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Abstract

The posttranscriptional addition of nontemplated nucleotides to the 3′ ends of RNA molecules 

can have a significant impact on their stability and biological function. It has been recently 

discovered that nontemplated addition of uridine or adenosine to the 3′ ends of RNAs occurs in 

different organisms ranging from algae to humans, and on different kinds of RNAs, such as 

histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. 

These modifications may lead to different outcomes, such as increasing RNA decay, promoting or 

inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed 

that such modifications can be RNA sequence-specific and subjected to temporal or spatial 

regulation in development. RNA tailing and its outcomes have been associated with human 

diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation 

and discuss the future prospects in this research area.
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Nontemplated addition of nucleotides to RNA 3′ ends has long been known, with the 

addition of CCA to the 3′ ends of tRNAs and mRNA polyadenylation being the earliest 

described examples [1,2]. Relatively more recently, studies reveal that nontemplated 3′ 
nucleotide addition to eukaryotic RNAs is a more widespread phenomenon. Conserved 

posttranscriptional processes result in 3′ uridylation or adenylation of histone mRNAs, 
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mRNA fragments, tRNAs, rRNAs, U6 snRNA, and mature small RNAs and their precursors, 

and these modifications are often associated with functional outcomes [3,4]. Here we discuss 

the evidence that reveals the functions of RNA 3′ uridylation and adenylation, and explore 

instances where the role of these modifications is currently less clear.

1 3′ uridylation affects RNA synthesis, degradation and function

1.1 Uridylation of histone mRNAs

Histone mRNAs are the only known metazoan mRNAs that are not polyadenylated, ending 

instead in a conserved stem-loop sequence. The stem-loop-binding protein (SLBP) 

participates in nearly all aspects of histone mRNA metabolism, such as pre-mRNA 

processing [5], mRNA export [6], translation [7,8], and degradation [9]. Histone mRNAs are 

rapidly degraded at the end of the S phase of the cell cycle or when DNA replication is 

inhibited [10,11].

In human cells, histone mRNA degradation begins with the assembly of a complex of 

factors, including SLBP and Exoribonuclease 1 (Eri1), on the 3′ end of the mRNA, 

resulting in the addition of uridine to the 3′ end of the histone mRNA. Following the 

oligouridylation event, the heteroheptameric Lsm1–7 complex binds to the oligo(U) tail to 

trigger subsequent histone mRNA degradation via both 5′–3′ and 3′–5′ RNA decay 

pathways [10,12]. The C-terminal extension of Lsm4 interacts directly with the 3′ end of 

the histone mRNP and this interaction is required for efficient histone mRNA degradation 

[13]. ZCCHC11 is the terminal uridylyl transferase responsible for human histone mRNA 

uridylation following inhibition or completion of DNA replication [14] (Table 1 and Figure 

1). Eri1, as an exonuclease, acts on oligouridylated histone mRNAs and trims histone 

mRNA 3′ ends into the stem-loop [15]. Recently, deep sequencing revealed that histone 

mRNAs are degraded 3′–5′ in two phases: degradation into the stem loop by Eri1 followed 

by degradation by the exosome-associated 3′–5′ exonuclease PM/Scl-100 [16]. If the 

nuclease stalls during either phase of the degradation process, further degradation is primed 

by re-uridylation. Multiple oligouridylation events may be required for 3′–5′ degradation of 

histone mRNAs on polyribosomes [16].

1.2 Uridylation of microRNA (miRNA)-directed 5′ cleavage products

By regulating gene expression in a sequence-specific manner, miRNAs play important roles 

in numerous biological processes. miRNAs repress target gene expression through 

translational inhibition as well as RNA degradation in both plants and animals, but the 

mechanisms of miRNA-triggered RNA degradation are largely different in plants and 

animals [17,18]. In animals, miRNAs trigger deadenylation followed by decapping and 

exonucleolytic degradation of target mRNAs [19]. Nearly all plant miRNAs and very few 

animal or animal viral miRNAs guide the precise endonucleolytic cleavage of target 

transcripts [20–22]. The 3′ cleavage fragments are degraded in the of 5′–3′ direction by the 

exonuclease XRN4 in Arabidopsis [23], but degradation of the cleaved 5′ mRNA fragments 

is more complex and entails 3′ uridylation [24].
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The presence of an oligo(U) signature posttranscriptionally added to miRNA-directed 5′ 
cleavage products in species as diverse as Arabidopsis, mouse, and Epstein-Barr virus 

implies that uridylation has general importance [24]. In mammalian cell extracts, uridylation 

of the 3′ end of an RNA promotes their decapping relative to an RNA lacking the uridine 

tract [25]. In addition to promoting decapping, the nontemplated oligo(U) tail prevents 3′–5′ 
exonucleolytic decay to ensure 5′–3′ directional degradation [25]. In Arabidopsis, HESO1 

uridylates the 5′ fragments resulting from miRNA-guided cleavage of target RNAs to 

trigger their degradation, and AGO1, the effector protein of miRNAs, is associated with 

HESO1 in vivo [26] (Table 1 and Figure 2B).

