CE-QUAL-RIV1: A Dynamic, One-Dimensional (Longitudinal) Water Quality Model for Streams

User's Manual

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

User's Manual

by Environmental Laboratory
U.S. Army Corps of Engineers
Waterways Experiment Station 3909 Halls Ferry Road
Vicksburg, MS 39180-6199

CE-QUAL-RIV1: A Dynamic, One-Dimensional, 3 (Longitudinal) Water Quality Model for Streams

Final report
Approved for public release; distribution is unlimited

RESEARCH LIBRARY
US ARMII ENOINEER VIATESNAYS
EXPERIMEAT S:~i.n
VICKSBURG, MISSISSIPPI
Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000

Waterways Experiment Station Cataloging-in-Publication Data

CE-QUAL-RIV1 : a dynamic, one-dimensional (longitudinal) water quality model for streams user's manual / by Environmental Laboratory ; prepared for U.S. Army Corps of Engineers. 290 p. : ill. ; 28 cm . - (Instruction report ; EL-95-2)
Includes bibliographic references.

1. CE-QUAL-RIV1 (Computer program) 2. Water quality - Computer programs. 3. Streamflow - Computer programs. 4. Unsteady flow - Computer programs. I. United States. Army. Corps of Engineers. II. U.S. Army Engineer Waterways Experiment Station. III. Environmental Laboratory (U.S. Army Engineer Waterways Experiment Station) IV. Series: Instruction report (U.S. Army Engineer Waterways Experiment Station) ; EL-95-2.
TA7 W34i no.EL-95-2

PREFACE

This report serves as a user's manual for the dynamic riverine water quality model, CE-QUAL-RIV1. The development of this model was sponsored by Headquarters, U.S. Army Corps of Engineers (HQUSACE), as a part of the Environmental and Water Quality Operational Studies, Work Unit IC. 3 (CWIS Work Unit 31595), entitled "Improve and Verify Riverine Water Quality and Ecological Predictive Techniques," and is assigned to the U.S. Army Engineer Waterways Experiment Station (WES) under the purview of the Environmental Laboratory (EL). The HQUSACE Technical Monitors were Mr. Earl Eiker, Dr. John Bushman, and Mr. James Gottesman.

The first draft of the manual, dated September 1982 , was prepared by Drs. Keith W. Bedford, Robert M. Sykes, and Charles Libicki of Ohio State University under Contract No. DACW39-82-3548. The original version of the model code was also developed by Ohio State University. This present version of the user's manual is a result of revisions to the 1990 user's manual and reflects model modifications made after 1990. Revisions to the manual were made by Dr. D. M. Griffin, Louisiana Tech University, and Dr. James Martin and Mr. Tim Wool, AScI Corporation. Revisions were also made by Dr. Mark Dortch and Ms. Toni Schneider of the Water Quality and Contaminant Modeling Branch (WQCMB), Environmental Processes and Effects Division (EPED), (EL). The revisions to the model code were made by Ms. Schneider, Dr. Griffin, Dr. Martin, and Mr. Wool.

This work was conducted under the general supervision of Dr. John Harrison, Chief, EL, and Mr. Donald Robey, Chief, EPED, and under the direct supervision of Dr . Dortch, Chief, $W Q C M B$. This report is published under the Corps Numerical Model Maintenance Program.

This user's manual was reviewed by Dr. Patrick Deliman and Ms. Dorothy Tillman of WQCMB. Dr. Robert W. Whalin was Director of WES during publication of this manual. COL Bruce K. Howard, EN, was Commander.

This report should be cited as follows:
Environmental Laboratory. 1995. "CE-QUAL-RIV1: A Dynamic, OneDimensional (Longitudinal) Water Quality Model for Streams: User's Manual," Instruction Report EL-95-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
Page
PREFACE 1
CONVERSION FACTORS, NON-SI TO SI (METRIC) UNITS OF MEASUREMENT 4
PART I: INTRODUCTION 5
Background 5
Objective 6
Model Selection Criteria 6
PART II: THE GOVERNING EQUATIONS 8
General Considerations 8
Derivation of Equations 12
Initial and Boundary Conditions 18
Equation Summary 20
PART III: THE NUMERICAL SOLUTION FOR FLOW AND ELEVATION 21
Rationale 21
Numerical Approximations 21
Application to Governing Equations 22
Equation Assembly 25
Newton-Raphson Solution for Flow and Elevation 26
Calculation Procedure 31
PART IV: THE NUMERICAL SOLUTION FOR CONSTITUENT TRANSPORT 34
Rationale 34
The Governing Equation 34
Fourth-Order Explicit Scheme 37
Implicit Diffusion 42
Stability Requirements 44
PART V: SCHEMATIC MODEL OF RIVER WATER QUALITY 46
Temperature 46
Carbonaceous Biochemical Oxygen Demand 50
Nitrogen Interactions 54
Algae and Macrophytes 60
Oxygen 67
Phosphorus Interactions 71
Iron and Manganese 73
Coliform Bacteria and Other Conservative and Nonconservative Constituents 74
PART VI: THE HYDRODYNAMIC PROGRAM (RIV1H) 76
Overview 76
Structure of RIV1H 77
Cross-Section Formulas 86
Surveyed Cross Sections 89
Subroutines 91
Boundary Conditions 91
Tributaries 94
Input and Output Formats 105
Page
PART VII: THE WATER QUALITY CODE (RIV1Q) 131
Structure of RIV1Q 133
Input and Output Formats 146
REFERENCES 180
BIBLIOGRAPHY 184
APPENDIX A: LISTING OF THE HYDRODYNAMIC CODE RIV1H A1
APPENDIX B: LISTING OF THE WATER QUALITY CODE RIV1Q. B1
APPENDIX C: FORTRAN VARIABLES C1
SF 298
LIST OF TABLES
No. Page
1 Library (LIB) of Boundary Conditions 92
2 Parameters That Can Appear in the Global Constants Cards 151
3 Parameters That Can Appear on the Constant Card 153
LIST OF FIGURES
No. Page
1 Coordinate system and notation 9
2 Control volume definitions 11
3 Floodplain geometry and notation 16
4 Numerical grid 23
5 CE-QUAL-RIV1 water quality compartmental diagram 47
6 Variation of the bottle K_{1} with the degree of biological wastewater treatment 51
7 Channel geometry assumed for calculation of algal/macrophyte growth/decay 63
8 RIV1H organizational flowchart 79
9 Sample network 80
10 Cross-section types 88
11 Sample RIV1H *.INP input data file 106
12 Sample RIV1H *.BCF input data file 112
13 Sample RIV1H *.LAQ input data file 113
14 Sample RIV1H *.XSF input data file 114
15 Sample RIV1H *.OUT output data file 116
16 RIV1Q organizational flowchart 132
17 Compact fourth-order numerical gridwork 137
18 Sample RIV1Q *.INP input data file 148
19 Sample RIV1Q *.BCF input data file 160
20 Sample RIV1Q *.LAC input data file 162
21 Sample RIV1Q *.MET input data file 164
22 Sample RIV1Q *. OUT output data file 166

```
CONVERSION FACTORS, NON-SI TO SI (METRIC)
    UNITS OF MEASUREMENT
```

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

Multiply
cubic feet
feet
inches
miles (U.S. statute)
square feet

By
0.02831685
0.3048
25.4
1.609347
0.09290304

To Obtain
cubic meters
meters
millimeters
kilometers
square meters

CE-QUAL-RIV1: A DYNAMIC, ONE-DIMENSIONAL (LONGITUDINAL) WATER QUALITY MODEL FOR STREAMS USER'S MANUAL

PART I: INTRODUCTION

Background

1. The U.S. Army Corps of Engineers (CE) has major responsibility for regulation of the Nation's streams, rivers, and waterways. This activity often requires resolving issues and concerns with regard to the water quality of these regulated systems. Water quality simulation models can be powerful tools for studying these issues. Of course, to be useful, the water quality model must be properly suited for the problem at hand.
2. Regulated stream systems may include complicating physical features, such as multiple run-of-the-river dams, locks and dams, and reregulation dams. In addition, highly unsteady flows may exist or may be expected as in the planning for peaking hydropower releases. Numerous water quality models are in existence, but most were developed for steady flow conditions and are not appropriate when time-varying flows are to be considered.
3. The model presented herein was originally developed at Ohio State University at the request of the U.S. Environmental Protection Agency (EPA) for the purpose of predicting water quality associated with storm water runoff. Researchers at the U.S. Army Engineer Waterways Experiment Station (WES) were attracted to the model because it is fully dynamic for determining flow and water quality and it has several desirable numerical features, such as a two-point fourth-order scheme for accurately predicting advective water quality concentrations.
4. The WES contracted Ohio State University to modify the model code to handle control structures. This modification, along with the unsteady flow feature, gave the model the versatility needed for simulating CE-regulated stream/waterway projects. Subsequently, the updated version was tested at WES, and additional modifications and corrections were made, resulting in the model presented herein, CE-QUAL-RIV1.

Objective

5. The purposes of this user's manual are to (a) document the mathematical and numerical formulations of CE-QUAL-RIV1 and (b) provide the guidance necessary for its implementation. The first five parts deal with documentation, and the last two parts with operation. Because the codes are separate, some parts are associated only with the hydraulic code, RIV1H; others deal only with the water quality code, RIV1Q. The output from RIV1H is used to drive RIV1Q. However, a variety of hydraulic codes have also been used to drive RIV1Q.

Model Selection Criteria

6. The first criterion for selection of CE-QUAL-RIV1 for an application is whether the issues can be resolved with a one-dimensional (1-D) (crosssectionally averaged) model. Most riverine water quality issues can be resolved with a l-D model; that is, in riverine systems, lateral and vertical gradients in water quality constituent concentrations are generally insignificant and unimportant relative to longitudinal gradients. This assumption implicitly means that vertical temperature, density, and chemical stratifications (which can play a dominant role in the water quality of lakes and reservoirs) are nonexistent or negligible for practical purposes. Thus, although this model can be used for run-of-the-river reservoirs, locks and dams, and reregulation pools, the user must first be sure that vertical stratification does not exist or is so minor as to not affect water quality conditions. In addition, where point source discharges are concerned the model should not be applied "near field" where mixing may not have occurred sufficiently to satisfy the $1-D$ assumption.
7. The second criterion for selection of CE-QUAL-RIV1 concerns the nature of the flow and the issues; although CE-QUAL-RIV1 was developed for water quality simulations of riverine systems with highly unsteady flow, it can be used for steady flow conditions. However, it may be easier and more economical to use another more simplistic formulation, such as the EPA QUAL2E model (Brown and Barnwell 1987), which assumes steady flow. If the issues demand high resolution and the flows change substantially over a period of hours or days, then a fully dynamic model, such as CE-QUAL-RIV1 should be used.
8. Specific guidance has not been developed to determine at what condition a dynamic flow model should be used. The development of specific guidance would depend on the issues and the required resolution. For example, if daily average (or longer time averages, perhaps even steady-state) predictions are sufficient, then more simplistic modeling approaches may suffice, even for unsteady flow projects. However, if diel fluctuations (and peaks and troughs) are important and various interest groups are sensitive to such fluctuations, then a dynamic model would be necessary for an unsteady flow project. Transient flow conditions can produce substantially greater fluctuations in diel temperature and dissolved oxygen ($D O$) values than the natural diel effects (Matter et al. 1983).
9. Even when a study is highly sensitive and high resolution is required with diel fluctuations, a time-varying water quality model that assumes steady flow (such as QUAL2E) may suffice if the flows are relatively constant or change slowly during the simulation with respect to the travel time of the system. However, if the flows change substantially during a day and from day to day, then a dynamic flow model (such as CE-QUAL-RIV1) should be considered. The study of riverine water quality resulting from the releases from peaking hydropower dams is a good example of the use of CE-QUAL-RIV1.
10. It should be noted that RIV1H uses the fully dynamic flow equations; thus it has wide-ranging capabilities with good resolution. This advantage must be weighed against possible disadvantages such as unfamiliarity of the user with the code. RIV1Q can be driven by any hydraulic or hydrologic routing model, no matter how simple, as long as the proper linkages are made.

General Considerations

11. The transport of momentum and water quality constituents during unsteady flows can be marked by sharp gradients in flow, elevation, and water quality concentrations. These gradients can be propagated by the flow wave through regions of highly variable cross sections intermittently joined by major inflow tributaries, with the magnitudes of concentrations often being augmented by both point and nonpoint source contributions.
12. Since the speed of flow waves is often quite high, water quality concentrations can be dominated by advective transport rather than biogeochemical interactions and diffusion. Therefore, the water quality model must be dynamic and have the following minimum attributes. The model must:
a. Account for time-varying flow, elevation, and water quality constituent changes resulting from highly unsteady flows.
b. Include the direct explicit interaction of flow and elevation on the constituent distributions.
c. Be applicable for a river channel of arbitrary cross section and specified bottom slope.
d. Allow for a number of water quality constituents and the proper mathematical specification of their mathematical interrelationship.
e. Account for the effects of lateral inputs of water and associated pollutant concentrations.
f. Allow simulation of multiple hydraulic control structures.
13. The assumptions that the above attributes require for the development of the basic governing transport equations are listed below. For a river that is much longer than wide or deep, the following assumptions apply:
a. Hydrostatic pressure exists.
b. Lateral and vertical gradients are small and neglected; thus the equations are cross-sectionally averaged for flow and constituent variables (1-D assumption).
c. All cross sections and bottom configurations are known.
d. All lateral point and nonpoint source flows and input concentrations are known.
14. When solved, the hydraulic transport equations permit the calculation of downstream histories of flow and water surface elevation. These equations are well known, and their derivations are quite routine. There are two different approaches to the derivation of flow wave equations. The first
starts with the basic three-dimensional (3-D) equations of continuity and Navier Stokes (Bird, Stewart, and Lightfoot 1964) and by cross-sectional averaging reduces the four equations to a coupled pair of dynamic crosssectionally averaged equations for longitudinal space and time patterns of flow and elevation. This procedure, however, always results in the necessity of specifying a very ambiguous eddy viscosity to account for the ever-present correlations between fluctuating components resulting from the averaging. Longitudinal eddy viscosities are very small, particularly during elevated flows (Fischer et al. 1979), and are quite frequently used improperly to tune the correct answer into existence rather than to represent actual problem physics. A second approach, which assumes inviscid flow, is the control volume method (Liggett 1975) used to derive the equations herein.
15. The notation and coordinate system are defined as in Figure 1. It is assumed that the coordinate system is placed in the river bottom with the bed slope relative to a gravity-based coordinate system being such that $\tan \theta \approx \theta$, and, therefore, θ is very small. It is further assumed that x is directed positive downstream and that because the bed slope is very small, the water elevation $h(x, t)$, directed parallel to the gravitational direction, is perpendicular to x. $A(x, t)$ is the cross-sectional area of flow, and $B(x, t)$ is the top width of flow. If the relationship among area of

Figure 1. Coordinate system and notation
flow, top width, and flow depth is represented by the shape factor $\boldsymbol{\xi}(\mathrm{z})$, A and B can be related to $h(x, t)$.
16. Assume as in Figure 2 that a discrete length Δx of river channel is isolated. If the flow is from left to right, then unit normals n_{0} and n_{i} are defined as being positive away from each face through which flow is entering and exiting. Total mass, momentum, and species mass will be conserved within this control volume. Streeter and Wylie (1979) present the general form of the control volume conservation law in a continuum with mass concentration b as

$$
\begin{equation*}
\frac{d B}{d t}=\iiint_{c v} \frac{\partial b}{\partial t} d \forall+\iint_{c s} b(\bar{v} \cdot \hat{n}) d A \tag{1}
\end{equation*}
$$

Equation 1 states that the total time rate of change of mass in the control volume, $B,(\beta=b \bar{v})$ equals the time rate of accumulation of b within the control volume (cv) plus the net rate at which b is being carried into the control volume through the control surface (cs). The cv conservations of water mass, momentum, and species mass are, respectively, written for an arbitrary $c v$ in a $3-D$ flow field \bar{v} as

$$
\begin{gather*}
\text { Mass: } \iiint_{\mathrm{CV}} \frac{\partial \rho}{\partial t} d \forall+\iint_{\mathrm{C}}(p \bar{v} \cdot \hat{\mathrm{n}}) \mathrm{dA}=0 \tag{2}\\
\text { Momentum: } \iiint_{\mathrm{CV}} \frac{\partial \bar{v} \rho}{\partial t} d \forall+\iint_{\mathrm{cs}} \overline{\mathrm{v}}(\rho \bar{v} \cdot \hat{\mathrm{n}}) \mathrm{dA}=\overline{\mathrm{F}} \tag{3}
\end{gather*}
$$

Figure 2. Control volume definitions
where

$$
\begin{aligned}
\rho & =f l u i d \text { density, } M / L^{3} \\
t & =\text { time } \\
d V & =\text { differential volume, } L^{3} \\
\bar{v} & =\text { velocity vector }(u \hat{i}+v \hat{j}+w \hat{k}), L / t \\
d A & =\text { differential area, } L^{2} \\
\bar{F} & =\text { vector sum of the real applied external forces on the } c v, M L / t^{2} \\
\alpha & =\text { species mass concentration, } M / L^{3} \\
S^{*} & =\text { net source term for biochemical changes in } \alpha, M / t
\end{aligned}
$$

The variables M, L, and t are general units of mass, length, and time, respectively.

Derivation of Equations

17. As in Liggett (1975), a much simpler derivation is obtained for the river problem by assuming that the average velocity U (or average species concentration α) is known at a cross section. A Taylor series expansion across inlet and outlet permits much simpler expressions to be identified. Conservation of mass
18. The conservation of water mass equation shows that the time rate of change of storage equals net mass efflux through the cv surface. By a Taylor series expansion, therefore

$$
\begin{equation*}
\frac{\partial(\rho A \Delta x)}{\partial t}=\rho\left(\left[U-\frac{\partial U}{\partial x} \frac{\Delta x}{2}\right)\left(A-\frac{\partial A}{\partial x} \frac{\Delta x}{2}\right)-\left(U+\frac{\partial U}{\partial x} \frac{\Delta x}{2}\right)\left(A+\frac{\partial A}{\partial x} \frac{\Delta x}{2}\right)\right] \tag{5}
\end{equation*}
$$

For an incompressible fluid such as water, $p=$ constant; multiplying out and dividing by $\rho \Delta x$ gives for small Δx

$$
\begin{equation*}
\frac{\partial A}{\partial t}+\frac{\partial(U A)}{\partial x}=0 \text { or } \frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=0 \tag{6}
\end{equation*}
$$

where Q is the volumetric flow rate.

Momentum conservation

19. The momentum equation is a bit more difficult. It states that the net force acting on the $c v$ equals the time rate of change of momentum in the $c v$ plus the net rate of efflux of momentum through the $c v$. Therefore

$$
\begin{array}{r}
\frac{\partial(Q \Delta x) p}{\partial t}+\rho\left\{[U(U A)]+\frac{\partial}{\partial x}[U(U A)] \frac{\Delta x}{2}\right\} \tag{7}\\
\quad-\rho\left\{[U(U A)]-\frac{\partial}{\partial x}\left[U(U A) \frac{\Delta x}{2}\right]\right\}=\bar{F}
\end{array}
$$

The force vector \bar{F} requires further expansion into three subcategories: gravity, shear, and pressure forces.
20. Gravity force, f_{g}. The total gravity force is nothing more than the component of the weight of water in the $c v$ ($\rho g A \Delta x$) directed in the x-direction or $\rho g A \Delta x \sin \theta$. Therefore

$$
\begin{equation*}
f_{g}=\rho g A \Delta x S_{0} \tag{8}
\end{equation*}
$$

where $S_{0}-\sin \theta \approx \theta$ is the slope.
21. Shear force, f_{T-} The channel sides and bottoms deplete momentum by the action of bottom friction or shear. This depletion is made mathematically analogous to the gravity slope term by setting

$$
\begin{equation*}
f_{\tau}=p g A \Delta x S_{f} \tag{9}
\end{equation*}
$$

where S_{f} is the friction slope. Several forms for the friction slope exist, but either Chezy or Manning forms predominate, i.e.

$$
\begin{equation*}
S_{f}=\frac{U^{2} n^{2}}{\left(1.486 \mathrm{R}^{2 / 3}\right)^{2}} \tag{10}
\end{equation*}
$$

where
$\mathrm{n}=$ Manning's friction factor
R = hydraulic radius which is approximately equal to A / B, where B is the top width
Therefore,

$$
\mathrm{f}_{\tau}=\rho g A \Delta x \frac{\mathrm{U}^{2} \mathrm{n}^{2}}{\left(1.486 \mathrm{R}^{2 / 3}\right)^{2}}
$$

or

$$
\begin{equation*}
f_{r}=\rho g A \Delta x \frac{n^{2}|Q| Q}{2.2 A^{2} R^{4 / 3}} \tag{11}
\end{equation*}
$$

where the absolute value has been retained to ensure that no matter which way the wave propagates, shear always dissipates momentum.
22. Pressure force, f_{p}. The total pressure force on the face of the $c v$ is the integral of the irregular trace of the $c v$, i.e.

$$
\begin{equation*}
f_{p}=\int_{0}^{h} \rho g(h-z) \xi(z) d z \tag{12}
\end{equation*}
$$

where $\xi(z)$ is the channel width at height z above the bottom. A Taylor series expansion gives the net pressure in the downstream direction

$$
\begin{align*}
f_{p} & =-\frac{\partial}{\partial x} \int_{0}^{h} \rho g(h-z) \xi(z) d z \Delta x \tag{13}\\
& =-\rho g \int_{0}^{h} \frac{\partial}{\partial x}[(h-z) \xi(z)] d z \Delta x
\end{align*}
$$

and by chain rule differentiation

$$
\begin{equation*}
f_{p}=-\rho g\left[\frac{\partial h}{\partial x} \int_{0}^{h} \xi(z) d z+\int_{0}^{h}(h-z) \frac{\partial \xi(z)}{\partial x} d z\right] \Delta x \tag{14}
\end{equation*}
$$

The first term represents the pressure force at that particular cross section. The second term represents the net pressure force caused by rapid area changes over the length Δx. If the channels are considered prismatic and regular, then the last term has little significance. Therefore

$$
\begin{equation*}
f_{p}=-\rho g A \frac{\partial h}{\partial x} \Delta x \tag{15}
\end{equation*}
$$

The final equation for momentum is then

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\frac{\partial}{\partial x}(Q U)+g A \frac{\partial h}{\partial x}=g A\left(S_{o}-S_{f}\right) \tag{16}
\end{equation*}
$$

Modifications to momentum and continuity

23. Lateral and tributary inflow. Runoff from lands adjacent to the channel or tributary inflow can cause increased levels of total mass and momentum in the river. If q is the flow per unit channel length entering the river with velocity U_{q}, then Equations 6 and 16 become, respectively,

$$
\begin{equation*}
\frac{\partial A}{\partial t}+\frac{\partial Q}{\partial x}=q \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\frac{\partial}{\partial x}(U Q)+g A \frac{\partial h}{\partial x}=g A\left(S_{o}-S_{f}\right)+q U_{q} \tag{18}
\end{equation*}
$$

However, the model code does not include the last term in Equation 18 because it is relatively insignificant compared with other terms of the momentum equation.
24. Floodplain storage. As sometimes occurs, excess quantities of nonmoving water are often stored in the floodplain. Since the water is not moving, the momentum equation remains unaffected by this feature. The continuity equation must, however, account for the excess mass. If, as in Figure 3, A_{0} is defined as the cross-sectional area of the floodplain waters, then Equation 17 becomes

$$
\begin{equation*}
\frac{\partial\left(A+A_{0}\right)}{\partial t}+\frac{\partial Q}{\partial x}=q \tag{19}
\end{equation*}
$$

Figure 3. Floodplain geometry and notation

However, the effect of floodplain storage is not presently included in the code.
25. Channel constrictions. Often very intense channel constrictions, due to bridges for example, occur over channel lengths that are far too small to economically resolve in the model. The subgrid scale effect of such constrictions is a momentum loss and backwater effect. This effect is accounted for in the right side of the momentum equation by subtracting the force term, $\rho g \Delta h_{E}$ where h_{E} is a head loss and K_{E} is a coefficient to be selected and optimized.

$$
\begin{equation*}
h_{E}=\frac{K_{E}}{2 g}\left(\frac{Q}{A}\right)^{2} \tag{20}
\end{equation*}
$$

The default value is zero for no constriction loss. A value for K_{E} as high as 0.5 may be appropriate for an abrupt constriction.
26. Momentum correction factor. When the velocity across the channel is substantially nonuniform through the model reach, it may be necessary to use a momentum correction factor B in the momentum equation. The momentum correction factor B multiplies the second term on the left side of Equation 18 ; this correction permits the use of the average velocity, U, in the solution whereas the velocity distribution at each cross section may be quite different from U. For example, for laminar flow in a straight round tube, B is $4 / 3$. It equals 1.0 for uniform flow and cannot be less than 1.0 . For RIV1H, a constant value is used throughout the modeled reach. The default value of 1.0 is recommended for rivers and streams.
27. Tributary networks. The momentum and continuity equations above must be applied to each and every tributary entering the main stem. At each junction, the water surfaces in each branch must be equal.

Mass species equation

28. Again, by using the Taylor series approach, the advection and diffusion of a biogeochemically reactive substance of concentration α is

$$
\begin{equation*}
\frac{\partial(\alpha \mathrm{A})}{\partial t}+\frac{\partial(\mathrm{Q} \alpha)}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{DA} \frac{\partial \alpha}{\partial \mathrm{x}}\right)+\gamma \mathrm{q}+\mathrm{S} * \tag{21}
\end{equation*}
$$

where
D = turbulent dispersion coefficient
$\gamma=$ concentration of species type α entering the tributary from lateral flow q
$S *=s o u r c e / s i n k$ term in units of (M/Lt)
Equation 21 must be written for every transported species.

Initial conditions

29. For continuity, the only initial conditions to be specified at time $t=t_{0}$ for all the nodes i for $i=1$ to N are

$$
\begin{equation*}
A\left(t=t_{0}, x\right)=A_{i}(x) \tag{22}
\end{equation*}
$$

or since there is a direct correspondence between A and h, it is permissible to use

$$
\begin{equation*}
h\left(t=t_{0}, x\right)=h_{i}(x) \tag{23}
\end{equation*}
$$

Either Equation 22 or 23 must be used, but not both.
30. For the momentum equation either

$$
\begin{equation*}
Q\left(t=t_{0}, x\right)=Q_{i}(x) \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
U\left(t=t_{0}, x\right)=U_{i}(x) \tag{25}
\end{equation*}
$$

is permissible.
31. For the species transport equation, the following is used:

$$
\begin{equation*}
\alpha\left(t=t_{0}, x\right)=\alpha_{i}(x) \tag{26}
\end{equation*}
$$

Boundary conditions for
continuity and momentum
32. For the upstream boundary at $x=0$ and the downstream boundary at $x=L$, the following sets of boundary conditions may be used for the combined set of continuity and momentum equations. Please note that two first-order
equations require only a total of two boundary conditions. Therefore, only one set may be used for each simulation.

$$
\begin{align*}
& h(t, x=0)=h_{u}(t) \text { and } h(t, x=L)=h_{d}(t) \tag{27}\\
& Q(t, x=0)=Q_{u}(t) \text { and } Q(t, x=L)=Q_{d}(t) \tag{28}\\
& h(t, x=0)=h_{u}(t) \text { and } Q(t, x=L)=Q_{d}(t) \tag{29}\\
& Q(t, x=0)=Q_{u}(t) \text { and } h(t, x=L)=h_{d}(t) \tag{30}\\
& h(t, x=0)=h_{u}(t) \text { and } f_{1}(Q, h)=f_{1 d}(t) \tag{31}\\
& Q(t, x=0)=Q_{u}(t) \text { and } f_{2}(Q, h)=f_{2 d}(t) \tag{32}
\end{align*}
$$

where f_{1} and f_{2} are rating curves relating h and Q for the downstream d boundary conditions. It is permissible to properly substitute A and U for Q in these expressions.
33. It should be noted that the upstream boundary condition for a tributary can be selected by specifying either the elevation or the flow. At the downstream tributary boundary, i.e. the confluence with the main stem, only the elevation is allowed as a "boundary" condition to ensure that continuity is preserved at the junction.

Boundary conditions
for species transport
34. The boundary conditions for species transport are

$$
\begin{align*}
& \alpha(t, x=0)=\alpha_{u}(t) \tag{33}\\
& \alpha(t, x=L)=\alpha_{d}(t)
\end{align*}
$$

However, the condition $\alpha_{d}(t)$ is presently not specified as input data for riverine simulations. This must be included as input if the model is modified for inflow at the downstream end, such as occurs with estuarine boundary conditions.

Equation Summary

35. The following equations govern the unsteady, 1 - D (longitudinal) hydrodynamics and transport:
Continuity

$$
\begin{equation*}
\frac{\partial\left(A+A_{0}\right)}{\partial t}+\frac{\partial Q}{\partial x}=q \tag{34}
\end{equation*}
$$

Momentum

$$
\begin{equation*}
\frac{\partial Q}{\partial t}+\frac{\partial(U Q)}{\partial x}+g A \frac{\partial h}{\partial x}=g A\left(S_{o}-S_{f}-\frac{h_{E}}{\Delta x}\right)+q U_{q} \tag{35}
\end{equation*}
$$

Equations 34 and 35 are commonly referred to as the St. Venant equations. Constituent transport

$$
\begin{equation*}
\frac{\partial(\alpha A)}{\partial t}+\frac{\partial(Q \alpha)}{\partial x}=\frac{\partial}{\partial x}\left(D A \frac{\partial \alpha}{\partial x}\right)+\gamma q+S * \tag{36}
\end{equation*}
$$

Equation 36 is often referred to as the "advection-dispersion equation with source/sink terms." The initial conditions are Equations 22 (or 23), 24 (or 25), and 26 for the continuity, momentum, and mass species equations, respectively. Boundary conditions are one set selected from Equations 27 through 32 for the momentum and continuity equation and Equation 33 for the mass species equation.

Rationale

36. As noted, flood and peaking hydropower waves and associated transport are marked by rapidly varying flows, elevations, and concentrations. As derived, the continuity and momentum equations, from which elevations and flows are calculated, are hyperbolic. The transport equation is dominated by advection; thus it has hyperbolic features. All of these equations, then, are very difficult to solve numerically because the smoothing, stabilizing effects of dispersion are eliminated or reduced. Inspection of the governing equations reveals that they are coupled, unsteady, and nonlinear, but because the contaminant concentrations do not affect the flow field, it is possible to uncouple the solution of the continuity and momentum equations from the solution of the species transport equation. Once solved, the complete time histories of flow and elevation can be stored and used as input information for the transport calculations. Because the governing equations are hyperbolic, the solution procedure for the flows and elevations is quite different from the transport solution; therefore, this part presents the solution procedure for the continuity and momentum equations. Solution of the transport equations is covered in Part IV.

Numerical Approximations

37. Three numerical procedures are useful for solving hyperbolic equations: the finite element method, the method of characteristics, and implicit, finite difference methods. The method of characteristics is quite accurate but can be difficult to program by anyone but a specialist: Reviews of this method are found in Liggett and Cunge (1975) and Abbott (1979). Implicit, finite difference methods are simpler to program because they are much more direct numerical approximation techniques to partial derivatives. These methods also possess favorable stability behavior even in applications with variable space and time-steps. Explicit finite difference methods are generally unstable and are not considered.
38. There are many implicit procedures, but the method to be used here is the four-point implicit method first used by Preissmann (1961) with subsequent applications by, among others, Amein and Fang (1970) and Amein and Chu
(1975). This formulation is currently being used by Fread (1973, 1978) in the National Weather Service Dambreak Model (Fread 1978). The method is weighted implicit at each time level, is unconditionally stable for $0.5<\theta \leq 1.0$, and permits relatively unequal space and time-steps. The scheme has second-order accuracy when $\theta=0.5$ and first-order accuracy when $\theta=1.0$. It is fully nonlinear but yet is a compact scheme requiring just two points at each time level for second-order spatial accuracy.
39. The river system is discretized (Figure 4) by a network of time and space nodes separated by time and space increments Δx_{i}, Δt_{j}. If B denotes the point about which the governing equation is to be discretized, then the values of the variables at the four points surrounding B are used to form the appropriate derivatives and weighted averages. For a general variable ω, then

$$
\begin{gather*}
\omega(\beta) \propto \theta\left(\frac{\omega_{i}^{j+1}+\omega_{i+1}^{j+1}}{2}\right)+(1-\theta)\left(\frac{\omega_{i}^{j}+\omega_{i+1}^{j}}{2}\right) \tag{37}\\
\frac{\partial \omega(B)}{\partial x}=\theta\left(\frac{\omega_{i+1}^{j+1}-\omega_{i}^{j+1}}{\Delta x_{i}}\right)+(1-\theta)\left(\frac{\omega_{i+1}^{j}-\omega_{i}^{j}}{\Delta x_{i}}\right) \tag{38}\\
\frac{\partial \omega(B)}{\partial t}=\left(\frac{\omega_{i}^{j+1}+\omega_{i+1}^{j+1}}{2 \Delta t_{j}}\right)-\left(\frac{\omega_{i}^{j}+\omega_{i+1}^{j}}{2 \Delta t_{j}}\right) \tag{39}
\end{gather*}
$$

Application to Governing Equations

The continuity equation

40. From Equation 34, the continuity equation is

$$
\begin{equation*}
\frac{\partial\left(A+A_{o}\right)}{\partial t}+\frac{\partial Q}{\partial x}-q=0 \tag{40}
\end{equation*}
$$

Using the definitions in Equations 37, 38, and 39, the discretized form of this equation is

Figure 4. Numerical grid

$$
\frac{1}{2 \Delta t_{j}}\left[\left(A+A_{0}\right)_{i}^{j+1}+\left(A+A_{0}\right)_{i+1}^{j+1}-\left(A+A_{0}\right)_{i}^{j}-\left(A+A_{0}\right)_{i+1}^{j}\right]
$$

$$
\begin{equation*}
+\theta\left[\frac{1}{\Delta x_{i}}\left(Q_{i+1}^{j+1}-Q_{i}^{j+1}\right)\right]-\theta \frac{\left(q_{i+1}^{j+1}+q_{i}^{j+1}\right)}{2} \tag{41}
\end{equation*}
$$

$$
+(1-\theta)\left[\frac{1}{\Delta x_{i}}\left(Q_{i+1}^{j}-Q_{i}^{j}\right)\right]-(1-\theta) \frac{\left(q_{i+1}^{j}+q_{i}^{j}\right)}{2}
$$

$$
=F_{i}\left(Q_{i+1}, A_{i+1}, Q_{i}, A_{i}\right)=0
$$

The momentum equation

41. From Equation 35 and using the definitions for S_{E} and S_{f} from Equations 20 and 11 , the numerical discretization of the momentum equation is

$$
\begin{align*}
& \frac{1}{2 \Delta t_{j}}\left(Q_{i}^{j+1}+Q_{i+1}^{j+1}-Q_{i}^{j}-Q_{i+1}^{j}\right) \\
& +\theta\left\{\frac{1}{\Delta x_{i}}\left[\left(\frac{Q^{2}}{A}\right)_{i+1}^{j+1}-\left(\frac{Q^{2}}{A}\right)_{i}^{j+1}\right]\right\}+\theta g\left(\frac{A_{i+1}^{j+1}+A_{i}^{j+1}}{2}\right)\left[\frac{1}{\Delta x_{i}}\left(h_{i+1}^{j+1}-h_{i}^{j+1}\right)\right] \\
& +\frac{g \theta}{2(2.2)}\left[\left(\frac{n_{i+1}^{2}\left|Q_{i+1}\right| Q_{i+1}}{A_{i+1} R_{i+1}{ }^{4 / 3}}\right)^{j+1}+\left(\frac{n_{i}^{2}\left|Q_{i}\right| Q_{i}}{A_{i} R_{i}{ }^{4 / 3}}\right)^{j+1}\right] \\
& -\theta g\left(\frac{A_{i+1}^{j+1}+A_{i}^{j+1}}{2}\right)\left(\frac{S o_{i+1}+S o_{i}}{2}\right) \\
& +\theta\left(\frac{A_{i+1}^{j+1}+A_{i}^{j+1}}{8}\right)\left\{\frac{K_{E}}{\Delta x_{i}}\left[\left(\frac{Q^{2}}{A^{2}}\right)_{i+1}^{j+1}+\left(\frac{Q^{2}}{A^{2}}\right)_{i}^{j+1}\right]\right\} \\
& -\theta\left(\frac{q_{i+1}^{j+1}+q_{i}^{j+1}}{2}\right)\left(\frac{U_{q_{i .1}}^{j+1}+U_{q_{i}}^{j+1}}{2}\right) \tag{42}\\
& +(1-\theta)\left\{\frac{1}{\Delta x_{i}}\left[\left(\frac{Q^{2}}{A}\right)_{i+1}^{j}-\left(\frac{Q^{2}}{A}\right)_{i}^{j}\right]\right\}+g(1-\theta)\left(\frac{A_{i+1}^{j}+A_{i}^{j}}{2}\right)\left[\frac{1}{\Delta x_{i}}\left(h_{i+1}^{j}-h_{i}^{j}\right)\right] \\
& +\frac{g(1-\theta)}{2(2.2)}\left[\left(\frac{n_{i+1}^{2}\left|Q_{i+1}\right| Q_{i+1}}{A_{i+1} R_{i+1}{ }^{4 / 3}}\right)^{j}+\left(\frac{n_{i}^{2}\left|Q_{i}\right| Q_{i}}{A_{i} R_{i}^{4 / 3}}\right)^{j}\right] \\
& -g(1-\theta)\left(\frac{A_{i+1}^{j}+A_{i}^{j}}{2}\right)\left(\frac{S o_{i+1}+S o_{i}}{2}\right) \\
& \left.+(1-\theta)\left(\frac{A_{i+1}^{j}+A_{i}^{j}}{8}\right)\left\{\frac{K_{E}}{\Delta x_{i}}\left[\left(\frac{Q^{2}}{A^{2}}\right)_{i+1}^{j}+\left(\frac{Q^{2}}{A^{2}}\right)_{i}^{j}\right]\right)\right\} \\
& -(1-\theta)\left(\frac{q_{i+1}^{j}+q_{i}^{j}}{2}\right)\left(\frac{U_{q_{i+1}}^{j}+U_{q_{i}}^{j}}{2}\right) \\
& =G_{i}\left(Q_{i+1}, A_{i+1}, Q_{i}, A_{i}\right)=0
\end{align*}
$$

The boundary conditions

42. The boundary conditions must also be "discretized." This is accomplished as follows. From the list of permissible pairs of boundary conditions, one set is selected, say Equation 27 . Then the discretized form of the upstream boundary in terms of A becomes

$$
\begin{equation*}
F_{0}=A_{1}^{j+1}-A_{u}\left(t^{j+1}\right)=0 \tag{43}
\end{equation*}
$$

while the downstream boundary condition at node N becomes

$$
\begin{equation*}
F_{N}=A_{N}^{j+1}-A_{d}\left(t^{j+1}\right)=0 \tag{44}
\end{equation*}
$$

If flows or discharges are to be specified, then from Equation 28 the upstream boundary condition becomes

$$
\begin{equation*}
F_{o}=Q_{1}^{j+1}-Q_{u}\left(t^{j+1}\right)=0 \tag{45}
\end{equation*}
$$

and the downstream condition is

$$
\begin{equation*}
F_{N}=Q_{N}^{j+1}-Q_{d}\left(t^{j+1}\right)=0 \tag{46}
\end{equation*}
$$

Equation Assembly

43. Equations F_{i} (Equation 41) and G_{i} (Equation 42) are applied at every node i on both the main stem and any included tributaries. The system of algebraic equations results in $2 \mathrm{~N}-2$ equations for 2 N unknowns. The two boundary conditions are sufficient to completely close the problem. If $G_{0}\left(Q_{1}, A_{1}\right)$ and $G_{N}\left(Q_{N}, A_{N}\right)$ are the boundary conditions written in the form of Equations 43-46, then the resulting system of 2 N nonlinear equations is formally written as

$$
\begin{gathered}
G_{0}\left(Q_{1}, A_{1}\right)=0 \\
F_{1}\left(Q_{2}, A_{2}, Q_{1}, A_{1}\right)=0 \\
G_{1}\left(Q_{2}, A_{2}, Q_{1}, A_{1}\right)=0
\end{gathered}
$$

$$
\begin{align*}
& F_{i}\left(Q_{i+1}, A_{i+1}, Q_{i}, A_{1}\right)=0 \\
& G_{i}\left(Q_{i+1}, A_{i+1}, Q_{i}, A_{i}\right)=0 \tag{47}
\end{align*}
$$

$$
\begin{gathered}
F_{N-1}\left(Q_{N}, A_{N}, Q_{N-1}, A_{N-1}\right)=0 \\
G_{N-1}\left(Q_{N}, A_{N}, Q_{N-1}, A_{N-1}\right)=0 \\
G_{N}\left(Q_{N}, A_{N}\right)=0
\end{gathered}
$$

44. The general solution of these nonlinear equations can proceed in two ways. First the nonlinear terms may be linearized by using information from the $j^{\text {th }}$ time-step. Time marching proceeds very easily by this procedure. However, under the potentially rapid and sharp gradients being reproduced here, a full nonlinear solution by Newton-Raphson iteration procedures is recommended and implemented.

Newton-Raphson Solution for Flow and Elevation

45. The Newton-Raphson method for nonlinear systems is based upon estimating the residuals from each algebraic equation introduced by assuming initial answers for Q_{i} and A_{i}. The iterative reduction of the residuals by successive Taylor series refinement of the estimates of Q_{i} and A_{i} completes the procedure. Details of Newton's method can be found in Burden and Faires (1989). The generalized Newton-Raphson procedure must be performed at
each time-step. This method has been used with excellent success by the previously cited authors.
46. However, unlike the procedures by these authors, the formulation herein employs a direct simultaneous solution at each iteration for all the flows and elevations in both main stem and tributaries. Previous methods employed an iterative method of estimating such variables. Therefore, for each Newton-Raphson iteration, another sequence of interior iterations was performed. The formulation herein requires only one five-band matrix solution at each Newton-Raphson iteration. The Newton-Raphson concept is presented herein, and details of the matrix packing and solution procedure are presented in the program operation portion of the manual (Part VI).
47. The residuals, $R_{1, i}^{k}$ and $R_{2, i}^{k}$, from the $k^{\text {th }}$ estimate of Q_{i} and A_{i} are found for Equations F_{i} and G_{i} as

$$
\begin{align*}
& G_{0}\left(Q_{1}^{k}, A_{1}^{k}\right)=R_{2,0}^{k} \\
& F_{1}\left(Q_{2}^{k}, A_{2}^{k}, Q_{1}^{k}, A_{1}^{k}\right)=R_{1,1}^{k} \\
& G_{1}\left(Q_{2}^{K}, A_{2}^{K}, Q_{1}^{K}, A_{1}^{K}\right)=R_{2,1}^{k} \\
& F_{1}\left(Q_{i+1}^{k}, A_{i+1}^{k}, Q_{i}^{k}, A_{i}^{k}\right)=R_{1, i}^{k} \\
& G_{i}\left(Q_{i+1}^{k}, A_{i+1}^{k}, Q_{i}^{k}, A_{i}^{k}\right)=R_{2, i}^{k} \tag{48}\\
& \text {..................... } \\
& F_{N-1}\left(Q_{N}^{k}, A_{N}^{k}, Q_{N-1}^{k}, A_{N-1}^{k}\right)=R_{1, N-1}^{k} \\
& G_{N-1}\left(Q_{N}^{k}, A_{N}^{k}, Q_{N-1}^{k}, A_{N-1}^{k}\right)=R_{2, N-1}^{k} \\
& G_{N}\left(Q_{N}^{k}, A_{N}^{k}\right)=R_{2, N}^{k}
\end{align*}
$$

48. A generalized Taylor series for a function T that is a function of four dependent variables, S_{1}, S_{2}, S_{3}, and S_{4} is written as

$$
\begin{equation*}
. T^{k+1}=T^{k}+\frac{\partial T}{\partial S_{1}} d S_{1}+\frac{\partial T}{\partial S_{2}} d S_{2}+\frac{\partial T}{\partial S_{3}} d S_{3}+\frac{\partial T}{\partial S_{4}} d S_{4} \tag{49}
\end{equation*}
$$

This general form is now used to relate the residuals to the gradients as follows. Keep in mind that we want to drive the residuals to zero; thus we want F_{i} and G_{i} to be zero. If T^{k+1} represents the exact solution for F_{i} or G_{1}, then T^{k+1} is zero. This means that the unknowns are $d S_{1}, d_{2}$, $d S_{3}$, and dS_{4}. Let T^{k} be the $\mathrm{R}_{\mathrm{ji}}^{\mathrm{k}}$ residual. Further, assume that S_{1}, S_{2}, S_{3}, and S_{4} become the values Q_{i+1}, A_{i+1}, Q_{i}, and A_{i}. In the Newton-Raphson iteration, the gradients are known from the $k^{\text {th }}$ estimate of Q_{i} and A_{i}, and the relationship between the gradients and the residuals becomes

$$
\begin{align*}
& \frac{\partial G_{0}}{\partial A_{1}} d A_{1}+\frac{\partial G_{0}}{\partial Q_{1}} d Q_{1}=R_{2,0}^{k} \\
& \frac{\partial F_{1}}{\partial Q_{2}} d Q_{2}+\frac{\partial F_{1}}{\partial A_{2}} d A_{2}+\frac{\partial F_{1}}{\partial Q_{1}} d Q_{1}+\frac{\partial F_{1}}{\partial A_{1}} d A_{1}=R_{1,1}^{k} \\
& \frac{\partial G_{1}}{\partial Q_{2}} d Q_{2}+\frac{\partial G_{1}}{\partial A_{2}} d A_{2}+\frac{\partial G_{1}}{\partial Q_{1}} d Q_{1}+\frac{\partial G_{1}}{\partial A_{1}} d A_{1}=R_{2,1}^{k} \\
& \frac{\partial F_{i}}{\partial Q_{i+1}} d Q_{i+1}+\frac{\partial F_{i}}{\partial A_{i+1}} d A_{i+1}+\frac{\partial F_{i}}{\partial Q_{i}} d Q_{i}+\frac{\partial F_{i}}{\partial A_{i}} d A_{i}=R_{1, i}^{k} \\
& \frac{\partial G_{i}}{\partial Q_{i+1}} d Q_{i+1}+\frac{\partial G_{i}}{\partial A_{i+1}} d A_{i+1}+\frac{\partial G_{i}}{\partial Q_{i}} d Q_{i}+\frac{\partial G_{i}}{\partial A_{i}} d A_{i}=R_{2, i}^{k} \tag{50}\\
& \frac{\partial F_{N-1}}{\partial Q_{N}} d Q_{N}+\frac{\partial F_{N-1}}{\partial A_{N}} d A_{N}+\frac{\partial F_{N-1}}{\partial Q_{N-1}} d Q_{N-1}+\frac{\partial F_{N-1}}{\partial A_{N-1}} d A_{N-1}=R_{1, N-1}^{k} \\
& \frac{\partial G_{N-1}}{\partial Q_{N}} d Q_{N}+\frac{\partial G_{N-1}}{\partial A_{N}} d A_{N}+\frac{\partial G_{N-1}}{\partial Q_{N-1}} d Q_{N-1}+\frac{\partial G_{N-1}}{\partial A_{N-1}} d A_{N-1}=R_{2, N-1}^{k} \\
& \frac{\partial G_{N}}{\partial Q_{N}} d Q_{N}+\frac{\partial G_{N}}{\partial A_{N}} d A_{N}=R_{2, N}^{k}
\end{align*}
$$

where the minus sign (from moving T^{k} to the other side of the equation) has been included in the residuals; thus the residuals are the negative of Equations 41 and 42 . Note that all derivatives are taken with respect to Q_{i+1}^{j+1}, $A_{i+1}^{j+1}, Q_{i}^{j+1}, A_{i}^{j+1}$, etc. Additionally, for all Q_{i} and A_{i} evaluated at time $j+1$

$$
\begin{align*}
& \mathrm{d} Q_{1}=Q_{1}^{\mathrm{k}+1}-\mathrm{Q}_{1}^{\mathrm{k}} \\
& \mathrm{~d} A_{1}=A_{1}^{\mathrm{k}+1}-A_{1}^{\mathrm{k}} \\
& \cdots \cdots \cdots \cdots \cdots \tag{51}\\
& \cdots \cdots \cdots \cdots
\end{align*}
$$

$$
\begin{aligned}
& d Q_{N}=Q_{N}^{k+1}-Q_{N}^{k} \\
& d A_{N}=A_{N}^{k+1}-A_{N}^{k}
\end{aligned}
$$

49. The derivatives of F_{i} and G_{i} with respect to $A_{i+1}^{j+1}, Q_{i+1}^{j+1}$, A_{i}^{j+1}, and Q_{i}^{j+1} are found from Equations 41 and 42 as follows:

$$
\begin{align*}
& \frac{\partial F_{i}}{\partial A_{i}^{j+1}}=\frac{1}{2 \Delta t_{j}} \tag{52}\\
& \frac{\partial F_{i}}{\partial Q_{i}^{j+1}}=\frac{\theta}{\Delta x_{i}} \tag{53}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial F_{i}}{\partial A_{i+1}^{j+1}}=\frac{1}{2 \Delta t_{j}} \tag{54}\\
& \frac{\partial F_{i}}{\partial Q_{i+1}^{j+1}}=\frac{\theta}{\Delta x_{i}} \tag{55}\\
& \frac{\partial G_{i}}{\partial Q_{i}^{j+1}}=\frac{1}{2 \Delta t_{j}}+\theta\left[\frac{-2}{\Delta x_{i}} \frac{Q_{i}^{j+1}}{A_{i}^{j+1}}+\frac{g}{2(2.2)} \frac{n_{i}^{2}\left|Q_{i}^{j+1}\right|}{A_{i}^{j+1}\left(R_{i}^{j+1}\right)^{4 / 3}}\right. \tag{56}\\
& \left.+2\left(\frac{A_{i+1}^{j+1}+A_{i}^{j+1}}{8 \Delta x_{i}}\right) K_{\Sigma} \frac{Q_{i}^{j+1}}{\left(A_{i}^{j+1}\right)^{2}}\right] \\
& \frac{\partial G_{i}}{\partial Q_{i+1}^{j+1}}=\frac{1}{2 \Delta t_{j}}+\theta\left[\frac{2}{\Delta x_{i}} \frac{Q_{i+1}^{j+1}}{A_{i+1}^{j+1}}+\frac{g}{2(2.2)} \frac{n_{i+1}^{2}\left|Q_{i+1}^{j+1}\right|}{A_{i+1}^{j+1}\left(R_{i+1}^{j+1}\right)^{4 / 3}}\right. \tag{57}\\
& \left.+2\left(\frac{A_{i+1}^{j+1}+A_{i}^{j+1}}{8 \Delta x_{i}}\right) K_{E} \frac{Q_{i+1}^{j+1}}{\left(A_{i+1}^{j+1}\right)^{2}}\right) \\
& \frac{\partial G_{i}}{\partial A_{i+1}^{j+1}}=\theta\left\{\frac{-1}{\Delta x_{i}}\left(\frac{Q^{2}}{A^{2}}\right)^{j+1}+\frac{g}{2 \Delta x_{i}}\left[\left(h_{i+1}^{j+1}-h_{i}^{j+1}\right)+\frac{\left(A_{i+1}^{j+1}+A_{1}^{j+1}\right)}{B_{i+1}^{j+1}}\right]\right. \\
& +\frac{g n_{i+1}^{2}}{6(2.2)} \frac{\left|Q_{i+1}^{j+1}\right| Q_{i+1}^{j+1}}{A_{i+1}^{j j 1}\left(R_{i+1}^{j+1}\right)^{4 / 3}}\left[\frac{-7}{A_{i+1}^{j+1}}+\frac{\left.4 \frac{d B}{d h}\right|_{i+1} ^{j+1}}{\left(B_{i+1}^{j+1}\right)^{2}}+\frac{\left.6 \frac{\partial n}{\partial h}\right|_{i+1}}{n_{i+1} B_{i+1}^{j+1}}\right] \tag{58}\\
& \left.-\frac{g}{2}\left(\frac{S_{o_{i-1}}+S_{o_{i}}}{2}\right)+\frac{k_{E}}{8 \Delta x_{i}}\left[\left(\frac{Q^{2}}{A^{2}}\right)_{i}^{j+1}-\left(\frac{Q^{2}}{A^{2}}\right)_{i+1}^{j+1}\left(1+\frac{2 A_{i}^{j+1}}{A_{i+1}^{j+1}}\right)\right]\right)
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial G_{i}}{\partial A^{j+1}}=\theta\left\{\frac{1}{\Delta x_{i}}\left(\frac{Q^{2}}{A^{2}}\right)_{1}^{j+1}+\frac{g}{2 \Delta x_{i}}\left[\left(h_{i+1}^{j+1}-h_{1}^{j+1}\right)-\frac{\left(A_{i+1}^{j+1}+A_{i}^{j+1}\right)}{B_{i}^{j+1}}\right]\right. \\
& +\frac{g n_{i}^{2}}{6(2.2)} \frac{\operatorname{Ra}_{i}^{j+1} R_{i}^{j+1}}{A_{i}^{j+1}\left(R_{i}^{j+1}\right)^{4 / 3}}\left[\frac{-7}{A_{i}^{j+1}}+\frac{\left.4 \frac{d B}{d h}\right|_{i} ^{j+1}}{\left(B_{i}^{j+1}\right)^{2}}+\frac{\left.6 \frac{\partial n}{\partial h}\right|_{i}}{n_{i} B_{i}^{j+1}}\right] \tag{59}\\
& \left.-\frac{g}{2}\left(\frac{S_{o_{i+1}}+S_{o_{i}}}{2}\right)+\frac{K_{E}}{8 \Delta x_{i}}\left[\left(\frac{Q^{2}}{A^{2}}\right)_{i+1}^{j+1}-\left(\frac{Q^{2}}{A^{2}}\right)_{i}^{j+1}\left(1+\frac{2 A_{i+1}^{j+1}}{A_{i}^{j+1}}\right)\right]\right)
\end{align*}
$$

50. The following subsidiary manipulations have been used. First, area and depth gradients are related by the equation $\partial A / \partial z=B \partial h / \partial x$ and second, the hydraulic radius is approximately equal to the hydraulic depth or $R=A / B$. The explicit relationship between A and h is permitted if the general empirical form for most channel cross sections is used, i.e.

$$
\begin{equation*}
A=a_{o h}+\dot{a}_{1} h^{a_{2}} \tag{60}
\end{equation*}
$$

By appropriate selection of the coefficients, most regularly formed channel cross sections can be modeled by this function. A library of such shapes was created and will be described in detail in Part VI. It is also noted that Equations 52-59 have been multiplied by $2 \Delta t_{j}$ in the code.

Calculation Procedure

51. The nonlinear solution procedure is used to calculate the new flows Q_{i}^{j+1} and areas A_{i}^{j+1} as follows:

Step 1. Assume that Q_{i}^{j} and A_{i}^{j} are known either from initial conditions or from the completion of the previous NewtonRaphson solution.

Step 2. By insertion of Q_{i}^{j} and A_{i}^{j} into the equations for F and G, form the $k=1$ residuals $R_{j 1}^{1}$, by assuming that $k=1$ estimate for $Q_{i}^{j+1, k}$ and $A_{i}^{j+1, k}$ is the $j^{\text {th }}$ time-step value for Q and A or the initial condition (Step 1). For $k>1$, the previous $k^{\text {th }}$ estimates of Q_{i}^{j+1} and A_{i}^{j+1} are used.
Step 3. After forming the residuals, the gradients are formed from Equations 52-59, again by using the $k=1$ estimates for Q and A. For subsequent iterations, the previous $\mathrm{k}^{\text {th }}$ estimates are used.

Step 4. From Equation 50 and Steps 1 through 3, a coefficient matrix is formed and assembled as in Equation 61; a system of linear simultaneous equations $[M]^{k}(D\}^{k}=(R)^{k}$ is solved for $(D)^{k}$.
Step 5. When solved for, the departure vector $(D)^{k}$ is added to the old estimates of Q and A, to give a new estimate for Q and A, i.e.

$$
\begin{equation*}
Q_{i}^{j+1, k+1}=Q_{i}^{j+1, k}+d Q_{i}^{k} \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{i}^{j+1, k+1}=A_{i}^{j+1, k}+d A_{i}^{k} \tag{63}
\end{equation*}
$$

Step 6. A check is made to see how close $Q_{i}^{j+1, k+1}$ and $A_{i}^{j+1, k+1}$ are to $Q_{i}^{j+1, k}$ and $A_{i}^{j+1, k}$ and if the largest difference is less than some specified tolerance, the iteration stops and the new values of A and Q for the $j+1$ time-steps are at hand. If the tolerance is exceeded, return to Step 2 and using $Q_{i}^{j+1, k+1}$ and $A_{i}^{j+1, k+1}$, repeat S teps 2 through 6.
52. The programming of this routine is discussed in the program structure section, Part VI.

Rationale

53. By inspection of the governing equations for flow and elevation (Equations 34 and 35) and constituent concentration (Equation 36), it is apparent that the flow field is not affected by constituent concentration. A complete prediction of Q and A can be made without one's solving for the constituents. This is convenient since the constituent equation can be solved separately, thereby providing economy. Since any number of species could conceivably be solved for, the numerical solution must be as quick as possible. This suggests the use of explicit time-marching procedures. However, simple explicit (and also simple implicit methods) time marching for the advection problem is a very severe test for which, unfortunately, the simple methods fail to provide the desired accuracy. It should be noted that pure advection is the single most difficult test for a numerical method since the initial concentration distribution imposed on the problem must be numerically advected or transported without loss of mass, shape, and peak value, or distortion of the statistics of the distribution including mean, variance, skew, and kurtosis.
54. A powerful and accurate explicit method based upon compact, but fourth-order accurate, numerical expressions is used to solve Equation 36 for advection. An implicit fractional step method is subsequently used for the dispersion term.

The Governing Equation

55. The general form of the equation to be solved is, for a mass concentration α

$$
\begin{equation*}
\frac{\partial(A \alpha)}{\partial t}+\frac{\partial(U A \alpha)}{\partial x}=\frac{\partial}{\partial x}\left(D A \frac{\partial \alpha}{\partial x}\right)+q \gamma+S * \tag{64}
\end{equation*}
$$

where
D = dispersion coefficient
$\gamma=$ concentration of the runoff'input to the channel by distributed flow q
$S^{*}=$ source/sink term which accounts for changes in α due solely to biological and chemical reasons
The variable S^{*} is decomposed into a source/sink term that is a function of the present concentration of α and a function that is not; therefore

$$
\begin{equation*}
\frac{\partial(\mathrm{A} \alpha)}{\partial t}+\frac{\partial(Q \alpha)}{\partial \mathrm{x}}=\frac{\partial}{\partial \mathrm{x}}\left(\mathrm{DA} \frac{\partial \alpha}{\partial \mathrm{x}}\right)+\mathrm{q} \mathrm{\gamma}+\mathrm{AC}_{1} \alpha+A C_{2} \tag{65}
\end{equation*}
$$

where C_{1} has units of ($1 / t$) and C_{2} has units of ($M / L^{3} t$). This is the form of the equation to be solved, and it requires the initial and boundary conditions as stipulated in Equations 26 and 33, respectively.
56. The governing equation after chain rule differentiation is reassembled in the form

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}+U \frac{\partial \alpha}{\partial x}+\frac{\alpha \partial U}{\partial x}-\left(\frac{D}{A} \frac{\partial A}{\partial x}+\frac{\partial D}{\partial x}\right) \frac{\partial \alpha}{\partial x}=D \frac{\partial^{2} \alpha}{\partial x^{2}}-\Phi_{1} \alpha+\Phi_{2} \tag{66}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{1}=\left(\frac{1}{\mathrm{~A}} \frac{\partial \mathrm{~A}}{\partial t}+\frac{\mathrm{U}}{\mathrm{~A}} \frac{\partial \mathrm{~A}}{\partial \mathrm{x}}-\mathrm{C}_{1}\right) \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi_{2}=\left(C_{2}+\frac{q \gamma}{A}\right) \tag{68}
\end{equation*}
$$

Equation 66 can be rewritten

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}+\bar{u} \frac{\partial \alpha}{\partial x}=D \frac{\partial^{2} \alpha}{\partial x^{2}}-\Phi_{1} \alpha+\Phi_{2}-\alpha \frac{\partial U}{\partial x} \tag{69}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{u}=U-\left(\frac{\partial D}{\partial x}+\frac{D}{A} \frac{\partial A}{\partial x}\right)=U-D D A \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
D D A=\frac{\partial D}{\partial x}+\frac{D}{A}\left(\frac{\partial A}{\partial x}\right) \tag{71}
\end{equation*}
$$

From continuity (Equation 34)

$$
\begin{equation*}
\frac{\partial A}{\partial t}+A \frac{\partial U}{\partial x}+U \frac{\partial A}{\partial x}=q \tag{72}
\end{equation*}
$$

Using Equation 72, the second and fourth terms on the right side of Equation 69 can be combined as

$$
\begin{equation*}
-\alpha\left(\Phi_{1}+\frac{\partial U}{\partial x}\right)=-\alpha\left(\frac{q}{A}-C_{1}\right) \tag{73}
\end{equation*}
$$

and Φ_{1} is redefined as

$$
\begin{equation*}
\Phi_{1}=\frac{q}{A}-C_{1} \tag{74}
\end{equation*}
$$

Thus Equation 69 becomes

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}+\bar{u} \frac{\partial \alpha}{\partial x}=\mathrm{D} \frac{\partial^{2} \alpha}{\partial \mathrm{x}^{2}}-\Phi_{1} \alpha+\Phi_{2} \tag{75}
\end{equation*}
$$

57. The Φ_{1} and Φ_{2} terms of Equation 75 are written in expanded form so that they can be followed more easily in the code; thus

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}+\bar{u} \frac{\partial \alpha}{\partial x}=D \frac{\partial^{2} \alpha}{\partial x^{2}}+\frac{q}{A}(\gamma-\alpha)-K_{s} \alpha+\text { SINKS } \tag{76}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{K}_{\mathrm{s}} & =-\mathrm{C}_{1}=\text { biochemical uptake or decay rates }(+) \text { and growth rates (-) } \\
\text { SINKS } & =\mathrm{C}_{2}=\text { biochemical sources }(+) \text { and sinks }(-)
\end{aligned}
$$

58. The left side of Equation 76 is solved for the new time level value of $\alpha\left(\alpha_{i+1}^{j+1}\right)$ with the fourth-order explicit scheme. Using this new value, α_{i+1}^{j+1} is incremented due to the effects of the second, third, and fourth terms on the right side of Equation 76. The SINKS and K_{s} values are interpolated values between nodes (see Equation 90). Finally, the solution is completed by adding the effect of diffusion (first term on right side of Equation 76), which is computed implicitly.

