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1. Executive Summary 

Austropuccinia psidii, commonly known as myrtle, eucalyptus and guava rust, has long been considered a significant threat 

to Australian plant industries and ecosystems. In April 2010, A. psidii was detected for the first time in Australia on the central 

coast of New South Wales. The impact A. psidii would have on plant industries reliant on Myrtaceae and native species was 

unknown. This project aimed to deliver a standardised method for assessing myrtle rust susceptibility and impact on 

Myrtaceae in Australia, and in doing so, identify species and plant communities at greatest risk, while at the same time 

identifying possible management options to minimise the impact of the disease on plant industries and the environment.  

The geographic distribution of A. psidii in Australia continues to expand with detections now extending from Tasmania, along 

the entire east coast of Australia as far north as Bamaga at the tip of Cape York Peninsula and most recently in the Tiwi Islands 

and Darwin in the Northern Territory. Reports from west of the Great Dividing Range still remain low and restricted to 

nurseries and urban gardens. The current host range in Australia includes 347 species from 57 different genera, of which 242 

species have been identified from infections under field conditions. A total of 180 species have now been rated for 

susceptibility to A. psidii and detailed impact data for more than 20 species provides important information for species 

conservation planning. Austropuccinia psidii infection has been identified on flowering and fruiting structures of 32 species 

of Myrtaceae. We also provide additional evidence of the effects repeated infection indirectly has on flower and fruit 

production.   

In just the short time that A. psidii has been established in Australian natural ecosystems, we have observed significant 

damage and tree mortality. There are few exotic diseases in Australia that threaten such a wide range of Australian flora. Our 

studies, while currently limited, have shown that A. psidii is severely affecting key species in natural ecosystems, and likely to 

be significantly affecting a much wider range of species. We have identified significant impacts caused by A. psidii on 

threatened species with restricted natural ranges as well as those with a broad native range and considered widespread. 

Outcomes from this study have resulted in applications to have Rhodomyrtus psidioides and Rhodamnia rubescens listed as 

Critically Endangered species.  

Impacts on plant communities have now become more apparent with changes in host density due to myrtle rust related 

dieback within species rich environments likely to impact on the long term survival of species. Austropuccinia psidii has caused 

significant disturbance in wet sclerophyll environments where Myrtaceae dominate the rainforest understorey. Significant 

dieback caused by repeated A. psidii infection has seen once dominant species in severe decline with little evidence of 

potential for regeneration. Impacts on keystone species such as Melaleuca quinquenervia include tree death, decline in tree 

vigour and reduced flowering rates with additional decline found to be associated with interactions with insect damage. Using 

glasshouse screening methods developed in this project we were able to study populations of M. quinquenervia and other 

broad-leaved Melaleuca spp. providing a better understanding of resistance patterns as well as identifying populations at 

greatest risk of significant impact. 

The impacts of A. psidii on plant industries reliant on Myrtaceae are variable, with the nursery and lemon myrtle industries 

most affected. Our studies have helped identify host species and their relative susceptibility levels to aid in species selection 

for future commercial development. Additionally, we have examined resistance/susceptibility patterns in Eucalyptus and 

Corymbia species of commercial significance with selections at the family level possible. However, it was also identified that 

resistance to A. psidii often resulted in susceptibility to endemic pathogens. 

Our studies have demonstrated, at a species and plant community level, the potential for A. psidii to negatively affect 

Australia’s biodiversity in the short- and long-term. Continued monitoring programs are required to identify species and 

plant communities at greatest risk as well as identifying resistance for potential use in regeneration programs. The 

implementation of a disease screening and tree breeding program may be required for some species as it may be the case 

that without human intervention, regaining lost genetic diversity within these species populations may not be possible. To 

date, only two species have been recommended for legislative listing. We recommend that other species of Myrtaceae be 

considered and that conservation strategies be developed to ensure help manage myrtle rust in Australia.  
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2. Introduction 

Austropuccinia psidii, previously Puccinia psidii and commonly known as myrtle, eucalyptus and guava rust, has long been 

considered a significant threat to Australian plant industries and ecosystems. In April 2010, A. psidii was detected for the first 

time in Australia on the central coast of New South Wales. Globally A. psidii is spreading rapidly impacting on Myrtaceae of 

both commercial and ecological significance. It was first reported from Brazil in 1884 infecting Psidium guajava (Winter 1884). 

It has since been identified from the USA (Hawaii, Florida, California) (Marlett & Kimbrough 1979; Uchida et al. 2006; Mellano, 

2006), New Caledonia (Giblin 2013; Machado et al. 2015), South Africa (Roux et al. 2013), Indonesia (McTaggart et al. 2016) 

and more recently Singapore (du Plessis et al. 2017). The implications of this global spread are still largely undetermined.  

Although originally described from Brazil, it can be assumed that A. psidii is endemic to neighbouring countries. Its detection 

in countries in South and Central America and the Caribbean can be tracked via publication reporting (Simpson et al., 2006): 

Paraguay (1884), Uruguay (1889), Ecuador (1891), Colombia (1913), Puerto Rico (1913), Cuba (1926), Dominican Republic 

(1933), Jamaica (1933), Venezuela (1934), Argentina (1946), Dominica (1948), Trinidad and Tobago (1951), Guatemala (1968), 

El Salvador (1987) and Costa Rica (1998). It is likely that A. psidii was present in El Salvador and Costa Rica for some time prior 

to being reported. In North America, A. psidii was reported in Florida in 1977 (Marlatt & Kimbrough, 1979), Mexico in 1981 

(Léon-Gallegos & Cummins, 1981), Hawaii in 2005 (Killgore & Heu, 2007) and California in 2006 (Mellano, 2006), although 

likely present there prior to 2006. The introduction into California is likely to have been from the live plant trade or foliage 

trade from Florida, based on data on interceptions and nursery detections (Zambino & Nolan, 2012). The introduction to 

Hawaii is also likely to have been from the live plant trade or foliage trade (Loope et al., 2007; Loope & Rosa, 2008), most 

likely from mainland USA. Currently A. psidii is restricted to the south-east of Florida, has a restricted distribution in California, 

but has spread throughout the islands in Hawaii. 

In 2007, A. psidii was detected on rooted cuttings of Metrosideros polymorpha in Japan (Kawanishi et al. 2009), again most 

likely imported in the live plant trade. No further reference to its distribution in Japan has been found however. In 2011, A. 

psidii was reported from southern China from collections in 2009 (Zhuang & Wei 2011). In 2010, A. psidii reached Australia 

(Carnegie et al. 2010), and is now widespread along the east coast (Carnegie & Cooper 2011; Pegg et al. 2014). There is no 

indication of the pathway of entry into Australia. In 2013, A. psidii was reported from both South Africa, where its distribution 

was originally restricted (Roux et al. 2013) but is now considered widespread (Roux et al. 2016). In New Caledonia (IPPC 2013) 

Austropuccinia psidii has spread throughout the islands (DAVAR Nouvelle-Calédonie 2014). More recent detections include 

Indonesia (McTaggert et al. 2015), Sumatra (M. Purcell pers. Comm.), (impacting on Rhodomyrtus tomentosa within its native 

range), and street plantings in Singapore (du Plessis et al. 2017). 

Rating systems 

There have been various approaches to rating disease incidence and severity, in both seedling/sapling glasshouse situations 

and in seedling/sapling/mature field scenarios. Complexities arise due to the huge range of differing leaf morphologies and 

subsequent differing symptom presentations. Developing a standardised rating system is difficult as a mature tree with large 

leaves and a dense canopy is very different to a small shrub with tiny leaves and a sparse canopy. Early pustule symptoms 

can range from tiny pale yellow dots on a leaf to large waxy vivid yellow clusters on others. Older symptoms are an ash grey 

to brown lesion resembling damage caused by chewing insects and, thus, difficult or impossible to differentiate with the 

naked eye. 

In Hawaii, disease indexes for rust on Syzygium jambos (Anderson & Uchida 2008) and on Metrosideros polymorpha (Uchida 

et al. 2008) were developed to show symptoms of disease with varying degrees of severity. These were done to assist with 

the identification and reporting of disease in a standard way. A disease index category was developed for Syzygium jambos 

using the following: 

 0 - No symptoms found, or symptoms found but no rust spores confirmed 

 1 – 1 to 5 spots, yellow or white urediniospores confirmed 

 2 – 3 to 7 large or about 10 to 15 small spots, with a moderate level of disease; yellow or white urediniospores 

confirmed 

 3 - Severe disease levels; stems with pustules and/or no leaves 

 4 - Dead apical tips and numerous defoliated tips 
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In Australia, Morin et al. 2012 carried out inoculation experiments in the glasshouse and rated disease incidence and severity 

on the 3 most affected leaves. They devised a 1 to 5 rating system where 1 indicated no visible symptoms and 5 indicated 

abundant sporulation with 25% of the leaf surface covered by fully-developed uredinia. 

Also in Australia, Sandhu et al. 2013 developed a scale based on different infection types produced by a range of highly 

resistant to highly susceptible genotypes. The rating system was: 

 Highly resistant – no visible signs of infection 

 Resistant – mild hypersensitivity/flecks/dark flecks/necrosis 

 Moderately resistant – Restricted pustule/dark grey surrounding/chlorosis/necrosis 

 Moderately susceptible - Small to medium sized pustules low in frequency and may be with some chlorosis 

present 

 Susceptible - Fully developed pustules on leaves and medium to high in frequency 

 Very susceptible - Abundance of fully developed pustules on leaves, twigs and buds 

 

Strains of Austropuccinia psidii 

Austropuccinia psidii is native to South America and has not co-evolved with Myrtaceae in Australia, therefore, it cannot be 

determining impacts on species and ecosystems and associated industries is difficult. Usually in a co-evolved host/pathogen 

interaction, there will be minimal impact to ensure the survival of the pathogen. At the time of writing this report, only one 

strain of Austropuccinia psidii is present in Australia but there are up to seven potential strains/biotypes of the fungus 

described worldwide. It cannot be predicted whether or not other strains of the fungus will be more or less virulent than the 

strain found here now. It is generally accepted that not all strains of the fungus will affect all hosts the same (da Silva et al. 

2013). 

Multiple strains of A. psidii have been identified from Brazil. A single strain has been recorded on multiple myrtaceous hosts 

in Hawaii since 2005 but only causes mild symptoms on the widespread and significant native ‘ohia (Metrosideros 

polymorpha). Of five Brazilian strains tested on ‘ohia seedlings in Brazil, three strains were found to be highly virulent and 

two strains less so (da Silva et al. 2013). No resistance was observed. On the other hand, the strain found in Hawaii has been 

highly virulent on the non-native Syzygium jambos populations, causing significant mortality. This strain of the fungus is not 

reported in Brazil and unfortunately couldn’t be compared in their studies. In 2016, Roux et al. reported that the isolate 

detected in South Africa is different from what is present in Australia and is in fact unique. The isolate from Indonesia was 

identified as being identical to what is present in Australia (McTaggart et al. 2015.). 

Host range and spread 

Austropuccinia psidii affects plants in the Myrtaceae family, which includes many Australian natives including eucalypt, 

paperbark, bottlebrush, tea tree and lilly pilly. The fungus spread rapidly along the east coast and in December 2010 was 

found in Queensland followed by Victoria a year later. More recently (January 2015) myrtle rust was detected in Tasmania 

and the Northern Territory. Austropuccinia psidii was initially restricted to the south-eastern part of Queensland but spread 

as far north as Mossman and then to Bamaga at the tip of Cape York Peninsula. In Queensland 48 species of Myrtaceae are 

considered highly or extremely susceptible to the disease (Pegg et al. 2014). The impact of A. psidii on individual trees and 

shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity. Tree death, as a result of 

repeated infection, has been recorded for Rhodomyrtus psidioides. Rust infection has also been recorded on flower buds, 

flowers and fruits of 28 host species. 

The perceived threat to Australian biodiversity and industry is now being realised.  Severe damage to key species has been 

observed in native environments, including rainforest understorey species such as Rhodamnia rubescens and Rhodomyrtus 

psidioides and the keystone wetland species Melaleuca quinquenervia (Carnegie & Cooper 2011; Carnegie & Lidbetter 2012; 

Pegg et al. 2014).  The essential oil industry is being impacted, particularly lemon myrtle (Backhousia citriodora), and although 

A. psidii has been found in eucalypt plantations, the forest industry has not yet seen significantly damage (Carnegie 2014). 

The disease has seen an increase in reliance on regular chemical applications in the nursery industry and in some cases 

resulted in a removal of the more susceptible species from production and on-sale. 
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Austropuccinia psidii is now identified from a range of native forest ecosystems including coastal heath (Austromyrtus dulcis, 

Homoranthus spp.), coastal and river wetlands (Melaleuca quinquenervia, M. viridiflora), sand island ecosystems of Moreton, 

Stradbroke and Fraser Islands, and littoral, montane, subtropical and tropical rainforests (Syzygium spp., Rhodamnia spp., 

Rhodomyrtus spp.) (Pegg et al. 2014). The disease is prevalent in urban and peri-urban environments around major cities and 

towns, commonly reported from botanic gardens and nature reserves with disease impacts ranging from minor leaf spots to 

severe dieback and infection, and premature senescence of flowers and fruits (Pegg et al. 2014). 

Austropuccinia psidii has been listed as a key threatening process to the natural environment in NSW 

(http://www.environment.nsw.gov.au/determinations/exoticrustfungiFD.htm), and was recently nominated as a key 

threatening process at the federal level (Makinson 2014). However, there is a paucity of studies on the impact of A. psidii in 

the native environment in Australia. This is surprising considering the heightened publicity A. psidii received prior to arriving 

and during the emergency response, and the perceived threat to native Myrtaceae and biodiversity. 

Symptoms of infection by A. psidii range from minor leaf spots to severe foliage and stem blight, as well as infection of flowers 

and fruit of some species. Of the highly or extremely susceptible species, several have importance economically, e.g. 

Backhousia citriodora and Chamelaucium uncinatum, and environmentally, e.g. Melaleuca quinquenervia. The level of natural 

resistance within species populations in Australia is unknown. Field observations indicate variability in susceptibility to the 

disease within some species (Pegg et al. 2014). 

Currently, there is no nationally agreed method in Australia for scoring the susceptibility of myrtaceous hosts to myrtle rust, 

either in the glasshouse or in the field.  A standardised method of disease rating has been specifically requested by the 

Nursery and Garden Industry in order to enable trade of disease free species and to provide clients, such as councils, with 

advice on the levels of myrtle rust susceptibility or tolerance for particular species and/or varieties assisting them in their 

planting schemes. In addition, a standardised scoring system will be an invaluable tool to determine levels of susceptibility 

for the resistance breeding program conducted under the National Transition to Management Program (T2M). A sound 

understanding of the biology of the disease, including disease epidemiology and factors influencing disease development, 

host-pathogen interactions and disease impacts for a range of myrtaceous species will underpin the development of this 

disease rating system. 

3. Aims 

This project is aimed at delivering a standardised method for assessing myrtle rust susceptibility and impact in Australia, in 

both the glasshouse or in the field. The outcomes from this project will benefit the Nursery and Garden Industry and other 

plant industries that rely on myrtaceous plants, and other stakeholders, including businesses, local governments and the 

community to help them manage myrtle rust and limit its impacts on plant production, trade and the environment in 

Australia. The outcomes of this project will also benefit ongoing research and development into myrtle rust management, 

such as resistance breeding or selection programs. The research also provides baseline data on the impact myrtle rust is 

having and likely to have on species and plant communities in natural ecosystems. 

A standardised disease rating system for a range of Myrtaceae will provide plant producers, nurseries and other stakeholders 

with a valuable tool to assist in species selection, as well as identify potential variability in resistance within host species for 

further development. This includes: 

 Screening methodologies for: 

- Selecting resistance to Austropuccinia psidii 

 within genera and species 

 within breeding populations 

- Examining resistance patterns, heritability and resistance mechanisms 

 Field assessment methodologies for: 

- Rating susceptibility of Myrtaceae to Austropuccinia psidii 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 8 

Studying impact of Austropuccinia psidii on species and plant communities 

4. Materials and Methods 

Host range and susceptibility  

Susceptibility of Myrtaceae to A. psidii and impact of infection under natural conditions was determined through surveys in 

botanic gardens, public gardens and private botanical collection as well as in native ecosystems. Public reports continued to 

be received in Queensland and photos were examined for presence of A. psidii symptoms and host identification.  

Susceptibility assessments, primarily focussed on new growth (shoots, juvenile stems and expanding foliage) were made using 

the following categories (Figure 1): 

 Relatively tolerant (RT) = restricted leaf spot or spots only;  

 Moderate susceptibility (MS) = blight symptoms on new shoots and expanding foliage;  

 High susceptibility (HS) = blight symptoms on new shoots and expanding foliage and juvenile stems; 

 Extreme susceptibility (ES) = death of new shoots and severe blighting on all foliage types, shoot and stem dieback. 

Identification of new host species was confirmed by botanists and samples collected and submitted into the BRIP (Brisbane 

Plant Pathology) collection. Locations of these detections were recorded along with all public reports made to Biosecurity 

Queensland. 

 
Figure 1 (Pegg et al. 2014) Austropuccinia psidii severity levels Relatively tolerant (a, b): sori present on <10% of expanding 

leaves and shoots; limited number sori per infected leaf; Moderate susceptibility (c, d): sori present on 10–50% of expanding 

leaves and shoots; limited–multiple number sori per infected leaf; High susceptibility (e, f): sori present on 50–80% expanding 

leaves and shoots; some evidence of disease on juvenile stems; evidence of disease on older leaves and stems; multiple sori 

per leaf/stem causing blight and leaf/stem distortion; Extreme susceptibility (g, h): sori present on all expanding leaves and 

shoots and juvenile stems; shoot, stem and foliage dieback; evidence of older stem/shoot dieback. 

Data collected from these surveys was used to identify species of Myrtaceae of greatest risk of significant impact to assist: 

 The nursery industry identify resistant or more tolerant species for commercial production 

 Planning of urban garden planting program through removal of highly susceptible species and selection of more 

resistant species 
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 Identification of species and plant communities requiring more detailed research into the short and long term 

impacts of A. psidii 

 Planning of species conservation programs 

 

Impact of Austropuccinia psidii on species of Myrtaceae 

Selected study species 

Published as: 

Angus J. Carnegie, Amrit Kathuria, Geoff S. Pegg, Peter Entwistle, Matthew Nagel, Fiona R. Giblin, 2015. Impact of the 

invasive rust Austropuccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biological Invasions. 

DOI 10.1007/s10530-015-0996-y (http://link.springer.com/article/10.1007%2Fs10530-015-0996-y) 

We selected two rainforest species to quantify the impact of A. psidii in natural ecosystems in Australia and to illustrate the 

potential for A. psidii to affect similarly susceptible Myrtaceae. The two species, Rhodamnia rubescens and Rhodomyrtus 

psidioides, are listed as highly to extremely susceptible to A. psidii, including fruit infection, based on field observations in 

Australia (Carnegie & Cooper 2011; Carnegie & Lidbetter 2012; Pegg et al. 2014). Rhodamnia rubescens (brush turpentine) is 

a common pioneer species in subtropical, cool and warm temperate rainforests, with a coastal distribution from Batemans 

Bay in southern NSW to Gympie in southern Queensland (Floyd 1989). It is an understorey shrub to small tree with dense 

foliage, and although reported to reach heights of 25 m (Floyd 1989), we rarely observed trees over 15 m. Rhodomyrtus 

psidioides (native guava) is an understorey shrub to small tree (to 12 m) found in littoral rainforests and wet sclerophyll forests 

with a coastal distribution from Gosford on the Central Coast of NSW to Gympie in southern Queensland (Floyd 1989). It is 

known as a pioneer species in disturbed environments (Williams & Adam 2010). A. psidii is known to have been established 

across the range of these species since mid-2011 (www.bionet.nsw.gov.au/; Carnegie & Lidbetter 2012; Pegg et al. 2014). 

There is a paucity of botanical or ecological research on these two species: both are known to be susceptible to drought and 

frost, but have few natural enemies, and are often described as good “screen” trees for their dense foliage (Floyd 1986; 

www.noosanativeplants.com.au; www.brushturkey.com.au). Neither species was considered as either rare or of 

conservation concern prior to 2010 and are still currently listed as ‘Least Concern’ under state and federal legislation 

(http://www.environment.nsw.gov.au/threatenedspecies/; http://www.ehp.qld.gov.au/wildlife/threatened-species/; 

http://www.environment.gov.au/biodiversity/threatened/species) 

Effect of repeated damage by Austropuccinia psidii on Rhodamnia rubescens: Olney State Forest disease exclusion trial 

Trial design 

A disease exclusion trial was established in Olney State Forest (SF) (33° 07’ 53” S, 151° 15” 30” E) on the Central Coast of NSW 

to quantify the effect of repeated damage from A. psidii on R. rubescens and examine the progress of disease symptoms over 

time. The site selected was a wet sclerophyll forest in a moist gully and had an abundance of R. rubescens ranging in size from 

newly emerging seedlings to 12+ m trees. Overstorey trees included Syncarpia glomulifera and Eucalyptus spp., with the 

understorey dominated by R. rubescens and Allocasuarina sp. Austropuccinia psidii was first detected in Olney SF in October 

2010 (Carnegie & Cooper 2011), six months after A. psidii was detected in Australia; Olney SF is less than 10 km north of the 

first known infected location in Australia. It is likely that A. psidii had been present for several months prior to being detected. 

Twenty trees were selected by walking a line-transect through the forest and every 5 m selecting the nearest R. rubescens 

tree ~0.5 to ~4.0 m in height (trees above this height would be too difficult to spray). Ten trees were then randomly assigned 

as treated (sprayed) and 10 as untreated (not sprayed). All foliage on treated trees was sprayed to run-off with the fungicide 

triadimenol (50 ml/100 L)—which is registered in Australia for control of A. psidii 

(http://permits.apvma.gov.au/PER12319.PDF)—with a manual pressurized back-pack spray unit. Fungicide application 

generally occurred monthly from August 2011 to October 2014. From June 2013, the 10 treated trees were split into two 

groups with five individuals randomly selected for ongoing fungicide treatment while the other five were no longer treated 

with fungicide (hereafter termed “partially treated”). The aim here was that once trees had recovered and had been free of 

disease for some time, we wanted to follow the progression of disease on these un-diseased trees, similar to what would 

have occurred when A. psidii first established in the forest. 

Tree assessments 

The whole crown of each tree was assessed for crown transparency (Schomaker et al. 2007) monthly from August 2011 to 

October 2014 to provide an indication of the impact on tree health due to repeated damage from A. psidii: low transparency 

(e.g. 25%) indicated many leaves in the crown and limited impact from A. psidii infection while a high transparency (e.g. 75%) 
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indicated few leaves and a high level of impact. No other causal agent of defoliation (e.g. herbivores or drought) was observed 

during the course of the study. Incidence and severity of A. psidii was assessed on leaves to gain an understanding of the 

relationship between leaf damage and crown transparency and follow the progression of damage through time. Incidence (% 

infected) and severity (% leaf area affected on diseased leaves) of A. psidii was assessed on leaves on individual branches 

from August 2011 to December 2012 and thereafter on leaves in the whole crown up to October 2014 as follows. Three 

branches per tree were randomly selected and tagged 30 cm from the tip and each month from August 2011 to December 

2012 the number of leaves (immature and mature leaves combined) on each branch counted and the incidence and severity 

of A. psidii on these leaves assessed. “Immature” leaves had recently been produced and were still susceptible; “mature” 

leaves, representing several leaf cohorts, had previously been susceptible, but had since matured and were no longer 

susceptible to new infection. From March 2013 to October 2014, individual branches were no longer assessed and the 

incidence and severity of A. psidii on the immature leaves only, across the whole crown, was assessed at monthly intervals. 

The reason for this change in methodology was that many of the tagged branches on the untreated trees had died by March 

2013, and so to continue to obtain data we began assessing A. psidii in the whole crown. Only these later assessments were 

used to conduct comparative analysis with crown transparency and leaf flush. An estimate of the proportion of immature 

leaves in the whole crown, providing an indication of leaf flush events, was also assessed monthly from March 2013. 

Development/production of flowers and fruit, and incidence of rust on each, were to be assessed, however neither flower 

nor fruit production were observed during this study. 

Quantification of diseased leaf area and leaf size on Rhodamnia rubescens at Olney SF 

Within six months of initiation of the Olney SF disease exclusion trial we observed a difference in disease severity and an 

apparent difference in the size of newly developed (immature) leaves between treated and untreated trees. We hypothesized 

that this difference in leaf size was due to repeated severe leaf damage and subsequent defoliation on untreated trees 

resulting in reduced carbon assimilation, thus affected ongoing leaf development. To further examine this, leaves were 

collected and the leaf area damaged by A. psidii (severity) and the total leaf area (size) of both treated and untreated trees 

were assessed. Three branches per tree from each of the 20 trees were randomly selected (but not the tagged branches 

above) and two leaves per leaf category (old, mature and immature) were sampled six months after treatment began (i.e. 2 

leaves x 3 leaf categories x 3 branches = 18 leaves/tree). For this experiment we designated three categories of leaf age to 

try to differentiate the effect of treatment on leaf production (= leaf size): “old” leaves had matured prior to commencement 

of the trial and so any rust on these was from previous episodes of infection; “mature” leaves, representing several leaf 

cohorts, would have been produced after the trial commenced and so would have been susceptible, but had matured and 

were no longer susceptible at the time they were sampled; “immature” leaves had recently emerged and were susceptible. 

Whole leaves were removed, placed in paper bags, pressed in a herbarium press while still fresh and leaf area determined by 

scanning using an HP Color LaserJet CM3530fs MFP. The image processing software QUANT (Vale et al. 2003) was used to 

quantify leaf area (mm2) and the percentage of leaf area damaged by A. psidii (A. psidii severity).  

Site 1 Effect of Austropuccinia psidii on foliage production and survival of Rhodamnia rubescens 

– Olney State Forest, NSW 

A fungicide exclusion trial was established in Olney State Forest (37° 07’ 53” S, 151° 15” 30” E) on the Central Coast of NSW 

to quantify the impact of A. psidii on R. rubescens.  The site selected was in a moist gully and had an abundance of R. rubescens 

ranging in size from newly emerging seedlings to 12+ m trees.  Over-storey trees included Syncarpia glomulifera and 

Eucalyptus spp., with the understory dominated by R. rubescens and Allocasuarina sp. Austropuccinia psidii was first detected 

in Olney SF in October 2010, six months after A. psidii was detected in Australia; Olney SF is less than 10 km north of the initial 

infected premises. It is likely that A. psidii had been present for several months prior to being detected.   

Twenty trees were selected by walking a line-transect through the forest and selecting every 5 m selecting the nearest R. 

rubescens tree ~0.5 to ~4.0 m in height (trees above this height would be too difficult to spray). Trees were randomly assigned 

as treated (sprayed) or untreated (not sprayed), 10 plants per treatment. All foliage on treated trees was sprayed to run-off 

with the fungicide triadimenol (50 ml/100 L) with a manual pressurised back-pack spray unit, with untreated trees not 

sprayed. Fungicide application generally occurred monthly from August 2011 to October 2014   

From June 2013, the 10 treated trees were split and five of these randomly selected for ongoing fungicide treatment while 

the other five were no longer treated with fungicide (hereafter termed “partially treated”).  The aim here was that once trees 

had recovered and had been free of disease for some time, we wanted to follow the progression of impact on these un-

diseased trees, similar to what would have occurred when A. psidii first established in the forest. 

Tree assessments 
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Each month, the whole crown of each tree was assessed for crown transparency (Schomaker et al. 2007) where low 

transparency (e.g. 25%) indicated many leaves in the crown and limited impact from rust infection while a high transparency 

(e.g. 75%) indicated few leaves and a high level of rust impact. Trees were also assessed for incidence and severity of infection 

on immature leaves, and number of new leaves produced since last assessment (providing an indication of a “flush” event). 

These later assessments, and corresponding analysis with weather data, are to be reported elsewhere. 

Development/production of flowers (generally August-October) and fruit (generally October-December) (Floyd 1989), and 

incidence of rust on each, were to be assessed, but none were produced during this study. 

Diseased leaf area assessments 

To further examine the impact on foliage, leaves were collected and a leaf area quantification programme used to quantify 

total leaf area (size) and leaf area damaged by A. psidii of both treated and untreated trees.  Two leaves from each leaf-age 

category (old, mature and immature) from each tree were sampled in February 2012 (six months after treatment began). 

“Old” leaves had matured prior to commencement of the trial, were thus not susceptible to A. psidii, and so were an indication 

of previous disease; “mature” leaves, representing several leaf cohorts, would have been produced after the trial commenced 

and so would have been susceptible; “immature” leaves had recently been produced and were still currently susceptible. 

Three branches per tree were randomly selected and two leaves per leaf category removed and placed in paper envelopes 

(i.e. 2 leaves x 3 branches = 6 leaves). Leaves were pressed then scanned using an HP Color LaserJet CM3530fs MFP.  The 

image processing software QUANT (Vale et al. 2003) was used to quantify leaf size (mm2) and the percentage of area 

damaged by A. psidii. 

The impact of Austropuccinia psidii on selected species across their native range 

To gain an understanding of the impact of A. psidii on our selected species, and ascertain whether there was any variation in 

susceptibility, we assessed native stands of each species across the range of their natural distribution. Stands were selected 

across their natural distribution ranges through knowledge of local ecologists (e.g. Forestry Corporation of NSW; National 

Parks & Wildlife Service) and from species location data obtained from the Atlas of Living Australia (www.ala.org.au/). While 

some stands were already known to have a history of A. psidii, such as those listed in the Atlas of NSW Wildlife 

(www.bionet.nsw.gov.au/), many sites were selected without any prior knowledge of A. psidii presence to remove bias from 

site selection. Stands were selected if they were in native forests and ideally contained at least 20 individuals. At each site 

(GPS coordinates obtained), a central point was located within the stand and the nearest 20 individuals marked for 

assessment.  Individuals smaller than ~0.5 m in height were not included.   

For each tree, assessments were made of A. psidii infection and damage: (1) crown transparency (Schomaker et al. 2007) 

(Figure 2), (2) incidence of A. psidii (% infected) on (a) immature leaves, (b) mature leaves and (c) flowers and fruits (if 

present), and (3) a disease rating score (Pegg et al. 2012). Dead trees were classed as 100% crown transparency; results from 

the Olney SF exclusion trial, and our extensive field observations, indicated that such trees might produce epicormics growth 

or re-shoot, but that this foliage subsequently became infected and died.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Crown transparency 

scale used to assess impact of Austropuccinia psidii on species of Myrtaceae (Schomaker et al. 2007) 

 

No other causal agent of defoliation (e.g. herbivores or drought) was observed during our assessments. For disease incidence 

assessments, immature leaves were those that had not fully expanded and were thus still susceptible to A. psidii; mature 
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leaves were no longer susceptible, but may have previously been infected when immature and were still retained on trees. 

Disease rating (1–4 scale) was based on the scale developed by Pegg et al. (2012), where: 

 1 = minor leaf spots with rust pustules on <10% of immature leaves, only a few pustules per infected leaf;  

 2 = rust pustules present on 10–50% of immature leaves and shoots, moderate numbers of pustules per 

infected leaf;  

 3 = rust pustules present on 50–80% of immature leaves and shoots, multiple pustules per leaf/stem, leaf and 

stem blighting and distortion, evidence of rust on juvenile stems and older leaves;  

 4 = rust pustules present on majority of immature leaves, shoots and juvenile stems, multiple pustules per 

leaf/stem, foliage dieback, evidence of stem and shoot dieback.   