1.3 Uridylation of snRNAs

The U6 small nuclear RNA (snRNA) is a member of the evolutionarily conserved snRNA 

class within the eukaryotic spliceosome. Mammalian U6 snRNA is heterogeneous in size 

due to nontemplated 3′ uridylation [27]. A major form contains five terminal U residues and 

a 2′, 3′ cyclic phosphate; minor forms contain up to 12 U residues and a 3′ OH [27,28]. 

These forms probably represent the dynamic nature of the U6 3′ end in the spliceosome, as 

these forms are all present in the U4/U5/U6 tri-snRNPs [28], and are the result of two 

opposing enzymatic activities that elongate and trim the 3′ end. U6-TUTase is a terminal 

uridylyl transferase that posttranscriptionally 3′ oligouridylates U6 snRNA [29,30], whereas 

USB1 is a distributive 3′–5′ exoribonuclease that posttranscriptionally removes uridine and 

adenosine nucleotides from the 3′ end of U6 snRNA [31]. As the length of the U tail as well 

as the presence or absence of the 2′, 3′ cyclic phosphate modulates the affinity of U6 to 

RNA binding proteins such as La and the heteroheptameric Lsm2–8 complex [32], both of 

which associate with U6 during snRNP maturation and recycling, the uridylation of U6 

RNA is considered an integral process in U6 RNA metabolism and splicing.

1.4 Uridylation of small RNAs

3′ uridylation of mature small RNAs was first found in plants. Arabidopsis miRNAs or 

small interfering RNAs (siRNAs) are methylated on the 2′ OH of the 3′ terminal ribose by 

the methyltransferase HUA ENHANCER 1 (HEN1) [33,34]. In hen1 mutants, both miRNAs 

and siRNAs undergo 3′ truncation and 3′ uridylation, leading to their decline in abundance 

[35]. Later, 3′ uridylation was found to also occur to siRNAs and/or PIWI-interacting RNAs 

(piRNAs) in hen1 mutant animals, such as Tetrahymena [36]. C. elegans [37–39], 

Drosophila [40,41], zebra fish [42] and mouse [43]. Small RNA 3′ uridylation is not 

restricted to hen1 mutants; it occurs in wild type cells at a lower frequency. Studies using 

high throughput sequencing to profile small RNAs revealed 3′ nontemplated nucleotide 

addition, mainly uridylation and adenylation, to mature miRNAs from viruses [44], 

Chlamydomonas reinhardtii [45], Drosophila [46], mouse [47], and human cells [48].

In recent years, an increasing number of terminal nucleotidyl transferases (TUTases) that 

uridylate small RNAs have been identified. In humans, Zcchc11 (TUT4) uridylates the 

cytokine-targeting miRNA miR-26b; the uridylation appears to attenuate the target 

repression activity of this miRNA such that Zcchc11 promotes the expression of cytokine 

genes [49] (Table 1 and Figure 1). Zcchc6 (TUT7) and Zcchc11 (TUT4) uridylate a small set 

of miRNAs with a common sequence motif [48] (Table 1 and Figure 1). Depletion of these 
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TUTases in cultured human cells leads to a reduction in 3′ monouridylation, and 

interestingly, a concomitant increase in nontemplated 3′ monoadenylation of these 

miRNAs, without affecting their abundance [48,50]. In C. elegans, the nucleotidyl 

transferase CDE-1 uridylates siRNAs bound by the argonaute protein CSR-1 to prevent their 

over accumulation and loading into other argonaute proteins; CDE-1 is essential for proper 

meiotic and mitotic chromosome segregation [51] (Table 1). MUT68, a nucleotidyl 

transferase in the alga Chlamydomonas reinhardtii contributes to the presence of 

nontemplated uridine residues at the 3′ ends of small RNAs and loss of function in MUT68 
results in elevated miRNA and siRNA levels [45] (Table 1). Arabidopsis HEN1 