Fourth-Order Explicit Scheme

59. The compact, fourth-order accurate scheme presented by Holly and Preissmann (1978) is a satisfactory scheme for 1-D advection calculations and is used for all mass transport calculations.

Polynomial assumption

60. It is assumed that the variation of any quantity between two adjacent spatial nodes is not linear but is depicted by a cubic polynomial such that for a variable Y

$$
\begin{equation*}
Y(\xi)=A \xi^{3}+B \xi^{2}+D \xi+E \tag{77}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi=\frac{u * \tau}{x_{1+1}-x_{i}} \tag{78}
\end{equation*}
$$

where

$$
\begin{aligned}
u * & =\text { average characteristic velocity } \\
\tau & =\text { time-step } t_{i+1}-t_{i}
\end{aligned}
$$

The coefficients for the polynomial are evaluated from the conditions that

$$
\begin{gather*}
Y(1)=\alpha_{i}^{j} ; Y(0)=\alpha_{i+1}^{j} ; \dot{Y}(1)=\alpha x_{i}^{j} ; \dot{Y}(0)=\alpha x_{i+1}^{j} \\
\alpha x=\frac{\partial \alpha}{\partial x} \tag{79}\\
\dot{Y}(\xi)=\left.\frac{d Y}{d x}\right|_{\xi}
\end{gather*}
$$

After some algebra

$$
\begin{equation*}
Y(\xi)=A_{1} \alpha_{i}^{j}+A_{2} \alpha_{i+1}^{j}+\dot{A}_{3} \alpha x_{i}^{j}+A_{4} \alpha x_{i+1}^{j} \tag{80}
\end{equation*}
$$

where

$$
\begin{gather*}
A_{1}=\xi^{2}(3-2 \xi) \tag{81}\\
A_{2}=1-A_{1} \tag{82}\\
A_{3}=\xi^{2}(1-\xi)\left(x_{i+1}-x_{i}\right) \tag{83}\\
A_{4}=-\xi(1-\xi)^{2}\left(x_{i+1}-x_{i}\right) \tag{84}
\end{gather*}
$$

Note that since the polynomial is parameterized by first derivatives, an equation for the first derivatives is also necessary. A polynomial for the first derivatives is formed from

$$
\begin{equation*}
\dot{Y}(\xi)=b_{1} \alpha_{i}^{j}+b_{2} \alpha_{i+1}^{j}+b_{3} \alpha x_{i}^{j}+b_{4} \alpha x_{i+1}^{j} \tag{85}
\end{equation*}
$$

where

$$
\begin{gather*}
b_{1}=6 \xi(\xi-1)\left(x_{i+1}-x_{i}\right)^{-1} \tag{86}\\
b_{2}=-b_{1} \tag{87}\\
b_{3}=\xi(3 \xi-2) \tag{88}\\
b_{4}=(\xi-1)(3 \xi-1) \tag{89}
\end{gather*}
$$

Both $Y(\xi)$ and $Y(\xi)$ will be used to determine α_{i+1}^{j+1} and αx_{i+1}^{j+1}, respectively, resulting from pure advective transport (the left side of Equation 76).

Solution procedure for α_{i+1}^{j+1}

61. Any variable or coefficient can be interpolated to obtain the average value between nodes as

$$
\begin{equation*}
K *=\frac{\left[K_{i+1}^{j+1}+K_{i+1}^{j}(1-\xi)+K_{i}^{j} \xi\right]}{2} \tag{90}
\end{equation*}
$$

where

$$
\xi=\frac{u * \tau}{x_{i+1}-x_{i}}
$$

and u^{*} is the average characteristic velocity between nodes. Likewise, $u *$ can be found by placing a linear interpolation between \bar{u} and \bar{u}_{i+1}, based on u^{*}, or from Equation 90

$$
\begin{equation*}
u *=\frac{\left[\bar{u}_{i+1}^{j+1}+\bar{u}_{i+1}^{j}-\left(\frac{u * \tau}{x_{i+1}-x_{i}}\right)\left(\bar{u}_{i+1}^{j}-\bar{u}_{i}^{j}\right)\right]}{2} \tag{91}
\end{equation*}
$$

solving for $u *$ and substituting Equation 70 for \bar{u}

$$
\begin{equation*}
u *=\frac{U_{i+1}^{j+1}+U_{i+1}^{j}-D D A_{i+1}^{j+1}-D D A_{i+1}^{j}}{2+\frac{\tau}{x_{i+1}-x_{i}}\left(U_{i+1}^{j}-U_{i}^{j}\right)} \tag{92}
\end{equation*}
$$

The term $\frac{\partial D D A}{\partial x}$ becomes zero since D and A are allowed only linear variations between nodes.
62. The value of α_{i+1}^{j+1} due to advection, $\alpha_{i+1}^{\star \star}$, can now be determined from

$$
\begin{equation*}
\alpha_{i+1}^{*}=Y(\xi) \tag{93}
\end{equation*}
$$

where $Y(\xi)$ is evaluated by Equations $80-84$. The values for αx_{i}^{j} and αx_{i+1}^{j} in Equation 80 must be determined from

$$
\begin{equation*}
\alpha \mathrm{x}_{\mathrm{i}+1}^{\mathrm{j}}=\dot{\mathrm{Y}}(\xi) \tag{94}
\end{equation*}
$$

for Equations 85-89. The decay, sources/sinks, and lateral inflow terms are next added to $\dot{\alpha}_{i+1}^{* *}$ such that

$$
\begin{equation*}
\alpha_{i+1}^{j+1}=\alpha_{i+1}^{* *}\left(1-\tau K_{s}\right)+\tau\left[\text { SINKS }+\frac{q}{A}\left(\gamma-\alpha_{i+1}^{* *}\right)\right] \tag{95}
\end{equation*}
$$

Solution procedure for αx_{i+1}^{j+1}

63. A spatial derivative of the transport equation must be developed to update αx_{i+1}^{j+1}. This development is done by taking the derivative of Equation 76 with respect to x,

$$
\begin{equation*}
\frac{\partial \alpha^{\prime}}{\partial t}+\frac{\partial^{2} \alpha^{\prime}}{u} \frac{D}{\partial x} \frac{\partial^{2} \alpha^{\prime}}{\partial x^{2}}-\frac{-^{\prime}}{u} \alpha^{\prime}+\left(\frac{q}{A}\right)(\gamma-\alpha)-\frac{q}{A} \alpha^{\prime}-k_{s} \alpha^{\prime}+\text { SINKS }^{\prime} \tag{96}
\end{equation*}
$$

where

$$
\overline{\bar{u}}=\overline{\mathrm{u}}-\mathrm{D}^{\prime}
$$

and the prime denotes $\frac{\partial}{\partial x}$; thus $\alpha^{\prime}=\frac{\partial \alpha}{\partial x}=\alpha x=\alpha_{x}$. Now $\bar{u}=U^{\prime}$ since D and A are allowed only linear variations between nodes. If D^{\prime} is small and D at a node is constant or changes slowly over time, the characteristic velocity for the spatial gradient is approximated by $u^{* *}=u^{*}-D^{\prime}$. With the value $u * *, ~ \xi *$ can be determined from

$$
\begin{equation*}
\xi *=\frac{r u * *}{x_{i+1}-x_{i}} \tag{97}
\end{equation*}
$$

64. Now $\dot{Y}\left(\xi^{*}\right)$ can be evaluated through Equations 85-89. This evaluation yields $\alpha x_{i+1}^{* *}=\dot{Y}\left(\xi^{*}\right)$, which is the solution to the left side of Equation 96. All but the first term on the right side of Equation 96 are added to $\boldsymbol{\alpha}_{i+1}^{* *}$ such that

$$
\begin{aligned}
\alpha x_{i+1}^{j+1} & =\alpha x_{i+1}^{*}\left[1-\frac{\tau\left(U_{i+1}^{j}-U_{i}^{j}\right)}{x_{i+1}-x_{1}}-\tau\left(K_{s}+\frac{q}{A}\right)\right] \\
& +\tau\left[\left(\frac{q}{A}\right)^{\prime}(\gamma-\alpha)-\alpha K_{s}^{\prime}+\text { SINKS' }\right]
\end{aligned}
$$

The final update for αx_{i+1}^{j+1} is completed when the implicit solution due to the first term on the right side of Equation 96 (diffusion) is added.
65. The derivatives for coefficients used in Equations 96-98 are found by

$$
\begin{equation*}
\frac{\partial K^{j}}{\partial x}=\frac{K_{i+1}^{j}-K_{i}^{j}}{x_{i+1}-x_{i}} \tag{99}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2} K^{j}}{\partial x^{2}}=\frac{\left(\left.\frac{\partial K^{j}}{\partial x}\right|_{i+1}=\left.\frac{\partial K^{j}}{\partial x}\right|_{i}\right)}{x_{i+1}-x_{i}} \tag{100}
\end{equation*}
$$

The steps outlined in this section are repeated for each spatial node before moving on to the next time line.

Implicit Diffusion

66. The constituent transport (Equation 76) and the spatial derivative transport (Equation 96) equations are now ready to have the effects of diffusion added by

$$
\begin{gather*}
\alpha_{i}^{j+1}=\alpha_{i}^{j}+\tau D \frac{\partial^{2} \alpha}{\partial x^{2}} \tag{101}\\
\alpha x_{i}^{j+1}=\alpha x_{i}^{j}+\tau D \frac{\partial^{2} \alpha^{\prime}}{\partial x^{2}}
\end{gather*}
$$

where now the j time-level is actually at the new time-level following the advection and kinetic reactions but just prior to diffusion. The diffusion terms are approximated by difference equations, approximately centered in space and time. That is, new time information ($j+1$) is weighted by actor $\theta=0.55$ to enhance stability. The second derivative is replaced by the difference operator $D_{x x}$; thus

$$
\begin{equation*}
\frac{\partial^{2} \alpha}{\partial x^{2}}=\theta D_{x x}\left(\alpha^{j+1}\right)+(1-\theta) D_{x x}\left(a^{j}\right) \tag{102}
\end{equation*}
$$

67. In space, centering would be exact for a regular grid. However, with an irregular grid, a quadratic interpolation is used by taking a Taylor series such that

$$
\begin{equation*}
\mathrm{D}_{\mathrm{xx}}(\alpha)=2\left[\frac{\alpha_{i+1}-\alpha_{i}}{\Delta \mathrm{x}_{\mathrm{i}}\left(\Delta \mathrm{x}_{\mathrm{i}-1}+\Delta \mathrm{x}_{\mathrm{i}}\right)}+\frac{\alpha_{\mathrm{i}-1}-\alpha_{\mathrm{i}}}{\Delta \mathrm{x}_{\mathrm{i}-1}\left(\Delta \mathrm{x}_{\mathrm{i}-1}+\Delta \mathrm{x}_{\mathrm{i}}\right)}\right] \tag{103}
\end{equation*}
$$

where

$$
\Delta x_{i}=x_{i+1}-x_{i}
$$

Applying Equation 103 to the difference operator (Equation 102) which is subsequently applied to Equation 101 results in Equation 104 for α_{i}^{j+1},

$$
\begin{align*}
& \alpha_{i}^{j+1}=\alpha_{i}^{j}+2 \tau D \theta\left[\frac{\alpha_{i+1}^{j+1}-\alpha_{i}^{j+1}}{\Delta x_{i}\left(\Delta x_{i-1}+\Delta x_{i}\right)}+\frac{\alpha_{i-1}^{j+1}-\alpha_{i}^{j+1}}{\Delta x_{i-1}\left(\Delta x_{i-1}+\Delta x_{i}\right)}\right] \tag{104}\\
& \quad+2 \tau D(1-\theta)\left[\frac{\alpha_{i+1}^{j}-\alpha_{i}^{j}}{\Delta x_{i}\left(\Delta x_{i-1}+\Delta x_{i}\right)}+\frac{\alpha_{i-1}^{j}-\alpha_{i}^{j}}{\Delta x_{i-1}\left(\Delta x_{i-1}+\Delta x_{i}\right)}\right]
\end{align*}
$$

An equation similar to Equation 104 is developed for $\alpha X_{i}{ }^{j+1}$.
68. When Equation 104 is applied to every node for i going from 2 to N-1, N-2 equations for N unknowns are formed. The system is completed by the upstream and downstream boundary conditions. The upstream boundary condition is given explicitly in the data (or inferred for the spatial derivative of diffusion). The downstream boundary condition is simply that the last node is not affected by diffusion.
69. The system of equations is assembled in tridiagonal form with all new values $(j+1)$ on the left side and all old (j) values on the right. The implicit solution is accomplished with the Thomas Algorithm (subroutine TRIDAG). Subroutine TRIDAG is also used to calculate a cubic spline through the initial data.

Stability Requirements

70. The solution of the constituent transport equation has a Courant number restriction for numerical stability. This is due to the explicit solution scheme for advection. The Courant number, defined as

$$
\begin{equation*}
\mathrm{CN}=\frac{\mathrm{u} \tau}{\Delta \mathrm{x}} \tag{105}
\end{equation*}
$$

must be less than 1.0 to preserve stability. This requirement is not considered too restrictive, although it must be kept in mind during an application.
71. This version of the RIV1Q model is coded to expect flows in the downstream direction only. Erroneous numerical solutions can be experienced if flows in the upstream direction are experienced. Upstream flows do not
usually occur in nontidal streams. However, highly unsteady flows may reflect off downstream control structures resulting temporarily in upstream "reverse flows." RIV1H can yield reverse flows that are realistic, but reverse flows that persist very long will yield unrealistic results from RIV1Q.
72. In a model application, it was possible to damp out reverse flows that were reflected off a dam downstream of a peaking hydropower dam by providing a minimum flow during nongeneration periods. This minimum flow was equivalent to the dam leakage. RIV1Q is being modified to allow reversing flows.
73. In the following paragraphs, the mathematical formulations of the sources, sinks, and reaction kinetics for various water quality components are presented. The most significant of these are temperature and DO. However, other variables are also included because of their effect on DO. These variables include carbonaceous biochemical oxygen demand (CBOD) as well as nitrogen and phosphorous compounds. The growth and decay of algae and macrophytes are also modeled to complete the DO balance. Algae is modeled as a state variable (subject to advective and dispersive transport) but macrophytes are not. Nitrite plus nitrate-nitrogen is included to complete the nitrogen cycle. Organic and phosphate-phosphorus are modeled to complete the phosphorous cycle. Coliform bacteria are included as a state variable because of their importance as an indicator of stream pollution. The coliform bacteria variable can be used to model other nonconservative variables or a conservative variable (by setting the die-off rate to zero). Dissolved iron and manganese are included because of their impact on DO in streams below dams with anoxic hypolimnetic releases. Thus, 12 modeled variables are included; those to be modeled are selected by the user. Transport of each state variable is accomplished using Equation 76 . Figure 5 shows schematically how the variables interact. The constituents as they appear in the code are as follows: temperature, $C(1, I)$; CBOD, $C(2, I)$; organic nitrogen, $C(3, I)$; ammonia nitrogen, $C(4, I)$; nitrate nitrogen, $C(5, I)$; organic phosphorus, $C(6, I)$; phosphate phosphorus, $C(7, I)$; dissolved manganese, $C(8, I)$; dissolved iron, $C(9, I)$; dissolved oxygen, $C(10, I)$; coliform bacteria, $C(11, I)$; and algae, $C(12, I)$.
74. All of the state variables may be simulated or "bypassed." If the user elects to bypass a particular state variable (using the bypass options as described in Part VII, then the concentrations will be held to those specified in the initial conditions for the duration of the simulation.

Temperature

75. It may be necessary to account for the effects of temperature changes along a channel in order to account for temperature gradients created by cultural inputs such as power plant effluents or natural processes. In addition to its intrinsic value, temperature information is required in order to correct kinetic rate coefficients. Stream temperatures may be read in

Figure 5. CE-QUAL-RIV1 water quality compartmental diagram
directly or may be calculated/predicted from the solution of an appropriate thermal energy balance.
76. The transport equation (Equation 76) developed in Part IV, is used to solve for each water quality variable, α; thus for temperature, $\alpha \equiv T$. The specification of the source/sink term and the decay term of Equation 76 must account for all the mechanisms other than advection, diffusion, and lateral inflows, which cause net transfers of energy to the control volume. Heat balance approach
77. In general, the heat balance approach used here is the same as the one used in the QUAL2E model (1987). The external sources and sinks (excluding lateral inflows) for heat are described by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{N}}=\mathrm{H}_{\mathrm{S}}+\mathrm{H}_{\mathrm{L}}-\mathrm{H}_{\mathrm{E}}-\mathrm{H}_{\mathrm{B}} \pm \mathrm{H}_{\mathrm{C}} \tag{106}
\end{equation*}
$$

where

${ }^{{ }^{H}} \mathrm{~N}=$	net heat transfer, $\frac{\text { heat energy }}{\text { surface area } * \text { time }}$
$H_{S}=$	net short-wave radiation
$H_{L}=$	net long-wave radiation
$H_{E}=$	heat loss because of evaporation
$H_{B}=$	heat loss because of back radiation of the water
$H_{C}=$	heat transferred by conduction at the water surface and the
	bottom

78. There are two options for computing H_{N}. In the first option, each term in Equation 106 is computed (i.e., subroutine HEATFLUX) and added to form H_{N}, which is converted to a rate of temperature change by

$$
\begin{equation*}
\dot{\Delta} T=\frac{H_{N}}{\mathrm{pC}_{\mathrm{p}} \mathrm{H}} \cdot \text { conv } \tag{107}
\end{equation*}
$$

where

$$
\begin{aligned}
\dot{\Delta T}= & \text { rate of temperature change, } \frac{\text { degrees }}{\text { time }} \\
\rho= & \text { specific mass of water, } \frac{\text { mass }}{\text { volume }} \\
C_{p}= & \text { specific heat of water, } \frac{\text { heat energy }}{\text { mass } \dot{\star} \text { degree }} \\
H= & \text { hydraulic depth, } \frac{A}{B}, \text { length } \\
\text { conv }= & \text { conversion factor from English to metric units (HEATFLUX } \\
& \text { performs computations in English units) }
\end{aligned}
$$

The variable $\dot{\Delta} T$ is used for the SINKS term in Equation 76 , and the K_{S} term is zero. The algorithms in subroutine HEATFLUX are based on those used in QUAL-II (Roesner, Giguere, and Evenson 1981) to compute the terms in Equation 106. The computations within HEATFLUX depend on: water temperature, T_{S}; time of year and day, site latitude, longitude, and elevation; and local meteorological data. The previously computed value (previous time-step) is used for T_{S}. The meteorological data, obtained from the National Oceanic and Atmospheric Administration (NOAA), consist of dry and wet bulb temperatures (${ }^{\circ} \mathrm{C}$), wind speed, cloud cover, and barometric pressure. Generally, meteorological data are collected and reported in 1- or 3-hr intervals. This method is referred to as a direct energy balance because independent determination of the full terms on the right side of Equation 106 is made within the simulation, in contrast to the alternative heat exchange method. Equilibrium temperature approach
79. The alternative method uses the well-known equilibrium temperature approach, as developed by Edinger, Duttweiler, and Geyer (1968) and Edinger, Brady, and Geyer (1974), to account for the effects of surface heating and radiation. The equilibrium temperature approach is based on the concept that heat exchange does not occur when the water temperature, T_{s}, equals the equilibrium temperature, T_{E}; thus, $H_{N}=0$. With $T_{S}=T_{E}$ and $H_{N}=0$, the terms on the right side of Equation 106 can be expressed in terms of T_{E}, and T_{E} can be solved iteratively. Net heat transfer, H_{N}, is computed from

$$
\begin{equation*}
\mathrm{H}_{\mathrm{N}}=\mathrm{K}_{\mathrm{E}}\left(\mathrm{~T}_{\mathrm{E}}-\mathrm{T}_{\mathrm{S}}\right) \tag{108}
\end{equation*}
$$

where K_{E} is the heat exchange coefficient (heat energy/surface area/time/ degree). Using a computer program with the same meteorological data used for the direct energy balance, T_{E} and K_{E} are computed independent of the simulation. This program can be obtained from WES or the Hydrologic Engineering Center (HEC). A description of the T_{E} and K_{S} computation is given in Edinger, Brady, and Geyer (1974).
80. If the equilibrium temperature approach is followed, the model uses a single, constant value for T_{E} and K_{E}. This is equivalent to modeling stream temperature under constant meteorological conditions. The computations of T_{E} and K_{E} in the WES and HEC program are based on daily average values for meteorological data; thus daily average values of T_{E} and K_{E} are
produced. Daily average values for T_{E} and K_{E} are adequate for reservoir thermal simulations but may not be adequate for riverine applications where diel fluctuations are important. In these cases, the direct energy balance method should be used.
81. By inspection of Equation 108 , the K_{S} coefficient of Equation 76 is K_{E} (KTS in the code) and the SINKS term is $K_{E} T_{E}$ (KTS*TEQ in code). Thus, KTS is converted to units of per time (per day) by dividing by ($\rho c_{p} H$) with the proper conversion units.
82. Either heat exchange method can be augmented with bottom heat transfer by adding the term K_{B} (TSINK - T_{S}) where TSINK is the bottom/ ground temperature in degrees and K_{B} is the bottom heat transfer coefficient in units of per day. In this case, K_{B} and TSINK must be specified, the K_{S} term of Equation 76 is incremented by K_{B} (KTB in the code), and the SINKS term of Equation 76 is incremented by $K_{B} * T S I N K$.
83. The latest release of this model includes mechanisms to allow for algae self-shading as this effect can be significant for small streams. In future releases, consideration should be given to allow the solar radiation that passes through the water column (for clear, shallow streams) to be absorbed by the bottom and reradiated as heat, thus providing bottom warming later. At present, all solar radiation is absorbed by the water column.

Carbonaceous Biochemical Oxygen Demand

84. The CBOD represents (as chemically equivalent oxygen) the ultimate amount of biodegradable organic matter present, excluding organic nitrogen. Model output is given in terms of first-stage biochemical oxygen demand (BOD) (i.e., CBOD); input to the model must also be in terms of CBOD's. If BOD 5 data are available, these must be converted to CBOD using the classical BOD equation.

$$
\begin{equation*}
C B O D=\frac{\text { BOD }_{5}}{1-e^{(-K \cdot 5)}} \tag{109}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{CBOD} & =\text { ultimate first-stage (carbonaceous) } \mathrm{BOD}, \mathrm{~g} / \mathrm{m}^{3} \\
\mathrm{BOD}_{5} & =5 \text {-day (carbonaceous) } \mathrm{BOD}, \mathrm{~g} / \mathrm{m}^{3} \\
\mathrm{~K} & =\text { bottle } \mathrm{BOD} \text { decay rate, } \mathrm{day}^{-1}
\end{aligned}
$$

The BOD_{5} should be determined using nitrification-inhibited samples to avoid double counting of the nitrogenous $B O D$. If values of the reaction rate constant K are not available for the wastewater at hand, they may be approximated using Figure 6.

Figure 6. Variation of the bottle K_{1} with the degree of biological wastewater treatment (after Schroepfer, Robins, and Susag 1960) (Copyright 1960 Water Pollution Control

Federation (WPCF), reproduced by permission of WPCF)
85. CBOD is a result of biochemical oxidation of organics by heterotrophic bacteria using either oxygen or nitrate as the terminal electron acceptor. The latter process is called denitrification. In this model, it is assumed that oxygen is the terminal electron acceptor at high DO's and nitrate at low DO's. Thus, the basic reaction for CBOD is

$$
\left(\begin{array}{c}
\text { Rate of CBOD loss due to } \tag{110}\\
\text { oxidation and settling } \\
\mathrm{g} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\left(\mathrm{K} 1+\mathrm{KDN}+\frac{\text { CBODSR }}{\mathrm{H}}\right) * \mathrm{CBOD}
$$

where

$$
\begin{aligned}
\mathrm{K} 1= & \text { temperature corrected rate coefficient for aerobic oxidation of } \\
& \text { CBOD, day } \\
\mathrm{KDN}= & \text { temperature corrected rate coefficient for nitrate reduction and } \\
& \text { anaerobic } C B O D \text { oxidation, day } \\
C B O D= & \text { concentration of CBOD, } g \mathrm{O}_{2} / \mathrm{m}^{3} \text {, from previous time-step, } \mathrm{C}(2, \mathrm{I}) \\
\mathrm{CBODSR}= & \text { rate coefficient for } C B O D \text { removal by settling, m/day } \\
H= & \text { depth, } m
\end{aligned}
$$

In the present model, a fraction (FCBOD) of decaying algae and macrophytes is assumed to contribute to $C B O D$, the remainder (1 - FCBOD), being oxidized immediately for energy.

$$
\left(\begin{array}{c}
\text { CBOD gain from } \tag{111}\\
\text { algae } / \text { macrophyte decay } \\
g-B O D / \mathrm{m}^{3} / \text { day }
\end{array}\right)=\begin{gathered}
\text { OPDECY } *\left(\frac{(\text { FCBOD } * D O)+\text { KOCB } 1}{D O+\mathrm{KOCB}}\right) * \\
(\text { ALGADK + MDEATH })
\end{gathered}
$$

where

$$
\begin{aligned}
\text { OPDECY }= & \text { oxygen-to-biomass ratio for oxygen production by algae and } \\
& \text { macrophytes when ammonia is nitrogen source, suggested value, } \\
& 1.59
\end{aligned}
$$

FCBOD $=$ fraction of algal and macrophyte mortality contributing to CBOD
$D O=$ average dissolved oxygen along the characteristic, g / m^{3}, DOX in the code
KOCB1 = Monod half velocity constant for oxygen-limited aerobic systems, $\mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3}$
ALGADK $=$ algal death rate, $g /\left(m^{3}\right.$ day $)$
MDEATH $=$ macrophyte death rate, $g /\left(m^{3}\right.$ day $)$
It should be realized that K_{S} is ($K 1+K D N+C B O D S R$), SINKS is the CBOD contribution from algal/macrophyte decay, and α in Equation 76 is CBOD by inspection of Equation 110.
86. The rate coefficients Kl and KDN are presumed to be functions of the ambient water temperature, the local DO, and the local nitrate concentration. The temperature correction is taken from Streeter and Phelps (1925), as is customary, although arguable. The coefficient K 1 is assumed to increase with DO according to a simple Monod function (cf. Hoover and Porges
1952), and the coefficient $K D N$ is assumed to decrease according to an analogous formula. The coefficient KDN is also assumed to depend on nitrate in the same way that K 1 depends on oxygen.

$$
\begin{gather*}
\mathrm{KI}=\mathrm{AKI} *[\operatorname{TBIOS}(\mathrm{TEMP}-20 .)] *\left(\frac{\mathrm{DO}}{\mathrm{DO}+\mathrm{KOCBI}}\right) \tag{112}\\
\mathrm{KDN}=\mathrm{ADN} *\left[\mathrm{TBIOS}(\mathrm{TEMP-20.)}) *\left(\frac{\mathrm{KOCBDN}}{\mathrm{DO}+\mathrm{KOCBDN}}\right) *\left(\frac{\mathrm{NO}_{3}-\mathrm{N}}{\mathrm{NO}_{3}-\mathrm{N}+\mathrm{KNCBDN}}\right)\right. \tag{113}
\end{gather*}
$$

where

> AK1, $A D N=$ uncorrected rate coefficients for oxidation and denitrification of CBOD, respectively, day ${ }^{-1}$
> TBIOS = temperature coefficient for biological processes, unitless
> TEMP $=\mathrm{T}_{\mathrm{S}}=$ the ambient stream temperature, ${ }^{\circ} \mathrm{C}$
> $\mathrm{DO}=$ local stream oxygen concentration, $\mathrm{g}_{2} / \mathrm{m}^{3}$
> KOCBI $=$ Monod half-velocity constant for oxygen-limited aerobic systems, $\mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3}$
> KOCBDN $=$ denitrification inhibition half-velocity constant, $\mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3}$ $\mathrm{NO}_{3}-\mathrm{N}=$ local nitrate-nitrogen concentration, $\mathrm{g} \mathrm{N} / \mathrm{m}^{3}$
> KNCBDN $=$ Monod half-velocity constant for nitrate-limited denitrification, $\mathrm{g} \mathrm{N} / \mathrm{m}^{3}$

CBODSR is not corrected for environmental conditions. In addition, no provision for fermentation has been provided, so in the absence of oxygen and nitrate, there is no CBOD removal except through settling.
87. The net rate of accumulation of CBOD may be written as

$$
\left(\begin{array}{c}
\text { Net rate of } \tag{114}\\
\text { accumulation } \\
\text { of CBOD } \\
\mathrm{g} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-(\text { AEROBIC OXIDATION OF CBOD) }- \text { (DENITRIFICATION) }
$$

and the final equation is

$$
\begin{equation*}
=\left(\mathrm{K}_{1}+\mathrm{KDN}+\frac{\mathrm{CBODSR}}{\mathrm{H}}\right) * \mathrm{CBOD}+\text { OPDECY*} \frac{(\mathrm{KOCB1}+\mathrm{DOX} * F C B O D)}{(D O X+\mathrm{KOCB1})} *(\mathrm{ALGADK}+\mathrm{MDEATH}) \tag{115}
\end{equation*}
$$

Nitrogen Interactions

88. The forms of nitrogen (N) recognized by the model are organic nitrogen, ammonium, and nitrate. Nitrite is not considered because the overall rate of nitrification is ammonia-limited (Parker et al. 1975), and stream surveys do not exhibit significant increases in nitrite in nitrifying reaches (Garland 1978, Miller and Jennings 1979).

Organic nitrogen

89. Organic nitrogen is a constituent of the organic matter although its oxygen demand is not a part of the CBOD test result. In this model organic-N is produced from the decay of algae and macrophytes and lost due to hydrolysis and settling. For pure compounds, it is well known that their constituent nitrogen is released as ammonia during the exertion of the CBOD. However, in this model algae and macrophytes are assumed to release 100% organic nitrogen upon decay. This is done primarily to be consistent with other models (QUAL2E). Hydrolysis to ammonia is computed using rate coefficients from Equations 112 and 113.
$\left(\begin{array}{c}\text { Rate of loss of organic nitrogen } \\ \text { due to hydrolysis to ammonia } \\ \text { and settling } \\ g-N / m^{3} / \text { day }\end{array}\right)=\left(\mathrm{KlN}+\mathrm{KDN}+\frac{\text { KNSET }}{\mathrm{H}}\right) *$ ORGAN
where

$$
\begin{aligned}
\mathrm{K} 1 \mathrm{~N}= & \mathrm{ACK} \times \mathrm{TBIOS} /(1 .+\mathrm{KOCBI}(\mathrm{IBRANCH}) / \mathrm{DOS} \\
\mathrm{KDN}= & \text { temperature corrected rate coefficient for nitrate reduction and } \\
& \text { anaerobic CBOD oxidation, day }{ }^{-1} \\
\mathrm{KNSET}= & \text { rate coefficient for removal of org }-\mathrm{N} \text { by settling, m/day } \\
\mathrm{H}= & \text { stream depth, } \mathrm{m} \\
\mathrm{ORGAN}= & \text { concentration of org }-\mathrm{N}, \mathrm{C}(3, \mathrm{I}), \mathrm{g}-\mathrm{N} / \mathrm{m}^{3}
\end{aligned}
$$

where
$K I N=$ temperature and $D O$ corrected rate coefficient for organic-N, day^{-1}
$A C K=$ rate coefficient for organic-N hydrolysis to NH_{4}^{+}, day ${ }^{-1}$
IBRANCH $=$ segment (branch) number
90. The rate of organic-N increase resulting from algal and macrophyte
decay is taken to be proportional to the rate of decay of algae and macrophytes. The nitrogen content of algae is variously reported as 7 to

10 percent by weight (Foree and McCarty 1968, MacKenthum and Ingram 1967), whereas the nitrogen content of macrophytes is only 2 to 4 percent by weight (MacKenthum and Ingram 1967, Gerloff 1969). Assuming algae are dominant and a nitrogen content of 7.5 percent (Foree and McCarty 1968)

$$
\left(\begin{array}{c}
\text { Rate of increase of organic-N } \tag{117}\\
\text { due to algal } / \text { macrophyte decay } \\
\mathrm{g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=+ \text { ANCONT } * \text { (ALGADK }+ \text { MDEATH) }
$$

where
ANCONT $=$ nitrogen-to-biomass ratio in algae and macrophytes, g / g
ALGADK $=$ rate of algal decay, $\mathrm{g} / \mathrm{m}^{3} /$ day
MDEATH $=$ rate of macrophyte decay, $\mathrm{g} / \mathrm{m}^{3} /$ day
91. It may be noted that all the algal/macrophyte N is assumed to be released upon decay of the cell (cf. Foree and McCarty 1968, Jewell and McCarty 1968). The algal/macrophyte decay rate itself is considered in greater detail in the following paragraphs. Although Equations 116 and 117 are conceptually appealing, it may be questioned whether the measured organic nitrogen in streams undergoes any net removal. For example, Ruane and Krenkel (1977) have published data for the Holston River that exhibit little change in organic nitrogen even in rapidly nitrifying reaches. Therefore, in some field applications organic nitrogen may be regarded as inert and deleted from the model. The net rate of change of the organic nitrogen concentration can be stated as:

$$
\left(\begin{array}{c}
\text { Net rate of accumulation } \tag{118}\\
\text { of organic nitrogen } \\
\mathrm{g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\left(\begin{array}{c}
\text { loss due to } \\
\text { hydrolysis } \\
\text { and settling }
\end{array}\right)+\binom{\text { gain due to }}{\text { plant decay }}
$$

and stated in equation form as

$$
\begin{align*}
\left(\begin{array}{c}
\text { Net rate of accumulation } \\
\text { of organic nitrogen } \\
g-N / \mathrm{m}^{3} / \text { day }
\end{array}\right)= & -\left(\text { KIN }+\mathrm{KDN}+\frac{\mathrm{KNSET}}{\mathrm{H}}\right) * \text { ORGAN } \tag{119}\\
& +[\text { ANCONT } *(\text { ALGADK }+ \text { MDEATH })]
\end{align*}
$$

Amncrium

92. Ammonium increases because of the hydrolysis of organic nitrogen (if it occurs). It decreases because of conversion of ammonium to nitrate (nitrification), algal and macrophyte uptake, and sorption.
93. The increase in ammonium because of organic nitrogen hydrolysis is represented by Equation 116 , with the minus sign changed to a plus because the process is a source of ammonia.
94. The rate of ammonium decrease because of nitrification is assumed to be first order

$$
\left(\begin{array}{c}
\text { Rate of nitrification } \tag{120}\\
\text { of ammonium }-\mathrm{N} \text { to nitrate } \\
\mathrm{g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\mathrm{KN} * \mathrm{NH}_{4}^{+}-\mathrm{N}
$$

where

$$
\begin{aligned}
\mathrm{KN} & =\text { nitrification rate coefficient, day }{ }^{-1} \\
\mathrm{NH}_{4}^{+}-\mathrm{N} & =\text { ammonia- } \mathrm{N} \text { concentration, } \mathrm{g}-\mathrm{N} / \mathrm{m}^{3}
\end{aligned}
$$

The rate coefficient $K N$ is assumed to depend on oxygen and temperature in a way similar to Kl

$$
\begin{equation*}
\mathrm{KN}=\mathrm{AKN} *\left[\text { TAMMON }^{(\text {TEMP-20) }}\right] *\left(\frac{\mathrm{DO}}{\mathrm{DO}+\mathrm{KON}}\right) \tag{121}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { AKN }= & \text { uncorrected rate coefficient for nitrification, day }{ }^{-1} \\
\text { TAMMON }= & \text { temperature coefficient for ammonium oxidation (suggested } \\
& \text { value is } 1.1 \text {) } \\
K O N= & \text { Monod half-velocity constant for oxygen limitation of } \\
& \text { nitrification, } g \mathrm{O}_{2} / \mathrm{m}^{3}
\end{aligned}
$$

where

$$
\mathrm{KN}=\frac{\mathrm{AKN}}{1+\frac{\mathrm{KON} *(\mathrm{IBRANCH})}{\mathrm{DOX}}}
$$

The form of the oxygen limitation factor is suggested by the data summarized by Parker et al. (1975). A correction for pH has not been incorporated
because of the width of the optimum range (about pH 7 to 9 according to Parker et al. (1975)).
95. The rate of uptake of ammonium nitrogen caused by algal and macrophyte growth is entirely analogous to Equation 122. However, the model assumes that the plants can use both nitrate and ammonium. The total nitrogen consumption rate is partitioned between these two forms in proportion to their relative concentrations:

$$
\left(\begin{array}{c}
\text { Rate of ammonium-N } \tag{122}\\
\text { decrease due to } \\
\text { algal/macrophyte uptake } \\
\mathrm{g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\mathrm{ANCONT} *\left(\frac{\mathrm{NH}_{4}^{+}-\mathrm{N}}{\mathrm{NH}_{4}^{+}-\mathrm{N}+\mathrm{NO}_{3}-\mathrm{N}}\right) *(\text { ALGRO }+ \text { MGRATE })
$$

where

$$
\begin{aligned}
\text { ANCONT }= & \text { nitrogen-to-biomass ratio in algae and macrophytes }, \\
& 0.075 \text { suggested value } \\
\mathrm{NH}_{4}^{+}-\mathrm{N}= & \text { concentration of ammonium nitrogen, } \mathrm{g}-\mathrm{N} / \mathrm{m}^{3}, \mathrm{C}(4, \mathrm{I}) \\
\mathrm{NO}_{3}-\mathrm{N}= & \text { concentration of nitrate nitrogen, } \mathrm{g} \cdot \mathrm{~N} / \mathrm{m}^{3}, \mathrm{C}(5, \mathrm{I}) \\
\text { ALGRO }= & \text { growth rate of algae }, \mathrm{g} / \mathrm{m}^{3} / \text { day } \\
\text { MGRATE }= & \text { growth rate of macrophytes }, \mathrm{g} / \mathrm{m}^{3} / \text { day }
\end{aligned}
$$

The partitioning function was introduced primarily to avoid double counting of nitrogen uptake by plants. More sophisticated selectivity factors (e.g., 0^{\prime} Connor, Thomann, and DiToro 1973; Baca and Arnett 1976; DiToro et al. 1977) were not used, because there does not appear to be any empirical data or theory that warrants the use of such factors in models that lump all the photosynthetic flora together. This is not meant to deny that nutrient selection occurs in some pure cultures.
96. Finally, a term for physicochemical sorption of ammonium by the sediments is included. The need for such a process is shown by the data of Ruane and Krenkel (1977), Donigan and Crawford (1979), and Miller and Jennings (1979). The first two reports recorded losses in total inorganic nitrogen along well-aerated nitrifying reaches of about one-third to two-thirds of the total input. Ruane and Krenkel (1977) also produced plant biomass data that suggested nitrogen uptake by plants was relatively small and inadequate to account for the observed losses. The diel-average oxygen levels in all three studies ranged from 2 to $8 \mathrm{mg} / \ell$ in the reaches studied, so denitrification may not have been substantial either. Moreover, sediment analyses reported by

Donigan and Crawford (1979) show that in at least two small streams most of the ammonium in the water-sediment system is in the sediments.
97. The representation adopted for ammonium sorption by sediment is a simple first-order decay, like that for CBOD

$$
\left(\begin{array}{c}
\text { Rate of sorption of } \tag{123}\\
\text { ammonium }-\mathrm{N} \text { by sediments } \\
\mathrm{g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\mathrm{KNX}^{2} * \mathrm{NH}_{4}^{+}-\mathrm{N}
$$

where $K N X$ is the sorption rate coefficient, day ${ }^{-1}$. The rate coefficient KNX is presumed to be a function of temperature.

$$
\begin{equation*}
\mathrm{KNX}=(\mathrm{AKNX}) *\left[\mathrm{TPHYS}^{(\mathrm{TEMP-20.)})}\right] \tag{124}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { AKNX }= & \text { uncorrected rate coefficient for sorption of ammonia by } \\
& \text { sediment, day }
\end{aligned}
$$

$$
\left(\begin{array}{c}
\text { Net rate of } \tag{125}\\
\text { accumulation } \\
\text { of ammonium } \\
g-N / \mathrm{m}^{3} / \text { day }
\end{array}\right)=+\binom{\text { hydrolysis }}{\text { of org }-N}-\binom{\text { plant }}{\text { uptake }}-\text { (nitrification) }-\left(\begin{array}{c}
\text { sorption } \\
\text { onto } \\
\text { sediment }
\end{array}\right)
$$

and written in equation form as

$$
\begin{align*}
& \left(\begin{array}{c}
\text { Net rate of } \\
\text { accumulation } \\
\text { of ammonium-N } \\
\mathrm{g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=(\mathrm{KlN}+\mathrm{KDN}) * \text { ORGAN + ANCONT } \tag{126}\\
& * \text { ALGADK }-\left(\mathrm{ANCONT} * \frac{\mathrm{NH}_{4} \mathrm{~N}}{\mathrm{NH}_{4}^{+}-\mathrm{N}+\mathrm{NO}_{3}^{-}-\mathrm{N}}\right) *(\mathrm{ALGRO}+\text { MGRATE })-(\mathrm{KN}+\mathrm{KNX}) * \mathrm{NH}_{4}^{+}-\mathrm{N}
\end{align*}
$$

In Equation 126, the coefficient of the last term is K_{S} and the remaining terms make up SINKS of Equation 76 .

Nitrate

99. Nitrate is formed by nitrification and removed by denitrification and plant uptake. Denitrification can take place in the water column under low DO conditions and in the bottom sediments.
100. The accumulation of nitrate-N is stated as

$$
\begin{align*}
\left(\begin{array}{c}
\text { Net rate of } \\
\text { accumulation } \\
\text { of nitrate }-\mathrm{N} \\
\mathrm{~g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)= & -\binom{\text { water column }}{\text { denitrification }}+\text { (nitrification) } \tag{127}\\
& -\binom{\text { plant }}{\text { uptake }}-\binom{\text { sediment }}{\text { denitrification }}
\end{align*}
$$

This can be written in equation form as

$$
\begin{align*}
& \left(\begin{array}{c}
\text { Net rate of accumulation } \\
\text { of nitrate }-\mathrm{N} \\
\mathrm{~g}-\mathrm{N} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-(\text { ONEQUI } * \mathrm{KDN} * \mathrm{CBOD})+\left(\mathrm{KN} * \mathrm{NH}_{4} \mathrm{~N}\right) \tag{128}\\
& -\mathrm{ANCONT} *(\mathrm{ALGRO}+\mathrm{MGRATE}) *\left(\frac{\mathrm{NO}_{3}^{-}-\mathrm{N}}{\mathrm{NH}_{4}^{*}-\mathrm{N}+\mathrm{NO}_{3}-\mathrm{N}}\right) \\
& -\left(\mathrm{KDSED} * \mathrm{NO}_{3}^{-}-\mathrm{N}\right)
\end{align*}
$$

All terms in Equation 128 are in the SINKS term of Equation 76 and K_{S} is KDSED, where KDSED is the sediment denitrification rate.
101. The coefficient ONEQUI (suggested value 0.35) is a conversion factor for oxygen to nitrogen equivalents and is evaluated as follows. The half cell reaction for nitrate reduction is

$$
\begin{equation*}
6 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+5 \mathrm{e}^{-}=\frac{1}{2} \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \tag{129}
\end{equation*}
$$

Therefore, the equivalent weight of nitrate nitrogen is 2.8 g . The equivalent weight of oxygen is 8.0 g , and the mass of nitrogen equivalent to 1 g of oxygen is 0.35 g .
102. Wheatland, Barrett, and Bruce (1959) presented some interesting data regarding nitrification and denitrification in the Thames Estuary.

First, denitrification occurred only in reaches with a DO below about $1 \mathrm{mg} / \mathrm{l}$, a finding they supported with laboratory data. More importantly, however, they showed that in the Thames the total inorganic nitrogen concentration declined from about 9 to about $3 \mathrm{mg} / \mathrm{l}$ in a 15 -mile reach nearly devoid of both oxygen and nitrate. While this decline might be interpreted as algal uptake, the depth and turbidity of the Thames argue against it, and the observed nitrogen losses might be due to simultaneous nitrification and denitrification at very low DO.
103. More recently, the studies of Williams and Lewis (1986) support the idea that nitrification and denitrification occur simultaneously because of processes within the sediments. Additionally, Hill and Sanmugadas (1985) showed that denitrification rates were significantly correlated to streamsediment characteristics; this correlation helps to explain why recent studies have revealed considerable nitrate loss even during transport in welloxygenated streams. Thus, denitrification via the water-sediment interface is considered in this model.

Algae and Macrophytes

104. Algae is modeled as a state variable while macrophytes are not. The growth rates of both are limited by light intensity. Furthermore, macrophytes are assumed to be benthal. This last.assumption is defensible for small streams overhung by forest canopy and for turbid streams, both of which are common.

Algal growth
105. Algae are treated as a state variable; their growth rate is affected by light intensity, self-shading, and nutrients (N and P). The effect of light intensity on the algal growth rate is obtained by substituting Beer's law into a Monod-type relationship and integrating over the depth of the channel cross section. The effects of nitrogen and phosphorus on growth are accounted for using Monod-type expressions, similar to those in QUAL2E. This results in a multiplicative expression for growth also similar to one of the QUAL2E growth options. The resulting growth rate in reach I is then

$$
\begin{equation*}
\text { ALGRO }=C(12, \mathrm{I}) * \operatorname{ALGI} *\left(\frac{1}{\mathrm{KEXT} * \mathrm{H}}\right) * \ln \left(\frac{\mathrm{KLITE}+\operatorname{SWALG}}{\operatorname{KLITE}+\operatorname{SWALG} * \operatorname{EXP}(-\mathrm{KEXT} * \mathrm{H})}\right) * \mathrm{FN} * \mathrm{FP} \tag{130}
\end{equation*}
$$

or

$$
\begin{equation*}
\text { ALGRO }=C(12, I) * A L G 1 * F L * F N * F P \tag{131}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { ALGRO }= \text { algal growth rate, corrected for light, temperature, and } \\
& \text { nutrient availability, } g \text {-biomass } / \mathrm{m}^{3} \mathrm{day}^{-1} \\
& \mathrm{C}(12, \mathrm{I})= \text { algal concentration at node } \mathrm{I} \text { at time } \mathrm{t} \\
& \text { ALG1 (KALGRO) }= \text { maximum specific algal growth rate, day }{ }^{-1} \text {. Input as } \\
& \text { KALGRO, renamed ALGl in subroutine } \mathrm{SEG} \\
& \mathrm{KEXT}= \text { light extinction coefficient, } \mathrm{m}^{-1}, \text { corrected for algal } \\
& \text { self-shading } \\
& \mathrm{H}= \text { hydraulic depth, } \mathrm{A} / \mathrm{B}, \mathrm{~m} \\
& \mathrm{KLITE}= \text { half-velocity constant for light intensity, watt } / \mathrm{m}^{2} \\
& \mathrm{SWALG}= \text { short-wave radiation intensity at the water surface, } \\
& \text { watt/ } \mathrm{m}^{2} \\
& \mathrm{FN}= \text { nitrogen growth adjustment factor } \\
& \mathrm{FP}= \text { phosphorus growth adjustment factor } \\
& \mathrm{FL}= \text { light growth adjustment factor } \\
& 106 . \quad \text { The light extinction coefficient KEXT is coupled to algal }
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{KEXT}(\lambda)=\lambda_{0}+\lambda_{1}\left[\alpha_{0} * \mathrm{C}(12, \mathrm{I})\right]=\lambda_{2}\left[\alpha_{0} * \mathrm{C}(12, \mathrm{I})\right]^{2 / 3} \tag{132}
\end{equation*}
$$

where

```
            \lambda= KEXT = corrected extinction coefficient
            \mp@subsup{\lambda}{0}{}}=\mathrm{ nonalgal portion of light extinction coefficient - user speci-
                fied (LAMBDO)
                    \lambda}\mp@subsup{|}{1}{}=\mathrm{ linear algal self-shading - user specified (LAMBD1) value pre-
                        viously used, 0.0088 m-1 ( }\mu\textrm{g}-\textrm{Chla/L}\mp@subsup{)}{}{-1}\mathrm{ (Riley equation in Bowie
                        et al. 1985)
            \lambda}\mp@subsup{2}{2}{=}\mathrm{ nonlinear algal self-shading - user specified (LAMBDA2) value
                        previously used, 0.054 m}\mp@subsup{\textrm{m}}{}{-1}(\mu\textrm{g}-\textrm{Chla}/\textrm{L})\mp@subsup{)}{}{-2/3}\mathrm{ (Riley equation in
                        Bowie et al. 1985)
                            \alpha
C(12,I) = algal biomass concentration at node I
```

The same modification of KEXT is also used to modulate the growth rate of macrophytes.

Effect of nutrient
availability on algal growth
107. Algal growth is modulated by nutrient (N and P) availability using a Monod-like expression identical to that used by QUAL2E. The following equations are used

$$
\begin{align*}
& \mathrm{FN}=\frac{\mathrm{NPOOL}}{(\mathrm{NPOOL}+\mathrm{KNPOOL})} \tag{133}\\
& \mathrm{FP}=\frac{\mathrm{PO}_{4}}{\left(\mathrm{PO}_{4}+\mathrm{KPO}_{4}\right)}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{FN}= & \text { nitrogen limitation factor } \\
\mathrm{FP}= & \text { phosphate limitation factor } \\
\mathrm{NPOOL}= & \text { (nitrate+ammonia) concentration, } \mathrm{g} / \mathrm{m}^{3} \\
\mathrm{KNPOOL}= & \text { half-velocity constant relating inorganic nitzrogen to algal } \\
& \text { growth }, \mathrm{g} / \mathrm{m}^{3} \\
\mathrm{PO}_{4}= & \text { phosphate concentration, } \mathrm{g} / \mathrm{m}^{3} \\
\mathrm{KPO}_{4}= & \text { half-velocity constant relating phosphate coracentration to } \\
& \text { algal growth rate, } \mathrm{g} / \mathrm{m}^{3}
\end{aligned}
$$

Algal decay

108. Algal respiration and death (i.e., decay) occur continuously and can be described as follows

$$
\left(\begin{array}{c}
\text { Corrected } \tag{134}\\
\text { algal } \\
\text { decay rate } \\
(\text { ALGADK })
\end{array}\right)=\binom{\text { algal }}{\text { concentration }} *\left(\begin{array}{c}
\text { specific algal } \\
\text { decay rate } \\
\text { (ALGO) }
\end{array}\right) *\binom{\text { Do/decay }}{\text { co rrection }}
$$

In equation form, decay becomes

$$
\begin{equation*}
\text { ALGADK }=C(12, I) * \operatorname{ALGO} *\left(\frac{\mathrm{DO}}{\mathrm{DO}+\mathrm{KOAL.DK}}\right) \tag{135}
\end{equation*}
$$

where

$$
\begin{aligned}
\text { ALGADK }= & \text { algal decay rate, } g /\left(\mathrm{m}^{3} \text { day }\right) \\
\text { ALGO }= & \text { maximum specific algal decay rate, originally entered as } \\
& \text { KALGDK, renamed ALGO in subroutine } S E G, \text { day } \\
C(12, I)= & \text { algae concentration at node } i, g / \mathrm{m}^{3} \\
K O A L D K= & \text { DO half-velocity constant for algal decay, } E / \mathrm{m}^{3}
\end{aligned}
$$

Decay is coupled to DO levels by a Monod-type relationship because decay is assumed to slow down at low oxygen concentrations.

Macrophyte growth

109. The macrophyte growth rate, MGRATE ($\mathrm{g} / \mathrm{m}^{3} / \mathrm{day}$), is taken to be the product of the benthal macrophyte density, the local light intensity (corrected for attenuation en route), and a reaction rate coefficient. To further simplify the analysis, the stream cross section is approximated as a rectangle, as shown in Figure 7. Thus, the plant growth is distributed along the channel bottom and sides.

Figure 7. Channel geometry assumed for calculation of algal/macrophyte growth/decay

$$
\left(\begin{array}{c}
\text { Plant growth per } \tag{136}\\
\text { unit length of channel } \\
(\text { MGRATE }) \\
\mathrm{g} / \mathrm{m}^{3} / \mathrm{d}
\end{array}\right)=\binom{\text { bottom }}{\text { growth }}+\left(\begin{array}{c}
\text { side } \\
\text { growth } \\
2 \text { sides }
\end{array}\right)
$$

or

$$
\begin{align*}
\text { MGRATE } & =\frac{B * M A C R O * S W A L G * \mathrm{e}^{(-\mathrm{KEXT} \cdot \mathrm{H})}}{A} \\
& +\left(\frac{2}{\text { KEXT } * A}\right) * \text { MACRO * SWALG * }\left[1 .-\mathrm{e}^{(-\mathrm{KEXT} * \mathrm{H})}\right] \tag{137}
\end{align*}
$$

where

$$
\begin{aligned}
B & =\text { stream top width, } m \\
\text { MACRO }(\mathrm{g} / \text { watt*day }) & =\operatorname{MACLITE}\left(\mathrm{m}^{2} / \text { watt } / \text { day }\right) \star \operatorname{MACROB~}\left(\mathrm{g} / \mathrm{m}^{2}\right)
\end{aligned}
$$

```
MACLITE = macrophyte growth rate coefficient, m}\mp@subsup{m}{}{2}/\mathrm{ watt/day
    MACROB = macrophyte surface density, g/m
    SWALG = light intensity (net short-wave radiation) at the
                        water surface, watt/m}\mp@subsup{m}{}{2
        KEXT = light extinction coefficient for the particular
                        reach, m-1
                            H = hydraulic depth, m
                            A = channel cross-sectional area, m}\mp@subsup{m}{}{2
SWALG must appear explicitly in the equation because it is recomputed at each time-step. The first term on the right-hand side of Equation 137 includes the light intensity on the bottom (SWALG*EXP (-KEXT*H)). The second term is the summation of the plant growth occurring at all depths on both (vertical)
``` sides:
\[
\begin{align*}
& \text { MGRATE }_{\text {sides }} \tag{138}\\
& \left(\frac{\mathrm{g}}{\left(\mathrm{~m}^{3} * \text { day }\right)}\right)=\frac{2 . * \text { MACRO } * \text { SWALG } * \int_{0}^{\mathrm{H}} \operatorname{EXP}[-\operatorname{KEXT}(\mathrm{H}-\mathrm{Z})] * \mathrm{dZ}}{A}
\end{align*}
\]
where
MACRO \(=\) MACLITE \(\div\) MACROB
To account for diel effects, the surface light intensity (net short wave radiation) is computed as a function of the time of day. This is accomplished in subroutine HEATFLUX if the direct heat balance option is used; otherwise, the following relation is used
\[
\begin{equation*}
\text { SWALG }=\text { HNEFSW } * S I N\left[\frac{P I *(C L O C K-D A W N)}{\text { LAMBDA }}\right] \tag{139}
\end{equation*}
\]
where
\(\begin{aligned} & \text { HNEFSW }=\text { maximum surface light intensity at local noon, watts } / \mathrm{m}^{2} \\ & \text { PI }=3.14159 \ldots \\ & \text { CLOCK }=\text { actual time of day, } 24-\mathrm{hr} \text { clock } \\ & \text { DAWN }=\text { time of local dawn, } 24 \text {-hr clock } \\ & \text { LAMBDA }=\text { elapsed time between local dawn and local sunset, hr } \\ & 110 . ~ I n ~ o n e ~ i n s t a n c e, ~ n u m e r i c a l ~ p r o b l e m s ~ p r e s e n t e d ~ b y ~ t h e ~ e x p r e s s i o n ~\end{aligned}\)
\[
\begin{equation*}
\frac{2}{\operatorname{KEXT}} *\left(1-\mathrm{e}^{(-\operatorname{KEXT} \cdot \mathrm{H})}\right)+\mathrm{B} * \mathrm{e}^{(-\operatorname{KEXT} \cdot \mathrm{H})} \tag{140}
\end{equation*}
\]
used in determining available photosynthetic energy (Equation 137) must be handled. First, the number of calls to the external function EXP (exponentiation) can be halved by rewriting the above expression as the algebraically equivalent
\[
\begin{equation*}
\frac{2}{\mathrm{KEXT}}+\left(B-\frac{2}{\mathrm{KEXT}}\right) * \mathrm{e}^{(-\mathrm{KEXT} * H)} \tag{141}
\end{equation*}
\]

The above expression, however, becomes numerically unstable as KEXT approaches zero, although mathematically it approaches the value
\[
\begin{equation*}
2 * H+B \tag{142}
\end{equation*}
\]

This problem is handled by taking a Taylor's series expansion of EXP (-KEXT*H) in the expression \(2 . / \operatorname{KEXT} *[1 .-\operatorname{EXP}(-K E X T * H)]\) about KEXT \(=0\) carried to three terms,
\[
\begin{equation*}
\frac{2}{\mathrm{KEXT}} *\left[1 .-\left(1 .-\mathrm{KEXT} * \mathrm{H}+\frac{(\mathrm{KEXT} * \mathrm{H})^{2}}{2}=\ldots\right)\right] \tag{143}
\end{equation*}
\]

This simplifies to
\[
\begin{equation*}
\mathrm{H} *(2 .-\mathrm{KEXT} * \mathrm{H}) \tag{144}
\end{equation*}
\]

Equation 140 is then expressed as
\[
\begin{equation*}
\left.H *(2 .-K E X T * H)+B * e^{(-K E X T} * H\right) \tag{145}
\end{equation*}
\]
for KEXT less than 0.01 .
111. Therefore, for KEXT less than 0.01
\[
\begin{align*}
& \text { MGRATE }_{\text {KEXT }} \leq 0.01=\operatorname{MACRO} * \operatorname{SWALG} * \frac{H *(2 .-\operatorname{KEXT} * H)+B(I) * e^{-\mathrm{KEXT} * H}}{A(I)} \tag{146}\\
& \left(\frac{g}{\mathrm{~m}^{3} * \text { day }}\right)
\end{align*}
\]

For \(\operatorname{KEXT} \geq 0.01\)
\[
\begin{aligned}
& \text { MGRATE }_{\text {KEXT } \geq 0.01}=\operatorname{MACRO} * \operatorname{SWALG} * \frac{\frac{2}{\mathrm{KEXT}}+\left[B(I)-\frac{2}{\mathrm{KEXT}}\right] * \mathrm{e}^{-\mathrm{KEXI} * \mathrm{E}}}{\mathrm{~A}(\mathrm{I})} \\
& \left(\frac{\mathrm{g}}{\mathrm{~m}^{3} * \text { day }}\right)
\end{aligned}
\]
112. As Beck and Young (1975) noted, streams subjected to wastewater discharges are likely to have high nutrient concentrations and are also likely to be turbid. Both these conditions are reversed in lakes, so that the lake plankton are often, if not usually, nutrient- rather than light-limited. Thus, lake models almost always include nutrients in the formula for the algal growth rate. Of course, macrophytes obtain their nutrients from the sediments (Bole and Allan 1978, Carignan and Kalff 1980), so stream nutrient levels are irrelevant to macrophyte growth.

