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Coastal areas are important habitats and contain large human populations. It is estimated

that 20 million people reside along coasts below normal high tide levels and over 200 million

people are vulnerable to coastal flooding during storms. Many communities are currently

protected from flooding by beaches that are sometimes modified with anthropogenic (artifi-

cial) berms, so understanding and characterizing beach and berm response to storm waves is

critical to adapting and mitigating climate change effects. Beach dynamics are challenging

to model because of the complexity of wave dynamics, sediment transport and bed profile

adjustments.

This dissertation aims to advance the state of the art in coastal flood prediction by improving

modeling of beach dynamics over times scales of hours, when a combination of high tides,

storm surge and waves from a storm event can threaten flooding. It is envisioned that with

advances in laser scanning technology, beach profiles can be rapidly assessed to provide initial

conditions to swash zone models, but improvements in mechanistic modeling are needed to

predict whether a beach will be eroded and overtopped, and the extent of flooding, especially

when anthropogenic beach berms are used to strengthen coastal flood defenses.

This dissertation proposes a beach model based on vertically averaged, multi-phase flow
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equations solved by a shock-capturing finite volume scheme. The model domain corresponds

to the the so-called swash zone, the region between the shoreline and the inner surf zone

where a layer-averaged model based on the assumption of hydrostatic pressure has been found

to be a good approximation of system dynamics. Further offshore at intermediate to deep

water depths, spectral wave models are routinely applied to describe wave transformations

and output can be used as a boundary condition for the beach model.

The main contributions of this dissertation include new shock-capturing numerical methods

for solving layer-averaged multi-phase flow equations, original experiments characterizing

anthropogenic berm erosion and overtopping at field scale, and numerical modeling of beach

and berm erosion aimed at measuring the predictive skill of the proposed model, developing

an improved process understanding, and assessing strengths and weaknesses of the model.
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Chapter 1

Introduction

1.1 Background and Motivation

Coastal areas are important habitats and contain large human populations [Nicholls, 2011],

and people are increasingly migrating towards coastal cities [Hanson et al., 2011]. Hanson

et al. [2011] report that 13 out of the 20 most populated cities in the world are port cities as

of 2011. These trends raise serious concerns about the vulnerability of coastal communities

to flooding. It is estimated that 20 million people reside along coasts below normal high tide

levels, and over 200 million people are vulnerable to coastal flooding during storms [Nicholls,

2011].

There is an extensive and growing body of literature indicating that a combination of climate-

induced sea level rise, storm surge, high tides, and waves will result in more frequent and

damaging storms in coming decades [Nicholls, 2011, Tebaldi and Zervas, 2012]. California

is among the most sensitive areas in the United States because of significant development

within 1 m of present-day high tides [Strauss et al., 2012]. Based on sea level rise projections

of 1 − 1.4 meters by 2100 [Cayan and et.al., 2009], urbanized lowlands valued at over 100
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billion dollars will be threatened [Heberger and et.al., 2009]. In many coastal cities in

southern California, developed coastal lowlands are guarded from flooding by beaches and

therefore beach erosion and overtopping from a combination of high tides and waves is a

major concern [Schubert et al., 2014]. Furthermore, southern California beaches attract

millions of visitors and tourists each year, so erosion represents a threat to local economies

[Schubert et al., 2014].

Anthropogenic (artificial) berms/dunes are in use internationally to enhance the natural abil-

ity of beaches to withstand overtopping [Armaroli et al., 2012]. They are built on a seasonal

basis or in anticipation of a hazardous event [Armaroli et al., 2012, Gallien et al., 2015]. In

southern California, anthropogenic berms are used in beach cities like Venice Beach, Long

Beach, Seal Beach and Newport Beach [Schubert et al., 2014, Gallien et al., 2015]. For

example, berms used to protect Newport Beach, California are shown in Fig. 1.1. New-

port Beach has experienced episodic dune overtopping and damaging flooding on numerous

occasions[Gallien et al., 2011].

Figure 1.1: Temporary sand berm constructed at Newport Beach in 2010.

The growing threat of coastal flooding, and the vulnerability of coastal lowands protected

by beaches, motivates improved management of beaches and improved tools for forecasting

flood impacts so communities can take steps to mitigate impacts, including use of early

warning systems and targeted flood preparedness campaigns [Harley and Ciavola, 2013]. In

southern California, the Coastal Data Information Program (CDIP) provides a forecast of

wave heights but presently does not offer a prediction of localized flooding that accounts

for beach erosion[Gallien et al., 2013]. The fact is that such a prediction calls for a suite of

models that account for tide and surge heights, wave heights, beach erosion and overtopping,
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overland flow, and urban drainage; it is an ambitious task. This dissertation is focused on

modeling some of the dynamics that occur on beaches as a result of wave uprush, downrush,

and mobile sediment vulnerable to erosion and transport.

Empirical models have been developed to predict the overtopping volume associated with

wave runup, which is important for coastal flooding [Van Der Meer and Janssen, 1995, Reis

et al., 2008]. For example, with the aid of an empirical overtopping model, Gallien et al.

[2014] were successful predicting urban flooding in Newport Beach caused by a long-period

swell that occurred at a high tide. However, analysis of overtopping depends on the level

of freeboard which varies as the beach is eroded by waves. Hence, empirical models are

limited to instances where the beach profile can be assumed to be rigid. This limitation

can be overcome with one of several types of numerical models that offer different strengths

and weaknesses. Numerical methods can be classified into three main groups: Navier-Stokes

equations, Boussinesq equations and Nonlinear Shallow Water Equations (NLSWE) (see

Fig. 1.2).

Navier-Stokes models include those based on Reynolds Averaged Navier Stokes (RANS),

and Large Eddie Simulation (LES). For instance, COBRAS (Cornell Breaking Waves and

Structures) is a 2D Reynolds Averaged Navier-Stokes (RANS) approach and has been applied

to regular wave overtopping of a porous structure [Liu et al., 1999]. Gotoh [Gotoh et al., 2004]

has applied a Smooth Particle Hydrodynamics (SPH) with Large Eddy Simulation (LES)

to study overtopping and non-overtopping conditions for partially submerged breakwater,

but only a few seconds of 12,000 particle simulations were run. While full Navier-Stokes

equations can model complicated hydrodynamics and resolve some limitations associated

with breaking wave and wave structure simulations [Losada et al., 2008], they are still too

computationally demanding for field scale simulation and practical problems.

Another approach is to solve Boussinesq equations, which are depth-integrated equations that

retain the ability to account for wave dispersion caused by non-hydrostatic effects [Peregrine,
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1967]. This approach is valid only where the ratio of the depth to deep water wave length

is less than 0.2; and when nonlinearity and dispersion effects are of similar order [Abbott

et al., 1978, Tonelli and Petti, 2009], so they are not good candidates for mid to inner surf

zone modeling, where the nonlinearity is dominant.

A third approach is to solve non-linear shallow-water equations (NLSWE) with result from

depth-averaging the Navier Stokes equations under the assumption of hydrostatic pressure.

This approach is valid when the horizontal length scale dominates the vertical length scale;

in other words, vertical velocity is neglected in comparison to horizontal velocity. The hy-

drostatic pressure distribution assumption may be violated when waves break, but NLSWEs

have nevertheless been proven to offer a good approximation of flow near the shoreline (in

the mid to inner surf zone) [Brocchini and Dodd, 2008]. Additionally, numerous models

based on NLSWEs have been developed to predict overtopping of beaches and hardened

coastal defenses [Hubbard and Dodd, 2002, Hu et al., 2000]. For instance, the shallow-water

model AMAZON [Hu et al., 2000] has been successfully applied to simulate overtopping of

coastal structures. Models based on NLSWE strike an attractive balance between computa-

tional cost and descriptive ability. Three dimensional models require an order of magnitude

more computational cells to resolve the vertical dimension, roughly, and Boussinesq models

require an order of magnitude smaller time step, roughly, for stability in the presence of

high-order spatial derivatives that are used to model wave dispersion. Irrespective of the

flow model formulation, an empirical law describing sediment entrainment must be used to

simultaneously predict flow, sediment transport, and changes in sediment height and there

are many ways to mix and match flow and sediment transport models Wu et al. [2002].

This dissertation is inspired by a class of models developed for debris flows characterized

by hyperconcentrated levels of suspended sediment and rapid changes in sediment height.

These so-called Debris Flow Models (DFMs) are derived by layer-averaging multi-phase flow

equations under the assumption of hydrostatic pressure and instantaneous energetics sed-
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iment transport models, and the governing equations are solved by shock-capturing finite

volume schemes that do an excellent job of resolving sharp discontinuities in flow (e.g., hy-

draulic jumps) and sediment (e.g., step change in sediment height or concentration) [Capart

and Young, 1998, Fraccarollo et al., 2003]. The swash zone is characterized by bores, tran-

scritical flow, and wetting drying fronts that cycle repeatedly in a dynamic way and cause

localized spikes in sediment concentration and transport [Hubbard and Dodd, 2002, Briganti

and Dodd, 2009a,b, Brocchini and Baldock, 2008]. Hence, swash zone modeling appears to

be an excellent application for DFMs yet this possibility has not been previously explored.

This dissertation presents improved numerical methods for solving layer-averaged models

of flow, sediment transport, and bed change (Chapter 2), original experiments to study

anthropogenic berm erosion in southern California (Chapter 3), and proposes a multi-phase

shock-capturing (MPSC) model of swash zone dynamics to predict beach and berm erosion

and possible overtopping during storm events (Chapter 4). Experimental data presented in

Chapter 3 are used to evaluate the model presented in Chapter 4 based on numerical methods

presented in Chapter 2. Chapter 2 and 3 were previously published as research papers and

Chapter 4 was recently submitted to a journal for review and possible publication. This

material was reformatted to meet university requirements, but the content is unchanged.

Chapter 5 presents a 2D form of the MPSC model, and Chapter 6 presents conclusions. It

is noted that the berm erosion experiments were a collaborative effort of several members

of the Sanders Lab, including myself, and my leadership role was in the area of numerical

model development which is the main focus of this dissertation.

To frame the practical goals of this dissertation, Fig. 1.2 shows where the proposed MPSC

model is applied on a typical beach and how it can be coupled to an operational wave model

such as Simulating Waves in the Nearshore (SWAN) [Booij et al., 1999]. SWAN predicts

the transformation of the wave energy spectrum from an offshore location, where waves are

measured by an operational buoy, into the nearshore accounting for the effect of variable
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Figure 1.2: Range of applicability of numerical models.

bathymetry, wave breaking, bottom friction, and so on. At a point in the surf zone, the wave

spectrum predicted by SWAN can be transformed into a stochastic time series representative

of irregular wave action at that depth. In turn, this time series forces the MPSC model

through its offshore boundary condition giving rise to swash zone predictions that vary in

space and time. It is envisioned that with advances in remote sensing technologies, in the

near future laser scanning of beaches will become common in advance of storms to check

for vulnerabilities and to initialize predictive models. Hence, it is envisioned that the initial

conditions required by the MPSC model will be obtained from laser scanning data and the

boundary conditions will be obtained from SWAN predictions based on real-time wave data.

The output of the MPSC model, in turn, can be used to predict coastal flooding using a

model based on the shallow-water equations [Gallien et al., 2014]. Modeling systems of

this type could offer coastal communities invaluable data regarding imminent flood impacts,

helping to improve flood preparedness and response and thus minimize impacts.
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Chapter 2

The LHLLC Scheme for Two-layer

and Two-phase Flows on a Mobile

Bed

This Chapter has been published in Advances Water Resources. Citation: Majd, M.S., and

Sanders,B.F. (2014), The LHLLC scheme for Two-Layer and Two-Phase transcritical flows

over a mobile bed with avalanching, wetting and drying, Advances in Water Resources, 67,

16–31, http://dx.doi.org/10.1016/j.advwatres.2014.02.002.
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2.1 Introduction

Godunov-based models that solve a Riemann problem for flow and sediment fluxes under

the assumption of a hydrostatic pressure distribution have been referred to as Debris Flow

Models (DFMs) in numerous recent numerical modeling studies of hydromorphodynamics,

e.g., [Fraccarollo and Capart, 2002, Fraccarollo et al., 2003, Rosatti and Fraccarollo, 2006,

Armanini et al., 2009, Soares-Frazao and Zech, 2011]. DFMs form a hyperbolic system

of conservation equations similar to the well-known shallow-water equations (SWEs), but

include an additional transport equation for sediment and appropriate closures for turbulence

and sediment mobility. Importantly, because the horizontal momentum balance is coupled

to the sediment concentration, DFMs can be can be applied to hyper-concentrated flows

including granular flows, mud flows and flows with discontinuities (shocks) in the flow and

sediment heights [Capart and Young, 1998, Fraccarollo et al., 2003]. DFMs contrast with the

Saint-Venant-Exner (SVE) approach whereby the fluid momentum balance assumes clean

water, and thus the fluid momentum balance is decoupled from sediment concentrations

[Goutire et al., 2008]. This limits the SVE approach to low sediment concentration regimes

[Cao et al., 2002, Hudson and Sweby, 2003, Garegnani et al., 2012].

Figure 2.1: Left panel schematic sketch for Two-Phase approach, right panel schematic sketch for Two-Layer
approach.

Alternative DFM formulations have been presented which differ in their assumption of layer-

ing. The Two-Phase Approach assumes a mobile, fluidized sediment mixture with a dynamic

volumetric sediment concentration c, moving at a uniform velocity um, with a thickness hm
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and over an erodible sediment bed with an elevation of zb, as shown in Fig. 2.1. [Rosatti

and Fraccarollo, 2006, Cao et al., 2002, Wu and Wang, 2008, Rosatti et al., 2008, Armanini

et al., 2009, Garegnani et al., 2012, Wu et al., 2002]. Defining the water surface elevation

as zw = hm + zb, this results in the following dependent variables which describe the flow

Rosatti and Fraccarollo [2006],

V2P = ( zw zb um c ) (2.1)

Secondly, the Two-Layer Approach assumes two mobile layers above an erodible sediment

bed including a sediment mixture layer of thickness hm and velocity um, and a clear water

layer with thickness hw and velocity uw. Numerous two-layer formulations appear in the

literature with alternative approximations with respect to the vertical distribution of sedi-

ment concentration and horizontal velocity [Chen and Peng, 2006a, Chen et al., 2007, Zech

et al., 2008, Spinewine and Zech, 2002, Zech et al., 2009], including 2D models with layer

velocities that differ in both magnitude and direction [Swartenbroekx et al., 2013]. A com-

mon assumption is um=uw [Fraccarollo et al., 2003, Spinewine and Zech, 2002], and defining

zm = zb + hm, the resulting dependent variables are [Fraccarollo et al., 2003],

V2L = ( zw zm zb um ) (2.2)

DFMs clearly offer advantages over SVE approaches with the ability to resolve hyper-

concentrated sediment flows, e.g., [Swartenbroekx et al., 2013], but little research has focused

on the relative advantages and limitations of alternative DFM formulations. This informa-

tion is valuable for assessing whether the uncertainty of unknown parameters and added

computational demands of more complex models are overcome by improved predictive skill,

an assessment that will surely depend on available site data and be influenced by numerous

other factors such as computational resources.

This study focuses on Two-Phase and Two-Layer models that lead to four dependent vari-
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ables defined by V2P and V2L, respectively. The former allows for a dynamically adjusting

sediment concentration, and the latter for a dynamically adjusting sediment layer thickness

of an assumed, constant, sediment concentration. Conceptually, the former matches the case

where suspended load dominates the total sediment load, and the latter matches the case

where bed load dominates the total load, but as will be shown later, the results of one can

be recovered from the other for this special case where we assume um = uw.

DFMs are cast in a form that is readily solved by Godunov-type finite volume methods

(shock-capturing schemes), which have been proven robust for SWE applications such as

dam-break, channel and overland flow problems with shocks [Fraccarollo and Capart, 2002,

Fraccarollo et al., 2003]. However, the Riemann problem associated with the DFM is con-

siderably more complex than for SWE [Fraccarollo and Capart, 2002], motivating numerous

numerical modeling studies aimed at striking a good balance between stability, accuracy, and

computational efficiency. Two widely used approximate Riemann solvers include the Harten,

Lax and van Leer (HLL) scheme [Harten et al., 1983] and the Roe scheme [Roe, 1981], and

both have been adapted for DFMs. Use of HLL has proven more common [Fraccarollo et al.,

2003, Armanini et al., 2009, Chen et al., 2007, Chen and Peng, 2006a, Wu and Wang, 2008,

Wu et al., 2002, Murillo and Garcia-Navarro, 2012], but there has also been work with the

Roe solver [Rosatti et al., 2008, Rosatti and Begnudelli, 2010]. An appealing aspect of HLL-

type approach [Harten et al., 1983, Fraccarollo and Toro, 1995] is that no special treatment

(entropy fix) is needed to model critical flow points [Toro, 1992, Kuiry et al., 2011, Chen

et al., 2007]. Godunov-type DFMs have also been extended to two dimensions to model

more complex flow scenarios [Chen and Peng, 2006a, Armanini et al., 2009, Rosatti and

Begnudelli, 2010, Wu et al., 2002, Murillo and Garcia-Navarro, 2012, Swartenbroekx et al.,

2013].

The purpose of this paper is two-fold: (a) to present a common form of Two-Phase and

Two-Layer DFMs in a unified way, with a consistent set of notation, to synthesize previous
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Godunov-based DFM research and create a foundation for this and future studies aimed at

developing improved computational models of shallow hydromorphodynamics, and (b) to

present an improved computational scheme that is applicable to either the Two-Phase or

Two-Layer DFM, as formulated here. The computational scheme is of the Godunov-type and

builds on the LHLL model presented by Fraccarollo et al. [Fraccarollo et al., 2003], where the

model name, LHLL=L+HLL, indicates use of lateralization (L) to discretize bottom slope

terms in the momentum equation. LHLL is appealing because of its simplicity and efficiency,

but it is overly diffusive with respect to sediment predictions ?, and does not preserve

stationary solutions involving wet/dry interfaces. The proposed scheme overcomes these

limitations and is named LHLLC=L+HLL+C, where the L again indicates lateralization

[Fraccarollo et al., 2003] and the C indicates use of the contact wave speed, in addition to

gravity wave speeds, for the computation of sediment fluxes. Goutiere et al. [Goutire et al.,

2008] successfully used a similar approach, i.e., HLL+C, for the SVE equations. Finally, the

LHLLC model presented here incorporates an avalanching scheme that activates when slopes

steepen beyond the angle of stability, and thus gravitational slumping occurs. Avalanching

can be a significant contributor to sediment movement, such as head cut migration and

the collapse of steep banks carved by incisive channel currents. Importantly, this form of

transport cannot be described by a standard DFM model. The result of this paper is a

unified presentation of basic Two-Phase and Two-Layer DFMs and an improved numerical

solution scheme that enables less diffusive model predictions and applications to a wider

range of test cases than previously possible.

The remainder of the paper continues as follows: Section 2 presents the governing equations

for both Two-Phase and Two-Layer DFMs, and includes a characteristic analysis to show

how the eigenvalues (i.e., wave speeds) are computed for each case, Section 3 presents the

LHLLC scheme in a general way so as to solve either the Two-Phase or Two-Layer DFM,

and Section 4 presents a range of test cases to measure the performance of the scheme,

particularly in relation to the LHLL scheme. Comparisons between the Two-Layer and
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Two-Phase LHLLC predictions are also shown to illustrate consistency. The paper closes

with a discussion of results (Section 5) and conclusions (Section 6).

2.2 Governing equations

2.2.1 Sediment Mobility

Bagnold hypothesized that sediment movement or suspension dissipates energy [Bagnold,

1963, 1966], and numerous mathematical models based on energy principles have followed

[de Groot, 2002]. Bailard [Bailard, 1981] used the fluid power per unit area P to scale the

total load of sediment as follows,

P = τum (2.3)

where τ is shear stress and um is fluid/sediment mixture velocity, as before. The shear

stress between the mobile and fluidized sediment scales quadratically with velocity as follows

Bailard [1981],

τ = fρwu
2
m (2.4)

where f is a dimensionless friction factor and ρw is the water density, so fluid power can be

rewritten as,

P = fρwu
3
m (2.5)
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The total sediment load qs in units of volume per unit width and time can be presented as

[de Groot, 2002, Bailard, 1981],

qs = (Kb +Ks)
P

(ρs − ρw)g
(2.6)

where ρs represent the density for the solid phase, and Kb and Ks represent dimensionless,

and potentially time-varying, scaling factors for bed-load and suspended-load, respectively.

Substitution of Eq. 2.5 into Eq. 2.6 yields a well-known total load model for the rate of

sediment transport that scales with the cubic of the mixture velocity,

qs = (Kb +Ks)
ρwf

(ρs − ρw)g
u3m (2.7)

For two-phase DFMs, Eq. 2.7 has been further simplified as follows [Rosatti and Fraccarollo,

2006, Rosatti et al., 2008, Armanini et al., 2009],

qs = cumhm = cbβu
3
m (2.8)

where cb is the concentration by volume of the sediment in the bed and β is an empirical

entrainment factor. Two-layer DFMs have employed a similar formula as follows [Fraccarollo

et al., 2003],

qs = umhm = mu3m (2.9)

where m is an empirical mobility coefficient. Further, in the context of two-layer DFMs, the

sediment concentration cb has been termed a granular packing and referenced with different

notation. However, here we adopt the notation of the Two-Phase model for consistency.
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2.2.2 Two-Phase Model

The governing equations for the Two-Phase model are derived from continuity and momen-

tum conservation laws for liquid and solid phases [Rosatti and Fraccarollo, 2006, Rosatti

et al., 2008, Armanini et al., 2009]. A unified presentation of DFMs is given in differential

form as follows,

∂U

∂t
+
∂F

∂x
+ H

∂zb
∂x

= S (2.10)

where

U =


hm + zb

chm + cbzb

(c∆ + 1)umhm

 , F =


umhm

cumhm

(c∆ + 1)(u2mhm + 1
2
gh2m)



H =


0

0

(c∆ + 1)ghm

 , S =


0

0

−f |um|um

 (2.11)

where ∆ = (ρs − ρw)/ρw. The first two equations in the above system account for mass

conservation for the mixture and solid phase, respective, and the third equation is a mo-

mentum balance for the mixture. Note that the third term on the left-hand side of Eq. 2.10

accounts for bed slopes, and the right-hand side accounts for friction as given by Eq. 2.4.

The total load sediment transport equation given by Eq. 2.8 represents the fourth equation

of this system, allowing for prediction of V2P as defined in Eq. 2.1.
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Characteristic Analysis

Friction effects can be neglected when analyzing the instantaneous eigenstructure of the

DFM, so we consider the homogeneous form of Eq. 2.10 given by,

∂U

∂t
+
∂F

∂x
+ H

∂zb
∂x

= 0 (2.12)

and subsequently apply a transformation to place the above model in a quasi-linear form in

terms of primitive variables as follows,

B
∂W

∂t
+ A

∂W

∂x
= 0, (2.13)

where

W =


hm

um

zb

 , B =


1 0 1

0 2βcbum cb

um 3qu2m + hm 0

 (2.14)

A =


um hm 0

0 3βcbu
2
m 0

1
2
ru2m + ghm (4qu2m + rhm)um k

 (2.15)

and k = ghm(c∆ + 1), q = βcb∆, and r = qg + 2. Note that c does not appear in Eqs. 2.15

because it has been expressed in terms of um in accordance with Eq. 2.8. The eigenvalues of

Eqs. 2.13 follow from the determinant of the coefficient matrices as follows,

|A− λB| = 0 (2.16)

which results in a cubic equation for eigenvalues,

α3λ
3 + α2λ

2 + α1λ+ α0 = 0 (2.17)
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α3 = hm + u2m(2β + 3q), (2.18)

α2 = −u3m(7q + 3β + rβ) + 2βkum − hmrum − 2βghmum, (2.19)

α1 = −gh2m +
1

2
u2m[6βghm + rhm − 10βk + u2m(3βr + 8q)], (2.20)

α0 = 3βum
3k, (2.21)

The above equation yields three real and distinct roots (characteristic wave speeds) for

which analytical solutions are not generally available [Fraccarollo and Capart, 2002, Frac-

carollo et al., 2003], so the roots are calculated numerically using the solver presented in

Section 2.3.1.

