# UC Davis UC Davis Electronic Theses and Dissertations

# Title

Trait-based and phylogenetic approaches to understanding community assembly processes in eelgrass beds

**Permalink** https://escholarship.org/uc/item/1jx5x21d

**Author** Gross, Collin Patrick

Publication Date 2023

Peer reviewed|Thesis/dissertation

# Trait-based and phylogenetic approaches to understanding community assembly processes in eelgrass beds

by

## COLLIN PATRICK GROSS DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

## DOCTOR OF PHILOSOPHY

in

**Population Biology** 

in the

## OFFICE OF GRADUATE STUDIES

of the

### UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

John J. Stachowicz, Chair

Sharon Lawler

Eric Sanford

Committee in Charge

#### ABSTRACT

The field of community ecology is fundamentally concerned with the assembly and maintenance of diversity across space and time. Two of the most fundamental questions in the field, then, are 1) why do we see variation in composition and diversity across space and time, and 2) how are diversity and assemblage structures maintained? A common model for beginning to understand these questions is the idea of ecological "filters" that restrict species from a regional pool. Different kinds of filters apply different kinds of selective pressures, and because species' traits are what allow them to pass through filters, studying the distributions and dispersion of traits within the community can help us understand how these filters act on the species pool. A variety of factors may cause communities to have traits that are overdispersed – more disparate than expected by chance – or underdispersed or clustered – more similar than expected by chance.

My dissertation attempts to address these fundamental questions in communities associated with eelgrass (*Zostera marina*) – an herbaceous marine angiosperm (seagrass) that forms monospecific beds across nearly 40° of latitude in the northern hemisphere. Eelgrass is home to a diversity of epifaunal invertebrate mesograzers – animals that live on the leaves of the plant and feed on fouling microalgal epiphytes, as well as macroalgae and fresh and decaying eelgrass tissue. Peracarid crustaceans are one of the most abundant and diverse of the mesograzers. These crustaceans – amphipods, isopods, and their relatives – are found worldwide and are especially susceptible to predation by the diverse suite of resident and juvenile fishes that also call eelgrass beds home.

My first chapter draws on data from a global experimental network to examine how the functional structure of eelgrass peracarid communities varies across space and with different ecological filters. I found that dispersion strongly increased with increasing predation and decreasing latitude – communities at low-latitude sites and those that experienced high predation intensity were more overdispersed than those at high latitudes and with low predation intensity. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. Together these results point to the importance of both biotic interactions and the historical legacies of distinct species pools in structuring communities.

ii

My second chapter narrows in on eelgrass beds in Northern California to investigate the role of diverse suites of predator (fish) community traits as ecological filters that drive patterns of dispersion in prey (peracarid) communities. Fish traits related to prey detection and capture selected for more overdispersed peracarid communities, particularly with respect to body size and activity level, suggesting that prey may be pushed to disparate areas of trait space to avoid consistent detection by predators across the community. I also found correlations between the trait dispersions of predator and prey communities that strengthened after accounting for the effects of habitat filters on predator dispersion, suggesting that habitat filtering effects on predator traits may have measurable impacts on the community assembly of prey, inviting experimental tests of predator trait means on community assembly, and explicit comparisons of how the relative effects of habitat filters and intraguild competition on predators impact their ability to affect prey community assembly.

Finally, my third chapter returns to the global experimental network from the first chapter to address more coarse-scale patterns of community structure beyond peracarids. This time, I examined in epifauna communities dominated by peracarids and gastropods. The abundance of these two taxa exhibited a strong latitudinal cline in turnover, with gastropods abundant at highlatitude sites, and peracarids abundant at low-latitude sites, especially in the Atlantic. This pattern appeared to be driven by greater eelgrass genetic diversity at lower latitudes, which strongly influenced both the richness and abundance of peracarids, but less so for gastropods. The two taxa exhibited functional complementarity, and so global variation in genetic diversity led to geographic variation in the distribution of functional traits across the range of eelgrass. These results add to a growing body of literature that suggests that variation in traits underlaid by genetic differences within species has important bottom-up consequences for assemblage variation and ecosystem function across broad spatial scales.

#### **ACKNOWLEDGMENTS**

I'd first like to thank my mother, Sarah Funk, for instilling in me both a sense of creativity and an appreciation for all organisms, from fishes to amphipods. Whether those qualities were hereditary or not, they have been the driving force behind my love of science since I can remember.

I also extend my thanks to all of the people at the University of Washington who saw in me the potential to succeed in and encouraged me to pursue academic science. To the graduate students – Dr. Katie Dobkowski, Dr. Emily Grason, Dr. Hilary Hayford, Iris Kemp, Dr. Alex Lowe and Dr. Mo Turner – who so graciously let me get my feet wet (sometimes literally) in volunteer lab work, field work, and my very first research projects. To the faculty and other seasoned mentors – Dr. Megan Dethier, Dr. Cinde Donoghue, Dr. Ben Kerr, and especially Dr. Jennifer Ruesink. Jen, I will never forget the time you first took me out for my first eelgrass field trip at midnight in December on Hood Canal. The menagerie of tiny squirming bugs, slugs, and worms has captured my heart ever since. Thank you for fostering my love for eelgrass and its inhabitants, teaching me how to enjoy writing, and emphasizing the scientific value of natural history observations.

To the inimitable Dr. Jay Stachowicz – I could never have asked for a more patient, supportive, and encouraging PhD advisor. Jay, I have never left a meeting with you feeling confused, discouraged, or lacking confidence in my abilities. Thank you for being my biggest cheerleader and helping me realize that yes, I do have programming skills. You've also brought together the most amazing team of scientists, colleagues, and friends I could have ever hoped for. To the rest of the Stach Labbies, past and present – Dr. Deanna Beatty, Dr. Gina Chaput, Dr. Katie Dubois, Dr. Melissa Kardish, Dr. Nicole Kollars, Serina Moheed, Claire Murphy, Karolina Zabinski – thank you for your willingness to turn around and talk about anything from mixed effects models to Downton Abbey, and for truly making me excited to go back to Storer every week. Of course, I have to acknowledge my Stach Lab triplets, Hannah Higuera and Isabelle Neylan. It's been so inspiring to learn from you and witness all of the things you've accomplished these past 6 years. How fitting that we're now finishing up our dissertations just as we started them, totally in sync!

This dissertation would not be in the shape it's in (whatever that means) without the rest of my committee helping me both with this finished product and its nascent stages during my

iv

qualifying exam. Dr. Eric Sanford and Jackie Sones are to me the most important fixtures of the Bodega Marine Lab. Their dedication to and knowledge of natural history and science communication is unparalleled, and I am so grateful to have gotten to learn from them both inside and outside of the classroom. It was always so heartening when, after staring at dead animals all day in the lab or labeling the 120<sup>th</sup> pee cup, they would let me know they'd found an interesting (live!) amphipod or isopod and invite me in to check it out under their microscope. My heartfelt thanks also extends to Dr. Ted Grosholz, Dr. Emilio Laca, Dr. Sharon Lawler, Dr. Sharon Strauss, and Dr. Peter Wainwright. Thank you for your incredible support in all aspects of science and career development.

I thank the Center for Population Biology, my PBGG cohort, and all the other Platypodes that have made this experience truly excellent, in science and beyond. Thank you to the staff in the Department of Evolution and Ecology and the Bodega Marine Lab, past and present – Kitty Brown, Brenda Cameron, Al Carranza, Debbie Davidson, Sally Harmsworth, Ivana Li, Phong Mai, Sherri Mann, Carla Muñoz, Joe Patrocinio, Philip Smith, and Ruby Wu – I would be nowhere without your patience and willingness to help.

No dissertation research can be completed without the indispensable help of those willing to put in long and odd hours helping with data collection. I extend my gratitude to the original team of ZENterns – thank you for your dedication to quantifying and identifying hundreds of epifaunal samples, not only across taxa but collected from three different continents. To all of the amazing undergraduate interns and volunteers and others that have helped me collect data from my own surveys and experiments, whether it was in the eelgrass before first light or in the lab staring into a microscope until your eyeballs fell out. I extend my thanks to Rylee Alexander, Emma Deen, Sophie Allen, Monica Burnett, Gabriel Hernandez, Lara Hsia, Anna Lee, Naomi Murray, Sindhu Bala, Reyana Balotcopo, Nathan Dao, Julia Delamare, Olivia Diana, Zoe Fricker, Kaley Hamane, Tracie Hayes, Alex Lei, Andie Lindeman, Michael Liu, Lila Magbilang, Chloe McCormick, Armand McFarland, Kendall Menard, Emily Myers, Sophia Pelletier, Adri Penix, Kenzie Pollard, Kevin Sanchez, Alondra Sandoval, Chloe Sears, Chelsea Souza, and Mary Yang.

I'm so incredibly lucky to have had an amazing group of friends with me this whole time. All of my friends and found family in Davis and Seattle have proved to be an unending font of

V

love, support, and cackling, and I thank them all – Daphna Khen, Daneil Newcomb, the Nut House, and the Queerios.

My partner, Jasen Liu, has been an incredible source of joy throughout this whole experience. Jasen, I'm so lucky to have had your support during uncertain and stressful times, and your amazing ability to say whatever it is in the moment that will make me laugh my ass off. Thank you for taking me out to look at birds, getting up every Wednesday with me during a global pandemic to look at insects and dodder in the marsh, making the best cinnamon rolls I've ever had, and being incredibly stupid with me. I love you.

Finally, this dissertation goes out to the eelgrass and all of the creatures that call it home. Thank you for continuing to inspire me and reinvigorate me every time I stick my hands (and sometimes face) in the water. To the 241 fish and the hundreds of thousands of epifaunal invertebrates that gave their lives for this dissertation (including the un-analyzed caging samples), thank you for teaching me about how the natural world works and helping me put my own little dent in the circle of human knowledge.

# TABLE OF CONTENTS

| Abstractii                                                                                     |
|------------------------------------------------------------------------------------------------|
| Acknowledgmentsiv                                                                              |
| TABLE OF CONTENTSvii                                                                           |
| CHAPTER 1: The biogeography of community assembly: latitude and predation drive variation in   |
| community trait distribution in a guild of epifaunal crustaceans1                              |
| CHAPTER 2: Extending trait dispersion across trophic levels: functionally diverse predator     |
| assemblages act as top-down filters on prey community traits                                   |
| CHAPTER 3: Eelgrass genetic diversity is strongly associated with a novel latitudinal cline in |
| taxonomic turnover                                                                             |
| APPENDIX 1: Supplementary material for Chapter 174                                             |
| APPENDIX 2: References for peracarid trait data used in global analyses of trait dispersion84  |
| APPENDIX 3: Methods and Results – post-hoc modeling of individual peracarid trait dispersion   |
| (SES) against environmental predictors in global eelgrass beds90                               |
| APPENDIX 4: Species and trait data for fish and peracarid communities in Tomales Bay and       |
| Bodega Harbor, California102                                                                   |
| APPENDIX 5: Supplementary material for Chapter 2120                                            |
| APPENDIX 6: Supplementary material for Chapter 3160                                            |

# CHAPTER 1: The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans<sup>1</sup> ABSTRACT

While considerable evidence exists of biogeographic patterns in the intensity of species interactions, the influence of these patterns on variation in community structure is less clear. Studying how the distributions of traits in communities vary along global gradients can inform how variation in interactions and other factors contribute to the process of community assembly. Using a model selection approach on measures of trait dispersion in crustaceans associated with eelgrass (*Zostera marina*) spanning 30° of latitude in two oceans, we found that dispersion strongly increased with increasing predation and decreasing latitude. Ocean and epiphyte load appeared as secondary predictors; Pacific communities were more overdispersed while Atlantic communities were more clustered, and increasing epiphytes were associated with increased clustering. By examining how species interactions and environmental filters influence community structure across biogeographic regions, we demonstrate how both latitudinal variation in species interactions for ecosystem stability and functioning, and integrating large-scale observations of environmental filters, species interactions, and traits can help us predict how communities may respond to environmental change.

#### INTRODUCTION

Community ecology is fundamentally concerned with the assembly and maintenance of diversity across space and time. Key to this endeavor is the idea that the composition of a local community is the result of multiple ecological filters selecting species from a regional pool (Poff 1997; Thompson *et al.* 2020). Different kinds of filters apply different kinds of selective pressures on the species pool, and because species' traits are what allow them to pass through filters, studying the distribution of traits within the community can help us understand how these filters act on the species pool as a whole. Strong environmental filters (i.e., abiotic filters *sensu* Kraft *et al.* 2015) such as climate are thought to act on large spatial scales to constrain trait diversity such that species are more alike (clustered) in traits that respond to these factors than

<sup>&</sup>lt;sup>1</sup> Published as: Gross, C.P., et al. (2022). The biogeography of community assembly: latitude and predation drive variation in community trait distribution in a guild of epifaunal crustaceans. *Proceedings of the Royal Society B*, 289: 20211762. doi: 10.1098/rspb.2021.1762

we would expect under a purely random assembly process (Webb *et al.* 2002; Cavender-Bares *et al.* 2009; Starko *et al.* 2020; Thompson *et al.* 2020). Biotic filters, such as competition, then act at smaller spatial scales to enhance or reduce trait diversity among species with broadly similar abiotic tolerances, depending on which traits are affected (Mayfield & Levine 2010). When traits related to the acquisition of distinct resources are considered, competition for these resources drives the distribution of traits to be wider than expected by chance (overdispersed) as there are multiple resource niche optima that can be occupied (Webb *et al.* 2002; Cavender-Bares *et al.* 2009; Pavoine & Bonsall 2011). In contrast, competition for a single, dominant limiting resource can also act as a filter, selecting for traits related to acquiring this resource to converge around an optimal value, because species deviating from the optimum are otherwise competitively excluded. All else being equal, as richness increases, an increase in trait dispersion may point to stronger stabilizing mechanisms and limiting similarity, while a decrease in trait dispersion can suggest stronger equalising mechanisms promoting unstable coexistence. (Chesson 2000; Mayfield & Levine 2010).