SUPPRESSOR1 (HESO1) is a nucleotidyl transferase responsible for most of the small 

RNA uridylation in hen1 mutants. HESO1 prefers UTP as the substrate nucleotide, and is 

completely inhibited by 2′-O-methylation in the substrate RNA [52,53]. Loss of function in 

HESO1 leads to increased miRNA accumulation in hen1 mutants [52,53]. UTP: RNA 

uridylyltransferase (URT1) is a functional paralog of HESO1 that is responsible for the 

remainder of small RNA uridylation in hen1 heso1 mutants [54]. URT1 and HESO1 have 

distinct substrate preferences in vitro and act cooperatively to tail different forms of the 

same miRNAs in vivo [54,55] (Table 1 and Figure 2).

A surprising finding is that during the regulation of a target, the small RNA itself may be 

subjected to regulation by the target, which results in the posttranscriptional addition of a 

nontemplated uridine to the miRNA [56]. This indicates that small RNA regulatory 

pathways may have built-in feedback regulation. In Drosophila, the introduction of artificial 

RNAs with a high degree of sequence complementarity to miRNAs leads to the 3′ trimming 

and 3′ tailing of the cognate miRNAs [57].

1.5 Uridylation of pre-miRNAs

The precursors to the let-7 miRNA were first found to undergo uridylation [58]. Later, high 

throughput sequencing revealed that pre-miRNA 3′ uridylation is not limited to pre-let-7 

and occurs in a developmentally regulated manner [58–62]. Studies with pre-let-7 show that 

the outcomes of pre-miRNA uridylation are two fold: triggering pre-miRNA degradation or 

promoting their processing into miRNAs (discussed below).

In human embryonic stem cells, TUT4, a nucleotidyl transferase, acts in concert with the 

RNA-binding protein Lin28 to uridylate pre-let-7 [58,62]. After the nuclear export of pre-

let-7, Lin28 recognizes a sequence motif in the RNA loop and recruits TUT4 to add an 

oligo(U) tail of 10–30 nt to the 3′ terminus of pre-let-7. The tail renders pre-let-7 resistant 

to Dicer processing and may facilitate its decay [58,62] (Table 1 and Figure 1). The related 

nucleotidyl transferase TUT7 acts redundantly with TUT4 in this process–simultaneous 

knockdown of TUT7 and TUT4 leads to increased let-7 levels in embryonic stem cells [63]. 

The E3 ligase Trim25 binds to the conserved terminal loop of pre-let-7 and acts as an RNA-

specific cofactor to activate TUT4 for more efficient Lin28-mediated uridylation [64]. 

Degradation of oligouridylated pre-let-7 requires the 3′–5′ exonuclease Dis3L2, which 

prefers U-ending RNAs as substrates [65–68].

However, in differentiated cells, pre-let-7 uridylation has a different outcome. In mouse P19 

teratocarcinoma cells, which stop expressing Lin28 upon in vitro differentiation, profiling of 
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pre-miRNAs revealed Lin28-dependent pre-let-7 oligouridylation and Lin28-independent 

pre-let-7 monouridylation [59]. In human somatic cells, Lin28 is not expressed and the 

nucleotidyl transferases TUT7, TUT4, and TUT2 monouridylate pre-let-7; this converts pre-

let-7 with a 1 nt 3′ overhang to a better Dicer substrate with a 2 nt 3′ overhang and thus 

enhances dicer processing [69] (Table 1 and Figure 1).

Related to the function of triggering degradation, pre-miRNA uridylation also plays a role in 

pre-miRNA quality control. High throughput sequencing of pre-miRNAs revealed 

oligouridylation of 3′ resected pre-let-7, suggesting that degradation intermediates of pre-

let-7 need to be uridylated for further degradation [59]. In TUT4/TUT7-depleted cells, 

argonaute-bound pre-miR-106b and pre-miR-18a had a higher fraction of species with blunt 

or 5′ overhangs, which are likely to be degradation intermediates [60] (Table 1 and Figure 

1). This suggests that uridylation helps to turnover argonaute-bound, non-productive pre-

miRNAs. High throughput sequencing revealed that mirtron pre-miRNAs, which are 

generated from intron splicing rather than Drosha processing, are preferentially uridylated as 

compared to canonical pre-miRNAs [70,71]. Two recent studies identified the Drosophila 
nucleotidyl transferase Tailor as the enzyme that uridylates mirtron pre-miRNAs [72,73]. 