The characteristic wave speeds physically correspond to forward and backwards-moving grav-

ity waves λ1 and λ3, respectively, and a contact wave speed λ2 similar to other shallow flow

and transport systems. However, unlike classical shallow-water equations wherein all char-

acteristics take on the same sign in the limit of supercritical flow, there are always two roots

with the same sign with this system, and one root with the opposite sign [Fraccarollo and

Capart, 2002]. Hence, mathematically, information can propagate upstream against the flow

when the Froude number, Fr = um/(ghm)1/2, exceeds unity.

2.2.3 Two-Layer Model

The governing equations for the Two-Layer model are similarly derived from continuity and

momentum conservation laws for liquid and solid phases [Fraccarollo et al., 2003]. Using the

general form given by Eqs. 2.10, and defining a total fluid layer thickness hf = hw + hm, the
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equations are defined by,

U =


hf + zb

hm + zb

um(hf + ∆′hm)

 , F =


umhf

umhm

(hf + ∆′hm)u2m + 1
2
g(h2f + ∆′h2m)



H =


0

0

g(hf + ∆′hm)

 , S =


0

0

−f |um|um

 (2.22)

where ∆′ = cb∆. The total load sediment transport equation given by Eq. 2.9 represents

the fourth equation of this system, allowing for prediction of V2L as defined in Eq. 2.2. The

friction factor here is modeled by a friction angle ϕ as follows [Fraccarollo et al., 2003],

f = gcb∆ tanϕ (2.23)

and the mobility parameter m in Eq. 2.9 is expressed by entrainment coefficent Cf as follows

[Fraccarollo et al., 2003],

m = (1 + ∆)Cf/f (2.24)

As a brief aside, it is noteworthy that Two-Layer model solutions can be recovered from Two-

Phase model solutions (and vice-versa), assuming the same friction and sediment mobility

closure models are used. The conversion is achieved from the following identity,

(hm)2L = (chm/cb)2P (2.25)

where the subscripts 2L and 2P refer to Two-Layer and Two-Phase, respectively.
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Characteristic Analysis

When the two-layer model is presented in the quasi-linear form given by Eqs. 2.13, it can be

presented as follows,

W =


hf

um

zb

 , B =


1 0 1

0 2mum 1

um hf + 3∆′hm 0



A =


um hf 0

0 3hm 0

u2m + ghf 2[hf + (2 + gm)∆′hm]um g(hf + ∆′hm)

 (2.26)

and when the eigenvalues are computed using Eq. 2.16, a cubic equation for the roots is

again obtained (Eq.2.17) with the following coefficients,

α3 = hf + (2 + 3∆′)hm, (2.27)

α2 = −[2hf + (5 + 7∆′)hm]um, (2.28)

α1 = [hf + (3 + 4∆′)hm]u2m − g(h2f + 2hmhf + 3∆′h2m), (2.29)

α0 = 3(hf + ∆′hm)ghmum, (2.30)

As before, the roots correspond to two gravity waves and one contact wave and are computed

numerically using the scheme presented in Section 2.3.1. In this case, Fr = um/(ghf )1/2.
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2.3 Numerical Methods

2.3.1 Cubic Equation Solver

DFMs give rise to cubic equations for the eigenvalues and also for updating the flow velocity,

um, as will be shown later. A general form of the cubic equation is as follows,

a3X
3 + a2X

2 + a1X + a0 = 0 (2.31)

and its roots are given by [M. R. Spiegel, 1999, Fraccarollo et al., 2003],

Xj = 2
√
Qcos(Φj)−

a2
3a3

(2.32)

where j=1,2 or 3,

Φ1 =
θ

3
+

2Π

3
, Φ2 =

θ

3
+

4Π

3
, Φ3 =

θ

3
(2.33)

and

θ = arccos(
R

Q3/2
), Q =

a22 − 3a3a1
9a23

, R =
9a3a2a1 − 27a23a0 − 2a32

54a33
(2.34)

2.3.2 LHLLC scheme

The LHLLC scheme is presented here as a solver of the general DFM form given by Eqs. 2.10,

so the solution vector U, fluxes F, the bed-slope pressure flux term H, and the bed friction

term S are also referenced in a general way as follows,

U =


U1

U2

U3

 , F =


F1

F2

F3

 , H =


0

0

H3

 , S =


0

0

S3

 (2.35)
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This general approach is chosen to facilitate application of the scheme to either Two-Layer

or Two-Phase DFM formulations, and to more easily adapt to alternative closure and en-

trainment schemes.

The domain is discretized into N cells and the solution is assumed to be piecewise constant

with states Ui, for i = 1, . . . , N , and inter-cell interferes located at xi+1/2, i = 0, . . . , N .

Following Fraccarollo et al. [Fraccarollo et al., 2003], the fluid mixture continuity equation

is updated as follows,

(U1)
n+1
i = (U1)

n
i +

∆t

∆x

[
(F1)

∗
i−1/2 − (F1)

∗
i+1/2

]
(2.36)

where (F1)
∗
i+1/2 represents fluxes computed with the HLL scheme as follows,

(F1)
∗ =

SRF1L − SLF1R + SRSL(U1R − U1L)

SR − SL

(2.37)

where S indicates wave speeds and the subscripts L and R represents the cells to the left i

and right i + 1, respectively. Various choices are available to estimate the wave speeds SL,

SR Toro [1997], and the following was used here [Fraccarollo et al., 2003].

SL = min(λ1L, λ1R) (2.38)

SR = max(λ3L, λ3R) (2.39)

where λ1 and λ3 represent maximum and minimum characteristic wave speeds, respectively

[Fraccarollo et al., 2003].

Next, the sediment continuity equation is updated as follows,

(U2)
n+1
i = (U2)

n
i +

∆t

∆x

[
(F2)

∗
i−1/2 − (F2)

∗
i+1/2

]
(2.40)

20



where the fluxes are computed using an HLLC scheme similar to [Goutire et al., 2008]. When

(F1)
∗ ≥ 0, flow is in the positive x direction and the solid flux is computed as follows,

(F2)
∗ =

SSF2L − SLF2R + SSSL(U2R − U2L)

SS − SL

(2.41)

where SL is computed as before and SS is computed from the speed of contact discontinuities

(λ2) in neighboring cells as follows,

SS = maxmod(λ2L, λ2R) (2.42)

where the function maxmod() returns the signed argument with the largest absolute value.

On the other hand, when (F1)
∗ < 0, the solid flux is computed as follows for directional

symmetry,

(F2)
∗ =

SRF2L − SSF2R + SRSS(U2R − U2L)

SR − SS

(2.43)

where SS and SR are computed as before.

Before the solid flux is used to update Eq. 2.40, a limiting function is applied to prevent the

magnitude of the solid flux F ∗2 from exceeding the magnitude of the total fluid mixture flux

F ∗1 , as this would give non-physical predictions. The limiting is expressed as follows,

(F2)
∗
i+1/2 = maxmod[(F1)

∗
i+1/2, (F2)

∗
i+1/2] (2.44)

Finally, the momentum equation is updated using the LHLL scheme in a two-step process

as follows [Fraccarollo et al., 2003],

(U3)
∗
i = (U3)

n
i +

∆t

∆x

[
(F3)

∗R
i−1/2 − (F3)

∗L
i+1/2

]
(2.45)

(U3)
n+1
i = (U3)

∗
i + ∆t(S3)

n+1
i (2.46)
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where the superscripts L and R represent adjustments to the fluxes F3 that account for bed

slope effects expressed by the H3 term in Eq. 2.22. The first step begins with the application

of an HLL scheme to compute F ∗3 as follows,

(F3)
∗ =

SRF3L − SLF3R + SRSL(U3R − U3L)

SR − SL

(2.47)

where SL and SR are computed as before. Next, lateralization terms are computed for the

left L and right R side of each cell interface as follows,

δL,R =
SL,R

SR − SL

1

2
(H3L +H3R) (zbR − zbL) (2.48)

and the required fluxes for Eq. 4.15 are given by,

(F3)
∗L = (F3)

∗ − δL (F3)
∗R = (F3)

∗ − δR (2.49)

The second step of the momentum update, Eq. 2.46, involves the solution of a cubic equation

for um, that follows from the implicit formulation of the update equation. The cubic equation

and final update procedure for U3 depends on the type of DFM and the chosen closure scheme.

The procedure for the Two-Phase and Two-Layer formulations presented here is shown next.

Two-Phase Model

Eq. 2.46 is expanded as follows in accordance with the Two-Phase formulation,

(c∆ + 1)umhm = U∗3 −∆tf |um|um (2.50)

where the subscript i and superscript n+ 1 have been dropped to simplify the presentation,

and U∗3 represents the update given by Eq. 4.15. Based on the definition of U1 given by
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Eq. 2.11, it follows that,

zb = U1 − hm (2.51)

Additionally, from Eq. 2.8 it follows that,

chm = cbβu
2
m (2.52)

so substituting Eq. 2.51 and 2.52 into the expression for U2 given by Eq. 2.11 leads to the

following expression for hm,

hm = βu2m + U1 − U2/cb (2.53)

Finally, substitution of Eq. 2.52 and Eq. 2.53 into Eq. 2.50 gives a cubic equation with only

one unknown, um, as follows,

(1 + cb∆)βu3m + (U1 − U2/cb)um = U∗3 −∆tf |um|um (2.54)

which is solved using the method described in Section 2.3.1. Note that U1, U2 and U∗3 are

computed using Eqs. 2.36, 2.40 and 4.15, respectively. After um is computed, hm and zb are

sequentially computed using Eqs. 2.53 and 2.51, respectively, c is computed from Eq. 2.52,

and U3 is computed as,

U3 = (c∆ + 1)umhm (2.55)

which finalizes the update of conservative variables Un+1 and primitive variables cn+1, hn+1
m ,

un+1
m and zn+1

b with respect to the DFM given by Eqs. 2.11.
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Two-Layer Model

Eq. 2.46 is expanded as follows in accordance with the Two-Layer formulation,

um(hf + ∆′hm) = U∗3 −∆tf |um|um (2.56)

where the subscript i and superscript n+ 1 have been dropped to simplify the presentation,

and U∗3 represents the update given by Eq. 4.15. Based on the definition of U given by

Eq. 2.22, if follows that,

hf = U1 − U2 + hm (2.57)

Additionally, from Eq. 2.9 it follows that,

hm = mu2m (2.58)

so substituting Eq. 2.57 and 2.58 into Eq. 2.56 leads to a cubic equation with only one

unknown, um, as follows,

(1 + ∆′)mu3m + (U1 − U2)um = U∗3 −∆tf |um|um (2.59)

which is also solved using the method described in Section 2.3.1. Note that U1, U2 and U∗3

are computed using Eqs. 2.36, 2.40 and 4.15, respectively. After um is computed, hf and hm

are computed using Eqs. 2.57 and 2.58, respectively, U3 is computed as,

U3 = um(hf + ∆′hm) (2.60)

and zb is computed as

zb = U1 − hf (2.61)
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which finalizes the update of conservative variables Un+1 and primitive variables hn+1
f , hn+1

m ,

un+1
m and zn+1

b with respect to the DFM given by Eqs. 2.22.

2.3.3 Wet/Dry Scheme

DFMs are designed to systematically model the dynamics of coupled fluid/sediment motion

and thus handle wetting and drying fronts without any special numerical fixes. However,

exceptions have previously been reported in the literature [Goutire et al., 2008], namely

sediment motion on sloping topography in the absence of any fluid motion. Preliminary

testing by the authors revealed that non-physical motion also occurred when a horizontal

water surface intersected a sloping ground surface, creating a wet/dry interface as in a beach

or the bank of a river. Consequently, the numerical scheme presented here includes a check

for this condition and a minor modification of the flux calculation to enforce a reflection

which preserves stationary solutions at wet/dry interfaces.

Consider the case where the mixture surface elevation in the cell on the left, (zw)L, is below

the bed elevation of a cell on the right that is dry, (zb)R, i.e., (zw)L < (zb)R and (hm)R < εh

where εh represents a wet/dry tolerance. If this occurs, then F∗ is given by,

F∗ =


0

0

F3L − SLU3L

 (2.62)

and the lateralization terms are given by,

δL = 0, δR = F3L − SLU3L (2.63)
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Conversely, in the case where (zw)R < (zb)L and (hm)L < εh,

F∗ =


0

0

F3R − SRU3R

 (2.64)

and the lateralization terms are given by,

δL = F3R − SRU3R, δR = 0 (2.65)

It is noted that stable and accurate results have been obtained using a wide range of small

values for εh, from microns to millimeters. A value of 1 mm comparable to the diameter

of a sand grain is used for this study. In general, the parameter should be set significantly

smaller than the minimum depth that the model is intended to resolve.

2.3.4 Avalanching Scheme

Avalanching in this context refers to a numerical process by which sediment on unstable

slopes is redistributed into a stable distribution, as if the sediment moved under the influence

of gravity similar to a real avalanche. This process of interest here is one that begins with

sub aqueous (wet) erosion of a slope, and subsequently propagates into the subaerial (dry)

sediments [Swartenbroekx et al., 2010b, van Rijn, 2009, Nagata et al., 2000]. For example,

river bank erosion is commonly caused by hydrodynamic erosion at the toe, which steepens

the bank and causes slumping (avalanching) of the subaerial soil.

In the model, a critical slope Sc is defined and the avalanching scheme engages when the

magnitude of sediment slopes S computed by the model from bed elevation data exceed the

critical slope, i.e., |S| > Sc. Separate “dry” and “wet” critical slopes are used, Sdry
c and

Swet
c , to account for the difference in the angle of repose beween subaerial and subaqueous

sediments, respectively.
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The avalanching scheme involves two main steps. In the first step, the slope is computed for

each cell interface as follows,

Sj+1/2 =
(zb)j+1 − (zb)j

∆x
(2.66)

and then the slope exceedance is also computed,

∆Sj+1/2 =

 |Sj+1/2| − (Sc)j+1/2 if |Sj+1/2| > (Sc)j+1/2

0 if |Sj+1/2| ≤ (Sc)j+1/2

(2.67)

In the second step, bed elevation is updated as follows,

(zb)j = (zb)j + α
[
(∆zb)

R
j−1/2 + (∆zb)

L
j+1/2

]
(2.68)

where α is the under-relaxation factor required to be between zero and unity Roelvink et al.

[2009], Sanchez and Wu [2011] and set here to 0.95 and

(∆zb)
L
j+1/2 = +

α

2
sj+1/2∆Sj+1/2∆x (2.69)

(∆zb)
R
j+1/2 = −α

2
sj+1/2∆Sj+1/2∆x (2.70)

where sj+1/2 = sign(Sj+1/2).

The preceding steps given by Eqs. 2.66-2.70 are repeated, without any changes to flow

parameters, until the process brings the overly steep slopes in line with the critical slopes, as

if an avalanche were to occur on a time scale faster than the hydromorphodynamic change

resolved by the DFM. Since the adjustment process tapers off over time and the adjusted

slopes slowly converge upon the critical slopes, the iteration process is stopped when slopes

are within 10% of the critical slope. It is noted that avalanching may not necessarily proceed
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faster than the hydromorhodynamics resolved by the DFM, in which case a mechanistic

avalanching scheme may be required.

One key feature of the above scheme is that the first step (slope calculation) is completed

for all cells before the second step (bed update) begins. This eliminates the directional bias

associated with schemes that compute slopes and update the bed height on a cell-by-cell

basis, e.g., [Wu, 2007].

After the avalanching scheme converges, Un+1
1 and Un+1

2 are updated to account for changes

in zb. Defining (∆zb)
a
j to be the overall change in (zb)j after all iterations of the avalanching

scheme, U1 is updated as follows,

(U1)
n+1
j = (U1)

n+1
j + (∆zb)

a
j (2.71)

The update of U2 depends on whether it is a Two-Phase or Two-Layer model. For the

Two-Phase model,

(U2)
n+1
j = (U2)

n+1
j + cb(∆zb)

a
j (2.72)

while for the Two-Layer model,

(U2)
n+1
j = (U2)

n+1
j + (∆zb)

a
j (2.73)

2.3.5 Summary of Solution Procedure and Error Metric

To summarize, the LHLLC scheme advances the solution with a repeating cycle of: (1)

computation of fluxes, (2) updating of solution in accordance with the DFM, (3) updating

of the bed in accordance with the avalanching algorithm (when critical slopes are exceeded),

and (4) the final updating of the solution vector U.
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To quantify model errors in an arbitrary primitive variable v, in the test problems that follow,

an L1 norm is used. This computes the difference between a discrete model prediction vi

and a reference solution v̂i as follows,

L1(v, v̂) =
1

N

∑
i=1,N

|vi − v̂i| (2.74)
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2.4 Results

A series of test cases are considered to critically examine the LHLLC scheme, including test

problems with exact solutions and experimental data from laboratory studies of hydromor-

phodynamics. Wherever possible, the LHLLC predictions are compared against LHLL pre-

dictions to illuminate the benefits arising from explicit consideration of contact discontinuity

wave speeds and to test for drawbacks or advantages from the wet/dry scheme. Additionally,

test cases involving steep slopes are included to examine the avalanching model.

2.4.1 Stationarity Test

First, the ability of the LHLL and LHLLC scheme to preserve a stationary solution is ex-

amined using the Two-Phase DFM formulation. The two schemes are applied to a domain

characterized by x ∈ (−L, L), with L=100 m, that is configured similar to the cross-section

of a trapezoidal channel with levees as shown in Fig. 2. The central part of the domain has a

horizontal bottom elevation with zb = 0, and the channel banks rise with a 1:2 slope from toe

locations of x = ±70 m to a height of 2.5 m which represents the crest of the levee. Outside

the crest of the levee, zb slopes 1:5 downward away from the central portion of the channel

and then levels off at an elevation of 1.5 m. The initial condition corresponds to the channel

filled to an initial water surface elevation of 1 m and the initial fluid velocity is zero. The

solution is integrated for 60 s using a Courant number of 0.95 and a grid resolution of ∆x=1

m. β is set to 10−4, cb is set to 0.55 and f is set to 0.012. For this test case, the avalanching

scheme is not activated so no movement of either fluid or sediment should occur.

Fig. 2.2 presents LHLL and LHLLC predictions of the water surface and bed profile with and

without the wet/dry scheme activitated. The bottom, right hand panel shows the solution

after 60 s with the wet/dry scheme activated, which is unchanged from the initial condition
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Figure 2.2: Numerical to solution to water-at-rest problem. Left-Top: wet/dry fix not used-at 20 s; Right-
Top: wet/dry fix not used-at 40 s; Left-Bottom: wet/dry fix not used-at 60 s ; Right-Bottom: wet/dry fix
used-at 60 s.

using either LHLL or LHLLC indicating that both schemes preserve stationarity. At the

end of the run, the maximum velocity was measured to be O(10−8) m/s in both cases.

The other three panels show the solution at 20, 40 and 60 s without the wet/dry scheme

activated. In this case, neither scheme preserves stationarity. The LHLL scheme predicts

significant diffusion of the bed profile, as well as wave action on the water surface. The

LHLLC predictions are considerably less diffusive, but do not preserve stationarity exactly.

2.4.2 Avalanching Test

The avalanching scheme is designed to take an overly steep slope, one that exceeds the

critical slope of stability, and to redistribute sediment in the down-slope direction until the
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slope is stabilized. To verify that the avalanching scheme performs as desired, a test case

with a triangular berm 2 m high and 5 m wide is considered on a spatial domain x ∈ (0, L)

with L=20 m, which is discretized by ∆x=0.1 m. The berm slopes are assumed to be at

the angle of repose of the sediment, so berm slopes of 1:1.25 represent the critical slope

Sc. Next, the left and right toe of the berm are “eroded” by setting (zb)j = 0 at the first

elevated vertex on the left side of the berm and the last 14 elevated vertices on the right

side of the berm. This is taken as an initial condition for the avalanching routine. Fig. 2.3
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Figure 2.3: Top panel: initial and final zb profile after adjustment by the avalanching scheme; bottom panel:
difference between initial and final profile, showing redistribution of sediment.

presents the initial zb profile and final profile predicted by the avalanching scheme. On the

left side of the berm, the final profile tracks the initial profile very closely except at the

toe, where sediment has filled in to achieve a uniform slope. This is indicated by the small

bump in the bottom panel of Fig. 2.3 (left side of berm). On the right side, the final profile
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Table 2.1: Values of parameters for trench evolution tests

Parameter Description Unit Subcritical Supercritical

Fr Froude number - 0.85 1.2
f Friction parameter - 0.012 0.01
β Erosion parameter - 3.5×10−4 1×10−3

ρs/ρ Sediment relative density - 1.580 1.580
cb Bed packing parameter - 0.65 0.65

∆x Grid resolution m 0.05 0.05
- Courant number - 0.95 0.95
- Bed slope - 8.83×10−3 1.57×10−2

- Initial depth m 2 2
- Initial velocity m/s 3.76 5.31
- Length of the trench m 2 2
- Depth of the trench m 0.6 0.9

is markedly different from the initial profile since a much larger volume of sediment from

the upper berm was moved downwards to equilibrate the slope at the angle of repose. The

scheme converges to the critical slope after 198 iterations, and conserves mass to numerical

precision. Importantly, the scheme is shown to account for both large (right side o berm)

and small (left side) amounts of sediment movement.

2.4.3 Trench Test

Flow across a submerged trench has previously been used to qualitatively evaluate DFM

performance [Rosatti and Fraccarollo, 2006, Rosatti et al., 2008] and is revisited here to

characterize the relative amount of numerical diffusion between the LHLL and LHLLC mod-

els. As before, the models are applied to the Two-Phase DFM and test parameters shown

in Table 2.1. Fig. 2.4 shows LHLL and LHLLC predictions of the zb profile at t=60 s under

subcritical flow conditions (Fr < 1). This shows that the LHLL scheme is overly diffusive as

has been shown in previous studies [Rosatti and Fraccarollo, 2006]. On the other hand, the

LHLLC scheme predicts sharp zb fronts indicating that the scheme is much less diffusive.

Fig. 2.5 shows a similar comparison of LHLL and LHLLC under supercritical conditions

(Fr > 1), using parameters shown in Table 1. In this case, the trench is quickly filled with
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Figure 2.4: Evolution of a trench predicted by LHLL and LHLLC schemes under sub-critical flow conditions;
left panel shows the results at 30 s and right panel at 60 s; spatial resolution 0.05 m and Courant number
0.95.

sediment and sediment depression waves are predicted to move away from the initial trench

position. One depression wave is regressive, moving against the flow, and one depression

wave is progressive, moving with the flow. This movement may seem peculiar at first because

traditional notions of supercritical flow imply that all information moves in the downstream

flow direction. However, the eigenstructure of the governing equations shown in Section 2.2.2

indicates one regressive and two progressive waves under both sub-critical and super-critical

conditions, and this explains the upward moving sediment wave. Physically, the regressive

depression wave is moving to supply the sediment required to fill the trench.
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Figure 2.5: Evolution of a trench predicted by LHLL and LHLLC schemes under super-critical flow condi-
tions; left panel shows the results at 10 s and right panel at 30 s; spatial resolution 0.05 m and Courant
number 0.95.
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Fig. 2.5. also shows that the LHLLC scheme is again less diffusive than the LHLL scheme,

although the differences are not as prominent as in the sub-critical test case. Another key

difference is that the LHLL scheme predicts a faster progressive wave than the LHLLC

scheme, presumably because the LHLL scheme uses gravity wave speeds to predict sediment

fluxes, whereas the LHLLC scheme considers the contact wave speed which is slower.