Despite well-known geographic patterns in the strength of both biotic interactions and environmental filters (Schemske et al. 2009; Reynolds et al. 2018; Longo et al. 2019; Zvereva & Kozlov 2021), few studies have examined the global-scale consequences of geographic variation in these filters for community trait distributions (Ford & Roberts 2018, Skeels et al. 2020). In particular, intense predation, competition, and mutualistic interactions at lower latitudes (Freestone & Osman 2011; Longo et al. 2019; Zvereva & Kozlov 2021), may lead to the predominance of biotic interactions over environmental filters in structuring low-latitude communities. This may cause stronger trait clustering near the poles that shifts towards more overdispersed communities at lower latitudes. On the other hand, selection for tolerance of extreme heat conditions could also cause trait clustering at low latitudes. Finally, patterns in community structure along latitudinal gradients could be dominated by idiosyncratic and historically-contingent effects of predators, prey, competitors, and mutualists that vary among biogeographic provinces (Sanford & Bertness 2009; Mittelbach & Schemske 2015; Ford & Roberts 2019; Whalen et al. 2020). Local abiotic factors, habitat complexity, assemblage composition, and adaptation to these local factors could further obscure broader geographic patterns of community assembly (Sanford & Bertness 2009; Lavender et al. 2017), stressing the importance of assessing patterns across multiple independent species pools. For example, the

effects of regional gradients in predation may be overshadowed by local increases in habitat complexity, which can decrease predation pressure (Reynolds *et al.* 2018) and increase trait dispersion as species assort into disparate microhabitat niches (Best & Stachowicz 2014). Understanding trait distributions and their drivers should provide insight into the likely responses of communities to environmental fluctuations or perturbations in the same way that understanding the diversity of traits within a population can inform us on its evolutionary potential (Cadotte *et al.* 2011; Rumm *et al.* 2018).

Here we examine geographic patterns in the trait distribution of epifaunal invertebrates living on eelgrass throughout the northern hemisphere to assess the extent and causes of geographic variation in the drivers of the assembly of these communities. Eelgrass (Zostera *marina*) is the world's most widespread species of temperate seagrass, a marine angiosperm found throughout the Northern Hemisphere from 30° to 67° N latitude in both the Atlantic and Pacific Oceans (den Hartog 1970; Green & Short 2003). Much of the animal community in eelgrass beds is made up of invertebrate mesograzers that primarily feed on the epiphytic microalgae fouling the seagrass blades (Valentine & Duffy 2006). Competition for food and microhabitat space occurs among mesograzers, and can significantly affect community composition (Edgar 1990; Best et al. 2013; Best & Stachowicz 2014; Amundrud et al. 2015). Peracarid crustaceans (amphipods, isopods, and tanaids) are the most widespread, abundant, and species-rich mesograzer taxon in these eelgrass beds, and they experience elevated predation in low-latitude eelgrass beds (Reynolds et al. 2018) which could either cause clustering of communities around traits that increase resistance or tolerance to predation, or cause dispersion of communities due to competition for enemy-free space. Z. marina's wide range across latitudes provides an opportunity to assess the role of gradients of ecological filters on global scales without the confounding influence of changing habitat type. We predicted: (1) that trait dispersion would increase with decreasing latitude as species interactions become more intense and (2) that abiotic filters would be strongest and result in clustering at higher latitudes and where biotic interactions are weak. While marine systems often show non-linear variation in species diversity and interaction strength with latitude (peaking at mid-latitudes; Chaudhary et al. 2017; Whalen et al. 2020), our predictions are reasonable within the range of latitudes occupied by eelgrass (~30-70°N). We test these predictions in separate ocean basins with largely unique fauna, allowing us to assess whether the unique histories of these zoogeographic

provinces result in different patterns and drivers of trait distribution in each ocean basin (Roy *et al.* 2009; Dyer & Forister 2019).

#### METHODS

*Study design and sample collection.* Between May and September 2014, we sampled 42 sites across the range of *Z. marina*, spanning 30 degrees of latitude along both coasts of Eurasia and North America (30.4°N to 60.1°N; Fig. 1.1) to characterize the biological and physical structure of eelgrass beds using standardized measurements. We implemented a hierarchical sampling design consisting of two oceans (Atlantic and Pacific), each with two coasts (east and west), each with 6-14 sites, each with 20 plots, for a total of 840 plots in 42 sites sampled as part of the *Zostera* Experimental Network (ZEN; Fig. A1.1). Plots were 1 m<sup>2</sup> and spaced 2 m apart at each site. Along each coastline, sites were separated by 4.9 km (Virginia, USA) to 485.4 km (Washington State, USA) of water.

Assessing eelgrass habitat characteristics. We sampled eelgrass biomass by haphazardly placing and pushing a 20-cm diameter core tube 20 cm into the sediment within each plot. We gathered all shoots rooted within the core bottom area into the core tube to ensure that no shoots were cut off during sampling. We then removed the shoots from the sediment, transferred the core contents into a mesh bag. In the lab, we rinsed the core contents, removed fouling algae and sediment from the eelgrass tissue, and separated above- and belowground biomass by cutting the plant above the rhizome. In addition to eelgrass, we also removed all of the macroalgae from the plot. All eelgrass and macroalgal tissue was dried to a constant weight at 60°C and weighed. From five haphazardly collected eelgrass shoots per plot, we also collected 3-cm lengths of tissue from a healthy, unfouled inner leaf and processed these samples for tissue nitrogen using a CHN analyser (Thermo Fisher Scientific Inc., Waltham, MA, USA).

We quantified eelgrass habitat structure at the plot level by measuring shoot density and canopy height. We estimated shoot density by counting the number of shoots emerging within a 20-cm diameter ring placed haphazardly in the plot. In plots where density was particularly low (less than 50 shoots m<sup>-2</sup>, about 5% of plots), we counted all of the shoots in the plot. We measured canopy height by haphazardly collecting five shoots from each plot and measuring their length from the tip of the longest leaf to the leaf sheath.

We sampled epiphyte load on the eelgrass blades by selecting four shoots from each plot and removing them from the substrate either by gently uprooting or clipping at the meristem and

placing them in a plastic bag on ice for transport. In the lab, we scraped both sides of all the leaves with a glass slide to remove fouling material, which was then filtered, transferred to an aluminium pan, dried to a constant weight at 60°C, and weighed.

*Measuring predation intensity*. Predation intensity was quantified by tethering locallycollected prey ("gammarid" amphipods) in each plot for 24 hours. These data and methods are reported in detail in Reynolds et al. (2018). Briefly, each individual amphipod was glued to a 10cm piece of monofilament line 0.133 mm in diameter (Berkley Fireline<sup>TM</sup>, Spirit Lake, IA, USA) tied to a transparent acrylic stake anchored in the sediment, so that it could swim freely in the water column and cling to adjacent eelgrass blades. After 24 hours, we removed the stakes and scored prey as present (uneaten) or absent (eaten); partially-consumed prey were considered eaten, and moulted prey were excluded from analyses. Site-level predation was calculated by averaging scores across plots.

*Abiotic environmental variables.* To characterize the abiotic environment experienced by epifauna across the range of eelgrass, we measured in-situ temperature and salinity at each site at the time of sampling. To characterize the overall abiotic environment of each site, we also retrieved estimates of annual mean sea surface temperature (SST), photosynthetically active radiation (PAR), and surface chlorophyll A (Chl a) from the surrounding region, available in the Bio-ORACLE data set (Tyberghein *et al.* 2012). These data were taken from monthly readings of the Aqua-MODIS and SeaWiFS satellites at a 9.6 km<sup>2</sup> spatial resolution from 2002 to 2009. We used the raster package in R v. 3.6.3 (Hijmans & Etten 2020; R Development Core Team 2021) to extract the annual mean SST, SST range, PAR, and Chl a from all cells within 10 km of each site, and averaged these cell-level estimates to generate site-level predictors. Other water quality parameters, including dissolved nitrate and other nutrients, were spatially interpolated based on surface measurements in the World Ocean Database 2009 (Garcia *et al.* 2010).

*Epifaunal community composition.* To sample the macrofauna associated with the eelgrass blades, we carefully placed an open-mouthed fine-mesh drawstring bag (500  $\mu$ m mesh, 18 cm diameter) over a clump of shoots in the centre of the plot so that the mouth of the bag was flush with the sediment surface. We then cut the shoots where they emerged from the sediment and quickly closed the drawstring to capture the shoots and associated animals. The shoots were transferred to the lab on ice, rinsed and hand-inspected to dislodge the epifauna, which were then passed through a 1-mm sieve and ultimately transferred into 70% ethanol. Epifauna were then

identified to the lowest possible taxonomic level (typically species). Epifaunal abundance was standardized by the aboveground biomass of the eelgrass sample from which they were collected.

We scored all peracarids (amphipods, isopods, and tanaids) for a series of traits based on information available in the literature, including body size, fecundity, body shape, living habit, motility, bioturbation, and diet components (Table 1.1, Appendix 2 for literature). Due to a paucity of data on intraspecific trait variation for most species, literature values were assumed to be representative for all individuals in our study. For subsequent analyses, we categorized each of these traits as related to microhabitat or dietary niche; we also performed analyses with all traits ungrouped. While we acknowledge that these broad categories may overlap, we elected to sort traits into these categories because they represent two potential components of trait dispersion exhibited by peracarids in field studies and laboratory experiments (Best *et al.* 2013; Best & Stachowicz 2014). Correlations among traits were generally weak, save for strong positive relationships between eating live seagrass tissue and macroalgae, detritivory and consuming seagrass detritus, and suspension feeding and bioturbation (Fig. A1.2).

*Characterizing community dispersion.* For all the peracarid species observed in our dataset, we used the trait dataset to generate three matrices of Gower distances between species: one of all traits, one for diet traits, and one for microhabitat traits using the FD package in R (Laliberté *et al.* 2014). Using subsets of these matrices for communities at the site level (summed across 20 plots at each site, n = 42), we measured the trait distance between species as the Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD) for each set of traits (Webb *et al.* 2002; Sessa *et al.* 2018). MPD is the average of the trait distances between all pairs of species found within a given sample unit (site), while MNTD is the average minimum distance between species pairs in a site. Both are independent of species richness, but the two metrics can behave differently depending on the clustering of species in trait space within a sample (Sessa *et al.* 2018).

To determine whether the observed species traits in each community differed from those expected by chance, we standardized MPD and MNTD against null distributions generated according to two permutation algorithms. The first, independent swap, is a semi-constrained model that randomly re-assembles the sample-by-species community matrix while maintaining the species richness of each sample and the presence/absence of each species across samples.

The second, tip shuffle, is a more constrained model that directly shuffles the traits of the species in the community while maintaining richness, occurrence, and trait distances between community members, effectively moving the tip labels on a trait dendrogram. Imposing more constraints on permutation controls for patterns in the data that are not directly relevant to the question at hand, such as species richness, occurrence, or identity, ultimately reducing type I error rates (Swenson 2014). Because of the relatively low overlap in species pools across the range of our study, comparing the results relative to both types of models can be informative of the importance of species identity in these types of permutations, and also facilitate comparison with other studies in which the independent swap algorithm has been used together with less constrained permutations (e.g., Best and Stachowicz 2014). These permutations were each completed 999 times for each community, and null distributions of MPD and MNTD were generated based on values calculated from randomized communities.

We examined the effect of the species pool on community dispersion, using varying degrees of constraint on the matrix and trait dendrogram used to generate null distributions. To make comparisons among sites, we permuted within the global species pool (all sites) and ocean-level Atlantic and Pacific species pools. Using a global pool in our permutations is appropriate because while all species were not present in all regions, there were no traits that were exclusive to any region (Fig. A1.2).

Each observed value of community trait distance was then compared to the corresponding null distribution by calculating the standard effect size (SES<sub>MPD</sub> or SES<sub>MNTD</sub>). A positive value of SES indicates that the observed community trait distance (as measured by MPD or MNTD) is greater than the null mean, meaning that community members are more dissimilar than expected under a random draw (overdispersion), while a negative SES indicates that trait distance is less than the null mean, meaning that community members are more similar to each other than expected under a random draw (clustering). MPD, MNTD, null distributions and SES values were calculated using the picante package in R (Kembel *et al.* 2010).

*Data analysis*. Two distance metrics (MPD and MNTD), two permutation algorithms (independent swap and tip shuffle), three species pools (global, Pacific, and Atlantic), and three trait sets (all, diet, and microhabitat) totalled 36 sets of SES values. However due to missing diet data for some species, we were unable to calculate diet SES<sub>MNTD</sub> with the tip shuffle algorithm, leaving us with a total of 33 sets. For each distance metric, algorithm, species pool, and trait set,

SES values were used as response variables in a set of 16 linear models incorporating latitude, ocean, continental margin (east vs. west), in-situ temperature and salinity, annual mean and range of SST, total crustacean abundance and median crustacean size, epifaunal and peracarid richness, macroalgal biomass, average predation intensity, epiphyte load, Chl a, PAR, water column nitrate, mean leaf nitrogen content, and two axes of eelgrass habitat structure as derived from a principal component analysis incorporating shoot density, leaf sheath width and length, longest leaf length, and aboveground biomass (PC1 and 2, Fig. A1.4) as predictor variables, as well as select interactions between them (Table 1.2). Predictors were log-, square-root-, or arcsin-transformed where appropriate to conform to a normal distribution based on Shapiro-Wilk normality tests and visual examinations of histograms. Collinearity of predictors was accounted for using variance inflation factors (VIF) for variables in composite models using the car package in R (Fox & Weisberg 2019). Predictors with a VIF greater than five were removed from composite models. We also examined the effects of predictors on the SES of individual traits to understand what traits may drive the patterns we see across environmental gradients (Appendix 2).

We ranked these initial hypothesis-driven models of SES using AICc scores (MuMIn package; Bartoń 2020), and then incorporated predictors from the three lowest-scoring models of each set into a set of composite models to examine the combined effects of multiple predictor types. We then used backwards elimination to select the lowest-scoring model from these composite models. Where two models had a  $\Delta$ AICc less than 3 units, we selected the model with the fewest parameters for interpretation.