 

Based on results from the Olney SF disease exclusion trial, and a posteriori knowledge of our study species (e.g. Pegg et al. 

2014), we were confident that if severe damage from A. psidii was observed in trees at our sites then A. psidii was the main 

cause of any crown loss. For example, Pegg et al. (2014) followed the progression of disease on individual R. angustifolia trees 

from initial infection by A. psidii to severe defoliation and dieback within 15 months. Both our indicator species are non-

deciduous, and there is no evidence of seasonal effects during the 10 month period of our assessments, which covers all 

seasons, that could account for any changes in crown transparency. 

 

Binoculars were used to assess tall trees where necessary. Tree height (m) was measured with either a height pole or laser 

rangefinder/height meter. Sites were assessed between January and October 2014, roughly 3—3.5 years after A. psidii had 

established in natural ecosystems across the natural range of these two species. 

 

At each site we examined trees for typical symptoms of A. psidii infection and damage (Carnegie & Lidbetter 2012; Pegg et 

al. 2014) to confirm presence of the disease. This included yellow pustules on immature leaves and stems, old greyed pustules 

on mature leaves which had been infected when immature, and stem dieback. No other disease established in Australia 

presents similar symptoms (Walker 1983). At a selection of sites, samples were collected for further examination in the 

laboratory and molecular confirmation of A. psidii (results presented in Pegg et al. 2014; Machado et al. 2015). 

 

Statistical analyses 

Effect of repeated damage by Austropuccinia psidii on Rhodamnia rubescens: Olney State Forest disease exclusion trial 

The values for the crown transparency data were measured at regular intervals so the data are a time series and the 

observations over time on the same experimental unit (tree) cannot be assumed to be independent. A mixed effect model 

was used to model the auto-correlation structure. An auto-correlation between the residuals of different time points was 

modeled by introducing a stationary auto-correlation function of order 1 (Chatfield 2003; Diggle 1990). This error structure 

models the residuals at time t (ut) as a function of residuals at time t-1 (ut-1) along with the noise (εt): 

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡    (2) 

The parameter ρ is unknown, and needs to be estimated from the data. This error structure results in the following correlation 

structure: 

 

𝑐𝑜𝑟(𝑢𝑡, 𝑢𝑠) =  {
1, 𝑖𝑓 𝑡 = 𝑠

𝜌|𝑠−𝑡|, 𝑒𝑙𝑠𝑒
   (3) 

Treatment and time were used as fixed effects. Initial plotting indicated a non-linear trend with time, so a smoothing spline 

was fitted with time. The fitted model is: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 =  𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +  𝑓 1(𝑡𝑖𝑚𝑒): 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝜀  (4) 

where crown transparency is the response variable, treatment (= treated, untreated and partially treated), and time is the 

number of days since the start. A separate spline function ( 𝑓 1) is fitted for each treatment over time rather than assuming a 

linear relationship. The model was fitted as before using likelihood ratio tests for significance testing.   

Only data from March 2013-October 2014 were used for comparative analysis of incidence and severity, crown transparency 

and leaf flush. 
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Quantification of diseased leaf area and leaf size at Olney SF 

Observations were made within trees for the leaf area data, so the observations are not independent and hence a mixed 

effects model was also fitted to these data. Fixed effects that were included in the model were treatment, crown transparency 

and leaf class (old, mature, immature). Crown transparency was included in the model as we had hypothesized that high 

crown transparency would result in a reduction in photosynthetic area and thus a reduction in leaf size due to depletion of 

reserves to produce foliage. For the analysis, we included crown transparency assessment dates that we believed would have 

had some effect on foliage production for each leaf class (i.e. crown transparency prior to or at the time of foliage production): 

for immature leaves, we used mean crown transparency from the two preceding assessments (February 2012 and December 

2011); for mature leaves we used mean crown transparency for the December 2011 and November 2011 assessments (these 

leaves had matured by the February 2012 assessment); for old leaves we used crown transparency from August 2011.  

As the design is nested, a random effect for tree is included in the model. The full model fitted is: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑇𝑟𝑒𝑎𝑡 + 𝐿𝐶 + 𝑇𝑟𝑎𝑛𝑠 + 𝑇𝑟𝑒𝑎𝑡: 𝐿𝐶 + 𝛼 + 𝜀   (5) 

where Response variable is the leaf area or the severity of A. psidii on leaves (A. psidii severity), Treat, LC, Trans, Treat:LC, 

are the terms for fixed effects for treatment, leaf class, crown transparency and the interaction of treatment and leaf class, 

and α, ε are the random effects for the tree and the error terms. The variances for the treated and the untreated for 

percentage damaged were different. The heteroscedasticity structure was specified by weights argument in the model. The 

model was fitted using likelihood ratio tests for significance testing.   

 

The impact of Austropuccinia psidii on selected species across their native range 

The crown transparency data has an inherent nested structure as the trees are nested within locations and cannot be 

assumed to be independent as is required for linear regression. The data were therefore analyzed using mixed models 

(Pinheiro & Bates 2000). Restricted maximum likelihood (Zuur et al. 2009) was used to compare nested models in which only 

the random effects differed. Following the final random effect structure the model was tested for fixed effects. Likelihood 

ratio tests and t statistics were used to identify the significant fixed effect terms in the model. 

Previous rust (site with a known history of A. psidii), disease rating, disease incidence on immature leaves, disease incidence 

on mature leaves, and height were used as the fixed variables. Location was used as the random variable. The full model that 

was fitted was: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝐷𝑅 + 𝑃𝑅 + 𝑀𝐿 + 𝐻𝑡 + 𝐼𝐿 + 𝛼 + 𝜀   (1) 

where crown transparency is the response variable, DR, PR, ML, IL, Ht, are the fixed effect terms for disease rating, previous 

rust, disease incidence on mature leaves, disease incidence on immature leaves and height, and α, ε are the random effects 

for the location and the error terms. We included previous rust in the analysis to determine whether there was any bias in 

our selection of sites we already knew had disease compared to those with an unknown disease history. 

We also tested whether region―using Köppen climate classification and seasonal rainfall data (www.bom.gov.au)―had an 

effect on disease of R. rubescens and R. psidioides across the survey sites.  However, there was no effect so we did not report 

on this further. 

All analyses were conducted using R (R Core Team, 2014), nlme (Pinheiro et al. 2014) and plotting was done using ggplot2 

(Wickham 2009) and lattice (Sarkar 2008). 

Impact on other selected species 

Additional surveys have also been conducted on the remaining populations of Lenwebbia sp. Blackall Range. The genus 

Lenwebbia consists formally of two species, L. lasioclada and L. prominens, and occurs in mesic forests along or near the east 

coast of northern New South Wales to north-eastern Queensland. However, the latter species is now recognised as 

comprising two additional species: Lenwebbia sp. Blackall Range and Lenwebbia sp. Main Range. Lenwebbia sp. Blackall Range 

is currently listed as Endangered in Queensland and L. prominens as Near Threatened (Queensland; Nature Conservation Act 

1992 & Amendment Regulations (1) 2010). Populations of Lenwebbia sp. Blackall Range across areas of south-east 

Queensland, (Doonan, Eudlo, Maleny) were assessed for impact of myrtle rust following reports of decline from local council 

groups. Two populations of L. prominens from northern NSW were also assessed. 

 

Other species assessed, but only on a small number of populations within their natural range distribution, include:  
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 Decaspermum humile 

 Gossia myrsinocarpa 

 Rhodamnia maideniana 

 Rhodamnia sessiliflora  

 Tristaniopsis exiliflora 

 

Predicting impact of myrtle rust on species of Myrtaceae 

Ex-situ plantings of Myrtaceae within Mt Coo-tha and Lismore Botanical Gardens were assessed to determine susceptibility 

levels and potential impact of myrtle rust on a range of species from a broad geographic range in Australia. The gardens are 

now an important resource to help identify potential impact on these species and associated plant communities over time. 

Mt Coo-tha has a large collection of Australian subtropical and tropical Myrtaceae, whereas collections in the Lismore 

Gardens is focussed on rainforest species of northern New South Wales. Both sites were assessed using the methods 

mentioned previously to determine impact of repeated A. psidii infection. Results of this study will help prioritise species and 

plant communities at risk in regions of Australia where myrtle rust has not as yet reached and focus research and conservation 

programs in areas affected by rust. 

 

Impact of myrtle rust on tree species was measured as detailed previously. However, it was identified that in addition to 

transparency, which can be difficult to assess in dense forest ecosystem, data assessing overall tree health or impact would 

be valuable. Tree health was scored based on: 

 Branch Death – as a percentage of the total branches. This recording method can be applied to regeneration, 

under-, mid- and over-story species and individuals and adds to the value of assessing transparency levels. 

 Branches with evidence of dieback – as a percentage of branches showing evidence of foliage loss and apical tip 

dieback but have not been killed. 

 Healthy branches – as a percentage of the branches with no evidence of defoliation or dieback 

When assessing disease levels on new growth flush the following data was also recorded including: 

 

 Proportion of susceptible foliage – new growth as a percentage of the total foliage present. This may be more 

relevant when looking at patterns of disease development in relation to flush cycles, changes in host growth 

patterns in relation to repeated infection 

 Disease incidence on new growth 

 Disease severity – either recorded as a percentage of leaf area affected (average across the infected foliage) or as 

rating as previously mentioned 

 

Impact of Austropuccinia psidii on Rhodamnia rubescens fruit development  

Our initial aim was to assess the impact of A. psidii on fruit development in Olney SF, but no flowers set during 2011–2014. A 

fortuitist observation of flower development in R. rubescens in Tucki Tucki Nature Reserve in north-coastal NSW allowed us 

to conduct such a trial. A single, mature, R. rubescens was selected for the trial when the presence of flower buds was first 

noted. Unfortunately inconsistent flowering across the site, most likely due to previous myrtle rust impact, prevented us from 

conducted the experiment on a larger sample size. Two low branches were used for the trial, with 10 branchlets selected and 

tagged on each branch; each branchlet had approximately 60 fruit. The two branches were randomly assigned the nil 

treatment (control) and the fungicide application treatment. The fungicide treatment was Amistar 250SC (250g/L 

Asoxystrobin) at 0.4 ml/L of solution, with spray applied to the point of runoff.  The fungicide was applied at 14 day intervals 

until the surviving fruit had matured. For each branchlet, the total number of flowers/fruit and the number with A. psidii 

infection was recorded fortnightly. Mature fruit was captured for further analysis by placing shade-cloth under the two 

branches. Fruit was then dried and seed extracted and weighed.  

 

The response variables for the fruit data were disease incidence percentage (% infested) and the total number of fruits.  This 

is a before, after, control impact (BACI) design where before and after is defined by period and control impact is the 

treatment.  We are interested in the interaction between treatment and period.  As the data was collected weekly from the 

same branch the observations cannot be assumed to be independent.  An auto-correlation between the residuals of different 

time points is modelled by introducing a stationary auto-correlation function of order 1 (Chatfield, 2003 & Diggle, 1990).  This 

error structure models the residuals at time t (ut) as a function of residuals at time t-1 (ut-1) along with the noise (𝜀𝑡): 

𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝜀𝑡 
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The parameter ρ is unknown, and needs to be estimated from the data.  This error structure results in the following 

correlation structure: 

𝑐𝑜𝑟(𝑢𝑡 , 𝑢𝑠) =  {
1, 𝑖𝑓 𝑡 = 𝑠

𝜌|𝑠−𝑡|, 𝑒𝑙𝑠𝑒
 

Also the non- linear trend over time was modelled using smoothers.  The model that was fitted for both the response variables 

is: 

% 𝐼𝑛𝑓𝑒𝑠𝑡𝑒𝑑 𝑜𝑟 𝑛𝑜. 𝑜𝑓 𝑓𝑟𝑢𝑖𝑡𝑠 = 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 + 𝑇𝑟𝑒𝑎𝑡 + 𝑃𝑒𝑟𝑖𝑜𝑑 + 𝑇𝑟𝑒𝑎𝑡: 𝑃𝑒𝑟𝑖𝑜𝑑 + 𝑓1(𝑤𝑒𝑒𝑘): 𝑇𝑟𝑒𝑎𝑡 + 𝜀 

where % 𝐼𝑛𝑓𝑒𝑠𝑡𝑒𝑑 𝑜𝑟 𝑛𝑜. 𝑜𝑓 𝑓𝑟𝑢𝑖𝑡𝑠 are the response variables, Treat is the treatment (treated or untreated), Period is the 

before and after time period, and Treat:Period is the period and treatment interaction effect, week is the week when the 

measurements were taken, and f1 is smooth functions estimated by the model using maximum likelihood estimation.  

𝑓1(𝑤𝑒𝑒𝑘): 𝑇𝑟𝑒𝑎𝑡 indicates that a separate spline function was fitted to the treated and untreated observations. All analysis 

was done using R (R Core Team, 2014), nlme (Pinheiro et al. 2014) and plotting was done using ggplot2 (Wickham 2009) and 

lattice (Sarkar 2008). 

 

Impact of A. psidii on regeneration of Myrtaceae in coastal heath following wildfire 

 

The impact of A. psidii on regeneration of a range of Myrtaceae following a wildfire event was assessed. The fire occurred in 

December 2013 within a dry and wet heathland environment north of Lennox Head, a coastal community of northern New 

South Wales. The fire was initiated following a lightning strike and burnt more than 500 ha of coastal heath north from Lennox 

Heads to Broken Head. Fire had been absent from the region for more than 40 years (Pers. comm. Jali Land Council). The site 

has been described as a “pristine” (Erskine et al. 2002) coastal ecosystem and is controlled by the traditional land owners 

from the Jali Land Council, Ballina, New South Wales. Permission to access land was sought before studies commenced.  

 

Study sites 

The vegetation at the site can generally be described as coastal sclerophyll (heath), dominated by Banksia spp. with low-lying 

areas inhabited by Melaleuca wetland. Two distinct vegetation types exist within the area burnt; dry and wet heathland 

environments (Figure 3) 

 
Figure 3 Map showing study sites within coastal heath near Lennox head in northern New South Wales affected by wildfire 

following a lightning strike in December 2013.  

 

Impact of repeated A. psidii infection on Myrtaceae 
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To monitor the development of myrtle rust and determine the impact of A. psidii on regeneration of Myrtaceae following 

wildfire plots were established in areas consisting of different vegetation types and were focussed on areas where Myrtaceae 

were present and dominant within the landscape rather than being randomly situated. Plots were established after the 

presence of regeneration (coppice/epicormic/seedling) was detected (Figure 4). Plots were 4m x 4m in size, further divided 

into 16 subplots to enable easier assessment of plant species and to allow for assessment of symptoms progression and 

subsequent dieback levels. The corner of each subplot was marked using metal pegs and “builders” twine used to help 

demarcate these. Four plots were established in total, with two in the dry heath and two in the wet heath environments to 

capture impact on the following species of Myrtaceae: 

 Lophostemon suaveolens 

 Melaleuca quinquenervia 

 Melaleuca rigidus 

 Leptospermum polygalifolium 

 Leptospermum whitei 

 Leptospermum laevigatum 

 Baeckea frutescens 

 Melaleuca nodosa 

 Austromyrtus dulcis 

 

Ideally control plots using fungicide control to provide disease free comparisons would have been applied but due to close 

proximity to waterways this was not possible. 

 

Austropuccinia psidii infection assessments were made monthly to: 

 

 Monitor the progress of disease development 

 Determine species susceptibility and impact of infection over time 

 

Disease assessments commenced in April 2014 when coppice regeneration was first identified and completed in July 2015. 

Plots were initially assessed fortnightly to capture early stages of regeneration and initial stages of disease development but 

extending to monthly as growth rates slowed.  

 

 
Figure 4 Coppice regeneration following wildfire in a coastal heath ecosystem and plots established on sites dominated by 

Myrtaceae 
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The following data was captured at each assessment:  

 Species of Myrtaceae - identified by botanists through photographic evidence or where necessary confirmed from 

pressed specimens 

 Number of each species present – based on coppice regeneration (seedling regeneration was limited) 

 

Disease levels were assessed as: 

 Incidence of infection as a percentage of the total number of individuals for species within the plots  

 Austropuccinia psidii infection levels were assessed using a 0-5 rating scale where: 

 0 = no infection (no pustules present) on new shoots, stems of young leaves 

 1 = Low incidence (<5%) of lesions throughout tree/shrub on new shoots and young leaves; lesions small in 

size – 1-2 pustules per leaf; no evidence of stem infection 

 2 = Moderate incidence (5-25%) of lesions throughout tree/shrub on new shoots and young leaves; lesions 

small in size 2-5 per leaf 

 3 = Moderate to high incidence (26-50%) of lesions throughout tree/shrub occurring on new shoots and young 

leaves; low incidence (<10%) of infection on juvenile stems; lesion size moderate with evidence of blighting 

 4 = High incidence (51-80%) of lesions throughout tree/shrub occurring on new shoots and young leaves; large 

lesions, blighting and evidence of distorted growth on leaves and shoots; moderate incidence (up to 75%) of 

infection on juvenile stems. Some shoot distortion and death evident 

 5 = Infection on all (100%) new shoots and young leaves and juvenile stems. Evidence of stem and shoot 

dieback on at least 50% of growth; shrub like growth appearance with loss of apical dominance; some shoots 

still alive 

The effect of repeat infection was assessed by determining incidence of branch dieback and branch death per tree. This 

assessment was done 18 months after assessments commenced. When present, the number of flowers/fruit on each 

shrub/tree was also recorded along with the percentage showing A. psidii infection. 

 

Additional surveys outside of the established plots were conducted to determine if the impact observed within the plots was 

representative of larger populations. This data was also used to examine distribution and frequency of species within the 

ecosystem and location of individuals showing higher levels of resistance/tolerance to myrtle rust. A multi-species transect 

was also established to examine susceptibility of species that were not initially captured within the plots.  

 

Weather data for the assessment period, including rainfall and temperature were collated from SILO DATA DRILL 

(https://www.longpaddock.qld.gov.au/silo/). Patterns of disease incidence and severity were compared to climate factors 

including monthly rainfall, days of rainfall per month and average maximum and minimum temperatures.  

 

Symptom development and impact of repeat infection by Austropuccinia psidii on coppice regeneration of Melaleuca 

quinquenervia following wildfire in a swamp ecosystem 

 

Three 50m transects were established within a M. quinquenervia swamp which can be inundated with water for extended 

periods following rainfall. Aside from understory fern and reed species, no other tree species was present.  

 

Following the fire event and prior to the development of coppice regeneration, trees along each transect were marked and 

numbered with a total of 140 assessed for severity of myrtle rust infection and impact over time. Trees that didn’t produce 

coppice regrowth were excluded from the final assessment. Assessments for susceptibility to A. psidii were conducted as 

previously described using the 0-5 rating scale. To examine the interaction between A. psidii and native insect “pests”, the 

presence and severity of mirid bug (Eucerocoris suspectus) damage was also assessed using the following severity scale: 

 

 0 = No evidence of leaf blotching mirid damage present on new growth flush 

 1 = Mirid bug damage present on >25% of new growth flush 

 2 = Mirid bug damage present on 25-50% of new growth flush 

 3 = Mirid bug damage present on 51-75% of new growth flush 
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 4 = Mirid bug damage present on >75% of new growth flush 

 

Presence of flowers/seed was recorded and levels of dieback assessed 18 months after myrtle rust symptoms were initially 

detected to demonstrate the effects of repeated infection on coppice regeneration. Dieback was recorded as a percentage 

of the total number of main branches showing dieback. 

 

Analysis 

Normality of data and equality of variance were assessed using an F test. All proportion data were Arcsine square root 

transformed prior to analysis using ANOVA and compared using Fishers PLD post hoc test (Statview®). Back-converted data 

were used to present data graphically. 

 

Site 2 Impact of myrtle rust on regeneration of Melaleuca quinquenervia and interaction with insect populations 

 

To examine the impact of A. psidii on Melaleuca quinquenervia regeneration, growth and reproduction, a fungicide exclusion 

trial was established on coppiced trees at Bungawalbin near Woodburn in NSW. Additionally, the interaction between A. 

psidii and native insect pests was studied. The experiment was established using a randomised block design (Fig. 5) with the 

following treatments: 

 

1. Untreated control 

2. Fungicide only (Bayfidan® = Triademenol 250g/L + Zaleton® = Tebuconazole 200g/L, Trifloxystrobin 100g/L) 

3. Fungicide + insecticide (Bayfidan® +Zaleton®; Confidor® = Imidacloprid 200g/L+ Maverick® = Tau-fluvalinate 7.5g/L) 

4. Insecticide only (Confidor® + Maverick®) 

 

Treatments were applied monthly once coppice regeneration commenced and applied as foliar applications at label 

recommended rates. Herbicide was applied when necessary to control weed growth within the site. Plots were 3 m x 3 m 

with a 1 m buffer around the outside of each plot. A marker was placed in the centre of each plot and stump location marked 

based on a “clock-face” direction and distance measured from the central point to ensure each stump could be identified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Melaleuca quinquenervia myrtle rust interaction and exclusion trial plot layout, northern NSW  

 

Assessments commenced once coppice regeneration was uniform across the site. Initial measurements included: 

 

 Diameter of stump 

 Number of coppice shoots emerging from stumps 

 

Coppice heights were measured every six months using the tallest coppice from each stump. Additional measurements were: 

 

 Diameter at Breast Height (DBH) – recorded 18 months from the time of establishment of coppice regeneration on 

the tallest coppice shoot on each stumps. DBH was not recorded on trees below 1m in height. 

1 Control - water

P1 P2 P3 P4 P5 2 Fungicide

P6 P7 P8 P9 P10 3 Fungicide and insecticide

P11 P12 P13 P14 P15 4 Insecicide

P16 P17 P18 P19 P20

P21 P22 P23 P24 P25

Track in

N
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 Foliage density - assessed for each tree as a measure for estimating foliage loss due to insect and myrtle rust attack 

and was done using a density rating method (Frampton et al. 2000) similar to the transparency scale mentioned 

previously 

 Leaf area and internode length - The number of leaves present was also recorded to determine internode length as 

a possible indicator of growth. Leaf area was determined by removing branches from each tree and then taking 

leaves from a 10cm section of branch. Only fully expanded leaves were measured to remove the influence of 

variability in growth stages between trees. Leaf area was measured as previously mentioned.  

 

Insect and disease assessments were conducted monthly. Assessments were conducted on new growth flush for both insect 

and myrtle rust. The percentage of new growth flush in relation to total foliage present was recorded for each tree. 

Austropuccinia psidii infection levels were recorded as incidence (% new shoots and expanding foliage infected) and severity 

on trees with rust rated as:  

 1 = lesions small in size – average <3 pustules per leaf; no evidence of stem infection (Fig. 6) 

 2 = lesions small in size average 3-5 pustules per leaf; no evidence of stem infection (Fig. 7) 

 3 = multiple lesions per leaf; lesion size moderate with some evidence of blighting; infection may also be present 

on juvenile stems – <3 per stem (Fig. 8) 

 4 = multiple lesions per leaf; lesion size moderate - large, blighting and evidence of distorted growth on leaves and 

shoots; multiple lesions on juvenile stems. Some evidence of shoot distortion (Fig. 9) 

 5 = multiple lesions per leaf; lesion size large, in some cases covering the entire leaf; Severe leaf blighting and 

distorted growth; multiple lesions on juvenile stems causing shoot distortion and dieback (Fig. 10 & 11) 

 
Figure 6 Severity rating 1 for Austropuccinia psidii infection on Melaleuca quinquenervia - lesions small in size – >5 pustules 

per leaf; no evidence of stem infection 
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Figure 7 Severity rating 2 for Austropuccinia psidii infection on Melaleuca quinquenervia - lesions small in size 5 or more per 

leaf; no evidence of stem infection 
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Figure 8 Severity rating 3 for Austropuccinia psidii infection on Melaleuca quinquenervia –multiple lesions per leaf; lesion size 

moderate with some evidence of blighting; infection may also be present on juvenile stems 
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Figure 9 Severity rating 4 for Austropuccinia psidii infection on Melaleuca quinquenervia –multiple lesions per leaf; lesion size 

moderate - large, blighting and evidence of distorted growth on leaves and shoots; moderate sized lesions on juvenile stems. 

Some evidence of shoot distortion 
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Figure 10 Severity rating 5 for Austropuccinia psidii infection on Melaleuca quinquenervia –multiple lesions per leaf; lesion 

size large, in some cases covering the entire leaf; Severe leaf blighting and distorted growth; large lesion on young green 

stems, shoot distortion and dieback evident 
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Figure 11 Severity rating 5 for Austropuccinia psidii infection on Melaleuca quinquenervia - multiple lesions per leaf; lesion 

size large, in some cases covering the entire leaf; Severe leaf blighting and distorted growth; large lesion on young green 

stems, shoot distortion and dieback evident 

 

 

  



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 25 

Insect impact was also scored as incidence (% of new shoots and expanding foliage with evidence of insect damage). The type 

of insect attack (chewing, tip death, leaf necrosis caused by mirid bugs, leaf etching) was also recorded and samples collected 

or photographed for identification where possible. Insect impact was assessed using a 1-4 scale: 

 

o 0 = No evidence of insect damage present on new growth flush 

o 1 = >25% of leaf area damaged on foliage attacked by insects 

o 2 = 25%-50% of leaf area damaged on foliage attacked by insects 

o 3 = 51-75% of leaf area damaged on foliage attacked by insects 

o 4 = >76% of leaf area damaged on foliage attacked by insects 

 

Climate data 

Rainfall and temperature data was collated using Silo data drill (https://www.longpaddock.qld.gov.au/silo/). Leaf wetness 

levels were recorded over time using a Leaf wetness data logger (OM-CP-LF101A-KIT). Disease and insect impact levels were 

compared in relation to different climatic factors. 

 

Analysis 

Normality of data and equality of variance were assessed using an F test. All proportion data were Arcsine square root 

transformed prior to analysis using ANOVA and compared using Fishers PLD post hoc test (Statview®). Back-converted data 

were used to present data graphically. For the purpose of this report average of trees from each treatment were used  

 

Impact of repeated infection by Austropuccinia psidii on species survival and composition within in subtropical wet 

sclerophyll/rainforest ecosystems with high density of Myrtaceae - Tallebudgera Valley, Queensland 

 

Published as: Geoff Pegg, Tamara Taylor, Peter Entwistle, Gordon Guymer, Fiona Giblin, Angus Carnegie, 2017. Impact of 

Austropuccinia psidii on Myrtaceae rich wet sclerophyll forests in south-east Queensland. PlosOne November 2017  

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188058 

 

Myrtle rust impact was first observed in 2014 in a wet sclerophyll site with a rainforest understory in the Tallebudgera Valley, 

Queensland. The site has a history of forest logging activities and clearing for cattle grazing but has more recently been 

allowed to regenerate naturally. The vegetation is dominated by Myrtaceae (Table 1) with over-story currently made up of 

Eucalyptus grandis and Lophostemon suaveolans and occasional Syzygium oleosum; Decaspermum humile, Archirhodomyrtus 

beckleri, and Gossia hilli dominating the mid and under story. Rhodamnia maideniana is common in the understory. Acmena 

smithii is also common in the area, particularly in the open forest edges as is Rhodamnia rubescens and Rhodomyrtus 

psidioides. Large rainforest trees also present in the open areas include Syzygium hodgkinsonia and S. corynanthum with 

some tree exceeding 25 meters in height. In the absence of any further disturbance it is likely that this ecosystem would 

transition to rainforest. 

 

Table 1 Myrtaceae species in Tallebudgera Valley assessment site and original host species Austropuccinia psidii susceptibility 

rating as per Pegg et al. 2014 

Host species Canopy Position Rust susceptibility rating 

Eucalyptus grandis Canopy Relatively Tolerant-Moderate Susceptibility 

Lophostemon confertus Canopy Resistant 

Syzygium oleosum Canopy/Forest edge Highly Susceptible 

Syzygium corynanthum Canopy/Forest edge Relatively Tolerant 

Syzygium hodgkinsoniae Canopy/edge Not Rated prior to 2014 

Rhodomyrtus psidioides Forest edge Extremely Susceptible 

Rhodamnia rubescens Forest edge Highly - Extremely Susceptible 

Rhodamnia maideniana Understory/Forest edge Extremely Susceptible 

Decaspermum humile Mid-story Extremely Susceptible 

Archirhodomyrtus beckleri Mid-story Not Rated prior to 2014 

Gossia hillii Mid-story Highly - Extremely Susceptible 

Acmena smithii Understory/forest edge Relatively Tolerant-Moderate Susceptibility 

 

https://www.longpaddock.qld.gov.au/silo/
https://urldefense.proofpoint.com/v2/url?u=http-3A__journals.plos.org_plosone_article-3Fid-3D10.1371_journal.pone.0188058&d=DwMGaQ&c=tpTxelpKGw9ZbZ5Dlo0lybSxHDHIiYjksG4icXfalgk&r=Hifh46hnHLlrrSaCHRtHadxjY7nCFFLhICvXeGCX0cQ&m=nw2-fQ1gop3xNeJ4UgRfDE9NGxoMoUBmRaqhv6pd__4&s=jdfKeLb5fGe2RE7g8kttaQjN5s34Y1GRR5Ao-HUCgHw&e=
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In 2014, myrtle rust impact levels were assessed for Rhodomyrtus psidioides, Rhodamnia rubescens (reported as per Carnegie 

et al. 2015) and Rhodamnia maideniana (unpublished) but observations were also captured photographically. Despite 

indications of some decline on other species (e.g. Decaspermum humile) these were not included in any impact assessments 

in 2014. The site was revisited in 2016 with further assessments made on these before mentioned species. Additionally severe 

decline of a range of other Myrtaceae was noted.  

 

To determine impact levels on the different Myrtaceae species and potential changes in species composition within the site 

a series of transect plots were established. Four plots were established along 50 m long x 2m wide line transects. Placement 

of plots was based on site aspect and potential differences in species composition. The start and finish of each plot was 

marked and GPS recorded. Trees one metre each side of the centre line were marked with flagging tape and numbered. Only 

species of Myrtaceae were marked. Samples and photos were taken of plants where necessary to confirm identification with 

a botanist. The diameter of each tree (DBH) and position within the canopy described as per the following: 

 

 Overstorey (canopy) 

 Midstorey 

 Understorey 

 Regeneration 

 

Myrtle rust disease and impact levels were assessed as described previously including: 

 

 Presence of new flush and proportion in relation to total foliage (% of total foliage present) 

 Presence or absence of A. psidii symptoms on new shoots, green stems and foliage 

 Incidence and severity of myrtle rust on new foliage – (1-5 rating scale) 

o 1 = lesions small in size – average <3 pustules per leaf; no evidence of stem infection 

o 2 = lesions small in size average 3-5 pustules per leaf; no evidence of stem infection 

o 3 = multiple lesions per leaf; lesion size moderate with some evidence of blighting; infection may also be 

present on juvenile stems – <3 per stem 

o 4 = multiple lesions per leaf; lesion size moderate - large, blighting and evidence of distorted growth on 

leaves and shoots; multiple lesions on juvenile stems. Some evidence of shoot distortion  

o 5 = multiple lesions per leaf; lesion size large, in some cases covering the entire leaf; Severe leaf blighting 

and distorted growth; multiple lesions on juvenile stems causing shoot distortion and dieback 

 Tree health assessed as: 

o Percentage of dead branches 

o Percentage of branches with dieback (including defoliation) 

o Percentage of tree healthy – no myrtle rust damage 

 Transparency score as an indicator of overall tree health and to enable monitoring of change over time 

 

To determine if the level of disease and associated dieback was particular to this site or more widespread, other plant 

communities in the area were examined for presence of myrtle rust related dieback but to date have not been assessed.   