2.4.4 Classical Dam-Break Test

A classical dam-break test, with water at rest in reservoir and a dry downstream channel bed,

is presented here to compare and contrast the mobile and immobile bed solutions. Table 2.2

shows the initial condition and parameters used for testing.

Table 2.2: Initial condition and model parameter for dam-break test

Water depth Velocity Bed elevation cb ρs/ρ β f β f

(m) (m/s) (m) - - Mobile-Bed Mobile-Bed Fixed-Bed Fixed-Bed

Left 0.1 0.0 0.0 0.5 1.048 0.125 1×10−4 1.25×10−8 0.0
Right 0.0 0.0 0.0 0.5 1.048 0.125 1×10−4 1.25×10−8 0.0
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Figure 2.6: Characteristic wave speeds λ1 λ2 and λ3. Left panel β is set to 0.125 and right panel β is set
to 0.0125. Dashed lines represent wave speeds for immobile bed scenario, and colored lines represent mobile
bed wave speeds computed using Eq. 2.17

.

The eigenvalues for this test problem are shown in Fig. 2.6, and and also for a second value

of β to illustrate parameter sensitivity. Here, dashed lines represent the wave speeds under
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immobile bed (clear water) conditions, and solid curves represent the DFM wave speeds. It

can be seen that DFM theory dictates that there are always two down-stream moving waves

and one up-stream moving wave, irrespective of Fr, in contrast to the case of an immobile

bed theory where the possibility exists that all three eigenvalues take on the same sign.

Also note that the λ2 values are very close to zero for 0.2 < Fr < 0.2 (approximately) and

generally equal or smaller than predicted by immobile bed theory, indicating that flows are

effectively slowed down in comparison to sediment-free flows under subcritical conditions.

This emphasizes the potential significance of using the contact wave speed, λ2, in sediment

flux calculations.
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Figure 2.7: Mobile and immobile bed dam-break predictions by LHLLC scheme.

The Two-Phase DFM is solved with the LHLLC scheme using ∆x = 0.01 m and integrated

using Cr = 0.95, and Fig. 2.7 shows the free surface and bed profile at 0.5 s for the mobile

and immobile bed scenarios. The LHLLC exhibits modest numerical diffusion as expected,

particularly at the leading edge of the regressive depression wave,, but the scheme correctly

predicts key attributes of the solution such as the depth and width of the erosion. As

previously noted, the progressive wave is slowed down by the mobile sediment. This has

practical implications, because a slower progressive wave affects the available time to evacuate
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in the event of a dam failure.
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Figure 2.8: LHLLC scheme errors in the mobile dam-break probelm are shown to geometrically decay with
grid refinement.

The preceding mobile-bed test case was repeated using ∆x=0.1, 0.05, and 0.025 m and

Cr = 0.95 to verify that the LHLLC scheme converges with grid refinement. Fig. 2.8 shows

that errors (L1 norms) are geometrically reduced with refinement, and thus the scheme is

shown to converge in a classical sense.

2.4.5 Multiple Discontinuity Tests

Two additional dam-break test problems with multiple discontinuities, i.e., bed height and

water height, are now considered to compare the LHLLC and LHLL schemes, quantitatively.

Similar problems were considered by [Rosatti and Fraccarollo, 2006, Rosatti et al., 2008] for

DFM research. Once again, the Two-Phase DFM is solved. Scenario parameters are shown

in Table 2.3. Test A is a flow problem with three waves from left to right as follows: a

regressive rarefaction wave, a progressive shock wave (discontinuity in zb), and a progressive

rarefaction wave. Test B is also a flow problem with three waves as follows: a regressive

rarefaction, a progressive rarefaction and a shock. The LHLLC and LHLL schemes are both

applied using ∆x=0.1 m and integrated using Cr=0.95. Mass balance errors are computed
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Table 2.3: Initial condition and model parameter for tests A and B

Water depth Velocity Bed elevation cb ρs/ρ β f

(m) (m/s) (m) - - - -

Test A Left 2.00 1.00 3.00 0.65 2.650 0.01 1×10−4

Test A Right 4.00 4.38 2.15 0.65 2.650 0.01 1×10−4

Test B Left 6.00 0.01 1.00 0.65 2.650 0.01 1×10−4

Test B Right 0.38 5.01 3.75 0.65 2.650 0.01 1×10−4

Table 2.4: Error norms L1 for Test A and B.

Test Case Scheme Variable Reference Solution Time L1(m)

Test A LHLLC zw Exact 5 s 0.0174
Test A LHLL zw Exact 5 s 0.0176
Test A LHLLC zw LHLL 5 s 0.0039
Test A LHLLC zb Exact 5 s 0.0039
Test A LHLL zb Exact 5 s 0.0080
Test A LHLLC zb LHLL 5 s 0.0058

Test B LHLLC zw Exact 5 s 0.0130
Test B LHLL zw Exact 5 s 0.0173
Test B LHLLC zw LHLL 5 s 0.0050
Test B LHLLC zb Exact 5 s 0.0109
Test B LHLL zb Exact 5 s 0.0165
Test B LHLLC zb LHLL 5 s 0.0085

for both the liquid and solid phases using the approach described by Rosatti et all. [Rosatti

et al., 2008], and in all cases the errors were 1.0 × 10−12. This shows that the LHLL and

LHLLC scheme conserves mass to numerical precision.

Fig. 2.9 and 2.10 shows predictions of the water surface zw and sediment bed zb for Test

A and B, respectively. Clearly, the LHLLC scheme provides a sharper prediction of the zb

discontinuity than the LHLL scheme, which is overly diffusive here. On the other hand, the

rarefaction waves are predicted equally well by the LHLL and LHLLC schemes.

Numerical errors are shown in Table 2.4 in the form of L1 norms and allow for a quantitative

comparison of the LHLL and LHLLC schemes. Focusing first on water surface predictions,

zw, the LHLLC scheme is slightly more accurate than the LHLL scheme but the difference is

arguably negligible. Table 4 also shows L1 norms computed between the LHLL and LHLLC

predictions, and for zw this is much less than the numerical error of the LHLLC and LHLL
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Figure 2.9: Test A water surface and bed elevation profiles at 5 s using ∆x=0.1 m and Courant Number
0.95.
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Figure 2.10: Test B water surface and bed elevation profiles at 5 s using ∆x=0.1 m and Courant Number
0.95.
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schemes.

Focusing now on bed elevation predictions, zb, the LHLLC is about twice as accurate as

LHLL in Test A, and about 30% more accurate in Test B. Also, in Test A, the L1 norm

measured between the LHLLC and LHLL schemes is larger than the error of the LHLLC

scheme, which points to a clear advantage of the LHLLC scheme. Comparing errors in zb

versus errors in zw, these are comparable in Test B but errors in zw are larger in Test A.

This difference is attributed to the relative range of the zb and zw values in these test cases.

Test A was repeated using ∆x=0.8, 0.4, and 0.2 m and Cr = 0.95 to again verify that the

LHLLC scheme converges with grid refinement. Fig. 2.11 shows that errors (L1 norms) are

geometrically reduced with refinement, and thus the scheme is again shown to converge in a

classical sense.

2.4.6 Experimental Dam-Break Test

Testing now moves on to cases involving experimental data from Université Catholique de

Louvain (UCL), Belgium [Spinewine and Zech, 2007] which have been used for previous

DFM studies (e.g. [Zech et al., 2008]). The UCL experiments included a number of different

scenarios, and four considered here are shown in Table 2.5. For each UCL scenario, available

observation data includes profiles of the free surface elevation zw, sediment layer elevation zm,

and the bed elevation zb extracted from imagery collected from cameras mounted alongside

the experimental apparatus Spinewine and Zech [2007].

The LHLLC and LHLL models are applied to solve the Two-Phase and Two-Layer DFMs

using a grid resolution of ∆x=0.01 m, a Courant number 0.9, and parameters shown in

Table 2.5. The Two-Phase DFM does not predict zm, so this is computed using the trans-

formation given by Eq. 2.25 for comparison to the experimental data.
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Figure 2.11: LHLLC scheme errors in Test A are shown to geometrically decay with grid refinement.

Table 2.5: Initial condition and parameters for UCL experimental dam-break test cases

UCL Test ID Bed material hw-left hw-right zb-left zb-right cb ρs/ρ β f

(m) (m) (m) (m)

a PVC 0.35 0 0 0 0.58 1.580 0.0125 0.024
a Sand 0.35 0 0 0 0.53 2.683 0.0025 0.004
d PVC 0.25 0.10 0.10 0 0.58 1.580 0.0125 0.024
d Sand 0.25 0.10 0.10 0 0.53 2.683 0.0025 0.004
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UCL Test (a)

First Test (a) is considered. Fig. 2.12 shows Two-Layer LHLLC predictions and measure-

ments of zw, zm and zb at t=0.5 s (left) and 1.0 s (right) for PVC bed material, and Fig. 2.13

shows the same results for sand bed material. Two-Phase LHLLC predictions, Two-Phase

LHLL predictions, and Two-Layer LHLL predictions are not shown because they closely

track LHLLC predictions. However, errors for all off these predictions are shown in Table 6.
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Figure 2.12: LHLLC Two-Layer DFM predictions of UCL Test (a) with PVC bed material at 0.5 s (left)
and 1.0 s (right).
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Figure 2.13: LHLLC Two-Layer DFM predictions of UCL Test (a) with sand bed material at 0.5 s (left) and
1.0 s (right).

The model predictions shown in Figs. 2.12-2.13. are qualitatively good, because the general
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shape, width and depth of the water and sediment profiles are accurately captured. Clearly,

there are small scale features that the model does not resolve, but this reflects complexities of

the physical problem that are not resolved by the mathematical model, and not limitations

of the numerical method.

Table 2.6: Error norms L1 computed for UCL Test (a) at 1 s. †Indicates zm computed using Eq. 2.25.

Scheme Variable Reference Solution L1(m) - PVC L1 (m) - Sand

LHLLC-2L zw Experimental 0.0095 0.0070
LHLLC-2P zw Experimental 0.0093 0.0066
LHLL-2L zw Experimental 0.0095 0.0070
LHLL-2P zw Experimental 0.0092 0.0066

LHLLC-2L zw LHLLC-2P 5.08×10−4 4.41×10−4

LHLL-2L zw LHLL-2P 8.12×10−4 6.95×10−4

LHLLC-2P zw LHLL-2P 1.82×10−4 9.32×10−5

LHLLC-2L zm Experimental 0.0127 0.0045
LHLLC-2P† zm Experimental 0.0126 0.0046

LHLL-2L zm Experimental 0.0127 0.0045
LHLL-2P† zm Experimental 0.0126 0.0046
LHLLC-2L zm LHLLC-2P† 1.99×10−4 2.08×10−4

LHLL-2L zm LHLL-2P† 2.92×10−4 2.69×10−4

LHLLC-2P† zm LHLL-2P† 1.14×10−4 2.51×10−5

LHLLC-2L zb Experimental 0.0073 0.0022
LHLLC-2P zb Experimental 0.0074 0.0021
LHLL-2L zb Experimental 0.0073 0.0022
LHLL-2P zb Experimental 0.0073 0.0022

LHLLC-2L zb LHLLC-2P 3.37×10−4 1.25×10−4

LHLL-2L zb LHLL-2P 4.09×10−4 3.50×10−4

LHLLC-2P zb LHLL-2P 7.88×10−5 1.92×10−5

Errors shown in Table 2.6 indicate that the LHLLC and LHLL schemes are similarly accurate,

when compared to laboratory measurements, and that the differences between predictions

are about an order of magnitude smaller than the absolute errors. Further, for the case of

PVC bed material, absolute errors in zm are larger than errors in zw which are larger than

errors in zb. On the other hand, for the case of sand bed material, absolute errors in zw are

larger than zm which are larger than zm errors.

These results show that accuracy in these test cases is not limited by the chosen DFM

formulation (Two Phase vs. Two Layer), by the numerical method (LHLLC vs. LHLL),

or by the bed material (PVC vs. sand). The sensitivity of errors to the numerical model
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formulation and scheme is considerably smaller than the absolute error. The implication is

that accuracy is limited by the basic assumptions of the governing equations: hydrostatic

flow and our limited understanding of sediment entrainment. Nevertheless, it is important to

stress that the numerical solutions are well behaved and qualitatively correct. Furthermore,

the only obvious weakness of the numerical method, numerical diffusion, is not the factor

limiting accuracy in this case.

UCL Test (d)

UCL Test (d) is now considered, a scenario that involves an initial discontinuity in the

bed where purely gravitational effects (avalanching) can be expected to play a role in the

evolution of the bed profile, in addition to hydrodynamic processes. As before, the model

is applied using previously reported parameters shown in Table 5 (no parameter tuning or

calibration), a grid resolution of ∆x=0.01 m, and a Courant number of 0.9. Here, only the

LHLLC scheme is used since little difference from LHLL predictions can be expected under

high Fr conditions. Further, LHLLC scheme is applied with, and without, avalanching to

illuminate the potential importance of this process. The critical slope Sc for sand bed is set

to 0.3 based on recommended values for wet sand (e.g. [Roelvink et al., 2009]), and to 0.15

for PVC bed.

Fig. 2.14 and 2.15 show predictions for the case of PVC and sand material, respectively, and

in comparison to the measured profiles. In both cases, predictions without (left) and with

(right) avalanching are shown, illustrating that the avalanching scheme improves accuracy in

both cases. Table 2.7 shows that errors of the LHLLC scheme with avalanching are 20-25%

smaller than errors of the LHLLC scheme without avalanching, which points to a significant

accuracy advantage.
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Figure 2.14: LHLLC Two-Layer DFM predictions of an erosional dam-break flow with PVC bed material at
1 s without avalanching (left) and with avalanching (right).
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Figure 2.15: LHLLC Two-Layer DFM predictions of an erosional dam-break flow with sand bed material at
1 s without avalanching (left) and with avalanching (right).

2.4.7 Aggradation Test

The flume experiments of Soni et al. [Soni et al., 1980] have been used for previous modeling

studies of sediment transport (e.g. [Cao et al., 2002]) and are used here to further evaluate

the LHLLC scheme. In this test, the laboratory flume is 0.2 m wide and 30 m long. The

flume is sloped at 0.00356 and sediment is supplied at a baseline rate of 1.5×10−5 m3/s/m

with a flow depth of 0.05 m and an inflow velocity of 0.4 m/s, producing a sediment profile

that is essentially uniform and parallel to the flume bottom slope. Next, the sediment inflow

was increased by a factor of four while maintaining an inflow depth and velocity of 0.05 m

and 0.4 m/s, respectively. This load exceeds the flows carrying capacity, so deposition occurs
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Table 2.7: Error norms L1 computed for UCL Test (d) at 1 s.

Scheme Variable Reference Solution Avalanching L1(m) - PVC L1(m) - Sand

LHLLC-2P zw Experimental Off 0.0121 0.0088
LHLLC-2P zw Experimental On 0.0095 0.0066
LHLLC-2P zb Experimental Off 0.0062 0.0045
LHLLC-2P zb Experimental On 0.0049 0.0032

in the flume and the sediment profile changes over time. The Two-Phase LHLLC DFM is

applied to examine its performance in modeling the deposition of sediment and subsequent

aggradation of the channel bed. The model is applied with a grid resolution of ∆x=1 m,

a Courant number of 0.95 s, β = 0.0004 and f = 0.01. The parameters β and f were

calibrated to minimize the L1 norm of water surface and bed elevation predictions at t=30

min, and predictions at t=40 min are used to assess predictive skill. The avalanching scheme

is irrelevant in this test case because of the mild slopes.
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Figure 2.16: LHLLC Two-Phase DFM predictions of water surface and bed profile in Aggradation Test:
t=30 min (left) and 40 min (right).

Fig. 2.16 shows model predictions of zw and zb at t=30 and 40 min. Errors are shown in

Table 2.8. Qualitatively, model predictions compare very well with the experimental data.

The length of the aggradation profile and concave-up curvature are correctly captured at

t=30 and 40 min, respectively. Since the accuracy of the model does not appear to change

over time, the model is found to offer a good representation of aggradation dynamics.
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Table 2.8: Error norms L1 computed for Aggradation Test.

Variable Reference Solution Time L1(m)

zw Experimental 30 min 0.0240
zb Experimental 30 min 0.0259
zw Experimental 40 min 0.0214
zb Experimental 40 min 0.0208

2.4.8 Knickpoint Test

A “knickpoint” refers to a change in channel slope and is associated with changes to a

channel’s carrying capacity [Brush and Wolman, 1980, Goutire et al., 2008]. Thus, dynamic

perturbations of a channel profile can be expected to originate from knickpoints, and the

focus of this test is on ability of the LHLLC scheme to capture these dynamic phenomena.

A knickpoint experiment conducted at Université Catholique de Louvain (UCL), Belgium

is the basis of this test [Goutire et al., 2008]. The laboratory flume is 7.6 m long and 0.5

m wide, and at the knickpoint, the slope transitions from 0.0057 to 0.024 at a distance of

6.3 m from the upstream boundary. Flow is supplied at a rate of 0.0098 m3/s and at a

depth of about 0.028 m. No sediment is supplied at the upstream boundary. The expected

response is downcutting in the vicinity of the knickpoint, and the gradual extension of this

perturbation in both the upstream and downstream directions. The Two-Phase DFM is

applied to this problem using a grid resolution of ∆x=0.1 m, a Courant number of 0.95,

β = 0.00045 and f = 0.01 . The values of β and f were manually calibrated to minimize

the L1 norm of the predictions at an initial time, 108 s, and the performance of the model

is assessed based on its accuracy at a later time, 831 s. As in the previous test case, the

avalanching scheme is irrelevant in this test case because the slopes do not approach the

critical slopes for stability. Fig. 2.17 shows model predictions of zw and zb at t=108 and 831

s. Errors are shown in Table 2.9. As in previous tests, model predictions are qualitatively

good, with the schemes correctly prediction the rounding (or diffusion) of the knickpoint

at t=108 s and the rate of knickpoint downcutting at t=831 s but it slightly overestimates

erosion upstream of the knickpoint at t=831 s. Also, the scheme is not able to reproduce
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Figure 2.17: LHLLC Two-Phase DFM predictions of water surface and bed profile in Knickpoint Test: t=108
s (left) and 831 s (right).

the small-scale variability that is present in the measured bed profiles. However, this can

be attributed to complex non-linear fluid/sediment feedback processes that are not captured

by the mathematical model, and thus should not be misinterpreted as a drawback of the

LHLLC scheme.

Table 2.9: Error norms L1 computed for Knickpoint Test.

Variable Reference Solution Time L1(m)

zw Experimental 108 s 1.7055×10−4

zb Experimental 108 s 1.011×10−4

zw Experimental 831 s 0.0014
zb Experimental 831 s 1.3068×10−4

2.4.9 Lake Deposition

The LHLL scheme was also applied to the two previous test cases (Aggradation Test and

Knickpoint Test) but it performed poorly. Predictions deviated far from the experimental

observations leading to errors that were orders of magnitude larger than the LHLLC scheme.

This was attributed to the overly diffusive nature of the LHLL scheme’s mass flux, which is

accentuated by increasing slopes in zb and zw. Conversely, the UCL dam-break test problems

do not reveal this problem with the LHLL scheme, presumably because of supercritical flow
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conditions where the diffusive error is negligible.

One final application is presented to illustrate this potentially important advantage of LH-

LLC over LHLL. The test case involves a channel that flows into a lake with variable

bathymetry, where sediment is deposited, as shown in Fig. 18. Here, flow is from right

to left. The depth in the river is 4 m and the depth in the lake increases to 20 m. For sim-

plicity, the bed of the system is horizontal except for the linear break in elevation between

x=30 and 40 m. The initial condition corresponds to zw=0 m and um=0 m/s. For boundary

conditions, a liquid discharge of 0.6 m3/s/m (flow is right to left) is specified at the upstream

boundary, the sediment volumetric concentration in the influx at the upstream boundary is

set to 0.00001, and zw = 0 is specified at the downstream boundary. The correct solution

to this problem is a filling of the lake bed over a time scale of years, a consequence of the

deposition of river sediment within the lake (deep water). The Two-Phase DFM is applied

using both LHLL and LHLLC, a grid resolution of ∆x=1 m, a Courant number of 0.95, and

the avalanching scheme not activated. The model is applied using β = 0.0025 and f = 0.01.

Fig. 2.18 shows LHLL and LHLLC predictions after 100 s (top right), 1,000 s (bottom left),

and 36,000 s (bottom right). The indicates that the LHLLC scheme predicts a stable lake

bathymetry, whereas the LHLL scheme incorrectly predicts at flattening of the lake bottom

as if the deep part of the lake were quickly filled with sediment from the shallow part of the

lake. Clearly, the excessive dissipation of the LHLL scheme makes it unsuited to this type of

practical application, whereas the LHLLC scheme performs far better. Granted, DFMs were

developed primarily to model flows with high concentrations of suspended sediment, and this

corresponds to a problem with low sediment concentration. Nevertheless, it is desirable to

have models that can be successfully applied to a wide range applications and the LHLLC

is advantageous for this reason.
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Figure 2.18: Change in cross section; left top panel results at 5 s, and right top panel shows the results at
100 s. Lower left panel shows the results at 1000 s and lower right panel shows the results at 36000 s.

2.5 Conclusions

An LHLLC scheme is presented to solve either Two-Phase or Two-Layer DFMs, and it is

shown that for the specific DFMs considered here, the solution to one can be recovered from

the other without solving a separate set of equations. The DFMs resolve key flow attributes

such as the depth of fluid and sediment mixture layers and speed of fluid and sediment fronts,

but do not resolve small scale variability associated with non-hydrostatic flow processes.

In practice, it is recommended that the Two-Layer model be applied to applications with

strong bed load transport and the Two-Phase model be applied to applications with strong

suspended load transport so the most appropriate sediment transport (entrainment) model

can be used.
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The LHLLC scheme can be viewed as an enhanced version of the LHLL scheme with several

advantages and broader applicability compared to the LHLL scheme, as described below.

1. The LHLLC scheme can be applied to test problems with steep, submerged slopes

whereas the LLHL scheme will erroneously predict massive terrain slumping. This is

attributed to use of the contact wave speed for sediment mass flux computations.

2. The LHLLC predicts significantly less numerical diffusion of sharp sediment fronts

under subcritical flow conditions, compared with the LHLL scheme.

3. The LHLLC scheme will preserve stationary solutions involving wet/dry interfaces,

whereas the LHLL scheme does not. This results from the introduction of a wet/dry

tolerance and a modified flux under “dry” conditions.

