was extracted using the hotshot method (Alasaad et al. 2008) and the 

NucleoSpin®Tissue XS Kit (Machery-Nagel), respectively. To control for age-effects on infection 

(see below) we selected freshly hatched workers when possible.  

We quantified Westeberhardia of single individuals by determining normalized nrdB copy numbers 

with qPCR (Supplementary information) across developmental stages (larvae and prepupae of 

unknown sex and caste, young and old female pupae) for JP (OypB) and BR (Una, 2012) and across 

morphs (queens, workers, winged males, wingless males), ages (queens= 2, 14, 28, 48 days; 

workers= 2, 14, 28 days), and fertilization state of queens (virgin, mated) for only the BR population 

(Una, 2012).  

 

Fluorescence in situ hybridization (FISH) 

To localize Westeberhardia, we performed FISH as described previously (Kaltenpoth et al. 2012; 

2014) on abdominal sections of queen, worker and wingless male pupae from BR (Ilhéus, 2009) and 

adult queens from BR (Ilhéus, 2009) and JP (OypB) with the general eubacterial probe EUB338 (5’-

GCTGCCTCCCGTAGGAGT-3’) (Amann et al. 1990) and one of the Westeberhardia-specific probes 

Wcard1 (5’-ATCAGTTTCGAACGCCATTC-3’) and Wcard2 (5’-CGGAAGCCACAATTCAAGAT-

3’), targeting the 16S rRNA gene. Probes were labelled with Cy3 or Cy5, and samples were 

counterstained with DAPI (4’,6-diamidino-2-phenylindole).  
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Test for reproductive manipulation and paternal inheritance 

Several bacterial symbionts are known to be reproductive manipulators, with cytoplasmic 

incompatibility (CI) and parthenogenesis induction (PI) being the most common phenotypes (Cordaux 

et al. 2011). While CI results in the incompatibility of crosses between infected males and uninfected 

queens, PI causes parthenogenetic production of diploid female offspring in infected females. We 

crossed uninfected JP queens (OypB) with infected BR males (Ilhéus, 2009), by placing sexual pupae 

together with 20 workers into new nests (n=10), which were observed twice a week for the presence of 

male and female brood. 

To test for paternal inheritance of Westeberhardia, crosses of infected males and uninfected freshly 

hatched virgin queens were initiated in a mating arena overnight. The following day we dissected and 

macerated the spermathecae of queens (n=8) in dH2O and isolated DNA using the NucleoSpin®Tissue 

XS Kit (Machery-Nagel). We performed a diagnostic PCR assay with the nrdB gene and the 

housekeeping gene EF1 as positive control. We further analysed infection status of two worker pupae 

each emerging from four of the above crosses using the nrdB PCR assay. 
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5.3 Results 

Microbial associates of Cardiocondyla obscurior  

BLASTx analyses of the C. obscurior hologenome (Schrader et al. 2014) retrieved 1.5 Mb of 

Wolbachia sequence and 543,172 bp in six scaffolds of an unknown gamma-proteobacterium. A 

preliminary assembly of the Wolbachia sequences is hosted on antgenomes.org. The 16S sequence of 

the gamma-proteobacterium showed 98.4 % identity with an Enterobacteriaceae of a C. obscurior 

sample from Florida, USA (voucher RA0330, Genbank: GQ275143), detected during a survey of  

ant-associated bacteria (JA Russell et al. 2009).  

BLASTx analyses further revealed a 360-bp intron-less gene of putative prokaryotic origin encoding a 

xanthine-guanine phosphoribosyltransferase (XPRT, EC: 2.4.2.22), which is incorporated into the host 

genome and has its closest ortholog in Enterobacter cloacae (WP_023478997). XPRT plays a central 

role in the synthesis of purine nucleotides through the salvage pathways, converting xanthine and 

guanine to XMP and GMP, respectively. The gene is present in genomic reads of C. obscurior from 

BR (Ilhéus, 2009) and JP (OypB). We used published RNAseq data from adult queens and queen-

destined larvae (Schrader et al. 2014), to confirm in vivo transcription of the HGT and found a fivefold 

increased expression in larvae compared to adults (medianlarvae= 1,140.1, medianqueens= 223.2,  

Mann-Whitney U-test: W= 79, p< 0.001).  

 

Westeberhardia genome assembly, annotation, and functional and phylogenomic analyses 

De novo assembly of the Westeberhardia genome produced a single scaffold representing a circular 

chromosome of 532,684 bp (23.41 % GC-content) with 372 protein-coding genes and six pseudogenes 

(Figure 5.1). The genome of Westeberhardia has been deposited on Genbank and is hosted on 

antgenomes.org. The phylogenomic analysis placed Westeberhardia within a group of 

Enterobacteriaceae symbionts comprising both facultative and obligate insect endosymbionts, 

including Sodalis, Baumannia, Blochmannia and Wigglesworthia (Supplementary Figure S3.1). 
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Figure 5.1: Genomic structure of Westeberhardia. Representational circos plot (Krzywinski et al. 2009) 
illustrating genomic properties of Westeberhardia. Tile plots show the distribution of protein coding 
genes (black bars) and ribosomal binding sites (red bars). The histogram in the inner circle shows GC-
content in percent for 1-kb windows. 

 

 

The genome codes for a simplified but functional informational machinery, with complete setups for 

DNA replication, transcription, translation, and protein folding, but few genes involved in DNA repair 

(Figure 5.2). Westeberhardia has a limited metabolic repertoire but is capable of glycolysis, pentose 

phosphate pathway, fatty acid biosynthesis, nucleotide synthesis, and ATP production through 

oxidative phosphorylation. The pathway for glycerophosholipid biosynthesis is impaired. Metabolite 

transport appears to be based on electrochemical-potential driven transporters and inorganic phosphate 

Candidatus 
Westeberhardia cardiocondylae 

532 684 bp 

GC content 23.41 % 

372 genes (+6 pseudogenes) 

Coding density: 70.76 % 
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transporters, while ATP-binding cassette transporter as well as phosphotransferase system transporter 

genes are missing. Westeberhardia has lost the pathways for synthesis of all essential and most non-

essential amino acids and cofactors, but has retained the pathway for synthesizing  

4-hydroxyphenylpyruvate, a precursor of phenylalanine, tyrosine and tryptophan in the shikimate 

pathway (Hopkins and Kramer 1992; Andersen 2012). While Westeberhardia cannot complete the last 

step of the shikimate pathway to synthesize tyrosine, the host genomes codes for tyrosine 

aminotransferase (EC 2.6.1.5) converting 4-hydroxyphenylpyruvate to tyrosine (Cobs_01567). Further 

conversion of tyrosine to DOPA (3,4-dihyroxyphenylalanine), an important component of insect 

cuticles (Andersen 2012), might occur through tyrosine 3-monooxygenase (EC 1.14.16.2) encoded in 

the host genome (Cobs_14710). 

 

Figure 5.2: Westeberhardia metabolic reconstruction. Intact pathways are shown in black lines, unclear 
pathways (missing a specific gene or having it pseudogenized) are shown in grey lines, and the ones that 
are already represented elsewhere with another line are shown as dotted lines. Exporters are represented 
using green ovals, whereas exporters/importers are represented using blue ovals with the name of the 
family/superfamily they belong to, otherwise the protein or complex name is used. ATP synthase is 
shown once with dotted lines to represent another metabolic reaction. Essential and non-essential amino 
acids are shown in red and purple lettering, respectively. Cofactors and vitamins are represented in blue. 
Blurred compounds represent those for which biosynthesis or import cannot be accounted for based on 
the genomic data, according to MetaCyc. Relevant genes involved in the biosynthesis of nucleotides and 
peptidoglycan are indicated. A single frameshift is found in adk and murA, therefore they might be young 
pseudogenes, or an RNA polymerase or ribosomal slippage would be required to produce a functional 
protein. 
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Intraspecific infection dynamics 

Coverage analysis of genomic reads showed that, in contrast to males from BR (Ilhéus, 2009), males 

from a JP lineage (OypB) are devoid of Westeberhardia (coverage BR: 30x, JP: 0.21, Figure 5.3a). 

qPCR of the Westeberhardia specific nrdB gene in female pupae as well as larvae and prepupae of 

unknown sex and caste verified that Westeberhardia is completely absent in OypB (Figure 5.3b). 

Accordingly, Westeberhardia was not detected by FISH in sections of adult OypB queens. 

Analyses of C. obscurior samples collected worldwide showed that Westeberhardia is present in 34 of 

42 tested samples (81.0 %), including all samples from BR, but absent in some JP populations and in 

material from Egypt and Sri Lanka (Table 5.1). The closely related species C. wroughtonii also 

contains Westeberhardia. A 917-bp 16S rDNA fragment of Westeberhardia is identical between the 

three C. obscurior populations from BR, JP and SP, and between C. obscurior and C. wroughtonii.  

 

Table 5.1: Prevalence of Westeberhardia across populations of Cardiocondyla obscurior and the closely related 
species Cardiocondyla wroughtonii, based on a diagnostic PCR screen using the nrdB gene. W= worker, Q= 
queen, Y= Westeberhardia present, N= Westeberhardia absent. Sample sizes are given in brackets. 

Sampling site (year) Sample description Morph Westeberhardia 

Cardiocondyla obscurior 
BRAZIL: Ilhéus (2004) Laboratory colonies W Y (3) 
BRAZIL: Ilhéus (2009) Laboratory colonies Q Y (4) 
BRAZIL: Una (2012) Laboratory colonies Q Y (4) 
BRAZIL: Ilhéus (2013) Laboratory colonies Q Y (4) 
JAPAN: Ishigaki (2002) Oettler et al. (2010) W N (2) 
JAPAN: Naha (2011) „OypB“ Laboratory colonies Q N (4) 
JAPAN: Naha (2011) „OypC“ Laboratory colonies Q Y (4) 
JAPAN: Naha (2013) „OypU“ Laboratory colonies Q Y (4) 
TENERIFE (2012) Laboratory colonies Q Y (4) 
EGYPT: Talkha (2003) Oettler et al. (2010) W N (1) 
FIJI (2007) EtOH material W Y (1) 
MALAYSIA: Ulu Gombak (2002) Oettler et al. (2010) W Y (1) 
SRI LANKA (2006) Oettler et al. (2010) W N (1) 
USA: Lake Alfred, Florida (2004) Oettler et al. (2010) W Y (3) 
C. cf obscurior SINGAPORE (2014) EtOH material W Y (2) 

Cardiocondyla wroughtonii 
JAPAN: Nakijin (2013) Laboratory colonies W Y (2) 
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Figure 5.3: Intraspecific and temporal dynamics of Westeberhardia infection. (a) In genomic coverage 
data for pooled haploid males mapped against the Westeberhardia reference, Westeberhardia reads (We) 
were exclusively present in the Brazil, Ilhéus (2009) sample (BR, blue) and no reads could be detected in 
the OypB, Japan (JP, red) sample, while coverage of C. obscurior reads (Cobs) mapped against the 
C. obscurior reference is similar. (b) Real time-quantitative PCRs on DNA level for the nrdB gene 
confirm the absence of Westeberhardia in larvae (L), prepupae (PP) and female (queen and worker) 
pupae (PW= pupa white, PB= pupa brown) of the JP OypB population, whereas all those developmental 
stages are infected in the BR Una (2012) population (letters indicate significances for within population 
comparisons for BR). (c-d) Prevalence of Westeberhardia in queens (c) and workers (d) across different 
populations of C. obscurior from Brazil (BR, blue), Japan (JP, red) and Tenerife, Spain (SP, grey), as 
revealed by qPCR (c) and diagnostic PCR (d), of the nrdB gene. For each lineage 6-8 colonies and per 
colony 9-10 young workers and 6-10 queens were tested. Bars represent medians, whiskers denote 
quartiles. Note that while Westeberhardia infection status of workers varies between and within 
populations of C. obscurior, it is almost fixed in queens across all lineages except OypB. (e-f) Morph (e) 
and age (f) dependency of relative amounts of Westeberhardia in C. obscurior individuals from Brazil 
(Una, 2012) determined by real time-quantitative PCR. Normalized nrdB copy numbers are elevated in 
queens compared to all other morphs (Q= queens, W= workers, M= males winged, MW= males wingless) 
(e), increase with age in queens, but decrease with age in workers (numbers after Q/W show age in days, 
V= virgin queens, letters indicate significant difference for within-caste comparisons) (f). Sample sizes 
are given in parentheses. 
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Westeberhardia infection of workers varies considerably within and among infected lineages, ranging 

from 42.5 to 96.3 % (Figure 5.3a), whereas queen infection is almost fixed in all populations (88.6 to 

100 %, Figure 5.3c). However, in the OypB lineage, only one of 60 workers and two of 60 queens 

were infected at low levels (indicated by weak bands on the agarose gel or late Cq values in the qPCR, 

respectively). These values are not significantly different from zero (One sample t-tests: workers: 

t(59)= 1, p= 0.32; queens: t(59)= 1.43, p= 0.16), and could possibly be caused by contamination. 

Intriguingly, individuals from colonies collected in a tree merely 100 m away (OypC) show infection 

rates of 96.3 % (workers) and 100 % (queens).  

In the BR (Una, 2012) population Westeberhardia relative densities increase significantly during 

pupal development (worker and queen pupae combined) from white (early) to brown (late) pupae 

(Npupa white= 9, Npupa brown= 8; t-test: t(14.7)= -4.3, p< 0.001), but is not different between larvae, 

prepupae and early pupae (Figure 5.3b, Supplementary Table S3.1). Westeberhardia titres are higher 

in queen compared to worker pupae (t-test: t(13.3)= 2.6, p= 0.023). A comparison of two to 14 day old 

adults of each morph (queens, workers, winged and wingless males) shows that Westeberhardia titres 

differ significantly across castes (Kruskal-Wallis: X2= 24.2, df= 3, p< 0.001, Figure 5.3e), with queens 

having significantly more Westeberhardia than other morphs, which are not different from each other 

(pairwise Mann-Whitney U-tests with Benjamini-Hochberg correction for multiple testing, 

Supplementary Table S3.2). We calculated generalized linear models (GLMs) with Gaussian 

distribution and identity link function to model age dependency of Westeberhardia in adult females 

(Figure 5.3f). In workers, infection decreases with age (GLM: df= 18, F= 12.7, p= 0.002; 

Supplementary Table S3.3) and is significantly more variable than in queens (Fligner-Killeen test: X2= 

17.0, df= 1, p< 0.001). In queens, Westeberhardia significantly increase with age from day two after 

eclosion to day 48 (GLM: df= 38, F= 29.4, p< 0.001, Supplementary Table S3.4). Virgin and mated 28 

days old queens show no significant difference in infection (Wilcoxon rank sum test: W= 49, p> 0.05). 

