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Abstract:

In the last years, the safeguards verification of spent fuel 
assemblies by NDA has received increased interest also 
due to upcoming programmes for the geological disposal. 
During safeguards inspections one aims at verifying the 
completeness and correctness of operator declared data. 
One should then be able to draw conclusions on the fuel 
integrity and diversion of pins, as well as checking the 
consistency of operator declarations on initial enrichment, 
fuel type, burnup and cooling time. The verification of 
spent fuel is also important for safety aspects related to 
the storage of spent fuel.

The experimental observables associated to NDA of spent 
fuel assemblies are often a  complex function of the 
characteristics of the fuel, its irradiation history and other 
variables related to the used measurement setup and 
devices; nowadays one often assumes that some of the 
variables are known to interpret the data and draw 
conclusions. To facilitate the interpretation of the data and 
draw more robust safeguards conclusions, an R&D effort is 
on-going at SCK•CEN and its results are given in this paper.

This work reports first about the efforts done at SCK•CEN 
on simulating detector response functions for different 
types of NDA instruments such as the Fork detector, the 
ForkBall detector and SINRD detectors. These responses 
are obtained from Monte Carlo model of the fuel and 
measurement setup. The spent fuel composition and 
radiation characteristics are taken from a  spent fuel 
reference library developed in recent years.

A database of detector responses corresponding to 8400 
cases with different fuel characteristics and irradiation pa-
rameters was then obtained. We explore the use of these 
simulated observables as input for data analysis algo-
rithms aimed at uniquely characterizing the spent fuel and 
drawing safeguards conclusions. More specifically, we fo-
cus on the application of artificial neural networks due to 
their ability to generalize non-linear relationships. As a first 
step, cooling times smaller than 100 years were selected 
from the database, and several network configurations 
and training schemes were investigated.

Keywords: Spent fuel verification; Simulated observables; 
Data mining; Artificial neural network

1. Introduction

Spent fuel assemblies (SFA) are subject to verification of 
safeguards authorities due to their residual fissile material 
content. A direct measurement of the residual fissile mass 
is not possible with available technologies [1,2,3] and can 
only be estimated. The workhorses used during the verifi-
cation of SFA are instruments such as the DCVD and the 
Fork detectors; these instruments allow to draw conclu-
sions on the absence of gross defect in the fuel assem-
blies and verify the consistency of the operator declaration 
about fuel characteristics (e.g. fuel type, initial enrichment) 
and irradiation history (e.g. burnup and cooling time).

Considering the large amount of spent fuel in interim stor-
age and the incipient opening of spent fuel repositories [4], 
there is an interest in developing NDA methodologies that 
could allow a more quantitative assessment of the spent 
fuel assembly before its disposal. This interest is also 
shared by the regulatory authorities and fuel management 
bodies to comply with requirements related to the safe fuel 
disposal; the implementation-oriented R&D activities on 
deep geological disposal of spent fuel and long-lived radi-
oactive waste has been emphasised in [5,6].

The traditional nuclear signatures of spent fuel in a Non-
Destructive Assay, i.e. passive neutron, gamma emission 
and Cherenkov glow, are mainly due to minor actinides 
(e.g. Cm isotopes) and fission products (e.g. Cs isotopes). 
Their associated observables (i.e. measured counts or 
light) do not provide a direct measure of the residual fissile 
mass and are a complex function of several variables, 
such as irradiation history parameters. At the moment, 
none of the available methods allow a unambiguous deter-
mination of all the variables. Therefore, one typically sup-
poses that one or more of such variables are actually 
known, so that the number of unknowns is reduced. An 
example of such case is the determination of the residual 
fissile content which can be estimated after the burnup of 
the fuel has been determined from the observables for ex-
ample with a calibration procedure [7].

New NDA methods are being studied and developed in 
the last decade[3,8]. In an ideal scenario each method 
could generate one or more observables where each 
would allow the unique determination of the quantities of 
interest. However, this does not seem to be the case [9]. 
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Figure 1: Overview of the methodology to generate simulated observables.