\section*{Macrophyte decay}
113. Algae and macrophytes are presumed to respire and die (i.e. decay) continuously. The decay rate is controlled, in part by the DO level since decay slows at low DO levels. Because of the lack of reasonably precise data, no temperature correction is attempted. The decay rate is represented as
\[
\begin{align*}
& \text { MDEATH }=\frac{\text { MACDKY*MACROB*(} \left.\frac{\text { DO }}{\text { DO }+ \text { KOALDK }}\right) *(B+2 * H)}{A} \tag{148}\\
& \left(\frac{g}{\mathrm{~m}^{3} * \text { day }}\right)
\end{align*}
\]
where
\[
\begin{aligned}
\text { MDEATH }= & \text { macrophyte decay rate }, \mathrm{g} / \mathrm{m}^{3} / \mathrm{d} \\
\text { MACDKY }= & \text { macrophyte specific decay rate, day }{ }^{-1} \\
\text { MACROB }= & \text { macrophyte density }, \mathrm{g} / \mathrm{m}^{2} \\
\text { KOALDK }= & \text { Monod half-velocity constant for oxygen limitation of } \\
& \text { macrophyte decay, } \mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3}
\end{aligned}
\]

\section*{Oxygen}
114. The sources of oxygen (\(\mathrm{O}_{2}\)) are reaeration and photosynthesis; the sinks are the exertion of CBOD, nitrification, plant respiration, and the oxidation of reduced iron and manganese. The present model uses equations developed for algal synthesis and decay for both algae and macrophytes. The stoichiometry of these processes is based on the data of Foree and McCarty (1968) and depends on whether ammonium or nitrate is involved. The stoichiometry is obtained from the following equations
\[
\begin{equation*}
132 \mathrm{CO}_{2}+16 \mathrm{NH}_{4}^{+}+\mathrm{H}_{3} \mathrm{PO}_{4}+\frac{177}{2} \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{132} \mathrm{H}_{229} \mathrm{O}_{58} \mathrm{~N}_{16} \mathrm{P}+\frac{597}{4} \mathrm{O}_{2}+16 \mathrm{H}^{+} \tag{149}
\end{equation*}
\]
\[
\begin{equation*}
132 \mathrm{CO}_{2}+16 \mathrm{HNO}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4}+\frac{209}{2} \mathrm{H}_{2} \mathrm{O}=\mathrm{C}_{132} \mathrm{H}_{228} \mathrm{O}_{58} \mathrm{~N}_{16} \mathrm{P}+\frac{725}{4} \mathrm{O}_{2} \tag{150}
\end{equation*}
\]

The oxygen production indicated by Equation 149 when ammonium is the nitrogen source is \(1.59 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g}\) algae, and from Equation 150 is \(1.94 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g}\) algae when nitrate is the nitrogen source. Therefore, the rate of oxygen production by photosynthesis depends upon the relative proportions of ammonia and nitrate consumed:
\[
\left(\begin{array}{c}
\text { Rate of oxygen } \tag{151}\\
\text { production by } \\
\text { photosynthesis } \\
\mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=\left[+ \text { OPDECY }+ \text { ONEQUI } *\left(\frac{\mathrm{NO}_{3}^{-}-\mathrm{N}}{\left(\mathrm{NO}_{3}^{-}-\mathrm{N}+\mathrm{NH}_{3}-\mathrm{N}\right)}\right)\right] *(\text { ALGRO }+ \text { MGRATE })
\]
where recommended values are
OPDECY \(=1.59\)
ONEQUI - 0.35
115. The rate of oxygen consumption resulting from algal decay does not involve nitrification, so it is the reverse of Equation 149 after accounting for the fraction that feeds directly into CBOD:
\[
\left.\left(\begin{array}{c}
\text { Rate of oxygen consumption } \tag{152}\\
\text { by plant decay } \\
\mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=\text { OPDECY*(ALGADK }+ \text { MDEATH }\right)
\]
116. The rate of oxygen consumption resulting from CBOD decay is equal to the rate of CBOD decay, because of the definition of CBOD. This rate is given in Equation 110 (without CBODSR and KDN), and \(K 1\) is computed from Equation 112.
117. The rate of oxygen consumption resulting from ammonium oxidation is based on Equations 120 and 121. Since the units of the SINK term are \(g-N / m^{3} /\) day, a conversion factor is required. This is computed from Equation 153:
\[
\begin{equation*}
\mathrm{NH}_{4}^{*}+2 \mathrm{O}_{2}=\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+} \tag{153}
\end{equation*}
\]

The oxygen consumption here is ONITRI \(\mathrm{g} \mathrm{O}_{2} / \mathrm{g} \mathrm{N}\) (ONITRI \(=4.57\)). Some authors prefer a value of \(4.33 \mathrm{~g}_{2} / \mathrm{g} \mathrm{N}\), arguing that some of the ammonium consumed by the nitrifiers goes into cell synthesis (Garland 1978). However, the nitrifiers are themselves subject to predation, which returns the incorporated ammonia to the stream for further nitrification. The actual amount of ammonia removed or nitrified is unknown, but the difference between 4.57 and 4.33 is insignificant when one considers the usual accuracy of field data.
118. The rate of oxygen uptake resulting from stream reaeration can be formulated as:
\[
\left(\begin{array}{c}
\text { Increase in DO } \tag{154}\\
\text { due to reaeration } \\
\mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=\mathrm{K} 2 *(\text { DOSAT-DO })
\]
where
\[
\begin{aligned}
\mathrm{K} 2 & =\text { reaeration rate coefficient, } \mathrm{day}^{-1} \\
\text { DOSAT } & =\text { local solubility of oxygen, } \mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3} \\
\text { DO } & =\text { local oxygen concentration, } \mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3}
\end{aligned}
\]

Reaerations equations for \(K 2\) may be stated in a general form as
\[
\begin{equation*}
\mathrm{K} 2=\frac{\mathrm{AG} *\left(\mathrm{U}^{\mathrm{E} 1}\right)}{\left(\mathrm{H}^{\mathrm{E} 2}\right)} *\left[\mathrm{TPHYS}^{(\mathrm{TEMP}-20 .)}\right] \tag{155}
\end{equation*}
\]
where
\[
\begin{aligned}
\text { AG, E1, E2 } & =\text { empirical coefficients } \\
\text { TPHYS } & =\text { temperature correction coefficient for reaeration }
\end{aligned}
\]

In using Equation 155, it must be noted that \(A G\) is sometimes given for \(25{ }^{\circ} \mathrm{C}\). For those who prefer the Tsivoglou-Wallace (1972) equation in its published form, provision has been made in the program to permit its use as an option where:
\[
\begin{equation*}
\mathrm{K} 2=\frac{\operatorname{TSIV} *[\mathrm{E}(\mathrm{I}-1)-\mathrm{E}(\mathrm{I})]}{(\mathrm{DX} / \mathrm{U})} * \operatorname{TPHYS}^{(\operatorname{TEMP}-20)} \tag{156}
\end{equation*}
\]
and where
\[
\begin{aligned}
\text { TSIV }= & \text { empirical coefficient, } \mathrm{m}^{-1} \text { (the value is entered in } \\
& \text { units of } \mathrm{ft}^{-1} \text { and converted, suggested value is } 0.054 \text {) } \\
\mathrm{E}(\mathrm{I}-1), \mathrm{E}(\mathrm{I})= & \text { water surface elevations at the upstream and } \\
& \text { downstream ends of the reach under consideration, } m \\
\mathrm{DX}= & \text { length of the reach, } m \\
\mathrm{U}= & \text { reach stream velocity, } \mathrm{m} / \text { day }
\end{aligned}
\]

In using Equation 156, it must be noted that TSIV is sometimes given for \(25^{\circ} \mathrm{C}\). As discussed in Part \(V\), the model can also account for structural and wind-driven reaeration.
119. The solubility of oxygen in water is calculated using the following formula (Elmore and Hayes 1960):
```

DOSAT = 14.652 + [-0.41022 + (0.007991-0.000077774*TEMP)*TEMP ]

```
120. The oxidation of reduced iron (FE) and manganese (Mn) is considered to occur as a first-order reaction. Accounting for stoichiometric conversions, the oxygen used during oxidation of reduced iron and manganese is
\[
\left(\begin{array}{l}
\text { Rate of oxygen used } \tag{158}\\
\text { for oxidation of Fe } \\
\text { and } \mathrm{Mn}, \mathrm{~g} \mathrm{O}_{2} / \mathrm{m}^{3} / \mathrm{day}
\end{array}\right)=- \text { OFEDEC } * \mathrm{KFEDK} * \mathrm{FE}-\mathrm{OMNDEC} * \mathrm{KMNDK} * \mathrm{MN}
\]
where
```

OFEDEC = oxygen-to-iron ratio for iron oxidation

```
 KFEDK \(=\) oxidation rate for iron, day \(^{-1}\)
 \(\mathrm{FE}=\) concentration of reduced iron, \(\mathrm{g} / \mathrm{m}^{3}\)
 OMNDEC = oxygen-to-manganese ratio for manganese oxidation
 \(K M N D K=\) oxidation rate for manganese, day \(^{-1}\)
 \(\mathrm{MN}=\) concentration of reduced manganese, \(\mathrm{g} / \mathrm{m}^{3}\)
121. A DO loss for sediment oxygen demand (SOD) is also provided as a zero-order sink term. SOD is input by the user as \(\mathrm{KSOD}, \mathrm{g} / \mathrm{m}^{2} /\) day.
122. The complete balance of DO reactions is
\[
\begin{aligned}
& \begin{array}{c}
\text { Net rate of accumulation } \\
\text { of dissolved oxygen, } \\
g / \mathrm{m}^{3} / \mathrm{d}
\end{array} \\
& \text { (Reaeration) }- \text { (CBOD oxidation) } \\
&- \text { (nitirfication) }+\binom{\text { DO production }}{\text { from algae/macrophytes }} \\
&-\binom{\text { DO used in algal } /}{\text { macrophyte respiration }}-(\text { Fe oxidation) } \\
&(\text { Mn oxidation })-(S O D)
\end{aligned}
\]

This is stated in equation form as
\[
\begin{align*}
& \left(\begin{array}{c}
\text { Rate of accumulation } \\
\text { of dissolved oxygen } \\
\mathrm{g} \mathrm{O}_{2} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=\mathrm{K} 2 *(\text { DOSAT }-\mathrm{DO})-\mathrm{K} 1 * \text { CBOD }- \text { ONITRI } * \mathrm{KN} * \mathrm{NH}_{4} \mathrm{~N} \\
& \quad+\text { OPDECY }+\left[\text { ONEQUI } *\left(\frac{\mathrm{NO}_{3}^{-}-\mathrm{N}}{\left(\mathrm{NO}_{3}^{-}-\mathrm{N}+\mathrm{NH}_{4}^{+}-\mathrm{N}\right)}\right)\right] *(\text { ALGRO }+ \text { MGRATE }) \tag{160}\\
& - \text { OPDECY } *(1-\mathrm{FCBOD}) *(\text { ALGADK }+\mathrm{MDEATH})-\text { OFEDEC } * \mathrm{KFEDK} * \mathrm{FE} \\
& - \text { OMNDEC }
\end{align*}
\]

\section*{Phosphorus Interactions}
123. Hydrolysis of organic-P is the source of phosphate while sinks are sorption to the sediments (Taylor and Kunishi 1971) and plant uptake of phosphate. These last two mechanisms appear to be competitive, and phosphate sorbed to sediments may be unavailable to plants (Fitzgerald 1970). Additionally, organic \(P\) can be lost through settling and gained through plant decay.
124. The physicochemical sorption occurs only on aerobic sediments, and phosphate is released from anaerobic conditions (Gummerman 1970, Olsen 1964). This latter possibility is ignored in the present model under the assumption that anaerobic conditions are uncommon in streams. As much as half the phosphate present in streams subjected to detergent phosphate discharges may be polymerized as either tripolyphosphate or pyrophosphate (Engelbrecht and Morgan 1959). These different forms are believed to be sorbed and consumed at the same rates, so they have not been distinguished in the present model. In this model macrophytes are assumed to take up phosphate from the water column.
 phytes attached to macrophytes can strip nutrients from the water column.
125. The phosphate sorption process is represented as a simple firstorder decay:
\[
\left(\begin{array}{c}
\text { Rate of loss of } \tag{161}\\
\text { phosphate through } \\
\text { sediment sorption } \\
\mathrm{g}-\mathrm{P} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\mathrm{KPO4DK} * \mathrm{PO} 4
\]
where
\[
\begin{aligned}
\text { KPO4DK } & =\text { first-order reaction rate coefficient for sorption, day }{ }^{-1} \\
\text { PO4 } & =\text { local phosphate concentration, } g \mathrm{P} / \mathrm{m}^{3}
\end{aligned}
\]

The rate coefficient is corrected for the appropriate temperature from the following expression.
\[
\begin{equation*}
\mathrm{KPO4DK}=\mathrm{APO} 4 *\left[\mathrm{TPHYS}^{(\text {TEMP-20. })}\right] \tag{162}
\end{equation*}
\]
where
APO4 \(=\) uncorrected rate coefficient for phosphate sorption, day \({ }^{-1}\)
126. The algal/macrophyte sources and sinks of \(P\) are evaluated using Equations 149 and 150. These equations indicate that algae are about 1.0 percent \(P\) by weight. Therefore, the plant source and sink terms for \(P\) are:
\[
\left(\begin{array}{c}
\text { Release of org-P by } \tag{163}\\
\text { algal } / \text { macrophyte decay } \\
g-P / \mathrm{m}^{3} / \text { day }
\end{array}\right)=\operatorname{APCONT} *(\text { ALGADK + MDEATH) }
\]
where
\[
\begin{aligned}
\text { APCONT }= & \text { phosphorus-to-biomass ratio in algae and macrophytes }, \\
& \text { approximately } 0.01
\end{aligned}
\]

The loss of organic \(P\) due to hydrolysis and settling is stated as
\[
\left(\begin{array}{c}
\text { Loss of org-P due to } \tag{164}\\
\text { hydrolysis to phosphate } \\
\text { and settling } \\
g-P / m^{3} / \text { day }
\end{array}\right)=\text { (ORG-P) } *\left(K P D K+\frac{\text { KPSET }}{H}\right)
\]
where
```

ORG-P = organic-P concentration, C(6,I), g/m
KPDK = org-P hydrolysis rate, day }\mp@subsup{}{}{-1
KPSET = org-P settling rate, m/day

```
\[
\left(\begin{array}{c}
\text { Uptake of phosphate-P by } \tag{165}\\
\text { algal } / \text { macrophyte growth } \\
\mathrm{g}-\mathrm{P} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=\text { APCONT } * \text { (ALGRO + MGRATE) }
\]

The net rate of accumulation of organic-P is stated as
\[
\left(\begin{array}{c}
\text { Net rate of accumulation } \tag{166}\\
\text { of org }-\mathrm{P} \\
\mathrm{~g} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\left(\begin{array}{c}
\text { hydrolysis to phosphate } \\
\text { and settling } \\
\mathrm{g} / \mathrm{m}^{3} / \text { day }
\end{array}\right)+\text { (plant decay) }
\]
or
\[
\left(\begin{array}{cc}
\begin{array}{c}
\text { Net rate of accumulation of } \\
\text { org-P per unit volume }, \\
g \mathrm{P} / \mathrm{m}^{3} / \text { day }
\end{array}
\end{array}\right)=\begin{gathered}
 \tag{167}\\
\\
\\
\\
\end{gathered}+0.0 \mathrm{ORG}-\mathrm{P} *(\mathrm{KPDK}+\mathrm{KPSET})
\]

The net rate of accumulation of phosphate- \(P\) is stated as
\[
\left.\begin{array}{rl}
\begin{array}{c}
\text { Net rate of accumulation } \\
\text { of phosphate }-\mathrm{P} \\
\mathrm{~g}-\mathrm{P} / \mathrm{m}^{3} / \text { day }
\end{array} \tag{168}
\end{array}\right)=\binom{\text { hydrolysis of }}{\text { organic- } \mathrm{P}}-\binom{\text { sediment }}{\text { sorption }}
\]
or
\[
\left(\begin{array}{c}
\begin{array}{c}
\text { Net rate of accumulation } \\
\text { of phosphate }-\mathrm{P} \\
\mathrm{~g}-\mathrm{P} / \mathrm{m}^{3} / \text { day }
\end{array}
\end{array}\right)=\begin{aligned}
& \text { ORG-P } * \mathrm{KPDK}-\mathrm{KPO} 4 \mathrm{DK} * \mathrm{PO}_{4} \tag{169}\\
& \\
& - \text { APCONT*(ALGRO }+ \text { MGRATE) }
\end{aligned}
\]

\section*{Iron and Manganese}
127. As modeled in CE-QUAL-RIV1, iron and manganese have no autochthonous sources. They can enter the system only in reduced form from upstream boundaries, tributaries, and lateral inflows. Oxygen depletion resulting from
the oxidation of these reduced metals may have an adverse impact on water quality downstream from the inflow source. Since the presence of reduced metals probably accompanies releases of waters already somewhat depleted of DO, metal oxidation may exacerbate existing conditions.
128. Oxidation of reduced iron or manganese (loss from the system) is treated simply as a first-order process.
\[
\begin{align*}
& \left(\begin{array}{c}
\text { Loss of Mn } \\
\text { due to oxidation } \\
\mathrm{g} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=-\mathrm{KMNDK} * \mathrm{MN} \tag{170}\\
& \left(\begin{array}{c}
\text { Loss of Fe } \\
\text { due to oxidation } \\
\mathrm{g} / \mathrm{m}^{3} / \text { day }
\end{array}\right)=- \text { KFEDK } * \mathrm{FE}
\end{align*}
\]

Oxidation does not occur if \(D O\) is less than the user-specified value of OXIDAT. Use of Equation 170 may require field data to estimate oxidation (i.e., decay) rates.
129. Temperature does not affect the oxidation rates in the model. Such rate corrections are unnecessary since the current model formulation does not account for other, possibly more important effects such as pH and autocatalysis. Future code improvements may allow implementation of a more mechanistic approach, accounting for variations in process rates, such as those presented by Dortch et al. (1992).

Coliform Bacteria and Other Conservative and Nonconservative Constituents
130. Fecal coliform bacteria, which are a preferred indicator for total coliform bacteria, enter the system only through inflows that represent agricultural or urban flows. Fecal coliforms do not reproduce in natural aquatic environments, and their populations decay exponentially; thus
\[
\begin{equation*}
\binom{\text { Loss of fecal coliforms }}{\text { colonies } / 100 \mathrm{ml} / \text { day }}=- \text { KCOLIDK } * \text { COLI } * \text { TBIOS }{ }^{(\text {TEMP-20.) }} \tag{171}
\end{equation*}
\]

\section*{where}

KCOLIDK \(=\) rate coefficient for fecal coliform die-off, day \({ }^{-1}\)
COLI \(=\) fecal coliform count, colonies \(/ 100 \mathrm{ml}\)
131. The coliform bacteria variable, \(C(11, I)\), can be used for modeling other miscellaneous nonconservative or conservative constituents since it does not interact with other water quality variables. Equation 171 does not contribute to the SINKS term of the transport equation (Equation 76), and KCOLIDK is the \(K_{s}\) term of Equation 76. Therefore, the first-order loss of other nonconservative constituents could be represented by Equation 171 and the variable \(C(11, I)\). Likewise, a conservative constituent could be modeled by setting \(\mathrm{KCOLIDK}=0.0\).
132. As has been noted earlier, the model equations for constituent transport are dependent upon hydraulic variables, but not vice versa. Because of this uncoupling, two entirely separate computer programs can be written. The first program, called RIV1H, solves for the time and space distribution of flow, cross-section area, top width, and depth. When completed, these calculations are stored for use in RIV1Q, the water quality model. RIV1Q is structured so that for any one set of hydraulic data, a variety of water quality simulations can be performed. This part describes in detail the structure and operation of RIV1H.

\section*{Overview}
133. The hydrodynamic program contains numerous subroutines in addition to the main program. Also, a separate file linked to the main program and subroutines, using an INCLUDE statement, allows flexible dimensioning through use of a PARAMETER statement. Furthermore, the INCLUDE file declares the units used for the various input and output files in the program and contains COMMON blocks for some key variables.
134. CE-QUAL-RIV1 expects the user to create an execution control file (RIV1H.CTL) prior to running RIV1H. This control file provides the names of the input and auxiliary files that are required to successfully run the model. The control file must be in the same directory as the RIV1H executable file and as such consist of standard ASCII text. The syntax of the control file is simple. The descriptions on the left are used as place holders so that the user knows which line of the control file is used for which input file. The descriptions can be 15 characters long with the name of the input file starting in column 16. The first line of RIV1H.CTL is the model input data file, the second line the lateral inflow file, and the third the cross-section lookup table file name. If there is no cross-section lookup table file, then insert a blank line for record three of the control file. The order in which this information is entered cannot be changed. A listing of RIV1H.CTL is given below.

INPUT FILE SAMPLEH.INP
LATERAL INFLOW SAMPLEH.LAQ
XSECT TABLR XSECT.XSF
135. Cross-sectional shapes may be described in RIV1H by using either geometric equations or tabular, surveyed cross sections. If the option for surveyed cross sections is selected in the main input file, then the filename is given in the control file. Subroutines AFROMH, AFROMH2, HFROMA, READXS, SHELL, and XSECT are then called to compute cross-section flow properties from surveyed cross-section input; the purpose of each is described later in this section.
136. Nonpoint source flows may be either constant or time-varying in RIV1H. If the user elects to provide time-varying lateral inflows, then the name of the lateral inflow file must be in the control file. The time-varying lateral input file will be read, and flows updated, in the subroutine TIME_VARYING_DATA.
137. The main program then sorts through the tributary network, calling subroutine BUBBLE, and determines what types of boundary conditions are to be found. It sets up the main time march in which values for all nodes are solved simultaneously while time-steps are handled successively. At each time-step, boundary conditions are assigned (in subroutine TIME_VARYING_DATA), and subroutine CALC is called for each segment in a downstream order (from lowest order streams to highest order). Within each time-step the governing equations are solved iteratively; the first iteration is completed by calling subroutine NEW for each segment in an upstream order. Subsequent iterations begin with calls to ITER, an entry point within CALC, and again are completed by calls to NEW. The iteration continues until values of the controlling variables, flow and area, have converged to within tolerance or up to a limit of 50 iterations. Subroutine CALC contains the governing equations conservation of mass and momentum. Using the residuals and partial derivatives from these equations, subroutine CALC sets up a multidimensional Newton-Raphson iteration in matrix format. The matrix equation is reduced to two vectors and solved completely by subroutine MAT5. Subroutine NEW updates the values of flow, area, and other hydrodynamic variables. In the case of tributaries, it also completes the solution of the matrix equation.

\section*{Structure of RIV1H}
138. This section is a guided tour; that is, topics are discussed in the order they appear in the listing of the code, which is found in Appendix A. Certain topics, such as the tributary structure, boundary conditions,
cross-section formulas, and input and output are mentioned briefly in this section but are covered much more fully in their individual sections. The meaning and use of all the variable names are given in Appendix \(C\), but it should be noted that in order to conserve storage, several arrays are reused in different ways in different sections of the program. The flowchart for RIV1H appears in Figure 8.

\section*{Main program}

139:. The main program opens the control file and determines the names of the various input files. The main program then proceeds to read the title card and then the grid card (see Input and Output) in which the user indicates the number of nodes, beginning and ending dates for the simulation, and segments in the system. For the purposes of this program, a segment is defined as a stretch of stream, each boundary of which is either a system boundary, a receiving stream, or a control structure (see Figure 9).
140. The beginning and ending dates, as with all time-varying data, are provided by year, month, day, and hour (or fraction of an hour) and are converted to internal Julian day units by the subroutine JULIAN. Output is reconverted to the year, month, day, hour format by the subroutine GREGORIAN. Next, the MAIN program reads the constants GR, THETA, TOLER, and BETA. The default value of acceleration caused by gravity, \(G R\), is set at \(32.174 \mathrm{ft} / \mathrm{sec}^{2}\) under the assumption that the units used in modeling are the customary English units. If the user wishes to use SI units, then a value of \(9.80 \mathrm{~m} / \mathrm{sec}^{2}\) should be input (see Input and Output). In this case, Manning's coefficients should be adjusted by a factor of 1.49 to account for the SI form of the Manning's equation. However, the water quality program does not accept input data with SI units, although it converts to \(S I\) units.
141. The weighting factor, THETA, is discussed in Part III. A default value of 0.55 is cited in the literature as optimal for model accuracy; however, a higher value (i.e., 0.6 to 0.75) is often used to enhance stability. The relative error tolerance, TOLER, is assigned a default value of 0.001 . Iteration ceases when all residuals (i.e., differences in successive iterations) for flow and area are less than TOLER times the root mean square of all flows or areas in the system. Experience suggests a larger value (i.e., 0.1) can reduce run time without substantially sacrificing accuracy. The momentum correction factor, BETA, is given the default value of 1.0 , that is, no correction.

Figure 8. RIV1H organizational flowchart
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { SEGMENT } \\
& \text { NUMBER } \\
& \text { AND } \\
& \text { ARRAY } \\
& \text { POSITION }
\end{aligned}
\] & NNODE & FEEDS & JNODE & COSP & ORDER & 170 & IT1 & \(\underline{1 T 2}\) \\
\hline 1 & 18 & 3 & 10 & 60 & 7 & 2 & 0 & 0 \\
\hline 2 & 23 & 3 & 17 & 60 & 3 & 3 & 0 & 0 \\
\hline 3 & 26 & 7 & 0 & & 6 & 0 & 2 & 4 \\
\hline 4 & 26 & 3 & 21 & 60 & 1 & 4 & 6 & 6 \\
\hline 5 & 13 & 4 & 17 & 30 & 2 & 6 & 0 & 0 \\
\hline 6 & 25 & 7 & 8 & 60 & 4 & 1 & 5 & 5 \\
\hline 7 & 16 & 0 & 0 & & 8 & 0 & 1 & 1 \\
\hline 8 & 9 & 6 & 10 & 120 & 5 & 5 & 0 & 0 \\
\hline
\end{tabular}

Figure 9. Sample network
142. The program then proceeds to inputting print intervals to output files. For each segment, the segment card is read and parsed; then initial conditions cards are read, one for each node. Following these is the boundary conditions identification card, in which the user informs the program which boundary conditions are being supplied in the input stream. Time variable
information is then specified, including the model time-steps and names of files containing the time-varying boundary condition data.
143. The user refers to each segment by its identification number, but the program refers to each segment by its order of appearance in the input. All references by identification number are therefore converted to references by array index, using the array ID as a dictionary. In the same way, it is convenient for the user to know to which segment each boundary condition belongs, and the program stores this information in the array IBC. For the program, however, it is more convenient to know at which array location a particular boundary condition is to be found. The appropriate indices are determined and stored in the arrays \(J B C U\) and \(J B C D\), for upstream and downstream, respectively. Next, the number of boundary condition updates, the update intervals, and the boundary conditions are read.
144. As mentioned previously, the iteration process consists of one downstream and one upstream sweep through the system. The next block of the program determines the proper ordering of the segments for the two sweeps and establishes the packing of arrays through which tributaries and receiving streams will pass information. The water quality model requires that data for all tributaries to any given segment be packed in a downstream order. This sorting is done by subroutine BUBBLE. Also in the program section, boundary conditions that are generated within the stream network, as opposed to being given in the input, are reset in the arrays JBCU and JBCD.
145. For the user, the controlling variables are flow and stage, but the program works predominantly with flow and area. The next section calculates area and channel top-width from the initial stage and the cross section given for each (see Cross-Section Formulas).
146. River miles are calculated for the system nodes as follows. Proceeding upstream through the network, if a segment is the mainstream of the system, the river mile of the last node is set to RMILEO (which is obtained from the input). If it is a tributary, the river mile of the last node is zero. If it terminates at a control structure, then it is considered to be part of the same stream as the segment downstream, and the river mile of the last node is equal to that of the latter's first node. Once the river mile of the most downstream node is established, the river miles of the rest of the nodes of the segment are calculated by successive addition of distance increments, indexing upstream.
147. The acceleration caused by gravity is divided by two in most places that it appears in the governing equations, so to streamline the program, this division is carried out once and for all before the time march begins.
148. A purely relative tolerance test risks a zero divide error in the case of a flow reversal where at some instant flow may go to zero. For this reason and others, the difference between successive estimates of the dependent variables flow and area is compared not with the values themselves but with the root-mean-square values for all nodes, one for flow and the other for area, times TOLER.
149. The input title, constants, and initial conditions are copied onto output. Grid parameters, network organization variables, distance increments, lateral inflows, and river miles are written onto disk storage for use by the water quality model.
150. The time march begins by initializing the variables for tolerance testing. Data from the previous time-step are then written (in the case of the first time-step, this refers to initial conditions) to the output file and to a file for graphical post-processing. At the top of the page of the output file comes the program title. The run title, supplied by the user, is written below. Next the elapsed time, which has units of seconds for computation, is written out in year, month, day, and hours; next to this appear the time-step number, the segment identification number, and the segment name. Headings are written for river mile, flow, area, width, stage, and water surface elevation. Data appear in columns below the headings. Information is also provided whenever time-varying data (time-steps, boundary conditions, or lateral inflows) are updated, including the date, value, and next update interval. Flow, area, width, lateral inflow, and water surface elevation are written onto disk storage. After incrementing the elapsed time, the calculation for the next timestep proceeds.
151. One complete iteration of the Newton-Raphson method consists of a downstream sweep through the system, an upstream sweep, and a convergence test. For the first iteration within a time-step, the downstream sweep consists of updating all time-varying boundary conditions and calling subroutine CALC for each segment. Subsequent iterations require updating only those boundary conditions that are internally generated (i.e., rating curves and water surface elevation at tributary junctions). In addition, certain
calculations within CALC are bypassed by entering the subroutine at entry ITER. The upstream sweep in both cases calls subroutine NEW for each segment. Fifty iterations are permitted. If results have not converged to within tolerance by then, the program stops, writes an error message, and puts out a condition code of 7. The condition code (which has a value of zero if instead the run is successful) can serve as a signal to other job steps not to run. Subroutine CALC
15.2. Subroutine CALC contains the governing equations of the hydrodynamic model--conservation of mass and conservation of momentum. It sets up these equations as the sum of terms having to do with the previous time-step and terms having to do with the current time-step. Terms having to do with the previous time-step need be calculated only once per time-step. Therefore, all iterations past the first enter subroutine CALC at entry ITER, after the calculation of previous time-step terms. The terms are lumped into the array \(X C\) for the continuity or conservation of mass equation and \(X M\) for the conservation of momentum equation. The final entries of the arrays \(X C\) and \(X M\) are reserved for the contribution of the segment to the continuity and momentum equations, respectively, of its receiving stream (see Tributaries).
153. To enhance execution, repeatedly used array quantities are assigned to scalar variables; for instance, when dealing with the reach between nodes \(I\) and \(I+1\), the value of \(Q(I)\) is assigned to \(Q O\), the value of \(Q(I+1)\) is assigned to \(Q 1\), and \(D X\) takes on the value \(D X 1(I)\).
154. The governing equations are written in the program as they appear in Part III with two exceptions: the off-channel storage area \(A O\) is ignored and the slope \(S O\) is combined with the pressure gradient term and appears in the equation as
\[
\begin{equation*}
D E=E L(I+1)-E L(I) \tag{172}
\end{equation*}
\]
where EL is the water surface elevation.
155. The upstream boundary condition (see Boundary Conditions) can be either a flow or a stage. If a stage is used, it must be converted to the cross-sectional area by the appropriate formula (see Cross-Section Formulas). The set of boundary conditions employed is indicated by the value of LIB (see Boundary Conditions). The partial derivative array \(A A\) and the residual
vector \(R\) are packed accordingly. Downstream boundary conditions can be flow, stage, or a rating curve and are handled in the same way.
156. The governing equations are given next, but a little preparatory work is necessary first. In calculating the partial derivatives of the governing equations with respect to \(A_{i}\) and \(A_{i+1}\) (cross-sectional areas of nodes \(I\) and \(I+1\), respectively), values for \(d B_{i} / d A_{i}\) and \(d B_{i+1} / d A_{i+1}\) are required. Applying the chain rule:
\[
\begin{equation*}
\frac{\mathrm{dB}}{\mathrm{dA}}=\frac{\mathrm{dB}}{\mathrm{dH}} \cdot \frac{\mathrm{dH}}{\mathrm{dA}}=\frac{\mathrm{dB}}{\mathrm{dH}} \cdot \frac{1}{\mathrm{~B}} \tag{173}
\end{equation*}
\]

It remains to calculate \(d B_{i} / \mathrm{dH}_{i}\) and \(\mathrm{dB}_{\mathrm{i}+1} / \mathrm{dH}_{i+1}\). Now as calculation proceeds from node to node, \(d B_{i+1} / d H_{i+1}\) is updated as the variable DBDH. It takes on its new value in between the calculation of the partial of the momentum equation with respect to \(A_{i}\) and the partial with respect to \(A_{i+1}\). This leaves the values of \(\mathrm{dA}_{1} / \mathrm{dH}_{1}\), which must then be calculated, outside of the loop.
157. Proceeding in order then, the reach specific quantities are set. The residual of the continuity equation is calculated. The residual of the momentum is calculated. Calling the continuity equation \(F\) and the momentum equation \(G, \partial F / \partial Q_{i}, \partial F / \partial A_{i}, \partial F / \partial Q_{i+1}, \partial F / \partial A_{i+1}, \partial G / \partial Q_{i}, \partial G / \partial A_{i}\), and \(\partial G / \partial Q_{i+1}\) are calculated. A new value is calculated for \(D B D H\) to permit calculation of \(\partial G / \partial A_{i+1}\). The matrix of partial derivatives \(A A\) is packed appropriately (see Boundary Conditions).
158. The residuals and partial derivatives are adjusted to account for the effects of any tributaries entering this segment. Next, allowance is made for the fact that the matrix solver requires nonzero entries in the upper left-hand and lower right-hand corners of the coefficient matrix \(A A\). Under certain types of boundary conditions, i.e. those involving stage at the upstream end or flow at the downstream end, this assumption would be invalid. To compensate, the program interchanges columns in the coefficient matrix prior to calling the matrix solver, subroutine MAT5, and reverses the interchange in the solution vector upon return.
159. Finally, before returning to the main program, if this segment is a tributary, it loads data into the tributary information passing array \(T\).

\section*{Subroutine MAT5}
160. Subroutine MAT5 contains an algorithm for solving the five-banded coefficient matrix AA constructed in subroutine CALC. It takes advantage of several facts about this matrix to increase efficiency. The matrix's structure is shown in Equation 190. The value of unity in the upper left-hand corner is implied, and the extreme diagonals are only half-populated. By pairwise row operations, these extreme diagonals are eliminated, leaving a matrix of tridiagonal structure. This is readily solved by a recursive Gaussian elimination (Carnahan, Luther, and Wilkes 1969) known as the Thomas algorithm. First, the lower codiagonal is eliminated proceeding from the top of the matrix down. Proceeding from the bottom up, the upper codiagonal is eliminated, and each row is normalized to leave the identity matrix on the left and the solution vector on the right. In the case of a tributary, a companion vector \(C\) is generated in this last step (see Tributaries). Normally, the lower right-hand element is assumed to be unity, and the element to its left is assumed to be zero. These assumptions would not be the case for a segment whose downstream boundary is a rating curve. Such a segment must have its last row handled in a special way, which produces modified values for the solution vector (but not the companion vector \(C\) as such a segment cannot be a tributary).

\section*{Subroutine NEW}
161. The output for subroutine MAT5 is vector \(R\), which now contains adjustments to be made in flow and area to arrive at the new estimates. First, however, the vector \(R\) may have to be adjusted to account for effects of the receiving stream if this segment is a tributary. Once this is done, alternate values of \(R\) are added alternatively to flow and area. From the new area estimates, new stage and width estimates can be made. Now the crosssection formulas explicitly yield area and width, given stage. There is no explicit formulation, however, that will yield width and stage given area. The answer is, therefore, arrived at using another Newton iterative procedure. This is of the form
\[
\begin{equation*}
H_{\text {nox }}=H_{o l d}-\frac{f\left(H_{o l d}\right)-A}{f^{\prime}\left(H_{o l d}\right)} \tag{174}
\end{equation*}
\]
where
\(\mathrm{H}_{\text {new }}=\) new estimate of stage
\(\mathrm{H}_{\text {old }}=\) previous estimate of stage
\(f(H)=\) cross-section formula for area as a function of stage
A = new cross-sectional area
\(f^{\prime}(H)=\) derivative of the cross-section formula for area as a function of stage with respect to stage

The variable \(f^{\prime}(H)\) is equivalent to the cross-section formula for width as a function of stage, and so it is called \(B O\) in the program, that is, a provisional estimate of width just as \(H O\) is a provisional estimate of stage.
162. The test of satisfactory convergence is the relative difference between successive estimates, where the tolerance is fixed at 0.01 . Failure to converge in 10 iterations causes the program to terminate, print an error message, and put out a condition code of 7 .

\section*{Subroutine BUBBLE}
163. As mentioned previously, the water quality model requires the tributary-data-passing arrays \(J T\) and \(T\) to be packed such that all tributaries entering a given segment can be accessed in downstream order. The subroutine scans the list of segments to see if any has more than one tributary. If one is found, pointers to the tributaries and entries in the array JT are sorted in a downstream order according to the BUBBLE algorithm (Knuth 1973).

\section*{Cross-Section Formulas}
164. It is possible to have a program of this sort work with explicit cross-section representations; that is, the coordinates measured in the field could be used directly to relate area, width, and depth. As short-hand crosssection descriptions, however, RIV1H has two stage-area and stage-width equations (stage is height of the water surface above the channel bottom): a hybrid power function and an ellipsoid function.
165. The hybrid power function (standard formula) is
\[
\begin{equation*}
A=C_{2} H+C_{2} H^{C^{\prime}} \tag{175}
\end{equation*}
\]

Consequently, since \(B\) is equal to \(d A / d H\)
\[
\begin{equation*}
B=C_{1}+C_{2} C_{3} H^{C_{3}-1} \tag{176}
\end{equation*}
\]
where
\(A=\) area
\(H=s t a g e\)
B \(=\) channel top width
These formulas can describe a variety of standard shapes. With \(C_{2}=0\), they describe a rectangle of width \(C_{1}\). With \(C_{1}=0\) and \(C_{3}=2\), they describe a triangle with a height-to-width ratio of \(\frac{1}{2 C_{2}}\). With \(C_{3}=2\) and \(C_{2}=\frac{1}{2} \frac{1}{Y}+\frac{1}{Z}\), they describe a trapezoid of bottom-width \(C_{1}\) and sideslopes of \(Y\) and \(Z\). With \(C=0, \quad C_{2}=\frac{4}{3} \alpha^{1 / 2}\), and \(C_{3}=\frac{3}{2}\), they describe a parabolic cross section of the form
\[
\begin{equation*}
\mathrm{H}=\frac{1}{\boldsymbol{\alpha}}\left(\frac{\mathrm{~B}}{2}\right)^{2} \tag{177}
\end{equation*}
\]
where \(\alpha\) is the distance from the vertex to the focus. Other shapes can be approximated by curve fitting.
166. In cases where an ellipse would give a better fit (for instance, flow in a partially full conduit), the user has the option of so describing such cross sections. The geometric descriptions at each node are independent; for instance, ellipses may be interspersed with standard descriptions. In designating the ellipse, \(C_{1}\) is half the vertical axis length, \(C_{2}\) is half the horizontal axis length, and \(C_{3}\) is set to -1 to indicate to the program that an ellipsoid description is intended. If \(C_{1}=C_{2}\), of course, the cross section is circular. The formulas are
\[
\begin{equation*}
B=2 \frac{C_{2}}{C_{1}} \sqrt{2 C_{1} H-2} \tag{178}
\end{equation*}
\]
\[
\begin{equation*}
A=C_{1} C_{2} \arccos \left(1-H / C_{1}\right)-B\left(C_{1}-H\right) / 2 \tag{179}
\end{equation*}
\]

All formulas are summarized in Figure 10.

\section*{CROSS-SECTIONS FALL INTO TWO BASIC TYPES:}
1. THE STANDARD FORMULA:
\(A=C_{1} H+C_{2} H^{C_{3}}, B=C_{1}+C_{2} C_{3} H^{C_{3-1}}\)
IN THIS CATEGORY FALLS
RECTANGULAR,
\(C_{1}=W\)
\(\mathrm{C}_{1}=0\)
TRIANGULAR,

\(C_{1}=0\)
\(C_{2}=\frac{1}{2}\left(\frac{1}{z}+\frac{1}{y}\right)\)
\(C_{3}=2\)

TRAPEZOIDAL,
\(\mathrm{C}_{1}=\mathrm{B}_{\mathrm{O}}\)
\(C_{2}=\frac{1}{2}\left(\frac{1}{z}+\frac{1}{y}\right)\)
\(C_{3}=2\)

AND PARABOLIC,
\[
\begin{aligned}
& C_{1}=0 \\
& C_{2}=\frac{4}{3} a^{1 / 2} \\
& C_{3}=\frac{3}{2}
\end{aligned}
\]

OTHER SHAPES CAN BE APPROXIMATED BY CURVE-FITTING
2. ELLIPSOID
\[
B=2 C_{2} / C_{1} \sqrt{2 C_{1} H-H^{2}}
\]
\(A=C_{1} C_{2} A R C C O S\left(1-H / C_{1}\right)-B\left(C_{1}-H\right) / 2\)

Figure 10. Cross-section types
167. In the course of the program, several manipulations of the cross-section formulas are required. These formulas (Equations 178 and 179) are found in the main program in the initial calculations of areas and widths, again in subroutine CALC in performing the same calculations for upstream and downstream boundary conditions, and in subroutine NEW where the stages are
updated. Later in subroutine CALC, when calculating the partial derivatives of the momentum equation with respect to area, a value is required for \(\mathrm{dB} / \mathrm{dA}\). This is computed using Equation 176 ; it is equal to \(\frac{1}{\mathrm{~B}} \frac{\mathrm{~dB}}{\mathrm{dH}}\). The derivative \(\frac{d B}{d H}\) is called \(D B D H\) in the program and for the standard formula is equal to
\[
\begin{equation*}
C_{2} C_{3}\left(C_{3}-1\right) H^{\left(c_{3}-2\right)} \tag{180}
\end{equation*}
\]
and for the ellipsoid formula
\[
\begin{equation*}
4\left(\frac{C_{2}}{C_{1}}\right)^{2}\left(\frac{C_{1}-H}{B}\right) \tag{181}
\end{equation*}
\]
168. In most computer systems, algorithms for taking integral powers are much less involved than those for taking nonintegral powers. RIV1H takes advantage of this by determining for each cross section whether the exponent C3 is integral. If it is, the integer array I3 receives the value of C3, and C3 is set to zero, which serves as a signal to the rest of the program to use 13 in cross-section calculations rather than C3.

\section*{Surveyed Cross Sections}
169. RIV1 can now develop cross-sections shapes from survey data in two ways. The simplest method develops a relationship for flow, area, and depth from a set of \(X, Y\) pairs. A second method allows for development of the necessary cross-section relationships by "blending" information from the upstream and downstream cross sections (parent cross sections). In cases where only one parent cross section exists, the computed cross section is an exact copy of the parent. If there are no parent cross sections, an error results.
170. RIV1 reads in the cross-section coordinate list and uses it to generate a table of area versus height and width. The algorithm used allows cross sections to be bumpy but they cannot fold in on themselves or have overhangs. Before proceeding, the program inspects the data to make sure this is the case. Once each section of the table is completed, the routines match the
cross-section \(I D\) with the corresponding node. Determining \(H\) from \(A\), or vice versa, then consists of table lookup and interpolation.
171. Each surveyed cross section maintains a pointer (IXSA) in the table. Each blended cross section maintains two pointers, one upstream (IXSA) and one downstream (IXSB). As the water level rises or falls in each cross section, these pointers indicate the last table entry used for interpolation. Each section of the table is bounded above and below by zero so that the routine can tell if the river has run dry or overflowed its banks.
172. To determine \(A\) from \(H\) for a surveyed cross section, the user must first find the appropriate position in the lookup table. Then calculate the width \(B\) by linear interpolation, and use this \(B\), together with the tabulated \(A\), to compute the area of the cross section corresponding to \(H\). To determine \(H\) given \(A\) again, the user begins by finding the correct position in the table. Then solve the relation
\[
\begin{equation*}
A=A_{0}+B_{0} \cdot\left(H-H_{0}\right)+\frac{1}{2} \cdot \frac{d B}{d H} \cdot\left(H-H_{0}\right)^{2} \tag{182}
\end{equation*}
\]
where the subscript o refers to the table value for \(H\). To determine \(H\) from \(A\) for blended cross sections, perform the above routine for each parent and average the results.
173. Determining \(A\) from \(H\) for \(a\) blended cross section is the most complicated and cumbersome task but it only has to be done at model start-up. Once the model is in operation, it only calculates \(H\) from \(A\) since \(A\) and \(Q\) are the primary variables. An exception to this is boundary conditions, but a boundary condition can never be a blended cross section. The process begins as before by (provisionally) locating the correct table position for each parent and solving the set of equations for \(H\). The subscripts a and befer to the upstream and downstream parent, respectively, and \(\xi\) is the weighting factor for the downstream parent. The resulting \(H\) may lie outside the range of the table entry, and if this is the case, the table pointer would be adjusted and the process repeated.
\[
\begin{gather*}
A=A_{o}+\left(B_{o a}+\frac{d B}{d H_{o a}}\right) \cdot \frac{H_{a}-H_{o a}}{2} \cdot\left(H_{a}-H_{o a}\right) \\
A=A_{o b}+\left(B_{o b}+\frac{d B}{d H_{o b}}\right) \cdot\left(H_{b}-H_{o b}\right) \tag{183}\\
H=(1-\xi) \cdot H_{a}+\xi \cdot H_{b}
\end{gather*}
\]

\section*{Subroutines}
174. The following subroutines are used for calculating the flow properties of surveyed and blended cross sections:

READXS Reads in cross-section data from a specified file and matches crosssection ID codes with the proper node designation.

SHELL A sorting algorithm, used by the scan line conversion routine, adapted from The C Programming Language by Kernighan and Ritchie.

The scan line algorithm which converts cross-section coordinates into a table of area \(A\) and width \(B\) versus height \(H\).

AFROMH Calculates A given \(H\) for a surveyed cross section.

HFROMH Calculates \(H\) given A for a surveyed cross section. For a blended cross section, routine is called once for each parent and the results are averaged.

AFROMH2 Calculates A given \(H\) for a blended cross section.

\section*{Boundary Conditions}
175. For the system of equations to be solved, a pair of boundary conditions, one upstream and one downstream, must be known for all time-steps. Either flow or stage is given for the upstream condition, and either flow,
stage, or a rating curve can be given for the downstream condition. The six alternative sets are given in Table 1 along with values of the residual matrix (see Equation 190). The rating curve must be of the form
\[
\begin{equation*}
\mathrm{H}=\operatorname{COEF} Q^{\operatorname{EXPO}} \tag{184}
\end{equation*}
\]
where
\(\mathrm{H}=\) depth of flow, ft
\(\mathrm{Q}=\) discharge, \(\mathrm{ft}^{3} / \mathrm{sec}\)
Then COEF and EXPO are input in the "segment" card (see Input and Output). If the rating curve is instead of the form \(Q=a H^{b}\), then simply set EXPO \(=1 / b\) and \(\operatorname{COEF}=a^{(-1 / b)}\).

Table 1
Library (LIB) of Boundary Conditions
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline LIB & Condition & Condition & \(\mathrm{R}_{n}\) & \(\underline{a}_{1}\) & \(\underline{a}_{2}\) & \(\stackrel{a_{n}}{ }\) & \(\mathrm{a}_{\mathrm{n}-1}\) \\
\hline 1 & H & H & 0 & 0 & 1 & 0 & 1 \\
\hline 2 & H & Q & 0 & 0 & 1 & 1 & 0 \\
\hline 3 & H & RC & RC & 0 & 1 & DBCQ & DBCA \\
\hline 4 & Q & H & 0 & 1 & 0 & 0 & 1 \\
\hline 5 & Q & Q & 0 & 1 & 0 & 1 & 0 \\
\hline 6 & Q & RC & RC & 1 & 0 & DBCQ & DBCA \\
\hline
\end{tabular}

Note: \(H=\) stage
\(Q=\) flow
\(\mathrm{RC}=\) Equation 185
DBCQ \(=\) Equation 186
DBCA \(=\) Equation 187
\(R_{n}, a_{1}, a_{2}, a_{m}, a_{m-1}\) are stated in Equation 190
176. One purpose of the boundary conditions is to supply values for use in the next time-step. A boundary condition of flow can be used directly. A boundary condition of stage can be used after the area and width are calculated from it. The major purpose of the boundary conditions is to properly constrain the system of equations. This purpose is accomplished by treating the equations that assign values to the boundary conditions-or alternatively the rating curve equation--in the same way as the governing equations. The residual is placed in the residual matrix \(R\) and the partial derivatives are
placed in the partial derivative matrix \(A A\). For instance, the assignment of the upstream boundary condition to \(H\) is \(H=B C U\) or \(A=f(B C U)\) where \(f\) is the stage-area function and \(B C U\) is the value of the upstream boundary condition. Isolating all known quantities on the left, we have
\[
\begin{equation*}
A-f(B C U)=0 \tag{185}
\end{equation*}
\]

The residual is equal to zero. The partial derivative with respect to \(A\) is 1. The partial derivative with respect to \(Q\) is 0 . The same reasoning applies to the downstream condition and to flow \(Q\) as a boundary condition. 177. A slightly different situation is presented by having a rating curve as the downstream condition. Here the equation is
\[
\begin{equation*}
\mathrm{H}=\operatorname{COEF} * \mathrm{Q}^{\mathrm{EXPO}} \tag{186}
\end{equation*}
\]

Now this is not an assignment statement, but a constraint on the behavior of \(H\) and \(Q\). Since the solution scheme involves iterative approximation, Equa tion 186, when coupled with the governing equations, is not solved exactly. It leaves a nonzero residual.
\[
\begin{equation*}
H-\operatorname{COEF} * Q^{\mathrm{EXPO}}=\mathrm{R} \tag{187}
\end{equation*}
\]

This residual finds its place in the residual matrix \(R\). The partial derivatives of the above equation are taken with respect to \(Q\) and \(A\). These are called in the program, respectively, DBCQ and DBCA,
\[
\begin{align*}
& \frac{\partial(-R)}{\partial Q}=\operatorname{EXPO} * C O E F * Q^{E X P O}-1 \tag{188}\\
& \frac{\partial(-R)}{\partial A}=-\frac{d H}{d A}=-\frac{1}{B} \tag{189}
\end{align*}
\]

with \(a_{1}, a_{2}, a_{m-1}, a_{m}\), and \(R_{n}\) taking on values which depend on the value of LIB (see Table 1).

\section*{Tributaries}
178. The major concerns in designing a program to handle tributaries are that: (a) the relevant physics be modeled with fidelity; (b) the program should be capable of handling any arbitrary tributary network; (c) it should be efficient in input and output, computer storage, and execution; and (d) it should be amenable to possible future change.
179. In this program, a stream network is envisioned as a group of discrete segments. A segment is defined as a stretch of stream whose boundaries are a system boundary, a receiving stream, or a control structure. No control structures are permitted within a segment. Based on user-supplied information about each segment, the program constructs the network, determines an upstream ordering of the segments, decides what types of boundary conditions apply to each segment boundary, and determines at which array locations each of these boundary conditions values is to be found. An upstream ordering assures that when the turn comes for any given segment to be processed, the segment it
feeds into has already been processed. Conversely, a downstream ordering assures that when the turn comes for any given segment to be processed, all segments flowing into it have already been processed.
180. The first iteration of the Newton-Raphson method at each time-step requires new boundary conditions to be assigned at all time-varying boundaries. Subsequent iterations require new values only for boundary conditions that are generated within the systems, i.e., tributary junctions and flow through control structures. The program then assembles and solves the NewtonRaphson matrix for the entire system in what might be regarded as one step. In fact, however, the matrix is assembled and reduced segment by segment as the algorithm proceeds downstream. When the final segment is reached, the process is reversed, and the reduced, partitioned matrix is solved completely, segment by segment in an upstream order.
181. The detailed features of this algorithm can be illustrated by following the solution of a simple tributary system from the inside of the solution scheme out. The tributary \(J\) joins with the mainstream \(M\) at node \(K\). In the remainder of this section, the portions of the governing equations relevant to tributary junctions are reviewed and placed within the matrix structure, and the solution of the matrix is delineated. Next, the way the main program controls the flow of information between subroutines and coordinates the matrix assembly and solution is described. Finally, the method of constructing the network and assigning priority and boundary conditions is discussed.

\section*{The coefficient matrix}
182. The governing equations are discussed in Parts II and III but are reviewed here as the structure of the matrix solution is intimately tied to the structure of the equations. The Newton-Raphson method assembles a set of linear equations of the form
\[
\begin{equation*}
A \cdot x=R \tag{191}
\end{equation*}
\]

\section*{where}
\(A=\) coefficient matrix with elements of the form \(\partial R_{1} / \partial x_{j}\)
\(x=\) vector of increments in the controlling variables (\(Q\) and \(A\))
\(R=v e c t o r ~ o f ~ t h e ~ n e g a t i v e ~ r e s i d u a l s ~ f r o m ~ t h e ~ g o v e r n i n g ~ e q u a t i o n s ~\) (continuity and momentum)

In the case of a single segment, the five-banded coefficient matrix is assembled as in the form of Equation 192, with three fully populated bands and two extreme bands half-populated.
\[
\left[\begin{array}{lllll}
1 \tag{192}\\
\partial F 1 / \partial Q 1 & \partial F 1 / \partial A 1 & \partial F 1 / \partial Q 2 & \partial F 1 / \partial A 2 & \\
\partial G 1 / \partial Q 1 & \partial G 1 / \partial A 1 & \partial G 1 / \partial Q 2 & \partial G 1 / \partial A 2 & 0 \\
0 & \partial F 2 / \partial Q 2 & \partial F 2 / \partial A 2 & \partial F 2 / \partial Q 3 & \partial F 2 / \partial A 3
\end{array}\right]
\]
183. In the case of a single tributary, two of these five-banded structures are placed head-to-toe and nine off-diagonal members are added to handle junction conditions, as in Equation 194.
184. The single off-diagonal element in the first quadrant (\(-B_{J} / B_{K}\)) represents the condition that the water surface elevation at the mouth of the tributary is equal to that at the junction point on the mainstream, i.e. \(E_{J}=E_{K}\). Taking differentials, \(d_{E_{J}}=d E_{K}\) : However, the water surface elevation is the sum of the bed elevation and the depth of flow, and the bed elevation is taken to be a constant at any node, so \(d_{J}=d H_{K}\). To fit into the Newton-Raphson scheme, \(H\) must be replaced by the controlling variable \(A\), or
\[
\begin{equation*}
\mathrm{dH}_{\mathrm{J}}=\mathrm{dA} A_{\mathrm{j}} \cdot \frac{\mathrm{dH}}{\mathrm{~J}} \mathrm{dA}_{\mathrm{J}} \quad=\mathrm{dA}_{\mathrm{J}} \frac{1}{\mathrm{~B}_{\mathrm{J}}}=\mathrm{dA} A_{K} \frac{1}{\mathrm{~B}_{\mathrm{K}}} \tag{193}
\end{equation*}
\]

As it appears in the matrix
\[
\left[\begin{array}{lllllllll}
a_{1} & & & & & & & \\
a_{11} & a_{12} & a_{13} & a_{14} & & & & \\
a_{21} & a_{22} & a_{23} & a_{24} & 0 & & & \\
& 0 & a_{31} & a_{32} & a_{33} & a_{34} & & \\
& & a_{41} & a_{42} & a_{43} & a_{44} & 0 & \\
& & & 0 & a_{51} & a_{52} & a_{53} & a_{54} \\
& & & & & a_{61} & a_{62} & a_{63} & a_{64}
\end{array}\right.
\]
\[
d A_{J}-d A_{K} \frac{B_{J}}{B_{K}}=0
\]
\[
\left[1-\frac{B_{J}}{B_{\mathrm{K}}}\right]\left[\begin{array}{c}
\Delta A_{\mathrm{J}} \tag{195}\\
\Delta A_{\mathrm{K}}
\end{array}\right]=0
\]
185. The eight elements in third quadrant are \(\underset{\partial \mathrm{F}_{\mathrm{K}}}{\partial \mathrm{F}_{\mathrm{K}}} \underset{\partial \mathrm{G}_{\mathrm{K}-1}}{\partial \mathrm{Q}_{\mathrm{J}}}, \frac{\partial \mathrm{F}_{\mathrm{K}-1}}{\partial A_{J}}, \frac{\partial G_{K-1}}{\partial Q_{J}}\), \(\frac{\partial G_{K-1}}{\partial A_{J}}, \frac{\partial F_{K}}{\partial Q_{J}}, \frac{\partial F_{K}}{\partial A_{J}}, \frac{\partial G_{K}}{\partial Q_{J}}, \frac{\partial G_{K}}{\partial A_{J}}\), where \(F\) and \(G\) are the residuals from the continuity equations, respectively, for the reaches above and below the junction point of the mainstream. These residuals must be adjusted for the presence of the tributary:
\[
\begin{gather*}
R_{2 K-1}=-F_{K}+\frac{d t}{d X_{K}}\left[\theta Q_{J}+(1-\theta) Q_{J}^{j}\right]=-F_{K}+\frac{F_{J}}{d X_{K}} \\
R_{2 K}=-G_{K}+\frac{d t}{d X_{K}}\left[\theta \frac{Q_{J}^{2}}{A_{J}}+(1-\theta) \frac{Q_{J}^{j 2}}{A_{J}}\right] \cos \phi=-G_{K}+\frac{G_{J}}{d X_{K}} \tag{196}
\end{gather*}
\]
where
\[
\begin{aligned}
\mathrm{F}, \mathrm{G} & =\text { lumping of terms } \\
j & =\text { previous time-step } \\
\phi & =\text { junction angle }
\end{aligned}
\]

The derivatives are
\[
\begin{gather*}
\frac{\partial F_{k}}{\partial Q_{J}}=-\frac{d t}{d X_{k}} \theta \\
\frac{\partial F_{k}}{\partial A_{J}}=0 \tag{197}\\
\frac{\partial G_{k}}{\partial Q_{J}}=\frac{d t}{d X_{k}} \theta\left(\frac{Q_{J}}{A_{J}}\right)^{2} \cos \phi \\
\frac{\partial G_{k}}{\partial A_{J}}=\frac{d t}{d X_{k}} \theta\left(\frac{Q_{J}}{A_{J}}\right)^{2} \cos \phi
\end{gather*}
\]
186. Conceptually, the solution begins with reducing the second quadrant to the identity matrix by Gauss elimination. First, the extreme diagonals are eliminated by pair-wise operations on the rows. Next, the lower codiagonal is eliminated by standard tridiagonal matrix methods. Finally, in eliminating
the upper codiagonal, the single first-quadrant element, which has to this point been untouched, generates a column of numbers above it (Equation 198). All elements of this column are proportional to the single original element in that column, \(-B_{J} / B_{K}\). Because of this fact, that element can be given the value of \(-B_{J}\) provisionally (as the tributary does not "know" the value of \(B_{K}\)), and the other elements can be multiplied by the factor \(1 / B_{K}\) later. The last and next-to-last rows in the tributary portion of the matrix can now be brought down to eliminate the eight (six nonzero) third-quadrant elements. This elimination changes the value of the four residuals around the junction node and the four elements of the coefficient matrix below the elements \(C_{i}\). Following the numbering in Equations 194 and 198

\[
a_{34}=\frac{\partial F_{K-1}}{\partial A_{K}}+\frac{d t}{d X_{K-1}} \theta \frac{C_{6}}{B_{K}}
\]
\[
\begin{gathered}
a_{44}=\frac{\partial G_{K-1}}{\partial A_{K}}+\frac{2 d t}{d X_{K-1}} \cos \phi \theta \frac{Q_{J}}{A_{J}} \frac{C_{6}}{B_{K}}+\frac{d t}{d X_{K-1}} \theta\left(\frac{Q_{J}}{A_{J}}\right)^{2} \frac{B_{J}}{B_{K}} \cos \phi \\
a_{52}=\frac{\partial F_{K}}{\partial A_{k}}+\frac{d t \theta}{d X_{K}} \frac{C_{6}}{B_{K}} \\
a_{62}=\frac{\partial G_{k}}{\partial A_{K}}+\frac{2 d t}{d X_{K}} \theta \frac{Q_{J}}{A_{J}} \frac{C_{6}}{B_{K}} \cos \phi+\frac{d t}{d K_{K}} \theta\left(\frac{Q_{J}}{A_{J}}\right)^{2} \frac{B_{J}}{B_{K}} \cos \phi \\
R_{3}=-F_{K-1}+\frac{F_{J}}{d X_{K-1}}+\frac{d t \theta}{d X_{K-1}} R_{6}^{*} \\
R_{4}=-G_{K-1}+\frac{G_{J}}{d X_{K-1}}+\frac{2 d t}{d X_{K-1}} \frac{Q_{J}}{A_{J}} \cos \phi R_{6}^{*} \\
R_{6}=-G_{k}+\frac{G_{J}}{d X_{K}} \frac{2 d t}{d X_{K}} \theta \frac{Q_{J}}{A_{J}} \cos \phi R_{6}^{*}
\end{gathered}
\]

Terms that do not have to do with the main stem can be collected.
\[
\begin{gather*}
T_{1}=d t \theta C_{6} \\
T_{2}=F_{J}+d t \theta R_{6}^{\cdot} \\
T_{3}=2 d t \theta \frac{Q_{J}}{A_{J}} C_{6}+d t \theta\left(\frac{Q_{J}}{A_{J}}\right)^{2} B_{J} \cos \phi \tag{200}\\
T_{4}=G_{J}+2 d t \theta \frac{Q_{J}}{A_{J}} R_{6}^{*}
\end{gather*}
\]
to leave
\[
\begin{align*}
& a_{39}=\frac{\partial F_{K-1}}{\partial A_{K}}+\frac{T_{1}}{d X_{K-1} B_{K}} \\
& A_{44}=\frac{\partial G_{K-1}}{\partial A_{K}}+\frac{T_{3}}{d X_{K-1} B_{K}} \\
& a_{52}=\frac{\partial F_{K}}{\partial A_{K}}+\frac{T_{1}}{d X_{K} B_{K}} \\
& a_{62}=\frac{\partial G_{K}}{\partial A_{K}}+\frac{T_{3}}{d X_{K} B_{K}} \tag{201}\\
& R_{3}=-F_{K-1}+\frac{T_{2}}{d X_{K-1}} \\
& R_{4}=-G_{K-1}+\frac{T_{4}}{d X_{K-1}} \\
& R_{5}=-F_{K}+\frac{T_{2}}{d X_{K}} \\
& R_{6}=-G_{K-1}+\frac{T_{4}}{d X_{K}}
\end{align*}
\]
187. In the notation of the program, if the junction occurs at node \(i\) and \(I R=2(i-1)\) and \(I A=5 * I R\)
\[
\begin{align*}
\mathrm{AA}(\mathrm{IA}-6) & =a_{34} \\
\mathrm{AA}(\mathrm{IA}-2) & =a_{44} \\
\mathrm{AA}(\mathrm{IA}+2) & =a_{52} \\
\mathrm{AA}(\mathrm{IA}+6) & =a_{62} \tag{202}\\
\mathrm{R}(\mathrm{IR}) & =\mathrm{R}_{3} \\
\mathrm{R}(\mathrm{IR}+1) & =\mathrm{R}_{4} \\
\mathrm{R}(\mathrm{IR}+2) & =R_{5} \\
\mathrm{R}(\mathrm{IR}+3) & =R_{6}
\end{align*}
\]

The terms T1 through T4 are calculated in subroutine CALC when it solves the tributary portion of the matrix and are passed back to that subroutine when it is called to work on the main stem. The adjustment in the main stem portion of the matrix and residuals vector is made, and the main stem's system of equations can be solved completely by Gauss elimination. This leaves all main stem variables solved, but the tributary system as yet undetermined. Once the coefficient matrix \(A\) is known, however, the elements \(C_{i}\) can be eliminated from the tributary matrix and \(R_{i}^{* *}\) can be calculated from:
\[
\begin{equation*}
R_{i}^{* *}=R_{i}^{*}-C_{i} \frac{\Delta A_{K}}{B_{K}} \tag{203}
\end{equation*}
\]

Then \(R_{i}^{* *}\) is used to make adjustments in the controlling variables \(Q\) and \(A\) in the normal way.
Flow of information
188. The preceding scheme can be generalized to handle any arbitrary system. The tributary passes to the receiving stream the values \(T_{1}\) through \(T_{4}\) and also \(K\), the junction node. The receiving stream passes back to the tributary the value \(\Delta A_{K} / B_{K}\), placing it into \(T_{1}\). In the general case, \(T\) is an array of dimension (\(4, N S\)) where \(N S\) is the number of segments in the network. Other arrays involved in this information-passing process are JT(NS), which contains the junction nodes ITO(NS), IT1(NS), and IT2(NS). The array

ITO (L) tells where in the array \(T\) segment \(L\) should place its tributary information (ITO (L) \(=0\) if \(L\) is not a tributary). The array ITl(L) gives the index within the array \(T\) of information from the first tributary entering segment L, and IT2 gives the index of the information from the last tributary. If no tributaries enter segment \(L, I T 1\) and \(I T 2\) are set to zero. See Figure 13 (page 112) for an example.
189. The main program works downstream through the network, and for each segment \(L\), it calls subroutine CALC with the arguments \(T\), JT, ITO(L), IT1(L), and IT2(L). In subroutine CALC, segment L picks up tributary information from \(T\) between the indices IT1 and IT2. The matrix solver is called and upon return, segment \(L\) loads its own information into \(T\) at index ITO. The solution is completed by sweeping upstream through the system; for each segment, subroutine NEW is called with the same arguments. This time the segment picks up information from \(T\) at index ITO and distributes information to its tributaries at indices IT1 through IT2.
190. One sweep down and one sweep up determine the system. No segmentwise iteration is necessary. Other advantages of this procedure are that (a) it allows backwaters up tributaries; (b) the coefficient matrix is assembled and solved in pieces as required; and (c) since a banded-style solution is done, the number of operations performed is of order \(N\), where \(N\) is the total number of nodes in the system. In addition, since the scheme is generalized, the number of "bookkeeping" operations is of order \(M\), where \(M\) is the number of segments in the system.