 

Localization of Westeberhardia  

Westeberhardia is localized intracellularly in bacteriomes connected to the gut in queen, worker and 

wingless male pupae (Figure 5.4a-c). As in many other insect taxa with bacteriomes, bacteriocytes are 

densely packed with symbiont cells and exhibit enlarged host cell nuclei. In some sections, individual 

symbiont cells or symbiont-filled bacteriocytes were found in the gut lumen, suggesting beginning 

degradation of the bacteriome in later pupal stages. Concordantly, no bacteriomes were detected in 

adult queens (Figure 5.4d). However, both pupal and adult queens show high Westeberhardia 

abundances in the ovaries (Figure 5.4a,d-f). In particular, Westeberhardia is localized predominantly 

in the nurse cells. Several sections captured trans-generational infection events of the symbiont from 

the maternal nurse cells into late stages of the developing oocyte (Figure 5.4f). 
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Figure 5.4: Localization of Westeberhardia in adults and pupae of C. obscurior (from Brazil, Ilhéus, 
2009). Symbionts were stained in longitudinal sections through the abdomen with the Westeberhardia-
specific probe Wcard2-Cy5 (green), and host cell nuclei were counterstained with DAPI (blue). (a-c) 
Localization of Westeberhardia in gut-associated bacteriomes (bac) in pupae of a queen (a), a worker (b), 
and a male (c). Note the additional presence of symbionts in the queen ovaries (ov). (d) Section of the 
abdomen of an adult queen, with symbionts visible in the ovaries (ov). (e-f) Ovaries of an adult queen. 
Symbionts are mainly localized in the nurse cells (nc), but enter the developing oocyte (oc), probably 
during nurse cell depletion (arrowhead). Scale bars: 100 %m (a,b,d), 50 %m (c), and 20 %m (e,f).  

 

Test for reproductive manipulation and paternal inheritance 

Westeberhardia-free OypB queens mated to Westeberhardia-infected BR males produced viable 

diploid female and haploid male offspring, indicating that Westeberhardia does not cause strong CI. 

Furthermore, as infected females generally also produce male offspring, PI is also unlikely to be 

elicited by the symbiont. In addition, Westeberhardia does not seem to be transmitted paternally, as 

revealed by the absence of the diagnostic nrdB gene in the spermatheca content of Westeberhardia-

uninfected queens mated with infected males. Worker pupae emerging from the above crosses were 

also uninfected. 
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Description of ‘Candidatus Westeberhardia cardiocondylae’  

In accordance with the guidelines of the International Committee of Systematic Bacteriology, 

unculturable bacteria should be classified as Candidatus (Murray and Stackebrandt 1995). We propose 

the name ‘Candidatus Westeberhardia cardiocondylae’ strain obscurior for this newly discovered 

gamma3-proteobacterium. The genus name Westeberhardia refers to Mary Jane West-Eberhard, 

expressing our admiration for her far-reaching advances in evolutionary developmental biology. The 

specific epithet, cardiocondylae, indicates that it is an endosymbiont of Cardiocondyla ants.  
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5.4 Discussion 

The 16S sequence of an unknown Enterobacteriaceae isolated from C. obscurior was previously 

published (JA Russell et al. 2009), but the specificity and functionality of this association had not been 

addressed. Here we describe it as ‘Candidatus Westeberhardia cardiocondylae’ strain obscurior and 

provide a first characterization of its relationship with C. obscurior. Phylogenomic analysis indicates 

that Westeberhardia is closely related to Blochmannia, the obligate endosymbiont of Camponotus ants 

(Feldhaar et al. 2007). Nevertheless, its phylogenetic placement has to be considered with caution, due 

to long branch attraction. As already observed by (Husník et al. 2010), the monophyly of the cluster 

formed by Sodalis, Baumannia, Blochmannia and Wigglesworthia, in which Westeberhardia appears, 

needs to be further tested.  

  

Transmission of Westeberhardia  

Maternal transmission of Westeberhardia occurs through a different process than described for other 

endosymbionts (Koga et al. 2012; Balmand et al. 2013). In adult queens Westeberhardia is localized 

in ovarial syncytial nurse cells, which originate from the same germline stem cell as the oocyte and are 

responsible for provisioning of the oocyte with metabolites. During the process of nurse cell depletion, 

when large amounts of cytoplasmic material are channelled into the oocyte (Mahajan-Miklos and 

Cooley 1994), cytoplasmic Westeberhardia are swept into the developing oocyte, ensuring complete 

vertical transmission (Figure 5.4f). 

CI is a widespread phenotype induced by some bacterial endosymbionts (Gotoh et al. 2007; Werren et 

al. 2008). In haplodiploids such as social Hymenoptera, CI affects only diploid offspring, while 

arrhenotokous parthenogenesis results in unfertilized and thereby unaffected haploid male offspring. 

Westeberhardia does not appear to induce strong CI, if any, as uninfected queens mated to infected 

males produced diploid F1 females. Another common phenotype caused by reproductive 

manipulators, the induction of thelytokous parthenogenesis, can also be excluded, as this would lead to 

exclusive female offspring in infected queens. 

In contrast to some other intracellular symbionts (NA Moran and Dunbar 2006; Damiani et al. 2008; 

Watanabe et al. 2014), paternal transmission of Westeberhardia is unlikely as we did not detect 

Westeberhardia DNA in transferred sperm and/or seminal fluids stored in the spermatheca of 

uninfected queens mated to infected males.  
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Westeberhardia as a possible source of a horizontal gene transfer event 

The bacterial gene gpt encoding the xanthine-guanine phosphoribosyltransferase (XPRT, EC: 

2.4.2.22), which was horizontally transferred into the host genome has its closest ortholog in 

Enterobacter, an Enterobacteriaceae. This indicates that Westeberhardia could be the origin of the 

HGT event. However, it could also be a relict of a former symbiont no longer present in C. obscurior 

(Husník et al. 2013). Homologs of the gpt have been identified in most bacterial endosymbionts, 

including Buchnera, Moranella, Blochmannia, Sodalis and Wigglesworthia. The presence of the HGT 

in the OypB lineage suggests either an ancestral association between C. obscurior and Westeberhardia 

and a secondary loss of the symbiont in OypB, or the origin of the HGT from an unknown bacterium 

in the ancestor of both lineages. Westeberhardia is not capable of de novo synthesis of purines, but it 

is capable of producing all purine nucleotides from recovered bases and nucleosides. A functional 

genome annotation revealed the presence of hpt, a gene with similar function to gpt, in the 

Westeberhardia genome. However, RNAseq data show that infected hosts transcribe gpt. Therefore, 

Westeberhardia might be reliant on an effective salvage utilizing the host-encoded gpt in some 

conditions (O'Reilly et al. 1984). Interestingly, gpt expression is higher in larval compared to adult 

queens, indicating that it is not correlated with Westeberhardia titres. Inhibiting gpt expression in 

Westeberhardia-infected and uninfected individuals will help elucidate a putative effect of this gene 

on host and bacteria fitness.  

 

Dependency of Westeberhardia on host-provided metabolites 

With a genome size reduction to 533 kb and a GC-content of 23.4 %, the Westeberhardia genome 

exhibits features of degenerative genome evolution following the transition to obligate symbiosis 

(Moya et al. 2008). In addition to reduced effective population size in host-associated bacteria 

compared to free-living relatives, small effective population size (Ne) of the eusocial host could lead to 

even faster genome degeneration. With a coding density of 70.8 %, the genome is surprisingly loosely 

packed, compared to other endosymbionts with similar-length genomes (88 % coding density on 

average) (McCutcheon and NA Moran 2011). Furthermore, the occurrence of six pseudogenes 

indicates that genome erosion in Westeberhardia is still incomplete. It was previously shown that even 

in advanced mutualistic relationships, endosymbiont genome reduction continues (Gil et al. 2002). 

Nevertheless, despite the substantial genome reduction, Westeberhardia appears capable of DNA 

replication, transcription, translation, and protein folding, suggesting that it is close to a minimal cell 

status (Gil et al. 2004). On the other hand, the lack of dnaA for replication initiation suggests that 

bacterial replication could underlie host control similar to some mitochondria and other 

endosymbionts without dnaA (Shigenobu et al. 2000; Gil et al. 2003). The gene count with only 372 

coding genes and the impairment of essential pathways like cofactor and essential amino acids 

biosynthesis indicate a metabolic dependency on extrinsic resources. In particular, a highly simplified 
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cell envelope and the absence of most transporter genes point towards dependency on the host 

machinery. In this, Westeberhardia resembles B. aphidicola BCc, which also lacks the ability to 

synthesize cell surface components (Pérez-Brocal et al. 2006). Intracellularity allows the host to 

control endosymbiont populations (Vigneron et al. 2012), which together with the lack of dnaA 

suggests that Westeberhardia populations are controlled by C. obscurior. 

 

Potential for mutualism: Shikimate pathway 

Westeberhardia has retained almost the complete shikimate pathway, which produces chorismate, the 

precursor for tryptophan, tyrosine and phenylalanine, but lacks the downstream enzymes necessary for 

synthesis of these aromatic amino acids. However, it can produce 4-hydroxyphenylpyruvate, which 

can then be converted to tyrosine by the host. Tyrosine is a precursor for DOPA and thereby essential 

for cuticle formation in insects (Hopkins and Kramer 1992; Andersen 2012). Insects cannot synthesize 

aromatic amino acids and acquisition from diet and/or provisioning by endosymbionts is a common 

phenomenon. For example, B. aphidicola has evolved overproduction of phenylalanine and tryptophan 

(Lai et al. 1994; Jiménez et al. 2000). Likewise, B. floridanus can synthesize tyrosine, and increased 

tyrosine biosynthesis during the host’s pupal stage (Zientz et al. 2006) coincides with elevated 

Blochmannia titres (Stoll et al. 2010; Ratzka et al. 2013). Accordingly, we found high densities of 

Westeberhardia in late C. obscurior pupae and young adults. Together with the detection of gut-

associated bacteriomes in pupae, this suggests a role of Westeberhardia in cuticle synthesis during 

metamorphosis. However, Westeberhardia may also provide precursors for tryptophan or 

phenylalanine synthesis in the host. Although the precise metabolites provided to the host are unclear 

at this stage, we propose that the retention of the shikimate pathway despite a severe genome reduction 

shows that here the mutualistic nature of Westeberhardia must be most efficient. 

After hatching, Westeberhardia declines slowly in workers but proliferates in queens with age. 

Although virgin queens exhibit significantly reduced egg laying rates compared to mated queens 

(Schrempf et al. 2005), we did not find an increase of Westeberhardia infection with reproductive 

output. Instead, it appears as if the mere availability of reproductive tissue allows proliferation 

of Westeberhardia. As a consequence of reproductive division of labour in a eusocial host, most of the 

Westeberhardia population encounters a dead end. Cardiocondyla workers completely lack ovaries 

(Heinze et al. 2006), thus likely impeding Westeberhardia proliferation in the absence of the 

appropriate microhabitat. In Camponotus floridanus ants, mid-gut connected bacteriomes populated 

by Blochmannia during the pupal stage become symbiont-free in adult queens and workers, while 

queens retain Blochmannia in their ovarioles (Sauer et al. 2000; Wolschin et al. 2004). Likewise, 

symbionts localized in gut-associated bacteriomes of cereal weevils are actively eliminated by 

initiation of apoptosis after cuticle formation is finished, but ovary-associated symbionts are retained 

for vertical transmission (Vigneron et al. 2014). Probably due to slow degeneration of bacteriomes, 
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Westeberhardia was still present in young adult males and workers. Bacteria detected in the gut lumen 

(from degrading bacteriomes) may be the source of continued bacterial infections found in adult 

workers and males. We have not ruled out that the symbiont continues to play a role in adult workers, 

although its general decline suggests that the role is not vital. It remains to be investigated how active 

degradation of bacterial populations in workers benefits individuals and, on a higher level, colony 

performance (Wenseleers et al. 2002). 

 

Population differences cast doubts about the symbiosis status 

We found a naturally occurring host lineage that continues to thrive in the laboratory, questioning the 

essentiality of Westeberhardia, at least under conditions including ad libitum protein provisioning. We 

verified absence of Westeberhardia in freshly collected field colonies and established laboratory 

colonies with different methods and across different developmental stages. It remains elusive why 

Westeberhardia prevalence is so substantially different between colonies of two lineages (OypB, 

OypC) separated by such short distances (<100 m) in the field. This fact could indicate a facultative 

status of Westeberhardia as it occurs with facultative endosymbionts in Acyrthosiphon pisum (NA 

Moran et al. 2005). However, Westeberhardia lacks the main characteristics shared by facultative 

symbionts, even those of a facultative symbiont in the transition to become obligate (i.e., large 

genomes with low coding density and abundance of pseudogenes, presence of repetitive sequences 

and transposable elements, high GC-content (Manzano-Marín and Latorre 2014)). The occurrence of 

Westeberhardia in C. wroughtonii and in worldwide collected samples of C. obscurior indicates an 

ancestral infection, and may suggest that secondary loss of Westeberhardia in OypB could have 

occurred through drift (Reuter et al. 2005). Alternatively the impact of facultative symbionts may 

depend on the particular environmental conditions (Dale and Welburn 2001; Hansen et al. 2007; Haine 

2008), indicating that a shift in diet or different gut microbiota could explain symbiont loss. Future 

comparisons between infected and uninfected hosts with the same or different genetic backgrounds 

under varying environmental conditions will help to reveal potential effects of Westeberhardia on host 

fitness. 

 

Conclusion 

Our study for the first time describes an intracellular mutualist that maintains an obligate relationship 

with its host but can be lost in some conditions. Its genomic organization, metabolic capabilities, 

localization, and prevalence during host development indicate a role of Westeberhardia in host cuticle 

formation, possibly facilitating an invasive lifestyle in nutrient poor arboreal environments. The 

putative monophyly with other endosymbionts facilitating cuticle build-up during insect development 

(Zientz et al. 2006; Vigneron et al. 2014) suggests a single origin of metamorphosis-based symbiosis. 
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Due to novel traits emerging through host-symbiont associations, it is indispensable to evaluate 

possible fitness effects of symbionts on hosts, which are used as model organisms for broad biological 

questions. While symbionts are situated along the boundary between biotic environmental factors and 

genomic composition of the host, it becomes obvious that selection pressures acting on the holobiont 

must be considered when studying adaptation: “Contrary to common belief, environmentally initiated 

novelties may have greater evolutionary potential than mutationally induced ones” (West-Eberhard 

2005a).  
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Chapter 6 

6. General Discussion 
 

6.1 Cardiocondyla obscurior and other Ant Species as 

Laboratory Models in the Genomics Era 

The genus Cardiocondyla has raised scientific interest because of its fascinating fighting males that 

are so profoundly different from the males of other ant species (see Chapter 1.5). In addition, the 

robustness of several species under laboratory conditions led to the application of Cardiocondyla and 

C. obscurior in particular to different fields of research including the study of immunity (e.g. Ugelvig 

et al. 2010), sexual conflict (e.g. Schrempf et al. 2005), local mate competition  

(e.g. Suefuji et al. 2008), reproductive skew (e.g. Yamauchi et al. 2007), ageing (e.g. Schrempf et al. 

2011), alternative reproductive tactics (e.g. Cremer et al. 2010), sex/caste determination  

(e.g. Frohschammer and Heinze 2008), and chemical communication (e.g. Will et al. 2012).  

