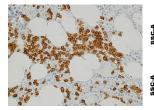


Clinical Diagnostic Cytometry Course AN OVERVIEW ON CLINICAL FLOW CYTOMETRY

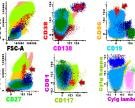
Bruno Brando & Arianna Gatti Hematology Laboratory and Transfusion Center Western Milan Area Hospital Consortium Legnano Hospital, Milano, Italy e-mail: <u>bruno.brando@asst-ovestmi.it</u>

	Sistema Socia Sanitaria Regione Lombardia ASST Ovest Milanese
--	--

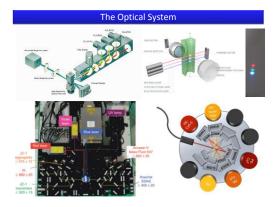


Multicolor Flow Cytometry: Strong Points

- Multiparametric Analysis with Full Cross-Correlation of Findings.
- Biological Markers of Different Meaning are Analyzed Simultaneously.
- Data From a Very Large Number of Cells Can Be Collected in a Short Time.
- Robust and Reliable Statistical Representation of Rare Events.
- 📕 Cells Are Examined in Their Original Milieu with Minimal Manipulation.
- Objective, Operator-Independent Measurement of Cell Parameters.
- High Level of Standardization and External Quality Assessment schemes.


Multicolor Flow Cytometry: Weak Points

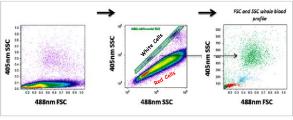
- Monodispersed Cell Suspensions: Tissue Architecture Is Lost.
- The Cell Compartment That Generates the Signal Cannot Be Located.
- Some Cellular Markers that Work in Histochemistry Don't Work in Flow.
- Fluorescence Background and Signal Resolution With Some Cell Markers.
- "Just One Cell" is Not Enough for Data Interpretation.


Immunohistochemistry: One Cellular Marker at a Time.

- Cell Denominator Difficult to Enumerate
- Limited Statistical Robustness of Data
- Difficult correlation between markers
 Subjective, Operator-Dependent Analysis

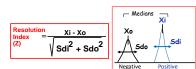
Multicolor Flow Cytometry: As Many Markers as You May Want.

- Cell Denominator Precise
- Very High Statistical Robustness of Data
 Full cross-correlation among markers
 - Full cross-correlation among markers Objective, Operator-Independent Analysis



wow!

Preffer F & Dombkowski D. Cytometry Part B 2009; 76B: 295 - 314. The Availability of the 405nm (Violet) Laser Has Extended the Spectrum of Excitable Fluorochromes. 488 vs 405nm SSC Discriminates Red and White Blood Cells With a NO-YSE Technique.

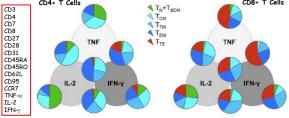


• Diagrams are from the ATTUNE™ Acoustic Cytometer.

• 405 nm SSC can be implemented in new generation cytometers with a simple filter set.

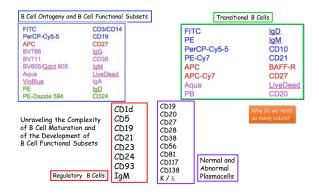
	Fluorochrome	Excitation max (nm)	Excitation lines (nm)	Emission max (nm)	Emission cold
	Propidium iodide	305, 540	350-360, 488	620	Yellow-orange
	Indo-1 Ca bound	330	350-360	405	Violet
	Indo-1 Ca free LIVE/DEAD blue	346	350-360	480	Blue Blue
	Hoechal 33342	352	350-360	455	Blue
	AMCA-X	353	350-360	442	Blue
	DAPI	359	350-360	461	Blue
	Marina Blue	365	350-360	460	Ellus
60+ Different	Alexa Fluor 350	346	350-360	442	Blue
100+ Different	Pacific Orange	400	405, 407	551	Blue
	Pacific Blue BD Horizon V450	404	405, 407	456	Blue Blue
Fluorochromes	LIVE/DEAD violet	416	405, 407	451	Blue
I riuorochromes I	Alexa Fluor 405	405	405 407	420	Violet/blue
	Cell/lue Lavendar	425	405, 407	461	Blue
Available Today	ECFP	434	458, 488	477	Ellus
I AVAIIADIE I ODAVI	AmCyan	458	405, 407	489	Blue
	CellVue Jade	478	488	508	Cyan
	EGFP	489	458, 488	508	Cyan
	Alexa Fluor 430 CFSE	430	405, 407	540 518	Green
	PKH2 & PKH67	490	498	504	Green
	LIVE/DEAD green	495	488	520	Green
	Alexa Fluor 488	495	488	519	Green
	FITC	494	488	519	Green
	Rhodamine 123	507	488	529	Yellow-green
	Ethidium monoazide	510	488	600	Yellow-orang
	EYFP	514	488, 532	527	Yellow-green
	Alexa Fluor 532 PKH26	531	532	554	Yellow-green
	PKH26 DsRed	558	488, 532	567	Yellow-green
	Direct	496, 546	488, 532	578	Yellow
	PE-Texas Red	496, 546	488 532	615	Yellow-orang
	HcRed	588	532, 568, 590, 594	618	Yellow-orang
	Alexa Fluor 594	590		617	Yellow-orang
	LIVE/DEAD red	595	488	615	Yellow-orang
	Texas Red	595	595	615	Yellow-orang
	7-AAD	550	488, 532, 594	660	Red
	DRAQ5 Cell/vae Marcon	646	633 633	681	Red
	APC Marcon	650	595, 633, 635, 647	660	Red
	Alexa Fluor 647	650	595, 633, 635, 647	668	Red
	PE-Cy5	495.546	488, 532	667	Red
	Cy5	640	633, 635	670	Red
	PerCP	482	488, 532	678	Red
	Alexa Fluor 660	663	647	690	Red
	LIVE/DEAD far red	650	633, 635	665	Red
	APC-Cy5.5	650	633, 635	694	Red
reffer F & Dombkowski D.	PerCP-Cy5.5	482 496, 546	488, 532 488, 532	695 785	Red
	PE-Cy7 APC-Cy7	496, 546	488, 532 595, 633, 635, 647	785	Infrared
ytometry Part B 2009;	APC-Cy7 APC-Alexa Flour 750	650	595, 633, 635, 647	785	Infrared
	Hilute 750, no tandem	753	785	778	Infrared
		774	785	789	Infrared
6B: 295 - 314.	IRDye 800CW CellVue NIRB15 G-dots/eFluor/AxiCed	786 Various	785 785 350-360, 407	814	Infrared