This situation therefore calls for a methodology to disen-
tangle the quantities of interest from the observables.

In this framework, we carried out R&D work first to simulate 
observables associated to NDA equipment such as the 
ForkBall detector and SINRD. This work is described in 
Section 2, where the methodology developed at SCK•CEN 
to simulate observables is explained. Then, in Section 3 we 
focus on the interpretation of the data and the extraction of 
the quantities of interest from the simulated observables; 
we describe an approach based in neutral network analy-
sis. The obtained results are presented and discussed; out-
look and recommendation for future work are given.

2. Detector response function simulations

2.1	 Methodology

Due to the limited accessibility of spent fuel [10], the devel-
opment and optimization of measurements methods are 
carried out by means of numerical calculations, often 
based on Monte Carlo methods [11]. Studies with Monte 
Carlo methods are based on models including the geome-
try and composition of the measurements equipment, the 
measurement environment and the characteristics of the 
radiation source.

The determination of the spent fuel composition and the 
characteristics of the emitted radiation can be achieved by 
means of evolution and depletion codes such as Origen-
ARP [12,13,14] and ALEPH2 [15]. In the last years, 
SCK•CEN developed a spent fuel library (SFL) and investi-
gated the impact of different factors on spent fuel compo-
sition and emitted radiation. The characteristics of spent 
fuel depend on quantities such as fuel type, irradiation 

history and initial composition of the fuel. We focussed on 
17x17 PWR fuel elements and studied the change of the 
neutron emission by varying parameters such as initial ura-
nium enrichment (IE), average power level (AP), duration of 
the irradiation cycle (DIC) and cooling time between two 
complete irradiation cycles (CTIC), burnup (BU and cooling 
time (CT) after discharge [16,17]. The current version of the 
SFL contains information for Low Enriched Uranium (LEU) 
fuel with an initial enrichment between 2% and 5% and 
cases with Mixed Oxide (MOX) fuel with up to 10% of Pu. 
The data library does not contain information about fuel 
with burnable poison yet.

The spent fuel library consists of entries, each correspond-
ing to a specific irradiation case. In one entry the total neu-
tron emission, total gamma emission, and the correspond-
ing energy spectra are given. In addition, the abundances 
of 50 selected nuclides are present [10]. The data are gen-
erated in a format which is compatible with the one of an 
MCNP [18] input file.

The overview of the methodology developed for this study 
is presented in Figure 1. The used methodology relies on 
the development of an MCNP input file template of the 
measurement setup, including the fuel. The composition of 
the fuel and the description of the source term is then tak-
en from the library for the desired cases, substituted in the 
template and the simulation is run. More information on the 
specific tallies is given in the next section where the con-
sidered detection system and associated observables are 
described. The output file of the simulation is combined 
with the radionuclide abundancies and source term inten-
sity obtained from the SFL to generate the database with 
signatures of the different fuel assemblies.
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2.2	 Considered detection systems

Two different types of equipment were considered. The 
first one is the so-called ForkBall detector [19]. This detec-
tor is designed for underwater measurements of SFA and 
includes features found in the Fork detector such as total 
neutron counts with fission chambers, total current ob-
tained with ionization chambers and gamma-ray spectra 
obtained with a Cadmium Zinc Telluride (CZT) detector. 
The fission and ionization chamber are installed into cavi-
ties inside a polyethylene cylindrical arms wrapped with 
Cd. A variant without Cd was also considered.

The second detection systems implements the Self-Interro-
gation neutron resonance densitometry (SINRD) technique 
by carrying out measurements in dry conditions; this sys-
tem features miniaturized fission chambers in the instru-
mentation channel of the SFA. The fission chambers are ei-
ther bare or wrapped by neutron absorbing foils of Cd or 
Gd; additional details on the technique can be found in [8].

