

## THE UNIVERSITY of EDINBURGH

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

# Conserving the biodiversity of Kuwait through DNA barcoding the flora



## A thesis submitted for the degree of Doctor of Philosophy

Mansour Abdullah

Institute of Molecular Plant Sciences School of Biological Sciences University of Edinburgh & Royal Botanic Garden Edinburgh

July 2017

Declaration:

I hereby declare that the work contained in this thesis is my own, unless otherwise acknowledged and cited. This thesis has not in whole or part been previously presented for any degree.

Mansour Abdullah 25<sup>th</sup> July 2017

#### Abstract

Biodiversity across the globe is threatened. Rapid surveying and monitoring techniques are required to understand the origin of the threats to biodiversity and to enable conservation actions to be undertaken. Kuwait is an arid desert country with a small flora of only 402 species. This flora is endangered by environmental factors, overgrazing, and human activities. DNA barcoding the flora and using Next Generation Sequencing (NGS) technologies allowed us to identify plants to species level, conduct a molecular taxonomic revision, and distinguish plant diversity found in soil environmental DNA samples. After investigating the discriminatory power of five commonly used DNA markers from plastid (matK, rbcL, trnH-psbA, trnL) and a nuclear genome (ITS2) on four largest genera of the flora using phylogenetics reconstruction tree based methods, two barcoding markers (*rbcL* and ITS2) were assigned to build a DNA reference library of the flora. Furthermore, the DNA reference library was tested to identify the plant diversity found below-ground level and comparing it with that above-ground, using environmental soil samples collected from both species rich and poor habitats in Kuwait by applying high-throughput sequencing methods. The DNA database provided in this study could be used as a reference library for the identification process and contribute towards the future of molecular taxonomy, biodiversity and ecological research in Kuwait.

#### Acknowledgments

I would like to give my sincere thanks and gratitude to my supervisors, Catherine Kidner, Tony Miller and Pete Hollingsworth, who have been supportive throughout my project and providing invaluable knowledge, skills and assistance which added a lot to my academic experience. It was a great privilege to have worked under their supervision.

I am grateful to CMEP-RBGE, especially Sabina Knees, Sophie Neale and Alan Forrest for their kind support and professional guidance throughout my project.

Special thanks to STS-RBGE, Michelle Hart, Laura Forrest, Ruth Hollands and Frieda Christie for expert advice, training and support in the lab.

I would like to express my appreciation and thanks to the RBGE Herbarium staff, especially David Harris, for the support, guidance and for processing my herbarium specimens and digitizing.

Many thanks to Stephan Helfer, for guiding me through the permit process to import my environmental samples.

I owe my deepest gratitude to K.T. Mathew for his kindness, encouragement and support during my field visits and sampling specimens from Kuwait University Herbarium.

Many thanks to all staff members and Ph.D. students at RBGE and UoE who have given help and support throughout my academic years. Special thanks to the Government of Kuwait and PAAET for financial support and funding my Ph.D. at the University of Edinburgh.

I am eternally grateful to my kind parents, Fauzia and Taleb, for the support and prayers of encouragement and faith throughout my entire life. Many thanks to my sister, Alia, and brothers, AbdulNasser, Mohammad, Manaf and Ali for the motivation, inspiration and the support they always provided.

Infinite thanks to my wife, Eman and my sons, Adam and Jassem for their support and encouragement and being patient while I'm away pursuing further studies.

Many thanks to all my cousins and friends for their spiritual support, especially Ali Dashti, Musaed Abdullah, Mohammad Al-Mousa, Meshal Abdullah, Taher Al Baghli, Hasan Al-Abdullah, Ahmad Al-Hasan, Essa Buhamad.

Above all, I thank God 'Allah', the most gracious and the most merciful, for providing me with knowledge, strength and energy to complete my Ph.D.

### **Table of Contents**

| Declarationi                                               |
|------------------------------------------------------------|
| Abstractii                                                 |
| Acknowledgementsiii                                        |
| Chapter 1 - Introduction                                   |
| 1.1 Aims of the thesis and chapter overview1               |
| 1.2 Geography, Topography and Geology, and Soils of Kuwait |
| 1.2.1 Geography                                            |
| 1.2.2 Topography and Geology                               |
| 1.2.3 Soils                                                |
| 1.3 Climate                                                |
| 1.4 Phytogeography                                         |
| 1.5 Vegetation of Kuwait                                   |
| 1.5.1 Distribution of the vegetation                       |
| 1.5.2 Present vegetation                                   |
| 1.5.2.1 Changes to plant communities                       |
| 1.6 Conservation and threats                               |
| 1.6.2 Natural regeneration of vegetation                   |
| 1.6.3 Active restoration of vegetation                     |
| 1.6.4 Biological soil crusts                               |
| 1.6.5 Conservation through protected areas                 |
| 1.7 Natural resources and land management                  |

## Chapter 2 - Checklist of the flora of Kuwait

| 2.1 Current knowledge of the flora of Kuwait           | 29 |
|--------------------------------------------------------|----|
| 2.1.2 Botanical Exploration of Kuwait                  | 31 |
| 2.2 Methods                                            | 33 |
| 2.3 Results                                            | 36 |
| 2.3.1 Floristic analyses of the flora of Kuwait        | 48 |
| 2.3.2 Native and naturalised vascular plants of Kuwait | 52 |

| 2.4 Discussion          |  |
|-------------------------|--|
| 2.4.1 Native plants     |  |
| 2.4.2 Cultivated plants |  |
| 2.4.3 Weedy plants      |  |
| 2.4.4 Conclusion        |  |

## Chapter 3 - Choice of gene regions

| 3.1 Introduction                                                      |    |
|-----------------------------------------------------------------------|----|
| 3.2 Materials and methods                                             | 62 |
| 3.2.1. Sampling material                                              |    |
| 3.2.2 DNA extraction, amplification and sequencing                    | 64 |
| 3.2.3 Sequence editing, alignment and molecular analysis              | 67 |
| 3.3 Results                                                           | 69 |
| 3.3.1 DNA recoverability, amplification and sequences success         | 69 |
| 3.3.2 Sequence quality and alignment                                  | 71 |
| 3.3.3 BLASTn searches                                                 | 73 |
| 3.3.4 Species discrimination                                          | 75 |
| 3.4 Discussion                                                        | 85 |
| 3.4.1 DNA recoverability, amplification and sequencing quality        | 85 |
| 3.4.2 Discrimination of species                                       |    |
| 3.4.3 Factors limiting the discriminatory power in plant DNA barcodes |    |
| 3.4.4. Conclusion                                                     |    |

## Chapter 4 - DNA barcoding the flora of Kuwait

| 4.1 In | ntroduction                                               | 110 |
|--------|-----------------------------------------------------------|-----|
| 4.2 N  | Aethods                                                   | 113 |
| 4.2.   | .1 Sampling material                                      | 113 |
| 4.2.   | .2 DNA extraction, amplification, and sequencing          | 114 |
| 4.3 R  | Results                                                   | 117 |
| 4.3    | .1 DNA recoverability, amplification and sequence success | 117 |
| 4.3    | .2 Sequence quality and alignment                         | 118 |
|        |                                                           |     |

| 4.3.3 BLASTn searches                |  |
|--------------------------------------|--|
| 4.3.4 Species discrimination         |  |
| 4.3.5 Resolution at the family level |  |
| 4.3.6 Resolution at the genus level  |  |
| 4.3.7 Results summary                |  |
| 4.4 Discussion                       |  |
| 4.4.1 Sequence recovery              |  |
| 4.4.2 Species resolution             |  |
| 4.4.3 Conclusion                     |  |
| 4.4.4 Suggested for future research  |  |

# Chapter 5 - Next-generation sequencing for molecular reconstruction of plant diversity using eDNA

| 5.1 Introduction                                                                | 189 |
|---------------------------------------------------------------------------------|-----|
| 5.2 Methods                                                                     | 194 |
| 5.2.1 Study area                                                                | 194 |
| 5.2.2. Soil sampling, eDNA extraction and NGS                                   | 196 |
| 5.2.2.1 Metagenomics MiSeq library preparation                                  | 196 |
| 5.2.2.2 Metabarcoding MiSeq library preparation                                 | 199 |
| 5.2.3 Next Generation Sequencing Bioinformatics                                 | 208 |
| 5.2.4 Data accessibility                                                        | 210 |
| 5.3 Results                                                                     | 213 |
| 5.3.1 Plant diversity above ground                                              | 213 |
| 5.3.2 Comparison of eDNA quantification                                         | 215 |
| 5.3.2.1 Metagenomics eDNA yield quantification                                  | 215 |
| 5.3.2.2 Metabarcoding eDNA amplicon quantification                              | 217 |
| 5.3.3 Plant diversity below ground using NGS technologies                       | 218 |
| 5.3.3.1 High order level analyses using whole plastid genomes                   | 218 |
| 5.3.3.2 Family-level analyses using Angiosperm-NCBI plastid sequence dat        |     |
| 5.3.3.3. Species-level analyses using Angiosperm-NCBI plastid sequence database | 224 |

| 5.3.3.4 Metagenomics analyses using Kuwait DNA database                    | 226 |
|----------------------------------------------------------------------------|-----|
| 5.3.3.5 PCA analyses                                                       | 229 |
| 5.3.3.6 Sequence reads for PCR-based metabarcoding samples                 | 231 |
| 5.3.3.7 Metabarcoding analyses using Kuwaiti DNA database                  | 233 |
| 5.3.4 A comparison of DNA markers represented by above ground plant divers | •   |
| 5.3.5 Metabarcoding analyses using Angiosperm-NCBI database                | 249 |
| 5.3.6 A summary of the NGS technologies match with the above ground plant  |     |
| diversity at Um Neqa study area                                            | 265 |
| 5.4 Discussion                                                             | 267 |
| 5.4.1 Metagenomics                                                         | 267 |
| 5.4.2 Metagenomics analyses using EBI pipeline                             | 272 |
| 5.4.3 Comparison of the metagenomics eDNA soil sampling depths             | 273 |
| 5.4.4 Metabarcoding                                                        | 275 |
| 5.4.5 Comparison of metagenomics and metabarcoding                         | 277 |
| 5.4.6 Conclusion                                                           | 281 |
|                                                                            |     |

| Chapter 6 – Discussion |  |
|------------------------|--|
| References             |  |

## List of Figures

| 12                |
|-------------------|
|                   |
|                   |
| 15                |
|                   |
|                   |
|                   |
|                   |
|                   |
|                   |
| ora of Kuwait     |
| 51                |
| he flora of       |
| 53                |
| four largest      |
|                   |
| four largest      |
|                   |
| four largest      |
|                   |
| les               |
|                   |
| es illustrating   |
|                   |
| ing the four      |
|                   |
| pecies level      |
| es 120            |
| 23 sequences. 122 |
| 94 sequences. 130 |
| les               |
|                   |

|             | representing 480 sequences                                                                    | 139 |
|-------------|-----------------------------------------------------------------------------------------------|-----|
| Figure 4.5  | Species resolution (%) at family level using NJ trees for <i>rbcL</i> , ITS2, and <i>rbcL</i> |     |
|             | + ITS2 representing 19 families of the flora of Kuwait                                        | 148 |
| Figure 4.6  | Neighbour joining phylograms representing 19 genera $< 100$ % resolution for                  |     |
|             | combined regions rbcL + ITS2 barcodes                                                         | 151 |
| Figure 5.1  | A map of Kuwait showing Um Neqa study area                                                    | 195 |
| Figure 5.2  | Um Neqa (DMZ) protected area showing <i>Rhanterium</i> community                              | 195 |
| Figure 5.3  | eDNA soil extractions                                                                         | 198 |
| Figure 5.4  | PCR products ( <i>rbcL</i> and ITS2) for metabarcoding soil analyses                          | 202 |
| Figure 5.5  | ITS2 PCR products for metabarcoding soil analyses                                             | 203 |
| Figure 5.6  | rbcL PCR products for metabarcoding soil analyses                                             | 204 |
| Figure 5.7  | Metabarcoding soil samples showing quantification for <i>rbcL</i> and ITS2                    |     |
|             | amplicons based on Edinburgh Genomics QC report                                               | 207 |
| Figure 5.8  | PCR amplicons ( <i>rbcL</i> and ITS2) for Metabarcoding analysis                              | 208 |
| Figure 5.9  | Workflow of Metagenomics sequences generated by Illumina platform                             | 209 |
| Figure 5.10 | An overview of the pipeline used by European Bioinformatics Institute (EBI)                   |     |
|             | metagenomics to process raw sequence files and predict the functions and                      |     |
|             | taxa present in a given sample                                                                | 212 |
| Figure 5.11 | Metagenomics analysis illustrating the relation between sequence reads and                    |     |
|             | DNA yields for six eDNA soil samples                                                          | 216 |
| Figure 5.12 | Percentage of green plants present in all metagenomic samples                                 | 221 |
| Figure 5.13 | Principal component analyses, PCA1 against PCA2 of six eDNA soil samples                      |     |
|             | against DNA barcode database of the flora of Kuwait                                           | 230 |
| Figure 5.14 | Principal component analyses, PCA2 against PCA3 of six eDNA soil samples                      |     |
|             | against DNA barcode database of the flora of Kuwait                                           | 230 |
| Figure 5.15 | de novo clustered sequence reads matching plant species present above                         |     |
|             | ground                                                                                        | 246 |

## List of Tables

| Table 1.1 | Islands of the State of Kuwait                                                   | 4   |
|-----------|----------------------------------------------------------------------------------|-----|
| Table 1.2 | Description of soil groups in Kuwait                                             | 9   |
| Table 2.1 | List of botanists and plant collectors made from Kuwait                          | 32  |
| Table 2.2 | Major references referred to in the checklist of the flora of Kuwait             | 34  |
| Table 2.3 | Checklist of the flora of Kuwait                                                 | 36  |
| Table 2.4 | Plant species with changes to their families according to APG IV                 |     |
|           | classification                                                                   | 49  |
| Table 2.5 | Floristic analysis of the flora of Kuwait                                        | 51  |
| Table 2.6 | Floristic analysis of native and naturalized plants of Kuwait                    | 52  |
| Table 3.1 | Markers that have routinely been used as plant DNA barcodes                      | 59  |
| Table 3.2 | Summary of studies comparing DNA barcoding regions in plants                     | 60  |
| Table 3.3 | List of plant species used in the evaluation of five DNA markers                 | 63  |
| Table 3.4 | DNA regions and primers used                                                     | 65  |
| Table 3.5 | PCR cycles used for each DNA region                                              | 66  |
| Table 3.6 | Summary of the proportion of individuals successfully amplified and              |     |
|           | sequenced from five barcoding regions using fresh and herbarium plant            |     |
|           | material                                                                         | 70  |
| Table 3.7 | Sequence information of tested DNA markers using single region and               |     |
|           | combined regions                                                                 | 73  |
| Table 3.8 | Percentage of species-specific clusters using phylogenetic reconstruction        |     |
|           | trees for a single and combined DNA regions                                      | 76  |
| Table 3.9 | Percentage of species-specific clusters for major groups using NJ for single     |     |
|           | DNA regions and different combinations                                           | 77  |
| Table 4.1 | DNA barcoding approaches of floristic studies at local geographical scale        | 112 |
| Table 4.2 | Summary of <i>rbcL</i> and ITS2 successfully amplified and sequenced using fresh |     |
|           | and herbarium plant material                                                     | 118 |
| Table 4.3 | Sequence quality and size of DNA barcodes for <i>rbcL</i> , ITS2 and combination |     |
|           | of <i>rbcL</i> + ITS2                                                            | 119 |
| Table 4.4 | Percentage of species-specific clusters using Neighbour Joining tree $\geq 50$ % |     |
|           | bootstrap support for single DNA regions and combined                            | 121 |
| Table 4.5 | Genera in which more than one species resolved by $rbcL + ITS2$                  | 150 |
| Table 5.1 | Examples of metagenomics analysis                                                | 190 |
|           |                                                                                  |     |

| Table 5.2  | NGS-based applications using metabarcoding analysis                           | 192 |  |  |
|------------|-------------------------------------------------------------------------------|-----|--|--|
| Table 5.3  | Metagenomics: soil eDNA samples submitted for DNA library preparation         |     |  |  |
|            | and sequencing                                                                | 197 |  |  |
| Table 5.4  | Primer sequences and expected amplicon sizes for each DNA marker              | 199 |  |  |
| Table 5.5  | PCR conditions for each DNA marker used                                       | 200 |  |  |
| Table 5.6  | Thermocycler programmes used for each DNA marker                              | 201 |  |  |
| Table 5.7  | Metabarcoding: eDNA samples amplified using two DNA barcoding markers         |     |  |  |
|            | ( <i>rbcL</i> + ITS2)                                                         | 206 |  |  |
| Table 5.8  | Metabarcoding samples quantification using Edinburgh genomics QC report       | 206 |  |  |
| Table 5.9  | Metagenomics eDNA samples archived by ENA                                     | 211 |  |  |
| Table 5.10 | Metabarcoding eDNA samples archived by ENA                                    | 211 |  |  |
| Table 5.11 | List of plant species present above ground in the two study sites at Um Neqa  | 214 |  |  |
| Table 5.12 | Summary of eDNA metagenomic sequence reads and DNA yield                      |     |  |  |
|            | representing two study sites                                                  | 216 |  |  |
| Table 5.13 | Summary of metabarcoding sequences and DNA yield representing 12              |     |  |  |
|            | samples                                                                       | 218 |  |  |
| Table 5.14 | Raw number of sequences with blast hit to a complete plastid genome at        |     |  |  |
|            | Order level                                                                   | 220 |  |  |
| Table 5.15 | Percentage of Sequence blast hit to a complete plastid genome at Family level | 223 |  |  |
| Table 5.16 | Percentage of sequence blast hits to NCBI-Angiosperm plastid sequences at     |     |  |  |
|            | species level                                                                 | 225 |  |  |
| Table 5.17 | Raw number of sequences BLAST hit to the Kuwaiti flora DNA database           | 228 |  |  |
| Table 5.18 | PCA analysis showing correlated matrix of sequence matches to Kuwait          |     |  |  |
|            | DNA database for six eDNA soil samples                                        | 229 |  |  |
| Table 5.19 | Summary for metabarcoding samples showing representative sequences for        |     |  |  |
|            | the FASTA and <i>de novo</i> cluster counts                                   | 232 |  |  |
| Table 5.20 | de novo clustered sequence reads blasted against Kuwait DNA database          |     |  |  |
|            | comprising of <i>rbcL</i> barcodes                                            | 235 |  |  |
| Table 5.21 | de novo clustered sequence reads blasted against Kuwait DNA database          |     |  |  |
|            | comprising of ITS2 barcodes                                                   | 241 |  |  |
| Table 5.22 | Summary of <i>de novo</i> clustering matches to Kuwait DNA database           | 245 |  |  |
| Table 5.23 | Comparison of DNA markers showing matches to Kuwait DNA database              |     |  |  |
|            | using plant species present above ground during field survey                  | 248 |  |  |
| Table 5.24 | Comparison of DNA markers ( <i>rbcL</i> and ITS2) matching Kuwait DNA         |     |  |  |
|            | database using blastn results for samples MAS7 and MAS8                       | 249 |  |  |

| Table 5.25 | Blastn of metabarcoding de novo clustered sequence reads per species match |     |
|------------|----------------------------------------------------------------------------|-----|
|            | to NCBI-Angiosperm database                                                | 251 |
| Table 5.26 | Summary of Angiosperm-NCBI database matches to the flora of Kuwait         |     |
|            | using <i>de novo</i> clustered sequences for all metabarcoding samples     | 265 |
| Table 5.27 | Summary of NGS matches with the above ground plant diversity at Um Niqa.   | 266 |

## List of Appendices

| Appendix 3.1 | List of specimens from which DNA was extracted and tested on four                |     |
|--------------|----------------------------------------------------------------------------------|-----|
|              | genera of the flora of Kuwait                                                    | 93  |
| Appendix 3.2 | Specimen information with BOLD and GenBank accessions                            | 95  |
| Appendix 3.3 | Appendix 3.3 GenBank accessions showing twentyfive species belonging to the four |     |
|              | largest genera of the flora of Kuwait                                            | 97  |
| Appendix 3.4 | MP and ML trees for single and combined barcode regions                          | 98  |
| Appendix 4.1 | List of specimens from which DNA was extracted to establish DNA                  |     |
|              | barcoding reference library of the flora of Kuwait                               | 160 |
| Appendix 5.1 | Metabarcoding QC report generated by Edinburgh Genomics                          | 283 |
| Appendix 5.2 | Summary of phylum level taxonomy for six metagenomics soil                       |     |
|              | samples generated by EBI pipeline                                                | 297 |
|              |                                                                                  |     |

#### **Chapter 1 Introduction**

In recent years the loss of biodiversity has become of increasing concern. The degradation of natural habitats, ecosystems and land occurring throughout the world is principally due to climate change, the invasion of alien species and human activities (IUCN, 2013). A healthy biodiversity provides ecosystem services, biological resources, and social benefits (Kok et al., 2016). Conservation towards maintaining biodiversity has received much attention lately, with researchers aiming towards maximising ecosystem services. In Kuwait the loss of biodiversity is mainly caused by climate change, overgrazing and human activities which lead to land degradation and loss of vegetation (Al-Awadhi et al., 2005). Immediate action is required for the conservation of biodiversity to avoid further loss and to maximise ecosystem services; this will aid in the stability of the land and vegetation. Rapid assessments and ecological surveys using advanced molecular methods can be used to understand poorly known areas and to enable us to conserve the current biodiversity of Kuwait.

#### 1.1 Aims of the thesis and chapter overview

The principle objective of this research is to contribute towards the conservation of Kuwait's plant biodiversity through the use of advanced molecular techniques. The current chapter gives an environmental and ecological background and literature review of Kuwait. Topics include changes in vegetation distribution, natural resources and land management and conservation and threats to the environment.

Chapter 2 is a revision and analysis of the flora of Kuwait. This chapter will summarise the current status of knowledge of the plants of Kuwait and update the checklist of the flora by reviewing relevant literature sources and the results from field studies.

Chapter 3 will be the introductory chapter on DNA barcoding application and assessment of five barcoding markers and assigning two for the entire flora. In this chapter, I will be evaluating the performance of five DNA barcoding markers (*rbcL*, *matK*, *trnL*, *trnsH-psbA*, ITS2) on four largest genera of the flora (9 *Astragalus* spp., 7

*Plantago* spp., 4 *Helianthemum* spp., and 4 *Launea* spp.). The DNA markers will be evaluated based on how easy they PCR amplify, produce bidirectional sequences and show maximum discriminatory power. Molecular methods including DNA extraction, amplification and sequencing are outlined in this chapter.

Chapter 4 considers building a DNA reference library of the entire flora. This chapter will be based on the choice of barcoding markers tested in Chapter 3; I will establish a DNA barcoding reference library for the flora of Kuwait by evaluating the discriminatory power across sampled species, genera and family of the flora. Followed by a discussion on how efficient DNA barcoding could be to identify species of the flora.

Chapter 5, the purpose of this chapter is to explore the past and present plant communities by analysing the organic remains in environment DNA (eDNA) soil samples collected from both species rich and species poor habitats of Kuwait by applying Next-generation sequencing (NGS) methods.

In the final, Chapter 6, I will be discussing how the identification tools can contribute towards plant identification, ecological research and conservation plans in Kuwait. Also, I will review DNA barcoding and NGS methods and assess their potential role in contributing towards plants species identification tools appropriate for vegetation restoration in Kuwait and similar desert environments.

This study has the following aims:

- 1. To revise and update the checklist of the flora of Kuwait
- To test and evaluate five standard universal markers from the genomic regions of the plastids (*matK*, *rbcL*, *trnL*, *trnH-psbH*) and one nuclear ribosomal (ITS2) on four largest genera and assigning two markers for the entire flora.
- 3. To build a reference library of DNA barcodes for the entire flora of Kuwait.
- 4. To assess the plant diversity in the soil seed bank collected from rich and poor habitats from Um Neqa, North-east of Kuwait, by applying NGS methods, with a view to reconstruct the vegetation in highly degraded areas.

#### Literature review

#### 1.2 Geography, Topography and Geology, and Soils of Kuwait

#### 1.2.1 Geography

The State of Kuwait is situated in the north-eastern part of the Arabian Peninsula between longitudes 46° 33' E to 48° 35' E and latitudes 28° 45' N to 30° 06' N. It has a total land area of 17,820 km<sup>2</sup> including nine offshore islands. It is bounded to the north and north-west by Iraq (with a 240 km border), to the south by Saudi Arabia (with a 220 km border), and to the east by the Arabian Gulf coastal shoreline which extends 170 km from north to south. The nine offshore islands (listed in Table 1.1) are all uninhabited. Bubiyan and Warba islands (located North-east of Kuwait) are the largest and consists of mud flats and large areas of salt marsh. These islands are situated in the estuary of the Tigris and Euphrates rivers which reach the Gulf via Shat Al-Arab channel, which runs along the southern border of Iraq and Iran. The geographical region of the Arabian Peninsula and the position of Kuwait in relation to the neighbouring countries are shown in Figure 1.1.

Kuwait has a population of 4,239,000 million, only one-third (1.4 million) are Kuwaitis, and the rest are expatriates (PACI, 2015). The Kuwait mainland is split into six capital governorates: Al-Asma 'The Capital' (population of 546,400 in 31 areas), Al-Ahmadi (populated by 878,400 in 29 areas), Al-Jahra (populated by 517,500 in 22 areas), Hawalli (populated by 915,500 in 18 areas), Al-Farwaniya (populated by 1,133,500 in 21 areas), and Mubarak Al-Kabeer (populated by 242,500 in 10 areas) (PACI, 2015). The three principal agricultural areas are Al-Wafra (in the south), Al-Abdali (in the north), and Sulaibiya (towards the centre). They cover a total area of approximately 350 km<sup>2</sup>; that is some 2% of the total land area of Kuwait. Kuwait's primary natural resources are petroleum, natural gas and fishing. The primary source of fresh water is from desalinated and treated wastewater which is produced at six desalination plants with a maximum capacity of 950,000 m<sup>3</sup>/day. It is mixed with ground water to make it suitable for drinking.

| No. | Island name   | Area                |
|-----|---------------|---------------------|
| 1   | Warbah        | 37 km <sup>2</sup>  |
| 2   | Bubiyan       | 863 km <sup>2</sup> |
| 3   | Miskan        | $750 \text{ m}^2$   |
| 4   | Failaka       | $20 \text{ km}^2$   |
| 5   | Auhah         | $0.34 \text{ km}^2$ |
| 6   | Um Al-Namil   | $0.30 \text{ km}^2$ |
| 7   | Kubbar        | $0.11 \text{ km}^2$ |
| 8   | Qaruh 0.035 k |                     |
| 9   | Um Al-Maradim | $0.65 \text{ km}^2$ |

Table 1.1 Islands of the State of Kuwait

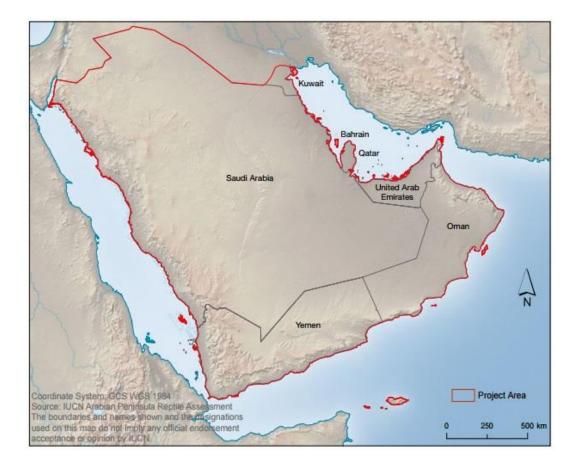



Figure 1.1 Map of the Arabian Peninsula (source IUCN, 2012)

#### 1.2.2 Topography and Geology

Kuwait's surface topography is characterised by flat deserts which rise gradually from the coastal areas in the east to Wadi Al-Batin in the south-west where the highest point of Kuwait is found at 306 m (Figure 1.2). The east of the country is bounded by a coastal plain which runs from north to south across Kuwait bay. There are small coastal inlets, with highly saline water, forming salt flats (sabkhahs), along the northern bay which overlooks the Arabian Gulf. In the deserts, the otherwise often flat and featureless aspect is relieved by topographical features including sand dunes, alluvial fans, seasonal watercourses (known as 'wadis') and isolated hills and escarpments.

Sand dunes and small ridges of hills are composed of sand occur along the northern and southern part of the coastal plain. There are no permanent rivers in the country but the largest drainage (wadi) systems in the country are Wadi Al-Batin and Wadi Um Ar-Rimam which flow only after prolonged rain. Wadi Al-Batin is the largest wadi and occupies a land area of 60,000 km<sup>2</sup> across the northern part of the Arabian Peninsula. It extends from Hafar Al-Batin in Saudi Arabia and covers western and north-western parts of Kuwait. Wadi Al-Batin comprises a major alluvial fan ecosystem which is considered to be the largest non-active fan in the Peninsula (Al-Sulaimi and Pitty, 1995). It is the primary source of gravel for the upper 'Dibdibba' formation of gravel deposits (Al-Sulaimi and Pitty, 1995). The other major Wadi in Kuwait is the Wadi Um Ar-Rimam depression which is located north of Kuwait bay. It is approximately 8 km wide and 60 km long. However, perhaps the most distinctive topographical feature in the otherwise rather flat landscapes of Kuwait is the Jal Al-Zor Escarpment, which runs along the northern shore of Kuwait bay and rises to 145 m above sea level. A part of it which extends from the east to west has been protected from grazing by a fence for more than 20 years (Figure 1.2).

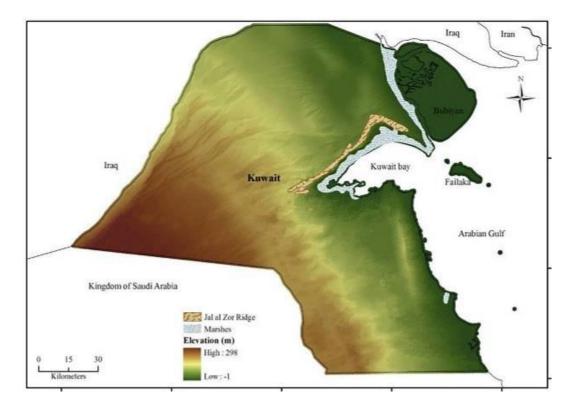



Figure 1.2 Topographical features of Kuwait (source: Al-Shehabi, 2012)

Kuwait's surface geological formations belong to the Neogene and Quaternary, and consist of clastic deposits with large amounts of limestone and gypsum. Two main formations represent the solid geology of Kuwait: the Ghar (from the Oligocene to lower Miocene periods) and the Fars (from the lower to middle Miocene periods). These rock formations are overlain by the Dibdibba formation (Al-Sulaimi and Pitty, 1995) which according to Ergun (1969) is divided into an upper layer composed of pebbles and cobbles derived from siliceous rocks and a lower layer of sandstones, which is exposed in the west and north-central Kuwait (Figure 1.3), and is dominated by calcareous sandstone, fine-grained limestone, and muddy sand with minor quantities of granules and scattered pebbles and gravel.

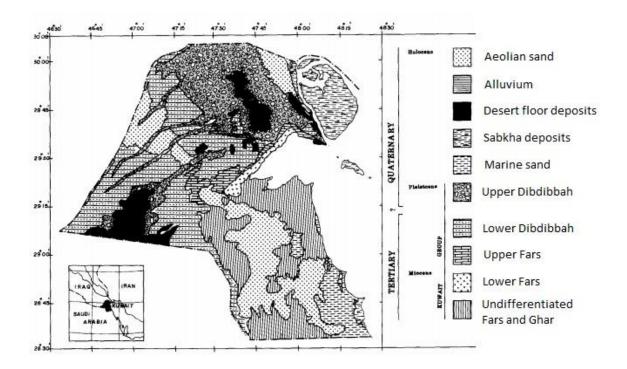
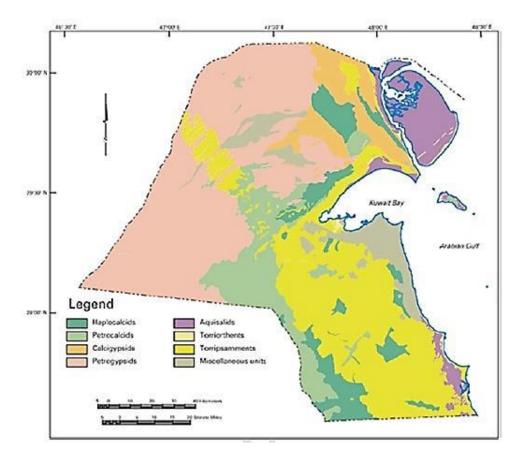




Figure 1.3 Geological map of Kuwait. (source: Al-Sulaimi and Pitty, 1995)

#### 1.2.3 Soils

Kuwait is characterised by arid soils which are poor in organic matter, very low in moisture and shallow, varying from a few centimetres to up to two meters in depth. The dominant soil types are sandy, gravelly and intertidal muddy. The soil texture is classified as being mainly sandy or sandy to loamy (Ergun, 1969).

Due to the high evaporation rate and very low rainfall the levels of salinity are high at the upper layer of the soil surface. In general, vegetation is denser in areas with deep soils than in areas with shallow soils because of the larger storage capacity for water from precipitation in deeper soils. These deeper soils provide a continuous supply of moisture to perennial plants with deep root systems (Batanouny, 1983). A detailed study of the soils in Kuwait was undertaken in 1999 by the Kuwait Institute for Scientific Research (KISR) and the Public Authority for Agriculture and Fisheries (PAAF) in collaboration with international consultants. The project covered the entire State of Kuwait. A reconnaissance survey was followed by sampling and field mapping, with guidance on the taxonomy and classification provided by the United States Department of Agriculture - Natural Resources Conservation Services (USDA-NRCS). The survey classified the soils of Kuwait into two orders: Aridisols occupying 70.8 % and Entisols occupying 29.2 % of the surveyed area (KISR, 1999). Aridisols or arid soils are mainly composed of calcium carbonate and characterised as being dry most of the year with limited leaching. Entisols are soils of recent origin. A detailed survey map of the soils of Kuwait (using classification to group level) is shown in Figure 1.4. Seven major soil groups are found: Torripsamments, Haplocalcids, Aquisalids, Calcigypsids, Petrocalcids, Petrogypsids, and Torriorthents, and one minor group - Haplogypsids soil. A brief description of each group is provided in Table 1.2 (Omar et al., 2001). The major types of soils are Petrogypsids (sandy to loamy soils overlying gypsic hardpans) and Torripsamments (deep sandy soils).



**Figure 1.4 Distribution of soil groups in Kuwait** (source: Omar et al., 2001)

| Map unit*      | Area (%) | Description†                                                                                                                                                                              |
|----------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Torripsamments | 27       | Well to somewhat excessively drained, deep or very<br>deep sandy soils                                                                                                                    |
| Petrocalcids   | 11       | Well drained or moderately drained, shallow or mod-<br>erately deep, sandy to loamy soils overlying a calcic<br>hardpan. When upper soil is truncated, it may ap-<br>pear at surface      |
| Haplocalcids   | 8        | Well drained, deep or very deep, sandy to loamy soils,<br>which have a layer of carbonate masses and nodules<br>in the profile                                                            |
| Haplogypsids‡  | <1       | Well drained, deep or very deep, sandy to loamy soils,<br>which have a layer of gypsum crystals in the profile                                                                            |
| Aquisalids     | 7        | Poorly or somewhat poorly drained, deep or very<br>deep, sandy to clayey soils. Within the soil there is<br>a layer of salt accumulation that usually occurs near<br>the surface          |
| Calcigypsids   | 6        | Well drained, deep or very deep, sandy to loamy soils<br>containing a layer of carbonate masses and nodules<br>and a layer of gypsum crystals within the profile                          |
| Petrogypsids   | 33       | Well drained, shallow or moderately deep, sandy to<br>loamy soils overlying a gypsic hardpan. Hardpan<br>may be exposed at surface, when upper soil is<br>truncated                       |
| Torriorthents  | 1        | Excessively drained to well drained, moderately deep<br>or very deep, sandy soils. Within the soil profile<br>there is a high content of shell fragments and some<br>gypsum accumulations |

Table 1.2 Description of soil groups in Kuwait

#### 1.3 Climate

Kuwait's climate is considered to be one of the aridest and hottest in the Middle-east. The four seasons are categorised as follows:

(1) Winter season, occurs from December to February (the first half is known as 'Murba'ania' and is extremely cold and second half is a period with milder temperatures). The winds during winter are predominantly from the north-western and bring cold air causing temperatures to drop to around 6 °C. The lowest temperature recorded was -4 <sup>o</sup>C in Kuwait City in January 1964.

(2) Spring season, occurs from February to May (It is split into an early period of moderate temperatures and ends with a warm period). The winds are predominantly warm and southerly.

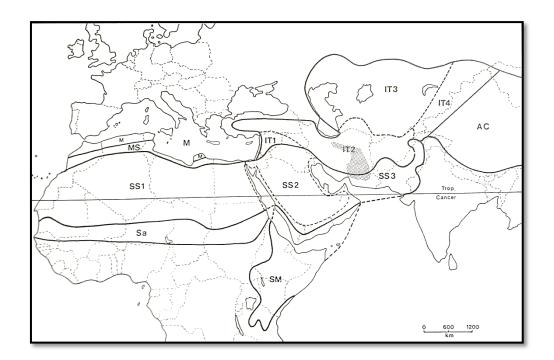
(3) Summer season occurs from May to October. It starts with a transition period, which is followed by the dry, hot summer and ends with a period of high humidity. The summer is very hot and dry with midday temperature ranges from 42°C to 46 °C. The highest temperature recorded was 53.8 C in Sulaibiyah on 31<sup>st</sup> July 2012.

(4) Autumn seasons spans about 1 month from November to December. The winds are predominantly from the south-east. November was the month with the highest rainfall (14.4 mm in 1997) recoded.

(Metrological data from the Kuwait Met Office, 2016 and UNFCCC, Kuwait report, 2012).

Relative humidity is highest in January (43 % to 84 %) and lowest in June (13 % to 40 %) (El-Sheikh et al., 2010). The Average evaporation rates vary from 3 to 13 mm per day with maximum levels ranging from 20 to 48 mm per day. The rainy season starts from November and ends in April. Rainfall is very low and sporadic varying from 75 to 150 mm a year with an average rainfall of 116 mm a year. Minimum annual levels have been recorded as low as 31 mm while the maximum reached was 242 mm.

Dust and sandstorms are common during the summer season, particularly during the month of July with wind speeds of up to 50 km/hr and reaching a maximum speed of 100 km/hr (Kuwait Meteorological Centre - KMC, 2016).


Recent climate change research concludes that climate change is already impacting on biodiversity and that immediate action is needed (UNFCCC, 2012). Based on the UNFCCC report on climate changes in Kuwait (2012), temperatures measured over a 48 years period (1962-2010) had an average annual temperature of 26.1°C and had risen by 1.6°C. The future predictions for average annual temperatures in Kuwait continue to increase from the current average annual temperature of 26.1°C to 28.7°C by 2035 (an increase of 2.6°C) (UNFCCC, 2012).

#### 1.4 Phytogeography

To understand the present-day phytogeography of Kuwait, it is important to take into account the floristic origins and vegetational history of the region going back over geological times. At the start of the Miocene period, the area of present-day Kuwait lay at the bottom of a large ocean known as Tethys. During the Miocene ( $\approx 25$  million years ago) the most important Paleo-geographic event in the region occurred: the splitting of the African Plate from the Arabian Shield (Hijaz mountains) and the formation of the Red Sea occurred (Watts and Al-Nafie, 2003). The separation of these two plates played a major role in providing various conditions for plant growth and mixing elements of the Palaeotropical floras (from the south) and Holarctic floras (from the north). These events have a major influence on the distribution of the current Arabian flora (Miller and Cope, 1996; Ghazanfar and Fisher, 1998).

Zohary's (1973) researches on the classification and origins of the vegetation of the Middle East have dominated the interpretation of the phytogeography of the region for almost 50 years. He divided Arabia into two floral regions: the north and central regions belonged to the Saharo-Sindian and the southern region to the Sudano-Deccan (Zohary, 1973). The first major change to this interpretation was when White and

Leonard (1991) extended their interpretation and classification of African vegetation to cover SW Asia by revising Zohary's concept of the Saharo-Sindian region regarding both its eastern limits and its boundaries in the Arabian Peninsula (White and Leonard, 1991). According to White and Leonard (1991) Kuwait lays in the Saharo-Arabian region (represented as SS2 on Figure 1.5) with its vegetation being similar to that of the northern part of Arabian Peninsula but with significant elements from Irano-Turanian region to the north also being present e.g. *Astragalus tribuloides*, *Achillea fragrantissima, Arnebia decumbens, Artemisia herba-alba, Allium sindjarensis, Plantago ovata, Bassia indica* and *Bienertia cycloptera* (Miller and Cope, 1996; Ghazanfar and Fisher, 1998; Al-Nafie, 2008), and a small but very interesting tropical elements e.g. *Aizoon canariense, Caylusea hexagyna, Dinebra retroflexa, Halophila ovalis, Halodule uninervis, Hibiscus trionum, Leptochloa fusca, Panicum antidotale* (Al-Nafie, 2008).



**Figure 1.5. Main phytogeographical regions covering Asia and Africa** (White and Leonard, 1991). Regional zones are represented by: AC= Central Asiatic; SS= Saharo-Sindian, Sa= Sahel, SM=Somalia-Masai; M= Mediterranean; MS = Mediterranean-Sahara; IT = Irano-Turanian.

#### 1.5 Vegetation of Kuwait

The native vegetation of Kuwait is of high values as it represents semi-arid and arid vegetation of the region and contains highly adaptable genes to the harsh environment, extreme drought, poor soil and organic matter and tolerates high salinity (Zaman et al., 2009).

The vegetation types of Kuwait are mainly defined by geomorphological changes, soil types and climatic conditions. Four main vegetation types are recognised in Kuwait: (1) sand dunes vegetation, (2) salt marshes 'sabkha' and saline vegetation, (3) desert plains vegetation (4) and desert plateau vegetation (Halwagy and Halwagy, 1974).

**Sand dunes vegetation**: comprises a series of low coastal dunes which extends along the southern to northern coastal strips. The soil is composed of loose coarse sand. It is usually dominated by *Zygophyllum qatarense* and/or *Seidlitzia rosmarinus*, with occasional by *Atriplex leucoclada* and *Nitraria retusa*. Common associates are *Lycium shawii* and *Pennisetum divisum*.

**Salt marshes 'sabkha' and saline vegetation**: The marshes are influenced by tidal action and the shallow saline water table. Soil ranges from loamy sand to sandy clay. This vegetation type dominates in areas of Kuwait bay coasts and Khor Al-Sabiyah. It is also found in Bubiyan and Warba Islands. Chenopodiaceae dominates the vegetation with *Halocnemum strobilaceum* common near the shore and *Nitraria retusa* and *Zygophyllum qatarensis* further inland.

**Desert plains vegetation**: this type dominates most of the desert land area (west of the coastal region) and is represented by a number of communities:

- **a. Cyperus steppe**: dominated by *Cyperus conglomeratus* and common to the south and south-west of Kuwait City. Commonly associated with *Panicum turgidum*. The soil is of deep, moderately loose, coarse sand.
- **b. Rhanterium steppe**: dominated by *Rhanterium epapposum* and found in the central and north-east of Kuwait. Common associates are

*Convolvulus oxyphyllus, Moltkiopsis ciliata* and *Stipagrostis plumosa*. Found on shallow to moderately deep soils with a calcareous hardpan.

**c. Haloxylon steppe**: dominated by *Haloxylon salicornicum* found mainly in northern areas of Kuwait. Found on shallow soils with a hardpan.

**The desert plateau vegetation**: Found mainly in the extreme west of Kuwait; dominated by *Haloxylon salicornicum* with *Citrullus colocynthis* also occuring frequently. Annual plants densely cover areas where perennial plants are absent. These include *Arnebia* spp. *Helianthemum* spp. *Astragalus* spp. and *Schismus barbatus*. *Zilla spinosa* dominates Wadi Al-Batin area. Found on thin soils consisting of generally of few inches of coarse or soft loamy sand, often mixed with pebbles and gravel, over a hardpan.

#### **1.5.1** Distribution of the vegetation

The distribution of vegetation across Kuwait has received attention from several authors (Dickson, 1955; Halwagy and Halwagy, 1974; Omar et al., 2001). Earlier, Dickson (1955) published an illustrated map of Kuwait's vegetation showing four potential plant communities widely distributed across Kuwait: (1) *Haloxylon* 'Hamdh' shrubland, (2) *Rhanterium* 'Arfaj' shrubland, (3) *Panicum* 'Thammam' grass-shrubland, and (4) *Cyperus* 'Thunda' sedges. Later, Halwagy and Halwagy (1974) produced a map recognising five plant communities, the four mentioned by Dickson (1955), and with the addition *Zygophyllum qatarensis* community. Their map shows the *Haloxylon* community is the most widely distributed across Kuwait, followed by the *Rhanterium* community (Figure 1.6).

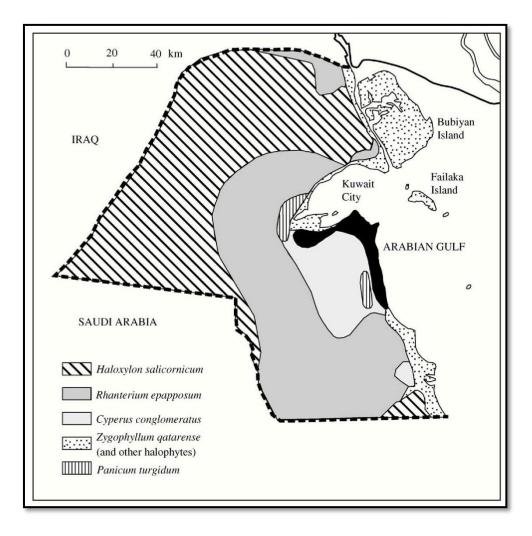



Figure 1.6 Vegetation map of Kuwait showing five plant communities (Source: Halwagy and Halwagy, 1974 ed. Brown, 2003)

#### 1.5.2 Present vegetation

Recently, Omar et al. (2001), using modern Geographical Information system (GIS), produced a map using integrated soil and vegetation data. Their survey covered the entire land area of Kuwait and involved a total of 8351 survey points covering measurements of vegetation and soil (Figure 1.7). The resulting map illustrates eight vegetation associations: Centropodietum, Cyperetum, Halophyletum, Haloxyletum, Panicetum, Rhanterietum, Stipagrostietum, and Zygophylletum which are described as follows:

- 1. **Haloxyletum unit** dominated by *Haloxylon salicornicum* and associated with shrubs such as *Astragalus spinosus* and *Chrozophora* spp.
- 2. **Rhantereitum unit** dominated by *Rhanterium epapposum* in association with *Convolvulus oxyphyllus* and *Moltkiopsis ciliata*.
- 3. **Cypertum unit** dominated by *Cyperus conglomeratus* and associated with *Astragalus annularis*, *Brassica tournefortii* and *Plantago boissieri*.
- 4. **Stipagrostietum unit** dominated by *Stipagrostis plumosa* and associated with *M. ciliata*, *P. boissieri* and *Stipa capensis*.
- 5. **Zygophylletum unit** dominated by *Zygophyllum qatarense* and associated with *Salsola imbricata*, *Cressa critica* and *Aizoanthemum hispanicum*.
- 6. **Centropodietum unit** dominated by *Centropodia forsskalii* and usually associated with *Stipagrostis plumosa*.
- 7. **Panicetum unit** dominated by *Panicum turgidum* and associated with *Aeluropus lagopoides* and *Pennisetum divisum*.
- Halophyletum unit includes many halophytic communities and dominated by Chenopodiaceae with *Tamarix aucheriana*, *Nitraria retusa*, *Halocnemum strobilaceum*, and *Seidlitzia rosmarinus* occurring commonly (Omar et al., 2001).

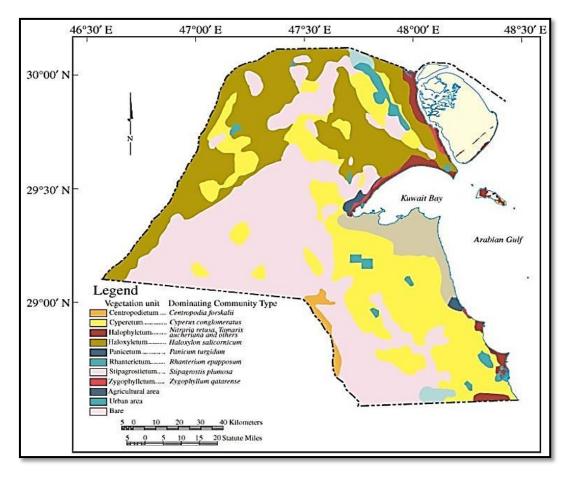



Figure 1.7. Current vegetation map of Kuwait (source: Omar et al., 2001)

#### **1.5.2.1** Changes to plant communities

Omar et al. (2001) analysed the current vegetation distribution and compared it with Halwagy and Halwagy (1974) which shows significant changes to the vegetation cover (Omar et al., 2001). They concluded that over 25 years, some plant communities decreased in distribution, while others had increased (Figure 1.7). The following changes were recorded:

- 1. *Cyperus conglomeratus* community increased from 10 % to 27 %, with potential to expand over time.
- 2. *Rhanterium epapposum* community decreased from 30 % to 2 %, indicating that this community has considerably retreated from the open desert areas due to overgrazing.

- 3. Haloxylon salicornicum community decreased from 52 % to 23 %, and
- 4. *Zygophyllum qatarense* community decreased from 4 % to 0.3 %. (Omar et al., 2001).

The current status of the vegetation has shown intensive land degradation and decline of plant communities, e.g. *Rhanterium* spp. and *Haloxylon* spp., while grasses and sedges increased e.g. *Stipagrostis* spp. and *Cyperus* spp. The main changes in vegetation distribution were caused mainly by environmental factors (e.g. climate change and drought) and human interference such as the uprooting of shrubs, gravel quarrying, spring camping, off-road driving, livestock over-grazing and military activities (Al-Awadhi et al., 2001; Omar, 2007; Brown, 2003).

#### **1.6** Conservation and threats

The desert of Kuwait is under severe pressure and heading towards extreme desertification. The United Nations Environment Programme (UNEP) has defined desertification as 'land degradation in arid, semiarid and dry sub-humid areas, resulting mainly from adverse human impact and partially from climatic factors' (UNCCD, 1994). In Kuwait, several interacting factors increasing land degradation and mainly caused by anthropogenic activities, overgrazing, and other natural processes.

After Gulf War I, due to war related damages, Kuwait was rewarded compensation for environmental related damages on five major claims to be spent towards the restoration and remediation of land and coastal areas, a total amount of \$3,003,666,082 USD under decision No. 258 on 8<sup>th</sup> Dec 2005 (UNCC, 2005). The amount is to be spent on five major claims concerning the remediation of damages to underground water resources, areas damages by military activities, damages at open burning and open detonation sites, damages caused by oil (such as oil lakes, oil contaminated piles, oil trenches, and oil spills) and the revegetation of damages occurred to the desert environment.

It is important to spend the funds on the rehabilitation of the degrading desert ecosystem and conserve the biodiversity. In Kuwait, areas where most of the above ground vegetation is lost or removed, a rehabilitation programme is required. The government of Kuwait (who owns the land), policy makers, and other scientific institutes should choose between natural regeneration and active restoration. Natural regeneration involves the removal of disturbing factors that cause land degradation and allowing natural regeneration of vegetation to maintain the cover and stabilize the soil. Active restoration involves the cultivation of the same type of vegetation that existed pre-disturbance (Ott et al., 2011).

#### **1.6.2** Natural regeneration of vegetation

Natural regeneration is considered inexpensive but often slow and requires favourable environmental conditions (such as continuous good rainy seasons). In Kuwait, several studies indicate that natural regeneration and recovery is possible. Brown and Al-Mazrooei (2003) reported that rapid vegetation regeneration was possible after only four years of fence protection, avoiding grazers and human activities, in a severely degraded *Rhanterium epapposum* community in northern Kuwait (Brown and Al-Mazrooei, 2003).

Another example of natural recovery is the demilitarised zone (DMZ), located across the border line between Kuwait and Iraq. A preliminary field survey took place in June 2009 to study plant and soil conditions inside the DMZ and compare it with conditions in the open rangeland (simply grazed and disturbed), revealed that by avoiding drivers of disturbance a total of 74 plant species (annuals and perennials) were recorded and the vegetation cover varied from 35-47 % across the DMZ with *Haloxylon salicornicum* community being dominant (Kuwait National Focal Point, unpublished data).

Such findings suggest that by avoiding grazers and human disturbance it is possible to regenerate vegetation and maintain its coverage over a period of time. Factors that affect the natural recovery rates of a disturbed desert ecosystem are: 1) Climatic

conditions and soil compaction, 2) frequency, severity, size and type of disturbance, 3) vascular plant structure, and 4) the recovery of nitrogen and carbon fixation after disturbance (Webb et al., 2009).

#### **1.6.3** Active restoration of vegetation

Active restoration is generally expensive and often unsuccessful (Webb et al., 2009). It can be implemented in several ways depending on the scale of the project and the availability of funds, tools (e.g. irrigation system) and access to facilities (for seed germination) (Weigand & Rodgers, 2009).

If the aim of active restoration is to revegetate the same type of plants that once existed pre-disturbance, then it should include a seed collection strategy and consider studies on seed germination for mass production and implementation in large-scale restoration programmes.

Desert seeds are difficult to germinate, and each type has its optimal favourable conditions to break its dormancy. In an attempt to break desert seeds dormancy Zaman et al. (2006) studied the effect of different salinity levels on the germination of *H. salicornicum*, *Z. qatarense* and *Tamarix aucheriana* seeds. The study revealed that the seed germination showed different tolerance to high salinity concentration and other techniques needed to be applied such as mechanical scarification and dry heat treatment was necessary for the germination of some desert seeds (Zaman et al., 2006).

Developing methods for cell and tissue culture is necessary for germplasm conservation to ensure the survival of endangered valuable plant species and possible save time for rapid mass propagation and revegetation in large scale programmes. *Rhanterium epapposum, Gynandiris sisyrinchium, Haloxylon salicornium, Lycium shawii, Nitraria retusa, Ochradenus baccatus* and *Gypsophila capillaris*, were selected, collected and tissue cultured because of their importance and potential use in desert revegetation (AboEl-Nil, 1997).

To achieve a successful restoration programme the choice of plants and their function is important. Choosing plants that can tolerate high salinity, temperature and drought would increase the success rate of the restoration method. Also, including plants able to stabilise the soil by their rooting system; in return lowering soil erosion and possibly reduces the amount of dust storms. Some examples of potential plants for restoration projects in Kuwait may include *Rhanterium epapposum*, *Haloxylon salicornicum*, *Nitraria retusa*, *Lycium shawii*, *Tamarix aucheriana*, *Helocnemum strobiliaceum*, *Seidlitzia rosmarinum*, *Calligonum comosum*, *Frasetia aegyptiaca*, *Panicum turgidum*, *Pennisetum divisum* and *Cyperus conglomeratus*.

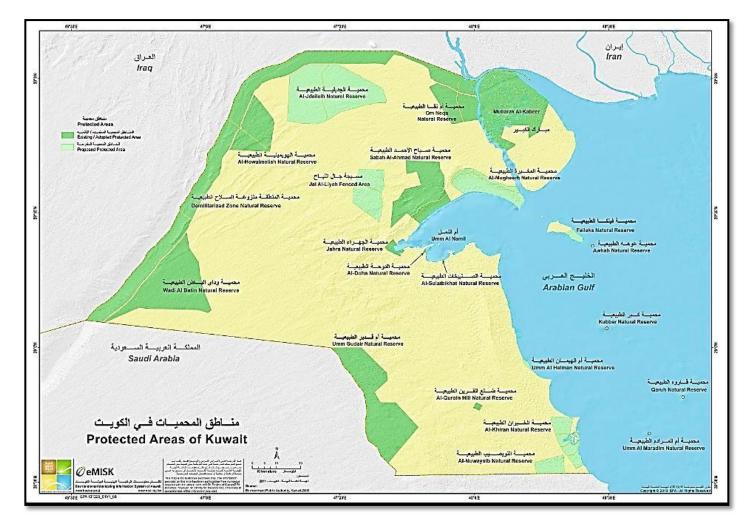
#### 1.6.4 Biological soil crusts

An important natural process that should be considered while studying patterns of vegetation is the formation of biological soil crusts (also known as microbiotic soil crusts). This topic lacks proper documentation in Kuwait and the Arabian Peninsula although it has been well documented in other regions (Eldridge, 2000; Schulz et al., 2016). Biological soil crusts are the association of a variety of unrelated microorganisms in the soil surface and are represented by cyanobacteria, algae, fungi and lichens (West, 1990). Biological soil crusts possess an important effect on vascular plants in the top soil layer by retaining soil moisture for longer periods of time, increase nutrient uptake through nitrogen fixation and reduces wind and water erosion of soil surface (Belnap et al., 2001). Vascular plants growing on biological soil crusts showed higher concentrations of nutrients (organic matter and nitrogen) than plants growing without soil crusts (Harper and Pendleton, 1993). However, others reports on biological soil crusts showed an inhibiting effect on the germination of vascular plants (Prasse and Bornkamm, 2000). Li et al. (2002) showed that soil crust development leads to a change in vegetation from shrubs to herbs due to decreased soil moisture reaching deeper soil layers affected by the formation of soil crusts enriched with mosses, algae, and liverworts (Li et al., 2002).

This biological association of microorganisms leading to the formation of soil crusts, need to be identified and studied in details to understand the effect of the "living" crust on vascular plants (Belnap et al., 2001). It's difficult to study microorganisms in the field when there is a lack of specialists, e.g. bryologists and phycologists. This

suggests potentially productive area of research in the Arabian Peninsula with the aid of DNA barcoding techniques to identify the various microorganisms.

#### 1.6.5 Conservation through protected areas


A protected area is defined by IUCN (2008) as 'a clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to achieve the long term conservation of nature with associated ecosystem services and cultural values' (IUCN Definition 2008).

Due to land degradation, loss of vegetation and the damage caused by human activities, it is considered a priority to conserve and protect the biodiversity of Kuwait in protected areas. The current and future (proposed) protected areas of Kuwait are shown in Figure 1.8. The main protected areas in Kuwait include Sabah Al-Ahmed Nature Reserve (SSNR), the Al-Jahra Pool Reserve, the Doha Nature Reserve, and the Sulaibiya Field Station (SFS).

- Sabah Al Ahmed Nature Reserve (SSNR) Previously known as the Jal Az-Zor National Park was established in 1991 and is the largest protected area in Kuwait. SSNR is strategically located north of Kuwait bay and covers an area of 330 km<sup>2</sup>. The protected area includes excellent examples of two vegetation types: salt marshes 'sabkha' and the desert vegetation due to its. It represents several geomorphological features such as Jal Al-Zor escarpments and Wadi Um Ar-Rimam depression. After 14 years of protection, a field survey by El-Sheikh and Abbadi (2004) was conducted on the vegetation within SSNR. This survey recorded 139 species belonging to 32 families which is an estimate of 30 % of the entire flora of Kuwait. The SSNR protected area adds great value to the conservation and protection of native vegetation and has good examples of natural regeneration.
- 2. Al-Jahra Nature Reserve was established in 1987. It is located at the western end of Kuwait Bay and covers an area of 3.5 km<sup>2</sup>. The reserve

contains a human-made pond formed from treated sewage water flowing across sandy 'sabkha' into the sea (Omar, 2007). The reserve is dominated by halophytes, such as *Tamarix* sp. and *Suaeda aegyptiaca*, which provide a natural shelter for many migratory birds, appropriate microclimates and breeding and feeding resource (Al-Saqer, 2003).

- 3. Doha Nature Reserve was established in 1988. It is located on the south side of Kuwait Bay and covers an area of 4.5 km<sup>2</sup>. The reserve supports salt tolerant vegetation and is used by migratory birds for breeding and feeding (Al-Tamimi , 2010).
- 4. Sulaibiya Field Station also known as Kabd Station was established in 1979. It is located south-west of Kuwait City and occupies an area of 40 km<sup>2</sup>. The vegetation is dominated by the perennial dwarf shrub *Rhanterium epapposum* associated with *Cyperus conglomeratus*. A good flush of annuals also appears in each rainy season with such species as *Plantago boissieri*, *Schimpera arabica*, *Cutandia memphitica*, *Lotus halophilus*, and *Horwoodia dicksoniae* (Omar, 2007).



**Figure 1.8 Current and proposed protected areas of Kuwait** (*source: EPA Kuwait, 2013*) Green: current/ adapted protected areas, Light green: future proposed areas

## 1.7 Natural resources and land management

For many generations, Bedouins inhibited the Arabian deserts. It provides them with an important source of food, medicinal plants and forages for livestock. They continuously travelled across the desert areas looking for food and water, known as desert dwellers. They managed to survive the hot climates and sand storms and developed their skills to make use of the wildlife. Oasis and wells dug underground are the primary source of fresh drinking water. Experienced people identified the presence of underground water by certain plants such as *Haloxylon salicoricum* known to dominate shallow soils with easy reach of water (Mandaville, 2011). The main source of food comes from raising livestock, agriculture and catching fish. Animals mainly, sheep and goats were used for food, wool and dairy products. Camels used as the main source for long distance transportation across the desert. They also used skilled falcons to hunt for birds and other wildlife animals.

The desert plants also provide a nutritious source of food summarised below adopted from Mandaville (2011) with his experience and collection of information from locals for more than 15 years working in the Arabian Peninsula (Mandaville, 2011).

**Roots, tubers and bulbs**: *Dicadi erythraeum* (for bulbs juicy and sweet), *Emex spinosa* (taproot sweet carrot-like), *Allium sphaerocephalum* (wild onions, green leaves are eaten raw), *Allium sindjarense* (edible bulbs), *Gagea reticulate* (bulb consumed raw), *Calligonum comosum* (edible stems), *Cynomorium coccineum* (parasitic plant, fleshy parts edible), and *Orobanchaceae* spp. (eaten baked).

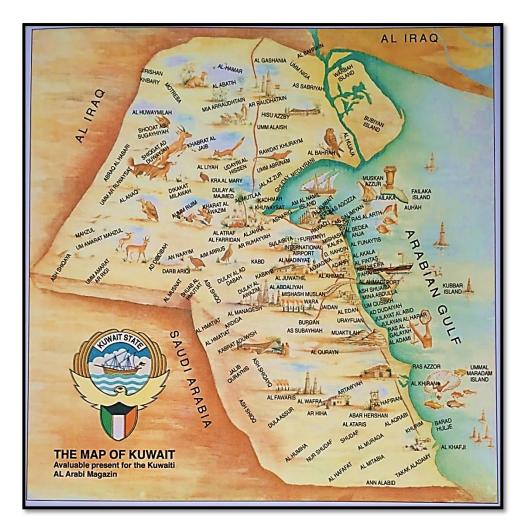
**Green parts eaten raw**: mainly leaves eaten raw *Anisosciadium lanatum*, *Aaronsohnia factorovskyi, Rumex pictus, Rumex vesicarius, Sisybrium irio, Launaea capitate, Leptaleum filifolium, Senecio glaucus, Erodium* spp. (used for spicing food), *Schimpera arabica*, and *Scabiosa palaestina*.

**Fruits and flowers**: Nitraria retusa, Lycium shawii, Salvadora persica, Neurada procumbens, and Ziziphus spina-christi.

**Seeds and grains**: *Mesembryanthemum forskahlii*, *M. nodiflorum*, *Aizoon canariense*, and *Panicum turgidum*.

**Gums and other Exudates**: *Convolvulus oxyphyllus* (chewing gum) and *Haloxylon salicornicum* (sweet exudates).

**Desert Truffles**: underground fungus 'fagaa' known as Bedouins wild food, *Tirmania nivea*, and *T. pinoyi*.


The Bedouins were alerted by livestock and camels to avoid toxic and noxious plants. Most common plants used as forage are *Rhanterium epapposum*, *Stipagrostis plumosa*, *Salsola* spp., *Traganum* spp. also other salty shrubs were grazed by camels such as *Haloxylon* spp, *Halocnemum strobilaceum*, *Suaeda* spp., and *Seidlitzia rosmarinus*.

The desert also provide a valuable resources of traditional medicinal plants extracted from leaves, seeds, roots, or even entire plants e.g. teeth cleanser and mouth hygiene, *Salvadora persica* and *Pistacia lentiscus* (Ghazanfar and Al-Sabahi, 1993; Saganuwan, 2010), for abdominal and digestive problems *Thymus serphyllum*, and *Ziziphus vulgaris* (Nawash and Al-Haroni, 2011) and for fever and chest pain remedies *Ziziphus spina-christi* (Ghazanfar and Al-Sabahi, 1993).

From ancient medicine to current clinical based medicine e.g. *Tephrosia apolllinea*, *Curcuma longa*, *Zingiber officinalis*, *Vitis vinifera*, and *Nerium oleander* are used in bronchitis disease (Ghazanfar and Al-Sabahi, 1993). *Haplophylum tuberculatum*, *Pulicaria crispa*, *Ononis serrata*, and *Achillea beiberstenii* are used in the control of cancer diseases (Kuete et al., 2013). *Calligonum comosum*, *Rumex pictus*, *Euphorbia cuneate*, and *Chrozophora oblongifolia* are used for their antimicrobial activities (Rahman et al., 2004).

After the survival of the Bedouins for many generations in the desert and evolving with the available natural resources comes the blooming of the oil industry. The settlement changed from living in tents and simple housing created from mud and clay until the present day large modern houses and tall buildings made of massive amounts of steel and concrete which require plenty of building materials e.g. sand, cement and gravel excavation, adding more pressure to the land. Population increase resulted in more demand for livestock which increased land misuse and led to many of the flora and fauna extinction. Kuwait's land use and biodiversity have been affected dramatically, mainly by environmental conditions, overgrazing and human activities due to its small size and easy to travel around by off-road vehicles. Figure 1.9 represents an image of the past and the present biodiversity of Kuwait, published by Al Arabi Magazine and presented by Mr. Saleh Al Mesbah (Omar, 2007) describing the biodiversity situation of early 1960's until the current day after the blooming of oil industry. The figure is reflecting the wildlife in Kuwait showing sheep and camel grazing the land and gazelles. Foxes and wolves all over the desert area, sadly the gazelles become extinct. Also, reptiles, birds and marine life reflecting the past biodiversity with present (Figure 1.9). In addition, Mr. Al Mesbah described several oil platforms polluting the environment with flares and smoke expressing the present day pollution (Figure 1.9).

An increase in land degradation also occurred in Kuwait during Gulf War I and II (1991 and 2003) due to the military activities and heavy machinery which added a massive amount of pressure on the desert's ecosystem. As a result of Gulf War I, a total of 608 oil wells were damaged and set on fire which caused public health problems mainly asthma and bronchitis diseases. The formation of dry and wet oil lakes covering huge areas of the desert and penetrated through the lower layers of soil still exists and continues to pollute the environment. Also, minefields and unexploded munitions (about 20,000 units) left over and cleared at a later date (Al-Damkhi, 2007).



**Figure 1.9 Past and present land use in Kuwait.** (Published by Al Arabi Magazine, collection of Mr. Saleh Al-Misbah, Omar, 2007)

## Chapter 2 Checklist of the flora of Kuwait

This chapter summarises the current status of knowledge of the plants of Kuwait. As a prerequisite to applying the molecular methods discussed in the following chapters, it is necessary to generate a checklist with revised orders and family names in line with Angiosperm Phylogeny Group (APG IV, 2016) and provide an update on nomenclatures to understand the status of the flora. The following revision includes orders and family names, nomenclatures, authorities, plant status and a floristic analysis. Plant status refers to each species of the flora as being either native (establishes naturally in the wild), cultivated (by humans) or introduced as weeds (could not establish it's life cycle in the wild). The floristic analyses will include the grouping of plants at different taxonomic levels (i.e. order, family, genera and species level).

For the purpose of conserving the knowledge of the plant biodiversity of the flora of Kuwait, it is very important to clarify the status of all species and to distinguish between natives, those non-natives that have become established in the wild, weedy and cultivated species.

#### 2.1 Current knowledge of the flora of Kuwait

Boulos and Al-Dosari published the most recent checklist of the flora of Kuwait (1994) based on a review of more than 20 publications including Daoud, (1985), Al-Rawi (1987), Dickson and Macksad (1973), Halwagy and Macksad (1972). In this publication 374 species in 55 families are recorded. The largest families are Gramineae (Poaceae) (70 species), Compositae (Asteraceae) (47 species), Cruciferae (Brassicaceae) (34 species), Leguminosae (Fabaceae) (29 species), Amaranthaceae (including Chenopodiaceae) (27 species) and Caryophyllaceae (20 species). The largest genera are *Astragalus* (9 species), *Plantago* (8 species), *Bromus* (5 species) *Erodium* (5 species) *Helianthemum* (4 species) and Launea (4 species).

An analysis of life-forms show that there are 256 annual species; 83 herbaceous perennials; 34 under-shrubs and shrubs, and only one tree, *Vachellia gerrardii* (*=Acacia pachyceras*) which is locally known as 'Talha' (Boulos and Al-Dosari, 1994; Daoud, 1985; Al-Rawi, 1987). This single specimen of *Vachellia* survives today inside a fenced protected area, Sabah Al-Ahmad Nature Reserve (SSNR), which lies in the north-east of Kuwait (Figure 2.1).



Figure 2.1 Vachellia gerrardii 'Talha' (Source: M Abdullah, 16-02-2012)

The outstanding contribution to the flora of Kuwait to date is the two volumes of the Flora of Kuwait published by Daoud (1985) and Al-Rawi (1987). Volume one covers the dicots in part (Daoud, 1985) and volume two covers Compositae and the monocots (Al-Rawi, 1987). Following the two volumes, Boulos (1988) published 'The Weed Flora of Kuwait' which included 84 species of weedy plants.

## 2.1.2 Botanical Exploration of Kuwait

A biographical index of botanists and plant collectors in the Arabian Peninsula has been compiled and presented by Blatter (1913-1936) and Wickens (1982). These include 20 individuals who have made collections in Kuwait. Table 2.1 shows a list of collector's names, year of collection and herbarium where their collections are deposited (Table. 2.1). Sadly, the collections deposited at Kuwait University Herbarium (KTUH) were looted at the time of the Iraqi invasion during the first Gulf War in 1990 and had not been recovered. Before the invasion, KTUH held about 22,000 collections covering the entire Arabian Peninsula. In the years following the invasion extensive field surveys, covering the whole country, were initiated and now the herbarium holds more than 15,500 well-documented specimens covering most species recorded from Kuwait and collected during the period from 1991 to the present day.

The earliest botanical collection from Kuwait is believed to have been made by Lewis Pelly with William Colvill (1865) who collected 60 specimens from their journey to Kuwait. Their collections were published by Kew Gardens (Burtt and Lewis, 1949). Sir Percy Cox made another collection known to include 100 specimens from Kuwait with Lt. Col. S. G. Knox and Lt. Col. Stuart George in the Jal Al-Zor Hills in about 1907 and was later published by Gilbert Carter (1917).

The largest collections were made by Violet Penelope Dickson, who collected about 600 herbarium specimens from Kuwait and neighbouring countries and sent them to Kew Gardens where Mr. A.R. Horwood made determinations. Dickson published 'The Wild Flowers of Kuwait and Bahrain' (1955). She lists 270 species from Kuwait and includes a number of maps and illustrations (Dickson, 1955).

| Collectors name                                                         | Expedition<br>Year | Herbarium<br>(acronym)                                                            |
|-------------------------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------|
| Lt. Col. Sir Lewis Pelly with<br>William Henry Colvill                  | 1865               | Royal Botanic Gardens (K)                                                         |
| Gen. Sir Percy Cox with<br>Lt. Col S.G. Knox,<br>Lt. Col. Stuart George | 1907               | The Natural History Museum (BM)                                                   |
| William Henry Irvine<br>Shakespeare                                     | 1914               | The Natural History Museum (BM)                                                   |
| Hazem Sulaiman Daoud                                                    | 1930-1976          | Cairo University                                                                  |
| Violet Penelope Dickson                                                 | 1935-65            | Royal Botanic Gardens (K)                                                         |
| T. Wilson                                                               | 1935               | Royal Botanic Gardens (K)                                                         |
| Henry Field                                                             | 1950               | Peabody Museum                                                                    |
| A.L. Temple                                                             | 1950               | The Natural History Museum                                                        |
| Assad Macksad                                                           | 1961-1970          | (BM)<br>Kuwait University (KTUH)                                                  |
| Malcolm Dixon Kernick                                                   | 1961-65            | Kuwait University (KTUH)                                                          |
| Mrs Katherine J. Macintyre                                              | 1971               | Royal Botanic Gardens (E)                                                         |
| Loutfy Boulos                                                           | 1973-95            | Royal Botanic Gardens (K)                                                         |
| Mohammed Nazir Sankary                                                  | 1976-77            | Royal Botanic Gardens (E)                                                         |
| Mohammed Halwagy                                                        | 1967-70            | Royal Botanic Gardens (K),                                                        |
| Ali Al-Rawi                                                             | 1979-89            | Kuwait University (KTUH)<br>Royal Botanic Gardens (E) and<br>(K), Geneva Herbaria |
| Peter Show Green                                                        | 1981               | catalogue (G)<br>Royal Botanic Gardens (E) and                                    |
| Ian Charleson Hedge                                                     | 1981               | <ul><li>(K)</li><li>Royal Botanic Gardens (E) and</li><li>(K)</li></ul>           |
| Samira Omar                                                             | 1982-              | Kuwait University (KTUH)                                                          |

# Table 2.1 List of botanists and plant collectors made from Kuwait

#### 2.2 Methods

The checklist is based on a review of all the major publications which have contributed towards the flora of Kuwait and the results of recent fieldwork. It provides an up to date nomenclature, authorities, synonyms and plant status. Classification of the orders and families follows Angiosperm Phylogeny Group (APG IV, 2016). Species names to follow largely the accepted names and synonyms as treated under Kew's World Checklist series (http://apps.kew.org/wcsp/), Tropicos (www.tropicos.org) and The Plant List (www.theplantlist.org). For some taxa, the Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity (http://ww2.bgbm.org/EuroPlusMed/) and International Legume Database and Information Services - ILDIS (http://www.ildis.org/). For Salsoleae (Amaranthaceae) using Akhani et al. (2015). For families of monocotyledonous plants, accepted names and synonyms as given in eMonocot (http://e-monocot.org/). Also, other publications from surrounding regions have been consulted to bring regional consistency to the taxonomy. Author names format will be cited following Brummitt and Powell index (1992). The checklist covers all species of vascular plants (flowering plants and ferns) recorded growing in the State of Kuwait. Including all native plants, introduced plants (intentionally or accidentally by a human) which are now naturalised. The list also includes weeds and commonly cultivated species that are not yet known to be widely naturalised but might become so in the future. The checklist excludes crops and ornamental species since they are mainly restricted to agricultural farms and plant nurseries for economical production. The following numbered references [1-14] are referred to in the checklist (Table 2.2).

| Referral |                                                                                                                                               |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| No.      | References                                                                                                                                    |
| 1        | Halwagy, R. and Macksad, A. (1972) A contribution towards a Flora of the State                                                                |
|          | of Kuwait and the Neutral Zone. Bot. J. Linn. Soc., 65: 61-79.                                                                                |
| 2        | Daoud, H. S. (1985) Flora of Kuwait vol. 1: Dicotyledoneae. London, KPI and                                                                   |
|          | Kuwait University. Pg. 224.                                                                                                                   |
| 3        | Al-Rawi, A. (1987) Flora of Kuwait vol. 2: Compositae and Monocotyledoneae.                                                                   |
|          | Kuwait University. Pg. 225-455                                                                                                                |
| 4        | Boulos, L. (1988) The Weed flora of Kuwait. Kuwait University pg. 175                                                                         |
| 5        | Boulos, L. and Al-Dosari, M. (1994) Checklist of the flora of Kuwait. J. Univ.                                                                |
|          | Kuwait (Sci.) 21: 203-217                                                                                                                     |
| 6        | Mathew, K.T. et al. (2012) Eleven new weeds in Kuwait. Kuwait J. Sci. Eng. 39                                                                 |
|          | (1A) pp. 169-192                                                                                                                              |
| 7        | Miller, A.G. and Cope, T.A. (1996) <i>Flora of the Arabian Peninsula and Socotra</i> . Vol. 1, Edinburgh University Press. Pp 586             |
| 8        | Cope, T.A. (2007) Flora of the Arabian Peninsula and Socotra vol. 5. Edinburgh University Press. Pp 387                                       |
| 9        | Akhani, H. (2015) Plants and Vegetation of North-West Persian Gulf. University of Tehran Press. Pp 502                                        |
| 10       | World Checklist of Selected Plant Families. (2016) Facilitated by the Royal Botanic Gardens, Kew. (online: <u>http://apps.kew.org/wcsp/</u> ) |
| 11       | Tropicos (2016) Missouri Botanical Garden. (online: <u>www.tropicos.org</u> )                                                                 |
| 12       | The Plant List (2013). Version 1.1 Published on the internet ( <u>www.plantlist.org</u> )                                                     |
| 13       | Euro+Med PlantBase (2006) The information resources for Euro-Mediterranean plant diversity (online: <u>http://ww2.bgbm.org/EuroPlusMed/</u> ) |
| 14       | eMonocot (2017). A web-based treatment for monocot plants of the world. ( <u>http://e-monocot.org/</u> )                                      |

# Table 2.2 Major references referred to in the checklist of the flora of Kuwait

Several questions should be raised when dealing with alien species: 1) whether the taxon is native or alien to the region? 2) What is its position in the invasion process? 3) What is the degree of its naturalisation and possible invasion?

To understand the plant status of native origin, invasive aliens, and naturalised plants, the following definitions were adopted from Pysek et al. (2004):

**Native plants:** Taxa found established in the wild at a geographical area for many years without altering its condition and without the involvement or intervention of humans.

**Naturalised plants:** Alien plants that adapt in the wild and capable of independent growth without human involvement.

**Weeds or invasive aliens:** Taxa in a given area arrived or introduced and could not establish its growth without aid and its presence restricted to a limited environment (i.e. receives water by irrigation, located near agricultural areas, gardens, etc.).

**Naturalised weed by cultivation:** Taxa introduced by the involvement of human outside its normal geographical range and later able to adapt in the wild and undergoes its life cycles without any aid.

**Cultivated plants:** Taxa introduced by human involvement and requires continuous source of water and fertilisation.

In the checklist the following categories of plant status have been used: native (N), naturalised weed (NW), naturalised weed by cultivation (NWC), weeds (W) or cultivated plants (C). This part of categorising plant status may be irrelevant for the purpose of DNA barcoding the flora of Kuwait (which contains all the plants that are present regionally) but certainly considered in conservation studies and restoration ecology projects.

#### 2.3 Results

The following checklist is arranged alphabetically by the family names with angiosperms first followed by a single gymnosperm (*Ephedra alata*) and a single fern (*Ophioglossum polyphyllum*) (Table 2.3). The currently accepted scientific names for each species, with their authority citations followed by synonyms (which have been used in Kuwaiti publications) are listed in Table 2.3. Numbers inside the square brackets refer to references listed in Table 2.2 which provide the source of the record. The collectors' number and herbarium where the specimen is deposited is given for new records, not covered in the references. Finally, the current plant status is represented by the following abbreviations: N, NW, NWC, C and W (Table 2.3).

| Table 2.3. Checklist of the flora of Kuwai | it |
|--------------------------------------------|----|
|--------------------------------------------|----|

|                                                                                | <u>.</u>     |
|--------------------------------------------------------------------------------|--------------|
| MAGNOLIOPHYTA [ANGIOSPERMAE]<br>ACANTHACEAE                                    |              |
| ACANTACEAE<br>Avicennia marina (Forssk.) Vierh. [MTA329[E]]                    | <b>C</b> *   |
| Avicennia marma (POISSK.) Vieni. [WITA529[E]]                                  | C.           |
| AIZOACEAE                                                                      |              |
| Aizoanthemum hispanicum (L.) H.E.K. Hartmann [12]. Syn. Aizoon hispanicum      | Ν            |
| L. [2,5,7]                                                                     | 11           |
| Aizoon canariense L. [2,5,7]                                                   | Ν            |
| Mesembryanthemum nodiflorum L. [1,2,5,7]                                       | N            |
|                                                                                | 1            |
| AMARANTHACEAE [CHENOPODIACEAE]                                                 |              |
| Aerva javanica (Burm.f.) Juss. Ex J.A. Schult. [6,7]                           | W            |
| Agathophora iraqensis Botsch. [11, 12, 13]. Syn. Agathophora alopecuroide      | Ν            |
| (Delile) Fenzl ex Bunge [5,7]; Halogeton alopecuroides Moq. [13]               |              |
| Amaranthus graecizans L. [4,5,7]. Syn. Amaranthus angustiloius Lam. [4]        | $\mathbf{W}$ |
| Amaranthus hybridus L. [5,7]                                                   | $\mathbf{W}$ |
| Amaranthus lividus L. [4,5,7]                                                  | $\mathbf{W}$ |
| Anabasis lachnantha Aellen & Rech.f. [5,7]                                     | Ν            |
| Anabasis setifera Moq. [1,2,5,7]                                               | Ν            |
| Atriplex dimorphostegia Kar. & Kir. [2,5,7]                                    | Ν            |
| Atriplex leucoclada Boiss. var. inamoena (Aellen) Zohary [1,2,5,7,11,13]. Syn. | Ν            |
| Atriplex inamoena Aellen [13]                                                  |              |
| Bassia eriophora (Schrad.) Asch. [1,4,5,7]                                     | $\mathbf{W}$ |
| Bassia muricata (L.) Asch. [1,2,4,5,7]                                         | NW           |
| Bassia scoparia (L.) A.J. Scott [5,7]. Syn.Kochia scoparia (L.) Schrad. [5]    | W            |
| Beta vulgaris L. [4,5,7]                                                       | W            |
| Bienertia sinuspersici Akhani [9,11,12]. Syn. Bienertia cycloptera auctt. non  | Ν            |
| Bunge ex. Boiss. [1,2,5,7]                                                     |              |
| Caroxylon cyclophyllum (Baker) Akhani & Roalson [13]. Syn.Salsola              | Ν            |

| avalaphylla Bakar [1,5,7]                                                                                         |        |
|-------------------------------------------------------------------------------------------------------------------|--------|
| cyclophylla Baker [1,5,7]<br>Caroxylon imbricatum (Forssk,) Akhani & Roalson [11,12]. Syn. Salsola                | Ν      |
| imbricata Forssk. [5,7]; Chenopodium baryosmum Roem. & Schult. [11,12];                                           | 11     |
| Salsola baryosma (Roem. & Schult.) Dandy [2]                                                                      |        |
| Caroxylon jordanicola (Eig.) Akhani & Roalson [11,12,13]. Syn. Salsola jordanicola                                | Ν      |
| Eig [1,2,5,7]                                                                                                     |        |
| Chenopodiastrum murale (L.) S.Fuentes, Uotila & Borsch [11,13].                                                   | NW     |
| Syn. Chenopodium murale L. [2,5,7]                                                                                |        |
| Chenopodium album L. [4,5,7]                                                                                      | W      |
| Chenopodium ficifolium Sm. [6]                                                                                    | W      |
| Chenopodium glaucum L. [5,7]                                                                                      | W      |
| Chenopodium opulifolium Schrad. ex Koch & Ziz [5,7]                                                               | W      |
| Cornulaca aucheri Moq. [2,5,7]. Syn. Cornulaca leucacantha Charif & Aellen [2]                                    | N      |
| Cornulaca monacantha Delile [5,7]<br>Halocnemum strobilaceum (Pall.) M. Beib. [2,5,7]                             | N<br>N |
| Halopeplis perfoliata (Forssk.) Asch. & Bunge [11,12]                                                             | N      |
| Halothamnus iraqensis Botsch. [5,7]                                                                               | N      |
| Hammada salicornica (Moq.) Iljin [5,11,13]. Syn. Caroxylon salicornicum Moq.                                      | N      |
| [11,12,13]; Haloxylon salicornicum (Moq.) Bunge ex Boiss. [2,5,7].                                                |        |
| Salicornia perennans Willd. [11,12,13]. Syn. Salicornia europaea auct. non L.                                     | Ν      |
| [2,5,7]; Salicornia herbacea L. [2,11,12,13]                                                                      |        |
| Seidlitzia rosmarinus Bunge ex Boiss. [2,5,7]                                                                     | Ν      |
| Suaeda aegyptiaca (Hasselq.) Zohary [5,7]. Syn. Schanginia aegyptiaca (Hasselq.)<br>Allen [1,2]                   | Ν      |
| Suaeda vermiculata Forssk. Ex J.F. Gmel. [2,5,7]. Syn. Suaeda fruticosa Forssk. ex J.F. Gmel. [5]                 | Ν      |
| Traganum nudatum Delile [1,2,5,7]                                                                                 | Ν      |
| AMARYLLIDACEAE                                                                                                    |        |
| Allium longisepalum Bertol. [11,12,13,14]. Syn. Allium laceratum Boiss. & Noe. [11,12,13,14]                      | Ν      |
| Allium sindjarense Boiss. & Hausskn. ex Regel [3,5,14]                                                            | Ν      |
| Allium sphaerocephalum L. [3,5,12]                                                                                | Ν      |
| APIACEAE [UMBELLIFERAE]                                                                                           |        |
| Ammi majus L. [4,5]                                                                                               | W      |
| Anisosciadium isosciadium Bornm. [5]                                                                              | Ν      |
| Anisosciadium lanatum Boiss. [2,5]                                                                                | Ν      |
| Bupleurum semicompositum L. [2,5]                                                                                 | Ν      |
| Ducrosia anethifolia (DC.) Boiss. [5]                                                                             | N      |
| Pituranthos triradiatus (Hochst.) Asch. & Schweinf. [11,13]. Syn. Deverra triradiata Hochst. ex Boiss. [5,11,13]. | Ν      |
| APOCYNACEAE                                                                                                       |        |
| Calotropis procera (Aiton) W. T. Aiton [5]                                                                        | Ν      |
| ASPARAGACEAE                                                                                                      |        |
| Bellevalia saviczii Woronow [5]                                                                                   | Ν      |
| Dipcadi erythraeum Webb & Berth. [3,5]                                                                            | Ν      |
| ASPHODELACEAE                                                                                                     |        |
| Asphodelus tenuifolius Cav. [3,5]                                                                                 | Ν      |
| Asphodelus viscidulus Boiss. [1,3,5]                                                                              | Ν      |

| ASTERACEAE [COMPOSITAE]                                                                                           | <b>N</b> 7   |
|-------------------------------------------------------------------------------------------------------------------|--------------|
| Aaronsohnia factorovskyi Warb. & Eig [3,5]                                                                        | N            |
| Acantholepis orientalis Less. [3,5]                                                                               | W            |
| Achillea fragrantissima (Forssk.) Sch. Bip. [3,5]                                                                 | N<br>N       |
| Anthemis melampodina Delile subsp. Deserti Eig. [12,13]. Syn. Anthemis deserti Boiss. [3,5,13]                    | Ν            |
| Anthemis pseudocotula Boiss [3,4,5]                                                                               | NW           |
| Anvillea garcinii (Burm.f.) DC. [3,5]                                                                             |              |
| Artemisia sieberi Besser [11,12,13]. Syn. Seriphidium sieberi (Besser) K.                                         | N<br>N       |
| Bermer & Humphries ex Y.R.Ling [13]; Artemisia herba-alba Asso var.                                               | 1            |
| laxiflora Boiss. [3,5,13]                                                                                         |              |
| Artemisia scoparia Waldst. & Kit. [1,3,5]                                                                         | Ν            |
| Aster squamatus (Spreng.) Hieron. [4,5]                                                                           | NW           |
| Atractylis cancellata L. [3,5]                                                                                    | N            |
| Atractylis carduus (Forssk.) C. Chr. [3,5]                                                                        | N            |
| Calendula arvensis L. [3,4,5]                                                                                     | NW           |
| Calendula tripterocarpa Rupr. [5]                                                                                 | N            |
| Carduus pycnocephalus L. [3,5]                                                                                    | N            |
| Carthamus oxyacantha M. Bieb. [3,5]                                                                               | N            |
| Centaurea bruguierana (DC.) HandMazz. [3,5]                                                                       | N            |
| Centaurea mesopotamica Bornm. [5]                                                                                 | N            |
| Centaurea pseudosinaica Czerep. [3,5]                                                                             | Ν            |
| Chrysanthemum coronarium L. [5]                                                                                   | W            |
| Cichorium endivia L. [5]                                                                                          | W            |
| Erigeron bonariensis L. [12,12,13]. Syn. Conyza bonariensis (L.) Cronquist [3,4,5]                                | W            |
| Echinops polyceras Boiss. [11,12,13]. Syn. Echinops blancheanus Boiss. [3,5]                                      | Ν            |
| Filago pyramidata L. [3,5]                                                                                        | Ν            |
| Flaveria trinervia (Spreng.) C. Mohr [5]                                                                          | W            |
| Gnaphalium uliginosum L. [6]                                                                                      | $\mathbf{W}$ |
| Gymnarrhena micrantha Desf. [3,5]                                                                                 | Ν            |
| Ifloga spicata (Forssk.) Sch. Bip. [3,5]                                                                          | Ν            |
| Koelpinia linearis Pall. [3,5]                                                                                    | Ν            |
| Lactuta serriola L. [5]                                                                                           | W            |
| Launaea angustifolia (Desf.) Kuntze [1,3,5]                                                                       | Ν            |
| Launaea capitata (Spreng.) Dandy [1,3,5]                                                                          | N            |
| Launaea mucronata (Forssk.) Muschl. [3,5]                                                                         | NW           |
| Launaea nudicaulis (L.) Hook.f. [3,5]                                                                             | N            |
| Leontodon laciniatus (Bertol.) Widder [1,3,5]                                                                     | N            |
| Matricaria aurea (Loefl.) Sch. Bip. [3,5]                                                                         | W            |
| Picris babylonica HandMazz. [3,5]                                                                                 | N            |
| Pallenis hierochuntica (Michon) Greuter [11,12]. Syn. Asteriscus                                                  | Ν            |
| hierochunticus (Michon) Wiklund [5]; Asteriscus pygmaeus (DC.) Coss.                                              |              |
| & Durieu [1,3]                                                                                                    | N            |
| Pulicaria undulata (L.) C.A. Mey. [5]. Syn. Pulicaria crispa (Forssk.) Oliv. [3,5]                                | N            |
| Reichardia tingitana (L.) Roth [3,5]. Syn. Picridim tingitanum (L.) Desf. [1]                                     | N            |
| Rhanterium epapposum Oliv. [3,5]                                                                                  | N            |
| Scorzonera papposa DC. [3,5]                                                                                      | N<br>N       |
| Scorzonera tortuosissima Boiss. [3,5]<br>Senecio glaucus subsp. Coronopifolius (Maire) Alexander [11, 12, 13] Syn | N<br>NW      |
| Senecio glaucus subsp. Coronopifolius (Maire) Alexander [11,12,13]. Syn.<br>Senecio desfontainei Druce [1,3]      | NW           |
| Senecio vulgaris L. [5]                                                                                           | W            |
| Sonchus oleraceus L. [3,4,5]                                                                                      | W            |
|                                                                                                                   | **           |

| Sonchus tenerrimus L. [3,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | W      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Urospermum picroides (L.) F.W. Schmidt [4,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W      |
| Xanthium strumarium L. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W      |
| BORAGINACEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| Arnebia decumbens (Vent.) Coss. & Kralik [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ν      |
| Arnebia linearifolia DC. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ν      |
| Arnebia tinctoria Forssk. [5]. syn. Arnebia tetrastigma Forssk. [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ν      |
| Echium angustifolium Mill. Subsp. Serceum (Vahl) Klotz. [5,11,12,13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ν      |
| Gastrocotyle hispida (Forssk.) Bunge [11,12,13] Syn. Anchusa hispida Forssk. [5,11,12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ν      |
| Heliotropium bacciferum Forssk. [5,11,12,13]. Syn. Heliotropium ramosissimum (Lehm.) DC. [12,13].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν      |
| Heliotropium kotschyi (Bunge) Gürke [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ν      |
| Heliotropium europaeum L. [12,13]. Syn. Heliotropium ellipticum Ledeb. [12];<br>Heliotropium lasiocarpum Fisch. & C.A.Mey. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W      |
| Lappula spinocarpos (Forssk.) Asch., Verhandl. [1,2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ν      |
| Moltkiopsis ciliata (Forssk.) I.M. Johnst. [1,2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N      |
| Neatostema apulum (L.) I.M. Johnst. [11,12,13]. Syn. Myosotis apula L. [13];                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N      |
| Lithospermum apulum (L.) Vahl. [13].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1    |
| Ogastemma pusillum (Coss. & Durieu ex Bonnet & Barratte) Brummitt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν      |
| [5,11,12,13]. Syn. Megastoma pusillum Coss. & Durieu ex Bonnet &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 1    |
| Barratte [5,11,13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| BRASSICACEAE [CRUCIFERAE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| Alyssum homalocarpum (Fisch. & Mey.) Boiss. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ν      |
| Alyssum linifolium Steph. Ex Willd. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N      |
| Anastatica hierochuntica L. [1,2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N      |
| Brassica juncea (L.) Czern. & Coss. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C      |
| Brassica Juncea (L.) Czerni. & Coss. [2,3,7]<br>Brassica tournefortii Gouan [2,4,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NV     |
| Cakile arabica Velen. & Bornm. [1,2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N      |
| Capsells bursa-pastoris (L.) Medik. Pflan. [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | W      |
| Cardaria draba (L.) Desv. [4,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | W      |
| Carrichtera annua (L.) DC. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N      |
| Coronopus didymus (L.) Sm. [4,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NV     |
| Descurainia sophia (L.) Webb ex Prantl [5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W      |
| Diplotaxis acris (Forssk.) Boiss. [1,2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N<br>N |
| Diplotaxis harra (Forssk.) Boiss. [1,2,5,7]<br>Eremobium aegyptiacum (Spreng.) Asch. & Schwienf. Ex Boiss. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |
| Eruca sativa Mill. [2,4,5,7].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NW     |
| Farsetia aegyptia Turra [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N      |
| Farsetia burtoniae Oliv. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N      |
| Horwoodia dicksoniae Turrill [1,2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N      |
| Lepedium sativum L. [4,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C      |
| Lepidium aucheri Boiss. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N      |
| Leptaleum filifolium (Willd.) DC. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N      |
| Malcolmia africana (L.) R. Br. [5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W      |
| Malcolmia grandiflora (Bunge) Kuntze [5,7]<br>Maresia pygmaea (Delile) O.E. Schultz [2,7]. Syn. Malcolmia pygmaea (Delile)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N<br>N |
| Boiss.[5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14     |
| Matthiola longipetala (Vent.) DC. [2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ν      |
| Neotorularia torulosa (Desf.) Hedge & J.Léonard [5,7]. Syn. Torularia torulosa (Desf.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ν      |
| O.E. Schultz [2]<br>Notoceras bicorne (Aiton) Amo [1,2,5,7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N      |
| $\mathbf{M}(\mathbf{U}_{i}) = \mathbf{M}(\mathbf{U}_{i}) + \mathbf{M}$ | IN     |

| Savignya parviflora (Delile) Webb [1,2,5,7]                                                                                              | Ν           |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Schimpera arabica Hochst. & Steud. ex Boiss. [2,5,7]                                                                                     | N           |
| Sinapis arvensis L. [4,5,7]                                                                                                              | W           |
| Sisymbrium erysimoides Desf. [2,5,7]                                                                                                     | W           |
| Sisymbrium irio L. [2,4,5,7]                                                                                                             | N           |
| Sisymbrium orientale L. [2,4,5,7]                                                                                                        | N           |
| Sisymbrium septulatum DC. [2,5,7]<br>Zilla spinosa (Turra) Prantl. [2,5]                                                                 | N<br>N      |
| CAPRIFOLIACEAE                                                                                                                           |             |
| Lomelosia olivieri (Coult.) Greuter & Burdet [11,12]. Syn.Scabiosa olivieri<br>Coult. [1,2,5,11,12]                                      | Ν           |
| Lomelosia palaestina (L.) Raf. [11,12]. Syn.Scabiosa palaestina L. [2,5,11,12]                                                           | Ν           |
| Valerianella dufresnia Bunge ex. Boiss. [2,5]                                                                                            | Ν           |
| CARYOPHYLLACEAE                                                                                                                          | •           |
| Gymnocarpos sclerocephalus (Decne.) Thulin. [11,12]. Syn. Sclerocephalus arabicus Boiss [1,2,5,7,12]; Sclerocephalus aucheri Walp. [12]. | Ν           |
| Gypsophila capillaris (Forssk.) C. Chr. [2,5,7]. Syn. Gypsophila antari Post & Beauverd [1]                                              | Ν           |
| Herniaria hemistemon J. Gay [2,5,7]                                                                                                      | Ν           |
| Herniaria hirsuta L. [2,5,7]                                                                                                             | Ν           |
| Loeflingia hispanica L. [2,5,7]                                                                                                          | Ν           |
| Paronychia arabica (L.) DC. [2,5,7]                                                                                                      | Ν           |
| Polycarpaea repens (Forssk.) Asch. & Schweinf. [2,5,7]                                                                                   | Ν           |
| Polycarpaea robbairea (Kuntze) Greuter & Burdet [5,7]. Syn. Robbairea delileana<br>Milne-Redhead [1,2]                                   | Ν           |
| Polycarpon tetraphyllum (L.) L. [2,5,7]                                                                                                  | Ν           |
| Pteranthus dichotomus Forssk. [2,5,7]                                                                                                    | Ν           |
| Silene arabica Boiss. [1,2,5,7]                                                                                                          | Ν           |
| Silene arenosa C. Koch [5,7]                                                                                                             | Ν           |
| Silene conoidea L. [4,5,7]                                                                                                               | W           |
| Silene villosa Forssk. [1,2,5,7]                                                                                                         | Ν           |
| Spergula fallax (Lowe) H.L. Krause [1,2,5,7]                                                                                             | N           |
| Spergularia diandra (Guss.) Boiss. [7]. Syn. Spergularia diandra (Guss.) Heldr. & Sart. [1,2,5]                                          | Ν           |
| Spergularia marina (L.) Besler [5,7]. Syn. Spergularia marina (L.) Griseb. [5]                                                           | Ν           |
| Stellaria media (L.) Vill. [4,7]                                                                                                         | W           |
| Telephium sphaerospermum Boiss. [5]                                                                                                      | Ν           |
| Vaccaria hispanica (Mill.) Rauschert [4,5,7]. Syn. Vaccaria pyramidata Medik. [1]                                                        | NV          |
| CISTACEAE                                                                                                                                | <b>™</b> .⊺ |
| Helianthemum kahiricum Delile [2,5]                                                                                                      | N           |
| Helianthemum ledifolium (L.) Mill. [2,5]                                                                                                 | N<br>N      |
| Helianthemum lippii (L.) Dum. Cours. [2,5]<br>Helianthemum salicifolium (L.) Mill. [2,5]                                                 | N<br>N      |
|                                                                                                                                          | IN          |
| CONVOLVULACEAE                                                                                                                           | 11          |
| Convolvulus arvensis L. [4,5]                                                                                                            | W           |
| Convolvulus cephalopodus Boiss. [5]. Syn. Convolvulus buschiricus Bornm. [1,2,5]                                                         | Ν           |
| Convolvulus oxyphyllus Boiss. [2,5]                                                                                                      | Ν           |
| Convolvulus pilosellifolius Desr. [1,2,4,5]                                                                                              | NV          |

| Convolvulus prostratus Forssk. [11,12]. Syn. Convolvulus microphyllus Sieb.<br>Ex Spreng. [11,12]; Convolvulus desertii Hochst. & Steud [11,12] | NW     |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Cressa cretica L. [2,5]                                                                                                                         | Ν      |
| Cuscuta planiflora Ten. [1,2,5]                                                                                                                 | Ν      |
|                                                                                                                                                 |        |
| CRASSULACEAE                                                                                                                                    |        |
| Crassula alata (Viv.) A. Berger [5,7]                                                                                                           | Ν      |
| CUCURBITACEAE                                                                                                                                   |        |
| Citrullus colocynthis (L.) Schard. [2,5] Cucumis colocynthis L. [2]                                                                             | Ν      |
|                                                                                                                                                 |        |
| CYMODOCEACEAE                                                                                                                                   |        |
| Halodule uninervis (Forssk.) Asch. [5]                                                                                                          | Ν      |
|                                                                                                                                                 |        |
| CYNOMORIACEAE                                                                                                                                   | NT     |
| Cynomorium coccineum L. [2,5]                                                                                                                   | Ν      |
| CYPERACEAE                                                                                                                                      |        |
| Cyperus conglomeratus Rottb. [5] Cyperus aucheri Jaub. & Spach [3]                                                                              | Ν      |
| Cyperus rotundus L. [4,5]                                                                                                                       | W      |
|                                                                                                                                                 |        |
| EUPHORBIACEAE                                                                                                                                   |        |
| Chrozophora tinctoria (L.) Raf. [5] Chrozophora verbascifolia (Willd.) A. Juss.[1,2]                                                            | Ν      |
| Euphorbia densa Schrenk [1,2,5]                                                                                                                 | N      |
| Euphorbia granulata Forssk. [1,2,5]                                                                                                             | N      |
| Euphorbia grossheimii (Prokh.) Prokh. [5]. Syn. Euphorbia isthmia Täckh [2]<br>Euphorbia helioscopia L. [4,5]                                   | W<br>W |
| Euphorbia hirta L. [4,5]                                                                                                                        | w      |
| Euphorbia indica Lam. [4,5]                                                                                                                     | Ŵ      |
| Euphorbia peplus L. [4,5]                                                                                                                       | W      |
| Euphorbia serpens Kunth [5]                                                                                                                     | Ν      |
|                                                                                                                                                 |        |
| FABACEAE [LEGUMINOSAE]                                                                                                                          | NI     |
| Alhagi graecorum Boiss. [5]. Syn. Alhagi maurorum Medik. [2]<br>Astragalus annularis Forssk. [2,5]                                              | N<br>N |
| Astragalus arpilobus Kar. & Kir. Subsp. Hauarensis (Boiss.) Podlech [11,12]                                                                     | N      |
| Syn. Astragalus hauarensis Boiss. [2,5]                                                                                                         |        |
| Astragalus bombycinus Boiss. [2,5]                                                                                                              | Ν      |
| Astragalus corrugatus Bertol. [1,2,5,12]. Syn. Astragalus tenuirugis Boiss. [12]                                                                | Ν      |
| Astragalus dactylocarpus Boiss. [1,2]                                                                                                           | Ν      |
| Astragalus hamosus L. [MTA280[E]]                                                                                                               | N      |
| Astragalus schimperi Boiss. [2,5]                                                                                                               | N      |
| Astragalus sieberi DC. [5]                                                                                                                      | N<br>N |
| Astragalus spinosus (Forssk.) Muschl. [2,5]<br>Astragalus tribuloides Delile [2,5]                                                              | N<br>N |
| Coronilla scorpioides (L.) Koch [5]                                                                                                             | W      |
| Hippocrepis areolata Desv. [5]. Syn. Hippocrepsis bicontorta Loisel. [2]                                                                        | N      |
| Hippocrepis unisiliquosa L. [2,5]                                                                                                               | N      |
| Lathyrus aphaca L. [6]                                                                                                                          | W      |
| Lotus halophilus Boiss. & Spruner [2,5]                                                                                                         | Ν      |
| Medicago laciniata (L.) Mill. [2,5]                                                                                                             | Ν      |
| Medicago polymorpha L. [4,5]                                                                                                                    | W      |
| Medicago rotata Boiss. [5]                                                                                                                      | NW     |

| Medicago sativa L. [MTA077[E]]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | С       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Melilotus alba Medik. [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W       |
| Melilotus indica (L.) All. [1,2,5]. Syn. Melilotus parviflora Desf. [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N       |
| Onobrychis ptolemaica (Delile) DC. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N       |
| Ononis reclinata L. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N       |
| Ononis serrata Forssk. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N<br>C* |
| Prosopis fracta (Banks & Sol.) J.F.Macbr. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C*      |
| Prosopis juliflora (Sw.) DC. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C*      |
| Scopiurus muricatus L. [4,5]<br>Trifolium lannacaum I. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W<br>W  |
| Trifolium lappaceum L. [5]<br>Trifolium resupinatum L. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W       |
| Trigonella anguina Delile [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N       |
| Trigonella hamosa L. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N       |
| Trigonella stellata Forssk. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N       |
| Vachellia gerrardii (Benth.) P.J.H. Hurter [11,12]. Syn. Acacia pachyceras O.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N       |
| Schwartz [5,12]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11      |
| Vicia sativa L. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | С       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ũ       |
| FRANKENIACEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| Frankenia pulverulenta L. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ν       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| GERANIACEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Erodium bryoniifolium Boiss. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ν       |
| Erodium ciconium (L.) L'Hér. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ν       |
| Erodium cicutarium (L.) L'Hér. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ν       |
| Erodium glaucophyllum (L.) L'Hér. [1,2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ν       |
| Erodium laciniatum (Cav.) Willd. [1,2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ν       |
| Monsonia nivea (Decne.) Decne ex Webb [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ν       |
| HYDROCHARITACEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| Halophila ovalis (R. Br.) Hook.f. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ν       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| IRIDACEAE<br>Gladiolus italicus Mill. [3,4,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NW      |
| Moraea sisyrinchium (L.) Ker Gawl. [12,13]. Syn. Gynandriris sisyrinchium (L.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N       |
| Parl. [3,5]; Iris sisyrinchium L. [3,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       |
| 1  and  [5,5],  in subsymmetric in the constant of the subsymmetric in the subs |         |
| IXIOLIRIACEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| Ixiolirion tataricum (Pall.) Schult. & Schult. f. [3,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ν       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
| JUNCACEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Juncus rigidus Desf. [3,5]. Syn. Juncus arabicus (Asch. & Buch.) Adams [1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ν       |
| LAMIACEAE [LABIATAE]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| Lallemantia royleana (Benth.) Benth. [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W       |
| Salvia aegyptiaca L. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N       |
| Salvia lanigera Poir. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N       |
| Salvia spinosa L. [2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N       |
| Teucrium oliverianum Ging. Ex Benth. [1,2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N       |
| Teucrium polium L. [1,2,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11      |
| LILIACEAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |
| Gagea reticulata (Pall.) Schult. & Schult.f. [3,5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ν       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |