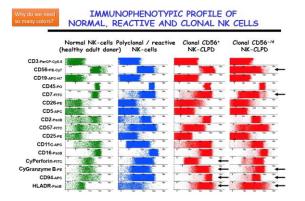
Relative Brightness of Fluorochromes Ranking of Fluorochromes by the Resolution Index

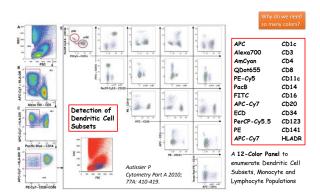


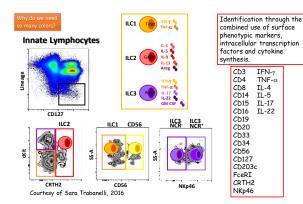
Resolution Index (Z) of various fluorochromes calculated from the staining of human PBMCs with anti-CD4 clone RPA-T4 on a BD FACSCanto™ II

http://www.bdbiosciences.com/documents/Multicolor_Fluorochrome_Guide.pdf

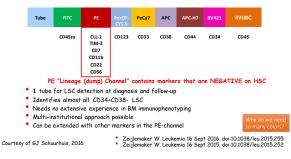

Relative Brightness	_	Reagent	Filter
		Brilliant Violet** 421	450/
보			575
SIG	-	Entitized Vision 605	610
V BR		BD Horizon PE-C#594	610
VERY BRIGHT		PE-075	670
		APC	660
Ę	-	PE-CY7	780
BRIGHT		Alexa Fluer@ 647	660
8	-	PerCP-Cy5.5	695
		Alexa Fluor@ 488	530
MODERATE		errc	530
		BD Hortzon V450	450
		Pacific Blue M	450/
		Alexa Fluor® 700	730
		PERCP	695/
×	-	APC-Cy7	780/
IQ		AmCyan	525/
		BD Holizon V500	525/
		8D APC-H7	780/

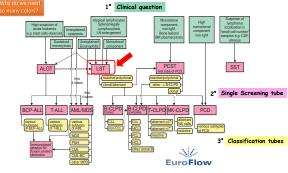

Summary of CD4+ and CD8+ T Cell average subset distribution and their cytokine profiles in healthy adults CD4+ T Cells

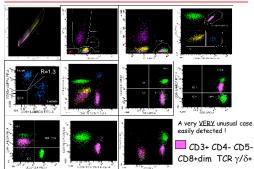


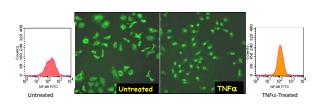

Over 250 different functional subsets can be identified within the T Cell compartment

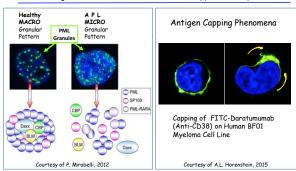
Mahnke YD. Eur J Immunol 2013; 43: 2797-2809

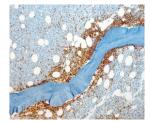




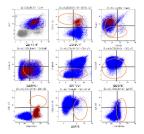

Leukemia Stem Cell Detection for Diagnostic Purposes: Discrimination Between Leukemia and Hematopoietic Stem Cells (1 tube, 8 colors, 13 markers)