2.2.1	 ForkBall detector

Separate simulations were carried out for neutrons and 
photons. In the neutron simulations for each entry of the 
SFL we determined the detection efficiency and the net 
multiplication factor both for the configuration with and 
without Cd around the polyethylene arms of the detector. 
The detection efficiency was estimated by multiplying to F4 
tally by the (n,f) cross section of 235U and amount of fissile 
material in the fission chambers (FM treatment). The F4 tal-
ly is used to determine the neutron fluence per starting 
particle and the FM treatment allows to multiply this flu-
ence by quantities such as cross sections and attenuation 
coefficients that depend on the cross section. With this 
treatment it is possible to determine the number of fissions 
associated to a given flux and a given amount of 235U and 
it is therefore possible to estimate the detector response.

While the neutrons simulations are straightforward and do 
not require a variance reduction technique, the gamma 
simulations associated to the CZT detectors require an ad-
hoc procedure. Due to the presence of a shield and colli-
mator used in the ForkBall, standard MCNP simulations 
are highly inefficient. A special procedure, described in 
[20], was therefore developed. The procedure splits the 
photon transport into two simulations. In a first simulation 
for a photon of given energy, the probability to reach CZT 
crystal is determined. A second set of simulations is done 
to determine the intrinsic detector efficiency that is the 
probability that an incoming photon deposits all its energy 
in the CZT crystal. These two quantities are then multiplied 
to obtain the overall full-energy detection efficiency, that is 
the probability that a photon of a given energy emitted by 
the fuel results in a full-energy peak in the crystal.

In first approximation, the overall full-energy detection effi-
ciency does not depend on the fuel composition which still 

largely made up of Uranium and Oxygen. The obtained re-
sults are given in Fig.  2.

Figure 2: Normalised full-energy detection efficiency for the 
CZT detector in the Forkball detector.

The net peak count rate c due to a gamma ray of energy 
Eg emitted by the radionuclide i is then given by

c i E E M A P i Ei i, ,g g ge( ) = ( ) × × × ( ) � (1)

Where

•	 ε(Eg ) is the overall full-energy detection efficiency

•	Mi is the mass of the radionuclide in the SFA

•	Ai is its specific activity

•	P(i,Eg ) is the number of emitted gamma rays of energy Eg 
per decay

2.2.2	 Self-Interrogation neutron resonance densitometry

For the SINRD technique the response of different types of 
fission chambers in the instrumentation channel of the SFA 
was simulated by multiplying the F4 tally by the (n,f) cross 
section of the active material and amount of fissile material 
in the fission chambers (FM treatment). The presence of 
shielding material was also accounted for by the FM treat-
ment. Table 1 gives the details of the modelled detectors; 
more details on the choice of detectors and filters thick-
ness are given in [8].

Active material Filter Energy cutoff
238U --- ---
235U --- ---
235U 1 mm Cd ~ 1 eV

239Pu 0.1 mm Gd ~ 0.1 eV
239Pu 1 mm Cd ~ 1 eV

Table 1: Active materials and filters for SINRD.

As indicated in [8], the chosen signatures are sensitive 
both to 239Pu and 235U in the fuel.

The so-called SINRD signature and FAST to Thermal ratio 
(FAST/TH) are given in table 2. These quantities are 
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3.	 Neural network analysis

3.1	 �The use of Artificial Neural Networks as function 
approximators

Artificial neural networks (ANN) denote a class of compu-
tational models that emulate the functioning of the biologi-
cal brain, by using a number of interconnected neural units 
(shortly, neurons or nodes). They have been widely used in 
machine learning and data mining, in particular owing to 
their capacity to work as universal function approximators, 
provided certain conditions are met by the network archi-
tecture [21].

An ANN can be described as a network in which each 
node i  processes the n  input units it is connected to 
through an transfer (or activation) function fi :

	 y f w xi i ij j ij

n
= ⋅ −( )( )=∑ q

1
� (2)

where yi is the output of neuron i, xi is the j-th input to 
node i, wij is the weight of the connection between input j 
and node i, and q i is the threshold (or bias) of the node. 
While each neuron i can have its own transfer function in 
our implementation the same transfer function was used 
for all the neurons in a given layer.