4. The LHLLC scheme includes an avalanching scheme that accounts for gravity-driven

slumping of steep slopes. This is shown to offer improved accuracy in a channel flow test

problem and is expected to be important in field applications to account for slumping

of near vertical channel features common to incised channels.
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Chapter 3

Terrestrial Laser Scanning of

Anthropogenic Beach Berm Erosion

and Overtopping

This Chapter has been published in Journal of Coastal Research. Citation: Schubert,

J.E.,Gallien,T.W., Shakeri Majd, M. and Sanders, B.F. (2015), Terrestrial Laser Scanning of

Anthropogenic Beach Berm Erosion and Overtopping, Journal of Coastal Research, 31(1),

47-60, http://dx.doi.org/10.2112/JCOASTRES-D-14-00037.1.
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3.1 Introduction

Anthropogenic berms refer to a mechanically constructed ridge of sand positioned on the

crest of the natural beach profile. Sand (0.2-0.5 m) is typically scraped from the foreshore

and deposited on the beach crest [Bruun, 1983].Anthropogenic berms may be constructed in

the days and hours before an anticipated marine flood event such as an extreme high tide

or an energetic swell event, on a seasonal basis in anticipation of the storm season, and on a

continual basis to maintain or strengthen persistent berms. The practice originated primarily

as an erosion control strategy(e.g.,[Bruun, 1983, Tye, 1983, McNinch and Wells, 1992, Wells

and McNinch, 1991]) , and has been widely deployed as a coastal management technique

along the US eastern and Gulf coasts [Wells and McNinch, 1991, Clark, 2005, Kratzmann and

Hapke, 2012], in Australia [Carley et al., 2010], and in Europe [Rogers et al., 2010, Harley

and Ciavola, 2013]. Gallien et al. [2014] report three distinct types of berming in the southern

California bight based on deployment duration: event, seasonal and persistent. Event berms

are triangular in cross-section, extend 60-600 m in the alongshore direction, and exhibit

both the lowest volume ( 4 m3/m) and average crest elevations ( 5 m NAVD88) of all berms

studied. Seasonal berms extend 70-980 m alongshore, are 6 m3/m to 28 m3/m in volume and

average crest elevation varies from 5.3 to 6.4 m NAVD88. The largest, longest and highest

of all berms in southern California bight protects the Naval Amphibious Base Coronado in

San Diego and averages 48 m3/m, 1.2 km in length and nearly 7 m NAVD88 in mean crest

elevation. Note that event berms and seasonal berms in the region are considerably smaller in

length, height and width than those constructed along the Atlantic and Gulf coasts [Gallien

et al., 2014]. Examples of event type berming at Newport Beach are shown in Fig. 3.1. Note

from Fig. 3.1. that berms are sometimes constructed from the shoreward side, particularly

if access to the beach foreshore is restricted. Berms are constructed in southern California

primarily to guard against coastal flooding into urban lowlands, where significant damages

would follow. Here, coastal flooding is driven by a combination of factors such as high
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Figure 3.1: Anthropogenic berm such as these are constructed in the days and hours before an anticipated
flood event in Southern California, and have been termed event-type berms by [Gallien et al., 2014].

astronomical tides, waves, storm surge, and other fluctuations such as those caused by the El

Nio Southern Oscillation (ENSO) [Cayan et al., 2008]. More frequent and damaging storms

resulting from the combination of higher sea levels, storm surge, high tides, and waves are

expected to test the limits of coastal flood defenses [Strauss et al., 2012]. Tebaldi and Zervas

[2012] conclude that Southern California is among the most sensitive areas of the United

States: today’s 100 year coastal flood will become an annual occurrence by the year 2050.

Additionally, a statewide impact assessment indicates a wide range of critical infrastructure

including 5,600 kilometers of roadways, 450 kilometers of railways, 29 wastewater treatment

facilities and countless buildings and contents valued at over 100 billion dollars will be at

risk of coastal flooding by 2100 based on 1-1.4 m in sea level rise [Heberger and et.al., 2009].

Globally, over 20 million people reside below present high tide levels and as many as 200

million are vulnerable to flooding during extreme events [Nicholls, 2010, 2011]. Globally,

concomitant pressures of urbanization and climate change point to significant increases in

the vulnerability of major port cities to flooding. Population exposure is expected to triple,

whereas a tenfold increase in asset exposure totaling 9% of global gross domestic product is

anticipated [Hanson et al., 2011].

In the short term, accurate mapping of coastal flooding is critical for anticipating and miti-

gating flood vulnerabilities and responding to emergencies [National Research Council, 2009].

In urban lowlands, hydraulic models have been successfully used to map flood impacts driven

by extreme high tides and storm surge [Bates et al., 2005, Brown et al., 2007, Purvis et al.,

2008, Dawson et al., 2009, Knowles, 2010, Martinelli et al., 2010, Smith et al., 2012, Wadey
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et al., 2012] but predictive skill has been limited by uncertainties in wave-driven overtopping

volumes [Wadey et al., 2012]. Recent research suggests that wave statistics including signif-

icant wave height and period can be combined with relatively simple beach parameters such

as slope and freeboard to empirically estimate the overtopping flows [Laudier et al., 2011,

Gallien et al., 2014], data which can then be input to hydraulic models as a line source (along

the inland crest of a beach berm) to simulate resulting patterns of urban flooding as shown

by [Gallien et al., 2014]. Alternatively, coupled hydromorphological models (e.g., [Roelvink

et al., 2009, van Rijn, 2009, Figlus et al., 2011, Vousdoukas et al., 2012, Zhu and Dodd, 2013,

Harley and Ciavola, 2013]) may prove capable of describing beach change and overwash vol-

umes sufficient for coastal flood prediction. Flood mapping by planar extrapolation of wave

runup heights, while far easier and proven for mapping flood zones along many shorelines, is

unfortunately inadequate for urban lowlands [Bates et al., 2005, Gallien et al., 2013, 2014].

Generally, there is a lack of field data characterizing berm performance during storms and

the impacts of berm failure on the timing and distribution of coastal flooding.

This paper presents the results of a field campaign to document the initial conditions and

dynamic erosion of anthropogenic berms using terrestrial laser scanning (TLS). TLS is in-

creasingly applied for studies of beaches [Feagin et al., 2014] and has been combined with

video analyses for wave-by-wave studies of morphodynamics [Vouskoukas et al., 2014]. On

three occasions in February and March of 2012, a prototype berm was constructed on the

foreshore of Newport Beach at low tide, scanned to document its initial shape, and then

scanned in near-continuous fashion with the rising tide to document subsequent erosion.

The purpose is two-fold: (1) to measure the performance of the TLS system relative to

accuracy and assess strengths and drawbacks that are likely to bear on the suitability of

this technology to support flood prediction, and (2) to obtain a better understanding of the

resilience of anthropogenic berms to erosion and overtopping when exposed to a rising tide

and waves. In particular, we seek an understanding of basic mechanisms by which the berm

is eroded, and a deeper understanding of the rate of erosion and the factors controlling it.
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More broadly, we seek to promote improved predictions of coastal flooding in urban lowlands.

3.2 Newport Beach Site Description

The study site is adjacent to Newport Pier in the City of Newport Beach, CA, approximately

70 km southeast of central Los Angeles (see Figure 2). The Pier is located on Balboa

Peninsula separating the Pacific Ocean from Newport Bay, and is located at a break in the

strike of the shoreline. Upcoast of the pier, where berm experiments are performed, the beach

faces West-South-West (236 ◦from North) and downcoast the beach faces South-South-West

(196 ◦from North). Lower Newport Bay is densely developed featuring an active pleasure

craft harbor, as shown in Fig. 3.2, while the upper bay is a nature preserve with extensive

salt water wetlands (not shown in Figure 2). Areas bordering the lower bay are vulnerable to

flooding, particularly Balboa Island and Balboa Peninsula. Sheltered from significant wave

action, Balboa Island floods when high embayment levels overtop concrete flood defenses,

while the Peninsula may flood from high embayment levels or wave runup and overtopping of

the beach [Gallien et al., 2011, 2013, 2014]. Temporary event-type berms are deployed along

the ocean facing portion of Newport Beach to mitigate flooding threats from the coincidence

of high tides and long period swell. Ocean levels at Newport are influenced by astronomical

tides ranging between 1-2.7m (NAVD88, tidal epoch 1983-2001 at Newport Bay entrance),

storm surge, El Nio thermal expansion and wave setup, which under extreme conditions may

superelevate astronomical tide water levels by a further 0.5 m [Flick, 1998].

3.3 Methods

Prototype berms were constructed on three dates: February 21st, 2012 (Berm 1), March 7th,

2012 (Berm 2) and March 20th, 2012 (Berm 3). These dates correspond to the availability
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Figure 3.2: Berm experiments were conducted adjacent to Newport Pier in Newport Beach, California.
Berms were constructed at low tide, and exposed to run up and waves. The location of a wave and pressure
measurements (AWAC) is shown.

of City personnel and a sufficiently large intertidal range to facilitate berm construction, i.e.,

a low tide that creates access to the foreshore and a high tide that ensures complete erosion

of the berm. In practice, berms may be constructed over several kilometers of shoreline in

advance of a storm, but only a berm of limited length was possible here due to construction

and scanning limitations. The prototype design is modeled after event-type berms used

throughout the region and consisted of a central section parallel to the shoreline, ca. 16

m long and 2 m high, and flanked by 8 m long angled walls as shown in Figure 3. This

design guards the back side of the berm from flooding during the initial stages of attack,

and prolongs the duration over which the berm is eroded exclusively from its ocean-facing

side. The berm was constructed with a front-end loader (Model 624J, John Deere, Moline,

IL) operated by a City of Newport Beach employee. The loader scraped sandy material

immediately inland (Berm 1 and 2) or seaward (Berm 3) of the berm. Survey stakes around

the intended footprint of the berm guided placement of the sand. Similar to berm erosion

field experiments conducted by Fisher, Overton ad Chisholm (1986) at Duck, NC, the berm

toe was placed at approximately mean sea level (MSL, 0.8 m above NAVD88). During low

tide, initial front and back TLS scans were performed and the digital camera was positioned

on Newport Pier. A RTK-GPS receiver provided real time elevation data for accurate vertical

positioning of the berm on the beach face, as described in the next section. No compaction

or profiling of the berm was attempted. The deposited material was left unconsolidated with
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front and back slope angles ranging from 32-37, which are typical values for damp sand. The

median grain size of the sandy beach material was analyzed for each constructed berm and

found to be uniformly D50=0.42 mm. Resulting berm heights and cross-shore widths for the

central berm section (parallel to the shoreline) were as follows: Berm 1 (1.3 m high, 3.0 m

wide), Berm 2 (1.4 m high, 3.7 m wide) and Berm 3 (1.8 m high, 4.5 m wide).

3.3.1 RTK-GPS Survey

A ProMark3 geodetic survey receiver using the global positioning system (GPS) (Magellan,

Santa Clara, CA, US) was used to georeference the TLS, guide berm construction, measure

beach slopes, and provide control points to measure the accuracy of the TLS data. In stand-

alone mode the ProMark3 has point accuracy of 3 m. When receiving corrections, however,

the unit can operate in real-time-kinematic (RTK) mode and produce centimeter accuracies

both in the horizontal and vertical. To receive real-time corrections, the GPS unit was linked

wirelessly to base station FVPK of the Orange County Real Time Network (OCRTN), with

baseline length of 5 km. The real time network provides corrections better than 2 cm in the

horizontal and 4 cm in the vertical [OCPW, 2009]. Each RTK-GPS observation consists of

X,Y and Z information referenced to NAD83 and NAVD88. Survey points were collected on

the relatively flat foreshore around the perimeter of the berm, and additional points were

collected on the foreshore and in waist deep water at low tide to measure the foreshore beach

slope.

3.3.2 Berm Scanning

Terrestrial laser scanning (TLS) or lidar has emerged as a valuable technology for capturing

the three dimensional geometry of complex objects ranging from forests to industrial facilities

[Vossman and Maas, 2010]. Aerial laser scanning (ALS) has yielded high resolution digital
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terrain models (DTMs) that support a new class of detailed and accurate flood models [Bates,

2012] as well as numerous studies of beach dynamics (e.g., [Brock et al., 2002, Sallenger and

et al., 2003, Yates et al., 2008]). TLS data has been shown to enhance the local precision

of urban flood predictions by mapping features such as sidewalks and street surface camber

[Sampson et al., 2012] and could prove invaluable for coastal flood prediction by quickly

mapping beach topography before an imminent flood threat and reducing uncertainties.

TLS systems can be used for more detailed morphodynamic studies (e.g., [Feagin et al.,

2014]) and TLS systems on mobile platforms (e.g,. [Barber and Mills, 2007, Bitenc et al.,

2011, Sampson et al., 2012]) could enable a beach scan over the scale of a city in a matter

of hours, although extreme care would be required for a high level of accuracy, e.g., 1-5

cm. Topographic accuracies in this range have proven necessary to predict the onset of

overtopping for weir-like overflow events [Gallien et al., 2011].

A GX3D (Trimble, Sunnyvale, CA, US) TLS was used for berm scanning. The system relies

on a pulsed laser to sample the three-dimensional (3D) properties of surfaces and objects.

The Trimble unit allows for 360 horizontal and 60 vertical continuous scanning and has a

maximum optimal scan range of 200 m. Scanned relative point accuracy is dependent upon

scan range, and for this project laser scanning was undertaken at a distance of less than

100 m, allowing for a best system scan accuracy of ¡7 mm. During station setup the GX3D

was manually leveled within 0.001 and an in-built, dual-axis tilt compensation system with

automatic leveling allows for correction of level drift, that may occur from system vibration

or settling, within a 0.25 range. The measured output consists of a data point-cloud, where

each point is attributed with an easting, northing, orthometric elevation as well as a pulsed

laser reflection intensity. The GX3D uses a pulsed 532 nm (green) laser which is not designed

to penetrate through water, and thus measurements over water surfaces such as the swash

zone may be difficult to interpret. While the reflection intensity depends on many factors,

it is inversely related to the presence of water and thus can help to identify water lines on

the beach.
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Figure 3.3: Berms were constructed next to Newport Pier to enable continuous scanning and time-lapse
photography with an on-shore perspective (front scan). Scans with an off-shore perspective (back scans)
were also completed to build a three-dimensional point cloud of each berm, and survey spheres (shown) were
deployed to merge front- and back-scans in a post-processing step.

Front (STA1) and back (STA2) TLS scans were completed immediately after berm construc-

tion on each of the three test dates to characterize the initial berm geometry. Locations for

STA1 and STA2 were varied across the three study dates for the best possible scan coverage,

considering the location of the berm and line-of-sight obstructions such as maintenance ve-

hicles. Locations of (STA1) and (STA2) and approximate survey sphere placements used for

automatic georeferenced merging of front- and back-scans are also shown in Fig. 3.3. The

geodetic locations of STA1 and the survey spheres were surveyed using RTK-GPS and con-

verted to NAD83 and NAVD88. While an assessment of the GPS vertical accuracy was not

conducted on each survey day, a previous test at this site with the same equipment yielded

a vertical accuracy of 1.4 cm [Gallien et al., 2011]. All point clouds were georeferenced using

STA1 and survey spheres corrected RTK coordinates as control points. The TLS was set to

scan using a maximum resolution of 7.5 cm at the furthest distance (STA1), and the scan

interval was proportionally smaller at shorter distances. This resolution was chosen so each

scan would take 3-5 minutes.

Following the initial front and back scans, front scanning with the TLS continued with the
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rise of the tide and the progressive erosion of the berm. Actual scan times varied between

3-16 min with an average scan interval of 6 min. Variability in the scan interval was due to

scanner self-calibration, which occurred automatically when heavy wind gusts unsettled the

TLS.

3.3.3 Time Lapse Photography

A Powershot G12 (Canon USA, Melville, NY) photocamera was used during each geodetic

survey to capture digital images of the beach berm at one minute time intervals. The camera

was tripod mounted and the shutter was triggered automatically using a shutter release unit.

The images were time stamped and used to produce an optical time-lapse of the berm erosion

process. An example of the captured photos can be seen in Fig. 3.4.

Figure 3.4: Photographs of Berm 2 at (left to right) 17:00, 18:00, and 18:30 shows the progressive rise of the
tide and erosion of the berm that occurred in each of the three experiments.

3.3.4 Berm Data Processing

The georeferenced point clouds of merged front- and back-scans were combined into a single

point cloud representative of the initial conditions. Subsequent front scans combined with

the initial back scan characterize the time-dependent geometry of the berm, however eroded

portions of the berm visible in the back scan must be removed. This primarily affects point

clouds corresponding to advanced stages of erosion. A processing workflow was established

using ESRI’s ArcMap 10.0 (ESRI, Redlands, CA) to eliminate eroded back-scan points based

on the intersection of the coverage area of front-scan points. After creating a series of point
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clouds corresponding to different times, a 7.5 cm resolution DTM was created using inverse

distance weighting (IDW) interpolation. Examples of the generated berm DTMs for each

survey day are shown in Fig. 3.5. Reflected TLS intensity was recorded and processed along

with surface elevations to study beach surface characteristics under rising tide and wetting

berm surface conditions. The uncalibrated reflectance intensity was also interpolated to a

7.5 cm resolution raster grid using IDW interpolation and an example of berm reflected

intensity in intensity units (iu) over time is shown in Fig. 3.6.
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Figure 3.5: DTMs show that the geometry and orientation of Berms 1, 2 and 3 were similar, and that Berm
3 was the highest of the three.
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Figure 3.6: The lidar intensity reveals the interface between water and sub-aerial sand because the return
from water corresponds to low intensity.

Sand volumes for each berm scan were calculated using a raster model of the berm height,

measured relative to the sloping foreshore. A DTM of the sloping foreshore was created by

removing berm object points from each lidar point cloud and again applying IDW interpo-

lation onto the same 7.5 cm resolution raster grid. The berm height model was computed

by subtracting the foreshore DTM from the original DTM. Volumes were then calculated

in ArcMap 10.0 above the zero elevation reference plane. Percent erosion was computed by

subtracting the berm volume of each scan from the initial volume, and normalizing by the

initial volume. The berm height raster models were also used to extract cross-sectional and

alongshore profiles of the berms at each time step. Alongshore profiles of the berm crest
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Figure 3.7: Polylines were etched along the toe and crest of each berm to extract average toe and crest
elevations, as well as minimum crest elevations, as shown here for Berm 2.

and berm toe were identified by computing a raster model of the berm slope and contouring

slope values, which clearly showed the crest and toe position as shown in Fig. 3.7. Crest

and toe polylines were then traced manually, and elevations along the line were extracted

at approximately 10 cm intervals. Separate polylines were saved for each time step where

a noticeable change occurred in toe or crest shape. The average toe elevation, the average

crest elevation, and the minimum crest elevation were saved for each time step for subsequent

analysis. It is noted that the reported berm toe elevation may be higher than the actual toe

elevation toward the end of each berm experiment because the pulse lidar cannot penetrate

water and see measure a submerged toe elevation. Toward the end of each experiment, errors

in the reported toe elevations may be in the 5-10 cm range, while errors during the initial

stages of berm erosion are likely less than 3 cm.

The preceding polylines were also used to extract crest-averaged and toe-averaged lidar

intensity data at each time step. An advantage of this averaging is the removal of ”salt and

pepper” noise caused by a combination of scan pattern, receiver automatic gain adjustments,

laser reflection angle as well as material properties of the reflecting surface [Nobrega et al.,

2007, Chust et al., 2008].

63



3.3.5 Wave and Pressure Measurements

An AWAC wave/current gage (Nortek AS, Oslo, Norway) was deployed in approximately 10

m of water and 300 m directly offshore of the berm to measure directional wave properties

and pressure. The instrument was deployed in early January, 2012 and collected data for a

period exceeding three months. The AWAC operates in stand-alone mode with an external

battery for power and internal memory for data recording. Wave height accuracies are stated

to be less than 1%, and pressure resolution and absolute accuracies are less than 0.005 and

0.1% of the total depth. This corresponds to a resolution and accuracy of 0.05 and 1 cm based

on the 10 m water depth. The AWAC measured waves at the top of every hour using a 17

minute burst window at a rate of 4 Hz. Pressure was sampled at 1 Hz every 10 minutes for a

two minute period. Wave measurements were processed using Storm commercial processing

software (Nortek USA, Boston, MA), results are shown in Table 3.1.

Table 3.1: Attribute of hourly wave data during erosion experiments. Local Standard Time (LST). † Stockdon
et al. (2006) formula. ‡ Guza and Thornton (1981) formula.

Survey Date Time(LST) Hmo(m) Tp(s) ξ < η > (m)
†

< η > (m)
‡

R2(m)
†

21 February 2012 1800 0.52 11.5 0.30 0.054 0.088 0.426
21 February 2012 1900 0.50 11.4 0.30 0.053 0.085 0.414
21 February 2012 2000 0.58 11.8 0.29 0.059 0.099 0.462

7 March 2012 1700 1.13 11.5 0.27 0.107 0.192 0.664
7 March 2012 1800 1.22 11.4 0.26 0.110 0.207 0.684
7 March 2012 1900 1.09 11.4 0.27 0.104 0.185 0.647
20 March 2012 1600 0.59 11.5 0.37 0.077 0.100 0.480
20 March 2012 1700 0.63 11.4 0.36 0.079 0.107 0.492
20 March 2012 1800 0.52 12.4 0.43 0.078 0.088 0.486

Pressure data was processed to fill hourly data gaps, remove high frequency variability, and

reference the resulting time series to NAVD88. Data gaps were filled using piecewise cubic

Hermitian interpolation (Matlab, Natick, MA) and the resulting time series was low-pass

filtered in the frequency domain to resolve variability at periods longer than two hours

including the dominant modes at diurnal and semidiurnal periods. Six-minute NOAA tide

measurements at Los Angeles (35 km to the Northwest) were used to reference the pressure
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data to NAVD88. A variable offset (correction) was computed by subtracting a running,

fortnightly-average pressure (depth) from a running, fortnightly-average Los Angeles tide

height referenced to NAVD88, and resampled every 10 min by interpolation for consistency

with the 10 min pressure data. The offset/correction was then added to the low-pass filtered

pressure data to yield a local time series of water height relative to NAVD88. A variable

offset was used to account for settling of the instrument over time by 5-10 cm, which was

revealed by an increasing trend in the fortnightly pressure averages over the deployment

period when fortnightly tide averages at Los Angeles and La Jolla (130 km to the Southeast)

exhibited a weaker but decreasing and coherent trend. That is, the fortnightly tide height

average at Los Angeles and La Jolla tracked very closely with maximum differences of 2.35

cm, and average differences of 0.58 cm. Hence, we have assumed that the running (every

10 min) fortnightly average of the Newport Pier and Los Angeles tide remain equal, giving

a Newport tide record referenced to NAVD88 with a maximum error of 2.35 cm based on

the Los Angeles/La Jolla comparison. The offset/correction was -10.78, -10.80 and -10.79 m

coincident with Berm 1, 2 and 3 experiments, respectively.

3.3.6 Wave Setup and Runup Estimates

Wave setup and runup were calculated to characterize water levels at the berm face in relation

to datum-referenced water heights outside the surf zone, as described above. Based on the

beach slopes and wave properties shown in Table 1, the Iribarren number ξ, setup < η >,

and runup R2 (2% exceedance probability) were computed in accordance with [Stockdon

et al., 2006] as follows,

ξ =
βf

(H0/L0)1/2
(3.1)

< η >= 0.35βf (H0L0)
1/2 (3.2)
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R2 = 1.1(0.35βf (H0L0)
1/2 +

1

2
[H0L0(0.56βf

2 + 0.004)1/2]) (3.3)

where βf is the foreshore beach slope, and H0 and L0 represents the deep water wave height

and length, respectively. An additional setup estimate was computed as follows [Guza and

Thornton, 1981],

< η >= 0.17Hs (3.4)

where Hs represents the significant wave height at the 10 m depth. The shoaling coefficient,

Ks = Hs/H0, was computed to be 1.028 (nearly unity) based on the wave periods shown

in Table 3.1 using the University of Delaware on-line wave calculator (R. Dalrymple), so

for this study, wave heights at 10 m depths were used for all setup and runup calculations.