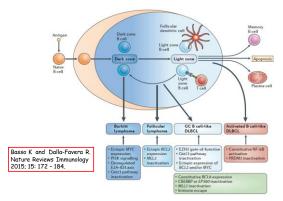



8-Color/12-MoAbs LST Tube: Lymphoproliferative Disorders Screening

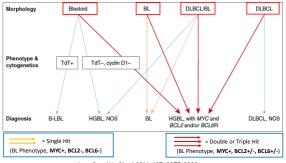


Flow Cytometric Analysis Cannot Locate Where the Signal is Generated


TNFα-Induced Shift of **NF-kB** From Cytoplasm to Nucleus of HeLa Cells


IHC - Bone Marrow Trephine Biopsy: Paratrabecular Lymphocyte Infiltrate

Architecture of cellular clustering has a clinical meaning (i.e. Follicular Lymphoma)



FCM Analysis of Bone Marrow Aspirate: Dissociated Particles-Homogeneous Suspension

Abnormal cells diluted and admixed with normal lymphocytes. Clonality may not emerge.

Diagnostic Approach to Aggressive, High-Grade B Cell Lymphomas (HGBL)

Swerdlow SH. Blood 2016; 127: 2375-2390.

Some Important Diagnostic Markers that Cannot be Detected by FCM

- Nuclear Cyclin-D1: Translocation CCND1/IGH-t(11;14) Mantle Cell Lymphoma, Myeloma
- Nuclear Cyclin-D2: Multiple Myeloma
- BCL-6 (By FISH): DLBCL
- IGH/MYC/CEP8: (MYC-BCL2= Double Hit) MYC-Translocated DLBCL: 30% OS at 24mos MYC-wild type: 70% OS at 24 mos.
- ٠ IRF4/MUM1: Cell of Origin DLBCL ABC vs GC
- SOX11: Mantle Cell Lymphoma In situ vs Leukemized ٠
- EBV Products (EBER By FISH): DLBCL EBV-Related, Primary Effusion Lymphoma .
- MIB-1 Quantitation: Cutoff >90% or <90% DLBCL vs Burkitt ٠
- TP53 Mutations: Multiple Myeloma, Chronic Lymphocytic Leukemia

The 'Cell-of-Origin' of Lymphomas Cannot be Established by FCM

Mature, Clonal, Highly Proliferating B Cells (CD19+ CD20+ CD22+ CD79b+ sIg+ Ki67>40%)

- Germinal Center (GC) Type DLBCL: CD10+ or CD10-BCL6+ MUM1-
- Post-GC Activated Phenotype (ABC):

CD10-BCL6+ MOM1+
Such analysis can be accomplished
by Immuno-Histochemistry (IHC) Only
In IHC slides are processed at
IN INC SIIDES ARE PROCESSED AT HIGH TEMPERATURE, so antigens
undergo structural changes

CD10-BCL6- or

Histology and Immunohistochemistry of Lymph Nodes in Lymphoma Diagnosis: Is There Any Role For Multicolor FCM Analysis?

- It is estimated that in 10-15% of Non-Hodgkin Lymphoma cases the conventional Histology/IHC analysis of Lymph Nodes may be inconclusive, thus requiring additional analytical steps.
- The 2016 WHO revision (s. Swerdlow. Blood 2016: 127: 2375-2390) highlights the need of a more cautious usage of the term 'Lymphoma' since cases of in-situ neoplasms and borderline or atypical reactive lesions may occur.
- Multicolor FCM can be of help as an ancillary technique in NHL diagnosis, especially in T-Cell Lymphomas, Composite Lymphomas, Dendritic Plasmocytoid neoplasms, PTGC (Progressive Transformation of Germinal Center), In-Situ Follicular Lymphoma, Thyroid Aspirates, to approach 100% diagnostic accuracy.
- Coupling FCM to Histology/IHC of Lymph Nodes requires a tight cooperation between operators (organization, technicalities, logistics)

But Multicolor Flow Cytometry is Unbeatable in Detecting and Characterizing Difficult and Unusual Leukemias

Blastic Plasmacytoid Dendritic Cell Neoplasm

Acute Leukemias of Ambiguous Lineage:

- Acute Undifferentiated Leukemia
- Mixed Phenotype Acute Leukemia (MPAL) with t(9:22)(q34.1:q11.2); BCR-ABL1
- MPAL with t(v;11q23.3); KMT2A Rearranged
- MPAL, B/Myeloid, NOS
- MPAL, T/Myeloid, NOS

Criteria for Lineage Assignment for a Diagnosis of MPAL

Myeloid Lineage

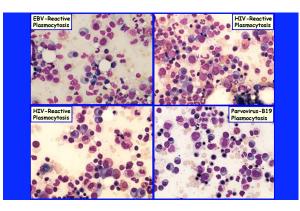
MPO (flow cytometry, immunohistochemistry, or cytochemistry) or Monocytic differentiation (at least 2 of the following: nonspecific Esterase cytochemistry, CD11c, CD14, CD64, Lysozyme)

T-Lineage

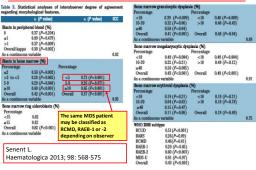
Strong cytoplasmic CD3 (with antibodies to CD3 ϵ chain) or Surface CD3