| MALVACEAE<br>Althaea ludwigii L. [2,5]<br>Hibiscus trionum L. [6]<br>Malva nicaeensis All. [5]<br>Malva parviflora L. [2,4,5]                                                                                                  | N<br>W<br>W<br>N |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| NITRARIACEAE<br>Nitraria retusa (Forssk.) Asch. [2,5]<br>Peganum harmala L. [1,2,5]                                                                                                                                            | N<br>N           |
| <b>NEURADACEAE</b><br>Neurada procumbens L. [2,5,13]                                                                                                                                                                           | Ν                |
| NYCTAGINACEAE<br>Boerhavia diffusa L. [6,7]                                                                                                                                                                                    | W                |
| OROBANCHACEAE<br>Cistanche phelypaea (L.) Cout. [1,2,5]. Syn. Lathraea phelypaea L [12,13];<br>Orobanche tinctoria Forssk. [12,13]; Cistanche tinctoria (Forssk.) Beck<br>[12,13]; Cistanche tubulosa (Schenk) Hook.f. [1,2,5] | Ν                |
| Orobanche aegyptiaca Pers. [2,5]                                                                                                                                                                                               | Ν                |
| Orobanche cernua Loefl. [1,2,5]                                                                                                                                                                                                | N                |
| Orobanche minor Sm. [5]                                                                                                                                                                                                        | W                |
| Orobanche ramosa L. [4,5]                                                                                                                                                                                                      | W                |
| OXALIDACEAE<br>Oxalis corniculata L. [4,5]                                                                                                                                                                                     | W                |
| PAPAVERACEAE                                                                                                                                                                                                                   |                  |
| Glaucium corniculatum (L.) Rudolph [5,7]                                                                                                                                                                                       | Ν                |
| Papaver rhoeas L. [5,7]                                                                                                                                                                                                        | С                |
| Roemeria hybrida (L.) DC. [2,5,7]                                                                                                                                                                                              | N                |
| Fumaria parvifiora Lam. [4,5,7]                                                                                                                                                                                                | NW               |
| Hypecoum littorale Wulfen [5]. Syn. Hypecoum geslinii Coss. & Kralik [2,5,7]<br>Hypecoum pendulum L. [2,5,7]                                                                                                                   | N<br>N           |
| PHYLLANTHACEAE                                                                                                                                                                                                                 |                  |
| Andrachne telephioides L. [2,5]                                                                                                                                                                                                | Ν                |
| PLANTAGINACEAE                                                                                                                                                                                                                 |                  |
| Linaria albifrons (Sibth. & Sm.) Spreng. [5,12,13]. Syn. Antirrhinum albifrons<br>Sm. [13]                                                                                                                                     | Ν                |
| Linaria simplex Desf. [5,13] Syn. Antirrhinum simplex Wild. [13];                                                                                                                                                              | Ν                |
| Plantago amplexicaulis Cav. [2,5]                                                                                                                                                                                              | Ν                |
| Plantago boissieri Hausskn. & Bornm. [2,5]                                                                                                                                                                                     | N                |
| Plantago ciliata Desf. [2,5]                                                                                                                                                                                                   | N                |
| Plantago coronopus L. [2,5]                                                                                                                                                                                                    | N<br>N           |
| Plantago lanceolata L. [4,5]<br>Plantago notata Lag. [2,5]                                                                                                                                                                     | N<br>N           |
| Plantago ovata Forssk. [2,5]                                                                                                                                                                                                   | N                |
| Plantago psammophila Agnew & ChalKabi [2,5]                                                                                                                                                                                    | N                |

| Limonium carnosum (Boiss.) Kuntze [2,5]                                                                                        | N  |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| Limonium lobatum (L.f.) Kuntze [2,5,12,13]. Syn. Statice thouninii Viv. [12,13];<br>Limonium thouini (Viv.) Kuntze [2,5,12,13] | N  |
| Psylliostachys spicatus (Willd.) Nevski [2,5]. Syn. Statice spicata Willd. [2,5]                                               | Ν  |
| POACEAE [GRAMINEAE]                                                                                                            |    |
| Aegilops bicornis (Forssk.) Jaub. & Spach. [3,5,8,14]                                                                          | N  |
| Aegilops kotschyi Boiss. [3,5,8,14]                                                                                            | N  |
| Aegilops triuncialis L. [3,5,8,14]                                                                                             | N  |
| Aeluropus lagopoides (L.) Trin. ex Thwaites [1,3,5,8]                                                                          | N  |
| Aeluropus littoralis (Gouan) Parl. [1,3,5,8]                                                                                   | N  |
| Ammochloa palaestina Boiss. [3,5,8]                                                                                            | N  |
| Avena barbata Pott ex Link [3,4,5,8]                                                                                           | N  |
| Avena fatua L. [1,3,5,8]                                                                                                       | N  |
| Avena sativa L. [5,8]                                                                                                          | Ŵ  |
| Avena sterilis L. [4,5,8]                                                                                                      | N  |
| Brachypodium distachyum (L.) P. Beauv. [5,8]. Syn. Trachynia distachya (L.) Link                                               | N  |
| [1,3]                                                                                                                          | 1  |
| Bromus catharticus Vahl [5,8]                                                                                                  | V  |
| Bromus danthoniae Trin. [3,5,8]                                                                                                | Ň  |
| Bromus madritensis L. [1,3,4,5,8]                                                                                              | N  |
| Bromus sericeus Drobov [3,4,5,8]                                                                                               | N  |
| Bromus tectorum L. [3,5,8]                                                                                                     | N  |
| Cenchrus ciliaris L. [3,5,8]                                                                                                   | N  |
| Cenchrus setigerus Vahl [3,5,8]                                                                                                | V  |
| Centropodia forskalii (Vahl) Cope [5,8] Syn. Asthenatherum forskalii (Vahl) Nevski                                             | N  |
| [1,3]                                                                                                                          |    |
| Cutandia dichotoma (Forssk.) Batt. & Trab. [3,5,8]                                                                             | N  |
| Cutandia memphitica (Spreng.) K. Richt. [1,3,5,8]                                                                              | N  |
| Cymbopogon commutatus (Steud.) Stapf [5,8]. Syn. Cymbopogon parkeri Stapf [3]                                                  | N  |
| Cynodon dactylon (L.) Pers. [3,4,5,8]                                                                                          | NV |
| Dactyloctenium aegyptium (L.) Willd. [4,5,8]                                                                                   | V  |
| Dactyloctenium aristatum Link [5,8]                                                                                            | V  |
| Dichanthium annulatum (Forssk.) Stapf [3,4,5,8]                                                                                | N  |
| Dichanthium foveolatum (Delile) Roberty [2,3,5,8]                                                                              | V  |
| Digitaria ciliaris (Retz.) Koeler [5,8]                                                                                        | N  |
| Digitaria sanguinalis (L.) Scop. [4,5,8]                                                                                       | V  |
| Dinebra retroflexa (Vahl) Panzer [5,8]                                                                                         | N  |
| Echinochloa colona (L.) Link [3,4,5,8]                                                                                         | V  |
| Eleusine indica (L.) Gaertn. [6,8]                                                                                             | V  |
| Eragrostis barrelieri Daveau [4,5,8]                                                                                           | N  |
| Eragrostis minor Host [5,8]                                                                                                    | N  |
| Eremopoa persica (Trin.) Rosch. [5,8]                                                                                          | N  |
| Eremopyrum bonaepartis (Spreng.) Nevski [1,3,5,8]                                                                              | Ν  |
| Eremopyrum distans (C. Koch) Nevski [1,3,5,8]                                                                                  | N  |
| Hordeum marinum Huds [3,5,8]                                                                                                   | N  |
| Hordeum murinum L. [5,8]                                                                                                       | N  |
| Imperata cylindrica (L.) Raeusch. [3,5,8]                                                                                      | N  |
| Lasiurus scindicus Henrard [5,8]. Syn. Lasiurus hirsutus (Forssk.) Boiss. [1,3]                                                | N  |
| Leptochloa fusca (L.) Kunth [4,5,8]                                                                                            | V  |
| Lolium multiflorum Lam. [5,8]                                                                                                  | N  |

| Lolium rigidum Guadin [1,3,5,8]                                                      | Ν      |
|--------------------------------------------------------------------------------------|--------|
| Lolium temulentum L. [1,3,4,5,8]                                                     | NW     |
| Panicum antidotale Retz. [4,5,8]                                                     | C      |
| Panicum turgidum Forssk. [3,5,8]                                                     | N      |
| Parapholis incurva (L.) C.E. Hubb. [3,5,8]                                           | N      |
| Pennisetum divisum (J.F. Gmel.) Henrard [1,3,5,8]                                    | N      |
| Phalaris minor Retz. [1,3,4,5]                                                       | W      |
| Phalaris paradoxa L. [1,5,8]<br>Phragmitae australia (Cay.) Trip, av Stand [2,4,5,8] | W      |
| Phragmites australis (Cav.) Trin. ex Steud. [3,4,5,8]<br>Poa annua L. [4,5,8]        | N<br>W |
| Poa infirma Kunth [3,4,5,8]                                                          | W      |
| Poa siniaica Steud. [3,4,5,8]                                                        | w      |
| Polypogon monspeliensis (L.) Desf. [1.3,4,5,8]                                       | NW     |
| Rhynchelytrum repens (Willd.) C.E. Hubb [3,5,8]                                      | W      |
| Rostraria cristata (L.) Tzvelev [5,8]. Syn. Lophochloa phleoides (Vill.) Rchb. [1,3] | Ň      |
| Rostraria pumila (Desf.) Tzvelev [4,5,8] Syn. Lophochloa pumila (Desf.) Bor [1,3]    | N      |
| Schismus arabicus Nees [3,5,8]                                                       | N      |
| Schismus barbatus (L.) Thell. [1,3,5,8]                                              | N      |
| Setaria verticillata (L.) P. Beauv. [4,5,8]                                          | W      |
| Setaria viridis (L.) P. Beauv. [3,5,8]                                               | W      |
| Sorghum halepense (L.) Pers. [4,5,8]                                                 | W      |
| Sphenopus divaricatus (Gouan) Rchb. [3,8]                                            | Ν      |
| Sporobolus arabicus Boiss. [1,3,5,8]                                                 | Ν      |
| Stipa capensis Thunb. [1,3,5,8]                                                      | Ν      |
| Stipagrostis ciliata (Def.) de Winter [3,5,8]                                        | Ν      |
| Stipagrostis drarii (Täckh.) de Winter [5,8]                                         | Ν      |
| Stipagrostis obtusa (Delile) Nees [3,5,8]                                            | Ν      |
| Stipagrostis plumosa (L.) Munro ex T. Anders. [1,3,5,8]                              | Ν      |
| Trisetaria linearis Forssk. [5,8]                                                    | W      |
| POLYGONACEAE                                                                         |        |
| Calligonum comosum L'Hér. [2,7]. Syn. Calligonum polygonoides subsp. comosum         | Ν      |
| (L'Hér.) Soskov [5]                                                                  |        |
| Emex spinosus (L.) Campd. [1,2,4,5,7]                                                | N      |
| Polygonum argyrocoleum Steud. ex. Kunze [4,5]. Syn. Polygonum patulum M.Bieb. [4,5]  | W      |
| Rumex pictus Forssk. [2,5,7]                                                         | Ν      |
| Rumex vesicarius L. [2,5,7]                                                          | N      |
|                                                                                      | 1      |
| PORTULACEAE                                                                          | ***    |
| Portulaca oleracea L. [5,7]                                                          | W      |
| PRIMULACEAE                                                                          |        |
| Anagallis arvensis L. [4,5]                                                          | W      |
|                                                                                      |        |
| RANUNCULACEAE                                                                        |        |
| Adonis dentata Delile [2,5,7]                                                        | Ν      |
| RESEDACEAE                                                                           |        |
| Caylusea hexagyna (Forssk.) M.L. [2,5,7]                                             | Ν      |
| Ochradenus baccatus Delile [2,5,7]                                                   | Ν      |
| Oligomeris linifolia (Vahl) J.F. Macbr. [1,5,7]. Syn. Oligomeris subulata Webb. [7]  | Ν      |

| Reseda arabica Boiss. [2,5,7]<br>Reseda decursiva Forssk. [2,5]. Syn. Reseda alba L. [5]<br>Reseda muricata C. Presl [1,2,5,7]                                                                                                             | N<br>N<br>N                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| RHAMNACEAE<br>Ziziphus nummularia (Burm.f.) Wight & Arn. [KTM 5392 [KUTH]]<br>Ziziphus spina-christi (L.) Desf. [MTA567[E]]                                                                                                                | N<br>C*                    |
| <b>RUBIACEAE</b><br>Crucianella membranacea Boiss. [2,5]<br>Galium tricornutum Dandy [5]                                                                                                                                                   | N<br>N                     |
| RUTACEAE<br>Haplophyllum tuberculatum (Forssk.) A. Juss. [1,2,5]                                                                                                                                                                           | Ν                          |
| SALVADORACEAE<br>Salvadora persica L. [MTA356[E]]                                                                                                                                                                                          | C*                         |
| SCROPHULARIACEAE<br>Scrophularia desertii Delile [1,2,5]                                                                                                                                                                                   | N                          |
| SOLANACEAE<br>Datura innoxia Mill. [4,5]<br>Hyoscyamus muticus L. [5]<br>Hyoscyamus pusillus L. [2,5]<br>Lycium shawii Roem. & Schult. [1,2,5]<br>Physalis angulata L. [6]<br>Solanum nigrum L. [4,5]<br>Withania somnifera (L.) Dunal [5] | W<br>N<br>N<br>W<br>W<br>W |
| <b>TAMARICACEAE</b><br>Tamarix aphylla (L.) H.Karst. [MTA603[E]]<br>Tamarix aucheriana (Decne.) B. R. Baum [2,5]                                                                                                                           | C*<br>N                    |
| <b>THYMELAEACEAE</b><br>Thymelaea mesopotamica (C. Jeffrey) B. Peterson [2,5]                                                                                                                                                              | N                          |
| <b>TYPHACEAE</b><br>Typha domingensis (Pers.) Poir. ex Steud. [4,5]. Syn. Typha angustifolia L. [3]                                                                                                                                        | Ν                          |
| URITACEAE<br>Urtica urens L. [4,5,7]                                                                                                                                                                                                       | W                          |
| VERBENACEAE<br>Phyla nodiflora (L.) Greene [4,5]<br>Verbena tenuisecta Briq. [6]                                                                                                                                                           | W<br>W                     |
| <b>ZYGOPHYLLACEAE</b><br>Fagonia bruguieri DC. [2,5]<br>Fagonia glutinosa Delile [2,5]<br>Fagonia indica Burm.f. [5]<br>Fagonia olivieri DC. [1,2]                                                                                         | N<br>N<br>N                |
| Seetzenia lanata (Willd.) Bullock [2,5,12]. Syn. Seetzenia orientalis Decne. [2,5,12]                                                                                                                                                      | Ν                          |

| Tribulus macropterus Boiss. [5]                                                                                                                                              | W            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Tribulus terrestris L. [2,4,5]                                                                                                                                               | NW           |
| Tribulus pentandrus Forssk. []. Syn. Tribulus longipetalus Viv. []                                                                                                           | Ν            |
| Tetraena simplex (L.) Beier & Thulin. [12]. Syn. Zygophyllum simplex L. [2,5]                                                                                                | Ν            |
| Tetraena qatarensis (Hadidi) Beier & Thulin [12]. Syn. Zygophyllum qatarense                                                                                                 | Ν            |
| Hadidi [5]                                                                                                                                                                   |              |
|                                                                                                                                                                              |              |
| GYMNOSPERMAE                                                                                                                                                                 |              |
| EPHEDRACEAE                                                                                                                                                                  |              |
| Ephedra alata Decne. [5,7]                                                                                                                                                   | Ν            |
| Epitedra alata Decite. [5,7]                                                                                                                                                 | 19           |
| PTERIDOPHYTA                                                                                                                                                                 |              |
| OPHIOGLOSSACEAE                                                                                                                                                              |              |
|                                                                                                                                                                              | NT           |
| Ophioglossum polyphyllum A. Braun [5,7]. Syn. Ophioglossum aitchisonii                                                                                                       | Ν            |
| (C.B.Cl.) J.D. Almeida [5]                                                                                                                                                   |              |
| Asterisk (*) cultivated plants introduced in restoration projects and along local streets.                                                                                   |              |
| Plant status: N- native, NW- naturalised weed, NWC- naturalised weed by cultivation, W- wee                                                                                  | ds, C-       |
| cultivated plants. <b>Source reference [1-8]:</b>                                                                                                                            | 1.4          |
| [1] Halwagy, R. & Macksad, A. (1972) A contribution towards a Flora of the State of Kuwait a                                                                                 | ind the      |
| Neutral Zone. <i>Bot. J. Linn. Soc.</i> , 65: 61-79.                                                                                                                         | Da           |
| [2] Daoud, H. S. (1985) <i>Flora of Kuwait vol. 1: Dicotyledoneae</i> . London, KPI and Kuwait Uni 224.                                                                      | versity. Pg. |
| [3] Al-Rawi, A. (1987) Flora of Kuwait vol. 2: Compositae and Monocotyledoneae. Kuwait U                                                                                     | aivaraity    |
| Pg. 225-455                                                                                                                                                                  | liversity.   |
| -                                                                                                                                                                            |              |
| [4] Boulos, L. (1988) The Weed flora of Kuwait. Kuwait University pp. 175                                                                                                    | 21 202       |
| [5] Boulos, L. & Al-Dosari, M. (1994) Checklist of the flora of Kuwait. J. Univ. Kuwait (Sci.)                                                                               | 21: 203-     |
| 217.                                                                                                                                                                         |              |
| [6] Mathew, K.T. et al. (2012) Eleven new weeds in Kuwait. Kuwait J. Sci. Eng. 39 (1A) pp. 1                                                                                 |              |
| [7] Miller, A.G. & Cope, T.A. (1996) Flora of the Arabian Peninsula and Socotra. vol. 1, Edir                                                                                | burgh        |
| University Press. Pp 586.                                                                                                                                                    |              |
| [8] Cope, T.A. (2007) Flora of the Arabian Peninsula and Socotra vol. 5. Edinburgh Universit                                                                                 | y Press, Pp  |
|                                                                                                                                                                              | C - 1        |
| [9] Akhani, H. (2015) Plants and Vegetation of North-West Persian Gulf. University o                                                                                         | Tehran       |
| Press. Pp 502                                                                                                                                                                |              |
| [10] World Checklist of Selected Plant Families (2016). Facilitated by the Royal Botanic Gard                                                                                | ens,         |
| Kew. ( <u>http://apps.kew.org/wcsp/</u> )                                                                                                                                    |              |
| [11] Tropicos (2016) Missouri Botanical Garden. (online: <u>www.tropicos.org</u> )<br>[12] The Plant List (2012). Variant 11 Published on the interact (unumulant list and). |              |
| [12] The Plant List (2013). Version 1.1 Published on the internet ( <u>www.plantlist.org</u> )                                                                               |              |
| [13] Euro+Med PlantBase (2006) The information resources for Euro-Mediterranean Plant Div<br>(online: http://www2.hghm.org/EuroPlusMed/)                                     | ersity       |
| (online: <u>http://ww2.bgbm.org/EuroPlusMed/</u> )<br>[14] eMonocot (2017). A web-based treatment for monocot plants of the world.                                           |              |
| (online: http://e-monocot.org/)                                                                                                                                              |              |
| (omme. http://e-monocot.org/)                                                                                                                                                |              |

## 2.3.1 Floristic analyses of the flora of Kuwait

The largest families in the flora are Poaceae [Gramineae] 72 spp, Asteraceae [Compositae] 48 spp, Brassicaceae [Cruciferae] and Fabaceae [Leguminosae] 35 spp, Amaranthaceae [Chenopodiaceae] 33 spp and Caryophyllaceae 20 spp (Table 2.3 and Figure 2.2).

The largest genera are *Astragalus* 10 spp (all native), *Euphorbia* 8 spp (3 native and 5 weeds), *Plantago* 8 spp (all native), *Bromus* 5 spp (2 native, 2 naturalised weeds and 1 weed), *Convolvulus* 5 spp (3 native and 1 weed), *Erodium* 5 spp (all native), *Avena* 4 spp (3 naturalised weed and 1 weed), *Chenopodium* 4 spp (1 naturalised weed and 4 weeds), *Helianthemum* 4 spp (all native), *Launaea* 4 spp (3 native and 1 naturalised weed), *Orobanche* 4 spp (2 native and 2 weeds), *Silene* 4 spp (3 native and 1 weed), *Sisymbrium* 4 spp (3 native and 1 weed) and *Stipagrostis* 4 spp (all native) (Table 2.3). Eighteen species of the flora have changes to their family names according to APG IV (2016) classification, listed in Table 2.4.

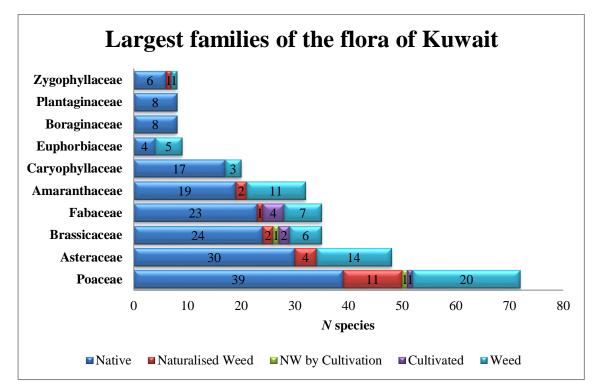



Figure 2.2 Bar chart showing largest families of the flora of Kuwait

| Species                | Family -present | Family -former |
|------------------------|-----------------|----------------|
| Allium sindjarense     | Amaryllidaceae  | Liliaceae      |
| Allium longisepalum    | Amaryllidaceae  | Liliaceae      |
| Allium sphaerocephalum | Amaryllidaceae  | Liliaceae      |
| Bellevalia saviczii    | Asparagaceae    | Liliaceae      |
| Dipcadi erythraeum     | Asparagaceae    | Liliaceae      |
| Asphodelus tenuifolius | Asphodelaceae   | Liliaceae      |
| Asphodelus viscidulus  | Asphodelaceae   | Liliaceae      |
| Calotropis procera     | Apocynaceae     | Asclepiadaceae |
| Lomelosia olivieri     | Caprifoliaceae  | Dipsacaceae    |
| Lomelosia palaestina   | Caprifoliaceae  | Dipsacaceae    |
| Valerianella dufresnia | Caprifoliaceae  | Valerianaceae  |
| Cuscuta planiflora     | Convolvulaceae  | Cuscutaceae    |
| Nitraria retusa        | Nitrariaceae    | Zygophyllaceae |
| Peganum harmala        | Nitrariaceae    | Zygophyllaceae |
| Fumaria parvifiora     | Papaveraceae    | Fumariaceae    |
| Hypecoum littorale     | Papaveraceae    | Fumariaceae    |
| Hypecoum pendulum      | Papaveraceae    | Fumariaceae    |
| Andrachne telephioides | Phyllanthaceae  | Euphorbiaceae  |

 Table 2.4 Plant species with changes to their families according to APG IV classification

The total number of species of flowering plants, gymnosperms and ferns in the State of Kuwait is 402 species belonging to 256 genera of which 273 species are truly native, and 25 species are naturalised either by cultivation or naturally, 90 species are weeds and 12 are plants of cultivation (Figure 2.3). The species are found in 60 families and 26 orders, including gymnosperms and ferns (Figure 2.4). A chart representing the flora of Kuwait classified by major groups of angiosperms (monocot and dicot), gymnosperms and ferns are shown in Figure 2.4. The floristic analysis of the main groups of the flora of Kuwait is presented in Table 2.5. The Angiosperms are the largest group representing 254 genera and 400 species of which the dicots contain 310 species in 198 genera belonging to 45 families and 20 orders and the monocots 90 species in 56 genera in 13 families and 4 orders (Table 2.5 and Figure 2.4). A single species each represents the gymnosperms and ferns.

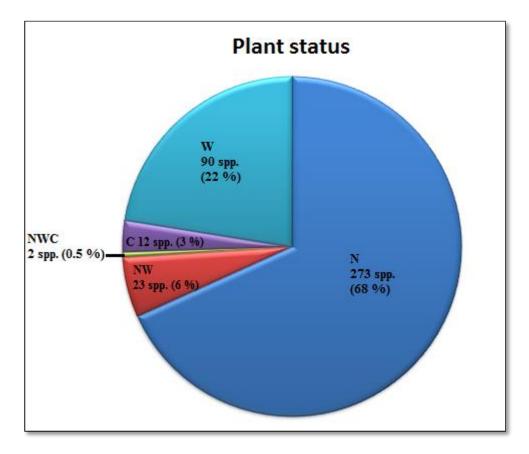



Figure 2.3 Pie chart showing the plant status of the Kuwaiti flora N: native plants, NW: naturalised weed, NWC: naturalised weed by cultivation, C: cultivated plants, W: weedy plants

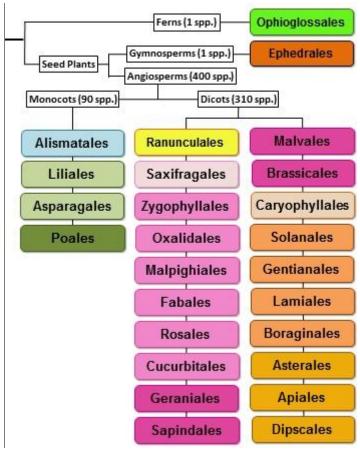



Figure 2.4 Illustration showing the classification of all plant orders of the flora of Kuwait according to APG IVclassification

|                    | Orders | Families | Genera | Species |
|--------------------|--------|----------|--------|---------|
| Monocots           | 4      | 13       | 56     | 90      |
| Dicots             | 20     | 45       | 198    | 310     |
| Angiospermae total | 24     | 58       | 254    | 400     |
| Pteridophyta       | 1      | 1        | 1      | 1       |
| Gymnospermae       | 1      | 1        | 1      | 1       |
| Overall            | 26     | 60       | 256    | 402     |

Table 2.5 Floristic analysis of the flora of Kuwait

## 2.3.2 Native and naturalised vascular plants of Kuwait

This part of the floral analysis is more focused on the native and naturalised vascular plants of the flora of Kuwait and is of interest to plant ecologist involved in conservation studies and restoration ecology.

If only truly native and naturalised vascular plants of the flora (excluding weeds and cultivated plants) are considered, the flora is represented by 298 species in 182 genera arranged in 52 families and 25 orders, including the gymnosperms and ferns each of which is represented by a single species (Table 2.6). The Dicots are represented by 232 species in 148 genera related to 39 families and 19 orders and monocots 64 species in 32 genera related to 11 families and 4 orders (Table 2.6). An illustration representing the native species and species established in the wild, classified by order and family names according to APGIV (2016) is shown in Figure 2.5.

|                    | Orders | Families | Genera | Species |
|--------------------|--------|----------|--------|---------|
| Pteridophyta       | 1      | 1        | 1      | 1       |
| Gymnospermae       | 1      | 1        | 1      | 1       |
| Angiospermae total | 23     | 50       | 180    | 296     |
| Monocots           | 4      | 11       | 32     | 64      |
| Dicots             | 19     | 39       | 148    | 232     |
| Overall            | 25     | 52       | 182    | 298     |

Table 2.6 Floristic analysis of native and natuarlized plants of Kuwait

The largest families of native vascular plants and those established in the wild are Poaceae [Gramineae] 51 spp, Asteraceae [Compositae] 34 spp, Brassicaceae [Cruciferae] 27 spp, Fabaceae [Leguminosae] 24 spp, Amaranthaceae [Chenopodiaceae] 21 spp and Caryophyllaceae 17 spp (Table 2.3 and Figure 2.5). Largest genera of native vascular plants and those established in the wild are *Astragalus* (10 spp all native), *Plantago* (8 spp all native), *Erodium* (5 spp all native), *Helianthemum* (4 spp all native), *Launaea* (4 spp: 3 native and 1 naturalised weed), *Arnebia* (4 spp all native), *Stipagrostis* (4 spp all native), and *Bromus* (4 spp 2 spp native, 2 spp naturalised weeds) (Table 2.3).

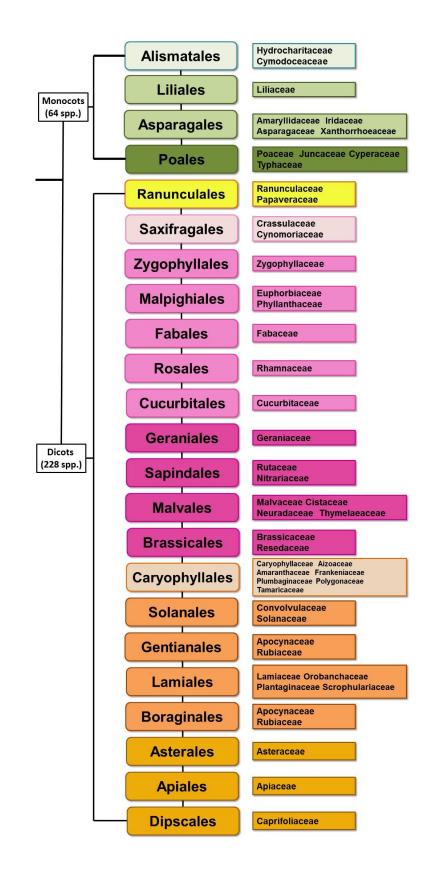



Figure 2.5 Illustration showing the ranking of 23 orders and 50 families of native and natuarlised plants of the flora of Kuwait according to APGIV (2016) classification.

### 2.4 Discussion

The present checklist provides an update of the flora of Kuwait and aids in conserving the knowledge of the plant diversity of the Kuwaiti flora. It will mainly act as a guide for DNA barcoding the entire flora of Kuwait in chapter 4. The plant checklist (Table 2.3) includes updates to nomenclature, authorities, synonyms and plant status. Also, the classification of the orders and families in line with APG IV (2016). The present checklist of the flora of Kuwait comprises 402 species of which 273 species are native, and 25 species are naturalised either by cultivation or naturally, 12 species are plants of cultivation and 90 species are weedy plants. The previous checklist presented by Boulos and Al-Dosari (1994) represented 374 species related to 55 families, comparing it with the current checklist comprises 402 species in 60 families. The addition of 28 species are represented by weeds (15 spp), cultivated plants (5 spp.) and eight native species (*Allium longisepalum, Astragalus hamosus, Convolvulus prostratus, Halopeplis perfoliata, Linaria albifrons, Neatostema apulum, Sphenopus divaricatus*, and *Ziziphus nummularia*) (Table 2.3).

## 2.4.1 Native plants

Climate change, land degradation, human activities, and overgrazing have gradually altered the pattern of native plant communities in Kuwait and several plants are being threatened and facing the danger of extinction. Restoration and revegetation programmes are necessary to conserve the biodiversity of these important ecosystems. *Haloxylon salicornicum* has gradually replaced *Rhanterium eppaposum* that once dominated the northern areas of Kuwait as a result of overgrazing and soil erosion (Brown, 2003). Omar et al. (2001) also reported a decrease in several plant communities' distribution: *Haloxylon salicornicum*, *Zygophyllum qatarense*, and *Rhanterium epaposum* (Omar et al., 2001).

*Rhanterium epapposum* is a perennial shrub usually found northern part of Kuwait is on the verge of extinction due to overgrazing and use as a source of firewood (Brown, 2003; Al-Salameen et al., 2014). *Rhanterium* plants have the ability to build up a large seed bank in the soil and stay viable for up to four years (Zaman, 2006) and have the potential for vegetative regeneration from stumps in heavily grazed sandy areas (Omar and Bhat, 2008).

Important native plants that have the potential to build up the soil seed bank and stabilize moving sand by forming small sandy hillock 'Nabkha' should be considered in restoration projects e.g. *Lycium shawii*, *Panicum turgidum*, *Cyperus conglomerates*, *Astragalus spinosus*, *Rhanterium epapposum*, *Haloxylon salicornicum*, *Halocnemum strobilaceum*, *Salicornia europaea*, *Tamarix aucheriana* and *Nitraria retusa* (Ahmed et al., 2016).

Other important plants of the flora that has the potential to re-establish and restore vast desert areas represented by *Calligonum polygonoides*, *Heliotropium bacciferum*, *Arnebia decumbens*, *Convolvulus oxyphyllus*, *Gynandiris sisyrinchium* and *Ochradenus baccatus* (Abo El-Nil, 1997).

#### 2.4.2 Cultivated plants

Cultivated plants in Kuwait represented by a small portion of the flora (3 %). The following discussion will include some trees grown and used in restoration projects in Kuwait. An interesting small tree re-introduced once again to the flora is mangrove (*Avicennia marina*) which once occurred naturally more than 70 years ago (mentioned by Dickson, 1955). The native mangrove species of the flora is extinct due to human usage of the plants as firewood and charcoal. Mangrove was re-introduced earlier (1991) by propagule cultivation from neighbouring countries, Bahrain and the United Arab Emirates, in the intertidal zones of Shuwaikh and Sulaibiya coastal areas of Kuwait. After only seven years of growth, a study by Abo El-Nil (2001) showed that mangrove successfully established from propagules, flowering and producing viable seeds (Abo El-Nil, 2001). At present, mangrove is considered to be a major plant in restoration projects along the shoreline of the State of Kuwait.

Another successful tree used in restoration projects is *Prosopis juliflora*. Having the ability to tolerate high salinity and temperature (El-Keblawy and Al-Rawai, 2005) and provide large vegetation cover, although its foliage contains water-soluble allelopathic

chemicals (e.g. tannins, flavonoids, steroids, and alkaloids) which are known to inhibit the germination and growth of other plants in its vicinity (Al-Humaid & Warrag, 1998; Pasiecznik et al., 2001). In my opinion, I see the use of this tree as an ornamental plant (e.g. planted along highways and local streets), avoiding it in largescale desert restoration projects which are costly, since it requires large amounts of water for the first few years before it becomes established in the wild.

*Tamarix aphylla* tree is usually cultivated in Kuwait as an ornamental and windbreaker for being a fast-growing tree, extremely tolerant to drought and salinity and mainly used by birds for shelter and fodder while providing a source of firewood (Le Houerou, 1984). It is not recommended to be included in large-scale desert restoration projects due to its ability in spreading fast and competing with other native plants for space and water (Griffin et al., 1989).

#### 2.4.3 Weedy plants

Weeds make up 24 % of the flora, which has the potential to spread and adapt outside their normal range of distribution. Frequently weeds in Kuwait are found growing near agricultural lands and gardens. Therefore, it is important to document plants and monitor them over a period of time, since they have the potential to become established in the wild without the aid of agricultural soils or irrigated water. In the present checklist, I documented eleven new weeds recently published (Mathew et al., 2012) not included in previous lists or floral publications of Kuwait. Such observations are important to document since I will be applying molecular analysis in the following chapters.

## 2.4.4 Conclusion

When considering the conservation of plant biodiversity, it is essential to understand the plant status in a given flora and also to record whether or not the species is naturalised by cultivation (or naturally), occur as a weed or plant of cultivation. This sort of classification can be used as a guide in prioritizing species for use in vegetation restoration programmes and other conservation initiatives. In the following chapters, I will be using the presently updated checklist (Table 2.3) to guide me through DNA barcoding the entire flora of Kuwait and build a local DNA reference library.

## **Chapter 3 Choice of gene regions**

#### **3.1 Introduction**

DNA barcoding provides a fast and reliable way to identify individuals by sequencing short region of its genome and comparing it with a DNA reference database. The cytochrome oxidase I (COI) mitochondrial gene, used widely in DNA barcoding animals, is not appropriate for land plants because of its slower rate of evolution in plants (Hebert et al., 2003; Kress et al., 2005).

Difficulties in finding a single DNA region that could serve as a barcode across land plants encouraged researchers to explore more gene regions (Tables 3.1 and 3.2). The use of multi-loci in combination could increase sequence variation and identification ability. Initial investigations in previous studies (Kress et al., 2005; Fazekas et al., 2008; Ford et al., 2009; CBOL, 2009) have made use of a variety of genes from both nuclear (ITS) and plastid regions (atpB-rbcL, psbM-trnD, trnC-ycf6, trnH-psbA, trnL-F, trnk-rps16, trnV-atpE, rpl36-rps8, ycf6-psbM, rpoB, rpoC1, rpoC2, rbcL, matK, 23S rDNA, atpF-atpH, psbK-psbI, accD, ndhA, ndhJ, ndhK, rpl22, ycf2, ycf5, and ycf9). Different gene regions are capable of resolving species relationships at different levels depending on their mutation rate (slow or fast). The criteria used by most research groups in evaluating DNA barcoding regions for land plants must be: (1) routinely amplifiable (universality using single primer pair), (2) easily sequenced (producing bi-directional quality sequences) and (3) discrimination power (maximum discrimination of species) (Kress et al., 2005; Fazekas et al., 2008; Ford et al., 2009; CBOL, 2009). To standardise the selection of a plant barcode, the Consortium for the Barcode of Life (CBOL) initiated the formation of a working group with representatives from different research groups from the molecular systematics community that had proposed or tested the seven leading candidate barcoding markers (atpF-atpH, matK, rbcL, rpoB, rpoC1, psbK-psbI, trnH-psbA) (CBOL, 2009). A number of markers (e.g. rpoC1 and rpoB) were eliminated from the proposed candidates due to lower discriminatory power. The final recommendation of the CBOL Plant Working group was based on applying a core-barcode consisting of portions of two plastids coding regions, *rbcL+matK*, to be supplemented with

additional markers (Table 3.1) as required (CBOL, 2009; Hollingsworth et al., 2011). The recommendation of *rbcL+matK* as a barcode region for *rbcL* was based on the ease of amplification, sequencing, and aligning in most land plants and *matK* showing great discriminatory power (although difficult to amplify using one set of primers) (CBOL, 2009). In spite of discriminatory power, *rbcL* region resulted in modest discriminatory power amongst species (48 % to 68 %), unlike *matK* showed higher resolution (65 % to 80 %) (Fazekas et al., 2008; CBOL, 2009; Liu et al, 2012).

Many studies used combinations of gene regions approaches using variable noncoding and conserved coding regions of the plastid genome to DNA barcode land plants. Table 3.2 summarises the studies published which involved the comparisons of multilocus DNA barcode candidates.

| Marker                | Genomic<br>source | Туре                                 |  |  |  |
|-----------------------|-------------------|--------------------------------------|--|--|--|
| nrITS                 | Nudear            | Transcribed spacers<br>and 5.85 gene |  |  |  |
| nrITS2                | Nuclear           | Transcribed spacer                   |  |  |  |
| atpF-H                | Plastid           | Inter-genic spacer                   |  |  |  |
| matK                  | Plastid           | Protein coding                       |  |  |  |
| <i>psbK-I</i> Plastid |                   | Inter-genic spacer                   |  |  |  |
| <i>rbcL</i> Plastid   |                   | Protein coding                       |  |  |  |
| <i>проВ</i> Plastid   |                   | Protein coding                       |  |  |  |
| moC1 Plastid          |                   | Protein coding                       |  |  |  |
| trnH-psbA Plastid     |                   | Inter-genic spacer                   |  |  |  |
| trnL-F Plastid        |                   | Intron and inter-genic spacer        |  |  |  |
| trnL (P6)             | Plastid           | Intron                               |  |  |  |

Table 3.1. Markers that have routinely been used as plant DNA barcodes.

(Source: Hollingsworth et al., 2011)

| materialresolution (%)recommendKress et al.,<br>2005apB-rbcL, ITS,<br>psbM-trnD, trnC.19 species $trnH-pshA, rpl136-prl8, trnL-F 100%angiospermITS and trnLpsbA2005psb/trnD, trnC.ycf6, trnH-psbA,trnL-F, trnk-psbMfamiliestrnL-F_1 00\%psbAITS and trnLpsbAFazekas et al.,2008rpoB, rpoC1,rbcL, matk, 23SrDNA, trnH-psbA,atpF-atpH, psbK92 speciesrpoB 43%, rpoC1psbACombinationmulti locus =rbcL, rpoB, rpoC1,land plantsCombinationmulti locus =rbcL, rpoB, rpoC1,atpF-atpH, psbK-psb1Combinationmulti locus =rbcL, rpoB, ratpF-atpH, psbK,psb1Ford et al.,2009accD, matk,rpoC1, rpoB, rpoC1,rpoC1, rpoB, rpoC1,rpoC1, psbK-psb1,rpoC2, ycf2, ycf5,psb1,rpoC1, psbK-psb1,rpoC1, psbK-psb1,rpoS4, psbK-psb3, psbK-psb3, psbA-rpoC1 orrpoC1, psbK-psb1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Kress et al.,<br>2005 $atpB-rbcL, ITS, mb, trmC-ycf6, trmH-psbA, trmL-F, trmk-rps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rpsbM19 speciesrps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rpsbM19 speciesrps16, trmV-appE,rps16, trmV-appE,rps16, trmV-appE,rpsbM19 speciesrps16, trmV-appE,rps16, trmV-appE,rpsbMITS and trmPpsbAFazekas et al.,2008trpoB, tpoC1,rbcL, matK, 23Spsb192 speciesbelonging to 32twith trmH-psbA,diverse genera ofatpF-atpH, psbK-psb192 speciesland plantsrpoB 43%, rpoC129%, rbcL 48%,multi locus =tpDN 7%, trmH-psbA 59%, atpF-atpF-atpHatpH 45%, psbK-psb1 44%CombinationrpoC1, ndhI,rpoC1, ndhI,rpoC2, ycf2, ycf5,28monocotyledons54 angiospermsrpoC2, ycf2, ycf5,ycf9, moC1, psbK-psb1,representing 550rpoC1, psbK-psb1,rpoC1, psbK-psb1,trhL-psbASecies ofangiospermsrpoC1, psbK-psb1,representing 550rpoC1, psbK-psb1,representing 550rpoC1, psbK-psb1,representing 550rpoC1, psbK-psb1,rpoC1, psbK-psb1,rpoC1, psbK-psb1,rpoC1, psbK-psb1,rpoC1, psbK-psb1,rpoC1, matK, trhL-psbA, stoff-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, stoff-atpH,psbA, atpF-atpH,psbA, stoff-atpH,psbA, atpF-atpH,psbA, stoff-atpH,psbA, stoff-atpH,psbA, stoff-atpH,psbA, atpF-atpH,psbA, stoff-atpH,psbA, stoff-atpH,psbA, stoff-atpH,psbA, stoff-atpH,psbA, atpF-atpH,psbA, stoff-atpH,psbA, stoff-atpH,psbA, stoff-atpH,psbA, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation      |
| 2005 $psbM-trnD, trnC-ycf6, trnH-psbA, angiospermrpf8, trnL-F 100\%each, trnL-F, trnk-rps16, trnV-atpE, rpl36-rps8, ycf6-psbMpsbAFazekas et al.,2008rpoB, rpoC1, epsbM, rpl36-rps8, ycf6-psbMproB, rpoC1, epsbM, rpl36-rps8, ycf6-psbMproB, rpoC1, epsbM, rpl36-rps8, ycf6-psbMproB, rpoC1, epsbM, rpl36-rps8, ycf6-psbMproB, rpoC1, epsbM, rpl36-rps8, ycf6-proB, rpl36-rps8, ycf6-psbMproB, rpoC1, epsbM, rpl36-rps8, ycf6-psbMproB, rpl36-rps8, ycf6-prl36-rps8, ycf6-psbMproB, rpl36-rps8, ycf6-prl36-rps8, ycf6-prl36-rps8, ycf6-psbMproB, rpl36-rps8, ycf6-prl36-rps8, ycf6-prl36-rps8, ycf6-prl36-rps8, ycf6-psbMproB, rpl36-rps8, ycf6-prl36-rps8, ycf6-prl36-rps8, ycf6-prl36-rps8, ycf6-psbA trnH-psbA, ycf5.proB, rpl36-rps8, ycf6-prl36-rps8, ycf6-prl36-rps8, ycf6-psb1 land plantsproB, rpl36-rps16, rpl36-rps16-rps16, rpl36-rps16, rpl36-rps16, rpl36-rps16, rpl36-rps16, rpl36-rps16, rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36-rpl36$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| $ \begin{array}{c} rps16, trnV-atpE, rpl36-rps8, ycf6-psbM \\ psbM \\ \hline \end{tabular} \\ \textbf{Fazekas et al., } rpoB, rpoC1, psbM, rbcL, matK, 23S rDNA, trnH-psbA, atpF-atpH, psbK-psbI \\ \textbf{solution} \\ $ |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Fazekas et al.,<br>2008 $psbM$ $poB, rpoC1, motK, 23S$<br>$rbcL, matK, 23S$<br>$atpF-atpH, psbK-psbl92 speciesbelonging to 32diverse genera ofland plants80\%rbcL, 48\%, multi locus =matK 65\%, 23SrDNA, trnH-psbA, atpF-atpHatpH 45\%, psbK-psblCombinationmulti locus =rbcL, rpoB, rproC1, matK, rpl22, composedrpoB, rpoC1, composedrpoC1, psbK-psbI80\%rpoC1, psbK-psbI, algo species ofrpoC1, psbK-psbI80\%rpoC1, rpoB, rrpoC1, psbK-psbICombinationrpoC1, rpoB, rpoC1, rpoB, rpoC1, rpoB, rpoC1, rpoC1, rpoB, rpoC1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Fazekas et al.,<br>2008 $rpoB, rpoC1,$<br>$rbcL, matK, 23S$<br>$atpF-atpH, psbA,$<br>$atpF-atpH, psbF-$<br>$psb$ 92 species<br>belonging to 32<br>diverse genera of<br>land plants $rpoB 43\%, rpoC1$<br>$29\%, rbcL 48\%,$<br>$rDNA, trnH-psbA,$<br>$atpF-atpH, psbK-$<br>$psbI$ Combination<br>multi locus =<br>$ndtA, 7\%, trnH-$<br>$matK 55\%, 23S$<br>$rboR, apF-atpH 45\%, psbK-psbI 44\%Combinationmulti locus =atpF-atpH,psbI 44\%Ford et al.,2009accD, matK,ndhA, ndhJ,ndhK, rpl22,poB, rpoCI,rpoB, rpoCI,rpoB, rpoCI,rpoC, pc2, ycf5,ycf9,98 land plant taxa:ased onsta angiospermsTotal 907 samplesrpoC1 43\%, psbK-psbI adt trnH-psbArpoC1, psbK-psbI,trnH-psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbC-psbICombinationmulti locus =rpoC1 43\%, psbK-rpoC1 43\%, psbA-rpoC1 43\%, psbA-rpoC1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 2008 $rbcL, matk, 23S$<br>$rDNA, trnH-psbA,atpF-atpH, psbK-psb1belonging to 32diverse genera ofland plants29%, rbcL 48%,matK 65%, 23SrDNA 7%, trnH-psb1 atpH 45%, psbK-psb1 44%multi locus =rbcL, rpoB, ratpF-atpHFord et al.,2009accD, matK,ndhA, ndhJ,ndhA, ndhJ,ndhA, rp122,rpoB, rpoC1,rpoR, rpoC1, crpoB, rpoC1, crpoR, rpoC1, psbK-psbI,rpoC1, psbK-psbI,rpoC1, psbK-psbI,rpoC1, psbK-psbI,rpoC1, rpoB,rpoC1, rpoC1, rpoB,rpoC1, rpoC1, rpoB, rpoC1 at 300 samplesrpoC1 43\%, rpoC1 at 200multi locus =rpoC1 at 200Luo et al.,2010trnH-psbA, ycf5.rpoC1, rpoC1, rpoC1, rpoC1, rpoB, rpoC1 at 300 samplesrpoC1 43\%, rpoC1 at 200, rpoC1 at 200, rpoC1, rpoC1, rpoB, rpoC1, rpoC1, rpoC1, rpoB, rpoC1, rpoC1, rpoB, rpoC1 at 200, rpoC1 at 200, rpoC1, rpoB, rpoC1 at 200, rpoC1 at 200, rpoC1 at 200, rpoC1 at 200, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| $ \begin{array}{c} atpF-atpH, psbK-\\ psbI \\ atpF-atpH, psbK-\\ psbI \\ \end{array} \begin{array}{c} accD, matK, \\ of period phytes, \\ rpoB, rpoC1, \\ rpoC2, ycf2, ycf5, \\ ycf9, \\ \end{array} \begin{array}{c} accD, matK, \\ of period phytes, \\ rpoC2, ycf2, ycf5, \\ ycf9, \\ \end{array} \begin{array}{c} accD, matK, \\ of period phytes, \\ rpoC2, ycf2, ycf5, \\ ycf9, \\ \end{array} \begin{array}{c} accD, matK, \\ of period phytes, \\ rpoC2, ycf2, ycf5, \\ ycf9, \\ \end{array} \begin{array}{c} accD, matK, \\ of period phytes, \\ rpoC1, rpoC1, \\ rbcL, rpoB, \\ rpoC1, psbK-psbI, \\ rpoC1, psbK-psbI, \\ rpoC1, psbK-psbI, \\ rpoC1, rpoB, \\ rrbcL, rpoB, \\ rrbcL, rpoB, \\ rbcL, rpoB, \\ rbcL, rptH, matK, \\ rtnH-psbA \\ \end{array} \begin{array}{c} rpoC1, rpoB, \\ rbcL, matK, trnH- \\ psbA, atpF-atpH, \\ rpsbA, atpF-atpH, \\ rpsbA, ycf5. \\ 2010 \\ \end{array} \begin{array}{c} rpoC1, rpoL, \\ rpoC1, rbcL, \\ rbcL, rbcL, \\ rbcL, rbcL, \\ rbcL, rbcL, \\ rpoC1, rbcL, \\ rbcL, \\ rbcL, rbcL, \\ rbcL, rbcL, \\ rbcL, rbcL, \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| psb1psb1psb1psb2atpF-atpHTord et al.,<br>2009accD, matK,<br>ndhA, ndhJ,<br>ndhK, rpl22,<br>rpoB, rpoC1,<br>rpoC2, ycf2, ycf5,<br>ycf9,98 land plant taxa:<br>4 liverworts,<br>6 pteridophytes,<br>rpoB, rpoC1,<br>rpoC2, ycf2, ycf5,<br>28Based on<br>amplification<br>success: 85-94%matK, rpoB,<br>rpoC1, atpF-atpH, matK,<br>representing 550matK, rpoB,<br>rpoC1, psbK-psb1,<br>spccies of<br>angiosperms,<br>gymnosperms,<br>gymnosperms,<br>matK 66%Combination<br>rbcL, rpoB,<br>rpoC1, psbK-psb1,<br>spccies of<br>angiosperms,<br>gymnosperms,<br>gymnosperms,<br>gymnosperms,<br>tral, psbA, atpF-atpH,<br>atpF-atpH,<br>matK, trnH-<br>psbA, atpF-atpH,<br>psbA, atpF-atpH,<br>psbC-psb1Inga single loci =<br>matK 31 %;<br>three locus = matK +<br>land plants ri<br>rpoC1, rpoC1, rpoB,<br>rpoC1, rpoC1, rpoB,<br>rpoC1, rpoB,<br>rpoC1, rpoB,<br>rpoC1, rpoB,<br>rpoC1, rpoB,<br>rpoC1, rpoB,<br>rpoC1, rpoB,<br>rpoC1, rpoB,<br>trnH-psbA, for<br>trnH-psbA, for<br>trnH-psbA, for<br>trnH-psbA, for<br>trnH-psbA, for<br>total 300 samplesInga single loci =<br>matK 1 (rpoC1 or<br>trnH-psbA, single, psb2<br>three locus = rbcL +<br>trnH-psbA atpr-<br>trnH-psbA, single, psb2<br>total 300 samples<br>ycf5 79%TS2 and trn<br>psbA-trnH 65 %,<br>trnH-rbsbA at<br>trnT-trnL<br>trn, trnL-<br>trn, trnH-psbA,<br>(Orobanchaceae)trnL-trnF 67%,<br>trnH-rbsbA at<br>trnT-trnL<br>trn-<br>trn-<br>trn-<br>trn-<br>trn-<br>trnF, trnH-psbA,<br>trnF, trnH-psbA,<br>trnF, trnH-psbA,<br>trnF, trnH-psbA,<br>trnF, trnH-psbA,<br>trnF, trnH-psbA,<br>trnL-trnL<br>trnS, trnL-tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Ford et al.,<br>2009 $accD, matK,$<br>$ndhA, ndhJ,$<br>$ndhK, rpl22,$<br>$rpoB, rpoC1,$<br>$rpoB, rpoC1,$<br>$rpoC2, ycf2, ycf5,$<br>$ggmnosperms98 land plant taxa:Based onamplificationsuccess: 85-94%matK, rpoB,rpoC1, ndhJ,accDCBOL 2009atpF-atpH, matK,rpcL, rpoB,rpoC1, psbK-psbI,trnH-psbA98 land plant taxa:4 liverworts,54 angiospermsmatK, rpoB,rpoC1 43\%, psbK-psb1 and trnH-psbACombinationrbcL + matKrpc1, psbK-psbI,trnH-psbAmatK, rpoB,rpoC1, rpoB,rpc1, rpoB,rbcL, matK, trnH-rpsbA, atpF-atpH,psbA, atpF-atpH,psbA, atpF-atpH,psbK-psbITotal 907 samplesrpoC1, rpoB,rbcL, matK, trnH-rpsbA, atpF-atpH,angiosperms,gymnosperms,gymnosperms;trnH-psbA 57.7\%;trnH-psbA) 69\%CombinationrpoC1, rbcL,rpoC1, rbcL,rpoC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ŊА,        |
| Ford et al.,<br>2009 $accD, matK, \\ndhA, ndhJ, \\ndhK, rpl22, \\ndhK, rpl2, \\ndh$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Ford et al.,<br>2009 $accD, matK, ndhJ, accD, matK, rp22, accD, rp0B, rp0C1, construct of the second stress second stres$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| 2009 $ndhA, ndhJ,$<br>$ndhK, rpl22,$<br>$rpoB, rpoC1,$<br>$rpoC2, ycf2, ycf5,$<br>$28amplificationsuccess: 85-94\%rpoC1, ndhJ,accDCBOL 2009atpF-atpH, matK,rpcC1, psbK-psbI,trmH-psbATotal 907 samplesrepresenting 550rpoC1, psbK-psbI,species ofrpoC1, psbK-psbI,rpoC1, psbK-psbI,trmH-psbArpoC1, 43\%, psbK-psbI and trmH-psbArepresenting 550rpoC1, psbK-psbI,rpoC1, psbK-psbI,rpoC1, psbK-psbI,rpoC1, psbK-psbI,rpoC1, rpoB,rbcL, matK, trmH-psbA, atpF-atpH,psbK-psbIrpoC1; rpoB,rpoC1; rpoB,rbcL, matK, trmH-psbA, atpF-atpH,psbK-psbIInga 26 species (NmatK 31\%;dual locus = matK +trmH-psbA 557.7\%;trmH-psbA) 69\%CombinationrpoC1, rbcL,trmH-psbA, 69\%Luo et al.,2010trmH-psbA, ycf5.rpoC1, rbcL,TS2, ITS192 speciesenera (Rutaceae)Total 300 samplesTotal 300 samplesycf5 79\%ITS2 and trmrpsA-rtrmL65\%,trmH-psbA,trmH-psbA,rpoC1, rbrL,rps2, trmT-trmL,29 species (N =rps2, trmT-trmL,psbA-rtrmH65\%,trmH-psbA,rrmF, trmH-psbA,(Orobanchaceae)trmL-rtrmF 67\%trmT-trmLtrmT-trmL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| $ \begin{array}{c} ndhK, rpl22, \\ rpoB, rpoCl, \\ rpoB, rpoCl, \\ rpoB, rpoCl, \\ rpoB, rpoCl, \\ rpoC2, ycf5, ycf5, \\ ycf9, \\ \end{array} \\ \begin{array}{c} atpF-atpH, matK, \\ rbcL, rpoB, \\ rpoCl, psbK-psbl, \\ trnH-psbA \\ \end{array} \\ \begin{array}{c} atpF-atpH, matK, \\ rbcL, rpoB, \\ rpoCl, psbK-psbl, \\ trnH-psbA \\ \end{array} \\ \begin{array}{c} rpoCl, rpoB, \\ rbcL, matK, trnH- \\ rpoCl, rpoB, \\ rbcL, matK, trnH- \\ rpsbA, atpF-atpH, \\ psbA, atpF-atpH, \\ rpoCl, rbcL, \\ rpoB, \\ rpoCl, rbcL, roos, \\ rpoCl, rbcL, roos, \\ rpoCl, rbcL, rpoB, \\ rbcL, matK, trnH- \\ rpsbA, atpF-atpH, \\ rpoCl, rbcL, \\ rpoCl, rbcL, \\ rpoCl, rbcL, \\ rpoCl, rbcL, \\ rpoS, \\ rpoCl, rbcL, \\ rpoS, roose \\ \end{array} \\ \begin{array}{c} 192 \text{ species} \\ 192 \text{ species} \\ 152 \text{ spok}, rpoCl 40\%, \\ roocl 40\%, \\ roocl 40\%, \\ roocl 40\%, \\ rpoCl 40\%, \\ rpoCl 40\%, \\ rpoCl 40\%, \\ rpoS, roocl 40\%, \\ rpoS, roocl 40\%, \\ rpoS, roocl 40\%, \\ rpoS, roocl 40\%, \\ rootal 300 \text{ samples} \\ rpoS, roocl 40\%, \\ rootal 300 \text{ samples} \\ rpoS, roocl 40\%, \\ rootal 300 \text{ samples} \\ rpoS, roocl 40\%, \\ rootal roos \\ rootal rootal roos \\ rootal rootal roos \\ rootal roos \\ rootal rootal roos \\ rootal r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vcf5.      |
| $ \begin{array}{c} rpoB, rpoC1, \\ rpoB, rpoC2, ycf2, ycf5, \\ ycf9, \\ \hline \\ \end{tabular} \label{eq:starseq} \end{tabular} \\ \textbf{CBOL 2009} \\ \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \\ \textbf{CBOL 2009} \\ \end{tabular} \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>,</i> , |
| $ \begin{array}{c} rpoC2, ycf2, ycf5, \\ ycf9, \\ \hline \\ \end{tabular} \\ \textbf{CBOL 2009} \\ \begin{array}{c} atpF-atpH, matK, \\ rbcL, rpoB, \\ rpoC1, psbK-psbI, \\ trnH-psbA \\ \textbf{et al., 2009} \\ \hline \\ \textbf{trnH-psbA} \\ \end{array} \\ \begin{array}{c} rpoC1; rpoB, \\ rpoC1; rpoB, \\ rbcL, matK, trnH- \\ lnga 26 species (N \\ matK 31 \%; \\ matK 31 \%; \\ multi-locus f \\ gymnosperms; \\ three groups: \\ lnga single loci = \\ rpoC1, matK 41\%; \\ rpoC1; rpoB, \\ rbcL, matK, trnH- \\ lnga 26 species (N \\ matK 31 \%; \\ multi-locus f \\ gymnosperms; \\ three locus = matK + \\ land plants ri \\ rpoC1, rbcL, \\ gymnosperms; \\ three locus = rbcL + \\ liverworts \\ rpoC1 or \\ rrhH-psbA) 69 \% \\ \hline \\ \textbf{Luo et al., } \\ \textbf{2010} \\ rpoC1, rbcL, \\ rpoS, trnT-trnL, \\ rpo2, trnT-trnL, \\ rps2, trnT-trnL, \\ rps2, trnT-trnL, \\ rps2, trnT-trnL, \\ rrhF, trnH-psbA, \\ (Orobanchaceae) \\ \hline \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Verf9,monocotyledons<br>54 angiospermsCBOL 2009 $atpF-atpH, matK, rbcL, rpoB, rpoC1, psbK-psbI, species oftrnH-psbATotal 907 samplesspecies ofangiosperms, matK 66%gymnosperms andcryptogamsrpoC1, spbK-psbI, species ofmatK 66%gymnosperms andcryptogamsCombinationrbcL, matK, trnH-psbA, atpF-atpH, atK, trnH-psbA, atpF-atpH, atK, psbK-psbICombinationrpoC1; rpoB,angiosperms, matK 66%gymnosperms andcryptogamsInga single loci =matK 31 %;trnH-psbA 57.7 %;rpoC1, matK +land plants riangiosperms;three locus = rbcL +trnH-psbA) 69 %CombinationrbcL, matK, trnH-psbK-psbILuo et al.,2010trnH-psbA, ycf5.rpoC1, rbcL,TS2, ITSPettengill andNeel, 2010trnH-psbA, vcf5.rpo2, trnT-trnL,trnL-intron, trnL-trnL-intron, trnL-trnF, trnH-psbA,(Orobanchaceae)TTS2 speciestrnL-trnE 67%,trnH-psbA, other regionsTTS2 speciestrnH-psbA, regions$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| CBOL 2009 $atpF-atpH, matK, rbcL, rpoB, rpoC1, psbK-psbI, trnH-psbATotal 907 samples representing 550rpoC1 43\%, psbK- psbI, rbcL + matKCombination rbcL + matKrpoC1, psbK-psbI, trnH-psbAspecies of angiosperms, gymnosperms and cryptogams(68-69\%), rbcL 61\%rbcL, matK, trnH- Inga 26 species (N matK 31 %; multi-locus f psbA, atpF-atpH, psbA, atpF-atpH, psbK-psbIInga 26 species (N matK 31 %; rpoC1, matK + Inga 26 species (N matK + (rpoC1 or trnH-psbA) 69 %Luo et al., 2010trnH-psbA, ycf5.192 speciesITS2 89%, trnH- ITS2 and trnPettengill and Neel, 2010matK, rbcL, rpoB, rps2, trnT-trnL, trnL-intron, trnL- kgalinis29 species (N = trnL-trnF 67\%, trnH-psbA, icorbanchaceae)trnH-psbA, icorbanchaceae)other regionsmatK, 62\%, icorbanchaceaematK 62\%, icorbanchaceaetrnH-psbA, icorbanchaceae$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| rbcL, rpoB,<br>rpoC1, psbK-psbI,<br>trnH-psbArepresenting 550psbI and trnH-psbA $rbcL + matK$ Hollingsworth<br>et al., 2009 $rpoC1; rpoB,$<br>rbcL, matK, trnH-<br>psbA, atpF-atpH,<br>psbK-psbIangiosperms,<br>angiosperms,<br>matK 31 %; $rbcL + matK$ Hollingsworth<br>et al., 2009 $rpoC1; rpoB,$<br>rbcL, matK, trnH-<br>psbA, atpF-atpH,<br>psbK-psbIThree groups:<br>angiosperms,<br>angiosperms,<br>gymnosperms;Inga single loci =<br>matK 31 %;<br>multi-locus f<br>dual locus = matK +<br>land plants ri<br>rpoC1, matKLuo et al.,<br>2010 $trnH-psbA, ycf5.$<br>rpoC1, rbcL,<br>ITS2, ITS192 species<br>genera (Rutaceae)<br>Total 300 samples<br>29 species (N =<br>trnL-trnF 67%,<br>trnH-psbA,<br>(Orobanchaceae)ITS2 and trnH-psbA at<br>trnH-psbA,<br>trnH-psbA,<br>trnH-psbA,<br>trnH-psbA,<br>(Orobanchaceae)ItrnH-psbA,<br>trnH-regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
| rpoC1, psbK-psbI,<br>trnH-psbAspecies of<br>species of<br>(68-69%), rbcL 61%<br>matK 66%Hollingsworth<br>et al., 2009rpoC1; rpoB,<br>rbcL, matK, trnH-<br>psbA, atpF-atpH,<br>psbA, atpF-atpH,<br>psbK-psbIInga 26 species (N<br>angiosperms,<br>angiosperms,<br>trnH-psbA 57.7 %;<br>multi-locus f<br>psbK-psbIInga 26 species (N<br>angiosperms,<br>matK 31 %;<br>multi-locus f<br>matK 31 %;<br>multi-locus f<br>matK 31 %;<br>rpoC1, matK<br>multi-locus f<br>psbK-psbIInga 26 species (N<br>matK 31 %;<br>multi-locus f<br>matK 31 %;<br>multi-locus f<br>matK 10 plants ri<br>psbK-psbILuo et al.,<br>2010trnH-psbA, ycf5.<br>rpoC1, rbcL,<br>TS2, ITS<br>Neel, 2010192 species<br>pspecies (N =<br>trnH-psbA 300 samples<br>ycf5 79%ITS2 and trn<br>psbA-trnH 65 %,<br>trnH-psbA,<br>(Orobanchaceae)ITS2 (N =<br>trnH-psbA,<br>trnT-trnL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| trnH-psbAangiosperms,<br>gymnosperms and<br>cryptogams $matK 66%$ Hollingsworth<br>et al., 2009 $rpoC1; rpoB,$<br>$rbcL, matK, trnH-psbA, atpF-atpH,psbK-psb1Three groups:angiosperms,gymnosperms;trnH-psbA 57.7 %;matK + (rpoC1 ortrnH-psbA) 69 %Inga 26 species (NmatK 31 %;trnH-psbA 57.7 %;trnH-psbA 69 %Combinationmulti-locus fpsbA, atpF-atpH,psbK-psb1Luo et al.,2010trnH-psbA, ycf5.rpoC1, rbcL,TS2, ITS192 speciesgenera (Rutaceae)Total 300 samplesITS2 89%, trnH-psbA-trnH 65 %,trnL-trnL 67%,trnH-psbA,trnT-trnLITS2 and trnpsbA-trnH 65 %,trnT-trnLPettengill andNeel, 2010matK, rbcL, rpoB,rps2, trnT-trnL,trnL-intron, trnL-Agalinis29 species (N =trnL-trnF 67%,matK 62%,other regionstrnH-psbA,trnT-trnL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 72%        |
| Hollingsworth<br>et al., 2009 $rpoC1; rpoB,$<br>$rbcL, matK, trnH-psbA, atpF-atpH,psbK-psbIInga 26 species (NmatK 31 %;multi-locus fangiosperms,matK 31 %;multi-locus fmatK 31 %;multi-locus fmulti-locus fmulti-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Hollingsworth<br>et al., 2009 $rpoC1; rpoB,$<br>$rbcL, matK, trnH-psbA, atpF-atpH,psbK-psbIThree groups:matK 31 \%;Inga single loci =matK 31 \%;Combinationmulti-locus fmatK 31 \%;Luo et al.,2010trnH-psbA, ycf5.rpoC1, rbcL,ITS2, ITS192 speciesITS2 89%, trnH-psbA starper (Rutaceae)ITS2 89%, trnH-psbA, rpoC1 40\%,Total 300 samplesycf5 79\%ITS2 and trnpsbA-trnH 65 \%,trnH-psbA,psbA, trnF, trnH-psbA,Combinationmulti-locus fpsbA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Hollingsworth<br>et al., 2009 $rpoC1; rpoB,$<br>$rbcL, matK, trnH-psbA, atpF-atpH,psbK-psbIThree groups:Inga 26 species (Nangiosperms,gymnosperms;three locus = rbcL +three locus = rbcL +trnH-psbA 57.7 %;three locus = rbcL +trnH-psbAfor the locus = rbcL +trnH-rbsDfor the locus = rbcL +trnH-rbsD$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| et al., 2009 $rbcL, matK, trnH-$<br>$psbA, atpF-atpH,$<br>$psbK-psbI$ Inga 26 species (N<br>angiosperms,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 6        |
| psbA, atpF-atpH, = 44 $psbA, atpF-atpH, = 44$ $angiosperms, trnH-psbA 57.7 %; rpoC1, matK$ $gymnosperms; three locus = rbcL + trnH-psbA$ $liverworts matK + (rpoC1  or  trnH-psbA) 69 %$ $Luo et al., trnH-psbA, ycf5. 192  species ITS2 89%, trnH-$ $rpoC1, rbcL, belonging to 72 psbA 83%, rbcL psbA$ $ITS2, ITS genera (Rutaceae) 78%, rpoC1 40%, Total 300 samples ycf5 79%$ $Pettengill and natK, rbcL, rpoB, 29  species (N = trnL-trnF 67%, trnH-psbA ar rps2, trnT-trnL, 92) in genus psbA-trnH 65 %, trnT-trnL trnL-intron, trnL- Agalinis matK 62%, trnF, trnH-psbA, (Orobanchaceae) other regions$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |
| psbK-psbIangiosperms,<br>gymnosperms;<br>liverworts $trnH-psbA$ 57.7 %;<br>$trnE-psbA$ 57.7 %;<br>$trne locus = rbcL + trnH-psbA$ Luo et al., $trnH-psbA$ , $ycf5$ . $192$ species $TS2$ 89%, $trnH-$<br>$trnH-psbA) 69 %Luo et al.,trnH-psbA, ycf5.192 speciesTS2 89%, trnH-psbA 83%, rbcLTS2 and trn2010rpoC1, rbcL,TS2, ITSbelonging to 72genera (Rutaceae)psbA 83%, rbcLpsbApsbAPettengill andNeel, 2010matK, rbcL, rpoB,rps2, trnT-trnL,trnL-intron, trnL-trnK-, trnH-psbA,(Orobanchaceae)psbA-trnH 65 %,matK 62%,other regions$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
| gymnosperms;three locus = $rbcL + trnH$ - $psbA$ liverworts $matK + (rpoC1 \text{ or } trnH$ - $psbA) 69 \%$ Luo et al., $trnH$ - $psbA, ycf5.$ 192 speciesITS2 89%, $trnH$ -2010 $rpoC1, rbcL, \\ ITS2, ITS$ belonging to 72 $psbA 83\%, rbcL \\ psbA$ $psbA$ Pettengill and $matK, rbcL, rpoB, 29$ species (N = $trnL$ - $trnF 67\%, trnH$ - $psbA$ arNeel, 2010 $rps2, trnT$ - $trnL, 92$ ) in genus $psbA$ - $trnH 65 \%, trnT$ - $trnL trnL$ -intron, $trnL$ - $Agalinis matK 62\%, trnT$ - $trnL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
| Luo et al.,<br>2010 $trnH$ -psbA, ycf5.192 species<br>speciesITS2 89%, $trnH$ -<br>psbAITS2 and $trn$<br>psbA2010 $rpoCl, rbcL,$<br>ITS2, ITSbelonging to 72<br>genera (Rutaceae) $psbA$ 83%, $rbcL$<br>psbA $psbA$ Pettengill and<br>Neel, 2010 $matK, rbcL, rpoB,$<br>$rps2, trnT-trnL,$<br>$trnL-intron, trnL-krnF, trnH-psbA,29 species (N =matK 62%,other regionstrnH-psbA artrnT-trnL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,          |
| Luo et al.,<br>2010 $trnH$ -psbA, ycf5.192 species<br>belonging to 72<br>genera (Rutaceae)ITS2 89%, trnH-<br>psbA 83%, rbcL<br>psbAITS2 and trn.<br>psbAPettengill and<br>Neel, 2010 $matK, rbcL, rpoB, 29$ species (N =<br>$rps2, trnT$ -trnL, 92) in genus<br>$trnL$ -intron, trnL-<br>$trnF, trnH$ -psbA,<br>(Orobanchaceae) $trnH$ -psbA) 69 %<br>ITS2 89%, trnH-<br>psbA 83%, rbcL<br>psbA 83%, rbcL<br>psbA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Luo et al.,<br>2010 $trnH$ - $psbA$ , $ycf5$ .192 speciesITS2 89%, $trnH$ -<br>$psbA 83%, rbcLpsbAITS2 and trnpsbA2010rpoC1, rbcL,ITS2, ITSbelonging to 72genera (Rutaceae)psbA 83\%, rbcLpsbApsbAPettengill andNeel, 2010matK, rbcL, rpoB,rps2, trnT-trnL,trnL-intron, trnL-trnF, trnH-psbA,29 species (N =psbA-trnH 65\%,matK 62\%,(Orobanchaceae)matK 62\%,other regions$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| 2010 $rpoCl, rbcL,$<br>ITS2, ITSbelonging to 72<br>genera (Rutaceae) $psbA$ 83%, $rbcL$<br>$psbA$ $psbA$ Pettengill and<br>Neel, 2010 $matK, rbcL, rpoB,$<br>$rps2, trnT-trnL,$<br>$trnL-intron, trnL-trnF, trnH-psbA,psbAtrnH-psbA armatK 62\%,(Orobanchaceae)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H-         |
| ITS2, ITSgenera (Rutaceae) $78\%$ , $rpoC1$ 40%,<br>Total 300 samplesPettengill andmatK, rbcL, rpoB,<br>rps2, trnT-trnL,29 species (N = $trnL$ -trnF 67%,<br>psbA-trnH 65%,<br>trnT-trnL $trnH$ -psbA ar<br>trnT-trnLNeel, 2010matK, rbcL, rpoB,<br>rps2, trnT-trnL,92) in genus<br>genus $psbA$ -trnH 65%,<br>matK 62%,<br>trnF, trnH-psbA, $trnT$ -trnL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| Pettengill and<br>Neel, 2010 $matK, rbcL, rpoB, 29$ species (N =<br>$rps2, trnT-trnL, 92$ ) in genus<br>$trnL-intron, trnL-$<br>$trnL-intron, trnL-$<br>$trnF, trnH-psbA, (Orobanchaceae)trnL-trnF 67\%, trnH-psbA arpsbA-trnH 65\%, trnT-trnLmatK 62\%, trnT-trnL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
| Neel, 2010rps2, trnT-trnL,<br>trnL-intron, trnL-<br>trnF, trnH-psbA,92) in genus<br>genus<br>AgalinispsbA-trnH 65 %,<br>matK 62%,<br>other regionstrnT-trnL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| trnL-intron, trnL- Agalinis matK 62%,<br>trnF, trnH-psbA, (Orobanchaceae) other regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ıd         |
| trnF, trnH-psbA, (Orobanchaceae) other regions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| between $50 - 61\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| <b>Liu et al.</b> , $rbcL$ , $matK$ , $trnH$ - 47 samples $rbcL$ 46%, $matK$ ITS and $trnL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - <i>F</i> |
| <b>2011</b> <i>psbA</i> , <i>trnL-F</i> , ITS belonging to 7 80%, <i>trnH-psbA</i> alone or in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to         |
| genera of <i>Taxus</i> in 64%, <i>trnL-F</i> 100, combination<br>Eurasia ITS 100% identify <i>Taxu</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |
| Eurasia ITS 100% identify Taxu<br>Eurasia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 111      |
| Li et al., 2012 rbcL, matK, trnH- 63 species in ITS 72%, psbK-psbI Single loci IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25         |
| psbA, psbK-psbI, Ficus (Moraceae) 21%, trnH-psbA for DNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5          |
| <i>atpF-atpH</i> , ITS of China (total 19%, <i>atpF-atpH</i> barcoding <i>Fi</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cus        |
| samples 228) 18%, <i>matK</i> 16%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |

| Table 2 2 Summany | of studios oor | mnoming DNA | hanading | regions in plants |
|-------------------|----------------|-------------|----------|-------------------|
| Table 3.2 Summary | of studies con | mparing DNA | Darcoung | regions in plants |

One difficulty with making the decision has been that the level of discrimination varies between studies. From the widely applied gene regions, *matK* demonstrated high levels of discrimination among angiosperms in some studies, e.g. 88.8 % (Burgess et al., 2011) and 79.4 % (de Vere et al., 2012); in other studies it resulted in low resolution, e.g. 31 % (Hollingsworth et al., 2009) and 16 % (Li et al., 2012). This type of variation is also common for other gene regions, e.g. *rbcL*, *trnH-psbA*, *atpF-atpH* (Bolson et al., 2015; Saarela et al., 2013; Liu et al., 2012; Pettengill and Neel, 2010; Luo et al., 2010; Fazekas et al., 2008), due to very low levels of variation among closely related species. Several factors are responsible for reducing the power of species discrimination in particular lineages investigated in plant DNA barcoding studies as a result of e.g. hybridization, polyploidy, slow mutation rates (Meyer and Paulay, 2005; Hollingsworth et al., 2011). Amongst closely related species shared mitochondrial sequences have been observed as a result of hybridization which restricts the identification of species (Hebert and Gregory, 2005).

DNA barcoding is mainly used as an effective tool for identifying unknown plant specimens and compared with a library of reference barcode sequences derived from individuals of known identity (Hajibabaei et al., 2007). Many applications have been developed, e.g. DNA barcoding has been conducted on the verification of species of medicinal plants (Gong et al., 2016; Michel et al., 2016; Zhang et al., 2015), monitoring invasive plants (Sciver et al., 2015; Zhang et al., 2013), understanding herbivore diet (Soininen et al., 2013; Meheust et al., 2015), discovering cryptic species (Hernandez et al., 2015; Nigro et al., 2016; Guarnizo et al., 2015), identifying forest trees (Costion et al., 2016; Nithaniyal et al., 2014), Identification of below-ground diversity (Partel et al., 2012; Valverde-Barrantes et al., 2013; Kesanakurti et al., 2011), and the reconstruction of past vegetation history (Sonstebo et al., 2010).

The purpose of the present chapter is to evaluate the performance of five DNA barcoding regions for developing a DNA reference library of the flora of Kuwait. The choice of regions will follow the standard criteria mentioned earlier by CBOL (2009) for choosing DNA barcodes. The region must easily PCR amplify, produce bidirectional quality sequencing and show maximum discriminatory power (CBOL, 2009). The regions tested are four plastid regions (*matK*, *rbcL*, *trnH-psbA*, *trnL-F*), and one nuclear (ITS2). The choice of tested regions was based on the recommendation of several previous studies showing high species resolution amongst angiosperms (CBOL, 2009; de Vere et al., 2012; Kress et al., 2005; Luo et al., 2010; Chen et al., 2010; Liu et al., 2011).

The evaluation included, PCR amplification success and universality of primers, highquality sequencing, testing combined regions of successful barcodes, discrimination by similarity based on BLASTn (Basic Local Alignment Search Tool: Altschul et al., 1990) and generating monophyly tree based tests using Neighbour Joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) applied in DNA barcoding studies by Lahaye et al., 2008; Hollingsworth et al., 2009; Kress et al., 2009; Pettengill and Neel, 2010. Some of the questions that may be raised here are directly linked to the molecular identification and discrimination of species: 1) is it possible for the proposed markers to amplify and sequence using one set of universal primers each? 2) Which marker demonstrates the greatest level of species discrimination? 3) Which of the gene region combinations performs best in discriminating species?

#### 3.2 Materials and methods

#### 3.2.1. Sampling material

For the evaluation of DNA regions, a total of 49 individuals were sampled belonging to 25 spp. (listed in Table 3.3 and Appendix 3.1); 27 from herbarium specimens collected from Kuwait University herbarium (KTUH) and 22 from living plants collected throughout Kuwait. The samples used here belong to 4 largest genera of the flora of Kuwait: *Astragalus* (9 spp), *Plantago* (8 spp.), *Launaea* (4 spp.), and *Helianthemum* (4 spp.) belonging to the families Fabaceae, Plantaginaceae, Asteraceae, and Cistaceae, respectively (Table 3.3 and Appendix 3.1). The largest genera were chosen in an attempt to study the sequence diversity and barcode

discrimination amongst closely related species and investigated whether they are closely or distantly related within each genus. All species included two accessions for each species, except *Plantago notata* where only one herbarium sample was available (Table 3.3 and Appendix 3.1).

Table 3.3 List of plant species used in the evaluation of five DNA markers

| Fabaceae        | Plantaginaceae   | Asteraceae      | Cistaceae         |
|-----------------|------------------|-----------------|-------------------|
| Astragalus spp. | Plantago spp.    | Launaea spp.    | Helianthemum spp. |
| A. annularis    | P. amplexicaulis | L. angustifolia | H. kahiricum      |
| A. bombycinus   | P. boissieri     | L. capitata     | H. ledifolium     |
| A. corrugatus   | P. ciliata       | L. mucronata    | H. lippii         |
| A. hamosus      | P. coronopus     | L. nudicaulis   | H. salicifolium   |
| A. hauarensis   | P. lanceolata    |                 |                   |
| A. schimperi    | P. notata        |                 |                   |
| A. sieberi      | P. ovata         |                 |                   |
| A. spinosus     | P. psammophila   |                 |                   |
| A. tribuloides  |                  |                 |                   |

Fresh plant vouchers were determined using several floristic publications on the flora of Kuwait (Daoud, 1985; Al-Rawi, 1987; Boulos, 1988) and reconfirmed by consulting an expert, the herbarium curator at Kuwait University Herbarium (KTUH), Dr. K.T. Mathew. Herbarium vouchers made for freshly collected plants were deposited in KTUH and Royal Botanic Garden Edinburgh (RBGE) Herbarium (E), mounted and digitised.

In addition to the freshly sampled material (to complete the data set) herbarium samples were collected from KTUH specimens, based on the following criteria:

 Specimens which have been determined by an expert in addition to the authors;

- 2. Small samples of leafy tissue were collected without destroying the value of the herbarium specimen;
- 3. Three individuals (where available) from separate geographical locations within the boundary of Kuwait;
- 4. Recent collections preferably; and
- 5. Referenced and linked to KTUH herbarium specimens.

A list of species used, the source of material (fresh/herbarium), unique Edinburgh DNA numbers (EDNA) for each DNA prep and name of collectors are presented in Appendix 3.1.

## 3.2.2 DNA extraction, amplification and sequencing

## **DNA extraction**

DNA was extracted from leafy material (freshly collected silica dried or herbarium material) using Qiagen Plant DNeasy kits following the manufacturer's protocol: DNeasy Plant Handbook. A small amount (~ 20 mg) of dry, healthy leaf material was selected and loaded in 2.0 ml Eppendorf tubes with one 5 mm stainless steel bead. Samples were ground using TissueLyser II (Qiagen, Ltd.) until the material was powdered (frequency 20 Hz x 2 x ~ 30 sec).

All DNA extractions were given a unique EDNA accession number (Appendix 3.1) and banked for long term storage at RBGE.

## **PCR** amplification

DNA fragments were amplified via standard polymerase chain reaction (PCR). All primers synthesised for PCR and sequencing are listed in Table 3.4 and the reaction conditions for each region are presented in Table 3.5.

| Region    | Primer  | Genome      | Direction | Primer Sequence             | Reference                                   |
|-----------|---------|-------------|-----------|-----------------------------|---------------------------------------------|
| rbcL      | aaf     | Plastid     | Forward   | ATGTCACCACAAACAGAGACTAAAGC  | Kress & Erickson,                           |
| rbcL      | ajf634R | Plastid     | Reverse   | GAAACGGTCTCTCCAACGCAT       | 2007<br>Fazekas et al.,<br>2008             |
| trnH-psbA | psbA3'f | Chloroplast | Forward   | GTTATGCATGAACGTAATGCTC      | Sang et al., 1997                           |
| trnH-psbA | trnHf   | Chloroplast | Reverse   | CGCGCATGGTGGATTCACAATCC     | Tate & Simpson,<br>2003                     |
| ITS2      | S2F     | Nuclear     | Forward   | ATGCGATACTTGGTGTGAAT        | Chen et al., 2010                           |
| ITS2      | S3R     | Nuclear     | Reverse   | GACGCTTCTCCAGACTACAAT       | Chen et al., 2010                           |
| matK      | Xf      | Chloroplast | Forward   | TAATTTACGATCAATTCATTC       | Ford et al., 2009                           |
| matK      | MALPR1  | Chloroplast | Reverse   | ACAAGAAAGTCGAAGTAT          | Dunning &                                   |
| matK      | 1RKIM-f | Chloroplast | Forward   | ACCCAGTCCATCTGGAAATCTTGGTTC | Savolainen, 2010<br>Ki-Joong Kim, pers. con |
| matK      | 3FKIM-r | Chloroplast | Reverse   | CGTACAGTACTTTTGTGTTTACGAG   | Ki-Joong Kim,                               |
| trnL      | С       | Chloroplast | Forward   | CGAAATCGGTAGACGCTACG        | pers. comm<br>Taberlet et al.,<br>1991      |
| trnL      | D       | Chloroplast | Reverse   | GGGGATAGAGGGACTTGAAC        | Taberlet et al.,<br>1991                    |

Table 3.4. DNA regions and primers used

PCR for *rbcL*, *psbA-trnH*, *trnL*, and ITS2 regions were performed using one set of primer for each locus (forward/ reserve) in 20  $\mu$ l reactions containing 1.5 Unit Biotaq (Bioline), 1 x PCR Buffer, 1.5 mM MgCl<sub>2</sub>, 0.2 mM of each dNTP, 1.5 mM of each primer, 1 x Combinatorial PCR Enhancer Solution (CES) and 1.0  $\mu$ l (30-50 ng/ $\mu$ l) genomic DNA.

PCR for *matK* was performed using three sets of primers in 10  $\mu$ l reactions containing 1.5 Unit Biotaq, 1 x PCR Buffer, 2.5 mM MgCl<sub>2</sub>, 0.2 mM of each dNTP, 1.5 mM of each primer, 1 M Betaine and 1  $\mu$ l (30-50 ng/ $\mu$ l) genomic DNA. PCR cycles used for each region are presented in Tables 3.4. Positive and negative controls were included in each PCR run to check for any contamination and help with troubleshooting.

Additives such as Betaine, Trehalose and/ or CES were included to enhance the PCR amplification. CES includes 2.7 M betaine, 6.7% dimethyl sulfoxide (DMSO) and 50 mg/ml bovine serum albumin (BSA).

Betaine and DMSO aid in reducing secondary structure of GC-rich templates and improves yield during PCR amplification (Jensen et al., 2010). BSA is effective when amplifying old/ ancient DNA contain PCR inhibitors such as phenolic compounds (Farell and Alexandre, 2012). CES is a combination of all enhancers' betaine, DMSO and BSA (Ralser et al., 2006).

| Region    | PCR cycle                                        |
|-----------|--------------------------------------------------|
| rbcL      | 94 C 1 min                                       |
|           | 94 C 45 sec, 51 C 45 sec, 72 C 2 min, 40 cycles  |
|           | 72 C 7 min                                       |
| psbA-trnH | 94 C 3 min                                       |
|           | 94 C 45 sec, 50 C 45 sec, 72 C 1 min, 2 cycles   |
|           | 94 C 45 sec, 45 C 45 sec, 72 C 1 min, 30 cycles  |
|           | 72 C 5 min                                       |
| ITS2      | 95 C 4 min                                       |
|           | 94 C 1 min, 55 C 1 min, 72 C 45 sec, 30 cycles   |
|           | 72 C 5 min                                       |
| matK      | 94 C 1 min                                       |
|           | 94 C 30 sec, 55 C 30 sec, 72 C 1 min, 10 cycles  |
|           | 88 C 30 sec, 50 C 30 sec, 72 C 1 min, 25 cycles  |
|           | 72 C 10 min                                      |
| trnL      | 95 C 4 min                                       |
|           | 94 C 1 min, 50-55 C 1 min, 72 C 2 min, 35 cycles |
|           | 72 C 5 min                                       |

Table 3.5. PCR cycles used for each region

## **Gel electrophoresis**

DNA extractions and PCR amplifications samples were run on an agarose gel (1 %). SYBR Safe DNA gel stain was added at a concentration of 5  $\mu$ l per 100 ml to allow visualisation of DNA.

Agarose gels were visualised using GeneSyn software and a Gene Genius UV transilluminator system. Band brightness relative to the 1 kb+ ladder determined how much PCR product to use in the sequencing PCR reaction – for the same brightness of the ladder 1  $\mu$ l was used, for brighter bands 0.5  $\mu$ l and fainter bands 1.5-2  $\mu$ l.

#### **PCR** purification

PCR products were cleaned up using ExoSAP IT. ExoSAP IT contains two hydrolytic enzymes, Exonuclease I to degrade single-stranded primers and Shrimp Alkaline Phosphatase to remove dNTPs. 2  $\mu$ l ExoSAP IT was mixed with 5  $\mu$ l PCR products in 0.2 ml reaction tubes or 96 well plates and incubated in a thermocycler at 37 °C for 15 minutes followed by heating at 80 °C for 15 minutes to inactivate enzymes.

#### **Sequencing Protocol**

BigDye Sequencing was performed in 10  $\mu$ l reaction containing 0.5  $\mu$ l BigDye Terminator v3.1 Cycle Sequencing kit, 2  $\mu$ l of 5 x BigDye Buffer, 0.32  $\mu$ l of 10mm Primer, 6.68  $\mu$ l H<sub>2</sub>O and 0.5  $\mu$ l of purified PCR.

BigDye sequencing cycles incubated in a thermocycler: 25 cycles of 95 °C for 30 sec, 50°C for 20 sec, and 60°C for 4 mins.

#### 3.2.3 Sequence editing, alignment and molecular analysis

Geneious software (ver. 6.1.8, Biomatters Ltd., Kearse et al., 2012) was used to trim ends (using a 25 bp window segments with > 2 bp showing QV < 20 removed) and assemble the sequences into contigs. Every contig was checked for base call disagreements and ambiguities and manually edited where necessary. Poor quality sequences that were not amenable to manual editing, those with low overlap (less than 50 %) were removed. Also, the number of contigs meeting the criteria for high quality sequences according to the CBOL Plant Working Group (2009) was determined. The CBOL (2009) define high quality sequences as those in which both the forward and reverse reads have a minimum length of 100 bp, a minimum mean QV of 30 and the post-trim lengths are > 50% of the original read length; the assembled contig have > 50% overlap in the alignment of the forward and reverse reads with < 1% low-quality bases (<20 QV) and < 1% internal gaps and substitutions when aligning the forward and reverse reads. Quality statistics including the amount of bi-directional read, mean QV of sequences, the percentage of high (QV > 30) and low quality (QV < 20) bases were calculated for each contig using Geneious software. Multiple sequence alignments (MSA) were performed by MUSCLE alignment (Edgar, 2004) using Molecular Evolutionary Genetics Analysis software version 7.0 (MEGA7: Kumar et al., 2015). For the non-coding regions (ITS2 and *trnL*) the settings for Gap penalties were adjusted to generate MSA with fewer Gaps in the final alignment (the default settings: Gap open - 400 with Gap extend at 0. Gap penalties for ITS2 region was set at: Gap open -800 with Gap extend -1; for *trnL* Gap open was set at -900 with Gap extend -1. The MEGA software was also used to describe the genetic variability of each marker by calculating the mean length of base pairs, total aligned base pairs, variable sites (%), parsimony informative sites (%), and singleton sites (%).

A list of specimens with Barcode of Life Data Systems (BOLD) and GenBank accessions representing successfully barcoded sequences for *rbcL*, *trnL* and ITS2 are represented in Appendix 3.2.

#### **BLASTn searches of barcoded sequences**

A BLASTn search was performed to test the barcode sequences for similarity, available online by National Center for Biotechnology Information (NCBI) (Altschul et al., 1990).

Sequences for each region were queried against the NCBI non-redundant database through Geneious software using BLASTn search tool (built in plugin). The DNA barcodes were blasted for sequence similarities and best match based on sequences already banked online at NCBI, which automatically includes a search through the following databases: GenBank, Reference Sequence (RefSeq), European Molecular Biology Laboratory- European Bioinformatics Institute (EMBL-EBI), DNA DataBank of Japan (DDBJ) and Protein Data Bank (PDB) (accessed on  $10^{th}$  April 2017 using Geneious ver. R10, Kearse et al., 2012). The query excluded human sequences by using the following command: all[filter] NOT human[orgn], and the maximum hits was set at 100. The cut-off was determined by a match  $\geq$  99 % identity.

## Sequence discrimination

The level of species discrimination of barcoded sequences was calculated by the generation of a monophyly tree based test using Neighbour-joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) (Saitou and Nei, 1987; Fitch, 1971; Felsenstein, 1981, respectively).

Tree-based analysis: NJ, ML and MP trees were generated for each region using MEGA7 software (Kumar et al., 2015). The genetic distance model for all tree-based analyses was computed using the Kimura 2-parameter method (Kimura, 1980) with gaps/ missing data treatment adjusted using pairwise deletion with bootstrap support set at 1000 replicates.

The tree-based methods (NJ, ML, and MP) were used to evaluate which tree produced greater species resolution and whether the barcode sequences form monophyletic groups, in addition, to calculate the percentage resolution of species-specific clusters for each.

#### **3.3 Results**

#### 3.3.1 DNA recoverability, amplification and sequences success.

Comparing the plant material types (fresh/ herbarium) for all tested accessions showed DNA extracted from freshly silica-dried leaves has the highest percentage of specimens for which DNA sequences recoverable (95 %) against herbarium specimens (80 %). Freshly collected material produced higher levels of amplification and sequencing success rates were more consistent across the samples (Table 3.6).

Table 3.6 summarises PCR amplification and sequencing success rates for all markers tested. PCR amplification and sequencing from silica-dried and herbarium plant material was highest for *rbcL* and nrITS2 (each with 98 % success), followed by *trnL* (88 %), *matK* (80 %) and *trnH-psbH* (65 %) (Table 3.6).

| DNA<br>Region/<br>Collection<br>type | No of<br>individuals<br>sampled | Sequence<br>efficiency<br>(%) | Amplification<br>failure<br>(%) | Sequence<br>failure<br>(%) |
|--------------------------------------|---------------------------------|-------------------------------|---------------------------------|----------------------------|
| rbcL                                 | 49                              | 48 (98)                       | 1 (2)                           | 0                          |
| Herbarium                            | 27                              | 26 (96)                       | 1 (4)                           | 0                          |
| Fresh                                | 22                              | 22 (100)                      | 0                               | 0                          |
| trnL                                 | 49                              | 42 (86)                       | 6 (12)                          | 1 (2)                      |
| Herbarium                            | 27                              | 21 (78)                       | 5 (19)                          | 1 (4)                      |
| Fresh                                | 22                              | 21 (95)                       | 1 (5)                           | 0                          |
| nrITS2                               | 49                              | 48 (98)                       | 0                               | 1 (2)                      |
| Herbarium                            | 27                              | 26 (96)                       | 0                               | 1 (4)                      |
| Fresh                                | 22                              | 22 (100)                      | 0                               | 0                          |
| matK                                 | 49                              | 39 (80)                       | 8 (16)                          | 2 (4)                      |
| Herbarium                            | 27                              | 19 (70)                       | 7 (26)                          | 1 (4)                      |
| Fresh                                | 22                              | 20 (91)                       | 1 (5)                           | 1 (5)                      |
| trnH-psbA                            | 49                              | 32 (65)                       | 10 (20)                         | 7 (14)                     |
| Herbarium                            | 27                              | 14 (52)                       | 8 (30)                          | 6 (22)                     |
| Fresh                                | 22                              | 18 (82)                       | 2 (9)                           | 2 (9)                      |

Table 3.6. Summary of the proportion of samples successfully amplified and sequenced for five barcoding regions using fresh and herbarium plant material

The five barcoding markers tested showed differences in amplification and sequencing success. Amongst the regions tested *rbcL* and ITS2 resulted in the highest amplification and sequencing success rate (both 98 %), followed by *trnL* (86 %), *matK* (80 %), and the lowest was *trnH-psbA* (65 %) (Table 3.6). Thus, the amplification and sequence failures were highest for *trnH-psbA* followed by *matK*, 20 % and 14 %, and 16 % and 4 %, respectively (Table 3.6). *matK* and *trnH-psbA* amplified better using freshly collected material than herbarium specimens. *rbcL* and ITS2 showed the greatest amplification success using one set of primer each. *trnL* and *trnH-psbA* were also amplified using one set of primers each but showed very low amplification success compared to *rbcL* and ITS2 regions.

For *matK*, not all specimens amplified and sequenced from the first run and the locus was tested using three different sets of *matK* primers. First set: forward primer *matK*-Xf (Ford et al., 2009), with reverse primer *matK*-MALPR1 (Dunning & Savolainen, 2010). Second set: forward primer *matK*-1RKIM-f and reverse primer *matK*-3FKIM-r

(Kim et al., 2010). Third set: forward primer *matK*-1RKIM-f and reverse primer *matK*-MALPR1 (See Table 3.4. for primers list). Overall, for *matK* region, after several amplification attempts, only 39 out of 49 species (80%) successfully sequenced and barcoded, 8 samples belonging to *Helianthemum* spp. failed to amplify.

*matK* and *trnH-psbA* regions were excluded from any further analyses due to high amplification and sequencing failures (20 % and 35 %, respectively).

Single regions (*rbcL*, ITS2, *trnL*) and combined regions (*rbcL* + ITS2, *rbcL* + *trnL*, and *trnL* + ITS2) were further analysed and tested for levels of species discrimination.

#### 3.3.2 Sequence quality and alignment

**Single region sequences:** The multiple sequence alignment (MSA) lengths of all tested accessions for *rbcL*, *trnL* and ITS2, barcodes are 532, 488 and 408 bp, respectively. For *rbcL*, the amplicon sizes of the two primer pairs were 532 bp, followed by *trnL*, 342 bp to 453 bp and ITS2 barcodes ranged from 378 bp to 399 bp. The percentage of gaps present in the non-coding regions was highest in *trnL*, 16 % followed by ITS2, with only 7 % (Table 3.7). The coding region, *rbcL*, showed no gaps in the MSA.

The mean percentage of high-quality bases within the sequences (defined as a QV score greater than 30) ranged from 98.3 % to 99.3 % for all three regions with *rbcL* containing the highest quality of 99.3 % (Table 3.7). Mean low quality (QV < 20) was less than 1 % for all three regions. The ITS2 matrix contained the most variable sites 53 % and parsimony informative sites 52 % followed by *trnL* with variable sites of 52 % and parsimony informative sites of 50 % followed by *rbcL* with variable sites of 20 % and parsimony informative sites of 19 % (Table 3.7).

Manually exploring the variation in the multiple sequence alignments (MSA) based on a genus-by-genus basis, it is clear that sequences representing a genus showing a unique pattern of sequence and gaps that differentiate them from the other genera. Looking at *rbcL* MSA, although the sequence variation amongst all the sites was low (20 %), the four different genera each contained unique sequences that distinguished the groups in the MSA. For example, unique nucleotide bases noted for *Astragalus* spp. T-thymine present at positions 184, 308, 332, 333, 497; G-guanine present at 137, 329; A-adenine present at 191, 530; C-cytosine present at 257, 299, 464).

Unlike the coding region *rbcL*, the non-coding regions ITS2 and *trnL*, contain 7 % and 16 % alignment gaps, respectively (Table 3.7). For the non-coding regions, the variation amongst the four genera resulted from a combination of nucleotide bases present at different positioning along the sequences and also the presence of alignment gaps. For example, in ITS2 MSA, *Plantago* spp were distinguishable by: T-thymine present at positions 138, 185, 230, 247, 351, 402; G-guanine present at 241, 217,238; A-adenine present at 178, 233, 312; C-cytosine present at 25, 86, 169, 192, 234, 286; Alignment Gaps present at the following positions: 88-97, 138-149, 221-224, 274-281).

**Combined regions sequences:** The multiple aligned sequence lengths for rbcL + ITS2, rbcL + trnL and trnL + ITS2 barcodes are 940, 1020, and 896 bp, respectively. trnL + ITS2 matrix contained the most variable sites of 467 (52 %) and parsimony informative sites 454 (51 %), followed by rbcL + ITS2 with variable sites of 332 (35 %) and parsimony informative sites 319 (34 %), and rbcL + trnL with variable sites of 360 (35 %) and parsimony informative sites 350 (34 %) (Table 3.7). The percentage of alignment gaps was highest for the combined region trnL + ITS2 (12 %), followed by rbcL+trnL (7.7 %) and rbcL+ITS2 representing the fewest alignment gaps (3.2 %).

|                              | Sin   | gle DNA re | gion    | Com        | bined DNA re | gions      |
|------------------------------|-------|------------|---------|------------|--------------|------------|
|                              | rbcL  | ITS2       | trnL    | rbcL+ITS2  | rbcL+trnL    | trnL+ITS2  |
| N species/ total individuals | 48/49 | 48/49      | 42/49   | 47/49 (96) | 42/49 (86)   | 41/49 (86) |
| (%)                          | (98)  | (98)       | (90)    |            |              |            |
| Aligned sequence length bp   | 532   | 408        | 488     | 940        | 1020         | 896        |
| Minimum sequence length bp   | -     | 378        | 342     | 880        | 874          | 739        |
| Maximum sequence length bp   | -     | 399        | 453     | 931        | 985          | 840        |
| Number of Gaps (%)           | 0     | 30 (7)     | 79 (16) | 30 (3.2)   | 79 (7.7)     | 109 (12)   |
| Variable sites bp (%)        | 105   | 217        | 255     | 332        | 360          | 467        |
|                              | (20)  | (53)       | (52)    | (35)       | (35)         | (52)       |
| Parsim-inform sites bp (%)   | 105   | 214        | 245     | 319        | 350          | 454        |
|                              | (19)  | (52)       | (50)    | (34)       | (34)         | (51)       |
| Singleton sites (%)          | 0     | 3 (0.7)    | 10 (2)  | 3 (0.3)    | 10 (0.9)     | 13 (1.5)   |
| GC content (%)               | 43.30 | 45.40      | 33.6    | 49.0       | 38.9         | 44.0       |
| Mean high quality bases      | 99.30 | 98.90      | 98.30   |            |              |            |
| QV>30 (%)                    |       |            |         |            |              |            |
| Mean low quality bases       | 0.30  | 0.40       | 0.70    |            |              |            |
| QV<20 (%)                    |       |            |         |            |              |            |

Table 3.7. Alignment metrics for single regions and combined regions

## **3.3.3 BLASTn searches**

BLASTn searches were applied to provide valuable insights into understanding how well the 25 tested species belonging to the flora of Kuwait are represented by comparing them to similar sequences banked at NCBI database. Matches to NCBI database of *rbcL*, ITS2, and *trnL* sequences were determined by BLASTn cut-off value  $\geq$  99 % identity for a top match.

NCBI database (<u>http://blast.ncbi.nlm.nih.gov/Blast</u>) was accessed by Geneious plugin (on 10<sup>th</sup> April 2017). By blasting each barcoded sequence against the NCBI database, and comparing the sequences using BLASTn cut-off value  $\geq$  99 % identity, a list of similarities was compiled according to genus and species match.

All sequences representing *rbcL*, *trnL* and ITS2 barcodes of the 25 tested species matched with a similar sequence present in the NCBI database at the family, genus level and 16 matched to species level (Appendix 3.3). ITS2 and *trnL* barcodes showed the highest number of 24 sequences matching at the species level (represented by six species for each region), 24 % and 25 %, respectively. *rbcL* barcodes matched four

species only (16 %), other sequences for the three markers matched to genus level with few to the family level only.

In order to understand how well the sequences of the 25 tested species of the flora of Kuwait (Table 3.3) are well represented in the NCBI database, I compiled a list of Genbank accessions (Appendix 3.3) representing the three markers (*rbcL*, *trnL*, ITS2) by performing a search by species names using NCBI taxonomy database and comparing the accessions list with that generated by BLASTn matches of the barcode sequences, using the following web page accessed on 12<sup>th</sup> April 2017, NCBI taxonomy database: https://www.ncbi.nlm.nih.gov/taxonomy

In Appendix 3.3, the Genbank accessions in bold text represent sequence matches to *rbcL*, *trnL*, and ITS2 barcoded sequences of the 25 tested species of the Kuwaiti flora using BLASTn; the other listed Genbank accessions (normal text Appendix 3.3) are representatives of *rbcL*, *trnL* and ITS2 accessions searched by species name through the NCBI taxonomy database (see web page above), (Appendix 3.3).

The largest number of GenBank accessions (using NCBI taxonomy database search by species name) compiled for ITS2 followed by *trnL* and *rbcL*, 33, 18, and 13, respectively (Appendix 3.3). A total of 33 ITS2 accessions representing 18 species present in the NCBI database, from which only 6 species matched (using BLASTn) the ITS2 barcodes of the 25 tested species belonging to the Kuwaiti flora. A total of 18 *trnL* accessions belonging to 9 species from which only 6 species matched the *trnL* barcodes of the 25 tested species. A total of 13 *rbcL* accessions were compiled representing 6 species from which only 4 species matched the barcode sequences of the 25 tested species (Appendix 3.3).