\section*{Network structure}
191. The user provides in the input \(N S\) the total number of segments, and then for each segment \(L\) gives (among other data) FEEDS(L) and JNODE(L); that is, which stream, if any, this segment flows into and the node on the receiving stream at which the junction occurs. If the two segments are parts of the same stream, but separated by a control structure, the input field of JNODE is left blank and so is taken to be zero.
192. From these data, the program infers the network structure, establishes an upstream ordering of the segments, determines where boundary conditions that are passed from segment to segment are to be found, and establishes the packing of the tributary-information-passing arrays JT and \(T\). The latter is done by fixing the values of ITO, IT1, and IT2 for each segment.
193. The program begins with the assumption that the system has a single terminus. Only one segment, the last segment of the main stem, does not
flow into another segment. The index of this stream is the first entry in the array ORDER. Next the array FEEDS is scanned to find streams that feed into this first stream, and they are successively entered into ORDER. Next, the program looks at the second entry of the array ORDER and scans FEEDS for streams that flow into it. The process continues until the array ORDER is completely filled. Whenever a match is found between a tributary J and its receiving stream \(M\), the program discriminates between JNODE equal to zero and JNODE greater than zero. In the former case, the two form a single stream separated by a control structure. The segment \(M\) therefore will find its upstream boundary condition at the last node of segment J. The latter is the case of a true tributary. Segment \(J\) will find its downstream boundary condition at the junction node on M. Also a new slot, IT, is called for the tributary-information arrays JT and T . The tributary J will deposit its information in slot IT. The receiving stream M will withdraw information from slot IT. Using the definitions of IT0, IT1, and IT2 given above, ITO(J) is set to IT, IT1(M) is set to IT if it has not already been set, and IT2 (M) is set to IT.

Boundary conditions
in the tributary structure
194. For each segment, the user specifies what types of boundary conditions will apply upstream and downstream. Flow or stage (designated \(Q\) or \(H\)) may be given upstream, and flow, stage, or a rating curve (designated \(Q\), \(H\), or \(R\)) may be given downstream. The default at both ends is stage. Based on this input, the program assigns a value of one through six to LIB for that segment (Table 1).
195. The network structure may, however, override this assignment. A segment downstream of a control structure must have an upstream boundary condition of flow. A segment that is a true tributary must have a downstream boundary condition of stage.
196. Once the types of boundary conditions are established, the question is from where are the values of the boundary conditions to come. The answer is given in the arrays JBCU and JBCD for upstream and downstream, respectively. The default is that the boundary condition is time-invariant and is given on the "segment" card of the input deck (see Input and Output formats). In this case JBCU or JBCD is given a value of zero. The second possibility is that they are supplied in the "boundary conditions" cards. The user indicates to the program which boundary conditions will appear there by
means of the "boundary conditions identification" card. The value of JBCU or JBCD is set to the position of that piece of data on the boundary conditions card. Finally, as indicated above, the boundary condition may come from within the system; for example, the downstream boundary condition for segment \(L\) might come from node \(J\). In this case \(\operatorname{JBCD}(\mathrm{L})\) is set to -J .
197. When it is time to disburse boundary conditions, again three cases arise. If \(J B C U\) or \(J B C D\) is equal to zero, the boundary condition is timeinvariant, and no change is made. If JBCU or JBCD is positive, then the boundary condition is obtained from that position in the input stream. If JBCU or JBCD is negative, the boundary condition is obtained from the node number -JBCU or -JBCD. As mentioned previously, an internally generated upstream boundary condition must be a flow. An internally generated downstream boundary condition must be a stage. Stage at the junction point on the receiving stream, however, is not equal to stage at the mouth of the tributary--it must first be corrected for the difference in bed elevation between the two.

\section*{Input and Output Formats}
198. The input to the hydrodynamic model is provided in up to four files, depending upon the options selected. As stated previously, RIV1H expects an execution control file to provide the names of the input and auxiliary files that are required to run the program. The main input file contains information on the model configuration, such as specification of constants, initial conditions, and boundary specifications. Time-varying boundary conditions, lateral inflows, and spatially varying surveyed cross sections are specified in separate files. The structure of these files is described below. DOS extensions to the filenames are enforced. The main input file should have the extension *.INP, the time-varying lateral inflow file the extension *.LAQ, the boundary condition file *.BCF, and the surveyed cross-section data file the extension *.XSF. Similarly, output files will have the same name as the input file, but with the extension *.OUT for the main output file, *. HYD for the interface file for the water quality model, *.ERR for the error file, or *. HDF for the dump file containing data for graphical post-processing.

\section*{Main input}
199. Input to RIV1H consists of eight types of cards: (a) a title card, (b) a grid card, (c) a constant card, (d) segment cards, (e) initial conditions cards, (f) a boundary conditions identification card, (g) time-step
cards, and (h) boundary filename specification cards. The details of the input cards are discussed in the following paragraphs, and examples are given in Figure 11. Output consists of the input data followed by the values of the

Figure 11. Sample RIV1H *.INP input data file
hydrodynamic variables for every node of each segment (one segment per page) for each time-step print interval. In addition to printed output, there is output onto disk storage for later use by RIV1Q or plotting programs.
200. Title card. The user has the first 80 columns of the title card to write any appropriate title. It will be printed, verbatim, at the top of every page of the output file.
201. Grid card. The grid card defines the total number of nodes, start and end times for the simulation, and segments in the run. The format of the start and end times are year, month, day, hour, where the year, month, and day are integers and the hour is real (decimal fraction). The number of nodes and segments are integers. The ten numbers can appear anywhere on the card and can be separated by a comma or blanks or both, but they must appear in the following order: nodes, start year, start month, start day, start hour, end year, end month, end day, end hour, and segments. Note also that the node numbers correspond to grid lines, not intervals. For instance, if the study area extends from river mile 1.0 to river mile 0.0 with 0.1 -mile reaches, the number of nodes is 11 , not 10 .
202. Constant card. There are seven variables that may be assigned values on the constant card: BETA, GR, RMILEO, THETA, TOLER, IQL, and IXS. The variable RMILEO is the river mile of the first node. The variable THETA is the weighting factor (see The Governing Equation, Part IV). Historically, models of this type have used a value of 0.55 or greater for stability reasons. This is the default RIV1H uses.
203. With some applications, a value of THETA higher than 0.55 (between 0.55 and 1.0) may be desirable to reduce parasitic oscillations (Liggett and Cunge 1975). Parasitic oscillations, which are actually numerical dispersion or phase errors associated with short waves, can cause modeling problems when the parasitic oscillation is on the same order of magnitude as the depth (a negative depth can result). Values of THETA between 0.6 and 0.75 have been used to reduce these oscillations without significant loss of accuracy. However, accuracy does decrease as THETA is increased because of increased numerical dampening. The requirement for numerical stability is \(0.5<\theta<1.0\).
204. The variable TOLER is the maximum acceptable relative tolerance used by the program to decide whether another iteration is necessary. The default value is 0.001 ; that is, iteration will stop when the difference between current and previous estimates of flow and area for every node is less than 0.001 times the root mean square of all flows and areas, respectively,
throughout the system. If the user desires greater accuracy and has a stable system, a lower value of TOLER may be desired. Conversely, gif the user requires less accuracy and swifter computation time, then a higher value may be desired, such as 0.1 . This value has yielded acceptable accuracy. It should be pointed out that TOLER is a control on precision from one time-step to the next--not from the beginning of the run to the end.
205. The variable \(G R\) is acceleration caused by gravity. Its default value is \(32.174 \mathrm{ft} / \mathrm{sec}^{2}\). If the user wishes to make a run in \(S I\) units, then GR should be set at \(9.80 \mathrm{~m} / \mathrm{sec}^{2}\). Several things to keep in mind in this case are that the river miles in the output are meaningless, the Manning's coefficient must be multiplied by 1.49 , and the output is not usable in RIV1Q. The variable BETA is the momentum correction factor, with a default value of 1.0 . The variable IQL specifies the option for lateral inflows. If IQL is greater than or equal to one, then time-varying lateral inflows will be expected, and the lateral inflow file name is given in the second line of RIV1H.CTL. The variable IXS specifies the option for cross sections. If IXS is greater than or equal to one, then the name of the file containing the surveyed crosssectional data should be listed on the third line of RIV1H.CTL.
206. The form of the constant card is similar to the grid card. Variables are read in free format and must be in the following order: BETA, GR, RMILEO, THETA, TOLER, IQL, and IXS. The variables BETA, GR, RMILEO, THETA, and TOLER are real numbers, while IQL and IXS are integers. The variables can be separated by spaces or a comma (see Figure 11).
207. Print update card. The print update card identifies the number of print interval updates that will be read from the following card.
208. Print interval card. On the print interval card, the user specifies pairs of data containing the print interval in hours and the Julian day for the print interval update. The print intervals allow the user to print more frequently during critical periods of the simulation. The format of the update cards is \(n\) pairs of print intervals and Julian days (both real), where \(n\) is the number of print interval updates specified on the print update card.
209. Segment card. On the segment card, the user specifies segmentspecific data: ID, the identification number; SNAME, the name; NNODE, the number of nodes in this segment; FEEDS, which segment it flows into, if any; JNODE, the number of the junction node on the receiving stream; BTU, the type of boundary condition imposed at the upstream end; \(B C U\), a value for that boundary condition if it is time-invariant; BTD, the type of boundary
condition imposed on the downstream end; \(B C D\), a value for that boundary condition if it is time-invariant; and COSP, the junction angle in degrees if the segment is a tributary. The format is
\[
\mathrm{I} 2, \mathrm{~A} 40,3 \mathrm{I} 3,2(\mathrm{~A} 1, \mathrm{~F} 8.0), \mathrm{F} 8.0
\]

The choice of identification number and the ordering of the segment cards are arbitrary. The only constraint is that identification numbers used here must be consistent with those used in the water quality model and they must be positive. The segment name can be up to 40 characters long. It has no use in the model other than labeling output. NNODE counts the total number of nodes in the segment, which is one more than the number of reaches. FEEDS refers to the receiving stream by its identification number. JNODE refers to the junction node on the receiving stream, starting with the first node of the stream equal to one. Referring to Figure 9, JNODE for Segment 1 would be 10. When two segments are actually part of the same stream but separated by a control structure, JNODE is left blank (control structures are not permitted within a segment, only at the boundaries). The boundary type \(H\) signifies stage, depth above bottom (and is the default), \(Q\) signifies flow, and \(R\) signifies a rating curve. A rating curve is not a permissible upstream boundary condition. The value of the boundary condition is in feet for stage and cubic feet per second for flow. \(\operatorname{COSP}\) is the angle formed by the tributary junction, in degrees. See Figure 9 for the sense of this angle. In the case of a rating curve of the form
\[
\begin{equation*}
H=\operatorname{COEF} \star Q^{E X P O} \tag{204}
\end{equation*}
\]
the exponent EXPO is given in place of \(B C D\) and COEF in place of COSP. There is no conflict as a tributary cannot be terminated by a rating curve. If, instead, the rating curve is of the form \(Q=a H^{b}\), then set EXPO \(=1 / b\) and COEF \(=a^{(-1 / b)}\).
210. Initial conditions card. Each segment card is followed by a set of initial conditions cards, one per node. Twelve pieces of data can appear on each initial conditions card. Each number can occupy a field of six. Any right-justified number without a decimal point will be taken as having a decimal point at the end (e.g., 25 will be read as 25.0). Any value not specified will be taken as zero. These pieces of data are, in order: length of the
reach downstream from the node in feet (DX1); flow in cubic feet per second (Q); stage-height of water above the channel bottom in feet (H); constant (time-invariant) lateral inflow in cubic feet per second per foot (QL) (flow divided by \(D X 1\)) ; streambed elevation relative to some datum in feet (\(Z\), initially EL is used and moved into \(Z\) array), (C1), (C2), and (C3) constants in the cross-section formula (see Cross-Section Formulas, above); Manning's coefficient for the reach downstream of the node (CN1) ; constriction energy loss coefficient for the reach downstream of the node (KE1); intercept of the linear equation relating Manning's \(n\) to depth of flow in the stream (AX); and the slope (DNDH) of the linear equation relating Manning's \(n\) to depth. If the user elects to use surveyed cross sections (IXS \(\geq 1\)), then in place of the constant \(C 1\), the user specifies an alphanumeric code (up to six characters) identifying the cross-sectional data. For blended cross sections, the field for \(C 1\) is left blank. The term KEl should be used only when there is a rapid constriction in the channel and only after it has been determined that refining the grid work in the area of the constriction is infeasible. Values for KE1 range from 0.0 to 0.5 , with the higher value associated with abrupt constriction.
211. Manning's \(n\) at a cross section can vary with Elow conditions in many streams. High values may be more representative for shallow-depth conditions whereas lower values may be appropriate for deeper flow. For timevarying flow conditions, a variable Manning's coefficient may have to be adjusted as a function of depth during the simulation. Typically, shoal areas exhibit a variable \(n\) that can have a significant effect on computed stage; at low stage, \(n\) is usually larger than at high stage. If the user wishes to allow for variable Manning's coefficients, the values of \(A X\) and DNDH in the input data, which appear on the initial conditions card, should be set to the appropriate values. If the user chooses not to vary Manning's \(n\), these values should be set to 0 . The equation relating Manning's \(n\) to depth is \(X M A N=A X-D N D H * H\) where \(H\) is the value for depth at a particular node. During initiation, XMAN is set to the original value (CN1) at that node. As the program executes, XMAN is adjusted with relation to depth over time. If at some point during the execution, the value of XMAN becomes less than 0.01 , XMAN is reset to 0.01 . If this event occurs, a message is printed to the diagnostic file, FILE7. The first location in the code where the adjusted Manning's values occur is several lines after statement 301 while the second location is several lines after statement 170.
212. Boundary conditions identification card. On the boundary conditions identification card, the user indicates which time-varying boundary conditions will be provided in external boundary conditions files (for flow Q and head H boundary conditions only). As an example, consider a system with two segments separated by a control structure where segment 1 is the reach above the structure and segment 2 is the reach below. The upstream and downstream boundary conditions will be specified for segment 1 , whereas the downstream boundary condition will be specified for segment 2 . The upstream boundary condition for segment 2 (below the control structure) is determined internally by the program. The card would appear as
\[
+1,-1,-2 /
\]
with the numbers being the ID numbers, the positive sign standing for upstream, and the negative for downstream. The list must be terminated by a slash.
213. Time-step update card. On the time-step update card, the user indicates the total number (NUM) of time-step updates. A minimum of two update cards is required (even if the time-step does not change) or the program will abort (see bottom of Figure ll). The format is Il0. In the following cards, a total of NUM time-step cards must be provided.
214. Time-step update interval card. On the time-step update interval card, the user indicates the year, month, day, and hour of the update and the model time-step (seconds) which will apply for the period between that period and the next update interval. The format of the update card is 315,2 F10.0. There must be NUM update intervals specified.
215. Boundary condition cards. On these cards, the user specifies the file names containing the time-varying boundary condition data. The number of files specified and their order should correspond to the boundary conditions identification card. The format is Al5 for each card. Boundary conditions file(s)
216. Time-varying boundary conditions are specified in external files, whose names are specified in the main input data set. An example of the boundary condition file (with DOS extension *.BCF) is given in Figure 12. The first line of these files contains the segment number for which the boundary is provided, the number of boundary condition updates (NUMBC), and the
\begin{tabular}{rrrrr}
& \multicolumn{1}{l}{} \\
1983 & & & \multicolumn{1}{l}{24} & \multicolumn{1}{l}{0} \\
1983 & 6 & 18 & 0.00 & 500.0 \\
1983 & 6 & 18 & 12.01 & 500.0 \\
1983 & 6 & 18 & 15.01 & 500.0 \\
1983 & 6 & 18 & 20.51 & 500.0 \\
1983 & 6 & 18 & 23.01 & 600.0 \\
1983 & 6 & 19 & 1.01 & 600.0 \\
1983 & 6 & 19 & 3.51 & 600.0 \\
1983 & 6 & 19 & 6.01 & 700.0 \\
1983 & 6 & 19 & 8.51 & 700.0 \\
1983 & 6 & 19 & 11.01 & 800.0 \\
1983 & 6 & 19 & 13.51 & 800.0 \\
1983 & 6 & 19 & 16.01 & 700.0 \\
1983 & 6 & 19 & 18.51 & 700.0 \\
1983 & 6 & 19 & 19.76 & 700.0 \\
1983 & 6 & 19 & 22.26 & 700.0 \\
1983 & 6 & 20 & 0.76 & 600.0 \\
1983 & 6 & 20 & 2.01 & 500.0 \\
1983 & 6 & 20 & 4.51 & 400.0 \\
1983 & 6 & 20 & 7.01 & 400.0 \\
1983 & 6 & 20 & 9.51 & 400.0 \\
1983 & 6 & 20 & 12.01 & 400.0 \\
1983 & 6 & 20 & 14.51 & 400.0 \\
1983 & 6 & 20 & 17.01 & 400.0
\end{tabular}

Figure 12. Sample RIV1H *.BCF input data file
variable INTBC. If the variable INTBC is greater than or equal to one, the boundary conditions will be linearly interpolated between update intervals. Otherwise, they will be held constant between updates (a step function). The format of the first line of the file is 3110 .
217. Following the initial line of the boundary condition file are NUMBC lines of update intervals. Each line of update will contain the year, month, day, and hour for the update and the corresponding boundary condition (flow or head). The format for these lines is 3I5, 2F10.0. The update times should bracket the period of model simulation.
Lateral inflow file
218. The lateral inflow file contains the time-varying lateral inflows. If the user elects to input time-varying lateral inflows (IQL \(Z 1\)), the file name (with DOS extension *.LAQ) should be given in the second record of RIV1H.CTL. An example of the lateral inflow file is given in Figure 13.

Figure 13. Sample RIV1H *.LAQ input data file
219. The first line of the lateral inflow file contains the specifications for the number of updates (NUMLAT_UD), the number of nodes which will receive lateral inflows (NUML), and the variable LATOPT. If the variable LATOPT is greater than or equal to one, the lateral inflows will be linearly interpolated between update intervals. Otherwise, they will be held constant between updates (a step function). The format for this line is 315 .
220. Following the initial line of the input will be NUML lines on which the node numbers that will receive the lateral inflows are specified. The node numbers correspond to the order specified in the main input. The format is I5, so there will be one node specification per line of input.
221. Following the specification of node numbers, there will be NUMLAT_UD lines of input specifying the date (year, month, day, hour) followed by the lateral inflow (flow rate per unit length) for each of the NUML nodes. The format of these lines of input is 3I5, 150F10.0.

Surveyed cross-section file
222. The type of cross section employed at any particular node is indicated on the initial conditions card for that node. For surveyed cross sections this is done by placing an alphanumeric code (up to six characters) in the field normally reserved for the constant \(C_{1}\). For blended cross sections leave the field blank.
223. The cross-section data themselves are given in a separate file (Figure 14) whose name (with DOS extension \(*\). XSF) is given in the third record of the control file. The option for using surveyed cross sections (IXS \(\geq 1\)) is specified on the constant card in the main input file. The cross-section file has the following format. Each cross section has a six-character ID code

followed by an optional description. On succeeding records are the \(X\) and \(Y\) coordinates, in 2 F10.0 format, with the origin for \(X\) and \(Y\) beginning at the top of the left streambank, where \(X\) increases to the right and \(Y\) increases downward when looking downstream. No other delimiters or separators are required. Units are in feet. As with the algebraic method, the channel bed elevation is understood to refer to the absolute lowest point in the surveyed cross section.

Output
224. Output from RIV1H consists of several files. One of the files, which will have the DOS extension *. OUT, consists of the input data and the simulation results at specified print intervals. The simulation results contain the information for each segment at each time-step print interval, one segment per page. At the top of the page appears the program title. The next line prints the run title as supplied by the user. On the following lines are the time-step number and the elapsed time in the simulation, in year, month,
day, hour, followed by the segment ID number and name. Below that are column headings and data for river mile, flow (cubic feet per second), area (feet), width (feet), stage (feet), and water surface elevation (feet) (Figure 15). The output file also is updated whenever there is a change in the time-varying (time-step, boundary condition, or lateral inflow data), with the update time, new value, and next update.
225. Another output file is in standard FORTRAN unformatted records used as input to RIVIQ and is written to a file with the name of the main input file but with the DOS extension *.HYD. The records are organized as follows:
\begin{tabular}{ll}
Record 1 & MNODE, STARTIME, ENDTIME, SYEAR, NS \\
Record 2 & JT,ITO,ITI, IT2, NNODE, NODE1, ID, JBCU \\
Record 3 & DX1,QL,RMILE \\
Record 4 & DT,Q,A, B, EL
\end{tabular}
where all variables are arrays except for MNODE, STARTTIME, ENDTIME, SYEAR, NS, and DT. Record 4 is contained in the array HYDRO (with exceptions of DT) and is written every time-step, as this information is required to drive RIV1Q and plot hydrodynamic output. All succeeding records are identical to record 4 but for succeeding time-steps. A diagnostics output file (file 7) is generated under certain conditions during the execution of RIV1H. If the Courant number becomes less than 1.0 , if Manning's \(n\) becomes less than or equal to 0.01 , or if the depth goes below 0.0 , then a message is written to file 7 telling the user at which node this event occurred. If the program has trouble converging, a diagnostic message is written to file 7, allowing the user to examine the node at which nonconvergence is occurring.

\section*{Special considerations}
226. Upland streams characterized by riffles and pools can be difficult to model with hydraulic routing models, such as RIV1H. Generally, two types of problems may be encountered: start-up of the model and phase errors associated with unsteady flow waves. Streams with riffle sections accentuate these problems.
227. If inaccurate initial depths are selected for the initial flows, the model will have trouble getting started. If good initial estimates of depths are not available, it is best to run the model for a steady-state flow condition using deeper than expected conditions. With a constant inflow rate and either a constant head or rating curve downstream, the water surface in the segment will eventually drop to a steady-state water surface profile

\subsection*{1.00
32.17
1
0.00
0.67
0.1000}

BETA
GR
IPRINT
RMILEO－
THETA

\section*{88 \\ 08 \\ 촌 분 LNIXd
LNIXd
2 NUMBER OF PRINT UPDATES
PRINT INTERVAL－\(\quad 6.000\)
PRINT INTERVAL－\(\quad 6.000\)}

N응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ －000000000000000

긍ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
00000000000000000

승ㅇ8ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 00000000000000000
\(n 898989898989889\)
688888888888888888
00000000000000

88888888888888888888888888888 －00000000000000
 000000000000000

\section*{\(\underset{\sim}{\rightrightarrows}\)}

000000000000000

0000000000000000000

 －

0000000000000000
 8\％Oㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ N 080888888808 nnio
 \(-\)

앙ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 000000000000000

8
8000000000000000000 ウionionovioioinnvioio
 ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 0 innini
 용ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ 00000000000000000

4
\(-\)
\begin{tabular}{l}
\(\stackrel{1}{0}\) \\
む \\
む \\
\hline
\end{tabular}
\(\stackrel{\underset{4}{-1}}{\underset{4}{-1}}\)
誌

88888ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ
 연
ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ

受

 8888888888888888088080

匂8888ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ Z NinNming omiNiNiogio

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
 Ninㅇㅇㅇ양ㅇㅇㅇㅇㅇ \\
00000000000
\end{tabular} & \begin{tabular}{l}
N0000000000000000 \\
 \\
00000000000000000
\end{tabular} \\
\hline & \[
\stackrel{\Sigma}{\omega}
\] \\
\hline ตimimininimim © & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
テのnmomsonoro \\
 \\
号荘
\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 －ixoon \\

\end{tabular} & \begin{tabular}{l}
： むio nion onnmo \\

\end{tabular} \\
\hline \begin{tabular}{l}
minnoinioninio \\
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 － \\
 \\

\end{tabular} \\
\hline \begin{tabular}{l}
 \\
 \\

\end{tabular} & \begin{tabular}{l}
 \\
 द．． \(\boldsymbol{y}^{\circ}\) \\
客 \\

\end{tabular} \\
\hline
\end{tabular}

OUTPUT FOR SEGMENT NO. OUTPU Far \(=1983\), Month
Time: Year
Upstrean Boundary 250.000

\section*{\(\begin{array}{ll}\text { 3 } \\ \text { June, Day } & 19, \text { Hour }=\quad 5.9707 \text { Step- } \\ \text { Downstream Boundary }= & 6.449\end{array}\)} \(\begin{array}{cc}\begin{array}{c}\text { Downstream Boundary } \\ \text { Area }\end{array} & \begin{array}{c}6.449 \\ \text { Width }\end{array} \\ \text { (sq.ft) } & \text { (Feet) } \\ 807.410 & 202.529 \\ 210.520 & 145.602 \\ 635.053 & 160.571 \\ 1225.086 & 181.326 \\ 1443.487 & 235.236 \\ 1712.349 & 280.955\end{array}\) SAMPLE RIVIE DATA SET - USER'S MANUAL
TIME STEP (BEC)
島NN二0000 Upstr
\begin{tabular}{cc}
\begin{tabular}{c}
Upstrean Boundary \\
River \\
Mile
\end{tabular} & \begin{tabular}{l}
Flow \\
Flo
\end{tabular} \\
(cfs)
\end{tabular} OUTPUT FOR SEGMENT NO.
TIme: Year -1983, Monthm
Upstrean Boundary 800.0
 501 diva

 Figure 15.

DAM

 SAMPLE RIVIA DATA SET - USER'S MANUAL
TIME STEP (sec) \(=\quad 450.00\)

\section*{Manoings \(n\)}
.457
.040
.040
.040
.050
.050
\(000000^{\circ}\)
hva 9Taje gnogy
\[
\begin{gathered}
3 \\
\text { June, Day } 19, \text { Hour }=23.9531 \text { Step } \\
\text { Downstream Boundary }=\begin{array}{l}
6.157 \\
\text { Area }
\end{array} \text { Width }
\end{gathered}
\]
\[
\text { Figure } 15 . \quad \text { (Sheet } 12 \text { of } 14 \text {) }
\]

corresponding to that flow, channel geometry, and bed roughness. If problems are still encountered starting the model, the use of small time-steps, at least initially, has helped. After a steady-state flow and water surface profile have been achieved, it is best to use these results to start subsequent simulations.
228. Phase errors (see Constant Card, above), which may accompany unsteady flow waves, can result in negative depths (usually in or near shallow riffle sections). If this happens, a fatal execution error occurs, and the program is stopped. Several things can be done to eliminate this problem. First, make sure that the cross-sectional area is adequately described, especially at low stage. Next, check the value of THETA (see Constant Card, above) ; higher value (e.g. 0.75) may help. If problems are still encountered, it may be necessary to change the time-step such that the surface wave Courant number is closer to 1.0 . As values of this number decrease below or increase above 1.0 , phase errors become worse (Lyn and Goodwin 1987, Liggett and Cunge 1975). The surface Courant number is defined as
\[
\begin{equation*}
\mathrm{C}_{\mathrm{N}}=\frac{\mathrm{U}_{\mathrm{s}} \Delta \mathrm{t}}{\Delta \mathrm{x}} \tag{205}
\end{equation*}
\]
where
\[
\begin{aligned}
U_{s} & =\text { speed of the surface wave }=\sqrt{g d} \\
d & =\text { water depth } \\
\Delta t & =\text { time-step size } \\
\Delta x & =\text { spatial step size }
\end{aligned}
\]

The same result can be achieved by adjustment of the spatial steps. If these measures are not successful, ramping of the inflow hydrograph to yield a gentler, longer wave will usually reduce phase errors since the unsteady flow waves are more spread out. As an example, hydropower turbines can come up to full power in about 5 min; peaking hydropower releases can result in highly unsteady flow waves in the receiving stream. It may be necessary to spread out the generation start-up over 15 to 30 min . Judicious smoothing of the inflow hydrograph can be accomplished without jeopardizing study objectives.
229. The water quality program contains numerous subroutines in addition to the main program. There are also two files linked to the main program and subroutines using INCLUDE statements. The primary INCLUDE file contains a PARTITION statement, which allows flexible redimensioning of the model. The main program sets up the flexible dimensioning of arrays, as is done in the hydrodynamic program, and handles all input and output and the organization of the tributary structure.
230. CE-QUAL-RIV1 expects the user to create an execution control file (RIV1Q.CTL) prior to running RIV1Q. The control file must be in the same directory as the RIV1Q executable and as such consist of standard ASCII text. This file follows the same syntax as the control file for RIV1H discussed in Part VI. The first line is the name of the input file, the second line is the hydrodynamic file from a previous RIVlH simulation, the third line is the lateral flow file, and the fourth is the meteorological data file. The order in which this information is entered cannot be changed. A listing of RIV1Q.CTL is given below.
\begin{tabular}{ll}
INPUT FILE & SAMPLEQ.INP \\
HYDRO FILE & SAMPLEH.HYD \\
LATERAL FILE & SAMPLEH.LAC \\
MET DATA FILE & SAMPLEQ.MET
\end{tabular}
231. As noted in Part IV, RIV1Q achieves its fourth-order accuracy by advecting derivatives as well as concentrations. Initial concentrations are given by the input data, but initial derivatives must be estimated from these data. The main program calls subroutine SPLINE to pass a cubic spline through the data points, from which this estimate is obtained. The algorithm for constructing a cubic spline produces a tridiagonal matrix, which is solved by subroutine TRIDAG. At each step of the time march, the main program proceeds through the tributary network in a downstream order (see Tributaries, Part VI), assigning appropriate boundary conditions for each segment and calling subroutine SEG to complete the solution.
232. The major loops of the program are, in order of nesting, the time, segment, node, and constituent. The program handles up to a maximum of 12 constituents: temperature (TEMP), CBOD, organic nitrogen (ORGAN), ammonia nitrogen (\(\mathrm{NH} 3-\mathrm{N}\)), nitrate nitrogen (\(\mathrm{NO} 3-\mathrm{N}\)), organic phosphate, dissolved phosphate (PO4), dissolved iron, dissolved manganese, dissolved oxygen (D0),
coliform bacteria, and algae. In addition, the effects of macrophytes are simulated, although macrophytes is not a state variable. Minor loops of the program cycle through segments, nodes, or constituents as appropriate. A flowchart is shown in Figure 16.

Figure 16. RIV1Q organizational flowchart

\section*{Structure of RIV1Q}
233. Structured as a guided tour, this section is best read concurrently with the listing of the code in Appendix \(B\).

\section*{The main program}
234. The main program opens the control file (RIV1Q.CTL) and determines the names of the various input files. The main program in RIV1Q serves to apportion storage in the same way as it does in RIV1H. The major difference is that whereas the grid information for the hydrodynamic program comes from the input deck, the water quality model obtains its grid information from the hydrodynamic model. Variables that determine the total array storage required by the program are: INDI, the total number of computational nodes; IBRAN, the total number of branches; IUPDATE, the number of time-varying updates; and ISYS, the number of water quality constituents. These variables are defined in the PARAMETER statement of the main INCLUDE file. The main program performs the bulk of the work for the rest of the program.
235. Because of all the K-rates used, all variables whose names begin with the letter " \(K\) " are implicitly declared real. The array \(C P\), an array of flags, indicates whether each of the 12 constituents is to be simulated or held constant at its initial value. The DATA statements assign default values to parameters when reasonable, zero otherwise.
236. The first item in the main input stream is the title card. Then, the program reads a series of global constants, applicable everywhere in the model domain, followed by input which determines the frequency of printing, and then bypass options. The bypass options, stored in the CP array, determine whether a particular constituent is to be simulated or held constant at its initial conditions (0 simulated, 1 not simulated). Then for each segment, the program reads the segment card, the constant cards, and initial conditions cards. The computational nodes are stored in a l-D array, even though they are handled segment by segment. The node number is initialized at 1 , and the segment loop is entered. The segment card is read, and then the constant card. On the constant card, the user indicates the name and value of any parameter whose default value is to be overridden. Most of these parameters can be stream-specific, but need not be.
237. Following the constant card are the initial conditions cards, one for each node in the segment. The initial concentrations are stored in the array INIT.
238. Not every segment receives boundary conditions from the input data stream; specifically, those segments below control structures receive their boundary conditions from the segment immediately above. Those segments that will receive their boundary conditions from the input data stream are indicated on the boundary conditions identification card in the order that the respective boundary conditions cards will appear. The filenames containing the names of the files containing the time-varying boundary condition data are then specified in input. The program then opens and reads these files, in subroutine TIME_VARYING_DATA.
239. The program refers to segments according to the order they appear in the input deck, but the user refers to each segment by its ID number. The logic must make the appropriate translation wherever such references occur. Similarly, it is convenient for the user to give the ID number of each of the segments for which boundary conditions are given; this information is stored in the array IBC. For the program, however, it is more convenient to know where the boundary conditions for each segment are to be found. This crossreference type of information is given in the array JBC.
240. Distance increments (DX1), constant lateral inflows (QL), and river miles (RMILE) are time-invariant and so are read in from the hydrodynamic model outside of the time-march loop. Flows, time-varying lateral inflows, areas, widths, and water surface elevations are read in from the hydrodynamic linkage file within the time-march loop.
241. The starting and ending dates for the simulation are specified in the input. The format for these dates is year, month, day, and hour. These dates are converted internally to Julian dates by the subroutine JULIAN_DAY and reconverted for output by the subroutine GREGORIAN_DAY. A "seed year" is also provided in the hydrodynamic linkage file for consistent computation of Julian dates between the water quality and hydrodynamic program. The date of the program execution is called so that it can be printed on the output.
242. All time-varying data are read in the subroutine TIME_VARYING_DATA. These may include meteorological data, time-varying lateral inflow concentrations, and boundary concentrations. The flows corresponding to the lateral inflow and boundary concentrations are taken from the hydrodynamic linkage files. The user must ensure that the data are consistent.
243. The running parameters of photoperiod and elapsed time are initialized. If the simulation begins during daylight hours, the sine of the incident light is calculated for use in algal productivity calculations.
244. As mentioned previously, the fourth-order method requires initial derivatives as well as concentrations, although the user would have no a priori knowledge about them. Subroutine SPLINE is called to estimate derivatives at each point based on a cubic spline through the data. The spline is constructed one segment at a time.
245. Hydrodynamic data for the initial conditions are read and converted from customary English to SI units. The program calls subroutine SEG to set initial rate constants. Since actual transport and decay processes are not calculated at this point (this is indicated to the subroutine by setting \(D T=0\).\() , boundary conditions are not passed, and the ordering of the segments\) is unimportant.
246. The main time-march loop begins with setting MBC, the index to the boundary conditions array, for this time-step. The program reads hydrodynamic data and sets the hydrodynamic array pointers. The solution algorithm in this fourth-order scheme is explicit, and so only one time level of information is required at any step.
247. To ensure proper passing of boundary conditions, subroutine SEG is called for each segment, working through the network in a downstream order. Boundary conditions are required for every segment, either from the input stream (\(J B C>0\)) or passed down from another segment (JBC \(<0\)). (JBC = 0 can happen only if boundary conditions are specified incorrectly. In this case, the program aborts.) In the first case, the program determines where in BOUND the boundary conditions for that segment are found and calls subroutine SEG with BOUND at that index. In the second case, the appropriate location in the tributary information transfer array \(T\) is given immediately by -JBC(L). The entry in the array \(T\) that stands for DO, i.e. \(T(10, L 2)\), is adjusted for reaeration through control structures according to the energy dissipation model (Wilhelms and Smith 1981). The program then calls subroutine SEG with boundary conditions given in \(T\).
248. After processing all of the segments, the program prints out the data for all the segments, one to a page, in the order that the segments are given in the main input file.
249. Subroutine SEG performs the main decay rate and transport and decay calculations for each segment. In its argument list are the distance increments (RLENGTH), hydrodynamic data from the previous time-step (FLOWOLD, AREAOLD, WIDTHOLD, ELEVOLD), hydrodynamic data from the current time-step (FLOW, AREA, WIDTH, ELEV), constant (QLC) and time-varying (QLT) lateral inflows, constituent concentrations (C), spatial derivatives of the concentrations (DC), decay rates (K), source/sink terms (SINK), boundary conditions (BOUND), presence/absence flags (CP), constant lateral inflow concentrations (CLC), time-varying lateral inflow concentrations (CLT), the sine of the incident light (SINI), the number of nodes (NNODE), the index of the first tributary to that segment (IT0), the index of the last tributary (IT1), the index where this segment is to place its data (IT2), the tributary information transfer arrays (JT,T), the dipsersion coefficient (DISP), dispersion correction term (F), number of segments (NS), and flag for wind-driven reaeration (QWIND or QDUM depending on location).
250. First, a derivative at the first node is estimated with a cubic interpolation based on the concentration at the boundary at the new time-step and at the first and second nodes at the old time-step, and the derivative at the second node. Markers to define the downstream extent of algal nutrient depletion are initialized.
251. In this explicit method, only two nodes from the old time-step are required in the solution of any node at the current time-step (Figure 17); that is, \(\alpha_{i}^{j+1}\) is calculated from \(\alpha_{i}^{j}\) and \(\alpha_{i-1}^{j}\). If calculation were to proceed in a downstream fashion, \(\alpha_{i-1}^{j}\) would have to be saved so it would not be overwritten in the calculation of \(\alpha_{i-1}^{j+1}\). Proceeding upstream, however, removes this difficulty. Entries at i-1 are old information by default, and \(\alpha_{i}^{j+1}\) simply replaces \(\alpha_{i}^{j}\) as it is calculated. For this reason, the node loop marches backwards through the indices.
252. Once inside the node march loop, velocities and the rate constant adjustments for flow, \(Q X\), are calculated. The succeeding hydrodynamic manipulations are useful only in the transport calculations and so are bypassed for initial and boundary conditions. For interior grid points, these statements prepare the groundwork for the solution of the final transport Equations 92 , 95, and 98. The distance increment \(D X\) is assigned to \(X_{i+1}-X_{i}\) (the node to be calculated is termed node \(I\) in the program, as opposed to node \(i+1\) in

Figure 17. Compact fourth-order numerical gridwork

Part IV). For any parameter \(a\), \(\partial a / \partial x\) is calculated as \(\left(a_{i+1}^{j}-a_{i}^{j}\right) /\left(X_{i+1}-\right.\) \(\left.X_{i}\right), \partial a / \partial t\) is calculated as \(\left(a_{i}^{j+1}-a_{i}^{j}\right) / \tau\), and the estimated average as
\[
\begin{equation*}
a=\frac{\left[a_{i+1}^{j+1}+a_{i+1}^{j}(1-\xi)+a_{i}^{j} \xi\right]}{2} \tag{206}
\end{equation*}
\]

The exception to this rule is \(u^{*}\), whose calculation must precede that of \(\xi\) and is given by Equation 92 . The variable \(\xi\) is calculated by
\[
\begin{equation*}
\xi=\frac{u * T}{X_{i+1}-X_{i}} \tag{207}
\end{equation*}
\]

Its complement \((1-\xi)\) is also assigned a variable. In the calculation of Equation 98 , the following is the same for all constituents and so is assigned to the variable GO :
\[
\begin{equation*}
1-\frac{T\left(u_{i+1}-u_{1}\right)}{X_{i+1}-X_{i}} \tag{208}
\end{equation*}
\]

The coefficients \(A_{1}\) through \(A_{4}\) and \(b_{1}\) through \(b_{4}\) are calculated according to Equations 81 through 84 and 86 through 89 , respectively, based on the estimated value of \(\boldsymbol{\xi}\) and its complement.
253. With all the background to the transport equations prepared, attention shifts to the decay rates and source/sink terms. Decay rates, source/sink terms, and final concentrations and derivatives are calculated within a loop that cycles through each of the 12 modeled constituents. Decay rates and source/sink terms are particular to each constituent, and so each is calculated in a separate block. Once decay rates and source/sink terms for a particular constituent are calculated, the final averaging, concentration, and derivative equations can be solved in a stereotyped way, and so the loop reassembles. (The reason that decay rates and source/sink terms are within the loop at all is the interdependence of constituents; for instance, the sink term for DO contains the final concentration of CBOD. If all decay rates and source/sink terms were calculated outside the loop, this information would not be available.) Finally the effect of diffusion is calculated implicitly and added to the constituent concentration.
254. The equations that appear in the listing are equivalent to those given in Parts IV and V with some minor modifications. In one instance, numerical problems presented by the expression
\[
\begin{equation*}
\text { 2. } / \mathrm{KEXT} *(1-\operatorname{EXP}(-\mathrm{KEXT} * \mathrm{H}))+\mathrm{B} * \operatorname{EXP}(-\mathrm{KEXT} * \mathrm{H}) \tag{209}
\end{equation*}
\]
used in determining available photosynthetic energy (Equations 146 and 147) must be handled. First, the number of calls to the external function EXP (exponentiation) can be cut in half by rewriting the above expression as the algebraically equivalent
\[
2 . / \mathrm{KEXT}+(\mathrm{B}-2 . / \mathrm{KEXT}) * \operatorname{EXP}(-\mathrm{KEXT} * \mathrm{H})
\]

The above expression, however, becomes numerically unstable as KEXT approaches zero, although mathematically it approaches the value
\[
\begin{equation*}
\text { 2.*H }+B \tag{211}
\end{equation*}
\]

This problem is handled by taking a Taylor's series expansion of EXP (-KEXT*H) in the expression \(2 . / \mathrm{KEXT} *(1 .-\operatorname{EXP}(-\mathrm{KEXT} * \mathrm{H})\)) about \(\mathrm{KEXT}=0\) carried to three terms,
```

2./KEXT*(1. - (1. - KEXT*H + ((KEXT*H)**2)/2 + ....))

```

This simplifies to
\[
\begin{equation*}
\mathrm{H} *(2 .-\mathrm{KEXT} * \mathrm{H}) \tag{212}
\end{equation*}
\]

The entire expression is then
\[
\begin{equation*}
H *(2 .-K E X T * H)+B * E X P(-K E X T * H) \tag{213}
\end{equation*}
\]
for KEXT less than 0.01 .
255. After calculating decay rates and source/sink terms, the loop reassembles to calculate averages and spatial derivatives of these quantities. Finally, the concentrations and their spatial derivatives are calculated.
256. Lateral inflow is modeled by simple mass balance. Subtracting the continuity equation (Equation 34) times the concentration, \(\alpha\), from the pollutant transport equation (Equation 36), yields (neglecting off-channel storage, diffusion, decay, and source/sink terms)
\[
\begin{equation*}
\frac{\partial \alpha}{\partial \mathrm{T}}+u \frac{\partial \alpha}{\partial \mathrm{X}}=\frac{\mathrm{q}}{\mathrm{~A}}(\gamma-\alpha) \tag{214}
\end{equation*}
\]
where \(q\) is the lateral inflow (both constant and time-varying, \(L^{2} T^{-1}\)) and \(\gamma\) is the concentration in the lateral inflow. The quantity \(q / A\) is denoted as QLC or QLT and \(\gamma-\alpha\) is replaced by CLC or CLT. The right-hand side of the transport equation is therefore augmented by the term
\[
\begin{equation*}
(\mathrm{CLT} * \mathrm{QLT}+\mathrm{CLC} * \mathrm{QLC}) \tag{215}
\end{equation*}
\]

The derivative transport equation receives this term after product rule differentiation
\[
\begin{equation*}
(-D C * Q L C+C L C * D Q L C) \tag{216}
\end{equation*}
\]
for constant, or simularly time-varing, lateral inflows, where DC and DQLC are, respectively, \(\alpha x\) and \(\partial(q / A) / \partial x\).
257. Once the calculations for all the constituents are complete, the frame of interest shifts by one node, and iteration continues.
258. At the completion of the node march, the boundary conditions are assigned to the first node, and the segment loads its own information into \(T\). Subroutine SPLINE
259. As stated earlier, this solution scheme requires spatial derivatives for the concentrations of all modeled constituents at initial and boundary conditions. Because the user would have no a priori information as to the values of the derivatives, the program estimates them based on a polynomial interpolation of the initial and boundary data themselves. The scheme's being fourth order suggests that interpolation should likewise be fourth order, that is, a cubic spline. Such a spline is completely defined by the following considerations: the curve should pass through every data point; it should be fourth order; although the equation may vary from one interval to the next, the curve and its first and second derivatives should be continuous at every point; and the second derivative at the two boundaries should be zero (that
is, there should be no bending of the curve at the end points, commonly known as a "relaxed" or "natural" condition).
260. A complete development of the equations is given by Rogers and Adams (1976). Briefly, the cubic equation for each interval is defined by the values and derivatives at each end of the interval, just as is done in the development of the fourth-order scheme in Part IV. Requiring that the second derivative be continuous at every point implies that the cubic equations for any two adjacent intervals yield equal second derivatives at their point of juncture. This leads to a system of \(n-2\) linear equations, where \(n\) is the number of nodes, that is, one equation for each interior node. The system is completed by the equation that sets the second derivative to zero at the first node and the one that does the same for the last node. This produces a system of \(n\) linear equations in \(n\) unknowns, where the coefficient matrix is of tridiagonal form filled with nonzero members along the main diagonal, one row above the main diagonal and one below. Tridiagonal matrices are amenable to much faster solution than general square matrices--the solution scheme employed here is subroutine TRIDAG, taken with slight modification, from Carnahan, Luther, and Wilkes (1969).
261. The mathematical formalism proceeds as follows. Recall Equation 80 in expanded form:
\[
\begin{gather*}
Y(\xi)=\xi^{2}(3-2 \xi) \alpha_{i}+\left[1-\xi^{2}(3-2 \xi)\right] \alpha_{i+1} \tag{217}\\
+\xi^{2}(1-\xi)\left(x_{i+1}-x_{i}\right) \alpha x_{i}-\xi(1-\xi)^{2}\left(x_{i+1}-x_{i}\right) \alpha x_{i+1}
\end{gather*}
\]

The expression for the second derivative is then
\[
\begin{gather*}
\ddot{Y}(\xi)=(6-12 \xi) \alpha_{1}+(-6+12 \xi) \alpha_{i+1} \tag{218}\\
+(2-6 \xi)\left(x_{i+1}-x_{i}\right) \alpha x_{i}+(4-6 \xi)\left(x_{i+1}-x_{i}\right) \alpha x_{i+1}
\end{gather*}
\]

Approaching node \(i+1\) from the left, \(\xi=0\), and approaching it from the right \(\xi=1\). The requirement that the second derivative be continuous translates mathematically to
\[
\begin{equation*}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x_{i, 1}-}=\left.\frac{d^{2} y}{d x^{2}}\right|_{x_{i, 11^{+}}} \tag{219}
\end{equation*}
\]

Now
\[
\begin{equation*}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x_{i+1}-}=\left.\dot{Y}(\xi)\right|_{\xi=0} \cdot \frac{1}{\left(x_{i}-x_{i+1}\right)^{2}} \tag{220}
\end{equation*}
\]
and
\[
\begin{equation*}
\left.\frac{d^{2} y}{d x^{2}}\right|_{x_{i+1}+}=\left.\ddot{Y}(\xi)\right|_{\xi=1} \cdot \frac{1}{\left(x_{i+1}-x_{i+2}\right)^{2}} \tag{221}
\end{equation*}
\]

Equating the two
\[
\begin{equation*}
\left.\frac{1}{\left(x_{i}-x_{i+1}\right)^{2}} \dot{Y}(\xi)\right|_{\xi=0}=\left.\frac{1}{\left(x_{1+1}-x_{i+2}\right)^{2}} \ddot{Y}(\xi)\right|_{\xi=1} \tag{222}
\end{equation*}
\]
which can also be written
\[
\begin{equation*}
\left.\frac{x_{i+2}-x_{i+1}}{x_{i+1}-x_{i}} \ddot{Y}(\xi)\right|_{\xi=0}=\left.\frac{x_{i+1}-x_{i}}{x_{i+2}-x_{i+1}} \ddot{Y}(\xi)\right|_{\xi=1} \tag{223}
\end{equation*}
\]
\[
\begin{align*}
& \frac{x_{i+2}-x_{i+1}}{x_{i+1}-x_{i}}\left[6 \alpha_{1}-6 \alpha_{i+1}+2\left(x_{i+1}-x_{i}\right) \alpha x_{i}+4\left(x_{i+1}-x_{i}\right) \alpha x_{i+1}\right] \tag{224}\\
= & \frac{x_{i+1} x_{i}}{x_{i+2}-x_{i}}\left[-6 \alpha_{i+1}+6 \alpha_{i+2}-4\left(x_{i+2}-x_{i+1}\right) \alpha x_{i+1}-2\left(x_{i+2}-x_{i+1}\right) \alpha x_{i+2}\right]
\end{align*}
\]

Rearranging so that all the derivatives are on the left-hand side and everything else on the right-hand side and dividing by two yields
\[
\begin{gather*}
\left(x_{i+2}-x_{i+1}\right) \alpha x_{i}+2\left[\left(x_{i+2}-x_{i+1}\right)+\left(x_{i+1}-x_{i}\right)\right] \alpha_{i+1}+\left(x_{i+1}-x_{i}\right) \alpha x_{i+2} \\
 \tag{225}\\
=3\left[\frac{x_{i+2}-x_{i+1}}{x_{i+1}-x_{i}}\left(\alpha_{i+1}-\alpha_{i}\right)+\frac{x_{i+1}-x_{i}}{x_{i+2}-x_{i+1}}\left(\alpha_{i+2}-\alpha_{i+1}\right)\right]
\end{gather*}
\]

The second derivative being zero at the first node requires (setting \(\boldsymbol{\xi}=1\)) that
\[
\begin{equation*}
-6 \alpha_{1}+6 \alpha_{2}-4\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \alpha \mathrm{x}_{1}-2\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) \alpha \mathrm{x}_{2}=0 \tag{226}
\end{equation*}
\]
or
\[
\begin{equation*}
\alpha x_{1}+\frac{1}{2} \alpha x_{2}=\frac{3}{2} \frac{1}{\left(x_{2}-x_{i}\right)}\left(\alpha_{2}-\alpha_{1}\right) \tag{227}
\end{equation*}
\]

Similarly for the last node
\[
\begin{equation*}
\frac{1}{2} \alpha x_{n-1}+\alpha x_{n}=\frac{3}{2} \frac{1}{\left(x_{n}-x_{n-1}\right)}\left(\alpha_{n}-\alpha_{n-1}\right) \tag{228}
\end{equation*}
\]
262. The entire system can be written in matrix form and given to subroutine TRIDAG to solve.
\[
\left[\begin{array}{l}
1 \frac{1}{2} \\
\left(x_{i+2}^{2}-x_{i+1}\right) 2\left[\left(x_{i+2}-x_{i+1}\right)+\left(x_{i+1}-x_{i}\right)\right]\left(x_{i+1}-x_{i}\right) \\
\frac{1}{2}
\end{array}\right] \cdot\left[\begin{array}{l}
\alpha x_{i} \\
\alpha x_{i+1} \\
\alpha x_{n}
\end{array}\right]
\]
\[
=\left[\begin{array}{c}
\frac{3}{2} \frac{1}{\left(x_{2}-x_{1}\right)}\left(\alpha_{2}-\alpha_{1}\right) \tag{229}\\
3\left[\frac{x_{i+2}-x_{i+1}}{x_{i+1}-x_{i}}\left(\alpha_{i+1}-\alpha_{i}\right)+\frac{x_{i+1}-x_{i}}{x_{i+2}-x_{i+1}}\left(\alpha_{i+2}-\alpha_{i+1}\right)\right. \\
\frac{3}{2} \frac{1}{\left(x_{n}-x_{n_{1}}\right)}\left(\alpha_{n}-\alpha_{n-1}\right)
\end{array}\right]
\]

\section*{Tributaries}
263. Tributaries in the constituent transport equations are considered to be point additions of materials. The concentration at the junction point is a function of the concentration and flow of the tributary and the receiving stream just upstream of the junction. For a junction at node \(i\) :
\[
\begin{equation*}
\alpha_{i}=\frac{\left(\alpha \varpi_{i} \cdot Q \varpi_{i}+\alpha_{T} \cdot Q_{T}\right)}{\left(Q \varpi_{i}+Q_{T}\right)} \tag{230}
\end{equation*}
\]
where
\[
\begin{aligned}
& \alpha=\text { concentration } \\
& \varnothing=\text { receiving stream just upstream of the junction } \\
& Q=\text { flow } \\
& T=\text { tributaries }
\end{aligned}
\]

RIV1Q requires two reaches to achieve full dilution of the tributary flow; therefore \(Q_{i+1}\) replaces the sum of \(Q_{0}\) and \(Q_{T}\) in Equation 230,
\[
\begin{align*}
\alpha_{i} & =\frac{\left[\alpha \varpi_{i}\left(Q_{i+1}-Q_{T}\right)+\alpha_{T} \cdot Q_{T}\right]}{Q_{i+1}} \tag{231}\\
& =\alpha \omega_{i}\left(1-\frac{Q_{T}}{Q_{i+1}}\right)+\alpha_{T}\left(\frac{Q_{T}}{Q_{i+1}}\right)
\end{align*}
\]

The quantity \(Q_{T} / Q_{i+1}\) can be represented by the dilution ratio \(D\) :
\[
\begin{equation*}
\alpha_{i}=\alpha ø_{i}(1-D)+\alpha_{T} D \tag{232}
\end{equation*}
\]
264. To preserve fourth-order correctness through a junction, derivatives must be advected as well. The derivatives are diluted in the same way as concentrations, with the addition that spatial derivatives on the tributary must be adjusted for the difference between the velocity on the tributary and on the receiving stream:
\[
\begin{align*}
\alpha x_{i} & =\frac{\left[\alpha x \varnothing_{i}\left(Q_{i+1}-Q_{T}\right)+\alpha x_{T} Q_{T} \frac{u_{T}}{u_{i}}\right]}{Q_{i+1}} \\
& =\alpha x \varpi_{i}\left(1-\frac{Q_{T}}{Q_{i+1}}\right)+\left(\alpha x_{T} \frac{u_{T}}{u_{i}}\right) \frac{Q_{T}}{Q_{i+1}} \tag{233}\\
& =\alpha \times \varnothing_{i}(1-D)+\alpha x_{T} D D
\end{align*}
\]
where \(D D\) represents the quantity \(D \cdot u_{T} / u_{i}\).
265. Tributary influx is modeled here as a discontinuity, and so the values immediately upstream of the junction point must be stored. The first 20 members of the \(T\)-array contain concentrations and their derivatives at the mouth. Location 21 contains tributary flow, and location 22 contains tributary velocity. Locations 23 through 32 contain concentrations on the main stem just upstream of the junction point, and locations 33 through 42 contain the derivatives there. In the solution procedure for the receiving stream,
each node is checked to see if it is a junction point. If it is not, the solution proceeds normally. If it is, the array pointers shift to the appropriate positions in the T-array and \(\alpha \theta\) and \(\alpha x \theta\) are used in place of \(\alpha_{1}\) and \(\alpha x_{i}\) in performing advection and first-order decay. The calculated values become \(\alpha \varnothing\) and \(\alpha x \varnothing\) for the new time-step. Finally, \(\alpha_{i}\) and \(\alpha x_{1}\) are calculated according to Equations 232 and 233.

\section*{Input and Output Formats}
266. The input to the water quality model is provided in up to four files, depending upon the options selected, in addition to the hydrodynamic linkage file. The main input file contains information on the model configuration, such as specification of constants, initial conditions, and boundary specifications. Time-varying boundary conditions, meteorological conditions, and lateral inflows are specified in separate files. The structure of these files are described in the following sections. DOS extensions to the filenames are enforced. The main input file should have the extension *.INP, the time-varying lateral inflow file the extension *.LAC, the boundary condition file *.BCF, and the meteorological file the extension *.MET. The hydrodynamic linkage file must have the extension *. HYD. Similarly, output files will have the same name of the input file, but with the extension *. OUT for the main output file, *. HYD for the interface file for the water quality model, *.ERR for the error file, or \(*\).EDF for the dump file containing data for graphical post-processing.