#### RESULTS

Peracarid assemblages at Pacific sites had greater trait dispersion than Atlantic sites, and dispersion increased with increasing predation and decreasing latitude, though there were some differences among the two oceans that we outline below. Across our sites, we found a total of 105 species, 55 of which were found in the Atlantic, and 60 of which were found in the Pacific, with 10 species found in both oceans. There were 15 species in the Northwest Pacific, 48 species in the Northeast Pacific, 36 species in the Northwest Atlantic, and 24 species in the Northeast Atlantic (Fig. A1.3). The patterns and predictors of trait dispersion were robust across SES metrics and permutation algorithms (Fig. A1.5); here we present and interpret the results of

model selection on  $SES_{MNTD}$  calculated using the tip shuffle algorithm, with exceptions presented where relevant.

*Dispersion of traits by ocean basin.* Of the set of all traits examined, communities at Atlantic sites were on average clustered (SES < 0) relative to the global null, particularly for body size and living habit (Fig. A3.2) – species clustered around a mean body size of 14.09 mm (47.5% smaller than the mean Pacific body size), and most were free-living. Communities at Pacific sites were overdispersed (SES > 0) on average relative to the global null (Fig. 1.2, Table A1.1). This pattern held for both metrics and null models but was significant only for SES<sub>MPD</sub> (SES<sub>MPD</sub> independent swap  $t_{38.097} = 2.43$ , p = 0.020; SES<sub>MPD</sub> tip shuffle  $t_{38.242} = 2.31$ , p = 0.027; two-sample t tests). Within the global pool, the separate calculations of SES using microhabitat and feeding traits showed a similar pattern; for microhabitat traits, Pacific communities were more overdispersed and Atlantic communities more clustered (SES<sub>MNTD</sub> tip shuffle  $t_{35.654} = 3.64$ , p = 0.00086; Fig. 1.2).

*Correlates of among-site variation in trait dispersion.* Predation intensity, latitude, epiphyte load, and ocean basin (within the global species pool) were the strongest and most consistent predictors of SES across all species pools and all trait sets (Fig. A1.5). In-situ temperature, bed characteristics, epifaunal richness, continental margin, nitrate, and salinity also appeared occasionally (less than 30% of models) across the best models of SES. Mean annual sea surface temperature, epifaunal richness, salinity, nitrate, in-situ temperature, and crustacean abundance also varied significantly with latitude (Fig. A1.8).

In all of the best models, peracarid communities at sites with higher predation intensity had more overdispersed traits, whereas those with less intense predation had more clustered traits relative to a random draw from the species pool (Fig. 1.3a, Fig. A1.5a-c). Predation (removal of amphipod baits) varied from 20% in Quebec to 100% in Sweden, San Francisco Bay, Ireland, Korea, and British Columbia; the average predation rate was significantly greater in the Pacific than in the Atlantic Ocean (Table A1.2, Fig. A1.7, A1.8), but this did not translate to a difference in the effect of predation on dispersion across the two basins when permuting within the global pool (p = 0.48; Fig. 1.3a). Across the three species pools, the predation effect was stronger on average when permuting within the Pacific than the Atlantic or global pools, (Fig. A1.5a), and strongest in models of the dispersion of all traits together (Fig. A1.5b).

#### CHAPTER 1: The biogeography of community assembly

As predicted, trait dispersion decreased with increasing latitude in the best models (global species pool, microhabitat traits); communities became more clustered at higher latitude, while communities toward the equatorward edge of *Z. marina*'s range were more overdispersed (Fig. 1.3b, Fig. A1.5d-f). These latitude effects were stronger in the Pacific Ocean than in the Atlantic ( $F_{1,38} = 7.95$ , p = 0.0076; Fig. 1.3b) although they did not appear in the top models when permuting within the Pacific species pool (Fig. A1.5d); the best model including latitude was 1.3 AICc units better than the top model, but it was not selected as the top model because of the small difference in AICc score and greater number of parameters. Like predation, the latitude effect was strongest in models including all traits together (Fig. A1.5e).

Communities were more clustered (more negative SES) at sites with high epiphyte loads, but this effect was most obvious in the Atlantic species pool when only microhabitat traits were considered (Fig. 1.3c; Fig. A1.5g-h). There was rarely an effect of epiphyte load on SES when using other species pools (Fig. A1.5g) and never for diet traits (Fig. A1.5h).

#### DISCUSSION

Using a global dataset of eelgrass-associated peracarid crustaceans, we found a strong increase in community trait dispersion with decreasing latitude and increasing predation (Fig. 1.3a, b). Latitudinal clines in different ecological filters have been well-characterized in a wide variety of systems (Schemske *et al.* 2009; Reynolds *et al.* 2018; Zvereva & Kozlov 2021), particularly temperature and the strength of species interactions (Schemske *et al.* 2009; Longo *et al.* 2019; Zvereva & Kozlov 2021), both of which decrease at high latitudes. Stronger biotic interactions, in particular stabilizing interactions (*sensu* Chesson 2000), at lower latitudes may select for an overdispersed community (Webb *et al.* 2002; Mayfield & Levine 2010; Pavoine & Bonsall 2011), while stronger abiotic filters (or relatively weaker biotic filters) at either end of range (e.g. cold at the poleward edge or hot at the equatorward edge) could select for a clustered community (Webb *et al.* 2002; Cavender-Bares *et al.* 2009; Kraft *et al.* 2015). We found similar total numbers of species in the two oceans (Fig. A1.3) given similar sampling effort, and all traits were found in both oceans, so the differences we observe among oceans are not simply the result of different diversities in the underlying species pool.

Several lines of evidence point to the relatively greater effect of biotic interactions over temperature in structuring our communities. First, temperature rarely appeared as a significant factor in our best models (Fig. 1.3d). Second, latitudinal clines in dispersion were more

#### CHAPTER 1: The biogeography of community assembly

dependent on ocean basin than continental margins, which differ significantly in their temperature gradients (western side of oceans are warmer at an equivalent latitude; Fig. 1.3b; Reynolds et al. 2018). Third, predation in this system decreases with latitude, as it does in many others (Reynolds et al. 2018; Longo et al. 2019; Zvereva & Kozlov 2021). Fourth, we observed greater dispersion in living habit, motility, and macroalgae consumption at lower latitudes (Fig. A3.1b-d), all of which can be reasonably linked to stabilizing competition for food or enemy-free space. Finally, for some traits (body size, fecundity), we would expect clustering at both ends of a thermal gradient, but around different optima: large-bodied and highly fecund peracarids at cool sites, and small-bodied peracarids that produce fewer eggs at warm sites (Sainte-Marie 1991; Jaramillo et al. 2017). However, in ectotherms like peracarids, decreases in temperature at higher latitudes are less likely to be strong drivers of community structure than increases in temperature at lower latitudes as a result of asymmetrical performance curves (Martin & Huey 2008; Vasseur et al. 2014). While we saw that high-latitude sites tended to have species with high fecundity (65 to <135 eggs per brood; part of a general trend for clustered sites to have high or very high fecundity; Fig. A3.1a), we saw no similar trend towards clustering at low latitudes around low fecundity values or any other traits.

The decline in trait dispersion with latitude was significantly greater in the Pacific than the Atlantic. This difference in latitudinal clines and trait dispersion more generally between the two ocean basins (Fig. 1.2, Fig. 1.3b) may be in part due to differences in these assemblages' biogeographic and evolutionary histories (Mittelbach & Schemske 2015). First, glaciation in the north Atlantic during the last Ice Age means that many of the areas in which eelgrass now occurs would have been colonized after glaciers retreated (Vermeij 1991; Olsen *et al.* 2004), leaving less time for in-situ adaptation and specialization that might lead to increased trait dispersion (Cavender-Bares *et al.* 2009). Similarly, given *Z. marina*'s origin in the Pacific and more recent Pleistocene expansion into the Atlantic (Olsen *et al.* 2004), we might also generally expect Atlantic species to have colonized eelgrass from other Atlantic-native habitats, perhaps predisposing them to be less overdispersed in their traits as they cluster around a single mean. Consistent with this, we found that species in Atlantic sites were clustered around a smaller mean body size, which may be selected for by the denser eelgrass habitat in the Atlantic (Fig. A1.4, Fig. A3.2a; Bartholomew *et al.* 2000). Finally, gastropod relative abundance increases with latitude, and gastropods are a more abundant and speciose component of the epifaunal

community in the north Atlantic than in the Pacific (See Chapter 3). Competition with gastropods for epiphytes or other shared resources may push the peracarids there into a more constrained area of trait space, leading to the clustering we observed.

The precise impacts of these and other historical factors are difficult to quantify but may be further investigated with analyses of phylogenetic dispersion or more detailed studies of trait distributions in the regional species pool (Denelle *et al.* 2019; Skeels *et al.* 2020). However, we currently lack a phylogeny of peracarids with sufficient resolution and taxon sampling with which to evaluate underlying differences in phylogenetic diversity between the two ocean basins. We do note that richness of species, genera and families did not vary substantially between the ocean basins (Fig. A1.3).

One of the most striking results of our study was the positive effect of predation intensity on community dispersion among sites that was consistent in both oceans (Fig. 1.3a); peracarid species were more dissimilar in their traits than expected by chance in sites with high predation intensity. This effect appeared across trait sets, species pools, dispersion metrics and methods, although we rarely saw this signal at the level of individual traits (Table A3.1, Fig. A3.3). Changes in predator community structure, predation intensity, or both could lead to an increase in competition for predator-free space, an ecological selective filter that may result in overdispersion, particularly with respect to microhabitat and predator avoidance traits (Best & Stachowicz 2014). Herbivorous arthropods in both marine and terrestrial systems are known to select their microhabitat niches based largely on their effectiveness as shelter from predators rather than the availability or quality of food (Bernays & Graham 1988; Duffy & Hay 1991; Lasley-Rasher et al. 2011). Consequently, competition for enemy-free space can be an important factor structuring communities. Alternatively, predation could affect trait dispersion by reducing competition (Pianka 1966; Amundrud et al. 2015), but we would expect this to lead to an increase in dispersion from strongly clustered (SES < 0) to random communities (SES = 0) as stabilizing competition lessened, rather than the observed shift from clustered to overdispersed (SES > 0, Fig. 1.3a, Fig. A1.5b).

Latitudinal patterns of species interactions are now broadly appreciated (Schemske *et al.* 2009; Freestone & Osman 2011; Reynolds *et al.* 2018; Longo *et al.* 2019; Whalen *et al.* 2020; Zvereva & Kozlov 2021), but rarely are these results explicitly connected to variation in the structure of communities. By examining both how species interactions and environmental drivers

#### CHAPTER 1: The biogeography of community assembly

vary within a single habitat type across a broad geographic gradient, we demonstrate an important role for latitudinal variation in species interactions in driving patterns of community assembly. Diversity in important traits can increase the completeness with which epiphytes are removed, leading to increased seagrass growth (Duffy et al. 2003), an effect that is strongest in the presence of predators (Duffy et al. 2005). More generally, trait clustering and dispersion have implications for redundancy, stability, and ecosystem functioning (Cavender-Bares et al. 2009; Cadotte et al. 2011; Leibold et al. 2017). For instance, communities may be less resilient to environmental change if they are clustered by environmental filters (Cadotte et al. 2011, Rumm et al. 2018). Clustering that occurs as a result of equalizing mechanisms (sensu Chesson 2000) can weaken the relationship between diversity and ecosystem functioning, or certain ecosystem functions may be enhanced in communities with overdispersed effect traits, especially if diversity-function relationships arise through complementarity (Leibold et al. 2017; Thompson et al. 2020). Thus, historical contingency and broad-scale ecological drivers may play an important role in constraining not only the assembly of local communities, but the resulting trait diversity can affect the functioning of the entire ecosystem. This approach, if applied broadly, offers the potential for developing a predictive understanding of how entire communities respond to environmental change.

#### ACKNOWLEDGMENTS

We thank the many lab and field assistants that participated in this research and whose contributions of time and effort were invaluable for making this project happen. The manuscript was improved with comments from SP Lawler, ED Sanford, SY Strauss, and two anonymous referees. This research was funded by National Science Foundation grants to JED, JJS, and KAH (NSF-OCE 1336206, OCE 1336905, and OCE 1336741). CB was funded by the Åbo Akademi University Foundation.

#### REFERENCES

- Amundrud, S. L., D. S. Srivastava, and M. I. O'Connor. 2015. Indirect effects of predators control herbivore richness and abundance in a benthic eelgrass (*Zostera marina*) mesograzer community. Journal of Animal Ecology 84:1092–1102.
- Bartholomew, A., R. J. Diaz, and G. Cicchetti. 2000. New dimensionless indices of structural habitat complexity: predicted and actual effects on a predator<sup>1</sup>s foraging success. Marine Ecology Progress Series 206:45–58.

Bartoń, K. 2020, April 14. Multi-Model Inference. R.

- Bernays, E., and M. Graham. 1988. On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892.
- Best, R. J., N. C. Caulk, and J. J. Stachowicz. 2013. Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marine amphipods. Ecology Letters 16:72–80.
- Best, R. J., and J. J. Stachowicz. 2014. Phenotypic and phylogenetic evidence for the role of food and habitat in the assembly of communities of marine amphipods. Ecology 95:775–786.
- Cadotte, M. W., K. Carscadden, and N. Mirotchnick. 2011. Beyond species: functional diversity and the maintenance of ecological processes and services. Journal of Applied Ecology 48:1079–1087.
- Cavender-Bares, J., K. H. Kozak, P. V. A. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693–715.
- Chaudhary, C., H. Saeedi, and M. J. Costello. 2017. Marine species richness is bimodal with latitude: a reply to Fernandez and Marques. Trends in Ecology & Evolution 32:234–237.
- Chesson, P. 2000. Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics 31:343–366.
- Denelle, P., C. Violle, and F. Munoz. 2019. Distinguishing the signatures of local environmental filtering and regional trait range limits in the study of trait–environment relationships. Oikos 128:960–971.
- Duffy, J. E., and M. E. Hay. 1991. Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72:1286–1298.
- Duffy, J. E., J. P. Richardson, and E. A. Canuel. 2003. Grazer diversity effects on ecosystem functioning in seagrass beds. Ecology Letters 6:637–645.
- Duffy, J. E., J. P. Richardson, and K. E. France. 2005. Ecosystem consequences of diversity depend on food chain length in estuarine vegetation. Ecology Letters 8:301–309.
- Dyer, L. A., and M. L. Forister. 2019. Challenges and advances in the study of latitudinal gradients in multitrophic interactions, with a focus on consumer specialization. Current Opinion in Insect Science 32:68–76.