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 27 

Glasshouse screening – examining populations for resistance  

The following procedures have been adopted for conducting glasshouse resistance screening programs: 

Spore production for inoculation 

Maintaining Syzygium jambos plants is useful for the production of spores used in controlled inoculation assessments. Unlike 

other plant species (e.g. Rhodamnia rubescens), S. jambos appears more robust and continues to thrive and produce new 

growth flushes despite repeat A. psidii infection. It also produces large quantities of urediniospores. 

Spore storage methods 

Once collected spores are placed through a sieve to remove other extraneous matter and then placed onto an open petri 

dish and into a desiccator. Spores remain in the desiccator for 5-7 days to ensure moisture levels are at a minimum. Spores 

are then transferred into vials and weighed before being placed into a -80oC freezer. Alternatively, and where facilities are 

available, spores can be stored under liquid nitrogen. 

Seedling/plant preparation 

Plants must be actively flushing to optimise the disease screening process. Stressed (nutrient deficient, water stressed) 

seedlings/plants will not flush at a rate that will give an accurate disease rating. Plants should be fertilised 2-3 weeks prior to 

inoculation. In our studies we have used a combination of Seasol™ and Nitrosol™. Screening should be restricted to young 

plant material where possible or plants coppiced and allowed to regenerate before inoculation.  

Inoculation procedure 

Urediniospores are removed from -80°C storage and allowed to warm to room temperature before to being added to sterile 

distilled water (SDW). The surfactant Tween 20 (white oil can also be used) is added at a rate of two drops per 100 mL SDW 

and the spore suspension stirred to reduce clumping. Spore counts are conducted using a haemocytometer and the 

suspension adjusted to a concentration of 1 x 105 spores/mL.  

In our studies we inoculated plants using a fine mist spray (29 kPa pressure), generated by a compressor driven spray gun 

(Iwata Studio series 1/6 hp; Gravity spray gun RG3), applied to the upper and lower leaf surfaces of the seedlings, ensuring 

all leaves were coated with a fine mist but run-off of the spore suspension was avoided. The use of highly susceptible plant 

material should be included as controls.  

Once inoculated seedlings are placed onto a metal bench lined with plastic sheeting. Immediately after inoculation, seedlings 

are covered with another plastic sheet creating a sealed system. Plants are then placed into a Controlled Environment 

Chamber (CER) set at 18°C in the dark for 24 hours ensuring high humidity levels and leaf wetness is achieved. Hot tap water 

(60°C) can be applied to the lower plastic sheet immediately before plants are placed into the CER to ensure high humidity 

levels and leaf wetness is achieved rapidly.  

Twenty-four hours after inoculation the plastic coverings are removed and plants grown on in a shade- or glass-house and 

hand watered as required.  

Disease assessment 

Disease symptom progression should be monitored regularly as host species present symptoms at different rates. Symptoms 

on more resistant individuals within a species can appear first and present as “flecks”. Symptom assessment should be 

conducted on the primary and secondary foliage. As the foliage ages it becomes less susceptible to infection. The following 

disease assessment ranking system has been modified from that developed by Junghans et al. (2003). We adopted a similar 

rating system to that used in Brazil so that we could compare our findings to those conducted using different biotypes of A. 

psidii on similar host species. 

The following disease rating scale is:  

 1 = no symptoms evident or presence of flecking (yellow/clear);  

 2 = presence of a hypersensitive reaction (HR) with fleck or necrosis;  

 3 = small pustules, <0.8mm diameter, with one or two uredinia;  

 4 = medium-sized pustules, 0.8–1.6 mm diameter with about 12 uredinia;  

 5 = large pustules, >1.6 mm diameter, with 20 or more uredinia on leaves, petioles and/or shoots (Junghans et al., 

2003b; Fig. 12, 13, 14).  
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Figure 12 Susceptibility ratings on spotted gum (Published in Pegg et al. 2013)  

Inoculations should be repeated on seedlings rated 1 to ensure stage of flush development hasn’t influenced the result and 

produced a “false” resistant score. Plants that have are not actively flushing at the time of inoculation are excluded from the 

rating and also re-inoculated at a later stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Eucalyptus globulus disease susceptibility ratings Potts/Pegg Unpublished data 
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Figure 14 Susceptibility levels in Eucalyptus ovata – Potts, Pegg Unpublished data 

 

Species assessed 

 

Eucalyptus and Corymbia spp. 

Screening under controlled conditions is an ideal way to examine resistance across and within species, eliminating 

physiological and climatic issues that may influence disease incidence and severity under field conditions. Disease screening 

processes have been developed to great effectiveness for Austropuccinia psidii in Brazil where there has been a need to select 

resistant eucalypts for commercial plantation development. A range of plant species, predominantly those of commercial 

significance, have been examined for resistance/suscepibility. These include: 

 

 Corymbia spp. – collaborative studies with DAF Queensland and Sunshine Coast University 

o C. citriodora subsp. variegata 

o C. citriodora subsp. citriodora 

o C. henryi 

o C. torelliana and associated hybrids 

 Eucalyptus spp. collaborative studies with DAF Queensland and Sunshine Coast University, University of Tasmania, 

CSIRO and FABI (University of Pretoria) 

o E. cloeziana 

o E. grandis 

o E. camaldulensis 

o E. globulus 

o E. pauciflora 

o E. ovata 

o E. pellita 

o E. urophylla 

o E. argophloia 

Studies on these species were conducted to examine the risk A. psidii poses both from an environmental and commercial 

production perspective. Resistance/susceptibility patterns were examined at a provenance and family level and for spotted 

gum species and E. globulus. Resistance patterns within species was then compared with those for endemic pathogens. In 

the case of spotted gum, resistance patterns found when inoculated with A. psidii were compared to provenance and family 

resistance data for Quambalaria pitereka based on both glasshouse screeing studies and historical field trial data. For E. 

globulus, A. psidii resistance/susceptibility provenance and family pattern were compared with historical field trial data 

examing susceptibility to the foliage pathogens Mycosphaerella spp. This work is currently being prepared for publication. 

 

Other studies have also been conducted using material screened as part of this project to gain an understanding of the 

genetics controlling resistance (Bala et al. 2013) and genetics of the different modes of resistance (Butler et al. 2015). 

 

 

R 1 R 2 R 3 R 4 R 5 
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Backhousia citriodora 

DAF Queensland currently holds the largest collection of Backhousia citriodora (lemon myrtle) with material collected from 

across its natural range maintained in trial plantings. In collaboration with Sunshine Coast University (A/Prof David Lee), and 

funding from RIRDC, cuttings were assessed using controlled inoculations to determine resistance levels between and within 

provenances. Additionally cuttings from the same sources have been established in field trials in northern New South Wales 

and south east Queensland and will be monitored for A. psidii impact under field conditions. This work will be conducted by 

Emily Lancaster (PB CRC PhD Candidate) and will also serve to validate the results from the screening trials assessing. 

 

Broad-leaved Melaleuca spp. 

As part of this project, Melaleuca was identified as a species of risk from A. psidii with any changes in the wetland ecosystem 

likely to have significant long term ramifications. Field trials have identified variations in resistance/susceptibility levels within 

a few populations. However, it is not known if these populations are representative of M. quinquenervia across it natural 

range or indeed an indicator of susceptibility of closely related M. leucadendra and M. viridiflora. Therefore a study was 

established to examine variability in susceptibility to A. psidii within populations of Melaleuca quinquenervia and related 

broad-leaved paperbark species M. leucadendra and M. viridiflora. This findings from this study have been submitted for 

review prior to publication (Feb 2018). 

 

Seed material used in this study was sourced from the Australian Seed Bank collection comprised of seed collected prior to 

A. psidii being detected in Australia (Table 2). For M. quinquenervia an additional seed-lot (Boggy Creek) was collected from 

a study site where trees were assessed for rust impact over time and seed collected from trees rated as resistant (G. Pegg). 

Provenances within each species were made up of bulked seed-lots from at least five parent trees where possible. There were 

however, exceptions and these were included to ensure that there was a good representation from across the species native 

range. 

 

Table 2 Melaleuca species and provenances tested for susceptibility to Austropuccinia psidii under controlled glasshouse 

screening  

Species State Provenance 

No. 
parent 
trees 

Melaleuca quinquenervia New South Wales Boggy Creek 9 

 New South Wales Hawks Nest 8 

 New South Wales Long Jetty 10 

 New South Wales Port Macquarie 5 

 New South Wales Tuggerah Lake 4 

 New South Wales Worrel Creek 11 

 Queensland Bribie Island 10 

 Queensland Caloundra 20 

 Queensland Dohles Rocks 10 

 Queensland Gympie 6 

 Queensland Julatten 5 

 Queensland Kuranda 5 

 Queensland Moreton Island 20 

 Queensland Mt Molloy 25 

 Queensland Rokeby National Park 5 

 Queensland Teddington 12 

  Queensland Tozers Gap 8 

Melaleuca leucadendra Northern Territory King River 7 

 Northern Territory Wangi, Litchfield National Park 5 

 Northern Territory Buffalo Creek 5 

 Queensland Mareeba 3 

 Queensland Iron Range 1 

 Queensland St Lawrence 20 
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 Western Australia Cambridge Gulf 5 

 Western Australia Kalumburu Mission 5 

  Western Australia Nimalaica Claypan 6 

Melaleuca viridiflora Northern Territory Wangi, Litchfield National Park 5 

 Northern Territory east Baines River 5 

 Queensland Rockhampton 10 

 Queensland Round Hill Head 17 

 Queensland Chillagoe 5 

 Queensland Prosperpine 12 

 Queensland north Kennedy River 5 

 Queensland Lakeland 8 

 Queensland Laura 5 

 Queensland Weipa 10 

 Western Australia Theda Station Kalumbura 5 

  Western Australia Ningbing Range Road 5 

 

5. Results 

Host range and susceptibility  

 

Host range  

The host range of A. psidii, both within Australia and internationally, continues to be expand with an extensive list now 

compiled for publication on the CABI website Invasive Species Compendium; 

Giblin FR, Carnegie AJ 2014 Austropuccinia psidii. CABI Invasive Species Compendium Datasheet and the Australian Network 

for Plant Conservation website: 

Giblin FR, Carnegie AJ 2014. Austropuccinia psidii (Myrtle Rust): Australian and Global Host Lists, 

http://www.anbg.gov.au/anpc/resources/Myrtle_Rust.html 

New host species have been identified through data captured from surveys of natural ecosystems and through public 

reporting (Biosecurity Queensland). New susceptible species identified since Pegg et al. (2014) includes Syzygium 

hodgkinsonia (MS), Neofabraciae myrtifolia (RT-MS), Leptospermum barneyense (RT), Archirhodomyrtus beckleri (RT-HS), 

Syzygium maraca (RT), Leptospermum madidum subsp. sativum (RT), Melaleuca comboyensis (RT-MS), Pilidiostigma 

rhytispermum (RT-MS), Xanthostemon fruticosus (HS) and Osbornia octodonta (RT). Osbornia octodonta is a Myrtaceous 

mangrove species with a native range along the Queensland coast, extending into the Northern Territory and northern coastal 

regions of Western Australia. 

The current (2016) host numbers for Australia is 347 species from 57 different genera. Of these, 242 have been identified 

from infections under field conditions, with the remainder identified from glasshouse screening studies.  

Susceptibility of host species  

Susceptibility of species under field conditions was primarily assessed in Queensland (Table 3). A total of 180 species have 

been rated for susceptibility to A. psidii with 30 (16.66%) assessed as highly (HS) or extremely susceptible (ES) with no 

evidence of variability in susceptibility. An additional 11 (6.11%) species susceptibility levels variable and ranging from 

moderately (MS) to HS or ES, 14 (7.77%) species with individual susceptibility levels ranging from relatively tolerant (RT) to 

HS or ES, 41 (22.77%) species rated as MS, 16 (8.88%) rated with susceptibility ranges from RT to MS and 68 (37.77%) species 

rated as RT.  

When examining patterns across the different Myrtaceae Tribes, HR and ES species come from Myrteae, Melaleucaeae, 

Syzygieae, Backhousieae, Eucalypteae, Xanthostemoneae, Kanieae, Chamelaucieae and Lophostemoneae. 

http://www.anbg.gov.au/anpc/resources/Myrtle_Rust.html
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Susceptibility data collated to date has identified that of the 23 species listed as threatened (Endangered, Vulnerable, Near 

Threatened) in Queensland, 11 species are considered highly or extremely susceptible (Table 4). Of the five endangered 

species, all are considered highly or extremely susceptible. However, the natural range of Backhousia oligantha is considered 

less favourable for disease development based on climatic conditions. The impact of myrtle rust across the natural range of 

most of these species is still unknown. 

 

Table 3 Current known host list of Austropuccinia psidii in Queensland rated for susceptibility levels: Relatively tolerant (RT) 
= restricted leaf spot or spots only; Moderate susceptibility (MS) = blight symptoms on new shoots and expanding foliage; 
High susceptibility (HS) = blight symptoms on new shoots and expanding foliage and juvenile stems; Extreme susceptibility 
(ES) = death of new shoots and severe blighting on all foliage types, shoot and stem dieback. Susceptibility ratings are based 
on observations to date.  
 

Host name Tribe* 

Disease 
susceptibility 
rating 

Flower/fruit 
infection 

Acmena hemilampra Syzygieae RT  
Acmena ingens Syzygieae RT  
Acmena smithii Syzygieae RT-MS X 
Acmenosperma claviflorum Syzygieae MS  
Agonis flexuosa  Leptospermeae ES  
Anetholea (Backhousia) anisata Backhousieae RT-HS  
Archirhodomyrtus beckleri Myrteae RT-HS  
Asteromyrtus brassii Leptospermeae RT  
Austromyrtus dulcis Myrteae RT-HS X 
Austromyrtus sp. (Lockerbie Scrub) Myrteae RT  
Austromyrtus tenuifolia Myrteae RT  

Backhousia angustifolia Backhousieae RT  
Backhousia bancroftii Backhousieae RT  
Backhousia enata Backhousieae RT-MS  
Backhousia citriodora  Backhousieae MS-HS X 
Backhousia gundarara (Prince 
Regent) 

Backhousieae 
RT  

Backhousia hughesii Backhousieae MS  
Backhousia leptopetala Backhousieae RT-HS  
Backhousia myrtifolia Backhousieae RT-MS  
Backhousia oligantha Backhousieae MS-HS  
Backhousia sciadophora Backhousieae RT  
Backhousia subargentea Backhousieae RT  
Baeckea frutescens Chamelaucieae RT-MS X 

Chamelaucium uncinatum  Chamelaucieae ES X 
Corymbia citriodora subsp. 
variegata* 

Eucalypteae 
RT  

Corymbia ficifolia × C. ptychocarpa* Eucalypteae RT  
Corymbia henryi* Eucalypteae RT  
Corymbia torelliana* Eucalypteae RT  

Darwinia citriodora Chamelaucieae MS  
Decaspermum humile  Myrteae ES  
Decaspermum humile (North Qld 
form) 

Myrteae 
RT  

Eucalyptus carnea Eucalypteae RT-HS  
Eucalyptus cloeziana* Eucalypteae RT  
Eucalyptus curtisii Eucalypteae RT-HS  
Eucalyptus grandis  Eucalypteae RT-MS  
Eucalyptus planchoniana* Eucalypteae RT-MS  
Eucalyptus tereticornis* Eucalypteae RT  
Eucalyptus tindaliae* Eucalypteae MS  
Eugenia natalitia Myrteae MS  
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Eugenia reinwardtiana  Myrteae ES X 
Eugenia uniflora Myrteae MS X 
Eugenia zeyheri* Myrteae MS  

Gossia acmenoides Myrteae HS  
Gossia bamagensis Myrteae RT  
Gossia bidwillii Myrteae RT  
Gossia floribunda Myrteae RT  
Gossia fragrantissima Myrteae MS  
Gossia gonoclada Myrteae HS  
Gossia hillii  Myrteae HS-ES  
Gossia inophloia  Myrteae ES  
Gossia lewisensis Myrteae MS-HS  
Gossia macilwraithensis Myrteae MS  
Gossia myrsinocarpa Myrteae MS-HS X 
Gossia punctata Myrteae MS  

Homoranthus melanostictus Chamelaucieae MS  
Homoranthus papillatus Chamelaucieae MS  
Homoranthus virgatus Chamelaucieae MS X 
Hypocalymma angustifolium Chamelaucieae RT  

Lenwebbia lasioclada Myrteae RT  
Lenwebbia prominens  Myrteae HS X 
Lenwebbia sp. Blackall Range Myrteae RT-ES  
Leptospermum barneyense Leptospermeae RT  
Leptospermum liversidgei Leptospermeae MS  
Leptospermum luehmannii Leptospermeae RT  
Leptospermum madidum Leptospermeae MS  
Leptospermum madidum subsp. 
sativum 

 
  

Leptospermum petersonii Leptospermeae RT  
Leptospermum semibaccatum* Leptospermeae RT-MS  
Leptospermum trinervium Leptospermeae MS  
Lindsayomyrtus racemoides  Lindsayomyrteae RT  
Lithomyrtus obtusa Myrtaea RT  
Lophostemon suaveolens Lophostemoneae RT  

Melaleuca cheelii Melaleucaeae RT  
Melaleuca comboyensis Melaleucaeae RT-MS  
Melaleuca fluviatilis Melaleucaeae HS  
Melaleuca formosa Melaleucaeae RT  
Melaleuca leucadendra Melaleucaeae RT-HS X 
Melaleuca linariifolia Melaleucaeae RT  
Melaleuca nervosa Melaleucaeae HS  
Melaleuca nesophila Melaleucaeae RT  
Melaleuca nodosa Melaleucaeae HS-ES  
Melaleuca pachyphylla Melaleucaeae RT  
Melaleuca paludicola Melaleucaeae HS  
Melaleuca polandii Melaleucaeae HS  
Melaleuca quinquenervia Melaleucaeae RT-ES X 
Melaleuca salicina Melaleucaeae RT  
Melaleuca saligna Melaleucaeae MS  
Melaleuca viminalis Melaleucaeae MS-HS  
Melaleuca viridiflora Melaleucaeae HS  
Metrosideros collina  Metrosidereae RT  
Metrosideros collina × villosa Metrosidereae RT  
Metrosideros kermadecensis Metrosidereae RT  
Metrosideros thomasii Metrosidereae RT  
Mitrantia bilocularis Kanieae MS  
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Myrciaria cauliflora Myrteae RT  
Myrtus communis Myrteae MS-HS X 

Neofabraciae myrtifolia Leptospermeae RT-MS  

Osbornia octodonta Osbornieae RT  

Pilidiostigma glabrum  Myrteae RT-MS X 
Pilidiostigma rhytispermum Myrteae RT-MS  
Pilidiostigma tetramerum Myrteae MS  

Rhodamnia acuminata Myrteae RT  
Rhodamnia angustifolia Myrteae ES X 
Rhodamnia arenaria Myrteae MS X 
Rhodamnia argentea  Myrteae MS-HS  
Rhodamnia australis Myrteae HS X 
Rhodamnia blairiana  Myrteae RT-MS  
Rhodamnia costata Myrteae RT-HS  
Rhodamnia dumicola Myrteae HS  
Rhodamnia glabrescens  Myrteae MS  
Rhodamnia maideniana  Myrteae ES X 
Rhodamnia pauciovulata Myrteae MS  
Rhodamnia rubescens  Myrteae HS-ES X 
Rhodamnia sessiliflora Myrteae MS-ES X 
Rhodamnia spongiosa  Myrteae HS X 
Rhodomyrtus canescens Myrteae HS X 
Rhodomyrtus effusa Myrteae MS  
Rhodomyrtus macrocarpa Myrteae MS  
Rhodomyrtus pervagata Myrteae MS-HS X 
Rhodomyrtus psidioides Myrteae ES X 
Rhodomyrtus sericea Myrteae MS  
Rhodomyrtus tomentosa Myrteae MS-HS X 
Rhodomyrtus trineura subsp. 
capensis  

Myrteae 
MS  

Ristantia pachysperma Kanieae MS-HS  
Ristantia waterhousei Kanieae RT  

Sphaerantia discolor Kanieae MS  
Stockwellia quadrifida Eucalypteae HS  
Syzygium angophoroides Syzygieae MS  
Syzygium apodophyllum Syzygieae RT  
Syzygium aqueum Syzygieae RT  
Syzygium argyropedicum Syzygieae RT  
Syzygium armstrongii  Syzygieae RT  
Syzygium australe Syzygieae RT-MS X 
Syzygium bamagense Syzygieae MS  
Syzygium banksii Syzygieae MS  
Syzygium boonjee Syzygieae RT  
Syzygium canicortex Syzygieae RT  
Syzygium cormiflorum Syzygieae RT  
Syzygium corynanthum Syzygieae RT-HS  
Syzygium cryptophlebium Syzygieae MS  
Syzygium cumini Syzygieae MS  
Syzygium dansiei Syzygieae RT  
Syzygium endophloium Syzygieae RT  
Syzygium erythrocalyx Syzygieae RT  
Syzygium eucalyptoides Syzygieae HS  
Syzygium eucalyptoides subsp. 
eucalyptoides 

Syzygieae 
MS  

Syzygium forte subsp. forte Syzygieae RT  
Syzygium forte subsp. potamophilum  Syzygieae RT  
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Syzygium jambos Syzygieae ES X 
Syzygium hodgkinsoniae Syzygieae RT-HS  
Syzygium kuranda Syzygieae MS  
Syzygium luehmannii  Syzygieae MS  
Syzygium luehmannii × S. wilsonii Syzygieae RT  
Syzygium macilwraithianum Syzygieae RT-HS  
Syzygium maraca Syzygieae RT  
Syzygium minutiflorum Syzygieae RT  
Syzygium moorei Syzygieae RT  
Syzygium nervosum Syzygieae HS X 
Syzygium oleosum Syzygieae RT-HS  
Syzygium paniculatum Syzygieae RT  
Syzygium pseudofastigiatum Syzygieae RT  
Syzygium puberulum Syzygieae MS  
Syzygium rubrimolle Syzygieae RT  
Syzygium suborbiculare Syzygieae MS  
Syzygium tierneyanum Syzygieae RT X 
Syzygium wilsonii  Syzygieae RT  
Syzygium xerampelinum Syzygieae MS  

Thryptomene saxicola Chamelaucieae RT-MS X 
Tristania neriifolia Tristanieae MS  
Tristaniopsis exiliflora Kanieae HS X 
Tristaniopsis laurina Kanieae RT  
Uromyrtus metrosideros Myrteae MS  
Uromyrtus tenella Myrteae RT  

Waterhousea floribunda Syzygieae RT  
Waterhousea hedraiophylla Syzygieae RT  
Waterhousea mulgraveana  Syzygieae RT  
Waterhousea unipunctata Syzygieae RT-MS  

Xanthostemon chrysanthus Xanthostemoneae RT-MS  
Xanthostemon oppositifolius Xanthostemoneae HS  
Xanthostemon youngii  Xanthostemoneae MS X 
Xanthostemon fruticosus Xanthostemoneae HS  

* Tribes according to Wilson et al. 2005 
 
Table 4 List of threatened Myrtaceae in Queensland and their myrtle rust susceptibility ratings 

Queensland Conservation Status Myrtle rust susceptibility rating 

Endangered species  

Backhousia oligantha Highly/Extremely susceptible 

Gossia fragrantissima Highly/Extremely susceptible 

Gossia gonoclada Highly/Extremely susceptible 

Lenwebbia sp. Blackall Range Highly/Extremely susceptible 

Rhodamnia angustifolia Highly/Extremely susceptible 

Vulnerable  

Eucalyptus argophloia Highly/Extremely susceptible 

Homoranthus papillatus Moderately susceptible 

Leptospermum luehmannii Relatively tolerant 

Mitrantia bilocularis Moderately susceptible 

Ristantia waterhousei Relatively tolerant 

Sphaerantia discolor Moderately susceptible 
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Syzygium moorei Relatively tolerant 

Xanthostemon oppositifolius Highly/Extremely susceptible 

Near Threatened  

Eucalyptus curtisii RT-Highly/Extremely susceptible (Epicormic) 

Gossia inophloia (Austromyrtus) Highly/Extremely susceptible 

Lenwebbia prominens Highly/Extremely susceptible 

Melaleuca formosa (Callistemon) Unknown 

Rhodamnia glabrescens Unknown 

Rhodamnia pauciovulata Unknown 

Stockwellia quadrifida Highly/Extremely susceptible 

Syzygium aqueum Relatively tolerant 

Syzygium macilwraithianum Relatively tolerant 

 

Distribution of Austropuccinia psidii in Australia 

Figure 15 Map showing the dates of original detection of Austropuccinia psidii and general distribution across New South 

Wales and Queensland 

The distribution of A. psidii (Fig. 15, 16) continues to expand with detections now extending from Tasmania, along the entire 

east coast of Australia as far north as Bamaga at the tip of Cape York Peninsula and then most recently in the Tiwi Islands and 

Darwin in the Northern Territory. Reports from west of the Great Dividing Range still remain low with reports generally 

following periods of wet weather. Detection in these lower rainfall areas have either been in residential gardens (e.g. 

Geraldton Wax, Warwick, Qld) or along creek/river systems (Melaleuca sp., Chillagoe, Qld) where conditions are likely to be 

more favourable for both host growth and disease development. However, no detailed surveys have been conducted in these 

regions. The impact that A. psidii will have in Darwin and surrounding areas, such as Kakadu National Park, remain unknown. 
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Figure 16 –Public reports of Austropuccinia psidii in Queensland between January 2011 and October 2016 
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Impact of Austropuccinia psidii on species of Myrtaceae 

 

Effect of repeated damage by Austropuccinia psidii on Rhodamnia rubescens: Olney State Forest disease exclusion trial 

Monthly application of the fungicide triadimenol was effective in controlling A. psidii on R. rubescens in the native 

environment (Figs 17–18). If fungicide application extended beyond this time-frame, control was not effective 

(Supplementary Fig. 1, arrow). Active A. psidii infection (sori producing yellow urediniospores) was observed at every 

assessment date on untreated trees. There was a significant difference (p < 0.001) in crown transparency between treated, 

untreated and partially treated trees (Fig. 17). There was a significant autocorrelation (ρ) between values over time for each 

tree (ρ = 0.2, p = 0.01). The smoother terms were all significant (p < 0.001) and had 5, 3 and 5 degrees freedom for untreated, 

treated and partially treated trees, respectively. Based on data from March 2013 to October 2014, crown transparency was 

moderately correlated with incidence (r = 0.36, p < 0.001) and severity (r = 0.38, p < 0.001) of disease on immature leaves 

and with percentage new flush (r = 0.51, p < 0.001); incidence and severity were highly correlated (r = 0.86, p < 0.001); and 

percentage new flush was moderately correlated with incidence (r = 0.34, p < 0.001) and severity (r = 0.31, p < 0.001) of 

disease on immature leaves. 

This trial allowed observations of disease progression, and the subsequent impact of this on trees, over time. At the beginning 

of the trial, all trees had similar crown transparency (Fig. 17) as well as incidence and severity on mature and immature leaves 

(data not shown). As the trial progressed, incidence and severity of A. psidii infection on treated trees effectively became 

zero while disease on untreated trees fluctuated, but was significantly greater than on treated trees (Fig. 19). This 

corresponded with an increase in crown transparency on untreated trees and a decrease on treated trees (Fig. 17). Leaf 

production (leaf flush) generally followed a trend of increasing during warm wet periods of the year (i.e. spring to summer), 

but this was not always consistent (Fig. 19). Incidence and severity of A. psidii generally followed a trend of increasing during 

periods of high rainfall and reducing during dry periods over winter (Fig. 19), but again this was not always consistent. A 

similar trend, with a slight time lag, was observed for crown transparency (Fig. 17). Generally, peaks in incidence and severity 

occurred a month or so following peaks in leaf flush (Fig. 19). A more detailed epidemiological study will be carried out on 

this data.   

Time-series observations of untreated trees revealed that immature leaves became infected and often distorted and died. 

This resulted in a proliferation of new shoots and immature leaves that subsequently became infected and distorted with 

many dying. Within six months of the trial commencing, any new (immature) leaves on untreated trees were noticeably 

smaller than those on treated trees (see section below). Over time, mature leaves that had been retained on untreated trees 

prior to the trial beginning were shed, with little replacement (thus increasing crown transparency). Occasionally, a new flush 

of leaves did not coincide with conditions optimal for disease, resulting in little infection and a cohort of leaves surviving to 

maturity (and a subsequent decrease in crown transparency). In contrast, on treated trees, immature leaves were able to 

fully expand and were retained on trees, thus resulting in a decrease in crown transparency. 

When we divided the treated trees into two groups in June 2013, we saw no noticeable change in disease incidence and 

severity or crown transparency in the now untreated (partially treated) trees for six months, then a sharp increase in incidence 

and severity in early 2014 (Fig. 19) followed by an increase in crown transparency (Fig. 17), significantly different (p < 0.001) 

from the treated trees. 

In December 2013 we began to observe some untreated trees almost completely defoliated and with any retained immature 

leaves distorted and dead (e.g., Fig. 18). These trees subsequently produced a small amount of new flush, which was again 

severely infected, and by August 2014 these trees ceased to produce new flush and had died. A separate assessment of 100 

trees in this stand (see section below), from 1.0 to 15.0 m tall, revealed that 53% of trees (all 1.0 to 4.0 m tall) had died by 

October 2014. Thus, tree mortality had occurred in this native ecosystem less than four years after A. psidii had established 

in this forest. 

 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 39 

 

Figure 17 Time series plot of mean crown transparency of all Rhodamnia rubescens trees for the disease exclusion trial at 

Olney State Forest. The lines are locally weighted scatterplot smoothing curves (loess) and the shaded areas are the 95% 

confidence interval. Red = untreated, Blue = treated, Green = partially treated (treatment ceased in June 2013). 

 

Figure 18 Comparison of untreated tree (a) and treated tree (b) of Rhodamnia rubescens in the disease exclusion trial at Olney 

State Forest 24 months after commencement of the trial and approx. three years after Austropuccinia psidii established in 

the forest. 

a b 
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Quantification of diseased leaf area and leaf size 

Severity of A. psidii on leaves collected from the disease exclusion trial at Olney SF was significantly (p < 0.001) higher on the 

untreated compared to the treated trees for all three leaf classes, but more so for the mature and immature leaves (Table 5). 