#### 3.3.4 Species discrimination

#### Monophyly tree based analyses

Phylogenetic tree based analysis using Neighbour Joining (NJ), Maximum Parsimony (MP) and Maximum Likelihood (ML) trees were reconstructed to evaluate the four genera for the three barcode regions (*rbcL*, ITS2, *trnL*) and three combinations (*rbcL*+ITS2, *rbcL*+*trnL*, *trnL* + ITS2), are resolvable as monophyletic groups and to determine the levels of species discrimination.

#### Single region tree based analysis

All tested trees resolved all four genera (*Astragalus* spp., *Plantago* spp., *Helianthemum* spp., *Launaea* spp.) for *rbcL*, ITS2 and *trnL* as monophyletic groups with  $\geq$  99 % clades support using bootstrap of 1000 replicates. The comparison of three phylogenetic tree methods (NJ, MP, ML) generated very similar topologies and species resolution shown in Table 3.8. and Figures 3.1-3.3. Species-specific clustering for NJ resulted in the highest resolution for two markers *rbcL* and ITS2, 60 % and 64 %, respectively. NJ and MP resulted in equal resolution for *trnL* marker, 42 % compared to ML with 38 % species resolution (Table 3.8).

Comparing the three phylogenetic trees and three markers together, ITS2 resulted in the highest species-specific clustering, followed by *rbcL* and *trnL*. For ITS2 region the levels of species discrimination was greatest, 56-64 %, using all tree methods (Table 3.8). *rbcL* region showed the highest species resolution using NJ, 60 %, followed by MP and ML with 52 % each. The *trnL* region resulted in the lowest species resolution 38-42 % for all tree methods (Table 3.8).

|                    | N an a stag/ total           | Specie  | lusters |         |
|--------------------|------------------------------|---------|---------|---------|
| DNA region(s)      | N species/ total individuals | NJ (%)  | MP (%)  | ML (%)  |
| rbcL               | 25/48                        | 15 (60) | 13 (52) | 13 (52) |
| ITS2               | 25/48                        | 16 (64) | 14 (56) | 14 (56) |
| trnL               | 24/43                        | 10 (42) | 10 (42) | 9 (38)  |
| <i>rbcL</i> + ITS2 | 25/46                        | 16 (64) | 16 (64) | 16 (64) |
| rbcL + trnL        | 24/43                        | 12 (50) | 12 (50) | 10 (42) |
| trnL + ITS2        | 24/42                        | 12 (50) | 10 (42) | 10 (42) |

 Table 3.8 Percentage of species-specific clusters using phylogenetic reconstruction tree for a single and combined DNA regions.

NJ trees are presented here for all three regions and three combinations for further analyses (MP and ML trees are provided in Appendix 3.4. due to lower species resolution than NJ). The topology generated by NJ demonstrated the greatest support values for ITS2 region (Figure 3.1) which was capable of recovering 64 % of species-specific clusters, followed by *rbcL* 60 % (Figure 3.2) and *trnL* with only 42 % (Figure 3.3 and Table 3.8). Based on these results, I will explore in more detail *rbcL* and ITS2 NJ analyses.

NJ analysis for *rbcL* resulted in slightly better monophyletic species clade support, ranging from 64 to 100 % compared to ITS2, 61 to 100 %. Paraphyletic clades were present across both regions, *rbcL* showed four paraphyletic clades and ITS2, showed three clades (Figures 3.1-3.2).

Results of species-specific clusters for the four major plant groups (Table 3.9) shows great species resolution for ITS2 compared to *rbcL* region. ITS2 discriminated 100 % of *Launaea* spp., followed by *rbcL* (only 50 %) and 50 % for *Plantago* spp., while *rbcL* showed only 38 % species discrimination. *rbcL* showed a better species resolution with *Astragalus* spp., 78 % compared with ITS2, slightly lower, 67 % (Table 3.9). *Helianthemum* spp. for both regions (*rbcL* and ITS2) resulted in an equal discriminatory power, 75 % each, (Table 3.9 and Figures 3.1 and 3.2).

|                    | Species-specific clusters showing major groups using NJ |               |                   |             |  |  |  |
|--------------------|---------------------------------------------------------|---------------|-------------------|-------------|--|--|--|
|                    | N species/ total individuals per clade (NJ %)           |               |                   |             |  |  |  |
| DNA region(s)      | Astragalus spp.                                         | Plantago spp. | Helianthemum spp. | Launaea spp |  |  |  |
| rbcL               | 7/9 (78)                                                | 3/8 (38)      | 3/4 (75)          | 2/4 (50)    |  |  |  |
| ITS2               | 6/9 (67)                                                | 4/8 (50)      | 3/4 (75)          | 4/4 (100)   |  |  |  |
| <i>rbcL</i> + ITS2 | 6/9 (67)                                                | 3/8 (38)      | 3/4 (75)          | 4/4 (100)   |  |  |  |

Table 3.9 Percentage of species-specific clusters for major groups using NJ forsingle DNA regions and different combinations

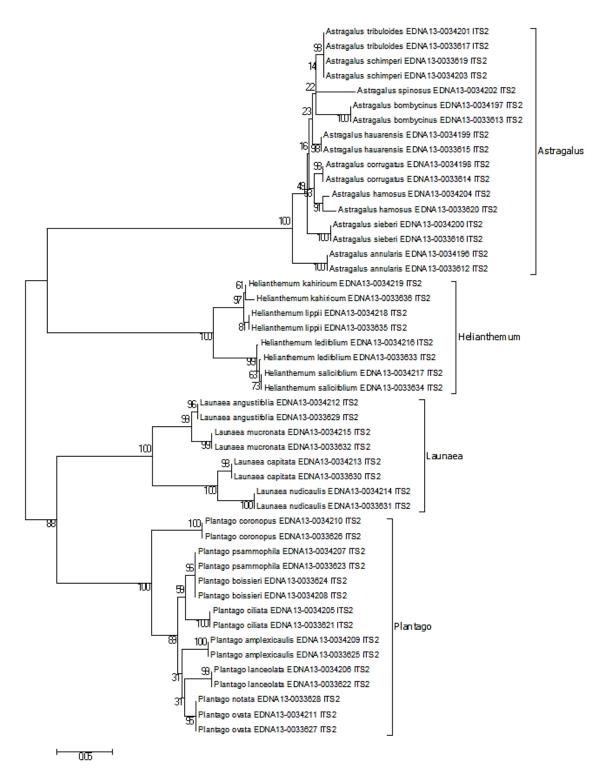



Figure 3.1 Neighbour joining phylograms for ITS2 barcodes illustrating the four largest genera of the flora of Kuwait (values represent % boot strap support with 1000 replicates)

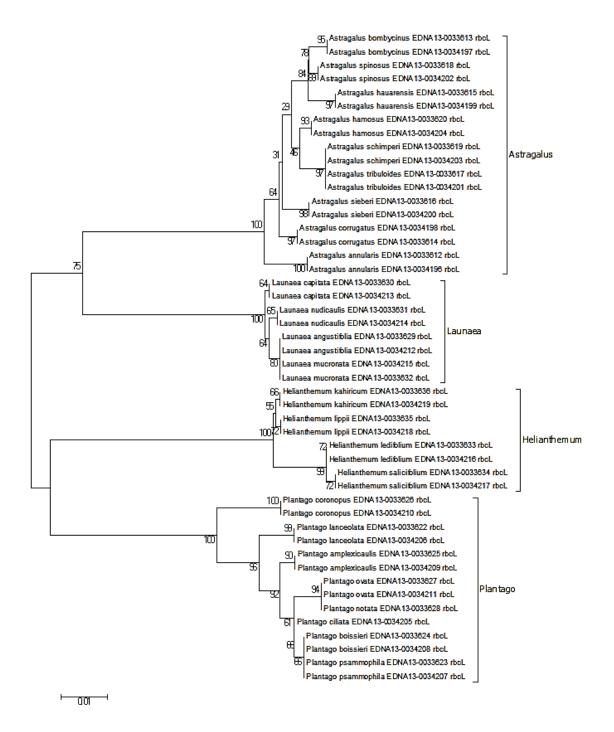
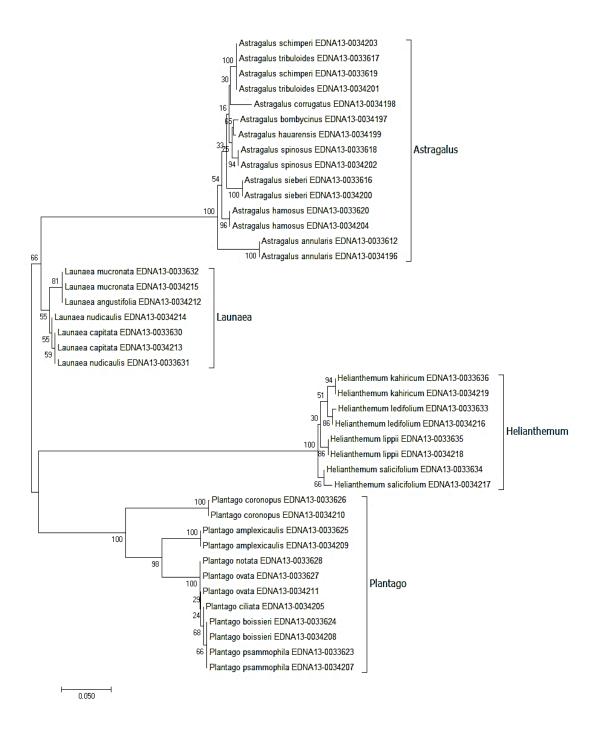
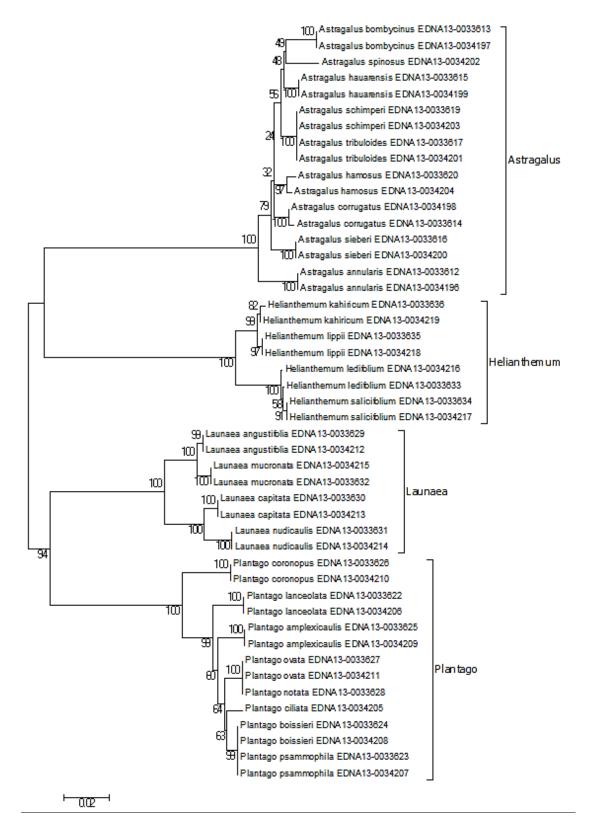
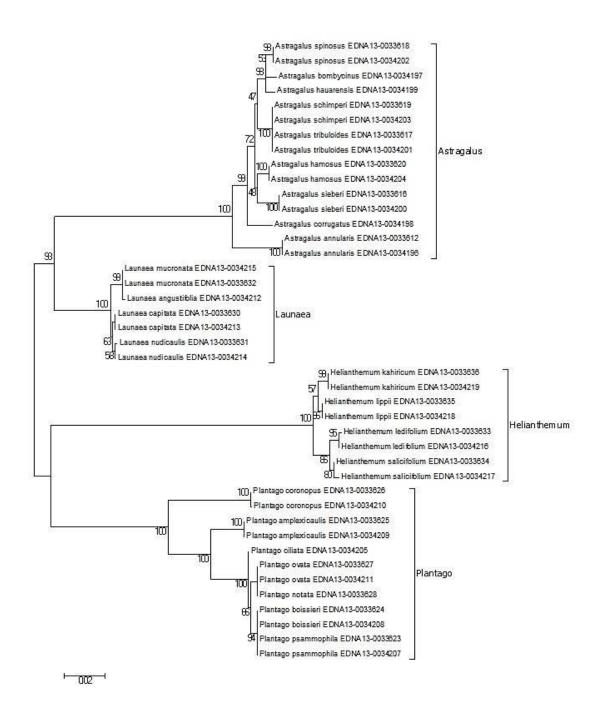




Figure 3.2 Neighbour joining phylograms for *rbcL* barcodes illustrating the four largest genera of the flora of Kuwait (values represent % boot strap support with 1000 replicates)

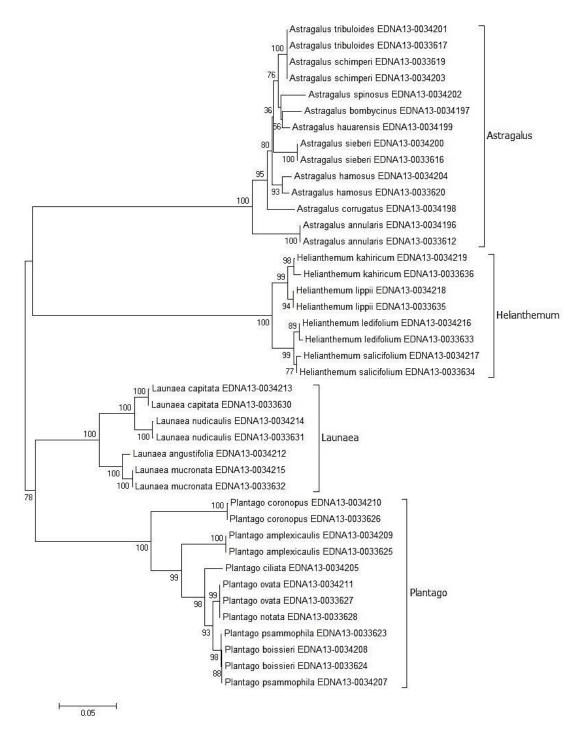



# Figure 3.3 Neighbour joining phylograms for *trnL* barcodes illustrating the four largest genera of the flora of Kuwait (values represent % boot strap support with 1000 replicates)

#### Combined regions tree based analysis:


NJ, MP and ML trees resolved all four genera for combined rbcL + ITS2, rbcL + trnL and trnL + ITS2 as monophyletic groups with higher clade support than single regions (% support applying bootstrap, 1000 replicates).

For rbcL + ITS2, the combined region resolved the most species-specific clusters of 64 % (for all tree methods NJ, MP, ML) (Table 3.8 and Figure 3.4), followed by rbcL + trnL, 50 % for NJ and MP (Table 3.8) and the lowest species resolution was 42 % for the combined regions trnL + ITS2 using MP and ML tree, while with NJ the resolution was slightly higher 50 % (Table 3.8). Therefore, based on these findings, I choose to explore in more details rbcL + ITS2 regions using NJ tree methods.


The combined region *rbcL* + ITS2 showed the greatest species resolution (64 %) and resolved 16 of 25 species into monophyletic clades (Table 3.8 and Figure 3.4). In addition, the combined regions (*rbcL*+ ITS2) resulted in 100 % species-specific resolution for one of the four genera, *Launaea* spp. (Table 3.9 and Figure 3.4). However, the combined regions contained paraphyletic clades which included *Astragalus tribuloides* with *A. schimperi*; *Plantago boissieri* with *P. psammophila*; *P. notata* with *P. ovata* (Figure 3.4).



**Figure 3.4 Neighbour joining phylograms for combined** *rbcL* + **ITS2 barcodes illustrating the four largest genera of the flora of Kuwait** (values represent % boot strap support with 1000 replicates)



**Figure 3.5 Neighbour joining phylograms for combined** *rbcL* + *trnL* **barcodes illustrating the four largest genera of the flora of Kuwait** (values represent % boot strap support with 1000 replicates)



**Figure 3.6 Neighbour joining phylograms for** *trnL* + **ITS2 barcodes illustrating the four largest genera of the flora of Kuwait** (values represent % boot strap support with 1000 replicates)

#### **3.4 Discussion**

Universality, sequence quality and bidirectional sequence coverage, and levels of species discrimination are essential to consider while evaluating barcode regions (CBOL, 2009). The gene regions *rbcL* and ITS2 showed the highest success in PCR amplification using a single set of primers each, also showed excellent sequence assemblage (98 % each), resolved monophyletic groups using tree-based analysis and resulted in good discrimination power amongst closely related species, for *rbcL* (60 %) and ITS2 (64 %).

#### 3.4.1 DNA recoverability, amplification and sequencing quality

Amongst the five evaluated barcode regions for DNA recoverability, amplification and sequencing success, *rbcL* and ITS2 showed the greatest rate of success (98 % each), followed by *trnL* (88 %). *matK* and *trnH-psbA* excluded from further evaluation due to high failures of amplification (mainly *matK*) and sequencing rates (*trnH-psbA*). Although, three sets of primers were applied for *matK* region, none of the individuals for *Helianthemum* spp. amplified. Such issues with DNA regions and amplification problems are important to detect at early stages to avoid complications later while establishing a DNA reference library. The *matK* region is well documented for having problems due to amplification failure even while testing several pairs of primers (Li et al., 2012; Saarela et al., 2013; Bolson et al., 2015). However, despite amplification problems, *matK* barcodes show great levels of species discrimination amongst closely related groups (CBOL, 2009; Burgess et al., 2011; de Vere et al., 2012).

*rbcL* and ITS2 showed the best performance and universality with 98 % of the samples successfully amplified and sequenced using only one pair of primers for each. Although, previous studies have used more than one pair of primers to successfully sequence  $\geq 80$  % of the samples (de Vere et al., 2012; Bafeel et al., 2012; Yao et al., 2010).

*rbcL* was easily amplified and produced high-quality bidirectional sequences (98 %) which make it an ideal barcode region in agreement with many previously published studies (CBOL, 2009; de Vere et al, 2012; Fazekas et al., 2008; Saarela et al., 2013). *rbcL* was the most conserved sequence compared to the other four regions tested.

ITS2 also showed high amplification, and sequencing success (98 %) and several studies considered it as an ideal barcoding marker (Han et al., 2013; Chen et al., 2010; Yao et al., 2010; Braukmann et al., 2017). There are three major potential problems with using the entire ITS region: 1) fungal contamination, 2) paralogous gene copies, and 3) difficult to amplify and sequence (Hollingsworth, 2011). Using a partial region ITS2 makes it more reliable and easier to amplify and sequence (Han et al., 2013; Luo et al., 2010; Chen et al., 2010).

#### **3.4.2 Discrimination of species**

Phylogenetic analysis using tree-based methods is an important approach to determine the DNA region and evaluate its ability to verify whether it can identify and detect species-specific clusters of species from the same genus.

In this study, NJ analysis produced phylogenetic trees with better resolution for all tested barcodes. ITS2 showed the greatest percentage of species-specific clusters (64 %) followed by *rbcL* (60 %). The *rbcL* and ITS2 barcodes alone demonstrated interesting findings on closely related species of 9 *Astragalus* spp. of the flora, by resolving monophyletic clades of 78 % (*rbcL*) and 67 % (ITS2). Two of the *Astragalus* species (*A. schimperi* and *A. tribuloides*) were paraphyletic across all three tested regions (*rbcL*, *trnL*, ITS2) due to sequence similarities and both species belong to the section, Sesamei (Sharawy and Badr, 2014). Sharawy and Badr (2014) managed to differentiate amongst five closely related *Astragalus* spp. in the section Sesamei (including *A. schimperi* and *A. tribuloides*) based on morphological variation and molecular polymorphisim using RAPD and ISSR fingerprinting analyses (Sharawy and Badr, 2014). *Astragalus* is the largest genus of flowering plants, belonging to Fabaceae with over 2500 species and more than 250 sections (Lock and Simpson, 1991; Mabberley, 1997). They are known to be difficult to discriminate because of the

reduced levels of sequence divergence as reported by several publications (Dizkirici et al., 2014; Naderi Safar et al., 2014; Javanmardi et al., 2012). Another paraphyletic relationship was noted for the species *Plantago* (between *P. psammophila / P. boisseri* and *P. ovata / P. notata*). *Plantago* species comprises 200 species in 19 sections were described in 2 subgenera (*Euplantago* and *Psyllium*) also known to have low levels of variation amongst closely related species which makes it difficult to discriminate even with combined regions given in this study (Tutel et al., 2005; Ronsted et al., 2002).

The findings in the current study agrees with recent published research evaluating ITS2 as a DNA barcode marker for land plants (Braukmann et al., 2017; Kuzmina et al., 2012; Chen et al., 2010; Yao et al., 2010) and for medicinal plants identification (Han et al., 2013; Pang et al., 2013; Zhang et al., 2015), these studies demonstrated ITS2 barcode species resolution variation from 63 % to 92 %.

The evaluation of three combinations of barcode markers demonstrated best species resolution by combining rbcL + ITS2 (64 %) and the percentage of bootstrap support for monophyletic clades increased when combined which resulted in higher resolution and discrimination amongst closely related species. rbcL + ITS2 resolved one of the four genera into monophyletic clades with 100 % bootstrap support with all individuals of species clustered correctly (*Lanuaea* spp.) while using a single region rbcL only resolved it to 50 % resolution. This demonstrates the reliability of combined regions in discriminating closely related species into species-specific clusters.

Exploring DNA barcoding approaches on arid plants in the Arabian Peninsula is rare. A few studies applied it to identify medicinal plants, rare species, and cultivated plants; none have yet applied it to an entire flora. In Saudi Arabia, Bafeel et al. (2012) used *rbcL* marker to study 12 species belonging to diverse families of arid regions and their findings showed very low species resolution (17 %) (Bafeel et al., 2012). Findings in the current study disagree with Bafeel et al. (2012) where *rbcL* region alone managed to resolve up to 60 % of 25 tested species belonging to four families of the arid flora. Another study in the United Arab Emirates, by Enan and Ahmed (2014) applied *matK* and *rpoC1* gene regions on 11 different date palm cultivars (*Phoenix*  *dactylifera*) and resulted in high species discrimination using *matK* alone ( $\geq$  95 %) followed by *rpoC1* ( $\geq$  88 %) (Enan and Ahmed, 2014).

A number of DNA barcoding publications in the Arabian Peninsula used BLASTn search tool of NCBI database to test for sequences similarities and matches. The findings below will help in understanding how well arid plants sequences match with NCBI database. A study by Al-Hemaid et al., (2015) used ITS for the identification of endemic species to Saudi Arabia, Echinops mandavillei, ITS region showed 98 % sequence identity to genus level with *Echinops glaberrimus*, matched from BLASTn search (NCBI database). A similar study based on BLASTn search similarities using total genomic sequence of medicinal plants known in Saudi Arabia (Nepeta *deflersiana*) investigated by Al-Qurainy et al. (2014) showed sequence similarities to the same genera level of the same family (92-97 % for ITS, rbcL, rps16, rpoC and psbA-trnH) (Al-Qurainy et al., 2014). A study by Al-Qurainy et al. (2013) used the ITS region to study 5 rare species of Saudi Arabia. This resulted in sequences identifying samples to the genera level but none to species level (Al-Qurainy et al., 2013). These findings indicate that sequences of arid plants not well represented in the NCBI database. The current study shows the ability of *rbcL*, ITS2 and *trnL* barcodes to match a number of sequences with high similarity using NCBI database BLASTn searches (Appendix 3.3). Searching the NCBI taxonomy database by species name and DNA region, ITS/ ITS2 sequences are well represented and banked at NCBI database, showing 18 out of the 25 species of the current study, of which only 6 species matched the NCBI database (Appendix 3.3). Therefore, reliance on BLASTn limits the utility of barcode data to well known and sampled flora and restricts their use on unknown samples or poorly known floras.

#### 3.4.3 Factors limiting the discriminatory power in plant DNA barcodes

The differences in species resolution that results in DNA barcoding failure amongst closely related species are certainly influenced by one or more of the following factors: slow rate of molecular evolution, hybridization, polyploidy, introgression and incomplete sorting of ancestral polymorphisims (Hollingsworth et al., 2011; Kress et al., 2015). These factors are not evenly distributed among the plant groups; therefore,

species resolution level will be reasonably good in some closely related groups and quite weak in others. The rate of species discrimination is expected to be greater when studying a group of plants limited to a geographical region which usually restricts the number of closely related species.

An example of hybridization is found amongst closely related species in the Canadian flora, comprising of 171 families, Salicaceae showed the lowest species discrimination, largely due to the very limited genetic variation among the 90 species of Salix; the lack of variation was noticed in seven plastid regions and was linked to frequent hybridization and incomplete lineage sorting (Percy et al., 2014).

Phylogenetic studies targeting nuclear markers or whole plastids genomes are necessary to understand the process driving the unusual low divergences in Salix. Furthermore, polyploidization (or whole genome duplication) limits the discriminatory power of plant DNA barcodes and commonly found across angiosperms associated with the rearrangements of chromosomes, DNA mutation, duplicate gene deletion, gene expression and epigenetic (Soltis et al., 2009; Adams and Wendel, 2005).

Due to hybridization, polyploidy and low mutation rate in plant plastid genomes, it is not possible to establish a single standard DNA barcoding region to barcode all land plants (Kress et al., 2005); therefore multiple DNA regions with species variation for discriminatory power are necessary to provide adequate information, e.g. Kress and Erickson (2007) recommended the use of two DNA regions, *rbcL* in combination with *trnH-psbA*, which showed an increase of discriminatory power from 79 %, for a single region, up to 88 %, for combining the two regions (Kress and Erickson, 2007).

Another important issue that certainly affects the quality of DNA barcodes and limits its discriminatory power is the use of misidentified voucher specimens which results in the production of misidentified barcodes that could end up in public DNA databases. Sampling DNA material from voucher specimens identified by an expert in the field is recommended to overcome the issue of taxonomic misidentification that possibly leads to barcode failure. Furthermore, DNA extraction from herbarium material requires greater attention than freshly collected material, due to contamination and misidentification, de Vere et al. (2012) found that some orders of flowering plants did not sequence using herbarium material for either *rbcL* or *matK* regions and recommended the use of fresh plant material to overcome the issue of degraded DNA and / or any contaminants present (de Vere et al., 2012).

The discriminatory power amongst closely related plant species is limited by the size and choice of gene regions. Small portions of the barcode region known as minibarcodes may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation (Little, 2014). Mini-barcodes such as the P6 loop in the *trnL* intron (ca 10-143 bp) for species identification is widely used by ecologists studying highly degraded DNA and using next generation sequencing technologies to assess the diversity of complex environmental samples e.g. studying faecal samples from leaf-feeding monkey (Srivathsan et al., 2015); identifying past vegetation from degraded DNA in soil-living insect larvae (Staudacher et al., 2012); detecting ingested plant DNA in soil-living insect larvae (Staudacher et al., 2011).

Despite its ability in DNA barcoding highly degraded samples, the *trnL* intron is known to have difficulty discriminating species in some families such as Poaceae, Cyperaceae, and Asteraceae (Hiiesalu et al., 2012). Using a DNA reference library of a local flora, the P6 loop provided only 50 % species resolution (Valentini et al., 2009). In another study, the P6 loop was able to identify only 47.2 % of 106 species belonging to the Arctic plant collection using a local DNA database (Taberlet et al., 2007). Although well documented for being powerful to amplify from degraded DNA material, the short region of *trnL* P6 loop provides a low resolution and limited discriminatory power when compared with other barcoding regions  $\geq$  200 bp, e.g. *rbcL*, *matK*, *trnH-psbA*, and ITS2. Taberlet et al. (2007) evaluated the resolution of *trnL* (UAA) intron (254-767 bp) and the shorter fragment, the P6 loop (10-143 bp) and found that the main limitation of both fragments is the low species resolution, *trnL* intron 67.3 % and the P6 loop 19.5 % (Taberlet et al., 2007).

Exploring another mini-barcode region, the shorter nuclear region of the internal transcribed spacer, ITS (ca. 571-1153) is ITS2 with size ca. 163-311 bp (Chen et al., 2010). ITS2 region is used as a DNA minibarcode candidate for its ability to show

high discriminatory power amogst closely related species, ranging from 71 % to 93 % (Chen et al., 2010; Han et al., 2013; Raveendar et al., 2015; Li et al., 2016; Wang et al., 2016) and also used in phylogenetic studies at both genus and species levels (Schultz et al., 2005; Miao et al., 2008; Hribova et al., 2011; Sharma et al., 2012; Heeg and Wolf, 2015).

Chen et al. (2010) showed high PCR amplification efficiency of ITS2 sequences, 93.8 %, across 400 samples belonging to a wide range of plant taxa represented by 326 species in 98 families including dicots, monocots, gymnosperms, and ferns. Also, ITS2 correctly identified 90.3 % and 99.7 % of the samples using BLAST1 method at the species and genus level, respectively (Chent et al., 2010).

Another study by Luo et al. (2010) showed high species resolution using ITS2 region amongst six evaluated DNA barcoding candidates (*trnH-psbA*, *ycf5*, *rpoC1*, *rbcL*, ITS2 and ITS). The study included 300 samples represented by 192 species belonging to 72 genera of Rutaceae family and recommended the application of ITS2 and *trnHpsbA* for their ability to discriminate closely related species by 89 % and 83 %, respectively (Luo et al., 2010).

Other routinely used barcode regions were discussed in the introduction section such as *rbcL* (the small portion ca. 500 bp of the full-length ca. 1,400 bp, Kress et al., 2005) applied for the ease of amplification, sequencing, and aligning in most land plants and *matK* (the small portion ca. 800 bp of the full-length ca 1,500 bp, Li et al., 2011) showing great discriminatory power, despite their high amplification and sequencing failure (CBOL, 2009).

In the meanwhile, many drawbacks and problems with DNA barcodes cannot be neglected, including the failure of amplification and sequencing, difficulties in finding universal primers, lack of barcoding gap, hybridization and introgression in some plant groups. Also, finding a single DNA barcode region for land plants is still a challenge, and the necessity of applying a combined two or more barcode regions supports the level of discriminatory power amongst closely related species.

#### 3.4.4. Conclusion

The main objective of this chapter is to evaluate five DNA barcodes to provide a practical molecular identification tool for establishing a DNA reference library of the flora of Kuwait in the following chapter. The barcoding region *rbcL* was easy to amplify and provided high-quality sequences; also, the region demonstrated a good resolution of species discrimination amongst closely related plant groups which makes it a practical barcoding region to apply. ITS2 region showed the highest levels of species discrimination amongst tested regions. Also, in an attempt to support the discriminatory power amongst closely related species, combining *rbcL* with ITS2 barcodes demonstrated greater support of monophyletic clades which increases its reliability in the identification process.

Based on the findings in the current chapter, the choice lies on the use of combining *rbcL* and ITS2 barcode regions for the molecular identification of species and building a DNA reference library of the flora of Kuwait, as it demonstrated the highest level of identification success and a better resolution of species-specific clusters in phylogenetic trees generated by Neighbour Joining method. Considering the small size of the flora of Kuwait (ca 400 species) the proposed molecular regions *rbcL* + ITS2 can assist in identifying unknown individuals of the flora mainly to species level by developing a localized barcoding library. This method can serve efficiently in plant molecular identification of the local flora and in future can be introduced in vegetation monitoring and large-scale ecological surveys in an attempt to conserve the biodiversity of the flora.

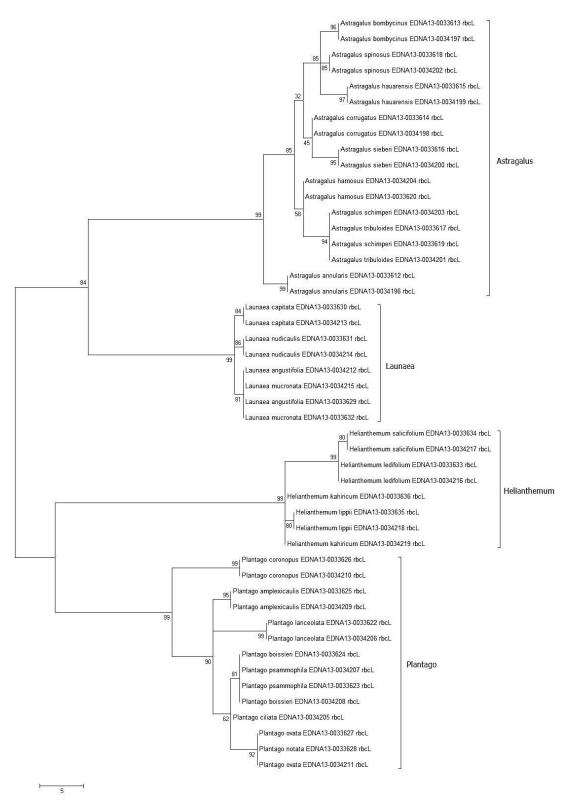
| Species                 | <b>EDNA Numbers</b> | Collection ID | Collector and number | Year | Collection type | Locality / region               |
|-------------------------|---------------------|---------------|----------------------|------|-----------------|---------------------------------|
| Astragalus annularis    | EDNA13-0033612      | KUTH179       | M Al Dosari MD5757   | 2005 | Herbarium       | Al Wafra Farm                   |
| Astragalus annularis    | EDNA13-0034196      | KUTH180       | M Al Dosari MD2535   | 1997 | Herbarium       | Al Nuwaseeb border station      |
| Astragalus bombycinus   | EDNA13-0034197      | MTA470        | M Abdullah MTA470    | 2013 | Fresh           | Al Salmi near border            |
| Astragalus bombycinus   | EDNA13-0033613      | KUTH182       | M Al Dosari MD5537   | 2004 | Herbarium       | Failaika Island                 |
| Astragalus corrugatus   | EDNA13-0034198      | MTA205        | M Abdullah MTA205    | 2013 | Fresh           | Kabd KISR Station               |
| Astragalus corrugatus   | EDNA13-0033614      | KUTH184       | M Al Dosari MD5034   | 2001 | Herbarium       | Al Salmi near border            |
| Astragalus hamosus      | EDNA13-0033620      | MTA281        | M Abdullah MTA281    | 2013 | Fresh           | Nature reserve SSNR             |
| Astragalus hamosus      | EDNA13-0034204      | MTA280        | M Abdullah MTA280    | 2013 | Fresh           | Sabah Al Ahmad Natural Reserve  |
| Astragalus hauarensis   | EDNA13-0033615      | KUTH186       | R Halwagy RH792      | 1971 | Herbarium       | Sulaibiya station               |
| Astragalus hauarensis   | EDNA13-0034199      | KUTH187       | M Al Dosari MD1097   | 1990 | Herbarium       | Jal Az-Zor                      |
| Astragalus schimperi    | EDNA13-0034203      | MTA376        | M Abdullah MTA376    | 2013 | Fresh           | Doha outside Entertainment City |
| Astragalus schimperi    | EDNA13-0033619      | KUTH189       | KT Mathew KTM3380    | 1998 | Herbarium       | Al Abdali                       |
| Astragalus sieberi      | EDNA13-0034200      | MTA461        | M Abdullah MTA461    | 2013 | Fresh           | Al Salmi near border            |
| Astragalus sieberi      | EDNA13-0033616      | KUTH190       | L Boulos LB18053     | 1993 | Herbarium       | Jal Az-Zor                      |
| Astragalus spinosus     | EDNA13-0033618      | MTA454        | M Abdullah MTA454    | 2013 | Fresh           | Al Salmi near border            |
| Astragalus spinosus     | EDNA13-0034202      | MTA212        | M Abdullah MTA212    | 2013 | Fresh           | Sabah Al Ahmad Natural Reserve  |
| Astragalus tribuloides  | EDNA13-0034201      | MTA345        | M Abdullah MTA345    | 2013 | Fresh           | Doha outside Entertainment City |
| Astragalus tribuloides  | EDNA13-0033617      | KUTH192       | M Al Dosari MD5653   | 2005 | Herbarium       | Kabd KISR Station               |
| Helianthemum kahiricum  | EDNA13-0033636      | KUTH052       | I Ibrahim (IB1045)   | 1990 | Herbarium       | Um Al Rimam                     |
| Helianthemum kahiricum  | EDNA13-0034219      | KUTH053       | KT Mathew KTM4754    | 2000 | Herbarium       | Um Al Rimam                     |
| Helianthemum ledifolium | EDNA13-0033633      | KUTH054       | M Al Dodari MD4074   | 1999 | Herbarium       | Al Salmi near border            |
| Helianthemum ledifolium | EDNA13-0034216      | KUTH55        | M Al Dosari MD6438   | 2009 | Herbarium       | Al Abdali                       |
| Helianthemum lippii     | EDNA13-0033635      | MTA451        | M Abdullah MTA451    | 2013 | Fresh           | Al Salmi near border            |
| Helianthemum lippii     | EDNA13-0034218      | MTA371        | M Abdullah MTA371    | 2013 | Fresh           | Doha outside Entertainment City |

## Appendix 3.1 List of specimens from which DNA was extracted and tested on four genera of the flora of Kuwait

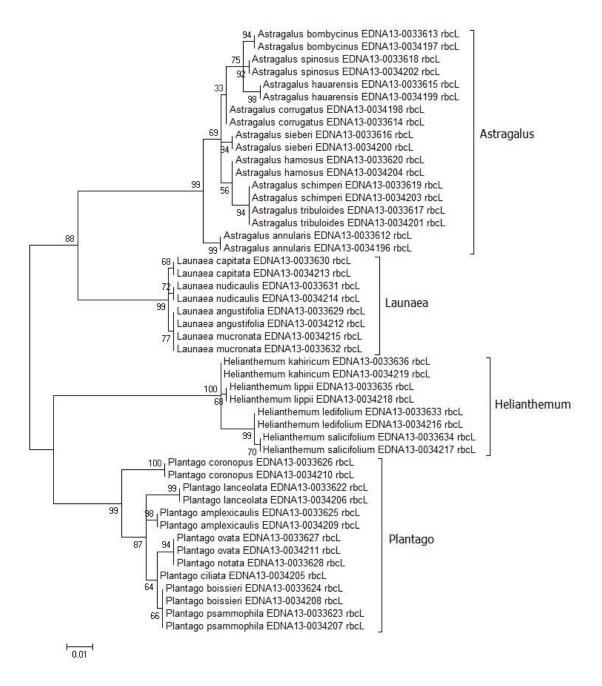
| Species                   | EDNA Number    | Collection ID | Collector and number | Year | Collection type | Locality / region          |
|---------------------------|----------------|---------------|----------------------|------|-----------------|----------------------------|
| Helianthemum salicifolium | EDNA13-0033634 | KUTH057       | M Al Dosari MD4572   | 2000 | Herbarium       | Al Salmi near border       |
| Helianthemum salicifolium | EDNA13-0034217 | KUTH58        | R Halwagy RH1057     | 1972 | Herbarium       | Um Gudair                  |
| Launaea angustifolia      | EDNA13-0033629 | KUTH092       | R Halwagy RH1009     | 1972 | Herbarium       | Al-Khafji rd               |
| Launaea angustifolia      | EDNA13-0034212 | KUTH093       | KT Mathew KTM2888    | 1996 | Herbarium       | Al Mutlaa                  |
| Launaea capitata          | EDNA13-0033630 | KUTH095       | M Al Dosari MD3773   | 1999 | Herbarium       | Al Salmi near border       |
| Launaea capitata          | EDNA13-0034213 | KUTH96        | M AL Dosari MD2561   | 1997 | Herbarium       | Al Nuwaseeb border station |
| Launaea mucronata         | EDNA13-0033632 | MTA383        | M Abdullah MTA383    | 2013 | Fresh           | Failaika Island            |
| Launaea mucronata         | EDNA13-0034215 | MTA601        | M Abdullah MTA601    | 2013 | Fresh           | Um Niqa                    |
| Launaea nudicaulis        | EDNA13-0034214 | MTA467        | M Abdullah MTA467    | 2013 | Fresh           | Al Salmi near border       |
| Launaea nudicaulis        | EDNA13-0033631 | KUTH098       | KT Mathew KTM5473    | 2007 | Herbarium       | Nature reserve SSNR        |
| Plantago amplexicaulis    | EDNA13-0033625 | MTA503        | M Abdullah MTA503    | 2013 | Fresh           | Al Abdali                  |
| Plantago amplexicaulis    | EDNA13-0034209 | MTA244        | M Abdullah MTA244    | 2013 | Fresh           | Kabd KISR Station          |
| Plantago boissieri        | EDNA13-0033624 | MTA305        | M Abdullah MTA305    | 2013 | Fresh           | Al Liyah                   |
| Plantago boissieri        | EDNA13-0034208 | MTA200        | M Abdullah MTA200    | 2013 | Fresh           | Nature reserve SSNR        |
| Plantago ciliata          | EDNA13-0033621 | KUTH243       | M Al Dodari MD1768   | 1996 | Herbarium       | Al Salmi near border       |
| Plantago ciliata          | EDNA13-0034205 | KUTH244       | KT Mathew KTM4424    | 1999 | Herbarium       | Kathma                     |
| Plantago coronopus        | EDNA13-0033626 | MTA388        | M Abdullah MTA388    | 2013 | Fresh           | E Kuwait: Failaika Island  |
| Plantago coronopus        | EDNA13-0034210 | MTA499        | M Abdullah MTA499    | 2013 | Fresh           | N Kuwait: Al Abdali        |
| Plantago lanceolata       | EDNA13-0033622 | KUTH246       | M Al Dosari MD5229   | 2001 | Herbarium       | Khaldiyah                  |
| Plantago lanceolata       | EDNA13-0034206 | KUTH247       | M Al Dosari MD3963   | 1999 | Herbarium       | Gulf street                |
| Plantago notata           | EDNA13-0033628 | KUTH249       | R Halwagy RH74/10    | 1974 | Herbarium       | Al Shaqq khabrat Um Omara  |
| Plantago ovata            | EDNA13-0033627 | MTA391        | M Abdullah MTA391    | 2013 | Fresh           | E Kuwait: Failaika Island  |
| Plantago ovata            | EDNA13-0034211 | MTA298        | M Abdullah MTA298    | 2013 | Fresh           | W Kuwait : Al Liyah        |
| Plantago psammophila      | EDNA13-0033623 | KUTH250       | M AL Dosari MD2019   | 1997 | Herbarium       | Al-Khuwaisat               |
| Plantago psammophila      | EDNA13-0034207 | KUTH251       | L Boulos LB18124     | 1993 | Herbarium       | W of Al-Jahra              |

|                           |                |           | GenBank accessions |          |          |  |
|---------------------------|----------------|-----------|--------------------|----------|----------|--|
| Species                   | EDNA Number    | BOLD ID   | rbcL               | ITS2     | trnL     |  |
| Astragalus annularis      | EDNA13-0033612 | KWT001-17 | KY951666           | KY951573 | KY951621 |  |
| Astragalus annularis      | EDNA13-0034196 | KWT002-17 | KY951667           | KY951574 | KY951622 |  |
| Astragalus bombycinus     | EDNA13-0034197 | KWT003-17 | KY951668           | KY951575 | KY951623 |  |
| Astragalus bombycinus     | EDNA13-0033613 | KWT004-17 | KY951669           | KY951576 | KY951624 |  |
| Astragalus corrugatus     | EDNA13-0034198 | KWT005-17 | KY951671           | KY951578 | KY951626 |  |
| Astragalus corrugatus     | EDNA13-0033614 | KWT006-17 | KY951670           | KY951577 | NA       |  |
| Astragalus hamosus        | EDNA13-0033620 | KWT007-17 | KY951672           | KY951579 | KY951627 |  |
| Astragalus hamosus        | EDNA13-0034204 | KWT008-17 | KY951673           | KY951580 | KY951628 |  |
| Astragalus hauarensis     | EDNA13-0033615 | KWT009-17 | KY951674           | KY951581 | NA       |  |
| Astragalus hauarensis     | EDNA13-0034199 | KWT010-17 | KY951675           | KY951582 | KY951630 |  |
| Astragalus schimperi      | EDNA13-0034203 | KWT011-17 | KY951676           | KY951583 | KY951631 |  |
| Astragalus schimperi      | EDNA13-0033619 | KWT012-17 | KY951677           | KY951584 | KY951632 |  |
| Astragalus sieberi        | EDNA13-0034200 | KWT013-17 | KY951679           | KY951586 | KY951634 |  |
| Astragalus sieberi        | EDNA13-0033616 | KWT014-17 | KY951678           | KY951585 | KY951633 |  |
| Astragalus spinosus       | EDNA13-0033618 | KWT015-17 | KY951680           | KY951587 | KY951635 |  |
| Astragalus tribuloides    | EDNA13-0034201 | KWT016-17 | KY951681           | KY951588 | KY951636 |  |
| Astragalus tribuloides    | EDNA13-0033617 | KWT017-17 | KY951682           | KY951589 | KY951637 |  |
| Helianthemum kahiricum    | EDNA13-0033636 | KWT018-17 | KY951684           | KY951591 | KY951639 |  |
| Helianthemum kahiricum    | EDNA13-0034219 | KWT019-17 | KY951683           | KY951590 | KY951638 |  |
| Helianthemum ledifolium   | EDNA13-0033633 | KWT020-17 | KY951685           | KY951592 | KY951640 |  |
| Helianthemum ledifolium   | EDNA13-0034216 | KWT021-17 | KY951686           | KY951593 | KY951641 |  |
| Helianthemum lippii       | EDNA13-0033635 | KWT022-17 | KY951688           | KY951595 | KY951643 |  |
| Helianthemum lippii       | EDNA13-0034218 | KWT023-17 | KY951687           | KY951594 | KY951642 |  |
| Helianthemum salicifolium | EDNA13-0033634 | KWT024-17 | KY951689           | KY951596 | KY951644 |  |
| Helianthemum salicifolium | EDNA13-0034217 | KWT025-17 | KY951690           | KY951597 | KY951645 |  |
| Launaea angustifolia      | EDNA13-0033629 | KWT026-17 | KY951691           | KY951598 | NA       |  |
| Launaea angustifolia      | EDNA13-0034212 | KWT027-17 | KY951692           | KY951599 | KY951647 |  |
| Launaea capitata          | EDNA13-0033630 | KWT028-17 | KY951693           | KY951600 | KY951648 |  |
| Launaea capitata          | EDNA13-0034213 | KWT029-17 | KY951694           | KY951601 | KY951649 |  |
| Launaea mucronata         | EDNA13-0033632 | KWT030-17 | KY951696           | KY951603 | KY951651 |  |
| Launaea mucronata         | EDNA13-0034215 | KWT031-17 | KY951695           | KY951602 | KY951650 |  |
| Launaea nudicaulis        | EDNA13-0034214 | KWT032-17 | KY951697           | KY951604 | KY951652 |  |
| Launaea nudicaulis        | EDNA13-0033631 | KWT033-17 | KY951698           | KY951605 | KY951653 |  |
| Plantago amplexicaulis    | EDNA13-0033625 | KWT034-17 | KY951699           | KY951606 | KY951654 |  |
| Plantago amplexicaulis    | EDNA13-0034209 | KWT035-17 | KY951700           | KY951607 | KY951655 |  |
| Plantago boissieri        | EDNA13-0033624 | KWT036-17 | KY951701           | KY951608 | KY951656 |  |
| Plantago boissieri        | EDNA13-0034208 | KWT037-17 | KY951702           | KY951609 | KY951657 |  |
| Plantago ciliata          | EDNA13-0033621 | KWT038-17 | KY951703           | KY951610 | NA       |  |
| Plantago ciliata          | EDNA13-0034205 | KWT039-17 | NA                 | KY951611 | KY951658 |  |
| Plantago coronopus        | EDNA13-0033626 | KWT040-17 | KY951704           | KY951612 | KY951659 |  |
| Plantago coronopus        | EDNA13-0034210 | KWT041-17 | KY951705           | KY951613 | KY951660 |  |
|                           |                |           |                    |          |          |  |

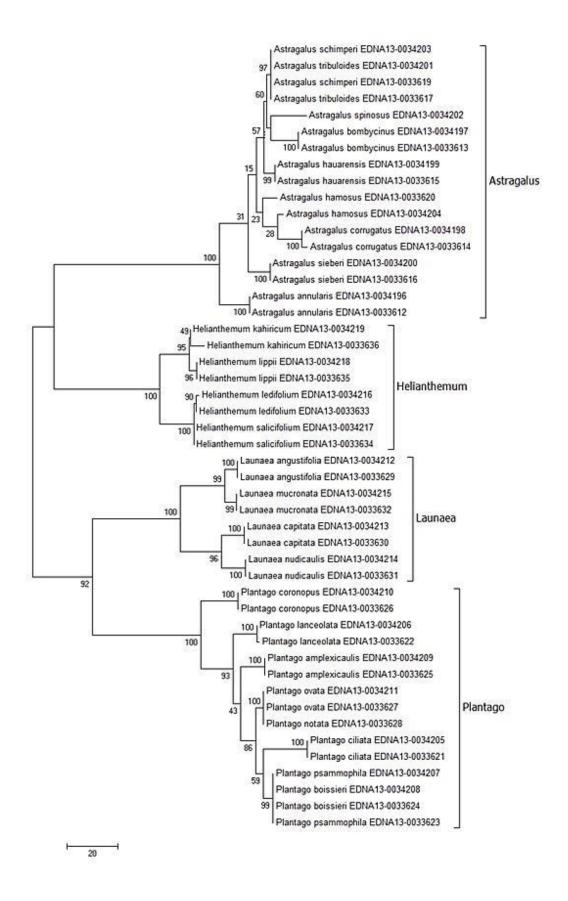
# Appendix 3.2 Specimen information with BOLD and GenBank accessions


|                      |                |           | GenBank accessions |          |          |
|----------------------|----------------|-----------|--------------------|----------|----------|
| Species              | EDNA Number    | BOLD ID   | rbcL               | ITS2     | trnL     |
| Plantago lanceolata  | EDNA13-0033622 | KWT042-17 | KY951707           | KY951615 | NA       |
| Plantago lanceolata  | EDNA13-0034206 | KWT043-17 | KY951706           | KY951614 | NA       |
| Plantago notata      | EDNA13-0033628 | KWT044-17 | KY951708           | KY951616 | KY951661 |
| Plantago ovata       | EDNA13-0033627 | KWT045-17 | KY951709           | KY951617 | KY951662 |
| Plantago ovata       | EDNA13-0034211 | KWT046-17 | KY951710           | KY951618 | KY951663 |
| Plantago psammophila | EDNA13-0033623 | KWT047-17 | KY951711           | KY951619 | KY951664 |
| Plantago psammophila | EDNA13-0034207 | KWT048-17 | KY951712           | KY951620 | KY951665 |

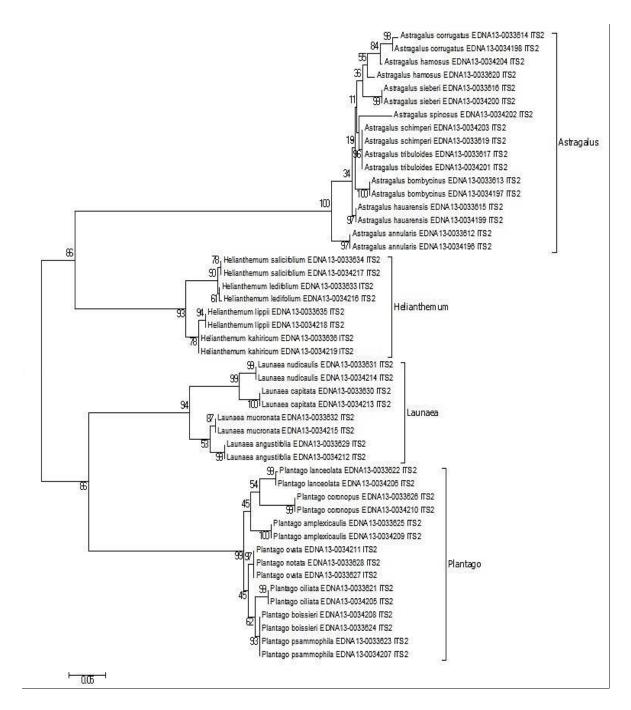
Appendix 3.3. GenBank accessions showing twentyfive species belonging to the four largest genera of the flora of Kuwait. GenBank accessions in bold showing barcoded sequence match using BLASTn.


|                                  |                                           | GenBank accessions                                                               |                                                                                                |                                                                                  |  |
|----------------------------------|-------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Family                           | Species                                   | rbcL                                                                             | ITS2                                                                                           | trnL                                                                             |  |
| Fabaceae                         | Astragalus annularis                      | NA                                                                               | AB051912.1                                                                                     | AB485924.1                                                                       |  |
| Fabaceae                         | Astragalus bombycinus                     | NA                                                                               | AB051929.1                                                                                     | NA                                                                               |  |
| Fabaceae                         | Astragalus corrugatus                     | NA                                                                               | HQ613378.1<br>L10775.1<br>L10774.1                                                             | NA                                                                               |  |
| Fabaceae                         | Astragalus hamosus                        | KX421132.1                                                                       | AB051936.1<br>L10779.1                                                                         | AB485945.1                                                                       |  |
| Fabaceae                         | Astragalus hauarensis                     | NA                                                                               | NA                                                                                             | NA                                                                               |  |
| Fabaceae                         | Astragalus schimperi                      | NA                                                                               | NA                                                                                             | NA                                                                               |  |
| Fabaceae                         | Astragalus sieberi                        | NA                                                                               | KF815519.1                                                                                     | NA                                                                               |  |
| Fabaceae                         | Astragalus spinosus                       | NA                                                                               | KF805110.1                                                                                     | NA                                                                               |  |
| Fabaceae                         | Astragalus tribuloides                    | NA                                                                               | NA                                                                                             | AB485929.1                                                                       |  |
| Cistaceae                        | Helianthemum kahiricum                    | FJ492029.1                                                                       | GU327666.1<br>GU327667.1                                                                       | FJ492003.1                                                                       |  |
| Cistaceae                        | Helianthemum ledifolium                   | FJ492023.1                                                                       | NA                                                                                             | FJ491995.1                                                                       |  |
| Cistaceae                        | Helianthemum lippii                       | NA                                                                               | KF805114.1                                                                                     | NA                                                                               |  |
| Cistaceae                        | Helianthemum salicifolium                 | NA                                                                               | NA                                                                                             | NA                                                                               |  |
| Asteraceae                       | Launaea angustifolia                      | NA                                                                               | NA                                                                                             | NA                                                                               |  |
| Asteraceae                       | Launaea capitata                          | NA                                                                               | KF850550.1                                                                                     | NA                                                                               |  |
| Asteraceae                       | Launaea mucronata                         | NA                                                                               | KF805121.1                                                                                     | NA                                                                               |  |
| Asteraceae                       | Launaea nudicaulis                        | NA                                                                               | L48148.1                                                                                       | NA                                                                               |  |
| Plantaginaceae                   | Plantago amplexicaulis                    | NA                                                                               | L48147.1<br><b>AY101900.1</b><br>KF850592.1                                                    | AY101954.1                                                                       |  |
| Plantaginaceae                   | Plantago boissieri                        | NA                                                                               | KF815500.1                                                                                     | NA                                                                               |  |
| Plantaginaceae                   | Plantago ciliata                          | NA                                                                               | AY101906.1                                                                                     | NA                                                                               |  |
| Plantaginaceae<br>Plantaginaceae | Plantago coronopus<br>Plantago lanceolata | AJ389600.1<br>HM850263.1<br>HQ593827.1<br>HQ593826.1<br>KT695487.1<br>KJ204385.1 | <b>KX167680.1</b><br>AY101882.1<br>AJ548987.1<br>HQ593833.1<br><b>KF454409.1</b><br>AJ548984.1 | AY101937.1<br>AF486419.1<br>HQ593818.1<br>HQ593817.1<br>HM590326.1<br>AY101952.1 |  |
| Plantaginaceae                   | Plantago notata                           | HQ644063.1<br>L36454.1<br>NA                                                     | AB281171.1<br>KP278481.1<br>NA                                                                 | KU600401.1<br>KU600344.1<br>NA                                                   |  |
| Plantaginaceae                   | Plantago ovata                            | GQ248675.1                                                                       | KX534375.1                                                                                     | AY101957.1                                                                       |  |
|                                  |                                           | EF590563.1                                                                       | AJ548973.1<br>EU347721.1<br>AY101903.1                                                         | EU036271.1<br>EU036270.1<br>EU036269.1                                           |  |
| Plantaginaceae                   | Plantago psammophila                      | NA                                                                               | AB051913.1                                                                                     | NA                                                                               |  |

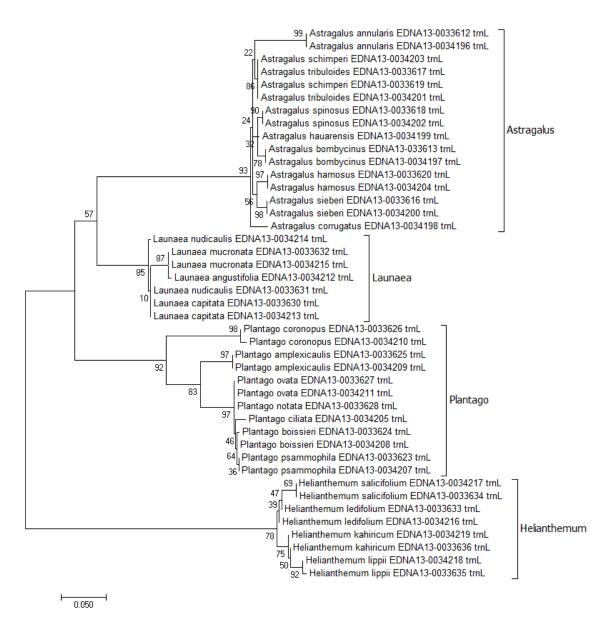
NA – accession not available in GenBank


# Appendix 3.4 MP and ML trees for single and combined barcode regions

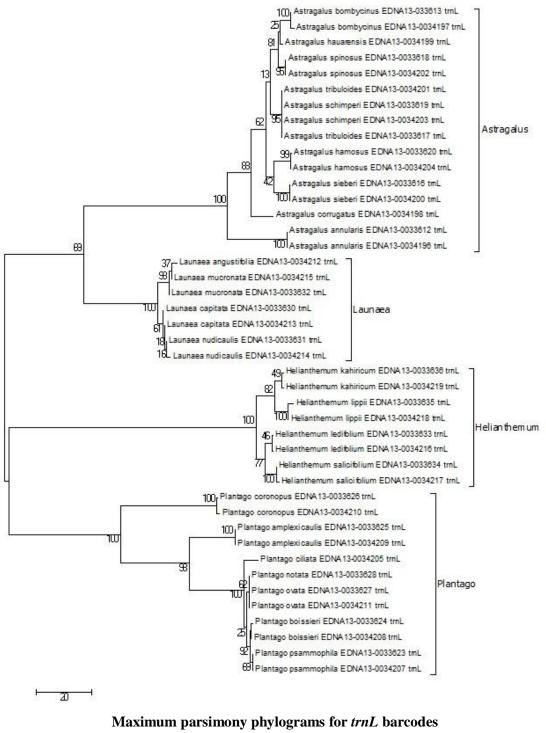



#### Maximum parsimony phylograms for *rbcL* barcodes (values represent % boot strap support with 1000 replicates)

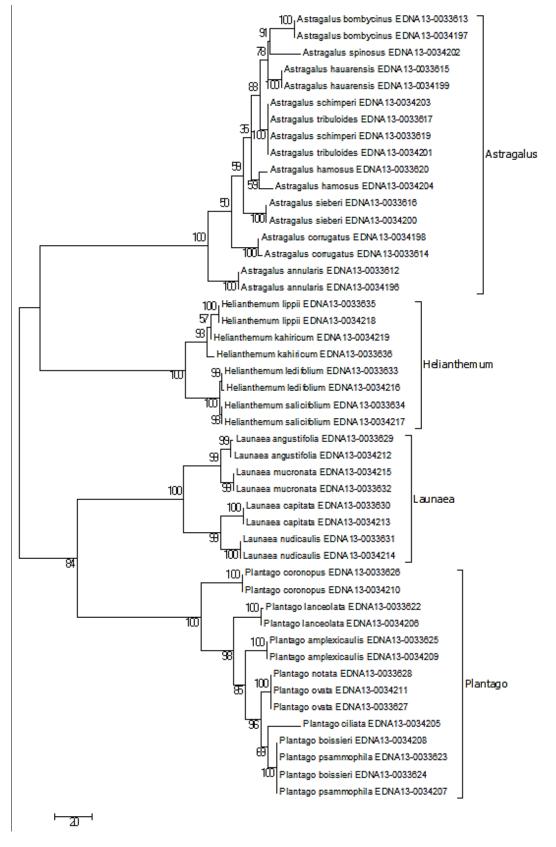



Maximum likelihood phylograms for *rbcL* barcodes (values represent % boot strap support with 1000 replicates)

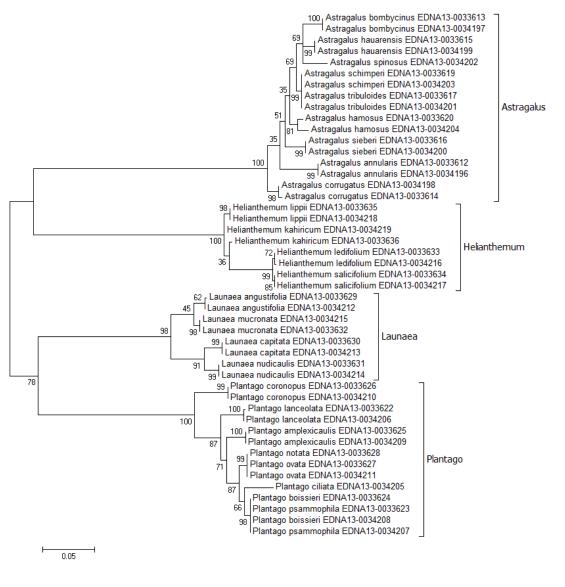



Maximum parsimony phylograms for ITS2 barcodes (values represent % boot strap support with 1000 replicates) (Continued)

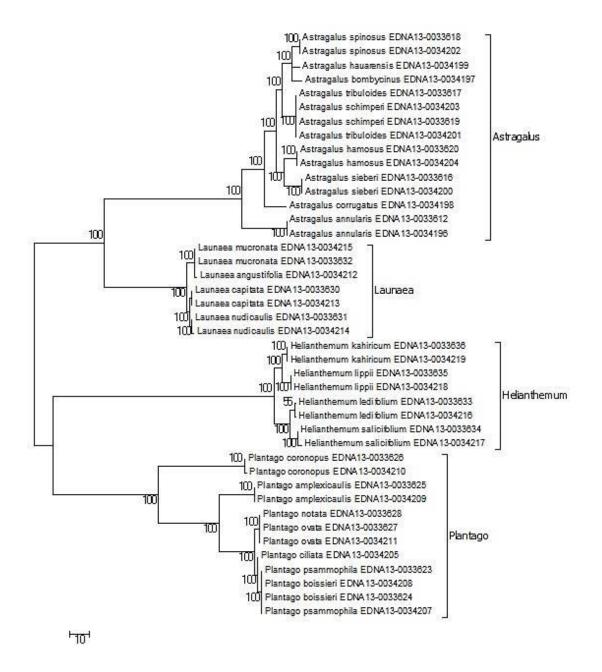


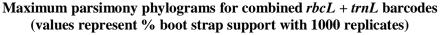

Maximum Likelihood for ITS2 barcodes (values represent % boot strap support with 1000 replicates)

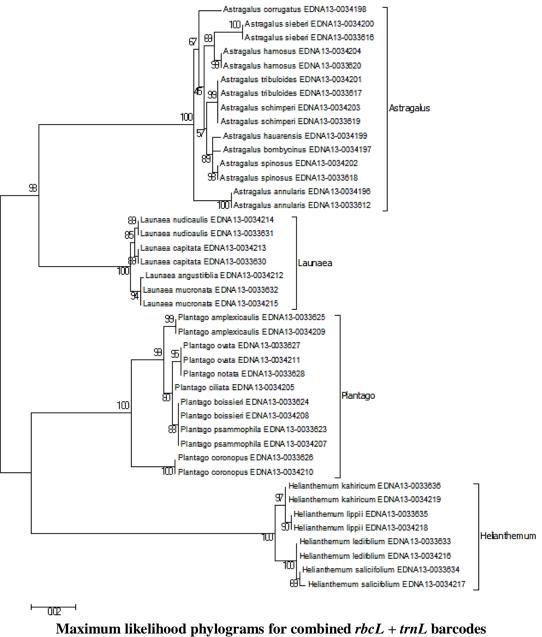


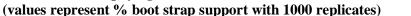

### Maximum likelihood phylograms for *trnL* barcodes (values represent % boot strap support with 1000 replicates)

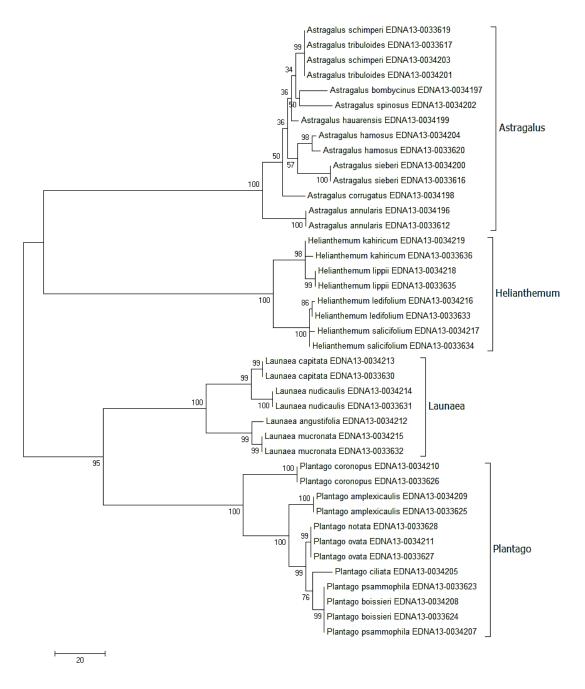


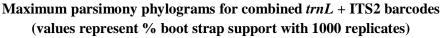

(values represent % boot strap support with 1000 replicates)

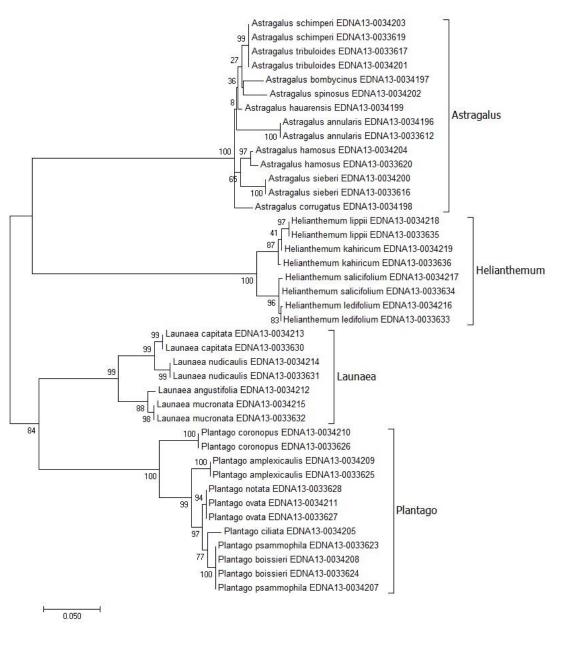




Maximum parsimony phylograms for combined *rbcL* + ITS2 barcodes (values represent % boot strap support with 1000 replicates)





Maximum likelihood phylograms for combined *rbcL* + ITS2 barcodes (values represent % boot strap support with 1000 replicates)














Maximum likelihood phylograms for *trnL* + ITS2 barcodes (values represent % boot strap support with 1000 replicates)

(End of Appendix 3.4)

# **Chapter 4 DNA barcoding the flora of Kuwait**

## 4.1 Introduction

The ecological communities and plant biodiversity of Kuwait is seriously threatened and rapid changes have been reported in recent years due to climate change, land degradation, human interference, and overgrazing (Brown and Schoknecht, 2001; Brown, 2003; Al-Awadhi et al., 2005). The advancement of DNA barcoding and building a reference library for the Kuwaiti flora will produce floristic information about the current biodiversity, and aid in plant identification for taxonomic research, vegetation monitoring, and possible applications in large-scale ecological restoration projects (Sonstebo et al., 2010; Yoccoz et al., 2012).

DNA barcoding and building a reference library of the flora will contribute towards a quick identification method for identifying a large number of unknown plants from field surveys, replacing the lengthy time consuming traditional methods which require specialised skills. (i.e. using floristic key to identify one specimen with many possibilities to compare). DNA barcoding works by applying simple molecular techniques and protocols and is relatively straightforward to use.

Applications of DNA barcoding in Kuwait include identifying unknown plants from fragments of roots, seeds, leaves or even mixture of plants sampled up to the reconstruction of vegetation of a degraded site to study which plants have the potential to naturally regenerate or become reintroduced through restoration projects e.g. DNA based belowground root identification with a DNA barcode database to compared with current above ground vegetation (Jones et al., 2011; Kesananakurti et al., 2011; Wilson et al., 2014). Overgrazing in desert areas throughout Kuwait is common, plants trimmed showing only stem parts, in some cases only roots are buried in the soil, and it's difficult to identify using traditional taxonomic methods, while easily determined through simple steps by applying DNA molecular methods.

Wales (20,800 km<sup>2</sup>), about the size of Kuwait, became the first country in the world to DNA barcode all of its 1,143 native flowering plants and conifers (de Vere, et al.,

2012). Their choice of DNA regions based on the recommended markers, rbcL and matK (CBOL, 2009). de Vere et al. (2012) managed to assemble 97.7 % sequence coverage for *rbcL*, 90.2% for *matK*, and a combined regions (*rbcL* + *matK*) for 89.7% of the Welsh flora (de Vere et al., 2012). The samples used mainly extracted from herbarium specimens (85 %). The freshly collected samples gained higher amplification success compared with the herbarium samples due to the degradation levels of DNA (de Vere, et al., 2012). They assessed the ability of DNA barcodes to identify species by the phylogenetic reconstruction of monophyletic groups using Neighbour-joining (NJ) trees which resulted in 69.4 to 74.9 % species resolution for combined regions *rbcL+matK* (de Vere et al., 2012). Also assessed the scope for improving species discrimination by looking at the resolution at different spatial scales,  $10 \times 10 \text{ km}^2$  (81.6 %) and  $2 \times 2 \text{ km}^2$  (93.3 %) (de Vere et al., 2012). Comparing the native flora of Kuwait (only 269 species) with Wales (1143 species), which covers less than one-quarter of the flora of Wales and almost the same land size, DNA barcoding approach is possible and manageable due to the small size of the flora of Kuwait. Other studies covered local geographical scale flora, using single or multiple gene regions are summarised in Table 4.1

# Table 4.1 DNA barcoding approaches of floristic studies at local geographical scale.

| Study                    | Geographical range/<br>sampling size                                      | Markers used<br>(% spp. resolution)                                                  |  |
|--------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Lahaye et al, 2008       | <b>Biodiversity hotspots:</b>                                             | Single <i>matK</i> (90.6%) or                                                        |  |
|                          | (Mesoamerica and<br>southern Africa). N=<br>1084 species                  | Combined <i>matK</i> + <i>trnH</i> -<br><i>psbA</i> (90.9%)                          |  |
| Burgess et al., 2011     | Local temperate flora:<br>Canada (436 plant<br>species, N= 513 samples)   | Combined <i>rbcL</i> + <i>matK</i> (92.7%)                                           |  |
| Theodoridis et al., 2012 | <b>Country Greece:</b><br>native plants of<br>Lamiaceae; N= 80<br>samples | Combined matK + trnH-<br>psbA (81%)                                                  |  |
| Sosa et al., 2013        | <b>Endangered plants</b><br>20 spp. Orchids and<br>36 spp. Bamboo         | <i>Orchids</i> = <i>matK</i> (100%);<br>Bamboo= <i>matK</i> + <i>psbI-K</i><br>(71%) |  |
| Saarela et al., 2013     | <b>Canadian Artic flora</b><br>(N= 490 vascular plant<br>species)         | Combined <i>rbcL</i> + <i>matK</i> (54%)                                             |  |
| Liu et al., 2015         | <b>Country China:</b><br>531 local trees (N= 971<br>samples)              | Combined <i>rbcL</i> + ITS2 71%)                                                     |  |

The DNA barcoding database of the flora of Kuwait will include all plants mentioned in the updated checklist (Chapter 2, Table 2.3), excluding crops and cultivated plants. In compiling the specimens for the DNA database of the 402 species of Kuwait, I have managed to collect 614 voucher specimens belonging to 162 species from the field throughout Kuwait and 524 specimens were sampled belonging to 155 species from KTUH to complete the missing data set required for this project. Freshly collected leaf samples were preferable over herbarium material due to DNA degradation and amplification issues with herbarium material (Staats et al., 2011; Sarkinen et al., 2012). A total number of 30 native species missing from the collection (specimens not available).

At least three accessions for each species were chosen (some species represented by only one accession based on the availability of sampling material) from a widespread geographical location within Kuwait, following de Vere et al. (2012) sampling strategy. Other DNA barcoding studies dealing with local floras also sampled across separate geographical location between 1 to 5 accessions per species (Lahaye et al., 2008; Sosa et al., 2013; Liu et al., 2015).

This study will present for the first time, locally in Kuwait and regionally in the Arabian Peninsula, a new DNA barcode approach representing about <sup>3</sup>/<sub>4</sub> of the flora of Kuwait. Here, I will establish a barcoding database of the flora based on the evaluation of five barcodes in Chapter 3, and will apply *rbcL* and ITS2 barcodes and evaluate their discriminatory power across species, genera, and families of the flora.

#### 4.2 Methods

#### 4.2.1 Sampling material

In total 721 individuals were sampled; 388 from herbarium specimens (collected from KTUH) and 333 from living plants collected throughout Kuwait. Information for each DNA extracted individual including species names, Edinburgh DNA numbers, Collection ID, Collectors names and numbers, year of collection, collection type (herbarium or fresh collection) and locality/ region of the collection along with BOLD and GenBank accession numbers representing rbcL and ITS2 sequences are presented in Appendix 4.1. All individuals sampled represent 264 species belonging to 44 families and 22 orders of the flora of Kuwait (mean = 2.7 individual sequenced per species). Most plant material sampled from KTUH herbarium specimens collected between 1991 and 2012 (range of 21 years) are considered to be of young age. Fresh material from plant leaves collected and silica-gel dried from 20 different locations throughout Kuwait during late spring 2012 and early spring of 2013. Plant collection sites included fence protected areas, such as Sabah Al-Ahmad Nature Reserve (SSNR), Kabd protected area, and the Al-liyah natural reserve, which are considered natural examples of the flora with minimal impacts from grazing and anthropogenic activities. Other visited field sites include Al-Abdaly and Um Neqa Demilitarized zone (DMZ), along the North border line with Iraq; and several unfenced desert areas with minimal disturbance such as Al-Salmi and Nuwaiseeb. Also, Coastal areas such as Sulaibikhat and Khairan were visited. A collection of 60 accessions, representing

52 species, was also made from Failaka Island 20 km off the coast of Kuwait City. All necessary permits were obtained before collection of specimens.

Fresh plant vouchers were determined using several floristic publications on the flora of Kuwait (Daoud, 1985; Al-Rawi, 1987; Boulos, 1988) and reconfirmed by consulting the herbarium curator at KTUH, Dr. K.T. Mathew. Herbarium vouchers made from freshly collected plants deposited in KTUH and Royal Botanic Garden Edinburgh (RBGE) Herbarium (E), mounted and digitized. The herbarium specimens deposited in E are accessible online by searching RBGE herbarium catalogue under my name M Abdullah following:

http://elmer.rbge.org.uk/bgbase/vherb/bgbasevherb.php

#### 4.2.2 DNA extraction, amplification, and sequencing

### **DNA** extraction

A small amount (~ 20 mg) of dry, healthy leaf material was selected from herbarium and freshly collected specimens and loaded in 2.0 ml Eppendorf tubes carried on 96well plate, with one 5 mm stainless steel bead. Samples were ground using TissueLyser II (Qiagen, Ltd.) until the material was powdered (frequency 20 Hz x 2 x ~ 30 sec). DNA was extracted using the fine powdery plant material through QIAxtractor automated instrument (Qiagen Ltd.) following QIAxtractor user defined protocol which yields high-quality DNA from plant tissues suitable for a wide variety of downstream applications. The procedure is divided into two parts: lysis/ digestion and extraction.

The lysis/ digestion part was conducted manually by the preparation of the digestion buffer using a mixture of the following reagents: 400  $\mu$ l RNase, 400  $\mu$ l DX enzyme and 40.4 ml of DXT reagent; loading 420  $\mu$ l for each sample using lysis tubes and mixed using multi-channel pipette with care to avoid cross contamination. The samples placed into the Thermomixer for 1 hour at 65°C and 800 rpm (once complete samples can be left for few hours up to overnight at room temperature). The automatic extraction part requires a quick setup of the QIAxtractor robot by launching the QIAxtractor software (RBGE user defined, run file: QXT Liquid DNA V1.QSP), after loading the QIAxtractor platform with the appropriate reagents (loading the reservoirs with DX Binding, DX Wash, DX Final, and DX Elution buffer), pipetting tips and capturing plates. Fresh DXB reagent is prepared by adding 1.4 g of binding additives (DX) to the whole bottle. The lysed/ digested samples were centrifuged at 2000 rpm for 10 mins; for each lysed sample 220 µl (110 µl at a time) of the supernatant is transferred to the QIAxtractor 96-well plate (with square wells) and placed into position inside the robot extractor. By closing the extractor lid, the following automated cycles will take place: 440 µl of DX Binding with DX Binding Additive is added to the lysis plate. The lysate is then mixed and incubated at room temperature for 5 min.  $600 \mu$ l of the lysate is added into the capture plate with a vacuum of 35 kPa is applied for 5 min. 200 µl of DX Binding with DX Binding additive is loaded into the capture plate with a vacuum of 35 kPa is applied for 5 min. 600 µl of DX Wash is loaded into the capture plate with a vacuum of 25 kPa applied for 1 min (repeated twice). A vacuum of 25 kPs is applied for 5 min to dry the plate. The carriage is moved to the elution chamber, and 100 µl of DX Elution buffer is loaded into the capture plate. The samples are incubated for 5 min followed by 1 min vacuum at 35 kPa ending the extraction cycle. The tubes were removed and frozen at -20°C for long-time preservation.

### PCR amplification and sequencing

Two regions *rbcL* and ITS2 were used to build a DNA reference library of the flora of Kuwait. Due to smeary bands with previously used reverse primer *rbcL*-ajf634R (in chapter 3). The following primers were evaluated for the *rbcL* region:

- *rbcL* forward primer: *rbcL*-aF, primer sequence 5<sup>-</sup>.
   ATGTCACCACAAACAGAGACTAAAGC-3<sup>-</sup> (Kress and Erickson 2007).
- *rbcL* reverse primers: *rbcL*-aRev, primer sequence 5<sup>-</sup>.
   GTAAAATCAAGTCCACCRCG-3<sup>-</sup> with a mean size of 554 bp (Kress et al., 2009), and *rbcL*-724R, primer sequence 5<sup>-</sup>-TCGCATGTACCTGCAGTAGC-3<sup>-</sup> with size of 702-883 bp (Kress et al., 2005).

For *rbcL* region the chosen primers, *rbcL*-aF and *rbcL*-aRev with a mean size of 554 bp (Kress et al., 2009) were used to DNA barcode the flora of Kuwait.

The same primers described in Chapter 3 were used for the ITS2 region:

- ITS2 forward primer: ITS-S2F, primer sequence 5` ATGCGATACTTGGTGTGAAT-3` with a mean size of 226 bp (Chen et al., 2010).
- ITS2 reverse primer: ITS-S3R, primer sequence 5` GACGCTTCTCCAGACTACAAT-3` with size of 163-311 bp (Chen et al., 2010).

PCR amplification and sequencing methods used here follow Chapter 3 Section 3.2.2. PCR conditions for each region are presented in Table 3.4. Also, sequence editing, alignment, and molecular analysis used follow previous methods in Chapter 3 Section 3.2.3.

# 4.2.3. Sequence editing, alignment, and molecular analysis

The methods used here follow section 3.2.3 in Chapter 3. Trimming and assemblage of sequences into contigs was performed using Geneious software (ver. 6.1.8, Kearse et al., 2012). Each contig was checked for base call disagreements and ambiguities and manually edited where necessary.

Multiple sequence alignments (MSA) were performed using MUSCLE alignment (Edgar, 2004), followed by manual sequence editing where necessary using Molecular Evolutionary Genetics Analysis software version 7.0 (MEGA7: Kumar et al., 2015). The coding region, *rbcL* sequences were aligned using the default settings of MUSCLE provided by MEGA7 software. For the non-coding region, ITS2, was aligned and manually edited by comparing species with multiple accessions together and/ or by genus for those genera containing more than two species and the settings for gap penalties were adjusted to generate MSA with fewer gaps in the final alignment; the default settings: gap open -400 with gap extension at 0, adjusted to gap open at -800 and gap extension at -1. The method of using MUSCLE alignment with

ITS2 region was applied previously by several studies (Pang et al., 2013; Mishra et al., 2016; Yu et al., 2016). The use of Neighbour-joining tree based distance method to evaluate the ability of ITS2 sequences to delimit the species into discrete clades or monophyletic groups is well documented in several studies (Hribova et al., 2011; Zhang et al., 2012; Raveendar et al., 2015; Mishra et al., 2016).

The MEGA7 software was also used to describe the genetic variability of each marker by calculating the maximum and minimum length of base pairs, total aligned matrix, variable sites (%), parsimony informative sites (%), and singleton sites (%).

A list of specimens with Barcode of Life Data Systems (BOLD) and GenBank accessions representing successfully barcoded sequences for *rbcL* and ITS2 are listed in Appendix 4.1.

#### 4.3 Results

#### 4.3.1 DNA recoverability, amplification and sequence success

For both tested regions (*rbcL* and ITS2), DNA extracted from silica-dried fresh leaves showed the highest percentage of DNA sequence recoverability (84-96 %) compared to herbarium specimens (63-71 %). The number of low DNA barcode sequence recoverability using herbarium material was mainly due to lower PCR amplification success (Table 4.2). Although PCR was performed twice on those individuals with amplification problems for each region, it was not possible to obtain sequences from all individuals sampled.

For the core barcode regions 1,117 sequences were obtained, 594 and 523 for *rbcL* and ITS2, respectively. The percentage of sequences which were of high quality varied for each region amplified. Sequencing efficiency was highest for *rbcL* (82 %) and lowest for ITS2 (72.5 %). Table 4.2 summarizes PCR amplification and sequencing rates for each region. The most efficient percentage of DNA extraction was from fresh plant material for the *rbcL* region (96 %) and the lowest was herbarium material for the ITS2 region (63 %). The highest amplification and sequence failure was shown by ITS2, 18.6 % and 8.8 %, respectively (Table 4.2).

| Region/<br>Collection type | No of<br>individuals | Sequence<br>efficiency<br>(%) | Amplification<br>failure<br>(%) | Sequence<br>failure<br>(%) |
|----------------------------|----------------------|-------------------------------|---------------------------------|----------------------------|
| <i>rbcL</i> - Total        | 721                  | 594 (82)                      | <b>99</b> (14)                  | 28 (3.8)                   |
| rbcL Herbarium             | 388                  | 273 (71)                      | 87 (22)                         | 28 (7.2)                   |
| rbcL Fresh                 | 333                  | 321 (96)                      | 12 (3.6)                        | 0                          |
| ITS2 - Total               | 721                  | 523 (72.5)                    | 134 (18.6)                      | 64 (8.8)                   |
| ITS2 Herbarium             | 388                  | 246 (63)                      | 97 (25)                         | 45 (11.5)                  |
| ITS2 Fresh                 | 333                  | 280 (84)                      | 37 (11)                         | 16 (4.8)                   |

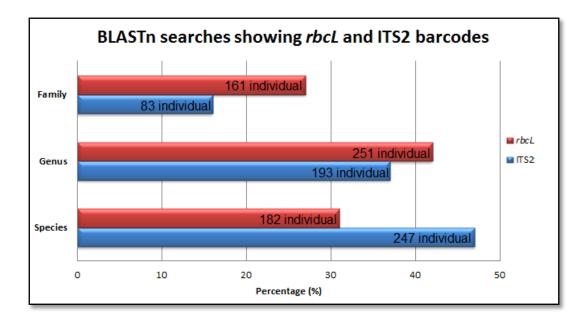
# Table 4.2 Summary of *rbcL* and ITS2 successfully amplified and sequenced using fresh and herbarium plant material

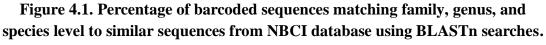
# 4.3.2 Sequence quality and alignment

The multiple sequence alignment (MSA) lengths of *rbcL*, ITS2, and the combination of *rbcL* + ITS2 barcodes are 496, 467, and 963 bp, respectively (Table 4.3). For *rbcL*, the final matrix contained 594 sequences of length 496 bp; ITS2 final matrix contained 523 sequences with minimum sequence length range from 354 bp up to a maximum length of 417 bp. The final matrix of ITS2 MSA including gaps showed a length of 467 bp (Table 4.3). The MSA length of the final matrix for the combined regions *rbcL* + ITS2 was 963 bp with a minimum sequence length range from 850 bp up to a maximum length of 913 bp.

The mean percentage of bases within the sequences (QV > 30) was highest for *rbcL* (96.9 %), slightly lower for ITS2 region (91.8 %), and 94.3 % for the combined regions *rbcL* + ITS2. The ITS2 matrix contains the most variable sites 77 % and parsimony informative sites 73 % compared to *rbcL* with 44 % variable sites and 43 % parsimony informative sites (Table 4.3). The combined matrix of *rbcL*+ITS2 contains 59 % of variable sites and 57 % of parsimony informative sites. Analyses were performed with the final matrix composed of 594 sequences of *rbcL*, 523 of ITS2, and 480 sequences of combined *rbcL* + ITS2 (Table 4.3).

|                                     | rbcL         | ITS2         | rbcL + ITS2  |  |
|-------------------------------------|--------------|--------------|--------------|--|
| Multiple sequence alignment length  | 496          | 467          | 963          |  |
| (bp)                                |              |              |              |  |
| Minimum sequence length (bp)        | 496          | 354          | 850          |  |
| Maximum sequence length (bp)        | 496          | 417          | 913          |  |
| Number of Gaps (%)                  | 0            | 79 (17)      | 71 (7)       |  |
| Variable sites bp (%)               | 220 (44)     | 358 (77)     | 565 (59)     |  |
| Parsim-informative sites (%)        | 215 (43)     | 343 (73)     | 546 (57)     |  |
| Singleton sites (%)                 | 5 (1)        | 13 (2.8)     | 18 (1.9)     |  |
| GC content (%)                      | 41.50        | 32.50        | 35.80        |  |
| Mean high quality bases             | 96.9         | 91.8         | 94.3         |  |
| QV>30 (%)                           |              |              |              |  |
| Mean low quality bases              | 1.3          | 4.1          | 2.7          |  |
| QV<20 (%)                           |              |              |              |  |
| Efficiency of PCR amplification (%) | 622/721 (86) | 587/721 (81) |              |  |
| Success rate of sequencing (%)      | 594/622 (95) | 523/587 (89) | 480*         |  |
| Total Missing Sequences (%)         | 127/721 (18) | 198/721 (27) | 241/721 (33) |  |


Table 4.3 Sequence quality and size of DNA barcodes for *rbcL*, ITS2 and combination of *rbcL* + ITS2


\* Number of combined *rbcL* + ITS2 sequences

#### 4.3.3 BLASTn searches

A nucleotide BLASTn searches were carried out in GenBank against all organisms in the NCBI database to investigate sequences similarity at the species, genus and family level using *rbcL* and ITS2 barcoded sequences of the flora of Kuwait.

Sequences of *rbcL* and ITS2 were tested by top-scoring hits using BLASTn searches through NCBI database (accessed on 14/05/2017 via Geneious software ver. 10.1.3, BLAST plugin). Figure 4.1 shows the percentage of barcoded sequences matching the NCBI database using BLASTn searches tool and the comparison between *rbcL* and ITS2 barcodes are shown to species, genus and family level (Figure 4.1). The percentage of barcodes matching NCBI database to species level was highest for ITS2 (47 %) and lowest for *rbcL* (31 %). Highest percentage matches to the genus level are shown by *rbcL* barcodes 42 % followed by ITS2 37 %; at the family level *rbcL* matched 27 % and ITS2 16 % (Figure 4.1). Sequences of ITS2 and *rbcL* regions that did not match to at least family level of the NCBI database are considered as a failure.





Total barcoded sequences for rbcL = 594 individual; ITS2 = 523 individual.

### 4.3.4 Species discrimination

The determination of species resolution (percentage) was based on the analyses using neighbour joining (NJ) tree method. A species considered resolved if all members had barcodes sequences that more related to each other than to members of other species.

#### Monophyly tree based tests

Determination of species delineation was based on the phylogenetic reconstruction of NJ trees for *rbcL*, ITS2 and combined regions of *rbcL* + ITS2. NJ tree based analysis was used to determine the species resolution (%) whether the multiple alignments of a single region (*rbcL*, ITS2) and combined *rbcL* + ITS2 barcoded sequences resolve as species-specific clusters. The NJ trees reconstructed for ITS2, *rbcL*, and *rbcL* + ITS2 are represented as phylograms to show branch order and branch length with clades labeled indicating major plant groupings.

### Single region tree based analysis

The resolution generated by the NJ tree demonstrated the greatest support values for ITS2 region (Table 4.4 and Figure 4.2), which was capable of recovering 69 % of species-specific clusters (with bootstrap support, 100 replicates). For *rbcL* region species resolution was lower, 58.2 % of species-specific clusters (Table 4.4 and Figure 4.3). The analysis included all barcoded sequences, *rbcL* = 594 individual and ITS2 = 523 individual.

# Combined regions tree based analysis

Combining the multiple aligned sequences of rbcL + ITS2 (Figure 4.4) NJ tree was capable of recovering 70.5 % of species-specific clusters (with bootstrap support, 100 replicates) (Table 4.4 and Figure 4.4). The variation and resolution of species-specific clusters for the combined rbcL + ITS2 regions increased by 1.5 % (70.5 %) when compared with ITS2 region alone (69 %) and increased greatly by 12.3 % when compared with rbcL region (58.2 %) (Table 4.4).

| Table 4.4 Percentage of species-specific clusters using Neighbour Joining tree $\geq$ |
|---------------------------------------------------------------------------------------|
| 50 % bootstrap support for single DNA regions and combined.                           |

| N species/<br>total individuals | Species-specific<br>clusters                |  |
|---------------------------------|---------------------------------------------|--|
|                                 | <i>N</i> species/(NJ %)                     |  |
| 244 / 594                       | 142 (58.2 %)                                |  |
| 228 / 523                       | 158 (69 %)                                  |  |
| 217 / 480                       | 153 (70.5 %)                                |  |
|                                 | total individuals<br>244 / 594<br>228 / 523 |  |

All accessions included

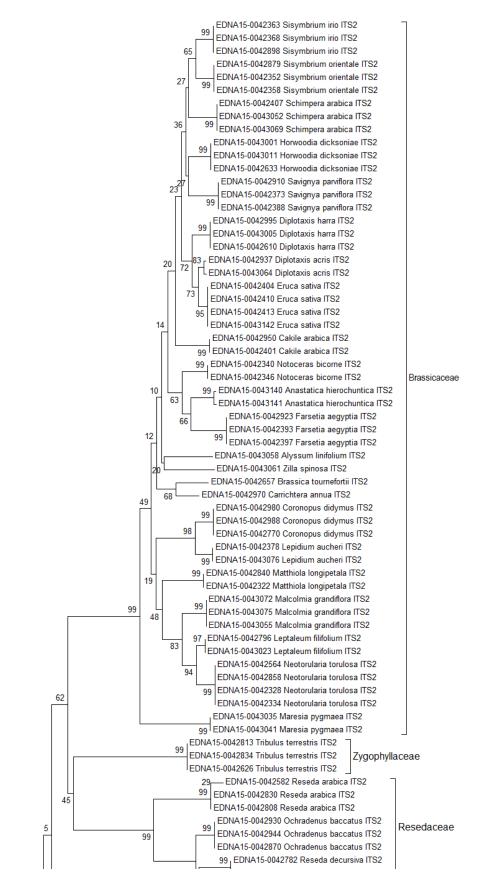



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [Cont. 1/8]



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [Cont. 2/8]

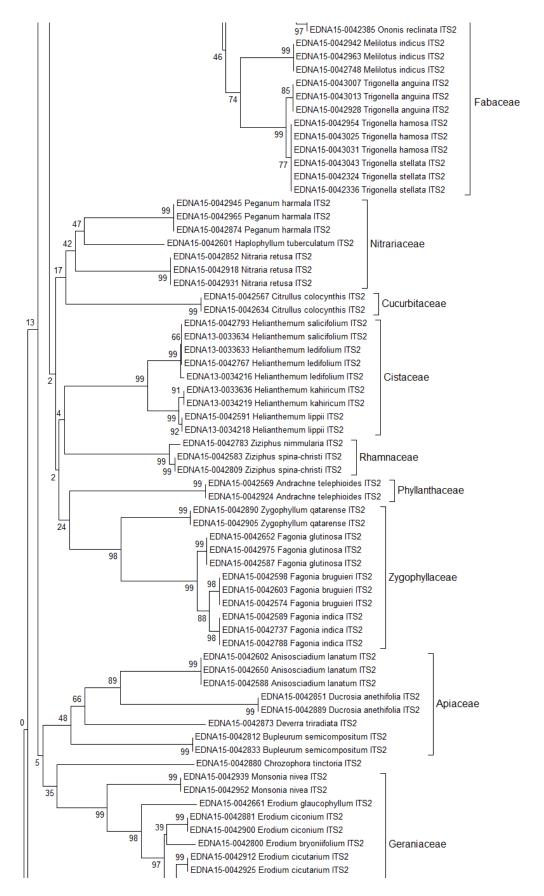



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [Cont. 3/8]

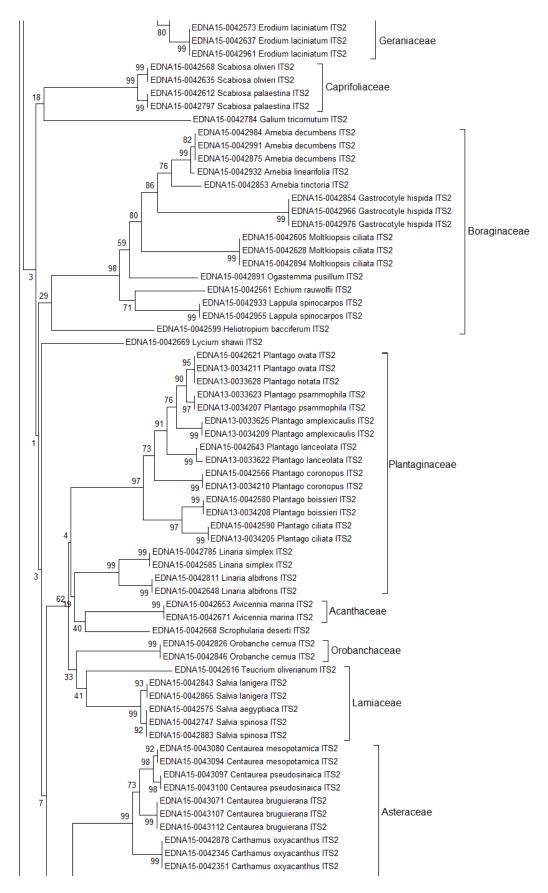



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [Cont. 4/8]

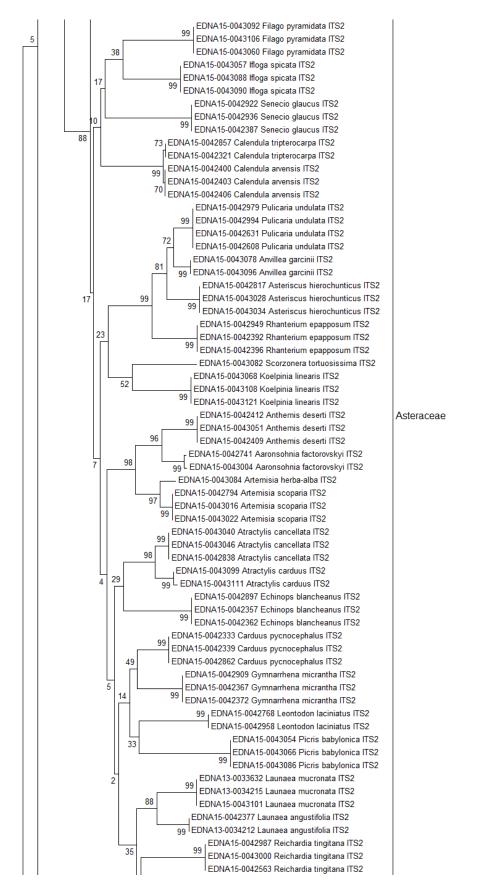



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [Cont. 5/8]

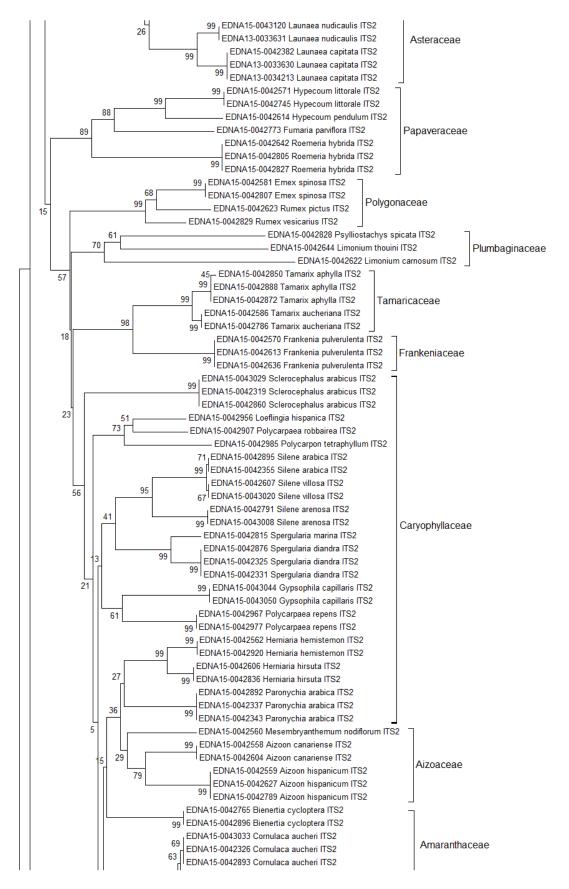



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [Cont. 6/8]

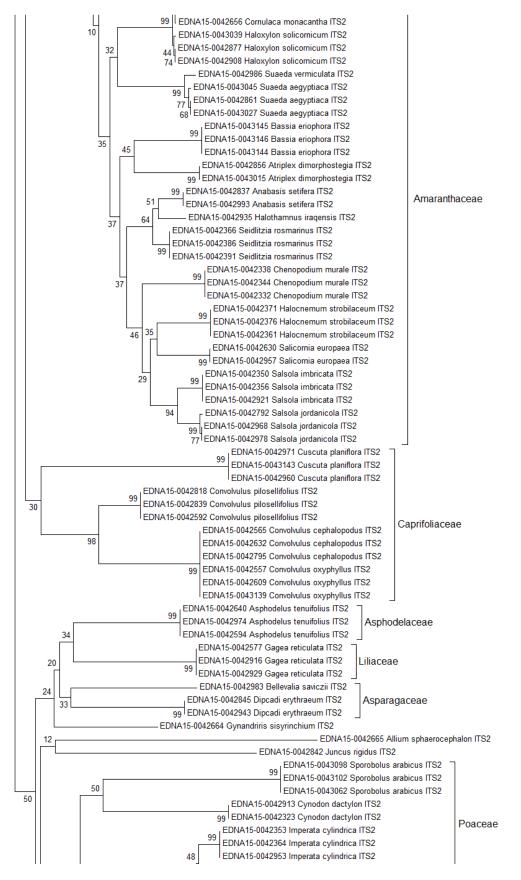



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [Cont. 7/8]

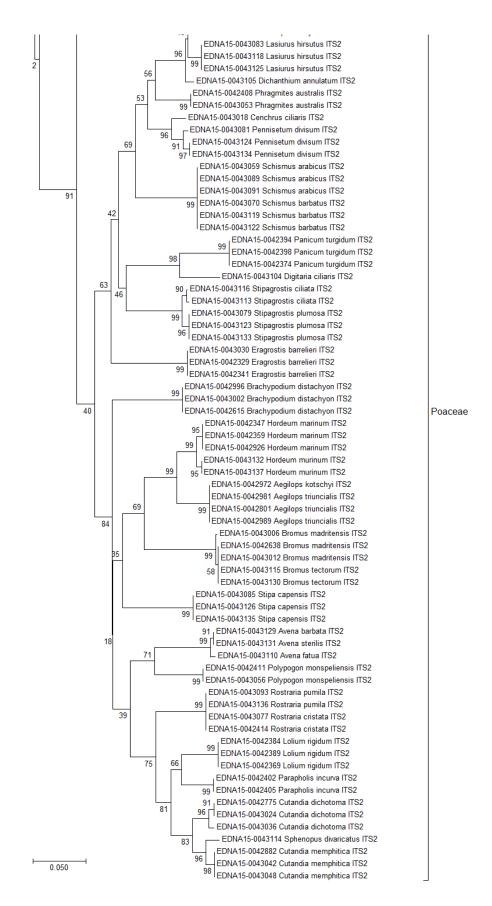



Figure 4.2 Neighbour joining phylograms for ITS2 barcodes representing 523 sequences (values represent % boot strap support with 100 replicates) [End. 8/8]

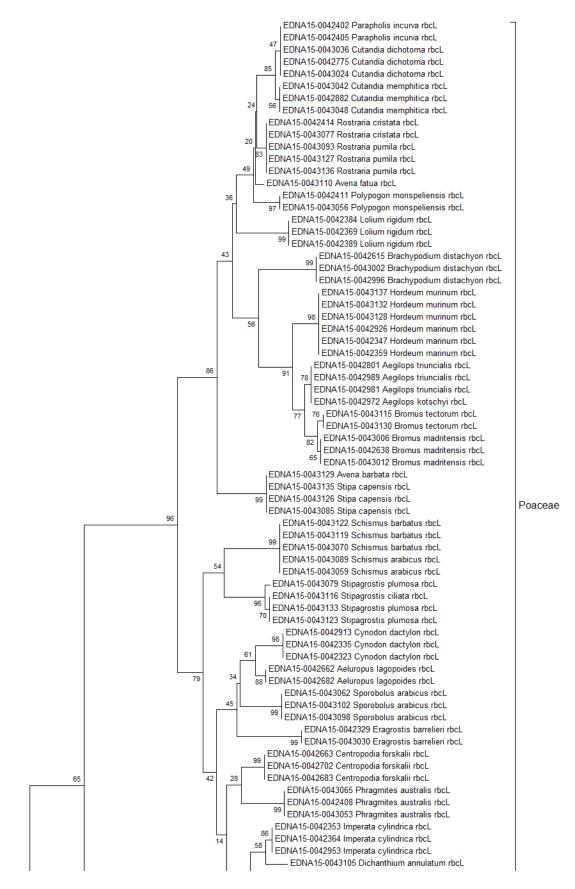



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 1/9]

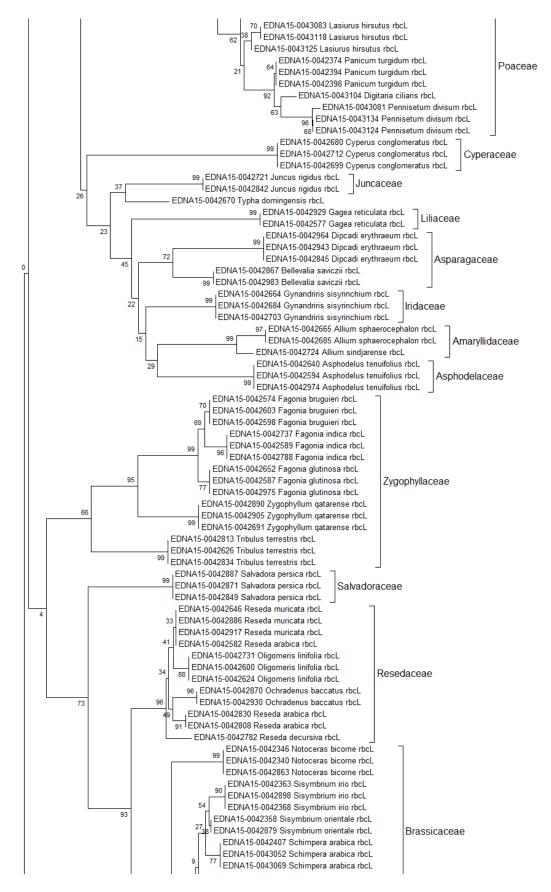



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 2/9]