- Edgar, G. J. 1990. Population regulation, population dynamics and competition amongst mobile epifauna associated with seagrass. Journal of Experimental Marine Biology and Ecology 144:205–234.
- Ford, B. M., and J. D. Roberts. 2018. Latitudinal gradients of dispersal and niche processes mediating neutral assembly of marine fish communities. Marine Biology 165:94.
- Ford, B. M., and J. D. Roberts. 2019. Evolutionary histories impart structure into marine fish heterospecific co-occurrence networks. Global Ecology and Biogeography 28:1310– 1324.
- Fox, J., and S. Weisberg. 2019. An R companion to applied regression. Third edition. Sage, Thousand Oaks, CA.
- Freestone, A. L., and R. W. Osman. 2011. Latitudinal variation in local interactions and regional enrichment shape patterns of marine community diversity. Ecology 92:208–217.
- Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, M. M. Zweng, O. K. Baranova, and D.
  R. Johnson. 2010. World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate). Page (S. Levitus, Ed.). U.S. Government Printing Office, Washington, D.C.
- Green, E. P., and F. T. Short. 2003. World atlas of seagrasses. University of California Press, Berkeley, CA, USA.
- den Hartog, C. 1970. The seagrasses of the world. North Holland Publishing Co., Amsterdam.
- Hijmans, R. J., and J. van Etten. 2020, November 14. raster: geographic data analysis and modeling. R.
- Jaramillo, E., J. E. Dugan, D. M. Hubbard, H. Contreras, C. Duarte, E. Acuña, and D. S. Schoeman. 2017. Macroscale patterns in body size of intertidal crustaceans provide insights on climate change effects. PLOS ONE 12:e0177116.
- Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464.
- Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592–599.
- Laliberté, É., P. Legendre, and B. Shipley. 2014, August 19. Measuring functional diversity (FD) from multiple traits, and other tools for functional ecology. R.

- Lasley-Rasher, R. S., D. B. Rasher, Z. H. Marion, R. B. Taylor, and M. E. Hay. 2011. Predation constrains host choice for a marine mesograzer. Marine Ecology Progress Series 434:91– 99.
- Lavender, J. T., K. A. Dafforn, M. J. Bishop, and E. L. Johnston. 2017. An empirical examination of consumer effects across twenty degrees of latitude. Ecology 98:2391– 2400.
- Leibold, M. A., J. M. Chase, and S. K. M. Ernest. 2017. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98:909–919.
- Longo, G. O., M. E. Hay, C. E. L. Ferreira, and S. R. Floeter. 2019. Trophic interactions across 61 degrees of latitude in the Western Atlantic. Global Ecology and Biogeography 28:107–117.
- Martin, T. L., and R. B. Huey. 2008. Why "suboptimal" is optimal: Jensen's Inequality and ectotherm thermal preferences. The American Naturalist 171:E102–E118.
- Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13:1085–1093.
- Mittelbach, G. G., and D. W. Schemske. 2015. Ecological and evolutionary perspectives on community assembly. Trends in Ecology & Evolution 30:241–247.
- Olsen, J. L., W. T. Stam, J. A. Coyer, T. B. H. Reusch, M. Billingham, C. Boström, E. Calvert, H. Christie, S. Granger, R. L. Lumière, N. Milchakova, M.-P. Oudot-Le Secq, G. Procaccini, B. Sanjabi, E. Serrão, J. Veldsink, S. Widdicombe, and S. Wyllie-Echeverria. 2004. North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Molecular Ecology 13:1923–1941.
- Pavoine, S., and M. B. Bonsall. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86:792–812.
- Pianka, E. R. 1966. Latitudinal gradients in species diversity: a review of concepts. The American Naturalist 100:33–46.
- Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16:391–409.
- R Development Core Team. 2022. R: a language and environment for statistical computing.

- Reynolds, P. L., J. J. Stachowicz, K. Hovel, C. Boström, K. Boyer, M. Cusson, J. S. Eklöf, F. G. Engel, A. H. Engelen, B. K. Eriksson, F. J. Fodrie, J. N. Griffin, C. M. Hereu, M. Hori, T. C. Hanley, M. Ivanov, P. Jorgensen, C. Kruschel, K.-S. Lee, K. McGlathery, P.-O. Moksnes, M. Nakaoka, M. I. O'Connor, N. E. O'Connor, R. J. Orth, F. Rossi, J. Ruesink, E. E. Sotka, J. Thormar, F. Tomas, R. K. F. Unsworth, M. A. Whalen, and J. E. Duffy. 2018. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology 99:29–35.
- Roy, K., G. Hunt, D. Jablonski, A. Z. Krug, and J. W. Valentine. 2009. A macroevolutionary perspective on species range limits. Proceedings of the Royal Society B: Biological Sciences 276:1485–1493.
- Rumm, A., F. Foeckler, F. Dziock, C. Ilg, M. Scholz, R. M. B. Harris, and M. Gerisch. 2018. Shifts in mollusc traits following floodplain reconnection: Testing the response of functional diversity components. Freshwater Biology 63:505–517.
- Sainte-Marie, B. 1991. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223:189–227.
- Sanford, E., and M. Bertness. 2009. Latitudinal gradients in species interactions. Pages 357–391 *in* J. Witman and K. Roy, editors. Marine Macroecology. University of Chicago Press.
- Schemske, D. W., G. G. Mittelbach, H. V. Cornell, J. M. Sobel, and K. Roy. 2009. Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics 40:245–269.
- Sessa, E. B., S. M. Chambers, D. Li, L. Trotta, L. Endara, J. G. Burleigh, and B. Baiser. 2018. Community assembly of the ferns of Florida. American Journal of Botany 105:549–564.
- Skeels, A., D. Esquerré, and M. Cardillo. 2020. Alternative pathways to diversity across ecologically distinct lizard radiations. Global Ecology and Biogeography 29:454–469.
- Starko, S., K. W. Demes, C. J. Neufeld, and P. T. Martone. 2020. Convergent evolution of niche structure in Northeast Pacific kelp forests. Functional Ecology 34:2131–2146.
- Swenson, N. G. 2014. Functional and Phylogenetic Ecology in R. Springer-Verlag, New York.
- Thompson, P., M. Guzman, L. De Meester, Z. Horváth, R. Ptacnik, B. Vanschoenwinkel, D. Viana, and J. Chase. 2020. A process-based metacommunity framework linking local and regional scale community ecology. Ecology Letters 23.

- Tyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, F. Mineur, and O. D. Clerck. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21:272–281.
- Valentine, J. F., and J. E. Duffy. 2006. The Central Role of Grazing in Seagrass Ecology. Pages 463–501 in A. W. D. Larkum, R. J. Orth, and C. M. Duarte, editors. Seagrasses: biology, ecology and conservation. Springer Netherlands, Dordrecht.
- Vasseur, D. A., J. P. DeLong, B. Gilbert, H. S. Greig, C. D. G. Harley, K. S. McCann, V. Savage, T. D. Tunney, and M. I. O'Connor. 2014. Increased temperature variation poses a greater risk to species than climate warming. Proceedings of the Royal Society B: Biological Sciences 281:20132612.
- Vermeij, G. J. 1991. Anatomy of an invasion: the Trans-Arctic Interchange. Paleobiology 17:281–307.
- Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475–505.
- Whalen, M. A., R. D. B. Whippo, J. J. Stachowicz, P. H. York, E. Aiello, T. Alcoverro, A. H. Altieri, L. Benedetti-Cecchi, C. Bertolini, M. Bresch, F. Bulleri, P. E. Carnell, S. Cimon, R. M. Connolly, M. Cusson, M. S. Diskin, E. D'Souza, A. A. V. Flores, F. J. Fodrie, A. W. E. Galloway, L. C. Gaskins, O. J. Graham, T. C. Hanley, C. J. Henderson, C. M. Hereu, M. Hessing-Lewis, K. A. Hovel, B. B. Hughes, A. R. Hughes, K. M. Hultgren, H. Jänes, D. S. Janiak, L. N. Johnston, P. Jorgensen, B. P. Kelaher, C. Kruschel, B. S. Lanham, K.-S. Lee, J. S. Lefcheck, E. Lozano-Álvarez, P. I. Macreadie, Z. L. Monteith, N. E. O'Connor, A. D. Olds, J. K. O'Leary, C. J. Patrick, O. Pino, A. G. B. Poore, M. A. Rasheed, W. W. Raymond, K. Reiss, O. K. Rhoades, M. T. Robinson, P. G. Ross, F. Rossi, T. A. Schlacher, J. Seemann, B. R. Silliman, D. L. Smee, M. Thiel, R. K. F. Unsworth, B. I. van Tussenbroek, A. Vergés, M. E. Yeager, B. K. Yednock, S. L. Ziegler, and J. E. Duffy. 2020. Climate drives the geography of marine consumption by changing predator communities. Proceedings of the National Academy of Sciences 117:28160–28166.
- Zvereva, E. L., and M. V. Kozlov. 2021. Latitudinal gradient in the intensity of biotic interactions in terrestrial ecosystems: sources of variation and differences from the diversity gradient revealed by meta-analysis. Ecology Letters 24:2506–2520.

Table 1.1. Traits used in analyses of ZEN peracarid communities. Full citations, as well as sources for individual species traits, are listed in Appendix 2.

| Trait                                       | Туре                   | Values                                                                                                 | Category     | Interpretation                                                                           | Citations                                                                                                                              |
|---------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Maximum<br>fecundity<br>(number of<br>eggs) | Ordered<br>categorical | Very low (0 to <18), Low<br>(18 to <31), Medium (31 to<br><65), High (65 to <135),<br>Very high (>135) | Neither      | Competitive ability,<br>population resilience,<br>population density                     | Sainte-<br>Marie<br>1991, Best<br>and<br>Stachowicz<br>2013,<br>Lefcheck<br>and Duffy<br>2015,<br>Ashford <i>et</i><br><i>al.</i> 2018 |
| Maximum<br>adult length                     | Continuous             | 2-50 mm                                                                                                | Microhabitat | Susceptibility to<br>predators, ability to<br>occupy physical space                      | Sainte-<br>Marie<br>1991, Best<br>and<br>Stachowicz<br>2013,<br>Lefcheck<br>and Duffy<br>2015,<br>Ashford <i>et</i><br><i>al.</i> 2018 |
| Body shape                                  | Categorical            | Laterally compressed,<br>Dorsoventrally compressed,<br>Vermiform                                       | Microhabitat | Ability to occupy<br>physical space,<br>palatability                                     | Lefcheck<br>and Duffy<br>2015                                                                                                          |
| Living habit                                | Categorical            | Free, Parasite/direct<br>commensal, Tube/burrow<br>dweller                                             | Microhabitat | Degree of substrate<br>association, substrate<br>type, population density                | Best and<br>Stachowicz<br>2013,<br>Ashford <i>et</i><br><i>al.</i> 2018                                                                |
| Motility                                    | Categorical            | Swimmer, Crawler                                                                                       | Microhabitat | Susceptibility to<br>predators, dispersal<br>ability, degree of<br>substrate association | Lefcheck<br>and Duffy<br>2015,<br>Ashford <i>et</i><br><i>al.</i> 2018                                                                 |
| Bioturbator?                                | Binary                 |                                                                                                        | Microhabitat | Degree of substrate<br>association, substrate<br>type                                    | Ashford <i>et al.</i> 2018                                                                                                             |
| Microalgae<br>feeding                       | Binary                 |                                                                                                        | Diet         |                                                                                          |                                                                                                                                        |
| Macroalgae<br>feeding                       | Binary                 |                                                                                                        | Diet         |                                                                                          |                                                                                                                                        |
| Seagrass<br>feeding                         | Binary                 |                                                                                                        | Diet         |                                                                                          | Duffy and<br>Harvilicz                                                                                                                 |
| Seagrass<br>detritus<br>feeding             | Binary                 |                                                                                                        | Diet         | Dietary niche partitioning                                                               | 2001, Best<br>and<br>Stachowicz<br>2012, 2013                                                                                          |
| Suspension<br>feeding                       | Binary                 |                                                                                                        | Diet         |                                                                                          |                                                                                                                                        |
| Detritivory,<br>deposit<br>feeding          | Binary                 |                                                                                                        | Diet         |                                                                                          |                                                                                                                                        |

## CHAPTER 1: The biogeography of community assembly

Carnivory, parasitism, Binary scavenging

Diet

Table 1.2. A priori models used to analyse site-level SES values. These 16 models were separately applied to 33 sets of SES values for different trait distance metrics, permutation algorithms, species pools, and trait sets, for a total of 528 models.