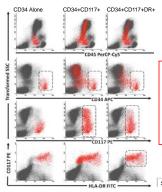
B-Lineage

Strong CD19 with at least 1 of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10


or Weak CD19 with at least 2 of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10

Arber DA. Blood 2016; 127: 2391-2405

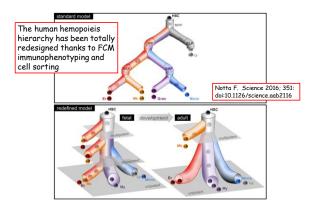

Flow Cytometry in Hematologic Malignancies

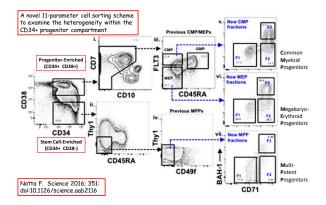

Some abnormal phenotypes can be highly predictive of genetic defects:

- Acute Myeloid Leukemia CD34+ CD56+ CD15+/- CD19+ → †(8;21)
- Mantle Cell Lymphoma CD5+ CD23- CD79b+ CD200- → †(11;14)
- Burkitt Lymphoma CD10++ CD38++ CD43++ CD81++ → †(8;14)
- Atypical B-CLL CD5+ CD20++ CD23+/- CD49d+ → trisomy 12
- Multiple Myeloma CD20+ → t(11;14) Standard Risk
- Multiple Myeloma CD28+++ CD27- 🗲 †(14;16) High Risk
- Multiple Myeloma CD28- CD27- → t(4;14) High Risk
- Pediatric ALL CD123+ → Hyperdiploidy
- Pediatric ALL CD66c+ → Hyperdiploidy, BCR/ABL
- Pediatric ALL CD44- → TEL/AML1
- Mature B-ALL CD44- → MYC-Translocation
-and many other.....

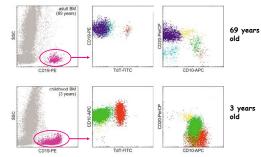
Four Expert Pathologists Were Asked to Analyze **50 Established MDS Cases**: High Inter-Observer Variability of Morphological Evaluation of Blasts.

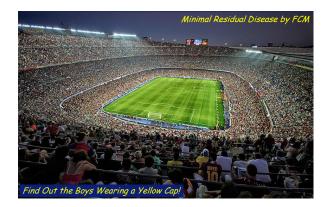
Counting BM Blasts by FCM


BM Blast enumeration by FCM using CD34+ CD117+ HLADR+ displays the BEST CORRELATION with morphological blast count as performed by expert readers.

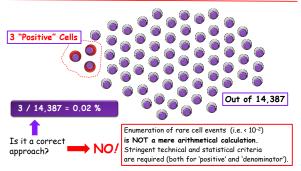

Cell denominator is made by CD45+ cells, excluding erythroid precursors.

Sandes AF. Clinical Cytometry 2013; 84B: 157-166.

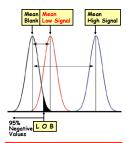

Phenotype changes with Age, Exposure & Environment



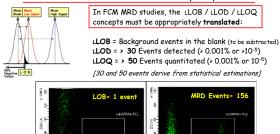
Age-related changes in the normal Bone Marrow (B Cell Lineage)



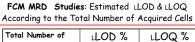
Van Lochem EG. Clinical Cytometry 2004; 60B: 1-13.


Syser Od boy 91 year old man Under Street od box 91 year old man

Rare Event Detection and Enumeration by FCM - The Minimal Residual Disease


- Lower Limit of Blank (LLOB): The highest signal in the absence of the measurand. (Mean Blank + SD x 1.65). 95% of negative values are below this limit.
- Lower Limit of Detection (LLOD): (Mean Blank + SDlow × 1.65).
 95% of negative values are above this limit.
 5% false negatives and
 5% false positives are assumed
- Lower Limit of Quantitation (LLOQ): The lowest level of measurand that can be reliably quantitated at a predefined criterion for precision and accuracy (clinical utility value). Never lower than LOD.

Such concepts derive from clinical chemistry and can be directly applied to Flow Cytometry for INTENSITY measurements only.


Wood B. ICSH/ICCS. Cytometry Part B 2013; 84B: 315-323.

Consensus on MRD Detection in Multiple Myeloma

КАРРАЛТС-А

FITC-A

Total Number of	LOD %	LLOQ %
Acquired Cells (Excluding Erythroid)	≥ 30 Events	≥ 50 Events
100,000	0.03	0.05
200,000	0.015	0.025
500,000	0.006	0.01
1,000,000	0.003	0.005
2,000,000	0.0015	0.0025
3,000,000	~ 0.001	~ 0.0017
5,000,000	~ 0.0006	~ 0.001

The specific LLOD for the total amount of acquired cells should be reported. Arroz M. Cytometry Part B 2016; 90B: 31-39. When examining a **PAP Smear** (around 300,000 cells), **JUST ONE ABNORMAL CELL** may be enough to classify the sample as SUSPECT, therefore requiring expert review or resampling.