Additionally, linear wave theory was used to compute the deep water wavelength. Average

wave attributes corresponding to the time of berm erosion are shown in Table 3.2.

Table 3.2: Wave attributes associated with the time of berm erosion. † Stockdon et al. (2006) formula. ‡
Guza and Thornton (1981) formula.

Survey Date Time(LST) Hmo(m) Tp(s) ξ < η > (m)
†

< η > (m)
‡

R2(m)
†

21 February 2012 1800-1900 0.51 11.5 0.30 0.054 0.087 0.420
7 March 2012 1700-1800 1.18 11.5 0.26 0.109 0.200 0.674
20 March 2012 1600-1700 0.61 11.5 0.37 0.078 0.104 0.486

3.3.7 Wave Runup Observations

Time lapse photography and georeferenced TLS intensity data enabled direct observation of

wave runup, because wetted beach sand produces a low signal intensity. By visually matching

time lapse photography with TLS data, a threshold of 10 iu was found to outline the wet/dry

interface indicative of the maximum runup over the time scale of the scan. The reflected laser

intensity for dry sand was found to be generally greater than 12 iu. Hence, the maximum
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elevation of beach face TLS points (the scan region immediately upcoast and downcoast of

the berm) with an intensity less than 10 iu was taken as an indicator of maximum runup

elevation which we denote R0. Measurement uncertainty is estimated to be < 3cm based on

differences in runup measurements achieved by varying the intensity cutoff by 4 iu around

the 10 iu limit.

3.4 Results

The fit of front-scan to back-scan data was evaluated by comparing point elevations in the

region of overlap between the two scans, generally on the beach inland of the berm. These

data correspond to initial conditions prior to berm erosion. Beach elevations were sampled at

30 points within the overlap zone. For berm survey 1, height differences average 6 mm. For

surveys 2 and 3 height differences average 9 and 7 mm, respectively. These values correspond

to the expected TLS instrument scanning accuracy at 100 m distances.

Table 3.3: DTM errors (VRMSE) for each scan day.

Survey Date GPS Points Relative Error (m) GPS Error (m) Absolute Error (m)

21 February 2012 23 0.025 0.014 0.029
7 March 2012 50 0.022 0.014 0.026
20 March 2012 25 0.027 0.014 0.030

Average 33 0.025 0.014 0.028

Relative and absolute vertical root mean square errors (VRMSE) of the full TLS returns are

presented in Table 3.3 for each of the three berms. These data show that performance of the

TLS scanner was consistent across the three scanning dates, with relative and absolute errors

in the range of 2-3 cm, despite significant differences in environmental conditions. Specif-

ically, windy conditions on March 7, 2012 (9.4 m/s) caused visible aerosols and occasional

vibrations of the pier with strong gusts. Both of these effects may alter light transmission

and reception however, the accuracy data provide strong evidence that adverse environmen-

tal conditions did not degrade the quality of the scans. Table 3.2 shows that the three berms
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Figure 3.8: The berm cross-sectional geometry maintained a consistent shape as it was eroded. The height
of the observed runup, relative to the initial height of the berm toe, indicates that the berm was eroded
while only its toe was initially exposed to the rising tide and waves.

experienced a consistent wave period of 11.5 s but the wave height for Berm 2 (1.2 m) was

approximately two times Berm 1 and 3 (0.5-0.6 m). Table 3.2 also shows that the Iribarren

number was less than 0.4 for each case which corresponds to spilling breakers in the surf zone.

Observations and time-lapse photography reveal a basic, qualitative description of berm ero-

sion. Wave breaking occurred ca. 50-100 m offshore of the berm, resulting in irregular bores

moving through the swash zone and running up and down the foreshore similar to the swash

regime as described by Sallenger [2000]. With the rise of the tide, runup eventually reached

the toe of the berm, analogous to the collision regime [Sallenger, 2000], causing localized soil

saturation and slumping. The slumping process began slowly and accelerated as the berm

was increasingly exposed to wave energy (shallow bores) and toe inundation from the rising
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tide. In turn, avalanching of relatively dry sand down the angle of repose was observed as

the toe was eroded. Hence, over time, the face of the berm retreated and the crest height

was lowered with every avalanche that extended to the berm crest. Fig. 3.8 presents cross-

shore profiles of the berm height at overtopping locations from the gridded TLS data. The

height of the observed runup is also shown in Fig. 3.8, relative to the height of the berm

toe. Note that the dynamic evolution of berm cross-sectional shape was consistent across

all three berm prototypes: a gradual reduction in size of a triangular geometry whereby the

side-slopes remained constant and the left base was translated inland. Fig. 3.9 presents the
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Figure 3.9: The alongshore variability in the berm crest elevation shows that Berms 1 and 2 were first
overtopped near the end of the central berm section, while Berm 3 was overtopped near the center. The
location of initial overtopping does not correspond to an initial low point in the berm.

along-shore profiles of the central portion of the berm crest. These profiles reveal the irreg-

ular initial shape that results from the construction process, and the downward progression

of the berm height resulting from the rising tide and wave action. The alongshore patterns

of erosion differed across the three berm experiments. With Berms 1 and 2, the ends of

the central berm section lowered faster than the middle portion of the central section. In

contrast, the central berm crest of Berm 3 was lowered relatively uniformly in the alongshore
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direction. Fig. 3.9 denotes the location of initial overtopping in all three cases, as determined

by a review of time-lapse photography. It is noted that overtopping does not occur at the

initial berm minima (i.e., following construction), the overtopping point is an emergent fea-

ture. Fig. 3.10 shows the co-evolution of numerous system attributes. Fig. 3.10a, b and c
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Figure 3.10: With the rising at a steady rate, the rate of berm erosion progressively increases. The pattern
is repeated over three experiments as shown for a) Berm 1, b) Berm 2, and c) Berm 3. The central berm
section erodes faster than the whole berm since the wings of the berm are further ashore as shown in Figure
2. Note that the observed runup (blue line) matches the crest elevation (red line) at the moment of initial
overtopping.

correspond to Berm 1, 2, and 3, and each shows data on elevation (top) and berm erosion

(bottom). The elevations shown include the average crest elevation, the crest elevation at

the observed location of overtopping, the average toe elevation, the offshore tide elevation

h, the setup elevation estimate (< η > +h), the 2% runup elevation estimate (R2 + h), and

the observed runup elevation (R0 + h). Cumulative erosion is shown for the central berm

section and whole berm (including berm wings) as measured by the berm DTM. The time

of initial overtopping is indicated by a vertical dashed line. Several basic observations can

be reported that apply to all three berm experiments:
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• The tide rise is nearly linear in time, while the berm crest elevation and cumulative

erosion are non-linear. Both respond slowly at first, and then more rapidly approaching

the moment of failure.

• Setup and runup estimates rise nearly linearly in time with the tide, but observed beach

runup exhibits variability that departs from a simple linear trend. The observed runup

is consistently lower than estimated runup based on Eq. 3. The average deviation of

computed vs observed runup is 23, 26 and 23 cm for Berms 1, 2 and 3 respectively.

• The separation between the average crest elevation and elevation at the overtopping

location increases over time, indicating an accelerating breaching process similar to

other types of embankment failures (e.g., Wu et al. [2011]).

• Overtopping occurred ca. 60-90 minutes before the observed beach runup elevation

attains the elevation of the initial average berm crest (not shown, outside of scale),

and 30-60 minutes before the estimated runup elevation attains the initial average

berm crest elevation. Average berm crest elevation is lowered by erosion of the berm

toe and avalanching, suggesting that berm erosion may be more highly dependent on

water level than overtopping.

• Overtopping occurred when the central berm is 75-80% eroded and the whole berm is

60-65% eroded by volume.

• Eroded sediment was visually observed slumping in the seaward direction, and it ap-

peared to spread out smoothly based on time-lapse photography. However, a pre-

cise characterization of foreshore sediment redistribution was not possible because the

flooded conditions prevented TLS measurements.
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3.5 Discussion

The TLS system and time-lapse photography are clearly valuable for investigations of berm

dynamics. However, the TLS system used here required an hour or two to set up (including

spheres, RTK-GPS ground control points, etc.), and two scans were required to characterize

the initial conditions (front and back). Assuming a rapid scan using a mobile platform would

be of interest, to assess initial beach profile and inform coastal flood models, and that access

to the ocean side of berms is typically not possible, two issues are explored further:

• Is a single back-scan sufficient for mapping the berm crest elevation (recognizing that

berm slopes are approximately equal on opposite sides)?

• Could a coarser point spacing be used to minimize the required scanning time without

sacrificing overall accuracy?
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Figure 3.11: The alongshore characterization of the berm crest elevation is closely approximated by a back-
scan (blue line), compared with a point cloud based on front and back scans (run line).

Fig. 3.11 presents initial berm crest elevations as determined by the back scan versus the

combined (front-back) scans, and reveals a high degree of coherency. The average vertical
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error between the two profiles was 0.03, 0.04 and 0.03 m (RMSE) for Berms 1, 2 and 3,

respectively, which is within the absolute error of the TLS measurements. Original point

cloud data contained occasional spikes in berm elevation from birds on the berm crest. If the

TLS data were filtered to remove false hits, the errors would decrease even further. To answer
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Figure 3.12: The accuracy of the DTM depends on the density of point cloud data, and by using a minimum
of 100 points per square meter, the DTM error associated with the point density remains smaller than the
absolute accuracy of the elevation data.

the second question, additional 7.5 cm resolution berm DTMs were computed using the

same interpolation procedure (IDW) but with fewer lidar points. DTMs were computed by

thinning the original lidar point clouds using a modulo operation leaving only every second,

third, fourth, fifth or sixth point in the lidar point cloud. Analysis of the thinned point

clouds showed the sampling of points was evenly distributed. Height differences between the

undersampled and original DTMs were then measured to compute the undersampling error

(VRMSE) which is shown in Fig. 3.12. This shows that the undersampling error is increased

as the point density decreases, which is the expected response. We note that the total point

density varies from ca. 160 to 240 m-2 across the three prototype berms due to differences

in the distance between the scanner and the berm. Fig. 3.12 also shows the absolute error

associated with the TLS data, 2.9 cm VRMSE, indicating that a point density of ca. 70-100

m-2 or greater is required for the undersampling error to be equal or less than the absolute

error of the TLS data. Hence, the TLS scanner setting (7.5 cm) could only be increased

to about 10 cm before the berm DTM errors increased beyond the accuracy of individual

TLS point heights. Thus, a point spacing of 10 cm or finer is recommended for future berm
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scanning studies.

In the next section, a regression analysis of erosion is presented with respect to several

alternative (dimensionless) water heights. The heights include the Newport tide height, the

Los Angeles tide height, the setup elevation based on [Stockdon et al., 2006] (Eq. 2) and

[Guza and Thornton, 1981] (Eq. 4), the runup elevation based on [Stockdon et al., 2006]

(Eq. 3), and the elevation corresponding to the observed runup.

3.5.1 Regression of Berm Erosion Data

Several dimensionless water heights were computed for erosion regression analysis. Di-

mensional water heights are measured relative to the initial toe elevation Z0 and non-

dimensionalized by the initial berm height B0, which represents the difference between the

initial crest and toe elevations. Each dimensionless water height can be interpreted as the

fractional height by which the berm is flooded. The dimensionless tide height is based on

tide elevation h as follows,

h∗ =
h− Z0

B0

(3.5)

where the superscript * denotes a dimensionless variable. The dimensionless wave setup is

given by,

< η >∗ =
h+ < η > −Z0

B0

(3.6)

the dimensionless wave runup is given by,

R∗2 =
h+R2 + Z0

B0

(3.7)
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and a similar expression is used for the dimensionless observed runup,

R∗0 =
h+R0 + Z0

B0

(3.8)
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Figure 3.13: Cumulative erosion of the berm over three experiments correlates well (R2 ¿ 0.94) with dimen-
sionless tide and setup elevations, and is poorly correlated R2 ¡ 0.77) with dimensionless runup elevations.
Cumulative erosion correlates best with the dimensionless set up elevation based on the formula by Stockdon
et al. [2006].

Fig. 3.13 shows the erosion data for the central section of each berm. Cumulative erosion is

shown versus each of the dimensionless heights, and also shown is the least-squares fit of a

quadratic model of the following form,

y = {a(x− x0) + b(x− x0)2 if x ≥ x0 ; or 0 if x ≥ x0} (3.9)

where x represents the abscissa (dimensionless water level) and y represents the ordinate

(cumulative berm erosion expressed as a percentage). The quadratic model given by Eq. 9

is fit subject to the constraint, y ≥ 0 ∀x, to guarantee a monotonic increase in cumulative

erosion with increasing water levels.

75



Table 3.4: Quadratic model parameters and coefficient of determination. † Stockdon et al. (2006) formula.
‡ Guza and Thornton (1981) formula.

Central Berm Whole Berm

Predictor xo a b R2 xo a b R2

h∗(NB) -0.193 2.510 453.0 0.963 -0.138 -0.320 467.5 0.918
h∗(LA) -0.230 -0.302 447.2 0.943 -0.175 0.624 447.9 0.889
< η >∗ † -0.131 0.000 484.4 0.978 -0.0681 -0.463 526.0 0.948
< η >∗ ‡ -0.113 -0.906 441.6 0.946 -0.044 -0.850 490.3 0.943
R2‡ -0.159 -54.32 193.6 0.706 0.074 -10.10 213.7 0.713

Fit parameters are shown in Table 4 and the results are plotted in Fig. 3.13. All of the

regressions yield a high value for the coefficient of determination (R2 > 0.7), and the fit is

generally better for the central berm data than the whole berm data. The dimensionless

Stockdon setup (< η∗ >) represents the best fit for both the central berm (R2 = 0.978) and

whole-berm data (R2 = 0.948), but the fit based on all tide and setup heights is excellent

(R2 > 0.89). On the other hand, poorest fit (R2 0.7) is associated with dimensionless runup

heights (R∗2andR
∗
0). Fig. 3.13 suggests the relatively poor fit is attributable to Berm 2, which

is offset from the other two berms in the panels corresponding to observed runup height,

predicted runup height and the Guza and Thornton setup height. Berm 2 experienced

the largest waves of the three test cases, so the comparatively weak regression with runup

may indicate that waves are not controlling erosion. Instead, these results suggest that berm

erosion is controlled by its degree of submergence indicated best by the Stockdon et al. [2006]

setup height, and leave open the possibility that wave action is important for agitating or

destabilizing the berm toe and moving material away down the shore face. Previous work

has also indicated that erosion is linked to water level [Basco and Shin, 1996].

The berms were observed to be stable after construction, and erosion only began after water

came in contact with the berm. Therefore, the fit model given by Eq. 9 is designed with a

parameter representing the threshold for erosion, x0. Depending on the regression, x0 was

found to vary from -0.23 to 0.074 which can be interpreted as a water level 23% below or

7.4% above the toe of the berm, relative to the initial height of the berm. Using the scaled
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[Stockdon et al., 2006] water level, x0=-0.131 indicating that berm erosion begins when the

setup elevation is about 13% below the berm toe elevation, relative to the initial berm height.

Previously it was noted that berm overtopping occurred when the central berm section was

75-80% eroded. Based on Figure 10, this occurs when the scaled [Stockdon et al., 2006] water

level is in the range 0.25-0.30. This indicates that the erosion is initiated and completed as

the water level rises from 13% below to 25-30% above the initial toe elevation, respectively,

relative to the height of the berm.

This simple scaling was exceptionally consistent over all three berms and may represent a

rapid method of predicting triangular berm failure onset and by extension, flood risk, for a

specific site under similar wave conditions. However, it is important to note however that

the regression equations may not be applicable at other locations, to other berm geometries,

or even to the same site under different wave conditions. For example, the Iribarren number

was less than 0.4 for all experiments which corresponds to spilling breaker types, and the

erosion mechanism may be different when other breaker types are present.

3.6 Conclusion

TLS delivers an accurate model of the berm geometry. A comparison with ground control

points reveals an average error of 2.5 cm (VRMSE) over three berm prototypes, and a high

level of consistency across prototypes despite one case of strong, gusty winds that represent

more challenging scanning conditions. TLS also provides signal intensity data that is strongly

linked to moisture content.

The TLS was operated with a point spacing of 7.5 cm at a distance of 100 m, leading to

average point densities of 160-240 m-2. Differences across the three berms were the result

of slightly different scanner and berm positions across the three prototypes. Analysis of the
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TLS data suggests that berm geometry could be mapped at the same level of accuracy with a

resolution as large as 10 cm. At this resolution, uncertainty in the berm elevation associated

with under-sampling would be equal to the expected error of the TLS data compared with

the ground control points. This result suggests that there is relatively little margin for

increasing the lidar point cloud spacing without increasing the absolute error of the berm

height data beyond ca. 3 cm.

Berm crest elevations estimated using only back scan data compare favorably with berm

crest elevations estimated from combined front and back scans. Recognizing that a rapid

scan of beach berms could help to inform coastal flood prediction models, scanning from the

back-side may represent an efficient proxy for berm elevation or maximum beach crest for

rapid overtopping probability assessment.

Continuous lidar scanning and time-lapse photography of anthropogenic beach berms ex-

posed to a rising tide and waves leads to a four dimensional empirical model of berm dy-

namics. For the site considered and the three days tested, a relatively simple erosion pattern

was observed: As runup first strikes the toe of the berm, berm sediment saturates and be-

gins to slump. With continued slumping and offshore sediment transport by wave action,

avalanching occurs down the angle of repose causing the retreat of the berm face inland

and a progressive loss of sand and lowering of the crest elevation. The rise of the tide was

nearly linear in time over the duration of berm erosion, and the erosion and lowering of

the beach crest was non-linear with time and characterized first by a gradual and then by a

rapid change. A dimensionless setup elevation representing the fractional submergence of the

berm is identified as a good predictor of cumulative berm erosion under the test conditions.

Across the three berm experiments, erosion of the central berm section begins when the

setup elevation is about 13% below the toe of the berm, relative to the initial berm height,

and the berm is overtopped when the setup elevation is 25-30% of the initial berm height

and the berm is 75-80% eroded by volume.
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Chapter 4

Multi-Phase Shock-Capturing Model

of Beach Hydromorphodynamics

This Chapter has been submitted to Journal of Coastal Engineering. Citation: Majd, M.S.,

Gallien,T.W., Schubert, J.E. and Sanders, B.F. (2015), Multi-Phase Shock-Capturing Model

of Beach Hydromorphodynamics, Journal of Coastal Engineering, In Review.
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4.1 Introduction

Human coastal migration and sea level rise acceleration are increasing flood and erosion

risks at an alarming rate [Nicholls, 2011, Hanson et al., 2011]. Many communities are

currently guarded from flooding by beaches that are enhanced with anthropogenic berms

[Wells and McNinch, 1991, Clark, 2005, Carley et al., 2010, Rogers et al., 2010, Kratzmann

and Hapke, 2012, Harley and Ciavola, 2013, Gallien et al., 2015], so understanding beach

and berm response to storm waves is critical to adapting and mitigating climate change

effects. Calibrated swash-zone models initialized with timely beach profile measurements

and forced by tide, storm surge and wave predictions could offer valuable information for

flood preparedness, mitigation and emergency response: predictions of the timing, location

and magnitude of overtopping flows.

Beaches present numerous hydromorphodynamic modeling challenges including wave dynam-

ics, sediment transport and shoreline movement [Larson et al., 2004, Brocchini and Dodd,

2008, Briganti and Dodd, 2009a]. The non-linear shallow-water (NLSW) equations offer a

reasonable approximation of swash zone flows from the mid- to inner-surf zone shoreward

[Brocchini and Dodd, 2008], and form the basis of contemporary beach morphodynamics

models such as XBeach [Roelvink et al., 2009] and XBeach-G [McCall et al., 2014]. Recent

NLSW models include non-hydrostatic terms, improving wave dispersion characteristics in

intermediate and deep water [Zijlema et al., 2011, McCall et al., 2014, Masselink et al., 2014],

but at significant computational expense. Consequently, practical coastal flood prediction

applications often favor use a spectral wave model such as SWAN [Booij et al., 1999] to pre-

dict the wave spectrum at a shallow depth, which is in turn transformed into a time series

of water surface height that is specified as the boundary condition of a hydrostatic NLSW

model [McCabe et al., 2011]. By coupling the NLSW model to an Exner equation through a

Bagnold-type sediment transport equation, the horizontal and temporal distribution of the

instantaneous water surface height, depth-averaged velocity, sediment concentration, and
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sediment bed height can be predicted. This approach can be contrast with models designed

to predict wave-group averaged flow and sediment transport [e.g., Roelvink et al., 2009], and

also with probabilistic models that are based on wave energy balance concepts [e.g., van

Rijn, 2009]. XBeach-G [McCall et al., 2014, 2015] is an example of a mechanistic model

for instantaneous flow and sediment prediction in shallow and intermediate depths that can

be forced by a time series of water level, as conceived by [McCabe et al., 2011], based on

the wave energy spectrum [Roelvink et al., 2009]. McCall et al. [2014] refer to mechanistic

modeling of instantaneous conditions in the swash zone as wave by wave modeling, although

this terminology was historically used to describe models that followed the trajectory of

individual waves progressing through the swash zone and used empirical models to account

for wave transformation [e.g., Dally, 1992]. Mechanistic wave by wave modeling is the focus

of this paper.

Shock-capturing numerical methods have proven very successful for mechanistic wave by

wave modeling in the swash zone [Hubbard and Dodd, 2002, Briganti and Dodd, 2009a].

The most robust shock-capturing shallow-water models for hydromorphodynamics, some-

times known as shock-capturing debris flow models, are derived from vertically integrated

multi-phase flow equations that account for the effects of suspended sediment on inertia

and momentum fluxes and are therefore valid for hyperconcentrated flows [e.g., Fraccarollo

et al., 2003]. Shock-capturing capability is the result of using a Godunov-based finite vol-

ume scheme with an approximate Riemann solver to compute fluid mass, sediment mass,

and momentum fluxes. A conditionally stable monotone solution update is achieved using a

semi-implicit corrector step that synchronizes predictions of velocity, sediment concentration,

and sediment bed height [Armanini et al., 2009, Soares-Frazao and Zech, 2011, Majd and

Sanders, 2014]. Several lines of evidence suggest that a multi-phase shock-capturing model

could be advantageous in swash zone applications. For example, there is the persistent oc-

currence of shock waves (bores) and transient wet/dry fronts [Brocchini and Baldock, 2008],

and field and laboratory studies show that sediment concentration spikes occur on beaches
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during uprush and downrush [Puleo et al., 2003]. Additionally, McCall et al. [2015] recently

reported improved predictions after considering the effect of sediment on inertia. There are

also reports that dike/dune failure models need to cope with high sediment transport rates

[Van Emelen et al., 2012].