| Model name                |                                                     |                              | Predictors                          |                                     |                     |
|---------------------------|-----------------------------------------------------|------------------------------|-------------------------------------|-------------------------------------|---------------------|
| Biogeography 1            | Latitude                                            |                              |                                     |                                     |                     |
| Biogeography 2            | Latitude                                            | Continental<br>Margin        | Ocean                               |                                     |                     |
| Biogeography 3            | Latitude                                            | Continental<br>Margin        | Latitude ×<br>Continental<br>Margin |                                     |                     |
| Biogeography 4            | Latitude                                            | Continental<br>Margin        | Ocean                               | Latitude ×<br>Continental<br>Margin | Latitude ×<br>Ocean |
| Biogeography 5            | Latitude                                            | Continental<br>Margin        | Ocean                               | Latitude ×<br>Continental<br>Margin |                     |
| Abiotic<br>Environment    | in-situ Temperature                                 | in-situ<br>Salinity          | Mean Leaf % N                       | C                                   |                     |
| Temperature<br>Regime 1   | Mean SST                                            |                              |                                     |                                     |                     |
| Temperature<br>Regime 2   | SST Range                                           |                              |                                     |                                     |                     |
| Temperature<br>Regime 3   | Mean SST                                            | SST Range                    | Mean SST ×<br>SST Range             |                                     |                     |
| Community                 | log(Mean Standard<br>Total Crustacean<br>Abundance) | Median<br>Crustacean<br>Size |                                     |                                     |                     |
| Total Biodiversity        | log(Site Epifaunal<br>Richness)                     |                              |                                     |                                     |                     |
| Peracarid<br>Biodiversity | log(Site Peracarid<br>Richness)                     |                              |                                     |                                     |                     |
| Habitat                   | PC1                                                 | PC2                          | log(Macroalgal<br>Biomass + 1)      |                                     |                     |
| Predation                 | arcsin(Mean<br>Amphipod Predation)                  |                              |                                     |                                     |                     |
| Resource 1                | log(Mean Epiphyte<br>load)                          | log(Mean<br>Chl a)           |                                     |                                     |                     |
| Resource 2                | $\sqrt{\mathrm{NO}_2}$                              | Mean PAR                     |                                     |                                     |                     |

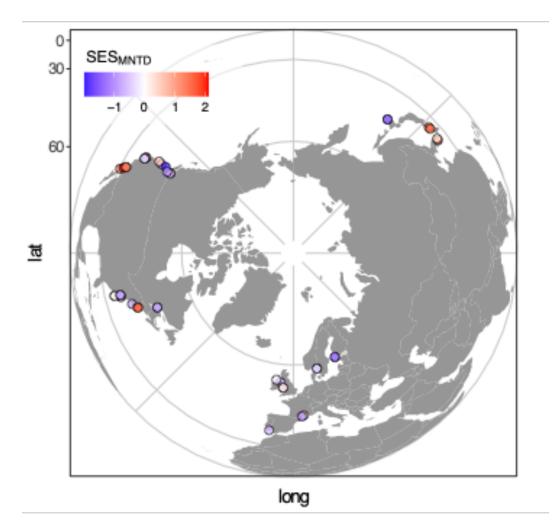
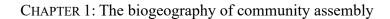




Figure 1.1. *Zostera* Experimental Network (ZEN) sites used in our analyses. Sites spanned 30° of latitude on the Pacific and Atlantic coasts of North America and Eurasia, including the Baltic and Mediterranean seas, covering most of the range of *Zostera marina* (eelgrass). Colors indicate trait dispersion (SES<sub>MNTD</sub> calculated using the tip shuffle algorithm); positive values of SES<sub>MNTD</sub> indicate greater dispersion in traits than expected from a random draw from the global species pool, whereas negative values of SES<sub>MNTD</sub> indicate clustering in traits relative to a random draw. See Fig. A1.1 for more detailed information about site locations.



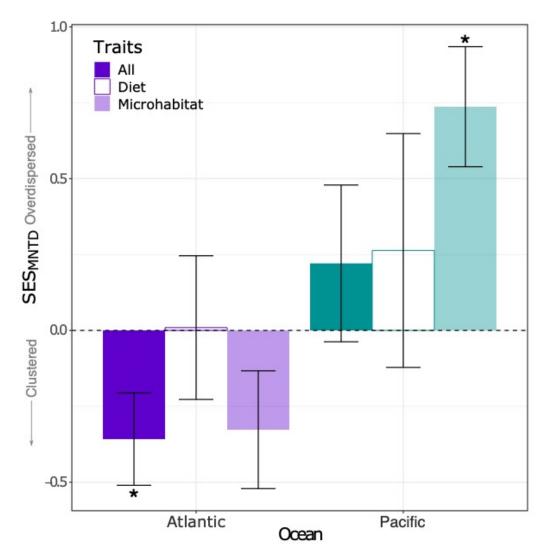



Figure 1.2. Trait dispersion (SES<sub>MNTD</sub>) in eelgrass-associated peracarid crustacean communities across trait sets. In general, communities at sites in the Pacific Ocean were more overdispersed, while communities at Atlantic sites were less dispersed than expected. The dashed horizontal line represents an SES<sub>MNTD</sub> value of 0, indicating random assembly. Asterisks indicate means significantly different from zero (two-tailed one-sample t tests; see table A1.1); error bars represent standard errors. Figure shows SES<sub>MNTD</sub> calculated according to the Tip Shuffle permutation algorithm; results were comparable across permutation algorithms and SES values.

CHAPTER 1: The biogeography of community assembly

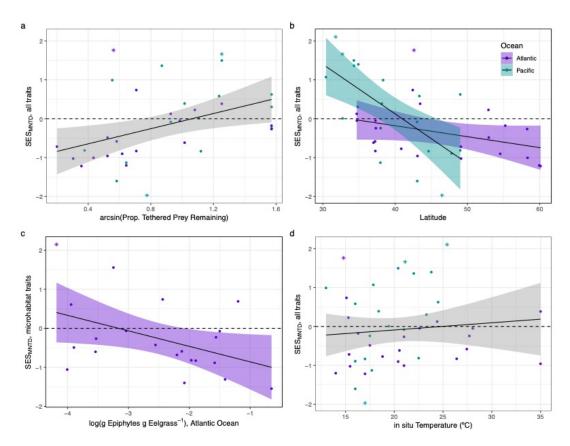



Figure 1.3. The effects of predation (a), latitude (b), epiphyte load (c), and in-situ temperature (d) on trait dispersion (SES<sub>MNTD</sub> using the tip shuffle algorithm) in univariate analyses. In all of the best models of dispersion, sites with higher predation intensity had more overdispersed communities, while those with lower predation intensity had more clustered communities (a;  $R^2 = 0.15$ , p = 0.012). In the best models that had a non-zero latitude effect, sites at lower latitudes had more overdispersed communities, while those at higher latitudes had more clustered communities. This effect was stronger in the Pacific than the Atlantic species pool (b;  $R^2 = 0.36$ , interaction p = 0.0076). In the best models with a non-zero epiphyte effect, sites where eelgrass had lower epiphyte density had more overdispersed communities, while sites with more heavily fouled blades had clustered communities (c; plot shows SES<sub>MNTD</sub> for microhabitat traits in the Atlantic species pool;  $R^2 = 0.15$ , p = 0.046). In-situ temperature appeared only sporadically across permutations and dispersion metrics, and was not significant for total trait dispersion ( $R^2$ ) = 0.0094, p = 0.54). The dashed horizontal line represents an SES value of 0, indicating random assembly; sites in **bold** italics are those for which SES is significantly different from 0 at  $\alpha = 0.05$ .

# CHAPTER 2: Extending trait dispersion across trophic levels: functionally diverse predator assemblages act as top-down filters on prey community traits

#### ABSTRACT

Studies of community assembly typically focus on the effects of abiotic environmental filters and stabilizing competition on functional trait dispersion within single trophic levels. Predation is a well-known driver of trait distributions within communities, but the role of functionally diverse predator communities in filtering prey community traits has received less attention. We examined functionally diverse communities of predators (fishes) and prey (epifaunal crustaceans) in eelgrass (Zostera marina) beds in two Northern California estuaries to evaluate the filtering effects of predator traits on community assembly, and how filters acting on predators influence their ability to mediate prey community assembly. Fish traits related to prey detection and capture selected for more overdispersed epifauna communities, particularly with respect to body size and activity level, suggesting that prey may be pushed to disparate areas of trait space to avoid consistent detection by predators across the community. We also found correlations between the trait dispersions of predator and prey communities that strengthened after accounting for the effects of habitat filters on predator dispersion, suggesting that habitat filtering effects on predator species pools may hinder their ability to affect prey community assembly. Our results present compelling observational evidence that specific predator traits have measurable impacts on the community assembly of prey, inviting experimental tests of predator trait means on community assembly, and explicit comparisons of how the relative effects of habitat filters and intraguild competition on predators impact their ability to affect prey community assembly. Integrating our understanding of traits at multiple trophic levels can help us better predict the impacts of community composition on food web dynamics as regional species pools shift with climate change and anthropogenic introductions.

#### INTRODUCTION

One of the key goals of community ecology is to understand the mechanisms by which communities assemble from a regional species pool (Poff 1997, Thompson et al. 2020). Ecological filters such as temperature, habitat structure, and interspecific competition exert selective pressures in multiple different directions on the species pool. Because species' traits are what allow them to pass through these filters, studying the distribution of traits within the community provides insight into how filters have acted on the species pool. Strong

environmental filters (i.e., abiotic filters *sensu* Kraft *et al.* 2015) such as climate are thought to act on large spatial scales to constrain trait diversity such that species are more alike (clustered) in traits that respond to these factors than would be expected under a purely random assembly process (Webb et al. 2002, Cavender-Bares et al. 2009, Starko et al. 2020, Thompson et al. 2020). Biotic filters, such as competition, act at smaller spatial scales to enhance or reduce trait diversity among species with broadly similar abiotic tolerances, depending on which traits are affected (Mayfield and Levine 2010). When traits related to the acquisition of distinct resources are considered, competition for these resources drives the distribution of traits to be wider than expected by chance (overdispersed) as there are multiple resource niche optima that can be occupied (Webb et al. 2002, Cavender-Bares et al. 2009, Pavoine and Bonsall 2011). In contrast, competition for a single limiting resource can also act as a filter, selecting for traits related to resource acquisition to converge around an optimal value as species deviating from the optimum are competitively excluded (Mayfield and Levine 2010).

To the extent that traits are phylogenetically conserved, phylogenetic diversity may provide an integrated picture of functional distinctiveness across many traits, and might thus provide a proxy for ecological differences between species (Webb et al. 2002, Swenson et al. 2006, Cavender-Bares et al. 2009, Cadotte et al. 2017). However, the extent to which this assumption holds depends on the degree of trait convergence between distantly related taxa, intraspecific trait variation due to plasticity or adaptation, the species used to build the reference phylogeny, and other factors (Cadotte et al. 2017, Tucker et al. 2018). Nevertheless, the distribution of phylogenetic and functional trait distances among species in a community may reveal patterns in community functional or phylogenetic structure that allow us to draw inferences about the processes that determine community composition in nature.

The assumption that limiting similarity and environmental filters are the two main opposing forces in community assembly that lead to either overdispersion or clustering, respectively (Kraft et al. 2015, Cadotte et al. 2017) is pervasive, despite nuances in the effects of different filters on the functional (and phylogenetic) structure of communities. Less attention has been paid to other possible selective filters, such as predation. Yet predators are widely known to govern community structure, species coexistence, and even adaptive divergence among prey species (McPeek 1995, Vamosi 2005) by both consumptive and nonconsumptive effects (Paine 1966, Sommers and Chesson 2019, Dellinger et al. 2022). For example, predators affect prey

#### CHAPTER 2: Extending trait dispersion across trophic levels

behavior and habitat use, and may determine which prey traits are important for facilitating prey coexistence. In the presence of predators, competition for enemy-free space may drive community assembly and promote divergence in microhabitat use (Best and Stachowicz 2014, Lürig et al. 2016, Gross et al. 2022), while in predator-free environments, prey may compete more for food (Best et al. 2013, Beermann et al. 2018). Predator traits may influence prey coexistence and community assembly by selecting for prey with traits that aid in predator evasion (McPeek 1995, Schmid et al. 2019), or by reducing the abundance of a dominant competitor (Paine 1966).

Despite the wealth of knowledge of how predators influence prey community structure, studies of functional and phylogenetic diversity and community assembly rarely examine the potential role of speciose predator communities in producing these patterns, both in terms of their traits and how those traits are distributed among predator species in the community. Instead, studies typically focus on one or two predator species or morphotypes (Post et al. 2008, Holdridge et al. 2017, Schmid et al. 2019) or coarse measures of community-level predation intensity without directly investigating the predator community itself (Palkovacs et al. 2009, Gross et al. 2022). Yet predators and their prey are affected by broader ecological filters, and the influences of predator selection on prey communities may carry the fingerprints of of environmental filters, competition, or other factors that limit the suite of predator traits that can act to filter prey (Chang et al. 2021; Fig. 2.1a).

Looking specifically at the role that community-wide predator trait distributions might play in structuring prey communities, four general patterns of dispersion can be considered between guilds (Fig. 2.1b). First, an overdispersed predator community may lead to an overdispersed prey community, as a wide range of predator feeding modes may prevent the dominance of a single set of prey traits. Second, an overdispersed predator community may lead to a clustered prey community if diffuse pressure from predator traits in all directions pushes prey into a single refuge in trait space (Sih et al. 1998). Third, a clustered predator community might be associated with a clustered prey community, either because they respond to the same environmental filters, or because prey are forced into a single trait space that reduces their predation risk outside the range of predator traits. Finally, a clustered predator community might be associated with an overdispersed prey community if prey reduce their competition for enemyfree space by moving into different niches that are inaccessible to predators.

#### CHAPTER 2: Extending trait dispersion across trophic levels

We investigated patterns of clustering and overdispersion in communities of mesopredatory fishes and their epifaunal invertebrate mesograzer prey found in eelgrass (Zostera marina) beds of northern California, USA. We addressed two major questions: (1) Does the trait composition of fish communities act as a selective filter to affect epifaunal community assembly? and (2) How do ecological filters acting on fishes affect the direction and magnitude of their selective pressure on the epifaunal species pool? We specifically chose to focus on peracarid crustaceans (amphipods, isopods, and tanaids), because they are the most widespread, abundant, and speciose mesograzer taxon in these eelgrass beds (Ha and Williams 2018, Gross et al. 2022), are monophyletic, and are more susceptible to predation than other taxa such as gastropods (Reynolds et al. 2018), increasing the likelihood that predation and predators will act as filters. Understanding the effect of fish traits and trait distributions on peracarid traits and trait distributions is particularly interesting in seagrass beds, unique among marine benthic habitats in that mesograzers typically feed on fouling epiphytic algae, rather than on the seagrass tissue itself (Jernakoff et al. 1996, Valentine and Duffy 2006). The "mutualistic mesograzer model" (Revnolds et al. 2014) predicts that increased secondary consumption by mesopredators will indirectly harm the seagrass by decreasing the numbers of epiphyte-removing mesograzers, increasing competition between seagrass and epiphytes for light (Jackson et al. 2001, Estes et al. 2011). However, in communities of epiphyte grazers, relative abundances, interspecific variation in epiphyte feeding rates, and differences in mesopredator susceptibility due to predator-prey trait matching or mismatching may lead to idiosyncratic outcomes from experimental trophic cascades (Best and Stachowicz 2012). In light of these studies and others in which variation in predator traits leads to differences in prey community structure and alters trophic cascades (Post et al. 2008, Schmid et al. 2019), it is likely that the traits of both mesograzers and the predators that feed on them can have dramatic impacts on the strength and outcome of trophic cascades in eelgrass.