Surce: EuroCytology.eu

A Limitation of FCM Analysis: JUST ONE CELL (Event) IS NOTHING

Conventional Flow-MRD Assay: MRD - Negative Case

81-177-27-28

ALL PCs

2 Abnormal PCs collected (0.00008%)
MRD Negative

MRD Study - 1 Tube, Conventional Analysis
 2.725 M BM cells acquired & erythroid removed
 LOD = 0.0012%

Ali L.

Consensus on a standardized

softwares is still lacking.

robust MM-MRD gating protocol with conventional FCM analysis 2,725,000 100. 2,638,831 96.1 2,422,855 88.1 637 0.026

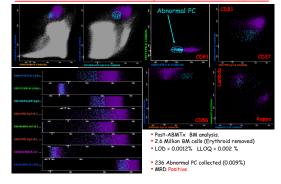
Next Generation FCM: Extended Multiparamater Analysis by Infinicyt TM

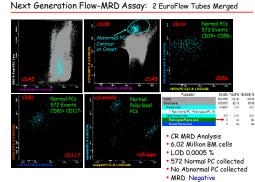
 $\label{eq:linear} \begin{array}{l} \textbf{Infinicyt}^{\mathsf{TM}} \text{ is a software for data integration and} \\ \textbf{multidimensional analysis of flow cytometry files.} \\ \textbf{The main features of } \textbf{Infinicyt}^{\mathsf{TM}} \text{ are:} \end{array}$

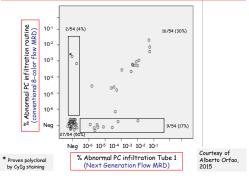
The Merge Process

Two or more datafiles from the same sample or from different samples with some common 'backbone' markers are merged. The resulting file sums up limitless cell phenotypes as if they were generated by a virtual single cell sample.

The Automatic Population Separator (APS) An automatic separator of events using the 'Principal Component Analysis', Multidimensionally identified cell subsets are rendered in a 2-dimensional format

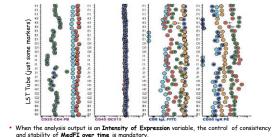

The Internal or External Reference Case Database


Cell analyses can be compared to reference datasets generated internally (i.e. at disease onset) or to an external case library, if analyzed by the same criteria.



Next Generation Flow-MRD Assay: 2 EuroFlow Tubes Merged

Next Generation Flow MRD vs Conventional 8-color Flow MRD



Next-Generation Flow-MRD is now considered equivalent to ASO-qPCR and NGS

	Allele-specific oligonucleotide gPCR	MFC	VDJ sequencing
Applicability	60-70%	Newbr100%	>90%
Need for baseline sample	Yes, requires production of patient-specific probes	Not required, anonomal plasma cens can be identified in any sample by their distinct immunophenotypic pattern vs normal plasma cells	Baseline samples required for identification of the dominant clonotype; alternatively, a stored sample from a time point with detectable disease can be used to define baseline status
Sample requirements	<1 million cells	>5 million cells	<1 million cells; higher numbers improve sensitivity
Sample processing	Can be delayed; can use both fresh and stored samples	Needs assessment within 24–48 h; requires a fresh sample	Can be delayed; can use both fresh and stored samples
Sample quality control	Not possible. Additional studies required	Immediate with global bone marrow cell analysis	Not possible. Additional studies required
Sensitivity	≥1 in 10 ⁵	s1in105	a1 in 105
Information regarding sample composition	No further information available	Detailed information available on leucocyte subsets and their relative distribution	Information about immunoglobulin gene repertoire of B cells in the studied patient samples
Turnaround and complexity	Labour intensive; requires the development of patient-specific primers/probes; can take several days	Can be done in a few hours; automated software available	Can take several days for turnaround; requires intense bioinformatics support. Use of local laboratories could speed up this limitation
Standardisation	Has been done for other diseases (EuroMRD), can be done for myeloma as well	Standardised by the EuroFlow consortium	In process
Availability	Wide*	Most hospitals with four-colour flow cytometry. Eight or more-colour flow cytometry requires more experienced centres/laboratories. Many laboratories have adopted the EuroFlow laboratory protocols and use the EuroFlow ARD tubes	So far limited to one company/platform

New International Myeloma Working Group (IMWG) Response Criteria Kumar 5. Lancet Oncology 2016; Aug (17): e328-e346

EUROFLOW: Long-Term Monitoring of Instrumental Standardization (MedFI)

When the analysis output is an Intensity of Expression variable, the control of consistency and stability of MedFI over time is mandatory.
 Despite Instrument setup. Calibration microspheres, and Reagents are fully homogeneous, some markers still display a high grade of intrinsic expression variability.

Kalina T. Cytometry Part A 2015; 87A: 145-156

STANDARDIZATION VS HARMONIZATION IN FLOW CYTOMETRIC ANALYSES

A 12-bar Jazz Blues in F is immediately recognized DESPITE the notes are different at each performance.