Part of the motivation of this thesis was to substantiate the available resources for studies using the 

model C. obscurior. The technological progress in high-throughput sequencing techniques over the 

last decade allowed us to sequence the genome of C. obscurior (Chapter 2) and the endosymbiont 

Westeberhardia (Chapter 5), hence providing a solid foundation for future genetic studies. The 

analysis of extensive gene expression data from larvae of known developmental fate (Chapter 3, 

Chapter 4) adds further grounding by demonstrating the suitability of C. obscurior as a laboratory 

model for developmental plasticity and gene expression studies.  

Together, the genetic resources and the established laboratory populations are powerful tools and 

provide a promising framework to extend the use of C. obscurior as a model. Several projects 

applying the here-developed genetic resources have already been initiated during this thesis. For 

example, C. obscurior is currently used to study behavioural genetics of foraging and aggression, the 

genetic basis of ageing, sex determination in haplodiploid species, and the consequences of sexual 

conflict. In addition, further efforts are being made to improve the available genomic resources and to 

extend research on C. obscurior to population genomics and experimental evolution. Furthermore, the 

findings presented in Chapter 2 provide sufficient ground to further analyse the genomic architecture 

and flexibility of C. obscurior with the intention of increasing our understanding of TEs in rapid 

adaptation of invasive species (Stapley et al. 2015).  
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While C. obscurior offers many advantages for laboratory use and, with the developed genomic 

resources, also genetic work, its use is currently restricted to very few research groups. Such 

restrictions also apply to other ant species that are studied in laboratories around the world and the 

establishment of a model species that is widely distributed and used in the myrmecological community 

is still not in sight. Species that meet the requirements to become a consistently used model are rare. 

However, in addition to C. obscurior there are other promising candidates such as the pharaoh ant 

Monomorium pharaonis or the clonal raider ant Cerapachys biroi. 

Similar to C. obscurior, colonies of M. pharaonis and C. biroi can be reared under laboratory 

conditions with relative ease and their genome sequences have been published recently (Oxley et al. 

2014; Mikheyev and Linksvayer 2015). The originally tropical M. pharaonis has been spread globally 

by human commerce and constitutes a massive pest threat in urban environments because of its ability 

to nest in artificial and highly disturbed habitats. Pharaoh ants are highly polygynous with a distinct 

queen-worker polyphenism and colonies regularly produce new reproductives, which mate 

intranidally. In the laboratory, colonies can be manipulated extensively, allowing the application of M. 

pharaonis to a wide range of research approaches (Schmidt et al. 2010; Tay et al. 2014). 

Like C. obscurior and M. pharaonis, C. biroi is a successful invader of new habitats in the tropics and 

subtropics and even fragmented colonies can suffice to establish stable populations (Wetterer et al. 

2012). The motivation to sequence the genome of C. biroi was explicitly “to establish the clonal raider 

ant […] as a model eusocial organism” (Oxley et al. 2014) and some biological features of C. biroi are 

indeed advantageous to this endeavour. For one, colonies of C. biroi comprise only totipotent workers 

that reproduce clonally in a colony cycle with reproductive and brood-care phases. Furthermore, 

colonies of C. biroi consist of genetically virtually identical workers and different clonal lines can 

easily be maintained under laboratory conditions (Teseo et al. 2013). Both phases of the colony cycle 

can be induced experimentally and colonies consisting of phenotypically and genetically different 

clonal lines can be compiled, allowing for precise control over colony and individual phenotypes. 

However, because of its highly derived biology C. biroi cannot be used to study key features of 

eusocial insects, such as the discrete queen-worker polyphenism or effects of indirect fitness.   

In spite of their large potential as laboratory models, C. obscurior, M. pharaonis and C. biroi are only 

used in few myrmecological research institutes and the key to successfully establishing a consistently 

used model likely lies in the distribution and exchange of colonies of different species between 

laboratories. 
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6.2 Phenotypic Plasticity and Transposable Elements as 

Potential Sources for Rapid Adaptation in Cardiocondyla 

obscurior 

Traditionally, evolution by natural selection was considered a slowly advancing process in which 

adaptations and evolutionary innovations emerge through gradual changes over many generations. 

Contrasting this classic evolutionary concept, many empirical studies now provide evidence for rapid 

adaptive evolution over few generations in natural populations facing environmental change (Reznick 

and Ghalambor 2001). In most cases studied so far, such environmental changes are a consequence of 

anthropogenic disturbance such as introduction of alien species, soil contamination with heavy metals, 

or pesticide use (Reznick and Ghalambor 2001). In the face of climate change and ever-increasing 

anthropogenic disturbance of natural habitats, research on rapid adaptation is becoming an 

increasingly important field in ecology, conservation biology, and evolutionary biology (Lee 2002; 

Prentis et al. 2008; Lee and Gelembiuk 2008; Shimada et al. 2009).  

This thesis comprises a first assessment of the potential for rapid adaptive evolution in the invasive ant 

C. obscurior. In general, invasive species are well-suited for studies on rapid adaptation (Prentis et al. 

2008) because successful establishment of new, isolated populations requires rapid evolution of 

locally adapted phenotypes. However, not all species are able to adapt to new environments following 

displacement (Sakai et al. 2001), suggesting that a species’ invasive potential is an evolving 

phenotypic trait under indirect selection (Lee and Gelembiuk 2008). Thus, the “evolution of 

evolvability” (Lee and Gelembiuk 2008) allowing species to rapidly adapt is suggested to be a product 

of natural selection on different traits in a natively fluctuating environment. The biology of 

C. obscurior features several traits that potentially facilitate the establishment of stable populations in 

a changed environment. For one, intranidal mating, colony reproduction by budding, and short 

generation time allow colonies of C. obscurior to reproduce and expand rapidly after displacement. In 

addition, the tendency to nest at easily disturbed, ephemeral sites indicates a high level of flexibility of 

colonies and adaptation to novel food sources is expected to be simple for generalist species like 

C. obscurior. Furthermore, for what is known from laboratory experience, colonies of C. obscurior are 

highly robust and have a high potential for recovery after population decline. Both, robustness (Lee 

and Gelembiuk 2008) and the ability/possibility to recover a population after decline (Reznick and 

Ghalambor 2001) have been suggested as beneficial pre-adaptations to invasiveness and rapid 

adaptability. Finally, if local conditions become too harsh winged males of C. obscurior potentially 

enable dispersal and outbreeding to further increase genetic variation, even though empiric evidence 

for the adaptive value of winged males is still lacking.  

Like any other form of natural selection, rapid adaptation generally requires genetic variation within a 

population. Such variation can either result from formerly cryptic genetic variation (CGV, see below) 
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that is exposed to selection by shifting conditions or arise from de novo mutation (Prentis et al. 2008). 

In addition to ecological and life-history traits, high levels of developmental plasticity and the peculiar 

genomic distribution of TEs might render C. obscurior particularly well adapted to endure and prosper 

in a changing environment. 

 

In general, stress and fluctuating selection pressures in a novel environment are expected to increase 

mutation rate, either as an adaptive response or as a simple by-product of physiological stress 

(reviewed in Lee and Gelembiuk 2008). Among the factors affecting the mutation rate under stressful 

conditions, TEs are particularly powerful in restructuring the genome and transcriptome (see 

Chapter 1). Thus, the increase in TE activity following exposure to a new environment could facilitate 

rapid adaptations to novel environments by generating a substantial amount of genetic and phenotypic 

variation in developing populations (Prentis et al. 2008; Barrón et al. 2014; Stapley et al. 2015). In 

accordance, the genomic analysis presented in Chapter 2 suggests that TEs are of vital importance to 

the adaptability of C. obscurior. The accumulation of TEs in discrete regions of the genome 

furthermore indicates that their localization is not entirely random but shaped by evolutionary 

constraints and selection. Thus in C. obscurior, TEs appear to be partially domesticated, allowing the 

host to confine the disruptive potential to certain genomic regions and decrease the likelihood of 

disruptive mutations. Whether this biased distribution of TEs evolved in response to displacement to 

novel environments or whether it constitutes a pre-adaptation to invasiveness remains elusive as long 

as C. obscurior has not been studied in its native range. In general however, contemporary concepts 

assume that a species’ invasive potential is shaped by its evolutionary history and that adaptations, 

which evolved in a species’ native range may also facilitate rapid adaptations to novel environments 

(Lee and Gelembiuk 2008).  

 

In addition to de novo arising mutations, the exposure of formerly cryptic genetic variation is an 

important source of genetic and phenotypic variation in rapid adaptations. Under constant conditions, 

a large fraction of the standing genetic variation between individuals has little effect on the range of 

phenotypes expressed in a population. As a consequence, such effectively neutral polymorphisms can 

accumulate in a population, constituting a rich source of evolutionary potential that can get uncovered 

by changed environmental conditions (Gibson and Dworkin 2004). 

Key mechanisms to the accumulation of CGV are phenotypic plasticity and canalization (phenotypic 

robustness) (Schlichting 2004; Schlichting and Wund 2014). By adaptively adjusting the expression of 

a trait in a compensatory response, phenotypic plasticity buffers the effects of novel genetic variants, 

thus enabling the accumulation of CGV (Moczek 2008; Pfennig et al. 2010). In addition, plastic trait 

expression should promote the accumulation of genetic variation because conditionally expressed 
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traits are less exposed to selection compared to constitutively expressed traits (Kawecki 1994; Snell-

Rood et al. 2010; Ledon-Rettig et al. 2014). Similarly, canalization by which phenotypic traits remain 

constant even under changing genetic or environmental conditions promotes the accumulation of CGV 

(Gibson and Dworkin 2004; Schlichting 2008).  

 

However, environmental change disturbs the equilibrium of canalized systems and previously 

unexpressed, aberrant phenotypic traits can become exposed by plasticity.  By translating formerly 

cryptic genetic variation into phenotypic variation, exposure of CGV can provide a rich substrate for 

natural selection by exerting strong phenotypic effects. Thus, plasticity and CGV hold much potential 

for rapid adaptation under new environmental conditions (Schlichting 2008). Another important 

contribution of phenotypic plasticity to rapid evolution is the potential to produce adapted phenotypes 

independent of genetic variation (phenotypic accommodation; West-Eberhard 2005b), which on the 

one hand allows organism to respond to changed environmental conditions (“buying time”, 

Schlichting 2004) and on the other hand enable the successive manifestation of adaptive phenotypes 

through genetic accommodation (West-Eberhard 2005a; Pigliucci et al. 2006).  

 

The importance of phenotypic plasticity in rapid adaptations raises the question to what extent 

plasticity contributes to the adaptability of C. obscurior to novel habitats. Many ant species are 

successful invaders and tramps (Suarez et al. 2010), suggesting an increased potential for 

contemporary adaptation in these species. In general, the astonishing ecological diversity of ants 

(Hölldobler and Wilson 1990; Guénard 2013) implies a high level of adaptability over evolutionary 

time, although this may not be related to generally higher levels of plasticity in ants. However, in 

invasive species plasticity tends to be significantly increased compared to non-invasive species, as 

shown in plants (Davidson et al. 2011). Thus, the invasive success of C. obscurior and other ants 

might at least in part be due to higher levels of phenotypic plasticity.  

 

If phenotypic plasticity and TEs are involved in the evolution of rapid adaptations in C. obscurior, 

their contributions likely differ in timing and onset. Following the introduction to an altered 

environment, phenotypic plasticity likely buffers changed selection pressures through phenotypic 

accommodation, allowing incipient populations to persevere the initial exposure to new conditions. In 

addition, exposed CGV in incipient populations may generate phenotypic variability on which natural 

selection can act to select locally adapted variants. Concomitantly, exposure to environmental stress 

leads to the liberation of TEs, which then begin to generate genetic variation in the population, thus 

producing additional potential for adaptive phenotypic variants.  
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As addressed in Chapter 5, endosymbionts are an additional source of phenotypic novelty for a host 

and exposure to a novel environment can substantially affect host-symbiont interactions (Ferrari and 

Vavre 2011; White 2011). For example, novel environments can render a formerly obligate symbiosis 

obsolete for the host if symbiont-conferred traits are no longer beneficial under a changed selection 

regime. Similarly, acquisition of alternative symbionts through horizontal transfer can cause 

dissociation of previously well-established, ancestral symbiosis. The association of C. obscurior with 

Westeberhardia offers an interesting system to study the dynamics of host-symbiont interactions under 

the influence of regular displacement of the host.  

The current model of the Westeberhardia-Cardiocondyla symbiosis suggests a role for the 

endosymbiont in provisioning metabolites for proper development to the host. The lability of this 

association however is revealed by the discovery of a naturally endosymbiont-free strain of 

C. obscurior in Japan. Two different scenarios can explain the disruption of the symbiosis: either the 

endosymbiont was lost through drift, which would require the subsequent evolution of compensatory 

mechanisms in the host or, vice versa, the host successively became independent from the symbiont, 

eventually resulting in the disruption of the symbiosis and the loss of the endosymbiont. Loss through 

drift would require rapid compensatory evolution in the host, which could involve mechanisms 

outlined above or the acquisition of a novel endosymbiont (Koga et al. 2003). Alternatively, the loss of 

Westeberhardia could present a case of endosymbiont replacement, which is known to occur in 

invasive species (Lefèvre et al. 2004). Other mechanisms by which Westeberhardia could have 

become obsolete in the Japanese strain involve horizontal gene transfer (Lefèvre et al. 2004; McNulty 

et al. 2010; Hotopp 2013) or a shift in the ecological niche occupied by the host strain.  

 

6.3 Future Prospects 

In spite of several years of experience from laboratory studies on C. obscurior, many aspects of its 

biology remain enigmatic. For example, while the expression of WMs has been suspected to be a 

response to stressful environmental conditions (Cremer and Heinze 2003), they are never encountered 

in the introduced populations studied so far. Hence, under natural conditions WMs are apparently not 

expressed, raising the question whether WMs constitute an atavistic, no longer expressed phenotype 

that is a mere remnant of ancestral developmental potential (Rajakumar et al. 2012). Alternatively, 

expression of WMs might only be triggered by specific cues that do not occur in the habitats studied 

so far (e.g. sudden temperature drop, Schrempf and Heinze 2006). If so, the WM phenotype should be 

under relaxed selection leading to the decay of associated traits by accumulation of CGV in underlying 

loci. However, the analyses of gene expression patterns in larvae presented in Chapters 3 and 4 did not 

reveal an increased mutational rate in WM-biased genes. According to these findings relaxed selection 

is not increased in genes underlying the WM phenotype, suggesting that under certain natural 
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conditions WMs are likely expressed and adaptive. Since WMs are common in other species of the 

genus (Oettler et al. 2010) and only introduced populations of C. obscurior have been studied so far, 

one might speculate whether WMs are adaptive and regularly produced in native populations of 

C. obscurior as well. Similar to the hidden supersoldier phenotype in Pheidole (Rajakumar et al. 2012) 

WM expression can be induced in C. obscurior by aberrant rearing conditions, allowing us to study 

development and life history of WMs in detail. However, many of the open questions regarding the 

evolution of WM remain unanswered until C. obscurior can be studied in its native range.  

Access to native populations of C. obscurior would not only help to uncover the evolutionary 

significance of the WM phenotype, it would also help to assess the impact of this species’ invasion 

history on its biology. Even though C. obscurior is well-equipped to colonize new habitats, it remains 

elusive which adaptive traits evolved prior to its worldwide spread – as pre-adaptations in its native 

range (Lee and Gelembiuk 2008) – and which traits evolved in response to frequent displacement of 

population fragments.  