The size of leaves (leaf area) was not significantly different between treated and untreated trees for the old and mature leaf 

class, but was significantly different between treatments for the immature leaf class (p = 0.004) (Table 5). Immature leaves 

were produced generally 4–5 months after initiation of the trial, and so we expected some influence of reducing crown 

transparency of untreated trees on leaf production. However, previous crown transparency on trees from which leaves were 

collected was not a significant factor in determining leaf area or disease severity.  
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Figure 19 Time series plots for (a) incidence and (b) severity of Austropuccinia psidii on immature leaves, (c) percentage of 

crown with new flush (indicating growth event), and (d) temperature (mean max and mean min) and mean monthly rainfall 

(www.bom.au).  For consistency, only data from March 2013 is shown. Arrows indicate increase in disease incidence and 

severity following delay in fungicide treatment. 
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Table 5 Mean and standard error (SE) of percentage severity of Austropuccinia psidii and leaf area of old, mature and 

immature leaves from treated and untreated trees analyzed with the image processing software QUANT from the Olney SF 

disease exclusion trial.   

    A. psidii severity (%) 

Leaf Area  

(mm2) 

Treatment Leaf class Mean  SE Mean  SE 

0 Old 16.81 3.70 71.32 8.51 

1 Old 6.40 0.78 68.83 8.27 

0 Mature 11.06 2.54 58.03 11.43 

1 Mature 0.36 0.08 69.12 8.50 

0 Immature 19.13 5.81 14.03 3.21 

1 Immature 0.97 0.50 49.44 5.61 

0= untreated; 1 = treated 

The impact of Austropuccinia psidii on selected species across their native range 

For R. rubescens, we assessed 43 sites across the native range from Murramarang National Park (35° 40’ 45” S, 150° 16’ 55” 

E) near Batemans Bay, NSW, to Traveston Crossing (26° 11’ 43 S, 152° 25’ 30” E) near Gympie, Queensland (Fig. 20), with A. 

psidii present at all sites. The mean crown transparency was 76.29% (SE 0.81%), with the majority (70%) of trees having 

greater than 60% transparency (Fig. 21). Based on the disease exclusion trial, and a posteriori knowledge of the species, we 

surmise the normal crown transparency of R. rubescens in an understorey is approx. 30–35%. We observed tree mortality at 

18 sites, mostly only a few trees, but five sites with between 25–40% of trees dead, one site with half the trees dead and 

another with three-quarters of the trees dead (Table 6). Overall, 11.5% of trees surveyed were classed as dead (Fig. 21). There 

was no evidence of any other primary causal agent that could have been responsible for this tree mortality. Mean disease 

incidence was greater on immature leaves (56.37% [SE 2.08%]) than on mature leaves (29.76% [SE 1.16%]), with a mean 

disease rating (score) of 2.40 (SE 0.08). Crown transparency was significantly negatively correlated with tree height, and 

positively correlated with disease rating and incidence of disease on mature leaves (Table 7), but not with incidence of disease 

on immature leaves or previous presence of rust at the location. The disease rating score was highly correlated with incidence 

on immature leaves (r = 0.89, p < 0.001). 
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Figure 20. Map of Rhodamnia rubescens survey sites. Native distribution of R. rubescens (grey triangles) obtained from Atlas 

of Living Australia (www.ala.org.au) and mean crown transparency of survey plots (graduated circles). 
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Figure 21: Total tree counts (across all sites) for crown transparency (grey bars)—in 10% classes—and tree mortality (black 

bar) associated with Austropuccinia psidii for (a) Rhodamnia rubescens and (b) Rhodomyrtus psidioides from field assessments 

across the species’ native ranges. 

Table 6: Percentage of Rhodamnia rubescens trees assessed as dead at each survey site. 

Location Percent dead 

Austinmer, NSW 0.0 

Bagawa SF*, NSW 15.0 

Bongil Bongil NP*, NSW 10.0 

Brill Brill SF, NSW 30.0 

Brisbane Water NP, NSW 0.0 

Chichester SF, NSW 8.3 

Conglomerate SF, NSW 0.0 

Cunninghams Gap, Qld 0.0 

Ewingar SF 1, NSW 0.0 

Ewingar SF 2, NSW 0.0 

Flat Rock SF, NSW 0.0 

Gibraltar Range NP, NSW 0.0 

Gold Creek Reservoir, Qld 73.3 

Goongery, NSW 15.4 

Kiwarrak SF, NSW 26.3 

McDonald SF, NSW 4.8 

Mebbin NP 2, NSW 0.0 

Mebbin NP 4, NSW 0.0 

Middle Brother SF, NSW 0.0 

Morton NP, NSW 0.0 

Murramalong NP 1, NSW 4.5 

Murramalong NP 2, NSW 8.3 

Murramalong NP 3, NSW 16.7 

Olney SF 1, NSW 53.3 

Olney SF 2, NSW 0.0 

a b 
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Pine Creek SF, NSW 0.0 

Red Head, NSW 40.0 

Richmond Range NP, NSW 0.0 

Royal NP, NSW 23.3 

Seven Mile Beach NP, NSW 16.7 

Tallebudgera Valley 1, Qld 25.0 

Tallebudgera Valley 2, Qld 0.0 

Termeil SF 1, NSW 0.0 

Termeil SF 2, NSW 0.0 

Tomerong SF, NSW 0.0 

Tomerong, NSW 0.0 

Traveston Crossing 1, Qld 0.0 

Traveston Crossing 2, Qld 13.3 

Upper Burringbar, NSW 0.0 

Upper Sleepy Hollow, NSW 0.0 

Wambina NR*, NSW 11.1 

Way Way SF, NSW 0.0 

Yabbra SF, NSW 0.0 

* SF = State Forest; NP = National Park; NR = Nature Reserve 

Table 7.  ANOVA table for fixed effects of field assessments of Rhodamnia rubescens.   

Variables Value SE t-value p-value 

Intercept 70.13 3.57 19.66 <0.001 

Disease rating 3.17 0.66 4.77 <0.001 

Height (m) -2.15 0.44 -4.90 <0.001 

Disease incidence 

on mature leaves 0.20 0.03 6.04 <0.001 

 

For R. psidioides, we assessed 18 sites from Wambina Nature Reserve (33° 24’ 60” S, 151° 20’ 34” E) near Gosford, NSW, to 

Tallebudgera Valley (28° 7’ 15” S, 153° 12’ 48” E) near Beechmont, Queensland (Fig. 22), with A. psidii present at all sites. The 

mean crown transparency was 94.88% (SE 0.53%), with the majority of trees (82%) having greater than 90% transparency 

(Fig. 21). Based on a posteriori knowledge of the species, we surmise the normal crown transparency of R. psidioides in an 

understorey is approx. 50%. All but 3 sites had exceptional levels of tree mortality (Table 8), with four sites having 50–75% 

dead trees, two sites with 95% dead trees, and another two sites with all trees (100%) dead. Overall, 56.5% of trees surveyed 

were dead (Fig. 21). Trees of all sizes were killed, including trees as tall as 12 m in height (Fig. 23), with the stage of decline 

indicating some had been dead for at least one year (i.e. two years after A. psidii established in the region). There was no 

evidence of any other primary causal agent that could have been responsible for this tree mortality. Mean disease incidence 

was greater on immature leaves (94.46% [SE 2.12%]) than on mature leaves (38.44% [SE 3.18%]), with a mean disease rating 

(score) of 3.87 (SE 0.05). Crown transparency was not significantly correlated with any other variable assessed (data not 

shown). The random location effect was significant (p < 0.001).  

For both these species, we observed severely damaged trees with epicormic shoots infected and killed by A. psidii. Ad hoc 

observations during surveys revealed few regenerating seedlings or suckers, and all with A. psidii damage.  
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Figure 22 Map of Rhodomyrtus psidioides survey sites. Native distribution of R. psidioides (grey triangles) obtained from Atlas 

of Living Australia (www.ala.org.au), and mean crown transparency of survey plots (graduated circles). 
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Table 8: Percentage of Rhodomyrtus psidioides trees assessed as dead at each survey site 

Location Percent dead 2014 

Baggotville 1, NSW 69.2 

Baggotville 2, NSW 60.0 

Bongil Bongil NP*, NSW 72.5 

Broken Ridge, NSW 100.0 

Cudgen NR*, NSW 0.0 

Ewingsdale, NSW 100.0 

Goolawah RP*, NSW 24.0 

Myall Lakes NP, NSW 23.1 

Port Macquarie 1, NSW 11.8 

Port Macquarie 2, NSW 0.0 

Red Head, NSW 0.0 

Seal Rocks RP, NSW 20.0 

Tallebudgera Valley, Qld 96.7 

Tweed Coast, Qld 15.0 

Upper Burringbar, NSW 95.7 

Upper Sleepy Hollow, NSW 12.5 

Wamberal Lagoon NR, NSW 50.0 

Wambina NR, NSW 33.3 

* NP = National Park; NR = Nature Reserve; RP = Regional Park 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 Native stand of mature Rhodomyrtus psidioides in north coastal NSW where the majority of trees have been killed 

within 2–3 years of Austropuccinia psidii establishing. Photo P. Entwistle. 

Progression of decline in Rhodomyrtus psidioides and Rhodamnia rubescens 
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Table 9– Progression of decline in selected sites of Rhodomyrtus psidioides based on the number of dead trees when assessed 

in 2014 and then again in 2016. 

Location Percent dead 2014 Percent dead 2016 

Bongil Bongil NP*, NSW 72.5 100 

Port Macquarie 1, NSW 11.8 69.2 

Tallebudgera Valley, Qld 96.7 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 Decline of Rhodomyrtus psidioides in Tallebudgera Valley with severe dieback and death in 2014 and 

absence of regeneration and change in species composition in 2016 

Three R. psidioides sites originally assessed in 2014 were again assessed in 2016 to determine rates of decline (Table 9). In 

two of the three sites assessed all trees are now dead with a 57.4% increase in tree mortality recorded at Bongil Bongil NP, 

NSW. No evidence of root sucker regeneration or seedling germination was evident at Tallebudgera (Fig. 24). Rhodomyrtus 

psidioides at this site has been replaced by other species including the noxious weed lantana. However, root sucker 

regeneration has been recorded at a number of sites, some of which were not included in the original surveys. At a single site 

assessed at Shark Bay, Iluka in NSW 98% of root suckers showed evidence of myrtle rust infection and only 11.6% had low 

levels of infection at the time of assessment (Fig. 25). 

a 

b 
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Figure 25 Rhodomyrtus psidioides root sucker development (Shark Bay, Iluka, NSW) was identified under dead 

adult trees with Austropuccinia psidii infection on new growth flush (a) and juvenile stems (b) causing dieback 

(c). A single root sucker was free of symptoms (d) at the time of assessment. 

Five Rhodamnia rubescens sites were re-assessed in 2016 (two years after the original assessments) to 

determine rate of decline in the species. Increases in tree mortality was recorded at all sites (Table 10) with 

decline in tree health observed with dramatic foliage loss, particularly in the lower canopy (Fig. 26, 27). 

Seedling germination/regeneration was not been observed at any of the sites. 

Table 10 Progression of decline in selected sites of Rhodamnia rubescens based on the number of dead trees 

when assessed in 2014 and then again in 2016. 

Location Percent dead 2014 Percent dead 2016 

Gold Creek Reservoir, Qld 73.3 91.6 

Tallebudgera Valley 1, Qld 25 30 

Tallebudgera Valley 2, Qld 0 30.8 

Bongil Bongil NP, NSW 10 50 

Royal NP, NSW 23.3 50 

a 

c 

b 

d 
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Figure 26–Comparison of dieback levels on Rhodamnia rubescens at Tallebudgera Valley in (a) 2014 and (b) 2016 showing 

pronounced defoliation in the lower half of the canopy as a result of repeated Austropuccinia psidii infection. 

 

Figure 27– Comparison of dieback levels on Rhodamnia rubescens at Tallebudgera Valley in (a) 2014 and (b) 2016 showing 

pronounced defoliation in the lower half of the canopy as a result of repeated Austropuccinia psidii infection 

  

a b 

b a 
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Other Myrtaceae assessed 

Table 12 Myrtaceae species assessed for impact of myrtle rust infection within native ecosystems 

Myrtaceae Location Year assessed 
Number 
trees 

Average 
transparency 
rating Dead (%) 

Gossia myrsinocarpa Lake Eacham, Qld 2014 16 62.81 0 

  Kuranda Range, Qld 2014 9 53 0 

  Barron Falls, Qld 2014 5 73 0 

  Clohesy River, Koah, Qld 2014 2 85 0 

Rhodamnia sessiliflora Lake Eacham, Qld 2014 19 58.42 0 

  Kuranda Range, Qld 2014 4 47.5 0 

  Clohesy River, Koah, Qld 2014 2 50 0 

Tristaniopsis exiliflora Clohesy River, Koah, Qld 2014 7 64.091 0 

Lenwebbia prominens Boomerange Ck, NSW 2015 11 52.27 0 

  Minion Falls, NSW 2015 15 55.67 0 

  Minion Falls site 2, NSW 2016 9 45.55 0 

  Telephone Rd, Ellangowan, NSW 2016 14 57.14 0 

Lenwebbia sp. Blackall Range Doonan Reserve, Doonan, Qld 2014 19 87.89 15.79 

  
Mary Cairncross Scenic Reserve, 
Qld 2014 5 53 0 

  Eudlo Site 1 2014 1 35 0 

  Eudlo Site 2 2014 2 50 0 

      

Rhodamnia maideniana Tallebudgera Valley 2014 20 68.75 0 

Rhodamnia maideniana Tallebudgera Valley 2016 47 91.34 29.78 

      

Decaspermum humile Tallebudgera Valley 2016 39 95.61 53.85 

 

Other species of Myrtaceae 

The following species were assessed for impact within the native environments but surveys were only conducted at a limited 

number of sites.  

Gossia myrsinocarpa was assessed at four sites in far north Queensland (Table 12) with infection found on all plants assessed 

with impact at the time of assessment predominantly on new growth flush, resulting in shoot dieback. No tree deaths were 

recorded at the time but infection on flowering structures was observed. 

Rhodamnia sessiliflora was assessed at three different sites with varying levels of impact recorded. Dieback levels were low 

at all sites, with damage restricted to foliage blighting and some shoot death. Infection on flowers and fruits was also 

observed.  

Tristaniopsis exiliflora is a key species in river ecosystems in tropical regions of Queensland. Austropuccinia psidii infection 

was identified on all life stages with infection found on regenerating seedlings, saplings, juvenile foliage on mature trees, 

epicomic regrowth and flower buds. However, assessments were only conducted at a single site but reports of infection from 

other sites across north Queensland have been recorded (K. Kupsch, P. Entwistle pers. Comm). 

Stands of Lenwebbia sp. Blackall Range were selected for assessment through knowledge of Queensland Government 

Botanists, Sunshine Coast Council and local ecologists as well as location data obtained from the Atlas of Living Australia 

(www.ala.org.au/). A total of 27 trees, ranging in height from 0.3 to 7 m, were assessed from across three sites Doonan 

(Doonan Reserve), Maleny (Mary Cairncross Reserve) and Eudlo (Table 12). 

Evidence of A. psidii infection was recorded on all but one tree of Lenwebbia sp. Blackall Range, with 85% of trees assessed 

having a transparency rating of greater than 50% and 51% of these trees with >80% transparency. All trees assessed at the 

Doonan Reserve had transparency rates >75%. Three of these trees were totally defoliated as a result of repeated infection. 

On trees where foliage remained, branch dieback was evident (Fig. 28).   
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Figure 28. Lenwebbia sp. Blackall Range saplings with dieback and infection (a,b) and trees 100% defoliated as a result of 

repeat infection by A. psidii (c,d). 

While no deaths of Rhodamnia maideniana were recorded at a Tallebudgera Valley site in 2014, 30% of trees assessed in 

2016 were found to be dead (Table 12). Significant levels of dieback were identified on the remaining trees with repeated 

infection by A. psidii causing defoliation, shoot and branch dieback and branch death. While plants were actively producing 

a new growth flush at the time of the 2016 assessment, all shoots and juvenile foliage were infected (Fig. 29).  
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Figure 29 Understory rainforest species Rhodamnia maideniana in 2014 (a) showing infection on new growth flush but limited 

levels of defoliation in comparison to the significant decline observed in 2016 where the majority of trees were defoliated 

with all branches showing evidence of dieback. 

Although common in northern New South Wales and Queensland, the impact of A. psidii on Decaspermum humile has not 

been well studied. To date only assessments of trees in botanic gardens (Fig. 30) and a single site in Tallebudgera Valley have 

been conducted. Considering 53% of trees assessed were dead, the species warrants more attention. An average 

transparency score greater than 95 also suggests that the remaining trees are in severe decline.  

a 

b 
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Figure 30 Decaspermum humile in an ex-situ planting at Lismore Botanic Gardens with significant dieback as a result of 

repeated A. psidii infection. New coppice shoots emerging along branches were all infected. 

Predicting Austropuccinia psidii impact on Myrtaceae 

Large collections of Myrtaceae from different regions and ecotypes across Australia are present in ex-situ plantings in Botanic 

Gardens at Mt Coot-tha, Brisbane. Rainforest and some coastal Myrtaceae of significance in northern New South Wales are 

planted within the Lismore Botanic Gardens. Both sites have been utilised to examine host range when myrtle rust was first 

detected and to examine potential impact on species as A. psidii continues to spread and the effects of repeated infection 

over time are realised. All species distriubution maps are from The Australasian Virtual Herbarium. 

Myrtle rust was first detected in the Mt Coot-tha Botanic Gardens on the 6th of May 2011 on the following species: 

Rhodomyrtus psidioides, Rhodomyrtus canescens, Rhodamnia arenaria, Rhodamnia maideniana, Rhodamnia spongiosa, 

Decaspermum humile, Backhousia sciadophora, Chamelaucium uncinatum 
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Within three years of rust being reported from the gardens five species died as a result of repeated infection and many others 

showed evidence of severe decline including defoliation, branch dieback and death. 

Species “extinct” from the gardens include: 

Rhodomyrtus psidioides – Native guava 

Original rating – Extremely 

susceptible 

Considered widespread and 

common in New South Wales 

and south-east Queensland 

 

 

Impact of myrtle rust: 

 Infection on flowers and fruit 

 Fruit reported to be empty of seed 

 Death of mature trees, saplings and seedlings 

 

Chamelaucium uncinatum – Geraldton wax 

Original rating – 

Extremely 

susceptible 

Native to south-

west Western 

Australia 

 

 

Impact of myrtle rust: 

 Infection of flower buds and flowers 

 Death of trees 

 

Rhodamnia rubescens – Scrub turpentine 
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Original rating – 

Highly - Extremely 

susceptible 

Widespread and 

common in 

rainforests in New 

South Wales and SE 

Queensland 

 

Impact of myrtle rust: 

 Infection on flowers and fruit 

 Decline and death of mature trees 

 Death of seedlings 

 

Rhodomyrtus canescens – Crater ironwood 

Original rating – Highly 

susceptible 

Restricted to 

rainforests of NE 

Queensland 

 

 

 

Impact of myrtle rust: 

 Wild populations have not been assessed 

 Impact in the gardens  

 Significant and rapid dieback  

 

Lenwebbia lasioclada – Velvet myrtle 

Original rating – Relatively tolerant 

Distribution restricted to rainforests of NE Queensland 

Impact of myrtle rust: 

 Wild populations have not been assessed 

 Impact in the gardens  

 Significant dieback 
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Species with significant levels of dieback 

Eugenia reinwardtiana – Beach Cherry 

Original rating – Extremely susceptible 

Widespread distribution in coastal rainforests of eastern Queensland. Also New Guinea, SE Asia and Pacific Islands. Used 

widely in urban plantings. 

 Often the first 

species reported 

from new geographic 

locations as the 

disease spread 

 

 

 

Impact of myrtle rust: 

 Repeated infection of new growth flush resulting in foliage loss 

 Branch death and dieback 

 Infection and premature senescence of flower buds, flowers and fruit 

 

Syzygium forte subsp. forte – Watergum, Brown Satinash 

Original rating – Relatively tolerant 

Restricted to coastal and riverine rainforests of northern 

Queensland, and northern NT 

Severe foliage infection was not identified until 2 years after this 

species was identified as being a host.  

 

 

Impact of myrtle rust: 

 Repeated infection resulting in loss of new growth 

 Branch dieback 

 Branch death 
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Rhodamnia spongiosa – Northern malletwood 

Original rating – Highly 

susceptible 

Restricted to lowland 

rainforests of central and NE 

Queensland. 

Limited impact assessments 

done within the native range 

 

Impact of myrtle rust: 

 Repeated infection of new growth resulting in loss of foliage 

 Infection and premature senescence of flower buds, flowers and fruit 

 Branch dieback 

 

Gossia myrsinocarpa – Malanda ironwood, small flowered lignum 

Original rating – Moderately – 

Highly susceptible 

Restricted to rainforests of 

central and NE Queensland 

Surveys and assessments 

conducted around Kuranda 

and Atherton Tablelands 

 

 

 

Impact of myrtle rust: 

 Repeated infection of new growth resulting in foliage loss 

 Infection and premature senescence of flower buds, flowers and fruit 

 Significant levels of branch dieback 

 

 

 

 

 

 

Rhodomyrtus pervagata – Rusty Rhodomyrtus, rusty ironwood 
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Original rating – 

Moderately – Highly 

susceptible  

Restricted to rainforests 

in Wet Tropics NE 

Queensland 

Limited assessments 

done across the native 

range 

Impact of myrtle rust: 

 Repeated infection of new growth resulting in loss of foliage 

 Branch dieback 

 Infection of flower buds, flowers and fruit resulting in premature senescence 

 

Syzygium nervosum – no common name 

Original rating – 

Highly 

susceptible 

No assessments 

conducted 

within its 

natural range – 

restricted to 

rainforests in Northern Territory and north-west Western 

Australia 

Impact of myrtle rust: 

 Repeated infection of new growth resulting in loss of foliage 

 Branch dieback 

 

Syzygium eucalyptoides – Wild apple  

Original rating – Highly susceptible 

Widespread across northern Australia in gallery and riverine 

forest 

No assessments done within its native range 

Impact of myrtle rust: 

To date impact observed has been restricted to seedlings and 

coppice regrowth with infection of new growth causing dieback 
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Rhodamnia maideniana – Smooth scrub turpentine 

Original rating – Extremely 

susceptible 

Restricted to rainforests of SE 

Qld and NE NSW 

Some impact assessments 

conducted across the natural 

range 

Impact of myrtle rust: 

 Repeated infection of new growth resulting in loss of foliage 

 Significant dieback 

 Flower bud, flower and fruit infection resulting in premature senescence 

 

Lenwebbia prominens – Southern-velvet myrtle 

Original rating – Highly susceptible 

Restricted to rainforests of SE Qld and NE NSW 

Conservation status: Near Threatened species (NCA) 

Limited assessments across its native range 

 

 

 

Impact of myrtle rust: 

 Repeated infection of new growth resulting in loss of foliage 

 Branch dieback 

 Flower bud, flower and fruit infection resulting in premature senescence 

 

Impact assessment 

Assessments of 74 species of Myrtaceae within the Mt Coot-tha and Lismore Botanic Gardens were conducted in 2016, five 

years after myrtle rust was first detected in these plantings. Multiple individuals of a species were assessed where possible 

with the average tree health score presented (Table 13). All species originally rated as either HS or ES (Pegg et al. 2014) 

showed high levels of dieback or decline as indicated by the low percentage of healthy crown on trees assessed (Table 13). 

Species rated MS showed levels of decline apart from Gossia punctata and Leptospermum madidum. Some species, originally 

rated as RT, also showed evidence of dieback but the majority were free of myrtle rust related dieback. These species were 

also compared to Myrtaceae assessed and found to be resistant or free of any symptoms of infection: Pilidiostigma tropicum, 

Syzygium alliilgneum, S. branderhorstii, S. jonsonii, S. malaccense, S. monimioides, S. papyraceum, S. sayeri, S. trachyphloium, 

Xanthostemon sp. “Mt Tozer” and X. crenulatus. All were free of myrtle rust related dieback.  
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Table 13 – Assessment of Myrtaceae at Mt Coot-tha and Lismore Botanic Gardens examining impact of repeated 

Austropuccinia psidii infection using crown health as an indicator of decline 

Myrtaceae 
Tree health (% healthy 
crown) 

Original susceptibility 
rating (2014) 

Chamelaucium uncinatum 0 ES 

Eugenia reinwardtiana 0 ES 

Rhodomyrtus psidioides 0 ES 

Rhodomyrtus canescens  0 HS 

Melaleuca nodosa 0 HS-ES 

Gossia myrsinocarpa 2 MS-HS 

Decaspermum humile 3.2 ES 

Rhodamnia spongiosa 3.75 HS 

Rhodamnia maideniana 5.94 ES 

Rhodamnia rubescens 6.25 HS-ES 

Rhodamnia argentea 8.33 MS-HS 

Gossia hillii  9.37 HS-ES 

Rhodamnia australis 22.5 HS 

Gossia inophloia 23.75 ES 

Rhodomyrtus pervagata 25 MS-HS 

Melaleuca leucadendra 27 RT-HS 

Rhodamnia dumicola 31.25 HS 

Syzygium apodophyllum 37.5 RT 

Gossia acmenoides 47.5 HS 

Lenwebbia prominens 48.33 HS 

Uromyrtus australis 50 NR 

Syzygium corynanthum 60 RT-HS 

Gossia floribunda 61.6 RT 

Waterhousea mulgraveana 65 RT 

Syzygium macilwraithianum 66.67 RT-HS 

Austromyrtus dulcis 70 RT-HS 

Backhousia anisatum 72.66 RT-HS 

Syzygium rubrimolle 75 RT 

Syzygium forte subsp. potamophilum 78.75 RT-MS 

Backhousia citriodora 80 MS-HS 

Backhousia oligantha 80 MS-HS 

Neofabricia myrtifolia 80 NR 

Acmenosperma claviflorum 81.37 MS 

Syzygium nervosum 81.6 HS 

Gossia fragrantissima 82.5 MS 

Backhousia sciadophora  89 RT 

Mitrantia bilocularis  90 MS 

Gossia bamagensis 90 RT 

Syzygium dansiei 90 RT 

Syzygium bamagense 91.25 MS 

Syzygium xerampelinum 92.5 MS 

Backhousia hughesii 95 MS 

Acmena hemilampra  subsp. hemilampra 95 RT 

Lindsayomyrtus racemoides 95 RT 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 62 

Syzygium minutiflorum 95 RT 

Syzygium wilsonii subsp. wilsonii 95 RT 

Syzygium oleosum 95 RT-HS 

Syzygium australe  96.6 RT-MS 

Syzygium tierneyanum 98.33 RT 

Gossia punctata 100 MS 

Leptospermum madidum 100 MS 

Sphaerantia discolor  100 MS 

Melaleuca comboyensis 100 NR 

Pilidiostigma tropicum 100 NR 

Syzygium ingens 100 NR 

Syzygium papyraceum 100 NR 

Choricarpia subargenea 100 RT 

Gossia bidwillii 100 RT 

Leptospermum petersonii 100 RT 

Melaleuca linarifolia 100 RT 

Ristantia waterhousei 100 RT 

Syzygium argyropedicum 100 RT 

Syzygium canicortex 100 RT 

Syzygium cormiflorum 100 RT 

Syzygium erythrocalyx 100 RT 

Syzygium moorei 100 RT 

Tristaniopsis laurina 100 RT 

Waterhousea floribunda 100 RT 

Waterhousea hedraiophylla 100 RT 

Backhousia leptopetala 100 RT-HS 

Rhodamnia costata  100 RT-HS 

Backhousia myrtifolia 100 RT-MS 

Pilidiostigma glabrum 100 RT-MS 

Waterhousea unipunctata 100 RT-MS 

*NR = Not rated for rust susceptibility pre Pegg et al. (2014) 

Impact on flower and fruit development 

To date (2016) A. psidii infection has been identified having a direct impact on flower and fruit production on 31 species 

(Table 3). However, this number is based on observations only with limited detailed studies conducted to capture quantitative 

data documenting both direct and indirect effects on fecundity. Austropuccinia psidii infection has been identified on all 

flower parts and caused senescence of flowers preventing development of fruit/seed. Infection of juvenile fruit has been 

observed (e.g. Rhodamnia sessiliflora - Pegg unpublished) preventing maturation occurring. Infection on mature fruit has also 

been observed (e.g. Austromyrtus dulcis, Rhodamnia spp.) but the effects on germination not yet studied. However, reports 

from seed collecting staff indicate that when fruit of Rhodomyrtus psidioides has been found, an increasingly rare event, they 

are absent of seed. When examining internal structures of Eugenia reinwardtiana fruit, A. psidii uredinia and urediniospores 

were identified (Fig. 31). This has also been observed on fruit of the exotic Myrtus communis.  

Observations have also been made of bees, both European bees (Apis melifera) and the native stingless bees (Tetragonula 

sp.) actively collecting A. psidii spores (Fig. 32). 
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Figure 31 Austropuccinia psidii infection on the flowers and fruit has been identified from a range of species having a direct 

effect on fecundity. Austropuccinia psidii urednia and urediniospores were found to occur internally on immature Eugenia 

reinwardtiana fruit (a), Xanthostemon youngii flowers, flower buds, immature and mature fruit of Rhodamnia sessiliflora and 

fruit of Austromyrtus dulcis. 
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Figure 32 Syzygium jambos foliage covered in Austropuccinia psidii uredinia and urediniospores with a European honey bee 

(Apis melifera) foraging rust spores - Photo Vanessa Brake (DAWR) 

Impact of Austropuccinia psidii on Rhodamnia rubescens fruit development  

Fortnightly fungicide application protected flowers and fruits of R. rubescens from A. psidii infection, with a significant 

difference (p < 0.05) in incidence of fruit infected between treatments. The mean % infested at the start of the trial differed 

between the treated and the untreated trees (1.31%, 16.9% respectively); these values after the treatment was applied were 

2.18% and 76.58% (means of three assessments after treatment), indicating a significant increase in the % infested for the 

untreated branchlets (Fig. 33). For untreated branchlets, incidence of A. psidii increased sharply in the first fortnight after the 

trial began (16.9 to 82.5), plateaued at the 3rd assessment (84.6), and then decreased by the final assessment (62.4) (Fig. 33). 

The mean no of fruits at the start of the trial for untreated and treated are similar (60.3 and 65.9, respectively), but after the 

treatment was applied these values are 31.47 and 51.28 (mean of three assessments) indicating that more fruits are retained 

by the treated branches than the untreated branches (Fig. 34, 35 ). At the final assessment, the mean number of fruits per 

branch for treated trees was 34.7 (4.68 se) and 17.6 (5.78 se) for untreated.  The trend over time is non-linear for both the 

response variables. Number of fruits data showed the presence of high auto-correlation (0.87), so auto-correlation was 

included in the model. The no. of fruits did not show a significant treatment effect (p=0.08) but the treatment by period 

interaction was highly significant (p<0.001). The decline in the number of fruits over time for treated and untreated follows 

a different trend (Fig. 35). The decline over time is linear for the untreated branches but follows a non-linear pattern for the 

treated ones. For treated branches the decline is very slow for the first 2 weeks (almost constant) and then the number of 

fruits drop quickly, whereas for the untreated branches there is a constant drop in the number of fruits over weeks. 