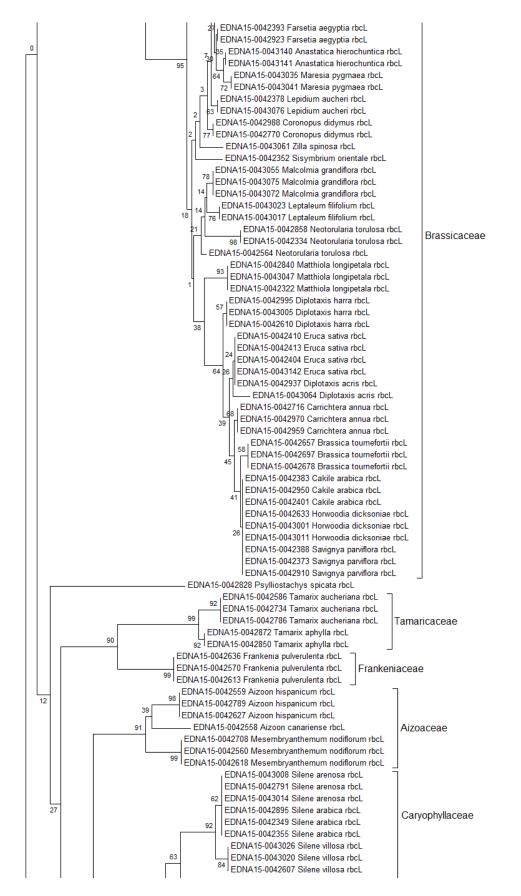



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 3/9]




Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 4/9]

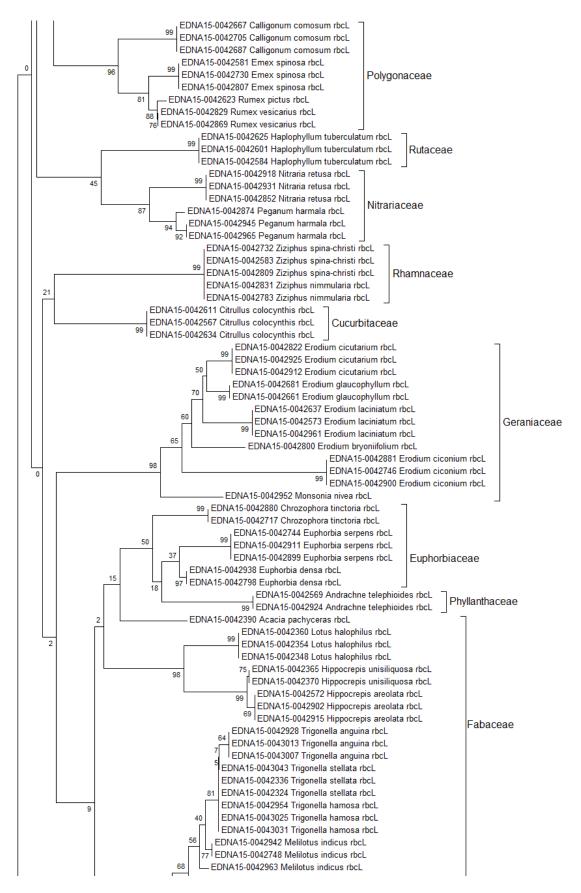



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 5/9]

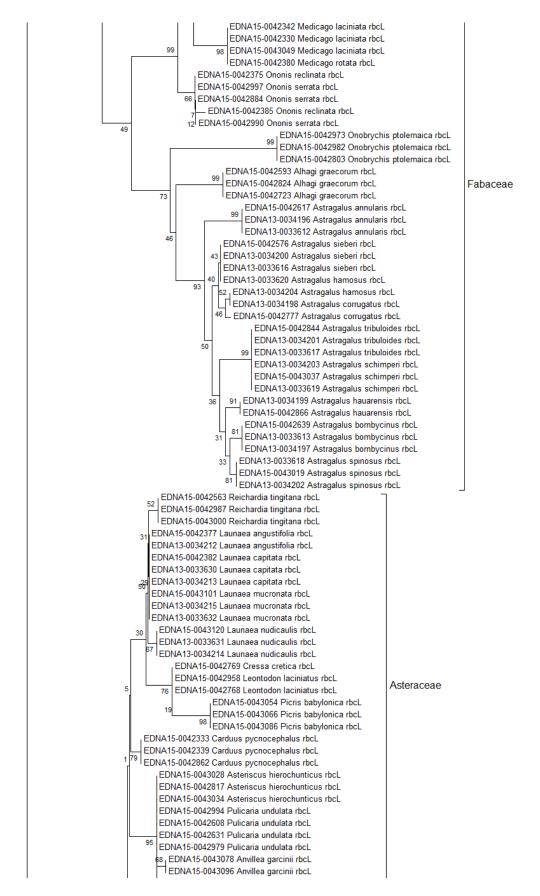



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 6/9]

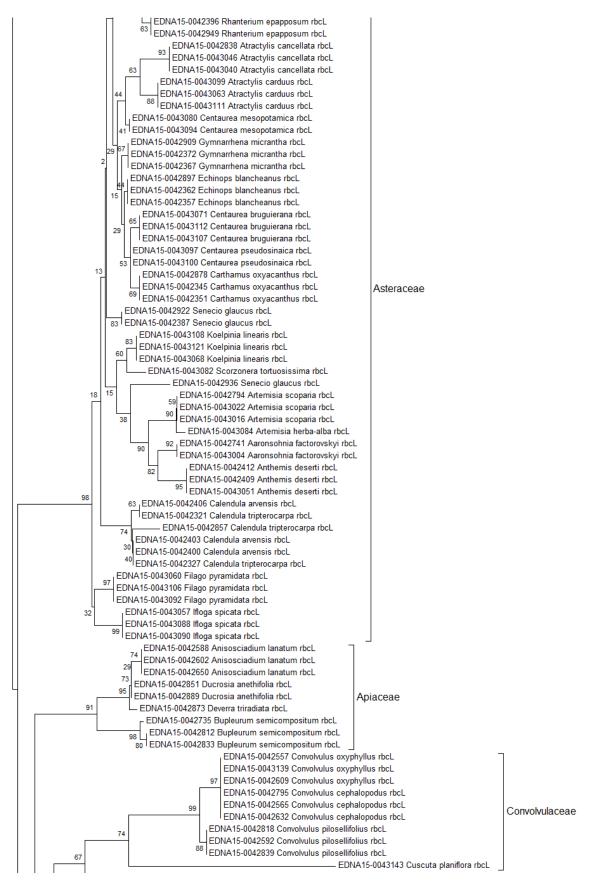



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 7/9]

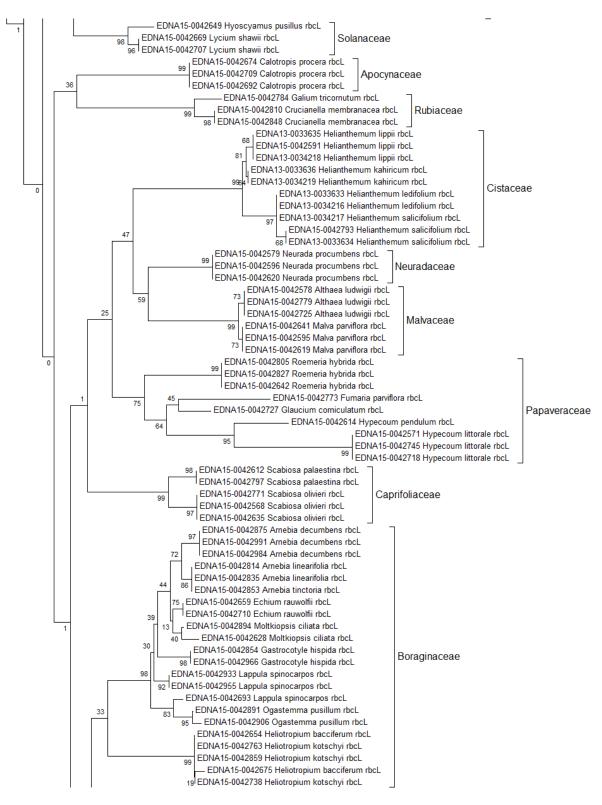



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [Cont. 8/9]

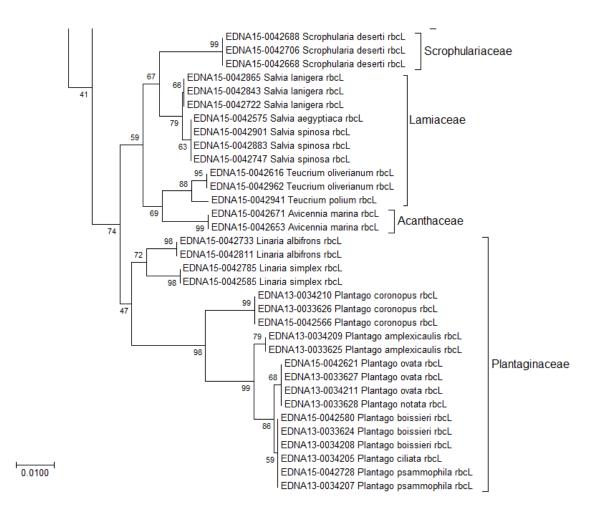



Figure 4.3 Neighbour Joining phylograms for *rbcL* barcodes representing 594 sequences (values represent % boot strap support with 100 replicates) [END 9/9]

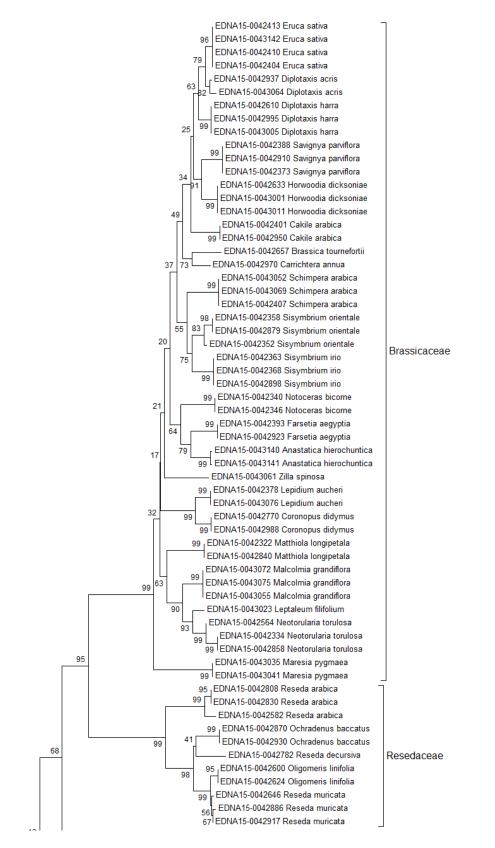



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [Cont. 1/8]

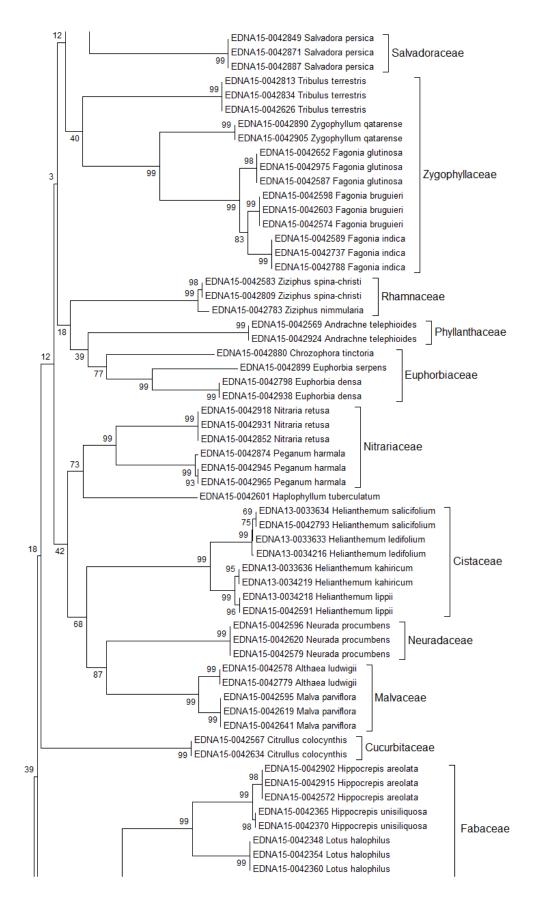



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [Cont. 2/8]

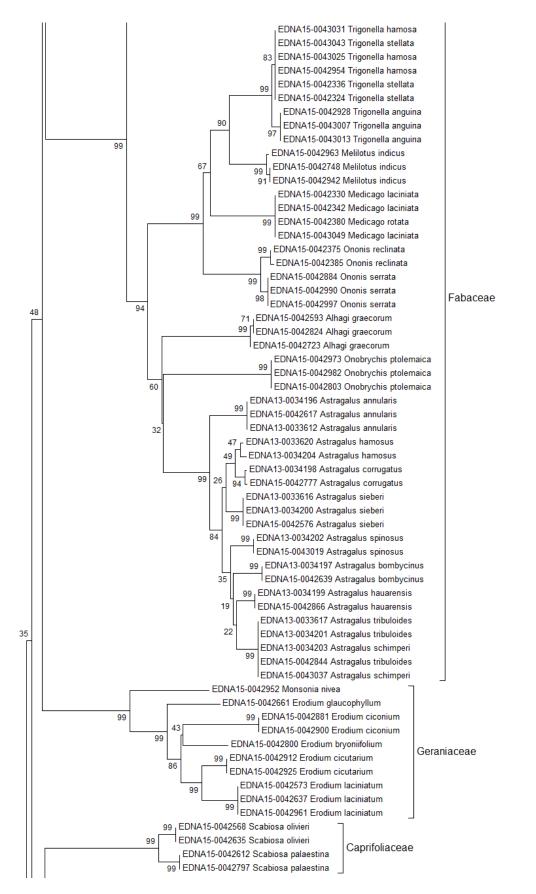



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [Cont. 3/8]

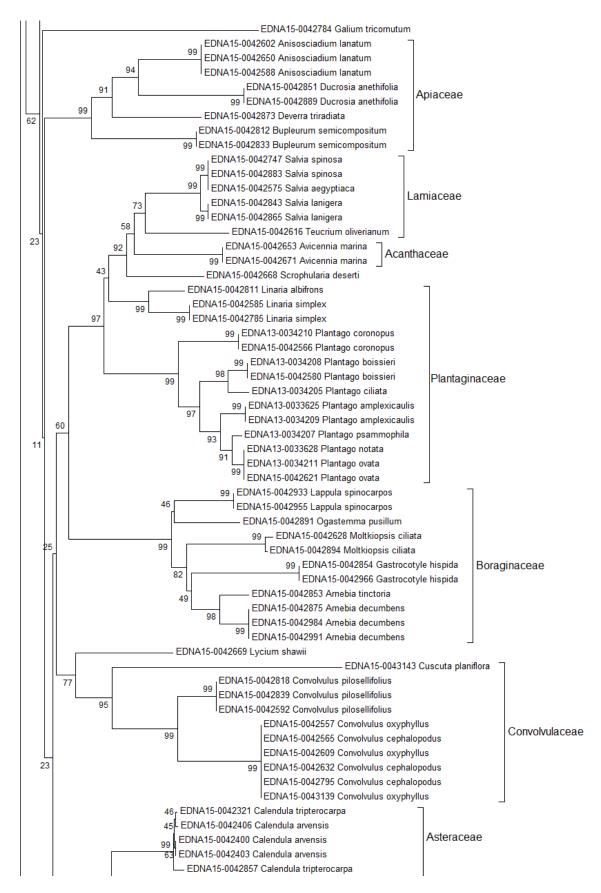



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [Cont. 4/8]

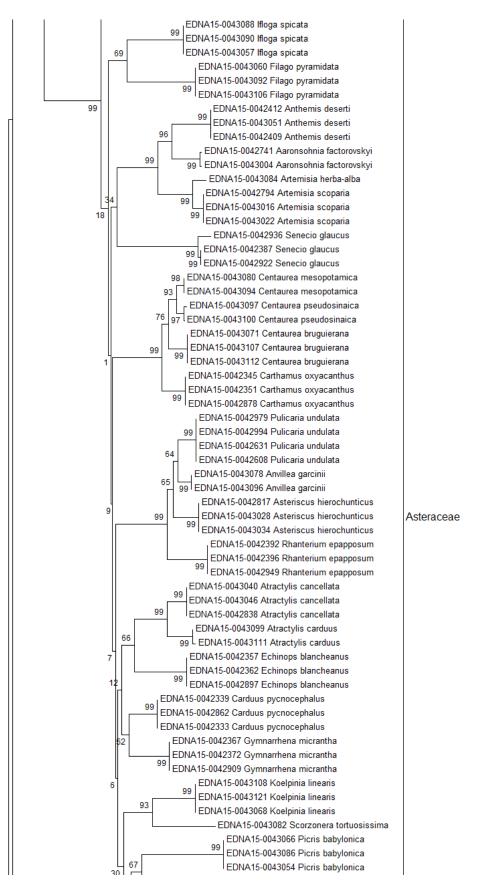



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [Cont. 5/8]

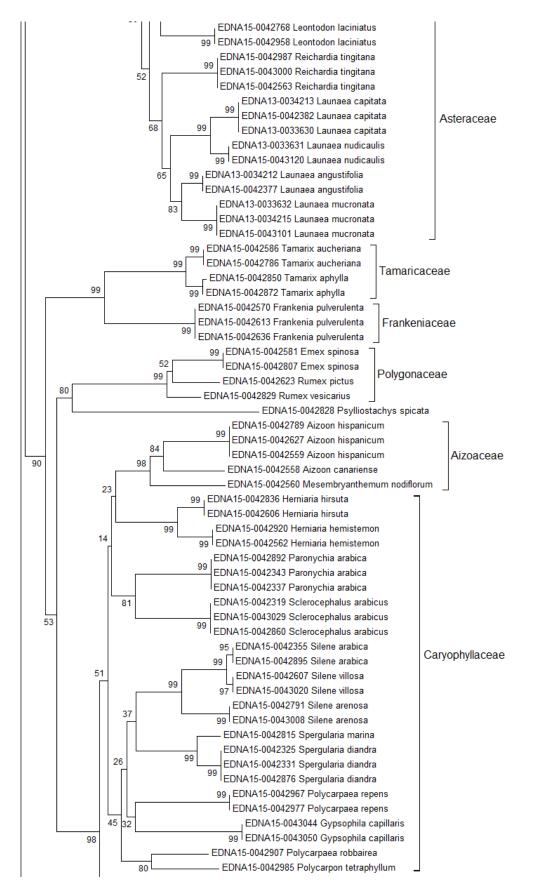



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [Cont. 6/8]

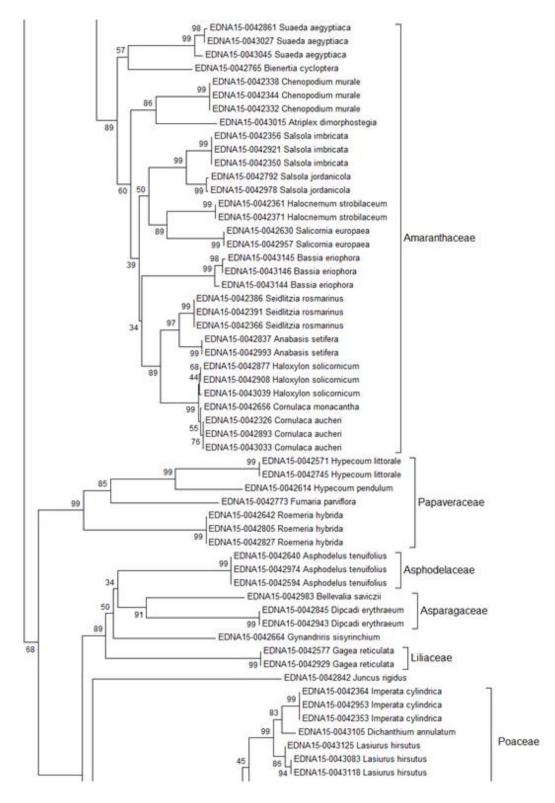



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [Cont. 7/8]

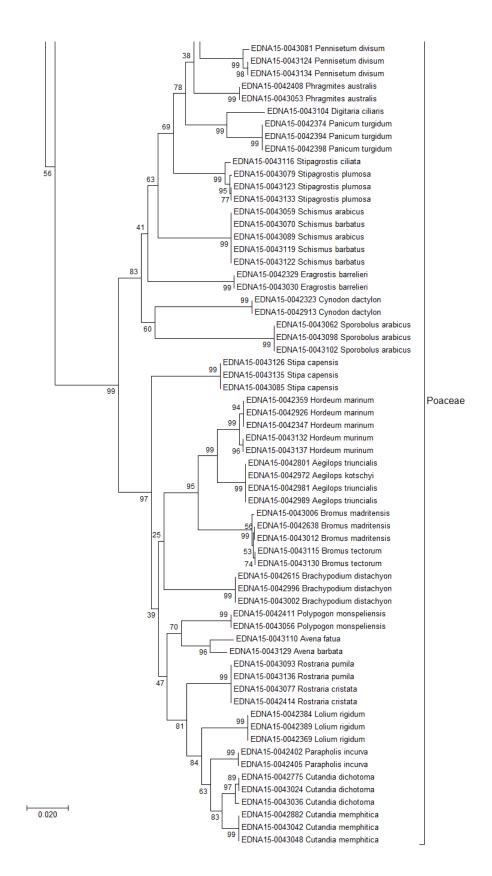



Figure 4.4 Neighbour joining phylograms for combined *rbcL* + ITS2 barcodes representing 480 sequences (values represent % boot strap support with 100 replicates) [End 8/8]

# 4.3.5 Resolution at the family level

In an attempt to study the DNA barcode regions used and how they represent major plant groups, species resolution for each family was calculated separately from NJ trees (Figures 4.2 to 4.4) representing 19 largest families of the flora (species  $\geq 1$ included) presented in Figure 4.5. At the family level, species resolution for all combinations (*rbcL*, ITS2, *rbcL*+ITS2) ranged from 25 % for two families (Convolvulaceae and Lamiaceae) up to 100 % for 4 families (Caprifoliaceae, Malvaceae, Nitrariaceae, Zygophyllaceae) (Figure 4.5).

The combined regions rbcL + ITS2 resolved greater species clustering at the family level (12 out of 19 families), followed by ITS2 alone (9 out of 19) and rbcL (5 out of 19) (Figure 4.5).

For all three combinations (*rbcL*, ITS2, *rbcL*+ITS2) the highest species resolution was recovered by Caprifoliaceae, Malvaceae, Nitrariaceae, and Zygophyllaceae (100% each) (Figure 4.5).

The families Amaranthaceae, Boraginaceae, Caryophyllaceae, Cistaceae, and Poaceae were best resolved by combining *rbcL*+ITS2, 79, 66, 76, 75 and 65 %, respectively (Figure 4.5). Asteraceae is best resolved by ITS2, 93 %. Two families showed better resolution using *rbcL* region, Geraniaceae and Lamiaceae, 66 and 50 %, respectively (Figure 4.5).

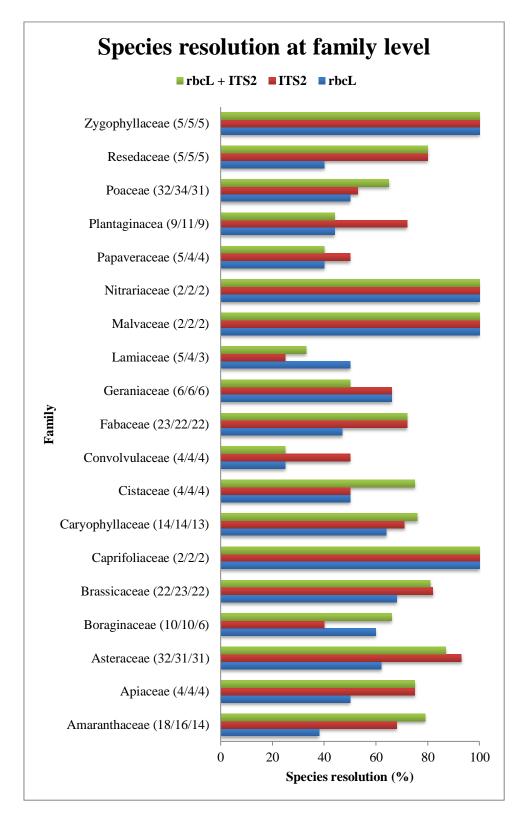
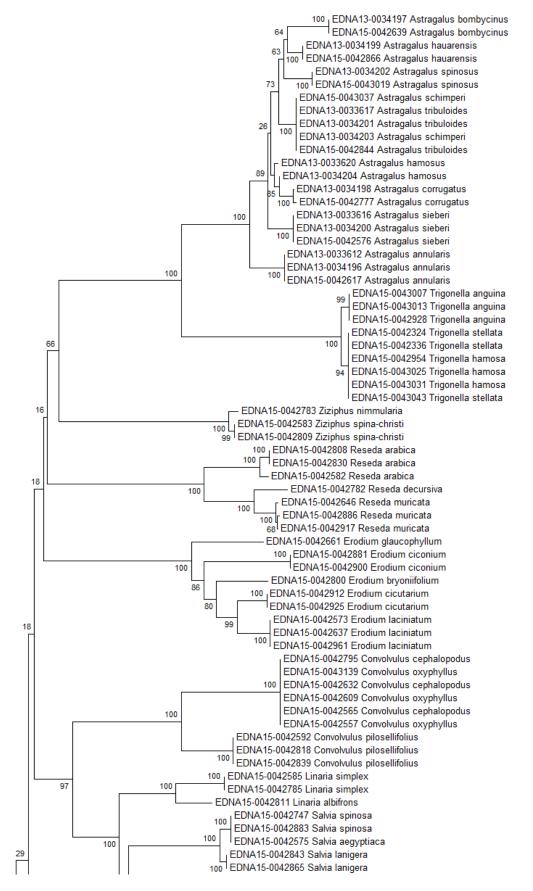



Figure 4.5 Species resolution (%) at family level using NJ trees for *rbcL*, ITS2, and *rbcL* + ITS2 representing 19 families of the flora of Kuwait. Numbers in parentheses refer to the numbers of species for which barcode data were recovered for *rbcL* (blue), ITS2 (red), and *rbcL* + ITS2 (green), respectively.


#### 4.3.6 Resolution at the genus level

A total of 94 species represented by 34 genera (including species  $\geq 1$  per genus) belonging to 17 families of the flora were evaluated to understand the resolution at the genus level. Sixty-five species (69 %) resolved into their genera by rbcL + ITS2 region (Table 4.5). The following 16 genera showed 100 % genus resolution: 2 Salsola spp. (Amaranthaceae), 2 Artemisia spp., 2 Atractylis spp., 3 Centaurea spp., 4 Launeae spp. (Asteraceae), 2 Diplotaxis spp., 2 Sisymbrium spp. (Brassicaceae), 2 Scabiosa spp. (Caprifoliaceae), 2 Herniaria spp., 3 Silene spp. (Caryophyllaceae), 2 Hippocrepis spp., Ononis spp. (Fabaceae), 2 Bromus spp., 2 Cutandia spp., 2 Hordeum spp. (Poaceae), and 3 Fagonia spp. (Zygophyllaceae) (Table 4.5). Further analysis was performed on genera < 100 % resolutions. A phylogenetic reconstruction using NJ tree method presented in Figure 4.6 showing the relationship of unresolved genera. Three genera belonging to the family Poaceae did not show any resolution due to paraphyletic relationships: Aegilops spp., Rostraria spp. and Schismus spp. (Table 4.5 and Figure 4.6). Other genera with < 100 % resolution is either due to paraphyletic relationships between two or more species of the same genus (e.g. paraphyletic relation between Astragalus schimperi and A. tribuloides; Trigonella stellata and T. hamosa; Convolvulus oxyphyllus and C. cephalopodus) or due to some species being represented by only one individual per genus which lowers the % of species resolution (Table 4.5 and Figure 4.6).

| Family          | Genus        | Number of species sampled/ |  |  |  |  |  |
|-----------------|--------------|----------------------------|--|--|--|--|--|
| ·               |              | resolved                   |  |  |  |  |  |
|                 |              | rbcL + ITS2                |  |  |  |  |  |
| Aizoaceae       | Aizoon       | 2/1*                       |  |  |  |  |  |
| Amaranthaceae   | Cornulaca    | 2/1*                       |  |  |  |  |  |
| Amaranthaceae   | Salsola      | 2/2                        |  |  |  |  |  |
| Asteraceae      | Artemisia    | 2/2                        |  |  |  |  |  |
| Asteraceae      | Atractylis   | 2/2                        |  |  |  |  |  |
| Asteraceae      | Centaurea    | 3/3                        |  |  |  |  |  |
| Asteraceae      | Launaea      | 4/4                        |  |  |  |  |  |
| Brassicaceae    | Diplotaxis   | 2/2                        |  |  |  |  |  |
| Brassicaceae    | Sisymbrium   | 2/2                        |  |  |  |  |  |
| Caprifoliaceae  | Scabiosa     | 2/2                        |  |  |  |  |  |
| Caryophyllaceae | Herniaria    | 2/2                        |  |  |  |  |  |
| Caryophyllaceae | Silene       | 3/3                        |  |  |  |  |  |
| Caryophyllaceae | Spergularia  | 2/1*                       |  |  |  |  |  |
| Cistaceae       | Helianthemum | 4/3*                       |  |  |  |  |  |
| Convolvulaceae  | Convolvulus  | 3/1*                       |  |  |  |  |  |
| Fabaceae        | Astragalus   | 9/7*                       |  |  |  |  |  |
| Fabaceae        | Hippocrepis  | 2/2                        |  |  |  |  |  |
| Fabaceae        | Ononis       | 2/2                        |  |  |  |  |  |
| Fabaceae        | Trigonella   | 3/1*                       |  |  |  |  |  |
| Geraniaceae     | Erodium      | 5/3*                       |  |  |  |  |  |
| Lamiaceae       | Salvia       | 3/1*                       |  |  |  |  |  |
| Papaveraceae    | Hypecoum     | 2/1*                       |  |  |  |  |  |
| Plantaginaceae  | Linaria      | 2/1*                       |  |  |  |  |  |
| Plantaginaceae  | Plantago     | 7/3*                       |  |  |  |  |  |
| Poaceae         | Aegilops     | 2/0*                       |  |  |  |  |  |
| Poaceae         | Bromus       | 2/2                        |  |  |  |  |  |
| Poaceae         | Cutandia     | 2/2                        |  |  |  |  |  |
| Poaceae         | Hordeum      | 2/2                        |  |  |  |  |  |
| Poaceae         | Rostraria    | 2/0*                       |  |  |  |  |  |
| Poaceae         | Schismus     | 2/0*                       |  |  |  |  |  |
| Poaceae         | Stipagrostis | 2/1*                       |  |  |  |  |  |
| Resedaceae      | Reseda       | 3/2*                       |  |  |  |  |  |
| Rhamnaceae      | Ziziphus     | 2/1*                       |  |  |  |  |  |
| Zygophyllaceae  | Fagonia      | 3/3                        |  |  |  |  |  |

Table 4.5 Genera in which more than one species resolved by *rbcL* + ITS2

Asterisk (\*) Genus resolution < 100 %



(Continued)

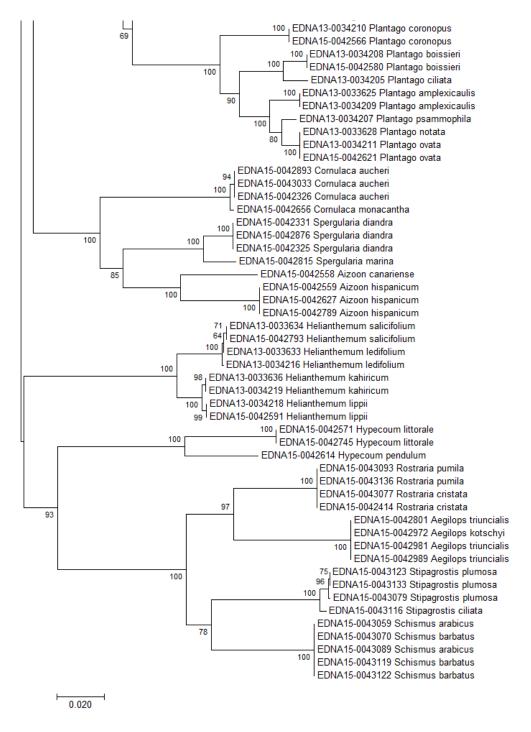



Figure 4.6 Neighbour joining phylograms representing 19 genera < 100 % resolution for combined regions *rbcL* + ITS2 barcodes (values represent % boot strap support with 1000 replicates)

### 4.3.7 Results summary

The main findings which arise from this set of analyses are as follows:

- The highest percentage of DNA sequence recoverability is represented by DNA extracted from silica dried fresh leaves (84 to 96 %).
- Sequencing efficiency using one set of universal primers was highest for *rbcL* region (82 %) and lowest for ITS2 (72.5 %).
- 3. High levels of sequence divergence were detected using ITS2 region (69 %) compared to *rbcL* with lower resolution (58.2 %).
- 4. The combined regions, rbcL + ITS2 enhanced the resolution and resolved greater species-specific clusters (70.5 %) than used singly.
- 5. Resolution at the family level was best resolved using the combined region (12 out of 19 families showed higher sequence divergence).
- At the genus level, 69 % of species determined into there genera by combining *rbcL* + ITS2 regions.

## 4.4 Discussion

This study represents one of very few attempts to barcode an entire flora of a country or regional floras, e.g. Sareela, et al., 2013; de Vere et al., 2012; Bruni et al., 2012; Kuzmina et al., 2012; Burgess et al., 2011. The results here are based on two barcode regions (*rbcL* and ITS2) used singly and in combination. DNA extracted from freshly collected plant material performed greater than using herbarium specimens for both regions. This is a common problem being confronted by many DNA barcoding studies working with herbarium material due to damage and high rates of specimen degradation (Staats et al., 2011). The sequence recovery from DNA extractions for *rbcL* and ITS2 using freshly collected material was quite high (96 % and 84 %, respectively) compared to herbarium material (71 % and 63 %, respectively). The determination of whether a DNA fragment can serve as a barcode is to evaluate its universality by showing high rates of PCR and quality of bidirectional sequences recovered from all individuals sampled (CBOL, 2009).

#### 4.4.1 Sequence recovery

Across the two DNA regions, 1,117 sequences were recovered representing both regions by 77.5 % of the total accessions sampled (1442). rbcL produced greater amplification success using one pair of primers and resulted in high quality of sequences (82 %) and for ITS2 (72.5 %), consistent with the results of several other studies that sampled the same regions broadly across land plants (CBOL, 2009; Chen et al., 2010; Burgess et al, 2011; de Vere et al., 2012; Liu et al., 2015). The *rbcL* primers applied here (*rbcL*-aF and *rbcL*-aRev) were used previously by Kress et al. (2009) showed higher sequencing recovery (93 %) (Kress et al., 2009). In addition, ITS2 primers (ITS2-S2F/S3R) applied by Chen et al. (2010) recovered 93.8 % of the sequences (Chen et al., 2010). Mainly, DNA extractions from herbarium specimens resulted in lower amplification success and sequence recovery (herbarium material: rbcL=71 % and ITS2=63 %) due to the degraded level of DNA specimens. DNA extraction from herbarium material requires greater caution than freshly collected material, to avoid any contaminants from other organisms (e.g. fungal, algae), which is difficult to detect when sampling but may easily be limited by using more specific primers, or in the case of fungi, working on plastidial regions. Furthermore, de Vere et al. (2012) noticed that some orders of flowering plants did not sequence well using herbarium material for either *rbcL* or *matK* regions and recommended the use of fresh plant material for the following plant orders: Oxalidales, Liliales, Myrtales, Saxifragales and Asparagales (de Vere et al., 2012). Also, obtaining high-quality bidirectional sequences with barcoding regions is important, e.g. trnH-psbA demonstrated good amplification across land plants; however the limitation was obtaining high-quality bidirectional sequences (CBOL, 2009; Mahadani et al., 2013).

#### 4.4.2 Species resolution

Levels of species discrimination are critical in evaluating barcode regions. The two markers demonstrated here provided good species resolution using the phylogenetic reconstruction tree based method (NJ) across all successfully sequenced plants, 58 % for *rbcL* and 69 % for ITS2 (Table 4.4). The low species resolution was caused by high percentage of PCR amplification failure (*rbcL* = 14 % and ITS2 = 19 %) which

resulted in fewer accessions per species. A representative of one barcode sequence could not resolve species-specific clustering and possibly create paraphyletic relationships with closely related species. Therefore, to improve the species resolution, rather than using one pair of primers per region, (although universality is necessary to consider in DNA barcoding studies), a second set of primers should be considered in resolving PCR amplification failures. In situations where it is not even possible to amplify, (i.e. due to degraded DNA samples) a new DNA extraction from the accession should be considered.

The combined regions (*rbcL*+ITS2) increased species resolution up to 70.5 % (12.3 % higher than *rbcL* alone and 1.5 % higher than ITS2) and the findings here in combination with the findings in Chapter 3 (testing 5 different DNA regions) support the designation of the combined region *rbcL*+ ITS2 as the main barcoding regions for identification purposes of the flora of Kuwait. The combination of plastid (*rbcL*) and nuclear (ITS2) information increases the power of taxonomic identification amongst closely related species. Findings in the current study agree with the recently published study by Liu et al. (2015), which showed similar species resolution of 71 % across a broad range of angiosperms (531 species) by combining *rbcL*+ITS2 and *trnH-psbA*. (Liu et al, 2015). Similar molecular analysis methods used in the current study (MUSCLE alignment and neighbour joining tree based method) were applied by Liu et al. (2015).

Several local DNA barcoding libraries have been constructed previously which mainly focused on a limited region (Table 4.1). Theodoridis et al. (2012) barcoded native plants (80 species) of Lamiaceae family belonging to Greece and Turkey and showed that some species of the family are partial to fully unresolvable (e.g. Salvia, Mentha) due to hybridization (Theodorids et al., 2012).

Burgess et al. (2011) established a barcoding database for a local temperate of Canadian flora on 436 species based on two combined regions (*rbcL+matK*). Their study showed that several genera are fully not resolvable (e.g. *Agrostis, Crataegus, Verbena, Erigeron*) due to polytypic genera contained species (Burgess et al., 2011).

In the same country, Saarela et al. (2013) DNA barcoded 490 species of the Canadian Arctic flora using the same combined regions (rbcL+matK) showed that 42 genera

(belonging to 17 families) did not distinguish at all, comparing the families of undistinguishable genera with the current study (Table 4.5) several families matched e.g. Amaranthaceae, Asteraceae, Brassicaceae, Caryophyllaceae, Papaveraceae, Poaceae and Amaranthaceae and only one genus, *Suaeda* spp. (Saarela et al., 2013).

Accurate genus level identification is important for poorly described groups (Little, 2011). From the 34 largest genera of the flora 16 genera were capable of resolving all species with 100 % resolution using combined region rbcL+ITS2, 3 resolved between 60-70 %, 12 resolved between 40-50 %, and 3 genera did not show any resolution (*Aegilops, Rostaria,* and *Schismus*) due to paraphyletic relationships (Figure 4.6). Species recovery of four largest families in the flora was best resolved using the combined regions rbcL + ITS2, which showed species resolution range from 65 % to 95 %, represented by Brassicaceae (95 %), Asteraceae (93 %), Fabaceae (75 %), and Poaceae (65 %) (Figure 4.5). These findings indicate that the combined region is capable of resolving closely related species belonging to the largest families of the flora with higher resolution than using a single region alone (Figure 4.5).

The formations of paraphyletic relationships amongst closely related species within a genus are spotted within 18 genera (Table 4.5 and Figure 4.6) e.g. *Suaeda* (Amaranthaceae) did not resolve any species and showing paraphyletic relationships within two species represented by *S. aegyptiaca* and *S. vermiculata. Suaeda* is a taxonomically difficult genus, mainly because of the large numbers of species (ca. 110 species) divided into 2 subgenus (*Brezia* and *Suaeda*) and 9 sections and distinguishing of morphologically characters are usually few and present only after flowering as investigated by Schutze et al. (2003).

*Aegilops* is a genus in Poaceae family (generally known as 'goat-grasses'), consists of more than 20 species and identification is challenging due to their vast morphological similarities (Badaeva et al., 2004; Keshavarzi et al., 2007). In Kuwait, *Aegilops* is represented by three species *A. triuncialis*, *A. bicornis* and *A. kotschyi*. Also, another complex genus from the grass family is *Hordeum* (barley) with more than 30 species, only two species represent the flora *H. marinum* (section *Marina*) and *H. murinum* (section *Trichostachys*) (Blattner et al., 2009).

The genus *Ononis* (Fabaceae) comprises of 69 species is also known to be difficult to identify due to high similarity in morphological features. *Ononis* consists of five major lineages referred to as clades I to V and both *O. reclinata* and *O. serrata* (representatives of the flora of Kuwait) are known to be classified in Clade V (Turini et al., 2010).

In such cases where the identification of unknown plant specimen could not be resolved to species level by the DNA database, and only resolves to the genus level a taxonomic key of the flora would be handy to identify the specimen down to the species level in less time, since an average of 2-3 species per genus are mainly represented in the flora.

Studying the distribution of species is an essential requirement for conservation management especially when alien species are present which could compete with local plants and possess a high risk to the biodiversity, a control measure is required. Therefore, applying simple DNA molecular techniques is quick and reliable for vegetation monitoring, by blasting unknown plant sequences against local DNA database (considering it covers all the native and naturalised plants of the flora) could efficiently identify whether the species match sequences from the local DNA database or else may be considered as an alien species.

The use of BLASTn searches resulted in low species matches for both barcode regions, 31 % *rbcL* and 47 % ITS2, compared to tree-based methods showing higher species resolution (58 % *rbcL* and 69 % ITS2). The entire flora contains a manageable number of species per genera (Table 4.5) which supports the variation amongst closely related species. Thus, increases the resolution of species using phylogenetic reconstruction tree-based methods. On the other hand, NCBI database using BLASTn (similar sequences blast) could be useful to determine whether contamination was an issue amongst barcode sequences of the flora.

This chapter represents a DNA reference library of almost 70 % the flora of Kuwait using the barcode regions *rbcL* and ITS2, and in the meanwhile, will act as the primary source of DNA database for local Kuwaiti plant molecular identifications. The DNA database is accessible to researchers through The Barcode of Life Data (BOLD) systems database under the title 'Barcoding the flora of Kuwait using *rbcL*  and ITS2', freely available web platform database (Ratnasingham and Hebert, 2013 accessible online: <u>http://www.boldsystems.org/</u>). BOLD delivers an online database for the collection and management of specimens, distributional, and molecular data. Interestingly, BOLD shares an integrated data exchange pipeline with NCBI (GenBank) that allows for automatic submission of data to GenBank. Specimens with BOLD and GenBank accessions representing successfully barcoded sequences for *rbcL* and ITS2 are listed in Appendix 4.1.

## 4.4.3 Conclusion

The current study provides key information on the expected rates of sequence recovery and species resolution for the combined regions (rbcL + ITS2). Practically, the results described here directly provide information at species, genus and family level for researchers interested in identifying unknown plants and conducting biodiversity surveys on the local flora of Kuwait. The establishment of a local DNA barcoding library reference of the flora is valuable for a broad range of potential ecological applications, including the reconstruction of previous vegetation (Yoccoz et al., 2012), identifying invasive species (Van De Wiel et al., 2009), analysing the diets of mammals (Jurado-Rivera et al., 2009). In the next chapter, the DNA barcode database will be used in studying DNA extracted from soil samples collected from the rich and poor habitat of Kuwait and comparing plant patterns of below ground with above ground diversity by applying Next Generation Sequencing methods (Sonstebo et al., 2010).

# 4.4.4 Suggested for future research

- As in many DNA barcoding studies, there were some accessions which were consistently difficult to amplify and sequence for both regions (*rbcL* and ITS2). Therefore, continuing to generate a complete DNA database for all species would be ideal. Thus, by testing different primers or else start again by extracting DNA from the same sample or another specimen if available.
- Fresh plant material is always preferable due to the different age and degradation levels of herbarium specimens. Additionally, including more than three accessions per species (5-6 where possible) to avoid ending with one accession per species.
- The addition of a third marker would contribute to a more robust dataset and help resolve relationships between closely related species. I would suggest two markers, the coding region *matK* and/ or non-coding region *trnL*, both capable of showing high discriminatory power in previous studies.

| Species                  | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                        |
|--------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-----------------------------------------|
| Aaronsohnia factorovskyi | EDNA15-0043010 | MTA003-16 |                                     |                              | KTUH060  | R Halwagy 1087       | 1972 | Herbarium          | Al-Dibdibah 15 KM N of Salmy            |
| Aaronsohnia factorovskyi | EDNA15-0043004 | MTA001-16 | KX282506                            | KX281954                     | MTA522   | M Abdullah MTA522    | 2013 | Fresh              | Abdali                                  |
| Aaronsohnia factorovskyi | EDNA15-0042741 | MTA002-16 | KX282507                            | KX281955                     | MTA568   | M Abdullah MTA568    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve           |
| Acacia pachyceras        | EDNA15-0042390 | MTA004-16 | KX282508                            |                              | MTA213   | M Abdullah MTA213    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve           |
| Aegilops kotschyi        | EDNA15-0042720 | MTA007-16 | KX282509                            | KX281956                     | KTUH427  | KT Mathew 2731       | 1996 | Herbarium          | Road to Ahmadi along King Fahad Highway |
| Aegilops kotschyi        | EDNA15-0042940 | MTA005-16 |                                     |                              | KTUH428  | M Halwagy 1063       | 1972 | Herbarium          | Jal Az-Zor                              |
| Aegilops kotschyi        | EDNA15-0042972 | MTA006-16 |                                     |                              | KTUH429  | M Al-Dosari 4773     | 2000 | Herbarium          | Um Neqa Ajayed farm                     |
| Aegilops triuncialis     | EDNA15-0042801 | MTA009-16 | KX282510                            | KX281957                     | KTUH430  | M Dib & M Al-Dosari  | 2001 | Herbarium          | Al-Khiran close to sea shore            |
| Aegilops triuncialis     | EDNA15-0042981 | MTA008-16 | KX282511                            | KX281958                     | KTUH431  | M Al-Dosari 6147     | 2007 | Herbarium          | Failaka Island                          |
| Aegilops triuncialis     | EDNA15-0042989 | MTA010-16 | KX282512                            | KX281959                     | KTUH432  | M Al-Dosari 6000     | 2006 | Herbarium          | Al-Subbiyah Power station               |
| Aeluropus lagopoides     | EDNA15-0042682 | MTA013-16 |                                     |                              | KTUH433  | M Al-Dosari 3455     | 1998 | Herbarium          | Failaka Island                          |
| Aeluropus lagopoides     | EDNA15-0042701 | MTA011-16 | KX282513                            |                              | KTUH434  | KT Mathew 3988       | 1998 | Herbarium          | Doha - Sulaibikhat road                 |
| Aeluropus lagopoides     | EDNA15-0042662 | MTA012-16 | KX282514                            |                              | MTA138   | M Abdullah MTA138    | 2012 | Fresh              | Nuwaiseeb                               |
| Agathophora alopecuroide | EDNA15-0042399 | MTA014-16 |                                     |                              | KTUH047  | R Halwagy 81-78      | 1981 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi       |
| Aizoon canariense        | EDNA15-0042672 | MTA016-16 |                                     | KX281960                     | KTUH001  | KT Mathew 5365       | 2004 | Herbarium          | Failaka Island Archeological ruins      |
| Aizoon canariense        | EDNA15-0042558 | MTA015-16 | KX282515                            | KX281961                     | MTA431   | M Abdullah MTA431    | 2013 | Fresh              | Failaka Island                          |
| Aizoon canariense        | EDNA15-0042604 | MTA017-16 |                                     |                              | MTA547   | M Abdullah MTA547    | 2013 | Fresh              | Subiyah                                 |
| Aizoon hispanicum        | EDNA15-0042627 | MTA019-16 | KX282516                            | KX281962                     | MTA302   | M Abdullah MTA302    | 2013 | Fresh              | Al-Liyah                                |
| Aizoon hispanicum        | EDNA15-0042559 | MTA018-16 | KX282517                            | KX281963                     | MTA387   | M Abdullah MTA387    | 2013 | Fresh              | Failaka Island                          |
| Aizoon hispanicum        | EDNA15-0042789 | MTA020-16 | KX282518                            | KX281964                     | MTA468   | M Abdullah MTA468    | 2013 | Fresh              | Al-Salmi                                |
| Alhagi graecorum         | EDNA15-0042593 | MTA022-16 | KX282519                            | KX281965                     | KTUH176  | M Al-Dosari 4484     | 1999 | Herbarium          | Failaka Island                          |
| Alhagi graecorum         | EDNA15-0042723 | MTA021-16 | KX282520                            | KX281966                     | KTUH177  | KT Mathew 4093       | 1998 | Herbarium          | Omariyah Agricultural Research station  |
| Alhagi graecorum         | EDNA15-0042824 | MTA023-16 | KX282521                            | KX281967                     | KTUH178  | L Boulos 17892       | 1992 | Herbarium          | Kuwait University Campus                |

# Appendix 4.1 A List of Specimens from which DNA was extracted to establish DNA barcode library for the flora of Kuwait. Includes BOLD, GenBank accessions, EDNA numbers, collection ID, collector name and number, year of collection, and locality/ region of collection.

| Species                  | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                           |
|--------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|--------------------------------------------|
| Allium sindjarense       | EDNA15-0042724 | MTA025-16 |                                     |                              | KTUH337  | L Boulos 18098       | 1993 | Herbarium          | 7 KM N of Ahmad Al-Jaber Air Base          |
| Allium sindjarense       | EDNA15-0042778 | MTA024-16 | KX282522                            |                              | KTUH338  | KT Mathew 5504       | 2007 | Herbarium          | Sabah Al-Ahmad Nature Reserve              |
| Allium sindjarense       | EDNA15-0042825 | MTA026-16 |                                     |                              | KTUH339  | G Al-Abbadi 339      | 1998 | Herbarium          | KISR - Sulaibiya Research Station          |
| Allium sphaerocephalum   | EDNA15-0042665 | MTA027-16 | KX282523                            | KX281968                     | MTA600   | M Abdullah MTA600    | 2013 | Fresh              | Um-Neqa                                    |
| Allium sphaerocephalum   | EDNA15-0042685 | MTA028-16 | KX282524                            |                              | MTA612   | M Abdullah MTA612    | 2013 | Fresh              | Abdali                                     |
| Althaea ludwigii         | EDNA15-0042725 | MTA030-16 | KX282525                            |                              | KTUH227  | M Halwagy 1066       | 1972 | Herbarium          | Jal Az Zor                                 |
| Althaea ludwigii         | EDNA15-0042779 | MTA029-16 | KX282526                            | KX281969                     | KTUH228  | M Al-Dosari 5585     | 2005 | Herbarium          | Al-Subiyah power station                   |
| Althaea ludwigii         | EDNA15-0042578 | MTA031-16 | KX282527                            | KX281970                     | MTA272   | M Abdullah MTA272    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Alyssum linifolium       | EDNA15-0043058 | MTA032-16 |                                     | KX281971                     | KTUH382  | R Halwagy 1307       | 1976 | Herbarium          | Al-Shaqayah police station                 |
| Amaranthus lividus       | EDNA15-0042673 | MTA033-16 | KX282528                            |                              | KTUH331  | M Al-Dosari 6170     | 2007 | Herbarium          | Al-Wafra Al-Jouriah farm                   |
| Anabasis setifera        | EDNA15-0043009 | MTA035-16 | KX282529                            | KX281972                     | KTUH048  | R Halwagy 81-45      | 1981 | Herbarium          | Al Atraf 18 KM W of Jahra                  |
| Anabasis setifera        | EDNA15-0042837 | MTA034-16 | KX282530                            | KX281973                     | MTA438   | M Abdullah MTA438    | 2013 | Fresh              | Failaka Island                             |
| Anabasis setifera        | EDNA15-0042993 | MTA036-16 |                                     |                              | MTA588   | M Abdullah MTA588    | 2013 | Fresh              | Um-Neqa                                    |
| Anastatica hierochuntica | EDNA15-0042743 | MTA038-16 | KX282531                            | KX281974                     | KTUH383  | M Al-Dosari 2198     | 1997 | Herbarium          | Al-Wafra farms                             |
| Anastatica hierochuntica | EDNA15-0043140 | MTA037-16 |                                     |                              | KTUH384  | M Al-Duleimi 1039    | 1990 | Herbarium          | Flora of Bahrain - Arabian Gulf University |
| Anastatica hierochuntica | EDNA15-0043141 | MTA039-16 | KX282532                            | KX281975                     | KTUH385  | L Boulos 385         | 1990 | Herbarium          | Flora of Oman                              |
| Andrachne telephioides   | EDNA15-0042924 | MTA040-16 | KX282533                            | KX281976                     | KTUH128  | M Al-Dosari 5568     | 2004 | Herbarium          | Al-Zoor power station                      |
| Andrachne telephioides   | EDNA15-0042569 | MTA041-16 | KX282534                            | KX281977                     | MTA400   | M Abdullah MTA400    | 2013 | Fresh              | Failaka Island                             |
| Anisosciadium lanatum    | EDNA15-0042602 | MTA044-16 | KX282535                            | KX281978                     | MTA134   | M Abdullah MTA134    | 2012 | Fresh              | Nuwaiseeb                                  |
| Anisosciadium lanatum    | EDNA15-0042588 | MTA042-16 | KX282536                            | KX281979                     | MTA594   | M Abdullah MTA594    | 2013 | Fresh              | Um-Neqa                                    |
| Anisosciadium lanatum    | EDNA15-0042650 | MTA043-16 | KX282537                            | KX281980                     | MTA610   | M Abdullah MTA610    | 2013 | Fresh              | Al-Liyah                                   |
| Anthemis deserti         | EDNA15-0042409 | MTA046-16 | KX282538                            | KX281981                     | MTA203   | M Abdullah MTA203    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Anthemis deserti         | EDNA15-0042412 | MTA045-16 | KX282539                            | KX281982                     | MTA225   | M Abdullah MTA225    | 2013 | Fresh              | Nuwaiseeb                                  |
| Anthemis deserti         | EDNA15-0043051 | MTA047-16 | KX282540                            | KX281983                     | MTA489   | M Abdullah MTA489    | 2013 | Fresh              | Abdali                                     |
| Anvillea garcinii        | EDNA15-0043096 | MTA048-16 | KX282541                            | KX281984                     | KTUH061  | M Al-Dosari 6372     | 2009 | Herbarium          | KISR - Sulaibiya Research Station          |

| Species                   | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID     | Collector and number | Year | Collection<br>type | Locality/ region                           |
|---------------------------|----------------|-----------|-------------------------------------|------------------------------|--------------|----------------------|------|--------------------|--------------------------------------------|
| Anvillea garcinii         | EDNA15-0043078 | MTA049-16 | KX282542                            | KX281985                     | MTA459       | M Abdullah MTA459    | 2013 | Fresh              | Al-Salmi                                   |
| Arnebia decumbens         | EDNA15-0042875 | MTA051-16 | KX282543                            | KX281986                     | MTA314       | M Abdullah MTA314    | 2013 | Fresh              | KISR - Sulaibiya Research Station          |
| Arnebia decumbens         | EDNA15-0042991 | MTA050-16 | KX282544                            | KX281987                     | MTA390       | M Abdullah MTA390    | 2013 | Fresh              | Failaka Island                             |
| Arnebia decumbens         | EDNA15-0042984 | MTA052-16 | KX282545                            | KX281988                     | MTA447       | M Abdullah MTA447    | 2013 | Fresh              | Al-Salmi                                   |
| Arnebia linearifolia      | EDNA15-0042814 | MTA055-16 |                                     |                              | KTUH002      | L Boulos LB18090     | 1993 | Herbarium          | Ahmed Al-Jabir Air Base - Sulaibiyah       |
| Arnebia linearifolia      | EDNA15-0042835 | MTA053-16 | KX282546                            |                              | KTUH003      | L Boulos LB18057     | 1993 | Herbarium          | Al-Bahra plateau - Jal Az Zor ridge        |
| Arnebia linearifolia      | EDNA15-0042919 | MTA054-16 | KX282547                            |                              | KTUH003<br>b | L Boulos LB18057     | 1993 | Herbarium          | Al-Bahra plateau - Jal Az Zor ridge        |
| Arnebia linearifolia      | EDNA15-0042932 | MTA056-16 |                                     | KX281989                     | KTUH004      | L Boulos LB18021     | 1993 | Herbarium          | Al-Mutla'a along the road of subbiyah      |
| Arnebia tinctoria         | EDNA15-0042853 | MTA058-16 |                                     |                              | KTUH005      | R Halwagy RH1175     | 1972 | Herbarium          | Abdali Sha'ab Abu Jarfan                   |
| Arnebia tinctoria         | EDNA15-0042946 | MTA057-16 | KX282548                            | KX281990                     | KTUH006      | L Boulos LB18147     | 1993 | Herbarium          | Al-salmi near Saudi Border                 |
| Artemisia herba-alba      | EDNA15-0043084 | MTA059-16 | KX282549                            | KX281991                     | KTUH062      | R Halwagy 81/77      | 1981 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi          |
| Artemisia scoparia        | EDNA15-0043016 | MTA061-16 | KX282550                            | KX281992                     | KTUH063      | M Al-Dosari 5940     | 2005 | Herbarium          | Al-Khiran 8 KM from Nuwaiseeb border       |
| Artemisia scoparia        | EDNA15-0043022 | MTA060-16 | KX282551                            | KX281993                     | KTUH064      | M Al-Dosari 4874     | 2000 | Herbarium          | Al-Khiran near the sea shore               |
| Artemisia scoparia        | EDNA15-0042794 | MTA062-16 | KX282552                            | KX281994                     | MTA136       | M Abdullah MTA136    | 2012 | Fresh              | Nuwaiseeb                                  |
| Asphodelus tenuifolius    | EDNA15-0042974 | MTA064-16 | KX282553                            | KX281995                     | MTA328       | M Abdullah MTA328    | 2013 | Fresh              | KISR - Sulaibiya Research Station          |
| Asphodelus tenuifolius    | EDNA15-0042594 | MTA063-16 | KX282554                            | KX281996                     | MTA427       | M Abdullah MTA427    | 2013 | Fresh              | Failaka Island                             |
| Asphodelus tenuifolius    | EDNA15-0042640 | MTA065-16 | KX282555                            | KX281997                     | MTA490       | M Abdullah MTA490    | 2013 | Fresh              | Abdali                                     |
| Asphodelus viscidulus     | EDNA15-0042804 | MTA067-16 |                                     |                              | KTUH340      | M Al-Dosari 3019     | 1998 | Herbarium          | Mina Abdullah                              |
| Asphodelus viscidulus     | EDNA15-0042885 | MTA066-16 |                                     |                              | KTUH341      | R Halwagy 1100       | 1972 | Herbarium          | Al-Shaqq                                   |
| Asphodelus viscidulus     | EDNA15-0042903 | MTA068-16 |                                     |                              | KTUH342      | M Al-Dosari 2795     | 1998 | Herbarium          | Sulaibiyah station KISR near water tank    |
| Asteriscus hierochunticus | EDNA15-0042817 | MTA070-16 | KX282556                            | KX281998                     | KTUH065      | KT Mathew 5443       | 2006 | Herbarium          | Subbiyah Power Station                     |
| Asteriscus hierochunticus | EDNA15-0043028 | MTA069-16 | KX282557                            | KX281999                     | KTUH066      | M Al-Dosari 4476     | 1999 | Herbarium          | Failaka Island                             |
| Asteriscus hierochunticus | EDNA15-0043034 | MTA071-16 | KX282558                            | KX282000                     | KTUH067      | DM Al-Awadi 120      | 2000 | Herbarium          | Um Al-Rimam                                |
| Astragalus annularis      | EDNA13-0033612 | MTA073-16 | KX282559                            | KX282001                     | KTUH179      | M AL-Dosari 5757     | 2005 | Herbarium          | Al-Wafra farms Al=Ameri farm               |
| Astragalus annularis      | EDNA13-0034196 | MTA072-16 | KX282560                            | KX282002                     | KTUH180      | M Al-Dosari 2535     | 1997 | Herbarium          | Nuwaiseeb border station with Saudi Arabia |

| Species                | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                           |
|------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|--------------------------------------------|
| Astragalus annularis   | EDNA15-0042617 | MTA074-16 | KX282561                            | KX282003                     | KTUH181  | KT Mathew 3047       | 1997 | Herbarium          | Subbiyah gulf shore                        |
| Astragalus bombycinus  | EDNA13-0033613 | MTA077-16 | KX282562                            | KX282004                     | KTUH182  | M Al-Dosari 5537     | 2004 | Herbarium          | Failaka Island                             |
| Astragalus bombycinus  | EDNA15-0042639 | MTA075-16 | KX282563                            | KX282005                     | KTUH183  | M Al-Dosari 1425     | 1995 | Herbarium          | Nuwaiseeb border station with Saudi Arabia |
| Astragalus bombycinus  | EDNA13-0034197 | MTA076-16 | KX282564                            |                              | MTA470   | M Abdullah MTA470    | 2013 | Fresh              | Al-Salmi                                   |
| Astragalus corrugatus  | EDNA13-0033614 | MTA078-16 | KX282565                            | KX282006                     | KTUH184  | M Al-Dosari 5034     | 2001 | Herbarium          | Al-Salmi border station near Saudi Arabia  |
| Astragalus corrugatus  | EDNA15-0042777 | MTA079-16 |                                     |                              | KTUH185  | M Al-Dosari 6133     | 2007 | Herbarium          | Subiyah Power Station                      |
| Astragalus corrugatus  | EDNA13-0034198 | MTA080-16 | KX282566                            | KX282007                     | MTA205   | M Abdullah MTA205    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Astragalus hamosus     | EDNA13-0034204 | MTA081-16 | KX282567                            | KX282008                     | MTA280   | M Abdullah MTA280    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Astragalus hamosus     | EDNA13-0033620 | MTA082-16 | KX282568                            | KX282009                     | MTA281   | M Abdullah MTA281    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Astragalus hauarensis  | EDNA13-0033615 | MTA085-16 | KX282569                            | KX282010                     | KTUH186  | R Halwagy 792        | 1971 | Herbarium          | Sulaibiyah power station                   |
| Astragalus hauarensis  | EDNA13-0034199 | MTA083-16 | KX282570                            | KX282011                     | KTUH187  | M Al-Dosari 1097     | 1990 | Herbarium          | Below Jal Az Zor along subiyah road        |
| Astragalus hauarensis  | EDNA15-0042866 | MTA084-16 |                                     |                              | KTUH188  | M Al-Dosari 1742     | 1996 | Herbarium          | 15 KM from Al-Salmi                        |
| Astragalus schimperi   | EDNA13-0033619 | MTA087-16 | KX282571                            |                              | KTUH189  | KT Mathew 3380       | 1998 | Herbarium          | Al-Abdaly 8.5 KM from border with Iraq     |
| Astragalus schimperi   | EDNA15-0043037 | MTA086-16 | KX282572                            | KX282012                     | MTA238   | M Abdullah MTA238    | 2013 | Fresh              | KISR - Sulaibiya Research Station          |
| Astragalus schimperi   | EDNA13-0034203 | MTA088-16 | KX282573                            | KX282013                     | MTA376   | M Abdullah MTA376    | 2013 | Fresh              | Doha Entertainment City                    |
| Astragalus sieberi     | EDNA13-0033616 | MTA090-16 | KX282574                            | KX282014                     | KTUH190  | L Boulos 18053       | 1993 | Herbarium          | Al-Bahra plateau - Jal Az Zor ridge        |
| Astragalus sieberi     | EDNA15-0042576 | MTA089-16 | KX282575                            | KX282015                     | MTA146   | M Abdullah MTA146    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait             |
| Astragalus sieberi     | EDNA13-0034200 | MTA091-16 | KX282576                            | KX282016                     | MTA461   | M Abdullah MTA461    | 2013 | Fresh              | Al-Salmi                                   |
| Astragalus spinosus    | EDNA13-0034202 | MTA093-16 | KX282577                            |                              | MTA212   | M Abdullah MTA212    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Astragalus spinosus    | EDNA13-0033618 | MTA092-16 | KX282578                            | KX282017                     | MTA454   | M Abdullah MTA454    | 2013 | Fresh              | Al-Salmi                                   |
| Astragalus spinosus    | EDNA15-0043019 | MTA094-16 | KX282579                            | KX282018                     | MTA531   | M Abdullah MTA531    | 2013 | Fresh              | Abdali                                     |
| Astragalus tribuloides | EDNA13-0033617 | MTA096-16 | KX282580                            | KX282019                     | KTUH192  | M Al-Dosari 5653     | 2005 | Herbarium          | KISR - Sulaibiya Research Station          |
| Astragalus tribuloides | EDNA15-0042844 | MTA095-16 | KX282581                            | KX282020                     | KTUH193  | R Halwagy 1076       | 1972 | Herbarium          | Al-Dibdibah 15 KM N of Salmy               |
| Astragalus tribuloides | EDNA13-0034201 | MTA097-16 | KX282582                            | KX282021                     | MTA345   | M Abdullah MTA345    | 2013 | Fresh              | Doha Entertainment City                    |
| Atractylis cancellata  | EDNA15-0042838 | MTA099-16 | KX282583                            | KX282022                     | KTUH068  | Fatima F120          | 1998 | Herbarium          | Al-Subbiyah                                |

| Species                 | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                                |
|-------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------------|
| Atractylis cancellata   | EDNA15-0043040 | MTA098-16 | KX282584                            | KX282023                     | KTUH069  | M Al-Sdosari 4807    | 2000 | Herbarium          | Um Al-Rimam close to water catchment            |
| Atractylis cancellata   | EDNA15-0043046 | MTA100-16 | KX282585                            | KX282024                     | KTUH070  | M Al-Dosari 4730     | 2000 | Herbarium          | Um Neqa near Abdali border                      |
| Atractylis carduus      | EDNA15-0043063 | MTA102-16 | KX282586                            | KX282025                     | MTA012   | M Abdullah MTA012    | 2012 | Fresh              | King Fahad High Way                             |
| Atractylis carduus      | EDNA15-0043111 | MTA101-16 | KX282587                            |                              | MTA373   | M Abdullah MTA373    | 2013 | Fresh              | Doha Entertainment City                         |
| Atractylis carduus      | EDNA15-0043099 | MTA103-16 | KX282588                            | KX282026                     | MTA533   | M Abdullah MTA533    | 2013 | Fresh              | Subiyah                                         |
| Atriplex dimorphostegia | EDNA15-0042856 | MTA105-16 | KX282589                            | KX282027                     | KTUH049  | KT Mathew 3887       | 1998 | Herbarium          | Subiyah waterfront near power station enterance |
| Atriplex dimorphostegia | EDNA15-0043015 | MTA104-16 |                                     | KX282028                     | KTUH050  | KT Mathew 3972       | 1998 | Herbarium          | Doha along the roadside                         |
| Atriplex dimorphostegia | EDNA15-0043021 | MTA106-16 |                                     |                              | KTUH051  | KT Mathew 4920       | 2000 | Herbarium          | Abdali Sheikh Ali Ajaib farm                    |
| Atriplex leucoclada     | EDNA15-0042676 | MTA108-16 | KX282590                            |                              | KTUH350  | M Al-Dosari 3459     | 1998 | Herbarium          | Failaka Island                                  |
| Atriplex leucoclada     | EDNA15-0042695 | MTA107-16 | KX282591                            |                              | KTUH352  | M Al-Dosari 3537     | 1998 | Herbarium          | Subbiyah near power station                     |
| Atriplex leucoclada     | EDNA15-0042655 | MTA109-16 | KX282592                            |                              | MTA164   | M Abdullah MTA164    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait                  |
| Avena barbata           | EDNA15-0043129 | MTA111-16 |                                     |                              | KTUH435  | M Al-Dosari 2924     | 1998 | Herbarium          | Mina Abdullah along King Fahad road             |
| Avena barbata           | EDNA15-0043138 | MTA110-16 | KX282593                            | KX282029                     | KTUH436  | M Bajwa 821-75       | 1975 | Herbarium          | Flora of KSA - khafji                           |
| Avena fatua             | EDNA15-0043110 | MTA112-16 | KX282594                            | KX282030                     | KTUH437  | M Al-Dosari 6104     | 2007 | Herbarium          | Subbiyah Power Station                          |
| Avena sterilis          | EDNA15-0043117 | MTA113-16 |                                     |                              | KTUH438  | R Halwagy 1260       | 1974 | Herbarium          | Al-Dba'iyyah                                    |
| Avena sterilis          | EDNA15-0043131 | MTA114-16 |                                     | KX282031                     | KTUH439  | M Al-Dosari 1709     | 1996 | Herbarium          | Jahra - Al-salmi road                           |
| Avicennia marina        | EDNA15-0042671 | MTA115-16 | KX282595                            | KX282032                     | KTUH329  | M Al-Dosari 6077     | 2006 | Herbarium          | KISR - Sulaibiya Research Station               |
| Avicennia marina        | EDNA15-0042653 | MTA116-16 | KX282596                            | KX282033                     | MTA195   | M Abdullah MTA195    | 2012 | Fresh              | Sulaibiya - Coastal area                        |
| Bassia eriophora        | EDNA15-0043146 | MTA118-16 | KX282597                            | KX282034                     | KTUH353  | M Al-Dosari 3314     | 1998 | Herbarium          | Subbiyah near the sea shore                     |
| Bassia eriophora        | EDNA15-0043144 | MTA117-16 | KX282598                            | KX282035                     | MTA350   | M Abdullah MTA350    | 2013 | Fresh              | Sulaibiya - Coastal area                        |
| Bassia eriophora        | EDNA15-0043145 | MTA119-16 | KX282599                            | KX282036                     | MTA478   | M Abdullah MTA478    | 2013 | Fresh              | Abdali                                          |
| Bellevalia saviczii     | EDNA15-0042867 | MTA120-16 | KX282600                            |                              | KTUH343  | KT Mathew 3275       | 1998 | Herbarium          | Failaka Island salt depressions                 |
| Bellevalia saviczii     | EDNA15-0042983 | MTA121-16 | KX282601                            | KX282037                     | KTUH344  | KT Mathew 5451       | 2006 | Herbarium          | Subbiyah Power Station                          |
| Bienertia cycloptera    | EDNA15-0042714 | MTA124-16 |                                     | KX282038                     | KTUH357  | M Al-Dosari 1557     | 1995 | Herbarium          | Subbiyah near the sea shore                     |
| Bienertia cycloptera    | EDNA15-0042765 | MTA122-16 | KX282602                            |                              | KTUH358  | KT Mathew 2947       | 1996 | Herbarium          | Al-Nu waiseeb                                   |

| Species                  | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                           |
|--------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|--------------------------------------------|
| Bienertia cycloptera     | EDNA15-0042896 | MTA123-16 | KX282603                            | KX282039                     | KTUH359  | M Al-Dosari 3471a    | 1998 | Herbarium          | Failaka Island                             |
| Brachypodium distachyum  | EDNA15-0042996 | MTA126-16 | KX282604                            | KX282040                     | KTUH440  | M Al-Dosari 5999     | 2006 | Herbarium          | Al Subiyah Power Station                   |
| Brachypodium distachyum  | EDNA15-0043002 | MTA125-16 | KX282605                            | KX282041                     | KTUH441  | KT Mathew 4969       | 2001 | Herbarium          | Nuwaiseeb border station with Saudi Arabia |
| Brachypodium distachyum  | EDNA15-0042615 | MTA127-16 | KX282606                            | KX282042                     | MTA416   | M Abdullah MTA416    | 2013 | Fresh              | Failaka Island                             |
| Brassica tournefortii    | EDNA15-0042678 | MTA129-16 | KX282607                            |                              | KTUH386  | M Al-Dosari 5028     | 2001 | Herbarium          | Al-Salmi border station near Saudi Arabia  |
| Brassica tournefortii    | EDNA15-0042697 | MTA128-16 | KX282608                            | KX282043                     | KTUH387  | M Al-Dosari 3929     | 1999 | Herbarium          | Wadi Um Al-Rimam                           |
| Brassica tournefortii    | EDNA15-0042657 | MTA130-16 | KX282609                            |                              | MTA220   | M Abdullah MTA220    | 2013 | Fresh              | Nuwaiseeb                                  |
| Bromus madritensis       | EDNA15-0043012 | MTA132-16 | KX282610                            | KX282044                     | KTUH444  | KT Mathew 3783       | 1998 | Herbarium          | Al-Salmi border station near Saudi Arabia  |
| Bromus madritensis       | EDNA15-0042638 | MTA131-16 | KX282611                            | KX282045                     | MTA418   | M Abdullah MTA418    | 2013 | Fresh              | Failaka Island                             |
| Bromus madritensis       | EDNA15-0043006 | MTA133-16 | KX282612                            | KX282046                     | MTA501   | M Abdullah MTA501    | 2013 | Fresh              | Abdali                                     |
| Bromus tectorum          | EDNA15-0043115 | MTA134-16 | KX282613                            | KX282047                     | KTUH442  | M Al-Dosari 4660     | 2000 | Herbarium          | Wadi Um Al-Rimam                           |
| Bromus tectorum          | EDNA15-0043130 | MTA135-16 | KX282614                            | KX282048                     | KTUH443  | KT Mathew 3264       | 1997 | Herbarium          | Al-Salmi border station near Saudi Arabia  |
| Bupleurum semicompositum | EDNA15-0042735 | MTA137-16 | KX282615                            | KX282049                     | KTUH308  | M Al-Dosari 4471     | 1999 | Herbarium          | Failaka Island                             |
| Bupleurum semicompositum | EDNA15-0042812 | MTA136-16 | KX282616                            |                              | KTUH309  | M Al-Dosari 4740     | 2000 | Herbarium          | Um Neqa near Al-Abdali border              |
| Bupleurum semicompositum | EDNA15-0042833 | MTA138-16 | KX282617                            | KX282050                     | KTUH310  | KT Mathew 5331       | 2004 | Herbarium          | Al-Khiran                                  |
| Cakile arabica           | EDNA15-0042383 | MTA140-16 | KX282618                            |                              | MTA218   | M Abdullah MTA218    | 2013 | Fresh              | Nuwaiseeb                                  |
| Cakile arabica           | EDNA15-0042950 | MTA139-16 | KX282619                            | KX282051                     | MTA311   | M Abdullah MTA311    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Cakile arabica           | EDNA15-0042401 | MTA141-16 | KX282620                            | KX282052                     | MTA518   | M Abdullah MTA518    | 2013 | Fresh              | Abdali                                     |
| Calendula arvensis       | EDNA15-0042400 | MTA143-16 | KX282621                            | KX282053                     | MTA201   | M Abdullah MTA201    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Calendula arvensis       | EDNA15-0042403 | MTA142-16 | KX282622                            | KX282054                     | MTA228   | M Abdullah MTA228    | 2013 | Fresh              | Nuwaiseeb                                  |
| Calendula arvensis       | EDNA15-0042406 | MTA144-16 | KX282623                            | KX282055                     | MTA449   | M Abdullah MTA449    | 2013 | Fresh              | Al-Salmi                                   |
| Calendula tripterocarpa  | EDNA15-0042857 | MTA146-16 | KX282624                            | KX282056                     | KTUH071  | M Bajwa 170-75       | 1975 | Herbarium          | near Khafji 60 KM near Saudi Arabia        |
| Calendula tripterocarpa  | EDNA15-0042321 | MTA145-16 | KX282625                            | KX282057                     | KTUH072  | R Halwagy 1136       | 1972 | Herbarium          | Wadi Um Al-Rimam close to water catchmer   |
| Calendula tripterocarpa  | EDNA15-0042327 | MTA147-16 | KX282626                            |                              | KTUH073  | R Halwagy 82/5       | 1982 | Herbarium          | Jahra plantation                           |
| Calligonum comosum       | EDNA15-0042705 | MTA149-16 | KX282627                            |                              | KTUH258  | KT Mathew 2920       | 1996 | Herbarium          | Jal Az-Zor                                 |

| Species                 | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|-------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Calligonum comosum      | EDNA15-0042687 | MTA148-16 | KX282628                            |                              | MTA039   | M Abdullah MTA039    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Calligonum comosum      | EDNA15-0042667 | MTA150-16 | KX282629                            |                              | MTA153   | M Abdullah MTA153    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait            |
| Calotropis procera      | EDNA15-0042709 | MTA152-16 | KX282630                            |                              | KTUH332  | M Al-Dosari 6380     | 2009 | Herbarium          | KISR - Sulaibiya Research Station         |
| Calotropis procera      | EDNA15-0042674 | MTA151-16 | KX282631                            |                              | MTA144   | M Abdullah MTA144    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait            |
| Calotropis procera      | EDNA15-0042692 | MTA153-16 | KX282632                            |                              | MTA574   | M Abdullah MTA574    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Carduus pycnocephalus   | EDNA15-0042339 | MTA155-16 | KX282633                            | KX282058                     | KTUH074  | M AL-Dosari 2882     | 1998 | Herbarium          | King Fahad High Way along the roadside    |
| Carduus pycnocephalus   | EDNA15-0042862 | MTA156-16 | KX282634                            | KX282059                     | MTA211   | M Abdullah MTA211    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Carduus pycnocephalus   | EDNA15-0042333 | MTA154-16 | KX282635                            | KX282060                     | MTA227   | M Abdullah MTA227    | 2013 | Fresh              | Nuwaiseeb                                 |
| Carrichtera annua       | EDNA15-0042716 | MTA158-16 | KX282636                            |                              | KTUH388  | M Al-Dosari 2671     | 1998 | Herbarium          | Kuwait University Khaldiyah Campus        |
| Carrichtera annua       | EDNA15-0042959 | MTA157-16 | KX282637                            |                              | KTUH389  | KT Mathew 4414       | 1999 | Herbarium          | Um Al-Rimam                               |
| Carrichtera annua       | EDNA15-0042970 | MTA159-16 | KX282638                            | KX282061                     | KTUH390  | M Al-Dosari 1893     | 1997 | Herbarium          | Al-Salmi border station near Saudi Arabia |
| Carthamus oxyacantha    | EDNA15-0042345 | MTA160-16 | KX282639                            | KX282062                     | KTUH075  | Fatima F118          | 1998 | Herbarium          | Al-Khiran                                 |
| Carthamus oxyacantha    | EDNA15-0042351 | MTA161-16 | KX282640                            | KX282063                     | KTUH076  | M Al-Dosari 5545     | 2004 | Herbarium          | Al-Abdali40 KM from border with Iraq      |
| Carthamus oxyacantha    | EDNA15-0042878 | MTA162-16 | KX282641                            | KX282064                     | MTA452   | M Abdullah MTA452    | 2013 | Fresh              | Al-Salmi                                  |
| Cenchrus ciliaris       | EDNA15-0042864 | MTA164-16 |                                     | KX282065                     | KTUH445  | L Boulos 17899       | 1992 | Herbarium          | Sabah Hospital Shuwailh waste ground      |
| Cenchrus ciliaris       | EDNA15-0043018 | MTA163-16 |                                     |                              | KTUH446  | M Al-Dosari 3741     | 1999 | Herbarium          | KISR - Sulaibiya Research Station         |
| Centaurea bruguierana   | EDNA15-0043112 | MTA166-16 | KX282642                            | KX282066                     | KTUH077  | M Al-Dosari 5894     | 2005 | Herbarium          | Al-Salmi along jahra road                 |
| Centaurea bruguierana   | EDNA15-0043071 | MTA165-16 | KX282643                            | KX282067                     | MTA081   | M Abdullah MTA081    | 2012 | Fresh              | Sixth Ring Road                           |
| Centaurea bruguierana   | EDNA15-0043107 | MTA167-16 | KX282644                            | KX282068                     | MTA529   | M Abdullah MTA529    | 2013 | Fresh              | Abdali                                    |
| Centaurea mesopotamica  | EDNA15-0043080 | MTA168-16 | KX282645                            | KX282069                     | KTUH078  | R Halwagy 14/83      | 1983 | Herbarium          | Al-Khiran coastal area near Saudi border  |
| Centaurea mesopotamica  | EDNA15-0043094 | MTA169-16 | KX282646                            | KX282070                     | KTUH079  | KT Mathew 2674       | 1995 | Herbarium          | Nuwaiseeb near border with Saudi Arabia   |
| Centaurea pseudosinaica | EDNA15-0043074 | MTA171-16 | KX282647                            | KX282071                     | MTA498   | M Abdullah MTA498    | 2013 | Fresh              | Abdali                                    |
| Centaurea pseudosinaica | EDNA15-0043097 | MTA170-16 |                                     |                              | MTA608   | M Abdullah MTA608    | 2013 | Fresh              | Al-Liyah                                  |
| Centaurea pseudosinaica | EDNA15-0043100 | MTA172-16 | KX282648                            | KX282072                     | MTA609   | M Abdullah MTA609    | 2013 | Fresh              | Abdali                                    |
| Centropodia forskalii   | EDNA15-0042683 | MTA174-16 | KX282649                            |                              | KTUH448  | M Al-Dosari 1479     | 1995 | Herbarium          | Al-Jahra - Al-salmi road                  |

| Species                     | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|-----------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Centropodia forskalii       | EDNA15-0042702 | MTA173-16 | KX282650                            |                              | KTUH449  | M Al-Dosari 1534     | 1995 | Herbarium          | Jahra - Al-Subbiyah road                  |
| Centropodia forskalii       | EDNA15-0042663 | MTA175-16 | KX282651                            |                              | MTA589   | M Abdullah MTA589    | 2013 | Fresh              | Um-Neqa                                   |
| Chenopodium murale          | EDNA15-0042332 | MTA177-16 | KX282652                            | KX282073                     | MTA072   | M Abdullah MTA072    | 2012 | Fresh              | Sixth Ring Road                           |
| Chenopodium murale          | EDNA15-0042338 | MTA176-16 | KX282653                            | KX282074                     | MTA394   | M Abdullah MTA394    | 2013 | Fresh              | Failaka Island                            |
| Chenopodium murale          | EDNA15-0042344 | MTA178-16 | KX282654                            | KX282075                     | MTA555   | M Abdullah MTA555    | 2013 | Fresh              | Subiyah                                   |
| Chrozophora tinctoria       | EDNA15-0042717 | MTA180-16 |                                     |                              | KTUH129  | M Al-Dosari 5555     | 2004 | Herbarium          | Al-Retqa police station near Iraqi border |
| Chrozophora tinctoria       | EDNA15-0042772 | MTA179-16 | KX282655                            |                              | KTUH130  | R Halwagy 19/83      | 1983 | Herbarium          | Al-Khiran near Saudi border station       |
| Chrozophora tinctoria       | EDNA15-0042880 | MTA181-16 | KX282656                            | KX282076                     | KTUH131  | M Al-Dosari 5548     | 2004 | Herbarium          | Al-Abdaly 40 KM from border with Iraq     |
| Cistanche tubulosa          | EDNA15-0042666 | MTA183-16 |                                     |                              | MTA379   | M Abdullah MTA379    | 2013 | Fresh              | Doha Entertainment City                   |
| Cistanche tubulosa          | EDNA15-0042686 | MTA182-16 |                                     |                              | MTA380   | M Abdullah MTA380    | 2013 | Fresh              | KISR - Sulaibiya Research Station         |
| Cistanche tubulosa          | EDNA15-0042704 | MTA184-16 |                                     |                              | MTA577   | M Abdullah MTA577    | 2013 | Fresh              | Al-Salmi                                  |
| Citrullus colocynthis       | EDNA15-0042567 | MTA186-16 | KX282657                            |                              | MTA047   | M Abdullah MTA047    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Citrullus colocynthis       | EDNA15-0042611 | MTA185-16 | KX282658                            | KX282077                     | MTA560   | M Abdullah MTA560    | 2013 | Fresh              | Subiyah                                   |
| Citrullus colocynthis       | EDNA15-0042634 | MTA187-16 | KX282659                            | KX282078                     | MTA565   | M Abdullah MTA565    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Convolvulus cephalopodus    | EDNA15-0042795 | MTA189-16 | KX282660                            | KX282079                     | KTUH118  | KT Mathew 5496       | 2007 | Herbarium          | Sabah Al-Ahmad Nature Reserve             |
| Convolvulus cephalopodus    | EDNA15-0042565 | MTA188-16 | KX282661                            | KX282080                     | MTA113   | M Abdullah MTA113    | 2012 | Fresh              | Nuwaiseeb                                 |
| Convolvulus cephalopodus    | EDNA15-0042632 | MTA190-16 | KX282662                            | KX282081                     | MTA535   | M Abdullah MTA535    | 2013 | Fresh              | Subiyah                                   |
| Convolvulus oxyphyllus      | EDNA15-0042609 | MTA192-16 | KX282663                            | KX282082                     | MTA592   | M Abdullah MTA592    | 2013 | Fresh              | Um-Neqa                                   |
| Convolvulus oxyphyllus      | EDNA15-0043139 | MTA191-16 | KX282664                            | KX282083                     | MTA604   | M Abdullah MTA604    | 2013 | Fresh              | Um-Neqa                                   |
| Convolvulus oxyphyllus      | EDNA15-0042557 | MTA193-16 | KX282665                            | KX282084                     | MTA606   | M Abdullah MTA606    | 2013 | Fresh              | Al-Liyah                                  |
| Convolvulus pilosellifolius | EDNA15-0042592 | MTA195-16 | KX282666                            | KX282085                     | MTA572   | M Abdullah MTA572    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Convolvulus pilosellifolius | EDNA15-0042818 | MTA194-16 | KX282667                            | KX282086                     | MTA602   | M Abdullah MTA602    | 2013 | Fresh              | Um-Neqa                                   |
| Convolvulus pilosellifolius | EDNA15-0042839 | MTA196-16 | KX282668                            | KX282087                     | MTA605   | M Abdullah MTA605    | 2013 | Fresh              | Al-Liyah                                  |
| Cornulaca aucheri           | EDNA15-0042893 | MTA197-16 | KX282669                            | KX282088                     | MTA006   | M Abdullah MTA006    | 2012 | Fresh              | King Fahad High Way                       |
| Cornulaca aucheri           | EDNA15-0043033 | MTA198-16 | KX282670                            | KX282089                     | MTA131   | M Abdullah MTA131    | 2012 | Fresh              | Nuwaiseeb -near Saudi Arabia border       |

| Species                 | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                           |
|-------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|--------------------------------------------|
| Cornulaca aucheri       | EDNA15-0042326 | MTA199-16 | KX282671                            | KX282090                     | MTA517   | M Abdullah MTA517    | 2013 | Fresh              | Abdali                                     |
| Cornulaca monacantha    | EDNA15-0042696 | MTA200-16 | KX282672                            | KX282091                     | KTUH365  | M Al-Dosari 1602     | 1996 | Herbarium          | Along king Fahad Highway towards Ahmadi    |
| Cornulaca monacantha    | EDNA15-0042677 | MTA201-16 | KX282673                            |                              | MTA367   | M Abdullah MTA367    | 2013 | Fresh              | Doha Entertainment City                    |
| Cornulaca monacantha    | EDNA15-0042656 | MTA202-16 | KX282674                            |                              | MTA550   | M Abdullah MTA550    | 2013 | Fresh              | Subiyah                                    |
| Coronopus didymus       | EDNA15-0042770 | MTA205-16 | KX282675                            | KX282092                     | KTUH391  | M Al-Dosari 2067     | 1997 | Herbarium          | Kuwait University Khaldiyah Campus         |
| Coronopus didymus       | EDNA15-0042980 | MTA203-16 | KX282676                            | KX282093                     | KTUH392  | I Ibrahim 1150       | 1990 | Herbarium          | Al-salmi near Saudi Border                 |
| Coronopus didymus       | EDNA15-0042988 | MTA204-16 |                                     | KX282094                     | KTUH393  | KT Mathew 5329       | 2004 | Herbarium          | Al-khiran plateau                          |
| Cressa cretica          | EDNA15-0042715 | MTA207-16 |                                     |                              | KTUH119  | M Al-Dosari 3667     | 1998 | Herbarium          | Al-Wafra 43 KM from Nuwaiseeb Fire Station |
| Cressa cretica          | EDNA15-0042742 | MTA206-16 |                                     |                              | KTUH120  | R Halwagy W-116      | 1971 | Herbarium          | Along Al-Istiqlal road sabkha area         |
| Cressa cretica          | EDNA15-0042769 | MTA208-16 | KX282677                            |                              | KTUH121  | M Al-Dosari 4786     | 2000 | Herbarium          | Failaka Island                             |
| Crucianella membranacea | EDNA15-0042647 | MTA210-16 | KX282678                            |                              | KTUH283  | M Al-Dosari 4437     | 1999 | Herbarium          | Nuwaiseeb border station with Saudi Arabia |
| Crucianella membranacea | EDNA15-0042810 | MTA209-16 |                                     |                              | KTUH284  | G Al-Abbadi 284      | 2001 | Herbarium          | KISR - Sulaibiya Research Station          |
| Crucianella membranacea | EDNA15-0042848 | MTA211-16 | KX282679                            |                              | KTUH285  | M Al-Dosari 6076     | 2006 | Herbarium          | Al-Salmi                                   |
| Cuscuta planiflora      | EDNA15-0042960 | MTA213-16 |                                     | KX282095                     | KTUH521  | M Al-Dosari 5212     | 2001 | Herbarium          | KISR - Sulaibiya Research Station          |
| Cuscuta planiflora      | EDNA15-0042971 | MTA212-16 |                                     | KX282096                     | KTUH522  | R Halwagy 82/41      | 1982 | Herbarium          | AL-Khiran near border with Saudi Arabia    |
| Cuscuta planiflora      | EDNA15-0043143 | MTA214-16 | KX282680                            | KX282097                     | KTUH523  | R Halwagy 82/58      | 1982 | Herbarium          | Ras Az Zor                                 |
| Cutandia dichotoma      | EDNA15-0043024 | MTA216-16 | KX282681                            | KX282098                     | KTUH450  | KT Mathew 2766       | 1996 | Herbarium          | Al-Nuwaiseeb border station                |
| Cutandia dichotoma      | EDNA15-0043036 | MTA215-16 | KX282682                            | KX282099                     | KTUH451  | G Al-Abbadi 451      | 1998 | Herbarium          | KISR - Sulaibiya Research Station          |
| Cutandia dichotoma      | EDNA15-0042775 | MTA217-16 | KX282683                            | KX282100                     | MTA412   | M Abdullah MTA412    | 2013 | Fresh              | Failaka Island                             |
| Cutandia memphitica     | EDNA15-0043042 | MTA219-16 | KX282684                            | KX282101                     | KTUH452  | KT Mathew 2747       | 1996 | Herbarium          | Along King Fahad Motorway towards Ahmadi   |
| Cutandia memphitica     | EDNA15-0043048 | MTA218-16 | KX282685                            | KX282102                     | KTUH453  | M Al-Dosari 1861     | 1997 | Herbarium          | Al-Abdaly                                  |
| Cutandia memphitica     | EDNA15-0042882 | MTA220-16 | KX282686                            | KX282103                     | MTA335   | M Abdullah MTA335    | 2013 | Fresh              | KISR - Sulaibiya Research Station          |
| Cynodon dactylon        | EDNA15-0042913 | MTA222-16 | KX282687                            | KX282104                     | KTUH454  | KT Mathew 5064       | 2001 | Herbarium          | Equestrian Club premises                   |
| Cynodon dactylon        | EDNA15-0042323 | MTA221-16 | KX282688                            | KX282105                     | KTUH455  | KT Mathew 4895       | 2000 | Herbarium          | Abdali                                     |
| Cynodon dactylon        | EDNA15-0042335 | MTA223-16 | KX282689                            |                              | KTUH456  | L Boulos 17856       | 1992 | Herbarium          | Failaka Island                             |

| Species               | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                       |
|-----------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|----------------------------------------|
| Cynomorium coccineum  | EDNA15-0042679 | MTA225-16 |                                     |                              | KTUH519  | M Al-Dosari 4689     | 2000 | Herbarium          | Khadma salt marshes                    |
| Cynomorium coccineum  | EDNA15-0042698 | MTA224-16 |                                     |                              | KTUH520  | KT Mathew 4695       | 2000 | Herbarium          | Jal- Az Zor SSNR                       |
| Cynomorium coccineum  | EDNA15-0042658 | MTA226-16 |                                     |                              | MTA581   | M Abdullah MTA581    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve          |
| Cyperus conglomeratus | EDNA15-0042680 | MTA228-16 | KX282690                            |                              | MTA052   | M Abdullah MTA052    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve          |
| Cyperus conglomeratus | EDNA15-0042712 | MTA227-16 | KX282691                            |                              | MTA091   | M Abdullah MTA091    | 2012 | Fresh              | Sixth Ring Road                        |
| Cyperus conglomeratus | EDNA15-0042699 | MTA229-16 | KX282692                            |                              | MTA430   | M Abdullah MTA430    | 2013 | Fresh              | Failaka Island                         |
| Deverra triradiata    | EDNA15-0042787 | MTA230-16 |                                     |                              | KTUH311  | R Halwagy 006/85     | 1985 | Herbarium          | Al-Salmi near border with Saudi Arabia |
| Deverra triradiata    | EDNA15-0042873 | MTA231-16 | KX282693                            | KX282106                     | KTUH312  | M Al-Dosari 5465     | 2003 | Herbarium          | Al-Dubaiah Resort                      |
| Dichanthium annulatum | EDNA15-0043105 | MTA232-16 | KX282694                            | KX282107                     | KTUH460  | M Al-Dosari 3625     | 1998 | Herbarium          | Kuwait University Khaldiyah Campus     |
| Digitaria ciliaris    | EDNA15-0043104 | MTA233-16 | KX282695                            | KX282108                     | KTUH462  | KT Mathew 4177       | 1998 | Herbarium          | Kuwait University Khaldiyah Campus     |
| Dipcadi erythraeum    | EDNA15-0042845 | MTA234-16 | KX282696                            | KX282109                     | KTUH347  | KT Mathew 5323       | 2004 | Herbarium          | KISR - Sulaibiya Research Station      |
| Dipcadi erythraeum    | EDNA15-0042943 | MTA236-16 | KX282697                            |                              | KTUH348  | M Al-Dosari 5699     | 2005 | Herbarium          | Sabah Al-Ahmad Nature Reserve          |
| Dipcadi erythraeum    | EDNA15-0042964 | MTA235-16 | KX282698                            | KX282110                     | KTUH349  | L Boulos 17958       | 1993 | Herbarium          | 8 KM S of Al-Wafra                     |
| Diplotaxis acris      | EDNA15-0043064 | MTA238-16 | KX282699                            | KX282111                     | KTUH395  | R Halwagy 395        | 1974 | Herbarium          | Wadi Al-Batin                          |
| Diplotaxis acris      | EDNA15-0042937 | MTA237-16 | KX282700                            | KX282112                     | MTA460   | M Abdullah MTA460    | 2013 | Fresh              | Al-Salmi                               |
| Diplotaxis harra      | EDNA15-0043005 | MTA239-16 | KX282701                            | KX282113                     | KTUH394  | M Al-Dosari 6016     | 2006 | Herbarium          | Failaka Island                         |
| Diplotaxis harra      | EDNA15-0042610 | MTA240-16 | KX282702                            | KX282114                     | MTA198   | M Abdullah MTA198    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve          |
| Diplotaxis harra      | EDNA15-0042995 | MTA241-16 | KX282703                            | KX282115                     | MTA444   | M Abdullah MTA444    | 2013 | Fresh              | Al-Salmi                               |
| Ducrosia anethifolia  | EDNA15-0042851 | MTA243-16 | KX282704                            | KX282116                     | KTUH313  | M Al-Dosari 2083a    | 1997 | Herbarium          | Al-Khiran gulf shore                   |
| Ducrosia anethifolia  | EDNA15-0042889 | MTA242-16 | KX282705                            | KX282117                     | KTUH314  | M Dib 314            | 1998 | Herbarium          | Salmiyah Abu Halifa                    |
| Echinops blancheanus  | EDNA15-0042362 | MTA245-16 | KX282706                            | KX282118                     | KTUH087  | M Al-Dosari 5886     | 2005 | Herbarium          | Al-Salmi along the roadside            |
| Echinops blancheanus  | EDNA15-0042897 | MTA244-16 | KX282707                            | KX282119                     | MTA171   | M Abdullah MTA171    | 2012 | Fresh              | KISR - Sulaibiya Research Station      |
| Echinops blancheanus  | EDNA15-0042357 | MTA246-16 | KX282708                            | KX282120                     | MTA172   | M Abdullah MTA172    | 2012 | Fresh              | KISR - Sulaibiya Research Station      |
| Echium rauwolfii      | EDNA15-0042561 | MTA248-16 | KX282709                            |                              | KTUH008  | KT Mathew 3006       | 1997 | Herbarium          | 10 KM from Al-salmi Kuwait City road   |
| Echium rauwolfii      | EDNA15-0042710 | MTA247-16 |                                     | KX282121                     | KTUH009  | KT Mathew 5294       | 2002 | Herbarium          | Jahra Al-Salmi roadside                |

| Species                | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                                  |
|------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|---------------------------------------------------|
| Echium rauwolfii       | EDNA15-0042659 | MTA249-16 | KX282710                            |                              | KTUH010  | KT Mathew 2839       | 1996 | Herbarium          | Al-Salmi Kuwait City road                         |
| Emex spinosa           | EDNA15-0042581 | MTA252-16 | KX282711                            | KX282122                     | MTA395   | M Abdullah MTA395    | 2013 | Fresh              | Failaka Island                                    |
| Emex spinosus          | EDNA15-0042807 | MTA250-16 | KX282712                            | KX282123                     | MTA232   | M Abdullah MTA232    | 2013 | Fresh              | Nuwaiseeb                                         |
| Emex spinosus          | EDNA15-0042730 | MTA251-16 | KX282713                            |                              | MTA249   | M Abdullah MTA249    | 2013 | Fresh              | KISR - Sulaibiya Research Station                 |
| Ephedra alata          | EDNA15-0042660 | MTA253-16 |                                     |                              | MTA580   | M Abdullah MTA580    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                     |
| Eragrostis barrelieri  | EDNA15-0043030 | MTA255-16 | KX282714                            | KX282124                     | KTUH468  | M Al-Dosari 2473     | 1997 | Herbarium          | Along king Fahad Highway near road no. 238        |
| Eragrostis barrelieri  | EDNA15-0042329 | MTA254-16 | KX282715                            | KX282125                     | KTUH469  | M Al-Dosari 2576     | 1997 | Herbarium          | Nuwaiseeb near border with Saudi Arabia           |
| Eragrostis barrelieri  | EDNA15-0042341 | MTA256-16 |                                     | KX282126                     | KTUH470  | M Al-Dosari 2334     | 1997 | Herbarium          | Al-Dbaiyyah near road 238                         |
| Eremopoa persica       | EDNA15-0043103 | MTA257-16 |                                     |                              | KTUH472  | A Al-Yahya 166       | 1988 | Herbarium          | Rumaithiyah garden weed                           |
| Eremopyrum bonaepartis | EDNA15-0043095 | MTA258-16 |                                     |                              | KTUH473  | R Halwagy 74-473     | 1974 | Herbarium          | Al-Mutla'a                                        |
| Erodium bryoniifolium  | EDNA15-0042719 | MTA260-16 |                                     |                              | KTUH147  | R Halwagy 1182       | 1972 | Herbarium          | Khabrat Al-Awazem 40 KM W of Kuwait City          |
| Erodium bryoniifolium  | EDNA15-0042774 | MTA259-16 |                                     |                              | KTUH148  | KT Mathew 3679       | 1998 | Herbarium          | Jal Az Zor on the plateau                         |
| Erodium bryoniifolium  | EDNA15-0042800 | MTA261-16 | KX282716                            | KX282127                     | KTUH149  | R Halwagy 4/83       | 1983 | Herbarium          | Wadi Um-Al-Rimam                                  |
| Erodium ciconium       | EDNA15-0042746 | MTA263-16 | KX282717                            | KX282128                     | KTUH150  | R Halwagy 1250       | 1974 | Herbarium          | Al-Dba'iyyah 55 KM SE Kuwait City                 |
| Erodium ciconium       | EDNA15-0042881 | MTA262-16 | KX282718                            |                              | KTUH151  | KT Mathew 5330       | 2004 | Herbarium          | Khiran plateau                                    |
| Erodium ciconium       | EDNA15-0042900 | MTA264-16 | KX282719                            | KX282129                     | KTUH152  | Linda Shuaib         | 1995 | Herbarium          | Um Al-Rimam                                       |
| Erodium cicutarium     | EDNA15-0042822 | MTA266-16 | KX282720                            | KX282130                     | KTUH153  | M Al-Dosari 4106     | 1999 | Herbarium          | Al-Ahmadi waste ground near research station      |
| Erodium cicutarium     | EDNA15-0042912 | MTA265-16 | KX282721                            |                              | KTUH154  | R Halwagy 82/6       | 1982 | Herbarium          | Jahra plantation                                  |
| Erodium cicutarium     | EDNA15-0042925 | MTA267-16 | KX282722                            | KX282131                     | KTUH155  | KT Mathew 4994       | 2001 | Herbarium          | Subbiyah water front near power station enterance |
| Erodium glaucophyllum  | EDNA15-0042681 | MTA269-16 | KX282723                            |                              | KTUH156  | M Al-Dosari 2605     | 1998 | Herbarium          | Wadi Um-Al-Rimam                                  |
| Erodium glaucophyllum  | EDNA15-0042700 | MTA268-16 | KX282724                            | KX282132                     | KTUH157  | M Al-Dosari 2353     | 1997 | Herbarium          | Al-Khiran near sea shore                          |
| Erodium glaucophyllum  | EDNA15-0042661 | MTA270-16 |                                     |                              | MTA472   | M Abdullah MTA472    | 2013 | Fresh              | Al-Salmi                                          |
| Erodium laciniatum     | EDNA15-0042573 | MTA272-16 | KX282725                            | KX282133                     | MTA098   | M Abdullah MTA098    | 2012 | Fresh              | Nuwaiseeb -near Saudi Arabia border               |
| Erodium laciniatum     | EDNA15-0042637 | MTA271-16 | KX282726                            | KX282134                     | MTA252   | M Abdullah MTA252    | 2013 | Fresh              | Mina Abdullah                                     |
| Erodium laciniatum     | EDNA15-0042961 | MTA273-16 | KX282727                            | KX282135                     | MTA541   | M Abdullah MTA541    | 2013 | Fresh              | Subiyah                                           |

| Species             | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                        |
|---------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-----------------------------------------|
| Eruca sativa        | EDNA15-0043142 | MTA277-16 | KX282728                            | KX282136                     | MTA221   | M Abdullah MTA221    | 2013 | Fresh              | Nuwaiseeb                               |
| Eruca sativa        | EDNA15-0042413 | MTA274-16 | KX282729                            | KX282137                     | MTA342   | M Abdullah MTA342    | 2013 | Fresh              | KISR - Sulaibiya Research Station       |
| Eruca sativa        | EDNA15-0042404 | MTA275-16 | KX282730                            | KX282138                     | MTA396   | M Abdullah MTA396    | 2013 | Fresh              | Failaka Island                          |
| Eruca sativa        | EDNA15-0042410 | MTA276-16 | KX282731                            | KX282139                     | MTA524   | M Abdullah MTA524    | 2013 | Fresh              | Abdali                                  |
| Euphorbia densa     | EDNA15-0042798 | MTA279-16 | KX282732                            | KX282140                     | KTUH132  | L Boulos 18003       | 1993 | Herbarium          | Al-Mutla'a along the road of subbiyah   |
| Euphorbia densa     | EDNA15-0042938 | MTA278-16 | KX282733                            | KX282141                     | KTUH133  | M Al-Dosari 3212     | 1998 | Herbarium          | Subbiyah 40 KM from Kuwait City         |
| Euphorbia granulata | EDNA15-0042821 | MTA280-16 |                                     |                              | KTUH517  | R Halwagy 81/42      | 1981 | Herbarium          | Al-Mutla'a along basra road             |
| Euphorbia granulata | EDNA15-0042951 | MTA281-16 |                                     | KX282142                     | KTUH518  | KT Mathew 2673       | 1995 | Herbarium          | Al-Nuwaiseeb border station             |
| Euphorbia serpens   | EDNA15-0042744 | MTA283-16 | KX282734                            | KX282143                     | KTUH143  | M Al-Dosari 4871     | 2000 | Herbarium          | Al-Khiran near the sea shore            |
| Euphorbia serpens   | EDNA15-0042899 | MTA282-16 | KX282735                            |                              | KTUH144  | M Al-Dosari 2706     | 1998 | Herbarium          | Gulf road near KISR water front project |
| Euphorbia serpens   | EDNA15-0042911 | MTA284-16 | KX282736                            |                              | KTUH145  | M Al-Dosari 1878     | 1997 | Herbarium          | near Al-Rawdatain water front           |
| Fagonia bruguieri   | EDNA15-0042598 | MTA286-16 | KX282737                            | KX282144                     | MTA090   | M Abdullah MTA090    | 2012 | Fresh              | Sixth Ring Road                         |
| Fagonia bruguieri   | EDNA15-0042574 | MTA285-16 | KX282738                            | KX282145                     | MTA240   | M Abdullah MTA240    | 2013 | Fresh              | Al-Liyah                                |
| Fagonia bruguieri   | EDNA15-0042603 | MTA287-16 | KX282739                            | KX282146                     | MTA479   | M Abdullah MTA479    | 2013 | Fresh              | Abdali                                  |
| Fagonia glutinosa   | EDNA15-0042652 | MTA289-16 | KX282740                            | KX282147                     | MTA260   | M Abdullah MTA260    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve           |
| Fagonia glutinosa   | EDNA15-0042587 | MTA288-16 | KX282741                            | KX282148                     | MTA297   | M Abdullah MTA297    | 2013 | Fresh              | Al-Liyah                                |
| Fagonia glutinosa   | EDNA15-0042975 | MTA290-16 | KX282742                            | KX282149                     | MTA339   | M Abdullah MTA339    | 2013 | Fresh              | KISR - Sulaibiya Research Station       |
| Fagonia indica      | EDNA15-0042737 | MTA292-16 | KX282743                            | KX282150                     | KTUH324  | Maha M0061           | 2000 | Herbarium          | Al-Abdali                               |
| Fagonia indica      | EDNA15-0042788 | MTA291-16 | KX282744                            | KX282151                     | KTUH325  | R Halwagy 109-76     | 1976 | Herbarium          | Al-khiran                               |
| Fagonia indica      | EDNA15-0042589 | MTA293-16 | KX282745                            | KX282152                     | MTA432   | M Abdullah MTA432    | 2013 | Fresh              | Failaka Island                          |
| Farsetia aegyptia   | EDNA15-0042393 | MTA295-16 | KX282746                            | KX282153                     | KTUH396  | R Halwagy 82/17      | 1982 | Herbarium          | Wadi Um Al-Rimam                        |
| Farsetia aegyptia   | EDNA15-0042397 | MTA294-16 | KX282747                            | KX282154                     | KTUH397  | R Halwagy 81/96      | 1981 | Herbarium          | Wadi Al-Batin                           |
| Farsetia aegyptia   | EDNA15-0042923 | MTA296-16 |                                     | KX282155                     | MTA331   | M Abdullah MTA331    | 2013 | Fresh              | KISR - Sulaibiya Research Station       |
| Filago pyramidata   | EDNA15-0043106 | MTA298-16 | KX282748                            | KX282156                     | MTA271   | M Abdullah MTA271    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve           |
| Filago pyramidata   | EDNA15-0043060 | MTA297-16 | KX282749                            | KX282157                     | MTA403   | M Abdullah MTA403    | 2013 | Fresh              | Failaka Island                          |