This paper presents a Multi-Phase, Shock-Capturing (MPSC) numerical model for mech-

anistic wave by wave modeling of flow, sediment transport, and beach profile change in

shallow depths and the capacity to simulate rapid beach erosion and overtopping which

is important for coastal flood prediction. The model accounts for the effect of sediment

on inertia and momentum fluxes in a systematic way and can describe hyperconcentrated

flows, spikes in sediment concentration, and shocks in the flow and sediment profile. The

MPSC model solves vertically integrated multi-phase flow equations using a Godunov-type

numerical method known as the LHLLC (Lateralized Harten, Lax and van Leer + Contact

discontinuity) scheme, and similar to other models developed for beaches [e.g., Roelvink

et al., 2009], the MPSC model includes an avalanching scheme for gravitational slumping of

steep slopes [Majd and Sanders, 2014]. A diffusive sediment flux that was initially developed

for debris flow modeling is also used here to increase or decrease sediment transport rates

depending on whether flow is in the downslope or upslope direction, respectively [Rosatti

and Begnudelli, 2013]. The diffusive flux is termed Slope Assisted Transport (SAT) because

it mimics gravitational effects that preferentially move suspended sediment in the downslope

direction [Rosatti and Begnudelli, 2013]. This paper also describes how the MPSC model

is coupled to a spectral wave model to account for neashore wave transformations, and the

sensitivity of the model to placement of the MPSC offshore boundary is examined as well as

stochastic variability introduced when wave spectrum are converted to time series of water

height. The objective of this paper is to present the MPSC model equations and numerical

methods (Section 2 and 3), evaluate model performance in one-dimensional (1D) applica-

tions (Section 4), and report on model suitability for coastal applications based on factors

such as accuracy, stability and computational cost (Sections 5 and 6).
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4.2 Governing Equations

The MPSC model conceptualizes the swash zone as a one layer fluid-sediment mixture with

depth hm, velocity um and concentration by volume c which sits upon a sediment bed with

concentration by volume cb and a height of zb above an arbitrary datum, as shown in Fig. 4.1.

Note that the height of the mixture surface above an arbitrary datum is given by zw=zb+hm.

um 
c 

hm 

zw 

zb cb 

Figure 4.1: The MPSC model assumes a fluidized layer of thickness hm, sediment concentration c, and
velocity um over an erodible sediment bed with height zb and concentration cb. Note that zw=zb+hm.

Debris flow models have also been developed with multiple layers of fluid and sediment [e.g.,

Chen and Peng, 2006b], but this introduces more parameters and requires the solution of

more equations which increases both model complexity and computational costs [Majd and

Sanders, 2014], motivating the relatively simple formulation presented here. An attractive

feature of the model is that hyperconcentrated near-bed sediment layer (bed load) thickness

can be recovered from the numerical solution using an analytical transformation [Majd and

Sanders, 2014].

The governing equations consist of three partial differential equations and an algebraic sed-

iment transport equation. The partial differential equations account for continuity of the

fluid mixture, continuity of sediment, and momentum of the mixture and are presented in a
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compact, matrix form,

∂U

∂t
+
∂F

∂x
+ H

∂zb
∂x

= S (4.1)

where

U =


hm + zb

chm + cbzb

(c∆ + 1)umhm

 , F =


umhm

cumhm

(c∆ + 1)(u2mhm + 1
2
gh2m)

 , (4.2)

H =


−k|um|hm

−αcbk|um|hm

(c∆ + 1)ghm

 , S =


0

0

−f |um|um

 (4.3)

where ∆ = (ρs − ρw)/ρw, ρs and ρw represent solid and water densities, respectively, f is a

dimensionless friction factor, k is a dimensionless SAT parameter, and α represents the ratio

of the near bed to packed bed sediment concentration. The appearance of sediment concen-

tration, c, in the momentum equation reflects a tight coupling between sediment transport

and wave action, which makes the model valid for applications involving hyperconcentrated

sediment mixtures. Eqs. 4.1 assume that shear stress at the sediment-water interface is given

by,

τ = fρwu
2
m (4.4)

which implies that f is related to the Darcy-Weisbach friction factor fDW by f = fDW/8

[Henderson, 1966]. The algebraic sediment transport equation describes the total sediment

load qs under the assumption of instantaneous energetics as follows [Bailard, 1981, Rosatti

et al., 2008, Armanini et al., 2009],

qs = cumhm = cbβu
3
m (4.5)
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where β is an empirical entrainment factor. Note that Eq. 4.5 is an approximation that has

been found adequate for many beach applications despite theoretical limitations [Masselink

and Russell, 2006]. For example, field experiments show that uprush and downrush may

be characterized by different values of β [Larson et al., 2004]. Additionally, Masselink and

Russell [2006] suggest that β values are sensitive to experimental measurement methods

and data analysis techniques and Puleo et al. [2005] report that β values are sensitive to

calibration procedures. Here as in many previous studies, β is treated as a constant for a

particular beach and is viewed as a calibration parameter. It is expected that the calibrated

value will fall close to the range of experimentally measured values.

Note that the first two terms in the vector H correspond to fluxes of the mixture and

sediment, i.e., SAT terms, that are scaled by the local beach slope (Eq. 1), while the third

term accounts for the traditional beach slope source term in the momentum equation. Rosatti

and Begnudelli [2013] recommend use of α=0.9 for SAT, which is adopted for this study. The

SAT dimensionless parameter k scales the magnitude of the SAT flux which is expected to

be much smaller than the advective flux, i.e., k � 1. The purpose of SAT, as will be shown

in the results, is to smooth out overly steep sediment fronts that are predicted to occur under

the assumption of instantaneous energetics when beach sediments are eroded and transported

in the offshore direction by the model. Hence, SAT may partially compensate for limitations

associated with instantaneous energetics and the layer-averaged approximation of the flow.

It is also noted that f can be informed by grain size, but it is difficult to precisely estimate

and therefore may also be used as a calibration parameter that is constrained by a range of

physically reasonable values dictated by the beach material.

Eqs. 4.1 are hyperbolic with three characteristic wave speeds (or eigenvalues) corresponding

to forward and backward moving gravity waves, λ1 and λ3, and a contact discontinuity, λ2.

The wave speeds cannot be expressed in a simple analytical form like the classical shallow-

water equations which have a Jacobian matrix with eigenvalues given by u+
√
gh, u, and
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u-
√
gh. Rather, the wave speeds are defined by the three roots of a cubic characteristic

polynomial and must be computed numerically [Majd and Sanders, 2014]; fortunately, an

explicit routine avoids the need for a costly iterative search algorithm [Majd and Sanders,

2014]. For this model, the wave speeds are calculated under the assumption that k=0,

since in practice the model uses small k values and this assumption leaves the characteristic

polynomial unchanged compared to proven debris flow models [Majd and Sanders, 2014].

The wave speeds are important for implementing the numerical solver, as shown in the next

section.

4.3 Numerical Solver

The MPSC model uses the LHLLC scheme previously developed for debris flow modeling

[Majd and Sanders, 2014] and is modified here to account for SAT fluxes and an oscillatory

boundary condition representative of wave dynamics. The spatial domain is discretized into

N cells of size ∆x, the solution is evaluated at the center of each cell, Ui, for i = 1, . . . , N , and

fluxes are evaluated at the edges between cells as is customary with finite volume schemes.

The LHLLC scheme sequentially updates U1, U2 and U3 in each computational cell, i.e., the

three elements of the solution vector U. Hence, each step is presented in turn. The fluid

mixture continuity equation is updated as follows,

(U1)
n+1
i = (U1)

n
i +

∆t

∆x

[
(F1)

∗
i−1/2 − (F1)

∗
i+1/2

]
(4.6)

where (F1)
∗ = F1 + H1∂zb/∂x and is computed by applying the HLL scheme for F1 and a

central difference approximation for ∂zb/∂x as follows,

(F1)
∗ =

SRF1L − SLF1R + SRSL(U1R − U1L)

SR − SL

+H1∆zb/∆x (4.7)
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where S represents wave speed, the subscripts L and R denote the cells to the left (i) and

right (i+1), respectively, of an arbitrary edge index (i+1/2). The wave speeds are computed

as follows [Fraccarollo et al., 2003],

SL = min(λ1L, λ1R) (4.8)

SR = max(λ3L, λ3R) (4.9)

where λ1L and λ1R represent values of λ1 in the left and right cells, respectively. The same

convention applies to λ3. It is noted that at the beginning of each time step, wave speeds are

computed in each cell by solving for roots of a cubic polynomial [Majd and Sanders, 2014].

This enables flux calculations to proceed using Eq. 4.7. The SAT mixture flux is computed by

evaluating elements ofH1 at the interface between cells as the average of values in neighboring

cells, e.g., (um)i+1/2 = 1
2
[(um)i+1+(um)i], and by computing (∆zb)i+1/2 = (zb)i+1−(zb)i. Note

that the source term in the mixture continuity equation is zero (cf. Eqs. 4.3), so discretization

is not required.

The sediment continuity equation is updated in a similar fashion to the mixture continuity

equation as follows,

(U2)
n+1
i = (U2)

n
i +

∆t

∆x

[
(F2)

∗
i−1/2 − (F2)

∗
i+1/2

]
(4.10)

but instead of using an HLL solver to compute the flux, an HLLC scheme similar to Goutire

et al. [2008] is used to minimize numerical diffusion [Majd and Sanders, 2014]. Using HLLC,

the flux equation depends on whether the mixture flux is positive or negative. When (F1)
∗ ≥

0, flow is in the positive x direction and the solid flux is computed as,

(F2)
∗ =

SSF2L − SLF2R + SSSL(U2R − U2L)

SS − SL

+H2∆zb/∆x (4.11)
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where SL is computed as before and SS is computed from the speed of contact discontinuities

(λ2) in neighboring cells as follows,

SS = maxmod(λ2L, λ2R) (4.12)

and the function maxmod() returns the signed argument with the largest absolute value.

Additionally, H2 is computed with the same scheme used for H1 in Eq. 4.7. On the other

hand, when (F1)
∗ < 0, the solid flux is computed as follows Majd and Sanders [2014],

(F2)
∗ =

SRF2L − SSF2R + SRSS(U2R − U2L)

SR − SS

+H2∆zb/∆x (4.13)

where SS and SR are computed as before.

Before the solid flux is used to update Eq. 4.10, a limiting function is applied to prevent the

magnitude of the solid flux F ∗2 from exceeding the magnitude of the mixture flux F ∗1 , as this

would give non-physical predictions [Majd and Sanders, 2014]. The limiting is expressed as

follows,

(F2)
∗
i+1/2 = maxmod[(F1)

∗
i+1/2, (F2)

∗
i+1/2] (4.14)

Finally, the momentum equation is updated using the LHLL scheme [Fraccarollo et al., 2003]

in a two-step process as follows [Majd and Sanders, 2014],

(U3)
∗
i = (U3)

n
i +

∆t

∆x

[
(F3)

∗R
i−1/2 − (F3)

∗L
i+1/2

]
(4.15)

(U3)
n+1
i = (U3)

∗
i + ∆t(S3)

n+1
i (4.16)

In the first step given by Eq. 4.15, the superscripts L and R represent adjustments to the
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fluxes F3 that account for bed slope effects expressed by H3∂zb/∂x in Eq. 4.1. The adjusted

fluxes include so-called lateralization terms and are given by,

(F3)
∗L = (F3)

∗ − δL (F3)
∗R = (F3)

∗ − δR (4.17)

where the lateralization terms are given by,

δL,R =
SL,R

SR − SL

1

2
(H3L +H3R) (zbR − zbL) (4.18)

and the standard HLL flux is computed as follows,

(F3)
∗ =

SRF3L − SLF3R + SRSL(U3R − U3L)

SR − SL

(4.19)

The second step of the momentum update, Eq. 4.16, is solved after rearranging it into a

cubic equation for (um)n+1
i , which is in turn solved using an explicit cubic equation solver

precisely as shown for the LHLLC scheme [Majd and Sanders, 2014]. This represents the

semi-implicit feature of the solution update, because here the model simultaneously solves for

velocity, sediment concentration and friction. This key step promotes a stable and monotonic

solution update without requiring costly iterations typically associated with implicit schemes.

4.3.1 Offshore Boundary Implementation

The MPSC model domain is restricted to relatively shallow depths along the shoreline as

conceived by McCabe et al. [2011], and the location of the offshore boundary deserves careful

consideration. On the one hand, the boundary should be in relatively shallow water where

wave action is reasonably approximated by a hydrostatic flow model. On the other hand,

the boundary needs to be in relatively deep water to implement a non-reflecting boundary
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condition which requires subcritical flow that is free of shock waves [Hu et al., 2000]. A rel-

atively deep offshore boundary is also needed to ensure that the model domain encompasses

the region where sediment is mobile within the time frame of interest. Hu et al. [2000] found

that a NLSW model successfully predicted wave runup and overtopping of structures with

the offshore boundary placed outside the point of wave breaking, i.e., at an intermediate

depth, so there is limited evidence to suggest that NLSW models can be extended outside

the limits of hydrostatic flow without overly sacrificing predictive skill. Here, placement of

the offshore boundary is approached on a case by case basis and the product kwhm, where

kw is the wave number, is used to indicate the shallowness of wave conditions. “Shallow”

depths correspond to kwhm values significantly less than unity.

Numerical implementation of the offshore boundary condition follows previous approaches

for hyperbolic equations, i.e., consideration of wave characteristics, and is also designed

to prevent non-physical reflections when waves exit the domain [Ozkan-Haller and Kirby,

1997, Hu et al., 2000, Sanders, 2002]. A non-reflecting boundary flux function designed for

Godunov-type schemes is used, specifying the shoreward moving waves while permitting wave

reflections to freely exit the domain [Sanders, 2002]. The flux function assumes the solution

state at the boundary is defined by the interaction of incoming and outgoing Riemann

invariants [Sanders, 2002]. The incoming Riemann invariant is calculated by assuming that

the specified wave enters a region of undisturbed fluid, and the outgoing Riemann invariant

is based on the solution state in the first interior cell. The boundary water surface height

and velocity are thus computed from the interaction of the incoming and outgoing Riemann

invariants [Sanders, 2002]. Furthermore, the initial sediment height at the offshore boundary

is specified when the inflow velocity is positive, while the sediment height at the boundary is

based on the first interior cell when the velocity is negative (offshore). Simplified Riemann

invariants based on the classical shallow water equations (not multi-phase flow equations)

are used at the offshore boundary because here sediment concentrations are small and have

little impact on wave dynamics.
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4.3.2 Stability Condition

The MPSC model is first order accurate in space and time and stability is contrained by a

Courant-Friedrichs-Lewy condition as follows,

Cr =
λmax∆t

∆x
≤ 1 (4.20)

where Cr represents the Courant number and λmax represents the maximum wave speed mag-

nitude of the solution. The explicit discretization of the SAT terms also introduces a second

stability constraint which is not easily determined analytically but can be approximated as

follows,

k|um|hm
∆t

∆x2
≤ 1

2
(4.21)

based on the well-known stability limit of a first order in time, second order in space, explicit

scheme for solving the diffusion equation. In the test cases considered here, Eq. 4.20 was

found to be more restrictive than Eq. 4.21 and therefore sufficient for ensuring numerical

stability. Note that because friction and sediment are discretized in a semi-implicit way

when the momentum equation is updated, these effects do not control the stability of the

model.

4.3.3 Avalanching Scheme

Avalanching schemes accounting for gravitational slumping of overly steep and unstable

slopes are common in coastal morphodynamic modeling [e.g., Roelvink et al., 2009], and in

river morphodynamic modeling [Swartenbroekx et al., 2010a]. These schemes test for critical

slope (angle of repose) exceedances at each time step. When overly steep slopes are detected,

sediment is redistributed along the angle of repose. A scheme that allows for two separate
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critical slopes corresponding to subaerial (or dry) and subaqueous (wet) sediment is used in

this study [Majd and Sanders, 2014].

4.4 Applications

Several applications involving relatively rapid erosion are presented to examine MSPC model

performance including an assessment of accuracy and sensitivity to parameters. First, the

Carrier and Greenspan [1958] long-wave test problem is presented for model verification, i.e.,

to show that the model converges to the exact solution of the differential equations at the

expected rate based on the formal, first order accuracy of the scheme. This test case is then

repeated assuming highly mobile sediment to qualitatively examine coupled solutions of the

water surface, velocity, sediment concentration, and sediment profiles.

Next, focus turns to validation of the model for rapid erosion. Here, validation refers to the

process by which a numerical model is shown to adequately represent experimentally observed

dynamics. This involves contending with structural model errors, such as limitations of

instantaneous energetics theory, in addition to numerical errors. Validation of the model

is addressed first using large-scale Delta Flume experimental results [van Gent et al., 2008]

with a prominent beach scarp (near vertical face). This test case measures the ability of the

model to predict shoreward migration of the beach scarp and the offshore transport of eroded

sediment. Secondly, the model is validated with a set of three field-scale tests involving the

erosion of anthropogenic berms constructed on the foreshore of Newport Beach, California

[Schubert et al., 2014]. In southern California, berms made of unconsolidated beach sand

roughly 1-3 m high are routinely used to guard against coastal flooding [Gallien et al.,

2015], so this test has flood risk implications in this region in addition to scientific value.

The Newport Beach tests are also used to study the sensitivity of model predictions to the

placement of the offshore boundary and the sample-to-sample variability arising from the
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stochastic water level time series specified at the offshore boundary of the MPSC model.

4.4.1 Carrier and Greenspan Problem

The long wave runup and rundown solution presented by Carrier and Greenspan [1958] is

a classic test case for shallow-water hydrodynamic models that has been used for model

verification [e.g., Bradford and Sanders, 2002]. The problem is defined by a mound of

water with zero horizontal velocity on a sloping but frictionless and non-erodible bottom

profile, as shown in Fig. 4.2, which leads to runup and rundown in succession and allows

the performance of the model to be examined in the presence of wetting and drying, strong

pressure gradients and inertial effects.
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Figure 4.2: Initial condition for the Carrier and Greenspan [1958] long wave runup test case.

The test case is set up with a domain length of 100 m and a beach slope of 0.01. The model is

applied with a uniform grid resolution of ∆x=0.125 m and a time increment of ∆t=0.0125 s.

The non-erodible bed is modeled by setting β = 1.25 × 10−9 (a very small number) and

the frictionless bed is achieved by setting f = 0. Model errors are measured using an L1

norm which computes the difference between a discrete model prediction vi and a reference
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solution v̂i, as follows,

L1(v) =
1

N

∑
i=1,N

|vi − v̂i| (4.22)

where vi represents the numerical solution and and v̂i is the reference solution, in this case

the exact solution.

Table 4.1: Model errors in Carrier and Greenspan [1958] test case.

Water Surface Prediction at L1(m)

t=10 s 6.7057×10−5

t=20 s 1.4580×10−4

t=30 s 2.7335×10−4

t=40 s 3.7504×10−4

Fig. 4.3 compares water surface height predictions with the exact solution at four times,

t=10, 20, 30 and 40 s, and L1 norms are presented in Table 4.1. The accuracy of the model

is qualitatively excellent; tracking the wet/dry interface (shoreline) is arguably the most

challenging aspect of the test problem and at each time the prediction compares very closely

with the exact solution. The largest errors appearing in 4.3 occur where the wave profile is

steepest (x ∼ -5 m at 30 s and x ∼ -10 m at 40 s).

The convergence of the scheme is measured by successively halving the grid size and time

step and computing the L1 error norm in water surface height at t=40 s for each case. Fig. 4.4

shows that model errors geometrically decay with grid refinement, which is the desired result

of a numerical model. The convergence rate is estimated to be 0.8 based on the linear slope

of the errors on the log-log scale, which is close to the ideal value of unity for a first order

scheme, and typical of a test problem with a wet/dry interface.

The Carrier and Greenspan verification test builds confidence that the MPSC model has

good convergence properties in the absence of sediment mobility, but in the presence of

wave uprush and downrush and a relatively steep wave front. Further confidence in the
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Figure 4.3: Comparison of model prediction and exact solution to Carrier and Greenspan [1958] test case
at: (a) t=10 s, (b) t=20 s, (c) t=30 s, and (d) t=40 s.
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Figure 4.4: Numerical errors in Carrier and Greenspan [1958] test case geometrically decay with grid refine-
ment (based on solution at t=40 s).

convergence properties of the model can be drawn from classical dam-break tests presented

by Majd and Sanders [2014].
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4.4.2 Carrier and Greenspan Problem with Mobile Sediment

The Carrier and Greenspan problem is now repeated under the assumption of a frictional

beach with mobile sediment. This is achieved with the following parameter values: β=0.5,

f=0.024, k = 0, ∆=1.60, and cb=0.50 while the domain length, grid spacing and time incre-

ment are the same as the previous case. An unrealistically high value of β for beach sands is

used here to demonstrate that the model can easily cope with high sediment concentrations

and rapid changes in the beach profile.

Fig. 4.5 shows predictions of the free surface and sediment level, mixture velocity and sedi-

ment concentration at four times: 15, 30, 45 and 60 s. This result shows dramatic changes

in bed profile over a very short period of time. At 15 s, the uprush phase is nearing its end

with positive (shoreward) velocities between x=0 and 2 m, and negative velocities elswhere.

A small spike in sediment concentration is predicted to occur near the sediment/water inter-

face. Additionally, a small amount of sediment deposition (difference between dashed and

solid gray line) is predicted between x=0 and 2 m while a relatively small amount of erosion

is predicted between x=-10 and 0 m. At 30 s, downrush is occurring and the fluid mixture

is nearly saturated with sediment near the sediment/water interface, i.e., c/cb ≈ 1. The

model predicts significant erosion, but it is important to note that this represents the height

of the immobile sediment beneath a slurry of mobile sediment. At 45 s, the downrush phase

is coming to an end and deposition is shown between x=-10 and -2 m, a region where 15

seconds earlier erosion had been predicted. By 60 s, a bench-like feature in the bed profile

has formed near the still water level and the next uprush phase is predicted to occur.

This result is qualitative but interesting. It shows that the model predicts a slow down in the

cycle of uprush and downrush based on the increased sediment load, which is the expected

response based on the added inertia of the fluid brought on by the solid material. Whereas

uprush commenced a second time between 30 and 40 s in the frictionless, immobile bed test
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Figure 4.5: Numerical solution of a erodible-bed version of the Carrier and Greenspan [1958] test case based
on β=0.5, f=0.024, ∆=1.60 and cb=0.50. The solution is shown at four times: (a) t=15 s, (b) t=30 s, (c)
t=45 s, and (d) t=60 s. For each time, zw and zb are shown in the top panel, um is shown in the middle panel,
and c/cb is shown in the bottom panel. Note that the model predicts a hyperconcentrated flow (c ≈ cb)
based on the chosen parameters.

case, uprush commenced a second time between 45 and 60 s in the mobile bed test case.

This result also shows that it is possible to predict significant changes in the bed profile over

very short time scales, and to predict features like benches that have been observed to occur

in natural systems.

4.4.3 Delta Flume Experiment

A large scale flume study of wave-driven beach dune erosion was conducted in the Delta

Flume in The Netherlands [van Gent et al., 2008] and the resulting data have been used

for several numerical modeling studies of wave-driven beach profile adjustment [van Rijn,

97



2009, Roelvink et al., 2009]. The Delta Flume is equipped with a wave board capable of

generating irregular waves and initiating sediment mobility. Scenario T01 is the focus of this

study and the bed profile is shown in Fig. 4.6 and described in detail by van Rijn [2009]. The

wave forcing corresponds to a Pierson–Moskowitz spectrum with a significant wave height

Hm0=1.5 m and a peak period Tp=4.9 s. Under these conditions, waves quickly steepen and

break close to the wave board. The offshore boundary of the MPSC model is placed at the

wave board, xb=0 m, and the stochastic water level time series is calculated using an Inverse

Fourier Transform (IFT) technique [WAFO, 2000]. The MPSC model was also tested at

shoreward coordinate as large as xb=150 m but the nonreflecting boundary condition did

not perform well here, presumably because of very steep waves and high velocities [Hu et al.,

2000]. At the wave board, kwhm=1.0 which corresponds to an intermediate depth. Roelvink

et al. [2009] modeled a similar Delta Flume test case with xb=41 m where kwhm=0.85.
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Figure 4.6: Initial condition for the Delta Flume test case T01 [van Gent et al., 2008] .