While the study of genome dynamics presented in Chapter 2 revealed TEs as a potential agent for 

rapid adaptation, further studies are necessary to deepen our understanding of the contribution of TEs 

to phenotypic evolution in C. obscurior. Current efforts to resolve the genomic structure of 

C. obscurior to chromosome-level using RAD sequencing (Klein et al. unpublished) will provide 

insight into the chromosomal distribution of TE islands. Certain chromosomal regions tend to 

accumulate TEs due to reduced recombination rates and low gene content (Rizzon et al. 2002). If TE 

islands in C. obscurior are in fact localized in such regions it is likely that they are a product of 

relaxed selection and thus unlikely to have evolved as an adaptation to repeated exposure to novel 

environments.  

In general, improving the available genomic resources is key to a better understanding of adaptive 

evolution in C. obscurior. Applying recently generated gene expression data (e.g. Chapter 3) to the 

annotation of coding and non-coding genes, and active TEs will be a first step to uncovering the 

transcript diversity of C. obscurior. The annotation of TEs can furthermore be applied to phylogenetic 

reconstruction of the evolutionary history of mobile elements in C. obscurior (Le Rouzic et al. 2013), 

allowing insight into short- and long-term TE dynamics. Unravelling contemporary dynamics of TEs 

and their potential contribution to rapid adaptations is possible by experimental evolution. Due to the 

relatively short generation time of C. obscurior, colonies can be reared under varying selection 

regimes and environmental stress over several generations such as changes in rearing temperature and 

humidity, or even pesticide exposure. On the one hand, by performing transposon display assays of 

stressed and unstressed lines in each generation differences in TE activity can be quantified 

(Vandenbussche et al. 2013), allowing insight into genomic stress responses. On the other hand, 

phenotypic responses to different selection regimes can be quantified with regard to the potential 

emergence of contemporary adaptations. 
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Overall, the available resources specific to C. obscurior and general technical progress in the analysis 

of genome dynamics now allow for various research approaches. However, to resolve the evolutionary 

history and the evolutionary perspective of C. obscurior in detail, it will be important to study the 

species with regard to its native environment. Thus, acquisition of live colonies from the native range 

as well as other introduced populations will be of substantial value for future research.  
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Chapter 7 

7. Summary 
 

Contemporary evolutionary concepts emphasize the importance of environment, development and 

genetics in shaping an organism’s phenotype. Natural selection requires phenotypic differences 

between individuals, which arise by interactions of environmental factors with genetic systems and are 

channelled by developmental constraints. This thesis on phenotypic evolution in the invasive ant 

C. obscurior focuses on different sources for phenotypic variation. A brief overview of genetic and 

environmental mechanisms underlying the evolution of phenotypic novelty is provided in Chapter 1, 

followed by an introduction of the study organism with an emphasis on its feasibility for laboratory 

studies.  

Chapter 2 comprises an assessment of the genomic and phenotypic divergence of two separated 

C. obscurior populations from Brazil and Japan. The genomic structure and genetic differences 

between the populations suggest transposable elements (TEs) as important agents in generating 

genetic novelty and potential drivers of rapid adaptation. The discrete genomic distribution patterns of 

TEs and gene families, differences in gene expression regulation, and signatures of differential genetic 

divergence reveal a functional sub-structuring of the genome into TE-rich “TE islands” and TE-

depleted “low density regions”.  

In Chapter 3, the developmental genetic basis of polyphenism is studied in C. obscurior. Based on 

gene expression data from 28 individually sequenced larvae from four different developmental 

trajectories (queens, workers, winged males, ergatoid males), this chapter reveals that functionally 

distinct sets of genes are recruited to the four different developmental pathways, with an emphasis on 

sphingolipid metabolic genes.  

Chapter 4 applies the gene expression data compiled in Chapter 3 in a different context, addressing 

consequences of biased gene expression on gene evolution. The conducted analyses show that gene 

expression bias in larvae correlates negatively with average expression levels, but positively with 

overall expression variation, larvae-to-adult expression bias, sequence divergence within and between 

species, and relative CpG content. The chapter concludes with a discussion on changing selection 

regimes and implications for the evolution of biased gene expression.  

The study presented in Chapter 5 contains the first description of the putatively mutualistic 

endosymbiosis between Cardiocondyla and the enterobacterium Candidatus Westeberhardia 
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cardiocondylae (“Westeberhardia”). The symbiosis is characterized based on functional and 

phylogenetic analyses of the endosymbiont’s genome and an assessment of infection dynamics across 

developmental stages and different populations. The results suggest that Westeberhardia facilitates 

development and metamorphosis of its host by provisioning 4-hydroxyphenylpyruvate or derived 

metabolites that are required for cuticle formation. In spite of the apparent benefits of hosting 

Westeberhardia, a sub-population of C. obscurior in Japan was found to be devoid of the 

endosymbiont, indicating that the symbiosis is not strictly obligatory.  

The general discussion in Chapter 6 begins with a critical assessment and comparison of C. obscurior 

and two other well-suited ant species for their potential to become widely used model systems. The 

chapter continues with a discussion of potential sources of rapid adaptation in C. obscurior in an 

attempt to synthesize different topics addressed in Chapters 2 to 5. Chapter 6 concludes with 

discussing possible challenges and directions of future studies on the evolutionary potential of 

C. obscurior.  
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S1.1.1 Supplementary Methods 
 

Organisms 

Live colonies of Cardiocondyla obscurior were collected from aborted fruits on coconut trees (Cocos 

nucifera) in Brazil (collected in 2009) and from bark cavities in coral trees (Erythrina sp.) in Japan 

(collected in 2010). The colonies were transferred to Regensburg and placed in plastered petri dishes. 

Food (honey-soaked shreds of paper; Drosophila or small chunks of Periplaneta americana) and 

water were provided every three days and colonies were kept in incubators under constant conditions 

(12h 28° C light/12h 24° C dark). We emphasize that this is one species because recombinant inbred 

lines have produced viable offspring for over three years (3-4 generation / year) in our lab. Sampled 

individuals for subsequent DNA/RNA extractions were transferred to Eppendorf tubes, snap-frozen in 

liquid nitrogen and stored at -80° C.  

 

Colony size 

To assess differences in colony structure we used a more recent data set with detailed collection data. 

Colonies collected and censused immediately in November 2013 (BR) and April 2011 (JP) contained 

similar numbers of workers (Mann Whitney U = 778.5, Z = -0.634, p = 0.526; BR: median = 28, 

quartiles 21.75 and 51.25, n = 27 colonies; JP: median = 29, quartiles 16 and 47, n = 64). In contrast 

queen number was higher in Japan (Mann Whitney U = 501, Z = -3.084, p < 0.003; BR: 5 queens, 

quartiles 3, 8, n = 27 JP: 10 queens, quartiles 4, 19, n = 64). 

 

Morphometry 

We compared body size of workers, queens and males of each population drawn randomly from 

different source colonies, using four continuous morphological characters (head width (HW), head 

length (HL), thorax width (TW), and thorax length (TL)), measured under a Keyence VH Z00R. In 

workers HL and HW were correlated (Pearson’s r = 0.233, p = 0.028, n = 97) as well as TL and TW (r 

= 0.257, p = 0.012, n = 96). Workers from the BR lineage had smaller HW (Mann Whitney U = 394, Z 

= -5.647, p < 0.001) and smaller TW (U = 36, Z = -8179, p < 0.001). In queens all four characters 

were tightly correlated with each other (minimum Pearson correlation HL – TW, r = 0.492, p < 0.001, 

n = 59). Queens from BR and JP did not differ in head size (HW: U = 378, Z =  -0.864, p = 0.387; HL: 

U = 312, Z = -1,865, p = 0.062) but BR queens had smaller thoraces (TL: U = 171, Z = -4.003, p < 

0.001; TW: U = 168, Z = -4.048, p < 0.001). In wingless males the characters were also strongly 

correlated (minimum Pearson correlation HL – TW, r = 0.571, p = 0.002, n = 27) but did not differ 

between BR and JP (HL: U = 84, Z = -0.340, p = 0.756; TW: U = 75, Z = -0.776, p = 0.458). 
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Behavioural assays 

We tested the behaviour of experimental colonies towards individual workers or queens from either 

the same or the other lineage. Experimental colonies consisted of 20 workers, one mated queen, and 

brood. Colonies were housed in small petri dishes with plaster flooring and a 5-cent sized deep 

indentation covered by a dark red cover slide. These colonies were allowed to adjust to their new nest 

for one week prior to the trials. Trials were performed under dimmed ambient red light (6 lux). For 

each trial we removed the cover slide carefully and waited for five minutes to minimize effects by the 

disturbance before placing one alien individual into the vicinity of the nest. In addition to workers and 

mated queens of C. obscurior, we also performed trials with individual workers of Wasmannia 

auropunctata (Waur), to assess aggression against another ant species. After the introduction, we 

noted the behaviour for a period of 5 minutes or until the intruder was killed. We scored the behaviour 

with 1: Light antennation, 2: Antennation, display of mandible threat, 3: Antennation and short 

biting/pinches, 4: Antennation, short immobilization and biting, 5: Severe biting, occasional stinging 

and death of the intruder. Trials for which no interaction between intruder and resident occurred within 

5 minutes were discarded. We performed a GLM comparing high aggressive interactions (score 5) 

versus all other categories combined, separately for workers and queens (Supplementary Tables 

S1.10-S1.11).  

 

Chemical analyses 

We analysed 8 BR and 8 JP colonies for differences in cuticular lipid profiles. Ants were extracted for 

10 min in batches of 6 individuals in 40 !l Hexane containing 30 ng methyl decanoate as internal 

standard. Extracts were analysed on a GC2010 gas-chromatograph (GC) connected to a QP2010 plus 

mass-spectrometer (MS; both Shimadzu, Duisburg, Germany). The GC was equipped with a non-polar 

capillary column (BPX-5, 30 m length, 0.25 mm inner diameter, 0.25 !m film thickness; SGE 

Analytical Science, Milton Keynes, UK). Helium was used as carrier gas with a constant linear 

velocity of 50 cm s-1. The temperature program of the GC-oven started at 80 °C and was raised by 5° 

C min-1 to 300° C. The MS was run in electron impact (EI) mode at 70 eV and set to a scan range from 

35 to 600 mz-1. All samples were injected split-less at an injector temperature of 300° C. n-Alkanes 

were identified by comparing retention times and mass spectra with those of synthetic reference 

compounds. Methyl-branched CHCs were identified by interpretation of diagnostic ions and 

comparison of linear retention indices with literature data (Carlson et al. 1998). 

For further analysis we used only those peaks that had a minimal area of 1 % in at least 75 % of the 

samples of at least one lineage. Twenty-two Aitchison-normalized peak areas were subjected to a 

principal component analysis followed by linear discriminant analysis with leave-one-out cross 

validation on the first four PCs using the R package vegan (Oksanen et al. 2013). 
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DNA extraction 

The reference genome is based on one colony that was kept under strict inbreeding in the lab for four 

generations prior to extractions. Sampled ants were ground with disposable micro-tube pestles and 

whole DNA was extracted with CTAB (Sambrook and Russell 2001). Extracts were treated with 

proteinase K and RNAse H, washed twice with ethanol, dried, and finally dissolved in sterile water. 

We extracted DNA from 900 ants, which were pooled to be sequenced with 454 technology. Extracts 

of five, ten and 30 Brazilian males and 26 Japanese males, respectively were used for Illumina 

libraries.  

 

DNA library preparation and sequencing 

Absorbance measurements at 260 nm and 280 nm (NanoDrop 1000) and Agilent Bioanalyzer traces 

were obtained for basic quality control of DNA samples designated for paired-end Illumina 

sequencing. Shearing of extracted DNA was performed on a Covaris S2 AFA system. For Illumina 

sequencing, we generated 200 and 500 bp insert libraries with Illumina’s TruSeq DNA sample 

preparation kits from 5 !g of total DNA. Quality control and library preparation were carried out by 

the KFB sequencing centre of the University Regensburg, sequencing runs were performed by 

Illumina (Hayward, USA) on a HiSeq2000. 

Quality control, library preparation, and sequencing of 8-kb and 20-kb long paired end (LPE) libraries 

(454, Roche) were carried out by Eurofins MWG Operon (Ebersberg, Germany). Extracted DNA was 

fragmented into the appropriate fragment sizes (8 kb and 20 kb) using the HydroShear DNA Shearing 

Device (GeneMachine). Further library preparation was performed according to “GS FLX Titanium 

Paired End Library Prep 20+8kb Span Method Manual” before sequencing on a GS FLX Titanium 

(Roche). 

 

De novo genome assembly 

We generated relatively few genomic 454 reads – about 2.3x genome coverage, a single run of the 

sequencer. Additional coverage was provided by Illumina reads and connectivity was provided by the 

8-kb and 20-kb 454 mate pairs (Supplementary Table S1.2). The resulting N50 scaffold and contig 

sizes of the assembly show that the data was sufficient for high quality assembly (Supplementary 

Table S1.13). The assembly was created with MSR-CA version 1.4 open source assembler (University 

of Maryland genome assembly group at ftp.genome.umd.edu/pub/MSR-CA/). The MSR-CA 

assembler combines a deBruijn graph strategy with the traditional Overlap-Layout-Consensus 

employed by various assembly programs for Sanger-based projects (Arachne, PCAP, CABOG, etc.). 

The MSR-CA uses a modified version of CABOG version 6.1 for contiging and scaffolding. The 

combined strategy allowed us to natively combine the short 100 bp Illumina reads and longer 454 

reads in a single assembly without resorting to an approach that would require one to assemble each 
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type of data separately and then creating a combined assembly. Total run time for the assembly was 

approximately 3 days on a 16-core AMD Opteron computer with 128 Gb RAM.  

 

Using CEGMA (Parra et al. 2007) on the genome sequence to assess the completeness of the 

assembly, we confirmed complete presence of 244 of 248 ultra-conserved genes (98.39 %). We 

analysed seven other published ant genomes with CEGMA and they all performed similarly well, with 

the draft genome of L. humile containing the highest number (245) of complete ultra-conserved genes. 

The other genomes contained 228 (S. invicta), 241 (C. floridanus), 234 (A. cephalotes), 243 (A. 

echinatior), 243 (P. barbatus), and 242 (H. saltator) complete copies. The percentage of core 

eukaryotic genes with more than one complete ortholog was elevated in C. obscurior (23.77 %), 

compared to the other analysed ant genomes (9.65 % - 12.40 %). 

 

Whole RNA extraction, normalized cDNA library preparation, and transcriptome 

assembly 

We sampled individuals from the same BR colony that was used for the genomic DNA sequencing. 

Whole RNA was extracted from separate pools of eggs, the three larval stages, prepupae, pupal and 

different adult stages of queens, workers, ergatoid males and winged males using TRIzol (Life 

technologies) and subsequent Microcon purification (Millipore). Equal quantities of RNA from each 

extract were combined in a single pool, which was subsequently used to generate a normalized, 

random-primed cDNA library for emPCR-based sequencing. Sequencing was carried out on a GS 

FLX using Titanium series chemistry by Eurofins MWG Operon (Ebersberg, Germany), generating 1 

245,994 reads (0.4 Gb).  