Neural networks have a layer for input neurons, a layer for 
output neurons, and one or more inner layers of neurons, 

also called hidden layers. Leshno et al. [21] proved that 
a standard multilayer feedforward (i.e. without feedback 
loops) ANN with a locally bounded piecewise continuous 
and non-polynomial transfer function can approximate 
any continuous function with any degree of accuracy. 
Feedforward networks used for function approximation 
problems have one or more hidden layers of nodes with 
non-linear transfer functions (e.g. sigmoid) followed by an 
output layer of nodes with linear transfer functions. This 
multilayer architecture allows the network to learn nonlin-
ear relationships between input and output vectors.

Standard numerical optimisation algorithms can be used 
to optimise the network’s performance function, often 
taken as the mean square error between the network’s 
output and the network’s target (real or simulated values 
of the function to be approximated). Various, gradient 
based or Jacobian based, learning algorithms [22] can be 
applied to adjust the weights and the biases of an ANN in 
a direction that optimises the performance function of the 
network. The most simple is the gradient descent algo-
rithm, where the current vector z(k) of weights and biases 
is updated at each iteration k+1 based on the current gra-
dient gk and the learning rate a k, until the network 
converges:

	 z(k + 1) = z(k) – ak ⋅ gk� (3)

adimensional and are determined according to the proce-
dure outlined in [8].

2.3	 Data processing and results

The MCNP calculations provide observables (tallies) that 
are usually expressed per simulated source particles. To 
express the observables in absolute terms one has to take 
into account the source strength associated to the 

considered spent fuel element. This information is retrieved 
from the SFL and the value of the observable is deter-
mined for the considered case. Overall a database of ob-
servables and spent fuel characteristics is generated. 
Within the database other calculated information on the 
spent fuel is also included such as the content of fissile 
material and the multiplication factor. An excerpt of the da-
tabase content is shown in Table 2.

Neutron Counts CZT
BU IE CT with Cd without Cd SINRD FAST/TH 134Cs1

137Cs 134Cs2
154Eu

GWd/tHM % y cps cps cps cps cps cps
5 2 5 1.0 1.2 0.026 0.009 22.2 425.2 38.4 3.2

10 2 5 6.3 6.9 0.031 0.010 88.3 847.3 153.2 12.9

15 2 5 31.3 34.4 0.037 0.009 187.3 1263.6 324.9 28.9

20 2 5 109.8 123.6 0.038 0.009 324.4 1677.7 562.7 51.2

25 2 5 284.2 317.0 0.041 0.009 485.4 2088.6 841.8 76.2

30 2 5 600.9 652.3 0.044 0.010 647.8 2490.3 1123.5 102.4

35 2 5 1088.2 1159.4 0.046 0.010 841.1 2893.2 1458.7 130.5

40 2 5 1711.4 1877.6 0.046 0.010 1041.0 3292.0 1805.4 157.4

45 2 5 2568.7 2793.7 0.047 0.010 1213.6 3679.9 2104.7 182.9

50 2 5 3559.5 3912.6 0.049 0.010 1420.1 4071.4 2462.8 208.8

55 2 5 4813.7 5240.8 0.049 0.010 1621.7 4459.6 2812.4 232.2

Table 2: Excerpt of the database. The signatures 134Cs1 and 134Cs2 denote the net peak areas at 605 keV and 796 keV respectively.
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The implemented ANN architecture is illustrated in Fig. 3. 
As observables, we considered total neutron counts for 
a Cd wrapped fission chamber and gamma rays spectros-
copy data from 137Cs, 134Cs and 154Eu. These data repre-
sent the variables in the input layer of the ANN. The BU, IE 
and CT represent the variables in the output layer of the 
ANN. While the BU and IE data were linearly spaced over 
their range, the CT data spanned several decades and 
had a  logarithmical spacing. The natural logarithm was 
then taken to ensure that the resulting variable is uniformly 
distributed over its range. Both the values in the input layer 
(observable) and the one in the output layer (quantity to be 
predicted) were scaled between –1 and +1 before being 
fed to the network optimization algorithm.