#### METHODS

*Study sites and sampling.* In the summers of 2019 and 2021, we sampled three eelgrass beds each in Bodega Harbor (38°19'N 123°03'W) and Tomales Bay (38°09'N 122°54'W), or a total of 12 site-by-year samples across both estuaries. Bodega Harbor is a small (approximately 5 km<sup>2</sup>) shallow bar-enclosed embayment characterized by extensive mudflats (Abbott et al. 2018), while Tomales Bay is a long (16 km) and narrow (2 km) drowned river estuary characterized by

strong environmental gradients (Cheng and Grosholz 2016, DuBois et al. 2022). We chose eelgrass beds across gradients of temperature and water residence time in each estuary.

We sampled fishes in 6 sets of a custom beach seine net when the water level was at or below 1 m above the seafloor. The seine sampled a circular area of 11 m<sup>2</sup>. We counted, identified to the lowest possible taxonomic level (typically species), and released animals retained in the seine. We additionally grouped some species into discrete size classes (large or small, Table A4.2) based on earlier seining efforts (C.P. Gross, unpublished), keeping in mind that allometric growth may lead to ontogenetic differences in morphometric traits (Karachle et al. 2012). We retained two individuals of each species and size class from each estuary (in 2019) or each site (in 2021) to be euthanized for morphometric analyses. To get our final list of fish species and size classes, we removed singletons, species that only occurred in a single site-year combination, and species with 4 or fewer individuals across the entire dataset (Table A4.1).

At each site, we collected peracarid crustaceans and other epifauna along six 20-meter transects. Three transects were parallel to the shoreline at shallow subtidal elevations in the eelgrass, while three were parallel to these at a higher intertidal elevation in the same grass bed. At 4 and 16 meters along each transect, we collected each epifaunal sample by everting an open-mouth drawstring mesh bag (500  $\mu$ m mesh size) over a clump of shoots in the eelgrass bed so that the mouth of the bag was flush with the sediment surface. We then severed the shoots where they emerged from the sediment and closed the drawstring to capture shoots, macroalgae, and associated animals. We transferred the shoots to the laboratory on ice, rinsed and hand-inspected them to dislodge the epifauna, which we then passed through a 500  $\mu$ m sieve and ultimately transferred into 70% ethanol. We then identified epifauna to the lowest possible taxonomic level (typically species), and removed singletons and species that only occurred in one site-year combination. We standardized epifaunal abundance by the total aboveground biomass of macrophytes in the sample from which they were collected (Appendix Table A4.5).

In addition to sampling fishes and epifauna, we also collected data on total eelgrass shoot density m<sup>-2</sup>, flowering shoot density m<sup>-2</sup>, percent cover, canopy height, and epiphyte dry weight mm<sup>-2</sup> eelgrass as described by Aoki et al. (2022). We also measured mean in-situ summer temperatures by averaging hourly temperatures at the upper (intertidal) transect level between June and August as recorded by HOBO MX 2201 pendant temperature loggers (Onset). We also

quantified macroalgal abundance in each site-by-year sample as the total macroalgal wet mass collected in epifaunal grab samples.

Traits and phylogeny. For the 23 most abundant species of peracarids in our surveys, we assigned values for 11 traits putatively related to predator avoidance and microhabitat niche. We collected three of these traits (maximum body size, shape, and living habit) from the literature. We determined the tube fidelity for each species according to observations of living and preserved specimens along a four-point ordered scale as follows: none (species lacks silk glands to build tubes), low (species has silk glands but was never observed in a tube alive or preserved in ethanol), medium (species has silk glands and was observed in tubes when alive but readily flees tube when exposed to ethanol), and high (species has silk glands, is tubicolous when alive, and is regularly found inside tubes after preservation in ethanol). We measured mean body size (length from rostrum to telson), relative eye diameter, and relative antenna lengths from 10-20 preserved individuals collected across sites and years. We measured activity levels as fractions of time spent swimming, walking, and still (unmoving) from one-minute video recordings of 10-20 live individuals per species across sites and years. We log-transformed peracarid traits where appropriate to conform to a normal distribution. A more detailed discussion of peracarid traits including how we defined and measured each, any transformations prior to analysis, and mean values for each species is included in Appendix 4 (Table A4.6, Table A4.7, Fig. A4.3).

We assigned two categorical (vertical position and foraging mode) and one continuous trait (trophic level) to the 16 most abundant fishes based on the literature. We fuzzy-coded vertical position and foraging mode among 5 and 3 levels, respectively, to accommodate species that could be classified among multiple levels (Ashford et al. 2018). We collected linear morphometric measurements of fishes (body and head dimensions, fin lengths, eye size and position, and mouth height and protrusion) from 2-26 specimens per species and size class collected from seines as described above, and standardized them for ease of comparison across species. We log-transformed fish traits where appropriate to conform to a normal distribution. We also used principal component analysis (PCA) to condense variation among fish species' linear morphometric traits into 16 axes, the first three of which explained 66% of variation among species (Fig. A4.2). Detailed discussion of fish traits, including how each was defined and measured, any transformations prior to analysis, and mean values for each species, is included in Appendix 4 (Table A4.3, Table A4.4, Fig. A4.1).

# CHAPTER 2: Extending trait dispersion across trophic levels

To address the potential effects of evolutionary history on peracarid community responses to predators, we built a phylogeny of our species by subsetting from the peracarid supertree published by Ashford et al. (2018). Species in our dataset that were not included in the supertree were substituted in for congeners or closely-related confamilials.

*Community dispersion.* Hereafter, "community" refers to the sum of individual fishes from 6 seines or peracarids from 12 grab samples for each of the 12 site-by-year combinations. For peracarids, we used the trait dataset to create a matrix of weighted Gower distances, which incorporate both continuous and categorical variables, between species using the gawdis package in R (de Bello et al. 2021). This method iteratively assigns weights to traits that ensure the equal contribution of each trait to the mean Gower distances between taxa, and accounts for correlations between traits by grouping them so that the group as a whole contributes equally to the mean Gower distances rather than the individual elements of the group. We grouped tube fidelity and living habit a priori, because species for which living habit was anything other than "tubicolous" automatically was assigned a tube fidelity of "none." We also calculated Gower distances between species for their individual traits to pinpoint which community trait distributions may be subject to top-down control by the predator community.

For fishes, we calculated overall Gower distances by averaging weighted Gower distances based on fuzzy-coded traits (foraging mode and vertical position) and continuous traits (linear morphometric measurements and trophic level, with correlated modules grouped based on Pearson correlation coefficients greater than 0.6) calculated separately. Correlated continuous trait modules were dorsal fin length, anal fin length, and caudal peduncle length; eye diameter and body depth; and mouth height, pectoral fin length, and caudal fin length. To examine how specific fish traits in the community might exert differential selective pressures on peracarid communities, we also calculated the community-weighted mean value of each fish trait and PC axis for each community.

We measured the trait distance between species within peracarids and within fishes as the Mean Pairwise Distance (MPD) and Mean Nearest Taxon Distance (MNTD; Webb et al. 2002, Sessa et al. 2018). MPD is the average of the trait distances between all pairs of species found within a given community, while MNTD is the average minimum distance between species pairs in a community. Both are independent of species richness, but the two metrics can behave differently depending on the clustering of species in trait space within a community (Sessa et al.

2018). For peracarids, we also calculated MPD and MNTD for phylogenetic distances within each community, based on total branch length within the subset of the phylogeny contained in each community.

To determine whether the traits of observed species in each community differed from those expected by chance (fishes and peracarids) or phylogenetic relationships (peracarids), we standardized MPD and MNTD against null distributions generated according to two permutation algorithms. The first, independent swap, is a semi-constrained model that randomly re-assembles the community-by-species matrix while maintaining the species richness of each community and the presence/absence of each species across communities. The second, tip shuffle, is a more constrained model that directly shuffles the traits of the species in the community while maintaining richness, occurrence, and trait distances between community members, effectively moving the tip labels on a trait dendrogram or phylogeny. Imposing more constraints on permutation controls for patterns in the data that are not directly relevant to the question at hand, such as species richness, occurrence, or identity, which ultimately reduces type I error rates (Swenson 2014). We completed each permutation 999 times for each community, and generated null distributions of MPD and MNTD based on values calculated from randomized communities.

We then compared each observed value of community trait distance to the corresponding null distribution by calculating the standard effect size (SES<sub>MPD</sub> or SES<sub>MNTD</sub>). A positive value of SES indicates that the observed community trait distance (as measured by MPD or MNTD) is greater than the null mean, meaning that community members are more dissimilar than expected under a random draw (overdispersion), while a negative SES indicates that trait distance is less than the null mean, meaning that community members are more similar to each other than expected under a random draw (clustering). We calculated MPD, MNTD, null distributions and SES values using the picante package in R (Kembel et al. 2010).

*Data analyses.* To estimate the overall influence of multivariate habitat and fish community structure on peracarid traits and phylogenetic relationships, we used Mantel tests. Using matrices of habitat differences between communities and fish trait differences between communities, we modeled peracarid trait and phylogenetic distances between communities. We also conducted partial Mantel tests, which accounted for variation in habitat distances between communities when modeling the relationship between fish community trait distances and peracarid community trait and phylogenetic distances.

# CHAPTER 2: Extending trait dispersion across trophic levels

To account for the background effects of habitat filters that may mask the direct filtering effects of fishes on peracarid communities, we focused on the residuals of overall peracarid trait and phylogenetic dispersion from multiple regression against our habitat variables as response variables in linear models with community-weighted mean fish trait values as predictors. Aware of the possibility of temporal autocorrelation between years within sites, we examined correlations between site-level dispersion in both years, but found no significant correlations. We thus continued our analyses using each community as an independent observation. We conducted these analyses twice: once using community-weighted mean PC scores as predictors (16 tests), and once more using individual fish trait means (19 tests). We felt it important to examine all PC axes as predictors in order to capture potential "keystone" traits that explain a small percentage of morphological variation in the species pool but disproportionately affect prey community composition. To account for multiple comparisons, we applied Bonferroni corrections and compared our statistical results to  $\alpha$  levels of 0.00313 (PC scores) and 0.00263 (individual traits). Based on these initial analyses, we performed post-hoc tests of relationships between residual SES for individual peracarid traits and fish mean PC8 scores (positively associated with anal fin length, eye position, and mouth protrusion), PC16 scores (positively associated with eye diameter, eye position, and pectoral fin length; hereafter "eye index"), and body depth below midline (BDBM) values. To account for multiple comparisons across 11 peracarid traits we applied a Bonferroni correction and compared our statistical results to an  $\alpha$  level of 0.00455. We then measured the phylogenetic signal of peracarid traits that exhibited significant responses to fish traits as Blomberg's K and Pagel's  $\lambda$  to understand how individual traits might drive the response of peracarid phylogenetic dispersion to fish traits (Best and Stachowicz 2013).

To examine the indirect effects of filters on peracarids mediated through fish traits, we modeled residual peracarid SES as a function of fish SES. This time we focused on total fish trait dispersion, PC8 dispersion, eye index dispersion, and BDBM dispersion as predictors; and total peracarid trait dispersion, phylogenetic dispersion, maximum body size dispersion, antenna length 1 and 2 dispersion, and activity level dispersion (measured as percent still) as response variables based on results from our first set of analyses. We repeated these analyses twice: once with unaltered values of fish trait dispersion to accommodate habitat variables that might be affecting fish dispersion, and once more using residual values of fish dispersion regressed against habitat variables to focus on intraguild competition or other filtering processes acting on fish

communities. Statistical results were compared to an  $\alpha$  level of 0.0083 to account for 6 types of peracarid dispersion as response variables. All statistical analyses were conducted in R v.4.2.2 (R Development Core Team 2022).

# RESULTS

Across both years and all six sites, we found a total of 35 fish species and 28 peracarid species, of which 16 and 23 species were retained in our analyses, respectively. The epifaunal community overall was dominated by peracarids, making up 87% of individual epifauna across both estuaries and years. The most speciose peracarid community in our dataset had 18 species, while the most speciose fish community had 13 species. Four fish species (*Cymatogaster aggregata, Gasterosteus aculeatus, Porichthys notatus,* and *Sebastes carnatus*) were present in two discrete size cohorts; we considered each of these cohorts as a different predator type.

Habitat differences across communities explained variation in peracarid trait structure (Mantel r = 0.270, p = 0.044), but did not explain phylogenetic structure across communities. Fish taxonomic and trait structure did not have any significant effects on any aspect of peracarid community structure both when accounting for habitat variation and not.

However, dispersion in the trait and phylogenetic distribution of peracarid communities was strongly correlated with both mean state and dispersion in the traits of the fish assemblage. Patterns and predictors of peracarid trait and phylogenetic dispersion were robust across SES metrics and permutation algorithms; here we present and interpret the results of modeling fish trait effects on SES<sub>MNTD</sub> calculated using the tip shuffle algorithm, with exceptions presented where relevant. Detailed results using other metrics and permutation algorithms are presented in Tables A4.1-A4.3. Of the community-weighted mean predator traits that we modeled as predictors of residual prey community dispersion, only one – PC axis 16 of fish morphology (eye index) – emerged as a strong predictor of both trait ( $R^2 = 0.657$ , p < 0.001; Fig. 2.2a) and phylogenetic dispersion ( $R^2 = 0.826$ , p < 0.001; Fig. 2.2b). This axis ranges from fishes with relatively large eyes located high up on the head (positive values) to fishes with small eyes located relatively low on the head (negative values). This index was positively correlated with peracarid trait dispersion; fish communities with larger average eye indices co-occurred with more overdispersed peracarid communities. For phylogenetic dispersion, we additionally observed a strong positive correlation between community-weighted fish PC8 score and dispersion (longer anal fins, higher eye position, and less protrusive jaws;  $R^2 = 0.590$ , p =

0.0022; Fig. 2.3a), and a strong negative correlation between community weighted fish body depth below midline (BDBM) and dispersion ( $R^2 = 0.671$ , p < 0.001; Fig. 2.3b).