\section*{Main input}
267. The main input deck for RIV1Q consists of card (or card-image) input from the user. Card input is composed of nine types of cards: title, global constants, print updates, bypass options, segment, constant, initial conditions, boundary conditions identification, and boundary file specification. The title card supplies the title with which the output of each run is labeled. The global constant cards assign constants that do not vary spatially, the print update cards specify print frequencies, while the bypass card specifies whether a particular constituent is to be simulated or held constant. The segment card gives data pertinent to each segment, such as name and identification number. On the constant card, rate coefficients and the other parameters are given values by name. The initial conditions cards assign concentrations to each of the modeled constituents at every node for
the first time-step. The segments for which boundary conditions are given are listed on the boundary conditions identification card. If the user does not want to simulate a particular constituent (such as reduced iron), then the bypass option for that constituent should be set to 1 . This will cause the concentration for that constituent to remain constant at its initial value. However, if that initial concentration is nonzero and decay rates are specified, then the impact of that decay rate on other constituents may still be realized. For example, if \(B O D\) is bypassed, its initial condition is nonzero, and a decay rate is specified, it will remove \(D O\) at a constant rate (KC).
268. The organization of the main input file is shown in Figure 18. The title card comes first, followed by global constant cards, print interval cards, a bypass card, a segment card, constant cards, and initial conditions cards for each segment. Boundary conditions are introduced by a boundary conditions identification card and followed by the name of the files containing the time-varying data. This is the complete file for making a single run. Depending on the options selected for lateral inflows and temperature simulation, other input files may be necessary. These files are discussed later.
269. Title card. The user has the full 80 columns of the title card to write any title of his choosing. It will be printed, verbatim near the top of every page of the output file.
270. Global constant card. These cards specify values of model constants which do not vary spatially. The constants are identified in Table 2. The order in which they must appear on the global constant card is shown in the example input file (Figure 18). The format for these cards is 5(8X,F8.0), or \(5(8 \mathrm{X}, \mathrm{I} 8)\). Space for identifying names is provided in input. However, the names are only for convenience and are not used by the model. Rather, the specific constants are identified by their location in input.
271. Print update card. The print update card identifies the number of print interval updates that will be read from the following card(s). The format of the card is \(8 \mathrm{X}, \mathrm{I} 8\).
272. Print interval card(s). The print interval cards control the times at which model results are printed to the output file. On this card, the user provides a print interval (hours) and time (Julian day), up to which that print interval applies. The print interval will be constant between the times specified. The format for this card is \(4(8 \mathrm{X}, \mathrm{F} 8.0)\), so that two pairs of data can be input per line.

Figure 18. Sample RIV1Q *.INP input data file (Sheet 1 of 3)

Figure 18. (Sheet 2 of 3)

Figure 18. (Sheet 3 of 3)
273. Plot update card. The plot interval card identifies the number of plot interval updates that will be read from the following card(s). The format of the card is \(8 \mathrm{X}, \mathrm{I} 8\).
274. Plot interval card(s). The plot interval cards control the times at which model results are printed to files for graphic post-processing. On this card, the user provides a plot interval (hours) and time (Julian day), up to which that plot interval applies. The plot interval will be constant between the times specified. The format for this card is \(4(8 \mathrm{X}, \mathrm{F8} .0)\), so that two pairs of data can be input per line.
275. System bypass card. This card contains the bypass options for each of the 12 water quality constituents. The values of the option may either be 0 , indicating simulated, or 1 , indicating that the constituent should be bypassed. If a constituent is bypassed, its concentrations remain constant over the period of simulation and equal to the values specified in the initial conditions. The format of this card is 1215.

Table 2
Parameters That Can Appear in the Global Constants Cards
\begin{tabular}{|c|c|c|}
\hline Name & Unit & Explanation* \\
\hline START & Day & Start time for simulation, input for convenience but overriden by hydrodynamic file start time (R) \\
\hline END & Day & End time for simulation, input for convenience but overridden by hydrodynamic file end time (R) \\
\hline TBIOS & None & Temperature coefficient for biological processes (\(R\); default value \(=1.047\)) \\
\hline TAMMON & None & Temperature coefficeint for nitrification (\(R\); default value = 1.1) \\
\hline TPHYI & None & Temperature coefficient for physical processes (\(R\); default value \(=1.024\)) \\
\hline APCONT & None & Phosphorus-to-biomass ratio in algae and macrophytes (R ; default value \(=0.01\)) \\
\hline ANCONT & None & Nitrogen-to-biomass ratio in algae and macrophytes (\(R\); default value \(=0.075\)) \\
\hline ONEQUI & None & Incremental increase in oxygen-to-algal biomass ratio for oxygen production by algae and macrophytes when nitrate is used as a nitrogen source (\(R\); default value \(=0.35\)) \\
\hline ONITRI & None & Oxygen-to-nitrogen ratio for ammonia oxidation (R ; default=4.56) \\
\hline OPDECY & None & Oxygen-to-biomass ratio for oxygen production by algae and macrophytes when ammonia is the nitrogen source (\(R\); default value \(=1.59\)) \\
\hline OFEDEC & None & Oxygen-to-iron ratio for iron oxidation (\(R\); default value \(=0.14\)) \\
\hline OMNDEC & None & Oxygen-to-manganese ratio for oxidation (\(R\); default value \(=0.15\)) \\
\hline DAWN & Hours & Time of sunrise (R) \\
\hline SUNSET & Hours & Time of sunset (R) \\
\hline LATOPT & None & \begin{tabular}{l}
Time-varying lateral flow option. If LATOPT \(\geq 1\), then the name of the lateral inflow file is given in the third record of the RIV1Q control file (RIV1Q.CTL) \\
(I)
\end{tabular} \\
\hline
\end{tabular}
* \(R=\) real variable; \(I=\) integer.
276. Segment card. The format of the segment card is I2,10A4, I2,F10.0.

The items specified are \(I D\), the identification number for this segment, SNAME, its name, IDAM, and DAMK. The two latter variables concern reaeration that occurs through the control structure, if any, at the bottom of this segment. If this segment does not end with a control structure or if reaeration is not
modeled, these two fields are left blank. If IDAM is 0 or blank, structural reaeration is not modeled. If IDAM is given a value of one or greater, structural reaeration is modeled with the energy dissipation model (Wilhelms and Smith 1981),
\[
\begin{equation*}
r=e^{-C_{T} \Delta H} \tag{234}
\end{equation*}
\]
where
```

    r = deficit ratio (final DO deficit/initial DO deficit)
    C
    \DeltaH = difference in water surface elevation across the control
        structure
    ```

The value for the escape coefficient at \(20^{\circ} \mathrm{C}\) is input by DAMK with units of \(\mathrm{ft}^{-1}\); the program corrects for temperature by
\[
\begin{equation*}
C_{T}=\operatorname{DAMK} * 1.022^{(\mathrm{TEMP}-20)} \tag{235}
\end{equation*}
\]

A value of \(0.045 \mathrm{ft}^{-1}\) for DAMK was recommended (Wilhelms and Smith 1981) for gated-conduit outlet works and low head weirs and gated spillways (\(\mathrm{H}<25 \mathrm{ft}\)) with free hydraulic jumps. The value for this coefficient may be significantly different for other types of outlet structures or for conditions not conducive to reaeration, such as submerged hydraulic jumps that can be experienced with many low-sill gated structures. The program is not set up to allow structural reaeration at headwater nodes.
277. Segment specific constant cards. On these cards, the user specifies values by name for parameters and coefficients used in the model. Constant cards must be given for each segment, even if the constants are the same for every segment. Their names and uses are given in Table 3.
278. The segment specific constants must appear in the order specified on the lines illustrated in the example input data set (Figure 18). The format for these cards is \(5(8 \mathrm{X}, \mathrm{F} 8.0\)), or \(5(8 \mathrm{X}, \mathrm{I} 8)\). Space for identifying names is provided in input. However, the names are only for convenience and are not used by the model. Rather, the specific constants are identified by their location in input.

Table 3
Parameters That Can Appear on the Constant Card
\begin{tabular}{|c|c|c|c|}
\hline Name & Units & Default & Explanation \\
\hline ABSR & \(g \mathrm{~m}^{-2}\) & & Benthal source rate for ammonia \\
\hline ACK & \(\mathrm{day}^{-1}\) & & Decay rate for organic nitrogen \\
\hline ÁDN & \(\mathrm{day}^{-1}\) & 0.1 & Rate coefficient for denitrification \\
\hline AG & \(\mathrm{day}^{-1} \mathrm{fps}^{-\mathrm{E} 1} / \mathrm{ft}^{-\mathrm{E} 2}\) & 12.81 & Rate coefficient for stream reaeration rate in the form \\
\hline & & & \[
K_{2}=\frac{A G U^{E 1}}{H^{E 2}}
\] \\
\hline AKN & day \({ }^{-1}\) & 0.3 & Rate coefficient for nitrification \\
\hline AKNX & day \({ }^{-1}\) & 0.0 & Rate coefficient for ammonia adsorption \\
\hline AK1 & day \({ }^{-1}\) & 0.15 & Rate coefficient for CBOD decay and organic nitrogen decay \\
\hline ALPHAO & & & Conversion factor from algae to chlorophyll \\
\hline APO4 & \(\mathrm{day}^{-1}\) & 0.0 & Rate coefficient for phosphate adsorption \\
\hline ATB & day \({ }^{-1}\) & 0.0 & Rate coefficient for bottom heat exchange \\
\hline
\end{tabular}

Table 3 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Name & Units & Default & Explanation \\
\hline ATS & \[
\frac{\mathrm{W}}{\mathrm{~m}^{2}{ }^{\circ} \mathrm{C}}
\] & \multirow[t]{3}{*}{0.0} & Rate coefficient for surface heat exchange in constant equilibrium temperature method* \\
\hline BENPO4 & \(\mathrm{g} \mathrm{m}{ }^{-2}\) & & Benthic source term for dissolved phosphorus \\
\hline CBODSR & \(\mathrm{m} \mathrm{day}^{-1}\) & & Settling rate for CBOD \\
\hline \multirow[t]{2}{*}{E1} & \multirow[t]{2}{*}{Unitless} & \multirow[t]{2}{*}{0.50} & Exponent of velocity in stream reaeration rate formulation in the form
\[
K_{2}=\frac{A G U^{E 1}}{H^{E 2}}
\] \\
\hline & & & Default value is for the \(0^{\prime}\) Connor, Dobbins (1958) formulation. \\
\hline E2 & Unitless & 1.50 & Exponent of depth in stream reaeration rate formulation in the form
\[
\mathrm{K}_{2}=\frac{\mathrm{AG} \mathrm{U}^{\mathrm{E} 1}}{\mathrm{H}^{\mathrm{E} 2}}
\] \\
\hline & & & Default value is for the \(0^{\prime}\) Connor, Dobbins (1958) formulation. \\
\hline FCBOD & Unitless & 0 to 1 & Fraction of algal and macrophyte decay which goes to CBOD \\
\hline
\end{tabular}
(Sheet 2 of 5)
\({ }^{*} 1 \frac{\mathrm{~W}}{\mathrm{~m}^{2}{ }^{\circ} \mathrm{C}}=4.23 \frac{\mathrm{BTU}}{\mathrm{ft}^{2} \mathrm{day}^{\circ} \mathrm{F}}\)
\begin{tabular}{|c|c|c|c|}
\hline Name & Units & Default & Explanation \\
\hline HNEFSW & \(\mathrm{W} / \mathrm{m}^{2}\) & 0.0 & Surface light intensity at local noon. A value is required if modeling photosynthesis but not using direct energy budget that computes HNEFSW. \\
\hline ITEM & & 0 & To designate type of heat exchange solution. For ITEM \(=1\), the constant equilibrium temperature solution is used (should also specify ATS and TEMP). For ITEM=0, the direct energy balance is used for temperature solution, and meteorological data must be furnished. For any other value of ITEM other than 0 or 1 , heat exchange is not modeled. \\
\hline KALGDK & day \({ }^{-1}\) & 0.0 & Algal decay rate \\
\hline KALGRO & \(\mathrm{m}^{2}\) Watts \(^{-1}\) day \(^{-1}\) & 0.0 & Algal growth rate \\
\hline KCOLIDK & day \({ }^{-1}\) & 0.0 & Rate coefficient for coliform bacteria mortality \\
\hline KDSED & day \({ }^{-1}\) & & \begin{tabular}{l}
Sediment denitrifica- \\
tion rate
\end{tabular} \\
\hline KFEDK & day \({ }^{-1}\) & 0.0 & Rate coefficient for iron oxidation \\
\hline KLITE & & & Light intensity at which photosynthesis rate reduced by \(1 / 2\) \\
\hline KMNDK & day \({ }^{-1}\) & 0.5 & Rate coefficient for manganese oxidation \\
\hline
\end{tabular}

Table 3 (Continued)
\begin{tabular}{|c|c|c|c|}
\hline Name & Units & Default & Explanation \\
\hline KNCBDN & \(\mathrm{mg} / 1\) & 0.1 & Nitrate half-saturation constant for denitrification \\
\hline KNPOOL & mg/l & & Total nitrogen concentration at which algal growth rate is reduced by \(1 / 2\) \\
\hline KNSET & \(\mathrm{m} \mathrm{day}^{-1}\) & & Settling rate for organic nitrogen \\
\hline KOALDK & \(\mathrm{mg} / 1\) & 0.5 & DO half-saturation constant for algal decay \\
\hline KOCBDN & \(\mathrm{mg} / 1\) & 0.5 & DO half-saturation for denitrification \\
\hline KOCB1 & mg/1 & 0.5 & DO half-saturation constant for CBOD decay (Hoover and Porges 1952) \\
\hline KON & \(\mathrm{mg} / 1\) & 0.5 & DO half-saturation for nitrification \\
\hline KPDK & day \(^{-1}\) & & Decay rate of organic phosphorus \\
\hline KP04X & mg/1 & - & Phosphorus concentration at which algal growth rate is reduced by \(1 / 2\) \\
\hline KPSET & & & Settling rate coefficient for organic phosphorus \\
\hline LAMBDAO & & & Nonalgal portion of light extinction coefficient \\
\hline LAMBDA1 & \[
\frac{1 / m}{\text { ug biomass } / 1}
\] & & Linear algal selfshading coefficient \\
\hline LAMBDA2 & \[
\frac{1 / m}{(\text { ug biomass } / 1)^{2 / 3}}
\] & & Nonlinear algal selfshading coefficient \\
\hline MACDKY & day \({ }^{-1}\) & & Specific macrophyte decay rate \\
\hline
\end{tabular}

\section*{Table 3 (Concluded)}
\begin{tabular}{|c|c|c|c|}
\hline Name & Units & Default & Explanation \\
\hline MACROB & g \(\mathrm{m}^{-2}\) & & Macrophyte density on channel surfaces \\
\hline MACGRO & day \({ }^{-1}\) & & Macrophyte growth rate \\
\hline QWINDO & & FALSE & A logical variable to invoke wind-driven reaeration. To turn on wind reaeration for a segment, set QWINDO = TRUE. \\
\hline SOD & \(\mathrm{g} \mathrm{m}{ }^{-2}\) & & Sediment oxygen demand \\
\hline TEMP & \({ }^{\circ} \mathrm{C}\) & 23.0 & If temperature is modeled with the constant equilibrium temperature approach, then TEMP is used to input the equilibrium temperature for each stream segment. \\
\hline TSINK & \({ }^{\circ} \mathrm{C}\) & 10.0 & Source/sink term for bottom heat exchange \\
\hline TSIV & \(f t^{-1}\) & 0.0 & \begin{tabular}{l}
Coefficient in the Tsivoglou-Wallace (1972) reaeration formula (a value of zero serves to indicate that the equation
\[
\mathrm{K}_{2}=\frac{\mathrm{AG} \mathrm{U}^{\mathrm{E} 1}}{\mathrm{H}^{\mathrm{E} 2}}
\] \\
will be used rather than this). If the Tsivoglou-Wallace (1972) formula is used, a value of 0.054 is suggested for TSIV.
\end{tabular} \\
\hline
\end{tabular}
279. Initial conditions cards. As stated in Part IV, necessary and sufficient initial conditions are the concentrations of all the parameters to be modeled. Accordingly, each initial conditions card is divided into 12 areas, each eight columns wide, which contain the values of temperature, CBOD, organic nitrogen, ammonia nitrogen, nitrate plus nitrate nitrogen, organic phosphate, dissolved phosphate, reduced manganese, reduced iron, dissolved oxygen, coliform bacteria, and algae, respectively. Columns corresponding to constituents that are not modeled are set to zero. The format for these cards is 12F8.0.
280. Constant lateral inflow cards. The values for the concentrations of the constant lateral inflows are placed on the line immediately below the initial conditions, in the same order and using the same format. These concentrations must correspond to the conditions for the constant lateral flows specified in the hydrodynamic input. If the user elects to simulate the impacts of time-varying lateral flows, the name of the file containing the time-varying data is listed in the third record of the RIV1Q control file.
281. Dispersion coefficient cards. These cards assign the horizontal dispersion coefficient. The format for the dispersion coefficient is F10.0.
282. The user can simulate an arbitrary conservative or nonconservative constituent with the coliform bacteria variable by setting KCOLIDK \(=0.0\) or to a specified first-order kinetic rate, respectively.
283. In most applications, the initial concentrations of water quality constituents at each node will not be known. This problem can be overcome by several means. If water quality data are available at several stations along the stream, values could be interpolated for the nodes. If such data are not available for the conditions being simulated, then a simulation can be made with estimated initial conditions and time-invariant boundary conditions that are the same as the first set of time-variant boundary conditions. The resulting steady-state nodal concentrations are then used as the initial conditions for subsequent simulations. However, these steady-state initial conditions still may not be representative. If the nodal concentrations change significantly following the first flush (system travel time), then the initial conditions were probably not representative, and the results during the first flush should not be used for interpretation.
284. It is possible to improve the initial condition estimates to provide more meaningful results during first flush if conditions (flows,
loadings, etc.) during or at the end of the simulation (but after first flush) are similar to the starting conditions. A dynamic simulation is made with estimated initial conditions; the simulated nodal concentrations, at the time that conditions (flows, loadings, etc.) are similar to initial conditions, are selected for initial conditions in subsequent simulations. For example, suppose that the simulation starts on Monday and ends on Sunday for a stream below a peaking hydropower dam where peaking operations occur on weekdays and steady low flows are maintained on weekends. Then the simulated nodal concentrations on Sunday should provide reasonable estimates for the initial Monday conditions (provided sufficient time elapsed for first flush and other factors are similar at the beginning and end of the simulation).
285. Boundary conditions identification card. The transport equations require boundary conditions for the upstream end of every segment. However, in the case where the segments are actually part of the same stream but are separated by a control structure, two segments are modeled but the boundary conditions for the lower segment are determined by the upper segment and do not appear in the input. The type of boundary conditions required, therefore, is uniquely determined once the network structure is fixed. The user indicates to the program on this card the segments (ID) whose boundary conditions will be given. The numbers can appear anywhere on the card and can be separated by a comma or blanks or both, but they must appear in order, with the list terminated by a slash (/).
286. Boundary condition cards. On these cards, the user specifies the filename containing the time-varying boundary condition data. The number of files specified, and their order, should correspond to the boundary conditions identification card. The format is Al5.

\section*{Boundary conditions file(s)}
287. Time-varying boundary conditions are specified in external files whose names are specified in the main input data set. An example of one boundary condition file is given in Figure 19. The files are read by subroutine TIME_VARYING_DATA. On the initial call to this subroutine, the files are opened, the specification card read, and the initial update time and boundary conditions read. On subsequent calls, if the simulation time equals or exceeds the next update time, the boundary conditions are updated. For simulation times between the update intervals, the boundary conditions may be linearly interpolated or held constant, at the option of the user. Upon reading the files, the filenames and data are written to the output file.

288. Specification card. The first line of these files contains the segment number for which the boundary is provided, the number of boundary condition updates (NUMBC), and the variable INTBC. If the variable INTBC is greater than or equal to one, the boundary conditions will be linearly interpolated between update intervals. Otherwise, they will be held constant between updates (a step function). The format of the first line of the file is 3110 .
289. Boundary update cards. Following the initial line of the boundary condition file are NUMBC lines of update intervals. Each line of update will contain the year, month, day, and hour for the update and the corresponding boundary condition concentrations (\(\mathrm{mg} / \mathrm{l}\)) for each of the 12 water quality constituents, in the following order: temperature, CBOD, organic nitrogen, ammonia nitrogen, nitrate plus nitrate nitrogen, organic phosphate, dissolved phosphate, reduced manganese, reduced iron, dissolved oxygen, coliform bacteria, and algae. The format for each update is 3I5, 15F10.0. The update times should bracket the period of model simulation.

Lateral inflow file
290. The lateral inflow file contains the time-varying lateral inflow concentrations. If the user elects to input time-varying lateral inflows (LATOPT 21), the file name (with DOS extension *.LAC) is given in the control file. An example of the lateral inflow file is given in Figure 20. The file is read by subroutine TIME_VARYING_DATA. - On the initial call to this subroutine, the file is opened, the specification card read, and the initial update time and lateral inflow concentrations read. On subsequent calls, if the simulation time equals or exceeds the next update time, the boundary conditions are updated. For simulation times between the update intervals, the lateral inflow concentrations may be linearly interpolated or held constant, at the option of the user. Upon reading the files, the data and filename are written to the output
291. Specification card. The first line of the lateral inflow file contains the specifications for the number of updates (NUMLAT_UD), the number of nodes which will receive lateral inflows (NUML), variable LATOPT, and the number of water quality constituents (NUMSYS). If the variable LATOPT is greater than or equal to one, the lateral inflows will be linearly interpolated between update intervals. Otherwise, they will be held constant between updates (a step function). The format for this line is 4110.

TEMP
CBODNS ORGAN NH3N
\(1983 \quad 1 \quad 0.0\)
\begin{tabular}{rrrrr}
29.0 & 30.0 & 29.0 & 29.0 & 29.0 \\
1.0 & 11.5 & 1.1 & 1.1 & 1.1 \\
0.8 & 2.0 & 0.6 & 0.1 & 0.1 \\
0.1 & 1.2 & 0.1 & 0.0 & 0.0 \\
0.0 & & & & \\
29.0 & 30.0 & 29.0 & 29.0 & 29.0 \\
1.0 & 11.5 & 1.1 & 1.1 & 1.1 \\
0.8 & 2.0 & 0.6 & 0.1 & 0.1 \\
0.1 & 1.2 & 0.1 & 0.0 & 0.0
\end{tabular}

Figure 20. Sample RIV1Q *.LAC input data file
292. 'Node specification cards. Following the initial line of the input will be NUML lines on which the node numbers that will receive the lateral inflows are specified. The node numbers correspond to the order specified in the main input. The format is \(I 5\), so there will be one node specification per line of input.
293. System specification cards. Following the node specification, there will be NUMSYS lines of input on which the user specifies the water quality constituents which will have time-varying lateral inflow concentrations specified. There may be up to 12 concentrations updated, and the number system corresponds to the number of the state variables (1-temperature, 2 CBOD, 3 = organic nitrogen, \(4=\) amonia nitrogen, \(5=\) nitrate plus nitrate nitrogen, \(6=\) organic phosphate, \(7=\) dissolved phosphate, 8 reduced manganese, \(9=\) reduced iron, \(10=\) dissolved oxygen, \(11=\) coliform bacteria, and \(12=a l g a e)\). The format of these cards is 15.
294. System label cards. There will be NUMSYS system label cards on which the user may specify the names of the water quality constituents in the
order in which they occur in the system specification card. This card is only for the convenience of the user, as the names are not used in the program.
295. Update cards. This card group consists of NUMSYS+1 lines of input and the group will be repeated NUMLAT_UD times. The first line of the input card contains the year, month, day, and hour of the update, with the format I5, I5, I5,F10.0. Following the update time will be NUMSYS lines of input containing the concentrations of the water quality constituents in the order in which they were named in the system specification card. There will be NUML columns of data on each line, corresponding to, and in the order of, the nodes specified on the node specification card. The format for each of the NUMSYS lines of input is \(15 \mathrm{X}, 150 \mathrm{~F} 10.0\). Therefore, following the update time will be NUMSYS lines of input, each line containing NUML data points.

Meteorological input
296. Meteorological data, required for heat-exchange computations when ITEM is equal to zero, are provided in a separate input file. If the user elects to compute heat exchange using the full heat balance method (ITEMP-0), the name of the meteorological input file (with DOS extension *.MET) is listed in the fourth record of the control file. An example of the \(*\). MET file is given in Figure 21. The file will be opened and read in the subroutine TIME_VARYING_DATA.
297. Card 1. The user here specifies the dust-attenuation coefficient (DUC). Water Resources Engineers (1967) gives a range of 0.0 to 0.13 for several locations, although results are not very sensitive to changes in this range. The format for this card is F10.0.
298. Card 2. The user here specifies the local latitude (LATUDC) and the local longitude (LONTUC) of the project, and the longitude (LSMC) of the standard meridian east of the project (standard meridians are in increments of 15 deg, e.g., 75, 90, 105, etc.). Each value on card 2 is in degrees. The format for this card is 3 F10.0.
299. Card 3. Here the user specifies the interpolation option (INTMET) and the number of meteorological updates (NUMT). If INTMET \(\geq 1\), then the values for meteorological variables will be linearly interpolated between update intervals. Otherwise, they will be held constant (a step function). The format for this card is 2110.
300. Update cards. Here there will be NUMT lines of input providing the update times and meteorological data. The user here specifies, in the

Figure 21. Sample RIV1Q *. MET input data file
following order, the year, month, day, and hour of the update, the cloud cover (between 0.0 and 1.0), wind speed (miles per hour), dry bulb temperature (degrees Fahrenheit), wet bulb temperature (degrees Fahrenheit), and the atmospheric pressure (conventional inch of mercury). The format of these cards is I5, I5, I5, 6F10.0.

Output
301. The output from RIV1Q (Figure 22) consists of data for each segment at each print interval. At the top of the page appears the program title followed by the run date. The next line prints the run title supplied by the user. After that comes the elapsed time in year, month, day and hours, and the segment ID number and name. Only those parameters modeled appear in the output. Headings, units, and values appear in column format. The values of CBOD and DO are printed with one decimal place (corresponding to analytical accuracy), the remaining variables with two decimal places.
302. Graphics output from RIV1Q consists of binary data for each segment and is available with the option IPLOT. This file will have the DOS extension *.GRF, with the same name as the input file. An ASCII text file with the extension \(*\).EDF will also be available for graphical post-processing.

 Figure 22. (Sheet 2 of 14)
\begin{tabular}{|c|c|}
\hline Specific Rate Coefficient For Iron Oxidation, 1/day, & KFEDR - 0.50 \\
\hline Rate Coefficient For Collform Mortality, l/day, & KCOLIDR \(=1.40\) \\
\hline Sediment Oxygen Demand, gr./m**2 & SOD \(=0.00\) \\
\hline Total Nitrogen Conc. at Which Algal Growth & \\
\hline Rate is Reduced by \(1 / 2, \mathrm{mg} / \mathrm{l}\) & RNPOOL \(=0.10\) \\
\hline Phosphorous Conc. at which Algal Growth Rate Reduced by & \\
\hline 1/2, mg/l & RPO4X \(=0.10\) \\
\hline Sediment Denitrification Rate & RDSED \(=0\). \\
\hline Macrophyte Density on Channel Surfaces, g/m**2, & MACROB = 0.00 \\
\hline Specific Macrophyte Growth Rate, 1/day & MACGRO = 0.00 \\
\hline Specific Macrophyte Decay Rate, 1/day & MACDRY - 0.00 \\
\hline Algal Growth Rate, mg/l*day & KALGRO = 0.02 \\
\hline Algal Decay Rate, mg/1*day & RALGDR - 0.10 \\
\hline D.O. Conc. Below Which Oxidation & \\
\hline Iron and Manganese Do Not Occur, mg/l & OXIDAT \(=1.00\) \\
\hline Specific Rate Coefficient Manganese Oxidation, I/day, & KMNDR \(=0.50\) \\
\hline Empirical Coefficient Reflecting Thickness ofBoundary L & Layer BR = -0.49 \\
\hline Rate Coefficient Carbonaceous Oxygen Demand, 1/day & AR1 \(=0.20\) \\
\hline Light Intensity at Which Photosynthesis Rate Reduced & \\
\hline 1/2, & RLITE \(=21.00\) \\
\hline Rate Coefficient for Org-N Decay To NH3 & ACR \(=0.00\) \\
\hline Surface Light Intensity at Local Noon, & HNEFSH = 0.00 \\
\hline Is Wind Driven Reaeration Used for Segment 7, T or F,0 & NIND (0) = \\
\hline Non-algal Portion of Light Extinction Coefficient & LAMBDAO \(=1.00\) \\
\hline Linear Algal Self Shading Coefficient & LAMBDA1 - 0.00 \\
\hline Nonlinear Algal Self Shading Coefficient & LAMBDA2 \(=0.00\) \\
\hline Conversion Factor From Algae To Chlorophyll, & ALPHAO - 0.00 \\
\hline Settling Rate for Organic Nit & RNSET = 0.00 \\
\hline Benthal Source Rate for Ammonis, \(\mathrm{g} / \mathrm{m**2}\) & ABSR \(=0.00\) \\
\hline Setting Rate for CBOD, m/day & CBODSR \(=0.00\) \\
\hline Fraction of Algal and Macrophyte Decay & \\
\hline Which Goes to CBOD, & FCBOD \(=0.00\) \\
\hline Decay Rate For Organic - P, & KPDR \(=0.00\) \\
\hline Settling Rate Coefficient For Org-P, & RPSET \(=0.00\) \\
\hline Benthic Source Term for Dissolved P, & BENPO4 = 0.00 \\
\hline
\end{tabular}
For Segment 2 Desc: MAIN STEM below rereg dam
Figure 22. (Sheet 3 of 14)
Constant Data for Segment No. 2
NOTE: These Data may be Corrected for Temp., D.O., etc. During
Program Execution
DAMKO = 0 .
IDAMO = \(0 \quad\) DAMKO \(=0\).
-

\section*{Nitrate Conc. at Which Denitrification Rate is \(1 / 2\)} Maximum, engl Which Algal Decay Rate is \(1 / 2\) Maximum D.O. Conc. at Which the Rate of Denitrification is Reduced by \(1 / 2, \mathrm{MG} / \mathrm{L}\),
D.0. Conc. at Which CBOD Decay rate is \(1 / 2\) Maximum D.o. Conc. at Which Nitrification Rate is \(1 / 2\) Maximum, mg/1

Specific Rate Coefficient For
Iron Oxidation,
R /day, \(\quad\) KFEDR \(=0.50\) \(\begin{array}{ll}\text { Specific Rate Cole For Coliform Mortality, } 1 / \text { day, } & \text { KCOLIDR }=1.40 \\ \text { Rate Coefficient } \\ \text { Sediment Oxyg }\end{array}\) Total Nitrogen Conc. at Which Algal Growth Rate is Reduced by \(1 / 2, \mathrm{mg} / 1\)
Phosphorous Conc. at which Algal Growth Rate Reduced by \(1 / 2, \mathrm{mg} / 1 \mathrm{l}\) (\(\mathrm{KPOLX}^{2}=0.10\) Macrophyte Density on Channel Surfaces, \(g / m * * 2, \quad\) MACROB \(=0.00\) Macrophyte Density on Channel Surfaces, \(\mathrm{g} / \mathrm{m} * * 2, \quad\) MACROB \(=0.00\)
Specific Macrophyte Growth Rate, \(1 / \mathrm{day}\)
MACGRO \(=0.00\) Alsal Grouth Rate, \(\quad\) KALCRO \(=0.02\) KALGRO \(=0.02\)
RALGDR \(=0.10\)
1.00
0.50 \(\begin{array}{r}\text { OXIDAT } \\ \text { KMNDK }\end{array}=\) Figure 22. (Sheet 4 of 14)
\begin{tabular}{|c|c|}
\hline Empirical Coefficient Reflecting Thickness ofBoun & BR \(=-0.49\) \\
\hline Rate Coefficient Carbonaceous Oxygen Demand，1／day & AR1 \(=0.20\) \\
\hline Light Intensity at Which Photosynthesis Rate Re & \\
\hline 1／2， & KLITE \(=21.00\) \\
\hline Rate Coefficient for Org－N Decay To NH3 & \(\mathrm{ACR}=0.00\) \\
\hline Surface Light Intensity at Local Noon， & HNEFSW＝ 0.00 \\
\hline Is Wind Driven Reaeration Used for Segment ？，T & IND（ 0）\(=\mathrm{F}\) \\
\hline Non－algal Portion of Light Extinction Coefficient & LAMBDAO \(=1.00\) \\
\hline Linear Algal Self Shading Coefficient & LAMBDA1 \(=0.00\) \\
\hline Nonlinear Algal Self Shading Coefficient & LAMBDA2 \(=0.00\) \\
\hline Conversion Factor From Algae To Chlorophyll， & ALPRAO－ 0.00 \\
\hline Settling Rate for Organic Nitrogen & KNSET－ 0.00 \\
\hline Benthal Source Rate for Ammonia，g／m＊＊2 & ABSR \(=0.00\) \\
\hline Settling Rate for CBOD，m／day & CBODSR \(=0.00\) \\
\hline Fraction of Algal and Macrophyte Decay & \\
\hline Which Goes to CBOD， & FCBOD \(=0.00\) \\
\hline Decay Rate For Organic－P， & KPDR \(=0.00\) \\
\hline Settiling Rate Coefficient for Org－P， & KPSET \(=0.00\) \\
\hline Benthic Source Term for Dissolved P， & BENPO4－ 0.00 \\
\hline
\end{tabular}

\[
\text { Constant Data for Segment No. } 3
\]

NOTE：These Data nay be Corrected for Temp．，D．O．，etc．During
Progran Execution
\(\begin{array}{ll}\text { tream Segment Temperature，Deg．C，} & \text { TEMP }=23.00 \\ \text { ate Coeficient for Bottom Heat Exchange（1／DAY）} & \text { ATB }=0.00\end{array}\)
\(00 \% 01=\) XNISJ
\(00^{\circ} 0=\) SLV
\(00^{\circ} 0=\) GIV
\(0=\) WGII
\(01=\) XNIS
WGLI 980 Variable Deaignating type of Beat Exchange Solution， l－－Conatant Temp．Equilibrium 0－－Full Reat Balance

Nitrate Conc，at Which Denitrification Rate is \(1 / 2\)
M．M．Conc．at＇Which Algal Decay Rate is \(1 / 2\) Maximum
D．0．Conc．at Which the Rate of Denitrification is
\(\begin{aligned} \text { NCBDN } & =0.10 \\ \text { KOALDR } & =0.50\end{aligned}\)
KOCBDN \(=0.50\)
KOCBDN \(=0.50\)
Figure 22.
D.0. Conc, at Which CBOD Decay rate is \(1 / 2\) Maximum
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
D.O. Conc. at Which CBOD Decay rate is \(1 / 2\) Maximum Rate, mg/l \\
D.0. Conc. at Which Nitrification Rate is \(1 / 2\) \\
Maximum, mg/l
\end{tabular} & \(\begin{aligned} \text { ROCBI } & =0.50 \\ \text { RON } & =0.50\end{aligned}\) \\
\hline Rate Coefficient for Stream Reseration Rate & AG = 12.81 \\
\hline Exponent of Velocity in Stream Reaeration Rate, Formulatio & On E1 \(=0.50\) \\
\hline Depth Exponent in Stream Reaeration Formulation, & E2-1.50 \\
\hline Coefficient in the Tsivoglou-Wallace Reaeration Equ & \\
\hline Specific Rate Coefficient, Uncorrected, for & \\
\hline Denitrification \(1 / \mathrm{day}\) & ADN = 0.10 \\
\hline Specific Rate Coefficient, Uncorrected, for & \\
\hline Nitrification 1/day & ARN \(=0.30\) \\
\hline Specific Rate Coefficient, Uncorrected, for & \\
\hline Ammonia Adsorption 1/day & ARNX \(=0.00\) \\
\hline Specific Rate Coefficient, Uncorrected, for Phosphate Adsorption, 1/day & APO4 = 0.00 \\
\hline
\end{tabular}
Phoaphate Adsorption,
\(\begin{array}{ll}\text { Specific Rate Coefficient For Iron Oxidation, } \\ \text { Rate Coefficient For Coliform Mortality, } \\ \text { RFEDR } & =0.50 \\ \text { RCOLIDR }\end{array}\) \(\begin{array}{ll}\text { Rate Coefficient For Coliform Mortality, } 1 / \text { day, } & \text { KCOLIDR }=1.40 \\ \text { Sediment Oxygen Demand, } \mathrm{gr} \text {. } / \mathrm{m} * * 2 & \text { SOD }=0.00\end{array}\) Trat Nitrogen Conc, at Which Algal Growth
Sediment Denitrification Rate
Macrophyte Density on Channel Surfaces, \(8 / m^{*} * 2\), Specific Macrophyte Growth Rate, 1/day
Specific Macrophyte Decay Rate, 1/day
Algal Growth Rate, mg/l*day
Algal Decay Rate, mg \({ }_{1 \star d a y}\)
D.0. Conc. Below Which Oxidation of D.O. Conc. Below Which Oxidation of
Iron and Manganese Do Not Occur, mg/l
Specific Rate Coefficient Manganese Oxidation, \(1 / \mathrm{day}, \quad\) ORIDAT \(=1.00\)
KMNDR \(=0.50\) Empirical Coefficient Reflecting Thickness of Boundary Layer BR = -0.49 Light Intensity at Which Photosynthesis Rate Reduced by AKI .20 8

io и 4000
Figure 22. Non-algal Portion of Light Extinction Coefficient LAMBDAO Linear Algal Self Shading Coefficient LAMBDAI
Conversion Factor From Algae To Chlorophyll,

 000000000000000000000000000000000000
I 888888888888888888888888888888888888
00000000000000000000000000000000000

ज 8888888888888888888888888888888888888 000000000000000000000000000000000000
z 88 000000000000000000000000000000000000
Z్ NONNNNNNNONONNNNNNNNNNNNNNNNNNNNNNNNNN 000000000000000000000000000000000000
\begin{tabular}{l}
a \\
品 \\
\hline
\end{tabular}
 000000000000000000000000000000000000
気
 000000000000000000000000000000000000

n 0000000000000000000000000000000000000

5488888888
Uすర్రం0000000
－

4
4

interpolation

0.00 SEGMENT 2：MAIN STEM BELOW REREG DAM
ORGAN

 울웅00000000000000

Figure 22．（Sheet 9 of 14 ）

N2000000000000000000
 day

常兑
gopag
 yEAR 1983 month

8888888888 000000000

8888888888 0000000000

8888888888 -000000000

8888888888 0000000000

NNNNNNNNNN OOODO00000

8888888888ㅇ 0000000000
 0000000000
 -000000000
 0000000000

1.288888
408000000

재ㄱㅓㅓ우웅으윽

 (

준 0888888888888888
0
죽 18888888888888
00000000000000

Fig888888888888888
온00000000000000000
W88888888888888
W0000000000000

0

준
8888888888888 0000000000000

day
temp

NTN000000004n-100000

\(\frac{1 \pi}{2}\)
tributary above rereg dam

害

 0 OU00000

8 気

．

 प⿱艹⿹勹巳刂 0000000000000000

쿨ㅇㅇㅇ
8888888888888888 0.000000000000000

눌
단888888888888888888
U0000000000000000000000

等 W 2888888888888888888
U， 0000000000000000000
 11.96 seghent 2：main stem below rereg dak

 09000000000000000000

 는 줄

8888888888888888
0000000000000000000
 6 SE

Figure 22．（Sheet 12 of 14 ）

금
\(\stackrel{y}{5}\)
雲 rear 1983 month

nio

준 8888888888888888
U0000000000000000000

준유요88888888888888 UOOOO000000000000000

5088888888888888888

Ni888888888888888888
tindoco 00000000000000

边
308888
10000000

\[
\text { Figure 22. (Sheet } 14 \text { of } 14 \text {) }
\]

Abbott, M. B. 1979. Computational Hydraulics, Pitman Publishing Limited, London.

Amein, M., and Chu, H. L. 1975. "Implicit Numerical Modeling of Unsteady Flows," Journal, Hydraulics Division, American Society of Civil Engineers, Vol 101, No. HY6, pp 717-731.

Amein, M., and Fang, C. S. 1970. "Implicit Flood Routing in Natural Channels," Journal. Hydraulics Division. American Society of Civil Engineers. Vol 96, No. HY12, pp 2481-2499.

Baca, R. G., and Arnett, R. C. 1976. "A Limnological Model for Eutrophic Lakes and Impoundments," Report No. 2311102062, Battelle Pacific Northwest Lab, Richland, WA.

Beck, M. B., and Young, P. C. 1975. "A Dynamic Model for BOD-DO Relationships in a Non-Tidal Stream," Water Research. Vol 9, pp 769-776.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N. 1964. Transport Phenomena, John Wiley and Sons, New York.

Bole, J. B., and Allan, J. R. 1978. "Uptake of Phosphorus from Sediment by Aquatic Plants, Myriophyllum spicatum and Hydrilla verticillata," Water Research. Vol 12, pp 353-358.

Bowie, G. L., Mills, W. B., Porcella, D. B., Campbell, C. L., Pagenkopt,
J. R., Rupp, G. L., Johnson, K. M., Chan, P. W. H., and Gherini, S. A. 1985. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. 2nd ed., EPA/600/3-85/040, U.S. Environmental Protection Agency, Athens, GA.
Brown, L. C., and Barnwell, T. 0. 1987. "The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS: Documentation and User Manual," EPA/600/3-87/007, U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, GA.

Burden, R. L., and Faires, J. D. 1989. Numerical Analysis. 4th ed., PWS-
Kent Pub. Co., Boston, MA.
Carignan, R., and Kalff, J. 1980. "Phosphorus Sources for Aquatic Weeds: Water or Sediments?" Science, Vol 207, pp 987-989.
Carnahan, B., Luther, H. A., and Wilkes, J. O. 1969. Applied Numerical Methods. John Wiley and Sons, New York.

Curtis, E. J. C., Durrant, K., and Harman, M. M. I. 1975. "Nitrification in Rivers in the Trent Basin," Water Research. Vol 9, pp 225-268.

DiToro, D. M., Thomann, R. V., O'Connor, D. J., and Mancini, J. L. 1977. "Estuarine Phytoplankton Biomass Models--Verification Analyses and Preliminary Applications," The Sea, Vol 6, E. D. Goldberg et al., ed., John Wiley and Sons, New York, pp 969-1020.

Donigan, A. S., and Crawford, N. H. 1979. "Water Quality Model for Agricultural Runoff," Modeling of Rivers. H. W. Shen, ed., John Wiley and Sons, New York, pp 12-1-12-82.

Dortch, M. S., Tillman, D. H., and Bunch, B. W. 1992. Modeling Water Quality of Reservoir Tailwaters. TR-W-92-1, Environmental Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Edinger, J. E., Brady, D. K., and Geyer, J. C. 1974. "Heat Exchange and Transport in the Environment," Report No. 14, EPRI Publication No. 74-049-00-3, prepared for the Electric Power Research Institute, Palo Alto, CA.
Elmore, H. L., and Hayes, T. W. 1960. "Solubility of Atmospheric Oxygen in Water," Journal, Sanitation Engineering Division, American Society of Civil Engineers, Vol 86, No. SA4, pp 41-53.
Engelbrecht, R. S., and Morgan, J. J. 1959. "Studies on the Occurrence and Degradation of Condensed Phosphate in Surface Waters," Sewage and Industrial Wastes. Vol 31, pp 458-478.

Fischer, H. B., List, E. J., Koh, R. C., Imberger, J., and Brooks, N. H. 1979, Mixing in Inland and Coastal Waters. Academic Press, New York.
Fitzgerald, G. P. 1970. "Aerobic Lake Muds for the Removal of Phosphorus from Lake Waters," Limnology and Oceanography. Vol 15, pp 550-555.
Foree, E. G., and McCarty, P. L. 1968. The Decomposition of Algae in Anaerobic Waters. Technical Report No. 95, Department of Civil Engineering, Stanford University, Stanford, CA.
Fread, D. L. 1973. "Technique for Implicit Dynamic Routing in Rivers with Tributaries," Water Resources Research, Vol 9, No. 4, pp 918-925. . 1978. DAMBRK: The NWS Dam-Break Flood Forecasting Model, Office of Hydrology, National Weather Service, Silver Spring, MD.
Garland, J. H. N. 1978. "Nitrification in the River Trent," Mathematical Models in Water Pollution Control, A. James, ed., John Wiley and Sons, New York.
Gerloff, G. C. 1969. "Evaluating Nutrient Supplies for the Growth of Aquatic Plants in Natural Waters," Eutrophication: Causes, Consequences, Correctives, National Academy of Sciences, Washington, DC, pp 537-555.
Gummerman, R. C. 1970. "Aqueous Phosphate and Lake Sediment Interaction," Proceedings of the 13th Conference on the Great Lakes Reservoir, Vol 13, pp 675-683.
Hill, A. R., and Sanmugadas, K. 1985. "Denitrification Rates in Relation to Stream Sediment Characteristics," Water Research, Vol 19, No. 12, pp 1579-1586.

Holly, F. M., and Preissman, A. 1978. "Accurate Calculation of Transport in Two Dimensions," Journal, Hydraulics Division, American Society of Civil Engineers. Vol 103, No. HY11, pp 1259-1277.
Hoover, S. R., and Porges, N. 1952. "Assimilation of Dairy Wastes by Activated Sludge--II. The Equation of Synthesis and Rate of Oxygen Utilization," Sewage and Industrial Wastes. Vol 24, pp 306-312.
Jewell, W. J., and McCarty, P. O. 1968. Aerobic Decomposition of Algae and Nutrient Regeneration. Technical Report No. 91, Department of Civil Engineering, Stanford University, Stanford, CA.
Kernighan, B. W., and Ritchie, D. M. 1988. The C Programming Language. 2nd ed., Prentiss Hall, Inglewood Cliffs, NJ.
Knuth, D. E. 1973. "Sorting and Searching," The Art of Computer Programming, Vol 3, Addison-Wesley.

Liggett, J. A. 1975. "Basic Equations of Unsteady Flow," Chapter 2, Unsteady Flow in Open Channels, K. Mahmood and V. Yevjevitch, eds., Water Resources Publication, Fort Collins, CO.

Liggett, J. A., and Cunge, J. A. 1975. "Numerical Methods of Solution of the Unsteady Flow Equations," Chapter 4, Unsteady Flow in Open Channels.
K. Mahmood and V. Yevjevitch, eds., Water Resources Publication, Fort Collins, CO.

Lyn, D. A., and Goodwin, P. 1987. "Stability of a General Preissman Scheme," Journal. Hydraulic Engineering. American Society of Civil Engineers. Vol 113, No. 1, pp 16-28.
MacKenthum, K. M., and Ingram, W. M. 1967. Biological Associated Problems in Freshwater Environments, Federal Water Pollution Control Administration, U.S. Department of the Interior, Washington, DC.

Matter, W., Hudson, P., Nestler, J., and Saul, G. 1983. "Movement, Transport, and Scour of Particulate Organic Matter and Aquatic Invertebrates Downstream from a Peaking Hydropower Project," Technical Report E-83-12, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS .

Miller, J. E., and Jennings, M. E. 1979. "Modeling Nitrogen, Oxygen, Chattahoochee River, Ga.," Journal, Environmental Engineering Division, American Society of Civil Engineers. Vol 105, pp 641-653.
O'Connor, D. J., and Dobbins, W. E. 1958. "The Mechanism of Reaeration in Natural Streams," Journal, Sanitary Engineering Division, American Society of Civil Engineers, Vol 82, pp 1-30.
O'Connor, D. J., Thomann, R. V., and DiToro, D. M. 1973. "Dynamic Water Quality Forecasting and Management," EPA-660/3-73-009, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC.
Olsen, S. 1964. "Phosphate Equilibrium between Reduced Sediments and Water," International Association of Theoretical Applied Limnology. Vol 15 , pp 333-341.
Parker, D. S., Stone, R. W., Stenquist, R. J., and Culp, G. 1975. Process Design Manual for Nitrogen Control. Office of Technology Transfer, U.S. Environmental Protection Agency, Washington, DC.

Preissmann, A. 1961. "Propagation des Intumescences dans les Canaux et Rivieres," First Congress of the Calculation Society of France, Grenoble, pp 433-442.
Roesner, L. A., Giguere, P. R., and Evenson, D. E. 1981. "Computer Program Documentation for the Stream Quality Model QUAL-II," EPA 600/9-81-014, Water Resources Engineers, Inc., Walnut Creek, CA.
Rogers, D., and Adams, J. 1976. Mathematical Elements for Computer Graphics, McGraw-Hill, New York.

Ruane, R. J., and Krenke1, P. A. 1977. "Nitrification and Other Factors Affecting Nitrogen in the Holston River," Progress in Water Technology. Vol 8, No. 4-5, pp 209-224.

Schroepfer, G. J., Robins, M. L., and Susag, R. H. 1960. "A Reappraisal of Deoxygenation Rates of Raw Sewage Effluents and Receiving Waters," Journal of Water Pollution Control Federation, Vol 32, pp 1212-1231.

Streeter, H. W., and Phelps, E. B. 1925. "A Study of the Pollution and Natural Purification of the Ohio River--III. Factors Concerned in the Phenomena of Oxidation and Reaeration," Bulletin No. 146, U.S. Public Health Service, Cincinnati, OH .

Streeter, V., and Wylie, E. B. 1979. Fluid Mechanics, McGraw-Hill, New York.
Taylor, A. W., and Kunishi, H. M. 1971. "Phosphate Equilibria on Stream Sediment and Soil in a Watershed Draining and Agricultural Region," Journal of Agriculture Food Chemistry, Vol 19, pp 827-831.
Tsivoglou, E. C., and Wallace, J. R. 1972. Characterization of Stream Reaeration Capacity. EPA-R3-72-012, Ecology Research Service, Office of Research and Monitor, U.S. Environmental Protection Agency, Washington, DC.

Water Resources Engineers, Inc. 1967. "Prediction of Thermal Energy Distribution in Streams and Reservoirs," prepared for the California Department of Fish and Game.

Wheatland, A. B., Barrett, M. J., and Bruce, A. M. 1959. "Some Observations on Denitrification in Rivers and Estuaries," Journal and Proceedings of the Institute of Sewage Purification, Pp 149-162.

Wilhelms, S. C., and Smith, D. R. 1981. "Reaeration Through Gated-Conduit Outlet Works," Technical Report E-81-5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Williams, R. E., and Lewis, M. S. 1986. "Stream Model of Benthic Nitrification-Denitrification," Journal. Environmental Engineering, American Society of Civil Engineers, Vol 112, No. 2, pp 367-386.

Wilson, G. T., and Macleod, N. 1974. "A Critical Appraisal of Empirical Equations and Models for the Prediction of the Coefficient of Reaeration of Deoxygenated Water," Water Research, Vol 8, pp 341-366.

Banks, R. B. 1975. "Some Features of Wind Action on Shallow Lakes," Journal. Environmental Engineering, American Society of Civil Engineers, Division No. EE5, pp 813-827.

Bansal, M. K. 1976. "Nitrification in Natural Streams," Journal of Water Pollution Control Federation, Vol 48, pp 2380-2393.

Bennet, J. P., and Rathbun, R. E. 1972. "Reaeration in Open Channel Flow," U.S. Geological Society Professional Paper.

Black, W. M., and Phelps, E. B. 1911. "Report Concerning the Location of Sewer Outlets and the Discharge of Sewage into New York Harbor," Contributions from the Sanitary Research Laboratory and Sewage Experiment Station, Vol VII, Massachusetts Institute of Technology, Cambridge, MA.
Bowles, D. S., Fread, D., and Grenney, W. 1977. "Coupled Dynamic StreamflowTemperature Model," Journal, Environmental Engineering Division. American Society of Civil Engineers, Vol 103, No. HY5.

Brown, L. C. 1974. "Statistical Evaluation of Reaeration Prediction Equations," Journal. Environmental Engineering Division. American Society of Civil Engineers, Vol 100, pp 1051-1068.

Camp, T. R., and Meserve, R. L. 1974. Water and Its Impurities, 2d ed., Dowden, Hutchinson \& Ross, Inc., Stroudsburg, PA.
Churchill, M. A., Elmore, H. L., and Buckingham, R. A. 1962. "The Prediction of Stream Reaeration Rates," International Journal of Air and Water Pollution. Vol 6, pp 467-504.

Covar, A. P. 1976. "Selecting the Proper Reaeration Coefficient for Use in Water Quality Models," Proceedings of the Conference on Environmental Modelling and Simulation, U.S. Environmental Protection Agency, Cincinnati, OH, pp 340-343.

Edinger, J. E., Duttweiler, D., and Geyer, J. 1968. "The Response of Water Temperatures to Meteorological Conditions," Water Resources Research, Vol 4, No. 5.

Elmore, H. C., and West, W. F. 1961. "Effect of Water Temperature on Stream Reaeration," Journal, Sanitation Engineering Division, American Society of Civil Engineers. Vol 87, No. SA6, pp 59-71.

Ford, D. E., and Johnson, L. S. 1986. "An Assessment Reservoir Mixing Processes," Technical Report E-86-7, prepared by Ford, Thornton, Norton and Associates, Ltd., Little Rock, AR, for the U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS .
Fread, D. L., and Smith, C. F. 1978. "Calibration Technique for 1-D Unsteady Flow Models," Journal. Hydraulics Division. American Society of Civil Engineers, Vol 104, No. HY7, pp 1027-1044.

Frost, W. H., and Streeter, H. W. 1924. Public Health Bulletin. No. 143, U.S. Public Health Service, Washington, DC.

Garland, J. H. N., and Rolley, H. L. J. 1977. "Studies of River Water Quality in the Lancashire Tame," Water Pollution Control. Vol 76, pp 301-326.

Haslam, S. M. 1978. River Plants, Cambridge University Press, Cambridge, MA.

Holler, A. G. 1970. "Reaeration of Discharge Through Hydraulic Structures," U.S. Army Engineer Division, Ohio River, Cincinnati, OH.

Holly, F. M., and Cunge, J. 1979. "Coupled Dynamic Streamflow - Temperature Models Discussion," Journal, Hydraulics Division, American Society of Civil Engineers, Vol 104, pp 316-318.
Hynes, H. B. N. 1970. The Ecology of Running Waters, University of Toronto Press, Toronto.

International Business Machines Corp. 1968. "IBM System/360 Scientific Subroutine Package," 360A-CM-03X Version III Programmer's Manual.
\(\qquad\)
Kittrell, F. W., and Furfari, S. A. 1963. "Observations of Coliform Bacteria in Streams," Journal of Water Pollution Control Federation, Vol 35, pp 1361-1385.
Krombach, H., and Barthel, J. 1963. "Investigation of a Small Watercourse Accidentally Polluted by Phenol Compounds," International Journal of Air and Water Pollution. Vol 7, pp 39-46.

Leopold, L. B., Wolman, M. G., and Miller, J. P. 1964. Fluvial Processes in Geomorphology. W. H. Freeman and Co., San Francisco, CA.

Liggett, J. A., and Woolhiser, D. A. 1967. "Difference Solutions of the Shallow Water Equation," Journal, Engineering Mechanics Division, American Society of Civil Engineers, Vol 93, No. EM2, pp 39-71.
Novotny, V. 1969. "Boundary Layer Effect on the Course of the SelfPurification of Small Streams," Advances in Water Pollution Research, S. H. Jenkins, ed., Pergamon Press, Oxford, pp 39-55.
0'Connor, D. J. 1983. "Wind Effects on Gas-Liquid Transfer Coefficients," Journal, Environmental Engineering Division. American Society of Civil Engineers, Vol 109, pp 731-752.

Owens, M., Edwards, R. W., and Gibbs, J. W. 1964. "Some Reaeration Studies in Streams," International Journal of Air and Water Pollution, Vol 8, pp 469-486.

Strand, S. 1975. Statistics of the BOD Parameters. M.S. thesis, Ohio State University, Columbus, OH .

Theriault, E. J. 1927. The Oxygen Demand of Polluted Waters. Bulletin No. 173, U.S. Public Health Service, Washington, DC.
U.S. Environmental Protection Agency. 1987. The Enhanced Stream Water Quality Models QUAL2E and QUAL2E-UNCAS, Documentation and User Manual. EPA/600/3-87/007, Athens, GA.

Velz, C. J. 1939. "Deoxygenation and Reoxygenation," Transactions of the American Society of Civil Engineers. Vol 104, pp 560-578.
\(\qquad\) . 1947. "Factors Influencing Self-Purification and Their Relation to Pollution Abatement," Sewage Works Journal, Vol 19, pp 629-644.
\(\qquad\) . 1970. Applied Stream Sanitation, John Wiley and Sons, New York.
Whitton, B. A., ed. 1975. River Ecology. University California Press, Berkeley, CA.

Wright, R. M., and McDonnell, A. J. 1979. "In-Stream Deoxygenation Rate Prediction," Journal. Environmental Engineering Division, American Society of Civil Engineers, Vol 105, pp 323-335.
Yalin, M. S. 1977. Mechanics of Sediment Transport, 2d ed., Pergamon Press, Oxford.

Yen, B. C. 1979. "Unsteady Flow Mathematical Modeling Techniques," Modeling of Rivers, H. W. Shen, ed. John Wiley and Sons, New York.

Zison, S. W., Mills, W. B., Deimer, D., and Chen, C. W. 1978. Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling, EPA-600/3-78-105, Environmental Research Laboratory, U.S. Environmental Protection Agency, Athens, GA.

APPENDIX A: LIST OF THE HYDRODYNAMIC CODE RIV1H

\section*{PROGRAM RIVIH}

\section*{REAL KEl}

INTEGER ORDER, FEEDS
INCLUDE 'RIV1H.CMN'
CHARACTER*6 XSCODE(IND1)

\section*{CHARACTER MONTH*9}

INTEGER SYEAR, SMONTH, SDAY, EYEAR, EMONTH, EDAY
CHARACTER*30 RIVPATH
CHARACTER*12 FILES(30), MESSFIL
LOGICAL CTRL
COMMON/ABLOCR/ MTIME, NS, TITLE, MNODE
COMMON/XSDATA/ IXS, HXS(MAXXS), AXS(MAXXS), BXS(MAXXS)
DIMENSION DX1(IND1), \(Q\) (IND1), \(A(I N D 1), B(I N D 1) ; ~ I 3(I N D 1)\), C1(IND1), C2(IND1), C3(IND1), H(IND1), EL(IND1), QL(IND1), QLC(IND1), QLT(IND1), CN1 (IND1), RE1 (IND1), R(IND3), AA(IND2), XC(IND1), XM(IND1), RMILE(IND1), C(IND3), LIB(IBRAN), ID(IBRAN), NODE1 (IBRAN), NNODE(IBRAN), FEEDS (IBRAN), ORDER(IBRAN), JNODE(IBRAN), JBCU(IBRAN), JBCD(IBRAN), BCU(IBRAN), BCD(IBRAN), JT(IBRAN), COSP(IBRAN), ITO(IBRAN), ITI(IBRAN), IT2(IBRAN), T(4, IBRAN), IBC(IBRAN+1), BC(IBRAN+1), Z(IND1), XMAN(IND1), DNDH(IND1), AX(IND1), IXSA(IND1), IXSB(IND1), DBDH(IND1)

DIMENSION TPRNT(50), TPR(50)
```