We used the FastX toolkit (hannonlab.cshl.edu/fastx_toolkit/) for quality control of raw reads and only 

kept high quality reads (length 10-550 bases, minimum quality scores of 20 for 70 % of the called 

bases). The remaining 1,122,247 reads were submitted to the reference based transcriptome assembly 

with Newbler v2.6 (Roche, options “-cdna -gref -ml 60 -mi 95”). We generated a total of 19,325 

contigs ranging between 500 and 12,699 bases length (N50 1 155 bases) that were supplied as EST 

evidence to MAKER in the subsequent gene annotation. 

 

Gene annotation 

MAKER version 2.20 (Holt and Yandell 2010) was run on the C. obscurior draft genome using the 

assembled transcriptome, amino acid sequence data from Swiss-prot and the ant genomes portal 

(Supplementary Table S1.14), in addition to hand-curated amino acid sequence for desaturase proteins 

in Acromyrmex echinatior and Pogonomyrmex barbatus (Simola et al. 2013). Repetitive regions were 

masked using a custom repeat library constructed with RepeatModeler 

(repeatmasker.org/RepeatModeler.html), all organisms in Repbase (Jurka et al. 2005), and a list of 

known transposable elements in MAKER. Ab initio gene predictors (GeneMark (Ter-Hovhannisyan et 
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al. 2008), Augustus (Stanke et al. 2006), and SNAP (Korf 2004)) were trained on the assembly and 

also used by MAKER to generate gene models.  

The official gene set contains 17,552 genes, of which 9,552 genes contain a known protein domain as 

detected by IPRScan (Quevillon et al. 2005) and 72.5 % of the genes in the final gene set have an 

AED (annotation edit distance) of less than 0.5, which is consistent with a well-annotated genome  

(Holt and Yandell 2010). The total number of ab silicio predicted genes falls within the range of 

recent estimates for the other sequenced ant species (Libbrecht et al. 2013). 

A comparison of the gene set with seven other ant genomes, Apis mellifera and Nasonia vitripennis 

using orthologous groups annotated with OrthoDB (Waterhouse et al. 2012) revealed extensive 

duplication events in Cobs and Nvit (Supplementary Table S1.15). 

 

Functional annotation of Cobs1.4 genes 

Gene Ontology (GO) term annotation for Cobs1.4 genes was done using the Blast2GO pipeline 

(Conesa and Götz 2008). Predicted protein sequences for each gene were blasted against the non-

redundant NCBI protein database nr (retrieved May, 3rd 2013) and parsed through Interpro scan (IPS 

5-RC6). BLASTx returned hits with e-values less than 1e-10 for ~70 % of the transcripts and 53,818 

Interpro domains were annotated in 9,252 gene models. Using Blast2gPipe (v2.5, default settings), 

43,166 GO terms were retrieved for 8,908 genes. We also used the Blast2go BDA system to assign 

provisional gene aliases for 3,415 genes. All computations were performed on the Queen Mary 

University of London SBCS-informatics Apocrita compute facility. 

 

Repeat annotation 

Our goal was to use existing repeat prediction tools to generate de novo repeat libraries for several 

insect genomes. To this end, we implemented a pipeline that has several repetitive element prediction 

tools at its core.  

Our pipeline combines results from RepeatModeler (v1.04) and PILER-DF (Edgar and Myers 2005; 

DePristo et al. 2011). RepeatModeler is a wrapper around two de novo repetitive element detection 

algorithms, RECON and RepeatScout. It also uses TandemRepeatsFinder (Benson 1999) to search for 

simple repeats and RepeatMasker for masking and annotating repeat elements. PILER-DF is not a part 

of the RepeatModeler package, but is also used for repeat prediction. For both RepeatModeler and 

PILER-DF, the output consists of consensus sequences corresponding to repetitive elements in the 

input genome. Essentially, the repetitive elements found throughout the input genome are clustered 

into distinct repeat “families” based on similarity of sequence. A repeat “family” sequence can be 

thought of as a best representative consensus for all of its member sequences. Consensus sequences 

are then pooled into a repetitive element library for this input genome. In a latter part of the pipeline, 

we will use our consensus repeat library to scan our genome of interest to find repeat elements. 
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The first part of the pipeline involves generating repeat family sequences using the tools mentioned 

above. In the next part of the pipeline we (1) combined RepeatModeler and PILER results, (2) ran 

quality control, (3) added additional annotations for consensus repeat sequences. Combining the 

results of multiple prediction tools will inevitably result in duplicates. To remove duplicates, we 

performed an all-by-all sequence comparison of our combined repeat prediction libraries and retained 

only one from pairs that show 80% identity over 80% of length (length of shorter sequence).  

One pitfall of repeat prediction is that false positives are often genes or gene families containing 

transposable element-like domains or simple repeat domains (such as the calx-beta motif). When we 

developed this pipeline using the genomes of various fruit flies, L. humile and A. cephalotes, we found 

that the native quality controls in RepeatModeler and PILER did not sufficiently filter false positives. 

Thus, we enforced a stricter threshold. In our current pipeline, we used the genome of Drosophila 

melanogaster as a reference to find false positives (BLASTx hits with at least 50% identity over 50% 

length), which are removed. We arrived at these Blast parameter thresholds through a combination of 

Blast searches and manual curation of false positives in several genomes. Although 50/50 is a safe 

threshold for not including genes into a repeat library, we note that a hard sequence similarity cut-off 

such as ours serves as a coarse filter. 

 

While the RepeatModeler pipeline annotates its repeat predictions using RepBase (Smith et al. 2007), 

PILER has no such functionality. We annotated PILER consensus repeats using RepeatMasker, which 

uses RepBase as a reference. Additionally, we scanned all consensus repeats for the presence of long 

terminal repeats (LTR) or terminal inverted repeats (TIR) using custom scripts. After all annotations 

were updated, the final C. obscurior repeat library was output in FASTA and EMBL format.  

 

For predicting repetitive elements in the C. obscurior genome, we added a library for C. obscurior 

generated in a first run of the pipeline to our master library consisting of the following: the latest 

RepBase (at the time, this was version 20121104), our de novo consensus repeat libraries generated 

from the genomes of 7 ants, 6 bees/wasps, and 12 drosophilid flies (see below) and reran the pipeline.  

 

1. Ants – Atta cephalotes, Acromyrmex echinatior, Camponotus floridanus, Cardiocondyla 

obscurior, Harpegnathos saltator, Linepithema humile, Pogonomyrmex barbatus, 

Solenopsis invicta  

2. Bees/Wasps – Apis florea, Apis mellifera, Bombus terrestris, Megachile rotundata, 

Nasonia vitripennis 

3. Flies – D. ananassae, D. erecta, D. grimshawi, D. melanogaster, D. mojavensis, D. 

pseudoobscura, D. persimilis, D. sechellia, D. simulans, D. virilis, D. willistoni, D. 

yakuba 
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We used CENSOR (Kohany et al. 2006) for reference-based annotation of repetitive elements in C. 

obscurior. Our master repeat library was used as a reference. CENSOR uses simplistic filters such as 

seg, xnu, and dust to search for tandem repeats. We supplemented this with our own 

TandemRepeatsFinder (TRF) results. All hits to our master library were recorded in a GFF3 format 

file.  

 

Mapping of genomic reads against the Cobs1.4 reference genome 

For each lineage, we randomly sampled 140 M 100 bp reads from libraries generated from 26 (JP) and 

30 (BR) male pupae. Raw reads were parsed through quality filtration and adapter trimming 

(Trimmomatic v0.22 (usadellab.org/cms/?page=trimmomatic), options: HEADCROP:7 LEADING:28 

TRAILING:28 SLIDINGWINDOW:10:10) and mapped against the BR reference genome with BWA 

samse v0.5.9-r16 (Li and Durbin 2010) in single end mode. Ambiguous reads were re-aligned with 

Stampy v1.0.21 (Lunter and Goodson 2011; Langmead and Salzberg 2012) to reduce misalignments 

(Nielsen et al. 2011). Aligned reads were stored in SAM format. 

 

De novo assembly of unmapped reads 

We extracted 23,054,888 Illumina reads generated from the JP lineage that could not be mapped 

against the reference genome using custom perl scripts. After filtering with Trimmomatic v0.22 

(HEADCROP:7 LEADING:28 TRAILING:28 SLIDINGWINDOW:10:10), we generated de novo 

assemblies of these reads using velvetoptimizer v2.2.4 

(bioinformatics.net.au/software.velvetoptimiser.shtml) with velvet 1.2.07 (Zerbino and Birney 2008). 

The optimised assembly contained 144,664 contigs (N50 8.7 kb, mean length 1.2 kb). We removed 

short contigs, contigs with extreme coverage, and contigs returning BLASTn hits against the BR raw 

draft assembly with an e-value < 1e-10, leaving a final set of 4,108 contigs (N50 0.4 kb, mean length 

0.34 kb) not present in the BR genome assembly. These contigs were blasted (BLASTx) against 

NCBI’s non-redundant database (retrieved May, 3rd 2013) and against the Cobs1.4 proteins. Contigs 

without hits below an e-value of 1e-10 in eukaryotes or with hits against a Cobs1.4 protein (e-value 

below 1e-10) were removed, producing a set of 17 contigs containing an open-reading frame that are 

only present in the JP genome. 

 

Calculation of sliding windows 

One kb windows of different stats (TEs, exons, SNPs, coverage) were calculated for all scaffolds 

based on GFF, VCF, and SAM files. For GFF and VCF files, custom bash and perl scripts were used 

to calculated TE and exon bases per 1 kb, and variant calls (see below) per 1 kb. Coverage per 1 kb 

was calculated from SAM files, using samtools’ depth algorithm (Li 2011) and custom bash and perl 

scripts. Subsequent processing, calculating of 200 kb sliding windows, and plotting of the data was 

performed with R v3.0.0 (r-project.org). 
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Detection of small-scale genomic structural variants 

To identify differences in the genome affecting genes, we filtered 1-kb windows (see above) where 

log2 coverage ratio (BR/JP) was below -0.8 or above 0.8. Values below -0.8 suggest either regions of 

low coverage in BR or regions of elevated coverage in JP, vice versa for values above 0.8. We applied 

a second filter based on exon and TE content of each individual window and selected only those 

windows containing more annotated exon than TE bases, thus focusing on windows dominated by 

exonic over transposon sequence. A list of candidate genes was compiled based on intersection of the 

MAKER annotation with the list of candidate 1-kb windows. The absolute base-wise coverage for BR 

and JP as well as the log2 coverage ratio were plotted against the genomic position and candidate 

genes were manually inspected and classified as either partial or full gene deletions or duplications. 

Experimental proof-of-principle was conducted by PCR and Sanger sequencing for two deletion 

candidates (Cobs_13563 and Cobs_01070) and by real-time quantitative PCR for four duplication 

candidates (Cobs_13806, Cobs_17872, Cobs_13486, and Cobs_16853) (see Supplementary Figure 

S1.7). For deletion candidates, we designed primers spanning the putative deletion and performed 

PCR on extracted genomic DNA for both lineages. PCR products were purified and Sanger sequenced 

to confirm the deletion. For duplication candidates, we designed primers within the putative duplicated 

genomic sequences and performed qPCR experiments (normalization against a single copy gene 

(actin, Cobs_04257)) on genomic DNA, isolated from three different colonies of each population. By 

calculating the ratio of normalized relative quantities between BR and JP copy number variations were 

confirmed.  

 

Variant calling 

Single nucleotide variant and InDel calling was carried out combining samtools and the GATK 

(McKenna et al. 2010; DePristo et al. 2011), retaining only those variants called consistently by both 

tools. Potential PCR duplicates were marked with Picard MarkDuplicates (picard.sourceforge.net/). 

Raw variant calls were produced with the GATK after local realignment around InDels. Subsequently, 

all calls were annotated and filtered; producing sets of high and low confidence SNVs and InDels, 

respectively. The set of high confidence SNVs was used to train the GATK’s VariantRecalibrator for 

variant quality score recalibration to filter additional SNVs from raw variant calls. The final set 

produced with the GATK consisted of 783,009 called single nucleotide variants and 168,754 InDels.  

Raw variant calls produced by samtools were filtered based on mapping quality and genotype quality 

(Q>29, GQ>31), resulting in a set of 601,214 SNVs and 151,656 InDels.  

A total of 567,552 SNVs and 68,430 InDels were called consistently by both tools. The transition from 

Cobs1.3 to Cobs1.4 removed contaminating endosymbiotic scaffolds, resulting in a final variant set of 

553,052 SNVs and 67,987 InDels stored in a single VCF file. Single nucleotide variants were 

annotated with SNPeff (Cingolani et al. 2012) to identify non-synonymous and synonymous 

substitutions.  
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Gene Ontology enrichment 

To test for enrichment or depletion of certain GO terms in genes in TE islands, we performed a two-

tailed GO enrichment analysis. The Gossip package (Blüthgen et al. 2005), implemented in Blast2GO, 

uses Fisher’s Exact Test for each GO term and corrects for multiple testing. GO terms with FDR<0.05 

were considered to be significantly enriched/depleted in the test set. 

 

Enrichment of Transposable Element superfamilies 

Similarly to the GO enrichment analyses, we tested all TE superfamilies for enrichment in TE islands. 

We performed one-tailed Fisher’s Exact Tests for each superfamily in TE islands, testing for 

significant enrichment of copy numbers and in a second test for enrichment of total bases compared to 

other superfamilies in TE islands. We applied FDR corrections for multiple testing and considered all 

TE superfamilies to be significantly enriched in copy number or base count with an FDR<0.05. 

 

Gene expression analysis with RNAseq 

We extracted whole RNA from seven individual mated queens of the same age (4 weeks after pupal 

moult) and seven individual developing queens in the early 3rd larval instar (11-13 days). To sample 

larvae, we set up experimental colonies consisting of 20 workers and 20 to 30 methoprene-treated 

eggs, as queen development can be induced by treatment with low concentrations of the JH-analogue 

(Schrempf and Heinze 2006). Unsampled larvae from these colonies were kept alive to confirm the 

exclusive development of queen pupae. Sampled queens and larvae were placed individually in 1.5 ml 

Eppendorf tubes, snap-frozen in liquid nitrogen, and kept at -80° C till further processing.  