No individual peracarid trait showed a significant response to these mean predator traits, but we did observe trends towards increased dispersion of maximum body size ( $R^2 = 0.381$ , p = 0.019), antenna 1 length ( $R^2 = 0.419$ , p = 0.0136), and activity level (measured as % still;  $R^2 = 0.300$ , p = 0.0380) with increasing mean eye index (Fig. 2.2c, d, f), and decreased dispersion of antenna 2 length with increasing mean eye index ( $R^2 = 0.361$ , p = 0.0228; Fig. 2e). Dispersion of antenna 1 length also increased with increasing mean PC8 score ( $R^2 = 0.307$ , p = 0.0359; Fig. 2.3c); decreased dispersion of maximum body size ( $R^2 = 0.308$ , p = 0.0356; Fig. 2.3d) and antenna 1 length ( $R^2 = 0.352$ , p = 0.0247; Fig. 2.3e) with mean BDBM; and increased dispersion of antenna 2 length with mean BDBM ( $R^2 = 0.303$ , p = 0.0372; Fig. 2.3f). Where peracarids were clustered for particular traits, there was no apparent consistency in the mean trait value across communities (Fig. 2.2c-f, Fig. 2.3c-f). Both antenna lengths showed significant phylogenetic signal (antenna 1: K = 1.88, p = 0.001;  $\lambda = 0.946$ , p < 0.001; antenna 2: K = 0.960, p = 0.024;  $\lambda = 1.00$ , p = 0.0493).

To examine the potential indirect effects of habitat filters on peracarid communities via fishes, we used fish community dispersion – due to habitat filters and other factors – as predictors of peracarid community dispersion. Surprisingly, total fish trait dispersion and dispersion along PC8 and eye index had no significant relationships with peracarid residual trait dispersion, phylogenetic dispersion, or the dispersion of any one trait in the community. In contrast, dispersion of fish BDBM was strongly negatively correlated with peracarid trait dispersion (Fig. 2.4a;  $R^2 = 0.549$ , p = 0.00355), phylogenetic (Fig. 2.4c;  $R^2 = 0.726$ , p < 0.001), maximum body size (Fig. 2.4d;  $R^2 = 0.463$ , p = 0.00889), and antenna 1 length dispersion (Fig. 2.4g;  $R^2 = 0.0107$ , p = 0.0107). We also saw negative relationships between fish BDBM dispersion and dispersion of peracarid activity level (% still), but only when peracarid dispersion was measured as SES<sub>MPD</sub> (Table A5.2). In other words, fish communities that were more clustered, particularly with less body depth below midline (Fig. 2.4), co-occurred with peracarid communities that were more overdispersed.

Examining the residual dispersion of fish communities as a predictor of peracarid dispersion allowed us to focus on potential fish-mediated indirect effects on peracarid communities. Controlling for habitat filtering of fish communities strengthened the relationships

between fish BDBM dispersion and peracarid dispersion for all traits (Fig. 2.4b;  $R^2 = 0.732$ , p < 0.001), phylogeny (Fig. 2.4d;  $R^2 = 0.960$ , p < 0.001), body size (Fig. 2.4f;  $R^2 = 0.622$ , p = 0.0014), and antenna 1 length (Fig. 2.4h;  $R^2 = 0.598$ , p = 0.00194). These analyses also revealed positive effects of fish trait dispersion on peracarid phylogenetic dispersion (Fig. 2.5c; Fig.  $R^2 =$ 0.537, p = 0.00406), maximum body size dispersion (Fig. 2.5e; R<sup>2</sup> = 0.603, p = 0.0018), and antenna 1 length dispersion (Fig. 2.5g;  $R^2 = 0.883$ , p < 0.001), and a nonsignificant but notable positive effect of fish trait dispersion on peracarid trait dispersion (Fig. 2.5a;  $R^2 = 0.302$ , p = 0.0374). That is, fish communities that were more overdispersed in their traits co-occurred with peracarid communities that were more overdispersed with respect to traits and phylogeny, even after accounting for habitat effects. Residual fish PC8 dispersion exhibited strong negative relationships with residual trait (Fig. 2.5b;  $R^2 = 0.570$ , p = 0.00274), phylogenetic (Fig. 2.5d;  $R^2$ = 0.927, p < 0.001) and body size dispersion (Fig. 2.5f; R<sup>2</sup> = 0.712, p < 0.001), and a nonsignificant but notable negative relationship with antenna 1 length dispersion (Fig. 2.5h;  $R^2 =$ 0.336, p = 0.0283) that was significant when other methods of calculating fish and peracarid dispersion were applied (Table A5.3). In particular, fish communities clustered around higher average PC8 scores tended to select for more overdispersed peracarid communities. The effect of eye index dispersion was largely dependent on the method used to calculate it. Eye index SES<sub>MNTD</sub> had no significant effect when calculated with the tip shuffle algorithm, but had strong positive effects when we used the independent swap algorithm to randomize communities; and we saw no significant effect of eye index SES<sub>MPD</sub> when calculated with the independent swap algorithm, but strong negative effects when we used the tip shuffle algorithm to randomize (Table A5.3).

#### DISCUSSION

In our examination of peracarid community assembly in Northern California eelgrass beds, we found that the dispersion of traits in the peracarid community responded strongly to a particular set of community-weighted mean fish traits. Peracarid communities were more overdispersed when exposed to fish communities with larger eyes high up on the head (high PC16 score), a pattern that held for all traits combined and for phylogenetic dispersion (Fig 2.2). While PC16 (eye index) accounts for only 0.028% of the morphological variation in the fish species pool, our analyses focus on local fish communities that have already undergone filtering from the regional pool, and the explanatory power of individual PC axes on species pool

variability is not relevant to our study. In this sense, eye index acts as a "keystone trait" that has a disproportionate effect on prey communities despite its encompassing a small part of predator morphospace. The strong effect of eye index on peracarid community dispersion is particularly noteworthy because of its correlation with traits including eye size, which is strongly related to fish visual acuity (Myrberg and Fuiman 2002, Caves et al. 2017, Lisney et al. 2020). Correspondingly, prey activity level and body size both contribute to detectability by and susceptibility to gape-limited predators like fishes (McPeek 1990, Urban 2007), and we found that higher mean eye index lead to increased dispersion of both maximum prey body size and the amount of time prey spent not moving, which may hinder the ability of visually oriented predators to detect or form a consistent search image for prey.

In contrast, mean fish body depth below midline (BDBM) was strongly negatively correlated with peracarid phylogenetic dispersion. By itself, BDBM may serve as a proxy for bottom orientation (Pease et al. 2012); in our dataset, it is highest in benthically-oriented fishes with low gape limitation such as sculpins (Cottidae) or midshipmen (*Porichthys notatus*) and lowest in laterally compressed fishes that occupy the water column such as surfperches (Embiotocidae) and rockfishes (*Sebastes* spp.; Fig. 2.3b). This suggests that large-mouthed benthic fishes, many of which are sit-and wait-predators, select for a narrow range of phylogenetically-conserved traits such as body size and antenna length. While maximum body size of peracarids as defined in this study showed no significant phylogenetic signal, biomass has shown to be phylogenetically conserved in other studies of these peracarid communities (Best and Stachowicz 2013).

In all cases where we observed correlations between clustered peracarid communities and particular mean fish traits, we saw few apparent consistencies in the direction to which peracarids are clustered for specific response traits (Fig. 2.2c-f, Fig. 2.3c-f). For example, although low average eye indices were associated with clustered prey communities, these clustered communities did not have consistently low body sizes or activity levels, despite the fact that these could minimize detection by small-eyed fishes (Fig. 2.2c, f; Myrberg and Fuiman 2002, Caves et al. 2017, Lisney et al. 2020). This suggests three non-mutually exclusive possibilities. First, that these fish traits may be exerting strong selection on unmeasured phylogenetically conserved peracarid traits that exhibited strong genetic correlations with traits like body size, antenna length, and activity level. Second, only fish traits at one extreme may

drive overdispersion, while those at the other extreme have minimal effects on clustering, and the clustering we observed may be driven by other forces. Finally, the direction of fish traits' effects on peracarid trait clustering in the summer may be contingent on processes occurring earlier in the year when predation was lower and other factors were more important in community assembly. Broader factors such as dispersal limitation, competition for resources, and stochasticity in community composition may be important in determining how specific traits are distributed early on in the community assembly process before the predator community exerts any selective pressure (Hein and Gillooly 2011, Pelinson et al. 2022). Of note here is the fact that many of these fishes are juveniles of outer rocky reef species that recruit to estuarine habitats such as eelgrass every year to use as nursery habitats (McDevitt-Irwin et al. 2016, Beheshti et al. 2022, Obaza et al. 2022), and that predation rates in eelgrass are seasonally variable (Ruesink et al. 2019, C.E. Murphy, unpublished).

The trait dispersion of predator communities was a strong predictor of prey community dispersion; additionally, accounting for habitat filters on predator community assembly strengthened these relationships. Overall, these results suggest that habitat filtering on the fish species pool tended to diminish or antagonize selection acting on peracarids by fishes. In other words, habitat filtering on fishes tended to select for trait values that were weaker drivers of peracarid dispersion. To some degree, both predator and prey communities are assembled according to the same set of habitat filters, which may act in the same or opposite direction as filters such as predation or competition that act on smaller spatial scales (Kraft et al. 2015). These different selective pressures may act concurrently on the same or different sets of traits to produce the emergent pattern (Grime 2006, Ingram and Shurin 2009, Fitzgerald et al. 2017), and traits that respond differentially to selective pressures in one trophic level could produce different responses in another (Daniel and Rooney 2022).

On one hand, we found negative correlations between PC8 and BDBM dispersion and peracarid trait dispersion (Fig. 2.4), suggesting that prey may reduce competition for enemy-free space by moving into multiple niche optima that reduce their susceptibility to predation when predators are clustered, while pressure from overdispersed predator traits push prey into a single refuge in trait space, potentially reflecting equalizing competition (Fig. 2.1b, quadrants i and iii). On the other hand, we observed a positive correlation between total fish trait dispersion and peracarid dispersion (Fig. 2.5). In this case, a wide range of predation strategies across traits in

# CHAPTER 2: Extending trait dispersion across trophic levels

overdispersed predator communities may have prevented the dominance of a single predator avoidance strategy, leading to stabilizing competition for enemy-free space, while clustered predator communities forced prey to a single niche optimum that avoids the similarly small range of predator traits in the community (Fig. 2.1b, quadrants ii and iv). However, the lack of consistent trait means we observed in clustered peracarid communities suggests that the single trait optimum for evading clustered predators varies from community to community according to either idiosyncratic factors including the specific clustering pattern of the predator community or external environmental filters that lead to clustering at both trophic levels. In some cases, selection appeared to have no effect whatsoever on fish communities' strength as filters on the peracarid species pool – mean fish eye index had strong effects on peracarid dispersion, but the distribution of this trait and its response to ecological filters had no consistent predictive power (Table A5.2, A4.3). For traits like eye index that show little variation in the species pool, ecological selection may not be able to further constrain communities beyond the mean value of the species pool and thus have a negligible top-down effect.

Throughout this study we have operated under the assumption that the relationships we observed between predator and prey communities are the result of top-down control. While a bottom-up interpretation (prey traits filtering predator traits) is a valid approach to understanding these communities, we lack the means to apply this interpretation confidently with our trait dataset, as we focused on prey traits thought to be important for predator avoidance and microhabitat niche, and predator traits that were more broadly associated with feeding, movement, and habitat use. Additionally, predation is already known as an important driver of peracarid community structure in eelgrass beds, even for traits that are not necessarily directly affected by predators a priori (Gross et al. 2022). Furthermore, we saw no significant relationships between the mean or distribution of fish gape sizes and prey body sizes, or any other trait-trait relationships that might be reasonably expected under bottom-up control by prey communities.

Although the roles of predators in affecting prey community assembly through both predation and non-consumptive effects are now well-appreciated, much of this work focuses on species-depauperate predator assemblages (Post et al. 2008, Holdridge et al. 2017, Schmid et al. 2019), and rarely considers the potential top-down effects of community assembly of predators on the community assembly of their prey. We present compelling observational evidence that

specific predator traits have measurable impacts on the community assembly of prey, and that habitat filtering effects on predator species pools may hinder their ability to affect prey community assembly. While these results are not conclusive, they invite experimental tests of predator mean trait values on community assembly, and explicit comparisons of how the relative effects of habitat filters and intraguild competition on predators impact their ability to affect prey community assembly, especially in systems that exhibit strong top-down control. Integrating our understanding of traits at multiple trophic levels can help us better predict the impacts of community composition on food web dynamics, especially as regional species pools shift with climate change and anthropogenic introductions.

# ACKNOWLEDGMENTS

Fieldwork and sampling for this project was conducted on the unceded traditional lands of the Coast Miwok people. We are grateful for the help of numerous assistants and volunteers in the field and laboratory who helped to collect and process fish and invertebrate samples, including RA Alexander, EA Deen, S Bala, DS Beatty, M Burnett, E Cruz-Rivera, N Dao, O Diana, KA Dubois, T Hayes, LG Hsia, A Lee, A Lei, A Lindeman, M Liu, A McFarland, E Meyers, CE Murphy, N Murray, S Pelletier, A Penix, KN Pollard, A Sandoval, C Sears, C Souza, M Yang, and KL Zabinski. Funding for this project was supported by UC Natural Reserve System Matthias, American Philosophical Society, and UC Davis Center for Population Biology grants to CPG, and by National Science Foundation awards OCE-1829921, OCE-1829922, OCE-1829992, and OCE-1829890 to JJS. This manuscript was prepared as a chapter for CPG's doctoral dissertation, and improved by comments from SP Lawler, E Sanford, and SY Strauss.