| Species                  | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                              |
|--------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-----------------------------------------------|
| Filago pyramidata        | EDNA15-0043092 | MTA299-16 | KX282750                            | KX282158                     | MTA511   | M Abdullah MTA511    | 2013 | Fresh              | Abdali                                        |
| Frankenia pulverulenta   | EDNA15-0042570 | MTA302-16 | KX282751                            | KX282159                     | MTA115   | M Abdullah MTA115    | 2012 | Fresh              | Nuwaiseeb                                     |
| Frankenia pulverulenta   | EDNA15-0042636 | MTA300-16 | KX282752                            | KX282160                     | MTA406   | M Abdullah MTA406    | 2013 | Fresh              | Failaka Island                                |
| Frankenia pulverulenta   | EDNA15-0042613 | MTA301-16 | KX282753                            | KX282161                     | MTA477   | M Abdullah MTA477    | 2013 | Fresh              | Abdali                                        |
| Fumaria parviflora       | EDNA15-0042773 | MTA303-16 | KX282754                            | KX282162                     | KTUH146  | M Al-Dosari 2726     | 1998 | Herbarium          | Failaka Island                                |
| Gagea reticulata         | EDNA15-0042916 | MTA306-16 | KX282755                            | KX282163                     | KTUH345  | M Al-Dosari 4634     | 2000 | Herbarium          | KISR - Sulaibiya Research Station             |
| Gagea reticulata         | EDNA15-0042929 | MTA304-16 | KX282756                            | KX282164                     | KTUH346  | L Boulos 17952       | 1993 | Herbarium          | 5 KM E of Abraq                               |
| Gagea reticulata         | EDNA15-0042577 | MTA305-16 |                                     | KX282165                     | MTA215   | M Abdullah MTA215    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                 |
| Galium tricornutum       | EDNA15-0042784 | MTA307-16 | KX282757                            | KX282166                     | KTUH286  | R Halwagy 81/59      | 1981 | Herbarium          | Al-Atraf 18 KM W of Jahra                     |
| Gastrocotyle hispida     | EDNA15-0042976 | MTA310-16 |                                     | KX282167                     | MTA362   | M Abdullah MTA362    | 2013 | Fresh              | Doha Entertainment City                       |
| Gastrocotyle hispida     | EDNA15-0042966 | MTA308-16 | KX282758                            | KX282168                     | MTA402   | M Abdullah MTA402    | 2013 | Fresh              | Failaka Island                                |
| Gastrocotyle hispida     | EDNA15-0042854 | MTA309-16 | KX282759                            | KX282169                     | MTA495   | M Abdullah MTA495    | 2013 | Fresh              | Abdali                                        |
| Glaucium corniculatum    | EDNA15-0042727 | MTA311-16 | KX282760                            |                              | KTUH524  | L Shuaib 524         | 1993 | Herbarium          | Al-Salmi near border with Saudi Arabia        |
| Gymnarrhena micrantha    | EDNA15-0042372 | MTA313-16 | KX282761                            | KX282170                     | KTUH088  | KT Mathew 3892       | 1998 | Herbarium          | Subbiyah near power station                   |
| Gymnarrhena micrantha    | EDNA15-0042909 | MTA312-16 | KX282762                            | KX282171                     | MTA369   | M Abdullah MTA369    | 2013 | Fresh              | Doha Entertainment City                       |
| Gymnarrhena micrantha    | EDNA15-0042367 | MTA314-16 | KX282763                            | KX282172                     | MTA523   | M Abdullah MTA523    | 2013 | Fresh              | Abdali                                        |
| Gynandriris sisyrinchium | EDNA15-0042703 | MTA317-16 | KX282764                            |                              | MTA320   | M Abdullah MTA320    | 2013 | Fresh              | Nuwaiseeb                                     |
| Gynandriris sisyrinchium | EDNA15-0042664 | MTA315-16 | KX282765                            | KX282173                     | MTA321   | M Abdullah MTA321    | 2013 | Fresh              | Mina Abdullah                                 |
| Gynandriris sisyrinchium | EDNA15-0042684 | MTA316-16 | KX282766                            |                              | MTA404   | M Abdullah MTA404    | 2013 | Fresh              | Failaka Island                                |
| Gypsophila capillaris    | EDNA15-0042855 | MTA318-16 | KX282767                            |                              | MTA044   | M Abdullah MTA044    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve                 |
| Gypsophila capillaris    | EDNA15-0043044 | MTA320-16 | KX282768                            | KX282174                     | MTA068   | M Abdullah MTA068    | 2012 | Fresh              | Sixth Ring Road                               |
| Gypsophila capillaris    | EDNA15-0043050 | MTA319-16 | KX282769                            | KX282175                     | MTA480   | M Abdullah MTA480    | 2013 | Fresh              | Abdali                                        |
| Halocnemum strobilaceum  | EDNA15-0042376 | MTA323-16 |                                     | KX282176                     | KTUH366  | M Al-Dosari 1421     | 1995 | Herbarium          | Between Ahmadi and Mina Abdullah salt marshes |
| Halocnemum strobilaceum  | EDNA15-0042361 | MTA322-16 | KX282770                            | KX282177                     | MTA193   | M Abdullah MTA193    | 2012 | Fresh              | Sulaibiya - Coastal area                      |
| Halocnemum strobilaceum  | EDNA15-0042371 | MTA321-16 | KX282771                            | KX282178                     | MTA582   | M Abdullah MTA582    | 2013 | Fresh              | Um-Neqa                                       |

| Species                   | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|---------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Halothamnus iraqensis     | EDNA15-0042740 | MTA324-16 | KX282772                            |                              | KTUH367  | KT Mathew 4579       | 1999 | Herbarium          | Dubaiah resort enterance                  |
| Halothamnus iraqensis     | EDNA15-0042935 | MTA326-16 |                                     |                              | KTUH368  | KT Mathew 3978       | 1998 | Herbarium          | Doha 1 KM from waterfront                 |
| Halothamnus iraqensis     | EDNA15-0042948 | MTA325-16 |                                     | KX282179                     | KTUH369  | R Halwagy 757        | 1971 | Herbarium          | Along Mina Abdullah to Wafra road         |
| Haloxylon salicornicum    | EDNA15-0043039 | MTA327-16 | KX282773                            | KX282180                     | MTA186   | M Abdullah MTA186    | 2012 | Fresh              | KISR - Sulaibiya Research Station         |
| Haloxylon salicornicum    | EDNA15-0042877 | MTA329-16 | KX282774                            | KX282181                     | MTA473   | M Abdullah MTA473    | 2013 | Fresh              | Al-Salmi                                  |
| Haloxylon salicornicum    | EDNA15-0042908 | MTA328-16 | KX282775                            | KX282182                     | MTA591   | M Abdullah MTA591    | 2013 | Fresh              | Um-Neqa                                   |
| Haplophyllum tuberculatum | EDNA15-0042601 | MTA330-16 | KX282776                            |                              | MTA028   | M AbdullahMTA028     | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Haplophyllum tuberculatum | EDNA15-0042625 | MTA332-16 | KX282777                            |                              | MTA128   | M Abdullah MTA128    | 2012 | Fresh              | Nuwaiseeb                                 |
| Haplophyllum tuberculatum | EDNA15-0042584 | MTA331-16 | KX282778                            | KX282183                     | MTA456   | M Abdullah MTA456    | 2013 | Fresh              | Al-Salmi                                  |
| Helianthemum kahiricum    | EDNA13-0033636 | MTA333-16 | KX282779                            | KX282184                     | KTUH052  | IK Ibrahim 1045      | 1990 | Herbarium          | Um Al-Rimam protected area                |
| Helianthemum kahiricum    | EDNA13-0034219 | MTA334-16 | KX282780                            | KX282185                     | KTUH053  | KT Mathew 4754       | 2000 | Herbarium          | Um Al-Rimam into the flat wadi            |
| Helianthemum ledifolium   | EDNA13-0033633 | MTA336-16 | KX282781                            | KX282186                     | KTUH054  | M Al-Dosari 4074     | 1999 | Herbarium          | Al-Salmi border station near Saudi Arabia |
| Helianthemum ledifolium   | EDNA13-0034216 | MTA335-16 |                                     | KX282187                     | KTUH055  | M Al-Dosari 6438     | 2009 | Herbarium          | Al-Abdali Wleed Al-Omery farm             |
| Helianthemum ledifolium   | EDNA15-0042767 | MTA337-16 | KX282782                            | KX282188                     | KTUH056  | R Halwagy 14-76      | 1976 | Herbarium          | Wadi Um Al-Rimam                          |
| Helianthemum lippii       | EDNA15-0042591 | MTA340-16 | KX282783                            | KX282189                     | MTA176   | M Abdullah MTA176    | 2012 | Fresh              | KISR - Sulaibiya Research Station         |
| Helianthemum lippii       | EDNA13-0034218 | MTA339-16 | KX282784                            |                              | MTA371   | M Abdullah MTA371    | 2013 | Fresh              | Doha Entertainment City                   |
| Helianthemum lippii       | EDNA13-0033635 | MTA338-16 | KX282785                            | KX282190                     | MTA451   | M Abdullah MTA451    | 2013 | Fresh              | Al-Salmi                                  |
| Helianthemum salicifolium | EDNA13-0033634 | MTA343-16 | KX282786                            |                              | KTUH057  | M Al-Dosari 4572     | 2000 | Herbarium          | Al-Salmi border station near Saudi Arabia |
| Helianthemum salicifolium | EDNA13-0034217 | MTA341-16 | KX282787                            | KX282191                     | KTUH058  | R Halwagy 1057       | 1972 | Herbarium          | Um Gudayr 60 KM from Kuwait City          |
| Helianthemum salicifolium | EDNA15-0042793 | MTA342-16 | KX282788                            | KX282192                     | KTUH059  | R Halwagy 13-76      | 1976 | Herbarium          | Wadi Um-Al-Rimam                          |
| Heliotropium bacciferum   | EDNA15-0042599 | MTA345-16 | KX282789                            |                              | MTA029   | M Abdullah MTA029    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Heliotropium bacciferum   | EDNA15-0042654 | MTA346-16 | KX282790                            |                              | MTA118   | M Abdullah MTA118    | 2012 | Fresh              | Nuwaiseeb                                 |
| Heliotropium bacciferum   | EDNA15-0042675 | MTA344-16 |                                     | KX282193                     | MTA597   | M Abdullah MTA597    | 2013 | Fresh              | Um-Neqa                                   |
| Heliotropium kotschyi     | EDNA15-0042738 | MTA348-16 | KX282791                            |                              | KTUH011  | R Halwagy RH111-76   | 1976 | Herbarium          | Al-Khiran near Saudi border station       |
| Heliotropium kotschyi     | EDNA15-0042763 | MTA349-16 | KX282792                            |                              | KTUH012  | L Boulos LB18223     | 1993 | Herbarium          | Al-Khiran 2 KM from Gulf Shore            |

| Species                  | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|--------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Heliotropium kotschyi    | EDNA15-0042859 | MTA347-16 | KX282793                            |                              | KTUH013  | M Al-Dosari 1456     | 1995 | Herbarium          | Mina Abdullah Gulf shore                  |
| Herniaria hemistemon     | EDNA15-0042694 | MTA351-16 | KX282794                            |                              | KTUH017  | KT Mathew 2550       | 1995 | Herbarium          | Mina Abdullah Gulf shore                  |
| Herniaria hemistemon     | EDNA15-0042920 | MTA352-16 | KX282795                            | KX282194                     | KTUH018  | KT Mathew 2634       | 1995 | Herbarium          | Jahra Al-Subbiyah road                    |
| Herniaria hemistemon     | EDNA15-0042562 | MTA350-16 | KX282796                            | KX282195                     | MTA414   | M Abdullah MTA414    | 2013 | Fresh              | Failaka Island                            |
| Herniaria hirsuta        | EDNA15-0042836 | MTA353-16 | KX282797                            | KX282196                     | KTUH019  | KT Mathew 3420       | 1998 | Herbarium          | Abdali near border station                |
| Herniaria hirsuta        | EDNA15-0042934 | MTA354-16 | KX282798                            | KX282197                     | KTUH020  | KT Mathew 3371       | 1998 | Herbarium          | Abdali 8.5 KM near border station         |
| Herniaria hirsuta        | EDNA15-0042606 | MTA355-16 |                                     |                              | MTA270   | M Abdullah MTA270    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Hippocrepis areolata     | EDNA15-0042915 | MTA356-16 | KX282799                            | KX282198                     | KTUH196  | M Al-Dosari 2772     | 1998 | Herbarium          | KISR - Sulaibiya Research Station         |
| Hippocrepis areolata     | EDNA15-0042902 | MTA357-16 | KX282800                            | KX282199                     | MTA237   | M Abdullah MTA237    | 2013 | Fresh              | KISR - Sulaibiya Research Station         |
| Hippocrepis areolata     | EDNA15-0042572 | MTA358-16 | KX282801                            | KX282200                     | MTA333   | M Abdullah MTA333    | 2013 | Fresh              | KISR - Sulaibiya Research Station         |
| Hippocrepis unisiliquosa | EDNA15-0042370 | MTA359-16 | KX282802                            | KX282201                     | KTUH198  | M Al-Dosari 6002     | 2006 | Herbarium          | Al-Sulaibiyah power station               |
| Hippocrepis unisiliquosa | EDNA15-0042365 | MTA360-16 | KX282803                            | KX282202                     | MTA407   | M Abdullah MTA407    | 2013 | Fresh              | Failaka Island                            |
| Hordeum marinum          | EDNA15-0042926 | MTA363-16 | KX282804                            | KX282203                     | KTUH474  | M Al-Dosari 6062     | 2006 | Herbarium          | Sabah Al-Ahmad Nature Reserve             |
| Hordeum marinum          | EDNA15-0042347 | MTA362-16 | KX282805                            | KX282204                     | KTUH475  | M Al-Dosari 5162     | 2001 | Herbarium          | Sabhan near the water station             |
| Hordeum marinum          | EDNA15-0042359 | MTA361-16 | KX282806                            | KX282205                     | KTUH476  | M Al-Dosari 5779     | 2005 | Herbarium          | Al-Wafra farms Al-Ameri farm              |
| Hordeum murinum          | EDNA15-0043137 | MTA364-16 | KX282807                            |                              | MTA255   | M Abdullah MTA255    | 2013 | Fresh              | Mina Abdullah                             |
| Hordeum murinum          | EDNA15-0043132 | MTA366-16 | KX282808                            | KX282206                     | MTA364   | M Abdullah MTA364    | 2013 | Fresh              | Doha Entertainment City                   |
| Hordeum murinum          | EDNA15-0043128 | MTA365-16 | KX282809                            | KX282207                     | MTA526   | M Abdullah MTA526    | 2013 | Fresh              | Abdali                                    |
| Horwoodia dicksoniae     | EDNA15-0043001 | MTA367-16 | KX282810                            | KX282208                     | KTUH398  | G Brown 965012       | 1997 | Herbarium          | Ali Al-Salem Air Base Salmi Road          |
| Horwoodia dicksoniae     | EDNA15-0043011 | MTA368-16 | KX282811                            | KX282209                     | KTUH399  | I Ibrahim 1116       | 1990 | Herbarium          | Al-Mutla'a alomg the motorway to Al-Salmi |
| Horwoodia dicksoniae     | EDNA15-0042633 | MTA369-16 | KX282812                            | KX282210                     | MTA318   | M Abdullah MTA318    | 2013 | Fresh              | KISR - Sulaibiya Research Station         |
| Hyoscyamus pusillus      | EDNA15-0042649 | MTA370-16 | KX282813                            |                              | KTUH298  | R Halwagy 005/85     | 1985 | Herbarium          | Al-Salmi near border with Saudi Arabia    |
| Hypecoum littorale       | EDNA15-0042718 | MTA371-16 | KX282814                            | KX282211                     | KTUH161  | KT Mathew 5429       | 2005 | Herbarium          | Sabah Al-Ahmad Nature Reserve             |
| Hypecoum littorale       | EDNA15-0042745 | MTA373-16 | KX282815                            | KX282212                     | KTUH162  | KT Mathew 5299       | 2002 | Herbarium          | Jahra Al-Salmi roadside                   |
| Hypecoum littorale       | EDNA15-0042571 | MTA372-16 | KX282816                            |                              | MTA254   | M Abdullah MTA254    | 2013 | Fresh              | Mina Abdullah                             |

| Species              | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                           |
|----------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|--------------------------------------------|
| Hypecoum pendulum    | EDNA15-0042799 | MTA374-16 | KX282817                            | KX282213                     | KTUH163  | G Brown 965050       | 1996 | Herbarium          | Al-Abraq                                   |
| Hypecoum pendulum    | EDNA15-0042614 | MTA375-16 |                                     |                              | MTA338   | M Abdullah MTA338    | 2013 | Fresh              | KISR - Sulaibiya Research Station          |
| Ifloga spicata       | EDNA15-0043090 | MTA376-16 | KX282818                            | KX282214                     | MTA246   | M Abdullah MTA246    | 2013 | Fresh              | KISR - Sulaibiya Research Station          |
| Ifloga spicata       | EDNA15-0043057 | MTA377-16 | KX282819                            | KX282215                     | MTA257   | M Abdullah MTA257    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Ifloga spicata       | EDNA15-0043088 | MTA378-16 | KX282820                            | KX282216                     | MTA422   | M Abdullah MTA422    | 2013 | Fresh              | Failaka Island                             |
| Imperata cylindrica  | EDNA15-0042353 | MTA379-16 | KX282821                            | KX282217                     | KTUH480  | M Al-Dosari 4881     | 2000 | Herbarium          | Al-Khiran near sea shore                   |
| Imperata cylindrica  | EDNA15-0042364 | MTA380-16 | KX282822                            | KX282218                     | KTUH481  | KT Mathew 4127       | 1998 | Herbarium          | Omariyah Agricultural Research station     |
| Imperata cylindrica  | EDNA15-0042953 | MTA381-16 | KX282823                            | KX282219                     | MTA546   | M Abdullah MTA546    | 2013 | Fresh              | Subiyah                                    |
| Juncus rigidus       | EDNA15-0042721 | MTA382-16 | KX282824                            |                              | KTUH335  | M Al-Dosari 4685     | 2000 | Herbarium          | Khadma salt marshes                        |
| Juncus rigidus       | EDNA15-0042842 | MTA383-16 | KX282825                            | KX282220                     | KTUH336  | M Al-Dosari 6446     | 2009 | Herbarium          | Al-Jdaliat area                            |
| Koelpinia linearis   | EDNA15-0043121 | MTA384-16 | KX282826                            | KX282221                     | MTA245   | M Abdullah MTA245    | 2013 | Fresh              | KISR - Sulaibiya Research Station          |
| Koelpinia linearis   | EDNA15-0043108 | MTA385-16 | KX282827                            | KX282222                     | MTA450   | M Abdullah MTA450    | 2013 | Fresh              | Al-Salmi                                   |
| Koelpinia linearis   | EDNA15-0043068 | MTA386-16 | KX282828                            | KX282223                     | MTA496   | M Abdullah MTA496    | 2013 | Fresh              | Abdali                                     |
| Lappula spinocarpos  | EDNA15-0042693 | MTA387-16 | KX282829                            |                              | MTA135   | M Abdullah MTA135    | 2012 | Fresh              | Nuwaiseeb                                  |
| Lappula spinocarpos  | EDNA15-0042933 | MTA388-16 | KX282830                            | KX282224                     | MTA301   | M Abdullah MTA301    | 2013 | Fresh              | Al-Liyah                                   |
| Lappula spinocarpos  | EDNA15-0042955 | MTA389-16 | KX282831                            | KX282225                     | MTA445   | M Abdullah MTA445    | 2013 | Fresh              | Al-Salmi                                   |
| Lasiurus hirsutus    | EDNA15-0043125 | MTA390-16 | KX282832                            | KX282226                     | KTUH482  | KT Mathew 2885       | 1996 | Herbarium          | Al-Mutla'a along the road of subbiyah      |
| Lasiurus hirsutus    | EDNA15-0043083 | MTA391-16 | KX282833                            | KX282227                     | MTA055   | M Abdullah MTA055    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve              |
| Lasiurus hirsutus    | EDNA15-0043118 | MTA392-16 | KX282834                            | KX282228                     | MTA180   | M Abdullah MTA180    | 2012 | Fresh              | KISR - Sulaibiya Research Station          |
| Launaea angustifolia | EDNA13-0033629 | MTA393-16 | KX282835                            | KX282229                     | KTUH092  | R Halwagy 1009       | 1972 | Herbarium          | Al-Khafji road 23 KM N of Al-Khafji        |
| Launaea angustifolia | EDNA13-0034212 | MTA394-16 |                                     |                              | KTUH093  | KT Mathew 2888       | 1996 | Herbarium          | Al-Mutla'a - Al-Subiyah roadside           |
| Launaea angustifolia | EDNA15-0042377 | MTA395-16 | KX282836                            | KX282230                     | KTUH094  | KT Mathew 3652       | 1998 | Herbarium          | Jal Az Zor on the plateau                  |
| Launaea capitata     | EDNA13-0033630 | MTA396-16 | KX282837                            | KX282231                     | KTUH095  | M Al-Dosari 3773     | 1999 | Herbarium          | Al-Salmi near border with Saudi Arabia     |
| Launaea capitata     | EDNA13-0034213 | MTA397-16 | KX282838                            | KX282232                     | KTUH096  | M Al-Dosari 2561     | 1997 | Herbarium          | Nuwaiseeb border station with Saudi Arabia |
| Launaea capitata     | EDNA15-0042382 | MTA398-16 | KX282839                            | KX282233                     | KTUH097  | M Al-Dosari 2611     | 1998 | Herbarium          | Al-Doha Sheikh Zaid preservative area      |

| Species              | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                               |
|----------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|------------------------------------------------|
| Launaea mucronata    | EDNA13-0033632 | MTA399-16 | KX282840                            | KX282234                     | MTA383   | M Abdullah MTA383    | 2013 | Fresh              | Failaka Island                                 |
| Launaea mucronata    | EDNA15-0043101 | MTA400-16 | KX282841                            | KX282235                     | MTA505   | M Abdullah MTA505    | 2013 | Fresh              | Abdali                                         |
| Launaea mucronata    | EDNA13-0034215 | MTA401-16 | KX282842                            | KX282236                     | MTA601   | M Abdullah MTA601    | 2013 | Fresh              | Um-Neqa                                        |
| Launaea nudicaulis   | EDNA13-0033631 | MTA402-16 | KX282843                            | KX282237                     | KTUH098  | KT Mathew 5473       | 2007 | Herbarium          | Sabah Al-Ahmad Nature Reserve                  |
| Launaea nudicaulis   | EDNA15-0043120 | MTA403-16 | KX282844                            | KX282238                     | MTA202   | M Abdullah MTA202    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                  |
| Launaea nudicaulis   | EDNA13-0034214 | MTA404-16 | KX282845                            |                              | MTA467   | M Abdullah MTA467    | 2013 | Fresh              | Al-Salmi                                       |
| Leontodon laciniatus | EDNA15-0042958 | MTA406-16 | KX282846                            | KX282239                     | KTUH099  | KT Mathew 5420       | 2005 | Herbarium          | Khor Al-Ami between the chalets and the mosque |
| Leontodon laciniatus | EDNA15-0042969 | MTA405-16 | KX282847                            | KX282240                     | KTUH100  | R Halwagy 8-76       | 1976 | Herbarium          | Wadi Um Al-Rimam                               |
| Leontodon laciniatus | EDNA15-0042768 | MTA407-16 |                                     |                              | MTA504   | M Abdullah MTA504    | 2013 | Fresh              | Abdali                                         |
| Lepidium aucheri     | EDNA15-0042378 | MTA408-16 | KX282848                            | KX282241                     | KTUH400  | M Halwagy 1156       | 1972 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi              |
| Lepidium aucheri     | EDNA15-0043076 | MTA409-16 | KX282849                            | KX282242                     | KTUH401  | M Al-Dosari 5450     | 2003 | Herbarium          | KISR - Sulaibiya Research Station              |
| Leptaleum filifolium | EDNA15-0042796 | MTA412-16 | KX282850                            | KX282243                     | KTUH405  | R Halwagy 6-76       | 1976 | Herbarium          | Wadi Um Al-Rimam                               |
| Leptaleum filifolium | EDNA15-0043017 | MTA411-16 | KX282851                            |                              | KTUH406  | R Halwagy 1084       | 1972 | Herbarium          | Al-Dibdibah 15 KM N of Salmy                   |
| Leptaleum filifolium | EDNA15-0043023 | MTA410-16 |                                     | KX282244                     | KTUH407  | R Halwagy 1120       | 1972 | Herbarium          | Al-Shaqq                                       |
| Limonium carnosum    | EDNA15-0042622 | MTA413-16 |                                     | KX282245                     | KTUH253  | KT Mathew 3283       | 1998 | Herbarium          | Failaka Island salt depressions                |
| Limonium carnosum    | EDNA15-0042780 | MTA414-16 |                                     |                              | KTUH254  | R Halwagy 81/130     | 1981 | Herbarium          | Auhah Island                                   |
| Limonium thouini     | EDNA15-0042644 | MTA416-16 |                                     |                              | KTUH255  | M Dib & M Al-Dosari  | 2001 | Herbarium          | Al-Zor Power Station                           |
| Limonium thouini     | EDNA15-0042806 | MTA415-16 |                                     | KX282246                     | KTUH256  | KT Mathew 5311       | 2003 | Herbarium          | Al-Khiran near resort enterance                |
| Linaria albifrons    | EDNA15-0042648 | MTA418-16 | KX282852                            |                              | KTUH289  | R Halwagy 82/32      | 1982 | Herbarium          | Kadhmah Jal Az-Zor                             |
| Linaria albifrons    | EDNA15-0042733 | MTA417-16 |                                     | KX282247                     | KTUH290  | M Al-Dosari 2727     | 1998 | Herbarium          | Failaka Island                                 |
| Linaria albifrons    | EDNA15-0042811 | MTA419-16 | KX282853                            | KX282248                     | KTUH291  | I Ibrahim 1044       | 1990 | Herbarium          | Um Al-Rimam protected area                     |
| Linaria simplex      | EDNA15-0042785 | MTA421-16 | KX282854                            | KX282249                     | KTUH293  | R Halwagy 004/85     | 1985 | Herbarium          | Al-Salmi near border with Saudi Arabia         |
| Linaria simplex      | EDNA15-0042832 | MTA420-16 | KX282855                            | KX282250                     | KTUH294  | R Halwagy 82/33      | 1982 | Herbarium          | Kadhmah Jal Az-Zor                             |
| Linaria simplex      | EDNA15-0042585 | MTA422-16 |                                     |                              | MTA253   | M Abdullah MTA253    | 2013 | Fresh              | Mina Abdullah                                  |
| Loeflingia hispanica | EDNA15-0042947 | MTA424-16 | KX282856                            |                              | KTUH021  | KT Mathew 3668       | 1998 | Herbarium          | Jal Az Zor on the plateau                      |

| Species               | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                       |
|-----------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|----------------------------------------|
| Loeflingia hispanica  | EDNA15-0042956 | MTA423-16 | KX282857                            |                              | KTUH022  | KT Mathew 3747       | 1998 | Herbarium          | 19 KM from Al-Salmi - Jahra road       |
| Loeflingia hispanica  | EDNA15-0042629 | MTA425-16 |                                     | KX282251                     | MTA259   | M Abdullah MTA259    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve          |
| Lolium rigidum        | EDNA15-0042384 | MTA427-16 | KX282858                            | KX282252                     | KTUH483  | KT Mathew 3028       | 1997 | Herbarium          | Khuwaisat salt marshes                 |
| Lolium rigidum        | EDNA15-0042389 | MTA426-16 | KX282859                            | KX282253                     | KTUH484  | M Al-Dosari 2569     | 1997 | Herbarium          | Al-Nuwaiseeb border station            |
| Lolium rigidum        | EDNA15-0042369 | MTA428-16 | KX282860                            | KX282254                     | MTA010   | M Abdullah MTA010    | 2012 | Fresh              | King Fahad High Way                    |
| Lotus halophilus      | EDNA15-0042360 | MTA429-16 | KX282861                            | KX282255                     | MTA239   | M Abdullah MTA239    | 2013 | Fresh              | KISR - Sulaibiya Research Station      |
| Lotus halophilus      | EDNA15-0042348 | MTA431-16 | KX282862                            | KX282256                     | MTA424   | M Abdullah MTA424    | 2013 | Fresh              | Failaka Island                         |
| Lotus halophilus      | EDNA15-0042354 | MTA430-16 | KX282863                            | KX282257                     | MTA551   | M Abdullah MTA551    | 2013 | Fresh              | Subiyah                                |
| Lycium shawii         | EDNA15-0042669 | MTA433-16 |                                     |                              | MTA049   | M Abdullah MTA049    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve          |
| Lycium shawii         | EDNA15-0042707 | MTA432-16 | KX282864                            | KX282258                     | MTA188   | M Abdullah MTA188    | 2012 | Fresh              | KISR - Sulaibiya Research Station      |
| Lycium shawii         | EDNA15-0042689 | MTA434-16 | KX282865                            |                              | MTA543   | M Abdullah MTA543    | 2013 | Fresh              | Subiyah                                |
| Malcolmia grandiflora | EDNA15-0043072 | MTA436-16 | KX282866                            | KX282259                     | MTA291   | M Abdullah MTA291    | 2013 | Fresh              | Al-Liyah                               |
| Malcolmia grandiflora | EDNA15-0043075 | MTA435-16 | KX282867                            | KX282260                     | MTA310   | M Abdullah MTA310    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve          |
| Malcolmia grandiflora | EDNA15-0043055 | MTA437-16 | KX282868                            | KX282261                     | MTA485   | M Abdullah MTA485    | 2013 | Fresh              | Abdali                                 |
| Malva parviflora      | EDNA15-0042641 | MTA440-16 | KX282869                            | KX282262                     | MTA409   | M Abdullah MTA409    | 2013 | Fresh              | Failaka Island                         |
| Malva parviflora      | EDNA15-0042619 | MTA438-16 | KX282870                            | KX282263                     | MTA475   | M Abdullah MTA475    | 2013 | Fresh              | Abdali                                 |
| Malva parviflora      | EDNA15-0042595 | MTA439-16 | KX282871                            | KX282264                     | MTA553   | M Abdullah MTA553    | 2013 | Fresh              | Subiyah                                |
| Maresia pygmaea       | EDNA15-0042819 | MTA442-16 | KX282872                            | KX282265                     | KTUH411  | R Halwagy 1-76       | 1976 | Herbarium          | Al-Mutla'a 10 KM N of Jahra            |
| Maresia pygmaea       | EDNA15-0043035 | MTA441-16 |                                     |                              | KTUH412  | M Al-Dosari 4608     | 2000 | Herbarium          | Al-Funaitees area                      |
| Maresia pygmaea       | EDNA15-0043041 | MTA443-16 | KX282873                            | KX282266                     | KTUH413  | M Al-Dosari 5058     | 2001 | Herbarium          | Subbiyah opposite to the military camp |
| Matthiola longipetala | EDNA15-0042840 | MTA446-16 | KX282874                            | KX282267                     | KTUH414  | R Halwagy 1103       | 1972 | Herbarium          | Al-Shaqq                               |
| Matthiola longipetala | EDNA15-0043047 | MTA444-16 | KX282875                            | KX282268                     | KTUH415  | M Al-Dosari 4920     | 2001 | Herbarium          | Wafra Al-Amiri farm                    |
| Matthiola longipetala | EDNA15-0042322 | MTA445-16 | KX282876                            |                              | KTUH416  | L Boulos 17950       | 1993 | Herbarium          | 5 KM E of Abraq                        |
| Medicago laciniata    | EDNA15-0043049 | MTA449-16 | KX282877                            | KX282269                     | MTA261   | M Abdullah MTA261    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve          |
| Medicago laciniata    | EDNA15-0042330 | MTA448-16 | KX282878                            | KX282270                     | MTA372   | M Abdullah MTA372    | 2013 | Fresh              | Doha Entertainment City                |

| Species                        | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|--------------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Medicago laciniata             | EDNA15-0042342 | MTA447-16 | KX282879                            | KX282271                     | MTA420   | M Abdullah MTA420    | 2013 | Fresh              | Failaka Island                            |
| Medicago rotata                | EDNA15-0042380 | MTA450-16 | KX282880                            | KX282272                     | KTUH202  | M Al-Dosari 3453     | 1998 | Herbarium          | Failaka Island                            |
| Melilotus indicus              | EDNA15-0042748 | MTA452-16 | KX282881                            | KX282273                     | KTUH205  | M Al-Dosari 3731     | 1999 | Herbarium          | KISR - Sulaibiya Research Station         |
| Melilotus indicus              | EDNA15-0042942 | MTA451-16 | KX282882                            | KX282274                     | KTUH206  | M Al-Dosari 4962     | 2001 | Herbarium          | Kuwait University Campus                  |
| Melilotus indicus              | EDNA15-0042963 | MTA453-16 | KX282883                            | KX282275                     | KTUH207  | M Al-Dosari 3859     | 1999 | Herbarium          | Al-Wafra Al-Ameri farm                    |
| Mesembryanthemum<br>nodiflorum | EDNA15-0042560 | MTA456-16 | KX282884                            |                              | MTA007   | M Abdullah MTA007    | 2012 | Fresh              | King Fahad High Way                       |
| Mesembryanthemum<br>nodiflorum | EDNA15-0042708 | MTA454-16 | KX282885                            | KX282276                     | MTA393   | M Abdullah MTA393    | 2013 | Fresh              | Failaka Island                            |
| Mesembryanthemum<br>nodiflorum | EDNA15-0042618 | MTA455-16 | KX282886                            |                              | MTA525   | M Abdullah MTA525    | 2013 | Fresh              | Abdali                                    |
| Moltkiopsis ciliata            | EDNA15-0042605 | MTA459-16 | KX282887                            | KX282277                     | MTA294   | M Abdullah MTA294    | 2013 | Fresh              | Al-Liyah                                  |
| Moltkiopsis ciliata            | EDNA15-0042894 | MTA457-16 |                                     | KX282278                     | MTA429   | M Abdullah MTA429    | 2013 | Fresh              | Failaka Island                            |
| Moltkiopsis ciliata            | EDNA15-0042628 | MTA458-16 | KX282888                            | KX282279                     | MTA471   | M Abdullah MTA471    | 2013 | Fresh              | Al-Salmi                                  |
| Monsonia nivea                 | EDNA15-0042841 | MTA461-16 |                                     | KX282280                     | KTUH158  | KT Mathew 2891       | 1996 | Herbarium          | AL-Mutla'a                                |
| Monsonia nivea                 | EDNA15-0042939 | MTA462-16 | KX282889                            | KX282281                     | KTUH159  | M Al-Dosari 4507     | 1999 | Herbarium          | Al-Dba'iyyah 55 KM SE Kuwait City         |
| Monsonia nivea                 | EDNA15-0042952 | MTA460-16 |                                     |                              | KTUH160  | KT Mathew 5345       | 2004 | Herbarium          | Sabah Al-Ahmad Nature Reserve             |
| Neotorularia torulosa          | EDNA15-0042328 | MTA465-16 |                                     | KX282282                     | KTUH417  | R Halwagy 1104       | 1972 | Herbarium          | Al-Shaqq                                  |
| Neotorularia torulosa          | EDNA15-0042334 | MTA464-16 | KX282890                            | KX282283                     | KTUH418  | M Al-Dosari 5032     | 2001 | Herbarium          | Al-Salmi border station near Saudi Arabia |
| Neotorularia torulosa          | EDNA15-0042858 | MTA463-16 | KX282891                            | KX282284                     | MTA278   | M Abdullah MTA278    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Neotorularia torulosa          | EDNA15-0042564 | MTA466-16 | KX282892                            | KX282285                     | MTA279   | M Abdullah MTA279    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Neurada procumbens             | EDNA15-0042620 | MTA469-16 | KX282893                            | KX282286                     | KTUH239  | KT Mathew 3132       | 1997 | Herbarium          | Al-Nuwaiseeb border station               |
| Neurada procumbens             | EDNA15-0042596 | MTA467-16 | KX282894                            | KX282287                     | MTA327   | M Abdullah MTA327    | 2013 | Fresh              | KISR - Sulaibiya Research Station         |
| Neurada procumbens             | EDNA15-0042579 | MTA468-16 | KX282895                            | KX282288                     | MTA552   | M Abdullah MTA552    | 2013 | Fresh              | Subiyah                                   |
| Nitraria retusa                | EDNA15-0042852 | MTA470-16 | KX282896                            | KX282289                     | MTA123   | M Abdullah MTA123    | 2012 | Fresh              | Nuwaiseeb -near Saudi Arabia border       |
| Nitraria retusa                | EDNA15-0042918 | MTA471-16 | KX282897                            | KX282290                     | MTA162   | M Abdullah MTA162    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait            |
| Nitraria retusa                | EDNA15-0042931 | MTA472-16 | KX282898                            | KX282291                     | MTA187   | M Abdullah MTA187    | 2012 | Fresh              | KISR - Sulaibiya Research Station         |

| Species               | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|-----------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Notoceras bicorne     | EDNA15-0042863 | MTA473-16 | KX282899                            |                              | KTUH419  | M Halwagy 1158       | 1972 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi         |
| Notoceras bicorne     | EDNA15-0042340 | MTA475-16 | KX282900                            | KX282292                     | KTUH420  | R Halwagy 1145       | 1972 | Herbarium          | Wadi Um Al-Rimam                          |
| Notoceras bicorne     | EDNA15-0042346 | MTA474-16 | KX282901                            | KX282293                     | KTUH421  | M Al-Dosari 5905     | 2005 | Herbarium          | Al-Salmi                                  |
| Ochradenus baccatus   | EDNA15-0042930 | MTA478-16 |                                     | KX282294                     | KTUH271  | M Al-Dosari 6367     | 2009 | Herbarium          | KISR - Sulaibiya Research Station         |
| Ochradenus baccatus   | EDNA15-0042944 | MTA476-16 | KX282902                            | KX282295                     | KTUH272  | KT Mathew 4403       | 1999 | Herbarium          | Um Al-Rimam open area in the Wadi         |
| Ochradenus baccatus   | EDNA15-0042870 | MTA477-16 | KX282903                            | KX282296                     | MTA578   | M Abdullah MTA578    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Ogastemma pusillum    | EDNA15-0042790 | MTA479-16 |                                     |                              | KTUH014  | KT Mathew 3923       | 1998 | Herbarium          | Doha Entertainment City                   |
| Ogastemma pusillum    | EDNA15-0042891 | MTA480-16 | KX282904                            | KX282297                     | KTUH015  | R Halwagy RH23-83    | 1983 | Herbarium          | Wadi Um Al-Rimam close to water catchment |
| Ogastemma pusillum    | EDNA15-0042906 | MTA481-16 | KX282905                            |                              | KTUH016  | R Halwagy 1185       | 1972 | Herbarium          | Khabrat Al-Awazem 40 KM of Kuwait City    |
| Oligomeris linifolia  | EDNA15-0042624 | MTA484-16 | KX282906                            |                              | KTUH273  | M Al-Dosari 6398     | 2009 | Herbarium          | Al-Abdaly Waleed Al-Omori farm            |
| Oligomeris linifolia  | EDNA15-0042731 | MTA482-16 | KX282907                            | KX282298                     | KTUH274  | KT Mathew 3572       | 1998 | Herbarium          | Sulaibikhat sea side on the way to Doha   |
| Oligomeris linifolia  | EDNA15-0042600 | MTA483-16 | KX282908                            | KX282299                     | MTA384   | M Abdullah MTA384    | 2013 | Fresh              | Failaka Island                            |
| Onobrychis ptolemaica | EDNA15-0042973 | MTA485-16 | KX282909                            | KX282300                     | KTUH208  | M Halwagy 1067       | 1972 | Herbarium          | Jal Az Zor on the plateau                 |
| Onobrychis ptolemaica | EDNA15-0042982 | MTA486-16 | KX282910                            | KX282301                     | KTUH209  | M Al-Dosari 6091     | 2007 | Herbarium          | Subiyah power station                     |
| Onobrychis ptolemaica | EDNA15-0042803 | MTA487-16 | KX282911                            | KX282302                     | MTA464   | M Abdullah MTA464    | 2013 | Fresh              | Al-Salmi                                  |
| Ononis reclinata      | EDNA15-0042375 | MTA489-16 | KX282912                            | KX282303                     | KTUH210  | KT Mathew 3634       | 1998 | Herbarium          | AL-Jahra along Abdali road                |
| Ononis reclinata      | EDNA15-0042385 | MTA488-16 | KX282913                            | KX282304                     | KTUH211  | M Al-Dosari 1437     | 1995 | Herbarium          | Al-Nuwaiseeb border station               |
| Ononis serrata        | EDNA15-0042884 | MTA492-16 | KX282914                            | KX282305                     | KTUH212  | M Leo 171            | 1998 | Herbarium          | KISR - Sulaibiya Research Station         |
| Ononis serrata        | EDNA15-0042990 | MTA490-16 | KX282915                            | KX282306                     | KTUH213  | KT Mathew 5341       | 2004 | Herbarium          | Al-Wafra Juwairiah farm                   |
| Ononis serrata        | EDNA15-0042997 | MTA491-16 | KX282916                            | KX282307                     | KTUH214  | M Al-Dosari 5727     | 2005 | Herbarium          | Sabah Al-Ahmad Nature Reserve             |
| Orobanche aegyptiaca  | EDNA15-0042868 | MTA493-16 |                                     |                              | KTUH230  | M Al-Dosari 6357     | 2009 | Herbarium          | KISR - Sulaibiya Research Station         |
| Orobanche cernua      | EDNA15-0042726 | MTA495-16 |                                     | KX282308                     | KTUH231  | R Halwagy 1231       | 1972 | Herbarium          | Failaka Island                            |
| Orobanche cernua      | EDNA15-0042826 | MTA496-16 |                                     | KX282309                     | KTUH232  | M Al-Dosari 1533     | 1995 | Herbarium          | Jahra along Jahra - Subiyah road          |
| Orobanche cernua      | EDNA15-0042846 | MTA494-16 |                                     |                              | KTUH233  | R Halwagy 17/83      | 1983 | Herbarium          | AL-Khiran near border with Saudi Arabia   |
| Panicum turgidum      | EDNA15-0042398 | MTA499-16 | KX282917                            | KX282310                     | KTUH486  | KT Mathew 3227       | 1997 | Herbarium          | Um Al-Heiman area along roadside          |

| Species                | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                                     |
|------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|------------------------------------------------------|
| Panicum turgidum       | EDNA15-0042374 | MTA497-16 | KX282918                            | KX282311                     | MTA137   | M Abdullah MTA137    | 2012 | Fresh              | Nuwaiseeb                                            |
| Panicum turgidum       | EDNA15-0042394 | MTA498-16 | KX282919                            | KX282312                     | MTA513   | M Abdullah MTA513    | 2013 | Fresh              | Abdali                                               |
| Parapholis incurva     | EDNA15-0042379 | MTA500-16 |                                     |                              | KTUH487  | M Al-Dosari 1340     | 1994 | Herbarium          | Al-Wafra farms                                       |
| Parapholis incurva     | EDNA15-0042402 | MTA501-16 | KX282920                            | KX282313                     | KTUH488  | M Al-Dosari 3321     | 1998 | Herbarium          | Subiyah near the sea shore                           |
| Parapholis incurva     | EDNA15-0042405 | MTA502-16 | KX282921                            | KX282314                     | KTUH489  | M Al-Dosari 4771     | 2000 | Herbarium          | Um Neqa Ajayed farm                                  |
| Paronychia arabica     | EDNA15-0042343 | MTA503-16 | KX282922                            | KX282315                     | MTA236   | M Abdullah MTA236    | 2013 | Fresh              | KISR - Sulaibiya Research Station                    |
| Paronychia arabica     | EDNA15-0042892 | MTA504-16 | KX282923                            | KX282316                     | MTA413   | M Abdullah MTA413    | 2013 | Fresh              | Failaka Island                                       |
| Paronychia arabica     | EDNA15-0042337 | MTA505-16 | KX282924                            | KX282317                     | MTA469   | M Abdullah MTA469    | 2013 | Fresh              | Al-Salmi                                             |
| Peganum harmala        | EDNA15-0042965 | MTA506-16 | KX282925                            | KX282318                     | KTUH326  | M Al-Dosari 3380     | 1998 | Herbarium          | King Fahad Highway side of the road before<br>Ahmadi |
| Peganum harmala        | EDNA15-0042945 | MTA507-16 | KX282926                            | KX282319                     | MTA148   | M Abdullah MTA148    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait                       |
| Peganum harmala        | EDNA15-0042874 | MTA508-16 | KX282927                            | KX282320                     | MTA173   | M Abdullah MTA173    | 2012 | Fresh              | KISR - Sulaibiya Research Station                    |
| Pennisetum divisum     | EDNA15-0043081 | MTA509-16 | KX282928                            | KX282321                     | MTA108   | M Abdullah MTA108    | 2012 | Fresh              | Nuwaiseeb -near Saudi Arabia border                  |
| Pennisetum divisum     | EDNA15-0043124 | MTA511-16 | KX282929                            | KX282322                     | MTA168   | M Abdullah MTA168    | 2012 | Fresh              | KISR - Sulaibiya Research Station                    |
| Pennisetum divisum     | EDNA15-0043134 | MTA510-16 | KX282930                            | KX282323                     | MTA512   | M Abdullah MTA512    | 2013 | Fresh              | Abdali                                               |
| Phragmites australis   | EDNA15-0043065 | MTA514-16 | KX282931                            |                              | KTUH491  | L Boulos 18226       | 1993 | Herbarium          | Along the motorway to Al-Nuwaiseeb salt marshes      |
| Phragmites australis   | EDNA15-0042408 | MTA512-16 | KX282932                            | KX282324                     | MTA347   | M Abdullah MTA347    | 2013 | Fresh              | Sulaibiya - Coastal area                             |
| Phragmites australis   | EDNA15-0043053 | MTA513-16 | KX282933                            | KX282325                     | MTA566   | M Abdullah MTA566    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                        |
| Picris babylonica      | EDNA15-0043054 | MTA515-16 | KX282934                            | KX282326                     | MTA229   | M Abdullah MTA229    | 2013 | Fresh              | Nuwaiseeb                                            |
| Picris babylonica      | EDNA15-0043086 | MTA516-16 | KX282935                            | KX282327                     | MTA381   | M Abdullah MTA381    | 2013 | Fresh              | Failaka Island                                       |
| Picris babylonica      | EDNA15-0043066 | MTA517-16 | KX282936                            | KX282328                     | MTA486   | M Abdullah MTA486    | 2013 | Fresh              | Abdali                                               |
| Plantago amplexicaulis | EDNA13-0034209 | MTA520-16 | KX282937                            | KX282329                     | MTA244   | M Abdullah MTA244    | 2013 | Fresh              | KISR - Sulaibiya Research Station                    |
| Plantago amplexicaulis | EDNA15-0042597 | MTA518-16 |                                     |                              | MTA446   | M Abdullah MTA446    | 2013 | Fresh              | Al-Salmi                                             |
| Plantago amplexicaulis | EDNA13-0033625 | MTA519-16 | KX282938                            | KX282330                     | MTA503   | M Abdullah MTA503    | 2013 | Fresh              | Abdali                                               |
| Plantago boissieri     | EDNA15-0042580 | MTA521-16 | KX282939                            | KX282331                     | MTA016   | M Abdullah MTA016    | 2012 | Fresh              | King Fahad High Way                                  |
| Plantago boissieri     | EDNA13-0034208 | MTA522-16 | KX282940                            |                              | MTA200   | M Abdullah MTA200    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                        |

| Species                 | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID     | Collector and number | Year | Collection<br>type | Locality/ region                                    |
|-------------------------|----------------|-----------|-------------------------------------|------------------------------|--------------|----------------------|------|--------------------|-----------------------------------------------------|
| Plantago boissieri      | EDNA13-0033624 | MTA523-16 | KX282941                            | KX282332                     | MTA305       | M Abdullah MTA305    | 2013 | Fresh              | Al-Liyah                                            |
| Plantago ciliata        | EDNA13-0033621 | MTA526-16 | KX282942                            | KX282333                     | KTUH243<br>a | M Al-Dosari 1768     | 1996 | Herbarium          | Al-Salmi border station near Saudi Arabia           |
| Plantago ciliata        | EDNA13-0034205 | MTA524-16 |                                     | KX282334                     | KTUH244      | KT Mathew 4424       | 1999 | Herbarium          | Kathma salt marshes                                 |
| Plantago ciliata        | EDNA15-0042590 | MTA525-16 |                                     |                              | KTUH245      | KT Mathew 3619       | 1998 | Herbarium          | AL-Jahra along Abdali road                          |
| Plantago coronopus      | EDNA15-0042566 | MTA527-16 | KX282943                            | KX282335                     | MTA322       | M Abdullah MTA322    | 2013 | Fresh              | KISR - Sulaibiya Research Station                   |
| Plantago coronopus      | EDNA13-0033626 | MTA529-16 | KX282944                            | KX282336                     | MTA388       | M Abdullah MTA388    | 2013 | Fresh              | Failaka Island                                      |
| Plantago coronopus      | EDNA13-0034210 | MTA528-16 | KX282945                            |                              | MTA499       | M Abdullah MTA499    | 2013 | Fresh              | Abdali                                              |
| Plantago lanceolata     | EDNA13-0033622 | MTA530-16 |                                     | KX282337                     | KTUH246      | M Al-Dosari 5229     | 2001 | Herbarium          | Kuwait University Khaldiyah Campus                  |
| Plantago lanceolata     | EDNA13-0034206 | MTA532-16 |                                     |                              | KTUH247      | M Al-Dosari 3963     | 1999 | Herbarium          | Gulf road near KISR water front project             |
| Plantago lanceolata     | EDNA15-0042643 | MTA531-16 |                                     | KX282338                     | KTUH248      | M Al-Dosari 6457     | 2009 | Herbarium          | Al-Abdaly Boshihry farm                             |
| Plantago notata         | EDNA13-0033628 | MTA533-16 | KX282946                            | KX282339                     | KTUH249      | R Halwagy 74-1974    | 1974 | Herbarium          | Khabrat Um-Omara Al-Shaqq                           |
| Plantago ovata          | EDNA15-0042621 | MTA536-16 | KX282947                            | KX282340                     | KTUH243<br>b | M Al-Dosari 1768b    | 1996 | Herbarium          | Al-Salmi border station near Saudi Arabia           |
| Plantago ovata          | EDNA13-0034211 | MTA534-16 | KX282948                            | KX282341                     | MTA298       | M Abdullah MTA298    | 2013 | Fresh              | Al-Liyah                                            |
| Plantago ovata          | EDNA13-0033627 | MTA535-16 | KX282949                            |                              | MTA391       | M Abdullah MTA391    | 2013 | Fresh              | Failaka Island                                      |
| Plantago psammophila    | EDNA13-0033623 | MTA537-16 | KX282950                            |                              | KTUH250      | R Halwagy 33         | 1981 | Herbarium          | Sulaibiyah 13 KM SE Kuwait International<br>Airport |
| Plantago psammophila    | EDNA13-0034207 | MTA539-16 | KX282951                            | KX282342                     | KTUH251      | L Boulos 18124       | 1993 | Herbarium          | Al-Jahra along the highway to Al-Salmi              |
| Plantago psammophila    | EDNA15-0042728 | MTA538-16 |                                     | KX282343                     | KTUH252      | M Al-Dosari 2019     | 1997 | Herbarium          | Al-Khuwaisat salt marshes                           |
| Polycarpaea repens      | EDNA15-0042967 | MTA542-16 | KX282952                            | KX282344                     | KTUH023      | KT Mathew 3052       | 1997 | Herbarium          | Subiyah gulf shore along the coast                  |
| Polycarpaea repens      | EDNA15-0042977 | MTA541-16 | KX282953                            | KX282345                     | KTUH024      | KT Mathew 4517       | 1999 | Herbarium          | Al-Mutla'a police outpost Abdali road               |
| Polycarpaea repens      | EDNA15-0042713 | MTA540-16 | KX282954                            |                              | MTA035       | M Abdullah MTA035    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve                       |
| Polycarpaea robbairea   | EDNA15-0042907 | MTA543-16 | KX282955                            | KX282346                     | KTUH025      | KT Mathew 4860       | 2000 | Herbarium          | Failaka Island along the coastal side               |
| Polycarpon tetraphyllum | EDNA15-0042739 | MTA544-16 | KX282956                            |                              | KTUH026      | KT Mathew 5007       | 2001 | Herbarium          | Subbiyah water front near power station enterance   |
| Polycarpon tetraphyllum | EDNA15-0042985 | MTA545-16 | KX282957                            | KX282347                     | KTUH027      | KT Mathew 5363       | 2004 | Herbarium          | Mischan Island                                      |
| Polycarpon tetraphyllum | EDNA15-0042992 | MTA546-16 | KX282958                            |                              | KTUH028      | KT Mathew 5102       | 2001 | Herbarium          | Failaka Island                                      |
| Polypogon monspeliensis | EDNA15-0043056 | MTA547-16 | KX282959                            | KX282348                     | KTUH495      | M Al-Dosari 1987     | 1997 | Herbarium          | Al-Khuwaisat salt marshes                           |

| Species                 | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                                     |
|-------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|------------------------------------------------------|
| Polypogon monspeliensis | EDNA15-0043067 | MTA549-16 |                                     |                              | KTUH496  | S Morshed 1018       | 1989 | Herbarium          | Al-Doha near irrigated area along roadside           |
| Polypogon monspeliensis | EDNA15-0042411 | MTA548-16 | KX282960                            | KX282349                     | MTA025   | M Abdullah MTA025    | 2012 | Fresh              | King Fahad High Way                                  |
| Psylliostachys spicata  | EDNA15-0042828 | MTA550-16 | KX282961                            | KX282350                     | KTUH257  | KT Mathew 5107       | 2001 | Herbarium          | Failaka Island                                       |
| Pteranthus dichotomus   | EDNA15-0042764 | MTA552-16 |                                     |                              | KTUH029  | KT Mathew 5020       | 2001 | Herbarium          | Subbiyah Kuwait City road along the road             |
| Pteranthus dichotomus   | EDNA15-0042998 | MTA553-16 |                                     |                              | KTUH030  | KT Mathew 5349       | 2004 | Herbarium          | Sabah Al-Ahmad Nature Reserve top of the escarpments |
| Pteranthus dichotomus   | EDNA15-0043003 | MTA551-16 |                                     |                              | KTUH031  | KT Mathew 4758       | 2000 | Herbarium          | Um Al-Rimam into the flat wadi                       |
| Pulicaria undulata      | EDNA15-0042979 | MTA557-16 | KX282962                            | KX282351                     | KTUH103  | R Halwagy 012/85     | 1985 | Herbarium          | Subiyah facing Bubiyan Island                        |
| Pulicaria undulata      | EDNA15-0042994 | MTA554-16 | KX282963                            | KX282352                     | KTUH104  | KT Mathew 4612       | 1999 | Herbarium          | KISR - Sulaibiya Research Station                    |
| Pulicaria undulata      | EDNA15-0042608 | MTA555-16 | KX282964                            | KX282353                     | MTA045   | M Abdullah MTA045    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve                        |
| Pulicaria undulata      | EDNA15-0042631 | MTA556-16 | KX282965                            | KX282354                     | MTA046   | M Abdullah MTA046    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve                        |
| Reichardia tingitana    | EDNA15-0042987 | MTA560-16 | KX282966                            | KX282355                     | KTUH105  | KT Mathew 2764       | 1996 | Herbarium          | Nuwaiseeb border station with Saudi Arabia           |
| Reichardia tingitana    | EDNA15-0043000 | MTA559-16 | KX282967                            | KX282356                     | KTUH106  | KT Mathew 3396       | 1998 | Herbarium          | Al-Abdali                                            |
| Reichardia tingitana    | EDNA15-0042563 | MTA558-16 | KX282968                            | KX282357                     | MTA426   | M Abdullah MTA426    | 2013 | Fresh              | Failaka Island                                       |
| Reseda arabica          | EDNA15-0042830 | MTA563-16 | KX282969                            | KX282358                     | KTUH275  | G Al-Abbadi 275      | 1998 | Herbarium          | KISR - Sulaibiya Research Station                    |
| Reseda arabica          | EDNA15-0042808 | MTA562-16 | KX282970                            | KX282359                     | MTA248   | M Abdullah MTA248    | 2013 | Fresh              | KISR - Sulaibiya Research Station                    |
| Reseda arabica          | EDNA15-0042582 | MTA561-16 | KX282971                            | KX282360                     | MTA482   | M Abdullah MTA482    | 2013 | Fresh              | Abdali                                               |
| Reseda decursiva        | EDNA15-0042782 | MTA564-16 | KX282972                            | KX282361                     | KTUH276  | M Al-Dosari 4756     | 2000 | Herbarium          | Um Neqa near the road side                           |
| Reseda decursiva        | EDNA15-0042847 | MTA565-16 |                                     | KX282362                     | KTUH277  | R Halwagy 1310       | 1976 | Herbarium          | Wadi Al-Batin                                        |
| Reseda decursiva        | EDNA15-0042904 | MTA566-16 |                                     |                              | KTUH278  | R Halwagy 27-76      | 1976 | Herbarium          | Wadi Um Al-Rimam                                     |
| Reseda muricata         | EDNA15-0042646 | MTA569-16 | KX282973                            | KX282363                     | MTA361   | M Abdullah MTA361    | 2013 | Fresh              | Doha Entertainment City                              |
| Reseda muricata         | EDNA15-0042886 | MTA567-16 | KX282974                            | KX282364                     | MTA481   | M Abdullah MTA481    | 2013 | Fresh              | Abdali                                               |
| Reseda muricata         | EDNA15-0042917 | MTA568-16 | KX282975                            | KX282365                     | MTA534   | M Abdullah MTA534    | 2013 | Fresh              | Subiyah                                              |
| Rhanterium epapposum    | EDNA15-0042396 | MTA571-16 | KX282976                            | KX282366                     | MTA296   | M Abdullah MTA296    | 2013 | Fresh              | Al-Liyah                                             |
| Rhanterium epapposum    | EDNA15-0042949 | MTA572-16 | KX282977                            | KX282367                     | MTA330   | M Abdullah MTA330    | 2013 | Fresh              | KISR - Sulaibiya Research Station                    |
| Rhanterium epapposum    | EDNA15-0042392 | MTA570-16 | KX282978                            | KX282368                     | MTA599   | M Abdullah MTA599    | 2013 | Fresh              | Um-Neqa                                              |

| Species             | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                           |
|---------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|--------------------------------------------|
| Roemeria hybrida    | EDNA15-0042642 | MTA573-16 | KX282979                            | KX282369                     | KTUH240  | KT Mathew 5096       | 2001 | Herbarium          | Failaka Island near red palace building    |
| Roemeria hybrida    | EDNA15-0042805 | MTA574-16 | KX282980                            | KX282370                     | KTUH241  | M Al-Dosari 6345     | 2008 | Herbarium          | Al-Abdali Agayep farm                      |
| Roemeria hybrida    | EDNA15-0042827 | MTA575-16 | KX282981                            | KX282371                     | KTUH242  | M Halwagy 1160       | 1972 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi          |
| Rostraria cristata  | EDNA15-0042414 | MTA576-16 | KX282982                            | KX282372                     | KTUH497  | KT Mathew 3017       | 1997 | Herbarium          | Khuwaisat salt marshes                     |
| Rostraria cristata  | EDNA15-0043077 | MTA578-16 |                                     |                              | KTUH498  | KT Mathew 4966       | 2001 | Herbarium          | Nuwaiseeb border station with Saudi Arabia |
| Rostraria cristata  | EDNA15-0043087 | MTA577-16 | KX282983                            | KX282373                     | KTUH499  | KT Mathew 5046       | 2001 | Herbarium          | Doha salt marshes                          |
| Rostraria pumila    | EDNA15-0043127 | MTA579-16 | KX282984                            | KX282374                     | MTA223   | M Abdullah MTA223    | 2013 | Fresh              | Nuwaiseeb                                  |
| Rostraria pumila    | EDNA15-0043136 | MTA580-16 | KX282985                            |                              | MTA363   | M Abdullah MTA363    | 2013 | Fresh              | Doha Entertainment City                    |
| Rostraria pumila    | EDNA15-0043093 | MTA581-16 | KX282986                            | KX282375                     | MTA408   | M Abdullah MTA408    | 2013 | Fresh              | Failaka Island                             |
| Rumex pictus        | EDNA15-0042623 | MTA582-16 | KX282987                            | KX282376                     | KTUH263  | M Al-Dosari 5141     | 2001 | Herbarium          | Wadi Um-Al-Rimam                           |
| Rumex pictus        | EDNA15-0042645 | MTA584-16 |                                     |                              | KTUH264  | M Halwagy 1065       | 1972 | Herbarium          | Jal Az-Zor                                 |
| Rumex pictus        | EDNA15-0042729 | MTA583-16 |                                     |                              | KTUH265  | R Halwagy 265        | 1974 | Herbarium          | Al-Mutla'a                                 |
| Rumex vesicarius    | EDNA15-0042781 | MTA586-16 | KX282988                            | KX282377                     | MTA231   | M Abdullah MTA231    | 2013 | Fresh              | Nuwaiseeb                                  |
| Rumex vesicarius    | EDNA15-0042869 | MTA587-16 | KX282989                            |                              | MTA295   | M Abdullah MTA295    | 2013 | Fresh              | Al-Liyah                                   |
| Rumex vesicarius    | EDNA15-0042829 | MTA585-16 |                                     |                              | MTA434   | M Abdullah MTA434    | 2013 | Fresh              | Failaka Island                             |
| Salicornia europaea | EDNA15-0042766 | MTA590-16 | KX282990                            | KX282378                     | KTUH370  | S Morshed 1055       | 1989 | Herbarium          | Al-Doha salt marshes                       |
| Salicornia europaea | EDNA15-0042957 | MTA589-16 |                                     |                              | KTUH371  | M Al-Dosari 6079     | 2006 | Herbarium          | KISR - Sulaibiya Research Station          |
| Salicornia europaea | EDNA15-0042630 | MTA588-16 | KX282991                            | KX282379                     | MTA348   | M Abdullah MTA348    | 2013 | Fresh              | Sulaibiya - Coastal area                   |
| Salsola cyclophylla | EDNA15-0042711 | MTA592-16 |                                     |                              | KTUH372  | L Boulos 93          | 1993 | Herbarium          | Flora of UAE - Abu Dhabi                   |
| Salsola cyclophylla | EDNA15-0042381 | MTA591-16 |                                     | KX282380                     | KTUH373  | M Bajwa 285-75       | 1975 | Herbarium          | Flora of KSA - Hufuf                       |
| Salsola imbricata   | EDNA15-0042356 | MTA594-16 | KX282992                            | KX282381                     | MTA084   | M Abdullah MTA084    | 2012 | Fresh              | Sixth Ring Road                            |
| Salsola imbricata   | EDNA15-0042921 | MTA593-16 | KX282993                            | KX282382                     | MTA437   | M Abdullah MTA437    | 2013 | Fresh              | Failaka Island                             |
| Salsola imbricata   | EDNA15-0042350 | MTA595-16 | KX282994                            | KX282383                     | MTA476   | M Abdullah MTA476    | 2013 | Fresh              | Abdali                                     |
| Salsola jordanicola | EDNA15-0042792 | MTA597-16 |                                     | KX282384                     | KTUH374  | KT Mathew 5383       | 2004 | Herbarium          | KISR - Sulaibiya Research Station          |
| Salsola jordanicola | EDNA15-0042968 | MTA596-16 | KX282995                            | KX282385                     | KTUH375  | L Boulos 18219       | 1993 | Herbarium          | Al-Khiran 2 KM from Gulf Shore             |

| Species             | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                               |
|---------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|------------------------------------------------|
| Salsola jordanicola | EDNA15-0042978 | MTA598-16 | KX282996                            | KX282386                     | KTUH376  | M Al-Dosari 5577     | 2004 | Herbarium          | Al-Sulaibiyah power station                    |
| Salvadora persica   | EDNA15-0042871 | MTA599-16 | KX282997                            | KX282387                     | KTUH287  | M Al-Dosari 6329     | 2008 | Herbarium          | Sabah Al-Ahmad Nature Reserve                  |
| Salvadora persica   | EDNA15-0042887 | MTA601-16 | KX282998                            | KX282388                     | KTUH288  | M Al-Dosari 5549     | 2004 | Herbarium          | 40 KM from Al-Abdaly border                    |
| Salvadora persica   | EDNA15-0042849 | MTA600-16 | KX282999                            | KX282389                     | MTA356   | M Abdullah MTA356    | 2013 | Fresh              | Doha Entertainment City                        |
| Salvia aegyptiaca   | EDNA15-0042776 | MTA603-16 |                                     |                              | KTUH164  | M Halwagy 1286       | 1976 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi              |
| Salvia aegyptiaca   | EDNA15-0042823 | MTA602-16 | KX283000                            | KX282390                     | KTUH165  | M Al-Dosari 3475     | 1998 | Herbarium          | Failaka Island near old museum                 |
| Salvia aegyptiaca   | EDNA15-0042575 | MTA604-16 |                                     |                              | MTA466   | M Abdullah MTA466    | 2013 | Fresh              | Al-Salmi                                       |
| Salvia lanigera     | EDNA15-0042722 | MTA605-16 | KX283001                            |                              | KTUH166  | KT Mathew 5278       | 2002 | Herbarium          | Al-Khiran near the village                     |
| Salvia lanigera     | EDNA15-0042843 | MTA606-16 | KX283002                            | KX282391                     | KTUH167  | KT Mathew 5421       | 2005 | Herbarium          | Khor Al-Ami between the chalets and the mosque |
| Salvia lanigera     | EDNA15-0042865 | MTA607-16 | KX283003                            | KX282392                     | KTUH168  | R Halwagy 1285       | 1976 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi              |
| Salvia spinosa      | EDNA15-0042747 | MTA610-16 | KX283004                            |                              | KTUH169  | M Leo 165            | 1998 | Herbarium          | KISR - Sulaibiya Research Station              |
| Salvia spinosa      | EDNA15-0042883 | MTA608-16 | KX283005                            | KX282393                     | KTUH170  | KT Mathew 2849       | 1996 | Herbarium          | Al-Salmi along the roadside                    |
| Salvia spinosa      | EDNA15-0042901 | MTA609-16 | KX283006                            | KX282394                     | KTUH171  | R Halwagy 1270       | 1976 | Herbarium          | Al-Shagayah police station                     |
| Savignya parviflora | EDNA15-0042388 | MTA613-16 | KX283007                            | KX282395                     | MTA217   | M Abdullah MTA217    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                  |
| Savignya parviflora | EDNA15-0042373 | MTA612-16 | KX283008                            | KX282396                     | MTA234   | M Abdullah MTA234    | 2013 | Fresh              | KISR - Sulaibiya Research Station              |
| Savignya parviflora | EDNA15-0042910 | MTA611-16 | KX283009                            | KX282397                     | MTA443   | M Abdullah MTA443    | 2013 | Fresh              | Al-Salmi                                       |
| Scabiosa olivieri   | EDNA15-0042771 | MTA616-16 | KX283010                            |                              | KTUH126  | M Al-Dosari 3126     | 1998 | Herbarium          | Al-Salmi border station near Saudi Arabia      |
| Scabiosa olivieri   | EDNA15-0042635 | MTA614-16 | KX283011                            | KX282398                     | MTA564   | M Abdullah MTA564    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                  |
| Scabiosa olivieri   | EDNA15-0042568 | MTA615-16 | KX283012                            | KX282399                     | MTA596   | M Abdullah MTA596    | 2013 | Fresh              | Um-Neqa                                        |
| Scabiosa palaestina | EDNA15-0042820 | MTA617-16 | KX283013                            | KX282400                     | KTUH127  | R Halwagy 1318       | 1976 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi              |
| Scabiosa palaestina | EDNA15-0042612 | MTA618-16 | KX283014                            | KX282401                     | MTA595   | M Abdullah MTA595    | 2013 | Fresh              | Um-Neqa                                        |
| Scabiosa palaestina | EDNA15-0042797 | MTA619-16 |                                     |                              | MTA611   | M Abdullah MTA611    | 2013 | Fresh              | Al-Liyah                                       |
| Schimpera arabica   | EDNA15-0043069 | MTA620-16 | KX283015                            | KX282402                     | MTA293   | M Abdullah MTA293    | 2013 | Fresh              | Al-Liyah                                       |
| Schimpera arabica   | EDNA15-0042407 | MTA621-16 | KX283016                            | KX282403                     | MTA317   | M Abdullah MTA317    | 2013 | Fresh              | KISR - Sulaibiya Research Station              |
| Schimpera arabica   | EDNA15-0043052 | MTA622-16 | KX283017                            | KX282404                     | MTA441   | M Abdullah MTA441    | 2013 | Fresh              | Al-Salmi                                       |

| Species                  | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                                     |
|--------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|------------------------------------------------------|
| Schismus arabicus        | EDNA15-0043059 | MTA625-16 |                                     | KX282405                     | KTUH500  | KT Mathew 3485       | 1998 | Herbarium          | Khuwaisat salt marshes                               |
| Schismus arabicus        | EDNA15-0043089 | MTA623-16 | KX283018                            | KX282406                     | KTUH501  | KT Mathew 5293       | 2002 | Herbarium          | Jahra along AL-Salmo road                            |
| Schismus arabicus        | EDNA15-0043091 | MTA624-16 | KX283019                            | KX282407                     | KTUH502  | M Al-Dosari 4644     | 2000 | Herbarium          | AL-Wafra farms Yousef Kamal farm                     |
| Schismus barbatus        | EDNA15-0043119 | MTA626-16 | KX283020                            | KX282408                     | MTA075   | M Abdullah MTA075    | 2012 | Fresh              | Sixth Ring Road                                      |
| Schismus barbatus        | EDNA15-0043070 | MTA628-16 | KX283021                            | KX282409                     | MTA120   | M Abdullah MTA120    | 2012 | Fresh              | Nuwaiseeb                                            |
| Schismus barbatus        | EDNA15-0043122 | MTA627-16 | KX283022                            | KX282410                     | MTA415   | M Abdullah MTA415    | 2013 | Fresh              | Failaka Island                                       |
| Sclerocephalus arabicus  | EDNA15-0042319 | MTA629-16 | KX283023                            | KX282411                     | KTUH032  | KT Mathew 5350       | 2004 | Herbarium          | Sabah Al-Ahmad Nature Reserve top of the escarpments |
| Sclerocephalus arabicus  | EDNA15-0042860 | MTA631-16 | KX283024                            | KX282412                     | MTA100   | M Abdullah MTA100    | 2012 | Fresh              | Nuwaiseeb -near Saudi Arabia border                  |
| Sclerocephalus arabicus  | EDNA15-0043029 | MTA630-16 | KX283025                            | KX282413                     | MTA386   | M Abdullah MTA386    | 2013 | Fresh              | Failaka Island                                       |
| Scorzonera tortuosissima | EDNA15-0043082 | MTA632-16 | KX283026                            | KX282414                     | KTUH107  | KT Mathew 5307       | 2002 | Herbarium          | Al-Salmi border station near Saudi Arabia            |
| Scrophularia desertii    | EDNA15-0042706 | MTA633-16 | KX283027                            | KX282415                     | MTA095   | M Abdullah MTA095    | 2012 | Fresh              | Nuwaiseeb -near Saudi Arabia border                  |
| Scrophularia desertii    | EDNA15-0042668 | MTA635-16 | KX283028                            |                              | MTA457   | M Abdullah MTA457    | 2013 | Fresh              | Al-Salmi                                             |
| Scrophularia desertii    | EDNA15-0042688 | MTA634-16 | KX283029                            |                              | MTA488   | M Abdullah MTA488    | 2013 | Fresh              | Abdali                                               |
| Seidlitzia rosmarinus    | EDNA15-0042366 | MTA638-16 | KX283030                            | KX282416                     | MTA191   | M Abdullah MTA191    | 2012 | Fresh              | Sulaibiya - Coastal area                             |
| Seidlitzia rosmarinus    | EDNA15-0042391 | MTA637-16 | KX283031                            | KX282417                     | MTA538   | M Abdullah MTA538    | 2013 | Fresh              | Subiyah                                              |
| Seidlitzia rosmarinus    | EDNA15-0042386 | MTA636-16 | KX283032                            | KX282418                     | MTA583   | M Abdullah MTA583    | 2013 | Fresh              | Um-Neqa                                              |
| Senecio glaucus          | EDNA15-0042936 | MTA639-16 | KX283033                            | KX282419                     | MTA073   | M Abdullah MTA073    | 2012 | Fresh              | Sixth Ring Road                                      |
| Senecio glaucus          | EDNA15-0042922 | MTA641-16 | KX283034                            | KX282420                     | MTA439   | M Abdullah MTA439    | 2013 | Fresh              | Failaka Island                                       |
| Senecio glaucus          | EDNA15-0042387 | MTA640-16 | KX283035                            | KX282421                     | MTA497   | M Abdullah MTA497    | 2013 | Fresh              | Abdali                                               |
| Silene arabica           | EDNA15-0042349 | MTA644-16 | KX283036                            | KX282422                     | MTA251   | M Abdullah MTA251    | 2013 | Fresh              | Mina Abdullah                                        |
| Silene arabica           | EDNA15-0042355 | MTA643-16 | KX283037                            |                              | MTA287   | M Abdullah MTA287    | 2013 | Fresh              | Al-Liyah                                             |
| Silene arabica           | EDNA15-0042895 | MTA642-16 | KX283038                            | KX282423                     | MTA433   | M Abdullah MTA433    | 2013 | Fresh              | Failaka Island                                       |
| Silene arenosa           | EDNA15-0042791 | MTA647-16 | KX283039                            |                              | KTUH034  | M Al-Dosari 6430     | 2009 | Herbarium          | Al-Abdali Wleed Al-Omery farm                        |
| Silene arenosa           | EDNA15-0043008 | MTA646-16 | KX283040                            | KX282424                     | KTUH035  | M Al-Saadi 106       | 2002 | Herbarium          | Failaka Island                                       |
| Silene arenosa           | EDNA15-0043014 | MTA645-16 | KX283041                            | KX282425                     | KTUH036  | R Halwagy RH18-83    | 1983 | Herbarium          | AL-Khiran southern coatal area                       |

| Species               | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                                  |
|-----------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|---------------------------------------------------|
| Silene villosa        | EDNA15-0043020 | MTA650-16 | KX283042                            |                              | KTUH038  | M Al-Dosari 3259     | 1998 | Herbarium          | Um Qasr near Iraqi border                         |
| Silene villosa        | EDNA15-0043026 | MTA649-16 | KX283043                            | KX282426                     | KTUH039  | KT Mathew 2635       | 1995 | Herbarium          | Al-Subiyah along Jahra road                       |
| Silene villosa        | EDNA15-0042607 | MTA648-16 | KX283044                            | KX282427                     | MTA233   | M Abdullah MTA233    | 2013 | Fresh              | KISR - Sulaibiya Research Station                 |
| Sisymbrium irio       | EDNA15-0042898 | MTA653-16 | KX283045                            | KX282428                     | MTA064   | M Abdullah MTA064    | 2012 | Fresh              | Sixth Ring Road                                   |
| Sisymbrium irio       | EDNA15-0042368 | MTA652-16 | KX283046                            | KX282429                     | MTA219   | M Abdullah MTA219    | 2013 | Fresh              | Nuwaiseeb                                         |
| Sisymbrium irio       | EDNA15-0042363 | MTA651-16 | KX283047                            | KX282430                     | MTA520   | M Abdullah MTA520    | 2013 | Fresh              | Abdali                                            |
| Sisymbrium orientale  | EDNA15-0042879 | MTA656-16 | KX283048                            | KX282431                     | KTUH422  | M Al-Dosari 1989     | 1997 | Herbarium          | Al-Khuwaisat salt marshes                         |
| Sisymbrium orientale  | EDNA15-0042352 | MTA655-16 | KX283049                            | KX282432                     | KTUH423  | M Al-Dosari 1715     | 1996 | Herbarium          | Al-Jahra - Al-salmi road                          |
| Sisymbrium orientale  | EDNA15-0042358 | MTA654-16 | KX283050                            | KX282433                     | KTUH424  | KT Mathew 4938       | 2000 | Herbarium          | Abdali Sheikh Ali Ajaib farm                      |
| Spergularia diandra   | EDNA15-0042876 | MTA658-16 | KX283051                            | KX282434                     | MTA285   | M Abdullah MTA285    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve                     |
| Spergularia diandra   | EDNA15-0042331 | MTA659-16 | KX283052                            | KX282435                     | MTA337   | M Abdullah MTA337    | 2013 | Fresh              | KISR - Sulaibiya Research Station                 |
| Spergularia diandra   | EDNA15-0042325 | MTA657-16 | KX283053                            | KX282436                     | MTA385   | M Abdullah MTA385    | 2013 | Fresh              | Failaka Island                                    |
| Spergularia marina    | EDNA15-0042815 | MTA661-16 |                                     |                              | KTUH040  | KT Mathew 3472       | 1998 | Herbarium          | Khuwaisat elevated plains leading to salt marshes |
| Spergularia marina    | EDNA15-0043032 | MTA662-16 |                                     |                              | KTUH041  | KT Mathew 3041       | 1997 | Herbarium          | Subiyah gulf shore along the coast                |
| Spergularia marina    | EDNA15-0043038 | MTA660-16 | KX283054                            | KX282437                     | KTUH042  | KT Mathew 4928       | 2000 | Herbarium          | Abdali Sheikh Ali Ajaib farm                      |
| Sphenopus divaricatus | EDNA15-0043073 | MTA663-16 |                                     |                              | KTUH510  | KT Mathew 2770       | 1996 | Herbarium          | Al-Khiran road no 285                             |
| Sphenopus divaricatus | EDNA15-0043109 | MTA664-16 |                                     |                              | KTUH511  | M Al-Dosari 4680     | 2000 | Herbarium          | Um Neqa near Al-Abdaly border                     |
| Sphenopus divaricatus | EDNA15-0043114 | MTA665-16 |                                     | KX282438                     | KTUH512  | KT Mathew 5038       | 2001 | Herbarium          | Doha salt marshes by roadsides                    |
| Sporobolus arabicus   | EDNA15-0043062 | MTA666-16 | KX283055                            | KX282439                     | KTUH506  | R Halwagy 82/56      | 1982 | Herbarium          | Ras Az Zor                                        |
| Sporobolus arabicus   | EDNA15-0043098 | MTA668-16 | KX283056                            | KX282440                     | KTUH507  | KT Mathew 4869       | 2000 | Herbarium          | Failaka Island coastal strip                      |
| Sporobolus arabicus   | EDNA15-0043102 | MTA667-16 | KX283057                            | KX282441                     | KTUH508  | M Al-Dosari 3524     | 1998 | Herbarium          | Subbiyah near police station by the sea shore     |
| Stipa capensis        | EDNA15-0043135 | MTA671-16 | KX283058                            | KX282442                     | MTA250   | M Abdullah MTA250    | 2013 | Fresh              | KISR - Sulaibiya Research Station                 |
| Stipa capensis        | EDNA15-0043126 | MTA670-16 | KX283059                            | KX282443                     | MTA435   | M Abdullah MTA435    | 2013 | Fresh              | Failaka Island                                    |
| Stipa capensis        | EDNA15-0043085 | MTA669-16 | KX283060                            | KX282444                     | MTA528   | M Abdullah MTA528    | 2013 | Fresh              | Abdali                                            |
| Stipagrostis ciliata  | EDNA15-0043113 | MTA673-16 | KX283061                            | KX282445                     | KTUH513  | KT Mathew 4890       | 2001 | Herbarium          | Wadi Um Al-Rimam a closed water catchment         |

| Species              | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|----------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Stipagrostis ciliata | EDNA15-0043116 | MTA672-16 |                                     | KX282446                     | KTUH514  | M Leo 267            | 1998 | Herbarium          | Al-Khiran near the sea shore              |
| Stipagrostis plumosa | EDNA15-0043133 | MTA676-16 | KX283062                            | KX282447                     | KTUH515  | M Al-Dosari 4508     | 1999 | Herbarium          | Al-Dbaiyyah                               |
| Stipagrostis plumosa | EDNA15-0043079 | MTA674-16 | KX283063                            | KX282448                     | MTA031   | M Abdullah MTA031    | 2012 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Stipagrostis plumosa | EDNA15-0043123 | MTA675-16 | KX283064                            | KX282449                     | MTA141   | M Abdullah MTA141    | 2012 | Fresh              | Nuwaiseeb -near Saudi Arabia border       |
| Suaeda aegyptiaca    | EDNA15-0043045 | MTA679-16 | KX283065                            | KX282450                     | MTA129   | M Abdullah MTA129    | 2012 | Fresh              | Nuwaiseeb                                 |
| Suaeda aegyptiaca    | EDNA15-0042861 | MTA678-16 | KX283066                            | KX282451                     | MTA189   | M Abdullah MTA189    | 2012 | Fresh              | KISR - Sulaibiya Research Station         |
| Suaeda aegyptiaca    | EDNA15-0042320 | MTA677-16 | KX283067                            | KX282452                     | MTA190   | M Abdullah MTA190    | 2012 | Fresh              | Sulaibiya - Coastal area                  |
| Suaeda aegyptiaca    | EDNA15-0043027 | MTA680-16 | KX283068                            |                              | MTA392   | M Abdullah MTA392    | 2013 | Fresh              | Failaka Island                            |
| Suaeda vermiculata   | EDNA15-0042816 | MTA682-16 |                                     | KX282453                     | KTUH377  | L Boulos 18205       | 1993 | Herbarium          | Mina Abdullah salt marshes                |
| Suaeda vermiculata   | EDNA15-0042986 | MTA681-16 |                                     |                              | KTUH378  | L Boulos 18215       | 1993 | Herbarium          | Al-Qleiaa near Abdullah Al-Mubarak Mosque |
| Suaeda vermiculata   | EDNA15-0042999 | MTA683-16 | KX283069                            |                              | KTUH379  | M Al-Dosari 6336     | 2008 | Herbarium          | West Jahra Bird Reserve                   |
| Tamarix aphylla      | EDNA15-0042888 | MTA686-16 |                                     | KX282454                     | KTUH304  | KT Mathew 3270       | 1997 | Herbarium          | Al-Salmi near border with Saudi Arabia    |
| Tamarix aphylla      | EDNA15-0042850 | MTA685-16 | KX283070                            | KX282455                     | MTA183   | M Abdullah MTA183    | 2012 | Fresh              | KISR - Sulaibiya Research Station         |
| Tamarix aphylla      | EDNA15-0042872 | MTA684-16 | KX283071                            | KX282456                     | MTA603   | M Abdullah MTA603    | 2013 | Fresh              | Um-Neqa                                   |
| Tamarix aucheriana   | EDNA15-0042586 | MTA689-16 | KX283072                            | KX282457                     | MTA149   | M Abdullah MTA149    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait            |
| Tamarix aucheriana   | EDNA15-0042734 | MTA687-16 | KX283073                            | KX282458                     | MTA192   | M Abdullah MTA192    | 2012 | Fresh              | Sulaibiya - Coastal area                  |
| Tamarix aucheriana   | EDNA15-0042786 | MTA688-16 | KX283074                            |                              | MTA544   | M Abdullah MTA544    | 2013 | Fresh              | Subiyah                                   |
| Teucrium oliverianum | EDNA15-0042914 | MTA692-16 | KX283075                            |                              | KTUH172  | R Halwagy 81/97      | 1981 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi         |
| Teucrium oliverianum | EDNA15-0042616 | MTA691-16 |                                     |                              | MTA458   | M Abdullah MTA458    | 2013 | Fresh              | Al-Salmi                                  |
| Teucrium oliverianum | EDNA15-0042962 | MTA690-16 | KX283076                            | KX282459                     | MTA462   | M Abdullah MTA462    | 2013 | Fresh              | Al-Salmi                                  |
| Teucrium polium      | EDNA15-0042802 | MTA695-16 | KX283077                            |                              | KTUH173  | R Halwagy 761 a      | 1971 | Herbarium          | Wadi um Al-Rimam                          |
| Teucrium polium      | EDNA15-0042927 | MTA694-16 |                                     |                              | KTUH174  | R Halwagy 761        | 1971 | Herbarium          | Al-Khiran                                 |
| Teucrium polium      | EDNA15-0042941 | MTA693-16 |                                     |                              | KTUH175  | M Dib & M Al-Dosari  | 2001 | Herbarium          | Zor power station Khiran                  |
| Traganum nudatum     | EDNA15-0042395 | MTA696-16 |                                     |                              | KTUH380  | Linda Shuaib 380     | 1993 | Herbarium          | Al-Khiran near Gulf shore                 |
| Tribulus terrestris  | EDNA15-0042834 | MTA698-16 | KX283078                            | KX282460                     | KTUH327  | KT Mathew 4094       | 1998 | Herbarium          | Omariyah Agricultural Research station    |

| Species                | EDNA No.       | BOLD ID   | <i>rbcL</i><br>GenBank<br>accession | ITS2<br>GenBank<br>accession | Coll. ID | Collector and number | Year | Collection<br>type | Locality/ region                          |
|------------------------|----------------|-----------|-------------------------------------|------------------------------|----------|----------------------|------|--------------------|-------------------------------------------|
| Tribulus terrestris    | EDNA15-0042626 | MTA697-16 | KX283079                            | KX282461                     | MTA066   | M Abdullah MTA066    | 2012 | Fresh              | Sixth Ring Road                           |
| Tribulus terrestris    | EDNA15-0042813 | MTA699-16 | KX283080                            | KX282462                     | MTA157   | M Abdullah MTA157    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait            |
| Trigonella anguina     | EDNA15-0042928 | MTA701-16 | KX283081                            | KX282463                     | KTUH221  | KT Mathew 2860       | 1996 | Herbarium          | Al-Salmi border station near Saudi Arabia |
| Trigonella anguina     | EDNA15-0043007 | MTA700-16 | KX283082                            | KX282464                     | KTUH222  | M Al-Dosari 5449     | 2003 | Herbarium          | KISR - Sulaibiya Research Station         |
| Trigonella anguina     | EDNA15-0043013 | MTA702-16 | KX283083                            | KX282465                     | KTUH223  | M Al-Dosari 6406     | 2009 | Herbarium          | Sabah Al-Ahmad Nature Reserve             |
| Trigonella hamosa      | EDNA15-0043031 | MTA705-16 | KX283084                            | KX282466                     | KTUH224  | M Al-Dosari 3978a    | 1999 | Herbarium          | Gulf road near KISR water front project   |
| Trigonella hamosa      | EDNA15-0043025 | MTA704-16 | KX283085                            | KX282467                     | MTA242   | M Abdullah MTA242    | 2013 | Fresh              | KISR - Sulaibiya Research Station         |
| Trigonella hamosa      | EDNA15-0042954 | MTA703-16 | KX283086                            | KX282468                     | MTA276   | M Abdullah MTA276    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Trigonella stellata    | EDNA15-0042336 | MTA707-16 | KX283087                            | KX282469                     | MTA299   | M Abdullah MTA299    | 2013 | Fresh              | Al-Liyah                                  |
| Trigonella stellata    | EDNA15-0043043 | MTA708-16 | KX283088                            | KX282470                     | MTA417   | M Abdullah MTA417    | 2013 | Fresh              | Failaka Island                            |
| Trigonella stellata    | EDNA15-0042324 | MTA706-16 | KX283089                            | KX282471                     | MTA474   | M Abdullah MTA474    | 2013 | Fresh              | Abdali                                    |
| Typha domingensis      | EDNA15-0042690 | MTA709-16 | KX283090                            |                              | KTUH516  | KT Mathew 5217       | 2001 | Herbarium          | KISR - Sulaibiya Research Station         |
| Typha domingensis      | EDNA15-0042670 | MTA710-16 |                                     |                              | MTA167   | M Abdullah MTA167    | 2012 | Fresh              | PAAF Al-Rabiyah Nursery Kuwait            |
| Valerianella dufresnia | EDNA15-0042651 | MTA712-16 |                                     |                              | KTUH318  | M Al-Dosari 5138     | 2001 | Herbarium          | Wadi Um Al-Rimam                          |
| Valerianella dufresnia | EDNA15-0042736 | MTA711-16 |                                     |                              | KTUH319  | M Al-Dosari 4994     | 2001 | Herbarium          | Al-Khiran near police station             |
| Zilla spinosa          | EDNA15-0043061 | MTA713-16 | KX283091                            | KX282472                     | KTUH425  | M Halwagy 1154       | 1972 | Herbarium          | Wadi Al-Batin 18 KM N of Al-Salmi         |
| Ziziphus nummularia    | EDNA15-0042783 | MTA714-16 | KX283092                            | KX282473                     | KTUH279  | KT Mathew 5392       | 2004 | Herbarium          | Al-Abdali near border station             |
| Ziziphus nummularia    | EDNA15-0042831 | MTA715-16 | KX283093                            |                              | KTUH280  | M Al-Dosari 5554     | 2004 | Herbarium          | Al-Retqa police station near Iraqi border |
| Ziziphus spina-christi | EDNA15-0042732 | MTA718-16 | KX283094                            | KX282474                     | KTUH281  | KT Mathew 5424       | 2005 | Herbarium          | Al-Wafra farma cultivated tree            |
| Ziziphus spina-christi | EDNA15-0042809 | MTA717-16 | KX283095                            |                              | KTUH282  | MA Raouf 1291        | 1996 | Herbarium          | Al-Salmi border station near Saudi Arabia |
| Ziziphus spina-christi | EDNA15-0042583 | MTA716-16 | KX283096                            | KX282475                     | MTA567   | M Abdullah MTA567    | 2013 | Fresh              | Sabah Al-Ahmad Nature Reserve             |
| Zygophyllum qatarense  | EDNA15-0042691 | MTA720-16 | KX283097                            | KX282476                     | MTA132   | M Abdullah MTA132    | 2012 | Fresh              | Nuwaiseeb                                 |
| Zygophyllum qatarense  | EDNA15-0042905 | MTA721-16 | KX283098                            | KX282477                     | MTA536   | M Abdullah MTA536    | 2013 | Fresh              | Subiyah                                   |
| Zygophyllum qatarense  | EDNA15-0042890 | MTA719-16 | KX283099                            |                              | MTA584   | M Abdullah MTA584    | 2013 | Fresh              | Um-Neqa                                   |

End of Appendix 4.1

# Chapter 5 Next-generation sequencing for molecular reconstruction of plant diversity using eDNA

## **5.1 Introduction**

The ecosystems of Kuwait are under increasing pressure due to climate change, land degradation and habitat loss (Al-Awadhi et al., 2005). Rapid and reliable identification methods of taxa can help with the identification of the region's diversity, planning *in situ* conservation efforts and documenting the progress of restoration. Most field surveys only picture the actual aboveground plant growth and may fail to observe any species missing morphological characters such as leaves and flowers. DNA barcoding as a molecular method could identify specimens by sequencing a standard barcoding gene region and comparing it against a DNA database (e,g, Kress et al., 2005; CBOL, 2009; de Vere et al., 2012; Saarela et al., 2013; Liu et al., 2015); and creating a DNA barcoding reference library will provide a powerful tool for ecologists interested in studying below-ground floras (e.g. Kesanakurti et al., 2011; Hiiesalu et al., 2012; Lamb et al., 2016). Next-Generation Sequence (NGS) based techniques using metagenomics and metabarcoding methods can provide an in-depth and reliable source of identification and molecular information by assessing the biodiversity using environmental DNA (eDNA) samples (Yoccoz et al., 2012).

eDNA is a complex mixture of genetic material extracted from many different remains of organisms collected from the environment such as soil, water and air. Examples of eDNA biodiversity analysis include documenting microbial diversity in soil and water quality (Terrat et al. 2012 and Vierheilig et al. 2015), fungal ecology identification from forest soils (Baptista et al., 2015), herbivore and carnivore diet analysis studies (Pompanon et al., 2012; Shehzad et al., 2012), nematodes communities found in soil (Sapkota and Nicolaisen, 2015), below ground plant root diversity (Lamb et al., 2016), and airborne pollen monitoring (Kraaijeveld et al., 2015). Metagenomics is defined as the direct genetic sequencing of total genomic DNA within an environmental sample (Thomas et al., 2012). These genomes are fragmented and require building a sequence library and are subject to analysis based on available DNA database (Lam et al., 2015). A number of NGS-based applications using metagenomics approach are presented in Table 5.1.

| eDNA Samples                                                                                                             | Note on the analysis methodology                                                                                                           | Platform                       | Reference               |
|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------|
| Organic matter<br>collected from<br>windshield of a moving<br>vehicle                                                    | Galaxy online platform<br>performed class-level<br>phylogenetic profiling                                                                  | 454 FLX Roche Life<br>Sciences | Pond et al., 2009       |
| Airborne microbial<br>communities<br>containing bacterial,<br>fungal and plant<br>sequences                              | Replicate sequences<br>removed using DUST<br>and RepeatMasker;<br>BLASTn method<br>applied                                                 | 454 Titanium                   | Yooseph et al., 2013    |
| Banded leaf monkey<br>( <i>Presbytis femoralis</i> )<br>diet analysis in the<br>rainforest, identifying<br>59 plant spp. | Sequence library<br>constructed (fragment<br>size 280-300 bp)<br>MEGABLAST searches<br>applied using custom<br>plant barcode database      | Illumina HiSeq and<br>MiSeq    | Srivathsan et al., 2016 |
| Leaf-feeding monkey<br>( <i>Pygathrix nemaeus</i> )<br>diet analysis identifying<br>16 plant spp.                        | FASTQC performed<br>followed by FASTA<br>sequences matched<br>against diet and plant<br>barcode custom<br>databases using<br>BLASTn method | Illumina HiSeq                 | Srivathsan et al., 2015 |

Table 5.1 Examples of metagenomics analysis

The major advantages of metagenomic is that it provides analysis of the total diversity of organisms within eDNA sample and sequencing is directly performed using NGS-platforms avoiding the need for prior selection of barcode markers and amplification (Srivathsan et al., 2016). Also, sampling and applying NGS-based methods by molecular ecologists is not restricted to a period of time (i.e. spring season) and is flexible to apply throughout the year according to the monitoring plan (e.g. DNA samples can be collected from the environment any time of the year and processed for sequencing following NGS methods) (Yoccoz et al., 2012). Major Bioinformatics

challenges arise for metagenomics approach is the need of reliable, high-quality reference database to match and identify the unknown sequences of the large sequence data sets.

For the metagenomics approach, following Srivathsan et al. (2015) methodology, an initial assessment of quality scores across Illumina data was performed using FASTQC (<u>www.bioinformatics.bbsrc.ac.uk/projects</u> /fastqc/) and sequences were analysed either with or without assembly. For the assembly-free analyses, FASTQ sequences were converted to FASTA format and matched against custom plant barcode database downloaded from GenBank using BLASTn (Altschul et al., 1990). For the assembled reads, sequences were assembled using SOAPdenovo2 method from Luo et al. (2012) and were matched against the custom plant database using MEGABLAST with a 98 % identity threshold for identification.

DNA metabarcoding approach identifies large sets of taxa present in an environmental DNA sample by limiting the survey to the PCR products and requires careful selection of barcode markers and primers to amplify widely over the taxa of interest (Taberlet et al., 2012; Cristescu, 2014). The use of long DNA barcodes for the taxonomic identification in an environmental mixture containing degraded DNA samples is likely to result in few positive matches and many species not being amplified (Yoccoz et al., 2012). Previous studies used short DNA markers (Table 5.2), widely using the non-coding plastid *trn*L (UAA) intron P6 loop, which have the potential to amplify across degraded DNA environmental samples mainly due to its short length, 10-143 bp (Yoccoz et al., 2012; Taberlet et al., 2007), however, species resolution is minimal, e.g. the P6 loop was able to identify only 47.2 % of 106 species belonging to the Arctic plant collection using a local DNA database (Taberlet et al. 2007). In a recent study by Fahner et al., (2016) a large-scale monitoring survey of plants was evaluated through eDNA metabarcoding of soil samples using four DNA markers: matK, rbcL, ITS2, and the commonly used trnL P6 loop. The authors highly recommended the use of rbcL and ITS2 for biodiversity assessment of vascular plants from soil eDNA based on sequence recovery, annotation, and resolution; the other tested markers, *matK* had the lowest taxonomic recovery and *trnL* P6 loop showed the least taxonomic resolution of recovered vascular plant sequences (Fahner et al., 2016). A number of metabarcoding applications are presented in Table 5.2.

| Samples                                                             | Gene<br>region                                               | NGS Platform                                      | Reference                   |
|---------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-----------------------------|
| Silty sediments eDNA<br>Reconstruction of past Arctic<br>vegetation | trnL, trnL<br>P6 loop                                        | Roche 454 FLX                                     | Sonstebo et al, 2010        |
| Soil eDNA<br>3 Sites: Boreal, Temperate & Tropical                  | <i>trnL</i> P6<br>loop                                       | Roche GS FLX:<br>Roche 454 FLX<br>Illumina GA IIx | Yoccoz et al, 2012          |
| Sediments eDNA<br>Pollen based vegetation analysis                  | <i>trnL</i> P6<br>loop                                       | Roche GS FLX<br>Platform                          | Parducci et al, 2013        |
| Mixed plant roots and leaves samples                                | trnL                                                         | Illumina MiSeq                                    | Lamb et al., 2016           |
| Pollen monitoring                                                   | trnL                                                         | Ion Torrent 314 chip                              | Kraaijeveld et al.,<br>2015 |
| Monitoring plants through metabarcoding of soil eDNA                | <i>trn</i> L P6<br>loop, <i>rbcL</i> ,<br><i>mat</i> K, ITS2 | Illumina MiSeq                                    | Fahner et al., 2016         |

Table 5.2. NGS-based applications using metabarcoding analysis

The metabarcoding method consists of extracting DNA from environmental samples, amplifying DNA markers, sequencing the amplicons using NGS platforms (Table 5.2), analysing the sequences to assessing the taxonomic diversity of the analysed environmental sample and identifying the organisms using available DNA barcode reference libraries (Taberlet et al. 2012; Orgiazzi et al., 2015).

Although the eDNA metabarcoding approach is powerful in species identification, several obstacles exist which can result in its failure. First, false negatives (the present taxa remain undetected) occur in metabarcoding studies due to degradation of template DNA, failures during amplification and sequencing process. The reduction of false negatives can be performed by increasing the number of replicated PCRs which improves the reliability of results (Ficetola et al., 2014). Second, issues with

finding a suitable conserved and short metabarcode region, variable between species for optimal taxonomic resolution and allow amplification from degraded eDNA samples (Epp et al., 2012). Degraded DNA from environmental samples often prevents the recovery of PCR fragments longer than 200 bp, (Goldstein and Rob, 2007). Third, bioinformatics challenges arise from the need for a comprehensive, high-quality reference DNA database (Srivathsan et al., 2016). The primary goal of DNA metabarcoding is to link an unknown DNA sequence to a taxonomic name by comparing the sequences with a reliable reference DNA database that includes specimens properly identified by a taxonomist, as well as their DNA barcodes (Coissac et al., 2012).

This chapter describes a test of metagenomics and metabarcoding as a method to address restoration projects in Kuwait. I will address three questions:

1. Does a useable amount of sequenceable /amplifiable DNA survive in soil samples from arid environments?

2. Does a metagenomics approach identify vascular plants known to grow in the area from soil samples?

3. Does a metabarcoding approach identify vascular plants known to grow in the area from soil samples?

Both sequencing sets will be examined for the presence of sequences identifiable as species known to grow in Kuwait using the barcode database assembled in chapter 4. I will also use public databases (Genbank) to identify any other vascular plant sequences and determine if this matches with what is known to grow in the area and what may have grown there in the past.

#### **5.2 Methods**

## 5.2.1 Study area

Soil samples were collected for investigating the plant diversity below-ground from two sites located at Um Neqa in the north-eastern portion of Kuwait, N  $30^0$  00' and E  $47^0$  55' (Figure 5.1). Um Neqa is a demilitarised zone (DMZ) fence protected with a total area of 246 km<sup>2</sup>. The DMZ area has been fenced since 1994 by the United Nations Iraq-Kuwait Observation Mission (UNIKOM). A total of 120 km<sup>2</sup> of Um Neqa is considered as an open desert area (or open rangeland), as it is relatively distant from residential areas (ca. 50 km from Kuwait City). A neighbouring area, within 3 km west to Um Neqa is Al-Abdaly farms (Figure 5.1), which represents one of three large agricultural areas in Kuwait (other two are Al-Wafra and Kabd). The open desert area of Um Neqa is currently used for camping and livestock grazing.

Site 1 is a DMZ fence protected area of the study area, and site 2 is a disturbed open desert area, which is located outside the DMZ area (ca. 3 km south) (Figure 5.1). United Nations Compensation Commission (UNCC) funds will be spent on restoration and protection of the extended area outside the DMZ of Um Neqa (Figure 1.8, Chapter 1). Um Neqa is proposed as a future protected area as it represents native plant communities: *Hammada* and *Rhanterium* communities (Figure 5.2). The restoration plan, management, and monitoring of these sites will be implemented and monitored by Public Authority for Agriculture and Fisheries (PAAF) with the help of other local institutes in Kuwait and international consultants.

The two study sites at Um Neqa are chosen according to their highly similar functions based on the following features: soil types, geology, geomorphology, and mineral resources (Omar et al., 2001).

The two sites were surveyed in March 2014 to study the plant diversity and the vegetation cover (qualitative data) using the Braun-Blanquet cover-abundance scale (Wikum & Shanholtzer, 1978).

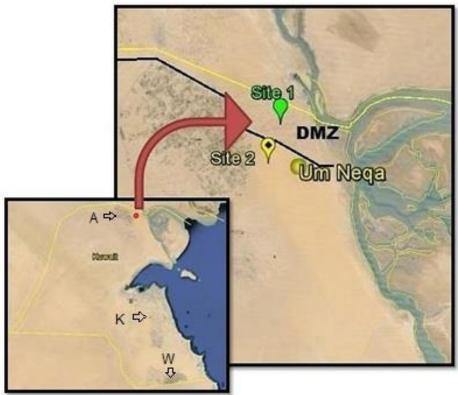



Figure 5.1. A map of Kuwait showing Um Neqa study area (Green icon: Site 1 fence protected area and yellow icon: Site 2 open desert area).
(A) Al-Abdaly farms, (K) Kabd farms and (W) Wafra farms. (Between the black line and the yellow line is the DMZ fenced area) (*Google earth, 2015*).



Figure 5.2 Um Neqa (DMZ) protected area showing *Rhanterium* community (Source: M Abdullah, 2014)

#### 5.2.2. Soil sampling, eDNA extraction and NGS

A total of 40 soil samples representing 20 plots were collected from the two sites. Ten plots at each site divided into upper and lower soil layers. Soil corer metal cylinders were used for sampling (15 cm long x 5 cm in diameter; cleaned with ethanol to remove DNA before use). Rock, gravel and unwanted material removed either by hand or using a sieve of size 2-5 mm screen. For each plot, 30 g of soil from the top layer (0-5 cm depth) and 30 g deep layer (10-15 cm depth) were transferred into a tea bag separately. The tea bags were placed in clear plastic zip lock bags with silica gel granules to dry and preserve eDNA from any moisture before the extraction process following Yoccoz et al. (2012). For each soil sample, eDNA was extracted from 10 g of dry soil using the PowerMax<sup>™</sup> Soil DNA isolation kit following the manufacture's protocol. The soil sampling and DNA extraction methods were adopted from several papers recently published using PowerMax<sup>™</sup> Soil DNA isolation kit (Parducci et al, 2013; Yoccoz et al, 2012; Epp et al., 2012; Sonstebo et al, 2010). The soil samples were imported to the UK in April 2014 and kept in the Ferguson's Science Lab, RBGE, under the Soil Import Licence No. IMP/SOIL/29/2013.