STANDARDIZATION vs HARMONIZATION IN FLOW CYTOMETRIC ANALYSES Standardization Harmonization

- Rather easy to implement for simple, repetitive analyses (i.e. CD4, CD34, CD64, FMH, Low Level Leucocytes...)
- Requires a lot of time for validation of MoAb recipes, Scientific evidence may change meanwhile, making guidelines rapidly obsolete (esp. in Leukemia).
- The strict rules may cause excessive selection of labs according to their available technologies.
- Beveryone invoke 'standardization' in FCM, but once technical guidelines are published criticism and variations become quickly the rule.

Requires a strong agreement on basic

- general principles and technical operating procedures.
- Detailed recipes of antibody mixtures are not strictly necessary.
- Guidelines can be applied more flexibly, even in labs not equipped with state-ofthe-art technology
- It doesn't matter if a cat is black or white, as long as it catches mice. (Deng Xiaoping, 1960)

OPTIMIZATION OF THE TWO 8-COLOR MM MRD ANTIBODY COMBINATIONS

Panel rersion	Tube	PacB	PacO	FITC	PE	PerCP Cy5.5	PE Cy7	APC	APC H7
1	1	CD45	CD138	CD38	CD56	CD27	CD19	CD117	CD81
1	2	CD45	CD138	CD38				CyIgk	CyIql
			HV500-C						
2	1	CD45	CD138	CD38	CD56	CD27	CD19	CD117	CD81
2	2	CD45	CD138	CD38	CD56	CD229	CD19	CyIgk	CyIgl
									APC C750
3	1	CD45	CD138	CD38	CD56	CD27	CD19	CD117	CD81
3	2	CD45	CD138	CD38	CD56	CD229	CD19	CyIgk	CyIgl
		HV450							
4	1	CD138	CD27	CD38	CD56	CD45	CD19	CD117	CD81
4	2	CD138	CD27	CD38	CD56	CD45	CD19	CyIgk	CyIgl
		BV421	BV510						
=	1	CD138	CD27	CD38 (ME)	CD56	CD45	CD19	CD117	CD81
5	2	CD138	CD27	CD38 (ME)	CD56	CD45	CD19	CyIgk	CyIgl

Courtesy of Alberto Orfao, ESCCA Course 2016

REPORTING IN
HEMATOLOGICAL
MALIGNANCIES:
A Matter of Communication

An example of a modern, integrated hematological report.

The results of all the various technical approaches are summarized in the same report file, each one signed by the respective responsible academic.

A unified, collegial clinical conclusion is offered.

Johansson U. Brit J Haematol 2014; 165: 455-488

Leukemia / Lymphoma Report

Patient Name Jos I Date of Birth Day-N Hosp No. 11223344

Sample Date: Day-Month-Year Date received: Day-Month-Year Lab number: 1234567 Referral lab no: 345678

LEUKAEMIA DIAGNOSIS – INTERGRATED RE Clinical Details: None stated

Sample Investigated: Peripheral Blood and Bone Marrow

Dr Bloggs, St Elsewhere

ingle promine

memoryownet/prink [Remer of Section Head phone number] There is a microline Lippi Alappa close of CDID/CDS = Re of present which accounts for REM of the total nucleated onlis in this sample. Many of the lymphoid cells show an increase fine all cells alternaryse is IMCT with mod/CDD3/CDT96 wk/CDD3+(CDD5) CDD44); CDD044/Section 2014 variable. GHT participant on 1554 of the 8 cells. CD38 was not tested

FBC/Film morphology: WBC: 669 3×10⁴/1 Hb: 82 g/1 Pits: 129×10⁴/1 Lv: 656 0×10⁴/1

Morphology/Cytochemistry (Name of Section Head, phone number) The vast majority of cells are variable sized, largely mature lymphoid cells. Many have a

is unlikely to be CLL, the CLL score is 1-2/5. Await FISH for IgH/CCND1 gene rangement to test for mantle cell lymphoma. rangem lak of n ogenetics/molecular Cytogenetics (Nam ult from bone marrow sample taken (dat be hybridised: (company name) IGH-CCN sple hybridised: bone marrow solitor

te) iD1 dual fusion. mined showed a signal pattern of istent with an IGH-CCND1 gene

ment. nsistent with the diagnosis of mantle cell lymphoma.

nments and Conclusion htle cell lymphoma (9861/3)

Molecular Genetics and Cytogenetics Seem to Dominate in the Field of Hematologic Malignancies

Table 1. Genetic abnormalities that affect acute myeloid leukemia (AML) classification.

AML with Recurrent Genetic Abnormalities	AML with Myelodysplasia Related Changes			
RUNX1-RUNX1T1 t(8:21)(q22:q22)	Complex karyotype (≥3 unrelated abnormalities)			
CBFB-MYH11 inv(16)(p12.1q22) or t(16;16)(p13.1;q22)	-7/del(7q), -5/del(5q) Unbalanced			
PML-RARA t(15;17)(q22;q12)	-13/del(13q), del(11q), del(12p)/t(12p), del(9q)			
MLLT3-MLL/KMT2A t(9;11)(q22;q23)	i(17q)/t(17p), idic(X)(q13)			
DEK-NUP214 t(6;9)(p23;q34)	t(5:12)(q33:p12), t(5:7)(q33:q11.2) t(5:17)(q33:p13), t(5:10)(q33:q21)			
RPN-EVI1 inv(3)(q21q26.2) or t(3;3)(q21;q26.2)	t(1;3)(p36.3;q21.2), t(3;5)(q25;q34)			
RBM15-MKL1 t(1:22)(p13:q13)	t(11:16)(q23:p13.3) *, t(3:21)(q26.2:q22.1) *			
NPM1 gene mutation, WT1, EVII	t(2:11)(p21:q23) *			
Mutated CEBPA	Balanceo			

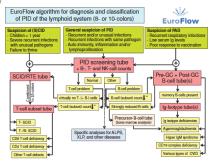
NGS (RUNX1, TET2, TP53, ASXL1, EZH2) RT-PCR (MLL-PTD)

....but....