The MPSC model is applied with a uniform grid resolution of ∆x=0.125 m and a time step

of ∆t=0.0125 s following grid convergence checks to confirm that uncertainty associated with

numerical diffusion was negligible compared to other sources of model uncertainty. Model

parameters were identified by a manual calibration process leading to f=0.024, β=0.01,
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∆ = 1.50, cb=0.65 and k=0.01. Additionally, the critical slopes for avalanching are set to

0.70 and 1.5 for subaqueous and subaerial sediment, respectively.

Fig. 4.7 compares calibrated model predictions of the sediment profile with measurements

at t =0.1, 0.3, 1, 2 and 6 hrs. The MPSC model reproduces the retreat of the berm face as

well as the steepness of the berm face, although the level of accuracy varies over time with a

better prediction at 6 hrs compared with 2 and 3 hrs. The model also predicts the observed

pattern of offshore sediment transport, and again the prediction at 6 hrs is slightly better

than the predictions at 2 and 3 hours. Overall, the model captures four important aspects

of the observed sediment dynamics: the inland migration of the berm face, the steepness of

the berm face, height of sediment at the toe of the berm, and the transport of sediment in

the offshore direction.
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Figure 4.7: Calibrated model predictions and measurements for Delta Flume test case. The model captures
the retreat of the beach scarp and the offshore transport of eroded material.

The sensitivity of model predictions to the stochastic water level boundary condition was

examined by repeating the previous simulation three times with different IFT water level

samples. Table 4.2 presents errors in sediment height zb for each case, which vary from 5

to 9 cm, but the errors differ by less than 6 mm as a function of the stochastic water level
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Table 4.2: Errors in zb predictions (L1 norm in meters) in Delta Flume test cases: Sensitivity to stochastic
boundary water level time series.

Sample 0.1 hour 0.3 hour 1 hour 2 hour 6 hour

1 0.0567 0.0841 0.0918 0.0821 0.0588
2 0.0599 0.0839 0.0927 0.0758 0.0617
3 0.0587 0.0858 0.0874 0.0781 0.0628

sample. On average, the sensitivity of zb predictions to the randomness of the boundary

condition is about 2-3 mm.

Model structure was also examined as a source of model uncertainty by repeating simulations

without SAT (k=0) and without avalanching. Table 4.3 presents model errors in zb for these

cases, and in this case the differences are on the order of several cm for SAT and as much

as 48 cm for avalanching.

Table 4.3: Errors in zb predictions (L1 norm in meters) in Delta Flume test cases: Sensitivity to model
structure.

Model Structure 0.1 hour 0.3 hour 1 hour 2 hour 6 hour

MPSC Model 0.0567 0.0841 0.0918 0.0821 0.0588
MPSC w/o SAT 0.0604 0.0921 0.1054 0.1134 0.0940

MPSC w/o Avalanching 0.0630 0.1212 0.2394 0.3203 0.4826

Fig. 4.8 shows that without SAT (k=0), the MPSC model predicts an overly steep front of

sediment moving offshore which nearly doubles the errors for t=6 hrs (Table 4.2). Previous

model studies of this test case also produced an overly steep front of sediment moving offshore

[van Rijn, 2009], and errors in offshore sediment transport predictions have been reported

in other studies [Orzech et al., 2011, Cox et al., 2013]. When the avalanching scheme is

deactivated, the model (prediction not shown) does not predict retreat of the beach scarp and

therefore no sediment is delivered to the foreshore for offshore transport. These results show

that accounting for model structure is much more important than uncertainty associated

with the stochastic offshore boundary condition in this test case. In particular, these results

show the importance of both avalanching and SAT.
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Figure 4.8: Model predictions with k=0 (no SAT) for the Delta Flume test case. The model predicts an
overly steep front of material moving offshore.

4.4.4 Newport Beach Experiments

The City of Newport Beach on the coast of southern California surrounds a natural embay-

ment, Newport Bay, and contains densely developed lowlands that are susceptible to flooding

from extreme high tides [Gallien et al., 2011] and open ocean waves [Gallien et al., 2014] and

are vulnerable to an increase in the frequency and severity of flooding with accelerating sea

level rise [Tebaldi and Zervas, 2012]. A regional practice to guard against wave-driven flood-

ing is construction of seasonal or event-based sand berms (anthropogenic berms) which are

typically 1-3 m high and can span alongshore distances of up to several kilometers [Gallien

et al., 2015]. Berms are constructed by scraping a thin layer of sediment off the foreshore

of the beach, during low tides when the beach is accessible to motorized equipment, and

depositing the sediment on beach crest.

Test berms were constructed at Newport Beach on three occasions in 2012, as shown in

Fig. 4.9, and instrumentation was deployed to simultaneously characterize wave conditions

and erosion dynamics [Schubert et al., 2014]. Instrumentation included an AWAC wave
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Figure 4.9: Location of Newport Beach berm erosion experiments.

gauge (Nortek USA, Boston, Massacchussetts) deployed about 300 m directly offshore in 10

m of water and a Terrestrial Laser Scanner (TLS) mounted on Newport Pier as shown in

Fig. 4.9. A typical berm configuration, with a central berm section parallel to the coast and

flanked by two wings, is shown in Fig. 4.10. Table 4.4 provides a summary of berm properties

and wave conditions. The berms were placed at roughly Mean Sea Level to ensure failure

during a single tide cycle and minimize disturbances to recreational activities on the beach,

which is a popular tourist destination. The TLS scanned the berms several times per hour

to monitor berm erosion. The data were processed to establish a set of Digital Elevation

Models (DEMs) characterizing berm dynamics [Schubert et al., 2014]. The TLS scanner

did not register returns from sediment that is saturated with water or submerged by water,

so available data are limited to subaerial sediments. This capability is consistent with the

goal of monitoring erosion of the berm including the duration over which it withstands

overtopping.

The three tests corresponded to dissipative wave conditions and revealed a consistent erosion

pattern [Schubert et al., 2014]: wave runup into the berm face triggers slumping of the toe

material and steepening of the berm face causes avalanching of berm material down the angle
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Table 4.4: Berm and wave properties for Newport Beach berm experiment.

Test Date Berm Height (m) Berm Width (m) Hs (m) Tp (m)

1 02/21/2012 1.3 3 0.51 11.5
2 03/07/2012 1.4 3.7 1.18 11.5
3 03/20/2012 1.8 4.5 0.61 11.5
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Figure 4.10: Typical berm configuration on the foreshore of Newport Beach. Erosion data from the central
berm section (shown) are used to evaluate model performance.

of repose, typically 32-37 degrees. Sediment that slumps down the berm face is moved away

relatively quickly with no noticeable change in the beach slope (e.g., foreshore mounding)

based on visual observations. With the retreat of the berm face, the crest height of the berm

is lowered due to its triangular cross-sectional profile. The rate of crest height reduction was

observed to increase over time.

DEMs were processed to create a time-dependent, 1D model of cross-shore berm height in
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the central berm section, shown in Fig. 4.10, suitable for 1D modeling under the assumption

of alongshore uniformity. A set of five cross-shore transects were evenly spaced through the

central berm section and berm height was interpolated from the DEM as a function of cross-

shore distance along each transect. Data from the side wings of the berm shown in Fig. 4.10

were ignored. The mean and standard deviation of berm height was then computed as a

function of cross-shore position by sampling the five transects. This process was repeated

for each of the three berms and all of the scan times. An overall standard deviation in berm

height was also computed as an index of berm height variability and found to be 18, 14 and

11 cm for Tests 1, 2, and 3, respectively.
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Figure 4.11: Cross-shore profile between wave gauge and test berms at Newport Beach. Note that SWAN
[Booij et al., 1999] is applied to predict the wave energy spectrum shoreward of the wave gauge, and the
MPSC model is forced by a stochastic time series of water level at an offshore location xb corresponding to
the wave energy spectrum predicted by SWAN. As shown, the MPSC model domain spans subaequeous and
subaerial sediment.

Fig. 4.11 shows the cross-shore bathymetry and topography between the wave gauge and

beach berm. Note that the wave gauge defines the origin of the shoreward coordinate, x, and

that distance is positive shoreward. Spectral wave models such as SWAN [Booij et al., 1999]

predict bulk wave parameters in shallow water with relatively good accuracy [Gorrell et al.,

2011, McCabe et al., 2011, Gonçalves et al., 2015], and here SWAN is applied to predict the
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spatial transformation of the wave energy density shoreward of the wave gauge, as indicated

in Fig. 11. Fig. 12 shows JONSWAP wave energy spectrum based on measurement of Hs

and Tp at the wave gauge, and SWAN predictions at two shoreward locations. This indicates

that energy at the peak frequency increases as waves progress over the relatively steep (0.06

slope) between x=0 and 150 m, and then peak energy either remains constant or decreases

with increasing shoreward distance over a relatively mild slope (0.016 slope) between x=150

and 275 m. SWAN also predicts the onset of high frequency (ca. 0.17 Hz) energy between

x=135 and 165 m, depending on the test case. Fig. 4.12 shows high frequency wave energy

at x=200 m for all three berm tests, and at x=150 m for Test 2.
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Figure 4.12: Cross-shore transformation of wave energy at Newport Beach for Test 1 (a-c), Test 2 (d-f) and
Test 3 (g-i). Left column of panels correspond to JONSWAP wave energy spectrum based on measurements
of Hs and Tp at the wave gauge, and center and right columns correspond to SWAN [Booij et al., 1999]
predictions.

The MPSC model was applied to each berm test with three different offshore boundary

locations. For Test 1 and 3, the boundary location was xb=0, 150 and 200 m. For Test

2, the boundary location was xb=0, 125 and 200 m. The intermediate boundary location
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was set just outside the point of wave breaking, as recommended by Hu et al. [2000], and

the onset of high frequency energy was taken as an indicator of breaking. The most inshore

boundary location was set to ensure shallow conditions based on kwhm. Table 5 shows the

values of kwhm and Hs/hm for Tests 1-3, depending on the MPSC boundary location. At

the most shoreward boundary location, kwhm=0.2 and Hs/hm varies from 0.3-0.8 across the

three test cases. At the most offshore boundary location, kwhm=0.6 and Hs/hm varies from

0.04-0.11.

The MPSC model was applied with grid resolution of ∆x=0.1 m which was found to have

a negligible numerical truncation error. Time step was set to ∆t=0.005 for cases involving

xb=0 m and 0.01 s otherwise. A manual, iterative process was used to find the optimal

parameter set based on the L1 norm of the bed profile. This lead to uniform set of parameters

for all three berm tests: ∆ = 1.60, cb = 0.55, f=0.024, β=0.001, k=0.01 and critical slopes

for avalanching of 0.35 and 0.90 for wet and dry soil, respectively.

Fig. 5.3 shows MPSC model predictions of water surface and berm heights (top panel),

cross-shore velocity (middle panel) and sediment concentration (bottom panel) for Test 1

based on the intermediate boundary location, xb=150 m. The solution is shown at 10 minute

intervals labeled (a)-(h) which reveal the gradual rise of the tide over time, bore-like waves

moving through the swash-zone with the classic saw-tooth velocity profile, spikes in sediment

concentration at the berm toe up to about 0.1, and the erosion and ultimate overtopping of

the berm. This result shows that the model remains stable and does not predict any spurious

oscillations throughout the simulation despite the complexity of mobile wet/dry interfaces,

shock waves in the swash zone, spikes in sediment concentration, and avalanching. Note also

that the model is calibarated with physically reasonable parameter values which compare

closely with the parameter values that were optimal for the Delta Flume test case.

Fig. 5.4, 5.5, and 4.16 compare MPSC model predictions for Tests 1, 2 and 3, respectively,

with measured berm profiles. These results correspond to xb=150, 125 and 150 m for Ex-
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Figure 4.13: Model prediction of Newport Beach foreshore at: (a) 19:00 ,(b) 19:10, (c) 19:20, (d) 19:30, (e)
19:40,(f) 19:50, (g) 20:00, and (h) 20:10. Note the occurrence of shock waves, wet/dry interfaces, and spikes
in sediment concentration.

periments 1, 2 and 3 respectively. The whiskers in these plots represent the alongshore

variability in the profile of the central berm section, as measured by the standard deviation

across transects through the central berm section.

Fig. 5.4a shows that the MPSC model closely tracks the mean profile over time, and

Figs. 5.4b, c, and d show that the error in the model is much less than the along shore

variability in the berm profile. Note that the model predicts accumulation of sediment at
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Figure 4.14: Newport Beach Test 1 predictions: (a) comparison of predicted sediment profile to alongshore
average profile, and magnified view at (b) 18:45, (c) 19:00 and (d) 19:10. Whiskers represent the standard
deviation in measured berm height based on 5 transects through central berm section.

the foreshore toe of the berm but experimental data to verify this prediction are limited

because the TLS is only able to scan subaerial sediment. Between 297 and 298 m, there

is overlap in measurements and predictions that suggest the model is overpredicting the

foreshore berm toe elevation. The berm crest is predicted within 1-2 cm of the alongshore

average height, hence model error is much smaller than the alongshore variability.

Fig. 5.5 shows that the model overpredicts berm height in Test 2, and thus underpredicts

berm erosion, and Fig. 4.16 shows that the model accurately predicts the berm crest elevation

in Test 3 but overpredicts the berm toe elevation.

Fig. 4.17 presents the effect of varying the MPSC model boundary on berm erosion predic-

108



300 301 302 303 304 305 306 307 308 309
0

0.5

1

1.5

2

2.5

Shoreward Distance (m)

E
le

va
tio

n 
(m

)

300 301 302 303 304 305 306 307 308 309
0

0.5

1

1.5

2

2.5

Shoreward Distance (m)

300 301 302 303 304 305 306 307 308 309
0

0.5

1

1.5

2

2.5

301 302 303 304 305 306 307 308 309
0

0.5

1

1.5

2

2.5

Shoreward Distance (m)

E
le

va
tio

n 
(m

)

Initial Profile       17:05
MPSC                17:52
TLS                    17:52
MPSC                18:10
TLS                    18:10
MPSC                18:18
TLS                    18:18

(a) (b)

(c) (d)

Figure 4.15: Newport Beach Test 2 predictions: (a) comparison of predicted sediment profile to alongshore
average profile, and magnified view at (b) 17:52, (c) 18:10 and (d) 18:18. Whiskers represent the standard
deviation in measured berm height based on 5 transects through central berm section.

tions, and also the effect of stochastic variability from the boundary water level time series.

Errors (L1 norms) in the berm profile and berm crest height are shown for Tests 1, 2 and 3

and the three different boundary locations. Test 1 corresponds to Fig. 4.17 (a)-(c), Test 2

is (d)-(f), and Test 3 is (g)-(i). Focusing first on stochastic variability, these results indicate

that profile errors may differ by as much as 6 cm at a given time but that on average the

profile errors differ by about 2 cm. Similarly, berm crest height errors may differ by up to

15 cm as a result of stochastic variability, but on average the berm crest errors differ only

by 2-3 cm. Furthermore, the differences in predicted berm profiles arising from stochastic

variability are small compared to alongshore variability in the measured berm profile, which

is 10-25 cm based on the whiskers shown in Fig. 4.17.
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Figure 4.16: Newport Beach Test 3 predictions: (a) comparison of predicted sediment profile to alongshore
average profile, and magnified view at (b) 16:30, (c) 17:24 and (d) 17:53. Whiskers represent the standard
deviation in measured berm height based on 5 transects through central berm section.

Focusing now on the effect of the boundary location, results shown in Fig. 4.17 indicate a

suprisingly weak sensitivity. Changing the boundary location yielded less than 1 cm change

in berm height errors, on average. Profile errors were not strongly affected by the boundary

location, but in Tests 1 and 3 where the model performed best, the most offshore boundary

location yielded a larger crest error at the final measurement time compared to the the most

shoreward boundary location.

The sensitivity of the model to wave height was also examine. The MPSC model was applied

to Test 1 using half of the measured wave height, Hs=0.25 m, and using each of the three

boundary locations, xb=0, 150, and 200 m. As before, SWAN was applied to compute the
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Figure 4.17: Errors (L1 norms) in predictions of the berm profile (Profile Error) and berm crest height (Crest
Height Error) for Test 1 (a-c), Test 2 (d-f) and Test 3 (g-i). Three boundary locations are shown for each
test, and sample 1, 2 and 3 correspond to different randomly generated water level time series. Whiskers
shown in the Crest Height Error plot indicate the standard deviation of height across five berm transects
which reflects alongshore variability.

energy spectrum for each boundary location. Fig. 4.18 shows profile errors and crest height

errors for Hs=0.25 m alongside predictions based on the measured wave height Hs=0.5 m.

This shows that decreasing the boundary wave height increases errors in the berm profile

and berm crest height. As would be expected, the reduction in wave height leads to an

underprediction of berm erosion that has a cumulative effect on berm errors leading to the

largest errors at the latest times.

In the Delta Flume test case, the SAT flux and avalanching scheme exhibited a strong

influence on model predictions. The influence of SAT is also investigated for the Newport

Beach experiment. Fig. 4.19 compares Test 1 berm height predictions with (k=0.01) and
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Figure 4.18: Comparison of errors in the berm profile (Profile Error) and berm crest height (Crest Height
Error) for Test 1 with Hs=0.25 m versus Hs=0.5 m.

without SAT (k=0). Similar to the Delta Flume test case, sediment moving offshore forms

a steep front using k=0 compared to k=0.01. Similar trends are observed in Test 2 and 3,

so these results are not presented. When the avalanching scheme is not activated, results

are inaccurate because the berm does not erode, as in the Delta Flume test case, so these

results are not shown.
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Figure 4.19: Comparison of Test 1 beach profile predictions with (k=0.01) and without (k=0) SAT, showing
its effect diffusing sharp fronts of sediment moving offshore.

4.5 Discussion

Several limitations of the model are identified that could affect its performance in practical

applications. First, the 1D formulation limits the model to situations with alongshore uni-

formity. In the Newport Beach test case, the MPSC model overpredicts sediment heights at
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the berm toe which suggests that offshore transport is underpredicted. However, the short

length of the test berm, ca. 30 m, is an important consideration. At the later stages of

berm erosion when the berm toe was inundated, wave uprush penetrated past the berm and

around its sides, and this may have acted to disperse foreshore sediment in the alongshore

direction and thus lower the berm toe elevation faster than by offshore transport alone. Mul-

tidimensional modeling is needed to better understand the role of alongshore and cross-shore

transport on the evolution of sediment heights at the berm toe.

Underprediction of Newport Beach berm erosion in Test 2 could be related to infragravity

energy or slope toe prediction errors. No infragravity energy was prescribed at the boundary.

Although explicit inclusion of infragravity energy is outside the scope of the present study,

this is a limitation of the current model formulation. In its present form, the model success-

fully predicted berm erosion where infragravity energy was minimal, suggesting suitability

for applications where berms are constructed for flood threats characterized by high tides

but relatively low wave energy. This weakness could potentially be addressed by specifying

infragravity energy at the MPSC model boundary or implementing a non-hydrostatic mo-

mentum balance similar to [McCall et al., 2014] whereby infragravity wave energy becomes

an emergent feature of the solution based on forcing at higher frequencies. Another con-

tributing factor could be overprediction at the toe as described previously, which in turn

retards avalanching down the berm face. This possibility was explored by repeating the Test

2 simulation with a larger value of k=0.075, which enhances SAT in the offshore direction,

and improves the accuracy of the model as shown in Fig. 4.20. This result may suggest that

berm crest prediction is linked berm toe accuracy. However, this level of diffusion may not

be physically reasonable and individual berm calibration is unsatisfying from a predictive

skill perspective.

An important attribute of numerical models is the ability to conserve mass, and finite volume

schemes generally possess excellent conservation properties because they discretize conserva-
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Figure 4.20: Newport Beach Test 2 predictions using a high level of SAT (k=0.075): (a) comparison of
predicted sediment profile to alongshore average profile, and magnified view at (b) 17:52, (c) 18:10 and (d)
18:18. Whiskers represent the standard deviation in measured berm height based on 5 transects through
central berm section.

tive, integral forms of the governing equations which are precise statements of conservation.

Global mass conservation errors were measured for each the three Newport Beach exper-

iments and found comparable to numerical precision, as shown in Table 5 which includes

both solid phase and liquid phase errors. Ironically, Rosatti and Begnudelli [2013] originally

discretized SAT as a source term, an approach that was initially followed by the authors in

the development of the MPSC model presented here. However, the source term discretiza-

tion was abandoned when it was found to cause mass conservation errors of approximately

1% for both fluid and sediment volume.

Models were executed on a desktop workstation with an Intel R©Xeon R©W3550 quad-core
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processor with a base frequency of 3.07 GHz and 20 GB RAM. The models were set up for

sequential execution in the background using one core, so other tasks could be performed

on the computer simultaneously. The Delta flume test involving a 6 hr run time completed

execution in 30 min. The Newport Beach test case involving a 2 hr run time completed

execution in about 60, 12 min, and 8 min with the boundary placed at xb=0, 150 or 200 m.

The most offshore boundary position demanded a longer simulation time as a result of

more cells and a smaller time step resulting from increased depth (and gravitational wave

speed). Considering both accuracy and computation cost, the most shoreward boundary lo-

cation (xb=200 m) appears optimal. However, the performance of the non-reflecting offshore

boundary condition, which relies on simplified wave dynamics, may restrict the position of

the boundary for numerical reasons as was observed in the Delta Flume test case. Similar to

the work of Hu et al. [2000], results here indicate that model accuracy with respect to berm

erosion and overtopping does not immediately decline as a result of a model boundary that

extends beyond shallow conditions to an intermediate depth [Hu et al., 2000].

4.6 Conclusions

A wave by wave model of swash zone hydromorphodynamics capable of simulating hyper-

concentrated flows, wetting and drying, and erosion and overtopping of anthropogenic beach

berms is presented for modeling rapid erosion of beaches and protective berms that guard

against coastal flooding. The Multi-Phase Shock-Capturing (MPSC) model is based on verti-

cally integrated, multi-phase, hydrostatic flow equations that are solved by a Godonov-type

shock capturing scheme. The model formulation systematically incorporates the effect of

sediment entrainment on inertia and momentum fluxes in the swash zone, which can be im-

portant to the momentum balance. The model is shown to remain stable and conserve both

fluid and solid mass to numerical precision, to geometrically converge with grid refinement,
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and to calibrate with physically reasonable parameter values in laboratory and field test

cases.

The MPSC model includes a diffusive flux of sediment transport that can be used to smear

out predictions of overly sharp sediment fronts that form when beaches are quickly eroded

and material is moved offshore. The diffusive flux is termed Slope Assisted Transport because

it enhances transport of suspended sediment in the downslope direction. The diffusive flux

can be scaled by a user specified parameter, k, and a value of 0.01 was found to perform well

in test cases presented here.

The MPSC model is forced by a stochastic time series of water level derived from the wave

energy spectrum predicted at a shallow to intermediate depth. Testing at Newport Beach

indicates that predictions of beach berm erosion are not strongly sensitive to the location of

the offshore boundary over a range of positions characterized by kwhm values between 0.6

and 0.2, but run times increased as the boundary was placed further offshore as a result of

more computational cells and a smaller time step for stability. Average height errors based

on the boundary location were about 1-2 cm. Additionally, predictions were not found to be

strongly sensitive to stochastic variability which also accounts for 1-2 cm change in average

height errors. Future application of the model should be accompanied by sensitivity checks

on the boundary location and stochastic variability as this may be more important under

different circumstances.