Qualitative observations indicated that more fruit reached maturity (purple colour) on treated trees compared to untreated 

trees. 
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Figure 33 Time series plot of the disease incidence percentage (% infested) of the fruits by branchlet for treated and 

untreated branches within each branch. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34 Rhodamnia rubescens with fruit at various levels of maturity (a) infected with Austropuccinia psidii on immature 

and mature fruit (b,c) and absence of fruit on untreated branches (d) 
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Figure 35 Time series plot of the total number of fruits by branchlet for treated and untreated branches within each branch 
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Impact of Austropuccinia psidii (myrtle rust) on regeneration of Myrtaceae following disturbance within coastal heathland 

communities of northern New South Wales, Australia 

Coppice and epicormic re-growth was first identified in March 2014 following a rainfall (>200mm) event with plots established 

once species could be identified as being Myrtaceae. Evidence of A. psidii infection was first detected in April 2014 with a 

single tree showing symptoms on new growth flush. Disease incidence (number of trees with symptoms and level of infection 

per tree) and severity levels rapidly increased in both the Melaleuca quinquenervia swamp and on Myrtaceae within the wet 

and dry coastal heath sites. Disease incidence levels increased and peaked during the autumn to winter months (April-

August). Disease incidence was then variable between sites despite the relative close proximity of all sites. No relationship 

was identified between incidence and severity of A. psidii infection and rainfall per month or days of rain per month. Disease 

incidence (Fig. 36) and severity (Fig. 37) levels in the dry heath site peaked during the cooler winter months (May, June, July) 

before declining over months of Spring and early Summer before increasing again in late Summer/Autumn. Disease levels on 

species in the wet heath site followed similar pattern with the exception of a spike in disease incidence in September 2014 

(Fig.38). 

 

 

 

 

 

 

 

 

 

 

Figure 36 Myrtle rust disease incidence (% trees with infection) on coppice of Myrtaceae species over time in dry heath 

environment. Species in this environment included Austromyrtus dulcis, Leptospermum whitii, L. polygalifolium, Melaleuca 

nodosa and M. quinquenervia. 
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Figure 37 Average disease severity levels over time for two susceptible species in dry coastal heath Melaleuca nodosa and 

Austromyrtus dulcis 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 Myrtle rust disease incidence (% trees with infection) on coppice of Myrtaceae over time in wet heath environment. 

Species in this environment included Baeckea frutescens, Leptospermum levigatum, Leptospermum polygalifolium, L. whitei, 

Lophostemon suaveolans and Melaleuca quinquenervia. 
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Figure 39 – Average disease severity levels on Baeckea frutescens and Leptospermum laevigatum, two of the more myrtle 

rust susceptible species in the wet heath environment 

 

 

 

 

 

 

 

 

 

 

 

Figure 40 Average disease susceptibility of Myrtaceae within dry coastal heath ecosystem based on a 0-5 rating score of the 

new growth flush with significant differences in disease susceptibility (P<0.0001). 

Melaleuca quinquenervia was the most susceptible species within the dry coastal heath plots (Fig. 40) but only two trees were 

present within the plots established. The species is scattered in distribution in this environment. Epicormic regeneration on 

one of the two M. quinquenervia was killed as a result of A. psidii infection, while coppice regeneration on the second tree 

remained healthy.  

Melaleuca nodosa (Fig. 40, 47) is common within the coastal heath environment and was significantly (P>0.0001) more 

susceptible to myrtle rust than Austromyrtus dulcis.  

Only low levels of foliage infection was identified on Leptospermum whitei and no disease was detected on L. polygalophylla 

within the plots. As a result of repeated infection branch dieback was identified on A. dulcis but significantly less than that 

recorded on M. nodosa. No dieback was recorded for L. polygalifolium and L. whitei (Fig. 41). 
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Figure 41 Comparison of dieback levels on Myrtaceae in dry coastal heath plots with significant (P<0.0001) differences 

identified between species 

Austropuccinia psidii severity levels were greatest on epicormic regrowth of Leptospermum laevigatum in the wet coastal 

heath sites. A. psidii infection was predominantly identified on juvenile stems rather than foliage for this species, a symptom 

also observed on Baeckea frutescens. Dieback levels on L. laevigatum were significantly higher (P>0.0001) than B. frutescens. 

Similar to the dry heath site, variability in susceptibility of M. quinquenervia was observed with repeat A. psidii infection on 

one tree causing death of coppice shoots (Fig. 42-44) while no dieback was recorded on epicormic shoots on a second tree. 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 – Melaleuca quinquenervia coppice regeneration following fire with 30% of trees showing resistance to 

Austropuccinia psidii but were impacted upon by mirid bugs (Eucerocoris suspectus) (RHS) 
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Figure 43 Impact of Austropuccinia psidii infection on Melaleuca quinquenervia coppice regeneration following fire with 

infection initially causing blight of new shoots and stems followed by gradual decline and eventual death of shoots.  
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Figure 44 Impact of Austropuccinia psidii on susceptible Melaleuca quinquenervia coppice regeneration following a wildfire 

Austropuccinia psidii infection was also recorded on Melaleuca rigidus and L. whitei with repeated infection causing low levels 

of dieback (Fig. 45, 46). Infection was also detected on Lophostemon suaveolans but A. psidii pustules were restricted to 

insect galls present on expanding foliage (Fig. 48). No dieback was recorded for L. suaveolans. 
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Figure 45 Average disease susceptibility of Myrtaceae within dry coastal heath ecosystem based on a 0-5 rating score of the 

new growth flush with significant differences in disease susceptibility (P<0.0001). 

 

 

 

 

 

 

 

 

 

 

Figure 46 Impact of repeated Austropuccinia psidii based on percentage of branches showing evidence of dieback with 

significant differences between species (P<0.0001) 
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Figure 47 Impact of Austropuccinia psidii on Melaleuca nodosa coppice regeneration following wildfires in coastal heath 

environment near Lennox Head in northern New South Wales. New coppice development (top left, top centre) with juvenile 

foliage showing symptoms of infection by Austropuccinia psidii (top right). Infection by A. psidii causes dieback of growing 

tips (middle left) with “cankers” found to form on the woody stem with A. psidii sori found to be present (middle centre). A. 

psidii infection did not directly impact flowering although number of flowers/seed pods were lower on more susceptible 

individuals (middle right). Repeated infection of growing tips resulted in branch dieback (bottom) 
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Figure 48 Lophostemon suaveolens with Austropuccinia psidii pustules (sori) restricted to insect galls 

 

Seedling regeneration 

Information gathered on the impact of rust on seedlings is more difficult to understand. Observations within plots would 

suggest a change in species composition is occurring with the seedlings, from the resistant Lophostemon suaveolens becoming 

the dominant species, and with Melaleuca quinquenervia and Leptospermum species becoming less common (Fig. 49, 50). 

Austropuccinia psidii infection was identified on M. quinquenervia and L. polygalifolium seedling but was not detected on L. 

suaveolens. However, lack of information on what would have occurred in the absence of myrtle rust limits our understanding 

of this data. More recent observations of M. quinquenervia seedlings suggest that seedlings that do survive infection have 

had repeated events where apical dominance is lost and seedlings are becoming multi-branched (Fig. 51). Again, the lack of 

information on seedling regeneration in these ecosystems in the absence of rust makes it difficult to draw more specific 

conclusions. An assessment to determine the pre-existing species composition within the sites may help shed some light on 

the impact myrtle rust has on species composition.  
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Figure 49 Changes in seedling Myrtaceae species regeneration composition over time within coastal heath following wildfire  
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Figure 50 Myrtaceae seedlings germinating after the fire were predominantly Melaleuca quinquenervia, Leptospermum 

polygalifolium and Lophostemon suaveolens. Within plots established (a) M. quinquenervia was most affected by A. psidii 

(b,c,d) with only minor infection found on L. polygalifolium (c,d) and no infection on L. suaveolens.  
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Figure 51  Impact of Austropuccinia psidii on Melaleuca quinquenervia seedlings following wildfire in coastal heath 

environments; (top & bottom left) loss of apical dominance evidence of infection and death of growing tips due to infection 

by A. psidii compared to (bottom right) apically dominant seedlings showing resistance to infection. 

Additional surveys 

To determine if the A. psidii impacts on species within plots was representative of broader impact one-off surveys were 

conducted and selected species assessed for impact: 

Melaleuca nodosa 
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One hundred and forty four trees were assessed for A. psidii impact based on the percentage of branches showing dieback. 

31.94% of trees had A. psidii infection related dieback on all branches. Of these trees only 8.7% (4 trees) had seed pods 

present with three having seed on 10% of branches and the fourth on only 5% of the branches. Only 15.27% of trees assessed 

had dieback on 25% or less of the tree branches. 63.63% of these trees had seed present on an average of 45.36% of branches. 

Baeckea frutescens 

Twenty trees were selected randomly from within the wet heath site and assessed for A. psidii impact. All trees showed some 

level of branch dieback with more than 50% of the trees having dieback on 50% or more of their branches. At the time of 

assessment impact of dieback on flowering levels was not assessed. However, observations at a later date suggested that 

trees with stem and branch dieback had reduced flowering levels in comparison to trees showing no A. psidii related dieback 

(Fig. 52). 

Leptospermum laevigatum 

All trees showed some level of dieback caused by repeated A. psidii infection. However, only 30% had dieback on 50% or 

more of the branches (Fig. 53). Again observations by the authors identified reduced flowering rates on trees with dieback. 

Leptospermum polygalifolium 

While 90% of trees assessed showed some levels of branch dieback caused by A. psidii, only a single tree was identified with 

significant levels of impact with dieback on 70% of branches. 

Leptospermum trinervium 

Leptospermum trinervium was not present in any of the study plots. However, observations by the authors identified 

significant levels of A. psidii infection and dieback on epicormic regeneration of this species. All 20 trees assessed showed 

some level of branch epicormic regrowth dieback caused by A. psidii. Of these, 10 had greater than 50% of branches showing 

evidence of dieback (Fig. 54). 

Eucalyptus robusta 

A common coastal eucalypt, and known koala food source, Eucalyptus robusta was found sporadically through the wet heath 

sites with seedling germination observed following the fire event. While impact of A. psidii was not assessed for this species, 

infection was observed on new growth flush and juvenile stems of seedlings (Fig. 55).  
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Figure 52 Coppice regeneration of Baeckea frutescens following a wildfire (a) with A. psidii infections causing stem dieback 

(b, c). Resistance was identified in the population assessed with flowering occurring on individuals free of dieback symptoms 

(d). Low levels of infection was identified on flowers. 
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Figure 53 Austropuccinia psidii infection on Leptospermum laevigatum was restricted to juvenile stems (a, b) with no evidence 

of infection on leaves, Infection on stems resulted in distorted growth and dieback (c,d,e). Flower levels on those with dieback 

were observed to be lower than those where disease symptoms were absent 
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Figure 54 Coppice regeneration on Leptospermum trinervium was found to be highly susceptible to Austropuccinia psidii with 

uredinia and telia identified on juvenile stems and foliage (a, b, c, d) resulting in foliage loss and dieback (e, f) 

 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 83 

Figure 55 Eucalyptus robusta seedlings were found regenerating following wildfire in wet heath environment with symptoms 

of Austropuccinia psidii infection on juvenile stems and young leaves 

 

Unburnt areas 

A 100 meter transect was assessed through an adjacent unburnt site in the dry heath environment and disease levels assessed 

on Myrtaceae present. An initial survey was conducted in August 2014 recording disease infection levels on new growth flush 

and again in March 2015 to assess for impact (dieback). Austromyrtus dulcis, Melaleuca quinquenervia and M. nodosa were 

assessed. For the first assessment only 2 of the 20 M. nodosa present had evidence of A. psidii infection on new growth flush, 

both rated 1 using the 0 to 5 rating scale. Similarly only a single M. quinquenervia tree was found with infection (rating 2) and 

three of fifteen A. dulcis shrubs had low levels of rust infection (rating 1). At the second assessment there was no evidence 

of A. psidii dieback on M. quinquenervia. However, dieback was recorded on 50% of the M. nodosa and 22% of A. dulcis 

assessed.  

Melaleuca quinquenervia swamp 

Austropuccinia psidii had a significant impact on the regeneration of M. quinquenervia in a swamp environment following 

wildfire. Seventy two percent of trees showed some level of susceptibility to A. psidii. When disease incidence (number of 

trees infected) levels were at their highest (September 2014), 70.45% of infected trees rated as highly or extremely 

susceptible (4 or 5).  

In August 2014 mirid bugs (Eucerocoris suspectus) impacted on (Fig. 56), in addition to A. psidii, new shoots and expanding 

foliage with feeding causing significant blighting (Fig. 42). Mirid bug levels were highest in December 2014 when A. psidii 

levels were comparatively low. Both insect attack and A. psidii levels declined in months when growth flush levels declined in 

December 2014 and January, May and June 2015. In 2015, the site was inundated for long periods following heavy and 

persistant rainfall, which appeared to slow tree growth rates, reducing the amount of susceptible flush present and resulting 

in lower levels of both A. psidii infection and mirid bug attack. 
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Figure 56 Incidence of A. psidii infection and mirid bug (Eucerocoris suspectus) attack on coppice regeneration of Melaleuca 

quinquenervia over the assessment period following wildfire in a coastal swamp and heath ecosystem near Lennox Heads in 

northern New South Wales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 57 Average disease severity levels on coppice regeneration of Melaleuca quinquenervia over the assessment period 

following wildfire in a coastal swamp and heath ecosystem near Lennox Heads in northern New South Wales. 

0

10

20

30

40

50

60

70

80

90

100

0
3

-A
p

r-
1

4

1
6

-A
p

r-
1

4

0
1

-M
ay

-1
4

1
4

-M
ay

-1
4

2
8

-M
ay

-1
4

1
1

-J
u

n
-1

4

2
6

-J
u

n
-1

4

2
4

-J
u

l-
1

4

1
4

-A
u

g-
1

4

0
8

-S
e

p
-1

4

2
6

-S
e

p
-1

4

3
0

-O
ct

-1
4

0
4

-D
ec

-1
4

2
3

-D
ec

-1
4

0
4

-F
e

b
-1

5

0
5

-M
ar

-1
5

2
4

-M
ar

-1
5

2
2

-A
p

r-
1

5

2
2

-M
ay

-1
5

2
2

-J
u

n
-1

5

2
2

-J
u

l-
1

5

2
6

-A
u

g-
1

5

2
2

-S
e

p
-1

5

2
2

-O
ct

-1
5

M
yr

tl
e 

ru
st

/M
ir

id
 b

u
g 

in
ci

d
en

ce
 (

%
 t

re
es

 
af

fe
ct

ed
)

Myrtle rust incidence (% trees)

Mirid bug incidence (% trees)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
ve

ra
ge

 m
yr

tl
e 

ru
st

 s
ev

er
it

y



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 85 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58 

Average severity levels of mirid bug (Eucerocoris suspectus) attack on coppice regeneration of Melaleuca quinquenervia over 

the assessment period following wildfire in a coastal swamp and heath ecosystem near Lennox Heads in northern New South 

Wales. 

Dieback as a result of repeated A. psidii infection, and potentially additive effects of mirid bugs, was identified on 71.94% of 

trees assessed. However, only 10% of trees had 50% or more of the coppice regeneration killed.  

Impact of Austropuccinia psidii on regeneration of Melaleuca quinquenervia and interaction with insect populations 

Incidence and severity of A. psidii and insect attack 

Incidence of myrtle rust infection, based on the number of trees with A. psidii symptoms, fluctuated over time with no specific 

pattern based on season (Fig. 59) or maximum daytime and minimum night-time temperatures (Fig. 60). Disease incidence 

levels were lowest during late spring/early summer months in 2015/16. In contrast incidence of insect damage was greatest 

during the spring and summer months followed by very low levels of damage during the winter months of June and July (Fig. 

59).  

Insect damage incidence levels were strongly correlated with minimum (P = 0.957) and maximum (P = 0.987) temperatures 

with increasing temperatures linked to an increase in the number of trees showing symptoms of insect damage (Fig. 60). 

There was no relationship between days of rainfall (Fig. 61), rainfall per month (Fig. 62) or leaf wetness (Fig. 63) and disease 

incidence or severity levels. This was also the case when examining relationships with incidence and severity of insect damage. 
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Figure 59 Changes in Austropuccinia psidii incidence (% total trees) and incidence of insect damage (% total trees) over the 

assessment period on new shoots and expanding foliage on coppice regrowth of Melaleuca quinquenervia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 60 Changes in Austropuccinia psidii incidence (% total trees) and incidence of insect damage (% total trees) over the 

assessment period on new shoots and expanding foliage on coppice regrowth of Melaleuca quinquenervia in relation to 

average monthly temperature (Maximum and Minimum). 
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Figure 61 Changes in Austropuccinia psidii incidence (% total trees) and incidence of insect damage (% total trees) over the 

assessment period on new shoots and expanding foliage on coppice regrowth of Melaleuca quinquenervia in relation to days 

of rainfall per month.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 62 Changes in Austropuccinia psidii incidence (% total trees) and incidence of insect damage (% total trees) over the 

assessment period on new shoots and expanding foliage on coppice regrowth of Melaleuca quinquenervia in relation to total 

rainfall per month. 
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Figure 63 Changes in Austropuccinia psidii incidence (% total trees) and incidence of insect damage (% total trees) on 

Melaleuca quinquenervia coppice regeneration over the assessment period in relation to leaf wetness graphed as the number 

of days leaf wetness exceeded 8 hours overnight. 

 

Figure 64 Austropuccinia psidii incidence levels (average disease incidence level per tree) on Melaleuca quinquenervia coppice 

regeneration over the assessment period comparing four treatments: untreated control, fungicide, fungicide + insecticide, 

insecticide 

While not completely eliminating A. psidii, fungicide application reduced the incidence and severity of infection on susceptible 

growth flush in comparison to the untreated control and insecticide only treated trees (Fig.64, 65).  
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Figure 65 Austropuccinia psidii severity levels (average disease severity level per tree using a 1-5 rating scale) on Melaleuca 

quinquenervia coppice regeneration over the assessment period comparing four treatments: untreated control, fungicide, 

fungicide + insecticide, insecticide 

 

Figure 66 Insect damage incidence levels (average incidence level per tree) on Melaleuca quinquenervia coppice regeneration 

over the assessment period comparing four treatments: untreated control, fungicide, fungicide + insecticide, insecticide 

An array of different insects were found causing damage to M. quinquenervia, at times making control difficult despite using 

broad spectrum insecticides (Fig. 66, 67). Insect pests included weevils (Aterpus griseatus) (Fig. 70), which stripped the young 

stems often “ringbarking” branches, leaf tying caterpillars, tip sucking bugs, chrysomellids (including Geloptera perosa) and 

other general leaf chewing insects, many of which could not be identified as they were not present at the time of assessment. 

Weevil damage was particularly severe at the time of coppice establishment (February-March 2015) in the untreated control 

and fungicide only treated plots.  

Some of the more severe damage was caused by mirid bugs (Fig. 66) which attacked the new growth flush and were 

particularly severe from November 2015 to January 2016 causing significant levels of defoliation, even on trees treated with 

insecticide. The fungicide + insecticide and insecticide treated trees, which were tallest and most actively growing at the time 

(December 2015-March 2016), had greater levels of mirid bug attack than other treatments and this is reflected in insect 

incidence and severity scores during that period. The faster growth rates in these treatments is likely to influence the efficacy 

of chemical treatments over time. At times young shoots and expanding foliage was affected by both mirid bug attack and A. 

psidii infection (Fig. 69). 
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Figure 67 Insect damage severity levels (average disease severity level per tree using a 1-5 rating scale) on Melaleuca 

quinquenervia coppice regeneration over the assessment period comparing four treatments: untreated control, fungicide, 

fungicide + insecticide, insecticide 

 

Figure 68 Mirid bug (Eucerocoris suspectus) damage on expanding foliage and new shoots of Melaleuca quinquenervia 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

Sep-15 Oct-15 Dec-15 Jan-16 Mar-16 May-16 Jun-16 Aug-16 Oct-16

A
ve

ra
ge

 in
se

ct
 s

ev
er

it
y 

Control

Fungicide

Fungicide & insecticide

Insecticide



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 91 

 

 

 

 

 

 

 

 

Figure 69 Austropuccinia psidii and mirid damage occurring in combination on new growth of Melaleuca quinquenervia 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 70 Weevils (Aterpus griseatus) caused damage to bark and cambial layers on young woody stems and branches of 

Melaleuca quinquenervia 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impact of Austropuccinia psidii and insect attack 
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Figure 71 Death of Melaleuca quinquenervia coppice over the assessment period comparing four treatments: untreated 

control, fungicide, fungicide + insecticide, insecticide 

 

Death of M. quinquenervia coppice regeneration has been greatest within the untreated control plots with a combination of 

A. psidii infection and insect attack resulting in 74.78% deaths (Fig. 71). Fungicide only treated plots had the second highest 

levels of dieback (56.6%) followed by insecticide (43.04%). Stumps deaths were least when A. psidii and insects were 

controlled with only 30% of stumps dying back (Fig. 71). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 72 Comparison of growth rates of regenerating Melaleuca quinquenervia 12, 18 and 22 months after coppice 

development commenced comparing four treatments: untreated control, fungicide, fungicide + insecticide, insecticide. 
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Figure 73 Comparison of seasonal growth rates of regenerating Melaleuca quinquenervia after coppice development 

commenced comparing four treatments: untreated control, fungicide, fungicide + insecticide, insecticide 

Tree growth was significantly greater in insecticide and insecticide + fungicide treated trees than fungicide and fungicide and 

untreated control plots (Fig. 72). Insect attack within the first months significantly slowed growth in trees where insecticide 

was not applied. To date there is no significant difference between fungicide treated trees and trees in untreated control 

plots. However, it must be pointed out that approximately 35% of the remaining trees in the untreated control plots have 

been assessed as being resistant to A. psidii. Similarly in the insecticide treated plots, 22% of the remaining trees have been 

rated as resistant.  

When examining tree growth rates based on seasonal differences (growth rates per 6 month period) (Fig. 73), growth is 

understandably slower during the cooler Autumn and Winter months. Interestingly the rate of growth in fungicide treated 

trees in the last 6 months has been similar to insecticide and insecticide + fungicide treated trees and is the only treatment 

showing an increase in growth rate in the last 6 months (Fig. 73). Further assessments are required to determine if this pattern 

will continue over time. Growth flush levels were also higher in fungicide treated trees in comparison to insecticide and 

insecticide + fungicide treated trees from March 2016 to September 2016 (Fig. 74) 

 

 

Figure 74 Comparison of growth flush development (new growth as a % of the total foliage present) in Melaleuca 

quinquenervia in coppice regrowth comparing four treatments: untreated control, fungicide, fungicide + insecticide, 

insecticide 
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Figure 75 Comparison of canopy transparency levels where increased transparency indicates lower foliage density levels in 

Melaleuca quinquenervia coppice regrowth comparing four treatments: untreated control, fungicide, fungicide + insecticide, 

insecticide 

Foliage transparency levels, indicating lower foliage density, were highest in untreated and insecticide treated trees (Fig. 75) 

(Fig. 79). Fungicide treated trees and untreated trees lacked apical dominance and are more shrub like in appearance (Fig. 

76). Leaf size, based on average leaf area of fully expanded leaves (Fig. 77, 78), was significantly greater in fungicide + 

insecticide treated trees than untreated (P<0.0001), fungicide (P=0.0002) and insecticide (P=0.0001) treated trees. While 

there was no significant differences between other treatments, leaf area was higher in fungicide treated trees than insecticide 

and untreated trees. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 76 Comparison of tree architecture in Melaleuca quinquenervia coppice regrowth comparing four treatments: 

untreated control, fungicide, fungicide + insecticide and insecticide where a rating of 1 is an apically dominant tree and 4 is 

shrub like in appearance and lacking obvious apical dominance. 
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Figure 77 Comparison of average leaf area of fully expanded leaves in Melaleuca quinquenervia coppice regrowth comparing 

four treatments: untreated control, fungicide, fungicide + insecticide and insecticide. 

 

 

 

 

 

 

 

 

 

Figure 78 Comparison of average leaf area of fully expanded leaves in Melaleuca quinquenervia coppice regrowth comparing 

four treatments: untreated control, fungicide, fungicide + insecticide and insecticide with rust resistant trees removed from 

insecticide and control treatments 
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Figure 79 Melaleuca quinquenervia coppice regrowth comparing foliage density and tree form for four treatments: untreated 

control, fungicide, fungicide + insecticide and insecticide with rust resistant trees removed from insecticide and control 

treatments 

Impact of Austropuccinia psidii on regenerating subtropical rainforest/wet sclerophyll ecosystems dominated by 

Myrtaceae. 

Species composition in the understory of the wet sclerophyll/rainforest site in Tallebudgera Valley, Queensland was made up 

of seven Myrtaceae (Fig. 80) and dominated by Archrhodomyrtus beckleri. Rhodamina maideniana, Gossia hilli, Acmena 

smithii and Decaspermum humile were also relatively common with only a few Pilidiostigma glabrum and Syzygium oleosum 

occupying this vegetation layer. Impact of A. psidii was greatest on D. humile with A. beckleri, G. hillii and R. maideniana all 

had significant levels (P<0.0001) of dieback in comparison to A. smithii (Table 14). 
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Figure 80 Composition of understory Myrtaceae as of 2016 within a subtropical rainforest/wet sclerophyll site in the 

Tallebudgera Valley, Queensland. 

 

Table 14 Impact of A. psidii infection on the main species making up the understory component of the wet 

sclerophyll/rainforest ecosystem, Tallebudgera Valley, Queensland. 

Tree species Branch death (%) Branches dieback (%) Healthy canopy (%) 

Acmena smithii 6.667 ±5.156 a 1.333 ±6.702 a 85.417 ±6.969 a 

Archirhodomyrtus beckleri 43.75 ±6.611 b 97.656 ±2.344 b 2.344 ±2.344 b 

Decaspermum humile 48.462 ±11.027 b 100 ±0  b 0 ±0 b 

Gossia hillii 33.889 ±8.22 b 97.222 ±2.778 b 2.778 ±2.778 b 

Rhodamnia maideniana 4.737 ±1.687 a 93.421 ±5.354 b 6.579 ±5.354 b 

  

Archrhodomyrtus beckleri was also the most common species identified in the midstory canopy making up 41% of all the 

Myrtaceae identified (Fig. 82). Gossia hillii, Decaspermum humile and Acmena smithii were the next most common species. 

Similar to the understory dieback levels were significantly (P<0.0001) lower on A. smithii (Table 15). Epicormic regeneration  

was found on the main trunk and base of G. hillii, D. humile and A. beckleri trees showing myrtle rust related dieback was 

(Fig. 81). In many cases, the coppice shoots were also infected by A. psidii and dying back.  

 

Figure 81 Coppice regeneration on mid-story (a) Archirhodomyrtus beckleri and (b) Decaspermum humile trees in severe 

decline as a result of repeated Austropuccinia psidii infection  
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Figure 82 Composition of mid-story Myrtaceae as of 2016 within a subtropical rainforest/wet sclerophyll site in the 

Tallebudgera Valley, Queensland. 

 

Table 15 Impact of Austropuccinia psidii infection on the main species making up the mid-story component of the wet 

sclerophyll/rainforest ecosystem, Tallebudgera Valley, Queensland. 

Tree species Branch death (%) Branch dieback (%)  Healthy canopy (%) 

Acmena smithii 8  ±5.281 a  21.0 ±13.204 a 78.5 ±13.124 a 

Archirhodomyrtus beckleri  22.564 ±5.424 a  92.308 ±3.067 b  7.66 ±3.063 b 

Decaspermum humile  86.786 ±6.126 b  100 ±0 b  0 ± 0 b 

Gossia hillii  42.609 ±7.989 c  100 ±0 b  4.348 ±4.348 b 

 

 

Figure 83 Composition of regenerating Myrtaceae seedlings as of 2016 within a subtropical rainforest/wet sclerophyll site in 

the Tallebudgera Valley, Queensland.  
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Acmena smithii is the most common species regenerating, making up 66% of all the Myrtaceae seedlings assessed within the 

plots (Fig. 83) and showing only low levels of A. psidii related dieback (Table 16). Archirhodomyrtus beckleri, Rhodamnia 

maideniana (Fig. 84) and Gossia hillii all had significant levels of A. psidii related dieback recorded (Table 16). Decaspermum 

humile made up only 6% of the regenerating Myrtaceae but some seedlings at the time of assessment showing only low levels 

of decline with no branch death but an average of 33% branches showing dieback symptoms. 

Table 16 Austropuccinia psidii impact levels on regenerating Myrtaceae  

Tree species Branch death (%) Branch dieback (%) Healthy canopy 

Acmena smithii 0.077 ± 0.077 a 3.231 ±1.444 a 96.75 ±1.459 a 

Archirhodomyrtus beckleri 8.846 ±4.535 b 93.846 ±2.839 b 6 ±2.78 b 

Decaspermum humile 0 ±0 a 33.333 ±21.082 c 66.667 ±21.082 c 

Gossia hillii 0 ±0 a 100 ±0 b 0 ±0 b 

Rhodamnia maideniana 2.917 ±2.497 a 100 ± 0 c 0 ±0 c 

 

Other species 

Syzygium corynanthum 

Three large (25m+ in height) S. corynanthum trees are present in the open areas of the study site but outside of the 

assessment plots. One tree is showing significant levels of decline with >75% defoliation, 20% branch death and the remaining 

branches showing evidence of dieback (Fig. 85). Epicormic shoots on branches have evidence of older infection causing 

dieback and fresh infection on new shoots (Fig. 85). On the other two trees examined, foliage loss is restricted to dieback of 

the very tip of branches and foliage loss is less obvious. However, high levels of A. psidii infection of new growth was observed 

on both trees despite the comparatively low levels of decline.  

Syzygium hodgkinsoniae 

Juvenile and mature S. hodgkinsoniae trees were assessed at the study site (Fig. 86). Juvenile trees were found to have high 

incidence of rust infection present on new shoots and expanding foliage with shoot and branch dieback evidence of the 

impact of past infection episodes. The impact on tree health of younger trees was evidenced by their sparse canopies (high 

transparency level). 

The impact of A. psidii on mature trees is currently less obvious with foliage density levels high on trees examined at the site 

(Fig. 87). However, branch dieback and the presence of coppice shoots on stems is evidence of stress. These coppice shoots 

were found to be infected by A. psidii (Fig. 87). Dead growing tips were also found to be present on most branches. Despite 

this, fruit was found present on one of the trees with no evidence of A. psidii infected identified at the time. 

Indications of rates of decline of Myrtaceae at this site were also captured through photographic evidence. Photographs 

taken in 2014 (Fig. 88) show some evidence of decline on Decaspermum humile and Syzygium corynanthum but little evidence 

of impact on Acmena smithii. In 2016, a similar photo captured the same trees and showed the dramatic change in tree health 

with considerable dieback on S. corynanthum and D. humile and a decline in foliage density on a single A. smithii tree. When 

examining other A. smithii trees at the site it was found that there was considerable variability in susceptibility to A. psidii 

within the species. 

Other sites 

To date, two other sites within the Tallebudgera Valley have been examined to determine if the dieback levels identified at 

the study site are representative of what is happing on a larger scale. At both sites considerable levels of decline in the under- 

and mid-story were identified with severe impact identified on A. beckleri, G. hillii and D. humile. Dead Rhodomyrtus psidioides 

trees were identified at site 2. Using Google Street View images, changes from 2014 to 2016 were able to be established (Fig. 