	MoAb MOLECULE	Commercial Name	Biological Target
Therapeutic and Diagnostic MoAbs	Abciximab	ReoPro	CD41 (integris alpha-IIb)
The apound and oraginostic mortes	Adalimumab	Humira, Trudexa	TNF-0
	Adalimumab-Atto	Amjevita	TNF-o Biosimilar
	Alefacept	Amevive	LFA-3 (CD58)
	Alemtuzumab	Lemtrada, Campath	CD52
	Alirocumab	Praluent	PCSK9
	Altumomab pentetate	Hybri-ceaker	CEA
To date 105+ Monoclonal	Arcitumomab	CEA-Scan	CEA
io date 100+ Monocional	Atezolizumab	Tecentriq	CD274 (PD-L1)
			IL-6 receptor
antibodies are registered and	Avelumab	Bavencio	PD-L1 CD25 (a chain of IL-2 recentor)
anniboares are registerea ana	Bectumomah	LymphoScan	CD25 (ill chain of it-2 receptor) CD22
a summary stalls suggitude to fam	Belatacept	Nuloiix	CD22 CTLA-4
commercially available for	Relimumab	Renivsta, LymphoStat-R	BAFF
	Besilesomab	Scintimun	CEA-related antigen
diagnosis and therapy in	Bevacizumab	Avastin	VEGE-A
anaghosis ana morapy m	Berlotoxumah	Zinplava	Clostridium difficile
patients (June 2017)	Biciromah	FibriScint	fibrin II, beta chain
patients (June 2017)	Blinatumomab	Blincyte	CD19
	Biontuvetmab	Biontress	CD20
	Brentuximab vedotin	Adcetris	CD30 (TNFRSF8)
	Brodalumab	Sillig	8-17
· · · · · · · · · · · ·	Canakinumab	Baris	IL-17
Such molecules interact with	Capromab pendetide	Prostascint	Prostatic carcinoma cells
	Catumaxomab	Removab	EpCAM, CD3
target cell surface molecules	Certolizumab pegol	Cimzia	TNF-0
larger cell surface molecules	Cetuximab	Erbitux	EGFR
	Clivatuzumab tetraxetan	hPAM4-Cide	MUC1
or with soluble factors	Daclizumab	Zenapax, Zinbryta	CD25 (a chain IL-2 R)
	Daratumumab	Darzalex	CD38 (cyclic ADP ribose hydrolase)
	Denosumab	Prolia, Xgeva	RANKL
	Dinutuximab	Unituxin	GD2 ganglioside
	Eculizumab	Soliris Panorex	C5 EpCAM
Many issues related to MoAb	Edizumab	Rantiva	LFA-1 (CD11a)
many issues related to mono	Efungumab	Mycograb	UPA-1 (CD118) Hsp90
ware and the offerster on the	Eleburumah	Empliciti	SLAME?
usage and its effects on the	Ertumaxomab	Rexomun	HER2/neu, CD3
· · · · · · · · · · · · · · · · · · ·	Etaracizumab	Abeorin	Integrin ov[13
target should be carefully	Evelocumab	Repatha	PCSK9
iaiger siteata se carerany	Fanalasomah	NeutroSpec	CD15
manitoned (by ECH of summer)	FRIADS	Lymphomun	CD20
monitored (by FCM, of course!)	Fontolizumab	HuZAF	IFN-x
	Gemtuzumab ozogamicin	Mylotarg	CD33
	Girentuximab	Rencarex	carbonic anhydrase 9 (CA-IX)
	Golimumab	Simponi	TNF-0
	Ibritumomab tiuxetan	Zevalin	CD20
	Idarucizumab	Praxbind	Dabigatran
	Igovomab	Indimacia-125	CA-125 To foll
	Imciromab	Myoscint	Cardiac myosin

Therapeutic and Diagnostic MoAbs Laboratory Support plays an ever increasing role in MoAb therapy, to monitor:

The development of the correct mechanism of action of the MoAb.


The kinetics of target cell disappearance and reappearance.

The monitoring strategies determined by the changes induced by the MoAb on its target.

The development of escape mechanisms that may hamper the clinical effects of the MoAb.