C ************************************************************************
C 200 update intervals, 12 boundary conditions
C
CHARACTER*1 BTU,BTD
CHARACTER*40 SNAME (IBRAN)
CHARACTER*80 TITLE
DATA GR/32.174/,THETA/0.55/,TOLER/0.001/, BETA/1.0/,IPRINT/1/
IFIRST = 0
C
OPEN(UNIT=1,FILE='RIV1H.CTL', IOSTAT=ISTAT, STATUS='OLD')
IF (ISTAT .NE. 0)THEN
WRITE (6,6000)
6000 FORMAT(' RIVIH Control File Not Found ')
STOP
ENDIF
C
READ (1,5000)INFIL
READ (1,5000)LATFIL
READ (1,5000)XSFILE
5000 FORMAT(15X,A12)
DO 101 I = 1, 12
IF (INFIL'(I:I) .EQ. '.') GO TO 102
OUTFIL (I:I) = INFIL (I:I)
HYDFIL (I:I) = INFIL (I:I)
DMPFIL (I:I) = INFIL (I:I)
ERRFIL (I:I) = INFIL (I:I)
GO TO 101
CONTINUE
OUTFIL (I:I + 3) = '.OUT'
HYDFIL (I:I + 3) = '.HYD'
DMPFIL (I:I + 3) =, HDF,
ERRFIL (I:I + 3)=,.ERR'
GO TO 103
101 CONTINUE
103
CONTINUE
C ****************************************************************************
C Model results are written to File 6 and File 8.
C Diagnostics are written to File }7
C *************************************************************************
OPEN (UNIT=INPUT, FILE= INFIL ,STATUS='OLD')
OPEN (UNIT=OUT, FILE= OUTFIL ,STATUS='UNKNOWN')
OPEN (UNIT=HYD, FILE= HYDFIL ,FORM='UNFORMATTED',STATUS='UNKNOWN')
OPEN (UNIT=RIVDMP,FILE= DMPFIL ,STATUS='UNKNOWN')
OPEN (UNIT=NERRFIL, FILE= ERRFIL ,STATUS='UNRNOWN')
C *****************************************************************************
C 2) Read Input File
C *************************************************************************
C A) Read All Global Information
C ************************************************************************
C
READ(INPUT,10)TITLE
10 FORMAT(A80)
WRITE(OUT,*)TITLE
READ (INPUT , *)MNODE ,SYEAR, SMONTH, SDAY, SHR,
EYEAR, EMONTH, EDAY, EHOUR,NS

```

CALL JULIAN_DATE (STARTTIME,ENDTIME SYEAR, SMONTH, SDAY, SHR,
TNXTVD = STARTTIME
WRITE (OUT , 300)MNODE , NS
WRITE (OUT, 310) SYEAR, SMONTH, SDAY, SHR, STARTTIME
WRITE (OUT, 320) EYEAR, EMONTH, EDAY, EHOUR, ENDTIME
C
C MNODE \(=\) IND1 \(=\) Number of nodes I the system
C MTIME \(=\) Number of timesteps
\(C\) NS \(=\) Number of river segments

READ (INPUT, *) BETA , GR , RMILE0, THETA , TOLER, IQL , IXS
WRITE (OUT , 330) BETA , GR , IPRINT , RMILEO , THETA, TOLER
C Read Print Interval Information

READ (INPUT, *) NP
WRITE (OUT, 340) NP
READ (INPUT, *) (TPRNT (I), TPR (I), \(I=1, N P\))
WRITE (OUT, 350) (TPRNT (I), TPR (I) , \(I=1\),NP)
C
C Initialize Counters for Printing

TDUM \(=0\).
IPRINT \(=1\)
TPRINT \(=\) TPRNT(IPRINT)
C Initialize Lateral Flows

DO \(I=1\), MNODE
\(\mathrm{QL}(\mathrm{I})=0\).
\(Q L C(I)=0\).
QLT(I) \(=0\).
END DO
C Determine Name and Open Lateral Inflow File

IF(IQL.GE.1)OPEN (UNIT=IAT,FILE= LATFIL ,STATUS='OLD')

C Determine Name and Open X-Section File

IF (IXS.GE.1)THEN
C
\(C\)
\(C\)
\(C\)
C) If X-Section Data to be Read From a File (IXS \(>=1\)), Determine Files and Open

C
OPEN (UNIT=FXSEC,FILE= XSFILE ,STATUS='OLD')
ENDIF
\(M 2=0\)

\section*{1 CONTINUE}

C E) Read the boundary conditions id card and get initial time varying data
C

\section*{26}

DO \(26 \mathrm{~L}=1\), NS +1
\(\operatorname{IBC}(\mathrm{L})=0\)
READ (INPUT, *) IBC
C F) Unscramble references

DO \(31 \mathrm{~L}=1\),NS
\(J B C U(L)=0\)
\(\operatorname{JBCD}(\mathrm{L})=0\)
DO \(31 \mathrm{M}=1\), NS
\(\operatorname{IF}(\operatorname{FEEDS}(L) \cdot \operatorname{EQ} \cdot I D(M)) \operatorname{FEEDS}(L)=M\)
31 CONTINUE
\(\mathrm{NBC}=0\)
DO \(29 \mathrm{~L}=1\), NS +1
IF (IBC (L) .EQ.0) GO TO 24
\(\mathrm{NBC}=\mathrm{NBC}+1\)
DO \(25 \mathrm{M}=1\), NS
IF(IBC(L).EQ.ID(M))IBC(L) \(=M\)
\(\operatorname{IF}(I B C(L) \cdot E Q \cdot-I D(M)) I B C(L)=-M\)
25
CONTINUE
CONTINUE
24 CONTINUE

C G) Construct cross-reference boundary conditions directory

IF (NBC.LE.0)GO TO 33
DO \(32 \mathrm{~L}=1\), NBC
IF (IBC(L)) 28, 32, 27
\(28 \quad \operatorname{JBCD}(-\operatorname{IBC}(\mathrm{L}))=\mathrm{L}\)
GO TO 32
\(27 \quad \mathrm{JBCU}(\mathrm{IBC}(\mathrm{L}))=\mathrm{L}\)
32 CONTINUE
33 CONTINUE
C H) Establish an "upstream" ordering of the segments

DO \(42 \mathrm{I}=1\),NS
\(\operatorname{ORDER}(I)=0\)
IT1 (I) \(=0\)
ITO (I) \(=0\)

IT2 (I) \(=0\)
IF (FEEDS (I).NE.0)GO TO 42
```

        ORDER(1) = I
    42 CONTINUE
    L=1
    IT = 0
    DO 44 I=1,NS
        M = ORDER(I)
        DO 44 J=1,NS
        IF(FEEDS(J).NE.M)GO TO }4
        L = L+1
        ORDER(L) = J
        IF(JNODE (J).GT.0)GO TO 39
        JBCU(M) = -(NODE1 (J) +NNODE (J)-1)
        IF(LIB(M).LE.3)LIB(M)=LIB(M)+3
        GO TO 38
        IT = IT+1
        IF(IT1(M).EQ.O)ITl(M)=IT
        JT(IT) = JNODE(J)
        IT2(M) = IT
        ITO(J)=IT
        JBCD(J) = - (NODE1 (M) +JNODE (J)-1)
        IF(L.EQ.NS)GO TO 43
    CONTINUE
    4 3 \text { CONTINUE}
    IF(NS.GT.2)CALL BUBBLE(ITO,IT1,IT2,JT,NS)
    C I) Read in the surveyed cross-section data, if present

```

```

CALL READXS (XSCODE, IXSA, IXSB, MNODE)

```

```

C IXSA and IXSB are pointers into a cross-section table.
$C$ If they are both positive, then $C 1$ serves as the linear
C interpolation factor between the two values pointed to.
$C$ (remember, for this scheme to work, every section of the
C cross-section table must be bounded above and below by
$C \quad h x s=0$, i.e., the first $x-y$ pair for a x-section must be
$C \quad 0,0$ ). If only IXSA is positive, then that node is associated
C with a single surveyed cross-section and no interpolation is C required.

```

```

C The "DO 67" loop carried out for each segment independently
C first sweep downstream

```

```

DO $67 \mathrm{~L}=1$, NS
M1 $=$ NODE1 (L)
M2 $=\mathrm{Ml}+\operatorname{NNODE}(\mathrm{L})-1$
IXS $=0$
DO 68 I = M1, M2
IF (IXSA (I). GT. 0) THEN
$D=D X 1(I)$
IXS $=$ IXSA (I)
ELSE
$\mathrm{C} 1(\mathrm{I})=\mathrm{D}$

```
```

            D=D + DXl(I)
            ENDIF
                IXSA(I) = IXS
                    CONTINUE
    C ***** Then sweep upstream

```

```

    IXS = 0
    DO 69 I = M2, M1, -1
        IF (IXSB(I) .GT. 0) THEN
                D = 0.
                IXS = IXSB (I)
            ELSE IF (IXS GT. 0) THEN
                    D=D + DXI(I)
                    Cl(I)=Cl(I)/(Cl(I) + D)
            ENDIF
            IXSB(I) = IXS
                CONTINUE
                CONTINUE
    ***** ............... END "DO 67" LOOP
***** Transform initial stages into initial cross-sectional areas ***** And channel top-widths. C3<0 is the signal that an ellipsoid ***** Cross-section is indicated.

```


```

C Manning's $n$, originally input as CN1 (I) is redefined as

```

```

DO $70 \mathrm{I}=1$,MNODE
$\operatorname{XMAN}(I)=\operatorname{CN1}(I)$
CN1 (I) $=$ CN1 (I) $* * 2 / 2.2 * G R$
$Z(I)=E L(I)$
$E L(I)=H(I)+E L(I)$
IF ((IXSA (I) EQ. O .AND. IXSB(I) .EQ. O) .OR.
(IXSA(I) .NE. IXSB(I) .AND ; XSCODE(I) .NE., ')) THEN
READ (XSCODE(I),'(F6.0)') Cl(I)
IXSA (I) $=0$
$\operatorname{IXSB}(I)=0$
ELSE IF (IXSA (I) .EQ. 0) THEN
IXSA(I) $=\operatorname{IXSB}(\mathrm{I})$
IXSB (I) $=0$
ELSEIF (IXSA(I) .EQ. IXSB(I)) THEN
$\operatorname{IXSB}(\mathrm{I})=0$
ENDIF
IF (IXSA(I) .GT. 0) THEN
IF (IXSB(I) .GT. 0) THEN
CALL AFROMH2 (H(I) , A (I) , B(I), DBDH(I), IXSA(I), IXSB(I), Cl(I))

```

\section*{ELSE}
```

CALL AFROMH(H(I), A(I), B(I), DBDH(I), IXSA(I))

```

ENDIF

\section*{ELSE}

 DO \(49 \mathrm{LL}=1\), NS
 \(\mathrm{L}=\) ORDER (LL)
 \(\mathrm{Ml}=\operatorname{NODE1}(\mathrm{L})+1\)
 \(\mathrm{M} 2=\mathrm{NNODE}(\mathrm{L})+\mathrm{Ml}-2\)
 IF(LL.GT.1)GO TO 51
 RMILE (M2) = RMILEO
 GO TO 52
 51 IF(JNODE(L).GT.0)GO TO 53
 LJ \(=\) FEEDS (L)
 MJ = NODE1 (LJ)
 RMILE (M2) \(=\) RMILE (MJ)
 GO TO 52
 53 RMILE(M2) \(=0\).
 52 CONTINUE
 DO \(54 \mathrm{II}=\mathrm{Ml}, \mathrm{M} 2\)
 \(I=M 1+M 2-I I\)
 RMILE (I-1) \(=\operatorname{RMILE}(\mathrm{I})+\mathrm{DX1}(\mathrm{I}-1) / 5280\).
 CONTINUE
 49 CONTINUE
C Write out initial data for use in RIV1Q Program

WRITE (HYD) MNODE , STARTTIME , ENDTIME , SYEAR, NS
DO \(1000 \mathrm{I}=1\), NS
```

                            WRITE(HYD)JT(I),ITO(I),ITl(I),IT2(I),ORDER(I),NNODE(I),
                        NODE1(I),ID(I),JBCU(I)
    1000 CONTINUE
DO 1010 I =1,MNODE
WRITE (HYD)DXI (I) , QLC(I) ,RMILE (I)
1010 CONTINUE
G2 = GR/2.
ITIME = 0
ELAPSE = STARTTIME
CALL GREGORIAN_DATE(ELAPSE,SYEAR,MONTH, IDAY,HOUR)
CALL TIME_VARYING_DATA (ELAPSE,SYEAR,TNXTVD,NBC,DT,BC,IQL,QLT)
DO 1031 I=1,MNODE
IF (IQL.GE.1)THEN
QL(I) = QLC(I)+QLT(I)
ELSE
QL(I) = QLC(I)
END IF
CONTINUE
C 3) BEGIN TIME MARCH LOOP
C IT ENDS WITH GO TO 80 STATEMENT AT END OF LOOP
C *******t********t**t*******************************************************

```

80 CONTINUE

```

        IF(TDUM.GE.TPRINT.OR.TDUM.EQ.O.) THEN
        WRITE(OUT, 110)TITLE
        WRITE(OUT,125)DT
        DO 81 L=1,NS
            WRITE(OUT,115)L
            WRITE (OUT, 120) SYEAR ,MONTH, IDAY ,HOUR, ITIME, ID (L) , SNAME (L)
            WRITE(OUT,126)BCU(L), BCD(L)
            WRITE(OUT,130)
            M = NODE1 (L)-1
            M2 = NNODE(L)
                    WRITE(OUT,140)(I,RMILE (I+M),Q(I+M),A(I+M),B(I+M),H(I+M),
                        EL(I+M),XMAN (I+M),I=1,M2)
    CONTINUE
    CALL RIVDU(MNODE,DX1 (1),RMILE(1),Q(1),QLC(1),QLT(1)
                ,A(1),B(1),EL(1), XMAN(1))
    TDUM = 0.
    END IF
    TDUM = TDUM + DT/3600. +0.00001
    C C) Write to output file for RIV1Q Program
C **************************************************************************

```

\section*{WRITE (HYD) DT}
```

DO $1020 \mathrm{I}=1$, MNODE
WRITE (HYD) Q(I), QLT (I) , A (I) , B (I) , EL (I)

```

\section*{1020 CONTINUE}
```

C D) Check Courant No. If greater than 1.0, print to error file.

```
C D) Check Courant No. If greater than 1.0, print to error file.
C Courant No. Greater than 1.0 will cause the RIV1Q code to
C Courant No. Greater than 1.0 will cause the RIV1Q code to
C become unstable
C become unstable
C *****t**t**********t**
C *****t**t**********t**
 MNM1 = MNODE - 1
 MNM1 = MNODE - 1
 DO 683 IK = 2, MNM1
 DO 683 IK = 2, MNM1
 COURANT = (Q(IK) * DT) / (DXI(IK) * A(IK))
 COURANT = (Q(IK) * DT) / (DXI(IK) * A(IK))
 IF (COURANT .GT. .99) WRITE(NERRFIL,684) IR, ELAPSE, COURANT
 IF (COURANT .GT. .99) WRITE(NERRFIL,684) IR, ELAPSE, COURANT
 683 CONTINUE
 683 CONTINUE
 684 FORMAT (10X, 'Node,', I3, 10X, 'Elapse = ', F10.6,
 684 FORMAT (10X, 'Node,', I3, 10X, 'Elapse = ', F10.6,
 . 5X, 'Courant No = , F6.2')
 . 5X, 'Courant No = , F6.2')
 ITIME=ITIME+1
 ITIME=ITIME+1
C E) Update times and stop if time is greater than the endtime
```

C E) Update times and stop if time is greater than the endtime

```


```

    ELAPSE=ELAPSE+DT/86400.
    IF (ELAPSE.GT.TPR(IPRINT) . AND.NP .GT . 1)THEN
        IPRINT=IPRINT+1
        TPRINT=TPRNT (IPRINT)
    END IF
    IF(ELAPSE.GE .ENDTIME) STOP
    CALL GREGORIAN_DATE(ELAPSE,SYEAR,MONTH,IDAY,HOUR)
    C F) Update time varying data

```

IF (ELAPSE. GE.TNXTVD)
CALL TIME_VARYING_DATA (ELAPSE,SYEAR,TNXTVD,NBC,DT,BC,IQL,QLT)
DO \(1030 \mathrm{I}=1\), MNODE
IF (IQL. GE. 1) THEN
\(Q L(I)=Q L C(I)+Q L T(I)\)
ELSE
\(Q L(I)=Q L C(I)\)
END IF
1030

\section*{CONTINUE}
```

C ****************************************************************************
C Variable Manning's n Values:
C Manning's n is allowed to vary in accordance with a linear
relationship between }n\mathrm{ and the DEPTH H in the X-section.
AX(I) is the value of }n\mathrm{ when the DEPTH is 0.0. The rate of
change of n with DEPTH, DNDH, is the coefficient of H. The
user is alerted if n drops below zero and n is reset to 0.01.
WARNING! The basic equations have been modified to allow only for
linear variation of n with depth. If the user contemplates other
relationships, the equations must be modified accordingly.
C *************************************************************************
DO 165 I=1,MNODE
IF (AX (I).NE.0.0.AND .DNDH (I) .NE . O.0)THEN
XMAN(I)=AX(I) - DNDH(I)*H(I)
IF(XMAN(I).LE.0.01)THEN
WRITE (NERRFIL, 177)I
177
FORMAT('Value for XMAN at Node I =',II,
, is < 0.01. it has been RESET to 0.01')
XMAN (I) =0.01
END IF
CN1(I)=XMAN (I)**2*GR/2.2
END IF
165 CONTINUE
C G) CALLING SUBROUTINES
C *************************************************************************
DO 400 LL=1,NS
L = ORDER (NS-LL+1)
M = NODE1(L)
M1 = NNODE(L)
M2 = 2*M-1
IF(JBCU(L))401,402,403
401 JJ = -JBCU(L)
BCU(L)=Q(JJ)
GO TO }40
403 JJ = JBCU(L)
BCU(L) = BC(JJ)
402 IF(JBCD(L)) 404,405,406
404 JJ = -JBCD(L)
BCD(L) = EL(JJ)-EL(M+M1-1)+H(M+M1-1)
GO TO 405
406 JJ = JBCD(L)

```
```

BCD(L) = BC(JJ)

```

CALL CALC (THETA, DT, DX1 (M), \(\mathrm{Q}(\mathrm{M}), \mathrm{A}(\mathrm{M}), \mathrm{B}(\mathrm{M}), \mathrm{I} 3(\mathrm{M}), \mathrm{C} 1(\mathrm{M}), \mathrm{C} 2(\mathrm{M})\),
\(\mathrm{C} 3(\mathrm{M}), \mathrm{H}(\mathrm{M}), \mathrm{EL}(\mathrm{M}), \mathrm{QL}(\mathrm{M}), \mathrm{G} 2, \mathrm{CN} 1(\mathrm{M}), \mathrm{KE} 1(\mathrm{M}), \mathrm{XC}(\mathrm{M}), \mathrm{XM}(\mathrm{M})\), \(C(M 2), R(M 2), A A, L I B(L), B C U(L), B C D(L), C O S P(L), B E T A\), IT0(L), IT1 (L) , IT2 (L) , JT, T, M1, 10* (M1-1), 2*M1, NS, ID (L) , XMAN (M) , DNDH (M) , IXSA (M) , IXSB (M) , DBDH (M))

\section*{400 CONTINUE}

DO \(180 \mathrm{~K}=1,50\)
C Sweep upstream

DO \(407 \mathrm{LL}=1\),NS
\(L=\) ORDER (LL)
\(M=\) NODEL (L)
\(M 1=\operatorname{NNODE}(L)\)
\(\mathrm{M} 2=2 * \mathrm{M}-1\)
CALL NEW(R(M2), \(\mathrm{Q}(\mathrm{M}), \mathrm{A}(\mathrm{M}), \mathrm{B}(\mathrm{M}), \mathrm{H}(\mathrm{M}), \mathrm{EL}(\mathrm{M}), \mathrm{I} 3(\mathrm{M}), \mathrm{Cl}(\mathrm{M}), \mathrm{C} 2(\mathrm{M})\), C3(M), C(M2), ITO (L) , ITl(L), IT2(L) , JT, T, M1, 2*M1,NS, \(Z(\mathrm{M})\), IXSA (M) , IXSB (M), DBDH (M))
407 CONTINUE
C H) Check each of the computed departures for \(Q\) and \(A\). If any is large I than the computed tolerance for each, go for another iteration, a Maximum of 50 .
C

DO \(160 \mathrm{I}=1\), MNODE
IF (ABS (R(2*I-1)).GT.RMSQ.OR.ABS (R(2*I)).GT.RMSA)GO TO 170
160
CONTINUE
\(\begin{array}{ll}\text { C } & \text { At this point, flows and water depths for a single timestep have } \\ C & \text { been computed. Computations for the next timestep are begun at } \\ \text { C } & \text { statement } 80 \text { above, where the time march begins. }\end{array}\)

C
GO TO 80
170
CONTINUE
\(C\) To examine node at which non-convergence is occurring, the
\(C\) following line has been added to the code as a diagnostic.

```

IF(R.GE.25)THEN
WRITE(NERRFIL,*) 'Z(I)= ',Z(I),' ELAPSE= ',ELAPSE,
, TOLER TST'
WRITE(NERRFIL,*) 'ABS(R(2*I-1))=, ABS(R(2*I-1)),
, RMSQ= ',RMSQ
WRITE(NERRFIL,*) 'ABS(R(2*I)=',ABS(R(2*I)),' RMSA= , RMSA

```
\(C\) This loop is identical to the "DO \(165^{\prime \prime}\) loop above. It recomputes C Manning's \(n\) and CNl(I) using new \(H(I)\) values, within a timestep.
 C
DO 166 I=1,MNODE
DO 166 I=1,MNODE
 IF (AX (I).NE.O.0.AND.DNDH(I) .NE.O.0)THEN
 IF (AX (I).NE.O.0.AND.DNDH(I) .NE.O.0)THEN
 XMAN(I)=AX(I) - DNDH(I)*H(I)
 XMAN(I)=AX(I) - DNDH(I)*H(I)
 IF (XMAN (I).LE.O.01)THEN
 IF (XMAN (I).LE.O.01)THEN
 WRITE(NERRFIL, 177)I
 WRITE(NERRFIL, 177)I
 XMAN (I) =0.01
 XMAN (I) =0.01
 END IF
 END IF
 CN1 (I) =XMAN (I)**2*GR/2.2
 CN1 (I) =XMAN (I)**2*GR/2.2
 END IF
 END IF
 CONTINUE
 CONTINUE
 The "DO 408" loop resets boundary conditions, recomputes Manning's n
 for corrected flows and solves the system of equations for
 new departures.

 DO 408 LL=1,NS
 \(L=\) ORDER (NS \(-L L+1\))
 \(M=\) NODE1 (L)
 Ml \(=\) NNODE (L)
 M2 \(=2 * M-1\)
 IF (JBCU(L).GE.0) GO TO 409
 \(J J=-J B C U(L)\)
 \(B C U(L)=Q(J J)\)
409
410
 (JBCD(L).GE.0)GO TO 410
 \(J J=-J B C D(L)\)
 \(\operatorname{BCD}(L)=E L(J J)-E L(M+M 1-1)+H(M+M 1-1)\)
 CALL ITER(THETA, DT,DX1 (M), Q(M), A(M), B(M),I3(M), C1 (M), C2 (M),
 C3 (M) , H (M), EL (M) , QL (M) , G2, CN1 (M), RE1 (M), XC (M), XM(M),
 C(M2) , R(M2) , AA \(, \operatorname{LIB}(L), B C U(L), B C D(L), C O S P(L), B E T A\),
 ITO(L), IT1 (L), IT2(L) ,JT,T,M1,10*(M1-1), 2*M1,NS,ID(L),
 XMAN (M) , DNDH (M) , IXSA (M) , IXSB (M) , DBDH (M))
408 CONTINUE
180 CONTINUE
WRITE (OUT, 190)
STOP 'Failed to Converge'
200 CONTINUE
STOP
20 FORMAT (5F6.0,A6, 6F6.0)
110 FORMAT (1H1, //,1X,A80)
115 FORMAT (\(/\), OÚTPUT FOR SEGMENT NO. , ,I5)
120 FORMAT (1X,'Time: Year =',I4,',Month= ',A9,',Day', I4,',Hour =',
F8.4, 'Step=',I5,' Segment=',I3,', 'A40)
125 FORMAT (1X, 'TIME STEP (sec) \(=\), F8.2)
126 FORMAT (Upstream Boundary , F8.3,
Downstream Boundary \(=\) ', F8.3)
\(130^{\circ}\) FORMAT (1x, 77 , 'River', 7X,' Flow , 7X,' Area ', 7X,' Width ',

, , T8,'Mile', 7X,' (cfs) ', 7X,' (sq ft)',7X,' (Feet),
7X,' (Feet) ,'7X,' (Feet) ''
```

    140 FORMAT(1x,I2,F9.2,6F15.3)
    190 FORMAT('The Iteration has FAILED to CONVERGE in 50 steps. Run',
        ' Aborted')
    300 FORMAT(1X,'NUMBER OF NODES = ',I5,' NUMBER OF SEGMENTS = ',I5)
    310 FORMAT(l,' STARTIME: YEAR =',I4,',MONTH=',I4,',DAY',I4,',HOUR =',
            F8.4, , JULIAN DAY = ;,F8.3)
    320 FORMAT(' END TIME: YEAR =',I4,',MONTH= ',I4,',DAY',I4,',HOUR =',
        F8.4, , JULIAN DAY = ',F8.3)
    330 FORMAT(/
    \therefore, BETA = ',F8.2,l,
    \thereforeGR = ',F8.2,l',
    , IPRINT = ,'18,l,
    , RMILE0 = ',F8.2,1,
    , THETA =,',F8.2,1,
    , TOLER =,'F8.4)
    340 FORMAT(/,' NUMBER OF PRINT UPDATES',I5)
    350 FORMAT(' PRINT INTERVAL = ',F8.3,' PRINT TIME ',F8.3)
    360 FORMAT(/,12,A40,3I3,2(A1,F8.0),F8.0)
    370 FORMAT(1X,5F10.3,A6,6F10.3)
    C
END
C *****************************************************************************
C SUBROUTINE AFROMH
SUBROUTINE AFROMH(H, A, B, DBDH, IPC)
C
PARAMETER(MAXXS=1000)
COMMON/XSDATA/IXS,HXS (MAXXS), AXS (MAXXS), BXS (MAXXS)
IF (H .LE. O.) STOP 'AFROMH: Zero or Negative Depth of Flow'
DO 10 I = IPC, MAXXS
IF (HXS(I+1).LE. 0)
STOP 'AFROMH: River has Overflowed its Banks!'
IF (H .LE. HXS(I+1)) GOTO 1l
IPC = I
DO 20 I = IPC, 1, -1
IF (H .GT. HXS(I)) GOTO 21
20
Calculate the area, channel top width, and derivative of the top width
Using linear table search (linear is not inefficient because you keep
An updatable pointer into the table) and linear interpolation.
The limit switches on the table search (top and bottom) are hxs = 0
*****************************************************************************
21 IPC = I
DBDH = (BXS(I+1) - BXS(I))/(HXS(I+1) - HXS(I))
DH=H-HXS(I)
B = BXS(I) + DBDH*DH
A=AXS(I) + (BXS(I) + DBDH*DH/2.)*DH
RETURN
END
C *************************************************************************
C SUBROUTINE AFROMH2
C ****************************************************************************
SUBROUTINE AFROMH2(H, A, B, DBDH, IA, IB, E)

```

```

        HB = (H - EC*HA)/E
    ENDIF
    13 RECALC = .FALSE.
RECALC = .TRUE.
RECALC = . TR
IF (HXS(IA+1) .LE. 0)STOP 'River has OVERFLOWED its banks'
IF (HA .GT. HXS(IA+1)) GOTO 14
ELSEIF (HA .LT. HXS(IA)) THEN
RECALC = .TRUE.
IA = IA - 1
IF (HA .LT. HXS(IA)) GOTO 15
ENDIF
IF (HB .GT. HXS (IB+1)) THEN
RECALC = .TRUE.
16 IB = IB + 1
IF (HXS(IB+1) .LE. 0)STOP 'River has OVERFLOWED its banks'
IF (HB .GT. HXS(IB+1)) GOTO 16
ELSEIF (HB .LT. HXS(IB)) THEN
RECALC = .TRUE.
IB = IB - I
IF (HB .LT. HXS(IB)) GO TO 17
ENDIF
IF (RECALC) GOTO 12
DBDH = EC*DBDHA + E*DBDHB
B = EC*(BOA + DBDHA*(HA - HOA)) + E*(BOB + DBDHB*(-ER*HA - HR))
A = AXS(IA) + (BOA + DBDHA*(HA - HOA)/2)*(HA - HOA)
RETURN
END
C ******************************************************************************
C S U B ROUTTIN E B U B B L E
C ********************************************************************************
SUBROUTINE BUBBLE(ITO,IT1,IT2,JT,NS)
DIMENSION ITO(NS),IT1(NS),IT2(NS),JT(NS)
DO 1 L=1,NS
IF(IT2(L).LE.ITl(L))GO TO 1
LAST = IT2(L)
2 LIMIT = LAST-1
LAST = IT1(L)
M1 = LAST
DO 3 I=M1,LIMIT
IF(JT(I).LE.JT(I+1))GO TO 3
ITEMP = JT(I)
JT(I) = JT(I+1)
JT(I+1)= ITEMP
LAST = I
DO 5 M=1,NS
IF(ITO(M).NE.I)GO TO }
ITO(M)=I+1
GO TO }
IF(ITO(M).EQ.I+1)ITO(M)=I
CONTINUE
CONTINUE
IF(LAST.GT.ML)GO TO 2
CONTINUE

```

\section*{RETURN}

END
C
C S U B R O U T I N E C A L C

PURPOSE
to calculate the residuals from the governing equations
to calculate the partial derivatives of the governing equation
to set up a vector of the residuals
to set up a matrix of the partial derivatives
to solve this system of equations for the differences between the values of \(q\) and \(a\) in two consecutive iterations
DESCRIPTION OF PARAMETERS
XC - the \(j\) terms from the continuity equation
\(X M \quad-\) the \(j\) terms from the momentum equation
R1 - the residuals from the continuity equation
R2 - the residuals from the momentum equation
\(R\) - a collection of all of the residuals in the proper order for the vector
F - the continuity equation
G \(\quad\) - the momentum equation
DFQ - partial differential of \(f\) with respect to \(q(i)\)
DFA - partial differential of \(f\) with respect to a(i)
DFQ1 - partial differential of \(f\) with respect to \(q(i+1)\)
DFAl - partial differential of \(f\) with respect to \(a(i+1)\)
DGQ - partial differential of \(g\) with respect to \(q(i)\)
DGA - partial differential of \(g\) with respect to \(a(i)\)
DGQ1 - partial differential of \(g\) with respect to \(q(i+1)\)
DGA1 - partial differential of \(g\) with respect to a \((i+1)\)
\(A A\) - a collection of all of the partial derivatives in the proper order for the banded matrix
DNDH - partial of \(n\) with respect to \(h\)

SUBROUTINE CALC(THETA, DT , DX1, Q, A, B, I3, C1, C2, C3, H, EL , QL , G2, CN1, KE1, . XC, XM, C , R, AA , LIB , BCU , BCD , COSP, BETA, ITO, IT1, IT2, JT, T, IND1 , IND2, . IND3 , NS , ID , XMAN , DNDH , IXSA , IXSB , DBDH)

REAL KEl
LOGICAL FLIP1,FLIP2
DIMENSION \(\mathrm{Q}(\) IND1), \(\mathrm{A}(\) IND1), \(\mathrm{B}(\) IND1), \(\mathrm{H}(\) IND1), C 1 (IND1), \(\mathrm{C} 2(I N D 1)\),
. C3 (IND1), EL(IND1), QL (IND1), CN1 (IND1), RE1 (IND1), R(IND3), AA (IND2),
. XC(IND1), XM(IND1), DX1 (IND1), C(IND3), I3(IND1), JT(NS), T(4, NS),
. ID (NS) , XMAN (IND1), DNDH (IND1), IXSA (IND1), IXSB (IND1), DBDH (INDi)
C

```

MP=IND1-1
QO = Q(1)
AO =A(1)
PO =(B(1)/AO)**(4./3.)*ABS(Q0)/AO
D1 = (1.-THETA)*DT
DO 10 I=1,MP
D2 = D1/DX1 (I)*2.
Q1 = Q(I+1)
Al =A(I+1)

```
```

            P1 = (B(I+1)/A1)**(4./3.)*ABS(Q1)/Al
            DE = EL(I+1)-EL(I)
            XC(I)= -A0-Al+D2*(QI-Q0)-Dl*(QL(I)+QL(I+1))
            XM(I)=-Q0-Q1+D2*(BETA* (Q1*Q1}A1-Q0*QO/A0)+G2*(A1 +A0)*DE)
            +D1*(CN1 (I)*PO*QO + (CN1 (I+1)*P1*Q1))
            IF(KE1 (I).GT.O)XM(I) = XM(I)+D2/8.*(AO+A1)*RE1 (I)*(Q1*Q1/(A1*A1)
                                    +QO*QO/(AO*AO))
                                    PO = P1
                                    QO = Q1
    AO =Al
10 CONTINUE
XC(IND1) = D1*Q1
XM(IND1) = Dl*Q1*Q1/A1*COSP
C
C Upstream boundary conditions
C
R(1)=0.
IF(LIB.GT.3)GO TO 30
EL(1)=EL(1)-H(1)+BCU
H(1)=BCU
IF (IXSA(1) .GT. 0) THEN
CALL AFROMH(H(1), A(1), B(1), DBDH(1), IXSA(1))
ELSE
IF(I3(1))20,14,15
14 A(1)=Cl(1)*H(1)+C2(1)*H(1)**C3(1)
B(1)=C1(1)+C2(1)*C3(1)*H(1)**(C3(1)-1.)
DBDH(1)=C2(1)*C3(1)*(C3(1)-1.)*H(1)**(C3(1)-2.)
GO TO }4
15 A(1)=Cl(1)*H(1)+C2(1)*H(1)**I3(1)
B(1)=C1(1)+C2(1)*C3(1)*H(1)**(I3(1)-1)
DBDH(1)=C2(1)*C3(1)*(C3(1)-1.)*H(1)**(I3(1)-2)
GO TO 40
20 B (1)=2.*C2(1)/C1(1)*SQRT((2.*Cl(1)-H(1))*H(1))
A(1)=C1(1)*C2(1)*ACOS(1.-H(1)/C1(1))-B(1)*(Cl(1)-H(1))/2.
DBDH(1)=4.*(C2(1)/C1(1))**2*(C1(1)-H(1))/B(1)
GO TO 40
ENDIF
GO TO 40
30 Q(1)=BCU
40 CONTINUE
Downstream boundary conditions
C ***t**t****************t************************************************

```
```

    GO TO(43,60,70,43,60,70),LIB
    43 EL(IND1) = EL(IND1)-H(IND1)+BCD
    H(IND1) = BCD
    AA(IND2) = 0.
    R(IND3) = 0.
    IF (IXSA(IND1) .GT. 0) THEN
    CALL AFROMH(H(IND1), A(IND1), B(IND1), DBDH(IND1), IXSA(IND1))
    ELSE
        IF(I3(IND1))50,44,45
    44 A(IND1) = Cl (IND1)*H(IND1) +C2 (IND1)*H(IND1)**C3 (IND1)
        B(IND1)=C1 (IND1)+C2(IND1)*C3(IND1)*H(IND1)**(C3(IND1)-1 .)
        DBDH(IND1)=C2(IND1)*C3(IND1)*(C3(IND1)-1.)*H(IND1)**
                        (C3(IND1)-2.)
        GO TO 51
    45 A(IND1)=C1 (IND1)*H(IND1)+C2 (IND1)*H(IND1)**I3 (IND1)
        B(IND1) =C1 (IND1) +C2 (IND1)*C3(IND1)*H(IND1)**(I3 (IND1) -1)
        DBDH (IND1)=C2 (IND1)*C3 (IND1)*(C3(IND1)-1.)*H(IND1)**(I3 (IND1)
            -2)
        GO TO 51
    50 B (IND1)=2.*C2(IND1)/C1 (IND1)*H(IND1)*SQRT (2.*C1 (IND1)/H(IND1)
        -1.)
        A(IND1) =C1 (IND1)*C2(IND1)*ACOS (1. -H(IND1)/Cl (IND1))
                        -B (IND1)*(C1 (IND1)-H(IND1))/2.
        DBDH(IND1)=4.*(C2(IND1)/C1(IND1))**2*(C1 (IND1)-H(IND1))/B(IND1)
    ENDIF
    51C(IND3) = - B(IND1)
    GO TO 80
    60 Q(IND1)=BCD
    R(IND3)=0.
    AA(IND2) = 0.
    GO TO 80
    70 EXPO = BCD
    COEF = COSP
    R(IND3)=- (COEF*Q(IND1)**EXPO-H(IND1))
    DBCQ=COEF*EXPO*Q(IND1)**(EXPO-1.)
    DBCA=-1./B (IND1)
    AA(IND2-1)=DBCQ
    AA (IND2) =DBCA
    80 CONTINUE
    100 DNDH2 = DNDH(1)
C
C The governing equations
C **************************************************************************
MP = IND 1-1
QO = Q(1)
AO =A(1)
PO=(B(1)/AO)**(4./3.)*ABS (Q0)/AO
IR=2
IA=1

```
```

    D1 = THETA*DT
    DO 130 I=1,MP
        D2 = D1/DX1 (I)*2.
        Q1 = Q(I+1)
        Al =A(I+1)
        P1=(B(I+1)/Al)**(4./3.)*ABS(Q1)/Al
        CN = CN1(I)*D1
        CN2 = CN1 (I+1)*D1
    DE = EL (I+1)-EL (I)
    R(IR) =- (A0+Al +D2*(Q1-Q0) -Dl*(QL(I) +QL(I+1))+XC(I))
    R(IR+1)=-(Q0+Q1+D2*(BETA* (Q1*Q1/A1-Q0*QO/AO)+G2*(A0+A1)*DE)
                +(CN*Q0*PO+CN2*Q1*P1)+XM(I))
    DFQ = -D2
    DFA=1.
    DFQ1 = D2
    DFA1 = 1.
    DGQ = 1. -2.*D2*BETA*QO/AO + CN*PO
    DGA = D2*(BETA*QO*Q0/(A0*AO)+G2*(DE-(A1+A0)/B(I)))
                +CN*QO*PO/3.*(-7./A0+4.*DBDH(I)/(B (I)*B(I)+6./
                (XMAN (I)*B(I))*DNDH2))
    DGQ1 = 1.+2.*D2*BETA*Q1/A1 + CN2*P1
    DNDH2=DNDH (I+1)
    DGA1 = D2*(-BETA*Q1*Q1/(Al*A1)+G2*(DE+(A0+A1)/B(I+1)))
            +CN2*Q1*P1/3.* (-7./Al+4.*DBDH(I+1)/(B(I+1)*B(I+1)+
                6. ((XMAN (I+1)*B(I+1))*DNDH2))
    IF(DGA1.EQ.0.0) DGA1 = 1.0E-5
    IF(RE1(I).LE.O.)GO TO 125
    R(IR+1)=R(IR+1)-D2/8.*(A0+A1)*(Q1*Q1/(A1*A1)+Q0*QO/(A0*A0))
                    *REl(I)
    DGQ=DGQ+KE1 (I)*D2/4 * * (A0+A1)*Q0/ (A0*AO)
    DGA=DGA+D2/8.*RE1 (I)*(Q1*Q1 / (A1*A1) -Q0*Q0/ (A0*A0)
        *(1.+2.*A1/AO))
    DGQ1 = DGQ1 +RE1 (I)*D2 / 4.* (A0+A1)*Q1 / (Al*Al)
    DGA1 = DGAl +D2 / 8.*KE1 (I)*(Q0*QO/(A0*A0)-Q1*Q1 / (Al*Al)
                *(1.+2.*AO/Al))
    125 AA(IA) = DFQ
        AA(IA+1) = DFA
        AA(IA+2) = DFQ1
        AA(IA+3) = DFA1
        AA(IA+4) = DGQ
        AA(IA+5) = DGA
        AA(IA+6) = DGQ1
        AA(IA+7) = DGAl
    IR = IR+2
    IA = IA+10
    Q0 = Q1
    AO =A1
    PO = Pl
    130 CONTINUE
    C
C Account for tribs and flip columns if necessary
C ************************************************************************
IF (IT1.EQ.0)GO TO 71
DO $72 \mathrm{~L}=\mathrm{IT} 1, \mathrm{IT} 2$
$\mathrm{I}=\mathrm{JT}(\mathrm{L})$
DX $=$ DXI $(\mathrm{I}-1)$
$I R=2 *(I-1)$
$I A=5 * I R$

```
```

    BO = B(I)
    AA(IA-6) = AA(IA-6)+T(1,L)/(DX*BO)
    AA(IA-2)=AA(IA-2)+T(3,L)/(DX*BO)
    R(IR)=R(IR)+T(2,L)/DX
    R(IR+1)=R(IR+1)+T(4,L)/DX
    DX = DX1(I)
    AA(IA+2)=AA(IA+2)+T(1,L)/(DX*B0)
    AA(IA+6)=AA(IA+6)+T(3,L)/(DX*BO)
    R(IR+2)=R(IR+2)+T(2,L)/DX
    R(IR+3)=R(IR+3)+T(4,L)/DX
    7 2 \text { CONTINUE}
    71 FLIP1 = LIB.LE. }
    FLIP2 = LIB.EQ.2.OR.LIB.EQ.5
    IF(.NOT.FLIP1)GO TO }7
    SAVE = AA(1)
    AA(1) = AA (2)
    AA(2) = SAVE
    SAVE = AA(5)
    AA(5) = AA(6)
    AA(6) = SAVE
    73 IF(.NOT.FLIP2) GO TO }7
    SAVE = AA(IND2-2)
    AA(IND2-2) = AA(IND2-3)
    AA(IND2-3) = SAVE
    SAVE = AA(IND2-6)
    AA(IND2-6) = AA(IND2-7)
    AA(IND2-7) = SAVE
    74 CONTINUE
    CALL MAT5(AA,C(2),R(2),IND2,IND3-1)
    C
Undo flipping and place data into the T-array
IF(.NOT.FLIP1)GO TO 75
R(1) = R(2)
R(2)=0.
75 IF(.NOT.FLIP2)GO TO }7
R(IND3) = R(IND3-1)
R(IND3-1) = 0.
GO TO }7
76 IF(ITO.EQ.0)GO TO }7
T(1,ITO) = DI*C(IND3-1)
T(2,ITO) = D1*(R(IND3-1)+Q1)+XC(IND1)
T(3,ITO)=D1*COSP*Q1/Al*(2.*C(IND3-1)+Q1*B(IND1)/Al)
T(4,IT0)= D1*COSP*Q1/A1*(2.*R(IND3-1)+Q1)+XM(IND1)
7 7 CONTINUE
RETURN
END
C **************************************************************************
c S U B ROUT I NE H FROMA
C *************************t**********************t***************************
SUBROUTINE HFROMA(H, A, B, DBDH, IPC)

```
C

```

J=6

```

DO \(2 \mathrm{I}=2, \mathrm{Ml}\)
\(D=-A A(J) / A A(J-4)\)
\(A A(\mathrm{~J}+1)=A A(\mathrm{~J}+1)+\mathrm{AA}(\mathrm{J}-3) * D\)
\(R(I)=R(I)+R(I-1) * D\)
\(J=J+5\)
2 CONTINUE

```

            IF (IXSB (I) .GT. 0) THEN
            CALL HFROMA(HB, A(I), BB, DBDHB, IXSB(I))
            C1B=Cl(I)
            ClA = 1. - C1B
            H(I) = ClA*H(I) + ClB*HB
            B(I) = ClA*B(I) + ClB*BB
            DBDH(I) = ClA*DBDH(I) +ClB*DBDHB
            ENDIF
        ELSE
            DO 30 K=1,10
            HO=H1
            IF(H0.LE.0)WRITE(NERRFIL, 819)
    819 FORMAT(2X,'ALERT - Computed Depth less than zero')
            IF(HO.LE.0) WRITE(NERRFIL,818) Z(I),HO,R
            FORMAT(10X,'Node Elev.=',F6.2,5X,'H0=',F8.2, 5X,'R=',I4)
            IF(I3(I))10,4,5
            BO=C1(I)+C2(I)*C3(I)*H0**(C3(I)-1.)
            Hl=HO-(Cl(I)*HO+C2(I)*HO**C3(I)-A(I))/BO
            GO TO 20
            B0=C1 (I) +C2(I)*C3(I)*HO**(I3 (I) -1)
            Hl=HO-(Cl(I)*HO+C2(I)*HO**I3(I)-A(I))/BO
            GO TO 20
            BO=2.*C2(I)/Cl(I)*SQRT((2.*Cl(I)-HO)*HO)
            Hl=HO-(Cl(I)*C2(I)*ACOS(1.-HO/Cl(I))-B0*(Cl(I)-H0)/2.
                -A(I))/B0
                            IF(ABS((H1-HO)/HO).LE.0.01) GO TO 50
                CONTINUE
                WRITE (OUT , 40)
                STOP }
            50 B(I)=B0
                H(I)= H1
                IF(I3(I))110,104,105
    104 DBDH(I)=C2(I)*C3(I)*(C3(I)-1.)*H1**(C3(I)-2.)
            GO TO 120
                        DBDH(I)=C2(I)*C3(I)*(C3(I)-1.)*H1**(I3(I) - 2)
                        GO TO 120
                        DBDH(I)=4.*(C2(I)/Cl(I))**2*(C1 (I)-H1)/BO
            ENDIF
            EL(I)=H(I)+Z(I)
            O CONTINUE
    C
C Pass data to tribs
C t****t************t**************t**************************************
IF(IT1.EQ.O)GO TO 70
DO 80 L=ITl,IT2
R=JT(L)
T(1,L)=R(2*R)/B(K)
80 CONTINUE
70 RETURN
40 FORMAT('The Stage-Area equation has FAILED to CONVERGE in',
10 iterations. RUN ABORTED.')
END
C ************************************************************************
c SUBROUTINE READ X S
C ****************************************************************************
SUBROUTINE READXS(XSCODE, IXSA, IXSB, MNODE)

```
```

            INCLUDE 'RIV1H.CMN'
            DIMENSION IXSA(MNODE),IXSB (MNODE),X(MAXXS),Y(MAXXS),IA(MAXXS)
            CHARACTER*6 XSCODE(MNODE)
            CHARACTER*80 CARD
            CHARACTER C*1
            LOGICAL*1 EOF
                            COMMON/XSDATA/IXS ,HXS (MAXXS), AXS (MAXXS) , BXS (MAXXS)
    C ****************************************************************************
C If no cross-section filename was given, just return.
C **********t*t***************************************************************
IF (IXS.LT.1) RETURN
EOF =. FALSE.
READ (FXSEC,'(A)', END=11)CARD
N=0
NP=1
CONTINUE
DO 21 J = 1, MNODE
IF (XSCODE(J) .EQ. CARD(1:6)) GO TO 22
CONTINUE
WRITE (OUT,'(', CODE ','A,', NOT FOUND!',')') CARD(1:6)
STOP
IXSA(J) = NP
IXSB(J) = NP
DO 20 I = 1, MAXXS
READ(FXSEC, '(A)', END = 11) CARD
C = CARD (1:1)
IF (EOF .OR. (C .GE. 'A' .AND. C .LE. 'Z') .OR.
(C .GE. 'a' .AND. C .LE. 'z')) GOTO 12
N=N+1
READ(CARD,'(2F10.0)') X(N), Y(N)
CONTINUE
GOTO }1
11 EOF = .TRUE.
12 CONTINUE
N1=N
CALL XSECT(X, Y, IA, HXS(NP), BXS(NP), AXS(NP), N1)
N = NP
NP = NP + Nl
HXS(NP)=0.
N = 0
IF (.NOT. EOF) GOTO 10
CLOSE (10)
RETURN
13 STOP 'Cross-Section File is Empty'
END
C
C ****************************************************************************
C
SUBROUTINESSHELL

```
C
SUBROUTINE SHELL(R, IA, N)
CDIMENSION R(N), IA(N)
DO \(5 I=1, N\)
5 \(I A(I)=I\)
\(I G=N\)
\(10 \quad\) IG \(=I G / 2\)
IF (IG .LE. O) GOTO 999
DO \(20 \mathrm{I}=\mathrm{IG}+1, \mathrm{~N}\)
\(J=I-I G\)
IF (J .LT. 1 .OR. R(IA(J)) .LE. R(IA(J+IG))) GOTO 20IT \(=I A(J)\)
\(I A(J)=I A(J+I G)\)
\(I A(J+I G)=I T\)
\(J=\mathrm{J}-\mathrm{IC}\)
GO TO 30
20 CONTINUEGOTO 10
999 RETURN
END

C S UBROUTINEXSECTSUBROUTINE XSECT (X, Y, IA, H, B, A, N)
INCLUDE 'RIV1H.CMN'
DIMENSION \(X(N), Y(N), I A(N), H(N), B(N), A(N)\)
DIMENSION LP(NLIST)

C Check if X is monotonic

DO \(5 \mathrm{I}=2, \mathrm{~N}\)IF (X(I) .LE. X(I-1)) STOP
5 CONTINUE
CALL SHELL(Y, IA, N)

C Now the \(Y\) 's are sorted by the index IA.
C Start from the stream bottom and go up.

\(Y B O T=Y(I A(N))\)
\(H(1)=0\).
\(B(1)=0\).
\(A(1)=0\)
\(\mathrm{NL}=0\)
DO \(10 \mathrm{I}=1, \mathrm{~N}\)
\(I C=N-I+1\)
\(I S=I A(I C)\)

C Calculate the width and area at this point.

\(H(I)=Y B O T-Y(I S)\)
```

    B(I) = 0.
    A(I)=0.
    IF (NL .GT. 0) THEN
    DO 20 IL = 1, NL, 2
        LO = LP(IL)
        L1 = LP(IL+1)
        IF (Y(IS) .EQ. Y(LO)) THEN
                XO = X(LO)
        ELSE
                XO = X(LO) + (X(LO+1) - X(LO))*(Y(IS) - Y(LO))/
                (Y(LO+1)- Y(LO))
    ENDIF
        IF (Y(IS) .EQ. Y(Ll+1)) THEN
                Xl = X(L1+1)
            ELSE
                X1 = X(L1) +(X(L1+1) - X(L1))*(Y(IS) - Y(L1))/
                (Y(Ll+1)- Y(Ll))
            ENDIF
                        B(I) = B(I) + XI - X0
                            A(I)=A(I-1) + (B(I) + B(I-1))*(H(I) - H(I-I))/2.
    ENDIF

```

C If you've hit the bank, you're done.

IF (IS .LE. 1 .OR. IS .GE. N) GOTO 999

C Now find out if the new point is a \(v\) or a \({ }^{\wedge}\) or a 1 or a /
C so that you can adjust the intersections list.

IF (Y(IS-1) .LT. Y(IS) .AND. Y(IS) .LT. Y(IS+1)) THEN
DO 30 IL \(=1\), NL, 2 IF (LP (IL) .EQ. IS) GO TO 31
\(L P(I L)=I S-1\)
ELSE IF (Y(IS-1) .GE. Y(IS) .AND. Y(IS) . GE. Y(IS+1)) THEN DO \(40 \mathrm{IL}=2\), NL, 2

IF (LP (IL) .EQ. IS - 1) GO TO 41
\(L P(I L)=I S\)
ELSE IF (Y(IS-1) .LT. Y(IS) .AND. Y(IS). GE. Y(IS+1)) THEN IF (NL .EQ. O) THEN \(I L=0\)
ELSE
DO 50 IL \(=\mathrm{NL}, 1,-1\)
IF (LP (IL). LT. IS) GOTO 51
\(L P(I L+2)=L P(I L)\)
CONTINUE
ENDIF
\(L P(I L+2)=I S\)
\(L P(I L+1)=I S-1\)
\(N L=N L+2\)
ELSE
DO 60 IL \(=1\), NL
IF (LP (IL) .EQ. IS-1) GOTO 61
60
61

62

\section*{NL = NL - 2}

IF (IL .LE. NL) THEN
DO \(62 \mathrm{JL}=I L\), NL
ENDIF
ENDIF
```

10 CONTINUE
999
N = I
RETURN
END
C **************************************************************************
C SUBROUTINE GREGORIAN DATE
C *****************************************************************************
C
SUBROUTINE GREGORIAN DATE(ELAPSE,YEAR,MONTH,GDAY,HOUR)
***** Variable declarations
LOGICAL LEAP YEAR
CHARACTER MONTH*9
INTEGER YEAR, GDAY
C ***************************************************************************
C Determine if new year (regular or leap) and increment year

```

```

    JDAYG=ELAPSE - 1
    HOUR =(ELAPSE-FLOAT(JDAYG) - 1)*24.
    LEAP_YEAR = MOD (YEAR,4).EQ.0
    IF (.NOT.LEAP_YEAR.AND.JDAYG.EQ.365) THEN
            JDAYG = JDAYG-365
            YEAR = YEAR+1
            LEAP YEAR = MOD(YEAR, 4).EQ.0
            ELSE IF (JDAYG.EQ.366) THEN
                JDAYG = JDAYG-366
                YEAR = YEAR+1
                LEAP_YEAR = .FALSE.
            END IF
    C ****************************************************************************
C Determine month and day of year
C ****************************************************************************
IF (LEAP YEAR) THEN
IF (JDAYG.GE.O.AND.JDAYG.LT.31) THEN
GDAY = JDAYG+1
DAYM = 31.0
MONTH = , January'
ELSE IF (JDAYG.GE.31.AND.JDAYG.LT.60) THEN
GDAY = JDAYG-30
DAYM = 29.0
MONTH = , February,
ELSE IF (JDAYG.GE.60.AND.JDAYG.LT.91) THEN
GDAY = JDAYG-59
DAYM = 31.0
MONTH = , March'
ELSE IF (JDAYG.GE.91.AND.JDAYG.LT.121) THEN
GDAY = JDAYG-90
DAYM = 30.0
MONTH = , April'
ELSE IF (JDAYG.GE.121.AND.JDAYG.LT.152) THEN
GDAY = JDAYG-120
DAYM = 31.0
MONTH = , May'
ELSE IF (JDAYG.GE.152.AND.JDAYG.LT.182) THEN

```
```

    GDAY = JDAYG-151
    DAYM = 30.0
    MONTH = , June'
    ELSE IF (JDAYG.GE.182.AND.JDAYG.LT.213) THEN
    GDAY = JDAYG-181
    DAYM = 31.0
    MONTH = , July'
    ELSE IF (JDAYG.GE.213.AND.JDAYG.IT.244) THEN
    GDAY = JDAYG-212
    DAYM = 31.0
    MONTH = , August'
    ELSE IF (JDAYG.GE.244.AND.JDAYG.LT.274) THEN
    GDAY = JDAYG-243
    DAYM = 30.0
    MONTH = 'September'
    ELSE IF (JDAYG.GE.274.AND.JDAYG.LT.305) THEN
    GDAY = JDAYG-273
    DAYM = 31.0
    MONTH = ' October'
    ELSE IF (JDAYG.GE.305.AND.JDAYG.LT.335) THEN
    GDAY = JDAYG-304
    DAYM =30.0
    MONTH = , November,
    ELSE IF (JDAYG.GE.335.AND.JDAYG.LT.366) THEN
    GDAY = JDAYG-334
    DAYM = 31.0
    MONTH = , December'
    END IF
    ELSE
IF (JDAYG.GE.O.AND.JDAYG.IT.31) THEN
GDAY = JDAYG+1
DAYM = 31.0
MONTH = ', January'
ELSE IF (JDAYG.GE.31.AND.JDAYG.LT.59) THEN
GDAY = JDAYG-30
DAYM = 29.0
MONTH = ' February'
ELSE IF (JDAYG.GE.59.AND.JDAYG.LT. 90) THEN
GDAY = JDAYG-58
DAYM = 31.0
MONTH = , March'
ELSE IF (JDAYG.GE.90.AND.JDAYG.LT.120) THEN
GDAY = JDAYG-89
DAYM = 30.0
MONTH = , April'
ELSE IF (JDAYG.GE.120.AND.JDAYG.LT.151) THEN
GDAY = JDAYG-119
DAYM =31.0
MONTH = , May'
ELSE IF (JDAYG.GE.151.AND.JDAYG.LT.181) THEN
GDAY = JDAYG-150
DAYM =30.0
MONTH = ' June'
ELSE IF (JDAYG.GE.181.AND.JDAYG.LT.212) THEN
GDAY = JDAYG-180
DAYM = 31.0
MONTH = , July'
ELSE IF (JDAYG.GE.212.AND.JDAYG.LT.243) THEN
GDAY = JDAYG-211
DAYM = 31.0
MONTH = ' August'
ELSE IF (JDAYG.GE.243.AND.JDAYG.LT.273) THEN

```
```

            GDAY = JDAYG-242
            DAYM =30.0
            MONTH = 'September'
            ELSE IF (JDAYG.GE.273.AND.JDAYG.LT.304) THEN
            GDAY = JDAYG-272
            DAYM = 31.0
            MONTH = ' October'
            ELSE IF (JDAYG.GE.304.AND.JDAYG.LT.334) THEN
                        GDAY = JDAYG-303
            DAYM = 30.0
            MONTH = , November,
                            ELSE IF (JDAYG.GE.334.AND.JDAYG.LT.365) THEN
            GDAY = JDAYG-333
            DAYM = 31.0
            MONTH = , December'
            END IF
    END IF
RETURN
END
C ***************************************************************************
C SUBROUTINE JULIAN DATE
C ************************************************************************
SUBROUTINE JULIAN DATE(STADY,ENDY,SYEAR,SMONTH,SDAY,SHOUR,
EYEAR, EMONTH,EDAY, EHOUR)
***** Variable declarations
DIMENSION DAYM(12)
INTEGER SYEAR,SMONTH,SDAY,EYEAR,EMONTH,EDAY
C
C Specify days for each month of the year
C ****************************************************************************
DAYM(1) = 31.0
DAYM(2) = 29.0
DAYM(3) = 31.0
DAYM(4)}=30.
DAYM(5)}=31.
DAYM(6) =30.0
DAYM(7) =31.0
DAYM(8) = 31.0
DAYM(9)}=30.
DAYM(10) = 31.0
DAYM(11) = 30.0
DAYM(12)=31.0
C Determine Julian day for start time
C *************************************************************************
STADY = 0.
DAYM(2) = 28.
IF(MOD(SYEAR,4).EQ.0)DAYM(2) = 29.0
IF(SMONTH.GT.1) THEN
DO 100 I=1,SMONTH-1
STADY = STADY + DAYM(I)
CONTINUE

```

END IF
STADY \(=\) STADY + SDAY + SHOUR/24.
C
C Determine Julian day for end time

ENDY \(=0\).
IF (EYEAR.GT.SYEAR) THEN DO 200 I=SYEAR, EYEAR-1 IF (MOD (I , 4) .EQ.0) THEN ENDY = ENDY + 366 .
ELSE
ENDY = ENDY + 365.
END IF CONTINUE
END IF
\(\operatorname{DAYM}(2)=28\).
\(\operatorname{IF}(\operatorname{MOD}(E Y E A R, 4) . E Q .0) D A Y M(2)=29\).
IF (EMONTH.GT.1) THEN
DO \(300 \mathrm{I}=1\), EMONTH-1
ENDY \(=\) ENDY + DAYM(I) CONTINUE
END IF
ENDY \(=\) ENDY +EDAY + EHOUR/24.
RETURN
END

```

            NCHEM = 1
            WRITE (RIVDMP, 6000) NCHEM
            FORMAT (IS)
    6000
    C
WRITE (RIVDMP, 6010) RDUMMY,RDUMMY
6010 FORMAT(A40,E10.2,F10.2)
TIME = 0.
TFIN =0.
C
6020 FORMAT(1X,F10.2,F10.2,/,I5)
C
6030 FORMAT(A30)
END IF
C
DO 100 I=1,MNODE
SYSDUMP (1,I)=DX(I)
SYSDUMP (2,I)=RMILE (I)
SYSDUMP (3,I)=Q(I)
SYSDUMP (4,I)=QLC (I)
SYSDUMP (5,I)=QLT(I)
SYSDUMP (6,I) =A (I)
SYSDUMP (7,I)=B(I)
SYSDUMP (8,I)=EL (I)
SYSDUMP (9,I)=XMAN (I)
SYSDUMP (10,I)=DUMMY
SYSDUMP (11,I)=DUMMY
SYSDUMP (12,I) =DUMMY
SYSDUMP (13,I)=DUMMY
SYSDUMP (14,I)=DUMMY
SYSDUMP (15,I)=DUMMY
SYSDUMP (16,I)=DUMMY
SYSDUMP (17,I)=DUMMY
WRITE(RIVDMP,6040) I,ELAPSE,DX(I),RMILE(I),Q(I),QLC(I),
+ QLT(I),A(I),B(I),EL(I),XMAN (I) ,DUMMY ,DUMMY ,DUMMY,
+ DUMMY ,DUMMY,DUMMY ,DUMMY,DUMMY ,DUMMY
6040 FORMAT(1X,I5,F10.2,3X,/,6(E11.3),/,6(E11.3))
100 CONTINUE
INUM=MNODE
C
RETURN
END
C ******************************************************************************
C FUNCTIONNGN
C
THIS FUNCTION PERFORMS LINEAR INTERPOLATION
C *************************************************************************
FUNCTION VALNEW(DAY,T1,T2,V1,V2)
C
RATIO $=(T 2-D A Y) /(T 2-T 1)$
VAL $=$ (1.0-RATIO)*V2+RATIO*V1
VALNEW = VAL
RETURN
END

```