89-90). Impact assessments are yet to be completed on these sites. 
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Figure 84 Rhodamnia maideniana with Austropuccinia psidii sori on new growth flush (a) and expanding foliage (c) and the 

effects of repeated infection on growing tips (b) 
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Figure 85 Syzygium corynanthum with (a) severe defoliation and branch dieback compared to a relatively healthy tree with a 

dense canopy. However, on closer examination tip dieback is present on a high percentage of trees. (c) Young myrtle rust 

infected epicormic regeneration on trees with significant dieback 
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Figure 86 Syzygium hodgkinsoniae showing significant decline in canopy density (a) and severe Austropuccinia psidii infection 

on new shoots and expanding foliage (b, c) resulting in branch dieback (d) 
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Figure 87 Mature Syzygium hodgkinsoniae showing early stage of decline in the lower canopy (a) with evidence of branch 

dieback and epicormic shoots, all of which are infected by Austropuccinia psidii (b). Fruit of S. hodgkinsonia were identified 

on one of the trees. 
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Figure 88 Progression of decline from 2014 (top) to 2016 (bottom) on Acmena smithii, Decaspermum humile and Syzygium 

corynanthum caused by repeated Austropuccinia psidii infection 
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Figure 89 Photographs showing decline of the mid-story made up of Archirhodomyrtus beckleri, Decaspermum humile and 

Gossia hillii at a second site in the Tallebudgera Valley. In 2014 (top photo - Google) vegetation density is high with little to 

no dieback evident in comparison to 2016 (bottom photo) where significant decline is evident in the mid and understory 

vegetation. 
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Figure 90 Photographs showing decline of the mid-story made up of Archirhodomyrtus beckleri, Decaspermum humile, Gossia 

hillii and Rhodomyrtus psidioides at a third site in the Tallebudgera Valley. In 2014 (a) vegetation density is high with little to 

no dieback evident in comparison to 2016 (b) where significant decline is evident in the mid and understory vegetation. 

 

Screening for resistance 

As part of this current project, and in conjunction with other research studies, screenings of a range of commercially 

significant species have been conducted using the methodologies outlined in this report. A summary of the findings and the 

relevant references are provided below: 
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Spotted gum 

Published as: Pegg GS, Brawner J, Lee DJ, 2014. Screening Corymbia populations for resistance to Austropuccinia psidii. 

Plant Pathology. 63, 425-436. 

To determine the threat A. psidii poses to plantation and native eucalypts, artificial inoculation was used to screen germplasm 

of spotted gum (Corymbia spp.) for resistance to the biotype of A. psidii that has become established in Australia. The 

objective was to characterize resistance to A. psidii within the Corymbia species complex so that management strategies for 

the deployment of germplasm from existing breeding programmes of these spotted gum species could be developed.  

Plant populations: 

To examine the influence of origin on rust resistance patterns, 15 seedlings from between nine and 11 open-pollinated 

families from a range of provenances were examined for disease levels following inoculation with A. psidii. Two provenances 

from CCC were compared to five CCV and two CH provenances. Of the CCC provenances, one was from an inland location in 

far north Queensland (Mt Garnet) and a second was from a coastal location at the southern end of the range of CCC (Yeppoon) 

in Queensland. Presho, a CCV provenance frequently severely damaged by a native fungal foliage pathogen (Quambalaria 

pitereka), originates in the westernmost range of the species. The resistance of Presho to A. psidii was compared to the more 

coastal provenances of Woondum, Brooyar, Mt McEuan and another inland provenance, Ballon. For CH, two provenances 

were selected from different rainfall zones: Lockyer and Nerang. Resistance levels were also examined at a family level for 

seven provenances (CCC – Mt Garnet, Yeppoon; CCV – Brooyar, Mt McEuan, Woondum; CH – Lockyer, Nerang) with a family 

structure. Ballon and Presho provenances were excluded from family level comparison as the seedlings originated from a 

bulked seed lot. Also included were families from CCV, CH and CT seed orchards. To examine repeatability of results at a 

family level, a second inoculation was done on seedlings from three CCV provenances, Brooyar, Mt McEuan and Woondum 

and results compared to the first inoculation. In addition, seedlings from seven full-sib controlled cross Corymbia hybrids and 

eight commercial Corymbia clones selected from within control pollinated hybrid families of CT mother trees pollinated with 

CCV pollen, were included in the study. 

Assessment 

Seedlings were assessed 12 days after inoculation for incidence of disease (% of seedlings with symptoms) and severity of 

infection on new shoots and expanding leaves using a disease rating scale: 1 = no symptoms evident or presence of yellow 

flecking; 2 = presence of a hypersensitive reaction (HR) with fleck or necrosis; 3 = small pustules, <0.8 mm diameter, with one 

or two uredinia; 4 = medium-sized pustules, 0.8–1.6 mm diameter with about 12 uredinia; 5 = large pustules, >1.6 mm 

diameter, with 20 or more uredinia on leaves, petioles and/or shoots (Junghans et al., 2003b). Ratings 1–3 are considered as 

indicating resistance. Disease incidence (I) was also assessed as a percentage of the four youngest inoculated leaves on 

seedlings showing evidence of pustule development and uredinia. Disease severity (S) was scored as a subjective assessment 

of the percentage of the total area of infected foliage on diseased leaves only. In total, four assessments were available for 

analysis as response variables: disease incidence (I) and disease severity (S), disease rating scale (1–5) and the percentage of 

resistant seedlings based on the disease rating scale. 

Outcomes 

Inter- and intraspecific variability in rust resistance was observed among spotted gum species. There was no apparent 

relationship between climatic conditions at the provenance origin and disease resistance. The heritability estimates for all 

assessments are moderate to high and indicate a significant level of additive genetic variance for rust resistance within the 

populations. The results of this study clearly identify potential to select for resistance at the family level within the tested 

populations. While the potential for A. psidii to detrimentally impact upon Corymbia in the nursery and in young plantations 

was demonstrated, estimations of the heritability of resistance suggest that efforts to enhance this trait through breeding 

have reasonable prospects for success. 

 

Eucalyptus species 

Published as: Lee, D. J., Brawner, J. T., and Pegg, G. S. 2015. Screening Eucalyptus cloeziana and E. argophloia populations for 

resistance to Austropuccinia psidii. Plant Dis. 99:71-79. 
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Disease screening to determine the threat Austropuccinia psidii poses to plantation and native eucalypts in Australia was 

undertaken in half-sib families of two contrasting eucalypt species, Eucalyptus cloeziana and E. argophloia. Artificial 

inoculation with a single-lesion isolate of A. psidii was used to screen these species for resistance to the biotype of A. psidii 

established in Australia. The objective was to characterize resistance to A. psidii within these two distinct species: E. 

argophloia, a vulnerable species with a narrow distribution, and E. cloeziana, a species with a broad and extensive distribution 

in Queensland. Results for E. cloeziana indicate that inland provenances are more resistant to A. psidii infection than 

provenances from coastal regions. Heritability estimates for the two assessment systems used (resistance on a 1-to-5 ordinal 

scale verses resistance on a 0-to-1 binomial scale) were low to high (0.24 to 0.63) for E. argophloia and moderate to high (0.4 

to 0.91) for E. cloeziana, indicating a significant level of additive genetic variance for rust resistance within the populations. 

This study demonstrates the potential to select resistant families within the tested populations and indicates that A. psidii 

could detrimentally affect these species in native forests, nurseries, and plantations. 

Published as: Roux J, Germishuizen I, Nadal R, Lee DJ, Wingfield MJ, Pegg GS, 2015. Risk assessment for Austropuccinia psidii 

becoming established in South Africa. Plant Pathology 64, 1326-1335. 

This study was conducted in Australia in collaboration with FABI in South Africa 

The aim of this study was to consider the susceptibility of selected Eucalyptus genotypes, particularly those of interest to 

South African forestry, to infection by A. psidii. In addition, risk maps were compiled based on suitable climatic conditions 

and the occurrence of potential susceptible tree species. This made it possible to identify the season when A. psidii would be 

most likely to infect and to define the geographic areas where the rust disease would be most likely to establish in South 

Africa. As expected, variation in susceptibility was observed between eucalypt genotypes tested. Importantly, species 

commonly planted in South Africa show good potential for yielding disease-tolerant material for future planting. Myrtle rust 

is predicted to be more common in spring and summer. Coastal areas, as well as areas in South Africa with subtropical 

climates, are more conducive to outbreaks of the pathogen. 

Published as: Butler, J. B. and Freeman, J. S. and Vaillancourt, R. E. and Potts, B. M. and Glen, M. and Lee, D. J. and Pegg, G. S. 

(2016) Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust 

pathogen Austropuccinia psidii. Tree Genetics & Genomes, 12 (3). ISSN 1614-2942 

We studied the genetic basis of variation in rust resistance in Eucalyptus globulus, the main plantation eucalypt in Australia. 

Quantitative trait loci (QTL) analysis was undertaken using 218 genotypes of an outcross F2 mapping family, phenotyped by 

controlled inoculation of their open pollinated progeny with the strain of A. psidii found in Australia. QTL analyses were 

conducted using a binary classification of individuals with no symptoms (immune) versus those with disease symptoms, and 

in a separate analysis dividing plants with disease symptoms into those exhibiting the hypersensitive response versus those 

with more severe symptoms. Four QTL were identified, two influencing whether a plant exhibited symptoms (Ppr2 and Ppr3), 

and two influencing the presence or absence of a hypersensitive reaction (Ppr4 and Ppr5). These QTL mapped to four different 

linkage groups, none of which overlap with Ppr1, the major QTL previously identified for rust resistance in Eucalyptus grandis. 

Candidate genes within the QTL regions are presented and possible mechanisms discussed. Together with past findings, our 

results suggest that A. psidii resistance in eucalypts is quantitative in nature and influenced by the complex interaction of 

multiple loci of variable effect. 

Backhousia citriodora – Lemon myrtle 

D. Lee, J. Doran, G. Pegg, D. Lea, P. Macdonell and F. Giblin. Myrtle Rust Screening in Lemon Myrtle Provenance Plantings. 

RIRDC Publication 
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The plant material used for this research was from a gene bank planting of Backhousia citriodora provenances, families and 

clones established near Beerburrum in south-eastern QLD in 1995-96 by CSIRO Forestry and Forest Products (now part of 

CSIRO NRCA) and Queensland Forestry Research Institute (now part of Qld DAF). Rooted cuttings from the range of clonal 

material set at the USC glasshouse were transferred to the Department of Agriculture and Fisheries glasshouse to undergo 

extensive testing for resistance to myrtle rust. The plants were inoculated with myrtle rust spores suspended in distilled water 

and ‘Tween 20’. Immediately after inoculation, the clones were covered with a plastic sheet for 24 hours to maintain high 

humidity levels and leaf wetness in a controlled environment room set between 18 and 20oC in the dark. After 24 hours plastic 

sheeting was removed and plants grown in a shade-house and hand watered as required. Disease symptom progression was 

monitored daily and assessed 12 to 14 days after inoculation using a five category disease rating score on new shoots and 

expanding leaves.  In addition the percent leaf area with pustules (sori) was visually assessed to indicate the severity of the 

infection. 

Austropuccinia psidii resistance screening in the glasshouse showed significant differences between provenances for the 

disease rating score, with all provenances tested being susceptible to the disease.  The other method used to assess the 

severity of the disease was to assess the percentage of leaves affected by the disease. This method again indicated that there 

were significant differences between provenances: range from 15.9% for the Silver Valley clones to 35.3% for the Cathu 

clones. Disease incidence was also significantly different at the family level with a wide variation in disease incidence between 

families. The lowest incidence of leaf infection was recorded at 7.5% for family 1465 from the Woondum provenance, while 

the highest was 60% for family 1381 from Carlisle Island. 

Susceptibility/resistance levels in populations of three broad leaved Melaleuca species from across their native Australian 

range 

Three species of broad leaved Melaleuca were assessed for variability in susceptibility between different populations across 

their native range. Three month old seedlings were inoculated with A. psidii under controlled conditions and assessed 20 days 

post infection. Susceptibility was based on a 1 to 5 rating scale described in the methods and in Fig. 95-100. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 91 Melaleuca quinquenervia provenances tested for susceptibility to Austropuccinia psidii 
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Twelve provenances of Melaleuca quinquenervia from across the native range (Fig. 91) were assessed for susceptibility to A. 

psidii. Susceptibility was identified in all provenances tested. However, significant differences in levels of susceptibility (Table 

17) were identified when comparing provenances. Seedlings from Rokeby National Park in Queensland were found to be 

most resistant. Queensland populations were in general found to have higher levels of resistant seedlings (Rating 1 & 2) in 

comparison to NSW provenances apart from Boggy Creek provenance. The Boggy Creek collection is the only collection taken 

from trees post myrtle rust detection in Australia and seed was collected from known resistant trees (Pegg et al. 2012; Fig. 

92). All other provenances in NSW had less than 32% of seedlings showing resistance to A. psidii. The most susceptible 

provenance was Kuranda in far north Queensland with only 12.5% of seedling showing resistance to A. psidii. 

Table 17 Susceptibility of Melaleuca quinquenervia provenances based on percentage of seedlings rated as resistant to 

Austropuccinia psidii and the average susceptibility rating based on a 1-5 rating scale as per Pegg et al. 2014. 

Melaleuca quinquenervia provenance Resistant seedlings (%) 

Ratings 1 & 2 

Average myrtle rust susceptibility 

rating  

Rokeby NP, Qld 80 1.8 ±0.176 a 

Caloundra, Qld 77.5 1.825 ±0.192 ab 

Boggy Creek, NSW 67.5 2.452 ±0.229 bc 

Gympie, Qld 57.5 2.475 ±0.256 c 

Dohles Rocks, Qld 55.26 2.447 ±0.252 c 

Teddington, Qld 53.85 2.59 ±0.289 c 

Bribie Island, Qld 52.78 2.694 ±0.258 c 

Tozers Gap, Qld 52.5 2.4 ±0.208 bc 

Moreton Island, Qld 38.46 2.949 ±0.229 cd 

Mt Molloy, Qld 37.14 2.8 ±0.2 c 

Long Jetty, NSW 31.58 3.395 ±0.222 de 

Tuggerah Lake, NSW 30.77 3.59 ±0.237 e 

Julatten, Qld 29.73 2.838 ±0.162 cd 

Worrel Ck, NSW 29.73 3.432 ±0.231 de 

Hawks Nest, NSW 29.41 3.559 ±0.25 de 

Port Macquarie, NSW 20.51 3.667 ±0.218 e 

Kuranda, Qld 12.5 3.475 ±0.148 de 
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Figure 92- Austropuccinia psidii resistant and susceptible Melaleuca quinquenervia at Boggy Creek trial site in northern New 

South Wales. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 93 Melaleuca leucadendra provenances tested for susceptibility to Austropuccinia psidii 

Provenance of M. leucadendra from Queensland, Northern Territory and Western Australia were assessed for susceptibility 

to A. psidii (Fig. 93). Susceptible seedlings were identified in all provenances with no resistant seedlings found from Nimalaica 

Calypan provenance in Western Australia. Mareeba and Cambridge Gulf provenances had the highest percentage of resistant 

seedlings and lowest average susceptibility ratings (Table 18). Other provenances tested all had less than 20% of seedlings 

showing resistance and average susceptibility levels greater than 3.8 (Table 18). 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 112 

Table 18 Susceptibility of Melaleuca leucadendra provenances based on percentage of seedlings rated as resistant to 

Austropuccinia psidii and the average susceptibility rating based on a 1-5 rating scale as per Pegg et al. 2014. 

Melaleuca leucadendra provenance Resistant seedling (%) Rating 1 

& 2 

Average myrtle rust 

susceptibility rating 

Mareeba, Qld 76.92 2.051 ±0.244 a 

Cambridge Gulf, WA 65 2.125 ±0.169 a 

Iron Range, Qld 17.5 4 ±0.179 b 

St Lawrence, Qld 17.5 3.925 ±0.18 b 

King River, NT 15.79 3.816 ±0.176 b 

Wangi, Litchfield NP, NT 15 3.9 ±0.159 b 

Buffalo Ck, NT 12.5 3.8 ±.0.18 b 

Kalumburu Mission, WA 6 4.256 ±0.102 b 

Nimalaica Claypan, WA 0 4.2 ±0.096 b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 94 Melaleuca 

viridiflora provenances tested for susceptibility to Austropuccinia psidii 

Twelve provenances of M. viridiflora from Queensland, Western Australia and Northern Territory were assessed for 

susceptibility to A. psidii (Fig. 94). No provenance was identified as being completely resistant to A. psidii. Rockhampton 

provenance had the highest percentage of resistant seedlings (72.97) and Weipa the lowest with only 8.3% (Table 19). All 

other provenances had less than 50% of seedlings rate as resistant to A. psidii. 
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Table 19 Susceptibility of Melaleuca viridiflora provenances based on percentage of seedlings rated as resistant to 

Austropuccinia psidii and the average susceptibility rating based on a 1-5 rating scale as per Pegg et al. 2014. 

Melaleuca viridiflora provenance Resistant seedling (%) Rating 

1 & 2 

Average myrtle rust 

susceptibility rating 

Rockhampton, Qld 72.97 2.216 ±0.206 a 

Round Hill Head, Qld 45.71 2.914 ±0.254 b 

Chillagoe, Qld 45 2.775 ±0.244 ab 

Wangi, Litchfield NP, NT 43.59 2.949 ±0.249 b 

Prosperpine, Qld 32.5 3.275 ±0.256 bc 

North Kennedy River, Qld 27.5 3.275 ±0.232 bc 

Lakeland, Qld 25.64 3.59 ±0.223 c 

Theda Station Kalumbura, WA 25.64 3.205 ±0.181 bc 

Laura, Qld 24.32 3.459 ±0.228 bc 

Ningbing Range Rd, WA 19.44 3.639 ±0.236 cd 

East Baines River, NT 13.16 3.605 ±0.194 cd 

Weipa, Qld 8.3 4.167 ±0.197 d 

 

Figure 95 Rating 1 – Resistant rating with no evidence of Austropuccinia psidii sori (pustules) or necrotic lesions; clear or 

chlorotic flecks can often be seen on new growth flush and  
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Figure 96 Rating 2 – Resistant rating with evidence of necrotic lesions (hypersensitive reaction) with no evidence of 

Austropuccinia psidii sori (pustules) 
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Figure 97 Rating 3 – Susceptible - Small lesions (pustules) with or two uredinia present; lesion size <0.8mm in diameter 

 

Figure 98 Rating 4 – Susceptible – Medium sized lesions (pustules) with multiple uredinia; lesions 0.8-1.6mm diameter 
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Figure 99 Rating 5 – Susceptible – large lesions (pustules) > 1.6mm diameter with 20 or more uredinia on leaves, petioles, 

shoots and/or juvenile stems 
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Figure 100 Rating 5 – Susceptible – large lesions (pustules) > 1.6mm diameter with 20 or more uredinia on leaves, petioles, 

shoots and/or juvenile stems 

6. Discussion 

Geographical spread of Austropuccinia psidii 

Since first being detected in Australia in April 2010, A. psidii has continued to spread and is now well established in native 

ecosystems along the east coast of New South Wales and Queensland. Disease reports extend west to the Great Dividing 

Range, including towns like Toowoomba, but only a few detections, apart from nursery stock, have been made further west 

including Warwick in south east Queensland and Chillagoe in far north Queensland. While the disease is frequently detected 

in parks and gardens in Victoria, there have been no reports of impact in native ecosystems (Pers. Comm. David Smith). 

Similarly, in Tasmania, detections have been restricted to residential gardens and nurseries (dpipwe.tas.gov.au). A detection 

on Melville Island in May 2015 represents the most western distribution of the disease, with further detections on the 

mainland in Darwin in the Northern Territory occurring soon after (environment.gov.au/nt.gov.au). At the time of writing this 

report, there have been no detections of A. psidii in Western or South Australia.  

Globally A. psidii has also spread, with the most recent detections in Sumatra on Melaleuca leucadendra and Rhodomyrtus 

tomentosa (McTaggart et al. 2015). While the disease distribution in Sumatra and other surrounding Islands in Indonesia is 

unknown, it would appear likely that it is becoming widespread with further reports of the disease on Rhodomyrtus 

tomentosa across its native range in high elevation regions (Pers. Comm. Mathew Purcell CSIRO). Additional detections have 

also been made in Singapore, also on R. tomentosa (Pers. Comm. Mathew Purcell CSIRO; McTaggart Unpublished). While it is 

known that the isolate detected in Sumatra is identical to the one detected in Australia (McTaggart et al. 2015), the 

sequencing of the isolate from Singapore had not been completed at the time of completion of this report. It would appear 

likely that A. psidii is widespread in parts of Asia. Austropuccinia psidii has also continued to spread in South Africa and the 

particular strain that is present there differs from what is in Australia, and is indeed considered unique with no similar 

biotypes or strains previously reported (Roux et al. 2016). The additional threat that this strain, and indeed others identified 

in South America, pose to Myrtaceae in Australia is unknown. Da Silva et al. (2013) found variable levels virulence when 

testing the susceptibility of Metrosideros polymorpha to five different strains from Brazil. 
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Disease impact 

Within Queensland and New South Wales the effects of A. psidii can be observed in a range of different ecosystems from the 

NSW/Victoria border to Cape York Peninsula including temperate, subtropical and tropical regions (both wet and dry tropics). 

Impact on different species has been recorded in coastal heath, littoral, subtropical and tropical rainforest, wet and dry 

sclerophyll and sand island ecosystems. The host range of A. psidii in Australia continues to grow with 347 species now 

reported as susceptible from 57 genera (Giblin & Carnegie 2014). It is likely that this number will increase over time as the 

pathogen continues to spread into new environments. Impact on plant species ranges from minor leaf spotting, varying levels 

of defoliation and dieback and death of trees/shrubs in all life stages including seedlings, saplings and mature trees. Infection 

of coppice regrowth, either as a stress response to repeated rust infection or a mode of regeneration following disturbance, 

has been recorded for a range of species. Flower and fruit infection has been identified on 32 hosts resulting in reduced 

fecundity or in some cases, total loss of fecundity with seedling regeneration for species like Rhodamnia rubescens not 

observed since study of the impact of A. psidii commenced. Regeneration of Rhodomyrtus psidioides has been observed in 

the form of root suckers but, in sites assessed to date, all of these have shown impact from A. psidii infection. Indirect effects 

on flowering have also been recorded with a link to dieback levels, as a result of repeat infection, and reduced flowering 

rates. The effects of the disease on pollinator behavior due to changes in host density or species fragmentation and flowering 

rates is unknown. 

Assessment methodologies - glasshouse 

One of the main outputs for this project was focused on developing assessment methods for controlled (glasshouse) disease 

screening and for determining susceptibility levels and impact on species and plant communities under field conditions. 

Glasshouse screening methodologies were first developed for A. psidii to select resistance within key eucalypt species 

(Junghans et al. 2003) and has been used successfully as a standard process in on-going eucalypt breeding programs. The 

methodology used for this project has been adopted from this process. From an industry perspective, glasshouse screening 

is an effective and rapid process allowing for the testing of large numbers of individuals under controlled conditions. It can 

be cost effectively applied for identifying resistant species and varieties as well as comparing provenances, families and 

individuals within a species. The method can be applied to seedlings, cuttings and larger plants as long as they are actively 

growing and producing susceptible flush and they are not nutrient limited. Pruning of more mature plants and inoculating 

the new growing tips as they emerge is preferable and been found successful in our studies (results not reported). Like all 

glasshouse studies, the method removes external factors that may impact on disease development which can result in 

“escapes” and incorrect identification of resistance. 

There are two distinct resistant reactions which are consistent across different species and genera (Eucalyptus, Corymbia and 

Melaleuca), one with clear flecking and absence of any necrotic or hypersensitive reaction and the other with hypersensitive 

reaction but an absence of any A. psidii sori (pustules). The severity of necrotic lesions can vary. However, it is uncertain if 

there is a genetic relationship to this or if leaf age/stage of development at the time of infection is influencing symptom 

expression. Studies by Butler et al. (2016) identified four QTL, two influencing whether a plant exhibited symptoms (Ppr2 and 

Ppr3), and two influencing the presence or absence of a hypersensitive reaction (Ppr4 and Ppr5). Pustule size can also be 

influenced by leaf age (K. Ireland Unpublished) as can the type of spore. The development of telia and production of 

teliospores has been found on a range of species (Eucalyptus globulus, Rhodamnia rubescens, Melaleuca quinquenervia) but 

has generally been restricted to foliage that is in a more advanced stage of development at the time of inoculation (Pegg 

unpublished). While teliospores, and associated basidiospores, have been identified from a range of host species (Pegg et al. 

2014) their role in sexual recombination within populations is unknown. There is still some uncertainty regarding the life cycle 

of A. psidii. 
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Most of the disease screening work that has been done as part of this project has been aimed at examining large populations 

for on-going breeding programs in forestry (Pegg et al. 2014; Lee et al. 2014) or research into resistance mechanisms (Bala et 

al. 2013, Butler et al. 2016). The level of detail used when conducting glasshouse assessments is somewhat dependent on the 

required outcomes. From a nursery industry perspective simply distinguishing resistance from susceptibility of a species or 

cultivar is quite likely sufficient. Obviously selecting resistance would be of great commercial benefit, not only as a result of 

improved sales, but through reduced reliance on fungicides both from the producer and end-user perspective. Selecting 

individuals that produce no symptoms are also more likely to be aesthetically appealing. From an environmental regeneration 

perspective where large numbers of seedlings are often required, the removal of highly susceptible individuals and then using 

both resistant and tolerant planting material may be more appropriate. However, all this is dependent on their being an 

affordable screening process available or, in the longer term, a well-established tree breeding program for key species 

selecting resistant parent material. Certainly in this study we have identified the potential to do this for species of the broad-

leaved Melaleuca across the range of provenances. One additional factor to carefully consider is that rust selections should 

not be done in isolation from other pests and disease issues known to affect the selected plant species. In studies on spotted 

gum, it was identified (Pegg et al. 2014; Pegg & Lee Unpublished) that individuals found to be resistant to A. psidii were in 

many cases susceptible to the endemic foliage pathogen Quambalaria pitereka and vice versa. While the infection process of 

Q. pitereka differs (Pegg et al. 2009), the conditions for infection are very similar to what is required for A. psidii and therefore 

there is considerable overlap in distribution of the two pathogens.  

There is no doubt that using glasshouse screening is effective for examining species resistance/susceptibility but care must 

be taken in using this to predict disease impact in either commercial plantation systems or native ecosystems. For example 

Melaleuca alternifolia, the main species used for the production of tea tree oil, is highly susceptible when tested under 

glasshouse conditions (Morin et al. 2012, Giblin & Pegg unpublished). However, while the disease can be detected under field 

conditions, the impact is generally low and to date no widespread control measures have been required (Pers. Comm. P. 

Entwistle). Likewise the disease has not been reported from native stands of M. alternifolia. Similarly screening of eucalypts 

has identified susceptibility within three species of spotted gum (Pegg et al. 2014) and a range of commercially and 

environmentally significant Eucalyptus species (Lee et al. 2014; Roux et al. 2014), but few detections have been made in 

plantation (Carnegie 2014) or native stands. There is a need to better understand the rating system and how it relates to 

species reactions under field conditions and indeed should be coupled with field survey work to better understand impact.  

Assessment methodologies - field 

Methods for assessing disease susceptibility and to capture impact on species and plant communities over time have been 

developed as part of this and the previous PBCRC project. The method developed and reported by Pegg et al. 2014 for 

assessing levels of susceptibility under field conditions has primarily been used in Queensland. As reported in this study, the 

method of using disease levels on new flush ranging from relatively tolerant (RT) to extremely susceptible (ES) is not only a 

simple method to apply but, as our studies have shown, is effective in predicting impact over time, particularly those rated a 

highly (HS) or ES. This scale of assessment should be adopted as part of the procedure when reporting new hosts of A. psidii 

or reports on host in regions where the disease has only recently spread. This method doesn’t necessarily require a detailed 

knowledge of the pathogen and symptoms of impact on different hosts and could be very easily utilised more widely by 

people working in areas of vegetation management. Its adoption by a wider community will improve our ability to not only 

identifying new species and their relative susceptibility but help gain vital information on potential variability in susceptibility 

within host species and options for selecting resistance both from a commercial and environmental perspective. From an 

industry perspective it can also be used to select individuals from which cuttings or seed can be propagated. Similar rating 

scales have also been developed in Hawaii to monitor disease levels on Metrosideros and Syzygium jambos (Uchida et al. 

2008). However, there is no indication as to who is using these methods developed or how effective they have been. 

Methods to assess impact of A. psidii on species and plant communities have transformed over time as we have gained a 

better understanding of the host-pathogen interactions and individual host species characteristics. Unfortunately, for many 

of the species we have studied, there is very little published information, apart from taxonomic descriptions, on growth 

habits, importance in the ecosystem and even less on other pests and pathogens that might affect these species. Our work 

has highlighted the difficulties associated with field assessments for A. psidii. When assessing R. rubescens across 43 sites, a 

strong correlation was identified between crown transparency and incidence of disease on old leaves and also the disease 

rating score, but there was no correlation with incidence of disease on the new leaves. Crown transparency is an effective 

measure of the loss of foliage due to repeated infection by A. psidii. The incidence of A. psidii on old leaves can be used to 

identify previous infection events that have not as yet resulted in leaf loss and can also help identify differences in reactions 

to infection by different host species. The disease rating score measures the impact of recent infection events on new growth 

flush, but is imperfect if the conditions have not been conducive to disease development or symptoms are yet to present.  
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When assessing incidence of A. psidii on new leaves, there are compounding factors that affect whether the score obtained 

accurately provides an indication of disease impact or not. For example, if a new leaf flush coincides with an infection event 

several weeks prior to assessment then the true impact of A. psidii is obtained (i.e. a high incidence score).  However, if a new 

flush event does not coincide with an infection event, then this could give a misleading score (i.e. a low or zero incidence 

score). Furthermore, if there is no flush event at the time of assessment, even if there were conditions conducive for an 

infection event, no incidence score is able to be assessed. Another more recent observation is the fact that repeated infection 

is resulting in a change in flush morphology, which is also influencing disease development. In many cases flush size is smaller 

and leaves appear thicker and, while still susceptible to infection, severity of symptoms can differ from what was first 

observed when A. psidii was first detected.  

As we have gained a better understanding of how some species react to repeated infection we have identified that crown 

transparency, when assessing from directly under the tree, can provide an underestimate of the true impact score. In the 

case of a species like Rhodamnia rubescens, defoliation and dieback is initiated in the lower canopy, often with a “healthy” 

flush of growth occurring in top 25% of branches; thus assessing trees from directly underneath underestimates crown 

transparency compared to assessing from the side. This impact can be captured by including a canopy health score where the 

percentage of dead branches, branches with evidence of dieback and healthy branches are assessed. In other tree species 

dieback is limited to the outer growing tips with little immediate evidence on canopy density apparent. We recommend a 

combination of crown transparency as well as assessing tree canopy health (branch death and branch dieback) and disease 

ratings on new flush when present be used to assess impact of A. psidii in native environments. Moreover, we recommend 

frequent assessments of sites to gain a better understanding of disease impact on different species over time.  