**5.2.2.1 Metagenomics MiSeq library preparation**: The initial investigation of the eight eDNA soil extractions included the followings:

DNA quantification using Qubit<sup>®</sup> 2.0 Fluorometer using Qubit dsDNA High Sensitivity (HS) Assay Kit following the manufacturer's protocol (Catalogue no. Q32866, Invitrogen, UK), where necessary using DNA Speedvac vacuum concentrator, set at low heat for 1 hr.

DNA was visualised using 1 % agarose gel electrophoresis prepared in 100 ml of 1 x TBE buffer, mixed with 10  $\mu$ l of SYBR Safe DNA gel stain (Invitrogen, UK). An amount of 5  $\mu$ l of each sample was mixed with 3  $\mu$ l of gel loading dye. DNA ladder of size 1 Kb plus (Invitrogen, UK) was loaded (3  $\mu$ l) to determine the molecular size of the DNA bands. The solidified agarose gel was loaded with the samples and left to run for 50 mins at 80 V before being visualised using GeneSyn software and Gene Genius UV trans-illuminator system (Figure 5.3).

After the initial investigation, the eDNA samples were sent to Edinburgh Genomics, Ashworth Labs for Illumina MiSeq sequencing to generate 2 x 250 base paired-end sequencing from 1 pool of 8 samples of TruSeq Nano libraries (using TruSeq Nano DNA Library Prep. Kit, Illumina). At Ashworth Labs a quality control (QC) measurements were run on the samples which included a quality and quantity measurements followed by a recommendation of sample level requirements for sequencing. Metagenomics minimum DNA amount required is 250 ng. [Details of Edinburgh Genomics QC measurements and levels of sample requirements are available online at the following website: <u>https://genomics.ed.ac.uk/resources/sample-requirements</u>].

| preparation and sequencing. |                                   |                        |                       |                      |                      |
|-----------------------------|-----------------------------------|------------------------|-----------------------|----------------------|----------------------|
| Soil<br>Sample ID           | Depth of Soil<br>sampling<br>(cm) | DNA<br>Conc<br>(ng/µl) | DNA<br>Volume<br>(µl) | Total<br>DNA<br>(ng) | DNA<br>yield<br>(µg) |
| Site 1:                     |                                   |                        |                       |                      |                      |
| MA1                         | surface (0-5)                     | 97.8                   | 30                    | 2934                 | 2.9                  |
| MA2                         | surface (0-5)                     | 73.45                  | 30                    | 2204                 | 2.2                  |
| MA3                         | deep (15-20)                      | 31.28                  | 40                    | 1251                 | 1.3                  |
| MA4                         | deep (15-20)                      | 23.46                  | 40                    | 938                  | 1.0                  |
| Site 2:                     | -                                 |                        |                       |                      |                      |
| MA5                         | surface (0-5)                     | 18.5                   | 60                    | 1110                 | 1.1                  |
| MA6                         | surface (0-5)                     | 48.75                  | 55                    | 2681                 | 2.2                  |
| <b>MA7</b>                  | deep (15-20)                      | 7.5                    | 30                    | 225                  | 0.2 *                |
| MA8                         | deep (15-20)                      | 5.26                   | 30                    | 158                  | 0.1 *                |

 Table 5.3 Metagenomics: soil eDNA samples submitted for DNA library

 preparation and sequencing.

Site 1 – Fenced area, Site 2 – Open desert area

Asterisks (\*) DNA quantity too low, Edinburgh Genomics did not recommend sequencing

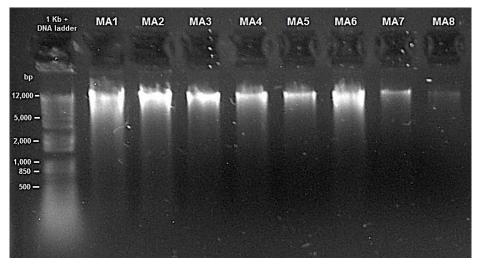



Figure 5.3 eDNA soil extractions.

Lane 1 represents 3 µl of size strands 1 Kb + DNA ladder (Invitrogen, UK), Lanes 2-9 represents samples MA1-MA8. MA1 and MA2 soil eDNA collected from site 1 surface soil (0-5 cm); MA3 and MA4 collected from site 1 deeper soil (10-15 cm); MA5 and MA6 collected from site 2 surface soil (0-5 cm); MA7 and MA8 collected from site 2 deeper soil (10-15 cm). For each sample 5 µl of eDNA extract was mixed with 3 µl of loading dye, loaded in the wells and run on 1 % gel agarose for 50 min at 80 V.

**5.2.2.2 Metabarcoding MiSeq library preparation:** The barcoding markers were chosen according to the DNA database of Kuwait, *rbcL* and ITS2 (Chapter 4). Other DNA markers were tested, *trnL* (UAA) intron and a shorter fragment of this intron the P6 loop. DNA markers and primers used to amplify eDNA from soil samples are listed in Table 5.4.

| <b>DNA markers</b> | Expected<br>Size (bp) | Primers | Sequence (5' - 3')         | Reference              |
|--------------------|-----------------------|---------|----------------------------|------------------------|
| rbcL               | 500                   | aaF     | ATGTCACCACAAACAGAGACTAAAGC | Kress & Erickson, 2007 |
| rbcL               |                       | rev     | GTAAAATCAAGTCCACCRCG       | Kress et al., 2009     |
| ITS2               | 300-460               | S2F     | ATGCGATACTTGGTGTGAAT       | Chen et al., 2010      |
| ITS2               |                       | S3R     | GACGCTTCTCCAGACTACAAT      | Chen et al., 2010      |
| trnL               | 254-767               | с       | CGAAATCGGTAGACGCTACG       | Taberlet et al., 1991  |
| trnL               |                       | d       | GGGGATAGAGGGACTTGAAC       | Taberlet et al., 1991  |
| trnL P6 loop       | 10-143                | g       | GGGCAATCCTGAGCCAA          | Taberlet et al., 2007  |
| trnL P6 loop       |                       | h       | CCATTGAGTCTCTGCACCTATC     | Taberlet et al., 2007  |

Table 5.4 Primer sequences and expected amplicon sizes for each DNA marker

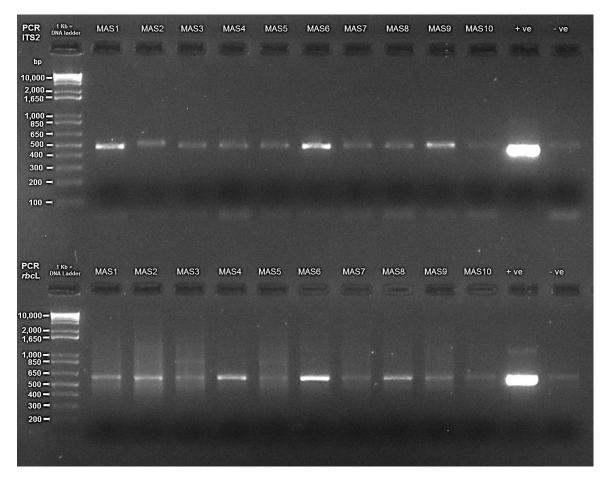
#### Metabarcoding Polymerase Chain Reaction (PCR)

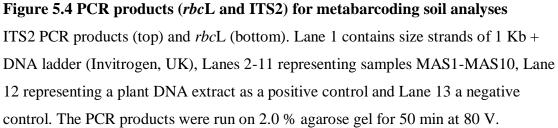
I tested a range of PCR additives such as betaine, bovine serum albumin (BSA), trehalose and / or Combinatorial PCR Enhancer Solution (CES) to optimise the PCR amplification. The primary PCR additive worked best was CES which includes a mixture of 2.7 M betaine, 6.7% dimethyl sulfoxide (DMSO) and 50 mg/ml BSA. Previous metabarcoding studies used mainly BSA solution as an enhancer for PCR (e.g. Sonstebo et al., 2010; EPP et al., 2012; Parducci et al., 2013) which is already included in the CES mix used in this study.

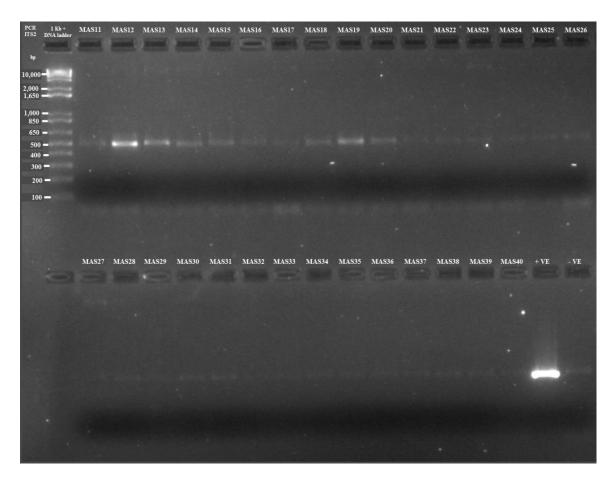
PCR for each DNA marker used was performed using one set of primers each (Table 5.4) in 50  $\mu$ l reactions containing 1.5 Unit BIOTAQ DNA polymerase (Bioline, UK), 1 x PCR buffer, 1.5 mM MgCl<sub>2</sub>, 0.2 mM of each dNTP, 1.5mN of each primer, 1 x

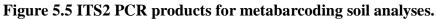
CES and 3.0  $\mu$ l (15-20 ng/ $\mu$ l) genomic DNA. PCR mix used for each marker is presented in Table 5.5.

|                                    | DNA markers |          |          |
|------------------------------------|-------------|----------|----------|
| PCR reaction mix                   | rbcL        | ITS2     | trnL     |
| PCR Buffer                         | 1x          | 1x       | 1x       |
| MgCl <sub>2</sub>                  | 1.5mM       | 1.5mM    | 1.5mM    |
| dNTP mix                           | 0.2mM       | 0.2mM    | 0.2mM    |
| Forward Primer                     | 1.5µM       | 1.5µM    | 1.5µM    |
| Reverse Primer                     | 1.5µM       | 1.5µM    | 1.5µM    |
| CES                                | 1x          | 1x       | 1x       |
| BIOTAQ DNA Polymerase<br>(Bioline) | 0.15U/µL    | 0.15U/µL | 0.15U/µL |
| DNA Template                       | 3µL         | 3µL      | 3µL      |
| Total Volume                       | 50µL        | 50µL     | 50µL     |


Table 5.5 PCR conditions for each DNA marker used


I tested a range of PCR thermocycler conditions for each DNA marker. The range of annealing temperatures tested for *rbcL* was 48 °C to 53 °C and ITS2 was 50 °C to 55 °C, the best annealing temperature for each marker are listed in Table 5.6. The optimised PCR condition for *rbcL* and ITS2 are the ones that worked best in DNA barcoding the flora of Kuwait (see Chapter 4). For *trnL* (UAA) and the shorter fragment P6 loop a range of annealing temperatures was tested from 50 to 55 °C. PCR programmes used for each DNA marker are listed in Table 5.6


| DNA    | PCR cycle                                          |
|--------|----------------------------------------------------|
| marker |                                                    |
| rbcL   | 94 C 1 min                                         |
|        | 94 C 45 sec, 51 C 45 sec, 72 C 2 min, x 40 cycles  |
|        | 72 C 7 min                                         |
|        | 10 C forever                                       |
| ITS2   | 95 C 4 min                                         |
|        | 94 C 1 min, 55 C 1 min, 72 C 45 sec, x 30 cycles   |
|        | 72 C 5 min                                         |
|        | 10 C forever                                       |
| trnL   | 95 C 4 min                                         |
|        | 94 C 1 min, 50-55 C 1 min, 72 C 2 min, x 35 cycles |
|        | 72 C 5 min                                         |
|        | 10 C forever                                       |


Table 5.6 Thermocycler programmes used for each DNA marker

The PCR products were visualised using 2.0 % agarose gel electrophoresis prepared in 100 ml of 1 x TBE buffer, mixed with 10 µl of SYBR Safe DNA gel stain (Invitrogen, UK). An amount of 5 µl of each sample was mixed with 3 µl of gel loading dye. DNA ladder of size 1 Kb plus (Invitrogen, UK) was loaded (3 µl) to determine the molecular size of the DNA bands. The solidified agarose gel was loaded with the samples and left to run for 50 mins at 80 V before being visualised using GeneSyn software and Gene Genius UV trans-illuminator system. Figure 5.4 to Figure 5.6 showing PCR products of *rbc*L and ITS2 for 40 metabarcoding samples including a positive (source: plant DNA) and negative control (Figure 5.4 – 5.6). The primers used for *trn*L (UAA) and the shorter fragment P6 loop did not amplify any of the soil samples.









Lane 1 (top) contains size strands of 1 Kb + DNA ladder (Invitrogen, UK), on top showing ITS2 PCR products for samples MAS11 to MAS26 and bottom MAS27 to MAS40 including plant DNA extract as a positive control followed by a negative control. Samples MAS12, MAS13 and MAS19 were chosen for further analyses. The PCR products were run on 2.0 % agarose gel for 50 min at 80 V.

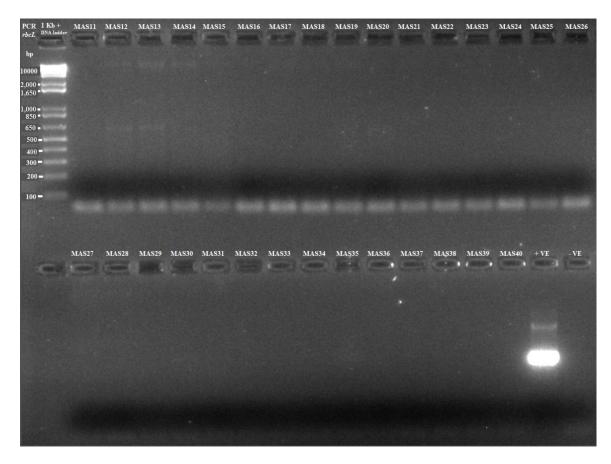



Figure 5.6 rbcL PCR products for metabarcoding soil analyses.

Lane 1 (top) contains size strands of 1 Kb + DNA ladder (Invitrogen, UK), on top showing *rbcL* PCR products for samples MAS11 to MAS26 and bottom MAS27 to MAS40 including plant DNA extract as a positive control followed by a negative control. Samples MAS12 and MAS13 were chosen for further analyses. The PCR products were run on 2.0 % agarose gel for 50 min at 80 V.

Amplified PCR products of *rbcL* and ITS2 samples were purified prior to submission for Illumina sequencing process using Illustra GFX PCR band purification kit (by GE Healthcare Life Sciences, UK) and quantified using Qubit dsDNA HS Assay Kit with Qubit<sup>®</sup> 2.0 Fluorometer. The Qubit quantification readings for the 12 metabarcoding samples including a negative control are listed in Table 5.7. Although the concentrations for *rbcL* and ITS2 amplicons were pooled from an equal column mix of the two PCR reactions prior to submission to Edinburgh Genomics lab., the fluorometer readings did not reflect that in the final readings of the equally pooled, *rbcL*+ITS2 concentration (Table 5.7). This might be due to a possible error in the lab during the preparation of the Qubit solutions, and sample preparations and / or variation of the pooled PCR reactions for each sample resulted in quantification error. Therefore, to avoid any further confusion, I have added readings generated by Edinburgh Genomics Lab. QC report using Agilent 2100 BioAnalyzer (Agilent Technologies) for the twelve metabarcoding samples present in Table 5.8. For the full QC report on metabarcoding samples generated by Edinburgh Genomics please refer to Appendix 5.1. Metabarcoding samples quantification for *rbcL* and ITS2 amplicons are illustrated in Figure 5.7 with the minimum recommendation of DNA concentration required by Edinburgh Genomics.

|              | markers (rocL + 1152) |         |         |           |  |  |  |  |  |  |
|--------------|-----------------------|---------|---------|-----------|--|--|--|--|--|--|
| Soil         | Depth of Soil         | rbcL    | ITS2    | rbcL+ITS2 |  |  |  |  |  |  |
| Sample ID    | Collection            | (ng/ul) | (ng/ul) | Conc      |  |  |  |  |  |  |
|              | (cm)                  |         |         | (ng/ul)   |  |  |  |  |  |  |
| Site 1:      |                       |         |         |           |  |  |  |  |  |  |
| Fenced area  |                       |         |         |           |  |  |  |  |  |  |
| MAS1         | surface (0-5)         | 5.54    | 11.8    | 10.75     |  |  |  |  |  |  |
| MAS2         | surface (0-5)         | 19.1    | 5.66    | 11.25     |  |  |  |  |  |  |
| MAS3         | surface (0-5)         | 6.94    | 3.84    | 7.61      |  |  |  |  |  |  |
| MAS4         | surface (0-5)         | 17.7    | 3.16    | 9.37      |  |  |  |  |  |  |
| MAS5         | surface (0-5)         | 7.30    | 3.86    | 6.06      |  |  |  |  |  |  |
| MAS6         | surface (0-5)         | 41.8    | 12.3    | 17.0      |  |  |  |  |  |  |
| MAS7         | surface (0-5)         | 23.4    | 2.64    | 5.24      |  |  |  |  |  |  |
| MAS8         | surface (0-5)         | 14.6    | 2.24    | 7.49      |  |  |  |  |  |  |
| MAS9         | surface (0-5)         | 36.2    | 4.94    | 15.5      |  |  |  |  |  |  |
| <b>MAS12</b> | deep (10-15)          | 3.02    | 6.72    | 7.36      |  |  |  |  |  |  |
| MAS13        | deep (10-15)          | 9.5     | 3.08    | 5.30      |  |  |  |  |  |  |
| MAS19        | deep (10-15)          | 2.46    | 3.10    | 5.77      |  |  |  |  |  |  |
| Negative     | -                     | *       | *       | *         |  |  |  |  |  |  |
| control      |                       |         |         |           |  |  |  |  |  |  |

 Table 5.7 Metabarcoding: eDNA samples amplified using two DNA barcoding markers (*rbcL* + ITS2)

\*Sample too low to measure with the Qubit® 2.0 Fluorometer (< 0.05 ng/µl)

PCR products for site 2 (open desert area) did not reach Edinburgh Genomics minimum requirements

| Soil<br>Sample ID      | ble ID Depth of Soil<br>Collection<br>(cm) |      | ple ID Collection (ng/µl) ( |       | ITS2<br>(ng/µl) | rbcL + ITS2<br>(ng/µl) |  |
|------------------------|--------------------------------------------|------|-----------------------------|-------|-----------------|------------------------|--|
| Site 1:<br>Fenced area |                                            |      |                             |       |                 |                        |  |
| MAS1                   | surface (0-5)                              | 2.5  | 4.61                        | 7.11  |                 |                        |  |
| MAS2                   | surface (0-5)                              | 2.77 | 2.84                        | 5.61  |                 |                        |  |
| MAS3                   | surface (0-5)                              | 2.1  | 2.04                        | 4.14  |                 |                        |  |
| MAS4                   | surface (0-5)                              | 5.02 | 2.58                        | 7.6   |                 |                        |  |
| MAS5                   | surface (0-5)                              | 1.7  | 2                           | 3.7   |                 |                        |  |
| MAS6                   | surface (0-5)                              | 5.27 | 6.06                        | 11.33 |                 |                        |  |
| MAS7                   | surface (0-5)                              | 2    | 1.85                        | 3.85  |                 |                        |  |
| MAS8                   | surface (0-5)                              | 3    | 1.94                        | 4.94  |                 |                        |  |
| MAS9                   | surface (0-5)                              | 2.84 | 10                          | 12.84 |                 |                        |  |
| MAS12                  | deep (10-15)                               | 0.5  | 5.3                         | 5.8   |                 |                        |  |
| MAS13                  | deep (10-15)                               | 0.1  | 2.63                        | 2.73  |                 |                        |  |
| MAS19                  | deep (10-15)                               | 0    | 4.74                        | 4.74  |                 |                        |  |

Table 5.8. Metabarcoding samples quantification using Edinburgh genomics QCreport

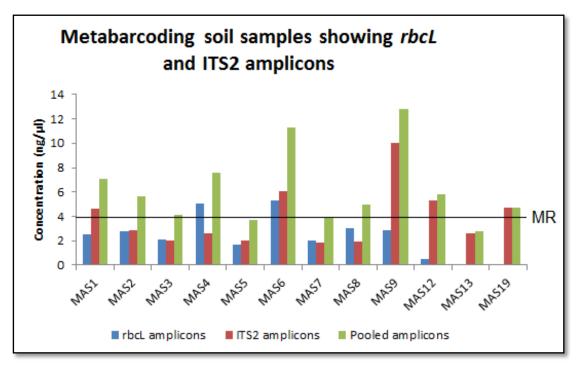



Figure 5.7 Metabarcoding soil samples showing quantification for *rbcL* and ITS2 amplicons based on Edinburgh Genomics QC report

MR- Minimum DNA concentration (4 ng/ $\mu$ l) for sequencing recommended by Edinburgh Genomics. Negative control was too low to measure (< 0.05 ng/ $\mu$ l).

The purified amplicons (rbcL + ITS2) were pooled in equal volumes (40 µl of each amplicon) instead of equimolar due to the base pair size variation and run on 2.0 % agarose gel for 50 min at 80 V represented in Figure 5.8. In the previous chapter, DNA barcoding the flora of Kuwait, the base pair length of the individuals for each of the two DNA markers varied in size, rbcL ranged from 532 to 600 bp and ITS2 from 354 to 417 base pair (see Chapter 4). Therefore, due to the variation in base pair lengths of both markers, molarity was not calculated; amplicons were pooled in equal volumes.

Library preparation and sequencing was performed on each sample containing the pooled amplicons (rbcL + ITS2) by Edinburgh Genomics. At Edinburgh Genomics, Illumina sequencing was performed using MiSeq Reagent v2 sequencing kits capable of producing paired-end sequencing (2 x 250 bp sequences). Individual libraries were generated per sample and high costs precluded the Illumina sequencing of the negative control.

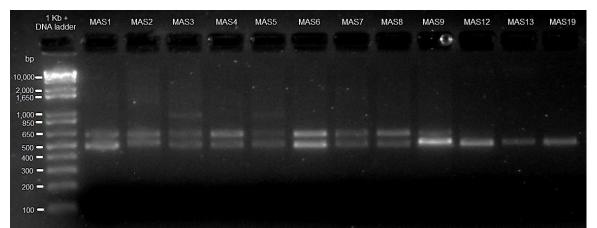



Figure 5.8 PCR amplicons (*rbcL* and ITS2) for Metabarcoding analysis run on 2 % agarose gel for 50 min at 80 V. Lane 1 contains size strands of 1 Kb + DNA ladder (Invitrogen, UK), Lanes 2-12 representing purified pooled amplicon samples, The bands represent the followings: MAS1 two bands (*rbcL* 650 bp; ITS2 500 bp), MAS2 two bands (*rbcL* 650 bp; ITS2 550 bp), MAS3 three bands (*rbcL* 650 bp; 950 bp; ITS2 500 bp), MAS4 two bands (*rbcL* 650 bp; ITS2 550 bp), MAS5 three bands (*rbcL* 650 bp, 950 bp; ITS2 500 bp), MAS6 two bands (*rbcL* 650 bp; ITS2 550 bp), MAS5 three bands (*rbcL* 650 bp; 950 bp; ITS2 500 bp), MAS6 two bands (*rbcL* 650 bp; ITS2 550 bp), MAS5 three bands (*rbcL* 650 bp; ITS2 500 bp), MAS6 two bands (*rbcL* 650 bp; ITS2 550 bp), MAS7 two bands (*rbcL* 650 bp; ITS2 500 bp), MAS8 two bands (*rbcL* 650 bp; ITS2 500 bp), MAS9 two bands (*rbcL* 650 bp; ITS2 500 bp), MAS9 two bands (*rbcL* 650 bp; ITS2 500 bp), MAS12 two bands (*rbcL* 650 bp; ITS2 500 bp), MAS12 two bands (*rbcL* 650 bp; ITS2 500 bp).

# 5.2.3 Next Generation Sequencing Bioinformatics

#### **Bioinformatics metagenomics:**

An initial assessment of quality scores and quality check across Illumina data was performed using FASTQC by Babraham Bioinformatics, (version 0.10.1) (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Sequence assembly and alignment of overlapping reads was performed using Paired-end read merger (PEAR ver. 0.8.1) Zhang et al. (2014) software used for trimming and assembling raw Illumina paired-end reads. Paired-end sequence reads were trimmed of low-quality data, and short reads were discarded. Given the low number of angiosperm sequence reads, further sequence assembly was not required. FASTQ sequences were converted to FASTA for each sample, and paired-end reads were matched against three databases: complete plastid genomes database and Angiosperm plastid sequence database (both downloaded from the NCBI database, accessed on February 2016) and the Kuwaiti flora DNA database. Each sequence read was matched to the databases using BLASTn searches method (Altschul et al., 1990). The BLASTn matches were filtered using percentage sequence identity  $\geq$  98 % and mismatches < 1 %. An overview of the metagenomics sequence workflow is summarised in Figure 5.9.

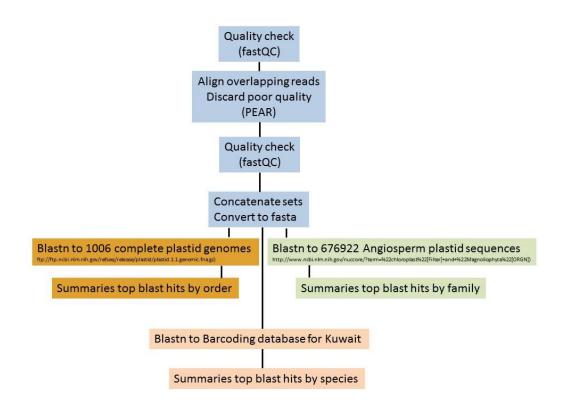



Figure 5.9 Workflow of Metagenomics sequences generated by Illumina platform

# **Bioinformatics metabarcoding:**

For metabarcoding, an initial assessment of quality scores across the raw sequence data was performed using FASTQC by Babraham Bioinformatics (version 0.10.1) (<u>http://www.bioinformatics.babraham.ac.uk/projects /fastqc/</u>) providing a quick

overview and impression of whether the data contains any problems before proceeding to any further analysis. The removal of *rbcL* and ITS2 primers (Table 5.4) was performed using Cutadapt software v 1.4.2 (Martin, 2011). File conversion from FASTQ to FASTA used a python script from (BrianKnaus.com, 2009). Sequence assembly (forward and reverse reads) was performed using PEAR (PEAR software v 0.8.1 by Zhang et al. 2014) for paired-end reads to trim and align overlapping sequences followed by clustering in Qiime software (v 1.8.0, Edgar 2010). When paired-end reads did not overlap, forward and reverse reads were analysed separately. The PEAR assembled sequences were concatenated into a single file and the reads renamed to Qiime specific naming format. The *de novo* clustering of reads was performed using Uclust implemented in Qiime software using Atmosphere, CyVerse's cloud-computing platform (http://www.cyverse.org/atmosphere). Representative sequences from each *de novo* cluster with  $\geq$  100 reads were matched to the flora of Kuwait DNA database and NCBI-Angiosperm database using BLASTn with a cut-off value  $\geq$  99 % ID (Altschul et al., 1990).

#### 5.2.4 Data accessibility

Raw sequences of metagenomics and metabarcoding received from Edinburgh Genomics were uploaded on the European Nucleotide Archive server (ENA: <u>http://www.ebi.ac.uk/ena</u>) for public accessibility and archived under the project accession numbers PRJEB12627 for metagenomics (Table 5.9) and PRJEB13939 for metabarcoding (Table 5.10).

In addition to the archiving of raw sequence at ENA, the data were also processed for metagenomics analyses by the European Bioinformatics Institute (EBI). The details of the pipeline used by EBI metagenomics for processing the raw sequences are documented by Hunter et al. (2014), and an overview of the pipeline is shown in Figure 5.10. Also, to access the metagenomics soil eDNA analyses and the summary for the taxonomic and functional analyses performed by EBI, please refer to the following web address which will direct you to the metagenomics project number ERP014120:

https://www.ebi.ac.uk/metagenomics/projects/ERP014120

The EBI pipeline predicts both rRNA coding and protein coding features. Predicted rRNAs are used for taxonomic analysis and predicted protein coding sequences (pCDS) are fed into the functional analysis steps (Figure 5.10). Ribosomal database project classifier (Cole et al., 2009) and the Greengenes reference database (DeSantis et al., 2006) were used for the classification of archaeal and bacterial species. In this chapter, I will discuss the taxonomic analysis generated by EBI pipeline. A table summarising phylum level taxonomy for the six metagenomics soil samples are represented in Appendix 5.2.

| Soil      | ENA ID     | Run ID     |  |
|-----------|------------|------------|--|
| Sample ID |            |            |  |
| MA1       | ERS1059009 | ERR1260491 |  |
| MA2       | ERS1059010 | ERR1260492 |  |
| MA3       | ERS1059011 | ERR1260493 |  |
| MA4       | ERS1059012 | ERR1260494 |  |
| MA5       | ERS1059013 | ERR1260495 |  |
| MA6       | ERS1059014 | ERR1260496 |  |

Table 5.9 Metagenomics eDNA samples archived by ENA

Table 5.10 Metabarcoding eDNA samples archived by ENA

| Soil      | ENA ID     | Run ID     |
|-----------|------------|------------|
| Sample ID |            |            |
| MAS1      | ERS1147245 | ERR1406352 |
| MAS2      | ERS1147246 | ERR1406353 |
| MAS3      | ERS1147247 | ERR1406354 |
| MAS4      | ERS1147248 | ERR1406355 |
| MAS5      | ERS1147249 | ERR1406356 |
| MAS6      | ERS1147250 | ERR1406357 |
| MAS7      | ERS1147251 | ERR1406358 |
| MAS8      | ERS1147252 | ERR1406359 |
| MAS9      | ERS1147253 | ERR1406360 |
| MAS12     | ERS1147254 | ERR1406361 |
| MAS13     | ERS1147255 | ERR1406362 |
| MAS19     | ERS1147256 | ERR1406363 |

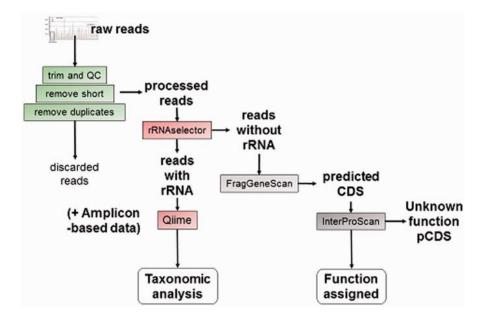



Figure 5.10 An overview of the pipeline used by European Bioinformatics Institute (EBI) metagenomics to process raw sequence files and predict the functions and taxa present in a given sample

# 5.3. Results

# 5.3.1 Plant diversity above ground

Surveying the vegetation above ground, site 1 (DMZ protected) represents rich plant diversity with 27 species compared to the disturbed site 2 with only 5 species present (Table 5.11). Plants listed in Table 5.11 will act as a reference checklist to compare current above-ground diversity of vascular plants with that found below ground. Comparing the two sites together it is clear that the open desert area (site 2) is exposed to grazers and other human disturbing activities, while the fenced area (site 1) is rich in plant diversity due to the protection over a period of 25 years avoiding any grazers and human interference.

# Table 5.11. List of plant species present above ground in the two study sites at Um Neqa

| Site/ Species present                                       | Braun-Blanquet<br>Cover Scale * |
|-------------------------------------------------------------|---------------------------------|
| Site 1: Fence protected area                                |                                 |
| Allium longisepalum Bertol.                                 | 1                               |
| Anisosciadium lanatum Boiss.                                | 1                               |
| Asphodelus tenuifolius Cav.                                 | 1                               |
| Atractylis carduus (Forssk.) C.Chr.                         | 1                               |
| Brassica tournefortii Gouan                                 | 2                               |
| Carduus pycnocephalus L.                                    | 1                               |
| Centaurea pseudosinaica Czerep.                             | +                               |
| Centaurea bruguierana (DC.) HandMazz.                       | 1                               |
| Convolvulus oxyphyllus Boiss.                               | +                               |
| Cuscuta planiflora Ten.                                     | 1                               |
| <i>Gypsophila capillaris</i> (Forssk.) C.Chr.               | 2                               |
| Hammada salicornica (Moq.) Iljin.                           | 4                               |
| Helianthemum lippii (L.) Dum.Cours.                         | 1                               |
| Heliotropium bacciferum Forssk.                             | 1                               |
| Koelpinia linearis Pall.                                    | 1                               |
| Launaea mucronata (Forssk.) Muschl.                         | 1                               |
| <i>Pennisetum divisum</i> (Forssk. ex J.F.Gmel.)<br>Henrard | 2                               |
| Plantago boissieri Hausskn. & Bornm.                        | 2                               |
| Plantago ovata Forssk                                       | 2                               |
| -                                                           |                                 |
| Rhanterium epapposum Oliv.<br>Rumex vesicarius L.           | 4                               |
|                                                             | 1                               |
| Salvia aegyptiaca L.                                        | 1                               |
| Lomelosia olivieri (Coult.) Greuter & Burdet                | 1                               |
| Lomelosia palaestina (L.) Raf.                              | + (rare plant)                  |
| Schismus barbatus (L.) Thell.                               | 2                               |
| Senecio glaucus L.                                          | 2                               |
| <i>Stipa capensis</i> Thunb.                                | 2                               |
| Site 2: Open desert area                                    |                                 |
| Hammada salicornica (Moq.) Iljin                            | +                               |
| Arnebia decumbens (Vent.) Coss. & Kralik                    | 1                               |
| Astragalus schimperi Boiss.                                 | 1                               |
| Gymnarrhena micrantha Desf.                                 | 1                               |
| Moraea sisyrinchium (L.) Ker. Gawl.                         | 1                               |

**\*Braun-Blanquet Cover Scale** (+) sparsely present; cover very small, (1) plentiful, but of small cover value, (2) cover 5-20 % (3) cover 25-50 % (4) cover 50-75 % (5) Cover greater than 75 % (Wikum & Shanholtzer, 1978).

# 5.3.2 Comparison of eDNA quantification

# 5.3.2.1 Metagenomics eDNA yield quantification

All metagenomics eDNA extractions showed high molecular weight DNA with no visible low-weight DNA (Figure 5.3). Comparing DNA yield (Table 5.3) with the gel image representing eDNA soil extractions samples MA1-MA8 (Figure 5.3), the highest DNA yield was retrieved by Samples MA1 (2.9  $\mu$ g), MA2 (2.2  $\mu$ g) and MA6 (2.2  $\mu$ g) shown on the gel image with high density. The lowest DNA yield resulted for soil samples MA7 (0.2  $\mu$ g) and MA8 (0.1  $\mu$ g) shown on the gel image with very low density (Table 5.2 and Figure 5.3).

To investigate the relationship of the amount of DNA yield recovered for each metagenomics sample with the number of trimmed and assembled sequence reads (Table 5.12) a graph illustrating the relation of the two factors are shown in Figure 5.11. There was no relationship between the number of sequences and the DNA yield, samples MA1 and MA2 with the highest DNA yield (2.9 and 2.2  $\mu$ g, respectively) generated the lowest number of sequence reads (986,161 and 424,097, respectively) (Figure 5.11). Furthermore, samples MA3. MA4 and MA5 representing the lowest DNA yields generated the highest number of sequences (Table 5.12 and Figure 5.11)

Samples MA7 and MA8 did not qualify for Illumina sequencing and generated the lowest DNA yields 0.2  $\mu$ g and 0.1  $\mu$ g, respectively. Therefore, Edinburgh Genomics did not recommend sequencing for either MA7 or MA8 samples.

| eDNA<br>samples | Depth of Soil<br>sampling (cm) | Number of trimmed,<br>assembled sequence reads |     |  |  |
|-----------------|--------------------------------|------------------------------------------------|-----|--|--|
| Site 1          |                                |                                                |     |  |  |
| MA1             | surface (0-5)                  | 986,161                                        | 2.9 |  |  |
| MA2             | surface (0-5)                  | 424,097                                        | 2.2 |  |  |
| MA3             | deep (10-15)                   | 2,909,966                                      | 1.3 |  |  |
| MA4             | deep (10-15)                   | 2,851,722                                      | 1.0 |  |  |
| Site 2          |                                |                                                |     |  |  |
| MA5             | surface (0-5)                  | 2,734,219                                      | 1.1 |  |  |
| MA6             | surface (0-5)                  | 2,812,619                                      | 2.2 |  |  |

Table 5.12 Summary of eDNA metagenomic sequence reads and DNA yield representing two study sites

Site 1: Fenced area; Site 2: open desert area

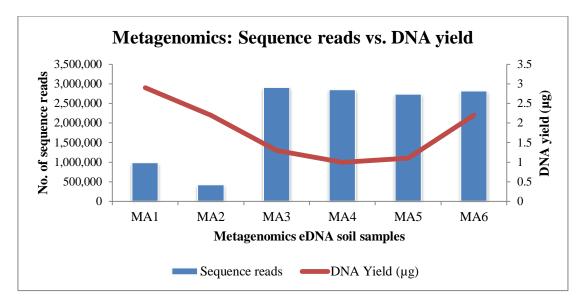



Figure 5.11 Metagenomics analysis illustrating the relation between sequence reads and DNA yields for six eDNA soil samples

#### 5.3.2.2 Metabarcoding eDNA amplicon quantification

Metabacroding samples MAS1-MAS9 generated high molecular weight bands for *rbcL* (c. 600-650 bp) and ITS2 (c. 500-550 bp) amplicons compared with the 1 Kb + ladder (Figure 5.4). Samples MAS12 and MAS13 showed a very light band for *rbcL* amplicons while MAS19 was only represented by ITS2 amplicons (Figure 5.5 and Figure 5.6). Samples MAS3 and MAS5 are showing a third band at approximately 1,000 bp which is representing *rbcL* amplicon and showing on both gels, the PCR gel and the pooled amplicons gel (Figure 5.4 and Figure 5.8). Also, the visibility of a light positive band in the negative control showing in Figure 5.4 and Figure 5.5 indicates that there was some form of contamination. This indicates that any step of the PCR procedure and/ or the preparation of the master mix and/ or the stock reagents used could be contaminated. In case the source of contamination is not from cross contamination of the metabarcoding samples and the DNA source comes from plants floating around the lab and not present in the DNA reference library of the Kuwaiti flora, the issue will be minimised since the metabarcoding samples will only result in matches to plant sequences present in the Kuwaiti DNA database.

The amplicons, representing *rbcL* and ITS2, were pooled in equal volumes instead of equimolar due to the variation in bp size of the PCR products molarity was not calculated. Samples MAS9 and MAS6 generated the highest quantification of pooled amplicon concentration, 12.84 ng/ $\mu$ l and 11.3 ng/ $\mu$ l, respectively (Table 5.7; Figures 5.8). Samples MAS5 and MAS7 represented the lowest quantification of pooled amplicon concentration, 3.7 ng/ $\mu$ l and 3.85 ng/ $\mu$ l, respectively (Table 5.7; Figures 5.8).

Evaluating amplicon concentration/ primer, ITS2 generated the highest concentration for MAS6 (6.06 ng/ $\mu$ l) and the lowest was *rbcL* for MAS12 and MAS13 (0.5 and 0.1 ng/ $\mu$ l, respectively) (Table 5.7; Figures 5.4-5.6 and Figure 5.8).

The comparison of the pooled amplicons concentration with the number of trimmed and assembled sequences showed that there is no match of sequences generated per sample compared with amplicons concentration, e.g. sample MAS13 with the lowest amplicon concentration (2.73 ng/ $\mu$ l) generated more sequence reads (1,131,353) than MAS6 with high amplicon concentration (11.3 ng/ $\mu$ l) which generated only 891,348 sequence reads (Table 5.13).

|                   | 12 samples                                 |                              |  |
|-------------------|--------------------------------------------|------------------------------|--|
| Soil<br>Sample ID | Trimmed,<br>assembled<br>sequence<br>reads | rbcL+ITS2<br>Conc<br>(ng/µl) |  |
| Site 1            |                                            |                              |  |
| MAS1              | 716,735                                    | 7.11                         |  |
| MAS2              | 1,177,465                                  | 5.61                         |  |
| MAS3              | 708,364                                    | 4.14                         |  |
| MAS4              | 932,518                                    | 7.6                          |  |
| MAS5              | 752,954                                    | 3.7                          |  |
| MAS6              | 891,348                                    | 11.33                        |  |
| MAS7              | 993,762                                    | 3.85                         |  |
| MAS8              | 1,038,804                                  | 4.94                         |  |
| MAS9              | 909,167                                    | 12.84                        |  |
| MAS12             | 671,093                                    | 5.8                          |  |
| MAS13             | 1,131,353                                  | 2.73                         |  |
| MAS19             | 662,429                                    | 4.74                         |  |

 Table 5.13 Summary of metabarcoding sequences and DNA yield representing

 12 samples

# 5.3.3 Plant diversity below ground using NGS technologies

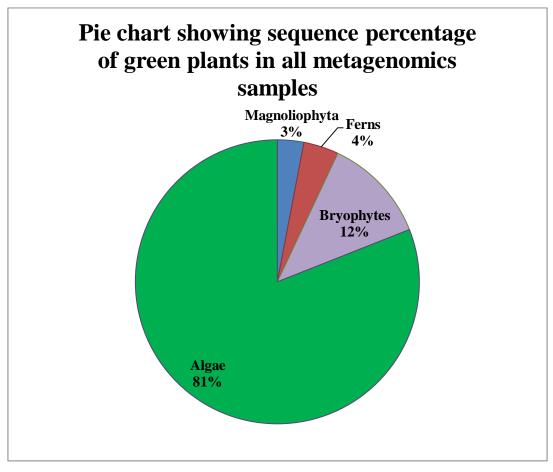
The following sections of the results will be based on BLASTn searches using Genbank database (NCBI Resource Coordinators, 2016) and the Kuwaiti DNA library reference generated in chapter 4. I will first explore the sequenced data generated from metagenomics analyses, followed by PCR-based metabarcoding analyses.

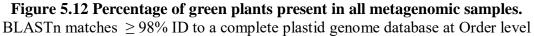
#### **Metagenomics analyses**

#### 5.3.3.1 High order level analyses using whole plastid genomes

In an attempt to study the diversity of green plant material present in the eDNA soil samples, a BLASTn of sequence reads was carried out against a complete plastid genome database. Of the top blast hits to a complete plastid genome database at order level, (blast matches set at  $\geq$  98 % identity and mismatches < 1 % were excluded), the largest proportion of the 0.1 % of the total number of sequences in the datasets of green plants matches across all metagenomics samples (MA1 to MA6) are represented by algae with 81 % (8,931 sequences), followed by 12 % to bryophytes (1,252 sequences), 4 % to ferns (421 sequences) and only 3 % to flowering plants (372 sequences) (Tables 5.14 and Figure 5.12).

Metagenomics samples MA3 and MA4 from site 1 resulted in the greatest numbers of sequence matches to complete plastid genomes at order level, 2,435 and 2,410, respectively (Table 5.14). The lowest number of matches was represented by MA2 with 942 sequences only (Table 5.14).


Algae sequence reads resulted in the highest number of matches in the green plant complete plastid genome database with 42 orders (Table 5.14) represented by green algae (Chlamydomonadales and Chlorellales) and red algae (Cyanidiales and Bangiales). Bryophytes covered the greatest percentage of sequence matches (12 %) after algae (81 %) and are only represented in the data set by two orders: Orthotrichales (mosses) and Pelliales (liverworts). Ferns sequence matched to only 4 % of the data set and are represented by 3 orders: Polypodiales (the largest order of ferns), Isoetales (quillworts) and Schizaeales. Although magnoliophytes sequence reads matches are showing the lowest percentage (3 %) of the data set (Table 5.14), it matched to 6 major orders of the flora of Kuwait belonging to Asparagales, Caryophyllales, Cupressales, Fabales, Geraniales and Lamiales.


In an attempt to study the differences across the two soil depths (0-5 and 10-15 cm), for site 1 (MA1-MA4 are representatives of soil collected from site 1) the soil samples MA3 and MA4 (collected from 10-15 cm depth) resulted in greatest sequence matches compared to the upper surface of the soil, represented by samples MA1 and MA2 (Table 5.14). For site 2 (represented by samples MA5-MA8) it was not possible to compare amongst the two depths since samples MA7 and MA8 were not sequenced for not passing the minimum requirement recommended by Edinburgh Genomics. Comparing only the upper layer of soil collection depth (0-5 cm) across the two collection sites, samples MA5 and MA6 from site 2 (open desert area) showed very

high numbers of sequence matches compared to site 1 (fence protected area) represented by samples MA1 and MA2 (Table 5.14).

| <b>Order level</b> (matches $\geq$ 98 % 1D; mismatches < 1 % were excluded) |                                     |                |               |               |               |               |               |                     |              |
|-----------------------------------------------------------------------------|-------------------------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------------|--------------|
|                                                                             | Site 1                              |                |               | Sit           | Site 2        |               |               |                     |              |
|                                                                             | No. of<br>Order<br>level<br>matches | MA1            | MA2           | MA3           | MA4           | MA5           | MA6           | Total<br>No.<br>Seq | Total<br>(%) |
| Soil sample collection depth (cm)                                           |                                     | 0-5            | 0-5           | 10-15         | 10-15         | 0-5           | 0-5           |                     |              |
| Magnoliophyta                                                               | 6                                   | 44             | 28            | 81            | 79            | 82            | 58            | 372                 | 3 %          |
| Ferns                                                                       | 3                                   | 44             | 26            | 90            | 87            | 105           | 69            | 421                 | 4 %          |
| Bryophytes                                                                  | 2                                   | 166            | 126           | 274           | 252           | 214           | 220           | 1252                | 12 %         |
| Algae                                                                       | 42                                  | 1018           | 762           | 1990          | 1992          | 1534          | 1635          | 8931                | 81 %         |
| Total number of green<br>plant sequences (%)                                | 53                                  | 1272<br>(0.13) | 942<br>(0.22) | 2435<br>(0.1) | 2410<br>(0.1) | 1935<br>(0.1) | 1982<br>(0.1) | 10976<br>(0.1)      |              |
| Total number of raw sequences                                               |                                     | 986161         | 424097        | 2909966       | 2851722       | 2734219       | 2812619       | 127187              | 84           |

Table 5.14 Raw number of sequences with blast hit to a complete plastid genome at Order level (matches  $\geq$  98 % ID; mismatches < 1 % were excluded)





# 5.3.3.2 Family-level analyses using Angiosperm-NCBI plastid sequence database

In an attempt to show finer scale analyses, reads which matched the green plant plastid sequences were blasted to NCBI Angiosperm plastid database to identify the reads at the family level. The sequence matches set at  $\geq$  98 % ID and mismatches < 1 % were excluded. A summary of Blast hits to family level using plastid sequence database are presented in Table 5.15, single asterisks indicating families found in the flora of Kuwait.

The highest number of sequence matches at the family level was generated by samples MA6 (1,996 sequences) followed by MA3 (1,545) and the least was MA1 and MA2, 668 and 238 sequences, respectively (Table 5.15).

Several sequences matched ordinary families of the flora of Kuwait with sequence matches set at  $\geq$  99 % ID and mismatches < 1 % were excluded.and are representatives of Fabaceae, Caryophyllaceae, Convolvulaceae, Cucurbitaceae, Geraniaceae, Orobanchaceae, Poaceae and Verbenaceae (Table 5.14 and Table 2.3). Other families with a high percentage of sequence matches to family level and not familiar to the flora of Kuwait are represented by Cactaceae, Campanulaceae, Ericaceae, Platanaceae and Triuridaceae (Table 5.15).

Comparing the differences between the two soil collection depths, for samples MA1 to MA4 there was variation amongst soil sampled from the surface layer (0-5 cm) and soil sampled from the deep layer (10-15 cm). The top surface layer showed slightly higher percentage (55 - 68 %) of sequence matches than the deep soil layer (42 - 44%) which indicates that, as expected, more plant DNA material is deposited in the top surface layer (Table 5.15).

# Table 5.15 Percentage of Sequence blast hit to a complete plastid genome at Family level (Matches $\geq$ 98 % to Angiosperm-NCBI database; mismatches < 1 %

were excluded)

|                                                       |                                                |        | Per    | Metagenor<br>centage of s | mics sample<br>sequence bl |         |        |
|-------------------------------------------------------|------------------------------------------------|--------|--------|---------------------------|----------------------------|---------|--------|
|                                                       |                                                |        |        | Site 1                    | -                          |         | te 2   |
|                                                       |                                                | MA1    | MA2    | MA3                       | MA4                        | MA5     | MA6    |
| Soil sample collection depth (cm)                     |                                                | 0-5    | 0-5    | 10-15                     | 10-15                      | 0-5     | 0-5    |
| Family                                                | Prevalence in the flora of Kuwait              |        |        |                           |                            |         |        |
| Fabaceae *                                            | Common, wide spread                            | 11.0   | 9.0    | 7.4                       | 6.6                        | 6.9     | 9.8    |
| Convolvulaceae *                                      | Common, moderate spread                        | 6.7    | 4.7    | 4.0                       | 3.8                        | 2.3     | 6.0    |
| Poaceae *                                             | Common, wide spread                            | 6.3    | 4.5    | 3.4                       | 4.0                        | 2.9     | 5.3    |
| Ericaceae                                             | Limited to farms                               | 5.9    | 5.4    | 2.4                       | 2.8                        | 2.2     | 4.1    |
| Caryophyllaceae *                                     | Common, wide spread                            | 4.7    | 3.1    | 3.3                       | 3.2                        | 3.6     | 3.7    |
| Triuridaceae                                          | Uncommon                                       | 4.5    | 3.3    | 2.9                       | 2.9                        | 2.7     | 5.0    |
| Geraniaceae *                                         | Common, moderate spread                        | 4.2    | 3.8    | 3.8                       | 3.3                        | 2.6     | 3.8    |
| Cactaceae                                             | Limited to farms                               | 3.7    | 2.8    | 1.7                       | 1.7                        | 1.6     | 1.5    |
| Platanaceae                                           | Uncommon                                       | 3.4    | 4.5    | 3.0                       | 2.4                        | 1.9     | 3.4    |
| Campanulaceae                                         | Limited to farms                               | 2.9    | 2.6    | 1.8                       | 2.0                        | 1.9     | 2.4    |
| Musaceae                                              | Limited to farms                               | 2.4    | 1.7    | 1.4                       | 1.2                        | 1.6     | 2.3    |
| Orobanchaceae *                                       | Common, wide spread                            | 2.3    | 0.9    | 2.2                       | 2.3                        | 2.2     | 2.6    |
| Orchidaceae                                           | Limited to farms                               | 1.8    | 1.4    | 2.1                       | 2.0                        | 1.7     | 2.1    |
| Chloranthaceae                                        | Uncommon                                       | 1.7    | 1.4    | 0.4                       | 0.4                        | 0.4     | 1.1    |
| Santalaceae                                           | Uncommon                                       | 1.6    | 1.4    | 0.9                       | 0.7                        | 0.5     | 1.6    |
| Verbenaceae *                                         | Limited to farms                               | 1.4    | 0.2    | 0.9                       | 0.7                        | 0.7     | 1.2    |
| Viscaceae                                             | Uncommon                                       | 1.1    | 1.4    | 1.0                       | 0.9                        | 0.5     | 1.5    |
| Schisandraceae                                        | Uncommon                                       | 1.1    | 1.2    | 0.9                       | 0.8                        | 0.3     | 1.1    |
| Cucurbitaceae *                                       | Moderate spread 1 spp. only                    | 1.0    | 1.2    | 0.3                       | 0.2                        | 0.1     | 0.3    |
| Total percentage                                      |                                                | 68     | 55     | 44                        | 42                         | 37      | 59     |
| Total number of seq                                   | uences                                         | 986161 | 424097 | 2909966                   | 2851722                    | 2734219 | 281261 |
| Total number of seq<br>NCBI database misi<br>excluded | uences with blast hit to<br>natches < 1 % were | 668    | 238    | 1180                      | 1116                       | 1017    | 1996   |

Asterisk (\*) indicates families matching the flora of Kuwait

#### 5.3.3.3. Species-level analyses using Angiosperm-NCBI plastid sequence database

The following analysis shows matches to species-level performed on metagenomics samples represented in the Angiosperm-NCBI database and later compared with the results of blast matches against the Kuwaiti DNA database. A total number of 20 species matched across all metagenomics samples (Table 5.16). The highest percentage of sequences matched across all samples is represented by *Cuscuta gronovii* (parasitic plant) (Table 5.16). The only species match to Angiosperm-NCBI database representing the flora of Kuwait is *Silene conica* found in samples MA3, MA4 and MA5. Soil eDNA metagenomics species-level matches to Angiosperm-NCBI plastid sequences are listed in Table 5.16.

The following is a summary of matches representing Table 5.16, organised by highest to lowest percentage of sequence matches:

MA1, a total of 48 % sequence matches, represented mainly by *Cuscuta gronovii*, followed by *Sciaphila densiflora, Silene conica* and *Enkianthus perulatus*.
MA6, a total of 39 % sequence matches mainly represented by *Cuscuta gronovii*, *Sciaphila densiflora, Platanus occidentalis* and *Enkianthus perulatus*.
MA2, a total of 38 % sequence matches, represented by *Cuscuta gronovii*, *Platanus*

occidentalis and Enkianthus perulatus.

MA3, a total of 27 % sequence matches, mainly represented by *Cuscuta gronovii*, *Platanus occidentalis, Sciaphila densiflora* and *Silene conica*.

MA4 and MA5, a total of 21 % and 22 %, respectively, mainly represented by *Sciaphila densiflora, Silene conica,* and *Cuscuta gronovii*.

Comparing the differences between the two soil collection depths, for site 1: samples MA1 to MA4, the top surface layer (0-5 cm) showed almost double the percentage of sequences (38-48 %) of the blast hit than the deep soil layer (21 - 27 %). The results of species level are similar to that of the blast hit results at the family level, which also indicates that more DNA material are deposited in the top surface layer of the soil (Table 5.16).

|                                   |                        | Metagenomics samples Percentage of sequence blast hit<br>to NCBI database |        |         |         |         |        |
|-----------------------------------|------------------------|---------------------------------------------------------------------------|--------|---------|---------|---------|--------|
|                                   |                        | Site 1 Site 2                                                             |        |         |         | Site 2  | 2      |
|                                   |                        | MA1                                                                       | MA2    | MA3     | MA4     | MA5     | MA6    |
| Soil sample collection depth (cm) |                        | 0-5                                                                       | 0-5    | 10-15   | 10-15   | 0-5     | 0-5    |
| Family                            | Species                |                                                                           |        |         |         |         |        |
| Convolvulaceae *                  | Cuscuta gronovii *     | 7                                                                         | 5      | 4       | 2       | 2       | 6      |
| Triuridaceae                      | Sciaphila densiflora   | 4                                                                         | 3      | 3       | 3       | 3       | 5      |
| Ericaceae                         | Enkianthus perulatus   | 4                                                                         | 4      | 2       | 2       | 2       | 3      |
| Caryophyllaceae *                 | Silene conica *        | 4                                                                         | 2      | 2       | 2       | 2       | 2      |
| Platanaceae                       | Platanus occidentalis  | 3                                                                         | 4      | 3       | 2       | 2       | 3      |
| Fabaceae *                        | Pisum sativum          | 3                                                                         | 1      | 2       | 2       | 2       | 2      |
| Poaceae *                         | Hordeum vulgare *      | 2                                                                         | 2      | 1       | 1       | 1       | 2      |
| Geraniaceae *                     | Erodium carvifolium *  | 2                                                                         | 2      | 2       | 1       | 1       | 2      |
| Fabaceae *                        | Medicago truncatula *  | 2                                                                         | 2      | 1       | 1       | 1       | 2      |
| Campanulaceae                     | Trachelium caeruleum   | 2                                                                         | 2      | 1       | 1       | 1       | 2      |
| Musaceae                          | Musa acuminata         | 2                                                                         | 1      | 1       | 1       | 1       | 2      |
| Chloranthaceae                    | Chloranthus spicatus   | 2                                                                         | 1      | 0       | 0       | 0       | 1      |
| Santalaceae                       | Osyris alba            | 2                                                                         | 1      | 1       | 0       | 1       | 2      |
| Poaceae *                         | Oryza sativa           | 1                                                                         | 2      | 0       | 0       | 0       | 1      |
| Verbenaceae *                     | Lippia sidoides        | 1                                                                         | 0      | 1       | 0       | 1       | 1      |
| Fabaceae *                        | Astragalus nakaianus * | 1                                                                         | 1      | 1       | 0       | 0       | 1      |
| Viscaceae                         | Viscum album           | 1                                                                         | 1      | 1       | 0       | 1       | 1      |
| Cactaceae                         | Carnegiea gigantea     | 1                                                                         | 1      | 0       | 0       | 0       | 0      |
| Orobanchaceae *                   | Orobanche purpurea *   | 1                                                                         | 0      | 1       | 1       | 1       | 1      |
| Cucurbitaceae *                   | Cucumis melo           | 1                                                                         | 1      | 0       | 0       | 0       | 0      |
| Total percentage                  |                        | 48                                                                        | 38     | 27      | 21      | 22      | 39     |
| Total number of seq               | uences                 | 986161                                                                    | 424097 | 2909966 | 2851722 | 2734219 | 281261 |

# Table 5.16 Percentage of sequence blast hits to NCBI-Angiosperm plastid sequences at species level (the number of raw sequence reads matched to the Genbank database were converted to percentage) BLASTn cut-off value $\geq$ 98 % ID.

Asterisk (\*) indicates family, genus and/ or species present in the flora of Kuwait

#### 5.3.3.4 Metagenomics analyses using Kuwait DNA database

BLAST of trimmed and assembled reads of the six eDNA samples against the DNA database of Kuwait generated using *rbc*L and ITS2 barcodes assembled in chapter 4 resulted in a total match to 25 accessions belonging to 24 species (Table 5.17). Only ITS2 sequences returned with matches to the six samples and none for *rbcL*. Although several attempts were made to blast metagenomic sequences against the *rbcL* barcodes of the Kuwaiti DNA database, none returned with any sequence matches indicating that sequences are either not represented in the samples or the DNA region is highly degraded. Furthermore, ITS2 sequences were poorly represented in the data sets with a very low number of sequence matches varied from 1 to 9 sequences only per accession (Table 5.17).

The following will be a summary of findings representing Table 5.17, arranged by high to a low number of sequence matches:

**MA6** resulted in the greatest sequence matches to 38 sequences, represented by 13 species (*Trigonella stellata, Trigonella anguina, Erodium cicutarium, Erodium laciniatum, Spergularia marina, Tribulus terrestris, Zygophyllum qatarense, Ducrosia anethifolia, Emex spinosus, Filago pyramidata, Monsonia nivea, Picris babylonica, and Silene arenosa).* 

**MA4** matched 11 sequences represented by 6 species (*Astragalus sieberi, Erodium cicutarium, Linaria simplex, Polycarpon tetraphyllum, Salvadora persica*, and *Spergularia marina*).

**MA3** matched 8 sequences represented by 7 species (*Cressa cretica, Gymnarrhena* micrantha, Leptaleum filifolium, Ochradenus baccatus, Polycarpon tetraphyllum, Salvadora persica, and Spergularia marina).

**MA1** matched 6 sequences represented by 4 species (*Loeflingia hispanica, Sisymbrium orientale, Spergularia marina* and *Trigonella stellate*).

**MA5** matched 4 sequences represented by 4 species (*Ducrosia anethifolia*, *Spergularia marina*, *Suaeda aegyptiaca* and *Trigonella anguina*).

MA2 matched only 1 sequence and represented by Loeflingia hispanica.

The highest match to sequences and present across most samples (except MA2) is represented by *Spergularia marina* (Table 5.17). Only 1 species matched with the above ground plants (Table 5.11) and represented by *Gymnarrhena micrantha* for soil collected from site 1 represented by sample MA3 (Table 5.17).

Comparing the differences between the two soil collection depths for site 1, samples MA1 (collected from 0-5 cm) and MA3 (10-15 cm) resulted in the same number of total sequence matches, 6 and 8 sequences, respectively, indicating that DNA material present at the top surface layer is almost equal to that collected from a deeper layer (Table 5.17). On the other hand, sample MA2 with soil sampled from the surface layer showed very low sequence match (only 1 sequence) when compared to its deeper sample, MA4 with 11 sequence matches (Table 5.17).

In the open desert area (site 2) sample MA6 (collected from the surface layer 0-5 cm) showed a high number of sequence matches (38 sequences), unlike MA5, also collected from the surface layer, only represented by 4 sequences (Table 5.17). Sample MA6 will further be investigated using Principal Component Analysis (PCA) method to understand the variation of sequence matches amongst the metagenomics samples.

|                                                         | Metagenomics samples<br>Raw numbers of sequence matches |     |       |       |     |     |  |
|---------------------------------------------------------|---------------------------------------------------------|-----|-------|-------|-----|-----|--|
|                                                         | Site 1 Site 2                                           |     |       |       |     |     |  |
|                                                         | MA1                                                     | MA2 | MA3   | MA4   | MA5 | MA6 |  |
| Soil sample collection depth (cm)                       | 0-5                                                     | 0-5 | 10-15 | 10-15 | 0-5 | 0-5 |  |
| Species match to accessions from Kuwait<br>DNA database |                                                         |     |       |       |     |     |  |
| Astragalus_sieberi_13-0033616_ITS                       | 0                                                       | 0   | 0     | 1     | 0   | 0   |  |
| Cressa_cretica_15-0042769_ITS                           | 0                                                       | 0   | 1     | 0     | 0   | 0   |  |
| Ducrosia_anethifolia_15-0042889_ITS                     | 0                                                       | 0   | 0     | 0     | 1   | 2   |  |
| Emex_spinosus_15-0042807_ITS                            | 0                                                       | 0   | 0     | 0     | 0   | 1   |  |
| Erodium_cicutarium_15-0042925_ITS                       | 0                                                       | 0   | 0     | 1     | 0   | 7   |  |
| Erodium_laciniatum_15-0042637_ITS                       | 0                                                       | 0   | 0     | 0     | 0   | 4   |  |
| Filago_pyramidata_15-0043060_ITS                        | 0                                                       | 0   | 0     | 0     | 0   | 1   |  |
| Gymnarrhena_micrantha_15-0042372_ITS **                 | 0                                                       | 0   | 1     | 0     | 0   | 0   |  |
| Leptaleum_filifolium_15-0043023_ITS                     | 0                                                       | 0   | 1     | 0     | 0   | 0   |  |
| Linaria_simplex_15-0042585_ITS                          | 0                                                       | 0   | 0     | 1     | 0   | 0   |  |
| Loeflingia_hispanica_15-0042956_ITS                     | 1                                                       | 1   | 0     | 0     | 0   | 0   |  |
| Monsonia_nivea_15-0042939_ITS                           | 0                                                       | 0   | 0     | 0     | 0   | 2   |  |
| Ochradenus_baccatus_15-0042944_ITS                      | 0                                                       | 0   | 1     | 0     | 0   | 0   |  |
| Picris_babylonica_15-0043086_ITS                        | 0                                                       | 0   | 0     | 0     | 0   | 2   |  |
| Polycarpon_tetraphyllum_15-0042739_ITS                  | 0                                                       | 0   | 1     | 1     | 0   | 0   |  |
| Salvadora_persica_15-0042887_ITS                        | 0                                                       | 0   | 2     | 1     | 0   | 0   |  |
| Silene_arenosa_15-0043008_ITS                           | 0                                                       | 0   | 0     | 0     | 0   | 1   |  |
| Sisymbrium_orientale_15-0042352_ITS                     | 1                                                       | 0   | 0     | 0     | 0   | 0   |  |
| Spergularia_marina_15-0042815_ITS                       | 2                                                       | 0   | 1     | 6     | 1   | 3   |  |
| Suaeda_aegyptiaca_15-0043045_ITS                        | 0                                                       | 0   | 0     | 0     | 1   | 0   |  |
| Tribulus_terrestris_15-0042834_ITS                      | 0                                                       | 0   | 0     | 0     | 0   | 1   |  |
| Trigonella_anguina_15-0043007_ITS                       | 0                                                       | 0   | 0     | 0     | 1   | 1   |  |
| Trigonella_anguina_15-0043013_ITS                       | 0                                                       | 0   | 0     | 0     | 0   | 3   |  |
| Trigonella_stellata_15-0043043_ITS                      | 2                                                       | 0   | 0     | 0     | 0   | 9   |  |
| Zygophyllum_qatarense_15-0042905_ITS                    | 0                                                       | 0   | 0     | 0     | 0   | 1   |  |
| Total number of sequence matches                        | 6                                                       | 1   | 8     | 11    | 4   | 38  |  |

# Table 5.17 Raw number of sequences BLAST hit to the Kuwaiti flora DNA database.BLAST cut-off value $\geq$ 98 % ID

(\*\*) Double asterisks represent plant species present above ground during field survey

# 5.3.3.5 PCA analyses

In an attempt to study the correlations amongst the six metagenomics samples using information from blast match of sequences to the DNA database of the Kuwaiti flora, I used Principal Component Analysis (PCA).

PCA showed that sites 1, 2 and 4 are most similar, with sites 6, 3 and 5 distant to that group and to each other. (Table 5.18; Figures 5.13 and 5.14).

 Table 5.18 PCA analysis showing correlated matrix of sequence matches to Kuwait DNA database for six eDNA soil samples

| Importance of components:     | PC1  | PC2  | PC3  | PC4  | PC5  | PC6      |
|-------------------------------|------|------|------|------|------|----------|
| Standard deviation            | 6.18 | 4.70 | 3.60 | 2.93 | 1.80 | 8.27E-15 |
| <b>Proportion of Variance</b> | 0.45 | 0.26 | 0.15 | 0.10 | 0.04 | 0.00E+00 |
| <b>Cumulative Proportion</b>  | 0.45 | 0.71 | 0.86 | 0.96 | 1.00 | 1.00E+00 |

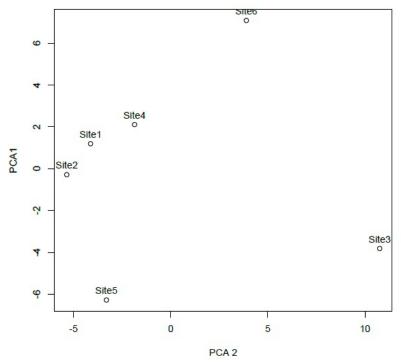



Figure 5.13 Principal component analyses, PCA1 against PCA2 of six eDNA soil samples against DNA barcode database of the flora of Kuwait (match with a score  $\geq 100$ )

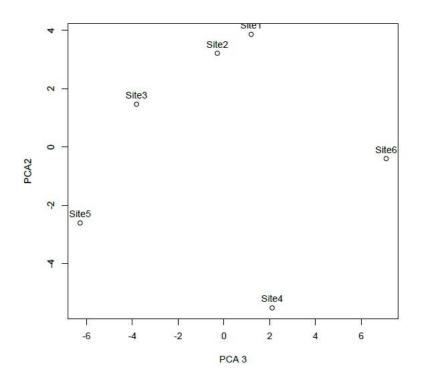



Figure 5.14 Principal component analyses, PCA2 against PCA3 of six eDNA soil samples against DNA barcode database of the flora of Kuwait (match with a score  $\geq 100$ )

#### Metabarcoding analyses

#### 5.3.3.6 Sequence reads for PCR-based metabarcoding samples

PCR amplification only worked for a total of 12 samples, using *rbcL* and ITS2 markers, out of the 40 soil eDNA samples (Table 5.8 and Figures 5.4-5.6). The samples are representatives of total DNA extracted from soil and amplified from site 1 only (fence protected area), none of the samples collected from site 2 (degraded desert area) produced any PCR products. The amplified samples are mainly representatives of soil eDNA collected from the upper soil layer, 0-5 cm (MAS1-MAS9) and only 3 samples are representing samples collected from the deeper soil layer, 10-15 cm (MAS12, MAS13 and MAS19) (Table 5.8 and Figures 5.4-5.6).

For metabarcoding raw sequences, an initial assessment of sequence quality was performed using FASTQC, which provides a quick overview and impression of whether the data contains any problems before proceeding to any further analysis. Sequence assembly was performed using PEAR software for paired-end reads to trim and align overlapping sequences (full details present in section 5.2.3).

Illumina sequencing produced a total number of 10,585,992 sequences of *rbcL* and ITS2 amplicons recovered across all 12 metabarcoding samples. The greatest number of sequence reads recovered by sample MAS2 (1,177,465) and the lowest was MAS19 (662,429) (Table 5.19). The percentage of total sequence length representing high-quality sequences of 473 bp length or better across all samples varied from 14 % (MAS5 and MAS7) to 19 % (MAS2, MAS6 and MAS9). The percentage of sequence length representing sequences of 250 bp length or better across all samples varied from 59 % (MAS19) to 68 % (MAS2, MAS4, and MAS8) (Table 5.19).

The *de novo* clustering of reads was performed using Uclust implemented in Qiime software using Atmosphere, CyVerse's cloud-computing platform. Uclust generated the greatest number of cluster counts for sample MAS6 with 26,161 clusters and the lowest for sample MAS19 with 11,191 (Table 5.19).

|                                                        | Metabarcoding samples |                |                |                |                |                |                |                |                |                |                |                |  |  |
|--------------------------------------------------------|-----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|
|                                                        | MAS1                  | MAS2           | MAS3           | MAS4           | MAS5           | MAS6           | MAS7           | MAS8           | MAS9           | MAS12          | MAS13          | MAS19          |  |  |
| Soil sample collection<br>depth (cm)                   | 0-5                   | 0-5            | 0-5            | 0-5            | 0-5            | 0-5            | 0-5            | 0-5            | 0-5            | 10-15          | 10-15          | 10-15          |  |  |
| FASTA sequence reads summary:                          |                       |                |                |                |                |                |                |                |                |                |                |                |  |  |
| Total length of sequences (bp)                         | 217400379             | 290110239      | 198011657      | 237674808      | 208382092      | 214205228      | 268624645      | 271869941      | 207098128      | 206329677      | 271047175      | 176863223      |  |  |
| Total number of sequences                              | 716735                | 1177465        | 708364         | 932518         | 752954         | 891348         | 993762         | 1038804        | 909167         | 671093         | 1131353        | 662429         |  |  |
| 25 % of total sequence length $\geq$ 473 bp            | 114090<br>15 %        | 223580<br>19 % | 103663<br>15 % | 160280<br>17 % | 108943<br>14 % | 167031<br>19 % | 141420<br>14 % | 163198<br>16 % | 172858<br>19 % | 106092<br>16 % | 183144<br>16 % | 91412<br>14 %  |  |  |
| 50 % of total sequence length $\ge 250$ bp             | 244288<br>34 %        | 513691<br>44 % | 268594<br>38 % | 397955<br>43 % | 280844<br>37 % | 381236<br>43 % | 386239<br>39 % | 435068<br>42 % | 379956<br>42 % | 213935<br>32 % | 454192<br>40 % | 216665<br>33 % |  |  |
| 75 % of total sequence length $\ge 250$ bp             | 461688<br>64 %        | 803801<br>68 % | 466606<br>66 % | 635629<br>68 % | 489226<br>65 % | 595442<br>67 % | 654864<br>66 % | 706938<br>68 % | 589765<br>65 % | 385281<br>60 % | 726027<br>64 % | 393529<br>59 % |  |  |
| Total GC count (bp)                                    | 103160638             | 129962547      | 95405451       | 110743239      | 100644816      | 104785239      | 120763685      | 126026424      | 113162172      | 114288767      | 148592069      | 103893701      |  |  |
| GC (%)                                                 | 47.45                 | 44.8           | 48.18          | 46.59          | 48.3           | 48.92          | 44.96          | 46.36          | 54.64          | 55.39          | 54.82          | 58.74          |  |  |
| BLASTn sequence<br>matches to Kuwaiti DNA<br>database: |                       |                |                |                |                |                |                |                |                |                |                |                |  |  |
| ITS2 total no. of sequences                            | 141548                | 84738          | 110244         | 79220          | 125021         | 246453         | 89911          | 86164          | 462836         | 294326         | 484646         | 393200         |  |  |
| rbcL total no. of sequences                            | 230642                | 179075         | 222800         | 382783         | 237608         | 548782         | 258601         | 382037         | 109868         | 93016          | 47392          | 0              |  |  |
| <i>de novo</i> sequence cluster counts:                | 20234                 | 22971          | 21513          | 14878          | 21832          | 26161          | 25014          | 20839          | 15659          | 19478          | 23178          | 11191          |  |  |

 Table 5.19 Summary for metabarcoding samples showing representative sequences for the FASTA and de novo cluster counts

#### 5.3.3.7 Metabarcoding analyses using Kuwaiti DNA database

BLASTn searches of MiSeq metabarcoding data using *de novo* clustered sequences conducted against the DNA database of Kuwait comprising of *rbcL* and ITS2 for all 12 samples resulted in a total match to 206 accessions representing 139 species with the number of reads in the *de novo* clusters varied from 100 to 127,629 reads (Table 5.19). The BLASTn matches were filtered using percentage sequence identity  $\geq$  99 % and only *de novo* sequence clusters  $\geq$  100 sequences in a cluster included. Also, due to the great number of *de novo* clusters matching multiple identical accessions representing a single species of the Kuwaiti DNA database, the accessions were reduced to a single accession per individual to represent a unique accession rather than a list of repeated accessions representing the same individual (e.g. sample MAS1 *de novo* clustered sequences resulted in a match to 15 identical accessions representing one sequence belonging to Plantago\_ciliata\_13-0034205\_ITS, therefore, the matches were reduced to represent a single accession per individual).

The expected size of the primer set used for *rbcL* amplicons is 500 bp (Kress and Erickson, 2007; Kress et al., 2009) and ITS2 amplicons range from 300 to 460 bp (Chen et al., 2010). The metabarcoding samples amplified from soil eDNA and sequenced by Illumina, resulted in *rbcL* amplicon size range from 150 to 464 bp and ITS2 from 114 to 486 bp, 19 % of the amplicons represented by sequence size > 250 bp, with matches  $\geq$  99 % identity (*E*-value varied from 0.0E+00 to 2.00E-31). The sequence counts of *de novo* cluster reads for *rbcL* amplicons range from 100 to 153,051 counts and ITS2 from 100 to 168,889 counts (Table 5.19).

The BLASTn search results for each sample are presented in two tables showing *rbcL* and ITS2 matches separately, Table 5.20 is showing *rbcL* and Table 5.21 is showing ITS2 matches of *de novo* clustered sequences to the Kuwaiti DNA database. BLASTn matches for all samples represented by *rbcL* sequences resulted in a total match of 119 accessions belonging to 99 species (Table 5.20) and ITS2 resulted in 87 accessions belonging to 76 species (Table 5.21).

The greatest match per sample representing both DNA markers using *de novo* clustered sequences BLASTn to Kuwait DNA database varied from 87 accessions representing 76 species for sample MAS7 to only 30 accessions representing 22 species for sample MAS6 (Table 5.20 and Table 5.21).

The following summarizes BLASTn matches to Kuwaiti DNA database representing species with high sequence reads across all metabarcoding samples:

Representatives of *rbcL* barcodes: *Astragalus spinosus, Cuscuta planiflora, Gymnarrhena micrantha, Polypogon monspeliensis, Savignya parviflora, Trigonella hamosa,* and *Trigonella stellate* (Table 5.20), and ITS2 barcodes: *Astragalus annularis, Cuscuta planiflora, Fagonia glutinosa, Melilotus indicus, Plantago boissieri, Plantago notata* and *Senecio glaucus* (Table 5.21).

The following summarises the plants found present above ground with sequence matches to Kuwaiti DNA database across the metabarcoding samples:

Seventeen species are representatives of *rbcL* barcodes: *Anisosciadium lanatum*, *Asphodelus tenuifolius, Convolvulus oxyphyllus, Cuscuta planiflora, Gymnarrhena micrantha, Gypsophila capillaris, Helianthemum lippii, Heliotropium bacciferum*, *Koelpinia linearis, Launaea mucronata Launaea nudicaulis, Plantago boissieri, Plantago ovata, Rhanterium epapposum, Schismus barbatus, Senecio glaucus,* and *Stipa capensis* (Table 5.20), and 16 species are representatives of ITS2 barcodes: *Anisosciadium lanatum, Asphodelus tenuifolius, Atractylis carduus, Brassica tournefortii, Cuscuta planiflora, Gymnarrhena micrantha, Gypsophila capillaris, Helianthemum lippii, Koelpinia linearis, Launaea mucronata, Launaea nudicaulis, Plantago boissieri, Rhanterium epapposum, Lomelosia palaestina, Senecio glaucus,* and *Stipa capensis* (Table 5.21).

Table 5.20 *de novo* clustered sequence reads blasted against Kuwait DNA database comprising of *rbc*L barcodes (matches  $\geq$  99 % identity, *de novo* clustered reads  $\geq$  100 sequences and matches to multiple accessions of the same individual reduced to a single accession)

|                                           | MAS1  | MAS2  | MAS3  | MAS4   | MAS5  | MAS6   | MAS7 | MAS8   | MAS9  | MAS12 | MAS13 | MAS19 |
|-------------------------------------------|-------|-------|-------|--------|-------|--------|------|--------|-------|-------|-------|-------|
| Soil sample collection depth (cm)         | 0-5   | 0-5   | 0-5   | 0-5    | 0-5   | 0-5    | 0-5  | 0-5    | 0-5   | 10-15 | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions |       |       |       |        |       |        |      |        |       |       |       |       |
| Aegilops_triuncialis_15-0042989_rbcL_     | 107   | 0     | 223   | 140    | 0     | 0      | 0    | 0      | 0     | 0     | 0     | 0     |
| Allium_sindjarense_15-0042724_rbcL_       | 0     | 0     | 570   | 408    | 0     | 0      | 1126 | 351    | 0     | 0     | 0     | 0     |
| Andrachne_telephioides_15-0042569_rbcL_   | 0     | 0     | 0     | 0      | 171   | 0      | 292  | 0      | 0     | 0     | 0     | 0     |
| Anisosciadium_lanatum_15-0042650_rbcL_**  | 0     | 0     | 0     | 0      | 0     | 0      | 0    | 711    | 0     | 233   | 3241  | 0     |
| Artemisia_scoparia_15-0042794_rbcL_       | 335   | 0     | 0     | 0      | 0     | 0      | 0    | 0      | 0     | 0     | 0     | 0     |
| Asphodelus_tenuifolius15-0042594_rbcL_**  | 0     | 0     | 0     | 0      | 0     | 0      | 0    | 0      | 499   | 0     | 0     | 0     |
| Astragalus_annularis_15-0042617_rbcL_     | 0     | 0     | 0     | 0      | 0     | 0      | 0    | 232    | 0     | 0     | 0     | 0     |
| Astragalus_bombycinus13-0034197_rbcL_     | 637   | 437   | 627   | 2000   | 0     | 0      | 0    | 2073   | 0     | 0     | 0     | 0     |
| Astragalus_spinosus13-0034202_rbcL_       | 89325 | 70004 | 84657 | 285435 | 18209 | 2568   | 8247 | 258745 | 20026 | 21851 | 6151  | 0     |
| Astragalus_tribuloides13-0034201_rbcL_    | 0     | 0     | 0     | 0      | 0     | 0      | 0    | 0      | 194   | 0     | 0     | 0     |
| Astragalus_tribuloides13-0033617_rbcL_    | 798   | 727   | 720   | 1069   | 0     | 0      | 285  | 1397   | 1540  | 0     | 0     | 0     |
| Calotropis_procera_15-0042692_rbcL_       | 0     | 0     | 0     | 235    | 681   | 0      | 675  | 0      | 0     | 0     | 0     | 0     |
| Convolvulus_oxyphyllus_15-0042609_rbcL_** | 1211  | 389   | 394   | 695    | 0     | 0      | 613  | 3934   | 554   | 1746  | 4417  | 0     |
| Cuscuta_planiflora_15-0043143_rbcL_**     | 0     | 6139  | 590   | 543    | 2191  | 520205 | 1781 | 831    | 1031  | 9697  | 2090  | 0     |
| Dipcadi_erythraeum_15-0042964_rbcL_       | 0     | 0     | 0     | 0      | 0     | 0      | 0    | 0      | 0     | 4245  | 0     | 0     |
| Diplotaxis_harra_15-0042610_rbcL_         | 1006  | 1805  | 0     | 2171   | 3689  | 114    | 6384 | 2449   | 0     | 777   | 0     | 0     |
| Ducrosia_anethifolia_15-0042851_rbcL_     | 0     | 0     | 0     | 0      | 0     | 0      | 0    | 0      | 0     | 304   | 3277  | 0     |
| Ducrosia_anethifolia_15-0042851_rbcL_     | 0     | 0     | 0     | 0      | 0     | 0      | 479  | 588    | 0     | 0     | 0     | 0     |
| Echium_rauwolfii_15-0042659_rbcL_         | 0     | 0     | 147   | 148    | 241   | 0      | 236  | 209    | 0     | 0     | 0     | 0     |
| Erodium_cicutarium_15-0042912_rbcL_       | 0     | 0     | 0     | 0      | 110   | 0      | 0    | 0      | 0     | 0     | 0     | 0     |

|                                            | MAS1  | MAS2  | MAS3  | MAS4  | MAS5  | MAS6 | MAS7  | MAS8  | MAS9  | MAS12 | MAS13 | MAS19 |
|--------------------------------------------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|
| Soil sample collection depth (cm)          |       | 0-5   | 0-5   | 0-5   | 0-5   | 0-5  | 0-5   | 0-5   | 0-5   | 10-15 | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions  |       |       |       |       |       |      |       |       |       |       |       |       |
| Erodium_glaucophyllum_15-0042661_rbcL_     | 0     | 100   | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Erodium_glaucophyllum_15-0042681_rbcL_     | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 128   | 0     | 0     |
| Erodium_laciniatum_15-0042573_rbcL_        | 123   | 0     | 113   | 0     | 479   | 0    | 0     | 255   | 0     | 0     | 0     | 0     |
| Erodium_laciniatum_15-0042637_rbcL_        | 126   | 116   | 0     | 0     | 284   | 0    | 0     | 143   | 0     | 0     | 0     | 0     |
| Euphorbia_serpens_15-0042911_rbcL_         | 0     | 0     | 0     | 0     | 0     | 0    | 1012  | 381   | 0     | 0     | 0     | 0     |
| Fagonia_glutinosa_15-0042587_rbcL_         | 0     | 0     | 0     | 0     | 0     | 0    | 0     | 0     | 164   | 0     | 0     | 0     |
| Fagonia_glutinosa_15-0042652_rbcL_         | 0     | 0     | 235   | 0     | 0     | 0    | 0     | 312   | 289   | 0     | 0     | 0     |
| Filago_pyramidata_15-0043060_rbcL_         | 1006  | 2057  | 0     | 0     | 354   | 0    | 0     | 613   | 0     | 383   | 873   | 0     |
| Frankenia_pulverulenta_15-0042636_rbcL_    | 0     | 0     | 0     | 0     | 0     | 0    | 101   | 0     | 0     | 0     | 0     | 0     |
| Gymnarrhena_micrantha_15-0042909_rbcL_**   | 23807 | 24618 | 33828 | 26260 | 52088 | 229  | 69769 | 29118 | 24927 | 0     | 0     | 0     |
| Gypsophila_capillaris_15-0043050_rbcL_**   | 765   | 1069  | 2713  | 1145  | 3652  | 0    | 2940  | 1273  | 1342  | 0     | 0     | 0     |
| Helianthemum_kahiricum13-0034219_rbcL_     | 0     | 916   | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Helianthemum_lippii_15-0042591_rbcL_**     | 0     | 1047  | 0     | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Heliotropium_bacciferum_15-0042675_rbcL_** | 0     | 0     | 0     | 0     | 285   | 0    | 0     | 120   | 0     | 0     | 1611  | 0     |
| Heliotropium_kotschyi_15-0042859_rbcL_     | 0     | 0     | 0     | 0     | 131   | 0    | 0     | 0     | 0     | 0     | 1300  | 0     |
| Herniaria_hemistemon_15-0042694_rbcL_      | 0     | 0     | 0     | 0     | 112   | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Hippocrepis_areolata_15-0042572_rbcL_      | 0     | 0     | 1385  | 0     | 1230  | 0    | 265   | 0     | 0     | 0     | 365   | 0     |
| Hippocrepis_areolata_15-0042902_rbcL_      | 0     | 0     | 1398  | 0     | 1365  | 0    | 0     | 0     | 0     | 0     | 0     | 0     |
| Hippocrepis_unisiliquosa_15-0042370_rbcL_  | 0     | 0     | 0     | 0     | 0     | 0    | 268   | 0     | 0     | 0     | 345   | 0     |
| Hordeum_murinum_15-0043128_rbcL_           | 0     | 0     | 113   | 0     | 0     | 0    | 0     | 0     | 0     | 0     | 689   | 0     |
| Hordeum_murinum_15-0043137_rbcL_           | 110   | 632   | 237   | 140   | 377   | 0    | 404   | 118   | 0     | 0     | 754   | 0     |
| Hypecoum_littorale_15-0042571_rbcL_        | 0     | 0     | 0     | 0     | 620   | 0    | 849   | 0     | 0     | 0     | 0     | 0     |
| Ifloga_spicata_15-0043057_rbcL_            | 370   | 4813  | 0     | 0     | 0     | 0    | 110   | 0     | 0     | 0     | 0     | 0     |
| Koelpinia_linearis_15-0043108_rbcL_**      | 1053  | 0     | 0     | 0     | 0     | 0    | 152   | 0     | 0     | 0     | 0     | 0     |

|                                                  | MAS1 | MAS2 | MAS3 | MAS4 | MAS5 | MAS6 | MAS7 | MAS8 | MAS9 | MAS12 | MAS13 | MAS19 |
|--------------------------------------------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Soil sample collection depth (cm)                | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 10-15 | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions        |      |      |      |      |      |      |      |      |      |       |       |       |
| Lasiurus_hirsutus_15-0043083_rbcL_               | 436  | 258  | 0    | 317  | 1072 | 0    | 0    | 419  | 0    | 0     | 671   | 0     |
| Lasiurus_hirsutus_15-0043125_rbcL_               | 0    | 295  | 0    | 0    | 0    | 0    | 246  | 0    | 0    | 0     | 710   | 0     |
| Launaea_mucronata13-0033632_rbcL_**              | 0    | 0    | 0    | 0    | 0    | 7908 | 0    | 0    | 0    | 0     | 0     | 0     |
| Launaea_nudicaulis13-0034214_rbcL_**             | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 100  | 0    | 0     | 0     | 0     |
| Launaea_nudicaulis13-0033631_rbcL_**             | 0    | 0    | 0    | 0    | 0    | 0    | 106  | 0    | 0    | 0     | 0     | 0     |
| Loeflingia_hispanica_15-0042629_rbcL_            | 0    | 305  | 0    | 0    | 2243 | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Lolium_rigidum_15-0042384_rbcL_                  | 0    | 0    | 0    | 0    | 0    | 0    | 102  | 0    | 0    | 0     | 129   | 0     |
| Lotus_halophilus_15-0042348_rbcL_                | 241  | 405  | 0    | 350  | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Lotus_halophilus_15-0042360_rbcL_                | 218  | 415  | 0    | 346  | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Malva_parviflora_15-0042595_rbcL_                | 0    | 0    | 0    | 0    | 234  | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Malva_parviflora_15-0042641_rbcL_                | 0    | 0    | 0    | 0    | 274  | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Medicago_rotata_15-0042380_rbcL_                 | 0    | 902  | 3193 | 323  | 5197 | 0    | 669  | 0    | 221  | 17148 | 0     | 0     |
| Mesembryanthemum_nodiflorum_15-<br>0042560_rbcL_ | 0    | 0    | 0    | 0    | 0    | 0    | 114  | 0    | 0    | 0     | 0     | 0     |
| Neotorularia_torulosa_15-0042564_rbcL_           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 697   | 0     |
| Nitraria_retusa_15-0042931_rbcL_                 | 313  | 0    | 0    | 247  | 796  | 0    | 1284 | 340  | 0    | 0     | 0     | 0     |
| Ochradenus_baccatus_15-0042870_rbcL_             | 0    | 0    | 0    | 173  | 182  | 0    | 383  | 0    | 0    | 0     | 0     | 0     |
| Onobrychis_ptolemaica_15-0042803_rbcL_           | 0    | 0    | 0    | 0    | 0    | 0    | 766  | 0    | 0    | 576   | 0     | 0     |
| Ononis_serrata_15-0042997_rbcL_                  | 285  | 358  | 516  | 0    | 419  | 0    | 0    | 353  | 344  | 0     | 0     | 0     |
| Panicum_turgidum_15-0042398_rbcL_                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 249  | 0     | 0     | 0     |
| Paronychia_arabica_15-0042343_rbcL_              | 0    | 0    | 0    | 0    | 1869 | 0    | 510  | 0    | 0    | 0     | 0     | 0     |
| Peganum_harmala_15-0042965_rbcL_                 | 110  | 0    | 0    | 0    | 137  | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Phragmites_australis_15-0043065_rbcL_            | 0    | 719  | 184  | 0    | 791  | 0    | 0    | 162  | 0    | 0     | 0     | 0     |
| Picris_babylonica_15-0043054_rbcL_               | 0    | 0    | 0    | 0    | 131  | 0    | 0    | 0    | 0    | 961   | 6493  | 0     |
| Picris_babylonica_15-0043066_rbcL_               | 0    | 0    | 0    | 0    | 203  | 0    | 0    | 0    | 0    | 0     | 5927  | 0     |

|                                           | MAS1  | MAS2  | MAS3  | MAS4  | MAS5   | MAS6 | MAS7   | MAS8  | MAS9  | MAS12 | MAS13 | MAS19 |
|-------------------------------------------|-------|-------|-------|-------|--------|------|--------|-------|-------|-------|-------|-------|
| Soil sample collection depth (cm)         | 0-5   | 0-5   | 0-5   | 0-5   | 0-5    | 0-5  | 0-5    | 0-5   | 0-5   | 10-15 | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions |       |       |       |       |        |      |        |       |       |       |       |       |
| Plantago_boissieri_15-0042580_rbcL_**     | 0     | 0     | 3441  | 3525  | 4526   | 1138 | 0      | 0     | 0     | 0     | 520   | 0     |
| Plantago_coronopus_15-0042566_rbcL_       | 0     | 0     | 0     | 0     | 0      | 0    | 456    | 0     | 0     | 0     | 0     | 0     |
| Plantago_notata_13-0033628_rbcL_          | 29988 | 0     | 0     | 0     | 0      | 0    | 2060   | 2135  | 1549  | 0     | 0     | 0     |
| Plantago_ovata_15-0042621_rbcL_**         | 29279 | 0     | 0     | 0     | 0      | 0    | 3030   | 2149  | 1337  | 0     | 0     | 0     |
| Plantago_psammophila13-0034207_rbcL_      | 270   | 0     | 3561  | 3544  | 4420   | 1089 | 0      | 0     | 0     | 0     | 475   | 0     |
| Polycarpaea_repens_15-0042967_rbcL_       | 0     | 0     | 0     | 0     | 0      | 0    | 0      | 122   | 0     | 0     | 0     | 0     |
| Polycarpaea_repens_15-0042977_rbcL_       | 0     | 0     | 0     | 0     | 0      | 0    | 0      | 244   | 0     | 0     | 0     | 0     |
| Polycarpaea_robbairea_15-0042907_rbcL_    | 0     | 119   | 0     | 0     | 0      | 0    | 0      | 0     | 0     | 0     | 0     | 0     |
| Polypogon_monspeliensis_15-0042411_rbcL_  | 0     | 0     | 0     | 0     | 111    | 0    | 157    | 0     | 0     | 0     | 0     | 0     |
| Polypogon_monspeliensis_15-0043056_rbcL_  | 37993 | 46087 | 65709 | 43474 | 113777 | 6500 | 116966 | 53532 | 42897 | 404   | 0     | 0     |
| Pulicaria_undulata_15-0042979_rbcL_       | 0     | 0     | 135   | 0     | 134    | 0    | 0      | 0     | 0     | 0     | 0     | 0     |
| Reichardia_tingitana_15-0043000_rbcL_     | 0     | 0     | 120   | 0     | 0      | 6848 | 200    | 0     | 0     | 0     | 0     | 0     |
| Reseda_arabica_15-0042582_rbcL_           | 0     | 0     | 0     | 0     | 0      | 0    | 239    | 0     | 0     | 0     | 0     | 0     |
| Reseda_muricata_15-0042646_rbcL_          | 327   | 121   | 0     | 176   | 0      | 0    | 0      | 0     | 0     | 0     | 0     | 0     |
| Rhanterium_epapposum_15-0042392_rbcL_**   | 0     | 0     | 0     | 0     | 0      | 0    | 123    | 0     | 0     | 0     | 0     | 0     |
| Rostraria_pumila_15-0043127_rbcL_         | 0     | 0     | 0     | 0     | 0      | 0    | 0      | 0     | 0     | 0     | 263   | 0     |
| Salicornia_europaea_15-0042630_rbcL_      | 0     | 0     | 0     | 116   | 101    | 0    | 0      | 181   | 0     | 0     | 0     | 0     |
| Salvadora_persica_15-0042871_rbcL_        | 0     | 0     | 0     | 0     | 0      | 0    | 1115   | 0     | 0     | 0     | 0     | 0     |
| Salvia_spinosa_15-0042901_rbcL_           | 0     | 0     | 148   | 0     | 138    | 0    | 984    | 332   | 327   | 0     | 0     | 0     |
| Savignya_parviflora_15-0042910_rbcL_      | 2482  | 2183  | 2946  | 2527  | 4438   | 0    | 7456   | 2658  | 1830  | 824   | 1876  | 0     |
| Schimpera_arabica_15-0043052_rbcL_        | 103   | 0     | 0     | 0     | 0      | 0    | 185    | 0     | 0     | 0     | 0     | 0     |
| Schismus_arabicus_15-0043059_rbcL_        | 0     | 0     | 0     | 0     | 0      | 0    | 0      | 0     | 644   | 0     | 235   | 0     |
| Schismus_barbatus_15-0043122_rbcL_**      | 0     | 0     | 0     | 0     | 0      | 0    | 0      | 0     | 617   | 0     | 153   | 0     |
| Sclerocephalus_arabicus_15-0042319_rbcL_  | 101   | 0     | 0     | 0     | 0      | 0    | 0      | 0     | 0     | 0     | 0     | 0     |

|                                           | MAS1 | MAS2 | MAS3 | MAS4 | MAS5 | MAS6 | MAS7 | MAS8 | MAS9 | MAS12 | MAS13 | MAS19 |
|-------------------------------------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Soil sample collection depth (cm)         | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 10-15 | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions |      |      |      |      |      |      |      |      |      |       |       |       |
| Sclerocephalus_arabicus_15-0042860_rbcL_  | 198  | 155  | 843  | 0    | 0    | 0    | 0    | 772  | 309  | 0     | 0     | 0     |
| Scrophularia_desertii_15-0042706_rbcL_    | 0    | 123  | 0    | 408  | 616  | 0    | 842  | 153  | 0    | 0     | 0     | 0     |
| Seidlitzia_rosmarinus_15-0042366_rbcL_    | 1079 | 952  | 2230 | 566  | 1495 | 0    | 2773 | 1535 | 985  | 191   | 0     | 0     |
| Senecio_glaucus_15-0042387_rbcL_**        | 0    | 0    | 420  | 206  | 767  | 552  | 362  | 0    | 0    | 206   | 1265  | 0     |
| Senecio_glaucus_15-0042922_rbcL_**        | 0    | 0    | 448  | 185  | 580  | 0    | 500  | 140  | 134  | 1372  | 0     | 0     |
| Silene_arenosa_15-0043008_rbcL_           | 1232 | 1875 | 1734 | 280  | 0    | 264  | 1109 | 2285 | 1700 | 0     | 538   | 0     |
| Silene_villosa_15-0042607_rbcL_           | 0    | 2799 | 0    | 0    | 0    | 348  | 260  | 3075 | 2579 | 0     | 293   | 0     |
| Sisymbrium_irio_15-0042368_rbcL_          | 0    | 0    | 105  | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Sisymbrium_irio_15-0042898_rbcL_          | 0    | 0    | 0    | 0    | 142  | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Sisymbrium_orientale_15-0042352_rbcL_     | 0    | 125  | 130  | 1011 | 156  | 0    | 985  | 497  | 0    | 0     | 313   | 0     |
| Spergularia_marina_15-0042815_rbcL_       | 509  | 924  | 0    | 0    | 144  | 0    | 1558 | 0    | 107  | 0     | 827   | 0     |
| Sporobolus_arabicus_15-0043062_rbcL_      | 0    | 140  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Stipa_capensis_15-0043126_rbcL_**         | 0    | 1644 | 0    | 136  | 0    | 0    | 570  | 0    | 0    | 14801 | 102   | 0     |
| Stipa_capensis_15-0043135_rbcL_**         | 0    | 103  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 16500 | 0     | 0     |
| Suaeda_aegyptiaca_15-0043045_rbcL_        | 0    | 0    | 0    | 0    | 434  | 0    | 169  | 0    | 0    | 0     | 0     | 0     |
| Suaeda_vermiculata_15-0042999_rbcL_       | 0    | 0    | 0    | 116  | 0    | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Teucrium_oliverianum_15-0042616_rbcL_     | 532  | 245  | 636  | 825  | 0    | 0    | 2619 | 497  | 0    | 392   | 0     | 0     |
| Teucrium_polium_15-0042941_rbcL_          | 0    | 0    | 0    | 0    | 483  | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Tribulus_terrestris_15-0042626_rbcL_      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 124  | 0    | 0     | 101   | 0     |
| Trigonella_hamosa_15-0042954_rbcL_        | 1637 | 1401 | 4352 | 1549 | 202  | 124  | 6400 | 1805 | 1600 | 0     | 0     | 0     |
| Trigonella_stellata_15-0043043_rbcL_      | 1467 | 417  | 1719 | 1406 | 3578 | 108  | 6081 | 1829 | 1264 | 0     | 0     | 0     |
| Typha_domingensis_15-0042670_rbcL_        | 0    | 0    | 0    | 0    | 403  | 0    | 0    | 0    | 0    | 0     | 0     | 0     |
| Zilla_spinosa_15-0043061_rbcL_            | 1063 | 1136 | 1348 | 280  | 388  | 787  | 240  | 1365 | 609  | 277   | 0     | 0     |
| Ziziphus_nummularia_15-0042831_rbcL_      | 0    | 0    | 0    | 0    | 0    | 0    | 106  | 119  | 0    | 0     | 0     | 0     |

|                                           | MAS1 | MAS2 | MAS3 | MAS4 | MAS5 | MAS6 | MAS7 | MAS8 | MAS9 | MAS12 | MAS13 | MAS19 |
|-------------------------------------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|
| Soil sample collection depth (cm)         | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 10-15 | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions |      |      |      |      |      |      |      |      |      |       |       |       |
| Ziziphus_spina-christi_15-0042583_rbcL_   | 0    | 0    | 112  | 0    | 0    | 0    | 349  | 338  | 0    | 0     | 0     | 0     |
| Zygophyllum_qatarense_15-0042691_rbcL_    | 0    | 0    | 239  | 0    | 374  | 0    | 279  | 273  | 0    | 0     | 280   | 0     |
| Zygophyllum_qatarense_15-0042890_rbcL_    | 0    | 0    | 581  | 308  | 384  | 0    | 260  | 650  | 0    | 0     | 411   | 0     |

(\*\*) Double asterisks indicate plant species present above ground during field survey of April 2014.