The algorithm was applied on a subset of the database 
described in section 2.3. We considered data with four-
teen burnup (BU) values (from 5 to 70 GWd/tU in steps of 5 
GWd/tU), initial enrichment (IE) of between 2.0% and 5.0% 
in steps of 0.5%, eleven values of cooling time (CT) from 1 
day to 100 years. A total of 1078 cases were considered.

For the neurons in the hidden layers we used hyperbolic 
tangent sigmoid transfer functions whereas for the transfer 
functions for the output neurons were linear. The quantity 

mean square error (mse) was used as target for minimisa-
tion. In the used mse each squared error contributes with 
the same importance as follows:

	 mse
N

A Ak j calc k jk

N

j
= −( )

== ∑∑ , , ,

1
3

2

11

3
� (4)

Where Ak,j,calc is the value of the parameter as determined 
by the ANN in the output layer (Fig. 3), Ak,j is the nominal 
value of the parameter. The index j runs over the IE, BU 
and CT output while k runs over the part of the database 
used for training. The calculation of the mse is done before 
the final scaling.

In the future we will define the performance in such a way 
that the percentage deviation enters in the definition of the 
quantity to be minimized rather than the absolute devia-
tion. Note that the absolute variation in the logarithm of CT 
results already in a relative deviation on the CT.

The database of simulated observables and spent fuel 
characteristics is divided in two sets, corresponding to 
training and validation. The data in the validation set are 
used to stop training if the network performance on these 
data fails to improve or remains the same for a predefined 
number of iterations. The Levenberg-Marquardt algorithm 

One of the fastest training algorithms for neural networks is 
the Levenberg-Marquardt optimization method [23], which 
was used for our application.

3.2	 Spent fuel characterisation based on Artificial 
Neural Networks

In this work, we employ ANN’s to explore the use of detec-
tor response values to characterize spent fuel in terms of 

initial uranium enrichment, burnup and cooling time. Simu-
lated data are used with different ANN architectures and 
learning algorithms. The MATLAB R2016b Neural Network 
Toolbox [24] was used for all data processing and 
analysis.

Figure 3: Artificial neural networks architecture implemented in this work.
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was used for training the network. The neural networks 
tested used up to three hidden layers.

3.3	 Results

First we studied the impact of the number of neurons on 
the performance, assuming that all data set was used to 
train the network. The performance was then calculated 

on the whole database of N=1078 cases. We considered 
from 2 to 20 neurons per hidden layer, while the number of 
hidden layers went from one to three. The obtained results 
indicate that the performance increases in general with the 
number of neurons per layer and with the number of hid-
den layers. However, the improvement is marginal above 
15 neurons, as shown in Fig. 4.

�

Figure 4: mse for ANN with one, two and three hidden layers as a function of the number of neurons. The mse in the right figure is limited 
to a maximum value of 0.01.

Figure 5: mse for ANN with two hidden layers as a function of the training set size. For both hidden layers the number of neurons was set 
to 15.
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Figure 6: Deviations in the predicted values of BU, IE and CT for the considered cases. The results refer to an ANN with 3 hidden layers 
and 20 neurons per layer. The training set size was 50%. See the text for explanation.
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In addition, we carried out calculations by changing the 
fraction of data used for training from 10% to 100% in step 
of 10%. The number of neurons was 5, 10, 15 and 20 and 
we considered up to three hidden layers; both the perfor-
mance on the training and the validation set were comput-
ed. The assignment of individual data to the training or val-
idation set was done randomly by MATLAB.

In general, we found that the value of the performance 
changes if the calculation is repeated; this is due to the 
fact that in the current implementation the initial values of 
the weights and biases of the ANN are randomly assigned 
[25] and this is affecting the results. For each network con-
figuration the calculations were repeated 20 times and the 
average performance was calculated with its standard de-
viation. For the case in which 100% of the data are used 
for training, we observed a standard deviation in the mse 
between 12 % and 25%. By reducing the share of the 
training set, the standard deviations are higher; this is due 
to the fact that choice of the data used for training is ran-
dom and changes every time; consequently, the value of 
the performance is affected. In addition, it was found that 
also the share of the training and validation data sets is not 
a fixed number but fluctuates around its nominal values. 
The resulting spread on the performance should be kept in 
mind when comparing different performance values.