In studies where we have established short and long term monitoring plots, we have been able to modify assessment methods 

to suit the questions we have posed. In the case of Melaleuca quinquenervia, one of our primary questions has been to 

determine the impact of repeated infection on new growth flush, on epicormic and coppice establishment, growth of 

seedlings and coppice shoots and flowering as well as interactions between A. psidii and native insect pests. With an increase 

in frequency of assessments we have applied methodologies commonly used in plant pathology including disease incidence 

and severity to monitor disease progressions and assess impact. We have developed a disease severity score based on an 

understanding of the different symptoms occurring on M. quinquenervia but have found that these can easily be transferred 

to a range of species. However, we have also identified some anomalies where the rating system would need to be varied. 

For example on both Leptospermum liversidgei and Baeckea frutescens, infection was restricted primarily to juvenile stems 

with little or no evidence of symptom developments occurring on foliage making the use of the before mentioned disease 

severity rating difficult. Using levels of branch dieback and death do however, seem to be applicable across all areas.  

Impact of Austropuccinia psidii on species of Myrtaceae  

Impact of Austropuccinia psidii on common species, Rhodamnia rubescens and Rhodomyrtus psidioides, across their native 

range 

The disease exclusion trial at Olney SF unequivocally showed that repeated, severe infection by A. psidii resulting in a 

reduction in foliage production, severely affects crown health, and can lead to tree death. It also revealed that myrtle rust is 

capable of killing mature trees in a native forest ecosystem in fewer than four years. This provided strong supporting evidence 

for our conclusions that the severe crown loss, dieback and tree mortality we observed in R. rubescens and R. psidioides 

across their native range was a result of repeated infection by A. psidii. There is no other plausible causal agent. This is 

supported by previous studies (Pegg et al. 2014; www.brushturkey.com.au). 
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Austropuccinia psidii has caused significant damage in commercial plantations and orchards in South and Central America (to 

both exotic and endemic species), to invasive weed species in Florida and Hawai’i, and to endangered endemic species in 

Hawai’i, and is now causing significant damage to endemic Myrtaceae in natural ecosystems in Australia. Severe infection 

and crown loss, dieback and tree mortality were observed in our indicator species—R. rubescens and R. psidioides—across 

their entire native range. R. psidioides has been particularly affected, with deaths of over half the trees in many stands, 

including mature trees up to 12 m tall, within two-to-three years of A. psidii establishing. This species is now undergoing a 

process of rapid decline across its range as a result of A. psidii invasion: of the 297 trees across 18 stands that we assessed, 

over half of them were dead, with all but three sites having exceptional levels of tree mortality. This level of decline has 

continued with follow-up surveys in 2016 at selected sites identifying even greater levels of tree mortality. We know from 

observations of botanists and seed collectors that these stands were healthy prior to A. psidii establishing (e.g., 

www.brushturkey.com.au). Thus, based on our data, R. psidioides has undergone a population decline of greater than 50% in 

less than five years. Similar impact has been observed in Hawai’i to endangered Eugenia koolauensis and mature trees of the 

exotic S. jambos (Uchida and Loope 2009; Loope 2010), but not previously to an abundant endemic species. The damage to 

R. rubescens is just as extensive but less severe, with 11.5% of trees assessed as dead in our study, and tree mortality observed 

in fewer than half the stands. After our initial assessments it appeared that R. rubescens could cope better with the disease 

because it managed to produce some flush even after substantial defoliation. Still, based on our surveys, R. rubescens 

numbers have declined by 11% in less than five years. This common species is also undergoing significant decline across its 

range and our most recent (2016) assessment of selected sites suggests that this decline rate may be accelerating.  

Our quantitative findings on both species are supported by field botanists who have conducted extensive surveys of these 

species during routine botanical surveys and seed collecting over many years: “...all sites of R. rubescens visited since 2010 

are in serious decline...with no flowering or seed observed” (Doug Beckers, Senior Botanist, National Parks & Wildlife Service, 

pers. comm., May 2014); “R. rubescens and R. psidioides are seriously threatened, with significant decline in all stands 

visited...the worst area in the Bellinger Valley [NSW] where hundreds of plants have died...” (Richard Johnstone, Seed Bank 

Officer/Botanist, The Australian Botanic Garden Mount Annan, pers. comm., July 2014); “Neither R. rubescens or R. psidioides 

have flowered since 2010, with at least half of R. rubescens dead and all known R. psidioides dead at monitoring sites” (Deb 

Holloman, Bush Regeneration Coordinator, National Parks & Wildlife Service, May 2015). Monitoring of R. rubescens and R. 

psidioides stands in northern NSW―which prior to 2011 appeared to be vigorous and in robust health―revealed devastating 

effects, with 75% tree mortality in some areas (Smith, M., National Parks & Wildlife Service, 2014, unpublished). The impact 

of A. psidii on these hitherto widespread species, neither of which is legislatively ‘listed’ under state and federal legislation, 

is likely to be sufficient to justify a change in their status to ‘threatened’. Other highly susceptible species currently listed as 

‘threatened’, such as R. angustifolia (Pegg et al. 2014), are likely to be elevated to higher extinction-risk categories following 

similar field investigations.   

The assessments of R. rubescens in Olney SF allowed us to gain information not only on the effects of the disease on R. 

rubescens but on the progression of disease and rate of decline in the plant population. This revealed how quickly the crown 

declines (within 6 months) due to repeated infection of immature leave and subsequent defoliation, but also fluctuations in 

incidence and severity of disease over time. The study using the image processing software QUANT (Vale et al. 2003) provided 

more rigorous data on the effects of A. psidii on R. rubescens at Olney SF. For the immature leaf class, we saw a significant 

difference in both disease severity and leaf area between treatments, indicating a causal relationship between disease and 

reduced leaf area. We had hypothesized that reduced leaf size would be associated with increased crown transparency on 

trees: fewer leaves resulting in less photosynthesis leading to a gradual decline in carbohydrates for leaf production. However, 

we did not see a significant correlation between these traits. This may be an artifact of the trial design, as there were only 

three assessments (August, November, December 2011) of crown transparency prior to sampling leaves (February 2012). The 

data did, however, show that untreated trees had more disease, smaller leaves and higher crown transparency compared to 

treated trees. We surmise that the gradual decline in foliage retention on diseased trees resulted in a reduction in the surface 

area of new leaves produced, leading to decreased photosynthesis capability. Over time this likely resulted in the depletion 

of stored carbohydrates, affecting further leaf development and foliage replacement. Like P. dioica in Jamaica (MacLachlan 

1938) and S. jambos in Hawai’i (Uchida and Loope 2009), R. rubescens and R. psidioides are severely defoliated by A. psidii, 

resulting in the production of highly susceptible new growth, which in-turn becomes severely infected and defoliated. 

Repeated defoliation leads to reduced foliage re-growth, affects reproduction, and ultimately causes tree morality, likely due 

to carbohydrate depletion (McPherson and Williams 1998). 
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The overall impact of an invasive species can be measured by the total area occupied (range), the abundance across that 

range, and the damage on individual plants (Parker et al. 1999). Our work showed that A. psidii has expanded across the 

entire natural range of our two study species, was found on every plant surveyed (669 R. rubescens and 297 R. psidioides), 

and the damage to individual plants was generally high to extreme. Thus, based on the metrics proposed by Parker et al. 

(1999), the impact of A. psidii on these two endemic species in natural ecosystems in Australia is severe. Our study, however, 

only investigated damage to individuals within populations, and as such more research is required to gain an understanding 

of the effects on plant communities and ecosystem processes (Parker et al. 1999). The short-term ecosystem-level impacts 

of A. psidii are likely to include a reduction in photosynthesis and productivity, stimulation of decomposition and changes in 

microclimate and light condition in the forest due to crown loss and mortality of highly susceptible species (Lovett et al. 2006). 

Longer term effects are likely to be related to a change in species composition, due to local extirpation of highly susceptible 

species, and subsequent changes of forest structure, productivity, and nutrient cycling. Already we are observing changes in 

plant community structure, with native grasses and exotic weeds (e.g. Lantana camara) colonizing gaps provided by mortality 

of R. psidioides stands (authors, pers. obs.). The rapid decline in both species has been further demonstrated when selected 

sites were revisited two years after the initial assessment. In all cases there was a dramatic increase in number of dead trees 

for both species. Seedling germination at the sites assessed has been absent. However, in some Rhodomyrtus psidioides sites, 

root sucker regeneration has been observed. Unfortunately the majority of these are already showing severe levels of decline 

as a result of A. psidii infection. This further highlights the need to quickly implement a conservation program for these rapidly 

declining species with opportunities to capture vital germplasm diminishing. 

Impact on other species 

Detailed studies on the impact of A. psidii needs to expand with our studies only representing a small proportion of those 

likely to be significantly affected by A. psidii. A further 49 species have been ranked as either HS or ES. While much of the 

data on the impact of A. psidii on these hosts has been collected from ex-situ plantings (Botanic Gardens), it should perhaps 

be seen as an important guide to prioritizing species for not only further study but for development of conservation strategies. 

To some degree this is already happening with studies of Chamelaucium uncinatum (Geraldton Wax) to examine for 

resistance within the natural population and study the potential impact of A. psidii if it did arrive in Western Australia (Tobias 

et al. 2015). Unfortunately for this species no resistance was identified. Other studies are also now beginning to focus on 

prioritising species based on host susceptibility, identified as part of this project, and environmental factors within their native 

range that are suitable for high disease incidence and severity levels. The current conservation status and potential to 

conserve are also being considered. 

Following some initial surveys conducted as part of this project, Sunshine Coast Regional Council staff are conducting more 

extensive assessments and establishing long term monitoring programs for the Threatened Lenwebbia sp. Blackall Range. 

Populations of Lenwebbia sp. Blackall Range are restricted to south-east Queensland and were already threatened by urban 

development. Significant A. psidii impact has been recorded on all life stages including decline and death of mature trees, 

saplings and seedlings and infection of flowers and fruit. This rapid decline in tree health should warrant increasing the status 

of this species to Critically Endangered. Another species with limited distribution is Rhodamnia maideniana. Just prior to the 

detection of A. psidii in Australia Rhodamnia maideniana was deemed no longer Threatened (Pers. Comm. G. Guymer). 

Unfortunately this species is highly susceptible with severe impact on all life stages including flowers and fruit. While 

assessments have not been completed across the entire range, albeit restricted, indications are that this species is likely to 

become critically endangered in the very near future.  
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Impact on fecundity 

Austropuccinia psidii infection has been identified on flowering and fruiting structures of 32 species. While the direct effects 

of rust are easier to report, estimating the indirect effects repeated infection have on flower production, seed/fruit 

development and seed viability is more complex, particularly given the absence of detailed data on most species in relation 

to what is deemed normal. The small study we did investigating the impacts of A. psidii on fruit development of R. rubescens 

at Tucki Tucki NR revealed some interesting results.  There was no significant difference between mean numbers of fruits on 

treated versus untreated branches after the treatment began, however, there was an observable difference at the final 

assessment (34.7 versus 17.6, respectively); a higher proportion of fruits fell from untreated branches (71%) compared to 

treated branches (47%).  The time-series plots reveal a sharp increase in infection on untreated fruit at the second assessment 

(82.5%), but a decline in percentage infected fruit at the final assessment (62.4%). This indicates that more diseased than un-

diseased fruit had been shed resulting in a greater proportion of un-diseased fruit being retained.  Fruit on untreated branches 

began to fall immediately and at a steady rate, while there was a delay in fruit drop on treated branches of two weeks.  Fruit 

of R. rubescens are likely to fall once they have matured, and so the decline in number of fruit on treated branches is expected.  

We surmise that the delay in fruit fall of treated branches in the early period of the study indicates a fruit maturation period; 

fruit are maturing on the tree before they are later naturally shed.  The lack of such a delay in the untreated trees indicates 

that a proportion of fruit did not go through this maturation period before being shed, indicating that disease was the cause 

of premature fruit drop. Seed collected from under treated trees was larger/heavier than fruit collected from under untreated 

trees, indicating an impact of disease.  Other studies have indicated that disease affects fruit maturation and seed viability 

(Assefa et al. 2014).  Although not conclusive, this study indicates an impact of A. psidii on the regeneration capacity of R. 

rubescens. The lack of fruit on this species observed by us and others since 2010 supports this. 

When assessing Melaleuca nodosa regeneration following the wildfire event in the coastal heath, those trees showing high 

levels of dieback produced lower numbers of seed capsules. Given that we didn’t identify any infection on flower or fruiting 

structures would suggest that this was more related to an indirect effect. Similarly, lower flowering rates were observed on 

Baeckea frutescens and Leptospermum liversidgei showing stem dieback in comparison to those with no symptoms of rust 

infection. However, this was not quantified. Pegg et al. (2012) previously reported the effects of A. psidii infection on juvenile 

stems and shoots of Melaleuca quinquenervia with flowering restricted to trees showing resistance or infection on foliage 

only. Further research is required on a range of species examining direct and indirect effects of repeated A. psidii infection 

on species fecundity. Trials using fungicide to eliminate or limit A. psidii infection would be required to effectively study these 

impacts. The effects of reduced plant density or fragmentation of populations and flowering rates on pollinators, both 

mammals and invertebrates, and any long term implications on genetic diversity is unknown. 

Both native stingless bees (Tetragonula sp.) and European honey bees (Apis melifera) have been observed actively foraging 

A. psidii urediniospores, particularly on Syzygium jambos. While not quantified, bees were seen visiting rust covered leaves 

in the absence of any apparent flower buds. This has been reported previously in Jamaica where bees were seen foraging 

spores on Pimenta dioica (allspice) trees. Examination of bee loads found they consisted purely of A. psidii urediniospores 

(Chapman 1963). When inspecting a nearby hive orange deposits within the comb were found to contain A. psidii spores. The 

effects on hive health for both Apis melifera and Tetragonula species here in Australia is unknown. 

Impact of Austropuccinia psidii on plant communities and species composition – recovery of coastal heath following wildfire 

Our research is the first to examine and report on the impact of A. psidii in different plant communities. The first study 

examined impact on regeneration following wildfire in coastal heath environments in which a range of Myrtaceae are 

considered common. While fire is considered as an important selection agent in the development of Australia’s native flora 

(Gill 1975), the development of new coppice and young seedlings en-masse are ideal conditions for the development and 

rapid spread of A. psidii. Austropuccinia psidii infection was found on all species of regenerating Myrtaceae in the coastal 

heath environment following wildfire. Melaleuca nodosa and Melaleuca quinquenervia were both significantly impacted with 

repeated A. psidii infection causing severe dieback, and in some cases, death of coppice with infection starting soon after 

regeneration was first detected. However, for M. quinquenervia we identified that around 30% of trees were resistant to A. 

psidii. This was not the case for M. nodosa where all trees assessed showed some level of infection and dieback but some 

individuals appeared more tolerant to disease producing flowers and seedpods. The viability of the seed was not determined. 
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Melaleuca nodosa regeneration following wildfire was significantly affected by A. psidii with repeat infection on susceptible 

new growth flushes resulting in dieback and reduced fecundity. Melaleuca nodosa occurs on the coast and tablelands of 

Queensland and New South Wales often forming dense thickets in heathland environments (Brophy et al. 2013). 

Austropuccinia psidii infection of this species has previously been reported, but not quantified, in both Queensland (Pegg et 

al. 2014) and northern New South Wales by the authors with infection on established and mature trees in coastal heath 

environments as well as areas further inland (e.g. south of Casino, northern NSW). The impact of A. psidii on this species 

across its natural range of distribution needs further investigation.  

This study does provide some evidence of indirect impact of A. psidii on tree fecundity for M. nodosa with trees showing high 

levels of dieback producing a lower number of flowers/seed pods or no flowers/seed pods. However, without control 

treatments this impact is difficult to quantify. Over time as decline rates continue, an additional impact that may occur could 

be related to a reduction in abundance of this species in an ecosystems considered species rich. The decline in number of a 

species like M. nodosa, despite there being some individuals with higher tolerance to A. psidii, could result in a further 

reduction of pollination rates. Melaleuca species are pollinated by a wide suite of generalist insect vectors, including native 

and honey bees, beetles and flies (Beardsell et al. 1993). As a result of this it is believed that low densities of Melaleuca spp. 

in species rich or diverse sites can result in limited reproductions through pollinators losing pollen as they forage between 

other plant species. At the Lennox Head site it was evident, based on frequency of coppice regeneration, that M. nodosa was 

previously present in relatively concentrated patches but with the repeated infection by A. psidii causing dieback the species 

inability to compete with other non-Myrtaceae (e.g. Banksia spp.) may result in further decline of the species with additional 

interference to pollination processes further exacerbating the problem. 

Further decline of this species may be evidenced by the fact that during our study period no seedling germination of M. 

nodosa was observed either within the established plots or in the areas surveyed. While reported previously as regenerating 

via coppice or epicormics following fire, M. nodosa primarily reproduce from seed. In a study conducted by Hewitt et al. 

(2014) they identified that recruitment of M. nodosa was continuous with seedlings found throughout the three-year study. 

Their study was conducted from 2009 to 2012 but there is no mention of myrtle rust found on M. nodosa within their study 

plots. In our case it is uncertain if seed viability was affected as a result of the intensity of the fire or as a result of previous 

rust infection events pre-fire.  

Impact of A. psidii was also evident on species of Leptospermum and Baeckea frutescens but there appeared to be relatively 

high levels of resistance within the populations as well. Leptospermum liversidgei was the most susceptible, with stem and 

shoot dieback recorded and evidence of this dieback resulting in reduced fecundity levels. This species, while a common 

coastal shrub in eastern parts of Australia, has become a serious weed in South Australia and Western Australia (Kloot 1985; 

Lam & Etten 2002). Leptospermum trinervium, while not within the study plots, was identified as a species on which A. psidii 

could have significant impacts, particularly with regards to regeneration following disturbance. Austropuccinia psidii infection 

on new flush growth and juvenile stems initially resulted in defoliation followed by shoot and branch dieback and complete 

death of all coppice shoots on some trees. Of the trees assessed all showed some level of decline as a result of repeated 

infection. Further studies on this widespread species are required.  

To draw conclusion on the influence of A. psidii on species composition within this environment we would have ideally 

established fungicide control plots. This would have allowed us to compare rates of establishment and recovery over time as 

well as examine the effects A. psidii may be having species composition and ability of Myrtaceae to compete with non-

Myrtaceae or resistant species. Gaining an understanding of species composition pre-fire as well as comparing impacts of 

rust under different fire regimes (e.g. wildfire v prescribed burn) would have added to the value of our studies and perhaps 

provided insight into appropriate fire management strategies that might limit A. psidii impact. In an attempt to overcome this 

additional plots have been established in sites where prescribed burns were planned. However, despite considerable time 

and effort in establishing these plots (2014/15) these areas to-date remain unburnt. 

Varying levels of A. psidii impact were observed on Melaleuca quinquenervia coppice regeneration with about 70% of trees 

assessed within our transect studies showing some degree of susceptibility. This is a similar level of susceptibility identified 

in previous studies (Pegg et al. 2012). The effect on seedling survival was also demonstrated with A. psidii infection identified 

on M. quinquenervia seedlings soon after emergence. At the conclusion of the study, the more resistant Lophostemon 

suaveolens was the dominant species despite the fact, based on presence of adult trees, that it was not as common as M. 

quinquenervia or even Leptospermum polygalifolium or L. whitei pre-fire. While not all seedlings of M. quinquenervia were 

killed, the effects of A. psidii infection on those susceptible were obvious, with repeated loss of apical dominance resulting in 

“shrub-like” growth characteristics. However, it must be stated that without data on recruitment in the absence of A. psidii 

in this ecosystem we cannot make definitive statements on the impact.  



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 125 

The impact of A. psidii on coppice regeneration of M. quinquenervia following wildfire in the swamp ecosystem varied from 

minor leaf spots to repeated death of coppice shoots leading to eventual death of the entire tree. Coppice regeneration was 

also affected by mirid bugs attacking the new shoots, initially in combination with A. psidii but also during periods when the 

rust fungus was absent. Disease and mirid bug impact levels at the site declined over time as tree growth rates appeared to 

slow after approximately 12 months. It is uncertain if this is a site characteristic or due to the impact of rust and insect damage 

affecting host vitality. It is also not clear if the presence of the mirid bugs had an additive effect to decline from rust or if the 

presence of one affected the ability of the other to infect/attack the host tissue. It is also unclear if the presence of A. psidii 

on susceptible hosts resulted in an increase in attack levels from mirid bugs on rust resistant trees. In studies conducted in 

Florida (Rayamajhi et al. 2005), where M. quinquenervia is a weed, A. psidii and psyllids showed a better ability to co-attack 

the same leaf tissues in comparison to the A. psidii and the weevil Oxyops vitosa. To better understand this the interactions 

between other native insects that attack M. quinquenervia, particularly when regenerating, we conducted a further study 

where we could examine the effects in more detail. 

Impact of Austropuccinia psidii on Melaleuca quinquenervia coppice regeneration and interaction with native insect pests 

In the trial established to examine the effects of A. psidii on coppice regeneration of M. quinquenervia and the interaction 

with insects, the combined effect of insect herbivory and rust infection resulted in higher levels of stump mortality and 

coppice damage and reduced tree growth rates. These results are similar to the findings from Rayamajhi et al. (2010) in 

Florida although our types and number of insect species differed. Insect damage consisted of a combination of weevil damage 

on stems, chewing from Chrysomelids and locusts, tip sucking bugs and damage to new growth flush from mirid bugs. Insect 

activity was restricted to warmer months of the year and strongly correlated with an increase in both maximum and minimum 

temperature. On the other hand the occurrence of A. psidii was independent of any climatic factors and is perhaps more 

likely to be closely linked with the availability of susceptible growth flush on host species. While other studies have found 

links to duration of leaf wetness (Zauza et al. 2014) this was not the case in our study. Perhaps climatic conditions in northern 

New South Wales are generally more conducive to year-round infection by A. psidii. 

Despite monthly application of fungicide and insecticide, total elimination of A. psidii and insects did not occur. This is despite 

Carnegie et al. (2015) demonstrating this frequency of fungicide application was sufficient to prevent A. psidii symptom 

development on Rhodamnia rubescens. This may be due to the fact that M. quinquenervia is a faster growing species and the 

site was in an open forest and “monoculture” of evenly developing M. quinquenervia with no other tree species competing 

or shading the trees. Control of both insect pests and A. psidii appears to have improved in the latter half of the experiment 

and maybe due to a slow-down in recorded growth rates. However, fortnightly application of treatments would be 

recommended for future studies. 

The effects of repeated infection on M. quinquenervia trees was just beginning to become more apparent in the last couple 

of assessments. Leaf area measurements were lower (but not significantly so) in insecticide treated plots in comparison to 

fungicide only treated plots. Similar to findings from Carnegie et al. (2015), one of the impacts of repeated infection on host 

species is a decline in leaf size and leaf area. Indeed, on many of the susceptible trees, foliage loss was significant and stem 

dieback was beginning to become more apparent. Significant insect damage on fungicide treated trees, in the absence of 

rust, has led to a dense growth habit with higher average leaf area and was the only treatment to increase in growth rate 

over the last 6 months of the trial. Austropuccinia psidii incidence and severity levels increased over this period on the other 

treatments.  

Previous studies in Australia have identified a reduction in reproductive structures with increasing severity of A. psidii, 

particularly when shoot infection or death occurs (Pegg et al. 2012). Similar findings have been made in relation to Oxyops 

vitiosa, a weevil used for biological control of M. quinquenervia in Florida. Pratt et al. (2005) found that with O. vitiosa, which 

exclusively feeds on seasonal flushes of developing foliage at branch apices, undamaged trees were 36 times more likely to 

produce flowers and seed pods than damaged trees. They concluded that M. quinquenervia compensates for damage by 

producing new stems and foliage but this results in a substantial reduction in reproduction. At the time of this report flowering 

had not occurred on any of the treatments but there is evidence of frequent shoot dieback on untreated control trees and 

insecticide-only treated trees. There is no evidence of this occurring in fungicide or fungicide + insecticide treated trees. It is 

hoped that we can continue this experiment until flowering data is captured. 
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While the impact of A. psidii on M. quinquenervia is apparent, there is also evidence of resistance within the field populations 

studied. At sites studied to date it would appear that there is around 30% of trees that are either resistant or tolerant to A. 

psidii. However, to determine if this is representative of the species across its native range we conducted glasshouse 

screenings of seedlings from provenances in Queensland and New South Wales. All seed, apart from a single collection from 

our trial site (Boggy Creek), was collected prior to the detection of A. psidii in Australia. Levels of resistance varied between 

provenances with some showing high levels of resistant seedlings within the populations. Interestingly all populations from 

New South Wales had 30% or fewer seedlings resistant to A. psidii, similar to what our field observations have been. However, 

seed taken from known resistant parents (identified & collected by G. Pegg) showed a much higher percentage of resistance 

(67.5%) suggesting potential for a more resistant future generation. However, it is unclear what effects this change may have 

on genetic diversity within populations or what the reduced flowering rates may have on pollination frequency.  

Given that Melaleuca quinquenervia ecosystems in Australia are already considered under threat from urban expansion and 

agricultural activities, the additional impact that A. psidii may have in relation to not only tree survival but flower production 

should not be underplayed. Melaleuca quinquenervia are key to maintaining and improving water quality (McJannet 2008), 

as well as being important to a range of wildlife. The species is unique in that the trees can be temporarily inundated with 

water for up to three to six months of the year but can also tolerate fire (Laroche 1999). They provide valuable nesting or 

roosting sites for a number of bird and bat species (Grover & Slater 1994) and are a very important food source for migratory 

birds. The species is a significant Autumn/Winter flowering plant which provides shelter and breeding sites for water-birds, 

amphibians and insects, and nectar for species such as the gliders and scaly-breasted lorikeet (Trichoglossus chlorolepidotus). 

The grey-headed flying fox (Pteropus poliocephalus) and little red flying-fox (P. scapulatus) also consume the flowers. 

Melaleuca trees can flower all year round, providing an almost constant source of nectar and pollen, which is particularly 

important in winter for insects, birds and bats. While impact of A. psidii and associated decline of M. quinquenervia stands 

has been demonstrated as part of this study, there is a clear potential to implement either a program to select resistant 

individuals for current regeneration programs or establishment of seed orchards to enable long term provision of A. psidii 

resistance and breeding programs to help regain lost genetic diversity. 

In addition to examining resistance patterns in M. quinquenervia we assessed provenances from across the native range of 

two other broad-leaved Melaleuca; M. leucadendra and M. viridiflora. Similar to M. quinquenervia, variability in levels of 

resistance were identified. This is the first reported study of these species and has identified that A. psidii has the potential 

to significantly impact on these two species, particularly in areas of the Northern Territory and Western Australia where low 

levels of resistant seedlings were recorded. While we have clearly demonstrated the susceptibility of these species under 

controlled conditions, the impact of A. psidii in their natural environments is unknown. Both species are ecologically 

significant and play an important role in fragile ecosystems such as the Kakadu National Park. An understanding of A. psidii 

impacts under environmental conditions such as those experienced in the tropical regions of Australia is crucial. Further 

studies on larger populations of these Melaleuca species are needed to not only help predict impact but to prevent impact 

though use in revegetation programs.   

Impact of Austropuccinia psidii in wet sclerophyll environments with rainforest understorey 

Our studies are the first to identify the significant impact of A. psidii on plant communities in a wet sclerophyll ecosystems 

where the majority of rainforest understory species are Myrtaceae. In Queensland, wet sclerophyll forests are mostly found 

in the south-east but also occur as narrow ecotones bordering the western edge of rainforests in the wet tropics (Peeters & 

Butler 2014). These ecosystems are unique to Australia (Ashton 1981) and the understory may be comprised of rainforest 

plants or be grassy with sparse shrub layer or a combination of both. Species composition within the site may vary depending 

on climate, topography, soil type and previous land management practices. In the absence of fire or other disturbances, many 

of the wet sclerophyll sites will transition to rainforest with a dense understory reducing light levels preventing further 

recruitment of eucalypt species (Ashton & Atwill 1994). In the absence of A. psidii it would appear that this process was well 

underway at our study site. 
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While the overstorey Myrtaceae, Eucalyptus grandis and Lophostemon confertus, showed no evidence of A. psidii impact, all 

mid- and understorey Myrtaceae were impacted upon. Only Acmena smithii showed variability in levels of susceptibility to A. 

psidii and impact and it is now the dominant regenerating species. Archirhodomyrtus beckleri, Decaspermum humile, Gossia 

hillii and Rhodamnia maideniana were the most common mid- and understorey species but all were significantly impacted 

upon with dieback recorded on all trees. It is likely that in the very near future these species will become extinct from this 

location with no evidence of resistance. This is a rapid change in the plant community structure, given that the disease was 

only detected in the region five years prior to our assessment (Pegg et al. 2014; Carnegie et al. 2015). Unfortunately what we 

have found at this site appears also to be representative of sites in the immediate area that have similar species compositions 

and are at similar stages of establishment. However, further surveys are required to determine if this type of impact is 

restricted to the Tallebudgera Valley or extends into other areas in Queensland and northern New South Wales, including the 

World Heritage Listed Gondwana Rainforest. It is also unknown if the same level of impact can be identified in more 

established rainforest ecosystems in the region. 

Time will tell if the “disturbance” caused by A. psidii is enough to prevent the site transitioning to a rainforest ecosystem. 

Indications are that Acmena smithii will become a dominant species but there may also be other non-Myrtaceae that will 

inhabit the site. However, it will still result in a dramatic change in species composition and may well reduce species diversity 

within the site. Studies in other ecosystems have shown that a reduction in biodiversity increases ecosystem vulnerability to 

invasive plant species and also enhances the spread of plant fungal diseases and alters the richness and structure of insect 

communities (Johannes et al. 1999). Conversely, a loss in the highly susceptible species may also see a reduction in disease 

pressure through lower A. psidii inoculum levels resulting in reduced disease incidence and severity levels. 

Given that species like Archirhodomyrtus beckleri, Gossia hillii and Decaspermum humile and considered widespread, it is 

possible that the impact we have seen at the site in Tallebudgera is an indicator of the potential long term impact A. psidii 

may have on these species. However, the influence of different climatic conditions may prevent the level of damage seen at 

this site from occurring. The impact on Syzygium corynanthum, also considered common, is significant and has not been 

reported previously. Likewise species considered Threatened, such as Syzygium hodgkinsoniae, seem likely to be pushed 

closer to extinction with impact occurring both on regenerating saplings and, albeit slower, mature trees. Rhodamnia 

maideniana has a restricted range and exists within regions that seem ideal for A. psidii and should be considered for 

immediate conservation action. Significant impact by A. psidii on this species has now been identified (Pegg unpublished) in 

a range of different sites in south-east Queensland. 

7. Conclusion 

A more in depth understanding of the long term effects of repeated A. psidii infection on host species and plant communities 

in ecosystems outside of where we have focused our studies (subtropical regions) is required. The effects of tropical and 

temperate conditions in Australia on disease incidence and severity are to date unknown. Additionally, data on the long term 

impact on species considered MS or RT is still required. Evidence of dieback in the ex-situ plantings have given some indication 

that decline will not be as rapid in these species but the effects on plant health and ability to reproduce and even compete 

in different plant communities may be compromised. It must also be remembered that these ex-situ plantings are often only 

made up of a handful of individuals and may not be representative of the broader populations. Studying impact in different 

ecosystems in which some of these species exist will help identify species at greatest risk and prioritise conservation efforts.  