Table 5.21 *de novo* clustered sequence reads blasted against Kuwait DNA database comprising of ITS2 barcodes (matches ≥ 99 % identity, *de novo* clustered reads ≥ 100 sequences and matches to multiple accessions of the same individual reduced to a single accession)

|                                           | MAS1 | MAS2 | MAS3 | MAS4 | MAS5 | MAS6 | MAS7 | MAS8 | MAS9   | MAS12 | MAS13 | MAS19  |
|-------------------------------------------|------|------|------|------|------|------|------|------|--------|-------|-------|--------|
| Soil sample collection depth (cm)         | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5    | 10-15 | 10-15 | 10-15  |
| Matches to Kuwait DNA database accessions |      |      |      |      |      |      |      |      |        |       |       |        |
| Allium_sphaerocephalum15-0042665_ITS_     | 440  | 475  | 956  | 698  | 1576 | 101  | 1513 | 741  | 0      | 0     | 0     | 0      |
| Anisosciadium_lanatum15-0042650_ITS_**    | 0    | 0    | 219  | 200  | 577  | 0    | 209  | 1314 | 143    | 0     | 94259 | 448    |
| Arnebia_linearifolia_15-0042932_ITS_      | 0    | 0    | 141  | 0    | 0    | 0    | 0    | 0    | 0      | 0     | 0     | 0      |
| Asphodelus_tenuifolius_15-0042640_ITS_**  | 0    | 0    | 0    | 0    | 0    | 0    | 329  | 0    | 298853 | 128   | 520   | 186421 |
| Asphodelus_tenuifolius_15-0042974_ITS_**  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 104434 | 0     | 0     | 0      |
| Astragalus_annularis_15-0042617_ITS_      | 1042 | 0    | 0    | 1998 | 544  | 0    | 1434 | 2423 | 0      | 3504  | 1471  | 1928   |
| Astragalus_bombycinus_15-0042639_ITS_     | 0    | 0    | 0    | 160  | 0    | 0    | 0    | 0    | 0      | 0     | 0     | 0      |
| Astragalus_corrugatus_13-0034198_ITS_     | 0    | 0    | 0    | 165  | 0    | 0    | 0    | 151  | 0      | 0     | 0     | 0      |
| Astragalus_hamosus13-0033620_ITS_         | 197  | 0    | 235  | 879  | 193  | 0    | 0    | 1534 | 0      | 1165  | 0     | 0      |
| Astragalus_sieberi_13-0034200_ITS_        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 140   | 0     | 0      |
| Astragalus_tribuloides13-0033617_ITS_     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 117   | 0     | 0      |
| Astragalus_tribuloides_13-0034201_ITS_    | 466  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 178   | 7591  | 1283   |
| Astragalus_tribuloides_13-0034201_ITS_    | 0    | 183  | 837  | 0    | 822  | 294  | 525  | 534  | 129    | 0     | 0     | 0      |
| Atractylis_carduus_15-0043099_ITS_**      | 0    | 0    | 0    | 0    | 0    | 246  | 347  | 0    | 0      | 0     | 0     | 0      |
| Atriplex_dimorphostegia_15-0042856_ITS_   | 0    | 0    | 0    | 0    | 4051 | 0    | 0    | 0    | 0      | 0     | 0     | 0      |
| Brassica_tournefortii15-0042657_ITS_**    | 0    | 0    | 119  | 0    | 0    | 0    | 261  | 0    | 0      | 0     | 252   | 0      |
| Bromus_tectorum_15-0043130_ITS_           | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0     | 164   | 0      |
| Cakile_arabica_15-0042401_ITS_            | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 201   | 0     | 0      |
| Calendula_arvensis_15-0042400_ITS_        | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0     | 0     | 1018   |
| Carrichtera_annua_15-0042970_ITS_         | 0    | 0    | 162  | 117  | 0    | 0    | 273  | 196  | 0      | 0     | 0     | 0      |
| Citrullus_colocynthis_15-0042567_ITS_     | 0    | 0    | 181  | 0    | 0    | 0    | 0    | 0    | 0      | 0     | 0     | 0      |

|                                           | MAS1  | MAS2  | MAS3 | MAS4 | MAS5 | MAS6   | MAS7 | MAS8 | MAS9 | MAS12 | MAS13 | MAS1  |
|-------------------------------------------|-------|-------|------|------|------|--------|------|------|------|-------|-------|-------|
| Soil sample collection depth (cm)         | 0-5   | 0-5   | 0-5  | 0-5  | 0-5  | 0-5    | 0-5  | 0-5  | 0-5  | 10-15 | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions |       |       |      |      |      |        |      |      |      |       |       |       |
| Cornulaca_monacantha15-0042656_ITS_       | 0     | 0     | 147  | 0    | 135  | 0      | 150  | 0    | 0    | 0     | 0     | 0     |
| Cuscuta_planiflora_15-0042960_ITS_**      | 0     | 2987  | 462  | 377  | 659  | 177397 | 461  | 489  | 126  | 3131  | 985   | 4015  |
| Diplotaxis_acris_15-0043064_ITS_          | 0     | 0     | 0    | 198  | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 0     |
| Echinops_blancheanus_15-0042362_ITS_      | 0     | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 125   |
| Emex_spinosa_15-0042581_ITS_              | 0     | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 7139  |
| Erodium_glaucophyllum15-0042661_ITS_      | 0     | 0     | 168  | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 0     |
| Euphorbia_densa_15-0042938_ITS_           | 0     | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 153   |
| Fagonia_glutinosa_15-0042587_ITS_         | 423   | 471   | 1035 | 1339 | 990  | 164    | 847  | 625  | 112  | 271   | 2191  | 46401 |
| Farsetia_aegyptia_15-0042397_ITS_         | 0     | 0     | 332  | 162  | 280  | 0      | 102  | 319  | 0    | 129   | 0     | 247   |
| Filago_pyramidata_15-0043060_ITS_         | 0     | 1321  | 0    | 0    | 0    | 0      | 327  | 221  | 0    | 197   | 0     | 0     |
| Gypsophila_capillaris_15-0043050_ITS_**   | 0     | 0     | 1480 | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 306   | 0     |
| Haplophyllum_tuberculatum_15-0042601_ITS_ | 0     | 0     | 245  | 0    | 162  | 0      | 191  | 102  | 0    | 0     | 0     | 0     |
| Helianthemum_kahiricum_13-0034219_ITS_    | 0     | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 224   | 0     | 0     |
| Helianthemum_lippii_13-0034218_ITS_**     | 0     | 327   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 0     |
| Herniaria_hirsuta_15-0042606_ITS_         | 171   | 908   | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 0     |
| Hippocrepis_areolata_15-0042915_ITS_      | 0     | 0     | 1640 | 0    | 1903 | 0      | 0    | 147  | 0    | 0     | 0     | 0     |
| Hippocrepis_unisiliquosa_15-0042370_ITS_  | 0     | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 109   |
| Hordeum_marinum_15-0042359_ITS_           | 0     | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 444   | 2245  | 914   |
| Ifloga_spicata_15-0043088_ITS_            | 0     | 58743 | 0    | 0    | 556  | 0      | 0    | 1423 | 430  | 4893  | 0     | 16798 |
| Koelpinia_linearis_15-0043068_ITS_**      | 13948 | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 154   |
| Lappula_spinocarpos_15-0042955_ITS_       | 0     | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 653   | 0     |
| Launaea_capitata13-0033630_ITS_           | 917   | 0     | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0     | 0     | 0     |
| Launaea_mucronata13-0033632_ITS_**        | 0     | 0     | 0    | 0    | 0    | 21295  | 0    | 264  | 0    | 132   | 0     | 697   |
| Launaea_mucronata_13-0034215_ITS_**       | 0     | 0     | 0    | 0    | 0    | 10397  | 0    | 125  | 0    | 156   | 0     | 264   |

|                                                | MAS1   | MAS2 | MAS3  | MAS4  | MAS5  | MAS6  | MAS7  | MAS8  | MAS9  | MAS12  | MAS13  | MAS19 |
|------------------------------------------------|--------|------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|
| Soil sample collection depth (cm)              | 0-5    | 0-5  | 0-5   | 0-5   | 0-5   | 0-5   | 0-5   | 0-5   | 0-5   | 10-15  | 10-15  | 10-15 |
| Matches to Kuwait DNA database accessions      |        |      |       |       |       |       |       |       |       |        |        |       |
| Linaria_albifrons_15-0042811_ITS_              | 0      | 115  | 319   | 213   | 418   | 110   | 185   | 304   | 0     | 0      | 482    | 0     |
| Linaria_simplex_15-0042585_ITS_                | 0      | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 313    | 124   |
| Loeflingia_hispanica_15-0042956_ITS_           | 0      | 1325 | 0     | 0     | 18573 | 0     | 0     | 0     | 0     | 121    | 0      | 0     |
| Malva_parviflora_15-0042641_ITS_               | 0      | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 214    | 0     |
| Medicago_laciniata_15-0043049_ITS_             | 0      | 0    | 7642  | 161   | 6669  | 0     | 0     | 0     | 0     | 103546 | 162    | 1177  |
| Melilotus_indicus15-0042748_ITS_               | 812    | 1988 | 3127  | 2053  | 4845  | 151   | 1878  | 2565  | 432   | 0      | 0      | 0     |
| Melilotus_indicus_15-0042942_ITS_              | 379    | 948  | 1235  | 960   | 2301  | 141   | 989   | 1198  | 200   | 0      | 0      | 111   |
| Melilotus_indicus_15-0042963_ITS_              | 0      | 0    | 0     | 0     | 0     | 155   | 0     | 0     | 0     | 0      | 0      | 274   |
| Mesembryanthemum_nodiflorum_15-<br>0042560 ITS | 0      | 0    | 155   | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 0     |
| Moltkiopsis_ciliata15-0042628_ITS_             | 0      | 0    | 0     | 305   | 451   | 0     | 472   | 401   | 0     | 0      | 0      | 0     |
| Moltkiopsis_ciliata_15-0042894_ITS_            | 0      | 0    | 0     | 0     | 103   | 0     | 0     | 281   | 0     | 0      | 210    | 0     |
| Neotorularia_torulosa_15-0042328_ITS_          | 343    | 0    | 0     | 407   | 103   | 0     | 196   | 858   | 0     | 327    | 214    | 1029  |
| Nitraria_retusa_15-0042852_ITS_                | 0      | 0    | 0     | 0     | 1158  | 0     | 0     | 0     | 0     | 0      | 0      | 0     |
| Ogastemma_pusillum_15-0042891_ITS_             | 0      | 0    | 241   | 0     | 224   | 0     | 0     | 0     | 0     | 0      | 0      | 0     |
| Ononis_reclinata_15-0042375_ITS_               | 0      | 0    | 0     | 173   | 0     | 0     | 108   | 0     | 0     | 0      | 0      | 115   |
| Panicum_turgidum_15-0042374_ITS_               | 0      | 0    | 0     | 175   | 0     | 0     | 0     | 187   | 0     | 117    | 170    | 552   |
| Picris_babylonica_15-0043054_ITS_              | 0      | 0    | 0     | 0     | 6884  | 0     | 0     | 0     | 0     | 0      | 272045 | 670   |
| Picris_babylonica_15-0043066_ITS_              | 0      | 0    | 0     | 0     | 0     | 378   | 0     | 0     | 0     | 0      | 0      | 119   |
| Plantago_amplexicaulis13-0033625_ITS_          | 0      | 0    | 0     | 184   | 0     | 0     | 209   | 273   | 0     | 0      | 0      | 0     |
| Plantago_boissieri_15-0042580_ITS_**           | 0      | 0    | 77928 | 55450 | 61127 | 15045 | 0     | 0     | 0     | 0      | 29289  | 14600 |
| Plantago_ciliata_13-0034205_ITS_               | 15548  | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 0      | 138   |
| Plantago_coronopus_13-0034210_ITS_             | 0      | 0    | 0     | 400   | 0     | 0     | 181   | 292   | 0     | 0      | 0      | 0     |
| Plantago_notata13-0033628_ITS_                 | 103435 | 1998 | 0     | 0     | 0     | 0     | 75924 | 67868 | 13189 | 1355   | 0      | 0     |
| Polycarpaea_repens_15-0042977_ITS_             | 0      | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0      | 185    | 0     |

|                                           | MAS1 | MAS2  | MAS3 | MAS4 | MAS5 | MAS6  | MAS7 | MAS8 | MAS9  | MAS12  | MAS13 | MAS19 |
|-------------------------------------------|------|-------|------|------|------|-------|------|------|-------|--------|-------|-------|
| Soil sample collection depth (cm)         | 0-5  | 0-5   | 0-5  | 0-5  | 0-5  | 0-5   | 0-5  | 0-5  | 0-5   | 10-15  | 10-15 | 10-15 |
| Matches to Kuwait DNA database accessions |      |       |      |      |      |       |      |      |       |        |       |       |
| Reichardia_tingitana_15-0042987_ITS_      | 0    | 0     | 4923 | 0    | 4274 | 0     | 0    | 0    | 0     | 0      | 0     | 0     |
| Rhanterium_epapposum_15-0042396_ITS_**    | 0    | 0     | 0    | 0    | 0    | 0     | 0    | 250  | 0     | 0      | 0     | 222   |
| Rostraria_pumila_15-0043136_ITS_          | 0    | 0     | 0    | 0    | 125  | 0     | 1362 | 0    | 181   | 0      | 0     | 193   |
| Salsola_imbricata_15-0042350_ITS_         | 0    | 0     | 112  | 0    | 0    | 0     | 0    | 0    | 0     | 0      | 0     | 0     |
| Salvia_spinosa_15-0042883_ITS_            | 0    | 0     | 0    | 0    | 0    | 0     | 102  | 0    | 0     | 0      | 0     | 0     |
| Savignya_parviflora_15-0042388_ITS_       | 0    | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 0     | 150    | 0     | 0     |
| Lomelosia_palaestina_15-0042612_ITS_**    | 0    | 0     | 0    | 257  | 0    | 0     | 0    | 0    | 0     | 0      | 0     | 0     |
| Schismus_arabicus_15-0043059_ITS_         | 0    | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 21620 | 0      | 123   | 52422 |
| Schismus_arabicus_15-0043091_ITS_         | 0    | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 22503 | 0      | 203   | 50709 |
| Senecio_glaucus_15-0042387_ITS_**         | 0    | 942   | 1704 | 7540 | 1247 | 13676 | 0    | 113  | 323   | 0      | 46432 | 607   |
| Senecio_glaucus_15-0042922_ITS_**         | 0    | 491   | 879  | 3499 | 610  | 6903  | 0    | 0    | 161   | 0      | 23519 | 294   |
| Stipa_capensis_15-0043135_ITS_**          | 0    | 11516 | 0    | 0    | 0    | 0     | 364  | 0    | 0     | 169049 | 0     | 211   |
| Stipagrostis_plumosa_15-0043079_ITS_      | 0    | 0     | 0    | 118  | 0    | 0     | 0    | 0    | 0     | 0      | 0     | 0     |
| Trigonella_stellata_15-0043043_ITS_       | 3026 | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 0     | 4197   | 0     | 0     |

(\*\*) Double asterisks indicate plant species present above ground during field survey of April 2014.

In an attempt to further explore the BLASTn results, a summary of the *de novo* clustering matches to Kuwait DNA database for each of the metabarcoding samples are presented in Table 5.22. The greatest number of *de novo* clustered sequence matches for *rbcL* was sample MAS7 with 59 accessions belonging to 56 species and for ITS2 was MAS19 with 37 accessions belonging to 31 species. The lowest number of matches for *rbcL* was sample MAS6 with 15 accessions belonging to 15 species and for ITS2 samples MAS1, MAS6 and MAS9 each matched 15 accessions belonging to 14, 11, 11 species, respectively. For MAS19, no *rbcL* sequence matches were scored and the sample was only represented by ITS2 amplicons which resulted in a match to 37 accessions belonging to 31 species (Tables 5.20 - 5.22).

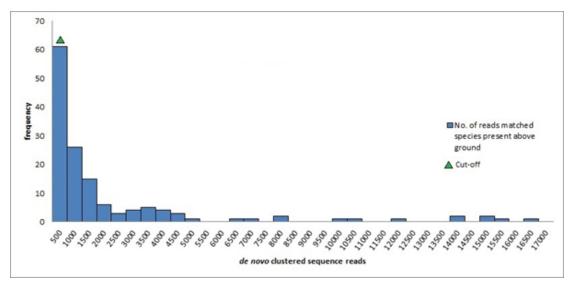

| Metabarcoding<br>sample | Depth of soil<br>collection<br>(cm) |              | Numl<br>accession | per of<br>ns match           |              | Species | match                             |
|-------------------------|-------------------------------------|--------------|-------------------|------------------------------|--------------|---------|-----------------------------------|
|                         | (em)                                | <i>rbc</i> L | ITS2              | Total<br><i>rbc</i> L + ITS2 | <i>rbc</i> L | ITS2    | Total<br><i>rbc</i> L + ITS2<br>* |
| Site 1                  |                                     |              |                   |                              |              |         |                                   |
| MAS1                    | surface (0-5)                       | 37           | 15                | 52                           | 34           | 14      | 44                                |
| MAS2                    | surface (0-5)                       | 41           | 16                | 57                           | 38           | 14      | 45                                |
| MAS3                    | surface (0-5)                       | 40           | 29                | 69                           | 36           | 26      | 54                                |
| MAS4                    | surface (0-5)                       | 38           | 27                | 65                           | 36           | 25      | 56                                |
| MAS5                    | surface (0-5)                       | 55           | 31                | 86                           | 48           | 27      | 70                                |
| MAS6                    | surface (0-5)                       | 15           | 15                | 30                           | 15           | 11      | 22                                |
| MAS7                    | surface (0-5)                       | 59           | 28                | 87                           | 56           | 27      | 76                                |
| MAS8                    | surface (0-5)                       | 49           | 29                | 78                           | 46           | 26      | 65                                |
| MAS9                    | surface (0-5)                       | 29           | 15                | 44                           | 27           | 11      | 31                                |
| MAS12                   | deep (10-15)                        | 21           | 25                | 46                           | 19           | 23      | 37                                |
| MAS13                   | deep (10-15)                        | 33           | 26                | 59                           | 29           | 24      | 46                                |
| MAS19                   | deep (10-15)                        | 0            | 37                | 37                           | 0            | 31      | 31                                |

Table 5.22 Summary of de novo clustering matches to Kuwait DNA database

(\*) Astrik = total count of species excluding multiple accessions per species

*de novo* clustered sequence reads of *rbcL* and ITS2 amplicons were further investigated to find a cut-off value by including all reliable sequence reads of plants only known to be present above ground during the field survey (Table 5.11). The dataset from the BLASTn hit results representing all metabarcoding samples (Table 5.20 and Table 5.21) and present above ground (Table 5.11) were analysed using a histogram present in Figure 5.13. The histogram shows that the highest frequency of plants lies under the clustered sequence reads  $\leq$  500 (frequency = 61) followed by 501-1000 (frequency = 26) and 1001-1500 (frequency = 15). Therefore, I may conclude that a reasonable cut-off value of sequence reads  $\leq$  500 for showing the greatest frequency amongst plants present above ground (Figure 5.13). Furthermore, Table 5.20 and Table 5.21 are representatives of high *de novo* clustered sequence reads and best at representing the eDNA of plant diversity present in the soil mixture at the study area.

Figure 5.15 *de novo* clustered sequence reads matching plant species present above ground



# **5.3.4** A comparison of DNA markers represented by above ground plant diversity

The following comparison is to determine which DNA marker (*rbcL* or ITS2) is best at representing the diversity of plants using BLASTn matches to Kuwaiti DNA database and information collected during field survey which included recording the plants present above ground (Table 5.11). The highest numbers of sequence matches for both DNA markers are samples MAS7 and MAS8, 17 and 15 species match, respectively (Table 5.23). The lowest match was represented by sample MAS1 with only 6 species match to above ground plant species (Table 5.23).

Considering each DNA marker separately, *rbcL* marker represented the plant diversity above ground better by resulting in more matches to species present in the study area e.g. Samples MAS7 and MAS8 matched 10 species each for *rbcL* while ITS2 matched 7 species for sample MAS7 and 5 species for MAS8 (Table 5.23).

| Metabarcoding<br>sample | Depth of<br>soil collection (cm) |              | species match<br>with<br>ground flora | Total number<br>of species<br>match |
|-------------------------|----------------------------------|--------------|---------------------------------------|-------------------------------------|
| sumple                  |                                  | <i>rbc</i> L | ITS2                                  | rbcL+ITS2                           |
| Site 1                  |                                  |              |                                       |                                     |
| MAS1                    | surface (0-5)                    | 5            | 1                                     | 6                                   |
| MAS2                    | surface (0-5)                    | 7            | 4                                     | 11                                  |
| MAS3                    | surface (0-5)                    | 6            | 6                                     | 12                                  |
| MAS4                    | surface (0-5)                    | 7            | 5                                     | 12                                  |
| MAS5                    | surface (0-5)                    | 6            | 4                                     | 10                                  |
| MAS6                    | surface (0-5)                    | 5            | 6                                     | 11                                  |
| MAS7                    | surface (0-5)                    | 10           | 7                                     | 17                                  |
| MAS8                    | surface (0-5)                    | 10           | 5                                     | 15                                  |
| MAS9                    | surface (0-5)                    | 8            | 5                                     | 13                                  |
| MAS12                   | deep (10-15)                     | 5            | 5                                     | 10                                  |
| MAS13                   | deep (10-15)                     | 7            | 7                                     | 14                                  |
| MAS19                   | deep (10-15)                     | 0            | 9                                     | 9                                   |

### Table 5.23. Comparison of DNA markers showing matches to Kuwait DNAdatabase using plant species present above ground during field survey

Further investigation of sequence match to above ground plant species shows that ITS2 marker complements *rbcL* when studying the plant diversity found above ground. Table 5.24 is showing a list of plant species match for both DNA markers (*rbcL* and ITS2) using samples MAS7 and MAS8 as an example to investigate the results and compare between the two DNA markers. The DNA marker ITS2 for sample MAS7 resulted in four new species match (*Anisosciadium lanatum*, *Asphodelus tenuifolius, Atractylis carduus* and *Brassica tournefortii*) not present in *rbcL* datasets. Also for sample MAS8, ITS2 resulted in two new species matches (*Launaea mucronata* and *Rhanterium epapposum*) not present in *rbcL* data set (Table 5.24). Although *rbcL* sequences are showing the greatest number of species matches compared to ITS2, *rbcL* is being complemented by ITS2 in the identification process by adding new individuals to the data set (Table 5.24).

| Table 5.24 Comparison of DNA markers (rbcL and ITS2) matching Kuwait DNA |
|--------------------------------------------------------------------------|
| database using blastn results for samples MAS7 and MAS8                  |

| Samp                   | ble MAS7               | Sam                    | ble MAS8              |
|------------------------|------------------------|------------------------|-----------------------|
| DNA                    | markers                | DNA                    | markers               |
| rbcL                   | ITS2                   | rbcL                   | ITS2                  |
| Convolvulus oxyphyllus | Anisosciadium lanatum  | Anisosciadium lanatum  | Anisosciadium lanatum |
| Cuscuta planiflora     | Asphodelus tenuifolius | Asphodelus tenuifolius | Cuscuta planiflora    |
| Gypsophilla capillaris | Atractylis carduus     | Convolvulus Oxyphyllus | Launaea mucronata     |
| Koelpinia linearis     | Brassica tournefortii  | Cuscuta planiflora     | Rhanterium epapposum  |
| Launaea nudicaulis     | Cascuta planiflora     | Gypsophila capillaris  | Senecio glaucus       |
| Plantago ovata         | Launaea nudicaulis     | Heliotipium bacciferum |                       |
| Rhanterium epapposum   | Stipa capensis         | Launaea nudicaulis     |                       |
| senecio glaucus        |                        | Plantago ovata         |                       |
| Stipa capensis         |                        | Senecio glaucus        |                       |
| Gymnarrhena micrantha  |                        | Gymnarrhena micrantha  |                       |

Species in bold text are showing individuals not present in *rbcL* data set

### 5.3.5 Metabarcoding analyses using Angiosperm-NCBI database

BLASTn searches of MiSeq metabarcoding samples represented by *rbcL* and ITS2 regions using *de novo* clustered sequences conducted against the Angiosperm-NCBI database for all 12 samples resulted in a total match to 363 species with percentage identity match  $\geq$  99 %. Table 5.25 is showing the results from BLASTn matches of *de novo* clustered sequences for all 12 metabarcoding samples conducted against Angiosperm-NCBI database, followed by a summary presented in Table 5.26 showing the number of species matching NCBI database for each sample.

The greatest number of matches to the Angiosperm-NCBI database was represented by 171 species for sample MAS7 and the smallest number of matches with 57 species was sample MAS6 (Table 5.25 and Table 5.26).

The greatest number of matches to the flora of Kuwait was represented by 13 species for sample MAS7 and the smallest number of matches with only 2 species, sample MAS13 (Table 5.25 and Table 5.26).

From the total matches of 363 species to Angiosperm-NCBI database, only 23 matched the flora of Kuwait and only 2 species are representatives of the present above ground flora at the study area, Um-Niqa. The two species are represented by *Cuscuta planiflora* (common parasitic plant) and *Schismus barbatus* (common grass) (Table 5.25 and Table 5.26). Although the sequences generated from the soil eDNA are not well represented in the Angiosperm-NCBI database at species-level, a high number of sequences matched to genus-level of the flora of Kuwait (Table 5.25 and Table 2.3).

|                               | MAS1 | MAS2 | MAS3 | MAS4 | MAS5 | MAS6 | MAS7 | MAS8 | MAS9 | MAS12       | MAS13 | MAS19 |
|-------------------------------|------|------|------|------|------|------|------|------|------|-------------|-------|-------|
| Soil collection depth (cm)    | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 10-15       | 10-15 | 10-15 |
| Acantholepis_orientalis       | 0    | 310  | 4923 | 0    | 4274 | 0    | 0    | 0    | 0    | 107         | 0     | 0     |
| Achatocarpus_gracilis         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 108         | 0     | 246   |
| Achillea_millefolium          | 0    | 0    | 218  | 317  | 1072 | 0    | 0    | 419  | 1147 | 0           | 0     | 0     |
| Achnatherum_pekinense         | 0    | 0    | 152  | 0    | 143  | 0    | 0    | 0    | 460  | 0           | 0     | 0     |
| Aeluropus_littoralis *        | 0    | 0    | 0    | 0    | 0    | 0    | 200  | 0    | 0    | 0           | 0     | 0     |
| Agrostemma_githago            | 0    | 0    | 153  | 115  | 288  | 0    | 0    | 108  | 344  | 0           | 0     | 0     |
| Agrostis_clavata              | 0    | 0    | 0    | 1588 | 254  | 0    | 1592 | 764  | 0    | 697         | 0     | 0     |
| Ajania_gracilis               | 0    | 389  | 394  | 0    | 0    | 0    | 456  | 0    | 554  | 4417        | 0     | 1211  |
| Aldrovanda_vesiculosa         | 0    | 618  | 0    | 0    | 304  | 0    | 0    | 0    | 697  | 0           | 156   | 436   |
| Alisma_gramineum              | 0    | 2799 | 100  | 0    | 0    | 264  | 0    | 122  | 1700 | 1265        | 0     | 0     |
| Allium_altaicum               | 0    | 0    | 2005 | 0    | 0    | 0    | 0    | 0    | 254  | 0           | 0     | 0     |
| Allium_ampeloprasum           | 288  | 0    | 0    | 736  | 254  | 0    | 2048 | 2619 | 0    | 0           | 0     | 0     |
| Allium_tuberosum              | 280  | 0    | 0    | 0    | 6801 | 0    | 0    | 0    | 321  | 220         | 750   | 0     |
| Alocasia_macrorrhizos         | 0    | 0    | 0    | 0    | 141  | 0    | 572  | 0    | 0    | 0           | 0     | 0     |
| Alocasia_sanderiana           | 0    | 0    | 567  | 0    | 2331 | 0    | 500  | 274  | 0    | 0           | 0     | 119   |
| Amorphophallus_albus          | 0    | 306  | 0    | 0    | 0    | 302  | 570  | 0    | 0    | 0           | 0     | 0     |
| Amphiglossa_tomentosa         | 0    | 0    | 0    | 244  | 0    | 0    | 0    | 0    | 0    | 0           | 0     | 128   |
| Andersonia_<br>sprengelioides | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | ASU79742271 | 0     | 0     |
| Andrachne_telephioides *      | 0    | 0    | 0    | 0    | 343  | 0    | 292  | 0    | 0    | 0           | 0     | 0     |
| Anemone_patens                | 0    | 993  | 194  | 0    | 0    | 0    | 0    | 133  | 0    | 625         | 0     | 0     |
| Angelica_anomala              | 0    | 140  | 0    | 0    | 0    | 0    | 193  | 0    | 0    | 438         | 0     | 0     |
| Antennaria_parvifolia         | 0    | 0    | 135  | 0    | 0    | 0    | 0    | 0    | 0    | 111         | 0     | 0     |
| Anthemis_arvensis             | 0    | 0    | 133  | 103  | 0    | 0    | 104  | 0    | 0    | 0           | 0     | 0     |

Table 5.25 Blastn of metabarcoding *de novo* clustered sequence reads per species match to NCBI-Angiosperm database

|                            | MAS1   | MAS2  | MAS3 | MAS4  | MAS5  | MAS6 | MAS7  | MAS8  | MAS9 | MAS12 | MAS13 | MAS19 |
|----------------------------|--------|-------|------|-------|-------|------|-------|-------|------|-------|-------|-------|
| Soil collection depth (cm) | 0-5    | 0-5   | 0-5  | 0-5   | 0-5   | 0-5  | 0-5   | 0-5   | 0-5  | 10-15 | 10-15 | 10-15 |
| Aptenia_cordifolia         | 0      | 0     | 2230 | 0     | 101   | 696  | 0     | 0     | 0    | 0     | 0     | 0     |
| Arabidopsis_arenosa        | 0      | 0     | 0    | 0     | 0     | 0    | 239   | 0     | 0    | 0     | 0     | 0     |
| Arceuthobium_azoricum      | 0      | 415   | 1398 | 350   | 0     | 0    | 110   | 0     | 0    | 0     | 271   | 0     |
| Artemisia_annua            | 0      | 0     | 0    | 0     | 0     | 0    | 0     | 258   | 0    | 0     | 0     | 0     |
| Artemisia_frigida          | 0      | 0     | 0    | 0     | 0     | 0    | 0     | 157   | 0    | 0     | 0     | 0     |
| Artemisia_lactiflora       | 1044   | 0     | 631  | 1989  | 0     | 0    | 0     | 717   | 0    | 0     | 2523  | 141   |
| Arytera_brackenridgei      | 0      | 0     | 0    | 0     | 119   | 0    | 0     | 541   | 0    | 0     | 0     | 0     |
| Asclepias_nivea            | 0      | 0     | 0    | 0     | 1294  | 0    | 0     | 0     | 0    | 0     | 0     | 0     |
| Asparagus_asparagoides     | 0      | 0     | 0    | 0     | 0     | 0    | 0     | 147   | 0    | 0     | 0     | 0     |
| Asphodelus_aestivus        | 0      | 101   | 0    | 0     | 0     | 552  | 0     | 0     | 0    | 0     | 0     | 159   |
| Asphodelus_albus           | 0      | 0     | 148  | 0     | 117   | 0    | 0     | 0     | 290  | 0     | 0     | 0     |
| Aster_ageratoides          | 0      | 0     | 261  | 0     | 0     | 0    | 0     | 0     | 0    | 0     | 0     | 0     |
| Aster_glehnii              | 3367   | 380   | 359  | 5093  | 9421  | 0    | 0     | 8077  | 0    | 0     | 0     | 1523  |
| Aster_koraiensis           | 0      | 105   | 0    | 0     | 0     | 0    | 0     | 0     | 0    | 0     | 0     | 541   |
| Aster_spathulifolius       | 0      | 0     | 0    | 0     | 0     | 351  | 0     | 0     | 0    | 0     | 0     | 0     |
| Astragalus_agrestis        | 954    | 0     | 0    | 714   | 9533  | 0    | 0     | 0     | 0    | 0     | 349   | 0     |
| Astragalus_bodinii         | 0      | 0     | 0    | 1304  | 0     | 0    | 269   | 0     | 0    | 0     | 0     | 0     |
| Astragalus_drummondii      | 169065 | 11516 | 0    | 0     | 274   | 0    | 0     | 0     | 0    | 0     | 0     | 0     |
| Astragalus_laxmannii       | 1128   | 0     | 0    | 0     | 0     | 0    | 0     | 0     | 0    | 0     | 0     | 0     |
| Astragalus_nakaianus       | 1279   | 1415  | 1212 | 0     | 0     | 109  | 0     | 0     | 203  | 0     | 123   | 817   |
| Astragalus_uliginosus      | 0      | 0     | 309  | 408   | 0     | 0    | 1126  | 351   | 0    | 0     | 0     | 0     |
| Astragalus_villosus        | 0      | 0     | 0    | 26260 | 52415 | 0    | 70432 | 29304 | 0    | 0     | 0     | 0     |
| Atractylodes_lancea        | 0      | 0     | 3561 | 3544  | 4526  | 0    | 0     | 2149  | 0    | 963   | 0     | 0     |
| Atractylodes_lancea        | 116804 | 106   | 0    | 17257 | 32808 | 0    | 91162 | 84909 | 0    | 0     | 0     | 0     |
| Atriplex_glauca            | 0      | 0     | 0    | 0     | 0     | 0    | 240   | 0     | 0    | 0     | 0     | 0     |

|                                  | MAS1  | MAS2         | MAS3         | MAS4   | MAS5  | MAS6 | MAS7  | MAS8   | MAS9  | MAS12       | MAS13 | MAS19       |
|----------------------------------|-------|--------------|--------------|--------|-------|------|-------|--------|-------|-------------|-------|-------------|
| Soil collection depth (cm)       | 0-5   | 0-5          | 0-5          | 0-5    | 0-5   | 0-5  | 0-5   | 0-5    | 0-5   | 10-15       | 10-15 | 10-15       |
| Baptisia_alba                    | 961   | 0            | 0            | 0      | 131   | 0    | 0     | 0      | 0     | 6493        | 0     | 0           |
| Barbarea_verna                   | 0     | 436          | 227          | 840    | 125   | 105  | 106   | 713    | 0     | 0           | 0     | 354         |
| Bellevalia_romana                | 0     | 0            | 0            | 0      | 149   | 0    | 0     | 0      | 0     | 0           | 0     | 0           |
| Bienertia_cycloptera *           | 0     | 0            | 0            | 0      | 285   | 0    | 169   | 0      | 123   | 0           | 0     | 0           |
| Bosea_yervamora                  | 0     | 341          | 0            | 0      | 0     | 306  | 510   | 0      | 432   | 0           | 0     | 0           |
| Bowiea_volubilis                 | 0     | 0            | 0            | 0      | 0     | 0    | 0     | 0      | 142   | 0           | 0     | 135         |
| Brachyachne_ciliaris             | 0     | 0            | 188          | 284    | 0     | 0    | 0     | 0      | 0     | 0           | 0     | 0           |
| Brachylaena_ilicifolia           | 43773 | 141521       | 172812       | 577535 | 37325 | 5404 | 17077 | 527095 | 41588 | 12266       | 0     | 180901      |
| Brachypodium_<br>sylvaticum      | 0     | 116695       | 112          | 196    | 0     | 0    | 0     | 328    | 21445 | 491         | 0     | 0           |
| Brassica_nigra                   | 3306  | EGU806794620 | EGU806794139 | 0      | 363   | 0    | 0     | 969    | 0     | EGU80679129 | 0     | EGU80679240 |
| Bupleurum_falcatum               | 0     | 295          | 997          | 0      | 0     | 0    | 0     | 0      | 602   | 0           | 0     | 0           |
| Burnatia_enneandra               | 0     | 0            | 0            | 0      | 0     | 0    | 330   | 0      | 0     | 719         | 0     | 0           |
| Calathea_guzmanioides            | 0     | 216          | 0            | 0      | 0     | 0    | 0     | 0      | 0     | 0           | 0     | 0           |
| Calepina_irregularis             | 0     | 118          | 340          | 0      | 0     | 0    | 0     | 0      | 0     | 0           | 0     | 0           |
| Calligonum_molle                 | 146   | 0            | 0            | 406    | 0     | 0    | 0     | 372    | 0     | 0           | 388   | 0           |
| Calopappus_acerosus              | 304   | 0            | 0            | 0      | 0     | 0    | 0     | 0      | 0     | 3277        | 0     | 0           |
| Calotesta_alba                   | 0     | 105          | 412          | 414    | 0     | 0    | 304   | 329    | 107   | 10366       | 0     | 0           |
| Calotropis_gigantea              | 120   | 0            | 0            | 0      | 0     | 0    | 0     | 0      | 0     | 0           | 7139  | 3026        |
| Calycolpus_moritzianus           | 10694 | 5675         | 0            | 0      | 0     | 0    | 0     | 0      | 0     | 0           | 0     | 0           |
| Camellia_cuspidata               | 0     | 0            | 0            | 0      | 0     | 0    | 0     | 0      | 0     | 208         | 0     | 0           |
| Capsella_bursa-pastoris          | 0     | 0            | 106          | 1522   | 2756  | 0    | 0     | 246    | 0     | 0           | 0     | 1079        |
| Carludovica_palmata              | 0     | 106          | 0            | 0      | 0     | 0    | 0     | 0      | 0     | 0           | 0     | 0           |
| Cassinopsis_<br>madagascariensis | 0     | 258          | 119          | 0      | 0     | 307  | 0     | 0      | 0     | 671         | 0     | 340         |
| Catharanthus_roseus              | 0     | 0            | 0            | 0      | 0     | 101  | 0     | 0      | 0     | 0           | 0     | 0           |
| Cathedra_acuminata               | 0     | 0            | 188          | 0      | 0     | 0    | 1071  | 0      | 0     | 0           | 0     | 0           |

|                            | MAS1 | MAS2  | MAS3  | MAS4  | MAS5  | MAS6  | MAS7  | MAS8        | MAS9  | MAS12  | MAS13 | MAS19 |
|----------------------------|------|-------|-------|-------|-------|-------|-------|-------------|-------|--------|-------|-------|
| Soil collection depth (cm) | 0-5  | 0-5   | 0-5   | 0-5   | 0-5   | 0-5   | 0-5   | 0-5         | 0-5   | 10-15  | 10-15 | 10-15 |
| Centropodia_forskalii *    | 121  | 0     | 0     | 0     | 0     | 0     | 122   | 0           | 68967 | 303    | 0     | 119   |
| Chenopodium_murale *       | 1300 | 0     | 14727 | 11120 | 24924 | 0     | 369   | 11627       | 0     | 0      | 0     | 0     |
| Chilopsis_linearis         | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 201         | 0     | 256    | 0     | 0     |
| Chimaphila_umbellata       | 0    | 289   | 0     | 0     | 0     | 0     | 0     | 0           | 0     | 0      | 0     | 0     |
| Chlorophytum_comosum       | 0    | 0     | 77925 | 0     | 0     | 15045 | 106   | 119         | 0     | 29536  | 14738 | 241   |
| Choisya_ternata            | 1765 | 0     | 291   | 760   | 377   | 0     | 0     | 3855        | 0     | 0      | 0     | 0     |
| Cicer_arietinum            | 0    | 1325  | 302   | 746   | 0     | 0     | 0     | 1273        | 249   | 0      | 1435  | 0     |
| Cirsium_arvense            | 0    | 0     | 0     | 0     | 0     | 0     | 236   | 0           | 0     | 0      | 111   | 0     |
| Cladrastis_delavayi        | 0    | 0     | 0     | 0     | 0     | 0     | 0     | 0           | 260   | 0      | 0     | 0     |
| Codonanthe_gracilis        | 0    | 262   | 113   | 110   | 0     | 0     | 103   | 236         | 166   | 0      | 0     | 0     |
| Convolvulus_ulcinus        | 422  | 0     | 0     | 303   | 184   | 0     | 0     | 1726        | 0     | 0      | 0     | 0     |
| Cortaderia_selloana        | 0    | 0     | 169   | 0     | 1194  | 0     | 1366  | 635         | 0     | 0      | 0     | 927   |
| Crassula_tillaea           | 0    | 0     | 946   | 0     | 185   | 0     | 0     | 511         | 0     | 0      | 0     | 0     |
| Ctenanthe_marantifolia     | 178  | 138   | 184   | 0     | 0     | 0     | 0     | 0           | 0     | 0      | 0     | 30171 |
| Cupaniopsis_myrmoctona     | 0    | 0     | 0     | 0     | 0     | 696   | 160   | 0           | 0     | 347    | 0     | 0     |
| Cuscuta_approximata        | 0    | 0     | 0     | 129   | 0     | 0     | 0     | 0           | 0     | 0      | 0     | 0     |
| Cuscuta_planiflora **      | 299  | 0     | 0     | 116   | 1844  | 221   | 0     | 2041        | 547   | 541    | 0     | 0     |
| Cynodon_dactylon *         | 0    | 0     | 0     | 0     | 0     | 0     | 981   | 331         | 0     | 0      | 0     | 0     |
| Cypripedium_macranthos     | 0    | 0     | 0     | 0     | 0     | 0     | 207   | 0           | 0     | 0      | 0     | 0     |
| Cypselea_humifusa          | 0    | 0     | 0     | 0     | 1821  | 0     | 0     | 0           | 0     | 738    | 0     | 0     |
| Delosperma_cooperi         | 263  | 267   | 16951 | 130   | 11155 | 2701  | 0     | 1756        | 455   | 1878   | 17469 | 0     |
| Desmazeria_rigida          | 404  | 0     | 32482 | 21344 | 0     | 0     | 0     | 26544       | 0     | 0      | 0     | 0     |
| Dianthus_longicalyx        | 1168 | 48840 | 0     | 0     | 8557  | 0     | 53640 | 11738       | 0     | 257    | 0     | 0     |
| Dichilus_pilosus           | 0    | 168   | 341   | 0     | 175   | 0     | 0     | 0           | 110   | 0      | 0     | 0     |
| Dieffenbachia_seguine      | 278  | 160   | 378   | 0     | 0     | 0     | 1416  | LMU79740774 | 5419  | 191038 | 174   | 0     |

|                               | MAS1   | MAS2 | MAS3 | MAS4 | MAS5          | MAS6 | MAS7        | MAS8 | MAS9  | MAS12 | MAS13 | MAS19 |
|-------------------------------|--------|------|------|------|---------------|------|-------------|------|-------|-------|-------|-------|
| Soil collection depth (cm)    | 0-5    | 0-5  | 0-5  | 0-5  | 0-5           | 0-5  | 0-5         | 0-5  | 0-5   | 10-15 | 10-15 | 10-15 |
| Dionysia_caespitosa           | 0      | 0    | 843  | 0    | 0             | 0    | 845         | 0    | 0     | 0     | 0     | 0     |
| Dionysia_hissarica            | 0      | 0    | 0    | 0    | 0             | 0    | 0           | 0    | 0     | 252   | 0     | 0     |
| Dionysia_involucrata          | 0      | 0    | 0    | 0    | 0             | 0    | 0           | 0    | 0     | 221   | 0     | 0     |
| Dionysia_paradoxa             | 0      | 0    | 0    | 0    | 0             | 0    | 116         | 0    | 0     | 145   | 0     | 0     |
| Dionysia_revoluta             | 0      | 0    | 0    | 0    | 0             | 0    | 0           | 0    | 0     | 0     | 0     | 116   |
| Discaria_chacaye              | 0      | 0    | 382  | 305  | 121           | 0    | 1878        | 682  | 462   | 0     | 371   | 18824 |
| Disparago_ericoides           | 140217 | 206  | 758  | 103  | 1390          | 173  | 1009        | 2230 | 31307 | 2526  | 1903  | 0     |
| Dolichothrix_ericoides        | 0      | 0    | 0    | 308  | 384           | 0    | 260         | 650  | 0     | 0     | 863   | 0     |
| Echinodorus_grandiflorus      | 0      | 448  | 0    | 0    | 0             | 6848 | 1760        | 0    | 0     | 0     | 0     | 0     |
| Edmondia_sesamoides           | 8769   | 0    | 244  | 323  | 1060          | 124  | 0           | 0    | 1264  | 292   | 0     | 116   |
| Elymus_enysii                 | 0      | 305  | 0    | 0    | 0             | 0    | 0           | 0    | 0     | 0     | 0     | 0     |
| Elytropappus_<br>rhinocerotis | 0      | 0    | 0    | 0    | 129           | 0    | 0           | 0    | 0     | 0     | 0     | 0     |
| Empetrum_nigrum               | 0      | 0    | 0    | 208  | 134           | 0    | 0           | 117  | 0     | 101   | 0     | 0     |
| Enhalus_acoroides             | 523    | 0    | 621  | 246  | 862           | 0    | 273         | 630  | 181   | 0     | 1083  | 0     |
| Epipactis_palustris           | 0      | 0    | 952  | 0    | 0             | 862  | 318         | 0    | 449   | 0     | 0     | 246   |
| Eremopyrum_orientale          | 0      | 0    | 0    | 1145 | 3652          | 0    | 2940        | 1273 | 0     | 1786  | 0     | 0     |
| Erigeron_breviscapus          | 0      | 221  | 0    | 0    | EGU8067914187 | 0    | EGU80679922 | 0    | 0     | 0     | 0     | 0     |
| Erodium_glaucophyllum *       | 0      | 0    | 235  | 0    | 0             | 0    | 491         | 131  | 289   | 0     | 0     | 0     |
| Erodium_laciniatum *          | 0      | 0    | 0    | 0    | 763           | 0    | 0           | 398  | 0     | 0     | 0     | 0     |
| Erodium_moschatum             | 0      | 0    | 128  | 0    | 0             | 0    | 108         | 0    | 0     | 0     | 0     | 0     |
| Eruca_vesicaria               | 2567   | 2493 | 4980 | 3222 | 7162          | 1306 | 5862        | 5565 | 1069  | 6624  | 5320  | 1447  |
| Erythroxylum_areolatum        | 0      | 0    | 0    | 0    | 206           | 0    | 0           | 188  | 0     | 0     | 0     | 0     |
| Euphorbia_maculata            | 0      | 0    | 0    | 0    | 0             | 0    | 521         | 250  | 0     | 0     | 0     | 0     |
| Euphorbia_sp. *               | 0      | 0    | 1385 | 0    | 0             | 0    | 0           | 0    | 0     | 365   | 0     | 459   |
| Fagonia_acerosa               | 0      | 0    | 0    | 0    | 0             | 0    | 0           | 312  | 164   | 0     | 0     | 0     |

|                               | MAS1 | MAS2  | MAS3  | MAS4 | MAS5 | MAS6   | MAS7   | MAS8 | MAS9   | MAS12  | MAS13  | MAS19  |
|-------------------------------|------|-------|-------|------|------|--------|--------|------|--------|--------|--------|--------|
| Soil collection depth (cm)    | 0-5  | 0-5   | 0-5   | 0-5  | 0-5  | 0-5    | 0-5    | 0-5  | 0-5    | 10-15  | 10-15  | 10-15  |
| Fagonia_paulayana             | 168  | 263   | 535   | 1289 | 0    | 0      | 0      | 1559 | 104    | 0      | 0      | 580    |
| Fagopyrum_crispatifolium      | 0    | 884   | 290   | 0    | 238  | 0      | 108139 | 0    | 0      | 255    | 0      | 0      |
| Fagopyrum_esculentum          | 147  | 0     | 0     | 0    | 0    | 0      | 0      | 118  | 0      | 115    | 0      | 0      |
| Fagopyrum_gracilipes          | 0    | 0     | 0     | 0    | 0    | 0      | 1045   | 0    | 198    | 0      | 0      | 0      |
| Fagopyrum_tataricum           | 0    | 100   | 0     | 0    | 0    | 0      | 275    | 0    | 0      | 0      | 0      | 0      |
| Fagopyrum_<br>wenchuanense    | 0    | 0     | 0     | 0    | 269  | 0      | 0      | 0    | 0      | 129    | 0      | 0      |
| Festuca_arundinacea           | 0    | 6183  | 184   | 125  | 0    | 0      | 58571  | 177  | 0      | 619    | 0      | 0      |
| Festuca_simensis              | 0    | 0     | 0     | 346  | 1365 | 119    | 0      | 0    | 0      | 345    | 0      | 0      |
| Festuca_simensis              | 254  | 2057  | 0     | 0    | 354  | 0      | 0      | 613  | 0      | 873    | 0      | 1006   |
| Festuca_simensis              | 604  | 1330  | 142   | 0    | 0    | 0      | 373    | 0    | 0      | 0      | 1113   | 0      |
| Flaveria_pringlei             | 0    | 5977  | 780   | 1364 | 768  | 0      | 298    | 1238 | 0      | 0      | 0      | 0      |
| Flueggea_suffruticosa         | 0    | 0     | 0     | 0    | 322  | 0      | 271    | 0    | 0      | 3241   | 0      | 0      |
| Foeniculum_vulgare            | 0    | 110   | 0     | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| Franklinia_alatamaha          | 0    | 0     | 0     | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 5943   |
| Galium_boreale                | 0    | 0     | 0     | 161  | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 173    |
| Geranium_traversii            | 0    | 0     | 1888  | 246  | 202  | 502    | 6081   | 0    | 0      | 417    | 0      | 0      |
| Gibbaeum_pachypodium          | 4227 | 475   | 3034  | 198  | 3070 | 0      | 106    | 3085 | 0      | 272    | 385    | 468    |
| Glycyrrhiza_glabra            | 388  | 794   | 652   | 303  | 1197 | 0      | 0      | 1076 | 0      | 925    | 0      | 0      |
| Gossypium_thurberi            | 0    | 10932 | 25368 | 235  | 681  | 100047 | 809    | 0    | 161970 | 292815 | 174139 | 129218 |
| Gypsophila_repens             | 1620 | 0     | 0     | 0    | 0    | 0      | 0      | 0    | 0      | 0      | 0      | 0      |
| Halocnemum_<br>strobilaceum * | 186  | 0     | 0     | 651  | 0    | 0      | 10199  | 433  | 0      | 0      | 0      | 332    |
| Haloxylon_ammodendron         | 0    | 0     | 0     | 552  | 0    | 0      | 0      | 767  | 0      | 130752 | 670    | 0      |
| Haloxylon_persicum            | 306  | 0     | 245   | 662  | 630  | 0      | 350    | 102  | 0      | 1947   | 162    | 0      |
| Handroanthus_aureus           | 151  | 908   | 548   | 0    | 0    | 0      | 158    | 228  | 0      | 0      | 0      | 0      |
| Hedysarum_tibeticum           | 583  | 9575  | 406   | 1980 | 3353 | 180    | 1154   | 395  | 0      | 3269   | 394    | 0      |

|                              | MAS1 | MAS2         | MAS3  | MAS4 | MAS5 | MAS6 | MAS7 | MAS8 | MAS9          | MAS12 | MAS13 | MAS19 |
|------------------------------|------|--------------|-------|------|------|------|------|------|---------------|-------|-------|-------|
| Soil collection depth (cm)   | 0-5  | 0-5          | 0-5   | 0-5  | 0-5  | 0-5  | 0-5  | 0-5  | 0-5           | 10-15 | 10-15 | 10-15 |
| Heliotropium_erosum          | 0    | 0            | 0     | 0    | 0    | 0    | 325  | 0    | 0             | 1300  | 0     | 0     |
| Helminthotheca_echioides     | 0    | 155          | 0     | 0    | 113  | 0    | 3496 | 0    | PENCARBOXL147 | 0     | 0     | 0     |
| Heptacodium_<br>miconioides  | 0    | 1116         | 322   | 0    | 2065 | 0    | 0    | 260  | 0             | 102   | 0     | 0     |
| Herbertia_darwinii           | 0    | 232          | 0     | 0    | 0    | 0    | 0    | 124  | 0             | 0     | 0     | 0     |
| Herniaria_ciliolata          | 0    | 0            | 0     | 0    | 0    | 0    | 0    | 0    | 0             | 143   | 0     | 0     |
| Hesperis_matronalis          | 0    | 0            | 0     | 0    | 0    | 0    | 401  | 0    | 0             | 0     | 0     | 19656 |
| Hesperostipa_comata          | 0    | 278          | 0     | 0    | 0    | 0    | 0    | 0    | 0             | 0     | 0     | 896   |
| Hippocrepis_comosa           | 0    | 115          | 135   | 181  | 106  | 0    | 0    | 179  | 0             | 0     | 0     | 0     |
| Homalomena_speariae          | 0    | 0            | 0     | 183  | 0    | 0    | 114  | 194  | 0             | 0     | 0     | 0     |
| Hordeum_secalinum            | 0    | 0            | 223   | 0    | 272  | 0    | 0    | 0    | 0             | 0     | 0     | 107   |
| Horovitzia_cnidoscoloides    | 0    | 0            | 0     | 173  | 182  | 0    | 383  | 0    | 0             | 0     | 0     | 0     |
| Hyacinthoides_hispanica      | 845  | 2183         | 3339  | 0    | 0    | 0    | 0    | 0    | 1830          | 3002  | 0     | 2749  |
| Hydrilla_verticillata        | 0    | 10110        | 587   | 0    | 0    | 109  | 102  | 0    | 157           | 2267  | 1338  | 246   |
| Hypochaeris_brasiliensis     | 0    | 0            | 112   | 0    | 0    | 0    | 516  | 0    | 0             | 0     | 0     | 0     |
| Hypselodelphys_hirsuta       | 334  | 3015         | 0     | 0    | 131  | 0    | 9412 | 3268 | 69224         | 384   | 0     | 636   |
| Ilex_asperula                | 0    | 542          | 0     | 0    | 0    | 1089 | 0    | 164  | 1337          | 447   | 0     | 0     |
| Imperata_cylindrica *        | 0    | 0            | 269   | 0    | 0    | 0    | 0    | 0    | 0             | 241   | 485   | 0     |
| Ionopsidium_abulense         | 191  | 150          | 1254  | 566  | 1495 | 0    | 2610 | 1535 | 248           | 4674  | 1690  | 0     |
| Isatis_tinctoria             | 0    | 358          | 516   | 183  | 0    | 0    | 593  | 0    | 0             | 0     | 0     | 202   |
| Jacobaea_vulgaris            | 0    | 603          | 0     | 162  | 0    | 0    | 671  | 0    | 0             | 0     | 944   | 0     |
| Jarilla_chocola              | 1372 | 139          | 960   | 0    | 0    | 0    | 0    | 0    | 0             | 0     | 0     | 0     |
| Kadsura_coccinea             | 0    | 21807        | 143   | 120  | 0    | 0    | 2105 | 0    | 0             | 0     | 0     | 10638 |
| Kniphofia_linearifolia       | 0    | CSXCPRBCL123 | 0     | 0    | 0    | 0    | 0    | 0    | 0             | 0     | 0     | 0     |
| Lachnospermum_<br>imbricatum | 0    | 0            | 0     | 0    | 0    | 0    | 0    | 0    | 125           | 4677  | 0     | 285   |
| Lactuca_sativa               | 0    | 24723        | 33966 | 0    | 255  | 586  | 0    | 0    | 24927         | 1330  | 0     | 23807 |

|                                   | MAS1 | MAS2  | MAS3  | MAS4  | MAS5 | MAS6  | MAS7 | MAS8  | MAS9   | MAS12 | MAS13 | MAS19 |
|-----------------------------------|------|-------|-------|-------|------|-------|------|-------|--------|-------|-------|-------|
| Soil collection depth (cm)        | 0-5  | 0-5   | 0-5   | 0-5   | 0-5  | 0-5   | 0-5  | 0-5   | 0-5    | 10-15 | 10-15 | 10-15 |
| Lathyrus_palustris                | 0    | 0     | 3441  | 3525  | 778  | 0     | 0    | 2135  | 0      | 0     | 0     | 0     |
| Leontopodium_leiolepis            | 0    | 0     | 121   | 0     | 136  | 0     | 2060 | 0     | 0      | 110   | 0     | 10635 |
| Lepidium_didymum                  | 0    | 0     | 471   | 0     | 0    | 0     | 0    | 3075  | 416    | 0     | 0     | 0     |
| Lepturus_repens                   | 0    | 435   | 237   | 140   | 0    | 0     | 0    | 118   | 0      | 710   | 0     | 0     |
| Leucopogon_<br>microphyllus       | 0    | 0     | 0     | 0     | 0    | 0     | 111  | 1173  | 237    | 0     | 836   | 0     |
| Levisticum_officinale             | 0    | 245   | 0     | 107   | 124  | 0     | 0    | 120   | 0      | 0     | 0     | 2816  |
| Lilium_brownii                    | 271  | 552   | 877   | 341   | 1613 | 0     | 1937 | 548   | 758    | 3231  | 77435 | 0     |
| Lilium_lankongense                | 0    | 0     | 529   | 0     | 0    | 0     | 1115 | 0     | 0      | 0     | 0     | 0     |
| Lilium_pensylvanicum              | 0    | 0     | 0     | 22250 | 334  | 271   | 571  | 27499 | 355    | 0     | 637   | 0     |
| Limeum_arabicum                   | 0    | 0     | 0     | 0     | 0    | 0     | 118  | 0     | 0      | 0     | 0     | 218   |
| Logfia_gallica                    | 0    | 0     | 148   | 0     | 292  | 0     | 1026 | 267   | 0      | 0     | 537   | 110   |
| Lotus_creticus                    | 0    | 3890  | 0     | 0     | 0    | 0     | 0    | 0     | 0      | 129   | 0     | 0     |
| Lotus_japonicus                   | 257  | 1988  | 0     | 0     | 771  | 0     | 0    | 2712  | 0      | 0     | 0     | 30079 |
| Loxodiscus_coriaceus              | 254  | 0     | 114   | 0     | 0    | 21295 | 0    | 264   | 0      | 770   | 1144  | 14865 |
| Luzula_rufescens                  | 0    | 0     | 0     | 0     | 272  | 0     | 268  | 126   | 0      | 0     | 0     | 0     |
| Malva_pusilla                     | 0    | 0     | 0     | 0     | 0    | 0     | 156  | 0     | 4278   | 0     | 9468  | 0     |
| Marantochloa_filipes              | 0    | 127   | 168   | 0     | 0    | 0     | 401  | 0     | 398    | 499   | 0     | 370   |
| Medicago_lupulina                 | 0    | 0     | 0     | 0     | 0    | 0     | 0    | 0     | 221    | 159   | 0     | 1467  |
| Medicago_sativa *                 | 777  | 1285  | 177   | 2171  | 3689 | 662   | 6384 | 2449  | 0      | 0     | 0     | 122   |
| Medicago_truncatula               | 206  | 0     | 320   | 206   | 0    | 0     | 0    | 0     | 0      | 0     | 0     | 0     |
| Melilotus_albus                   | 0    | 0     | 0     | 130   | 245  | 0     | 629  | 208   | 0      | 0     | 0     | 0     |
| Melilotus_officinalis *           | 1495 | 12460 | 1796  | 0     | 1230 | 0     | 0    | 0     | 0      | 772   | 0     | 0     |
| Mertensia_virginica               | 1746 | 32715 | 10171 | 695   | 0    | 0     | 613  | 3934  | 1160   | 1316  | 0     | 47562 |
| Mesembryanthemum_<br>crystallinum | 128  | 0     | 0     | 0     | 0    | 0     | 211  | 0     | 144115 | 0     | 88777 | 0     |
| Mesembryanthemum_<br>nodiflorum * | 1588 | 2087  | 168   | 10402 | 172  | 229   | 0    | 14017 | 2864   | 1493  | 1582  | 0     |

|                            | MAS1  | MAS2  | MAS3  | MAS4  | MAS5  | MAS6 | MAS7 | MAS8 | MAS9 | MAS12  | MAS13 | MAS19 |
|----------------------------|-------|-------|-------|-------|-------|------|------|------|------|--------|-------|-------|
| Soil collection depth (cm) | 0-5   | 0-5   | 0-5   | 0-5   | 0-5   | 0-5  | 0-5  | 0-5  | 0-5  | 10-15  | 10-15 | 10-15 |
| Metalasia_adunca           | 3150  | 0     | 0     | 11196 | 7578  | 0    | 6854 | 5733 | 0    | 689    | 0     | 0     |
| Metalasia_aurea            | 0     | 0     | 0     | 0     | 4635  | 0    | 114  | 0    | 0    | 195    | 125   | 0     |
| Metalasia_divergens        | 0     | 0     | 0     | 0     | 0     | 0    | 4308 | 0    | 0    | 132064 | 1026  | 19169 |
| Metalasia_inversa          | 0     | 48456 | 0     | 129   | 438   | 0    | 0    | 0    | 0    | 0      | 0     | 610   |
| Metalasia_oligocephala     | 0     | 39062 | 0     | 55450 | 61127 | 0    | 0    | 0    | 298  | 0      | 11221 | 0     |
| Microchloa_caffra          | 0     | 0     | 1734  | 280   | 460   | 0    | 0    | 2285 | 0    | 0      | 0     | 0     |
| Monotagma_<br>smaragdinum  | 16600 | 103   | 0     | 0     | 264   | 0    | 0    | 0    | 0    | 0      | 0     | 0     |
| Moringa_rivae              | 0     | 0     | 0     | 0     | 57425 | 0    | 371  | 0    | 1562 | 309    | 0     | 0     |
| Muilla_maritima            | 0     | 0     | 0     | 274   | 877   | 0    | 293  | 0    | 0    | 0      | 265   | 0     |
| Muscari_comosum            | 0     | 153   | 113   | 359   | 0     | 0    | 0    | 0    | 0    | 0      | 0     | 0     |
| Najas_browniana            | 0     | 0     | 0     | 0     | 20787 | 0    | 0    | 0    | 0    | 0      | 0     | 0     |
| Najas_flexilis             | 0     | 115   | 3709  | 0     | 234   | 0    | 110  | 0    | 174  | 0      | 0     | 1347  |
| Najas_gracillima           | 0     | 185   | 712   | 0     | 188   | 0    | 223  | 0    | 1600 | 0      | 0     | 0     |
| Najas_marina               | 0     | 0     | 0     | 0     | 618   | 0    | 0    | 0    | 0    | 0      | 0     | 0     |
| Nassella_viridula          | 0     | 1047  | 0     | 0     | 0     | 0    | 257  | 0    | 0    | 0      | 0     | 0     |
| Navarretia_intertexta      | 0     | 0     | 887   | 0     | 103   | 0    | 0    | 0    | 0    | 0      | 0     | 0     |
| Nicotiana_undulata         | 0     | 0     | 0     | 0     | 0     | 0    | 1412 | 223  | 0    | 393    | 0     | 0     |
| Nothocissus_spicifera      | 233   | 0     | 0     | 0     | 0     | 0    | 0    | 738  | 0    | 0      | 0     | 0     |
| Notothixos_leiophyllus     | 0     | 0     | 0     | 0     | 478   | 107  | 0    | 0    | 0    | 0      | 0     | 0     |
| Decopetalum_mexicanum      | 0     | 0     | 0     | 0     | 0     | 0    | 122  | 0    | 0    | 0      | 0     | 0     |
| Olea_woodiana              | 0     | 0     | 0     | 0     | 121   | 0    | 0    | 0    | 0    | 0      | 0     | 0     |
| Onobrychis_montana         | 0     | 125   | 0     | 0     | 0     | 0    | 0    | 0    | 0    | 0      | 0     | 0     |
| Ononis_repens              | 0     | 24280 | 33397 | 0     | 332   | 0    | 0    | 105  | 0    | 14482  | 0     | 10425 |
| Orixa_japonica             | 0     | 0     | 0     | 2172  | 0     | 0    | 114  | 2889 | 0    | 5502   | 0     | 229   |
| Ormosia_emarginata         | 0     | 0     | 0     | 0     | 457   | 0    | 0    | 0    | 249  | 197    | 0     | 137   |

|                            | MAS1 | MAS2   | MAS3  | MAS4         | MAS5         | MAS6   | MAS7       | MAS8             | MAS9 | MAS12 | MAS13 | MAS19 |
|----------------------------|------|--------|-------|--------------|--------------|--------|------------|------------------|------|-------|-------|-------|
| Soil collection depth (cm) | 0-5  | 0-5    | 0-5   | 0-5          | 0-5          | 0-5    | 0-5        | 0-5              | 0-5  | 10-15 | 10-15 | 10-15 |
| Oxytropis_campestris       | 0    | 632    | 102   | 102          | 0            | 0      | 0          | 0                | 0    | 0     | 0     | 0     |
| Oziroe_biflora             | 0    | 0      | 163   | 134          | 0            | 0      | 0          | 157              | 0    | 235   | 0     | 0     |
| Panax_japonicus            | 0    | 0      | 0     | 176          | 0            | 0      | 30209      | 0                | 0    | 101   | 0     | 0     |
| Panax_japonicus            | 0    | 0      | 957   | 908          | 776          | 0      | 1844       | 0                | 309  | 495   | 642   | 0     |
| Panax_japonicus            | 0    | 0      | 0     | CSXCPRBCL408 | CSXCPRBCL616 | 0      | CSXCPRBCL8 | 342 CSXCPRBCL153 | 0    | 0     | 0     | 0     |
| Panax_japonicus            | 1835 | 19612  | 1019  | 0            | 0            | 0      | 24792      | 0                | 0    | 970   | 0     | 0     |
| Panax_japonicus            | 2231 | 159517 | 11799 | 0            | 0            | 0      | 58900      | 0                | 0    | 1758  | 0     | 231   |
| Panax_japonicus            | 4350 | 472    | 0     | 0            | 0            | 0      | 508        | 0                | 0    | 0     | 0     | 0     |
| Panax_notoginseng          | 356  | 361    | 480   | 0            | 683          | 212    | 805        | 507              | 201  | 313   | 0     | 0     |
| Panax_pseudoginseng        | 1016 | 937    | 815   | 0            | 0            | 108647 | 0          | 0                | 126  | 0     | 1015  | 440   |
| Panax_stipuleanatus        | 128  | 116    | 113   | 0            | 0            | 0      | 0          | 0                | 0    | 0     | 0     | 249   |
| Paronychia_canadensis      | 0    | 378    | 0     | 0            | 0            | 0      | 0          | 162              | 0    | 0     | 0     | 0     |
| Pectis_papposa             | 0    | 0      | 0     | 0            | 0            | 0      | 435        | 772              | 0    | 0     | 0     | 0     |
| Pennisetum_glaucum         | 0    | 0      | 0     | 140          | 0            | 0      | 0          | 0                | 248  | 0     | 0     | 191   |
| Petalostemon_purpureus     | 0    | 0      | 0     | 0            | 766          | 0      | 105        | PENCARBOXL797    | 0    | 5927  | 0     | 812   |
| Petroselinum_crispum       | 0    | 0      | 0     | 0            | 203          | 0      | 102        | 0                | 0    | 0     | 0     | 0     |
| Phalaris_arundinacea       | 0    | 0      | 0     | 0            | 0            | 0      | 114        | 588              | 0    | 139   | 0     | 0     |
| Phragmites_australis *     | 0    | 1428   | 0     | 0            | 419          | 0      | 318        | 353              | 0    | 0     | 0     | 0     |
| Phyllostachys_nigra        | 0    | 1805   | 0     | 0            | 110          | 114    | 0          | 0                | 0    | 0     | 0     | 1006  |
| Pickeringia_montana        | 0    | 0      | 132   | 0            | 392          | 0      | 398        | 0                | 0    | 0     | 0     | 0     |
| Pickeringia_montana        | 0    | 0      | 581   | 0            | 0            | 0      | 0          | 0                | 0    | 411   | 0     | 0     |
| Pickeringia_montana        | 2312 | 59365  | 8928  | 4796         | 0            | 0      | 0          | 6867             | 0    | 0     | 10230 | 0     |
| Pilea_verrucosa            | 0    | 0      | 0     | 0            | 6934         | 1138   | 301        | 0                | 1549 | 371   | 0     | 0     |
| Pilosella_lactucella       | 0    | 0      | 106   | 0            | 338          | 0      | 0          | 0                | 0    | 1540  | 0     | 112   |
| Pistia_stratiotes          | 0    | 200    | 0     | 0            | 0            | 0      | 214        | 0                | 0    | 206   | 0     | 0     |

|                            | MAS1  | MAS2 | MAS3 | MAS4 | MAS5  | MAS6 | MAS7 | MAS8 | MAS9  | MAS12 | MAS13 | MAS19 |
|----------------------------|-------|------|------|------|-------|------|------|------|-------|-------|-------|-------|
| Soil collection depth (cm) | 0-5   | 0-5  | 0-5  | 0-5  | 0-5   | 0-5  | 0-5  | 0-5  | 0-5   | 10-15 | 10-15 | 10-15 |
| Plantago_lanceolata *      | 3880  | 0    | 0    | 840  | 1625  | 0    | 0    | 1388 | 0     | 0     | 0     | 867   |
| Plantago_virginica         | 4092  | 0    | 0    | 748  | 656   | 0    | 1968 | 914  | 0     | 0     | 0     | 0     |
| Platycrater_arguta         | 0     | 0    | 0    | 0    | 4420  | 3183 | 0    | 0    | 21555 | 520   | 0     | 0     |
| Pleiostachya_pruinosa      | 0     | 0    | 0    | 0    | 0     | 0    | 472  | 0    | 0     | 475   | 284   | 0     |
| Pleurospermum_cristatum    | 0     | 268  | 300  | 0    | 0     | 151  | 444  | 203  | 0     | 0     | 0     | 0     |
| Polycarpon_tetraphyllum    | 0     | 0    | 0    | 579  | 563   | 0    | 0    | 0    | 0     | 0     | 108   | 0     |
| Polypogon_fugax            | 14801 | 0    | 0    | 136  | 0     | 0    | 209  | 0    | 0     | 0     | 0     | 0     |
| Primula_floribunda         | 0     | 0    | 0    | 0    | 56818 | 1421 | 0    | 0    | 8894  | 0     | 0     | 0     |
| Primula_veris              | 0     | 0    | 0    | 0    | 148   | 1345 | 1158 | 0    | 8971  | 0     | 0     | 0     |
| Primula_verticillata       | 0     | 0    | 0    | 0    | 0     | 0    | 131  | 0    | 0     | 0     | 0     | 327   |
| Prunus_padus               | 0     | 1069 | 2713 | 667  | 103   | 0    | 121  | 0    | 1342  | 0     | 0     | 765   |
| Prunus_pensylvanica        | 9697  | 183  | 0    | 543  | 2191  | 0    | 1781 | 831  | 0     | 0     | 0     | 0     |
| Prunus_persica             | 8552  | 902  | 2949 | 789  | 0     | 108  | 364  | 0    | 0     | 0     | 0     | 1637  |
| Prunus_ussuriensis         | 0     | 0    | 0    | 0    | 24889 | 0    | 221  | 106  | 0     | 9804  | 0     | 0     |
| Prunus_yedoensis           | 288   | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0     | 0     | 0     | 0     |
| Remusatia_vivipara         | 0     | 314  | 0    | 0    | 268   | 0    | 1081 | 0    | 0     | 0     | 916   | 0     |
| Reseda_luteola             | 0     | 0    | 147  | 1549 | 3578  | 0    | 585  | 1805 | 0     | 0     | 254   | 1144  |
| Sagina_apetala             | 0     | 0    | 0    | 0    | 116   | 0    | 0    | 0    | 438   | 0     | 0     | 0     |
| Sagittaria_pygmaea         | 0     | 0    | 113  | 0    | 7005  | 0    | 265  | 5334 | 135   | 0     | 6877  | 0     |
| Sagittaria_subulata        | 0     | 0    | 0    | 0    | 265   | 0    | 206  | 0    | 0     | 0     | 0     | 242   |
| Salicornia_dolichostachya  | 0     | 0    | 0    | 569  | 0     | 0    | 103  | 2166 | 0     | 135   | 0     | 0     |
| Salsola_soda               | 0     | 0    | 0    | 191  | 0     | 0    | 0    | 212  | 0     | 520   | 0     | 241   |
| Salsola_vermiculata        | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0     | 0     | 0     | 110   |
| Salvia_flava               | 0     | 0    | 368  | 0    | 322   | 0    | 0    | 0    | 753   | 0     | 0     | 222   |
| Salvia_isensis             | 0     | 0    | 0    | 0    | 0     | 0    | 0    | 332  | 0     | 329   | 0     | 0     |

|                                | MAS1 | MAS2  | MAS3  | MAS4 | MAS5  | MAS6 | MAS7 | MAS8  | MAS9   | MAS12 | MAS13  | MAS19 |
|--------------------------------|------|-------|-------|------|-------|------|------|-------|--------|-------|--------|-------|
| Soil collection depth (cm)     | 0-5  | 0-5   | 0-5   | 0-5  | 0-5   | 0-5  | 0-5  | 0-5   | 0-5    | 10-15 | 10-15  | 10-15 |
| Salvia_nipponica               | 0    | 0     | 0     | 397  | 1429  | 0    | 0    | 2726  | 150300 | 0     | 107170 | 0     |
| Salvia_roemeriana              | 824  | 0     | 103   | 2707 | 4438  | 0    | 7456 | 2778  | 0      | 0     | 0      | 0     |
| Sambucus_nigra                 | 0    | 0     | 0     | 0    | 176   | 0    | 984  | 0     | 644    | 1611  | 0      | 791   |
| Sapindus_mukorossi             | 0    | 0     | 0     | 0    | 316   | 0    | 0    | 0     | 0      | 0     | 0      | 0     |
| Saponaria_officinalis          | 0    | 1653  | 0     | 0    | 0     | 1401 | 0    | 0     | 1519   | 0     | 166    | 256   |
| Scadoxus_cinnabarinus          | 0    | 0     | 0     | 0    | 112   | 0    | 2619 | 0     | 0      | 0     | 0      | 0     |
| Schismus_barbatus **           | 0    | 0     | 0     | 0    | 0     | 0    | 227  | 0     | 0      | 0     | 0      | 0     |
| Schoenus_efoliatus             | 0    | 224   | 0     | 0    | 0     | 0    | 0    | 0     | 0      | 3746  | 0      | 173   |
| Schumannianthus_<br>dichotomus | 0    | 242   | 130   | 1011 | 156   | 0    | 985  | 340   | 0      | 313   | 0      | 0     |
| Scorzonera_intricata           | 0    | 0     | 0     | 749  | 0     | 0    | 0    | 0     | 0      | 448   | 0      | 0     |
| Sedum_oryzifolium              | 0    | 0     | 0     | 0    | 0     | 348  | 0    | 0     | 2579   | 0     | 0      | 1232  |
| Senecio_sylvaticus             | 109  | 24404 | 35032 | 186  | 53071 | 7908 | 109  | 127   | 25146  | 155   | 0      | 25651 |
| Sesuvium_hydaspicum            | 0    | 0     | 0     | 0    | 767   | 0    | 122  | 0     | 107    | 136   | 155    | 0     |
| Silene_aprica                  | 0    | 0     | 189   | 0    | 0     | 0    | 8391 | 0     | 0      | 0     | 0      | 0     |
| Silene_gallica                 | 0    | 0     | 0     | 111  | 4254  | 0    | 0    | 0     | 0      | 0     | 0      | 0     |
| Silene_latifolia               | 0    | 0     | 105   | 0    | 0     | 0    | 0    | 0     | 0      | 538   | 0      | 0     |
| Silene_noctiflora              | 0    | 0     | 0     | 105  | 0     | 0    | 0    | 26335 | 0      | 155   | 0      | 0     |
| Silene_paradoxa                | 139  | 0     | 0     | 868  | 428   | 0    | 0    | 0     | 0      | 0     | 0      | 124   |
| Sinapis_arvensis               | 0    | 0     | 0     | 0    | 0     | 0    | 128  | 0     | 0      | 389   | 0      | 478   |
| Sisymbrium_orientale *         | 0    | 0     | 205   | 0    | 0     | 0    | 0    | 0     | 0      | 0     | 0      | 0     |
| Solanum_lycopersicum           | 0    | 0     | 0     | 0    | 0     | 1284 | 1185 | 0     | 0      | 0     | 0      | 0     |
| Solanum_pennellii              | 0    | 0     | 0     | 0    | 0     | 0    | 1109 | 0     | 0      | 0     | 0      | 0     |
| Solidago_missouriensis         | 0    | 122   | 345   | 0    | 0     | 0    | 0    | 137   | 816    | 118   | 0      | 0     |
| Sorghum_bicolor                | 117  | 0     | 0     | 308  | 0     | 0    | 0    | 187   | 0      | 241   | 0      | 0     |
| Soroseris_erysimoides          | 0    | 0     | 0     | 0    | 589   | 0    | 0    | 0     | 0      | 0     | 0      | 0     |

|                               | MAS1 | MAS2   | MAS3  | MAS4  | MAS5  | MAS6 | MAS7   | MAS8  | MAS9 | MAS12 | MAS13 | MAS19 |
|-------------------------------|------|--------|-------|-------|-------|------|--------|-------|------|-------|-------|-------|
| Soil collection depth (cm)    | 0-5  | 0-5    | 0-5   | 0-5   | 0-5   | 0-5  | 0-5    | 0-5   | 0-5  | 10-15 | 10-15 | 10-15 |
| Spergularia_azorica           | 0    | 443    | 0     | 0     | 232   | 0    | 0      | 0     | 0    | 274   | 0     | 0     |
| Spirodela_polyrhiza           | 0    | 377    | 0     | 0     | 0     | 0    | 0      | 0     | 0    | 0     | 0     | 0     |
| Sporobolus_japonicus          | 0    | 0      | 0     | 0     | 0     | 0    | 0      | 0     | 0    | 0     | 0     | 143   |
| Stachyphrynium_repens         | 0    | 0      | 354   | 0     | 0     | 101  | 0      | 0     | 0    | 0     | 0     | 3625  |
| Stipa_lipskyi                 | 0    | 727    | 720   | 1069  | 668   | 0    | 285    | 1392  | 1734 | 0     | 0     | 798   |
| Stipulicida_setacea           | 0    | 0      | 0     | 0     | 0     | 107  | 0      | 0     | 143  | 2554  | 0     | 564   |
| Streblus_ilicifolius          | 0    | 2903   | 7649  | 0     | 0     | 0    | 326    | 1002  | 1462 | 13786 | 11274 | 0     |
| Styphnolobium_<br>burseroides | 0    | 916    | 0     | 0     | 0     | 0    | 0      | 0     | 0    | 0     | 0     | 0     |
| Styphnolobium_conzattii       | 2261 | 159848 | 12064 | 103   | 21073 | 313  | 108450 | 26697 | 1552 | 0     | 0     | 10725 |
| Suaeda_aegyptiaca *           | 0    | 0      | 305   | 496   | 582   | 0    | 0      | 173   | 0    | 241   | 934   | 0     |
| Suaeda_fruticosa *            | 0    | 454    | 0     | 0     | 401   | 0    | 0      | 0     | 0    | 0     | 0     | 1194  |
| Syncarpha_canescens           | 586  | 189    | 4767  | 2053  | 0     | 104  | 868    | 534   | 0    | 275   | 383   | 0     |
| Tetragonia_tetragonioides     | 0    | 103    | 0     | 0     | 0     | 0    | 0      | 151   | 0    | 0     | 0     | 0     |
| Teucrium_viscidum             | 0    | 0      | 0     | 0     | 18396 | 0    | 0      | 0     | 220  | 616   | 0     | 0     |
| Thalia_dealbata               | 0    | 0      | 0     | 0     | 483   | 0    | 112    | 0     | 0    | 132   | 0     | 0     |
| Foddalia_asiatica             | 0    | 952    | 0     | 116   | 0     | 0    | 0      | 181   | 327  | 0     | 0     | 532   |
| Trianthema_argentinum         | 0    | 0      | 0     | 1496  | 524   | 0    | 6520   | 0     | 700  | 361   | 5182  | 0     |
| Trianthema_<br>ceratosepalum  | 292  | 0      | 636   | 825   | 285   | 0    | 0      | 600   | 0    | 0     | 0     | 0     |
| Trianthema_clavatum           | 1248 | 6507   | 15113 | 11937 | 151   | 0    | 0      | 11887 | 0    | 909   | 0     | 0     |
| Trianthema_corymbosum         | 0    | 0      | 0     | 0     | 927   | 0    | 0      | 1846  | 320  | 1464  | 0     | 0     |
| Frianthema_oxycalyptrum       | 0    | 0      | 0     | 0     | 0     | 0    | 0      | 0     | 0    | 1094  | 0     | 0     |
| Frianthema_<br>portulacastrum | 0    | 413    | 581   | 634   | 547   | 201  | 16972  | 945   | 0    | 3853  | 3969  | 0     |
| Trianthema_salsoloides        | 0    | 1875   | 369   | 0     | 1103  | 0    | 116    | 0     | 0    | 293   | 0     | 269   |
| Frianthema_vleiense           | 0    | 0      | 0     | 0     | 0     | 0    | 238    | 0     | 0    | 312   | 0     | 1206  |

|                               | MAS1 | MAS2 | MAS3 | MAS4  | MAS5 | MAS6   | MAS7  | MAS8  | MAS9 | MAS12 | MAS13 | MAS1  |
|-------------------------------|------|------|------|-------|------|--------|-------|-------|------|-------|-------|-------|
| Soil collection depth (cm)    | 0-5  | 0-5  | 0-5  | 0-5   | 0-5  | 0-5    | 0-5   | 0-5   | 0-5  | 10-15 | 10-15 | 10-15 |
| Tribulus_lanuginosus          | 0    | 509  | 0    | 0     | 0    | 0      | 362   | 0     | 0    | 0     | 0     | 632   |
| Trifolium_glanduliferum       | 0    | 361  | 0    | 171   | 138  | 0      | 1220  | 183   | 0    | 184   | 0     | 0     |
| Tripsacum_dactyloides         | 0    | 0    | 0    | 0     | 0    | 0      | 358   | 0     | 0    | 101   | 0     | 189   |
| Trisetum_sibiricum            | 0    | 1042 | 2196 | 313   | 0    | 0      | 4130  | 0     | 1292 | 726   | 0     | 100   |
| Triticum_aestivum             | 0    | 0    | 1480 | 1237  | 1460 | 0      | 0     | 0     | 0    | 0     | 477   | 0     |
| Turbina_oblongata             | 739  | 1813 | 3316 | 0     | 620  | 812    | 0     | 0     | 0    | 0     | 0     | 0     |
| Typha_latifolia               | 0    | 0    | 0    | 0     | 0    | 0      | 0     | 0     | 0    | 754   | 0     | 1063  |
| Urginavia_altissima           | 0    | 0    | 104  | 0     | 0    | 0      | 313   | 0     | 0    | 0     | 0     | 0     |
| Vaccinium_myrtillus           | 0    | 111  | 126  | 0     | 131  | 0      | 0     | 0     | 0    | 0     | 0     | 0     |
| Vaccinium_uliginosum          | 121  | 0    | 0    | 0     | 0    | 0      | 1147  | 0     | 0    | 0     | 0     | 148   |
| Vangueria_agrestis            | 0    | 0    | 0    | 0     | 927  | 0      | 240   | 128   | 0    | 0     | 0     | 0     |
| Vangueria_bowkeri             | 0    | 0    | 150  | 0     | 398  | 0      | 0     | 354   | 0    | 304   | 0     | 0     |
| Vasconcellea_quercifolia      | 4197 | 2919 | 3501 | 0     | 4051 | 0      | 0     | 0     | 0    | 3520  | 0     | 2349  |
| Vasconcellea_<br>sphaerocarpa | 0    | 121  | 0    | 0     | 0    | 0      | 29046 | 0     | 0    | 0     | 0     | 0     |
| Wisteria_floribunda           | 0    | 0    | 0    | 0     | 0    | 0      | 128   | 0     | 0    | 13460 | 0     | 278   |
| Wolffia_australiana           | 0    | 4216 | 0    | 0     | 0    | 0      | 0     | 0     | 0    | 928   | 0     | 0     |
| Xanthorrhoea_resinosa         | 0    | 6139 | 590  | 0     | 0    | 520523 | 0     | 0     | 1158 | 2090  | 0     | 0     |
| Yucca_glauca                  | 0    | 405  | 0    | 0     | 0    | 0      | 0     | 0     | 0    | 482   | 0     | 0     |
| Zaleya_pentandra              | 0    | 0    | 0    | 151   | 0    | 0      | 0     | 0     | 0    | 0     | 0     | 0     |
| Zanthoxylum_nitidum           | 0    | 0    | 0    | 0     | 135  | 0      | 0     | 0     | 0    | 0     | 0     | 0     |
| Zanthoxylum_ovalifolium       | 388  | 2876 | 2595 | 1742  | 1447 | 531    | 610   | 204   | 637  | 25377 | 2149  | 0     |
| Zanthoxylum_piperitum         | 0    | 1401 | 4352 | 1406  | 4137 | 0      | 331   | 1829  | 113  | 0     | 0     | 0     |
| Zanthoxylum_schinifolium      | 704  | 0    | 0    | 27228 | 100  | 0      | 71410 | 31123 | 0    | 0     | 0     | 116   |

(\*) Single asterisks indicate species present in the flora of Kuwait, (\*\*) Double astriks indicate species present above ground at Um-Niqa

[End of Table 5.25]

|                       | Blastn matching NCBI-Angiosperm database |                                                       |                                                     |                                                        |  |  |  |
|-----------------------|------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|--|--|--|
| Metabarcoding samples | Depth of soil collection (cm)            | No. of species<br>matches to<br>above ground<br>flora | No. of species<br>matches to the<br>flora of Kuwait | Total No. of matches to<br>NCBI-Angiosperm<br>database |  |  |  |
| Site 1                |                                          |                                                       |                                                     |                                                        |  |  |  |
| MAS1                  | Surface (0-5)                            | 1                                                     | 3                                                   | 86                                                     |  |  |  |
| MAS2                  | Surface (0-5)                            | 1                                                     | 8                                                   | 135                                                    |  |  |  |
| MAS3                  | Surface (0-5)                            | 0                                                     | 9                                                   | 148                                                    |  |  |  |
| MAS4                  | Surface (0-5)                            | 1                                                     | 10                                                  | 123                                                    |  |  |  |
| MAS5                  | Surface (0-5)                            | 1                                                     | 9                                                   | 166                                                    |  |  |  |
| MAS6                  | Surface (0-5)                            | 0                                                     | 3                                                   | 56                                                     |  |  |  |
| MAS7                  | Surface (0-5)                            | 2                                                     | 13                                                  | 170                                                    |  |  |  |
| MAS8                  | Surface (0-5)                            | 1                                                     | 6                                                   | 138                                                    |  |  |  |
| MAS9                  | Surface (0-5)                            | 0                                                     | 6                                                   | 93                                                     |  |  |  |
| MAS12                 | Deep (10-15)                             | 0                                                     | 7                                                   | 139                                                    |  |  |  |
| MAS13                 | Deep (10-15)                             | 0                                                     | 2                                                   | 62                                                     |  |  |  |
| MAS19                 | Deep (10-15)                             | 0                                                     | 7                                                   | 103                                                    |  |  |  |

 Table 5.26 Summary of Angiosperm-NCBI database matches to the flora of

 Kuwait using *de novo* clustered sequences for all metabarcoding samples

## **5.3.6** A summary of the NGS technologies match with the above ground plant diversity at Um Neqa study area

In an attempt to study the status of plant diversity below-ground with the above ground, the sequence match results from metagenomics and metabarcoding analyses to Kuwait DNA database were compiled in Table 5.27 and compared with the above ground plant diversity, represented by a total number of 30 species. The metabarcoding analysis resulted in 19 species match with the above ground plant diversity, while metagenomics resulted in only 1 species match and represented by *Gymnarrhena micrantha* (Table 5.27).

|                              | NGS applications |               |  |  |  |
|------------------------------|------------------|---------------|--|--|--|
| Species present above ground | Metagenomics     | Metabarcoding |  |  |  |
| Site 1: Protected area       | -                |               |  |  |  |
| Allium longisepalum          | -                | -             |  |  |  |
| Anisosciadium lanatum        | -                | +             |  |  |  |
| Asphodelus tenuifolius       | -                | +             |  |  |  |
| Atractylis carduus           | -                | +             |  |  |  |
| Brassica tournefortii        | -                | +             |  |  |  |
| Carduus pycnocephalus        | -                | -             |  |  |  |
| Centaurea pseudosinaica      | -                | -             |  |  |  |
| Centaurea bruiguriana        | -                | -             |  |  |  |
| Convolvulus oxyphyllus       | -                | +             |  |  |  |
| Cuscuta planiflora           | -                | +             |  |  |  |
| Gypsophila capillaris        | -                | +             |  |  |  |
| Hammada salicornica          | -                | -             |  |  |  |
| Helianthemum lippii          | -                | +             |  |  |  |
| Heliotropium bacciferum      | -                | +             |  |  |  |
| Koelpinia linearis           | -                | +             |  |  |  |
| Launaea mucronata            | -                | +             |  |  |  |
| Pennisetum divisum           | -                | +             |  |  |  |
| Plantago boissieri           | -                | +             |  |  |  |
| Plantago ovata               | -                | +             |  |  |  |
| Rhanterium epapposum         | -                | +             |  |  |  |
| Rumex vesicarius             | -                | -             |  |  |  |
| Salvia aegyptiaca            | -                | -             |  |  |  |
| Lomelosia olivieri           | -                | -             |  |  |  |
| Lomelosia palaestina         | -                | +             |  |  |  |
| Schismus barbatus            | -                | +             |  |  |  |
| Senecio glaucus              | -                | +             |  |  |  |
| Stipa capensis               | -                | +             |  |  |  |
|                              |                  |               |  |  |  |
| Site 2: Open desert area     |                  |               |  |  |  |
| Hammada salicornica          | -                | -             |  |  |  |
| Arnebia decumbens            | -                | -             |  |  |  |
| Astragalus schimperi         | -                | -             |  |  |  |
| Gymnarrhena micrantha        | +                | -             |  |  |  |
| Moraea sisyrinchium          | -                | -             |  |  |  |

# Table 5.27 Summary of NGS matches with the above ground plant diversity at Um Niqa

(+) species present in data set (-) species absent in data set

### **5.4 Discussion**

This study presents a unique NGS molecular exploration through environmental DNA soil samples of Kuwait. Based on the results generated from metagenomics and metabarcoding analyses, DNA was traceable in the soil of an arid environment. This study documents how both molecular approaches can be used to identify plants extracted from eDNA soil samples collected from rich and poor species habitats.

A technical issue must be considered here is that the DNA is mainly from degraded sources (i.e. DNA material from dead organisms and plant parts leaves, roots, pollens, etc.). Yoccoz et al. (2012) shown that crops cultivated up to 50 years ago could still leave recoverable and identifiable DNA in the soil, despite the level of DNA decay (Yoccoz, et al., 2012). Environmental DNA extracted from soil samples does not have a clear age limit; unknown how fast DNA degrades in soil and how much of it reflects the present vegetation compared with past vegetation, some taxa might be conserved for longer periods than others (Taberlet et al., 2012). However, we do not know how much of the eDNA comes from the local origin (i.e. movement of DNA by wind, water, animals). Such investigation requires calibration studies to specify how much stratification and clustering will result with the highest accuracy of data and information.

### **5.4.1 Metagenomics**

Metagenomics approach was limited in providing identification for sequences at species-level using Angiosperm-NCBI database; this is a common issue for a poorly known flora, weakly represented in the GenBank. Angiosperm-NCBI database resulted in a good BLASTn match at the family level representing the two study sites. Interestingly, using the complete plastid genome database (to show the diversity of green plants) at the order-level, algae, bryophytes and ferns were found to have a high percentage of sequences in the eDNA soil samples compared to magnoliophytes.

Similarity sequence searches blasted against Angiosperm-NCBI database to match species-level showed a high number of matches to *Cuscuta gronovii* represented by

matches at  $\geq$  98 % ID. A known species to the Kuwaiti flora from the same genus is *Cuscuta planiflora* (dodder parasitic plant), a common parasitic plant present throughout Kuwait and during the field survey, it was observed attached to a dwarfshrub Rhanterium epapposum (Figure 5.2). Cuscuta seeds are well documented to germinate independently of the presence of a host; seedlings emerge from the soil up to 7 cm (favourable temperature range 15 to 38 °C); after completing its life cycle on a host plant, it sheds it seeds to the soil and remain dormant for more than 10 years, depending on the environmental conditions (Lanini and Kogan, 2005). Another rootparasitic plant matching Kuwait DNA database is Orobanche purpurea, which is found in Kuwait under different species names O. aegtptiaca and O. cernua (Table 2.3). Orobanche spp. is found in sandy and loose soil and commonly growing and flowering throughout Kuwait between March to May (Daoud, 1985). Sciaphila densiflora, is also a parasitic flowering plant, not common species to an arid region and generally spreads in tropical and subtropical regions (Tsukaya and Suetsugu, 2014); its sequence source in the eDNA samples could be from the surrounding agricultural area, where it is being cultivated as an ornamental plant.

Another species-level match is *Silene conica* which is a synonym of *S. conoidea* and belongs to a common family Caryophyllaceae, present in the local flora along with 3 other species that did not return with any sequence matches: *Silene arabica, S. arenosa,* and *S. villosa* (Table 2.3).

The presence of sequences matching to crops, are possibly due to fragments of material (e.g. pollens, spores, seeds) transported by wind or animals from nearby farming areas. Al-Abdaly farms are only 3 km away. Before the DMZ area was established and fenced, the farming land extended to Um Neqa, the study area. Crop sequence matches are represented by *Pisum sativum* (green peas), *Hordeum vulgare* (barley), *Musa acuminate* (banana), *Oryza sativa* (rice), and *Cucumis melo* (melon). Peas, barley and banana plants are commonly cultivated inside the greenhouses at Al-Abdaly farms. Also *Hordeum vulgare*, the wild species is present in the flora as *H. marinum* and *H. muranum*. DNA material matching ornamental plants detected in the soil samples and possibly cultivated in nearby nurseries are represented by

Trachelium caeruleum (blue throatwort), Carnegiea gigantean (cactus), Chloranthus spicatus (pearl orchid) and *Enkianthus perulatus* (white enkianthus). (Table 2.3). From the 19 plant families detected using the NCBI database (Table 5.15), 8 are present in the flora of Kuwait. A high percentage of sequences matched to three common families of the flora represented throughout Kuwait belongs to Fabaceae, Poaceae and Convolvulaceae (Table 5.15 and Table 2.3). Other families with a high percentage of sequence matches to family level and not common to the flora of Kuwait are represented by Cactaceae, Campanulaceae, Ericaceae, Platanaceae and Triuridaceae (Table 5.15). The source of DNA and sequence matches to the families uncommon to the flora of Kuwait could be transported from the neighbouring agriculture area (Al-Abdaly farms) for example Musaceae (banana) are commonly cultivated in Al-Abdaly farms. Individuals belonging to Cactaceae, Campanulaceae, Orchidaceae and Verbenaceae are also widely grown and sold as ornamental plants in Kuwaiti nurseries (Table 5.15). Other sources of DNA material deposited in the Kuwaiti soil could be due to long distance wind dispersal pollen grains from neighbouring countries of the Arabian Peninsula. Saudi Arabia, located south of Kuwait, with a flora consisting of about 2,284 species belonging to 131 families (Thomas, 2017) could possibly be the answer to some sequence matches that are not representatives of the flora of Kuwait. Cactaceae, Campanulaceae, and Ericaceae are families documented in the flora of Saudi Arabia and could be the source of DNA material (i.e. pollen grains) found matching the sequence reads of the Kuwaiti soil samples. Long-distance pollen dispersal is well documented in several publications (e.g. Kuparinen et al., 2007; Albrecht et al., 2009; Millar et al., 2014).

Furthermore, exploring the species present in the flora of Saudi Arabia belonging to the families with sequence matches to the Kuwaiti DNA database, the two species of the flora of Saudi Arabia representing Cactaceae are *Opuntia ficus-indica* (sweet prickly pear) and *O. dillenii* (spiny pest pear). *Opuntia* species are known to reproduce and disperse by seeds and also vegetatively by its fleshy stem fragments (Reyes -Aguero et al., 2006). Stem fragments are either cultivated or spread by becoming attached to animals. Considering the wind transportation of pollen grains from Saudi Arabia to Kuwait, the average size of *Opuntia* sp. pollens is about 100 µm (ElBehi et al., 2015; Reyes-Aguero et al., 2006) which is larger than the average size of wind transported pollens, 20-60  $\mu$ m (Faegri & Van Der Pijl, 1979) and could possibly be difficult to elevate into the air to become airborne and travel by wind across long distances. Therefore, the source of DNA material of Cactaceae represented in the Kuwaiti soil samples could mainly be from the neighbouring nurseries and farming areas (Al-Abdaly farms), which commonly cultivate cactus for medicinal and ornamental purposes.

Campanulaceae is represented in the flora of Saudi Arabia by 3 species: *Campanula dulcis, C. edulis,* and *C. erinus.* Campanula in Latin meaning small bell and commonly known as the bell-shaped flowers. The Campanula flowers are either self-fertilised or pollinated mainly by bees (Schlindwein et al., 2005). The mean size of the pollen grains of Campanula sp. is about 30  $\mu$ m (Khansari et al., 2012; Perveen and Qaiser, 1999) which is the perfect size representing wind transported pollens.

Another family from Saudi Arabia is Ericaceae represented by only one species, *Erica arborea* (tree heath), a shrub or small tree with height ranges from 1 - 4 m. Erica pollens mean size is about 22  $\mu$ m (Sarwar and Takahashi, 2014) which also makes it easy to disperse across long distances by the wind. Thus, a portion of the DNA source representing the families Campanulaceae and Ericaceae in Kuwaiti soil could be due to the accumulation of long distance wind-transported pollen grains from Saudi Arabia and other neighbouring countries e.g. Iraq located north of Kuwait and Iran located north-west.

BLASTn using complete plastid genome matches revealed an interesting finding at the two study sites, for all eDNA samples at the order level, with a total number of sequence matching 81 % of algae, followed by 12 % bryophytes, 4 % ferns and only 3 % of magnoliophytes. From the results, the two largest orders of the sequence matches representing bryophytes and ferns are Orthotrichales and Polypodiales, respectively. Although bryophytes and ferns are well documented in the Arabian Peninsula (Kurschner, 2003; Kurschner & Ochyra, 2014; Rothfels et al., 2012), it lacks proper documentation and requires serious attention in Kuwait. The only documented species in the Kuwaiti flora representing ferns is *Ophioglossum polyphyllum* (Ophioglossales).

To understand the presence of the rich source of DNA material of algae, bryophytes and ferns in the Kuwaiti soil, I will further explore the possible mechanism behind the dispersal of spores and the ecology of biological soil crusts. Lonnell (2011) divided the dispersal of spores into three stages: 1) Abscission (the release, liberation and discharge of spores), 2) Transport (transportation by the wind, water, animal etc.) and 3) Deposition (capture) (Lonnell, 2011). Many algae, bryophytes and ferns have microscopic spores ( $< 50 \ \mu$ m) and are quickly dispersed by high wind speeds over relatively long distances (Lonnell et al, 2014). The spores of bryophytes have a diameter of 5-310 µm, but few are greater than 30 µm (Crum, 2001) and most fern spores have a diameter of 20-60 µm (Tryon 1970), like most wind-dispersed pollen grains having a diameter of also 20-60 µm (Faegri & Van Der Pijl 1979). A critical stage of wind dispersal of spores is for them to reach above the canopy where the wind speeds are higher and easier for the spores to be carried away to higher altitudes and longer horizontal distances (Lonnell et al, 2014). Another mechanism is for the spores to be lifted with warm air (thermal upheaval) (Tackenberg et al., 2003). Many plant species have spores that can tolerate longer periods of desiccation, high levels of Ultra Violet (UV) radiation and high temperature (Zanten, 1978). Under the right conditions, spores could be viable for long periods of time, e.g. bryophytes: Blinda acuta was viable after 4 years and *Racomitrium sudeticum* after 7 years (Crum, 2001); ferns: Cheilanthes mysurensis viable after 8.5 years (Wright, 1909) and Dicksonia antarctica viable after 22 years (Anony, 1910).

Another potential source of the high percentage of algal DNA material found in Kuwaiti soil samples could be due to the presence of biological soil crusts. Biological soil crusts are common in semi-arid and arid environments where the vegetation cover is sparse (Weber et al., 2016). Open spaces between the vegetation are usually covered in biological soil crusts associated with soil particles and cyanobacteria, algae, microfungi, lichens and bryophytes which live within, or immediately on top of the uppermost few centimetres of the soil surface (Belnap et al., 2001). Cyanobacteria and algae, bacteria and microfungi generally initiate the basic matrix of the soil crust, facilitating the colonisation of bryophytes, lichens and microfauna (Weber et al., 2016). Factors that maintain the type of biological soil crust present are various abiotic stresses including high temperature, UV, salinity, pH and low moisture (Zhang et al., 2007). Biological soil crusts plays a major role in determining the soil structure and the morphology of the soil surface; they influence hydrological cycles and the capture and retention of resources such as soil, organic matter, seeds, and nutrient-rich dust (Weber et al., 2016). Biological crusts also have the ability to enhance the soil fertility by fixing atmospheric carbon and nitrogen (Sancho et al., 2016). Biological soil crust lacks proper field studies and documentation in Kuwait which makes it a potentially rich area for future research.

### 5.4.2 Metagenomics analyses using EBI pipeline

The taxonomic classification of the six metagenomics samples was studied using EBI pipeline (Figure 5.8). The observed number of OUT's (at 99 % similarity) from bacterial 16S rRNA gene sequences in all samples ranged from 1,115 to 2,925 reads (56 to 69 %) (Appendix 5.2). The phylum level taxonomy was primarily assigned to bacteria (63 % average) and archaea (0.9 %). At the phylum level, the bacterial sequence reads are mainly represented by Actinobacteria and Proteobacteria; archaea reads are only represented by Crenarchaeota (Appendix 5.2). At the family level, the phylum Actinobacteria is represented by Actinomycetaceae, Actinosynnemataceae, Cellulomonadaceae, Frankiaceae, Intrasporangiaceae; the phylum Proteobacteria is represented by Caulobacteraceae, Beijerinckiaceae, Eruthrobacteraceae, Hyphomicrobiaceae and Phyllobacteriaceae. Crenarchaeota is represented by only two families: Cenarchaeotae and Nitrosophaeraceae.

Actinobacteria, gram-positive bacteria (known for producing antibiotics) are of significant important influence on human health and plays an important role towards their contribution to soil systems by behaving like fungi and help in decomposing organic matter of dead organisms and providing nutrients to new plants (Lewin et al., 2016). The gram-negative bacteria represented by Proteobacteria include a wide variety of human and plant pathogens, such as Escherichia, Salmonella, Vibrio, Helicobacter, and many other notable genera (Eckburg et al., 2005). Other gram-negative bacteria are free-living and include agriculturally important bacteria capable

of colonising the rhizosphere and responsible for nitrogen fixation in a symbiotic relationship with plants (Mendes et al., 2013). The phylum Crenarchaeota represents archaea; known to play an important ecological role in the nitrogen and carbon cycles in the soil and are found colonising young plant roots at high frequency (Simon et al., 2000).

The EBI metagenomic analyses performed on the Kuwaiti soil eDNA extracts gives us an insight of the microbiome present in the study sites. The presence of bacterial sequences in the soil samples, belonging to the Phylum: Actinobacteria and Proteobacteria, are well documented to be the most abundant bacteria in biological soil crusts (Liu et al., 2017; Blay et al., 2017). Also, the archaeal sequences represented by Crenarchaeota are reported as an abundant member of biological soil crust communities across large-scale arid lands in North America (Soule et al., 2009). Thus, indicates that the Kuwaiti soil samples at both sites are represented by microorganisms (represented by bacterial and archaeal sequences) that support the initiation of the basic matrix for biological soil crust community alongside with other plants represented by algae and bryophytes (biological soil crusts discussed earlier).

#### 5.4.3 Comparison of the metagenomics eDNA soil sampling depths

It is well documented that the seed bank density is higher in the upper soil layers (< 5 cm) and the seed density decrease as the depth increase (Fenner & Thompson, 2005). Many ecologists sampled up to 2 cm in depth to study the viability and germination of seeds (Nelson & Chew, 1977; Al-Yemeni et al., 2000; Marone et al., 2004; Reichman, 1984; Marone & Horno, 1997), while others sampled up to 10 cm in depth (Bakker et al., 1996; Leicht-Young et al., 2008), and fewer studies sampled above 10 cm in depth (Erenler et al., 2010; Gross, 1990). In this study the experimental design was set to study and compare between the upper soil layers ( $\leq 5$  cm) with the deeper layers (10-15 cm) of two sites, fence protected rich in plant diversity and highly grazed open desert area poorly representing the flora.

Studying the top soil layer (0-5 cm) of the two sites together using total genomic DNA extractions revealed that although at site 1 (fence protected area) the diversity of

plants above ground is rich with an advantage of having plenty of seasonal DNA material floating above ground and in the top soil layer, DNA material (sample MA6) sequenced from site 2 (a highly degraded open desert area) represented a high sequence matches at species, family, and order-level (Table 5.14 - 5.16). It was not expected to find plenty of DNA material in the soil from a highly disturbed site, represented by very few plants above ground. This indicates that the sequenced environmental DNA material, whether it is representing a viable, decayed or dead DNA source (e.g. spores, seeds, pollens and fragments of leaves, roots and stems), not being mirrored by the current situation of plant diversity found above ground, and rather it is reflecting the historical path of DNA material that once existed in the study area and/ or could possibly be due to the accumulation and deposition of long distance wind transported DNA material.

A comparison of the two soil sampling layers (between 0-5 and 10-15 cm) of the two sites was not possible due to samples MA7 and MA8 (with very low DNA yield) did not pass the minimum requirements for Illumina sequencing (Table 5.3). Although the samples were concentrated, the very low DNA yield generated for samples MA7 and MA8 indicates that as we go deeper into the soil (> 5 cm) of disturbed sites, we generate very low DNA yield. Thus, indicates that most of the DNA material for site 2 is floating on the top surface layer of the soil ( $\leq$  5 cm depth), e.g. from all the metagenomics samples collected from site 1 and site 2, sample MA6 showed the highest species richness, 14 species, below ground ( $\leq$  5 cm depth) compared with the above-ground diversity with only 4 species present during the field survey (Table 5.16).

Comparing the top soil sampling layer with the deeper layer from site 1 only, the upper layer ( $\leq 5$  cm) was represented by fewer sequence reads and resulted in the highest percentage of sequence matches at species and family-level using Angiosperm-NCBI database (Table 5.15 and Table 5.16). For the order-level using the complete plastid genome database, the percentage was higher for the deeper layers (10-15 cm) compared with the upper soil layer, this could be due to the high presences of algal DNA material in the deeper layers (Table 5.14). Moreover, the BLASTn matches against the Kuwaiti DNA database showed that the deeper soil

layers represented the sequence matches better than the top layer (Table 5.17). This is due to the generation of a high number of trimmed and assembled sequence reads found in the DNA soil extracted from the deeper soil layers (MA3 and MA4). This could be due to the accumulation of large amount of plant DNA material (e.g. pollens, seeds, fragments of roots and leaves) are deposited and preserved over extended period of time in the deep soil layers.

## 5.4.4 Metabarcoding

The markers used for metabarcoding method, *rbcL* (500 bp) and ITS2 (300-460 bp) showed reliable matches to the Kuwaiti DNA database. The blast of *de novo* clustered sequence reads (matches  $\geq$  99 % ID) for both markers of the 12 samples BLASTn against the local database resulted in a large number of matches, 139 species, which represents about 35 % of the flora of Kuwait (Table 2.3). The size of *rbcL* sequence fragments amplified from soil samples range from 100 to 466 bp; ITS2 from 103 to 488 bp across all twelve samples. An average of 40 % of the sequence fragments for both regions was represented by matches > 250 bp of paired-end reads  $\geq$  99 % ID using Kuwaiti DNA database. The analyses were not restricted to full-length reads; the matches were filtered at  $\geq$  99 % ID. Few matches (5-16 across all metabarcoding samples) represented by *rbcL* and ITS2 amplicons were longer than 500 bp which returned with matches < 99 % ID. Also, amplicons  $\geq$  500 bp long resulted in matching percentage identity lower than 99 % ID and ranged from 78 to 82 % ID across all samples.

A large portion of the 139 species belonging to common families of the flora of Kuwait, represented by Asteraceae, Amaranthaceae, Brassicaceae, Caryophyllaceae, Fabaceae, and Poaceae (Table 5. 20, Table 5.21, and Table 2.3). Similar plant families matching Kuwaiti flora were found in a study by Parducci et al., (2013), who conducted molecular metabarcoding (using *trnL*) and pollen-based vegetation analysis in lake sediments from central Scandinavia. Parducci et al., (2013) concluded that metabarcoding analysis provides a complementary, but not an alternative tool to pollen analysis for investigating the past flora (Parducci et al., 2013), since pollen analyses revealed a large number of taxa (46) when compared to that identified by metabarcoding with only 14 taxa, due to the short bp length of *trnL* barcodes providing a low taxonomic resolution (Parducci et al., 2013). On the other hand, Fahner et al., (2016) used alternative barcoding markers, *matK*, *rbcL*, and ITS2, along with the traditionally used marker, *trnL* P6 loop, revealed that the best taxonomic resolution at species-level was generated by ITS2 (Fahner et al., 2016).

Comparing the results of plant diversity found below ground with the above ground level, using *rbcL* and ITS2 barcodes, in total 19 species from the above ground level matched below ground diversity and represented by *Anisosciadium lanatum*, *Asphodelus tenuifolius, Atractylis carduus, Brassica tournefortii, Convolvulus oxyphyllus, Cuscuta planiflora, Gymnarrhena micrantha, Gypsophila capillaris, Helianthemum lippii, Heliotropium bacciferum, Koelpinia linearis, Launaea mucronata, Plantago boissieri, P. ovata, Rhanterium epapposum, Lomelosia palaestina, Schismus barbatus, Senecio glaucus* and *Stipa capensis* (Tables 5.11, 5.20 and Table 5.21). Most of the matches belonging to common plants of the flora and found present above ground during the field survey at Um-Neqa (study area) and are also common during the spring season throughout Kuwait, except for *Lomelosia palaestina,* considered to be a rare species and only spotted growing in Al-Abdaly, North of Kuwait City (Table 5.11).

Three widespread plants present across most metabarcoding samples and found above and below ground level are represented by *Cuscuta planiflora* (common parasitic plant belonging to Convolvulaceae), *Gymnarrhena micrantha* and *Senecio glaucus* (common plants of the flora belonging to Asteraceae found throughout Kuwait). Twelve species (listed in Table 5.27) were detected growing above ground during the field survey but are not represented in the data sets, e.g. *Hammada salicornica*, a perennial shrub belongs to Amaranthaceae family, well represented above ground with more than 50 % vegetation coverage in site 1, was not detectable in any of the eDNA samples (Table 5.17, Table 5.20 and Table 5.21). *Hammada* and other species remained undetected listed in Table 5.27, could be an example of plants with highly degradable eDNA material and not leaving a traceable amount of PCR amplification or direct sequencing. Another possibility for some species remaining undetectable is either due to low numbers of sequence reads or absence in DNA reference libraries. In a similar study, Bell et al. (2017) could not identify 21 sequences with *rbcL* or ITS2 represented by *Ambrosia* spp., *Artemisia* spp., *Populus* spp., *Poa* spp., *Xanthium* spp and *Zea mays* (Bell et al., 2017).