The specificity of Tailor for mirtron pre-miRNAs could be explained by the preference for a 

3′ G in the substrate RNA by this enzyme, as introns released from splicing should end with 

a 3′G [72,73] (Table 1).

2 3′ Adenylation affects RNA synthesis and degradation

2.1 Adenylation of miRNAs

Adenylation of miRNAs was first discovered in hen1 mutants in Arabidopsis [35], but the 

impact of miRNA adenylation was unclear. In animals, uridylation and adenylation are the 

two most frequent miRNA 3′ modifications as revealed by high throughput sequencing 

[46,74]. In vertebrates, many small RNAs can be maternally deposited by the mother or 

expressed in the zygote to regulate early embryonic development. Profiling of small RNAs 

during early development in zebra fish revealed widespread miRNA 3′ uridylation and 3′ 
adenylation, and such modifications were found to undergo developmental stage-specific 

regulation [75]. Profiling of small RNAs in cells and exosomes (secreted vesicles from cells) 

revealed the enrichment of 3′ adenylation in cells and 3′ uridylation in exosomes [76].

Adenylation of miR-122 has a stabilizing effect on this miRNA. GLD-2 is a cytoplasmic, 

non-canonical poly(A) polymerase responsible for the 3′ terminal monoadenylation of 

miR-122 and other miRNAs in mouse livers and human fibroblast cells [77,78]. In GLD2 

knockout mice, miR-122 levels were selectively reduced, suggesting that 3′ adenylation 

stabilizes the miRNA [77]. In human fibroblasts, miR-122 is also monoadenylated and 

stabilized by GLD2 [78], and the hepatitis B virus may inhibit the process of miR-122 

adenylation [79]. Adenylation of miRNAs may have a widespread functional impact in 

humans, because miRNAs in a variety of human cells are modified by adenylation 

[77,78,80,81].

But the stabilizing effect of 3′ adenylation on miR-122 may not be extrapolated to other 

miRNAs. Another study examined the effects of GLD-2 knockdown in human THP-1 cells 
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(GLD-2 was referred to as PAPD4 in this study) and showed that GLD-2 is responsible for 

the 3′ adenylation of many miRNAs [46] (Table 1 and Figure 1). However, the reduction in 

3′ adenylation did not correlate with increased miRNA levels; instead it correlated with 

reduced expression of miRNA target genes, suggesting that adenylation reduced miRNA 

activity [46].

A study on human miR-21, an oncogenic miRNA implicated in numerous human diseases, 

concluded that adenylation of miR-21 leads to its destabilization [82]. In human THP-1 

cells, 3′ adenylation of miR-21 is caused by the non-canonical poly(A) polymerase PAPD5 

rather than GLD-2. Knocking down either PAPD5 or the exonuclease PARN led to increased 

miR-21 levels and reduced miR-21 species with 3′ trimming, suggesting that PAPD5-

mediated adenylation of miR-21 triggers 3′–5′ digestion of the miRNA by PARN [82] 

(Table 1 and Figure 1).

2.2 Adenylation of mRNA

In eukaryotic cells, the cotranscriptional addition of a poly(A) tail to the 3′ ends of mRNA 

molecules is nearly universal; the poly(A) tail protects mRNAs from degradation and 

facilitates their translation from yeast to higher eukaryotes [1]. But in recent years, it was 

found that in some cases, polyadenylation leads to the degradation of mRNAs. For example, 

in human cells, the β-globin pre-mRNA is cotranscriptionally cleaved, oligoadenylated, and 

degraded by the 3′–5′ nuclease exosome [83]. The mouse serum albumin (MSA) gene also 

undergoes cotranscriptional cleavage of the pre-mRNA near the 3′ end of the gene, and 

some of the transcripts are also oligoadenylated and degraded by the exosome [83]. Pre-

mRNA degradation may represent a secondary role for RNA adenylation in mammals. In 

Chlamydomonas, MUT68 oligoadenylates 5′ RNA fragments generated by small RNA-

mediated cleavage and leads to their degradation by a 3′–5′ exonuclease, most likely the 

exosome [84].