The Newport Beach test cases show that the MPSC model accurately predicts the erosion

and overtopping of an anthropogenic berm with the same set of model parameters in two

of three cases with different wave heights and berm heights; in these test cases overall berm

height errors are less than 10 cm. In the third case, the berm height error is about 20 cm

or about 15% of the initial berm height. This test case corresponds to twice the signficant

wave height as the two other cases where the model performed well, a likely explanation for

the error is infragravity wave energy that is not captured by the model.
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To summarize, this study points to a promising numerical modeling framework for resolving

flow, sediment transport, and beach changes in a computationally manageable way to support

coastal flood preparedness, mitigation and emergency response. However, additional research

is needed to address model limitations and characterize uncertainties under a wide range of

field conditions.
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Chapter 5

Two Dimensional Multi-Phase Shock

Capturing Model

5.1 Introduction

The 1D-MPSC model consists of mass conservation equations for water and sediment over a

mobile bed and a momentum equation [Majd and Sanders, 2014]. The horizontal momentum

balance is coupled to sediment concentration, so the 1D-MPSC can be applied to hyper-

concentrated flows including granular flows, mud flows and flows with discontinuities (shocks)

in the flow and sediment heights [Capart and Young, 1998, Fraccarollo et al., 2003]. Many

researchers have developed two-dimensional (2D) extensions of so-called Debris Flow Models

like the MPSC model presented here, and benchmark tests have revealed promising results

[Armanini et al., 2008, Chen and Peng, 2006b, Murillo and Garcia-Navarro, 2012, Rosatti

and Begnudelli, 2013]. A 2D formulation of the MPSC model would offer the ability to

model more complex beach erosion scenarios involving alongshore variability in nearshore

bathymetry, beach topography, and berm heights as well as applications involving waves
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that approach the beach at an oblique angle. 2D models have also been found advantageous

for modeling breaching of earthen levees [Van Emelen et al., 2011].

This chapter presents the 2D-MPSC model, including model formulation, numerical meth-

ods, and an applications which frames a computational challenge deserving of future research.

The originality of the 2D-MPSC model over other 2D models is linked to unique features of

the 1D-MPSC models: minimal diffusion of sediment, ability to preserve stationary solutions,

and ability to resolve wet/dry fronts as shown in Chapter 2.

5.1.1 Governing Equations in 2D

The governing equations for a Two-Phase model are derived from continuity and momentum

conservation laws for liquid and solid phases and can be written as follows,

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+ Hx

∂zb
∂x

+ Hy
∂zb
∂y

= S (5.1)

where

U =



h+ zb

ch+ cbzb

uxh(c∆ + 1)

uyh(c∆ + 1)


S =



0

0

−f(u2x + u2y)ux

f(u2x + u2y)uy


(5.2)

F =



uxh

cuxh

(c∆ + 1)(u2xh+ g h2

2
)

(c∆ + 1)uxuyh


G =



uyh

cuyh

(c∆ + 1)uxuyh

(c∆ + 1)(u2yh+ g h2

2
)


(5.3)
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Hx =



0

0

gh(c∆ + 1)

0


Hy =



0

0

0

gh(c∆ + 1)


(5.4)

Closure is achieved with the following entrainment law,

c = cbβ
V 2

h
(5.5)

where V = (u2x + u2y)
1/2.

5.2 MPSC scheme in 2D

The 2D-MPSC scheme to solve Eq. 5.1 mirrors the approach used by the 1D-MPSC scheme

in that the solution is advanced by the LHLLC method [Majd and Sanders, 2014], which

involves application of an HLLC to estimate fluxes and the so-called lateralization method to

account for bottom slope effects on momentum fluxes. The HLLC method requires knowledge

of wave speeds which motivates characteristic analysis of the governing equations.

5.2.1 Characteristic Analysis in 2D

Characteristic analysis in 2D is performed separately along the x and y directions to identify

the relevant wave speeds required for the HLL-type approximate Riemann solver used to

compute numerical solutions. For example, analysis of characteristics in the x direction

ignores all terms in Eqs. 5.1 with gradients in the y direction, and vice-versa. There are

four real and distinct eigenvalues in each case, but one eigenvalue is in the velocity the

perpendicular direction, leaving only three to be computed numerically by solving for the
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roots of a cubic equation. This can be accomplished with an explicit cubic equation solver

[Majd and Sanders, 2014], which avoids the need for a costly iterative search algorithm.

5.2.2 Update Scheme

The 2D-MPSC scheme sequentially updates the fluid mixture, sediment volume, and mo-

mentum equations. It is therefore helpful to reference elements of solution and flux vectors

defined as follows,

U =



U1

U2

U3

U4


, F =



F1

F2

F3

F4


, G =



G1

G2

G3

G4


, (5.6)

Hx =



0

0

Hx,3

0


, Hy =



0

0

0

Hy,4


, S =



0

0

S3

S4


(5.7)

The spatial domain is discretized into N×M cells in x and y directions, respectively, and the

solution is assumed to be piecewise constant with states Ui,j, for i = 1, . . . , N , j = 1, . . . ,M .

Fluxes are evaluated at cell edges facing the x direction located at xi+1/2,j with i = 0, . . . , N

and j = 1, . . . ,M and cell edges facing the y direction located at yi,j+1/2 with i = 1, . . . , N

and j = 0, . . . ,M . Following Armanini et al. [2008], the fluid mixture continuity equation is

updated as follows,

(U1)
n+1
i,j = (U1)

n
i,j +

∆t

∆x

[
(F1)

∗
i−1/2,j − (F1)

∗
i+1/2,j

]
+

∆t

∆y

[
(G1)

∗
i,j−1/2 − (G1)

∗
i,j+1/2

]
(5.8)
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where (F1)
∗
i+1/2,j and (G1)

∗
i,j+1/2 represent fluxes computed with the HLL scheme as follows,

(F1)
∗ =

sRF1L − sLF1R + sRsL(U1R − U1L)

sR − sL
(5.9)

and

(G1)
∗ =

sRG1L − sLG1R + sRsL(U1R − U1L)

sR − sL
(5.10)

where s indicates wave speeds and the subscripts L and R represents the cells to the left

i and right i + 1, respectively. Note that the wave speeds in the x and y directions are

different and follow from separate calculations. Various choices are available to estimate the

wave speeds sL, sR [Toro, 1997], and the following was used here [Fraccarollo et al., 2003].

sL = min(λ1L, λ1R) (5.11)

sR = max(λ3L, λ3R) (5.12)

where λ1 and λ3 represent maximum and minimum characteristic wave speeds, respectively

[Fraccarollo et al., 2003], in the direction of the flux.

Next, the sediment continuity equation is updated as follows,

(U2)
n+1
i,j = (U2)

n
i,j +

∆t

∆x

[
(F2)

∗
i−1/2,j − (F2)

∗
i+1/2,j

]
+

∆t

∆y

[
(G2)

∗
i,j−1/2 − (G2)

∗
i,j+1/2

]
(5.13)

where the fluxes are computed using an HLLC scheme similar to Majd and Sanders [2014].

When (F1)
∗ ≥ 0, flow is in the positive x direction and the solid flux is computed as follows,

(F2)
∗ =

sSF2L − sLF2R + sSsL(U2R − U2L)

sS − sL
(5.14)
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where sL is computed as before and sS is computed from the speed of contact discontinuities

in neighboring cells. On the other hand, when (F1)
∗ < 0, the solid flux is computed as

follows for directional symmetry,

(F2)
∗ =

sRF2L − sSF2R + sRsS(U2R − U2L)

sR − sS
(5.15)

Similarly, when (G1)
∗ ≥ 0, flow is in the positive y direction and the solid flux is computed

as follows,

(G2)
∗ =

sSG2L − sLG2R + sSsL(U2R − U2L)

sS − sL
(5.16)

and when (G1)
∗ < 0, the solid flux is computed as follows for directional symmetry,

(G2)
∗ =

sRG2L − sSG2R + sRsS(U2R − U2L)

sR − sS
(5.17)

Before the solid flux is used to update Eq. 5.13, a limiting function is applied to prevent the

magnitude of the solid flux F ∗2 (orG∗2) from exceeding the magnitude of the total fluid mixture

flux F ∗1 (or G∗1), as this would give non-physical predictions. The limiting is expressed as

follows,

(F2)
∗
i+1/2,j = maxmod[(F1)

∗
i+1/2,j, (F2)

∗
i+1/2,j] (5.18)

(G2)
∗
i+1/2,j = maxmod[(G1)

∗
i,j+1/2, (G2)

∗
i,j+1/2] (5.19)

Finally, the momentum equations are updated using the LHLL scheme in a two-step process.

The first step is explicit, and the second step is implicit for stability, accuracy and consistency.

The x-momentum equation is updated as follows,

(U3)
∗
i,j = (U3)

n
i,j +

∆t

∆x

[
(F3)

∗R
i−1/2,j − (F3)

∗L
i+1/2,j

]
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= +
∆t

∆y

[
(G3)

∗
i,j−1/2 − (G3)

∗
i,j+1/2

]
(5.20)

(U3)
n+1
i,j = (U3)

∗
i,j + ∆t(S3)

n+1
i,j (5.21)

and the y-momentum equation is updated similarly,

(U4)
∗
i,j = (U4)

n
i,j +

∆t

∆x

[
(F4)

∗
i−1/2,j − (F4)

∗
i+1/2,j

]
= +

∆t

∆y

[
(G4)

∗R
i,j−1/2 − (G4)

∗L
i,j+1/2

]
(5.22)

(U4)
n+1
i,j = (U4)

∗
i,j + ∆t(S4)

n+1
i,j (5.23)

where the superscripts L and R represent adjustments to the fluxes that account for bed

slope effects expressed by the Hx,3 term and Hy,4 term in Eq. 2.22. Note that the fluxes are

only adjusted when aligned with the directionality of the update equation. To update the x

momentum equation, the fluxes with star superscripts are computed as follows,

(F3)
∗ =

sRF3L − sLF3R + sRsL(U3R − U3L)

sR − sL
(5.24)

(G3)
∗ =

sRG3L − sLG3R + sRsL(U3R − U3L)

sR − sL
(5.25)

(F4)
∗ =

sRF4L − sLF4R + sRsL(U4R − U4L)

sR − sL
(5.26)

(G4)
∗ =

sRG4L − sLG4R + sRsL(U4R − U4L)

sR − sL
(5.27)

where the wave speeds sL and sR are computed separately for the x and y direction using

Eqs. 5.11 and 5.12, as before. Hence, all momentum fluxes are computed using the HLL

Riemann solver method.
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Fluxes in the direction of the momentum equation are modified with lateralization terms to

account for bottom slope effects. For the x direction, lateralization terms are computed as,

δL,R =
sL,R

sR − sL
1

2
(Hx,3L +Hx,3R) (zbR − zbL) (5.28)

where zbR and zbL represent bed elevation in the cells to the left and right, respectively, of

the cell edge, and the wave speeds sL and sR correspond to the x-direction. The final fluxes

required by Eq. 5.21 are given by,

(F3)
∗L = (F3)

∗ − δL (F3)
∗R = (F3)

∗ − δR (5.29)

For the y direction, lateralization terms are computed as,

δL,R =
sL,R

sR − sL
1

2
(Hx,4L +Hx,4R) (zbR − zbL) (5.30)

where zbR and zbL again represent bed elevation in the cells to the left and right, respectively,

of the cell edge relative to the y direction, and sL and sR correspond to wave speeds in the

y-direction. The final fluxes required by Eq. 5.23 follow as,

(G4)
∗L = (G4)

∗ − δL (G4)
∗R = (G4)

∗ − δR (5.31)

After all of the flux terms are evaluated, the friction terms are modeled implicitly as shown

by Eqs. 5.21 and 5.23. This step is extremely important because it affords a high level of

numerical stability and because it ensures that sediment concentrations, fluid velocities, and

sediment fluxes are synchronized consistent with the closure relation given by Eq. 5.5. Unfor-

tunately, the solution update requires the simultaneous solution of two non-linear equations.

The final solution update challenge can be expressed as follows: solve for h, zb, c, ux and uy
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given an intermediate solution Ũ resulting from Eqs. 5.8, 5.13, 5.20 and 5.22 as follows,

h+ zb = Ũ1 (5.32)

ch+ cbzb = Ũ2 (5.33)

(∆ch+ h)ux + ∆tfV ux = Ũ3 (5.34)

(∆ch+ h)uy + ∆tfV uy = Ũ4 (5.35)

This is approached by combining Eqs. 5.34 and 5.35 into the following equation,

V 2(∆ch+ h+ ∆tfV )2 = Ũ2
3 + Ũ2

4 (5.36)

Furthermore, by combining Eqs. 5.5, 5.32 and 5.33 we can write,

cbβV
2 − cbh = U2− cbU1 (5.37)

Eqs. 5.36 and 5.37 are combined into a single equation with a single unknown, h, which is

solved by a Newton-Raphson iterative method. Once h is computed, the remaining variables

follow directly from Eqs. 5.32-5.37 without the need for further iteration. Unfortunately,

Newton-Raphson iteration is computationally expensive and this issue is explored in the

follow results section.

Fig. presents a flow chart that summarizes the 2D-MPSC algorithm design.
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Figure 5.1: DFM’s update Flowchart.

5.3 Circular Dam-Break Test Problem

A simple test problem that offers valuable insight into model performance is a circular dam-

break problem. The spatial domain is given by a square of dimension L× L with L=10 m,

the sediment height is uniformly set to zero everywhere, and fluid thickness hm is set to unity

everywhere but in the center of the domain, where a circular subdomain of radius R=2.5 m

centered at x = L/2 and y = L/2 is characterized by a fluid thickness of hm=4 m.

To implement the 2D-MPSC model, the spatial domain is discretized byN×N computational

cells and integrated with a time step that satisfies the CFL condition for a period of 20 s.

The model is implemented using Matlab R© and run on a on a desktop workstation with an

Intel R©Xeon R© W3550 quad-core processor with a base frequency of 3.07 GHz and 20 GB

RAM.
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5.3.1 Preliminary Results

Fig. 5.2 shows model results at selected times for based on a 40×40 computational grid.

The solution is qualitatively correct in that the hump, which is located in the center of the

domain, evolves in a radially symmetric manner and that the bed profile is eroded where

the velocity is high. However, the computational cost is found to be very high. In this case,

when the model is integrated sequentially, the run time is 13.86 s, which is only slightly

faster than the duration of the model simulation.

 

 

 

  Figure 5.2: Snapshots for a benchmark test, a 2D circular dambreak.

The previous model run was profiled in Matlab R© to determine the parts of the algorithm

responsible for high computational demands, and the results are shown in Table 5.1. This

indicates that about 70% of the computational cost of associated with updating the con-

128



servative variables, which requires the iterative Newton-Raphson solver. Hence, as a first

step towards reducing computational costs, the conservative variable update routine is par-

allelized using a Single Process Multiple Domain (SPMD) technique of parallelization. That

is, the domain is decomposed into subdomains that are assigned to different processors.

Table 5.1: Profiling the DFM for circular dambreak test.

Code RunTime(s)

Cell Center Fluxes 0.76
Interface Fluxes 2.01

Conservative Variables 10.07
Avalanching Algorithm 1.02

Matlab automatically manages the memory aspects of parallel computing, allowing the mod-

eler to focus on designing domain decomposition from an operational perspective. Conse-

quently, four different domain decomposition strategies were tested, including a base case

corresponding to sequential execution. In Scenario 1 and 2, domain decomposition occurs

in only one coordinate direction, and in Scenario 3, domain decomposition occurs in both

coordinate directions. Fig. 5.3, 5.4 and 5.5 graphically illustrate the Scenarios 1, 2 and 3

respectively.

The results of parallelization using N=40, 80, 160 and 320 are shown in Table 5.2.

Table 5.2: Parallel execution times (s) for circular dambreak test

Name Decomposition N=40 N=80 N=160 N=320

Scenario 0 Sequential 13.76 50.08 190.94 760.43
Scenario 1 2×1 8.85 28.18 104.37 417.96
Scenario 2 4×1 8.25 23.31 81.10 321.10
Scenario 3 2×2 8.03 22.79 80.50 319.44

5.3.2 Discussion and Recommendations

The preceding results show that domain decomposition in 1D performs (Scenario 2) nearly

as well as 2D domain decomposition (Scenario 3), and that run times can be significantly
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Domain 1 Domain 2

Domain 1

Domain 2

Figure 5.3: Scenario 1. The Original domain decompose into two subdomains, left panel domain decompo-
sition in j direction and right panel shows domain decomposition in i direction.

Domain 1 Domain 2

Domain 1

Domain 2

Domain 3 Domain 4

Domain 3

Domain 4

Figure 5.4: Scenario 2. The Original domain decompose into four subdomains, left panel domain decompo-
sition in j direction and right panel shows domain decomposition in i direction.
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10 m

10 m

Domain 1 Domain 2

Domain 3 Domain 4

Figure 5.5: Scenario 3. The Original domain decompose into four subdomains.

reduced by using more computational cores. Further reduction in run times can presumably

be achieved by parallelizing the remainder of the algorithm, especially the flux calculation.

Therefore several steps are recommended to make the 2D-MPSC algorithm more computa-

tionally efficient:

• Use domain decomposition to parallelize all explicit loops (domain sweeps) that con-

tribute to updating the solution over time.

• Use the Fortran programming language instead of Matlab; based on previous experi-

ence, Fortran codes involving many sweeps and operations are capable of significantly

faster execution than Matlab codes.

• Research alternatives to using Newton-Raphson iteration to update the conservative

variables at each time step.
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5.4 Summary and Outlook

In this chapter, a two dimensional version of the MPSC model, 2D-MPSC, is introduced.

The governing equations and numerical methods are presented, and the method is shown

to give qualitatively correct solutions in a simple test problem. The intellectual merit of

the 2D-MPSC model over other existing 2D models parallels the unique advantages of the

1D model: minimal numerical diffusion of sediment, ability to preserve stationary solutions,

and ability to track wet/dry fronts on a sloping bed which is critical for beach applications.

Additional research is needed to make the 2D-MPSC model more computational efficient,

so it can be applied to practical test cases. A strategy to achieve this goal is presented

herein, and is based primarily on parallel computing. When a reasonably efficient model is

developed, there is an excellent opportunity to further explore the berm erosion with unique

experimental data presented in Chapter 3. In particular, there are unanswered questions re-

garding the mechanisms responsible for moving sediment away from the toe of the berm; and

one possible explanation is alongshore advection that cannot presently be modeled by 1D-

MPSC. Development of 2D-MPSC will also need to focus attention on the offshore boundary

condition, which ideally needs to accommodate directional waves.
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Chapter 6

Summary and Conclusions

Beaches are challenging environments for hydromorphodynamic modeling because of the

complexity of wave dynamics, sediment transport and shoreline movement. Advances in

shock-capturing numerical methods have enabled Bagnold-type, NLSW swash zone shallow-

models to resolve discontinuities in both the fluid and sediment distribution which are dom-

inant features on beaches. Field and laboratory studies have shown that spikes in sediment

concentration occur on beaches during uprush and downrush, which could invalidate conven-

tional models that use a clear water momentum balance, but it does not pose a limitation for

a Multi-Phase, Shock-Capturing (MPSC) approach. A wave by wave model of swash zone

hydromorphodynamics capable of simulating hyperconcentrated flows, wetting and drying,

and erosion and overtopping of anthropogenic beach berms is presented for modeling rapid

erosion of beaches and protective berms that guard against coastal flooding.

Chapter 2 presents an LHLLC scheme which constitutes the numerical engine of the MPSC

model. The LHLLC scheme can be viewed as an enhanced version of the LHLL scheme with

several advantages and broader applicability compared to the LHLL scheme: Since LHLLC

uses the contact wave speed for sediment mass flux computations, the LHLLC scheme can
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be applied to test problems with steep, submerged slopes whereas the LLHL scheme will

erroneously predict massive terrain slumping. The LHLLC shows significantly less diffusion

of sharp sediment fronts under subcritical flow conditions, compared with the LHLL scheme.

By introducing a wet/dry tolerance and a modified flux under “dry” conditions, the LHLLC

scheme preserves stationary solutions involving wet/dry interfaces. The LHLLC scheme

includes an avalanching that offers improved accuracy in a channel flow test problem scheme

and is important in field applications to account for slumping of near vertical channel features

common to incised channels and beach berms.

Chapter 3 presents experiments that were conducted to develop a better understanding of

anthropogenic bern erosion and to support modeling presented in Chapter 4. Anthropogenic

berms are built on a seasonal basis or in anticipation of a hazardous event by scraping a thin

layer of sediment off the foreshore of the beach, during low tides when the beach is accessible

to motorized equipment, and depositing the sediment on beach crest. Chapter 3 shows that

Terrestrial Laser Scanning (TLS) delivers an accurate model of the berm geometry as it is

eroded by waves. Additionally, Chapter 3 shows reveals the basic processes that contribute

to berm erosion: waves first inundate the berm toe, causing slumping upon saturation of

previously unsaturated material. Furthermore, upon slumping of the toe, the face of the

berm steepens which triggers avalanching down the berm face. This adds material to the

toe of the berm, which is in turn wetted by waves and moved offshore with the backwash.

Experiments also indicate that the crest of the berm is lowered primarily as a result of

avalanching, and that there is significant alongshore variability in the berm height over time.

Overtopping first occurs after a low point in the berm crest, or breach, is exposed.

Chapter 4 formally presentes the MPSC model as a tool to model rapid beach and berm

erosion during storms. The model is shown to remain stable and conserve both fluid and solid

mass to numerical precision, to geometrically converge with grid refinement, and to calibrate

with physically reasonable parameter values in laboratory and field test cases. The MPSC
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model also includes a diffusive flux of sediment transport that can be used to smear out

predictions of overly sharp sediment fronts that form when beaches are quickly eroded and

material is moved offshore. The diffusive flux is termed Slope Assisted Transport because it

enhances transport of suspended sediment in the downslope direction. The diffusive flux can

be scaled by a user specified parameter, k, and a value of 0.01 was found to perform well in

test cases presented here.

The MPSC model is forced by a stochastic time series of water level derived from the wave

energy spectrum predicted at a shallow to intermediate depth. Testing at Newport Beach

indicates that predictions of beach berm erosion are not strongly sensitive to the location of

the offshore boundary over a range of positions characterized by kwhm values between 0.6

and 0.2, but run times increased as the boundary was placed further offshore as a result of

more computational cells and a smaller time step for stability. Average height errors based

on the boundary location were about 1-2 cm. Additionally, predictions were not found to be

strongly sensitive to stochastic variability which also accounts for 1-2 cm change in average

height errors. Future application of the model should be accompanied by sensitivity checks

on the boundary location and stochastic variability as this may be more important under

different circumstances.

The Newport Beach test cases show that the MPSC model accurately predicts the erosion

and overtopping of an anthropogenic berm with the same set of model parameters in two

of three cases with different wave heights and berm heights; in these test cases overall berm

height errors are less than 10 cm. In the third case, the berm height error is about 20 cm

or about 15% of the initial berm height. This test case corresponds to twice the signficant

wave height as the two other cases where the model performed well, a likely explanation for

the error is infragravity wave energy that is not captured by the model.

To summarize, this study points to a promising numerical modeling framework for resolving

flow, sediment transport, and beach changes in a computationally manageable way to support
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coastal flood preparedness, mitigation and emergency response. However, additional research

is needed to address model limitations and characterize uncertainties under a wide range of

field conditions. A 2D extension of the 1D-MPSC model is presented in Chapter 6, and

preliminary results indicate the need to address high computational demands especially as

a result of an implicit update scheme that requires Newton-Raphson iteration.
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