We extracted whole RNA with the RNeasy Plus Micro kit (Qiagen) yielding 27 to 153 ng per 

individual larvae and 57 to 122 ng per individual queen. Single end Illumina libraries from amplified 

RNA (Ovation RNAseq system V2) were generated following the manufacturers protocol (Ovation 

Rapid Multiplexsystem, NuGEN). Sequencing on an Illumina HiSeq1000 at the in-house sequencing 

centre (KFB, Regensburg, Germany) generated ~20 M 100 bp reads per sample (Supplementary Table 

S1.16). Raw reads were filtered for adapter contamination (cutadapt, Martin 2011), parsed through 

quality filtration (Trimmomatic v0.27, options: LEADING:10 TRAILING:10 SLIDING:4:10 

MINLEN:15), and mapped against the reference genome using the tophat2 (v2.0.8) and bowtie2 

(v2.1.0) package (Langmead and Salzberg 2012; Kim et al. 2013, --b2-sensitive mode, mapping rate 

~50 %). Low mapping rates are most likely a consequence of the required amplification step during 

library preparation. Gene expression analysis was carried out with DESeq2 (Love et al. 2014), based 

on count tables produced with HTSeq (Anders et al. 2015) against the Cobs1.4 MAKER annotation 

(Supplementary Table S1.16). Genes were considered to be differentially expressed at an FDR < 0.05 

and expression values are reported as untransformed base means of read counts per treatment group, 

after correcting for library size differences (“size factor normalization”). 
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Calculation of exon wide CpG o/e values 

Observed to expected CpG values for all exons were calculated as (Glastad et al. 2012):  

 

 !"#
!"# !"# !

!!"#
!!!!!!!

!!!!     (S1) 

 

where N is the total number of nucleotides in the analysed exon. 
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S1.1.2 Supplementary Figures 
 

 
 

 
Supplementary Figure S1.1a:  PCA plot of 22 Aitchison-transformed peak-areas. PC1 explains 40.53 % 
of the variance in the data matrix. Blue lines denote peak number. 
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Supplementary Figure S1.1b:  Boxplot of relative compound abundance in each lineage. Boxplot of 
relative compound abundance in each lineage. ‘x’ denotes unknown position of the double bond or 
methyl branch. Compound 14 could not be separated with the GC parameters used. 
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Supplementary Figure S1.2: Aggression indices in behavioural assay. Workers (top) and queens (bottom) 
of each lineage (and workers of W. auropunctata) were introduced to experimental colonies of either JP 
or BR. We scored the behaviour of the receiving colony based on defined aggression indices and tested 
for significant differences in potential for high aggressiveness between each of the tested combinations 
(origin of receiving colony vs. origin of the introduced ant) in a generalized linear model.  
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Supplementary Figure S1.3: Density plot of intron lengths for the sequenced ant genomes. The density 
plots for intron lengths in C. obscurior and seven other published ant genomes show that while the 
distribution is bimodal in other genomes, the introns of C. obscurior deviate from this pattern, with a 
single peak and a median intron length of 139 bp.  
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Supplementary Figure S1.4: Repeat content in sequenced ant genomes relative to assembled genome size. 
Relative repeat content of C. obscurior and nine hymenopteran genomes as calculated from the repeat 
annotations presented in this study. Across the analysed ant genomes, repeat content ranges between 16.5 
% in L. humile to 31.5 % in A. echinatior. Relative class I content is higher in C. obscurior (4.3 %) than 
in any of the other ant genomes, yet overall relative repeat content in not different from the smaller 
genomes (Cflo, Lhum, Pbar). The genomes of A. mellifera (Amel) and N. vitripennis (Nvit) are distinct 
from the analysed ant genomes in having either much less (Amel) or much more (Nvit) annotated TEs. 
SSR = Short simple repeats. 
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Supplementary Figure S1.5: Length polymorphism in TE superfamilies and simple repeats between LDRs 
and TE islands. Length polymorphism in TE superfamilies and simple repeats between LDRs and TE 
islands. Median element length for all analysed superfamilies is higher in TE islands than LDRs, 
suggesting local differences in TE dynamics. 
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Supplementary Figure S1.7: Diagnostic plots and experimental confirmation for two deletion candidates 
(a, b) and four duplication candidates (c-f). Diagnostic plots were created for each of the 512 candidate 
loci by plotting the log2 JP/BR coverage ratio (red to green), gene models (red boxes), repetitive elements 
(blue boxes), heterozygous SNV calls (red ticks), and the absolute coverage (grey = BR; black = JP, 
lower panel). A) Partial deletion of Cobs_13563 in the JP lineage. PCR and Sanger sequencing confirmed 
deletion of ~720 bp in the JP genome. B) Deletion of a MRJP in Cobs_01070 in the JP lineage. PCR and 
Sanger sequencing confirmed deletion of ~2600 bp in the JP genome. C-F) Duplications in Cobs_13806 
(c), Cobs_17872 (d), Cobs_16853 (e), and Cobs_13486 (f) as confirmed by real-time qPCR. 2-!Cq values 
for BR (blue) and JP samples (green) were normalized against colony BR1a.  
Primer combinations used: Cobs_13563: fw: 5’-CAGTTCGGGATGGCGCTC-3’, rv: 5’-
CGAAAGACTGGGGCTGCAA-3’; Cobs_01070: fw: 5’-TCCCGTCAAACCAATCGCAACTCG-3’, rv: 
5’-TGGGTTGCATCAGGCCACGTA-3’; Cobs_13806: fw: 5’- GCAACGGTGCTCACAGGAGCC-3’, 
rv: 5’-AAAGGCGATGCCCTCCGTTGC-3’; Cobs_17872: fw: 5’-TCGTAGACGATTATATAGAGCG-
3’, rv: 5’-GTAGCAGAAGTAGAAGGCATTGG-3’; Cobs_13486: fw: 5’-
TCATTGACATCGAATTCGTCATGGCTG-3’, rv: 5’-AACGTGTAATGGCTGCTGCTATACTTC-3’; 
Cobs_16853: fw: 5’-GCGACGTCGAGATAAAGGTTTCG-3’, rv: 5’-CGTTAATTGGTAGGGTTCGC-
3’. 
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S1.1.3 Supplementary Tables 
 

Supplementary Table S1.1: 22 compounds in cuticle extracts of BR and JP used for statistics 

ID Compound 

1 x-Hexadecene 
2 Hexadecane (C16) 
3 Heptadecane (C17) 
4 Octadecane (C18) 
5 Nonadecane (C19) 
6 Pentacosane (C25) 
7 3-methyl pentacosane 
8 x-Heptacosene 
9 Heptacosane (C27) 

10 3-methyl heptacosane 
11 x-methyl octacosane 
12 x-nonacosene 
13 Nonacosane (C29) 
14 13-methyl and 15-methyl nonacosane 
15 Hentriacontane (C31) 
16 13-methyl hentriacontane 
17 11-methyl tritriacontane 
18 x,x-dimethyl tritriacontane 
19 x-methyl pentatriacontane 
20 x,x-dimethyl pentatriacontane (prop. 13,23) 
21 x-methyl heptatriacontane (prop. 13) 
22 x,x-dimethyl heptatriacontane 

 
Supplementary Table S1.2: Data used for the C. obscurior draft genome assembly. Genome 
coverage computed assuming 195 Mb estimated genome size 

  No. of reads Average length (bp) Genome coverage 

220 bp Illumina paired end 209 740 014 100 105x 

8 Kb paired end (reads) 1 318 264 
189 1.2x 

8 Kb paired end (valid pairs) 416 174 
20 Kb paired end (reads) 1 131 046 

194 1.1x 20 Kb paired end (valid 
pairs) 326 815 
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Supplementary Table S1.3: Quantitative assembly statistics for Cobs1.4 

Scaffolded sequence (bp) 177 892 999 

N50 scaffold size (bp) 3 105 814 

Total number of scaffolds 1 854 

GC content 0.3958 

Total no. of annotated genes 17 552 

Total no. of gene models with AED<0.5 12 752 

Total no. of genes with Interpro domain 9 552 

Scaffolded sequence (bp) 177 892 999 
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Supplementary Table S1.5: Relative content (%) of repetitive elements and TEs in the genomes of C. 
obscurior and other Hymenoptera 

Type Repeat Cobs Cflo Lhum Pbar Acep Hsal Aech Sinv Amel Nvit 

LTR Gypsy 1.643 0.94 1 1.247 0.725 1.284 0.901 1.216 0.389 4.754 
LTR Copia 0.369 0.227 0.247 0.179 0.147 0.348 0.2 0.4 0.131 0.957 
LTR BEL 0.499 0.244 0.264 0.151 0.158 0.206 0.266 0.485 0.061 0.488 
LTR DIRS 0.095 0.008 0.072 0.027 0.018 0.065 0.019 0.072 0.003 0.089 
LTR Ngaro 0.018 0 0 0 0 0 0 0 0 0 
LTR Pao 0.033 0.034 0.099 0.024 0.083 0.023 0.206 0.02 0.043 0.167 
LTR ERV1 0.081 0.056 0.021 0.061 0.079 0.093 0.09 0.074 0.045 0.055 
LTR ERV2 0.041 0.027 0.01 0.025 0.019 0.037 0.022 0.02 0.024 0.027 
LTR ERV3 0.01 0.007 0.002 0.007 0.006 0.01 0.007 0.006 0.006 0.008 
LTR ERVK 0 0 0 0 0 0 0 0 0 0.146 
LTR ERVL 0 0.001 0.001 0 0 0.004 0 0 0 0 
LTR Unclassified 0.307 0.392 0.152 0.089 0.162 0.202 0.257 0.358 0.142 1.558 
LINE CR1 0.232 0.091 0.035 0.061 0.059 0.156 0.063 0.121 0.073 1.349 
LINE L1 0.163 0.071 0.022 0.063 0.057 0.136 0.065 0.057 0.067 0.113 
LINE L2 0.034 0.025 0.034 0.035 0.113 0.025 0.196 0.061 0.007 0.093 
LINE L2A 0.002 0 0 0 0 0.001 0 0 0 0.001 
LINE L2B 0.007 0.004 0.002 0.021 0.002 0.009 0.003 0.009 0.001 0.004 
LINE Jockey 0.033 0.038 0.022 0.02 0.016 0.04 0.02 0.023 0.01 0.034 
LINE LOA 0.046 0.006 0.088 0.017 0.007 0.01 0.007 0.068 0.003 0.303 
LINE R1 0.199 0.144 0.255 0.119 0.065 0.667 0.136 0.315 0.02 0.253 
LINE R2 0.032 0.008 0.014 0.006 0.003 0.023 0.004 0.014 0.007 0.034 
LINE R4 0.015 0.008 0.008 0.008 0.007 0.009 0.007 0.007 0.012 0.012 
LINE RTEX 0.007 0.004 0.003 0.005 0.003 0.003 0.002 0.006 0.001 0.01 
LINE Penelope 0.04 0.071 0.068 0.097 0.221 0.035 0.269 0.12 0.01 0.113 
LINE RTE 0.149 0.088 0.146 0.087 0.071 0.147 0.083 0.182 0.047 0.243 
LINE CRE 0.005 0.002 0 0.002 0.001 0.003 0.001 0.001 0.001 0.003 
LINE NeSL 0.033 0.011 0.005 0.009 0.009 0.01 0.006 0.004 0.009 0.016 
LINE Rex1 0.002 0.003 0.003 0.002 0.001 0.009 0.001 0.025 0.008 0.002 
LINE RandI 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 
LINE Tx1 0.019 0.007 0.001 0.007 0.006 0.014 0.007 0.005 0.006 0.012 
LINE Crack 0.035 0.006 0.001 0.005 0.007 0.021 0.007 0.006 0.006 0.018 
LINE Nimb 0.006 0.004 0.002 0.003 0.002 0.011 0.004 0.008 0.003 0.008 
LINE Proto1 0.005 0.001 0 0.002 0.002 0.005 0.001 0.001 0.002 0.004 
LINE Proto2 0.003 0.001 0 0.001 0.001 0.002 0.001 0.001 0.001 0.002 
LINE Hero 0 0 0 0 0 0 0 0 0 0 
LINE Tad1 0 0 0 0 0 0 0 0.003 0 0 
LINE Ingi 0.001 0.001 0.002 0.001 0 0.002 0.001 0.001 0.001 0.003 
LINE Outcast 0.007 0.002 0 0.001 0.002 0.004 0.003 0.002 0.004 0.006 
LINE Daphne 0.002 0.001 0 0 0 0.001 0 0.001 0 0.001 
LINE Ambal 0.001 0.001 0 0.001 0.001 0.001 0.001 0 0.001 0 
LINE Vingi 0.001 0 0 0.001 0.001 0.001 0 0 0 0.001 
LINE I 0.05 0.047 0.039 0.023 0.027 0.022 0.025 0.049 0.008 1.136 
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LINE DRE 0.001 0.001 0.002 0 0 0 0 0 0.001 0.002 
LINE telomeric 0.007 0.004 0.012 0.004 0.003 0.013 0.003 0.003 0.002 0.016 
LINE Unclassified 0.015 0.006 0.006 0.005 0.008 0.013 0.006 0.005 0.006 0.038 
SINE SINE1_7SL 0 0 0 0 0 0 0 0 0 0 
SINE SINE2_trna 0.012 0.058 0.004 0.009 0.003 0.006 0.004 0.003 0.002 0.014 
SINE SINE3_5S 0.001 0.001 0.001 0.002 0.001 0.037 0.001 0.002 0.002 0.002 
SINE SINE_MIR 0 0.035 0.064 0.012 0.006 0.001 0.005 0 0.001 0 
SINE SINE_B4 0 0 0 0 0 0 0 0 0 0.006 
SINE SINE_RTE 0 0 0 0.001 0 0 0 0 0 0 
SINE SINE_L1 0 0 0 0 0 0.001 0 0.001 0 0 
SINE SINE_R1 0 0 0 0 0 0 0 0 0 0.013 
SINE Unclassified 0.023 0.017 0.006 0.027 0.048 0.022 0.05 0.018 0.009 0.024 
Unclassified classI 0.02 0.008 0.002 0.007 0.01 0.016 0.012 0.01 0.007 0.02 
TIR hAT 0.554 0.219 0.188 0.251 0.403 0.501 0.447 0.399 0.152 0.392 
TIR Mariner 0.346 0.285 0.255 0.561 1.527 2.283 1.454 0.623 0.297 0.279 
TIR MuDR 0.262 0.072 0.027 0.053 0.06 0.167 0.059 0.05 0.071 0.157 
TIR EnSpm 0.531 0.256 0.277 0.302 0.236 0.487 0.253 0.324 0.153 0.65 
TIR piggyBac 0.032 0.014 0.009 0.006 0.01 0.042 0.01 0.017 0.023 0.018 
TIR P 0.123 0.049 0.071 0.021 0.025 0.08 0.031 0.063 0.02 0.076 
TIR Merlin 0.01 0.003 0.002 0.008 0.013 0.012 0.014 0.006 0.002 0.003 
TIR Harbinger 0.073 0.028 0.013 0.021 0.019 0.05 0.02 0.021 0.022 0.047 
TIR Transib 0.063 0.028 0.037 0.015 0.019 0.174 0.02 0.035 0.015 0.09 
TIR Novosib 0.002 0.001 0.001 0.001 0.001 0.009 0.001 0.001 0.001 0.007 
TIR Mirage 0.001 0.001 0 0 0.001 0.001 0 0 0 0.001 
TIR Rehavkus 0.041 0.028 0.02 0.009 0.007 0.024 0.009 0.034 0.005 0.084 
TIR Kolobok 0.058 0.031 0.034 0.019 0.023 0.045 0.034 0.078 0.006 0.278 
TIR ISL2EU 0.011 0.002 0.001 0.001 0.002 0.005 0.001 0.002 0.002 0.008 
TIR Chapaev 0.072 0.08 0.031 0.089 0.137 0.253 0.18 0.144 0.02 0.126 
TIR Crypton 0.002 0.001 0 0 0 0.001 0.001 0.001 0 0.035 
TIR Sola 0.105 0.117 0.101 0.034 0.083 0.788 0.099 0.187 0.027 0.212 
TIR Zator 0.009 0.002 0 0.002 0.002 0.005 0.002 0.003 0.002 0.006 
TIR Ginger1 0.039 0.015 0.004 0.007 0.01 0.035 0.011 0.007 0.009 0.026 
TI
R Ginger2/TDD 0.022 0.004 0.001 0.003 0.003 0.009 0.004 0.004 0.005 0.01 