 

In just the short time that A. psidii has been established in Australian natural ecosystems, we have observed significant 

damage and tree mortality. There are few exotic diseases in Australia that threaten a wide range of Australian flora. The most 

significant of these is Phytophthora cinnamomi, which is associated with mortality of a wide range of overstorey and 

understorey species in multiple families including Myrtaceae, Proteaceae, Epacridaceae and Papilionaceae (Wills 1992; Weste 

1994). Phytophthora cinnamomi is associated with significant ecological impact in plant communities in south-eastern and 

south-western Australia, with declines in species richness, plant abundance and percentage cover (Wills 1992; Weste 1994). 

Fauna dependent on these plant communities are also affected. While A. psidii-associated mortality of dominant overstorey 

trees has not yet been recorded (although effects on vegetative and seedling recruitment of these remain unknown), over 

time we are likely to see significant alterations to understorey plant communities due to A. psidii.  
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There are numerous examples of invasive forest pathogens causing landscape-level ecological impacts (Ellison et al. 2005; 

Loo 2009), including chestnut blight (Cryphonectria parasitica) in North America (Anagnostakis 1987), Dutch elm disease 

(Ophiostoma ulmi and O. nova-ulmi) in Europe and North America (Gibbs 1978) and phytophthora dieback (Phytophthora 

cinnamomi) in Australia (Wills 1992; Weste 1994). The greatest impacts occur when invasive pathogens cause mortality of 

foundation species (Ellison et al. 2005; Loo 2009). Death of foundation species are also often very dramatic, garnering 

government and public attention, e.g. phytophthora dieback, Dutch elm disease and chestnut blight. Although receiving 

government and public attention prior to reaching Australia (e.g., O’Neill 2000; Grgurinovic et al. 2006), and during the 

emergency response following detection (e.g. Carnegie & Cooper 2011; Makinson 2012), interest in A. psidii in Australia has 

waned, partly because the “mycological firestorm” that “environmentalists predicted” does not appear to have eventuated 

(according to McRae 2013); there has been no large scale tree mortality and minimal affects to industries so far. Our studies, 

while currently limited, have shown that A. psidii is severely affecting key species in natural ecosystems, and likely to be 

significantly affecting a wider range of species. Local extirpation of highly susceptible species is likely, potentially leading to 

species extinction. The dramatic decline of multiple species in the wet sclerophyll sites in Queensland is the first report of 

impact at a plant community level. The extent to which this level of damage extends is unknown. However, our studies have 

demonstrated, at a species and plant community level, the potential for A. psidii to negatively affect Australia’s biodiversity.  

Our selected species have proven useful in illustrating the potentially severe impact of A. psidii on other highly or extremely 

susceptible species in an ecologically critical family (Myrtaceae) that constitutes about 10% of the Australian flora by 

species―about half of which occur in climatic zones identified as conducive to A. psidii naturalisation (Kriticos et al. 2013). 

Information on susceptibility and impact under field conditions has only been collated for a small percentage (approx. 50%) 

of host species but this has been primarily through examination of hosts in ex-situ plantings. Even fewer species have been 

studied in detail across their native range. Pegg et al. (2014) considered 48 species in Queensland alone to be highly or 

extremely susceptible to A. psidii. We recommend a greater range of species with a broader variation in susceptibility be 

monitored, including both currently ‘listed’ threatened species and ‘non-listed’ species. Understanding the variability in 

species susceptibility is critical in order to optimize scarce resources for potential species recovery plans. Such monitoring 

will also assist in detecting changes in disease severity due to local and regional variation in climate and potentially herald 

the incursion of new strains of A. psidii (e.g. Loope 2010). The introduction of new strains of A. psidii into Jamaica (MacLachlan 

1938) and Florida (Rayachetry et al. 1997) resulted in devastating epidemics not previously seen in those counties. 

Furthermore, it is imperative that monitoring of plant communities and ecosystems are initiated to fully understand the long 

term impact of this devastating invasive pathogen.  

The effects of A. psidii on some species of Myrtaceae will be less obvious in the short term with impacts likely not recognisable 

for many years, especially in situations where flower and fruit infection occurs in the absence of significant tree dieback. We 

have observed this phenomenon on species like Austromyrtus dulcis and Rhodamnia sessiliflora where disease on foliage 

presents as minor but when flowers and fruit are produced they become infected and senesce prematurely. Additionally, 

where there is a decline in a species from rust related dieback (e.g. Melaleuca nodosa) resulting in fragmentation, impacts to 

population survival may result from reduced pollination rates. This may be more the case for species relying on generalist 

pollinators (e.g. Melaleuca spp.). Without human intervention regaining lost genetic diversity within some species 

populations may not be possible.   

An additional outcome of this study should be to highlight the threats alien invasive pests and pathogens pose to Australian 

native plant species and plant communities. Managing these threats once they become established is challenging. There is a 

need to better understand these exotic pests and pathogens to improve processes that can be implemented to help prevent 

future incursions.  

As a result of our studies, the following outcomes have been achieved: 

Outcomes and impact of research - Plant industries 

1. Host list and susceptibility rating system identifying: 

 Resistant/tolerant species for future commercial development  

 Highly/extremely susceptible species from an environmental perspective 

 

2. Full host list on-line and susceptibility ratings published 
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 Giblin FR & Carnegie AJ (2014) Austropuccinia psidii (myrtle rust) - Australian host list. 

http://www.anpc.asn.au/myrtle-rust 

 Pegg GS, Giblin FR, McTaggart AR, Guymer GP, Taylor H, Ireland KB, Shivas RG, Perry S (2014)  

Austropuccinia psidii in Queensland, Australia: disease symptoms, distribution and impact.  Plant 

Pathology 63, 1005–102 

 

3. Identification of resistance for implementation into current and future breeding programs - Eucalypt 

species 

 Pegg, G. S., Brawner, J. T., and Lee, D. J. 2014. Screening Corymbia populations for resistance to 

Austropuccinia psidii Plant Pathology 63: 425-436. 

 Lee, David, Brawner, Jeremy, and Pegg, Geoff 2014. Screening Eucalyptus cloeziana and E. 

argophloia populations for resistance to Austropuccinia psidii. Plant Disease 99, 71-79.  

 Butler J. B., Freeman J. S., Vaillancourt R. E., Potts B. M., Glen M., Lee D. J., Pegg G. S. 2016. 

Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus 

globulus to the rust pathogen Austropuccinia psidii Tree Genetics & Genomes 12(3). 

 

4. Assessment of clonal collection of lemon myrtle germplasm – collaborative project with A/Prof. David 

Lee, University of the Sunshine Coast (RIRDC project) 

 392 clones screened 

 D. Lee, J. Doran, G. Pegg, D. Lea, P. Macdonell and F. Giblin 2015. Myrtle Rust Screening in Lemon 

Myrtle Provenance Plantings. RIRDC Publication 

 

5. Proposed industry publications  

 Publication in Horticulture journal and industry magazine articles - April 2017 

Outcomes and impact of research - Environment 

1. Myrtaceae species susceptibility recorded – 180 species assessed  

 Highly and extremely susceptible species identified 

o Pegg GS, Giblin FR, McTaggart AR, Guymer GP, Taylor H, Ireland KB, Shivas RG, Perry S. 

(2014).  Austropuccinia psidii in Queensland, Australia: disease symptoms, distribution 

and impact.  Plant Pathology 63, 1005–102 

2. Impact assessments conducted on selected species and plant communities 

 Impact across selected host species natural distribution 

o Angus J. Carnegie, Amrit Kathuria, Geoff S. Pegg, Peter Entwistle, Matthew Nagel, Fiona 

Giblin, 2015. Environmental impact of the invasive rust Austropuccinia psidii on 

Australian native Myrtaceae. Biological Invasions DOI 10.1007/s10530-015-0996-y  

 

 Impact on regeneration for multiple Myrtaceae – coastal heath and Melaleuca quinquenervia 

 Impact on plant communities – wet sclerophyll environments in south east Queensland 

 Proposed publications - 2017 

o Impact of Austropuccinia psidii on regeneration of Melaleuca quinquenervia and 

interaction with native insect pests  

o Impact of Austropuccinia psidii on Myrtaceous rich plant communities in wet sclerophyll 

environments in south-east Queensland 

o Impact of Austropuccinia psidii on regeneration of Myrtaceae in coastal heath following 

wildfires 
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Impacts from myrtle rust research: 

 Myrtle rust declared as a Threatening Process in NSW and application submitted for national 

listing 

 Data used for species conservation listing and risk modelling 

 Rhodomyrtus psidioides and Rhodamnia rubescens submitted for listing as Critically Endangered 

 Myrtle rust identified as a priority for NESP projects  

Data used for Briefing the federal Department of Environment Division Heads and Head of Australian 

Environment Agencies (recommendation that the issue of myrtle rust be taken to a future COAG meeting). 

Collaborations developed as part of this project  

1. Forest & Agriculture Biotechnology Institute (FABI), University of Pretoria, South Africa 

Research aims: 

Identifying risk of myrtle rust to production forestry in South Africa 

Understanding defence responses to myrtle rust 

2. University of Tasmania 

Research aims: 

Genetics of Eucalyptus/Corymbia disease susceptibility: The relationship between susceptibility to native pathogens and the 

introduced myrtle rust pathogen A. psidii 

QTL study - evidence that the symptomless and hypersensitive responses to A. psidii infection are under independent genetic 

control 

Identifying susceptibility/resistance of key eucalypt species used in revegetation programs in Tasmania – Eucalyptus 

pauciflora, E. ovata 

3. University of the Sunshine Coast 

Potential impact of myrtle rust of eucalypt species of commercial significance to Queensland forest industry 

Identification of resistance patterns to A. psidii in spotted gum species and interaction with Quambalaria pitereka, a 

significant native fungal pathogen 

Identification of myrtle rust resistance patterns in E. cloeziana and E. argophloia (Endangered)  

Examination of myrtle rust resistance across provenances of Backhousia citriodora (Lemon myrtle) for commercial production  

4. Griffith University 

PhD student (Tamara Taylor) supervision – commenced 2014 – APA/CSIRO funding 

Research: 

The impact of Austropuccinia psidii (myrtle rust) disease on fleshy-fruited Myrtaceae in Queensland, Australia 

5. University of Queensland 

PhD student (Emily Lancaster) supervision – commenced 2015 – CRCPB funding 
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Research: 

Epidemiology, impact and management of myrtle rust in lemon myrtle plantations 

6. Macquarie University 

PhD student (Laura Fernandez) supervision – commenced 2015 – CRCPB funding 

Research: 

Ecological impacts of invasive fungus in Australian native plant communities 

 

8.0 Recommendations: 

As a result of our studies we recommend the following: 

 

Plant industries 

 

 Improve awareness within the nursery industry with regards to the threat that myrtle rust poses with an aim to 

reduce the number of susceptible host species being utilized 

o Promote opportunities to select for myrtle rust resistance in popular nursery and garden species 

 

 Promote development/use of more resistant species/varieties in production nurseries 

 

 Promote opportunities to introduce rust resistance screening programs for species used in revegetation programs 

removing susceptible individuals (e.g. Melaleuca quinquenervia) 

 

 Ensure that industries reliant on Myrtaceae (oil, food and fibre) have well established tree breeding programs to 

reduce current impact of A. psidii and also reduce risk from other exotic pests 

 

Environment 

 

 Adoption of rating systems developed in this project as standard when reporting new host species to help identify 

at risk species 

 

 Adoption of rating systems to assess impact on species and plant communities allowing for uniform data collection 

 

 Prioritise species for conservation efforts based on: 

o Distribution in relation to areas climatically favourable to Austropuccinia psidii  

o Current Austropuccinia psidii susceptibility rating and impact status 

o Current conservation status and potential to conserve a species based on ease or ability to propagate or 

store seed 

 

 Determine species for conservation status reclassification based on the impact data provided from this project. This 

may include capturing additional data from across the natural distribution of selected species before compiling 

applications. Species that should be included based on our studies are: 

o Archirhodomyrtus beckleri 

o Decaspermum humile 

o Gossia hillii 

o Gossia inophloia 

o Gossia myrsinocarpa 

o Eugenia reinwardtiana 

o Lenwebbia sp. Blackall Range 

o Melaleuca nodosa 
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o Syzygium hodgkinsoniae 

o Rhodamnia maideniana 

 

 Establish long term monitoring plots and reporting programs to enable impact of Austropuccinia psidii on species 

and plant communities over time to be determined 

o Transition the assessment and reporting of these plots to environmental agencies 

 

 Identify opportunities to develop tree breeding programs for selected species (e.g. Melaleuca spp.) to promote 

genetic diversity where resistance to A. psidii is limited and impacts are likely to cause species fragmentation 

 

 

Policy and research development 

 Establishment of an ongoing myrtle rust working group to help prioritise areas of research and focus conservation 

strategies  

 

 Promote the findings from this research to State, Territory and Federal Environment Departments. This may be in 

the form of briefings or series of “Roadshows” throughout Australia provided to State and local government groups, 

mining companies, revegetation groups etc. demonstrating the impact of myrtle rust and potential management 

options 

 

 Engage mining companies as an opportunity to help support species conservation and utilization of myrtle rust 

resistant species/individuals in revegetation programs 

 

 An increase in awareness and emphasis on environmental biosecurity through publication of our research 

outcomes in popular and scientific articles 

 

 Examine the threat that other Austropuccinia psidii strains/biotypes pose to industries reliant on Myrtaceae and 

the environment 

 

o Develop international collaborations and using outcomes from this project examine differences in host 

range/virulence of different strains 

 

 Using lessons learnt from dealing with myrtle rust there is a need to promote the importance of environmental 

biosecurity with prevention of incursion and improved post-border surveillance a priority area 

o Develop an environmental biosecurity strategy 

Identify exotic threats and determine possible pathways of entry into Australia 

8. References 

Anagnostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen.  Mycologia 79: 23–37. 

Ashton DH (1981) Fire in tall open-forests / wet sclerophyll forests. Chapter 14, pp. 339-366 In Gill AM, Groves RH and 

Noble IR (Eds) Fire and the Australian biota. Australian Academy of Science: Canberra. 

Assefa A, Abate D, Stenlid J (2014) Corynelia uberata as a threat to regeneration of Podocarpus falcatus in Ethopian forests: 

spatial pattern and temporal progress of the disease and germination studies.  Plant Path DOI:10.1111/ppa.12295 

Beardsell DV, O’Brien SP, Williams EG, Knox RB, Calder DM 1993. Reproductive biology of Australian Myrtaceae. Australian 

Journal of Botany. 41:511-526  

Brophy JJ, Craven LA, Doran JC 2013. Melaleucas: their botany, essential oils and used. Canberra: Australian Centre for 

International Agriculture Research. P253 ISBN 9781922137517 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 133 

Carnegie AJ (2015) First report of Austropuccinia psidii (myrtle rust) in Eucalyptus plantations in Australia.  Plant Dis 99: 161. 

Carnegie AJ, Cooper KC (2011) Emergency response to the incursion of an exotic myrtaceous rust in Australia.  Australasian 

Plant Pathology 40: 346–359. 

Carnegie AJ, Lidbetter JR (2012) Rapidly expanding host range of Austropuccinia psidii sensu lato in Australia.  Australas 

Plant Path 41:13–29. 

Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava 

rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Path 39: 463–466. 

Chapman GP, 1963. Urediospore collection by honey bees from Austropuccinia psidii. Annals of the Entomological Society of 

America. 57: 264. 

Chatfield C (2003) The analysis of time series: an introduction.  Sixth Edition. Chapman & Hall. 

Commonwealth Department of Primary Industry (1985) Guava rust: Austropuccinia psidii Winter.  Plant Quarantine Leaflet 

No. 45.   

Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious 

international implications. Plant Dis 82: 819–825. 

Dale WT (1955) A preliminary list of Jamaican Uredinales. Mycol Papers 60: 1–22. 

Diggle PJ (1990) Time series: a biostatistical introduction. Clarendon Press, Oxford. 

Du Plessis E, McTaggart AR, Granados GM, Wingfield MJ, Roux J, Ali MIM, Pegg GS, Makinson J, Purcell, 2017. First report of 

myrtle rust caused by Austropuccinia psidii on Rhodomyrtus tomentosa (Myrtaceae) from Singapore. Plant Disease 

101, 1676. 

Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliot K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, 

Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR 

(2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol 

Environ 3: 479–486 

Ferrari JT, Noguira EMC, dos Santos AJT (1997) Control of rust (Austropuccinia psidii) in guava (Psidium guajava). Acta 

Horticulturae 452: 55–57. 

Ferreira FA (1983) Ferrugem do eucalipto. Revista Arvore 7: 91–109. 

Floyd AG (1989) Rainforest trees of mainland south-eastern Australia.  Forestry Commission of NSW.  Inkata Press, Sydney 

Frampton CM, Pekelharing CJ, Payton IJ (2000). A fast method for monitoring foliage density in single lower-canopy trees. 

Environmental Monitoring and Assessment 72: 227-234. 

Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease.  Ann Rev Phytopath 16: 287–307. 

Giblin F, 2013. Myrtle rust report: New Caledonia. University of the Sunshine Coast, Maroochydore, Queensland, Australia 

Giblin F, Carnegie AJ (2014) Austropuccinia psidii (myrtle rust) - Global host list. Available at: 

http://www.anpc.asn.au/resources/Myrtle_Rust.html (Accessed October 2014) 

Gill, AM 1975. Fire and the Australian flora: A review. Australian Forestry 38:4-25. 

Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Austropuccinia psidii: a threat to the Australian 

environment and economy–a review. Australas Plant Path 36: 1–16 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 134 

Grgurinovic CA, Walsh D, Macbeth F (2006) Eucalyptus rust caused by Austropuccinia psidii and the threat it poses to 

Australia.  EPPO Bulletin 36: 486–489 

Grover DR, Slater PJ 1994. Conservation value to birds of remnants of Melaleuca forests in suburban Brisbane. Wildl. Res 21: 

433-44. 

Hewitt A, Holford P, Renshaw A, Haigh A, Morris EC 2014. Population structure, seed loads and flowering phenology in three 

common (Melaleuca styphelioides, M. thymifolia, M. nodosa) and one rare (M. deanei) Melaleuca (Myrtaceae) 

species of the Sydney region. Australian Journal of Botany, 62:286-304. 

International Union for Conservation of Nature (2001). IUCN Red List Categories and Criteria: Version 3.1. IUCN Species 

Survival Commission. IUCN, Gland, Switzerland and Cambridge. UK. 

[http://jr.iucnredlist.org/documents/redlist_cats_crit_en.pdf] 

International Plant Protection Convention (2013) Austropuccinia psidii in New Caledonia.  

https://www.ippc.int/countries/pest-reports/Austropuccinia-psidii-new-caledonia 

Junghans DT, Alfenas AC, Maffia LA (2003) Escala de notas para quantificação da ferrugem em Eucalyptus. Fitopatologia 

Brasileira 28: 184–188. 

Kawanishi T, Uemastu S, Kakishima M, Kagiwada S, Hamamoto H, Horie H, Namba S (2009) First report of rust disease on 

ohia and the causal fungus in Japan. J Genetic Plant Path 75: 428–431. 

Kriticos DJ, Morin L, A Leriche A, Anderson RC, Caley P (2013) Combining a climatic niche model of an invasive fungus with 

its host species distributions to identify risks to natural assets: Austropuccinia psidii sensu lato in Australia.  Plos 

ONE 8(5): e64479 

Lam A, van Etten E (2002). Invasion of indigenous vegetation in south-western Australia by Leptosperum laevigatum 

(Myrtaceae). In: 13th Annual Weeds Conference Proceedings: weeds “threats now and forever”. P545 

ISBN0958111103 

Laroche FB 1999. Melaleuca management plan. Florida Exotic Pest Plant Council: Miami Florida. 

Lim T-K, Manicom BQ (2003) Diseases of guava. In: Diseases of Tropical Fruit Crops. CAB International, Wallingford, Oxon, 

UK. pp. 275–289 

Loo AL (2009) Ecological impacts of non-indigenous invasive fungi as forest pathogens.  Biol Inv 11: 81–96. 

Loope L (2010) A summary of information on the rust Austropuccinia psidii Winter (guava rust) with emphasis on means to 

prevent introduction of additional strains to Hawaii.  U.S. Geological Survey Open File Report 2010-1002 (U.S. 

Geological Survey, Reston, Virginia) 

Lovett GM, Canham CD, Arthur MA, Weathers KC, Fitzhugh RD (2006) Forest ecosystem responses to exotic pests and 

pathogens in eastern North America.  BioScience 56: 395–405. 

Machado PS, Alfenas AC, Alfenas RF, Mohammed CL, Glen M, 2015. Microsatellite analysis indicates that Austropuccinia 

psidii in Australia is mutating but not recombining. Australasian Plant Pathology 44: 455-462 

MacLachlan JD (1938) A rust of the pimento tree in Jamaica, B.W.I. Phytopath 28: 157–170. 

Makinson RO (2012) Myrtle rust – a major new threat for Australian biodiversity.  Bush Matters 14: 10–11 (available at 

http://www.environment.nsw.gov.au/) 

Makinson RO (2014) Myrtle rust – what’s happening? Australian Plant Conservation 23: 13–15. 

Marlatt RB, Kimbrough JW (1980) Rust (Austropuccinia psidii) of allspice (Pimenta dioica) appears in Florida.  Proceedings of 

the Florida State Horticultural Society 93: 111. 

McJannet D, 2008. Water table and transpiration dynamics in a seasonally inundated Melaleuca quinquenervia forest, north 

Queensland, Australia. Hydrological Processes 22:3079-3090 

http://jr.iucnredlist.org/documents/redlist_cats_crit_en.pdf
http://www.environment.nsw.gov.au/


Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 135 

McRae M (2013) Whatever happened to myrtle rust?  Ecos Issue 184: 21 June 2013 (available at 

http://www.ecosmagazine.com)  

McTaggart AR, Roux J, Gafur A, Tarrigan M, Santhakumar, Wingfield MJ 2015. Rust (Austropuccinia psidii) recorded in 

Indonesia poses a threat to forests and forestry in South-East Asia. Australasian Plant Pathology, 45:83-89.  

Morin L, Aveyard R, Lidbetter JR, Wilson PG (2012) Investigating the host-range of the rust fungus Austropuccinia psidii 

sensu lato across tribes of the family Myrtaceae present in Australia. PLoS ONE 7(4): e35434, 

Myerscough PJ (1998) Ecology of Myrtaceae with special reference to the Sydney Region.  Cunninghamia 5: 787–807. 

O’Neill G (2000) Resistance is useless. The Bulletin November 28: 44–45. 

Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Kareiva PM, Williamson MH, Von Holle B, Moyle PB, Byers 

JE, Goldwasser l (1999) Impact: towards a framework for understanding the ecological effects of invaders.  Biol Inv 

1: 3–19. 

Pegg GS, Giblin FR, McTaggart AR, Guymer GP, Taylor H, Ireland KB, Shivas RG, Perry S (2014) Austropuccinia psidii in 

Queensland, Australia: disease symptoms, distribution and impact.  Plant Path 63: 1005–1021. 

Pegg GS, Perry S, Carnegie AJ, Ireland K, Giblin F (2012) Understanding myrtle rust epidemiology and host specificity to 

determine disease impact in Australia.  Cooperative Research Centre for National Plant Biosecurity Report 

CRC70186. (http://legacy.crcplantbiosecurity.com.au/publications/npb1893.html) 

Pegg GS, Webb RI, Carnegie AJ, Wingfield MJ, Drenth A, 2009. Infection and disease development of Quambalaria spp. on 

Corymbia and Eucalyptus species. Plant Pathology 58, 642-654. 

Peeters PJ, Butler DW, 2014. Wet sclerophyll forest: regrowth benefits management guideline. Department of Science, 

Information Technology, Innovation and the Arts, Brisbane. 

Pinheiro J, Bates D, DebRoy S, Sarkar D and R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models. R 

package version 3: 1-117 (http://CRAN.Rproject.org/package=nlme) 

Pinheiro, J.C. & Bates, D.M. (2000) Mixed-effects models in S and S-Plus. Springer, New York, NY. 

Pratt PD, Rayamajhi MB, Van TK, Center TD, Tipping PW (2005) Herbivory alters resource allocation and compensation in 

the invasive Melaleuca quinquenervia.  Ecological Entomology 30: 316–326. 

R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria.  

Rayachhetry MB, Elliot ML, Van TK (1997) Natural epiphytotic of a rust fungus (Austropuccinia psidii) on Melaleuca 

quinquenervia in Florida. Plant Dis 81: 831. 

Rayamajhi MB, Van TK, Pratt PD, Center TD, (2006). Interactive association between Austropuccinia psidii and Oxyops 

vitiosa, two introduced natural enemies of Melaleuca quinquenervia in Florida. Biological Control, 37: 56-67. 

Rayamajhi MB, Pratt PD, Center TD, Thai K. Van 2010. Insects and a pathogen suppress Melaleuca quinquenervia cut-stump 

regrowth. Biological Control, 53:1-8. 

Rayamajhi MB, Pratt PD, Klopfenstein NB, Ross-Davis AL, Rogers L (2013) First report of Austropuccinia psidii caused rust 

disease epiphytotic on the invasive shrub Rhodomyrtus tomentosa in Florida.  Plant Dis 97: 1379. 

Roux J, Greyling I, Coutinho TA, Verleur M, Wingfield MJ (2013) The Myrtle rust pathogen, Austropuccinia psidii, discovered 

in Africa. IMA Fungus 4: 155–159. 

http://legacy.crcplantbiosecurity.com.au/publications/npb1893.html
http://cran.rproject.org/package=nlme


Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 136 

Sandhu KS, Park RF, (2013), Genetic basis of pathogenicity in Uredo rangelii. National Myrtle Rust Transition To 

Management (T2M) Program. Plant Health Australia. Myrtlerust.net.au 

Sarkar, D. (2008) Lattice: multivariate data visualization with R. Springer, New York. 

Schomaker ME, Zarnoch SJ, Bechtold WA, Latelle DJ, Burkman WG, Cox SM (2007) Crown-condition classification: a guide to 

data collection and analysis. Gen. Tech. Rep. SRS-102. Asheville, NC: U.S. Department of Agriculture, Forest Service, 

Southern Research Station. 78 p. 

Zauza EA, Lana VM, Maffia LA, Araujo MMMFC, Alfenas RF, Silva FF, Alfenas AC (2014). Wind dispersal of Austropuccinia 

psidii urediniospores and progress of eucalypt rust. Forest Pathology 45: 102-110. 

Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions.  TRENDS in Ecol 

and Evol 21: 645–651. 

Thumma B, Pegg G, Warburton P, Brawner J, Mcdonell P, Yang X, Southerton S, (2013). Molecular tagging of rust resistance 

genes in eucalypts. National Myrtle Rust Transition To Management (T2M) Program. Plant Health Australia. 

Myrtlerust.net.au 

Tobias PA, Park RF, Kulheim C, Guest DI, 2015. Wild-sourced Chamelaucium uncinatum have no resistance to Austropuccinia 

psidii (myrtle rust). Australasian Plant Disease Notes, 10:15 

Uchida J, Zhong S, Kilgore E (2006) First report of a rust disease on ‘ohia caused by Austropuccinia psidii in Hawaii. Plant Dis 

90: 524. 

Uchida JY, Loope LL (2009) A recurrent epiphytotic of guava rust on rose apple, Syzygium jambos, in Hawaii.  Plant Dis 93: 

429. 

Uchida JY, Anderson RC, Kadooka CY, LaRosa AM, Coles C (2008) Disease index for the rust Austropuccinia psidii on ‘ōhi‘a in 

Hawai‘i.  College of Tropical Agriculture and Human Resources Plant Disease Publication PD-38.  University of 

Hawai‘i, Honolulu, HI. 

Vale FXR, Fernandes Filho EI, Liberato JR (2003) QUANT. A software for plant disease severity assessment. In: Proceedings 

of the 8th International Congress of Plant Pathology, Christchurch, New Zealand, p 105. 

Weste G (1994) Impact of Phytophthora species on native vegetation of Australia and Papua New Guinea.  Australas Plant 

Path 23: 190–209. 

Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer New York. 

Williams G, Adam P (2010) The flowering of Australia’s rainforests: A plant and pollination miscellany. CSIRO Publishing, 

Victoria 3066, Australia. 

Wills RT (1992) The ecological impact of Phytophthora cinnamomi in the Stirling Range National Park, Western Australia.  

Australian J Ecol 17: 145–159. 

Winter G (1884) Repertorium. Rabenhorstii fungi europaei et extraeuropaei exsiccati cura Dr. G. Winter, Centuria XXXI et 

XXXII. Hedwigia 23, 164–172. 

Zhuang J-Y, Wei S-X (2011) Additional materials for the rust flora of Hainan Province, China. Mycosystema 30: 853–860. 

Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer. 

9. Published papers  

J. Roux, I. Germishuizen, R. Nadel, D. J. Lee, M. J. Wingfield and G. S. Pegg 2015. Risk assessment for Austropuccinia psidii 

becoming established in South Africa. Plant Pathology DOI:10.1111/ppa.12380. 



Managing myrtle rust in Australia  |  © Plant Biosecurity CRC 2016 137 

Lee, David, Brawner, Jeremy, and Pegg, Geoff 2015. Screening Eucalyptus cloeziana and E. argophloia populations for 

resistance to Austropuccinia psidii. Plant Disease 99, 71-79. 

Pegg GS, Brawner J, Lee DJ, 2014. Screening Corymbia populations for resistance to Austropuccinia psidii. Plant Pathology. 

63, 425-436. 

Pegg GS, Giblin FR, McTaggart AR, Guymer GP, Taylor H, Ireland KB, Shivas RG, Perry S. (2014). Austropuccinia psidii in 

Queensland, Australia: disease symptoms, distribution and impact. Plant Pathology 63, 1005–1021. 

Angus J. Carnegie, Amrit Kathuria, Geoff S. Pegg, Peter Entwistle, Matthew Nagel, Fiona Giblin, 2015. Environmental impact 

of the invasive rust Austropuccinia psidii on Australian native Myrtaceae. Biological Invasions DOI 10.1007/s10530-015-

0996-y 

Conference abstracts 

Louise Shuey, Geoff Pegg, Sanushka Naidoo 2015. Eucalyptus grandis defence responses against the myrtle rust pathogen, 

Austropuccinia psidii – insights from RNA-SEQ transcriptome profiling. APPS conference September 2015 

Louise Shuey, Geoff Pegg, Sanushka Naidoo 2015. Eucalyptus grandis defence responses against the myrtle rust pathogen, 

Austropuccinia psidii – insights from transcriptome profiling. IUFRO Tree Biotech 

Pegg GS, Carnegie AJ, Giblin FR, Perry S, 2015. Myrtle Rust, impacts on Myrtaceous diversity in Australia. Australasia Plant 

Pathology Conference, Fremantle, Western Australia September 2015. 

10. Acknowledgements 

Thank you to the following people for their important contributions to this project: 

Dr Gordon Guymer, Bob Makinson, John Huth, Peter Entwistle, Assoc/Prof David Lee 

The project team is extremely grateful for the continual support from the Plant Biosecurity CRC for myrtle rust research. 

 



 

 

 

Plant Biosecurity  

Cooperative Research Centre 

Level 2, Building 22, Innovation Centre 

University Drive, University of Canberra 

Bruce  ACT  2617 

LPO Box 5012 

Bruce  ACT  2617 

P: +61 2 6201 2882 

F: +61 2 6201 5067 

E: info@pbcrc.com.au 

www.pbcrc.com.au 