```

C
S U BROUTINE
R I V 1 H I NT

```
```

SUBROUTINE RIVIH INIT
INCLUDE 'RIV1H.CMN'
ISEGOUT (1)=1
ISEGOUT (2) $=2$
ISEGOUT (3) $=3$
ISEGOUT (4) $=4$
ISEGOUT (5) $=5$
ISEGOUT ( 6 ) $=6$
IDISPLAY (1)=1
IDISPLAY (2) $=2$
IDISPLAY (3) $=3$
IDISPLAY $(4)=4$
IDISPLAY (5) $=5$
IDISPLAY (6) $=6$
IDISPLAY (7) $=7$
IDISPLAY (8) $=8$
$\operatorname{IDISPLAY}(9)=9$
IDISPLAY (10)=10
LABELS (1) $=$ 'Delta-x'
LABELS (2) $=$ 'River Mile'
LABELS (3) $=$ 'Flow (cfs)'
$\operatorname{LABELS}(4)=\operatorname{QLC}^{(\mathrm{cfs} / \mathrm{f})}{ }^{\prime}$
LABELS (5) $=$ ' QLD (cfs/f)'
LABELS (6) $=$ 'Area (sft)'
LABELS (7) $=$ 'Width (ft)'
LABELS (8) $=$ 'WSElev(ft)'
LABELS $(9)=$ Mannings $n$ '
LABELS (10) = 'Dummy'
LABELS (11)= 'Dummy'
LABELS (12) $=$ 'Dummy'
LABELS (13) = 'Durmy ${ }^{\prime}$
LABELS (14)= 'Dummy',
LABELS (15) = 'Dummy'
LABELS (16) $=$ 'Dummy'
LABELS (17) = 'Dummy'
RETURN
END

```

C SUBROUTINE TIME VARYING DATA

 SUBROUTINE TIME_VARYING_DATA (JDAY,IYR,TNXTVD, NBC,DLT,
 DUMMY, IQL, QLT)
 INCLUDE 'RIVIH.CMN'
 REAL JDAY
 LOGICAL INT BC(IBRAN)
 LOGICAL INT LAT
 CHARACTER*15 INTOPT, BCFNAME(IBRAN)
C Dimensions for boundary conditions

 DIMENSION DUMMY (IBRAN) , DUMMY1 (IBRAN), DUMMY2 (IBRAN),
 TNXTBC (IBRAN) , TNXTBC2 (IBRAN) , NUMBC (IBRAN) , INBC (IBRAN)
C Dimensions for lateral inflows

 DIMENSION QLT(IND1), QLT2(IND1), QLT1(IND1),NPS_REA(IND1)
C Dimensions for time steps

DIMENSION TDT(200), DTV(200)
SAVE
C
C I. Read all time-varying data on initial call

IF (IFIRST.NE. I)THEN
IDUM \(=0\)
\(D U M=0\).
C Determine initial year of simulation

INITYR = IYR
C 1st - Read timesteps

READ (INPUT , 160) NUMDT
WRITE (OUT, 260)NUMDT
DO \(I=1\), NUMDT
READ (INPUT, 170)IYR, IMO, IDY, THR , DTV (I)
CALL JULIAN_DATE(DUM,TDT(I),INITYR,IDUM,IDUM,DUM,
IYR, IMO, IDY, THR)
WRITE (OUT, 270)IYR, IMO, IDY, THR, TDT (I) ,DTV (I)
END DO
C 2nd - Open file for boundary conditions

 IBF \(=30\)
 DO \(100 \mathrm{I}=1\), NBC
 READ (INPUT, 165) BCFNAME (I)
 OPEN (UNIT = IBF, FILE=BCFNAME (I) ,STATUS='OLD')
 READ (IBF , 180) INBC (I) , NUMBC (I), INTBC
 WRITE (OUT, 280)INBC (I)
 WRITE (OUT, 290) BCFNAME (I)
 IF (INTBC.GE.1)THEN
 INT \(\mathrm{BC}(\mathrm{I})=\). TRUE .
 INTOPT ='LINEAR INTERPOL'
 ELSE
 INTOPT ='STEP FUNCTION'
 END IF
 WRITE (OUT, 300) INTOPT
 \(\operatorname{TNXTBC}(I)=0\).
 \(I B F=I B F+1\)
100
CONTINUE
```

C 3rd - Read time varying lateral inflow file
C ****************************************************************************
IF(IQL.GE.1) THEN
READ(LAT, 180)NUMLAT UD,NUML,LATOPT
IF(LATOPT .GE. 1)THEN
INT LAT = .TRUE;
INTOPT ='LINEAR;
ELSE
INTOPT ='STEP'
ENDIF
READ(LAT, 190)(NPS_REA(I), I = 1, NUML)
WRITE (OUT, 310)
WRITE(OUT, 320)(NPS REA(I), I = 1, NUML)
WRITE (OUT, 300) INTOPT
END IF
IDT = 1
IFIRST = 1
END IF
C
C II. Assign and/or update all time-varying data all calls
C *************************************************************************
C lst - Assign time steps
C ***************************************************************************
IF (JDAY.GE.TNXTDT) THEN
DO WHILE (JDAY.GE.TNXTDT)
DLT = DTV(IDT)
IDT = IDT +1
TNXTDT = TDT(IDT)
END DO
C WRITE(OUT, 330)JDAY,DLT,TNXTDT
END IF
TNXTVD = MIN(TNXTVD,TNXTDT)
C 2nd - Read boundary data
C ****************************************************************************
IBF=30
DO 600 I=1,NBC
IF (JDAY'GE.TNXTBC(I)) THEN
DO WHILE(JDAY.GE.TNXTBC(I))
TNXTBC2(I) =TNXTBC(I)
DUMMY2(I) = DUMMY1 (I)
READ(IBF,170)IYR,IMO, IDY,THR, DUMMY1 (I)
CALL JULIAN_DATE(DUM,TNXTBC(I),INITYR,IDUM,IDUM,DUM,
IYR,IMO,IDY,THR)
END DO
TNXTVD = MIN(TNXTVD,TNXTBC(I))
DUMMY (I)=DUMMYl (I)
C WRITE(OUT,340) INBC(I),IYR,IMO,IDY,THR,JDAY,
C
END IF
IF(INT_BC(I)) DUMMY(I) = VALNEW(JDAY,TNXTBC(I),TNXTBC2(I),
DUMMY1(I),DUMMY2(I))
IBF = IBF + I

```
```

C 3rd - Assign lateral inflow data
C **********************************************************************t*
C
IF (IQL.GE.1) THEN
IF (JDAY.GE.TNXTLT) THEN
DO WHILE (JDAY.GE.TNXTLT) TNXTLT2 = TNXTLT DO $I=1$, NUML QLT2 (NPS REA(I)) =QLT1 (NPS REA(I))
END DO READ (LAT , 200) IYR, IMO, IDY, THR,
(QLT1(NPS REA(IK)), IR=1,NUML)
CALL JULIAN DATE (DUM, TNXTLT,INITYR,IDUM,IDUM,DUM, IYR, IMO, IDY,THR)
END DO
TNXTVD $=$ MIN(TNXTVD,TNXTLT)
DO IR=1, NUML
QLT (NPS_REA(IK))=QLT1(NPS_REA(IK))
END DO
C WRITE (OUT, 350) IYR, IMO, IDY, THR, JDAY, TNXTLT
C WRITE (OUT, 360) (NPS REA (I), I = 1 ,NUML) WRITE (OUT, 370)(QLTTNPS_REA(IK)), IK=1,NUML)
END IF
IF (INT LAT) THEN
DO J=1, NUML
QLT (NPS_REA (J) ) = VALNEW (JDAY,TNXTLT,TNXTLT2, QLT1 (NPS REA(J)), QLT2 (NPS REA(J)))
END DO
END IF
END IF
RETURN
C INPUT FORMATS

```

```

160 FORMAT (I10)
165 FORMAT (A15)
170 FORMAT (I5, I5, I5 , 2F10.4)
180 FORMAT (8I10)
190 FORMAT(I5)
200 FORMAT (I5,I5,I5,150(F10.4))
C OUTPUT FORMATS

```

```

260 FORMAT (/,'****************** TIME STEPS ******************, / ,
.' Number of Time/Date Pairs =, I10)
270 FORMAT('Year , I6,' Month ', I3,' Day , I3,' Hour', F8.4,
, Julian day , F10.4,' Tíme Step (sec) $=$, F10.4)
280 FORMAT( /,'*** Boundary Conditions Specified for Segment ***, I4)
290 FORMAT(, Will be Read From File $=$, Al5)
300 FORMAT(, Interpolation Option: ,A15)
310 FORMAT(/,' Time Varying Lateral Inflows Specified at .x-sections')
320 FORMAT (10(1X,I5))
330 FORMAT (/,'*******Time Step Updated at Julian Date', F10.4, .'to , F10.4,' (sec)',

```
'Next Update on Julian Day ',F10.4)
```

340 FORMAT(/,'******* Boundary Condition for Segment ,,IS,
.' Updated at: Year ',I6,'Month ',I3,' Day ',I3,' Hour',F8.4,
', Julian Date',F10.4,' TO ,F10.4,' Next Update on Julian Day
,F10.4)
350 FORMAT(/,'*******Lateral Inflows Updated on: Year ',I6,' Month '
.,I3,' Day ', 13,' Hour ',F8.4,' Julian Date', F10.4,
'Next Update on Julian Day ',F10.4, ' New Values are:')
360 FORMAT('***Cross-Section:',150I10)
370 FORMAT(' ***Flow (cfs/f) :',150F10.4)
END

```

\section*{APPENDIX B: LIST OF THE WATER QUALITY CODE RIVIQ}

RIV1Q CODE - WATER QUALITY MODEL *
JULY, 1995 *
CE-QUAL-RIV1Q was originally developed by Ohio State University, Bedford, Sykes, and Libicki
and later modified by
M. Dortch and T. Schneider * *
Quality and Contaminant Modeling Branch *
Water Quality and Contaminant Mode * *
USAE Waterways Experiment Station *
Vicksburg, Mississippi, and
D. M. Griffin, Jr.
Louisiana Tech University
Ruston, Louisiana *
Ruston, Lou * *
This version has been further modified by: *
Tim Wool and James Martin *
AScI Corporation *
Athens, Georgia *

block data
This subprogram initializes those variables used in common block
C statements

INCLUDE 'RIVIQ.CMN'
INCLUDE 'TRANSP.CMN'
DATA CP /12*.FALSE./
DATA DARK /.FALSE./
DATA PI/3.14159/
DATA TBIOS,TAMMON,TPHYSI/1.0,1.0,1.0/DATA APCONT, ANCONT/0.01,0.075/DATA ONEQUI, ONITRI, OPDECY, OFEDEC,OMNDEC/0.35,4.57,1.59,0.14,0.15/DATA DEPTHO,RHOO/5.0,1.01
END
C End of Block Data Statement
C
C
C PROGRAM RIV1-Q C
PROGRAM RIVIQ
INCLUDE 'RIVIQ.CMN'
INCLUDE 'TRANSP.CMN'
DIMENSION IBYPASS(ISYS)
DIMENSION TPRNT(IUPDATE), TPR(IUPDATE)
DIMENSION TPLT(IUPDATE), TPL(IUPDATE)
CHARACTER MONTH*9,FILES(30)*12, RIVPATH*30, MESSFIL*12
LOGICAL CTRL
INTEGER YEAR, SYEAR, SMONTH,SDAY, EYEAR, EMONTH, EDAY
COMMON/ABLOCR/ NS
```

    CHARACTER*8 BLABEL(12),BUNIT(12)/12*' (MG/L) '/,
                        ALABEL(12)/' TEMP ,', CBODNS ',' ORGAN ',
                                ,'NH3N ,',
                MN ',', FE ',', DO ',',', CLFM ',',
                    FMT1/', F12.1'/, FMT2/',' F12.2'l,
        FMT(15)/'(1X,I2,F,,'8.2 ,'12*,' F12.2,',) '/
    CHARACTER*9 ADATE
    CHARACTER*80 TITLE
    OPEN (UNIT = 1, STATUS = 'OLD', ACCESS = 'SEQUENTIAL',
    1. FILE = 'RIVIQ.CTL',IOSTAT=ISTAT)
    IF (ISTAT .NE. 0)THEN
        WRITE(6,6000)
    6000 FORMAT(' RIV1Q Control File Not Found ')
STOP
ELSE
READ (1, 8000)INFIL
READ (1,8000) HYDIN
READ (1, 8000) LATIN
READ (1,8000)METIN
FORMAT (15X,A12)
CLOSE(UNIT=1)
ENDIF
C F) Open files
C *****************************************************************************
DO 1010 I = 1, 12
IF (INFIL (I:I) .EQ. '.') GO TO }102
OUTFIL (I:I) = INFIL (I:I)
GRPFIL (I:I) = INFIL (I:I)
DMPFIL (I:I) = INFIL (I:I)
GO TO 1010
CONTINUE
OUTFIL (I:I + 3) ='.OUT,
DMPFIL (I:I + 3) = '.EDF,
GRPFIL (I:I + 3) = '.GRF'
GO TO 1030
1010 CONTINUE
1030 CONTINUE
OPEN (UNIT=INPUT, FILE= INFIL, STATUS='OLD')
OPEN (UNIT=OUT, FILE= OUTFIL, STATUS='UNKNOWN')
OPEN (UNIT=HYD,FILE=HYDIN,FORM='UNFORMATTED',STATUS='OLD')
OPEN (UNIT=GRAPH,FILE=GRPFIL,FORM='UNFORMATTED',STATUS='UNKNOWN')
OPEN (UNIT=RIVDMP,FILE=DMPFIL, STATUS='UNKNOWN')
C *****************************************************************************
C NOTE: IND1 = Total Number of Nodes in System
C MTIME = Total number of timesteps in the simulation
C NS = Number of segments in the system
C *****************************************************************************

```

C 2) Read hydrodynamic linkage and input file

C a) Read simulation times and controls from hydrodynamic linkage file
```

C
READ (HYD) MNODE,STARTTIME,ENDTIME,SYEAR,NS
INITYR = SYEAR
DO 1000 I =1,NS
READ(HYD) JT(I),ITO(I),IT1 (I),IT2(I),ORDER(I),NNODE (I),
l
1000 CONTINUE
C B) Read and write global constants (not segment specific)
C from input file

```

```

    READ (INPUT, 10) TITLE
    READ (INPUT,1111) START, END
    READ (INPUT,1111) TBIOS,TAMMON,TPHYSI
    READ (INPUT,1111) APCONT,ANCONT
    READ (INPUT,1111) ONEQUI,ONITRI,OPDECY,OFEDEC,OMNDEC
    READ (INPUT,1111) DAWN, SUNSET
    READ (INPUT,1112) ICL
    READ (INPUT,1112) NPRINT
    READ (INPUT,1116) (TPRNT(I),TPR(I),I=1,NPRINT)
    READ (INPUT,1112) NPLOT
    READ (INPUT,1116) (TPLT(I),TPL(I),I=1,NPLOT)
    READ (INPUT,1115) (IBYPASS(I),I=1,ISYS)
    C
WRITE (OUT,1190)
WRITE (OUT,1191)
WRITE (OUT,1192)
WRITE (OUT,1190)
WRITE (OUT,200) TITLE
WRITE (OUT,1193)
WRITE (OUT,1201) START, END, ICL
WRITE (OUT,1202) TBIOS,TAMMON,TPHYSI
WRITE (OUT,1203) APCONT, ANCONT
WRITE (OUT,1204) ONEQUI,ONITRI,OPDECY,OFEDEC,OMNDEC
WRITE (OUT,1205) DAWN, SUNSET
WRITE (OUT,1206)
DO I=1,NPRINT
WRITE(OUT,1208) TPRNT(I),TPR(I)
END DO
WRITE (OUT,1207)
DO I=1,NPLOT
WRITE(OUT,1208) TPLT(I),TPL(I)
END DO
WRITE (OUT,1209) (IBYPASS(I),I=1,12)
WRITE (OUT,1210)
C Initialize QWIND to false

```

```

DO $I=1$,NS
QWIND (I)=.FALSE.
END DO

```

```

| TEST PRINT | $=0$. |
| :--- | :--- |
| IPRINT | $=1$ |
| TPRINT | $=T P R N T(I P R I N T)$ |
| IFIRST | $=0$ |

    Initialize counters for ploting
    ```


```

C C) Determine name and open lateral inflow file (if used)

```

```

IF (ICL.GE. I)THEN

```
IF (ICL.GE. I)THEN
 OPEN (UNIT=LAT, FILE= LATIN , STATUS='OLD')
 OPEN (UNIT=LAT, FILE= LATIN , STATUS='OLD')
ENDIF
C D) Read reach specific constants, initial conditions
```



```
C NOTE: The "DO 2" loop below reads the stream card and constant
C card for each segment. Then, the initital values for each
C contaminant, the constant lateral inflow concentrations, and
C the value of the dispersion coefficient area read in for each
C node in each segment (segment).
C *****************************t***
 WRITE (OUT,1193)
 WRITE(OUT,1320)
 WRITE(OUT,1193)
 DO 2 IB = 1,NS
 IBC(IB)}=
C 1) Read stream card
C **************t**t**
 READ(INPUT,1250) IDLL, SNAMEO, IDAMO, DAMKO
 WRITE(OUT,1251) IDLL, SNAMEO, IDAMO, DAMKO
1250 FORMAT(I2,10A4,I2,F10.0)
1251 FORMAT(//,5x,' For Segment #, I2,5x' Desc: ,,10A4,/,
 21x,' IDAMO = , I2,5x,' DAMKO =',F10.0,/,5x,70('_'))
 DO 100 LO = 1,NS
 L = LO
 IF (ID(LO).EQ.IDLL) GO TO 101
 CONTINUE
 WRITE(OUT, 102) IDLL
 FORMAT(' ID#',I3,' NOT FOUND IN OUTPUT FROM RIVIH.')
 STOP
 101 IDO(IB)=L
 IDAM(L) = IDAMO
 IF (IDAMO.GT.O) DAMKO = DAMKO/0.3048
 DAMK(L) = DAMRO
```


DO 103 JJJ = 1,10
DO 103 JJJ = 1,10
SNAME(JJJ,L) = SNAMEO(JJJ)
SNAME(JJJ,L) = SNAMEO(JJJ)
C 2) Read constant card (namelist variables)

QWINDO=.FALSE.
C 3) Read model input constants

READ (INPUT, 1111) ADN(IB),AG(IB),ARN(IB),ARNX(IB),AK1 (IB)
$\operatorname{READ}(I N P U T, 1111)$ ATB(IB), ATS (IB), APO4(IB), BK(IB), CSINK (IB)
READ (INPUT,1111) E1(IB),E2(IB), RALGDK(IB), KALGRO(IB)
READ (INPUT, 1111) KNCBDN(IB), KOALDK (IB), $\operatorname{KOCBDN(IB),~KOCB1(IB)~}$
$\operatorname{READ}(I N P U T, 1111) \quad \mathrm{KON}(\mathrm{IB}), \mathrm{TDUM}(\mathrm{IB}), \mathrm{TSINR}(\mathrm{IB})$
READ (INPUT,1111) TSIV(IB), KCOLIDK(IB), KMNDK (IB), $\mathrm{KFEDK}(\mathrm{IB})$,
OXIDAT(IB)
HNEFSW(IB) , KNPOOL(IB) , KPO4X(IB) , KDSED (IB) ,
ACK (IB)
LAMBDAO (IB), LAMBDA1 (IB), LAMBDA2 (IB),
ALPHAO(IB), KNSET(IB)
ABSR(IB), CBODSR(IB), $\mathrm{FCBOD}(\mathrm{IB}), \mathrm{KPDK}(\mathrm{IB})$,
KPSET(IB)
BENPO4(IB), SOD (IB), MACROB (IB), MACGRO(IB),
MACDRY(IB)
READ (INPUT,1113) KLITE(IB), ITEM(IB)
READ (INPUT,1114) QWINDO
1111
FORMAT(5(8X,F8.0))
FORMAT (5 (8X,18))
1113 FORMAT (8X,F8.0,8X, 18)
1114 FORMAT (8X,L8)
1115 FORMAT(12I5)
1116
FORMAT(4(8X,F8.0))
C
$\operatorname{IF}$ (QWINDO) $\operatorname{QWIND}(I B)=$. TRUE.
IF (IB.EQ.1) GO TO 4
$\mathrm{Ml}=\mathrm{L}$
$\mathrm{M} 2=\mathrm{L}$
GO TO 5
$4 \quad \mathrm{Ml}=1$
$\mathrm{M} 2=\mathrm{NS}$
5 CONTINUE
WRITE (OUT, 1321) IB
WRITE(OUT, 1324) TDUM(IB), ATB(IB), ATS(IB), TSINR(IB), ITEM(IB)
WRITE(OUT,1325) RNCBDN(IB), KOALDK(IB), KOCBDN(IB), KOCB1(IB),
KON(IB)
WRITE (OUT, 1328) AG(IB), E1 (IB), E2(IB), TSIV(IB), ADN(IB), AKN (IB),
ARNX (IB), APO4(IB)
WRITE(OUT, 1330) KFEDR(IB), RCOLIDR(IB), SOD(IB), KNPOOL(IB),
KP04X(IB), KDSED(IB)

```
 WRITE (OUT, 1331) MACROB(IB),MACGRO(IB),MACDRY(IB),KALGRO(IB),
 KALGDK (IB),OXIDAT (IB) ,KMNDR (IB)
WRITE(OUT, 1332) BR(IB), AR1(IB), KLITE(IB), ACK(IB)
WRITE(OUT, 1333) HNEFSW(IB), M, QWINDO
WRITE(OUT,1334) LAMBDAO(IB), LAMBDA1(IB), LAMBDA2(IB),
1
 ALPHAO (IB)
WRITE(OUT, 1335) KNSET(IB), ABSR(IB), CBODSR(IB), FCBOD(IB)
WRITE(OUT, 1336) KPDR(IB), KPSET(IB), BENPO4(IB)
C 4) Read initial conditions cards
C ******t******t*t**t**
 M1 = NODE1(L)
 M2 = M1 + NNODE(L)-1
 DO 9 I = M1,M2
 READ (INPUT, 7) (INIT (N,I),N=1,12)
 READ (INPUT, 7) (CLC(N,I),N=1,12)
 FORMAT(12F7.0)
 7
C 5) Read in dispersion coefficient in ft2/sec for each reach
C **
 READ(INPUT,11) DISP(I)
 DISP(I) = DISP(I)*8026.8
 FORMAT(F10.0)
11
CONTINUE
2 CONTINUE
```

```
C End of "DO 2" LOOP - All initial data read in
```

C End of "DO 2" LOOP - All initial data read in
C **********t***t*******t**t*t*************************************************
C E) Determine name and open meteorological input file (if used)
C ******************************************************************************
IF (ITEM(1).EQ.0)THEN
OPEN (UNIT=MET, FILE= METIN , STATUS='OLD')
ENDIF
C F) Read boundary conditions ID card - locations where b.c. are in effect

```

```

READ (INPUT, *) IBC
$\mathrm{NBC}=0$

```

```

C NOTE:NBC is number of locations for boundary condition changes

```

```

DO $38 \mathrm{~L}=1$,NS
IF (IBC(L).EQ.0)GO TO 39
$\mathrm{NBC}=\mathrm{NBC}+1$
38 CONTINUE
39 CONTINUE
C
C F) Convert time from HH.MM to days

```

```

    START = STARTTIME
    SUNSET = SUNSET/14.4-AINT(SUNSET)/36.
    DAWN = DAWN/14.4-AINT (DAWN)/36.
    LAMBDA = SUNSET-DAWN
    ELAPSE = STARTTIME
    TNXTVD = STARTTIME
    CLOCK = START
    JDYO = STARTTIME
    HSTART = (START-AINT (START)) * 24.
    C Unscramble references
C *****************************************************************************
DO 31 L = 1,NS
DO 31 M = 1,NS
IF (IBC(L).EQ.ID(M)) IBC(L) =M
31 CONTINUE
C Construct cross-reference boundary conditions directory
C ****************************************************************************
DO 32 L = 1,NBC
IBCL = IBC(L)
IF (JBC(IBCL).GE.0) GO TO 33
WRITE (OUT,34) ID(IBCL)
34. FORMAT('SEGMENT \#',I3,' May not receive input boundary',
, CONDITIONS.')
STOP
33 JBC(IBCL) = L
32 CONTINUE
C Read in distance increments and lateral inflows from the
C hydrodynamic model. Convert english to metric units

```

```

    DO 47 I = 1,MNODE
        READ (HYD) RLENGTH(I), QLC(I), RMILE(I)
        RLENGTH(I) = RLENGTH(I)*0.3048
        QLC(I) = QLC(I)*8026.85
    47 CONTINUE
    DO 9111 I=1,MNODE
        FLOWOLD(I) =0.
        AREAOLD(I) = 0.
        WIDTHOLD(I)=0.
        ELEVOLD(I) = 0.
    9111 CONTINUE
    WRITE(OUT,10) TITLE
    WRITE(OUT,135) ALABEL
    WRITE (OUT,140) (I, (INIT (N,I) ,N=1,12), I=1,MNODE)
    WRITE(OUT,136) ALABEL
    WRITE(OUT,140) (I, (CLC(N,I),N=1, 12),I=1,MNODE)
    C *****************t********************************************************************

```
```

C CONC(2) = CBOD
C CONC(3) = ORG-N
C CONC(4)}=\textrm{NH}3-\textrm{N
C CONC(5) = NO3-N
C CONC(6) = ORG-P
C CONC(7) = ORTHO-P
C CONC(8) = DISSOLVED MN
C CONC(9) = DISSOLVED FE
C
C CONC(11) = COLIFORMS
CONC(12) = ALGAE
C Assign initial conditions CONC(N,I)=INIT(N,I) and test for presence

```

```

    DO 51 N = 1,12
    DO 51 I = 1,MNODE
        CONC(N,I) = INIT(N,I)
        IF(IBYPASS(N).EQ.0)CP(N)=.TRUE .
    5 1 ~ C O N T I N U E ~
    ALGAE and MACROPHYTES can function as sources of ORG-N, ORG-P,
    and DO variable "ALGAEB" replaced by CONC(12,I)
    The code segment down to "630 CONTINUE" assigns an output format to
    each state variable
    *********************************************************************************
        MM = 0
        DO 630 N = 1,12
            IF(.NOT.CP(N)) GO TO 630
            MM = MM + 1
            MC(MM) = N
            IF (N.NE.2.AND.N.NE.10) FMT(MM + 2) = FMT2
            IF (N.EQ.10.OR.N.EQ.2) FMT(MM + 2) = FMT1
            BLABEL(MM) = ALABEL(N)
            IF (N .EQ. 1) BUNIT(MM) = AUNIT(1)
            IF (N .EQ.11) BUNIT(MM) = AUNIT(2)
    6 3 0 \text { CONTINUE}
        MAX = MM
    C CALL SUBROUTINE 'SPLINE'

```

```

    DO 55 L = 1,NS
            M1 = NODE1(L)
            M2 = NNODE (L)
            CALL SPLINE(CONC(1,M1),DC(1,M1),CP,RLENGTH(M1),F,M2)
    55 CONTINUE

```
 JTIME = 1
 DO WHILE (ELAPSE.LE.ENDTIME)
```

```
C A) Read hydrodynamics, alternating between HYDRO1 and HYDRO2
C **
READ (HYD , END=9999,ERR=9999)DT
DO 1021 I = 1, MNODE
FLOWOLD (I)=FLOW (I)
AREAOLD(I)=AREA(I)
WIDTHOLD(I)=WIDTH(I)
ELEVOLD (I)=ELEV (I)
READ(HYD)FLOW(I),QLT(I),AREA(I),WIDTH(I),ELEV(I)
 RJUNR(I)=ELEV(I)
 1 0 2 1
CONTINUE
L1 = 0
DT = DT/86400.
Ml = Ll + l
M2 = Ll + MNODE
C ***
C NOTE: 2446.6 m**3=1 cfs*day (a flow of lcfs for l day)
C **
DO 113 I = 1,MNODE
FLOW(I) = FLOW(I)*2446.59
AREA(I) = AREA(I)*0.0929034
WIDTH(I) = WIDTH(I)*0.3048
ELEV(I) = ELEV(I)*0.3048
RJUNK(I) = RJUNK(I)*0.3048
QLT(I) = QLT(I)*8026.85
113
CONTINUE
C B) Set running parameters
C ***
```

```
IF(ELAPSE.GT.TPR(IPRINT).AND.NPRINT.GT.1)THEN
```

IF(ELAPSE.GT.TPR(IPRINT).AND.NPRINT.GT.1)THEN
IPRINT=IPRINT+1
IPRINT=IPRINT+1
TPRINT=TPRNT (IPRINT)
TPRINT=TPRNT (IPRINT)
END IF
IF(ELAPSE.GT.TPL(IPLOT).AND.NPLOT.GT.1)THEN
IPLOT=1PLOT+1
TPLOT=TPLT(IPRINT)
END IF
IF (JTIME.EQ.1) DT = 0.
ELAPSE = ELAPSE + DT
CLOCR = AMOD(CLOCR + DT,1.)
DARK = CLOCR.GE.SUNSET.OR.CLOCR.LE.DAWN
IF (DARR) SINI = 0.
IF (.NOT.DARK) SINI=SIN(PI*(CLOCK-DAWN)/LAMBDA)
DELTAT = DT * 24.
IF (JTIME .EQ. 1) STB = HSTART
STE = STB + DELTAT
IF (JTIME .EQ. 1) THEN
TOFDAY = HSTART
ELSE
TOFDAY = TOFDAY + DELTAT
END IF

```


```

                                    WRITE(OUT, 270) (BUNIT(MM),MM=1,MAX)
                                    WRITE(OUT,FMT) (I ,RMILE (I),(CONC (MC (MM),I),MM=1,MAX),
                                    I=M1+1,M1+M2)
    1
                CONTINUE
                TEST_PRINT = 0.
            END IF
                STB=STE
                IF (STB .GE. 24. ) STB = STB-24.
                JDYO = JDYO
            IF (TOFDAY .GE. 24.) JDYO = JDYO + 1
            IF (TOFDAY .GE. 24.) TOFDAY = TOFDAY-24.
            IF (JDYO .GT. 365 ) JDYO = JDYO-365
            JTIME = JTIME + 1
            END DO
    C ******************************************************************************
C END OF TIME LOOP
C THE END DO COMPLETES THE MAIN TIME MARCH, CONTINUE UNTIL
THE ELAPSED TIME IS <= THE SPECIFIED END TIME
*******************************************************************************
9999 CONTINUE
STOP
C
Output format section
*********t********t***************************************************************
10 FORMAT (A80)
135 FORMAT(5x,'Initial Conditions',/,5x,18('='),//,5X,12(A8),/)
136 FORMAT(//,5x,'Lateral Inflow Concentrations'/,5X,29('='),//,5x,
12(A8),l)
140 FORMAT(I3,12F8.2)
190 FORMAT(1H1,//,1x,'CE-QUAL-RIV1 WATER QUALITY MODEL ')
200 FORMAT (/,5x,A80)
210 FORMAT(/',YEAR ,,I4,' MONTH ,,A9,' DAY ,,I2,
* 'HOUR ',F8.2,' SEGMENT', I3,'', 10A4,
* T6l,'!')
211 FORMAT(', CLOUD COVER ', F8.3,' WIND SPEED= ',F8.2,' DRY BULB ','
F8.2,' WET BULB TEMP = , F8.2, ' ATMOSPHERIC PRESSURE = ,F8.2)
260 FORMAT(/,T7,'RIVER',6X,11(A8, 4X),A8)
270 FORMAT(' ',T8,'MILE',6X,11(A8,4X),A8)
C
C FORMAT STATEMENTS for global constants
C *****t*t**********************************************************************

```

```

    .l, , Algal Nitrogen Content (Fraction By Weight) = , F8.4,
    ./, , Temperature Coeff. For Physical Processes =,,F8.4,
    1204 FORMAT(', Oxygen/Nitrogen Equivalence (gO2/gN) = ,F8.4,
.l, Oxygen/Nitrogen Ratio For Nitrification',
.l, , (g02/gN) =,'F8.4,
.l, , Oxygen Consumption/Plant Decay (g02/g Plant) =,'F8.4,
.l, , Oxygen Consumption/Iron Oxidized (gO2/g Fe) = ,F8.4,
.l, , Oxygen Consumption/Manganese Oxidized'
.l, , (gO2/g Mn) = ,,F8.4,l)
1205 FORMAT(', Time of Suntise, (HH.MM), Dawn =,'F5.2,
.l, Time of Sunset, (HH.MM), Sunset =,'FS.2,
1206 FORMAT(/|/,21x,'Print Intervals',/,21x,15('='))
1207 FORMAT(/|,,22x,'Plot Intervals',/,22x,14('='))
1208 FORMAT(' Interval (Hours)',f10.4,' from Time (Days) = ',F10.4)
1209 format(/|/,21x,'System Bypass Options',/,21x,20('='),/|,
.18x,' (0 = Simulate, l = Bypass), l|,''Temp BOD ÓgNN NH3 NO3
. OrgP PO4 Mn Fe dO CLFM Algae',/,12(2x,I3),|||
1210 FORMAT(30('+'),' END GLOBAL CONSTANTS ',30('+'),|/|
C FORMAT STATEMENTS for segment parameters
C ******************************************************************************
1320 FORMAT(31x,'Segment Parameters')
1321 FORMAT(//,i0x,'Constant Data for Segment No. ',I2,//,10x,
'NOTE:',' These Data may be Corrected for Temp., D.O., etc. Durin
.g',/,16x,'Program Execution'//)
1324 FORMAT(', Stream Segment Temperature, Deg. C,',23x,'TEMP = ',F5.2,
.1, , , Rate Coefficient for Bottom Heat Exchange (1/DAY)',
.9x,' ATB = ',F5.2,
.l, , Rate Coefficient for Surface Heat Exchange, W/M**2 DEG.
.C,',' ATS = ',F5.2,
.l, , Source/Sink Term for Bottom Heat Exchange, DEG. C,',
.7x,'TSINK = ',F5.2,
./, , Variable Designating type of Heat Exchange Solution,'
.,5x,' ITEM = ',I2,
./,' 1--Constant Temp. Equilibrium 0--Full Heat Balance ',|/|)
1325 FORMAT(' Nitrate Conc. at Which Denitrification Rate is 1/2',
.l, , Maximum, mg/1,',43x,'NCBDN = , F5.2,
.l', D D.O. Conc. at Which Algal Decay Rate'is 1/2 Maximum',
.l, ; mg/1,',51x,'ROALDR = ,FS.2,
.I, , D.0. Conc. at Which the Rate of Denitrification is',
.l', , Reduced by 1/2,MG/L,',35x,'KOCBDN =',F5.2,
.l, , D.0. Conc, at Which CBOD Decay rate is 1/2 Maximum',
.l', , Rate,mg/i',47x,'KOCB1 =, F5.2,
.l, ; D.O. Conc. at Which Nitrification Rate is 1/2',
./, , Maximum, mg/1',46x,'RON = ',F5.2,/|/)
1328 FORMAT(' Rate Coefficient for Stream Reaeration Rate',17x, .'AG $=$ ', F5.2,1,
$\therefore$ Exponent of Velocity in Stream Reaeration Rate,',
$\therefore$ Formulation', 1x,'E1 $=$ ', $55.2,1$,
. Depth Exponent in Stream Reaeration Formulation,',

```
```

                            E2 = , FS.2,1,
    Coefficient in the Tsivoglou-Wallace Reaeration',
Equation',l,' 1/ft,',53x,'TSIV =, F5.2,l,
Specific Rate Coefficient, Uncorrected, for',
Denitrification 1/day',37x,' ADN = , F5.2,l,
Specific Rate Coefficient, Uncorrected, for',l,
Nitrification 1/day',39x,' ARN = , F5.2,/,
Specific Rate Coefficient, Uncorrected, for',l,
Ammonia Adsorption 1/day',34x,'ARNX =, F5.2,l,
Specific Rate Coefficient, Uncorrected, for',/,
Phosphate Adsorption, 1/day',31x,'APO4 = ',F5.2,/|/)

```
```

1330 FORMAT(' Specific Rate Coefficient For Iron Oxidation, l/day,',

```
1330 FORMAT(' Specific Rate Coefficient For Iron Oxidation, l/day,',
 4x,' KFEDK = ',F5.2,l,
 4x,' KFEDK = ',F5.2,l,
 , Rate Coefficient For Coliform Mortality, 1/day,',
 , Rate Coefficient For Coliform Mortality, 1/day,',
 7x,' RCOLIDK = ',F5.2,l,
 7x,' RCOLIDK = ',F5.2,l,
 ,'Sediment Oxygen Demand, gr./m**2',27x,'SOD = ',FS.2,/,
 ,'Sediment Oxygen Demand, gr./m**2',27x,'SOD = ',FS.2,/,
 , Total Nitrogen Conc. at Which Algal Growth', /,
 , Total Nitrogen Conc. at Which Algal Growth', /,
 ,, Rate is Reduced by 1/2,mg/1',28x,'RNPOOL =',F5.2,1,
 ,, Rate is Reduced by 1/2,mg/1',28x,'RNPOOL =',F5.2,1,
 , Phosphorous Conc. at which Algal Growth Rate Reduced by',l,
 , Phosphorous Conc. at which Algal Growth Rate Reduced by',l,
 , 1/2,mg/1',48x,'KPO4X = ,F5.2,/
 , 1/2,mg/1',48x,'KPO4X = ,F5.2,/
 ,'Sediment Denitrification Rate',28x,'KDSED = ', F5.2,/)
 ,'Sediment Denitrification Rate',28x,'KDSED = ', F5.2,/)
 FORMAT(' Macrophyte Density on Channel Surfaces, g/m**2,',
 FORMAT(' Macrophyte Density on Channel Surfaces, g/m**2,',
 MACROB = ,,F5.2,l,
 MACROB = ,,F5.2,l,
 , Specific Macrophyte Growth Rate, 1/day',18X,'MACGRO = ',F5.2,/,
 , Specific Macrophyte Growth Rate, 1/day',18X,'MACGRO = ',F5.2,/,
 ', Specific Macrophyte Decay Rate, 1/day',19X,'MACDKY = ',F5.2,1/,
 ', Specific Macrophyte Decay Rate, 1/day',19X,'MACDKY = ',F5.2,1/,
 ,' Algal Growth Rate, mg/1*day',29x,'KALGRO = ',F5.2,l,
 ,' Algal Growth Rate, mg/1*day',29x,'KALGRO = ',F5.2,l,
 ,' Algal Decay Rate, mg/1*day',30X,'KALGDR = ',F5.2,l/,
 ,' Algal Decay Rate, mg/1*day',30X,'KALGDR = ',F5.2,l/,
 , D.O. Conc. Below Which Oxidation of',l,
 , D.O. Conc. Below Which Oxidation of',l,
 ,' Iron and Manganese Do Not Occur, mg/1',19X,'OXIDAT = ',F5.2,l,
 ,' Iron and Manganese Do Not Occur, mg/1',19X,'OXIDAT = ',F5.2,l,
 ,, Specific Rate Coefficient Manganese Oxidation, 1/day,
 ,, Specific Rate Coefficient Manganese Oxidation, 1/day,
 KMNDK = ',F5.2,/)
 KMNDK = ',F5.2,/)
 1332 FORMAT(' Empirical Coefficient Reflecting Thickness of',
 1332 FORMAT(' Empirical Coefficient Reflecting Thickness of',
 .'Boundary Layer BK = ',F5.2,/,
 .'Boundary Layer BK = ',F5.2,/,
 ',Rate Coefficient Carbonaceous Oxygen Demand, 1/day',9X,
 ',Rate Coefficient Carbonaceous Oxygen Demand, 1/day',9X,
 'AR1 = ',F5.2,l,
 'AR1 = ',F5.2,l,
 ,' Light Intensity at Which Photosynthesis Rate Reduced by'l,
 ,' Light Intensity at Which Photosynthesis Rate Reduced by'l,
 , 1/2,',52X,' KLITE = ,'F5.2,1
 , 1/2,',52X,' KLITE = ,'F5.2,1
 ,' Rate Coefficient for Org-N Decay To NH3',18X,' ACK = ',F5.2)
 ,' Rate Coefficient for Org-N Decay To NH3',18X,' ACK = ',F5.2)
 Problem with QWIND (xx)
 Problem with QWIND (xx)
 1333 FORMAT(' Surface Light Intensity at Local Noon,
 1333 FORMAT(' Surface Light Intensity at Local Noon,
 .HNEFSW = ',F8.2,l,
 .HNEFSW = ',F8.2,l,
 Is Wind Driven Reaeration Used for Segment ?,',
 Is Wind Driven Reaeration Used for Segment ?,',
 .'T or F,','QWIND(',12,') =',L2,/)
 .'T or F,','QWIND(',12,') =',L2,/)
1334 FORMAT(', Non-algal Portion of Light Extinction Coefficient',5x,
1334 FORMAT(', Non-algal Portion of Light Extinction Coefficient',5x,
 , LAMBDAO = , F5.2,1,
 , LAMBDAO = , F5.2,1,
 ,' Linear Algal Self Shading Coefficient',18x,'LAMBDAl = ',F5.2,/,
 ,' Linear Algal Self Shading Coefficient',18x,'LAMBDAl = ',F5.2,/,
 .' Nonlinear Algal Self Shading Coefficient',15x,'LAMBDA2 = ',
 .' Nonlinear Algal Self Shading Coefficient',15x,'LAMBDA2 = ',
 .F5.2,l,
 .F5.2,l,
 \therefore Conversion Factor From Algae To Chlorophyll,',11x,
 \therefore Conversion Factor From Algae To Chlorophyll,',11x,
 , ALPHAO = ,,F5.2,1/)
 , ALPHAO = ,,F5.2,1/)
 FORMAT(' Settling Rate for Organic Nitrogen,', 22x,' KNSET = ',
 FORMAT(' Settling Rate for Organic Nitrogen,', 22x,' KNSET = ',
 .1F5.2,1,
 .1F5.2,1,
 , Benthal Source Rate for Ammonia, g/m**2',19x,'ABSR = ',F5.2,l,
 , Benthal Source Rate for Ammonia, g/m**2',19x,'ABSR = ',F5.2,l,
 S Settling Rate for CBOD, m/day',27x,'CBODSR = ',F5.2,l,
 S Settling Rate for CBOD, m/day',27x,'CBODSR = ',F5.2,l,
 , Fraction of Algal and Macrophyte Decay',/,
```

    , Fraction of Algal and Macrophyte Decay',/,
    ```
```

            , Which Goes to CBOD, ,,37x,'FCBOD = ,,F5.2//)
    1336 FORMAT(' Decay Rate For Organic - P,',30x,' KPDR = , F5. 2,l,
        , Settling Rate Coefficient For Org-P,',20x,' KPSET = , F5.2,1,
        .' Benthic Source Term for Dissolved P,',19x,' BENPO4 =,,F5.2,/|)
        STOP
        END
    C ****************************************************************************
C S U BROUTIINE S E G

```

```

    SUBROUTINE SEG(DX1,QO,AO,BO,ELO,Q,A,B,EL,QLC,QLT,C,DC,R,SINR,BC,
                                    CP,CLC ,CLT,SINI ,MNODE,ITO,IT1,IT2,JT,T,DISP,F,NS,
                            QWIND)
            INCLUDE 'RIVIQ.CMN'
            DIMENSION DXI(MNODE),QO(MNODE),AO(MNODE),BO(MNODE),ELO(MNODE),
            * Q(MNODE),A(MNODE),B(MNODE),EL(MNODE),QLC (MNODE),
                        QLT(MNODE), C(12,MNODE),DC(12,MNODE),K(12,MNODE),
                        SINK (12,MNODE),BC(12),CP(12),JT(NS),T(50,1),
                            CLC(12,MNODE), CLT(12,MNODE),DISP(MNODE),F(MNODE , 6)
    ```

```

    LOGICAL JUNCT
    DATA THETA/0.55/
    RTHETA = (THETA - 1.)/THETA
    L = IT2 + 1
    IT = MAXO(1,IT1)
    IF (DT.EQ.O.) GO TO 17
    ULL = QO(MNODE)/AO(MNODE)
    C Calculate the derivative at the first node

```

```

    DO = DT/2.*(QO(1)/AO(1) + Q(1)/A(1))
    DEN = 1.5*DX1(1) + 2.*DO
    B1 = 1.5*DX1(1)/(D0*DEN)
    B2 = 3.*DO/(DX1(1)*DEN)
    B3 = DO/DEN
    C Relfect boundary conditions at node l when there is no inflow
C at the upstream boundary. (1 cms or }86400\mathrm{ cubic meters/day is
C considered no flow)
C ****************************************************************************
DO 63 N = 1,12
IF(CP(N)) THEN
IF(Q(1).LT.86400.) THEN
BC(N)=C(N,2)
END IF
DC(N,1)=B1*(C(N,1)-BC(N)) + B2*(C(N,2)-C(N,1))-B3*DC(N,2)
END IF
6 3 CONTINUE
GO TO 14
C
C Place initial concentrations into tributary data transfer
C ****************************************************************************

```
```

    17 IF (IT1.EQ.0) GO TO 14
    DO 15 LL = IT1,IT2
        I=JT(LL)-1
        DO 15 N = 1,12
            IF (.NOT. CP(N) ) GO TO 15
            T(N+26,LL)=C(N,I)
            T(N+38,LL)=DC(N,I)
    15 CONTINUE
    C
C Initialize nutrient depletion parameters
C ****************************************************************************
14 CONTINUE
C···...............N N DE COMPUTATTION
C
C "DO 470" - NODE MARCH. Certain program blocks are bypassed for
C DT=0 (INITIAL CONDITIONS) and I=1 (BOUNDARY CONDITIONS).
C loop marches through nodes in an upstream direction and
C cycles thru every node in the system once during each time step.
C *****************************************************************************
C
DO 470 II = 1,MNODE
LII= II
I = MNODE-II + 1
UUR = Q(I)/A(I)
UUL = UUR
IF(I.NE.1) UUL = Q(I-1)/A(I-1)
C Check to see if we have an initial or boundary condition

```

```

    IF (DT.EQ.O..OR.I.EQ.1) GO TO 150
    C Check to see if node is at a junction, if not GO TO STATEMENT 20
C ***t**********************************t**************************************
IF (L.LE.IT) GO TO 20
IF (JT(L-1).NE.I) GO TO 20
C
C Calculate dilution ratios for tributary junctions
C ****************************************************************************
C
L=L-1
JUNCT = .TRUE.
D = T(25,L)/Q(I + 1)
DD = T(26,L)*D/UUR
GO TO 13
20 JUNCT = .FALSE.
13 ULL = QO(I-1)/AO(I-1)
DX = DX1(I-1)
DUDX= (ULR-ULL)/DX
DADX= (AO(I) - AO(I-1))/DX
DADX2=(A(I) - A(I-1))/DX
DDISP= (DISP(I) - DISP(I-1))/DX
DDA1 = DISP(I)/AO(I)*DADX + DDISP
DDA2 = DISP(I)/A(I)*DADX2 + DDISP
C **********************t*****************************************************
C NOTE: Above will not work for homogeneous channel or
C and uniform dispersion. Also, RDDA not used so commented

```
out. "US" is the characteristic velocity of the constituent
\(A 1=E * E *(3 .-2 . * E)\)
\(A 2=1 \cdot-A 1\)
\(A 3=E * * E \subset D X\)
\(A 4=-E * E C * E C D X\)
C "US" is redefined as characteristic velocity of the spatial
\(C\) derivative of the constituent concentration and "ED" is the
\(C\) resulting Courant number. They are computed once for each node
C during each time step.

US \(=\) US - DDISP
\(E D=U S * D T / D X\)
\(E D C=1 .-E D\)
C "B1 thru B4" are the coefficients of the polynomial estimator
C of the spatial derivative at node \(I\) and time step J.

\(\mathrm{B1}=6 . \star E D *(-E D C) / D X\)
\(B 2=-B 1(E D-E D C-E D C)\)
\(B 3=E D *(E D E D\)
\(B 4=E D C *(E D C-E D-E D)\)
C Correct light extinction coefficient, kext, for algal self-shading
C ref: qual2e manual affects both algae and macrophytes

C NPOOL is the sum of NH3 and NO3

NPOOL \(=C(4, I-1) * E+C(4, I) * E C+N O 3 N X\)
```

C Ortho-P only

```

P04X \(=\mathrm{C}(7, \mathrm{I}-1) * E+\mathrm{C}(7, \mathrm{I}) \star \mathrm{EC}\)
C Compute nutrient limitation factors to be used in computing
C algal growth rate for non-boundary and non-initial conditions
C Nitrogen limitation factor in algae growth

FN \(=\) NPOOL \(/(\) NPOOL + RNPOOL (IBRANCH) \()\)
C P04 limitation factor in algae growth

FP \(=\) P04X \(/(\) P04X + KPO4X (IBRANCH) \()\)
GO TO 140
C Value of D.O., NO3, NPOOL, and PO4 used for initial and
C boundary condítions

150 DOX \(=C(10,1)\)
NO3NX \(=C(5, I)\)
C NPOOL is sum of NH3 + NO3

> NPOOL \(=\mathrm{NO} \mathrm{NNX}+\mathrm{C}(4, \mathrm{I})\)
> \(\mathrm{PO4X}=\mathrm{C}(7, \mathrm{I})\)

C
C Correct light extinction coefficient, REXT, for algal self-shading
C affects both algae and macrophytes

REXT \(=\) LAMBDAO (IBRANCH) + LAMBDAl (IBRANCH)*ALPHAO (IBRANCH)*
* \(\mathrm{C}(12, \mathrm{I})+\mathrm{LAMBDA} 2(\) IBRANCH \() *(\) ALPHAO (IBRANCH)*C(12,I)) **2/3

C Nitrogen limitation factor in algae growth

FN \(=\) NPOOL \(/(\) NPOOL + RNPOOL (IBRANCH) \()\)
C PO4 limitation factor in algae growth

FP \(=\) P04X/(PO4X + RPO4X (IBRANCH) \()\)
C
C Compute hydraulic depth for current node

\(140 \quad \mathrm{H}=\mathrm{A}(\mathrm{I}) / \mathrm{B}(\mathrm{I})\)
C Statements below shut down algal growth in darkness, SINI.LE. O. 0 C or lack of nutrients, (PO4X OR NPDOL . LE. O.0)

\begin{tabular}{|c|}
\hline \multicolumn{22}{|c|}{IF (SINI.LE.0.) ALGRO \(=0.0\)} \\
\hline \multicolumn{22}{|c|}{\[
\begin{aligned}
& \text { IF }(\text { PO4X.GT.0.0) GO TO } 310 \\
& \text { ALGRO }=0.0
\end{aligned}
\]} \\
\hline \multicolumn{22}{|c|}{310 IF (NPOOL.GT.0.0) GO TO 315} \\
\hline \multicolumn{22}{|c|}{ALGRO \(=0.0\)} \\
\hline \multicolumn{22}{|l|}{} \\
\hline \multicolumn{22}{|c|}{315 IF (.NOT.CP(1))GO TO 319} \\
\hline \multicolumn{22}{|c|}{TEMP \(=C(1, I)\)} \\
\hline \multicolumn{22}{|l|}{} \\
\hline \multicolumn{22}{|c|}{\multirow[t]{3}{*}{\[
319 \quad \begin{aligned}
\text { TBIO } & =\text { TBIOS** }(\operatorname{TEMP}-20 .) \\
\text { TNH3 } & =\text { TAMMON** }(\operatorname{TEMP}-20 .) \\
\text { TPHYS } & =\text { TPHYSI** }(\text { TEMP }-20 .)
\end{aligned}
\]}} \\
\hline & \\
\hline & \\
\hline \multicolumn{22}{|l|}{\begin{tabular}{l}
C DOSAT is the saturation value of D.O. as a function of water temp \\

\end{tabular}} \\
\hline \multicolumn{22}{|c|}{DOSAT \(=14.652+(-0.41022+(0.007991-0.000077774 * T E M P) * T E M P) * T E M P\)} \\
\hline \multicolumn{22}{|l|}{\begin{tabular}{l}
C Algae are light limited only in this version \\

\end{tabular}} \\
\hline \multicolumn{22}{|c|}{IF (SINI.LE.O.) GO TO 330} \\
\hline \multicolumn{22}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{22}{|l|}{C 320 IF (SINI.LE.O..OR.PO4X.LE.O.O.OR.NPOOL.LE.O.0) GO TO 330} \\
\hline \multicolumn{22}{|l|}{C ***} \\
\hline \multicolumn{22}{|l|}{\multirow[t]{5}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{22}{|c|}{\multirow[t]{3}{*}{```
IF (ITEM(IBRANCH).EQ. 1)THEN
 SWALG= HNEFSW(IBRANCH)*SINI
ELSE
```}} \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline \multicolumn{22}{|c|}{SWALG = HNEFSW (IBRANCH)} \\
\hline \multicolumn{22}{|c|}{END IF} \\
\hline \multicolumn{22}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & \\
\hline \multicolumn{22}{|c|}{\[
\begin{aligned}
\text { ALGRO }= & C(12, I) \star \operatorname{RALGRO}(\operatorname{IBRANCH}) \star(1 /(\operatorname{REXT} \star H)) \star \\
& \text { LOG }((\mathrm{KLITE}(\text { IBRANCH })+\text { SWALG }) /(\operatorname{RIITE}(\text { IBRANCH })+\text { SWALG* }
\end{aligned}
\]} \\
\hline
\end{tabular}

\section*{\(\left.\left.\operatorname{EXP}\left(-\mathrm{KEXT}^{*} \mathrm{H}\right)\right)\right)\) *FN*FP}
Macrophyte growth rate, MGRATE, defined in terms of reach dependent parameter, MACO, corrected for light but not nutrients, see manual

IF (KEXT . GE.0.01)MGRATE = MACROB (IBRANCH) *MACGRO (IBRANCH) *SWALG* (2./KEXT + (B(I) - 2./KEXT)* \(\operatorname{EXP}(-\mathrm{REXT} * \mathrm{H})\) )/A(I)
IF (KEXT.LT. 0.01)MGRATE = MACROB (IBRANCH)*MACGRO (IBRANCH)* SWALG* (H* (2.-KEXT*H) + B(I)* EXP (-KEXT*H) )/A(I)
\(C\) Define \(P\) as the fraction of NO3 in npool (NPOOL \(=\) NH3 + NO3)

330 IF (NPOOL .GT. O.) \(P=\) NO3NX/NPOOL
When D.O. drops to zero algal decay, MAC. DECAY, aerobic
\(C\) hydrolysis of ORG-N, and nitrification cease. Therefore ALGADR, MDEATH, K1, KlN, and RN set to zero at 380 .

IF (DOX.LE.1.E-06) GO TO 380
C If \(D . O\). not zero go ahead and compute algal death rate (ALGADK),
\(C \quad \mathrm{Kl}\), and KN , and reach dependent macrophyte death rate (MDEATH). Correct algal death rate (ALGADK) for D.O. availability

\(\operatorname{ALGADR}=C(12, I) * R A L G D K(I B R A N C H) *(D O X /(D O X+K O A L D K(I B R A N C H)))\)
Correct macrophyte death rate (MDEATH) for D.O. availability

\[
\begin{aligned}
\operatorname{MDEATH}= & \operatorname{MACROB}(\operatorname{IBRANCH}) \star \operatorname{MACDKY}(\operatorname{IBRANCH}) *(\mathrm{~B}(\mathrm{I})+\mathrm{H}+\mathrm{H}) /((1 .+ \\
& \left.\operatorname{KOALDK}(\operatorname{IBRANCH}) / D O X) \star A(I)^{\prime}\right)
\end{aligned}
\]
C Correct rate coefficient for CBOD decay (AR1) for temperature and C D.O. availability


R1 \(=\operatorname{AK1}\) (IBRANCH)*TBIO/(1.+ KOCB1 (IBRANCH)/DOX)
C Correct rate coefficient for ORG-N (ACK) for temperature and D.O. C availability

KIN \(=\operatorname{ACR}(\) IBRANCH \() * T B I O /(1+\) KOCB1 (IBRANCH)/DOX)
Correct rate coefficient for nitrification (ARN), temperature, and
C D.O. Availability

\(\mathrm{KN}=\mathrm{AKN}(\) IBRANCH \() * T N H 3 /(1 .+\) RON (IBRANCH) \(/ \mathrm{DOX})\)
Correct sediment oxygen demand for temperature and channel depth


KSOD \(=(S O D(\) IBRANCH \() * T B I O) / H\)

RBENPO4 \(=(\) BENPO4 (IBRANCH)*TBIO)/H
C Reaction constants for iron and manganese not corrected for C temperature see RIV1-Q documentation

KMNX \(=\) KMNDR (IBRANCH)
KFEX \(=\) RFEDR (IBRANCH)
GO TO 390
C If D.O. is zero, set ALGADR, MDEATH, Kl, KlN, and KN to zero.
C t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t t
\(380 \quad\) ALGADK \(=0.0\)
\(\mathrm{MDEATH}=0.0\)
\(\mathrm{Kl}=0.0\)
K1N \(=0.0\)
\(\mathrm{KN}=0.0\)
IF (NO3NX.LT.1.OE-06.AND.KNCBDN(IBRANCH) . LE . 1.OE-06)THEN WRITE (OUT, 389)
389 FORMAT(1X,'ERROR: NO3X \& RNCBDN BOTH 0.0, KDN IS UNDEFINED') STOP
ENDIF
C Correct rate coefficient for denitrification (ADN and KDSED),
C TEMP, D.O. inhibition, and Nitrate availability

390 KDN \(=\) ADN (IBRANCH)*TBIO*ROCBDN(IBRANCH) / (DOX +
ROCBDN (IBRANCH)) *NO3NX / (NO3NX + KNCBDN (IBRANCH))
\(\operatorname{KDSED}(\) IBRANCH \()=\operatorname{KDSED}(\) IBRANCH \() * T B I O * K O C B D N(I B R A N C H) /(D O X+\) KOCBDN(IBRANCH)) *NO3NX/(NO3NX + KNCBDN (IBRANCH))

C Correct rate coefficient for NH3 adsorption for temperature

KNX \(=\) AKNX (IBRANCH) *TPHYS
C When the D.O., (DOX), level drops below a specified value (OXIDAT)
C iron and manganese oxidation stops, KMNX and KFEX set to 0.0 .

IF (DOX .LT. OXIDAT (IBRANCH)) KMNX \(=0\).
IF (DOX .LT. OXIDAT (IBRANCH)) \(\mathrm{KFEX}=0\).
C
C This code segment (DOWN TO 391) computes reaeration coefficients

\(\mathrm{AGC}=\mathrm{AG}(\) IBRANCH \() * 3.79726 \mathrm{E}-05 \star \star \mathrm{E} 1\) (IBRANCH) \(* 0.3048 * * E 2\) (IBRANCH)
\(\mathrm{K} 2=\mathrm{AGC}\) ABS (UUR) \(* * E 1\) (ibrANCH) \(/ \mathrm{H} * * E 2\) (IBRANCH) *TPHYS
IF (I.EQ.1 .OR. DT.EQ.O.) GO TO 391
C Compute Tsivoglou reaeration coefficient, K2, if TSIV .gt. 0 .
C otherwise use exponential reaeration coefficient, \(K 2\), computed
C above

IF (TSIV(IBRANCH).GT.O.) THEN
DELTAH \(=E L(I)-E L(I-1)\)


and NH3 production by hydrolysis of ORG-N.
 C

4
\(\mathrm{R}(4, \mathrm{I})=\mathrm{RN}+\mathrm{KNX}\)
\(\operatorname{SINK}(4, \mathrm{I})=(\mathrm{KlN}+\mathrm{KDN}) * \mathrm{C}(3, \mathrm{I})-\operatorname{ANCONT} *((1 .-\mathrm{P}) *\)
(ALGRO+MGRATE))-(ALGADK+MDEATH)
\(\operatorname{IF}(\operatorname{ARN}(\operatorname{IBRANCH}) . \operatorname{GT} \cdot 0.0) \mathrm{CP}(5)=. \operatorname{TRUE}\).
GO TO 480


\section*{NITRATE NITROGEN}
(NITRITE NOT EXPLICITLY INCLUDED IN DECAY MECHANISM)

\(\mathrm{K}(5, \mathrm{I})\) represents N 03 loss via denitrification in the sediment SINR \((5, I)\) represents nitrification in the water column, NO3 loss by denitrification in the water column, and plant uptake of nitrate

\(5 \quad \operatorname{R}(5, I)=\operatorname{RDSED}(\operatorname{IBRANCH})\)
\(\operatorname{SINR}(5, \mathrm{I})=\mathrm{RN} * \mathrm{C}(4, \mathrm{I})\)-ANCONT*P*(ALGRO+MGRATE)-ONEQUI* KDN*C(2,I)
GO TO 480
 ORGANIC PHOSPHATE

\(\mathrm{K}(6, \mathrm{I})\) represents loss of ORG-P by decay to \(P 04\) and settling of ORG-P SINR \((6, I)\) represents gain of ORG-P by algal and mac decay. algae and mac decay to \(100 \%\) ORG-P

\(6 \quad \mathrm{~K}(6, \mathrm{I})=\operatorname{RPDR}(\) IBRANCH \()+\operatorname{KPSET}(\) IBRANCH \()\)
\(\operatorname{SINR}(6, I)=\operatorname{APCONT*}(\operatorname{ALGADK}+\mathrm{MDEATH})\)
GO TO 480

SINR (7,I) represents uptake of \(P\) by algal and macrophyte growth and PO4 release from sediments

\(7 \quad \mathrm{~K}(7, \mathrm{I})=0.0\)
\(\operatorname{SINR}(7, \mathrm{I})=\) RBENPO4 \(-\operatorname{APCONT*(ALGRO+MGRATE)}\)
GO TO 480
\(\mathrm{K}(8, \mathrm{I})\) represents mn loss by oxidation. Reaction not corrected
for temp.

8 IF (C(10,I) GT. OXIDAT(IBRANCH)) THEN
\(\mathrm{K}(8, \mathrm{I})=\mathrm{KMNDR}\) (IBRANCH)
ELSE
\(\mathrm{K}(8, \mathrm{I})=0.0\)
END IF

\[
\begin{aligned}
\mathrm{K}(12, \mathrm{I})= & (\operatorname{KALGRO}(\operatorname{IBRANCH}) \star(1 /(\operatorname{REXT} \star \mathrm{H})) \star \operatorname{LOG}((\operatorname{KLITE}(\operatorname{IBRANCH}) \\
& + \text { SWALG }) /(\operatorname{KLITE}(\operatorname{IBRANCH})+\operatorname{SWALG} \operatorname{EXP}(-\operatorname{KEXT} * \mathrm{H})))) \star \text { FN* }
\end{aligned}
\]

GO TO 480