The performance on the training set was in general better 
than the performance on the validation set. The difference 
between them was increasing by reducing the size of the 
training set, as shown in Fig. 5., and by increasing the 
number of neurons in the last hidden layer.

As expected the performance improves with the size of the 
training set and there is a clear difference between the 
performance obtained with 90% and 100% training; how-
ever, the improvement is marginal in the range 50% to 
90%.

While it is of interest to identify which parameters affect the 
performance, it is also important to understand how per-
formance values translate into deviation between calculat-
ed values and “real” values of BU, IE and CT. In Fig. 6, the 
% deviation on the value of BU, CT and IE are shown for 
the ANN with 3 hidden layers and 20 neurons per hidden 
layer with 50% training. In the plots on the left, the devia-
tions are shown as a function of BU (X-axis) and IE and CT 
(Y-axis). The Y-axis is an identification number ID that is 
given by the formula 7xIDCT+IDIE, where IDCT and IDIE range 
from 1 to 11 and 1 to 7 respectively and uniquely identify 
the case of CT and IE to which they refer. For the plots on 
the right the deviations are given as a function of an arbi-
trary case identified number (ID) that is used for a more 
straightforward representation; for each variable (BU, CT, 
IE) the ID is chosen such that the corresponding declared 
variable is monotonically increasing.

The results indicate that if 20 neurons and 50% of the data 
are used for training the ANN is capable of reproducing 
the value of BU within 3% for 85% of the cases, the value 
of IE within 2% for 80% of the cases and the value of CT 
within 10% for 58% of the cases.

In a more ideal case, where 100% of the data are used for 
training, the ANN is capable of reproducing the value of 
BU within 3% for 96% of the cases, the value of IE within 
2% for 98% of the cases and the value of CT within 10% 
for 87% of the cases.

The reason why we obtain larger deviation on the CT when 
compared to BU and IE is not clear. The larger deviations 
at low value of CT can be related to the choice of observa-
bles which are less sensitive to CT smaller than 1 y.

4.	 Conclusions and outlook

In this work we first reported about a methodology devel-
oped to simulate detector response functions for different 
types of NDA instruments. A database of detector re-
sponses for 8400 cases with different fuel characteristics 
and irradiation parameters was then obtained. The use of 
the simulated observables as input for data analysis algo-
rithms aims at uniquely characterizing the spent fuel and 
drawing safeguards conclusions. We explored the applica-
tion of artificial neural networks due to their ability to gen-
eralize non-linear relationships on a subset of data corre-
sponding to cooling times smaller than 100 years.

We studied the network performances in terms of mean 
square error as a function of the number of hidden layers, 
number of neurons in each hidden layer and share of the 
training data set. We could conclude that, within the range 
considered, the performances increase with the number of 
neurons, number of hidden layers and share of the training 
data set. The results show that, when all the data set is 
used for training, the ANN is able to reproduce the BU and 
IE within a few percent for most of the analysed cases, 
whereas the resulting CT has a larger deviation especially 
for values lower than 1y. The performance is significantly 
worse when a fraction lower than 50 % of the data set is 
used for training the ANN.

Future research will focus on improving the performance 
of the network with respect to the CT and further testing 
of the optimal network configuration. In particular, the 
performance of the network when selecting CT larger 
than 1 y or 10 y will be investigated. The possibility to se-
lectively use data for training rather than randomly 
choose the data will also be considered. We will investi-
gate the impact of the initial weight values. We will also 
try to identify which additional observables (for instance 
the SINRD signature) would result in an improvement of 
the performance. The impact of the range values of burn-
up, in i t ia l  enr ichment and cool ing t ime on the 
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performance will also be studied. The use of different 
performance functions will also be considered.
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