TIR Academ 0.011 0.008 0.026 0.001 0.004 0.008 0.004 0.018 0.002 0.024 
TIR Other TIR 0.867 1.001 1.369 1.168 3.764 2.283 4.034 2.808 0.359 0.824 
MITE MITE 0 0 0 0 0 0 0 0 0 0 
Helitron Helitron 0.235 0.099 0.078 0.127 0.08 0.181 0.09 0.071 0.07 2.938 
Polinton Polinton 0.325 0.158 0.224 0.822 0.509 0.408 0.543 0.226 0.051 1.452 
Unclassified classII 0.005 0.11 0.036 0.012 0.017 0.103 0.032 0.019 0.006 0.042 
SSR Simple repeat 0.419 0.734 0.519 1.072 1.205 0.851 1.409 0.794 0.379 0.41 

SSR Low 
complexity 0.861 3.196 3.438 2.935 5.925 2.806 6.629 6.662 1.288 2.225 

SSR Satellite 0.01 0.042 0.019 0.007 0.006 0.011 0.006 0.015 0.004 1.747 
SSR Other 0.01 0.042 0.019 0.007 0.006 0.011 0.006 0.015 0.004 1.747 
SSR Unclassified 8.325 8.394 3.933 5.884 5.795 7.73 4.838 5.338 7.355 4.376 
Unclassified 3.257 3.75 3.091 3.32 7.14 7.107 8.254 7.398 0.76 3.996 
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Supplementary Table S1.6: Enrichment of TE superfamilies in TE islands 

Element type Total bp in 
TE islands 

Total bp in 
LDRs 

Total number 
in TE islands 

Total number 
in LDRs 

FDR   
(base count) 

FDR  
(element number) 

Unclassified 1892769 4847567 9616 41643 >4.53E-155 >4.53E-155 

TcMar-Tc1 84041 22152 515 164 >4.53E-155 >4.53E-155 

DIRS 125721 30503 330 201 >4.53E-155 4.53E-155 

RTE 138967 64262 309 502 >4.53E-155 5.68E-73 

Ngaro 22579 5560 115 31 >4.53E-155 1.99E-72 

TcMar-
Mariner 

9797 686 76 9 >4.53E-155 2.05E-56 

Maverick 51886 64613 353 865 >4.53E-155 1.14E-49 

LOA 18863 3596 67 53 >4.53E-155 4.80E-28 

Kolobok-
Hydra 

6187 1190 20 7 >4.53E-155 4.24E-12 

on 2804 1230 19 11 >4.53E-155 1.10E-09 

Loa 38653 13148 42 93 >4.53E-155 1.57E-07 

R1 121215 152620 286 1357 >4.53E-155 3.05E-07 

BEL 553183 285447 560 2984 >4.53E-155 5.48E-07 

Academ 5341 13540 52 167 0.033 3.75E-05 

Merlin 6610 8835 41 120 >4.53E-155 5.32E-05 

R2 20282 31169 37 139 >4.53E-155 0.007 
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Supplementary Table S1.9: List of GO terms underrepresented in TE islands 

GO-ID Term Cat FDR #Test #Ref 
GO:0005515 protein binding F 1.74E-19 48 2533 
GO:0016021 integral to membrane C 4.65E-07 23 1159 
GO:0003700 sequence-specific DNA binding transcription factor activity F 9.48E-07 0 357 
GO:0005667 transcription factor complex C 2.38E-05 1 348 
GO:0043565 sequence-specific DNA binding F 4.50E-05 0 284 
GO:0044430 cytoskeletal part C 1.03E-04 1 317 
GO:0007010 cytoskeleton organization P 1.86E-04 0 250 
GO:0006928 cellular component movement P 2.89E-04 1 291 
GO:0005524 ATP binding F 3.47E-04 17 807 
GO:1901566 organonitrogen compound biosynthetic process P 0.001158612 1 260 
GO:0071822 protein complex subunit organization P 0.001619753 0 207 
GO:0065008 regulation of biological quality P 0.001856809 5 397 
GO:0030234 enzyme regulator activity F 0.002235494 1 245 
GO:0050790 regulation of catalytic activity P 0.002261041 1 248 
GO:0015630 microtubule cytoskeleton C 0.002286604 1 249 
GO:0009966 regulation of signal transduction P 0.004465379 3 307 
GO:0009888 tissue development P 0.004526085 3 310 
GO:1901137 carbohydrate derivative biosynthetic process P 0.004539984 0 182 
GO:0007264 small GTPase mediated signal transduction P 0.004660173 0 185 
GO:0015031 protein transport P 0.004823331 2 274 
GO:0007267 cell-cell signaling P 0.006042638 3 299 
GO:0040007 growth P 0.00628819 0 173 
GO:0048667 cell morphogenesis involved in neuron differentiation P 0.00628819 0 174 
GO:0007017 microtubule-based process P 0.00628819 1 227 
GO:0048812 neuron projection morphogenesis P 0.006382808 0 176 
GO:0009887 organ morphogenesis P 0.008118047 3 293 
GO:0090407 organophosphate biosynthetic process P 0.008811062 0 164 
GO:0006468 protein phosphorylation P 0.009516719 4 323 
GO:0046907 intracellular transport P 0.011008803 3 285 
GO:0051128 regulation of cellular component organization P 0.011653655 1 208 
GO:0007276 gamete generation P 0.012249983 1 212 
GO:0015077 monovalent inorganic cation transmembrane transporter activity F 0.012737248 0 160 
GO:0004672 protein kinase activity F 0.012778601 4 315 
GO:0065003 macromolecular complex assembly P 0.013013762 0 162 
GO:0044723 single-organism carbohydrate metabolic process P 0.013013762 0 162 
GO:0048523 negative regulation of cellular process P 0.015124635 6 372 
GO:0005694 chromosome C 0.01594876 1 200 
GO:0009790 embryo development P 0.01594876 2 236 
GO:0034613 cellular protein localization P 0.01594876 2 238 
GO:0022402 cell cycle process P 0.01594876 2 238 
GO:0031090 organelle membrane C 0.015981543 2 239 
GO:0006184 GTP catabolic process P 0.016245078 2 241 
GO:0006091 generation of precursor metabolites and energy P 0.017699389 0 152 
GO:0061061 muscle structure development P 0.017852228 0 153 
GO:0012505 endomembrane system C 0.018462732 0 155 
GO:0044459 plasma membrane part C 0.02196491 1 190 
GO:0007444 imaginal disc development P 0.022309481 2 233 
GO:0008289 lipid binding F 0.022309481 1 194 
GO:0042623 ATPase activity, coupled F 0.022565122 1 195 
GO:0048522 positive regulation of cellular process P 0.023079374 4 302 
GO:0015672 monovalent inorganic cation transport P 0.02523218 0 145 
GO:0009791 post-embryonic development P 0.030802838 2 226 
GO:0006357 regulation of transcription from RNA polymerase II promoter P 0.031210105 1 187 
GO:0048610 cellular process involved in reproduction P 0.031210105 1 187 
GO:0042330 taxis P 0.035500923 0 134 
GO:0009069 serine family amino acid metabolic process P 0.035923367 3 252 
GO:0019226 transmission of nerve impulse P 0.041678654 2 216 
GO:2000026 regulation of multicellular organismal development P 0.042831962 1 174 
GO:0048646 anatomical structure formation involved in morphogenesis P 0.043495522 1 178 
GO:0031981 nuclear lumen C 0.044951027 6 340 
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Supplementary Table S1.10: List of GO terms overrepresented in TE islands 

GO-ID Term Cat FDR #Test #Ref 

GO:0003964 RNA-directed DNA polymerase activity F 7.63E-52 53 16 

GO:0006278 RNA-dependent DNA replication P 7.63E-52 53 16 

GO:0015074 DNA integration P 6.74E-50 48 10 

GO:0004190 aspartic-type endopeptidase activity F 6.46E-15 18 9 

GO:0004984 olfactory receptor activity F 3.23E-14 37 106 

GO:0005549 odorant binding F 5.00E-13 37 119 

GO:0003723 RNA binding F 9.01E-12 64 386 

GO:0050911 detection of chemical stimulus involved in sensory perception of smell P 6.36E-11 24 53 

GO:0007187 
G-protein coupled receptor signaling pathway, coupled to cyclic 
nucleotide second messenger 

P 2.62E-06 24 105 

GO:0006313 transposition, DNA-mediated P 1.85E-05 7 4 

GO:0004803 transposase activity F 1.85E-05 7 4 

GO:0004523 ribonuclease H activity F 5.06E-05 8 9 

GO:0019012 virion C 7.83E-05 7 6 

GO:0003968 RNA-directed RNA polymerase activity F 3.78E-04 5 2 

GO:0004482 mRNA (guanine-N7-)-methyltransferase activity F 8.49E-04 5 3 

GO:0005835 fatty acid synthase complex C 0.00712326 5 7 

GO:0006370 7-methylguanosine mRNA capping P 0.01060855 5 8 

GO:0016297 acyl-[acyl-carrier-protein] hydrolase activity F 0.03092985 4 6 

 
Supplementary Table S1.11: GLM of high aggression against intruding workers (intercept = BR x BR) 

 Estimate Std. 
Error 

t value Pr(>|t|)  
(Intercept) 0.24324 0.04470 5.442 8.91e-08 *** 

BR x JP 0.05526 0.06485 0.852 0.394568  
BR x Waur 0.37995 0.06435 5.904 7.22e-09 *** 

JP x BR -0.24324 0.06301 -3.861 0.000131 *** 
JP x JP -0.22991 0.06301 -3.649 0.000296 *** 

JP x Waur 0.28378 0.06322 4.489 9.21e-06 *** 
Null deviance: 87.265  on 433  degrees of freedom 
Residual deviance: 63.287  on 428  degrees of freedom 
AIC: 410.03 

Supplementary Table S1.12: GLM of high aggression against intruding queens (intercept = BR x BR) 

 Estimate Std. 
Error 

t value Pr(>|t|)  
(Intercept) 0.546875 0.054254 10.080 < 2e-16 *** 

BR x JP -0.005891 0.077664 -0.076 0.94  
JP x BR -0.412547 0.075863 -5.438 1.23e-07 *** 
JP x JP -0.373542 0.073860 -5.057 7.98e-07 *** 

Null deviance: 59.663  on 266  degrees of freedom 
Residual deviance: 49.545  on 263  degrees of freedom 
AIC: 317.99 

Supplementary Table S1.13: Quantitative assembly statistics for the raw draft genome assembly 

Scaffolded sequence (bp) 182 048 038 

N50 scaffold size (bp) 2 570 857 

Total number of scaffolds 11 084 

N50 contig size (bp) 14 935 
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Supplementary Table S1.14: Draft genome sequences from other organisms used for gene annotation 

or comparative studies 

Species URL 

Atta cephalotes 
http://antgenomes.org/downloads/acep_scaffolds.fasta.zip 

http://antgenomes.org/downloads/acep_genome.OGS.1.2.gff.zip 

Acromyrmex echinatior 
http://antgenomes.org/downloads/aech/Aech_v2.0.fa.gz 

http://antgenomes.org/downloads/aech/Aech_v3.8.gff.gz 

Camponotus floridanus 
http://antgenomes.org/downloads/cflo_v3.3.fa.zip 

http://antgenomes.org/downloads/cflo_v3.3.gff.zip 

Harpegnathos saltator 
http://antgenomes.org/downloads/hsal_v3.3.fa.zip 

http://antgenomes.org/downloads/hsal_v3.3.gff.zip 

Linepithema humile 
http://antgenomes.org/downloads/arg_ant_scf4.fasta.zip 

http://antgenomes.org/downloads/lhum_genome.OGS.1.2.gff.zip 

Solenopsis invicta 
http://antgenomes.org/downloads/Si_gnF.454scaffolds.fasta.zip 

http://antgenomes.org/downloads/SI2.2.3.corrected.gff.zip 

Pogonomyrmex barbatus 
http://antgenomes.org/downloads/pbar_scaffolds_v03.fasta.zip 

http://antgenomes.org/downloads/pbar_genome.OGS.1.2.gff.zip 

Apis mellifera http://antgenomes.org/downloads/Amel_4.5.AGP.linearScaffold.fa.zip 

Nasonia vitripennis http://antgenomes.org/downloads/Nvit_2.0.linear.fa.zip 

 

Supplementary Table S1.15: Differences in gene evolution across hymenopteran genomes, based on 

copy number differences within orthologous groups 

 Present in all / missing 
in one [530] 

Single-copy in all / duplicated in 
one 

[995] 
Cardiocondyla obscurior 78 251 

Nasonia vitripennis 98 150 
Apis mellifera 56 110 

Harpegnathos saltator 50 76 
Linepithema humile 18 67 

Camponotus floridanus 32 67 
Pogonomyrmex 

barbatus 
14 65 

Solenopsis invicta 155 92 
Acromyrmex echinatior 22 30 

Atta cephalotes 7 87 
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Supplementary Table S1.16: Reads generated per sample in the RNAseq experiment 

Sample Type Raw read Count Reads mapped to genes 

QUI01 Imago 18 234 979 3 023 851 

QUI05 Imago 24 958 424 2 635 246 

QUI14 Imago 22 518 877 4 415 260 

QUI16 Imago 17 864 237 3 803 684 

QUI17 Imago 17 246 589 2 674 107 

QUI51 Imago 23 405 068 3 810 613 

QUI54 Imago 18 675 375 2 966 886 

QUL65 Larva 20 406 972 4 572 339 

QUL66 Larva 27 288 687 7 386 863 

QUL68 Larva 29 225 761 3 192 075 

QUL69 Larva 23 043 865 5 214 123 

QUL73 Larva 23 071 947 5 296 047 

QUL72 Larva 22 855 327 9 096 679 

QUL71 Larva 26 443 413 5 567 634 

 

  



! "#$!

 

S1.2 Supplementary Material - 

Chapter 3 
 
!
Sphingolipids, transcription factors, and conserved toolkit 

genes: Developmental plasticity in the ant Cardiocondyla 

obscurior  
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S1.2.1 Supplementary Data 
!

Gene Ontology enrichment analysis 

Gene Ontology (GO) functional annotation terms for all Cardiocondyla obscurior protein-coding 

genes have been published (Schrader et al. 2014) and can be downloaded from antgenomes.org. We 

used topGO (topgo.bioinf.mpi-inf.mpg.de) to test for enrichment of GO terms (in the domain 

Biological Process) in the caste-biased gene sets using Fisher’s exact test and the Parent-Child-

algorithm (Grossmann et al. 2007) and considered GO terms to be significantly enriched at p<0.01. 