The BLAST match using Angiosperm-NCBI database, matched to 363 species of *de novo* sequences across all metabarcoding samples, only 23 species matched the flora of Kuwait, and two species are representatives of the above ground flora at the study site. Hiiesalu et al. (2012) studied grassland plant species richness belowground and compared it to aboveground diversity using the chloroplast *trnL* (UAA) intron; the results showed below ground species richness was two times greater than aboveground abundance (Hiiesalu et al., 2012). Furthermore, nine species were detected only below ground during the study period (*Solidago* spp., *Artemisia* spp., *Turritis* spp.) and later in the season had been detected growing above ground (Hiiesalu et al., 2012). Such findings indicate that some species stay dormant for a period of time and remain undetected by aboveground field surveys.

The BLASTn matches showed a high number of matches at a lower taxonomic level (genus-level) and present in the flora of Kuwait such as *Allium, Artemisia, Astragalus, Lilium, Salsola, Salvia*, and *Silene* (Table 5.25 and Table 2.3). Matches represented by a high number of sequence reads are found belonging to Asteraceae family and represented by *Aster glehnii, Atractylodes lancea, Brachylaena ilicifolia*, and *Metalasia adunca*. Other matches are represented by *Delosperma cooperis* (Aizoaceae), *Trianthema clavatum* (Aizoaceae) and *Mertensia virginica* (Boraginaceae) (Table 5.25).

### 5.4.5 Comparison of metagenomics and metabarcoding

The level of taxonomic classification varied and each technique identified a different number of taxa. At the species level, using Kuwaiti DNA database, metagenomics samples only matched ITS2 sequences, while metabarcoding samples resulted in a total match to139 species represented by both *rbcL* and ITS2 sequences. Considering

the soil layers, the results from both approaches showed better DNA material representing plants are extracted from soil collected from the upper surface layer (0-5 cm) than the deeper layer (10-15 cm), likely due to new DNA sources accumulating seasonally on the top surface of the soil, which makes it rich in DNA material.

Metagenomics approach is more reliable when the aim of the project is to identify a wider range of organisms present in eDNA samples, while the metabarcoding approach is more focused on the identification of targeted organisms using PCR-based markers. A major drawback of metagenomics and metabarcoding is that both approaches are highly dependent on the available databases and limited by the amount of information that is present in these repositories. Sequences that do not have any similarity in a known database are believed to be 1) a consequence of sequencing errors and/ or reflect the inaccuracy of gene prediction tools, or 2) truly novel genes that have no sequence to known genes and may share higher order similarity in the form of protein folds (Oulas et al., 2015; Thomas et al. 2012).

In this study, the sequence BLASTn results against the Kuwaiti DNA database produced by metagenomics (Table 5.17) matched with broader reads generated by metabarcoding approach (with sequence reads varied from 100 to 1000) (Table 5.20 and Table 5.21). For example, *Spergularia marina* present across five metagenomic samples (except MA2) matching to ITS2 barcode sequences, was found in six out of twelve metabarcoding samples at lower sequence reads matching *rbcL* barcodes only. Raw sequence reads for *rbcL* varied from 144/ individual for sample MAS5 to 1558/ individual for sample MAS7. The results from metabarcoding analyses suggest that PCR-based approaches can amplify most plants identified by metagenomics using *rbcL* and ITS2 barcodes (Table 5.17, Table 5.20, and Table 5.21).

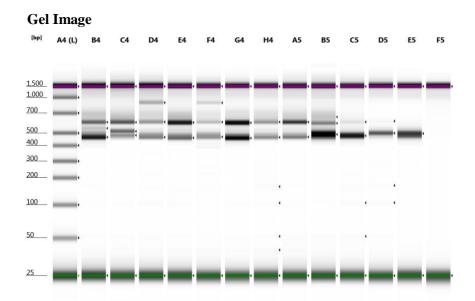
For metagenomics, the low read counts matching ITS2 database of Kuwaiti plants (no matches for *rbcL* database), caused some species to remain undetected because they only had matches to one barcode region, ITS2. Matches of metagenomic samples to *rbcL* Kuwaiti plants database failed to detect any species, possibly the chloroplast DNA region represented by *rbcL* genes across all samples was highly degraded (*rbcL* 

did not show any resolution), and only metabarcoding samples generated by ITS2 sequence reads matched the Kuwaiti DNA database.

When comparing the results generated from metagenomics and metabarcoding approaches using the above ground plant diversity, metabarcoding approach produced 19 species matches while metagenomics matched only 1 species, Gymnarrhena *micrantha* (Tables 5.27). This indicates that metabarcoding approach is more reliable when comparing the plant diversity of below ground with that found above ground level. The main issue with metagenomics is the low read counts that detected only 19 species represented by ITS2 barcode and possibly other species remained undetected when blasted against *rbcL* Kuwaiti DNA database, basically due to the level of DNA degradation (Table 5.17); for metabarcoding the matches generated from few hundreds to several thousand reads (Table. 5.20 and Table 5.21). A similar finding was observed by Srivathsan et al. (2015) while investigating monkey diet analysis and comparing the effectiveness of metagenomics and metabarcoding results. They used two faecal samples to characterise the diet of two monkeys (Pygathrix nemaeus) that were fed known foliage, fruits, vegetables and cereals and produced 74 and 67 million paired reads for these samples using Illumina HiSeq platform (Sirvathsan et al., 2015). The sequences were matched against plant database containing all angiosperm barcodes in Genbank. The results were compared with metabarcoding using *trnL* P6 loop gene region. Metagenomics identified seven and nine of the likely 16 diet plants while six and five were identified by metabarcoding (Sirvathsan et al., 2015). A similar comparison was performed in this study, except that metagenomics identified only one species of the 31 species present above ground while metabarcoding identified 19 species (61 %).

Plants found in the eDNA soil samples that resulted in high sequence matches to Kuwaiti DNA database using both NGS methods, although not present above ground during the field survey are represented by *Astragalus sieberi, Spergularia marina, Trigonella stellate, Loeflingia hispanica* and *Polycarpon tetraphyllum* (Table 5.17, Table 5.20 and Table 5.21). The DNA source representing the sequences could come from the extraction of seeds which remained dormant and unable to germinate due to a combination of environmental factors, such as rain, light and temperature, which favoured the germination of other non-dormant seeds. It is well known that seeds of desert plants germinate only after a threshold amount (10-15 mm) of rainfall (Gutterman, 2012), and only under favourable temperatures appropriate for growth, ranging from 25 to 30 °C (Lai et al., 2016). Most common plants remain dormant in the soil for very long period of time and could germinate when exposed to favourable environments, e.g. Beal's study of soil seed longevity showed that after 120 years burial in moist and well aerated sand, 23 seeds of *Verbascum blattaria* germinated and produced normal plants (Telewski and Zeevaart, 2002), and another study by Duvel included 107 crop and weed species which lasted 39 years (Toole and Brown, 1946). Other sources of DNA material representing the sequences could be typically the remains of plant tissues from previous seasons well preserved in the soil over a long period of time (e.g. roots, leaves, woody parts, etc.).

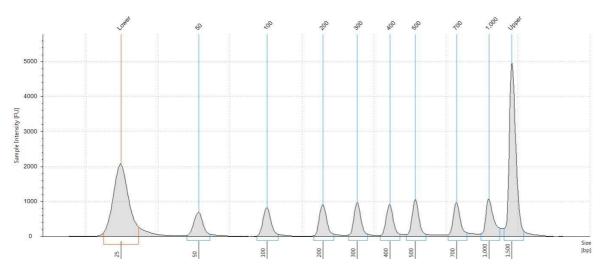
Historically, plant community distribution comes from the reconstruction of ecosystems using palaeoecological records such as fossil pollen and macrofossils accumulated in lakes and peat sediments (Birks, 2001). Plant macrofossils are represented by diaspores (spores, seeds, and fruits) and vegetative parts, such as leaves, buds, budscales, flowers, bulbils, rhizomes, roots, bark and wood. Sedimentary ancient DNA (*seda*DNA) also referred to as 'dirt DNA' has successfully been used to recover DNA traces of past environments, providing new information on former flora and faunal changes (Hofreiter et al., 2003; Haile et al., 2009; Thomsen et al., 2009), *seda*DNA and pollen reveal the composition of past vegetation in Late Quaternary permafrost sediments (Pedersen et al., 2013; Parducci et al., 2013; Zimmermann et al., 2017). Mosses and occasionally liverworts can be found as macrofossils (Souto et al., 2017), lichens are also preserved as fossils (Jahren et al., 2003), and marine algae (Rulin and Lifu, 1985). Under favourable conditions, wellpreserved plant macrofossils could provide a good source of DNA material for NGS molecular analysis.


The comparison between metagenomics and metabarcoding results provide important information that can be summarized as follows: 1) the metagenomics and metabarcoding analyses resulted in few overlapping species/taxon identification, 2) the two analyses each detected likely a portion of the total DNA material extracted from the soil, 3) the metabarcoding analysis allowed better identification at higher taxonomic level than metagenomics analysis, 4) there was a substantial difference between sequence matches to Angiosperm-NCBI database obtained from metabarcoding vs metagenomics approaches, 5) the molecular analysis failed to detect some major taxa (e.g. *Hammada salicornica, Astragalus schimperi, Arnebia decumbens, Moraea sisyrichium*) found above ground at the study sites and not represented by both NGS techniques, and 6) Metagenomics analyses returned with few reads, representing 24 species, matching ITS2 only of the Kuwaiti DNA database, while metabarcoding returning with a total of 139 species matching both barcodes *rbcL* and ITS2 barcodes.

The advantage of using metagenomics approach is its ability in identifying different organisms (e.g. plants, fungi, microbes, nematodes) with wider biodiversity coverage, while metabarcoding data generates better coverage for the identification of a specific group of organisms by choosing a reliable DNA marker. Overall, in this study metabarcoding approach remains reliable when a plant species is to be picked from eDNA samples and compared with currently known above ground flora from a small number of distantly related species.

## 5.4.6 Conclusion

Metagenomics and metabarcoding approaches can significantly complement fieldbased research in Kuwait. It may help the advancement of field surveys by rapidly generating molecular data where urgent conservation intervention is required. Metabarcoding approach using PCR-based markers can efficiently identify DNA of unknown plant remains collected from soil samples of local origin by blasting them against the Kuwaiti DNA database. For metagenomics approach to avoid a small number of reads matching the Kuwaiti DNA database (since Kuwait DNA database is based on two markers *rbcL* and ITS2), a reliable mitochondrial and chloroplast reference genomes library is required to improve the resolution of identification to species level. Although in this study metagenomics data shed light on a wider ecological knowledge by identifying the presence of microorganisms such as bacteria and archaea; also, green plants represented by algae, bryophytes, and ferns in the soil samples which require further investigation to understand and conserve the biodiversity of Kuwait.


# Appendix 5.1 Metabarcoding QC report generated by Edinburgh Genomics

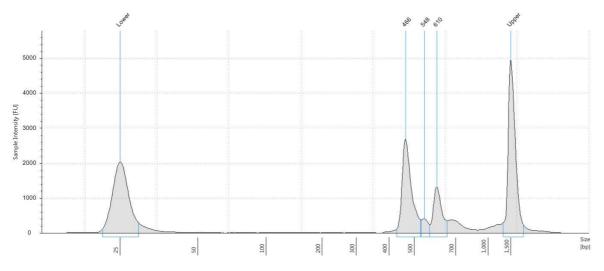


# Sample Info

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| A4   | 11.2          | Ladder             |       | Ladder       |
| B4   | 7.11          | 10342KC0001-MAS1   |       |              |
| C4   | 5.61          | 10342KC0002-MAS2   |       |              |
| D4   | 4.14          | 10342KC0003-MAS3   |       |              |
| E4   | 7.60          | 10342KC0004-MAS4   |       |              |
| F4   | 3.70          | 10342KC0005-MAS5   |       |              |
| G4   | 11.3          | 10342KC0006-MAS6   |       |              |
| H4   | 3.85          | 10342KC0007-MAS7   |       |              |
| A5   | 4.94          | 10342KC0008-MAS8   |       |              |
| B5   | 12.9          | 10342KC0009-MAS9   |       |              |
| C5   | 5.87          | 10342KC0010-MAS12  |       |              |
| D5   | 2.79          | 10342KC0011MAS13   |       |              |
| E5   | 4.74          | 10342KC0012-MAS19  |       |              |
| F5   |               | blank              |       |              |





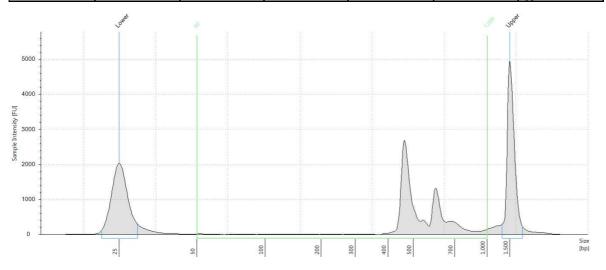

Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| A4   | 11.2          | Ladder             |       | Ladder       |

## Peak Table

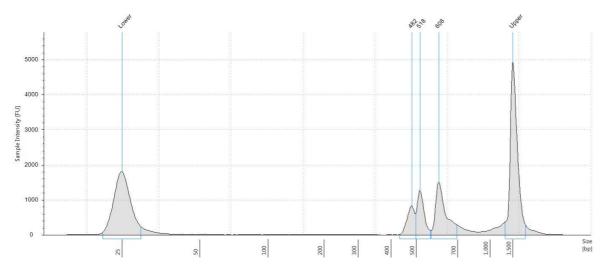
| Size [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment | Observations |
|-----------|-----------------------------|---------------------------|---------------------------|-------------------|--------------|--------------|
| 25        | 6.29                        | -                         | 387                       | -                 |              | Lower Marker |
| 50        | 1.28                        | -                         | 39.4                      | 11.41             |              |              |
| 100       | 1.33                        | -                         | 20.5                      | 11.86             |              |              |
| 200       | 1.36                        | -                         | 10.5                      | 12.15             |              |              |
| 300       | 1.38                        | -                         | 7.08                      | 12.29             |              |              |
| 400       | 1.32                        | -                         | 5.08                      | 11.76             |              |              |
| 500       | 1.46                        | -                         | 4.49                      | 13.01             |              |              |
| 700       | 1.40                        | -                         | 3.07                      | 12.43             |              |              |
| 1,000     | 1.69                        | -                         | 2.61                      | 15.08             |              |              |
| 1,500     | 6.50                        | 6.50                      | 6.67                      | -                 |              | Upper Marker |

# B4: 10342KC0001-MAS1




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| B4   | 7.11          | 10342KC0001        |       |              |

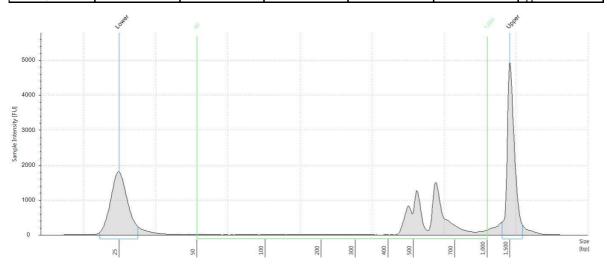

Peak Table

| C! II1    | Calibrated Conc. | Assigned Conc. | Peak Molarity | 0/ 1-4            | Deals Comment | 01           |
|-----------|------------------|----------------|---------------|-------------------|---------------|--------------|
| Size [bp] | [ng/µl]          | [ng/µl]        | [nmol/l]      | % Integrated Area | Peak Comment  | Observations |
| 25        | 6.09             | -              | 374           | -                 |               | Lower Marker |
| 466       | 4.61             | -              | 15.2          | 64.87             |               |              |
| 548       | 0.508            | -              | 1.42          | 7.15              |               |              |
| 610       | 1.99             | -              | 5.02          | 27.98             |               |              |
| 1,500     | 6.50             | 6.50           | 6.67          | -                 |               | Upper Marker |



| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 551               | 8.53          | 25.6                        | 85.48      |                |       |

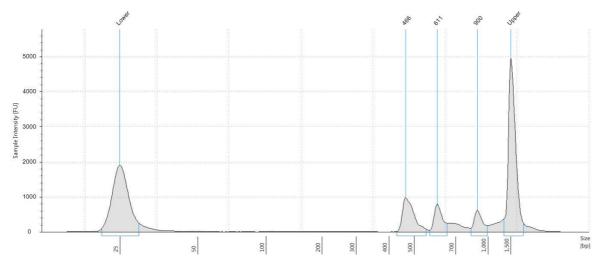
# C4: 10342KC0002-MAS2




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| C4   | 5.61          | 10342KC0002        |       |              |

Peak Table

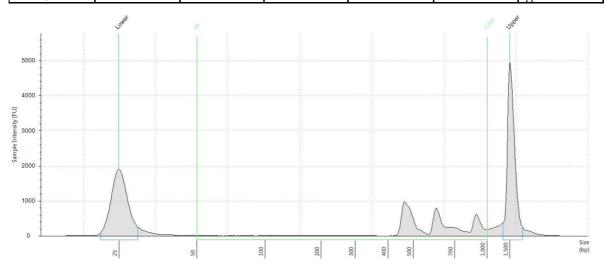

| Size [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment | Observations |
|-----------|-----------------------------|---------------------------|---------------------------|-------------------|--------------|--------------|
| 25        | 5.62                        | -                         | 346                       | -                 |              | Lower Marker |
| 482       | 1.17                        | -                         | 3.72                      | 20.78             |              |              |
| 518       | 1.67                        | -                         | 4.96                      | 29.81             |              |              |
| 608       | 2.77                        | -                         | 7.01                      | 49.41             |              |              |
| 1,500     | 6.50                        | 6.50                      | 6.67                      | -                 |              | Upper Marker |



| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 589               | 6.33          | 17.9                        | 81.73      |                |       |

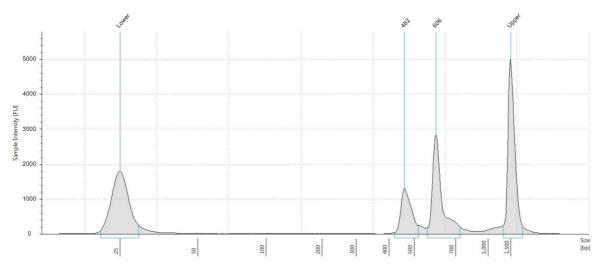
# Page 5 of 14

# D4: 10342KC0003-MAS3




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| D4   | 4.14          | 10342KC0003        |       |              |

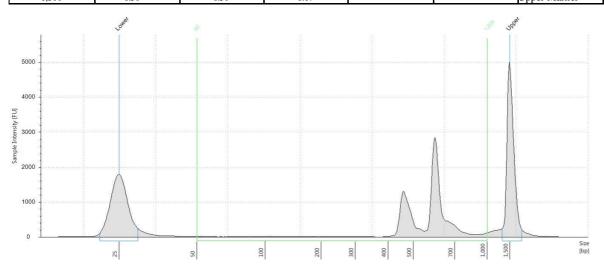

#### Peak Table

| Size [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment | Observations |
|-----------|-----------------------------|---------------------------|---------------------------|-------------------|--------------|--------------|
| 25        | 5.76                        | -                         | 354                       | -                 |              | Lower Marker |
| 466       | 2.05                        | -                         | 6.76                      | 49.45             |              |              |
| 611       | 1.18                        | -                         | 2.97                      | 28.47             |              |              |
| 900       | 0.914                       | -                         | 1.56                      | 22.08             |              |              |
| 1,500     | 6.50                        | 6.50                      | 6.67                      | -                 |              | Upper Marker |



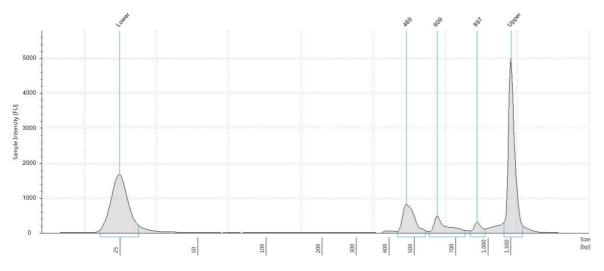
| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 622               | 4.99          | 14.1                        | 77.26      |                |       |

# E4: 10342KC0004-MAS4




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| E4   | 7.60          | 10342KC0004        |       |              |

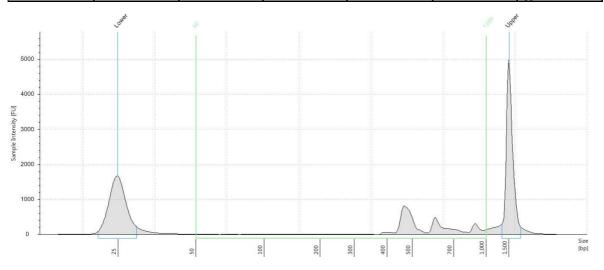

Peak Table

| C! II1    | Calibrated Conc. | Assigned Conc. | Peak Molarity | 0/ T- 4 4- 1 4    | Deals Comment | 01           |  |
|-----------|------------------|----------------|---------------|-------------------|---------------|--------------|--|
| Size [bp] | [ng/µl]          | [ng/µl]        | [nmol/l]      | % Integrated Area | Peak Comment  | Observations |  |
| 25        | 5.98             | -              | 368           | -                 |               | Lower Marker |  |
| 462       | 2.58             | -              | 8.61          | 34.00             |               |              |  |
| 606       | 5.01             | -              | 12.7          | 66.00             |               |              |  |
| 1.500     | 6.50             | 6.50           | 6.67          | -                 |               | Upper Marker |  |



| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 579               | 8.40          | 23.9                        | 87.49      |                |       |

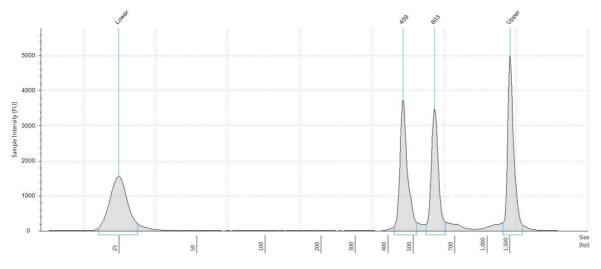
# F4: 10342KC0005-MAS5




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| F4   | 3.70          | 10342KC0005        |       |              |

Peak Table


| Sine [hm] | Calibrated Conc. | Assigned Conc. | Peak Molarity | 0/ Internated Area | Deals Commont | Observations |  |
|-----------|------------------|----------------|---------------|--------------------|---------------|--------------|--|
| Size [bp] | [ng/µl]          | [ng/µl]        | [nmol/l]      | % Integrated Area  | Peak Comment  | Observations |  |
| 25        | 5.90             | -              | 363           | -                  |               | Lower Marker |  |
| 469       | 2.00             | -              | 6.56          | 54.05              |               |              |  |
| 609       | 1.22             | -              | 3.08          | 32.94              |               |              |  |
| 897       | 0.482            | -              | 0.826         | 13.01              |               |              |  |
| 1,500     | 6.50             | 6.50           | 6.67          | -                  |               | Upper Marker |  |



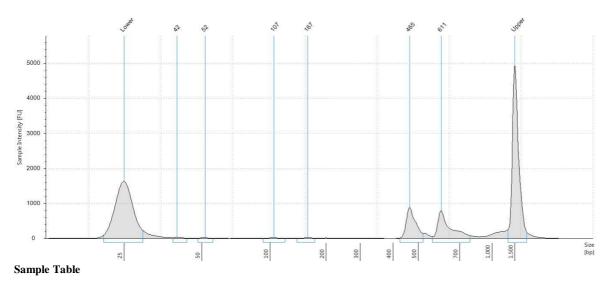
| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 584               | 4.05          | 12.2                        | 75.56      |                |       |

# Page 8 of 14

# G4: 10342KC0006-MAS6



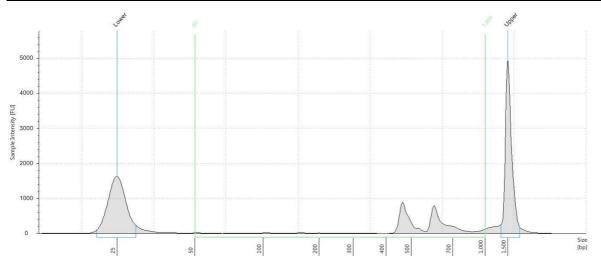
Sample Table


| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| G4   | 11.3          | 10342KC0006        |       |              |

#### Peak Table

| ze [bp] | Calibrated Conc.<br>[ng/µl] | [ng/µl] [ng/µl] |      | % Integrated Area | Peak Comment | Observations    |
|---------|-----------------------------|-----------------|------|-------------------|--------------|-----------------|
| 25      | 5.86                        | -               | 361  | -                 |              | Lower Marker    |
| 459     | 6.06                        | -               | 20.3 | 53.48             |              |                 |
| 603     | 5.27                        | -               | 13.5 | 46.52             |              |                 |
| 1,500   | 6.50                        | 6.50            | 6.67 | -                 |              | Upper Marker    |
| r i     | 100 Martin                  | 8               |      |                   | 1. 1997 J    | 4 <sup>th</sup> |
| 5000    |                             |                 |      |                   |              |                 |
| 4000    |                             |                 |      | 1                 |              |                 |
| 3000    |                             |                 |      |                   |              |                 |
| 2000 -  | $\wedge$                    |                 |      |                   |              |                 |
| 0       |                             |                 |      |                   |              |                 |
|         | 25                          | 20              | 200  | 300<br>500        | 700<br>1,000 | Size<br>[bp     |

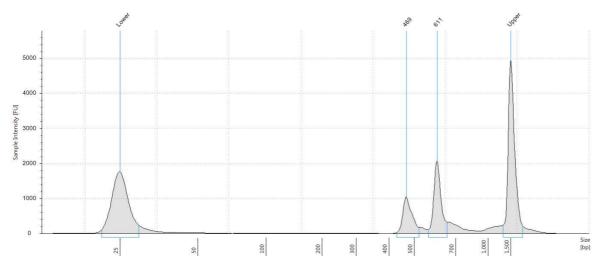
| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 544               | 12.7          | 37.8                        | 91.58      |                |       |


# D1000 ScreenTape® H4: 10342KC0007-MAS7



| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| H4   | 3.85          | 10342KC0007        |       |              |

Peak Table


| Size [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment | Observations |
|-----------|-----------------------------|---------------------------|---------------------------|-------------------|--------------|--------------|
| 25        | 6.14                        | -                         | 378                       | -                 |              | Lower Marker |
| 42        | 0.0547                      | -                         | 2.01                      | 1.42              |              |              |
| 52        | 0.0308                      | -                         | 0.906                     | 0.80              |              |              |
| 107       | 0.0352                      | -                         | 0.507                     | 0.92              |              |              |
| 167       | 0.0363                      | -                         | 0.334                     | 0.94              |              |              |
| 465       | 1.72                        | -                         | 5.68                      | 44.63             |              |              |
| 611       | 1.97                        | -                         | 4.97                      | 51.29             |              |              |
| 1,500     | 6.50                        | 6.50                      | 6.67                      | -                 |              | Upper Marker |



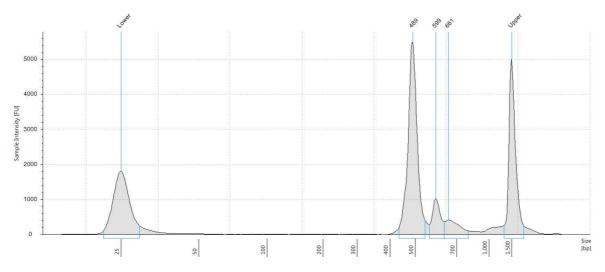
| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 568               | 4.31          | 13.7                        | 78.10      |                |       |

# D1000 ScreenTape® A5: 10342KC0008-MAS8

# Page 10 of 14



Sample Table

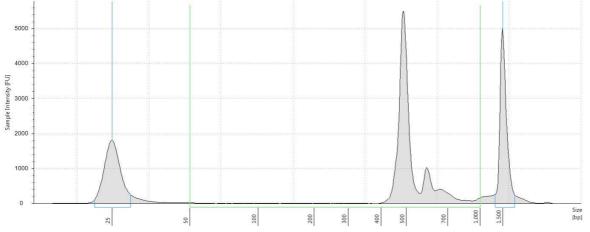

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| A5   | 4.94          | 10342KC0008        |       |              |

## Peak Table

| ze [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment | Observations   |
|---------|-----------------------------|---------------------------|---------------------------|-------------------|--------------|----------------|
| 25      | 5.96                        | -                         | 367                       | -                 |              | Lower Marker   |
| 469     | 1.94                        | -                         | 6.37                      | 39.26             |              |                |
| 611     | 3.00                        | -                         | 7.57                      | 60.74             |              |                |
| 1,500   | 6.50                        | 6.50                      | 6.67                      | -                 |              | Upper Marker   |
| 1       | L. Charles                  | 8                         |                           |                   |              | d <sup>o</sup> |
| 5000 -  |                             |                           |                           |                   |              |                |
| 4000 -  |                             |                           |                           |                   |              |                |
| 3000    |                             |                           |                           |                   |              |                |
| 2000    |                             |                           |                           |                   | A            |                |
| 0       |                             |                           |                           | M                 |              |                |
|         | 25                          | 20                        | 500                       | 300 500 500       | 700<br>1,000 | Siz<br>[bp     |

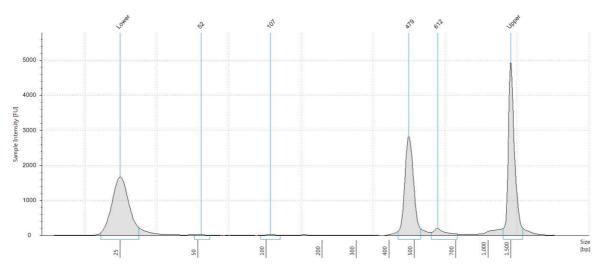
| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 585               | 6.32          | 18.6                        | 81.55      |                |       |

# D1000 ScreenTape® B5: 10342KC0009-MAS9




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| B5   | 12.9          | 10342KC0009        |       |              |

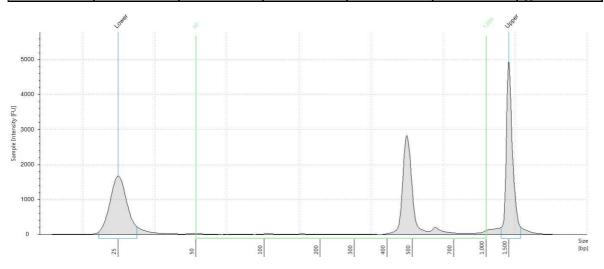

## Peak Table

| Size [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment        | Observations |
|-----------|-----------------------------|---------------------------|---------------------------|-------------------|---------------------|--------------|
| 25        | 5.88                        | -                         | 362                       | -                 |                     | Lower Marker |
| 489       | 10.0                        | -                         | 31.6                      | 77.98             |                     |              |
| 599       | 1.65                        | -                         | 4.24                      | 12.83             |                     |              |
| 661       | 1.18                        | -                         | 2.76                      | 9.19              |                     |              |
| 1,500     | 6.50                        | 6.50                      | 6.67                      | -                 |                     | Upper Marker |
|           | Love                        | 8                         |                           | ٨                 | \$0 <sup>66</sup> . | ¢            |



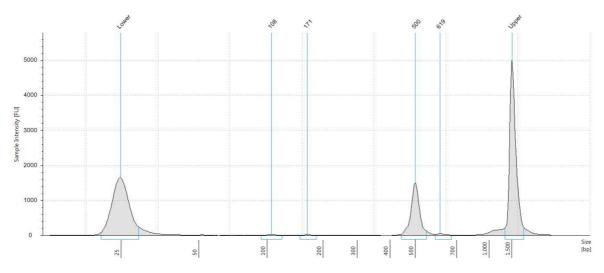
| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 531               | 13.6          | 41.1                        | 89.79      |                |       |

# D1000 ScreenTape® C5: 10342KC0010-MAS12




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| C5   | 5.87          | 10342KC0010        |       |              |

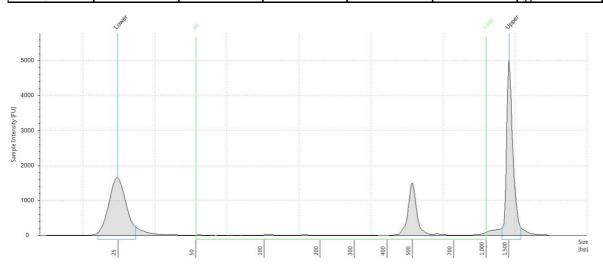

## Peak Table

| Size [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment | Observations |
|-----------|-----------------------------|---------------------------|---------------------------|-------------------|--------------|--------------|
| 25        | 6.03                        | -                         | 371                       | -                 |              | Lower Marker |
| 52        | 0.0403                      | -                         | 1.19                      | 0.69              |              |              |
| 107       | 0.0417                      | -                         | 0.597                     | 0.71              |              |              |
| 479       | 5.31                        | -                         | 17.1                      | 90.47             |              |              |
| 612       | 0.477                       | -                         | 1.20                      | 8.13              |              |              |
| 1,500     | 6.50                        | 6.50                      | 6.67                      | -                 |              | Upper Marker |



| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 499               | 6.50          | 21.9                        | 83.64      |                |       |

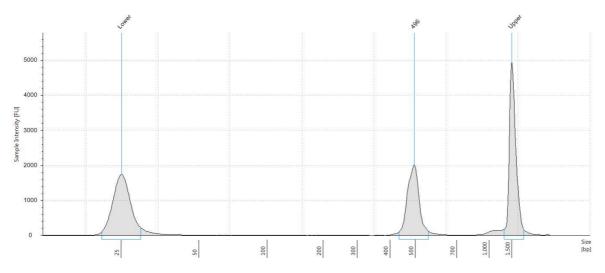
# D1000 ScreenTape® D5: 10342KC0011-MAS13




Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| D5   | 2.79          | 10342KC0011        |       |              |

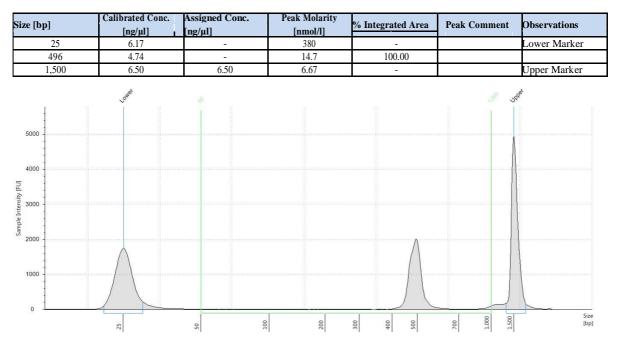
## Peak Table


| Size [bp] | Calibrated Conc.<br>[ng/µl] | Assigned Conc.<br>[ng/µl] | Peak Molarity<br>[nmol/l] | % Integrated Area | Peak Comment | Observations |
|-----------|-----------------------------|---------------------------|---------------------------|-------------------|--------------|--------------|
| 25        | 5.88                        | -                         | 362                       | -                 |              | Lower Marker |
| 108       | 0.0409                      | -                         | 0.584                     | 1.47              |              |              |
| 171       | 0.0302                      | -                         | 0.271                     | 1.08              |              |              |
| 500       | 2.63                        | -                         | 8.10                      | 94.28             |              |              |
| 619       | 0.0883                      | -                         | 0.219                     | 3.17              |              |              |
| 1,500     | 6.50                        | 6.50                      | 6.67                      | -                 |              | Upper Marker |



| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 504               | 3.08          | 10.7                        | 70.38      |                |       |

## D1000 ScreenTape® E5: 10342KC0012-MAS19


#### Page 14 of 14



Sample Table

| Well | Conc. [ng/µl] | Sample Description | Alert | Observations |
|------|---------------|--------------------|-------|--------------|
| E5   | 4.74          | 10342KC0012        |       |              |

Peak Table



| From [bp] | To [bp] | Average Size [bp] | Conc. [ng/µl] | Region Molarity<br>[nmol/l] | % of Total | Region Comment | Color |
|-----------|---------|-------------------|---------------|-----------------------------|------------|----------------|-------|
| 50        | 1,000   | 502               | 5.08          | 16.1                        | 83.35      |                |       |

|                              |                  | Metagenomics sample ID |      |     |     |     |      |
|------------------------------|------------------|------------------------|------|-----|-----|-----|------|
| Kingdom                      | Phylum           | MA1                    | MA2  | MA3 | _   | MA5 | MA6  |
| Unassigned Unassigned Bacter |                  | 997                    | 1274 | 900 | 916 | 846 | 1385 |
| Archaea                      | Crenarchaeota    | 7                      | 14   | 35  | 45  | 21  | 23   |
| Bacteria                     | Actinobacteria   | 1060                   | 1528 | 917 | 758 | 777 | 1185 |
| Bacteria                     | Proteobacteria   | 665                    | 870  | 409 | 395 | 127 | 692  |
| Bacteria                     | Bacteroidetes    | 105                    | 126  | 52  | 43  | 13  | 133  |
| Bacteria                     | Gemmatimonadetes | 57                     | 87   | 50  | 42  | 50  | 23   |
| Bacteria                     | Acidobacteria    | 48                     | 64   | 66  | 47  | 25  | 22   |
| Bacteria                     | Planctomycetes   | 41                     | 64   | 29  | 21  | 16  | 10   |
| Bacteria                     | Chloroflexi      | 30                     | 111  | 76  | 61  | 79  | 71   |
| Bacteria                     | Firmicutes       | 25                     | 19   | 83  | 97  | 14  | 139  |
| Bacteria                     | Armatimonadetes  | 13                     | 13   | 14  | 8   | 6   | 7    |
| Bacteria                     | Verrucomicrobia  | 7                      | 13   | 6   | 8   | 0   | 8    |
| Bacteria                     | Cyanobacteria    | 6                      | 4    | 1   | 1   | 1   | 0    |
| Bacteria                     | Chlorobi         | 5                      | 2    | 0   | 0   | 0   | 0    |
| Bacteria                     | TM7              | 3                      | 5    | 3   | 4   | 0   | 1    |
| Bacteria                     | FBP              | 2                      | 4    | 4   | 5   | 0   | 1    |
| Bacteria                     | Nitrospirae      | 2                      | 4    | 1   | 2   | 2   | 2    |
| Bacteria                     | Thermi           | 2                      | 8    | 0   | 0   | 2   | 4    |
| Bacteria                     | WPS-2            | 2                      | 0    | 0   | 0   | 0   | 0    |
| Bacteria                     | Chlamydiae       | 1                      | 0    | 0   | 0   | 0   | 0    |
| Bacteria                     | NKB19            | 1                      | 0    | 0   | 0   | 0   | 0    |
| Bacteria                     | Fibrobacteres    | 0                      | 0    | 1   | 0   | 2   | 0    |
| Bacteria                     | OD1              | 0                      | 0    | 2   | 1   | 1   | 0    |
| Bacteria                     | OP11             | 0                      | 3    | 1   | 0   | 0   | 1    |
| Bacteria                     | Synergistetes    | 0                      | 0    | 1   | 0   | 0   | 0    |
| Bacteria                     | Tenericutes      | 0                      | 0    | 2   | 1   | 0   | 0    |

Appendix 5.2. A summary of phylum level taxonomy for six metagenomics soil samples generated by EBI pipeline

# **Chapter 6 Discussion**

This project was driven by major threats endangering the biodiversity of Kuwait. Immediate action is required to protect the environment and conserve endangered plant species. Land degradation and vegetation loss, leading to soil erosion and an increase in the intensity and frequency of dust-sand storms, are major issues across the Kuwaiti desert (Al-Dousari and Al-Awadhi, 2012). The main causes are the combined influences of climatological and geological processes compounded by an intense action of human activities in sandy areas (Al-Awadhi et al. 2003). Overgrazing, seasonal spring camping, off-road driving and the use of heavy machinery together with climatic change are leading to vegetation loss across the desert (Misak et al., 2002).

Kuwait received compensation from the United Nation Compensation Commission (UNCC) for the remediation and restoration of ecosystems damaged by war. Local researchers and institutes together with international consultants are planning to restore and remediate areas affected by war-related damages including areas contaminated by oil spills; desert surfaces damaged by military vehicles; remediation of groundwater; the opening of detonation sites and the revegetation of damaged desert areas (UNCC decision 258, December 2005).

My aim was to research the existing plans for the restoration of vegetation in Kuwait with a view to investigating the potential for applying molecular methods. Decision makers and researchers are at present deciding on the choice of plants to be used for introduction into damaged sites in need of restoration. However, successful restoration requires a number of elements to be in place including careful planning based on informed decision-making grounded in clear knowledge of the environmental history and current conditions in the target area as well as funding to be in place to enable maintenance and monitoring (Tolba , 2007).

Based on my field experience there are some preliminary stages that have to be carried out before deciding on the choice of plants. Firstly, fences must be erected around the areas (Figure 1.8) to protect them from livestock and human activities.

Secondly, the possibility of natural regeneration of vegetation should be considered before resorting using active restoration programmes. For instance, it was reported by Brown and Al-Mazrooei (2003) that active regeneration of plants occurred in northern Kuwait when grazing was removed for four years. This is particularly important as natural vegetation is an important source of sustainable benefits to society and provides an opportunity for livestock grazing and a source of valuable seed and genetic diversity (Omar and Bhat, 2007).

While natural recovery takes place, NGS technologies and DNA barcoding methods can be applied and contribute effectively towards the identification and monitoring of vegetation by sampling fragments of emerging seedlings up to study past biodiversity from eDNA samples.

DNA barcoding can identify unknown plant material collected from the field (i.e. fragments of roots, leaves, seeds, seedlings) by processing the samples following simple molecular techniques and identifying unknown sequences against the local DNA database. This method will help researchers to speed up the process of identification and possibly reduce the reliance on taxonomists in the future. As DNA services are advancing, the processing of samples using full plates in the lab are capable of generating sequences for 96 individual in 2-3 days.

The DNA database provided in this project is capable of identifying species up to 70.5 % resolution (*rbcL* + ITS2 barcodes). Considering paraphyletic relationships amongst closely related species within a genus (discussed earlier in Chapter 4), a list of species choice will be narrowed down and since the average species/genera of the flora is 2-3 species, it could be resolvable to species level by identifying the samples through standard taxonomic methods using conventional identification keys. Recent studies have demonstrated that DNA barcoding complements traditional taxonomic revision or have helped in identifying cryptic species of plants (Zhang et al., 2015; Liu et al., 2011).

DNA barcoding method could contribute towards monitoring vegetation in local restoration projects which requires a sampling strategy based on rapid assessment field surveys. For restoration programmes it is important to compare plant diversity across different sites, for instance: (1) sites actively restored by seedlings and/ or

seeds, (2) naturally recovered sites, (3) and open desert areas (outside the fenced area).

NGS technologies are advancing and getting cheaper in recent years (Black et al., 2015), applying them in restoration projects would increase the quality of knowledge of the biodiversity across different habitats. The NGS methods demonstrated in this study will help researchers understand the historical patterns of past vegetation and provide guidance on the choice of plants and plant communities best suited for restoration. It is important to note that not all plants identified by NGS from eDNA samples are suitable for restoration – for instance, the habitat may no longer be appropriate for the plant to flourish or a critical pollinator may now be absent. However, it will act as a reference point for making decisions and narrowing the choices of plants that might best be used.

In active restoration projects, irrigation systems are widely used and often represent the most substantial component of project expenditure (Weigand and Rodger, 2009). However, such systems present problems. Irrigation systems using plastic pipelines across the desert leaves behind a long-term contamination if not managed well, as observed at Al-liyah actively restored site (KISR, 2008). I would recommend that water tank sprinkler trucks might be a better solution if active irrigation is required.

The desert areas of Kuwait are mainly open rangeland with the vegetation of importance for livestock production. In proposed protected area controlled grazing should be considered as plant-animal interactions they are important in a number of ways: they aid in increasing species richness and improving forage quality (Denyer et al., 2010); they provide urea (organic compound) for the nitrogen cycle (Rufino et al., 2006); and livestock transform vegetation into decomposed organic matter which adds nutrients to the soil. To maintain the vegetation cover and species richness inside protected areas, it is highly recommended to include controlled, sustainable grazing. It is important that the number of livestock be properly balanced with the available forage resources and in years of drought, livestock numbers should be reduced to prevent vegetation degradation (Brown, 2003).

The aims of active restoration or natural revegetation methods should be compared and questioned. Fundamental questions need to be asked and answered. For instance, why restore the desert's ecosystem? Is it to maximise ecosystem services and benefit the society and the biodiversity or just to reintroduce the natural vegetation that once dominated in "pre-disturbance" times that might be lost again due to human activities, drought or other environmental factors?

UNEP defines ecosystem services as follows: 'Ecosystem services are the benefits people obtain from ecosystems. These include provisioning services such as food and water; regulating services such as flood and disease control; cultural services such as spiritual, recreational, and cultural benefits; and supporting services, such as nutrient cycling, that maintain the conditions for life on Earth' (UNEP, 2011).

In my opinion, maximising ecosystem services is a primary consideration when restoring and protecting degraded ecosystems. This is particularly important in Kuwait in the current economic situation where oil prices are dropping, but alternative sources of income for the country are very limited. Therefore, maximising ecosystem services would provide many benefits such as clean water and air, the reduction of further soil erosion, renewable energy (by solar and wind), protection from extreme weather events (including dust storms), the maintenance and protection of cultural values and education for future generations to name but a few of the benefits which are of value both for the people and the biodiversity (Eastwood et al., 2016). In Kuwait maximising ecosystem services would be important in the future by providing alternative sources of income and for tourism.

At present, in Kuwait, there are examples of several protected areas where the natural biodiversity has been protected from livestock grazing by fences for more than 20 years. People are only allowed to enter these protected areas with a permit. Developing such areas by following ecosystem services criteria (Vollmer et al., 2016; Keller and Fournier, 2015) would contribute towards the protection of biodiversity as well as enhancing cultural and educational values.

An excellent example of the importance of ecosystem services being highlighted in the region is provided by the United Arab Emirates (UAE) under the slogan 'A Green Economy for Sustainable Development', which has earned the UAE the status of being one of the regional leaders in terms of the conservation of its environment and wildlife (UAE-MEW, 2014). The protection of its terrestrial and marine environment is guaranteed by federal law which aims to conserve fragile ecosystems with particular attention being paid to endangered species. The country is also committed to the UN Convention to Combat Desertification (UNCCD) and aims to continue protecting its natural habitats and underground water. This perhaps provides a useful model for other countries in the region and a way forward for Kuwait.

# References

- Abo El-Nil, M. (1997). Role of Plant tissue culture propagation in the rehabilitation of desert environment. *Restoration and rehabilitation of the desert environment*. Amesterdam: Elsevier.
- Abo El-Nil, M. (2001). Growth and establishment of mangrove (*Avicennia marina*) on the coastlines of Kuwait. *Wetlands Ecology and Management, 9*, 421-428.
- Adams, K. L., & Wendel, J. F. (2005). Polyploidy and genome evolution in plants. *Current Opinion in Plant Biology*, 8(2), 135-141.
- Ahmed, M., Al-Dousari, N., & Al-Dousari, A. (2016). The role of dominant perennial native plant species in controlling the mobile sand encroachment and fallen dust problem in Kuwait. *Arabian Journal of Geosciences, 9*(2). doi:10.1007/s12517-015-2216-6
- Al-Awadhi, J. M., Misak, R. F., & Omar, S. A. S. (2003). Causes and consequences of desertification in Kuwait: a case study of land degradation. *Bull Eng Geol Env*(62), 107-115. doi:10.1007/s10064-002-0175-0
- Al-Awadhi, J. M., Omar, S. A., & Misak, R. F. (2005). Land degradation indicators in Kuwait. Land Degradation & Development, 16(2), 163-176. doi:10.1002/ldr.666
- Al-Damkhi, A. M. (2007). Kuwait"s oil well fires, 1991: environmental crime and war. International Journal of Environmental Studies, 64(1), 31-44.
- Al-hemaid, F., Ali, A., Lee, J., Kim, S., & Rahman, M. (2015). Molecular evolutionary relationships of *Euphorbia cordifolia* jacq. within the genus inferred from analysis of internal transcribed spacer sequences. *Bangladesh J. Plant Taxon, 22*(2), 111-118.
- Al-Humaid, A. L., & Warrang, M. O. (1998). Allelopathic effects of mesquite (Prosopis juliflora) foliage on seed germi- nation and seedling growth of Bermudagrass. J. Arid Environ., 38, 237-243.
- Al-Nafie. (2008). Phytogeography of Saudi Arabia. Saudi J Biol Sci, 1(15), 159-176.
- Al-Qurainy, F., Khan, S., Nadeem, M., Tarroum, M., & Gaafar, A. R. Z. (2014). Selection of DNA barcoding loci for Nepeta deflersiana Schweinf. ex Hedge from chloroplast and nuclear DNA genomes. *Genetics and Molecular Research*, 13(1), 1144-1151.
- Al-Qurainy, F., Nadeem, M., Khan, S., Alansi, S., & Tarroum, M. (2013). Effecient regeneration of a potential medicinal plant Ochradenus baccatus Delile from cotyledon and shoot axis. *Pakistan Journal of Botany*, 45(2), 501-505.
- Al-Rawi, A. (1987). *Flora of Kuwait vol. 2: Compositae and Monocotyledoneae*. Kuwait University.
- Al-Salameen, F., Al-Amad, S., & Al-Hashash, H. (2014). Determination of genetic variation of Rhanterium epapposum in Kuwait desert using RAPD and SRAP DNA-based markers. *Kuwait J. Sci., 3*, 163-175.
- Al-Saqer, N. A. (2003). Birds of the Jahra conserved area. *Journal of Arid Environments,* 54(1), 203-207. doi:10.1006/jare.2001.0878
- Al-Sulaimi, J., & Pitty, A. (1995). Origin and depositonal model of Wadi Al-Batin and its associated alluvial fan, Saudia Arabia and Kuwait. *Sedimentary Geology*(97), 203-229.
- Al-Tamimi, H. A. (2010). Protected Areas in the State of Kuwait. *Environment Public Authority, Kuwait.* Retrieved from <u>http://www.docs/24167108/Protected-Areas-in-the-State-of-Kuwait</u>
- Al-Yemeni, M. N., Al-Farraj, M. M., & Al-Farhan, A. (2000). Ecological studies on Rawdhat system in Saudi Arabia - II. Soil seed bank of Rawdhat Khorim. *Pakistan Journal of Botany*, 32(2), 273-282.

Al-Damkhi, A. M. (2007). Kuwait's oil well fires, 1991: environmental crime and war. International Journal of Environmental Studies, 64(1), 31-44. doi:10.1080/00207230601125036

- Albrecht, M., Duelli, P., Obrist, M. K., Kleijn, D., & Schmid, B. (2009). Effective Long-Distance Pollen Dispersal in *Centaurea jacea*. *PLoS One*, *4*(8), 1-8.
- Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic Local Alignment Search Tool. J. Mol. Biol., 215(5), 403-410.

Anonymous. (1910). Longevity of fern spores. The Garden, 74, 63.

- APGIV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society*, 181, 1-20.
- Badaeva, E. D., Amosova, A. V., Samatadze, T. E., Zoshchuk, S. A., Shostak, N. G., Chikida, N. N., . . . Gill, B. S. (2004). Genome differentiation in Aegilops . 4. Evolution of the U-genome cluster. *Plant Systematics and Evolution, 246*(1-2), 45-76. doi:10.1007/s00606-003-0072-4
- Bafeel, S. O., Arif, I. A., Bakir, M. A., Al Homaidan, A. A., Al Farhan, A. H., & Khan, H. A.
  (2012). DNA barcoding of arid wild plants using rbcL gene sequences. *Genet Mol Res*, 11(3), 1934-1941. doi:10.4238/2012.July.19.12
- Bakker, J. P., Poschlod, P., Strykstra, R. J., Bekker, R. M., & Thompson, K. (1996). Seed banks and seed dispersal: important topics in restoration ecology. *Acta Bot. Neerl.*, *45*(4), 461-490.
- Baptista, P., Reis, F., Pereira, E., Tavares, R. M., Santos, P. M., Richard, F., . . . Lino-Neto, T. (2015). Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. *Environ Microbiol Rep, 7*(6), 946-954.

Batanouny, K. H. (1983). Human Impact on Desert vegetation. Junk, The Hague, 139-149.

- Bell, K. L., Loeffler, V. M., & Brosi, B. J. (2017). An *rbcL* reference library to aid in the identification of plant species mixtures by DNA metabarcoding. *Appl Plant Sci*, 5(3), 1-7. doi:10.3732/apps.1600110
- Belnap, J., Rosentreter, R., Leonard, S., Kaltenecker, J., Williams, J., & Eldridge, D. (2001).Biological Soil Crusts: Ecology and Managment. *Denver, Colorado, Report*, 1-118.
- Birks, H. H. (2001). Plant macrofossils. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), *Tracking Environmental Change Using Lake Sediments* (Vol. 3, pp. 49-74). Dordrecht: Kluwer
- Black, J. S., Salto-Tellez, M., Mills, K. I., & Catherwood, M. A. (2015). The impact of next generation sequencing technologies on haematological research – A review. *Pathogenesis*, 2(1-2), 9-16.
- Blattner, F. R. (2009). Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). *Breeding Science*, *59*, 471-480.
- Blay, E. S., Schwabedissen, S. G., Magnuson, T. S., Aho, K. A., Sheridan, P. P., & Lohse, K. A. (2017). Variation in Biological Soil Crust Bacterial Abundance and Diversity as a Function of Climate in Cold Steppe Ecosystems in the Intermountain West, USA. *Microb Ecol.* doi:10.1007/s00248-017-0981-3
- Bolson, M., Smidt Ede, C., Brotto, M. L., & Silva-Pereira, V. (2015). ITS and trnH-psbA as Efficient DNA Barcodes to Identify Threatened Commercial Woody Angiosperms from Southern Brazilian Atlantic Rainforests. *PLoS One, 10*(12), e0143049. doi:10.1371/journal.pone.0143049
- Boulos, L. (1988). The Weed Flora of Kuwait. Kuwait University.
- Boulos, L., & Al-Dosari, M. (1994). Checklist of the flora of Kuwait. J. Univ. Kuwait, 21, 203-217.

- Braukmann, T. W., Kuzmina, M. L., Sills, J., Zakharov, E. V., & Hebert, P. D. (2017). Testing the Efficacy of DNA Barcodes for Identifying the Vascular Plants of Canada. *PLoS One*, *12*(1), e0169515. doi:10.1371/journal.pone.0169515
- Brown, G. (2003). Factors maintaining plant diversity in degraded areas of northern Kuwait. *Journal of Arid Environments, 54*(1), 183-194. doi:10.1006/jare.2001.0880
- Brown, G., & Al-Mazrooei, S. (2003). Rapid vegetation regeneration in a seriously degraded Rhanterium epapposum community in northern Kuwait after 4 years of protection. *Journal of Environmental Management, 68*(4), 387-395. doi:10.1016/s0301-4797(03)00107-5
- Brown, G., & Schoknecht, N. (2001). Off-road vehicles and vegetation patterning in a degraded desert ecosystem in Kuwait. *Journal of Arid Environments, 49*(2), 413-427. doi:10.1006/jare.2000.0772
- Brummitt, R. K., & Powell, C. E. (1992). Authors of Plant Names. RBG Kew: Whitstable Litho
- Bruni, I., De Mattia, F., Martellos, S., Galimberti, A., Savadori, P., Casiraghi, M., . . . Labra, M. (2012). DNA barcoding as an effective tool in improving a digital plant identification system: a case study for the area of Mt. Valerio, Trieste (NE Italy). *PLoS One, 7*(9), e43256. doi:10.1371/journal.pone.0043256
- Burgess, K. S., Fazekas, A. J., Kesanakurti, P. R., Graham, S. W., Husband, B. C., Newmaster, S. G., . . . Barrett, S. C. H. (2011). Discriminating plant species in a local temperate flora using the rbcL+matK DNA barcode. *Methods in Ecology and Evolution*, 2(4), 333-340. doi:10.1111/j.2041-210X.2011.00092.x
- CBOL. (2009). A DNA barcode for land plants. *Proc Natl Acad Sci U S A, 106*(31), 12794-12797. doi:10.1073/pnas.0905845106
- Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., . . . Leon, C. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. *PLoS One*, *5*(1), e8613. doi:10.1371/journal.pone.0008613
- Coissac, E., Riaz, T., & Puillandre, N. (2012). Bioinformatic challenges for DNA metabarcoding of plants and animals. *Mol Ecol, 21*(8), 1834-1847. doi:10.1111/j.1365-294X.2012.05550.x
- Cole, J. R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R. J., & Tiedje, J. M. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. *Nucleic Acids Research, 37*, D141-D145. doi:<u>http://doi.org/10.1093/nar/gkn879</u>
- Cope, T. A. (2007). *Flora of the Arabian Peninsula and Socotra* (Vol. 5): Edinburgh University Press.
- Cristescu, M. E. (2014). From barcoding single individuals to metabarcoding biological communities: towards an integrative approach to the study of global biodiversity. *Trends Ecol Evol, 29*(10), 566-571.
- Crum, H. (2001). Structural Diversity of Bryophytes. USA: University of Michigan Herbarium.
- Daoud, H. S. (1985). *Flora of Kuwait vol. 1: Dicotyledoneae*. London: KPI and Kuwait University.
- de Vere, N., Rich, T. C., Ford, C. R., Trinder, S. A., Long, C., Moore, C. W., . . . Wilkinson, M. J. (2012). DNA barcoding the native flowering plants and conifers of Wales. *PLoS One*, *7*(6), e37945. doi:10.1371/journal.pone.0037945
- Denyer, K. L., Hartley, S. E., & John, E. A. (2010). Both bottom-up and top-down processes contribute to plant diversity maintenance in an edaphically heterogeneous ecosystem. *Journal of Ecology*, *98*(2), 498-508.
- DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., & Andersen, G. L. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. *Applied and Environmental Microbiology*, 72(7), 5069-5072. doi:<u>http://doi.org/10.1128/AEM.03006-05</u>

Dickson, V. (1955). *The Wild Flowers of Kuwait and Bahrain*. London: George Allen & Unwin Ltd.

- Dizkirici, A., Ekici, M., & Kaya, Z. (2013). Comparative molecular phylogenetics of Astragalus L. sections from Turkey with New World Astragalus species using nrDNA ITS sequences. *Plant Systematics and Evolution, 300*(1), 163-175. doi:10.1007/s00606-013-0868-9
- Dunning, I. T., & Savolainen, V. (2010). Broad-scale amplification of matK for DNA barcoding plants, a technical note. *Botanical Journal of the Linnean Society, 164*, 1-9.
- Eastwood, A., Brooker, R., Irvine, R. J., Artz, R. E., Norton, L. R., Bullock, J. M., . . . Pakeman, R. J. (2016). Does nature conservation enhance ecosystem services delivery? *Ecosystem Services*, *17*, 152-162.
- Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., . . .
   Relman, D. A. (2005). Diversity of the Human Intestinal Microbial Flora. *Science*, 308, 1635-1638.
- Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, *32*(5), 1792-1797.
- Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*, 26(19), 2460-2461.
- El-Keblawy, A., & Al-Rawai, A. (2005). Effects of salinity, tem- perature and light on germination of invasive *Prosopis juliflora* (SW.). *J. Arid Env., 61*, 555-556.
- El-Sheikh, M. A., Abbadi, G. A., & Bianco, P. M. (2010). Vegetation ecology of phytogenic hillocks (nabkhas) in coastal habitats of Jal Az-Zor National Park, Kuwait: Role of patches and edaphic factors. *Flora - Morphology, Distribution, Functional Ecology of Plants, 205*(12), 832-840. doi:10.1016/j.flora.2010.01.002
- ElBehi, A. W., Orlandi, F., Bonofiglio, T., Romano, B., Inglese, P., Sortino, G., & Liguori, G.
  (2015). Pollen Morphology and Reproductive Performances in *Opuntia ficusindica*(L.) Mill. Acta horticulturae, 1067(1), 217-223.
- Eldridge, D. (2000). Ecology and Management of Biological Soil Crusts. *The Bryologist*, *103*(4), 742-747.
- Enan, M. R., & Ahamed, A. (2014). DNA barcoding based on plastid matK and RNA polymerase for assessing the genetic identity of date (Phoenix dactylifera L.) cultivars. *Genet. Mol. Res., 13*(2), 3527-3536.
- Epp, L. S., Boessenkool, S., Bellemain, E. P., Haile, J., Esposito, A., Riaz, T., ... Brochmann, C. (2012). New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. *Mol Ecol, 21*(8), 1821-1833. doi:10.1111/j.1365-294X.2012.05537.x
- Erenler, H. E., Ashton, P. A., Gillman, M. P., & Ollerton, J. (2010). Factors determining species richness of soil seed banks in lowland ancient woodlands. *Biodiversity and Conservation*, 19(6), 1631-1648. doi:10.1007/s10531-010-9793-1
- Ergun, H. (1969). Reconnaissance Soil Survey: Kuwait. FAOUN, ROME, 104.
- Faegri, K., & van der Pijl, L. (1979). *The Principles of Pollination Ecology* (3 ed.). New York: Pergamon Press.
- Fahner, N. A., Shokralla, S., Baird, D. J., & Hajibabaei, M. (2016). Large-Scale Monitoring of Plants through Environmental DNA Metabarcoding of Soil: Recovery, Resolution, and Annotation of Four DNA Markers. *PLoS One*, *11*(6), e0157505. doi:10.1371/journal.pone.0157505
- Farell, E., & Alexandre, G. (2012). Bovine serum albumin further enhances the effects of organic solvents on increased yield of polymerase chain reaction of GC-rich templates. *BMC Research Notes, 5*, 257.

- Fazekas, A. J., Burgess, K. S., Kesanakurti, P. R., Graham, S. W., Newmaster, S. G., Husband, B. C., . . . Barrett, S. C. (2008). Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. *PLoS One, 3*(7), e2802. doi:10.1371/journal.pone.0002802
- Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. *J. Mol. Evol., 17*, 368-376.
- Fenner, M., & Thompson, K. (2005). *The Ecology of Seeds* (pp. 31). doi:10.1017/cbo9780511614101
- Ficetola, G. F., Pansu, J., Bonin, A., Coissac, E., Giguet-Covex, C., De Barba, M., . . . Taberlet, P. (2015). Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. *Mol Ecol Resour*, 15(3), 543-556. doi:10.1111/1755-0998.12338
- Fitch, W. M. (1971). Toward defining the course of evolution: minimum change for a specific tree topology. *Syst Zool., 20*, 406-416.
- Ford, C. S., Ayres, K. L., Toomey, N., Haider, N., Stahl, J. V. A., Kelly, I. J., . . . Wilkinson, M. J. (2009). Selection of candidate coding DNA barcoding regions for use on land plants. *Bot J. Linn. Soc.*, 159(1), 1-11.
- Ghazanfar, S., & Al-Sabahi, A. (1993). Medicinal Plants of Northern and Centeral Oman (Arabia). *Economic Botany*, 47(1), 89-98.
- Ghazanfar, S. A., & Fisher, M. (1998). *Vegetation of the Arabian Peninsula*. Netherlands: Kluwer Academics Publishers.
- Goldstein, P. Z., & Rob, D. (2003). Calibrating phylogenetic species formation in a threatened insect using DNA from historical specimens. *Mol Ecol, 12,* 1993-1998. doi:10.1046/j.1365-294X.2003.01860.x
- Griffin, G. F., Stafford, D. M., Smith, G. R., & Morton, G. E. (1989). Status and implications of the invasion of Tamarisk (Tamarix aphylla) on the Finke River, northern territory, Australia. *J. Env. Mang.*, *29*, 297-315.
- Gross, K. L. (1990). A Comparison of Methods for Estimating Seed Numbers in the Soil. *Journal of Ecology*, 78(4), 1079-1093.
- Gutterman, Y. (2012). Seed Germination in Desert Plants: Springer Science & Business Media.
- Haile, J., Froese, D. G., MacPhee, R. D. E., Roberts, R. G., Arnold, L. J., Reyes, A. V., ....
  (2009). Ancient DNA reveals late survival of mammoth and horse in interior Alaska PNAS, 106(52).
- Hajibabaei, M., Singer, G. A., Hebert, P. D., & Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. *Trends Genet*, *23*(4), 167-172. doi:10.1016/j.tig.2007.02.001
- Halwagy, R., & Halwagy, M. (1974). Ecological studies on the desert of Kuwait II The vegetation. *J. Univ. Kuwait*, *1*, 86-94.
- Halwagy, R., & Macksad, A. (1972). A contribution towards a Flora of the State of Kuwait and the Neutral Zone. *Bot. J. Linn. Soc., 65*, 61-79.
- Han, J., Zhu, Y., Chen, X., Liao, B., Yao, H., Song, J., . . . Meng, F. (2013). The short ITS2 sequence serves as an efficient taxonomic sequence tag in comparison with the full-length ITS. *Biomed Res Int, 2013*, 1-7. doi:10.1155/2013/741476
- Harper, K. T., & Pendleton, R. L. (1993). Cyanobacteria and cyanolichens: can they enhance availability of essential minerals for higher plants? *Great Basin Nat.*, *55*, 59-72.
- Hebert, P. D., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. *Syst Biol,* 54(5), 852-859. doi:10.1080/10635150500354886
- Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. *Proc. R. Soc. B., 270*, 313-321.

- Heeg, J. S., & Wolf, M. (2015). ITS2 and 18S rDNA sequence-structure phylogeny of Chlorella and allies (Chlorophyta, Trebouxiophyceae, Chlorellaceae). *Plant Gene*, *4*, 20-28. doi:10.1016/j.plgene.2015.08.001
- Hernández, H. M., & Navarro, M. (2007). A new method to estimate areas of occupancy using herbarium data. *Biodiversity and Conservation, 16*(9), 2457-2470. doi:10.1007/s10531-006-9134-6
- Hiiesalu, I., Opik, M., Metsis, M., Lilje, L., Davison, J., Vasar, M., . . . Partel, M. (2012). Plant species richness belowground: higher richness and new patterns revealed by nextgeneration sequencing. *Mol Ecol, 21*(8), 2004-2016. doi:10.1111/j.1365-294X.2011.05390.x
- Hofreiter, M., Mead, J. I., Martin, P., & Poinar, H. N. (2003). Molecular Caving. *Current Biology*, *13*(18), 693-695.
- Hollingsworth, M. L., Andra Clark, A., Forrest, L. L., Richardson, J., Pennington, R. T., Long, D. G., . . . Hollingsworth, P. M. (2009). Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. *Mol Ecol Resour*, 9(2), 439-457. doi:10.1111/j.1755-0998.2008.02439.x
- Hollingsworth, P. M., Graham, S. W., & Little, D. P. (2011). Choosing and using a plant DNA barcode. *PLoS One, 6*(5), e19254. doi:10.1371/journal.pone.0019254
- Hribova, E., Cizkova, J., Christelova, P., Taudien, S., de Langhe, E., & Dolezel, J. (2011). The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny. *PLoS One*, *6*(3), e17863. doi:10.1371/journal.pone.0017863
- Hunter, S., Corbett, M., Denise, H., Fraser, M., Gonzalez-Beltran, A., Hunter, C., . . . Sansone, S. A. (2014). EBI metagenomics--a new resource for the analysis and archiving of metagenomic data. *Nucleic Acids Res, 42*(Database issue), D600-606. doi:10.1093/nar/gkt961
- IUCN. (2008). Guidelines for Applying Protected Area Management Categories. *Gland, Switzerland*, 86.
- IUCN. (2012). The Conservation Status and Distribution of Reptiles of the Arabian Peninsula. Cambridge, UK and Gland, Switzerland: IUCN, and Sharjah, UAE: Environment and Protected Areas Authority., 38.
- IUCN. (2013). Invasive alien species: the urban dimension, Case studies on strengthening local action in Europe. Brussels. *Brussels, Belgium*.
- Jahren, A. H., Porter, S., & J., K. J. (2003). Lichen metabolism identified in Early Devonian terrestrial organisms. *Geological Society of America*, *31*(2), 99-102.
- Javanmardi, F., Kazempour Osaloo, S., Maassoumi, A. A., & Nejadsattrai, T. (2012). Molecular phylogeny of Astragalus section Alopecuroidei (Fabaceae) and its allies based on nrDNA ITS and three cpDNAs, matK, trnT-trnY and trnH-psbA sequences. *Biochemical Systematics and Ecology, 45*, 171-178. doi:10.1016/j.bse.2012.07.029
- Jensen, J. S., & Hansen, J. K. (2010). Genetic variation in responses to different soil water treatments inQuercus roburL. *Scandinavian Journal of Forest Research*, *25*(5), 400-411. doi:10.1080/02827581.2010.512873
- Jones, F. A., Erickson, D. L., Bernal, M. A., Bermingham, E., Kress, W. J., Herre, E. A., . . . Turner, B. L. (2011). The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling. *PLoS One*, *6*(9), e24506. doi:10.1371/journal.pone.0024506
- Jurado-Rivera, J. A., Vogler, A. P., Reid, C. A., Petitpierre, E., & Gomez-Zurita, J. (2009). DNA barcoding insect-host plant associations. *Proc Biol Sci, 276*(1657), 639-648. doi:10.1098/rspb.2008.1264
- Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., . . . Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform

for the organization and analysis of sequence data. *Bioinformatics, 28*(12), 1647-1649.

- Keller, A. A., Fournier, E., & Fox, J. (2015). Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis. *Journal of Environmental Management*, 156, 23-30.
- Kesanakurti, P. R., Fazekas, A. J., Burgess, K. S., Percy, D. M., Newmaster, S. G., Graham, S. W., . . . Husband, B. C. (2011). Spatial patterns of plant diversity below-ground as revealed by DNA barcoding. *Mol Ecol, 20*(6), 1289-1302. doi:10.1111/j.1365-294X.2010.04989.x
- Keshavarzi, M., Rahiminejad, M. R., & Kheradmandnia, M. (2007). Discriminative analysis of 10 species of Aegilops I. (Poaceae) native to Iran. *Iranian Journal of Science & Technology, 31*(A3), 321-324.
- Khansari, E., Zarre, S., Alizadeh, K., Attar, F., Aghabeigi, F., & Salmaki, Y. (2012). Pollen morphology of Campanula (Campanulaceae) and allied genera in Iran with special focus on its systematic implication. *Flora - Morphology, Distribution, Functional Ecology of Plants, 207*(3), 203-211. doi:10.1016/j.flora.2012.01.006
- Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *J. Mol. Evol., 16*(111-120).
- KISR. (1999). Soil Survey for the State of Kuwait (Vol. 2). KISR: AACM International, Adelaide.
- KISR. (2008). Environmental Rehabilitation Study of Liyah Gravel Quarry North of Kuwait. *Kuwait Institute for Scietific Research*, 28.
- KMC. (2016). Kuwait Meterological Center. Retrieved from http://www.met.gov.kw/
- Kok, M. T. J., Kok, K., Peterson, G. D., Hill, R., Agard, J., & Carpenter, S. R. (2016). Biodiversity and ecosystem services require IPBES to take novel approach to scenarios. *Sustainability Science*, 1-5. doi:10.1007/s11625-016-0354-8
- Kraaijeveld, K., de Weger, L. A., Ventayol Garcia, M., Buermans, H., Frank, J., Hiemstra, P. S., & den Dunnen, J. T. (2015). Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. *Mol Ecol Resour*, 15(1), 8-16. doi:10.1111/1755-0998.12288
- Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. *PLoS One*, 2(6), e508. doi:10.1371/journal.pone.0000508
- Kress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., & Bermingham, E. (2009). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. *Proc Natl Acad Sci U S A*, *106*(44), 18621-18626. doi:10.1073/pnas.0909820106
- Kress, W. J., Garcia-Robledo, C., Uriarte, M., & Erickson, D. L. (2015). DNA barcodes for ecology, evolution, and conservation. *Trends Ecol Evol*, 30(1), 25-35. doi:10.1016/j.tree.2014.10.008
- Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. *Proc Natl Acad Sci U S A*, *102*(23), 8369-8374. doi:10.1073/pnas.0503123102
- Kuete, V., Wiench, B., Alsaid, M. S., Alyahya, M. A., Fankam, A. G., Shahat, A. A., & Efferth, T. (2013). Cytotoxicity, mode of action and antibacterial activities of selected Saudi Arabian medicinal plants. *BMC Complementary and Alternative Medicine*, 13, 1-11.
- Kumar, S., Stecher, G., & Tamura, K. (2015). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. *Mol. Biol. Ecol.*, 1-5.
- Kuparinen, A., Markkanen, T., Riikonen, H., & Vesala, T. (2007). Modeling air-mediated dispersal of spores, pollen and seeds in forested areas. *Ecological Modelling, 208*(2-4), 177-188. doi:10.1016/j.ecolmodel.2007.05.023

- Kurschner, H. (2003). Nineteen new records to the bryophyte flora of Socotra Island Additions to the Bryophyte Flora of the Arabian Peninsula and Socotra *Willdenowia*, *33*(2), 445-458.
- Kürschner, H., & Ochyra, R. (2014). Novelties in the moss flora of Oman, Saudi Arabia and Yemen, Including the most OutstandingVesicularia montagnei(Bél.) Broth. (Hypnaceae). *Cryptogamie, Bryologie, 35*(1), 93-97. doi:10.7872/cryb.v35.iss1.2014.93
- Kuzmina, M. L., Johnson, K. L., Barron, H. R., & Hebert, P. D. N. (2012). Identification of the vascular plants of the Churchill, Manitoba, using DNA barcode library. *BMC Ecology*, 12, 25.
- Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., . . . Savolainen, V. (2008). DNA barcoding the floras of biodiversity hotspots. *Proc Natl Acad Sci U S A*, *105*(8), 2923-2928. doi:10.1073/pnas.0709936105
- Lam, K. N., Cheng, J., Engel, K., Neufeld, J. D., & Charles, T. C. (2015). Current and future resources for functional metagenomics. *Frontiers in Microbiology*, *6*, 1-8.
- Lamb, E. G., Winsley, T., Piper, C. L., Freidrich, S. A., & Siciliano, S. D. (2016). A highthroughput belowground plant diversity assay using next-generation sequencing of the trnL intron. *Plant and Soil*. doi:10.1007/s11104-016-2852-y
- Le Houerou, H. N. (1984). Forage and fuel plants in the arid zone of North Africa the Near and Middle East. In G. E. G. Wickens, J.R. and Field, D.V. (Ed.), *Plants of Arid Lands* (pp. 117-141). London: George Allen and Unwin.
- Leicht-Young, S. A., Pavlovic, N. B., Grundel, R., & Frohnapple, K. J. (2008). A comparison of seed banks across a sand dune successional gradient at Lake Michigan dunes (Indiana, USA). *Plant Ecology, 202*(2), 299-308. doi:10.1007/s11258-008-9484-0
- Lewin, G. R., Carlos, C., Chevrette, M. G., Horn, H. A., McDonald, B. R., Stankey, R. J., . . . Currie, C. R. (2016). Evolution and Ecology of Actinobacteria and Their Bioenergy Applications. *Annu Rev Microbiol, 70*, 235-254. doi:10.1146/annurev-micro-102215-095748
- Li, D.-Z., Liu, J.-Q., Chen, Z.-D., Wang, H., Ge, X.-J., Zhou, S.-L., . . . Chen, S.-L. (2011). Plant DNA barcoding in China. *Journal of Systematics and Evolution, 49*(3), 165-168. doi:10.1111/j.1759-6831.2011.00137.x
- Li, H. Q., Chen, J. Y., Wang, S., & Xiong, S. Z. (2012). Evaluation of six candidate DNA barcoding loci in Ficus (Moraceae) of China. *Mol Ecol Resour, 12*(5), 783-790. doi:10.1111/j.1755-0998.2012.03147.x
- Li, X. R., Wang, X. P., & Zhang, J. G. (2002). Microbiotic soil crust and its effects on vegetation and habit on artificially atabilized desert dunes in Tengger Desert North China. *Biol. Fert. Soil, 35*, 147-154.
- Li, Y., Tong, Y., & Xing, F. (2016). DNA Barcoding Evaluation and Its Taxonomic Implications in the Recently Evolved Genus Oberonia Lindl. (Orchidaceae) in China. *Front Plant Sci*, 7, 1791. doi:10.3389/fpls.2016.01791
- Little, D. P. (2011). DNA barcode sequence identification incorporating taxonomic hierarchy and within taxon variability. *PLoS One, 6*(8), e20552. doi:10.1371/journal.pone.0020552
- Little, D. P. (2014). A DNA mini-barcode for land plants. *Mol Ecol Resour, 14*(3), 437-446. doi:10.1111/1755-0998.12194
- Liu, J., Moller, M., Gao, L. M., Zhang, D. Q., & Li, D. Z. (2011). DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. *Mol Ecol Resour, 11*(1), 89-100. doi:10.1111/j.1755-0998.2010.02907.x

- Liu, J., Provan, J., Gao, L. M., & Li, D. Z. (2012). Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in taxus. *Int J Mol Sci*, 13(7), 8740-8751. doi:10.3390/ijms13078740
- Liu, J., Yan, H.-F., Newmaster, S. G., Pei, N., Ragupathy, S., Ge, X.-J., & Lowe, A. (2015). The use of DNA barcoding as a tool for the conservation biogeography of subtropical forests in China. *Diversity and Distributions, 21*(2), 188-199. doi:10.1111/ddi.12276
- Liu, L., Liu, Y., Hui, R., & Xie, M. (2017). Recovery of microbial community structure of biological soil crusts in successional stages of Shapotou desert revegetation, northwest China. *Soil Biology and Biochemistry*, 107, 125-128. doi:10.1016/j.soilbio.2016.12.030
- Lock, J. M., & Simpson, K. (1991). Legumes in West Asia: A Checklist. RBG Kew, 274.
- Lonnell, N. (2011). *Plants & Ecology*. Stockholm: FMV Printcenter.
- Lönnell, N., Jonsson, B. G., & Hylander, K. (2014). Production of diaspores at the landscape level regulates local colonization: an experiment with a spore-dispersed moss. *Ecography*, 37, 591-598.
- Luo, K., Chen, S., Chen, K., Song, J., Yao, H., Ma, X., . . . Liu, Z. (2010). Assessment of candidate plant DNA barcodes using the Rutaceae family. *Sci China Life Sci, 53*(6), 701-708. doi:10.1007/s11427-010-4009-1
- Luo, R., Liu, B., & Xie, Y. (2012). SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. *Gigascience*, *1*, 1-18.
- Mabberley, D. J. (1997). *Mabberley's Plant-Book. A Portable Dictionary of the Vascular Plants*. Cape Town: Cambridge University Press.
- Mahadani, P., Sharma, G. D., & Ghosh, S. K. (2013). Identification of ethnomedicinal plants (Rauvolfioideae: Apocynaceae) through DNA barcoding from northeast India. *Phcog Mag*, *9*(35), 255-263.
- Mandaville, J. P. (2011). Bedouin Ethnobotany. Tucson: The University of Arizona Press.
- Marone, L., Cueto, V. R., Milesi, F. A., & de Casenave, J. L. (2004). Soil seed bank composition over desert microhabitats: patterns and plausible mechanisms. *Canadian Journal of Botany*, *82*(12), 1809-1816.
- Marone, L., & Horno, M. E. (1997). Seed reserves in the central Monte desert, Argentina: implications for granivory. *J. Arid Env., 36*, 661-670.
- Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet*, *17*, 10-12.
- Mathew, K. T., Malallah, G., & Al-Dosari, M. (2012). Eleven new weeds in Kuwait. *Kuwait J. Sci. Eng.*, *39*(1A), 169-192.
- Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. *FEMS Microbiol Rev, 37*, 634-663.
- Meyer, C. P., & Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. *PLoS Biol*, *3*(12), e422. doi:10.1371/journal.pbio.0030422
- Miao, M., Warren, A., Song, W., Wang, S., Shang, H., & Chen, Z. (2008). Analysis of the Internal Transcribed Spacer 2 (ITS2) Region of Scuticociliates and Related Taxa (Ciliophora, Oligohymenophorea) to Infer their Evolution and Phylogeny. *Protist*, 159(4), 519-533.
- Millar, M. A., Coates, D. J., & Byrne, M. (2014). Extensive long-distance pollen dispersal and highly outcrossed mating in historically small and disjunct populations of Acacia woodmaniorum (Fabaceae), a rare banded iron formation endemic. Ann Bot, 114(5), 961-971. doi:10.1093/aob/mcu167
- Miller, A. G., & Cope, T. A. (1996). Flora of the Arabian Peninsula and Socotra. *Edinburgh University Press*, *1*, 586.

- Misak, R. F., Al-Awadhi, J. M., Omar, S. A., & Shahid, S. A. (2002). Soil degradation in Kabd area, southwestern Kuwait City. *Land Degradation & Development, 13*(5), 403-415. doi:10.1002/ldr.522
- Mishra, P., Kumar, A., Rodrigues, V., Shukla, A. K., & Sundaresan, V. (2016). Feasibility of nuclear ribosomal region ITS1 over ITS2 in barcoding taxonomically challenging genera of subtribe Cassiinae (Fabaceae). *PeerJ*, *4*, e2638. doi:10.7717/peerj.2638
- Naderi Safar, K., Kazempour Osaloo, S., Maassoumi, A. A., & Zarre, S. (2014). Molecular phylogeny of Astragalus section Anthylloidei (Fabaceae) inferred from nrDNA ITS and plastid rpl32-trnL(UAG) sequence data. *Turkish Journal of Botany, 38*, 637-652. doi:10.3906/bot-1308-44
- Nawash, O. S., & Al-Horani, A. S. (2011). The most important medicinal plants in Wadi Araba desert South West Jordan:. *Advances in Environmental Biology*, *5*(2), 418-425.
- NCBI. (2016). Database resources of the National Center for Biotechnology Information. *Nucleic Acids Research, 44*(Database issue), D7-D19.
- Nelson, J. F., & Chew, R. M. (1977). Factors Affecting Seed Reserves in the Soil of a Mojave Desert Ecosystem, Rock Valley, Nye County, Nevada. *The AMerican Midland Naturalist, 97*(2), 300-320.
- Omar, S. (2007). Vegetation of Kuwait (2 ed.): KISR.
- Omar, S. A., Misak, R., King, P., Shahid, S. A., Abo-Rizq, H., Grealish, G., & Roy, W. (2001). Mapping the vegetation of Kuwait through reconnaissance soil survey. *Journal of Arid Environments, 48*(3), 341-355. doi:10.1006/jare.2000.0740
- Omar, S. A. S., & Bhat, N. R. (2008). Alteration of theRhanterium epapposumplant community in Kuwait and restoration measures. *International Journal of Environmental Studies, 65*(1), 139-155. doi:10.1080/00207230701823332
- Orgiazzi, A., Dunbar, M. B., Panagos, P., de Groot, G. A., & Lemanceau, P. (2015). Soil biodiversity and DNA barcodes: opportunities and challenges. *Soil Biology and Biochemistry, 80*, 244-250. doi:10.1016/j.soilbio.2014.10.014
- Ott, J. E., McArthur, E. D., & Sanderson, S. C. (2011). Vegetation Dynamics at a Mojave Desert Restoration Site. Natural Resources and Environmental Issues *16*(1), 105-120. Retrieved from
- Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., .
   . . Iliopoulos, I. (2015). Metagenomics: tools and insights for analyzing nextgeneration sequencing data derived from biodiversity studies. *Bioinform Biol Insights, 9*, 75-88. doi:10.4137/BBI.S12462
- PACI. (2015). The Public Authority For Civil Information Kuwait. <u>https://www.paci.gov.kw/</u>
- Pang, X., Shi, L., Song, J., Chen, X., & Chen, S. (2013). Use of the potential DNA barcode ITS2 to identify herbal materials. *J Nat Med*, *67*(3), 571-575. doi:10.1007/s11418-012-0715-2
- Parducci, L., Matetovici, I., Fontana, S. L., Bennett, K. D., Suyama, Y., Haile, J., . . . Willerslev, E. (2013). Molecular- and pollen-based vegetation analysis in lake sediments from central Scandinavia. *Mol Ecol, 22*(13), 3511-3524. doi:10.1111/mec.12298
- Pasiecznik, N. M., Felker, P., Harris, P. J. C., Harsh, L. N., Cruz, G., Tewari, J. C., . . .
   Maldonado, L. J. (2001). The Prosopis juliflora Prosopis pallida Complex: A
   Monograph. HDRA Coventry UK, 172.
- Pedersen, M. W., Ginolhac, A., Orlando, L., Olsen, J., Andersen, K., Holm, J., . . . Kjær, K. H. (2013). A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa. *Quaternary Science Reviews*, 75, 161-168. doi:10.1016/j.quascirev.2013.06.006
- Percy, D. M., Argus, G. W., Cronk, Q. C., Fazekas, A. J., Kesanakurti, P. R., Burgess, K. S., . . . Graham, S. W. (2014). Understanding the spectacular failure of DNA barcoding in

willows (Salix): does this result from a trans-specific selective sweep? *Mol Ecol,* 23(19), 4737-4756. doi:10.1111/mec.12837

- Perveen, A., & Qaiser, M. (1999). Pollen Flora of Pakistan XIII. Campanulaceae. *Tr. J. of Botany, 23*, 45-51.
- Pettengill, J. B., & Neel, M. C. (2010). An evaluation of candidate plant DNA barcodes and assignment methods in diagnosing 29 species in the genus Agalinis (Orobanchaceae). *Am J Bot, 97*(8), 1391-1406. doi:10.3732/ajb.0900176
- Pompanon, F., Deagle, B. E., Symondson, W. O., Brown, D. S., Jarman, S. N., & Taberlet, P. (2012). Who is eating what: diet assessment using next generation sequencing. *Mol Ecol, 21*(8), 1931-1950. doi:10.1111/j.1365-294X.2011.05403.x
- Pond, S. K., Wadhawan, S., Chiaromonte, F., Ananda, G., Chung, W. Y., Taylor, J., & Nekrutenko, A. (2009). Windshield splatter analysis with the Galaxy metagenomic pipeline. *Genome Research*, 19(11), 2144-2153. doi:10.1101/gr.094508.109
- Prasse, R., & Bornkamm, R. (2000). Effect of microbiotic soil surface crusts on emergence of vscular plants. *Plant Ecology*, *150*, 65-75.
- Pysek, P., Richardson, D. M., Rejmánek, M., Webster, G. L., Williamson, M., & Kirschner, J. (2004). Alien plants in checklists and floras: towards better communication between taxonomists and ecologists. *Taxon*, 53(1), 131-143.
- Rahman, M. A., Mossa, J. S., Al-Said, M. S., & Al-Yahya, M. A. (2004). Medicinal plant diversity in the flora of Saudi Arabia 1: a report on seven plant families. *Fitoterapia*, 75(2), 149-161. doi:10.1016/j.fitote.2003.12.012
- Ralser, M., Querfurth, R., Warnatz, H., Lehrach, H., Yaspo, M., & Krobitsch, S. (2006). An efficient and economic enhancer mix for PCR. *Biochemical and Biophysical Research Communications*, *347*, 747-751.
- Ratnasingham , S., & Hebert, P. D. N. (2013). A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. *PLoS One*, 8(7), e66213.
- Raveendar, S., Lee, J., Park, J., Lee, G., Jeon, Y., Lee, W., . . . Chung, J. (2015). Identification of Genus Vigna using ITS2 and matK as a Two-Locus DNA Barcode. *Plant Breeding and Biotechnology*, *3*(2), 153-159. doi:10.9787/pbb.2015.3.2.153
- Reichman, O. J. (1984). Spatial and temporal variation of seed distributions in Sonoran desert soils. *Journal of Biogeography*, *11*, 1-11.
- Reyes-Agüero, J. A., Aguirre R, J. R., & Valiente-Banuet, A. (2006). Reproductive biology of Opuntia: A review. *Journal of Arid Environments, 64*(4), 549-585. doi:10.1016/j.jaridenv.2005.06.018
- Ronsted, N., Chase, M. W., Albach, D. C., & Bello, M. A. (2002). Phylogenetic relationships within *Plantago* (Plantaginaceae): evidence from nuclear ribosomal ITS and plastid *trnL-F* sequence data. *Botanical Journal of the Linnean Society*, *139*, 323-338.
- Rothfels, C. J., Gaya, E., Pokorny, L., Rothfels, P., Rothfels, P., & Feulner, G. R. (2012). Significant fern, lichen and bryophyte collections from the UAE and northern Oman, including five new records for the Arabian Peninsula. *Tribulus, 20*, 4-20.
- Rufino, M., Rowe, E. C., J., D. R., & Giller, K. E. (2006). Nitrogen cycling efficiencies through resource-poor African crop–livestock systems. *Agriculture, Ecosystems & Environment, 112*(4), 261-282.
- Rulin, D., & Lifu, T. (1985). Algal macrofossils from the Qingbaikou system in the Yanshan range of North China. *Precambrian Research*, 29(1-3), 5-14.
- Saarela, J. M., Sokoloff, P. C., Gillespie, L. J., Consaul, L. L., & Bull, R. D. (2013). DNA barcoding the Canadian Arctic flora: core plastid barcodes (rbcL + matK) for 490 vascular plant species. *PLoS One, 8*(10), e77982. doi:10.1371/journal.pone.0077982
- Saganuwan, A. S. (2010). Some medicinal plants of Arabian Peninsula. *Journal of Medicinal Plants Research, 4*(9), 766-788.

- Saitou, M., & Nei, M. (1987). The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees *Mol. Biol. Evol.*, 4(4), 406-425.
- Sancho, L. G., Belnap, J., Colesie, C., Raggios, B., & Weber, B. (2016). Carbon Budgets of Biological Soil Crusts at Micro-, Meso-, and Global Scales. In B. Weber, B. Budel, & J. Belnap (Eds.), *Biological Soil Crusts: An Organizing Principle in Drylands* (Vol. 226, pp. 287-304).
- Sang, T., Crawford, D., & Stuessy, T. (1997). Chloroplast DNA phylogeny. Reticulate, Evolution and Biogeography. *American Journal of Botany*, *84*(9), 1120-1136.
- Sapkota, R., & Nicolaisen, M. (2015). An improved high throughput sequencing method for studying oomycete communities. *J Microbiol Methods*, *110*(3), 33-39.
- Sarkinen, T., Staats, M., Richardson, J. E., Cowan, R. S., & Bakker, F. T. (2012). How to open the treasure chest? Optimising DNA extraction from herbarium specimens. *PLoS One*, *7*(8), e43808. doi:10.1371/journal.pone.0043808
- Sarwar, A. K. M. G., & Takahashi, H. (2014). Pollen morphology of EricaL. and related genera and its taxonomic significance. *Grana*, *53*(3), 221-231. doi:10.1080/00173134.2014.912346
- Schlindwein, C., Wittmann, D., Martins, C. F., Hamm, A., Siqueira, J. A., Schiffler, D., & Machado, I. C. (2005). Pollination of *Campanula rapunculus* L. (Campanulaceae): How much pollen flows into pollination and into reproduction of oligolectic pollinators? *Plant Syst. Evol.*, 250, 147-156.
- Schultz J., Maisel, S., Gerlach, D., Muller, T., & Worlf, M. (2005). A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. *RNA*, *11*, 361-364.
- Schulz, K., Mikhailyum, T., DreBler, M., Leinweber, P., & Karsten, U. (2016). Biological Soil Crusts from Coastal Dunes at the Baltic Sea: Cyanobacterial and Algal Biodiversity and Related Soil Properties. *Soil Microbiology*, 71, 178-193.
- Schutze, P., Freitag, H., & Weising, K. (2003). An integrated molecular and morphological study of the subfamily Suaedoideae Ulbr. (Chenopodiaceae). *Plant Syst. Evol.*, 239, 257-286.
- Sharawy, S. M., & Badr, A. (2014). Relationships of Astragalus L. in section Sesamei based on morphological criteria and molecular markers. *Bangladesh J. Plant Taxon*, 21(1), 1-12. doi:<u>http://dx.doi.org/10.3329/bjpt.v21i1.19250</u>
- Sharma, S. K., Dkhar, J., Kumaria, S., Tandon, P., & Rao, S. R. (2012). Assessment of phylogenetic inter-relationships in the genus Cymbidium (Orchidaceae) based on internal transcribed spacer region of rDNA. *Gene*, *495*(1), 10-15.
- Shehzad, W., Riaz, T., Nawaz, M. A., Miquel, C., Poillot, C., Shah, S. A., . . . Taberlet, P. (2012).
   Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (*Prionailurus bengalensis*) in Pakistan. *Molecular Ecology*, 21, 1951-1965.
- Simon, H. M., Dodsworth, J. A., & Goodman, R. M. (2000). Crenarchaeota colonize terrestrial plant roots. *Environmental Microbiology*, *2*(5), 495-505.
- Soltis, D. E., & Burleigh, J. G. (2009). Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms. *Proc Natl Acad Sci U S A, 106*(14), 5455-5456. doi:10.1073/pnas.0901994106
- Sonstebo, J. H., Gielly, L., Brysting, A. K., Elven, R., Edwards, M., Haile, J., . . . Brochmann, C. (2010). Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate. *Mol Ecol Resour*, *10*(6), 1009-1018. doi:10.1111/j.1755-0998.2010.02855.x
- Sosa, V., Mejía-Saules, T., Cuéllar, M. A., & Vovides, A. P. (2013). DNA Barcoding in Endangered Mesoamerican Groups of Plants. *The Botanical Review, 79*(4), 469-482. doi:10.1007/s12229-013-9129-4

- Soule, T., Anderson, I. J., Johnson, S. L., Bates, S. T., & Garcia-Pichel, F. (2009). Archaeal populations in biological soil crusts from arid lands in North America. *Soil Biology and Biochemistry*, *41*(10), 2069-2074. doi:10.1016/j.soilbio.2009.07.023
- Souto, M., Castro, D., Pontevedra-Pombal, X., Garcia-Rodeja, E., & Fraga, M. I. (2017). Characterisation of Holocene plant macrofossils from North Spanish ombrotrophic mires: bryophytes. *Mires and Peat., 19*, 1-12. doi:10.19189/MaP.2016.OMB.263
- Srivathsan, A., Ang, A., Vogler, A. P., & Meier, R. (2016). Fecal metagenomics for the simultaneous assessment of diet, parasites, and population genetics of an understudied primate. *Front Zool, 13*, 17. doi:10.1186/s12983-016-0150-4
- Srivathsan, A., Sha, J. C., Vogler, A. P., & Meier, R. (2015). Comparing the effectiveness of metagenomics and metabarcoding for diet analysis of a leaf-feeding monkey (Pygathrix nemaeus). *Mol Ecol Resour, 15*(2), 250-261. doi:10.1111/1755-0998.12302
- Staats, M., Cuenca, A., Richardson, J. E., Vrielink-van Ginkel, R., Petersen, G., Seberg, O., & Bakker, F. T. (2011). DNA damage in plant herbarium tissue. *PLoS One*, 6(12), e28448. doi:10.1371/journal.pone.0028448
- Staudacher, K., Wallinger, C., Schallhart, N., & Traugott, M. (2011). Detecting ingested plant DNA in soil-living insect larvae. *Soil Biology and Biochemistry*, 43(2), 346-350. doi:10.1016/j.soilbio.2010.10.022
- Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., & Willerslev, E. (2012). Towards nextgeneration biodiversity assessment using DNA metabarcoding. *Molecular Ecology*, 21, 2045–2050.
- Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., . . . Willerslev, E. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. *Nucleic Acids Res*, 35(3), e14. doi:10.1093/nar/gkl938
- Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology*, 1105-1109.
- Tackenberg, O., Poschlod, P., & Kahmen, S. (2003). Dandelion seed dispersal: The horizontal wind speed does not matter for long-distance dispersal it is updraft! *Plant Biology*, *5*, 451-454.
- Tate, J. A., & Simpson, B. B. (2003). Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. *Systematic Botany*, *28*, 723-737.
- Telewski, F. W., & Zeevaart, J. A. D. (2002). The 120-yr period for Dr. Beal's seed viability experiment. *American Journal of Botany*, *89*(8), 1285-1288.
- Terrat, S., Christen, R., Dequiedt, S., Lelièvre, M., Nowak, V., Regnier, T., ... Ranjard, L. (2012). Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure. *Microbial Biotechnology*, 5, 135-141.
- Theodoridis, S., Stefanaki, A., Tezcan, M. C., Kokkini, S., & Vlachonasios, K. (2012). DNA barcoding in native plants of the Labiatae (Lamiaceae)family from Chios Island (Greece) and the adjacentC es me-Karaburun Peninsula (Turkey). *Molecular Ecology Resources, 12*, 620-633.
- Thomas, J. (2017). Plant diversity of Saudi Arabia. Retrieved from <u>http://plantdiversityofsaudiarabia.info/Biodiversity-Saudi-Arabia/Flora/Checklist/Cheklist.htm</u>
- Thomas, T., Gilbert, J., & Meyer, F. (2012). Metagenomics a guide from sampling to data analysis. *Microb Inform Exp*, 2(1), 3. doi:10.1186/2042-5783-2-3
- Thomsen, P. F., Elias, S., Gilbert, M. T. P., Haile, J., Munch, K., Kuzmina, S., . . . Willerslev, E. (2009). Non-destructive sampling of ancient insect DNA. *PLoS One*, *4*, e5048.

- Tolba, M. K. (2007). Harvest of Dust. In D. A. Bainbridge (Ed.), *Guide for Desert and Dryland Restoration* (pp. 1-12). U.S.A: Island Press.
- Toole, E. H., & Brown, E. (1946). Final results of the Duvel buried seed experiment. *J Agri. Res., 72*, 201-210.
- Tryon, R. (1970). Development and evolution of fern floras of Oceanic islands. *Biotropica*, *2*, 76.
- Tsukaya, H., & Suetsugu, K. (2014). Two New Species of Sciaphila (Triuridaceae) from Sarawak (Borneo, Malaysia). *Phytotaxa*, *170*(4), 283-290.
- Turini, F. G., Brauchler, C., & Heubl, G. (2010). Phylogenetic relationships and evolution of morphological characters in Ononis L. (Fabaceae). *Taxon*, *59*(4), 1077-1090.
- Tutel, B., Kandemir, I., Kus, S., & Kence, A. (2005). Classification of Turkish *Plantago* L. Species using Numerical Taxonomy. *Turkish Journal of Botany*, *29*, 51-61.
- UNCC. (2005). United Nation Compensation Commission Decision 258 (8 December, 2005). Retrieved from <u>http://www.uncc.ch/decision/dec\_258.pdf</u>
- UNFCCC. (2012). Kuwait Initial Natioanl Communications under the United Nations Framework Convention on Climate Change. *Environment Public Authority Kuwait*, 90.
- Valentini, A., Miquel, C., Nawaz, M. A., Bellemain, E., Coissac, E., Pompanon, F., . . . Taberlet, P. (2009). New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. *Mol Ecol Resour*, *9*(1), 51-60. doi:10.1111/j.1755-0998.2008.02352.x
- Van De Wiel, C., Schoot, V. D., Van Valkenburg, J. C. H., Duistermaat, H., & Smudlers, M. J. M. (2009). DNA barcoding discriminates the noxious invasive plant species, floating pennywort (Hydrocotyle ranunculoides L.f.), from non-invasive relatives. *Molecular Ecology Resources*, 9, 1086-1091.
- Vierheilig, J., Savio, D., Ley, R. E., Mach, R. L., Farnleitner, A. H., & Reischer, G. (2015). Potential applications of next generation DNA sequencing of 16S rRNA gene amplicons in microbial water quality monitoring. *Water Sci Technol, 72*(11), 1962-1972.
- Vollmer, D., Regan, H., & Andelman, S. J. (2016). Assessing the sustainability of freshwater systems: A critical review of composite indicators. *Ambio.*, *45*, 765-780.
- Wang, X., Liu, C., Huang, L., Bengtsson-Palme, J., Chen, H., Zhang, J., . . . Li, J. (2015). ITS1: a DNA barcode better than ITS2 in eukaryotes? *Molecular Ecology Resources*, *15*(3), 573-586. doi:10.1111/1755-0998.12325
- Watts, D., & Al-Nafie, A. H. (2003). Vegetation & Biogeography of Sand Sea of Saudi Arabia. *London: Kegan Paul*, 173.
- Weber, B., Budel, B., & Jayne, B. (2016). *Biological Soil Crusts: An Organizing Principle in Drylands*. Switzerland: Springer International Publishing AG.
- Weigand, J., & Rodgers, J. (2009). Active Restoration for the Mojave Desert. In R. H. Webb, Fenstermaker, L.F., Heaton, J.S., Hughson, D.L., Mcdonald, E.V., and Miller, D.M. (Ed.), *The Mojave Desert: Ecosystem Processes and Sustainability* (pp. 378-409).
  U.A.S: University of Nevada Press.
- West, N. E. (1990). Structure and function of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions. *Adv. Ecol. Res., 20*, 45-53.
- White, F., & Leonard, J. (1991). Phytogeographical links between Africa and Southwest Asia. *Flora et Vegetatio Mundi, IX*, 229-246.
- Wikum, D. A., & Shanholtzer, G. F. (1978). Application of the Braun-Blanquet coverabundance scale for vegetation analysis in land development studies. *Environmental management*, 2(4), 323-329.

- Wilson, J. J., Sing, K. W., Halim, M. R., Ramli, R., Hashim, R., & Sofian-Azirun, M. (2014).
   Utility of DNA barcoding for rapid and accurate assessment of bat diversity in
   Malaysia in the absence of formally described species. *Genet. Mol. Res.*, 13(1), 920-925.
- Wright, L. A. (1909). Longevity of fern spores: Kew.
- Yamaguchi, T., Yano, S., & Tsukaya, H. (2010). Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. *Plant Cell*, 22(7), 2141-2155. doi:10.1105/tpc.110.076927
- Yao, H., Song, J., Liu, C., Luo, K., Han, J., Li, Y., . . . Chen, S. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. *PLoS One*, 5(10). doi:10.1371/journal.pone.0013102
- Yoccoz, N. G. (2012). The future of environmental DNA in ecology. *Molecular Ecology*, *21*, 2031–2038.
- Yoccoz, N. G., Brathen, K. A., Gielly, L., Haile, J., Edwards, M. E., Goslar, T., . . . Taberlet, P. (2012). DNA from soil mirrors plant taxonomic and growth form diversity. *Mol Ecol*, 21(15), 3647-3655. doi:10.1111/j.1365-294X.2012.05545.x
- Yooseph, S., Andrews-Pfannkoch, C., Tenney, A., McQuaid, J., Williamson, S., Thiagarajan,
   M., . . . Venter, J. C. (2013). A metagenomic framework for the study of airborne
   microbial communities. *PLoS One*, *8*(12), e81862. doi:10.1371/journal.pone.0081862
- Yu, N., Gu, H., Wei, Y., Zhu, N., Wang, Y., Zhang, H., . . . Sun, A. (2016). Suitable DNA Barcoding for Identification and Supervision of Piper kadsura in Chinese Medicine Markets. *Molecules*, 21(9), 1-10. doi:10.3390/molecules21091221
- Zaman, S., Padmesh, S., Bhat, N., & Tawfiq, H. (2009). Germination Characteristics and Storage Behavior of *Tamarix aucheriana* (Dence.) *Seeds European Journal of Scientific Research*, *26*(4), 533-539.
- Zanten, B. O. (1978). Experimental studies on transoceanic long-range dispersal of moss spores in the southern hemisphere. *The Journal of the Hattori Botanical Laboratory*, 44, 455-482.
- Zhang, C. Y., Wang, F. Y., Yan, H. F., Hao, G., Hu, C. M., & Ge, X. J. (2012). Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae). *Mol Ecol Resour*, 12(1), 98-108. doi:10.1111/j.1755-0998.2011.03076.x
- Zhang, J., Kobert, K., Flouri, T., & Stamatakis, A. (2014). PEAR: a fast and accurate Illumina Paired-End reAd mergeR. *Bioinformatics*, *30*(5), 614-620.
- Zhang, W., Fan, X., Zhu, S., Zhao, H., & Fu, L. (2013). Species-specific identification from incomplete sampling: applying DNA barcodes to monitoring invasive solanum plants. *PLoS One*, 8(2), e55927. doi:10.1371/journal.pone.0055927
- Zhang, W., Yuan, Y., Yang, S., Huang, J., & Huang, L. (2015). ITS2 Secondary Structure Improves Discrimination between Medicinal "Mu Tong" Species when Using DNA Barcoding. *PLoS One*, 10(7), e0131185. doi:10.1371/journal.pone.0131185
- Zhang, Y. M., Chen, J., Wang, L., Wang, X. Q., & Gu, Z. H. (2007). The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. *Journal of Arid Environments, 68*, 599-610.
- Zimmermann, H. H., Raschke, E., Epp, L. S., Stoof-Leichsenring, K. R., Schwamborn, G., Schirrmeister, L., . . . Herzschuh, U. (2017). Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). *Biogeosciences*, 14(3), 575-596. doi:10.5194/bg-14-575-2017
- Zohary, M. (1973). Geobotanical foundations of the Middle East. *Taylor & Francis, UK, 1*, 1-340.