```

IF (DT.EQ.O..OR.I.EQ.1) GO TO 460
KS = (R(N,I) + KS)/2.
SINKS = (SINR (N,I) + SINKS)/2.

```

Final calculation of the constituent concentration and spatial derivative for all nodes. Statement below checks to see if node is a junction point. IF SO GO TO 38.

\[
\text { IF (JUNCT) GO TO } 38
\]
\[
\mathrm{C} 0=\mathrm{A} 1 * \mathrm{C}(\mathrm{~N}, \mathrm{I}-1)+\mathrm{A} 2 * \mathrm{C}(\mathrm{~N}, \mathrm{I})+\mathrm{A} 3 * \mathrm{DC}(\mathrm{~N}, \mathrm{I}-1)+\mathrm{A} 4 * \mathrm{DC}(\mathrm{~N}, \mathrm{I})
\]
\[
\mathrm{CCL}=\operatorname{CLC}(\mathrm{N}, \mathrm{I})-\mathrm{CO}
\]
\[
\mathrm{CCM}=\operatorname{CLT}(\mathrm{N}, \mathrm{I})-\mathrm{CO}
\]
\[
\text { IF (QLA.LE.O.) CCL }=0
\]
\[
\text { IF (QLB.LE.OO) CCM }=0 \text {. }
\]
\[
\mathrm{DC}(\mathrm{~N}, \mathrm{I})=(\mathrm{B} 1 * \mathrm{C}(\mathrm{~N}, \mathrm{I}-1)+\mathrm{B} 2 \star \mathrm{C}(\mathrm{~N}, \mathrm{I})+\mathrm{B} 3 * \mathrm{DC}(\mathrm{~N}, \mathrm{I}-1)+\mathrm{B} 4 * \mathrm{DC}(\mathrm{~N}, \mathrm{I}))
\] * (G0-DT*(RS+QLA+QLB)) \(+\mathrm{DT} *(D S I N R-C 0 * D R+C C L * D Q L A\) +CCM*DQLB)
\(C \quad C(N, I)\) is the concentration of constituent \(N\) at (non-junction) C node I, time increment J, corrected for sources, sinks and lateral C inflow

\(C(N, I)=C 0 *(1-D T * R S)+(S I N K S+C C L * Q L A+C C M * Q L B) * D T\)
GO TO 465
C
\(C \quad C(N, I)\) is the concentration of constituent \(N\) for (junction) nodes
corrected for sources, sinks and lateral inflow

C



\section*{STOP}

END IF
CALI REAERK (WIN,TAIR,TEMP,RK)
DTS \(=\) DT * 86400 .
\(\mathrm{RK}=\mathrm{RK} / 86400\).
\(C(10, I)=C(10, I)+R K *(D O S A T-C(10, I)) * \operatorname{DTS} / \mathrm{H}\) END IF
```

C **

```

C That is, no concentrations are allowed to go below zero.

                IF (N.GT.1) THEN
                            IF ( \(\mathrm{C}(\mathrm{N}, \mathrm{I}) . \operatorname{LT} .0.) \mathrm{C}(\mathrm{N}, \mathrm{I})=0\).
                END IF

\section*{460 CONTINUE}

C END "DO 460" Concentration-computation loop for a given node and
C time step


\section*{ULR=ULL}

\section*{470 CONTINUE}
C END "DO 470" Node computation loop, put values in proper arrays

C and DO diffusion calculations


IF (ITO .LE. O) GO TO 560
C
C
C
C
C Values at the downstream terminus placed in the t-array

C
\(T(25, I T O)=Q(\) MNODE \()\)
\(T(26, I T O)=Q(M N O D E) / A(M N O D E)\)
DO \(16 \mathrm{~N}=1,12\)
```

 IF (.NOT.CP(N)) GO TO 16
 T(N,ITO) = C(N,MNODE)
 T(N+12,ITO)=DC(N,MNODE)
 16 CONTINUE
 560 CONTINUE
C Assign boundary conditions to the first node
C ***
C
IF (DT.LE.O.)THEN
DO 1112 I=1,MNODE
QO(I)=Q(I)
AO(I)=A(I)
BO(I)= B(I)
ELO(I)=EL(I)
1112
CONTINUE
RETURN
ENDIF
DO 403 N = 1,12
IF (CP(N)) C(N,1)=BC(N)
4 0 3 ~ C O N T I N U E ~
C At this point, the computed constituent concentrations are
C corrected for dispersion using an implicit numerical scheme.
C Resulting set of equations solved using subroutine tridag.
C **
F(1,2) = 1.
F(1,3) = 0.
F(MNODE,1)=0.
F(MNODE,2) = 1.
MN1 = MNODE - 1
DO 500 I = 2,MN1
FO = 2.*DISP(I)*THETA*DT/(DX1(I-1) + DXI(I))
F(I,1) = -FO/DX1(I-1)
F(I,3)=-FO/DX1(I)
F(I,2)=1.-F(I,1)-F(I, 3)
500 CONTINUE
C Now the right-hand side for each modeled constituent
C **
C
DO 510 N = 1,12
IF(.NOT.CP(N))GO TO S10
F(1,4)=C(N,1)
F(MNODE,4)=C(N,MNODE)
DO 520 I = 2,MNL
F(I,4)=RTHETA*(F(I,1)*C(N,I-1) + F(I, 3)*C(N,I+1) +
* (F(I,2)-1.)*C(N,I)) + C(N,I)
520
CONTINUE
CALL TRIDAG(F(1,1),F(1,2),F(1,3),F(1,4),F(1,5),F(1,6),
C,MNODE,N)
F(1,4)=DC(N,1)
F(MNODE,4)= DC(N,MNODE)
DO 540 I = 2,MN1

```


DIMENSION C(12,MNODE), DC(12,MNODE), CP(12),DX(MNODE), F(MNODE ,6)
LOGICAL CP
```

$F(1,1)=0$.
$F(1,2)=1$.
$F(1,3)=0.5$
$F($ MNODE, 1$)=0.5$
$F($ MNODE, 2) $=1$.
$\mathrm{F}(\mathrm{MNODE}, 3)=0$.
M2 = MNODE-1
DO 2 I = 2, M2
$F(I, 1)=D X(I)$
$F(I, 2)=2 . *(D X(I-1)+D X(I))$
$F(I, 3)=D X(I-1)$

```

2 CONTINUE
```

 DO 4 N = 1,12
 IF (.NOT.CP(N)) GO TO 4
 F(1,4)=1.5/DX(1)*(C(N,2)-C(N,1))
 F(MNODE,4)=1.5/DX(M2)*(C(N,MNODE)-C(N,M2))
 DO 3 I = 2, M2
 F(I,4)=3.*(DX(I-1)/DX(I)*(C(N,I + 1)-C(N,I))+DX(I)/
 DX(I-1)*(C(N,I)-C(N,I-1)))
 3 CONTINUE
C
CALL SUBROUTINE TRIDAG

```
```

CALL TRIDAG ($F(1,1), F(1,2), F(1,3), F(1,4), F(1,5), F(1,6)$,

```
```

* DC, MNODE, N)

```
```

4 CONTINUE
RETURN
END

```

```

C SUBROUTINETRRIDAG

```

```

SUBROUTINE TRIDAG (A,B,C,D,BETA,GAMMA,V,M1,N)
DIMENSION A(M1), B(M1), C(M1), D(M1), BETA(M1), GAMMA(M1),V(12,M1)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

```
```

```
*******************************************************************************
NOTE that the MATRICES \(F(1,1)\) through \(F(1,6)\) are passed to
TRIDAG where they are received as 1 -D vectors with Ml
positions. What has actually occurred is a matrix \(F(I, N)\)
has been received as a 1 -D vector containing
MN1 values corresponding to the right most subscript
where:
\(A(M 1)=F(I, 1), I\) VARIES FROM 1 TO MNL
\(B(M 1)=F(I, 2), I\) VARIES FROM 1 TO MNI
\(C(M 1)=F(I, 3), I\) VARIES FROM 1 TO MNL \(D(M 1)=F(I, 4), I\) VARIES FROM 1 TO MN1
\(\operatorname{BETA}(\mathrm{Ml})=\mathrm{F}(\mathrm{I}, 5)\), " " " \(\quad\) " \(\operatorname{GAMMA}(M 1)=F(I, 6)\),
```



```
\(\operatorname{BETA}(1)=\mathrm{B}(1)\)
\(\operatorname{GAMMA}(1)=D(1) / \operatorname{BETA}(1)\)
DO \(1 \mathrm{I}=2\), M1
\(\operatorname{BETA}(I)=B(I)-A(I) * C(I-1) / B E T A(I-1)\)
\(1 \operatorname{GAMMA}(I)=(D(I)-A(I) * \operatorname{GAMMA}(I-1)) / B E T A(I)\)
\(\mathrm{V}(\mathrm{N}, \mathrm{ML})=\operatorname{GAMMA}(\mathrm{Ml})\)
\(M 2=M 1-1\)
DO \(2 K=1, M 2\)
\(\mathrm{I}=\mathrm{Ml}-\mathrm{R}\)
\(2 V(N, I)=\operatorname{GAMMA}(I)-C(I) * V(N, I+1) / B E T A(I)\)
RETURN
END
C
```



```
                    S U B ROUTINNE
                            H E A T
This SUBROUTINE is adapted from "QUAL-II" Stream
R. Giguere and Donald E. Evenson in Water Resources
    Engineers, Inc. }710\mathrm{ South Broadway, Walnut Creek,
    California 94596
```



```
SUBROUTINE HEAT
INCLUDE＇RIV1Q．CMN＇
```



``` DEFAULT VALUE
```

```
IRFLAG ： 0 ，Read only once
1，No longer read data
JDYO ：The day of year to start simulation
LMN ：Counter for segment number
LII ：Counter for node number
LATUDC ：Local latitude，degree
LONTUC ：Local longitude，degree
LSMC ：Longitude of standard meridian，degree
DUC ：Dust attenuation coefficient
NUM ：Number of meteorological updates
NUP（I）：largest iteration at which data \(I\) applies
DUMMY ：Array containing all meteorological updates
CLOUDO ：Cloud cover（fraction）
WINDO ：Wind speed（mile／hr）
DRYO ：Dry bulb temperature（f）
WETO ：Wet bulb temperature（f）
ATMO ：Atmospheric pressure（inch／hg）
The following data are only read once
IRFLAG will equal 0 unless specified otherwise
as is done elsewhere
```


FWST＝TEMP

Call to SUBROUTINE HEATFLUX

CALL HEATFLUX	（JDYO，	DUC，	LSMC，
$*$	LLMMC，	LONTUC，	
$*$	TEMP，	LATUDC，	CLOUDO，
$*$	ATMO，	DEPTHO，	RHOO，
$*$	WETO，	DRYO，	HFLUX

Conversion heat flux from＇BTU＇to KCAL，then to degree（f）， then to（c）．Thus，DTEM is in Deg C．
NOTE：Here and in CONS7 $C P=1.0 \mathrm{CAL} / \mathrm{G}-\mathrm{C} \quad$ RHO $=1 \mathrm{G} / \mathrm{CM}^{\wedge} 3$ BTU＊ $0.252=$ RCAL $28.33=(100 \mathrm{CM}) * * 3 /(1000 \mathrm{CAL} / \mathrm{KCAL} * 35.31 \mathrm{FT} * * 3 / \mathrm{M} * * 3)$

DTEM $=($ HFLUX * 0.252) /CONS7


```
C Stefan-Boltzman Constant
C ******************************************************************************
    STBOLC = 1.73E-09
C
C
C A-I. Radiation flux
C Convert temperature from deg. C to deg. F
C **********************************************************************************
    WST = (TEM * 9.)/5. + 32.
C
C For the same day, following calculation is same
C ***********************************************************************************
    IF ( (JTIME .EQ. 1 AND LMN .EQ. 1 .AND. LII .EQ. 1) .OR.
    * (JDY .NE. JDYO .AND. LMN .EQ. 1 .AND. LII .EQ. i) ) THEN
Declination
C ******************************************************************************
C
        DESUN = CONS4*COS(CONSI*(173.-JDY))
        DECLIN = ABS(DESUN)
C Earth-sun distance
C ***********************************************************************************
        REARTH = 1.0 + 0.017*COS(CONS1*(186.-JDY))
        ETIME = 0.000121-0.12319*SIN(CONS1*(JDY-1.)-0.0714)-
        *
                        0.16549*SIN(2.*CONS1*(JDY-1.) + 0.3088)
C
C Difference between standard and local civic time
C **********************************************************************************
C
    DSTLT = (LSM - LONTUD)/15.
C Standard time of sunrise and sunset
C *******************************************************************************
C
    ACS = TAN(CONS2)*TAN(DECLIN)
C
    IF (ACS .NE. O.) THEN
        Xl = SQRT(1.-ACS*ACS)
        X1 = Xl/ACS
        ACS = ATAN(X1)
            IF (DESUN .GT. O.) ACS = PI-ACS
        ELSE
        ACS = PI/2.0
    END IF
C
    TIMRIS = 12.-(CONS6*ACS) + DSTLT
    TIMSET = 24.-TIMRIS + 2.*DSTLT
C
    END IF
```

```
C Saturated vapor pressure of the air, SVPA
C ******************************************************************************
C
    SVPA = 0.1001*EXP(0.03*WST )-0.0837
C The following are the same for each node but can change at each
C time step. LMN and LII equal l at each new time step.
C *******************************************************************************
C
    IF ( LMN .NE. l .OR. LII .NE. 1 ) GO TO 480
C
C If you want to read in dew point temperatures instead of wet
C bulb, comment out all statements between the XxXxXXX Section
Cxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
C
C Saturated vapor pressure, SVAP
C *********************************************************************************
            SVAP = 0.1001*EXP(0.03*WETBLB )-0.0837
C
C Water vapor pressure (WVAP)
C *******************************************************************************
    WVAP = SVAP-0.000367*ATMPR*(DRYBLB-WETBLB )*(1.0+(WETBLB-32.)/
        1571.)
C
C Dew point
C ***********************************************************************************
C
    DEWPON = LOG((WVAP + 0.0837)/0.1001)/0.03
CXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C Hour angle
C ********************************************************************************
C
    IF (TIMSET .LE. STB .OR. TIMRIS .GE. STE)THEN
        GO TO }3
    ELSE IF (TIMRIS .GT. STB .AND. TIMRIS .LT. STE)THEN
        #IUEXP }=1.
    ELSE IF (TIMSET .LT. STE .AND. TIMSET .GT. STB)THEN
        DIUEXP = 1.
        ANGRIS = STB-DSTLT + ETIME-12.
        ANGSET = TIMSET -DSTLT + ETIME-12.
    ELSE
        DIUEXP = 1.
        ANGRIS = STB- DSTLT + ETIME-12.
        ANGSET = STE- DSTLT + ETIME-12.
C
    END IF
C
C Calculate hour angle,T,(HOURAN)
```



```
C
    CNL = CLOUD * 10 + 1.0
    NLL = CNL
    GO TO (50,51,51,51,51,51,52,52,52,52,53),NLL
    50 AR = 1.18
    BR =-0.77
    GO TO 54
    51 AR = 2.20
    BR=-0.97
    GO TO 54
    AR=0.95
    BR=-0.75
    GO TO 54
    AR=0.35
    BR=-0.45
    CONTINUE
Solar altitude in degree
C
    RS = AR*(CONS3*ALPH )**BR
    IF(RS.GT.1.0)RS=1.0
C
C Dampening effect on the solar radiation flux gives satisfactory
C
    results except for heavy overcast condition,i.e. when cloud
    approaches 1.0
C ***************t**t***************************************************************
C
    IF (CLOUD .LE. 0.9) THEN
            CS = 1.0-0.65*CLOUD **2.
    ELSE
        CS}=0.
    END IF
C
C Calculate atmospheric transmission term
C ****************************************************************************
C
    ATT = (ATC+0.5*(1.-AC-DU))/(1.-0.5*RS *(1.-AC + DU))
C Net short-wave solar radiation btu/ft**2
C *****************************************************************************
C
    HNSWR = HRF*ATT**(1. -RS)*CS
    GO TO }47
    35 DIUEXP = 0.
    HNSWR =0.
    479 CONTINUE
C
C (B) Calculate long-wave atmospheric radiation, HAN (HNLWR)
C *****************************************************************************
C
    HNLWR = (2.89E-06)*STBOLC*((DRYBLB+460.)**6)*(1.0+0.17*
                        (CLOUD**2.))*(1.-RWSAR)
C
C Compute insolation for algae
```

```
C *********************************************************************************
C
    IF ( DELTAT .LE. 0. ) GO TO 481
    HNEFSW(IBRANCH) = HNSWR / DELTAT
    GO TO 482
    481 CONTINUE
        HNEFSW(IBRANCH) = 0.
    482 CONTINUE
C
C Convert to w/m**2
C ********************************************************************************
C
    HNEFSW(IBRANCH) = HNEFSW(IBRANCH) * 3.155
    480 CONTINUE
C
C (C) Calculate water surface back radiation, (HOLWBR)
C ****************************************************************************
    HOLWBR = 0.97*STBOLC*((WST + 460.)**4)
                                    EVAPORATIONHEAT
    (D) Calculate evaporation (HEVAP)
    D-I. Calculate evaporate rate, E, (EVARAT)
*******t*t*t*t****t******t*t******t*******************************************
    EVARAT = (CONST3 + CONST4*WINSPD )*(SVPA -WVAP )
    IF (EVARAT .LT. 0.) EVARAT =0.
C
C D-II. Calculate sensible heat loss(HSENH)
*******************************************************************************
    HSENH = 0.
C
C D-III. Calculate latent heat of evaporization, HL, (HLEVA)
C ******************************************************************************
    HLEVA = 1084.-0.5*WST
C
C
C
C
```

C
HCOND = SPWEVA*HLEVA*(CONST3+CONST4*WINSPD)*(0.01*ATMPR /29.92)*
(DRYBLB -WST)
C Finally, calculate net energy flux passing
C the air-water interface, HN(HNEF),BTU/FT**2,DELTAT=HOURS
HNEF = HNSWR+(HNLWR-HOLWBR+HCOND-HEVAP)*DELTAT
C
C Return value here
C ************************t**
C

```

\section*{RETURN}

END
FUNCTION TAN（X）
\(\operatorname{TAN}=\operatorname{SIN}(\mathrm{X} / 57.3) / \operatorname{COS}(\mathrm{X} / 57.3)\)
RETURN
END
FUNCTION ASIN（X）
ASIN \(=\mathbb{X}+(X * * 3 . / 6)+.(3 . * X * * 5.140)+.(15 . * X * * 7.1336\).
RETURN
END
FUNCTION ACOS（X）
ACOS＝ASIN（SQRT（1．－X＊＊2．））
RETURN
END

SUBROUTINE REAERR
SUBROUTINE REAERK calculates reaeration coefficient（RK）（M／DAY）
Given wind speed（WS）（M／S）and temperature（T）（C）using the
method presented in JOUR OF ENV ENG，VOL．109，NO．3，PP．731－752，
June 1983，Author：D．J．O＇CONNOR，Title：＂Wind Effects on Gas－
liquid Transfer Coefficients
Parameters used in this subroutine were those given for
intermediate scale correlation（TABLE 2），I．E．，Large Laboratory
Systems and Moderately sized lakes．

SUBROUTINE REAERK（WS，TA，TW，RK）
INCLUDE＇RIV1Q．CMN＇
REAL＊4 RA，LAM，KA3
Calculate diffusivity of oxygen in water（DIFF）（CM＊＊2／SEC）， viscosity of water（VW）（CM＊＊2／SEC），viscosity of air（VA） （CM＊＊2／SEC），density of water（PW）（G／CM＊＊3），density of air （PA）（G／CM＊＊3）

DIFF＝4．58E－07＊TW＋1．2E－05
\(\mathrm{TA}=(\mathrm{TA}-32) *\).5.19 ．
\(V W=0.0164-.00024514 * T W\)
\(\mathrm{VA}=.133+.0009 * \mathrm{TA}\)
\(P A=.00129-.0000040 * T A\)
\(\mathrm{PW}=1.00\)
WS＝WS＊100．
\(\mathrm{RK}=1\) ．
\(\mathrm{N}=0\)
Use Newton－Raphson method to calculate the square root of the drag coefficient．Parameters used in the model include transitional shear velocity－ UT（M／SEC）；Critical shear velocity－UC（CM／SEC）；
Von Rarman＇s constant－（RA）；Equilibrium roughness－2E（CM）；
1／LAM is a Reynolds Number；GAM is a non－dimensional coefficient dependent on the water body size．LAM， GAM，UT，MC，and ZE are also dependent on water body size．
```

C
UT=10.0
UC=11.0
RA=0.4
KA3=KA**.3333
ZE=0.25
LAM=3.0
GAM=6.5
WH=1000.
C Make initial guess for square root of the drag coefficient
C **
SRCD=0.04
10 N=N+1
C Calculate value of FUNCTION(F2) and derivative of function(FP)

```

```

 EF=EXP(-SRCD*WS/UT)
 Fl=LOG((WH/ZE)+(WH*LAM/VA)*SRCD*WS*EF)
 F2=Fl-KA/SRCD
 FP1 =1./((WH/ZE) +(LAM*WH/VA)*SRCD*WS*EF)
 FP2=((WH*LAM)/(VA*UT))*SRCD*WS**2*EF
 FP3=(WH*LAM/VA)*WS*EF
 FP4=FP1*(FP2+FP3) +(RA/(SRCD**2))
 C Calculate new value of square root of drag coefficient. Compare
C to previous value. If not acceptable return to Newton-Raphson
C algorithm.

```

```

 SRCD2=SRCD-F2/FP4
 ERR=ABS (SRCD-SRCD2)
 IF(ERR.GT.0.0005.AND.N.LT.8)THEN
 SRCD=SRCD2
 GO TO 10
 END IF
 IF(ERR.GT.0.005.AND.N.GE.8) GO TO 90
 CD=SRCD**2
 US=SRCD*WS
 Z0=1./((1./ZE)+LAM*US*EXP(-US /UT)/VA)
 WS=WS / 100 .
 IF(WS.LT.6.0)GO TO }6
 IF(WS.GE.6.0.AND.WS.LE.20.0)GO TO }8
 IF(WS.GT.20.0)GO TO 70
 C Calculate rk for windspeeds less than 6.0 m/sec based on
C equation 23b in citation
C **
60 RKl=(DIFF/VW)**0.666667*SRCD*(PA/PW)**0.5
RR=RR1*RA3*WS /GAM
RK=RK*3600.*24.
GO TO }8
C Calculate RR for windspeeds greater than 20 m/s based on
C equation 25b in citation
C ***
70 RR=(DIFF*PA*VA*US / (0.1*PW*VW))**0.5
RK=RK*3600.*24./100.
GO TO 85

```
```

C Calculate RR for windspeeds between 6 and 20 m/s based on
C equations 26a and 27 in citation
C **
80 GAMU=GAM*US*EXP(-US /UC+1.)/UC
RR1=(DIFF/VW)**.6667*RA3*(PA/PW)**0.5*US/GAMU
RR2=(DIFF*US*PA*VA/(KA*Z0*PW*VW))**0.5
RR3=(1./RK1) +(1./RK2)
RR=1. /RR3
RR=RK*3600.*24./100.
GO TO 85
90 WRITE(OUT,102)
102 FORMAT(5X,'SOLUTION DID NOT CONVERGE')
85 CONTINUE
RETURN
END
c
C
C ***
C S UBROUTINE RIVDU
C **
C
SUBROUTINE RIVDU(IFIRST)
C
INCLUDE 'RIVIQ.CMN'
INCLUDE 'TRANSP.CMN'
COMMON/ABLOCK/ NS
C
CHARACTER*30 DNAME (18)
DATA DNAME/
+ 'Distance (-1)
'Velocity (ft/sec) , , 'Flow (cfs)
+ 'Hydraulic Depth (ft)'
'CBODNS
'NH3-N
,ORGANIC-P , ,'NO3-N
'MN
'DO
'ALGAE
M'Stage (ft)
RDUMMY = 0.
IF (IFIRST .EQ. 1) THEN
NCHEM = 1
WRITE (RIVDMP, 6000) NCHEM
FORMAT (I5)
6 0 0 0
C
WRITE (RIVDMP, 6010) RDUMMY,RDUMMY
FORMAT(A4O,E10.2,F10.2)
TIME = 0.
TFIN = ENDTIME
WRITE (RIVDMP, 6020) TIME, TFIN, MNODE
FORMAT (1X,F10.2,F10.2,/,I5)
WRITE (RIVDMP, 6030) (DNAME (JK), JK = 1, 6 + (12*NCHEM))
FORMAT(A30)
IFIRST = 1
END IF
C
DO 100 I=1,MNODE

```
```

 SYSDUMP(1,I) = RMILE(I)
 SYSDUMP(2,I) = ELEV(I)
 SYSDUMP(3,I)=((FLOW(I)/86400.)/AREA(I))
 SYSDUMP(4,I) = FLOW(I)/86400.
 SYSDUMP(5,I) = AREA(I)/WIDTH(I)
 DO 1 IR = 1,12
 SYSDUMP(S+IR,I) = CONC(IR,I)
 l
 CONTINUE
 WRITE(RIVDMP , 6040)I, ELAPSE , RMILE (I), ELEV(I), (FLOW(I)/86400)/
 AREA(I),FLOW(I)/86400.,AREA(I)/WIDTH(I),
 (CONC(NN,I),NN=1,12),RDUMMY
 6040 FORMAT(1X,I5,F10.2,3X,/,6(E11.3),/,6(E11.3))
 100 CONTINUE
C
RETURN
END
C SUBROUTINE GREGORINNODATE
SUBROUTINE GREGORIAN DATE (ELAPSE,YEAR,MONTH,GDAY,HOUR)
C Variable declarations
C *****t*t******t*********t***
LOGICAL LEAP YEAR
CHARACTER MONTH*9
INTEGER YEAR, GDAY
C Determine if new year (regular or leap) and increment year
C **************t**
JDAYG=ELAPSE - 1
HOUR = (ELAPSE-FLOAT(JDAYG) - 1)*24.
LEAP_YEAR = MOD(YEAR, 4).EQ.0
IF (.NOT.LEAP YEAR.AND.JDAYG.EQ.365) THEN
JDAYG = JDAYG-365
YEAR = YEAR+1
LEAP YEAR = MOD(YEAR, 4).EQ.0
ELSE IF-(JDAYG.EQ. 366) THEN
JDAYG = JDAYG-366
YEAR = YEAR+1
LEAP YEAR = .FALSE .
END IF
C Determine month and day of year

```

```

 IF (LEAP YEAR) THEN
 IF (JDAYG.GE.O.AND.JDAYG.LT.31) THEN
 GDAY = JDAYG+1
 DAYM = 31.0
 MONTH = ', January'
 ELSE IF (JDAYG.GE.31.AND.JDAYG.LT.60) THEN
 GDAY = JDAYG-30
 DAYM =29.0
 MONTH = 'February'
 ELSE IF (JDAYG.GE.60.AND.JDAYG.LT.91) THEN
 GDAY = JDAYG-59
 DAYM = 31.0
 MONTH = , March'
    ```

ELSE IF (JDAYG.GE.91.AND.JDAYG.LT.121) THEN
GDAY \(=\) JDAYG-90 DAYM \(=30.0\) MONTH \(=, \quad\) April
ELSE IF (JDAYG.GE.121.AND.JDAYG.LT.152) THEN GDAY \(=\) JDAYG-120 DAYM \(=31.0\) MONTH \(=\), May
ELSE IF (JDAYG.GE.152.AND.JDAYG.LT.182) THEN GDAY \(=\) JDAYG-151 DAYM \(=30.0\) MONTH = , June
ELSE IF (JDAYG.GE.182.AND.JDAYG.LT.213) THEN GDAY \(=\) JDAYG-181 DAYM \(=31.0\) MONTH = , July'
ELSE IF (JDAYG.GE.213.AND.JDAYG.LT.244) THEN GDAY \(=\) JDAYG-212 DAYM \(=31.0\) MONTH \(=\), August \({ }^{\text {, }}\)
ELSE IF (JDAYG.GE.244.AND.JDAYG.LT.274) THEN GDAY \(=\) JDAYG-243 DAYM \(=30.0\) MONTH = 'September'
ELSE IF (JDAYG.GE.274.AND.JDAYG.LT.305) THEN GDAY \(=\) JDAYG-273 DAYM \(=31.0\) MONTH \(=\), October ,
ELSE IF (JDAYG.GE. 305.AND.JDAYG.LT.335) THEN GDAY \(=\) JDAYG-304 DAYM \(=30.0\) MONTH = ' November'
ELSE IF (JDAYG.GE. 335 .AND.JDAYG.LT. 366) THEN GDAY \(=\) JDAYG-334 DAYM \(=31.0\) MONTH = , December
END IF
ELSE
IF (JDAYG.GE.O.AND.JDAYG.LT.31) THEN GDAY \(=\) JDAYG +1 DAYM \(=31.0\) MONTH = , January
ELSE IF (JDAYG.GE.31.AND.JDAYG.LT.59) THEN GDAY \(=\) JDAYG-30 DAYM \(=29.0\) MONTH = February
ELSE IF (JDAYG.GE.59.AND.JDAYG.LT.90) THEN GDAY \(=\) JDAYG-58 DAYM \(=31.0\) MONTH = , March
ELSE IF (JDAYG.GE.90.AND.JDAYG.LT.120) THEN GDAY \(=\) JDAYG-89 DAYM \(=30.0\) MONTH = ' April'
ELSE IF (JDAYG.GE.120.AND.JDAYG.LT.151) THEN GDAY \(=\) JDAYG-119 DAYM \(=31.0\) MONTH = , May'
ELSE IF (JDAYG.GE.151.AND.JDAYG.LT.181)THEN GDAY \(=\) JDAYG-150 DAYM \(=30.0\) MONTH \(=\) June,
```

 ELSE IF (JDAYG.GE.181.AND.JDAYG.LT.212) THEN
 GDAY = JDAYG-180
 DAYM = 31.0
 MONTH = ' July'
 ELSE IF (JDAYG.GE.212.AND.JDAYG.IT.243) THEN
 GDAY = JDAYG-211
 DAYM = 31.0
 MONTH = , August'
 ELSE IF (JDAYG.GE.243.AND.JDAYG.LT.273) THEN
 GDAY = JDAYG-242
 DAYM = 30.0
 MONTH = 'September'
 ELSE IF (JDAYG.GE.273.AND.JDAYG.LT.304) THEN
 GDAY = JDAYG-272
 DAYM = 31.0
 MONTH = , October'
 ELSE IF (JDAYG.GE.304.AND.JDAYG.LT.334) THEN
 GDAY = JDAYG-303
 DAYM = 30.0
 MONTH = 'November'
 ELSE IF (JDAYG.GE.334.AND.JDAYG.LT.365) THEN
 GDAY = JDAYG-333
 DAYM = 31.0
 MONTH = ' December'
 END IF
 END IF
 RETURN
 END
 C **
C S U B R O U T I N E J U L I AN D A T E
C **
SUBROUTINE JULIAN DATE(STADY,ENDY,SYEAR,SMONTH,SDAY,SHOUR,
EYEAR,EMONTH,EDAY,EHOUR)
C Variable declarations

```

```

 DIMENSION DAYM(12)
 INTEGER SYEAR,SMONTH,SDAY, EYEAR, EMONTH,EDAY
 C Specify days for each month of the year

```

```

 DAYM(1) = 31.0
 DAYM(2) = 29.0
 DAYM(3) = 31.0
 DAYM(4) = 30.0
 DAYM(5) = 31.0
 DAYM(6) = 30.0
 DAYM(7) = 31.0
 DAYM(8) = 31.0
 DAYM(9) = 30.0
 DAYM(10) = 31.0
 DAYM(11) = 30.0
 DAYM(12)=31.0
 C Determine Julian day for start time
C **********t**t****t**
STADY = 0.

```
```

 DAYM(2) = 28.
 IF(MOD(SYEAR,4).EQ.0)DAYM(2) = 29.0
 IF(SMONTH.GT.1) THEN
 DO 100 I=1,SMONTH-1
 STADY = STADY + DAYM(I)
 CONTINUE
 END IF
 STADY = STADY + SDAY + SHOUR/24.
 C Determine Julian day for end time
C ***
ENDY = 0.
IF(EYEAR.GT.SYEAR) THEN
DO 200 I=SYEAR,EYEAR-1
IF(MOD (I, 4).EQ.0)THEN
ENDY= ENDY + 366.
ELSE
ENDY = ENDY + 365.
END IF
CONTINUE
END IF
DAYM(2) = 28.
IF(MOD (EYEAR 4) .EQ 0) DAYM(2)=29.
IF(EMONTH.GT.1) THEN
DO 300 I=1, EMONTH-1
ENDY = ENDY + DAYM(I)
CONTINUE
END IF
ENDY = ENDY + EDAY + EHOUR/24.
RETURN
END
FUNCTION VALNEW(DAY,T1,T2,V1,V2)
RATIO = (T2-DAY)/(T2-T1)
VAL = (1.0-RATIO)*V2+RATIO*V1
VALNEW = VAL
RETURN
END
C **
C SUBROUTINNETIMEEVARYINGMAT
C ***************************************末***************末********************
SUBROUTINE TIME_VARYING_DATA (JDAY,TNXTVD,NBC,DUMMY,NS)
INCLUDE 'RIVIQ.CMN'
INCLUDE 'TRANSP.CMN'
REAL
JDAY
LOGICAL INT LAT, INT BC(IBRAN), INT_MET
CHARACTER*15 NPSNAME (ISYS)
CHARACTER*15 INTOPT, BCFNAME(IBRAN)
C Dimension variables for boundary conditions
C **

```
```

 DIMENSION TNXTBC(IBRAN), TNXTBC2(IBRAN)
 DIMENSION DUMMY(ISYS,IBRAN),DUMMY1(ISYS,IBRAN), DUMMY2(ISYS)
 DIMENSION INBC(IBRAN),NUMBC(IBRAN)
 C Dimension variables for lateral inflows

```

```

DIMENSION CLT2(ISYS,IND1),CLT1(ISYS,IND1), NPS_REA(IND1),
NPS SYS(ISYS)
SAVE
C
C On first call to SUBROUTINE: Initialize all variables and
Open files
C ***
C Initialize logical variables
C ***************************t**
IF(JTIME.EQ.1)THEN
DUM = 0.
IDUM = 0
INT LAT = .FALSE .
DO J=1,NBC
INT_BC(J)=.FALSE.
END DO
INT_MET = . FALSE.
C lst - Set up boundary conditions
C ***
IBF=30
DO I=1,NBC
READ (INPUT, 1011)BCFNAME (I)
OPEN(UNIT=IBF,FILE=BCFNAME (I),STATUS='OLD',IOSTAT=ISTAT)
IF (ISTAT .NE. O)THEN
WRITE (6,6000)
6 0 0 0
FORMAT('Time Variable Boundary File Missing!')
STOP
ENDIF
READ (IBF, 1010) INBC (I) ,NUMBC (I), INTBC
WRITE (OUT, 2000) INBC(I)
WRITE(OUT, 2010)BCFNAME (I)
IF(INTBC.GE.1)THEN
INT BC(I)=.TRUE.
INTOPT ='LINEAR INTERPOL'
ELSE
INTOPT ='STEP FUNCTION'
END IF
WRITE (OUT, 2045)INTOPT
TNXTBC(I) = 0.
IBF=IBF + 1
END DO
C 2nd - Read meteorlogical data
C ******t***

```

IF (ITEM (1).EQ.0) THEN
READ (MET, 1015)DUC
```

 READ(MET, 1015)LATUDC, LONTUC, LSMC
 READ(MET, 1010)INTMET,NUMT
 IF (INTMET.GE.1)THEN
 INT MET= .TRUE.
 INTOPT ='LINEAR INTERPOL'
 ELSE
 INTOPT ='STEP FUNCTION'
 END IF
 WRITE(OUT, 2020) DUC,LATUDC,LONTUC,LSMC
 WRITE (OUT, 2045)INTOPT
 END IF
 TNCTMT = 0.
 C 3rd - Read time varying lateral concentrations (IF ICL *x=1)
C **
IF(ICL.GE.1) THEN
READ (LAT, 1010) NUMLAT UD,NUML, LATOPT, NUMSYS
IF(LATOPT .GE. 1)THEN
INT LAT=.TRUE.
INTOPT ='LINEAR INT'
ELSE
INTOPT ='STEP FUNC'
END IF
READ(LAT,1030)(NPS REA(I), I = 1, NUML)
WRITE(OUT, 2030)
WRITE (OUT, 2040) (NPS REA(I), I = 1, NUML)
READ(LAT, 1030)(NPS SYS(I), I = 1, NUMSYS)
WRITE(OUT, 2050)
DO I= 1, NUMSYS
READ (LAT, 1040)NPSNAME (I)
WRITE (OUT, 2060)NPS_SYS (I) ,NPSNAME (I)
END DO
WRITE (OUT, 2045)INTOPT
END IF
END IF
C On first and all subsequent calls, update time varying data

```

```

C
C Assign boundary data
C ****t********t**
IBF=30
DO 600 I=1,NBC
IF (JDAY.GE.TNXTBC(I)) THEN
DO WHILE (JDAY.GE.TNXTBC(I))
TNXTBC2(I) =TNXTBC(I)
DO J=1,ISYS
DUMMY2(J) = DUMMY1(J,INBC(I))
END DO
READ (IBF, 1020)IYR, IMO, IDY,THR, (DUMMY1 (J,INBC(I)),
J=1,ISYS)

```

CALL JULIAN_DATE(DUM,TNXTBC(I),INITYR,IDUM,IDUM,DUM, IYR, IMO, IDY,THR)
END DO
DO J=1,ISYS
\(\operatorname{DUMMY}(J, \operatorname{INBC}(I))=\operatorname{DUMMY1}(\mathrm{J}, \operatorname{INBC}(\mathrm{I}))\)
END DO

```

C Assign lateral inflow data
C ****************t**
C
IF (JDAY.GE.TNXTLT.AND.ICL.GE.1) THEN
DO WHILE (JDAY.GE.TNXTLT)
TNXTLT2 = TNXTLT
DO II = 1, NUMSYS
DO IR = 1, NUML
CLT2(NPS SYS(II),NPS REA(IR)) =
CLTITNPS SYS(II),NPS REA(IK))
END DO
END DO
READ(IAT, 1020) IYR,IMO,IDY,THR
CALL JULIAN_DATE(DUM,TNXTLT,INITYR,IDUM,IDUM,DUM,
IYR,IMO,IDY,THR)
DO II = 1, NUMSYS
READ(LÁT,1050)(CLT1(NPS_SYS (II),NPS_REA(IK)),IK=1,NUML)
END DO
END DO
C WRITE (OUT , 3010) IYR, IMO,IDY,THR, JDAY, TNXTLT
C WRITE(OUT,3020)(NPS_REA(IK),IK=1,NUML)
DO II=1,NUMSYS
DO IK = 1, NUML
CLT(NPS_SYS(II),NPS_REA(IK)) =CLTl(NPS SYS(II),
NPS_REA(IK))
END DO
WRITE(OUT, 3030)NPS_SYS(II),(CLT(NPS_SYS(II),NPS_REA(IK)),
IK=T,NUML)
END DO
TNXTVD = MIN(TNXTVD,TNXTLT)
END IF
IF(INT LAT.AND.ICL.GE.1) THEN
DO I = 1, NUMSYS
DO J=1,NUML
CLT(NPS_SYS(I),NPS_REA(J)) =VALNEW(JDAY,TNXTLT,TNXTLT2,
CLT1 (NPS SYS(I),NPS REA(J)),
CLT2(NPS_SYS(I),NPS_REA(J)))
END DO
END DO
END IF
C FORMAT STATEMENTS
C 1) Input formats
C ***************t***
1010 FORMAT(8I10)
1011 FORMAT(A12)
1015 FORMAT(15F10.4)
1020 FORMAT (I5,I5,I5,15F10.4)
1030 FORMAT(I5)
1040 FORMAT(A1S)
1050 FORMAT(15X,150(F10.0))
C 2) Output formats

```

```

2000 FORMAT (, , **** BOUNDARY CONDITIONS SPECIFIED FOR SEGMENT****', I4)
2010 FORMAT(' WILL BE READ FROM FILE $=$, Al5)

```
```

 2020 FORMAT(/,'**************METEOROLOGICAL DATA*****************', l,
 ' DUC= ',F5.2,1X,'LATUDC=',F6.2,1X,'LONTUC=',F6.2,1X,'LSMC=',F6.2)
 2030 FORMAT(l,'**TIME VARYING LATERAL INFLOWS SPECIFIED AT
.X-SECTIONS')
2040 FORMAT(10(1X,I5))
2045 FORMAT(', INTERPOLATION OPTION , al5,//)
2050 FORMAT(, FOR WATER QUALITY CONSTITUENTS:')
2060 FORMAT(I5,A15)
C
2070 FORMAT(/,' **BOUNDARY CONDITION FOR SEGMENT ',I5,
,' UPDATED AT: YEAR',I6,' MONTH ',I3,' DAY',I3,''HOUR',F8.4,
.' JULIAN DATE',F1O.4,', NEXT UPDÁTE'ON JULIAN DAY',
, F10.4,/)
2080 FORMAT('SYSTEM = ',IS,' NEW VALUE = ',F10.4)
2090 FORMAT(/,' **METEOROLOGICAL CONDITIONS UPDATED AT: YEAR ',
. I6,' MONTH ',I3,' DAY ',I3,' HOUR',F8.4,
' JULIAN DATE',F10.4,', NEXT UPDATE ON JULIAN DAY ,
, F10.4,/)
3000 FORMAT(' CLOUD COVER ', F8.3,' WIND SPEED= ,,F8.2,' DRY BULB ,
F8.2,' WET BULB TEMP' = ,'F8.2,' ATMOSPHERIC PRESSURE = , F8. 2)
3010 FORMAT'(|,', **LATERAL INFLOW CONDITIONS UPDATED AT: YEAR ',
. I6,' MONTH , I3,' DAY ',I3,' HOUR',F8.4,
' JULIAN DATE',F10.4,',' NEXT UPDATE ON JULIAN DAY ',F10.4,l)
3020 FORMAT (20X,' REACCH = ','150I10)
3030 FORMAT('CONST. NO.',IS,' NEW VALUE = ',150F10.4)
RETURN
END

```

APPENDIX C: FORTRAN VARIABLES

A Cross-section area ( \(L^{2}\) )
AA The coefficient matrix
ACLOCK The \(24-\mathrm{hr}\) clock time ( T )
ADN An empirical coefficient relating to the reactivity and diffusivity

AG An empirical coefficient in the general equation for \(K 2\left(T^{E 1-2} L^{E 2-E 1}\right)\)
AKC An empirical coefficient relating the reactivity and diffusivity of the free variable in the benthal boundary layer ( \(\mathrm{T}^{\mathrm{BK}-1} \mathrm{~L}^{-3 \mathrm{BK}}\) )

AKN • An empirical coefficient relating the reactivity and diffusivity of the ammonia variable in the benthal boundary layer ( \(\mathrm{T}^{\mathrm{BK}-1} \mathrm{~L}^{-3 \mathrm{BK}}\) )

AKNX An empirical coefficient relating the absorptivity and diffusivity of ammonia in the benthal boundary layer ( \(\mathrm{T}^{\mathrm{BK}-1} \mathrm{~L}^{-3 \mathrm{BK}}\) )
AK1 An empirical coefficient relating the reactivity and diffusivity of carbonaceous biochemical oxygen demand ( \(\mathrm{T}^{\mathrm{BK}-1} \mathrm{~L}^{-3 \mathrm{BK}}\) )

ALABEL The names of each of the eight modeled species
ALGADK The rate of algal decay ( \(\mathrm{MT}^{-1} \mathrm{~L}^{-3}\) )
ALGAEB The benthal concentration of algae ( \(\mathrm{ML}^{-2}\) )
ALGRO The algal growth rate coefficient ( \(\mathrm{ML}^{-3} \mathrm{~T}^{-1}\) )
ALGO Lumped algal decay rate coefficient ( \(\mathrm{ML}^{-2} \mathrm{~T}^{-1}\) )
ALG1 Lumped algal growth rate coefficient ( \(\mathrm{ML}^{-2} \mathrm{~T}^{-1}\) )
ANCONT Nitrogen-to-biomass ratio in algae and macrophytes
APCONT Phosphorus-to-biomass ratio in algae and macrophytes
APO4 An empirical coefficient relating the absorptivity and diffusivity of phosphate in the benthal boundary layer ( \(\mathrm{T}^{\mathrm{BK}-1} \mathrm{~L}^{-3 \mathrm{BK}}\) )
AS Cross-sectional area averaged over the characteristic line (L2)
ATB The rate coefficient for bottom heat loss
ATS The rate coefficient for surface heat loss
AUNIT The units of each of the eight modeled species
AO RIV1H: A(I), RIV1Q: Area at the previous time-step
A1 RIV1H: A(I+1), RIV1Q: Cubic interpolation coefficient for. concentrations

A2 Cubic interpolation coefficient for concentration
A3 Cubic interpolation coefficient for concentration
A4 Cubic interpolation coefficient for concentration
B Channel top-width (L). TRIDAG: The main diagonal
BC Boundary conditions
BCD Downstream boundary conditions

Note: Appendix \(C\) may not contain all of the FORTRAN variables.
\begin{tabular}{|c|c|}
\hline BCU & Upstream boundary conditions \\
\hline BETA & Momentum correction factor. TRIDAG: Workspace array \\
\hline BK & An empirical coefficient reflecting the thickness of the benthal boundary layer \\
\hline BLABEL & Array of labels, packed for output \\
\hline BOUND & Boundary conditions storage array \\
\hline BTD & Boundary condition type downstream \\
\hline BTU & Boundary condition type upstream \\
\hline BUNIT & Array of units, packed for output \\
\hline BO & RIV1H: Provisional estimate of \(B\). RIV1Q: \(B\) at the previous timestep (L) \\
\hline B1 & Cubic interpolation coefficient for spatial derivative of the concentration \\
\hline B2 & Cubic interpolation coefficient for spatial derivative of the concentration \\
\hline B3 & Cubic interpolation coefficient for spatial derivative of the concentration \\
\hline B4 & Cubic interpolation coefficient for spatial derivative of the concentration \\
\hline C & RIV1H: The vector \(C_{i}\) of the matrix solution procedure \\
\hline & \begin{tabular}{l}
RIV1Q: The concentrations of each of the eight modeled species (ML \({ }^{-3}\) ). \\
TRIDAG: The upper codiagonal
\end{tabular} \\
\hline CBOD & Ultimate first-stage (carbonaceous) \(\mathrm{BOD}, \mathrm{g} / \mathrm{m}^{3}\) \\
\hline CBODL & The concentration of carbonaceous biochemical oxygen demand in the lateral inflow ( \(\mathrm{ML}^{-3}\) ) \\
\hline CBODSR & Rate coefficient for CBOD removal by settling, day \({ }^{1}\) \\
\hline CCL & The difference between concentration in the lateral inflow and the stream (ML \({ }^{-3}\) ) \\
\hline CL & The concentrations of each of the eight modeled species in the lateral inflow ( \(\mathrm{ML}^{-3}\) ) \\
\hline CLABEL & The label assigned to the free variable \\
\hline CLOCK & The clock time in fraction of a day ( T ) \\
\hline CN & Lumped scalar equivalent of CN1 (I) \\
\hline CN1 & Modified Manning's coefficient \\
\hline COEF & Coefficient in the rating curve \\
\hline COL & The concentration of the free variable in the lateral inflow ( \(\mathrm{ML}^{-3}\) ) \\
\hline . CONST & The name of the namelist \\
\hline CONVRT & The conversion factor for customary to SI units \\
\hline COSP & The cosine of the junction angle \\
\hline
\end{tabular}

CP The presence/absence of each of the eight modeled species

CSINK CUNIT

DARK

DATE
DAWN
DBCA
DBCQ
DBDH
DC
DCOO

DD
DE
DEN Lumped denominator
DFA Derivative of the residual of the continuity equation with respect to A(I)

DFAl Derivative of the residual of the continuity equation with respect to A (I+1)

DFQ Derivative of the residual of the continuity equation with respect to Q(I)

DFQ1 Derivative of the residual of the continuity equation with respect to Q(I+1)

DGA Derivative of the residual of the momentum equation with respect to A(I)

DGA1 Derivative of the residual of the momentum equation with respect to A(I+1)

DJ The main storage array
                            The spatial derivative of the decay rates ( \(\mathrm{T}^{-1} \mathrm{~L}^{-1}\) )
DOL Dissolved oxygen concentration in the lateral inflow ( \(\mathrm{ML}^{-3}\) )
DOSAT
DOSAVE Dissolved oxygen concentration just upstream of a control structure
                ( \(\mathrm{ML}^{-3}\) )
DOX Provisional estimate of dissolved oxygen concentration ( \(\mathrm{ML}^{-3}\) )
DQLA Spatial derivative of the lateral inflow per unit area ( \(T^{-1} L^{-1}\) )
DSINK Spatial derivative of the source/sink terms ( \(\mathrm{T}^{-1} \mathrm{~L}^{-1}\) )
DT Time increment ( \(T\) )
DUDX Spatial derivative of velocity ( \(\mathrm{T}^{-1}\) )
DX Reach length. (L)
DX1 Reach length (L)
DO A distance equivalent of the time increment, used for estimating a
    derivative at the boundary (L)
D1 RIV1H: THETA*DT(T), RIVIQ: DX(1) (L)
D2 DWPMN: \(2 \div \mathrm{D} 1 / \mathrm{DX1}(\mathrm{I})\left(\mathrm{TL}^{-1}\right), \mathrm{RIV} 1 Q: \mathrm{DX} \div(2)(\mathrm{L})\)
E Fraction of the reach length above the node at which the
    characteristic line originated
EC The complement of \(E\); i.e., 1-E
ELO Water surface elevation (L)
ELAPSE Total elapsed simulation time (T)
ELO Water surface elevation at the previous time-step (L)
EXPO Exponent in the rating curve formula
E1 An empirical coefficient for velocity in the general equation for \(\mathbf{K} \mathbf{2}\)
E2 An empirical coefficient for mean depth in the general equation for
k2
F A workspace array
FEEDS FEEDS (I) is the identification number of the segment that segment I
        feeds into

FLIP1 A logical flag which indicates that the first two columns of the coefficient matrix have been pivoted
FLIP2 A logical flag which indicates that the last two columns of the coefficient matrix have been pivoted

FLOW A scalar assigned the literal value ' \(Q\) ' for scanning the input dec \(\mathbf{k}\) FMT The output format array

FMT1 The format specification F14.1
FMT2 The format specification F14.2
GAMMA TRIDAG: A workspace array
GR Acceleration due to gravity ( \(\mathrm{LT}^{-2}\) )
GO A correction factor for the spatial derivative due to accelerating flow.

G2 GR/2 (LT \({ }^{-2}\) )
H RIV1H: depth of flow above the channel bottom (L), RIV1Q: average depth of flow (L)

HYDRO The output array for hydrodynamic data
HYDRO1 The input array for hydrodynamic data at odd time-steps
HYDRO2 The input array for hydrodynamic data at even time-steps
HO RIV1H: a provisional estimate of \(H\) (L), RIV1Q: \(H\) at the previous time-step (L)
H1 A provisional estimate of \(H\) (L)
I An index (usually for nodes)
IA An index for the coefficient matrix
IBC An index for boundary conditions
IBCL IBC(L)
IBRANCH Segment branch number
ICYCLE An index for sensitivity analysis
ID Segment identification number
IDAM Control structure type
IDAMO A scalar equivalent of IDAM
IDAY The day number of the simulation
IDLL ID(LL)
IDO A scalar equivalent of ID
IEHOUR The hours component of the \(24-\mathrm{hr}\) clock time
IEMIN The minutes component of the 24 -hr clock time

II
IND1
IND2 RIV1H: The array space needed for AA, RIV1Q: The number of time intervals
IND3 RIV1H: The array space needed for \(C\) and \(R\); RIV1Q: The total possible number of boundary condition values
IND4 The array space required for HYDRO, HYDRO1, and HYDRO2
IND5 The array space required for each component of HYDRO1 and HYDRO2
INIT The array of initial conditions (ML \({ }^{-3}\) )

IPRINT
IR
ISURMX
IT
ITIME
ITO

ITI

IT2

I3
J
\(J B C\)
JBCD

JBCU
JJ
JNODE
JT
JUNCT
K

KALGDK The specific algal decay rate ( \(T^{-1}\) )
KALGRO The specific algal growth rate ( \(\mathrm{T}^{2} \mathrm{M}^{-1}\) )
\(K C \quad\) The decay rate for the free variable ( \(\mathrm{T}^{-1}\) )
KDN The denitrification rate ( \(T^{-1}\) )
KEXT The light extinction coefficient ( \(L^{-1}\) )
KE1 Channel constriction energy loss coefficient
KLITE Half-velocity constant for light intensity, watt \(/ \mathrm{m}^{2}\)
KN The rate of ammonia decay due to nitrification ( \(T^{-1}\) )
KNCBDN The Monod half-velocity constant for nitrate-inhibited denitrification (ML \({ }^{-3}\) )

KNPOOL Half-velocity constant relating inorganic nitrogen to algal growth as per QUAL2E

KNX The rate of ammonia decay due to sediment sorption ( \(\mathrm{T}^{-1}\) )
KOALDK The Monod half-velocity constant for oxygen limitation of algal decay ( \(\mathrm{ML}^{-3}\) )
KOCBDN The Monod half-velocity constant for oxygen inhibition of denitrification ( \(\mathrm{ML}^{-3}\) )
\begin{tabular}{|c|c|}
\hline KOCB1 & The Monod half-velocity constant for oxygen limitation of carbonaceous biochemical oxygen demand decay ( \(\mathrm{ML}^{-3}\) ) \\
\hline KON & The Monod half-velocity constant for oxygen limitation of denitrification ( \(\mathrm{ML}^{-3}\) ) \\
\hline KPO4 & Half-velocity constant relating phosphate concentration to algal growth rate \\
\hline KPO4DK & The phosphate decay rate ( \(\mathrm{T}^{-1}\) ) \\
\hline KS & The average K-rate across the characteristic line ( \(\mathrm{T}^{-1}\) ) \\
\hline KTB & The bottom-water heat exchange rate ( \(\mathrm{T}^{-1}\) ) \\
\hline KTS & The air-water heat exchange rate ( \(\mathrm{T}^{-1}\) ) \\
\hline K1 & The CBOD decay rate ( \(\mathrm{T}^{-1}\) ) \\
\hline K2 & The reaeration rate ( \(\mathrm{T}^{-1}\) ) \\
\hline L & An index for segments \\
\hline LAMBDA & The duration of daylight (T) \\
\hline LAST & The index of the last item interchanged \\
\hline LIB & The set of boundary conditions for each segment \\
\hline LIMIT & The index of the last item to be inspected \\
\hline LJ & An index \\
\hline LL & An index \\
\hline LO & An index \\
\hline L1 & An index \\
\hline M & An index \\
\hline MACROB & Macrophyte density on the bottom, \(\mathrm{g} / \mathrm{m}^{2}\) \\
\hline MAX & The number of species actually modeled out of a total of eight possible \\
\hline MBC & Used in indexing boundary conditions \\
\hline MBOUND & The number of boundary conditions \\
\hline MC & The index of species \\
\hline MDEATH & Macrophyte death rate, \(\mathrm{g} / \mathrm{m}^{2}\) day \({ }^{-1}\) \\
\hline MGRATE & Macrophyte growth rate, \(\mathrm{g} / \mathrm{m}^{2}\) day \({ }^{-1}\) \\
\hline MJ & An index \\
\hline MM & An index of labels and species \\
\hline MNODE & The number of nodes \\
\hline MP & The number of reaches \\
\hline MTIME & The number of time-steps \\
\hline MO & An index \\
\hline M1 & The lower loop bound \\
\hline M2 & The upper loop bound \\
\hline
\end{tabular}
\(N \quad\) An index of species
NBC The number of boundary conditions at each time-step
NDEPLO The first node at which the nitrogen pool is depleted
NDEPLI The last node at which the nitrogen pool is depleted
NH3NL The concentration of ammonia in the lateral inflow (ML \({ }^{-3}\) )
NODE1 The index of the first node in each segment
NOPO40 The first node at which the phosphate is depleted
NOPO41 The last node at which the phosphate is depleted
NO3NL The concentration of nitrate in the lateral inflow (ML \({ }^{-3}\) )
NO3NX A provisional estimate of the nitrate concentration (ML \({ }^{-3}\) )
NPOOL The total inorganic nitrogen concentration-the sum of nitrate and ammonia ( \(\mathrm{ML}^{-3}\) )

NS The number of segments in the system
N1 through
NS38 Locations within the main storage array
OFEDEC Oxygen-to-iron ratio for iron oxidation
OMNDEC Oxygen-to-manganese ratio for oxidation
ONEQUI Incremental increase in oxygen-to-algal biomass ratio for oxygen production by algae and macrophytes when nitrate is used as a nitrogen source
ONITRI Oxygen-to-nitrogen ratio for ammonia oxidation
OPDECY Oxygen-to-biomass ratio for oxygen production by algae and macrophytes when ammonia is the nitrogen source

ORDER A collection of segment numbers in an upstream order
ORGANL The concentration of organic nitrogen in the lateral inflow
P The fraction of the nitrogen pool composed of nitrate
PARM A collection of parameters
PI \(\pi, 3.14159\)
PO4L The concentration of phosphate in the lateral inflow ( \(\mathrm{ML}^{-3}\) )
P04X A provisional estimate of phosphate concentration ( \(\mathrm{ML}^{-3}\) )
PO A lumped friction loss term for node \(I\left(L^{-1 / 3} / T^{-1}\right)\)
P1 A lumped friction loss term for node \(\mathrm{I}+1\left(\mathrm{~L}^{-1 / 3} / \mathrm{T}^{-1}\right)\)
Q The stream flow ( \(\mathrm{L}^{3} \mathrm{~T}\) )
QL Lateral inflow per unit of stream length ( \(\mathrm{L}^{2} \mathrm{~T}^{-1}\) )
QLA Lateral inflow per unit of stream volume ( \(\mathrm{T}^{-1}\) )
QX \(\quad Q\left(L^{3 B K} T^{-B K}\right)\)
Q0 RIV1H: Q(I); RIV1Q: \(Q\) at the previous time-step
Q1 \(\quad\) Q(I+1)

R RIV1H: The residuals from the governing equations; RIV1Q: The

RCURVE This is assigned a literal value of "R" and is used for scanning the input
RMILE River mile (L)
RMILEO The river mile of the downstream terminus of the system (L)
RMSA The root mean square of the initial cross-sectional areas at every node times the tolerance
RMSQ The root mean square of the initial flow at every node times the tolerance

SAVE A temporary storage location used in column pivoting
SINI The sine of the incident light angle
SINK The source/sink term for each of the eight modeled species ( \(\mathrm{ML}^{-3} \mathrm{~T}^{-1}\) )
SINKS The average source/sink value across the characteristic line ( \(\mathrm{ML}^{-3} \mathrm{~T}^{-1}\) )
SNAME The segment name
SNAMEO The segment name
START The start time of the simulation (T)
SUNSET The time of sunset (T)
\(T \quad\) The tributary data transfer array
TAMMON Temperature coefficient for ammonia oxidation
TBIO The temperature correction factor for biochemical processes
TEMP The temperature ( \({ }^{\circ} \mathrm{C}\) )
TEMPL The temperature of the lateral inflow ( \({ }^{\circ} \mathrm{C}\) )
TEQ The equilibrium temperature ( \({ }^{\circ} \mathrm{C}\) )
THETA The weighting factor
TIME The time of the program's execution.
TITLE The title of the program run
TNH3 The temperature correction factor for nitrification
TOLER The relative tolerance criterion for the Newton-Raphson procedure
TPHYS The temperature correction factor for physical processes
TRIDAG The lower codiagonal
TSINK The source/sink term for temperature ( \({ }^{\circ} \mathrm{C} \mathrm{T}^{-1}\) )
TSIV An empirical coefficient in the Tsivoglou-Wallace reaeration equation ( \(L^{-1}\) )

ULL The velocity at node \(I-1\) of the previous time-step (LT \({ }^{-1}\) )
ULR The velocity at node \(I\) of the previous time-step (LT \({ }^{-1}\) )
US The average velocity across the characteristic line ( \(\mathrm{LT}^{-1}\) )
UUR The velocity at node \(I\) of the current time-step (LT \({ }^{-1}\) )
\(X C \quad\) The previous time-step components of the continuity equation ( \(L^{2}\) )
\(X M \quad\) The previous time-step components of the momentum equation ( \(\mathrm{L}^{3} \mathrm{~T}^{-1}\) )
2 The channel bed elevation (L)

13. (Concluded).

The model allows simulation of branched river systems with multiple hydraulic control structures, such as run-of-the river dams, waterway locks and dams, and reregulation dams. The model was developed to simulate the transient water quality conditions associated with highly unsteady flows that can occur on regulated and unregulated streams.```