2.3 Adenylation of rRNAs

Although rRNAs are not produced by RNA polymerase II and thus are not subjected to 

cotranscriptional polyadenylation as do mRNAs, in yeast, a small fraction of precursor 

rRNAs is posttranscriptionally modified at their 3′ ends by the addition of a poly(A) tail in 
vivo [85,86]. As the levels of polyadenylated precursor rRNAs dramatically increase when 

Rrp6p, a component of the nuclear exosome, is mutated, rRNA polyadenylation is thought to 

trigger exosome-mediated degradation as a surveillance mechanism to remove improperly 

processed rRNAs [85]. The 5′-exoribonuclease Rat1p and its associated protein Rai1p are 

also responsible for the degradation of poly(A)+ pre-rRNAs [86]. 5-fluorouracil (5FU), a 

chemotherapeutic compound for the treatment of solid tumors, was found to inhibit this 

exosome-dependent surveillance pathway that degrades polyadenylated precursor rRNAs 

[87].

3 Specificity and regulation of RNA uridylation and adenylation

As discussed above, uridylation or adenylation of RNAs is a widespread phenomenon found 

for different RNA species and in many organisms, but these posttranscriptional processes 
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exhibit specificity and undergo regulation. For example, miRNA 3′ uridylation and 

adenylation exhibit sequence specificity—some miRNAs are predominantly adenylated 

while others are predominantly uridylated [79,88]. This is consistent with the fact that some 

nucleotidyl transferases (such as Arabidopsis URT1 and HESO1 and Drosophila Tailor) 

exhibit a preference for the 3′ nucleotide in its substrate RNA [55,72,73] (Table 1 and 

Figure 2). RNA-binding proteins also contribute to the recruitment of nucleotidyl 

transferases to specific substrates as discussed above [62,64]. miRNA 3′ tailing appears to 

undergo developmental regulation. For example, during early development in Drosophila, 

the levels of uridylated miRNAs are higher, but in mature tissues, the levels of adenylated 

miRNAs are higher [89]. Patterns of uridylation and/or adenylation of miRNAs in healthy 

tissues are different from cancerous tissues [79].

4 Conclusions and perspective

Uridylation and/or adenylation are universal and conserved RNA modifications that have 

major impacts on the degradation, synthesis and mode of action of RNAs. Given the diverse 

types of modifications, such as mono- and oligo-uridylation and mono- and oligo-

adenylation, and the diverse RNA substrates that undergo the modifications, it is hard to 

generalize on the functional outcomes of the modifications. A common theme is perhaps that 

a stretch of homo-oligomeric nucleotides, either A or U, tends to lead to RNA degradation 

by allowing exonucleases to overcome RNA secondary structures or protection by RNA 

binding proteins (ribosome, argonaute, etc.). Monouridylation or monoadenylation may 

impart different outcomes on different RNAs. Key to RNA uridylation or adenylation are 

nucleotidyl transferases, whose preference for UTP or ATP dictates the nature of the tail to 

be added and whose processivity may determine whether one or a number of nucleotides are 

added. Plant and animal genomes encode multiple nucleotidyl transferases [55,62] (Figure 

3), many of which have not been characterized. For example, there are 10 putative 

nucleotidyl transferases in Arabidopsis (Figure 3), among which only HESO1 and URT1 

have been studied [52–55,90] (Table 1 and Figure 2). Studying the enzymatic properties and 

biological functions of nucleotidyl transferases will lead to a better understanding of 3′ 
tailing in RNA metabolism.
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Figure 1. 
A summary of the substrates and outcomes of RNA uridylation and adenylation in humans.
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Figure 2. 
A summary of the substrates and outcomes of RNA uridylation in Arabidopsis.
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Figure 3. 
A phylogenetic tree of the nucleotidyl transferase protein (NTP) family from Arabidopsis 

thaliana (At), Oryza sativa (Os), Amborella trichopoda (Am), Medicago truncatula (Mt), 

Populus trichocarpa (Pt), Selaginella moellendorffii (Sm), Physcomitrella patens (Pp) and 

Chlamydomonas reinhardtii (Cr). The potential NTPs from various organisms were retrieved 

by searches using the PFam nucleotidyl transferase domain (PF01909) [91] as the query 

against the protein databases for these organisms at Phytozome (http://

phytozome.jgi.doe.gov). The searches were performed with the HMMER3 pipeline [92,93]. 

The full-length NTP protein sequences were aligned by CLUSTAL X 2.0 [94], and the 
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alignments were used to generate an unrooted phylogenetic tree with MEGA 5.1 [95], using 

the p-distance method and a bootstrap value of 1,000. Evolutionary distance is indicated by 

the scale bar inside the figure. The NTPs used in the analysis are listed in Supplemental 

Table S1.
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