A Comprehensive FCM Approach to Primary Immunodeficiencies

Not Only Leukemia

Flow Cytometry Studies of Immune System

An attempt to standardize a comprehensive antibody panel to study all immune system cell functional and regulatory subsets:

- Immune System ceri functional and regulatory subsets.
 T Cells: Naive, Memory IgD+/-, Transitional, Plasmablasts
 NK Cells: 56-low NK, 56-high NK
 Moncytes: Classical, Intermediate and Non-Classical Monocytes
 Dendritic Cells: Myeloid DC, Plasmacytoid DC

	T cell	Treg	B cell	DC/mono/NK	Th1/2/17
FITC	dead	dead	dead	dead	dead
PE	CCR7 (150503)	CD25 (2A3)	CD24 (ML5)	CD56 (B159)	CXCR3 (1C6/CXCR3)
PerCP-Cy5.5	CD4 (SK3)	CD4 (SK3)	CD19 (SJ25C1)	CD123 (7G3)	CD4 (SK3)
PE-Cy7	CD45RA (L48)	CCR4 (1G1)	CD27 (M-T271)	CD11c (B-LY6)	CCR6 (11A9)
APC	CD38 (HIT2)	CD127 (HIL-7R-M21)	CD38 (HIT2)	CD16 (B73.1)	CD38 (HIT2)
APC-H7	CD8 (SK1)	CD45RO (UCHL1)	CD20 (2H7)	CD3+19+20 (SK7, SJ25C1, 2H7)	CD8 (SK1)
V450	CD3 (UCHT1)	CD3 (UCHT1)	CD3 (UCHT1)	CD14 (MPHIP9)	CD3 (UCHT1)
V500	HLA-DR (G46-6)	HLA-DR (G46-6)	IgD (IA6-2)	HLA-DR (G46-6)	HLA-DR (G46-6)

Maecker HT, Nature Review Immunology 2012; 12: 191-200.
 Finak G, Nature Scientific Reports 2015. 6:20686, DOI: 101038/srep20686

Not Only Leukemia

Flow Cytometry of the Red Cell Compartment

• Normal & Abnormal Red Cells as Seen by FCM:

- Blood Counter Measurements vs FCM Findings
- Detection of normal & abnormal RBC Subpopulation • RBC aging in vivo and Eryptosis
- FCM and RBC Osmotic Fragility
- Congenital Spherocytosis and Pyro-Poichilocytosis Feto-Maternal Hemorrhage Analysis, not Rh/D related
 Detection of RBC PNH Clones
- Detection of Blood Doping in Athletes
- Detection of Fluorocytes in Protoporphyria
- Bone Marrow Maturation of Red Cells by FCM:
 - Normal and Dysplastic Maturation Patterns Intracellular Ísoferritins

• The Never Ending Story:

Detection of Malaria Parasites by FCM

Not Only Leukemia

Flow Cytometry in the Blood Bank

- Quality Control of Blood Components:
 - Low-Level Leucocyte Count in Leucoreduced products
 Control of Platelet Function and Sterility in PLT Bags
- Study of the RBC 'Storage Lesions'
- Control of CD34+ PBSC Units for Transplantation:
 - Evaluation of Apheresis Yield and PBSC Collection
 - Enumeration of Viable PBSC at Freezing
 - Evaluation of Viable PBSC after Thawing

Management of Feto-Maternal Hemorrhage (Anti-D): FCM to Guide the Anti-D Therapy

• Experimental Applications:

- Anti-RBC Antibody Studies
- Monitoring the kinetics of transfused RBC survival
- Large-Scale in-Vitro Production of Red Blood Cells


Not Only Leukemia

^{ukemia} Bronchoalveolar Lavage: Clinically Important Questions To Be Answered by the FCM Analysis of the Recovered Immune Cells

- Overall Cellular Concentration:
 Hypercellular BAL indicates active disease.
- Lymphocyte Percentage: • Relative lymphocytosis indicates an ongoing immune process.
- T Lymphocyte Subset Distribution:
 Prevalence of T CD4+ or T CD8+ cells varies in different diseases.
- Presence of Other Cell Types:
 - PMNs, Eosinophils, CD1a+ Histiocytes (sometimes disease-specific).
 - Leukemia/Lymphoma Cells (Lung involvement in hematological malignancies).
 - Activated Lymphocytes, TH1/TH2/TH17 Cells, Dendritic Cells (experimental)

UK NEQAS

UK NEQAS National External Quality Assessment Site

An Overview of Clinical Flow Cytometry (Conclusions)

- New developments in medicine require extensive patient monitoring in many different diseases (Hematology/Oncology, Autoimmune Diseaseses, Immunodeficencies, Infectious Diseases, Reproductive and Cardiovascular Medicine).
- Changes in diagnostic strategies are needed to follow the new targeted therapies (Humanized Antibodies, TKI- and BCL2-blockers, CAR-T Cells etc.) also by implementing new data analysis systems.
- The new (immune)therapeutic agents may induce prolonged overall survival and better quality of life for patients, thus making the clinical follow-up longer and made of complex sequential runs of therapy (*i.e. Myelona*).
- The more targeted the therapy, the higher the chance of mutations and consequent resistance. An eary detection of therapy resistance will be increasingly important.
- As a consequence, Flow Cytometry Monitoring is the answer!