We did not correct for multiple testing as the GO enrichment analysis was preliminarily performed for 

hypothesis generation. Visualization and summarization of the results was done with REVIGO (Supek 

et al. 2011). We retrieved five (WM), 39 (WO), 32 (QU) and 93 (EM) significantly enriched GO terms 

for the different gene sets (Supplementary Figures S2.1-S2.4).  

 

 
Supplementary Figure S2.1: GO enrichment analysis on the WM-biased gene set. The scatter plot shows 
GO terms in a two-dimensional semantic space after reducing redundancy with REVIGO. Circle sizes are 
relative to the frequency of GO terms in the data. 
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Supplementary Figure S2.2: GO enrichment analysis on the QU-biased gene set. The scatter plot shows 
GO terms in a two-dimensional semantic space after reducing redundancy with REVIGO. Circle sizes are 
relative to the frequency of GO terms in the data. 

 

 
Supplementary Figure S2.3: GO enrichment analysis on the WO-biased gene set. The scatter plot shows 
GO terms in a two-dimensional semantic space after reducing redundancy with REVIGO. Circle sizes are 
relative to the frequency of GO terms in the data. 
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Supplementary Figure S2.4: GO enrichment analysis on the EM-biased gene set. The scatter plot shows 
GO terms in a two-dimensional semantic space after reducing redundancy with REVIGO. Circle sizes are 
relative to the frequency of GO terms in the data. 

 

S1.2.2 Supplementary Tables 
 
Supplementary Tables S2.1 to S2.4 accompanying Chapter 3 are available upon request and online at 

mbe.oxfordjournals.org/content/suppl/2015/02/27/msv039.DC1/supplementary_data.pdf . 

The Supplementary Tables S2.1 to S2.4 provide detailed information about each gene in the four 

compiled gene sets (QU, WO, EM and WM). For each gene, the average expression levels in each of the 

four phenotypes and FDR values for pairwise comparisons are given in the tables. 
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S1.3 Supplementary Material - 

Chapter 5 
 

A novel intracellular mutualistic bacterium in the invasive 

ant Cardiocondyla obscurior 
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S1.3.1 Supplementary Methods 
 

Phylogenomic reconstruction 

For phylogenetic placement of Westeberhardia, we used translated CDS sequences of Westeberhardia 

and followed the approach of (Husník et al. 2010). We constructed ortholog clusters using the 

proteomes from different Gammaproteobacteria on a standalone version of OrthoMCL v2.0.9 (Chen et 

al. 2007) and identified 64 single-copy core protein clusters out of the 69 ones identified by the 

aforementioned study. These were then aligned using mafft v7.123b (Katoh and Standley 2013). 

Alignments were refined using Gblocks v0.91b (Talavera and Castresana 2007) (Supplementary file 

protein_sequences.fasta available upon request). Dayhoff6 recoding and phylogenetic reconstruction 

was done using PhyloBayes v3.3f (Lartillot et al. 2009). The chains ran for 16243 generations and a 

burn in of 6000 was chosen. Both bipartition and summary variables were ! 0.3, and all effective sizes 

of all summary variables were higher than 100. 

 

PCR assay on nrdB1 on worldwide collected samples and sequencing of 16S rDNA gene  

To assess infection presence of Westeberhardia in C. obscurior across different populations, we 

performed a diagnostic PCR assay on material collected worldwide (Table 5.1).   

We used DNA material from a previous study (Oettler et al. 2010), and extracted DNA from 

additional samples using a chloroform-based method (Sambrook and Russell 2001). We performed 

PCR on the nrdB1 (ribonucleoside-diphosphate reductase 1 subunit beta) gene of Westeberhardia 

(WEOB_403) (nrdB1for: 5’-GGAAGGAGTCCTAATGTTGCG-3’ and nrdB1rev: 5’-

ACCAGAAATATCTTTTGCACGTT-3’), using the ant housekeeping gene elongation factor 1-alpha 

1 (Cobs_01649) (EF1for: 5’-TCACTGGTACCTCGCAAGCCGA-3’, EF1rev: 5’-

AGCGTGCTCACGAGTTTGTCCG-3’) as a control. PCRs were performed in 10 "l reactions with 

BIO-X-ACTTM Short Mix (Bioline) on an Eppendorf Cycler using the following protocol: 94° C 4 

min, followed by 39 cycles 94° C 30 s, 60° C 30 s, 72° C 30 s and 72° C 10 min final elongation. PCR 

products were checked visually on 1.5 % agarose TAE-gels.  

PCRs on a 917 bp fragment of the 16S rDNA of Westeberhardia gene were performed for one 

individual each of the three BR lineages (Ilhéus 2009, Una 2012, Ilhéus 2013), the infected JP lineages 

(OypC, OypU), the SP population and C. wroughtonii (PCR protocol: 94° C 4 min; 39 x (94° C 30 s; 

50° C 30 s; 72° C 120 s); 72° C 10 min). PCR products were purified using the Nucleo Spin Kit 

(Machery-Nagel) and Sanger sequenced (LGC Genomics, Germany). 
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Diagnostic PCR and qPCR assays on the nrdB gene to assess inter- and 

intrapopulational variation 

To screen for intra- and interpopulational variation in Westeberhardia infection, we performed a 

diagnostic PCR assay for 538 workers and a diagnostic real-time quantitative PCR (qPCR) assay for 

517 queens on nrdB.  

Worker DNA was extracted with a rapid hot shot method (Alasaad et al. 2008) and PCRs were 

performed in 10 !l reactions, with 5 !l BIO-X-ACTTM Short Mix (Bioline), 0.3 !l 10 !M forward and 

reverse primer each, 0.1 !l MgCl2, 3.3 !l H2O and 1 !l template DNA (PCR protocol: 94° C  4 min; 

39 x (94° C 30 s; 60°C 30 s; 72°C 30 s); 72° C 10 min). Subsequently, PCR products were checked on 

1.5 % agarose gels with TAE buffer. Successful DNA extraction protocol was confirmed by 

amplification of C. obscurior EF1 in PCR assays. 

Queen DNA was extracted using the NucleoSpin®Tissue XS Kit (Machery-Nagel) and real-time 

quantitative PCR was performed on a CFX ConnectTM Real-Time PCR Detection System (BioRad) 

with 5 !l KAPA SYBR FAST Universal (peqlab), 1 !l template DNA, 2 !l H2O and 2 !l 2 !M 

forward and reverse primer each in 10 !l reactions. For each queen, we amplified the nrdB1 fragment 

and the housekeeping gene EF1 using the following protocol: 95 °C 4 min; 41 x (95 °C 10 sec; 60 °C 

30 sec) followed by a melting curve with 0.5 °C temperature reduction every 5 seconds from 95 °C to 

65 °C. Results of each assay were checked via amplification and melt curve analyses. A queen was 

ranked as infected, if the PCR on nrdB produced a single amplicon with the expected melting 

temperature (75.5 °C). A queen was ranked as not infected, if the PCR on nrdB produced no amplicon, 

but the PCR on EF1 was successful (amplicon with melting temperature of 82.5 °C). 

 

Rearing of individuals of defined age 

To analyse Westeberhardia-abundance in dependence of age in adult ants, worker, queen and male 

pupae from BR (Una, 2012) were transferred from stock colonies to breeding colonies, which were 

screened daily to record exact hatching dates. Following hatching, breeding colonies were checked 

regularly twice a week to prevent additional individuals from hatching and to check for success of 

mating in queen breeding colonies (i.e. queen dealation and presence of eggs). For males and mated 

queens, breeding colonies consisted of 20 workers, few eggs and larvae, a single male pupa and a 

single queen pupa. To rear virgin queens, no male pupae were added to the colonies. To rear workers 

of the same age, late worker pupae were collected from stock colonies. After 24 h, workers that had 

emerged from the collected pupae were transferred to a new nest, together with few eggs and larvae 

from the stock colony. Individuals were sampled at the desired age and stored at -70 °C until DNA 

extraction. 
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Real-time quantitative PCR to quantify Westeberhardia titres 

We used real-time quantitative PCR to compare Westeberhardia infection levels between single 

individuals.  

This was done on the one hand for larvae, prepupae, early pupae, and late pupae of the OypB 

population (JP, 2011) and the BR (Una, 2012) population, respectively (Figure 5.3b). All samples 

were sampled directly from stock colonies. Larvae and prepupae were of unknown sex and caste, 

whereas pupae were females (queens or workers).  

On the other hand this was done for age-controlled adult individuals (see above) from BR (Una, 2012) 

to infer dependency of Westeberhardia titre on morph and age of an individual (Figure 5.3e, 5.3f).  

DNA of single ants was extracted using a chloroform-based method (Sambrook and Russell 2001), 

quantified fluorometically with Qubit® 2.0 Fluorometer (Life technologies) and diluted to 2.5 ng/!l. 

For each sample, we amplified a 204 bp fragment of the nrdB (ribonucleoside-diphosphate reductase 

1 subunit beta) gene of Westeberhardia (WEOB_403) using the primers nrdB1for and nrdB1rev 

(primer sequences see above). Additionally, for each sample two single-copy ant housekeeper genes 

were amplified: EF1 (primer sequences see above; 104 bp fragment) and Actin-4 (Cobs_04257) 

(Actin4for: 5’-TGCCAACACCGTTCTGTCTG-3’, Actin4rev: 5’-GACGCGAGAATAGATCCGCC-

3’, 162 bp fragment). All real time qPCR reactions were performed in triplicates and each plate 

included no-template-controls for all primer pairs as well as triplets of an interplate calibrator (pool of 

15 adult queens from Brazil (Una 2012)) for each of the two housekeeping genes. For each reaction 

200 nM of forward and reverse primer were provided, and a master mix including 5 ng DNA, 5 !l 

KAPA SYBR FAST Universal (peqlab) and H2O up to 10 !l was added. Hard-Shell® Low-Profile 

Thin-Wall 96-Well Skirted PCR Plates (BioRad) sealed with adhesive, optically clear MicroSeal seals 

(BioRad) were used and reactions were performed on a CFX ConnectTM Real-Time PCR Detection 

System (BioRad) with the following protocol: 95 °C 4 min; 41 x (95 °C 10 sec; 60 °C 30 sec) 

followed by a melting curve with 0.5 °C temperature reduction every 5 seconds from 95 °C to 65 °C. 

Analyses of Cq values were performed with a modified protocol of the 2-""Cq protocol (Livak and 

Schmittgen 2001). First, the mean of the three technical replicates was calculated. The resulting means 

were calibrated with the interplate calibrator, to normalize across the different plates. Calibrated 

means of target samples were then normalized by subtracting the geometric mean (GM) 

(Vandesompele et al. 2002) of both housekeepers for the corresponding sample, giving the "Cq value. 

To compare between all samples, an artificial calibrator with a Cq value of 40 was used to normalize 

all samples. The "Cq value for the artificial calibrator was determined by subtracting the mean of all 

geometrical means (mean=21.38; SD=0.24) from Cq(calibrator)  = 40, yielding "Cq(calibrator) = 18.72. 

For each target gene ""Cq was calculated by subtracting "Cq(target) - "Cq(calibrator). Statistical tests 

were carried out with the ln transformed 2-""Cq values in R (version 3.0.2). We used Shapiro-Wilk tests 

to test for normal distribution of the data and Bartlett´s tests to test for homogeneity of variances. For 

parametric data, we used Student´s t-tests or ANOVAs followed by pairwise t-tests with post-hoc 
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Benjamini-Hochberg correction for multiple testing. For non-parametric data we used Kruskal-Wallis 

tests or pairwise Mann-Whitney U-tests with post-hoc Benjamini-Hochberg correction. The boxplots 

(Fig. 3B, E, F) show ln transformed 2-!!Cq values. 

 

Fluorescence in situ hybridization 

Ants were fixated in 4 % paraformaldehyde in PBS and embedded in cold-polymerizing resin 

(Technovit 8100, Heraeus Kulzer, Germany). Longitudinal sections (5 "m) through the abdomen were 

obtained with a Microm HM355S microtome (Thermo Fisher Scientific, Germany) and mounted on 

microscope slides coated with poly-L-lysine (Kindler, Germany). Tissue sections were incubated for 

90 min at 50 °C in hybridization buffer (0.9 M NaCl, 20 mM Tris/HCl pH=8.0, 0.01 % SDS), 

containing 0.5 "M of the general eubacterial probe EUB338 (5’-GCTGCCTCCCGTAGGAGT-3’) 

(Amann et al. 1990) and one of the Westeberhardia-specific probes Wcard1 (5’-

ATCAGTTTCGAACGCCATTC-3’) and Wcard2 (5’-CGGAAGCCACAATTCAAGAT-3’). Probes 

were labeled with Cy3 or Cy5, and samples were counterstained with 5 "g/ml DAPI (4’,6-diamidino-

2-phenylindole). After hybridization, samples were washed once with pre-warmed wash buffer (0.1 M 

NaCl, 20 mM Tris/HCl pH=8.0, 5 mM EDTA, 0.01 % SDS), incubated in the same buffer for 20 min 

at 50 °C, washed twice in ddH2O, air-dried, and finally covered with VectaShield® (Vector 

Laboratories, Burlingame, CA, USA). Images were acquired on an AxioImager.Z1 epifluorescence 

microscope (Carl Zeiss, Jena, Germany), using the mosaic tool and the z-stack option to combine 

different focus planes. 

!  
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S1.3.2 Supplementary Figures 
 

 
Supplementary Figure S3.1: Phylogenetic tree based on the phylogenomic analysis of Westeberhardia 
and other Enterobacteriaceae. 
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S1.3.3 Supplementary Tables 
!
Supplementary Table S3.1: Pairwise T-tests using post-hoc Benjamini-Hochberg correction for 
intrapopulational comparisons in the BR Una (2012) population. 

 L PP PW 
PP 0.5894 - - 
PW 0.2080 0.3647 - 
PB 0.1031 0.0286 0.0033 

 

Supplementary Table S3.2: Pairwise Mann-Whitney U-tests using post-hoc Benjamini-Hochberg 
correction for morph comparisons of BR (Una 2012) individuals. 

 Q W WM 
W 0.00012 - - 

WM 0.00014 0.75027 - 
M 0.00014 0.21678 0.21678 

 

Supplementary Table S3.3: Pairwise t-tests using post-hoc Benjamini-Hochberg correction for BR 
(Una 2012) workers. 

 PW PB W2 W14 
PB 0.1233 - - - 
W2 0.0868 0.9135 - - 

W14 0.9135 0.0868 0.0575 - 
W28 0.1969 0.0071 0.0046 0.1774 

 

Supplementary Table S3.4: Pairwise Mann-Whitney U-tests using post-hoc Benjamini-Hochberg 
correction for BR (Una 2012) queens. 

 PW PB Q2 Q14 Q28 V28 
PB 0.0222 - - - - - 
Q2 0.0082 0.3524 - - - - 

Q14 0.0047 0.0082 0.1192 - - - 
Q28 0.0065 0.0098 0.0047 0.0028 - - 
V29 0.0082 0.0315 0.0188 0.0329 0.2029 - 
Q48 0.0047 0.0065 0.0028 0.0017 0.0363 0.0047 
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