# REFERENCES

- Abbott, J. M., K. DuBois, R. K. Grosberg, S. L. Williams, and J. J. Stachowicz. 2018. Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, *Zostera marina*. Ecology and Evolution 8:7476–7489.
- Aoki, L. R., B. Rappazzo, D. S. Beatty, L. K. Domke, G. L. Eckert, M. E. Eisenlord, O. J.
  Graham, L. Harper, T. L. Hawthorne, M. Hessing-Lewis, K. A. Hovel, Z. L. Monteith, R.
  S. Mueller, A. M. Olson, C. Prentice, J. J. Stachowicz, F. Tomas, B. Yang, J. E. Duffy, C.
  Gomes, and C. D. Harvell. 2022. Disease surveillance by artificial intelligence links

# CHAPTER 2: Extending trait dispersion across trophic levels

eelgrass wasting disease to ocean warming across latitudes. Limnology and Oceanography 67:1577–1589.

- Ashford, O. S., A. J. Kenny, C. R. S. Barrio Froján, M. B. Bonsall, T. Horton, A. Brandt, G. J. Bird, S. Gerken, and A. D. Rogers. 2018. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proceedings of the Royal Society B: Biological Sciences 285:20180923.
- Beermann, J., K. Boos, L. Gutow, M. Boersma, and A. C. Peralta. 2018. Combined effects of predator cues and competition define habitat choice and food consumption of amphipod mesograzers. Oecologia 186:645–654.
- Beheshti, K. M., S. L. Williams, K. E. Boyer, C. Endris, A. Clemons, T. Grimes, K. Wasson, andB. B. Hughes. 2022. Rapid enhancement of multiple ecosystem services following the restoration of a coastal foundation species. Ecological Applications 32:e02466.
- de Bello, F., Z. Botta-Dukát, J. Lepš, and P. Fibich. 2021. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods in Ecology and Evolution 12:443–448.
- Best, R. J., N. C. Caulk, and J. J. Stachowicz. 2013. Trait vs. phylogenetic diversity as predictors of competition and community composition in herbivorous marine amphipods. Ecology Letters 16:72–80.
- Best, R. J., and J. J. Stachowicz. 2012. Trophic cascades in seagrass meadows depend on mesograzer variation in feeding rates, predation susceptibility, and abundance. Marine Ecology Progress Series 456:29–42.
- Best, R. J., and J. J. Stachowicz. 2013. Phylogeny as a Proxy for Ecology in Seagrass Amphipods: Which Traits Are Most Conserved? PLOS ONE 8:e57550.
- Best, R. J., and J. J. Stachowicz. 2014. Phenotypic and phylogenetic evidence for the role of food and habitat in the assembly of communities of marine amphipods. Ecology 95:775–786.
- Cadotte, M. W., T. J. Davies, and P. R. Peres-Neto. 2017. Why phylogenies do not always predict ecological differences. Ecological Monographs 87:535–551.
- Cavender-Bares, J., K. H. Kozak, P. V. A. Fine, and S. W. Kembel. 2009. The merging of community ecology and phylogenetic biology. Ecology Letters 12:693–715.

- Caves, E. M., T. T. Sutton, and S. Johnsen. 2017. Visual acuity in ray-finned fishes correlates with eye size and habitat. Journal of Experimental Biology 220:1586–1596.
- Chang, F.-H., J. W. Yang, A. C.-H. Liu, H.-P. Lu, G.-C. Gong, F.-K. Shiah, and C. Hsieh. 2021. Community Assembly Processes as a Mechanistic Explanation of the Predator-Prey Diversity Relationship in Marine Microbes. Frontiers in Marine Science 8.
- Cheng, B. S., and E. D. Grosholz. 2016. Environmental stress mediates trophic cascade strength and resistance to invasion. Ecosphere 7:e01247.
- Daniel, J., and R. C. Rooney. 2022. Functional dispersion of wetland birds, invertebrates, and plants more strongly influenced by hydroperiod than each other. Ecosphere 13:e3971.
- Dellinger, J. A., C. R. Shores, A. D. Craig, S. M. Kachel, M. R. Heithaus, W. J. Ripple, and A. J. Wirsing. 2022. Predators reduce niche overlap between sympatric prey. Oikos 2022.
- DuBois, K., K. N. Pollard, B. J. Kauffman, S. L. Williams, and J. J. Stachowicz. 2022. Local adaptation in a marine foundation species: Implications for resilience to future global change. Global Change Biology 28:2596–2610.
- Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, T. E. Essington, R. D. Holt, J. B. C. Jackson, R. J. Marquis, L. Oksanen, T. Oksanen, R. T. Paine, E. K. Pikitch, W. J. Ripple, S. A. Sandin, M. Scheffer, T. W. Schoener, J. B. Shurin, A. R. E. Sinclair, M. E. Soulé, R. Virtanen, and D. A. Wardle. 2011. Trophic Downgrading of Planet Earth. Science 333:301–306.
- Fitzgerald, D. B., K. O. Winemiller, M. H. S. Pérez, and L. M. Sousa. 2017. Using trophic structure to reveal patterns of trait-based community assembly across niche dimensions. Functional Ecology 31:1135–1144.
- Grime, J. P. 2006. Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science 17:255–260.
- Gross, C. P., J. E. Duffy, K. A. Hovel, M. R. Kardish, P. L. Reynolds, C. Boström, K. E. Boyer, M. Cusson, J. Eklöf, A. H. Engelen, B. K. Eriksson, F. J. Fodrie, J. N. Griffin, C. M. Hereu, M. Hori, A. R. Hughes, M. V. Ivanov, P. Jorgensen, C. Kruschel, K.-S. Lee, J. Lefcheck, K. McGlathery, P.-O. Moksnes, M. Nakaoka, M. I. O'Connor, N. E. O'Connor, J. L. Olsen, R. J. Orth, B. J. Peterson, H. Reiss, F. Rossi, J. Ruesink, E. E. Sotka, J. Thormar, F. Tomas, R. Unsworth, E. P. Voigt, M. A. Whalen, S. L. Ziegler, and J. J. Stachowicz. 2022. The biogeography of community assembly: latitude and predation

# CHAPTER 2: Extending trait dispersion across trophic levels

drive variation in community trait distribution in a guild of epifaunal crustaceans. Proceedings of the Royal Society B: Biological Sciences 289:20211762.

- Ha, G., and S. L. Williams. 2018. Eelgrass community dominated by native omnivores in Bodega Bay, California, USA. Bulletin of Marine Science 94:1333–1353.
- Hein, A. M., and J. F. Gillooly. 2011. Predators, prey, and transient states in the assembly of spatially structured communities. Ecology 92:549–555.
- Holdridge, E. M., G. E. Flores, and C. P. terHorst. 2017. Predator trait evolution alters prey community composition. Ecosphere 8:e01803.
- Ingram, T., and J. B. Shurin. 2009. Trait-based assembly and phylogenetic structure in northeast Pacific rockfish assemblages. Ecology 90:2444–2453.
- Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R. H. Bradbury, R. Cooke, J. Erlandson, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner, and R. R. Warner. 2001. Historical Overfishing and the Recent Collapse of Coastal Ecosystems. Science 293:629–637.
- Jernakoff, P., A. Brearley, and J. Nielsen. 1996. Factors affecting grazer-epiphyte interactions in temperate seagrass meadows. Oceanography and Marine Biology: An Annual Review.
- Karachle, P. K., K. I. Stergiou, P. K. Karachle, and K. I. Stergiou. 2012. Morphometrics and Allometry in Fishes. Page Morphometrics. IntechOpen.
- Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464.
- Kraft, N. J. B., P. B. Adler, O. Godoy, E. C. James, S. Fuller, and J. M. Levine. 2015. Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology 29:592–599.
- Lisney, T. J., S. P. Collin, and J. L. Kelley. 2020. The effect of ecological factors on eye morphology in the western rainbowfish, *Melanotaenia australis*. Journal of Experimental Biology 223:jeb223644.
- Lürig, M. D., R. J. Best, and J. J. Stachowicz. 2016. Microhabitat partitioning in seagrass mesograzers is driven by consistent species choices across multiple predator and competitor contexts. Oikos 125:1324–1333.

- Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13:1085–1093.
- McDevitt-Irwin, J. M., J. C. Iacarella, and J. K. Baum. 2016. Reassessing the nursery role of seagrass habitats from temperate to tropical regions: a meta-analysis. Marine Ecology Progress Series 557:133–143.
- McPeek, M. A. 1990. Behavioral differences between *Enallagma* species (Odonata) influencing differential vulnerability to predators. Ecology 71:1714–1726.
- McPeek, M. A. 1995. Morphological evolution mediated by behavior in the damselflies of two communities. Evolution 49:749–769.
- Myrberg, A. A., and L. A. Fuiman. 2002. Chapter 6 The Sensory World of Coral Reef Fishes. Pages 123–148 *in* P. F. Sale, editor. Coral Reef Fishes. Academic Press, San Diego.
- Obaza, A. K., A. Bird, R. Sanders, R. Ware, and D. W. Ginsburg. 2022. Variable fish habitat function in two open-coast eelgrass species. Marine Ecology Progress Series 696:15–27.
- Paine, R. T. 1966. Food web complexity and species diversity. The American Naturalist 100:65– 75.
- Palkovacs, E. P., M. C. Marshall, B. A. Lamphere, B. R. Lynch, D. J. Weese, D. F. Fraser, D. N. Reznick, C. M. Pringle, and M. T. Kinnison. 2009. Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams. Philosophical Transactions of the Royal Society B: Biological Sciences 364:1617–1628.
- Pavoine, S., and M. B. Bonsall. 2011. Measuring biodiversity to explain community assembly: a unified approach. Biological Reviews 86:792–812.
- Pease, A. A., A. A. González-Díaz, R. Rodiles-Hernández, and K. O. Winemiller. 2012. Functional diversity and trait–environment relationships of stream fish assemblages in a large tropical catchment. Freshwater Biology 57:1060–1075.
- Pelinson, R. M., M. A. Leibold, and L. Schiesari. 2022. Community variability in pond metacommunities: interactive effects of predators and isolation on stochastic community assembly. Oikos 2022:e08798.
- Poff, N. L. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16:391–409.

- Post, D. M., E. P. Palkovacs, E. G. Schielke, and S. I. Dodson. 2008. Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89:2019–2032.
- R Development Core Team. 2022. R: a language and environment for statistical computing.
- Reynolds, P. L., J. P. Richardson, and J. E. Duffy. 2014. Field experimental evidence that grazers mediate transition between microalgal and seagrass dominance. Limnology and Oceanography 59:1053–1064.
- Reynolds, P. L., J. J. Stachowicz, K. Hovel, C. Boström, K. Boyer, M. Cusson, J. S. Eklöf, F. G. Engel, A. H. Engelen, B. K. Eriksson, F. J. Fodrie, J. N. Griffin, C. M. Hereu, M. Hori, T. C. Hanley, M. Ivanov, P. Jorgensen, C. Kruschel, K.-S. Lee, K. McGlathery, P.-O. Moksnes, M. Nakaoka, M. I. O'Connor, N. E. O'Connor, R. J. Orth, F. Rossi, J. Ruesink, E. E. Sotka, J. Thormar, F. Tomas, R. K. F. Unsworth, M. A. Whalen, and J. E. Duffy. 2018. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology 99:29–35.
- Ruesink, J. L., C. Gross, C. Pruitt, A. C. Trimble, and C. Donoghue. 2019. Habitat structure influences the seasonality of nekton in seagrass. Marine Biology 166:75.
- Schmid, D. W., M. D. McGee, R. J. Best, O. Seehausen, and B. Matthews. 2019. Rapid divergence of predator functional traits affects prey composition in aquatic communities. The American Naturalist 193:331–345.
- Sessa, E. B., S. M. Chambers, D. Li, L. Trotta, L. Endara, J. G. Burleigh, and B. Baiser. 2018. Community assembly of the ferns of Florida. American Journal of Botany 105:549–564.
- Sih, A., G. Englund, and D. Wooster. 1998. Emergent impacts of multiple predators on prey. Trends in Ecology & Evolution 13:350–355.
- Sommers, P., and P. Chesson. 2019. Effects of predator avoidance behavior on the coexistence of competing prey. The American Naturalist 193:E132–E148.
- Starko, S., K. W. Demes, C. J. Neufeld, and P. T. Martone. 2020. Convergent evolution of niche structure in Northeast Pacific kelp forests. Functional Ecology 34:2131–2146.
- Swenson, N. G. 2014. Functional and Phylogenetic Ecology in R. Springer-Verlag, New York.
- Swenson, N. G., B. J. Enquist, J. Pither, J. Thompson, and J. K. Zimmerman. 2006. The problem and promise of scale dependency in community phylogenetics. Ecology 87:2418–2424.

- Thompson, P., M. Guzman, L. De Meester, Z. Horváth, R. Ptacnik, B. Vanschoenwinkel, D. Viana, and J. Chase. 2020. A process-based metacommunity framework linking local and regional scale community ecology. Ecology Letters 23.
- Tucker, C. M., T. J. Davies, M. W. Cadotte, and W. D. Pearse. 2018. On the relationship between phylogenetic diversity and trait diversity. Ecology 99:1473–1479.
- Urban, M. C. 2007. The growth–predation risk trade-off under a growing gape-limited predation threat. Ecology 88:2587–2597.
- Valentine, J. F., and J. E. Duffy. 2006. The central role of grazing in seagrass ecology. Pages 463–501 in A. W. D. Larkum, R. J. Orth, and C. M. Duarte, editors. Seagrasses: biology, ecology and conservation. Springer Netherlands, Dordrecht.
- Vamosi, S. M. 2005. On the role of enemies in divergence and diversification of prey: a review and synthesis. Canadian Journal of Zoology 83:894–910.
- Webb, C. O., D. D. Ackerly, M. A. McPeek, and M. J. Donoghue. 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics 33:475–505.

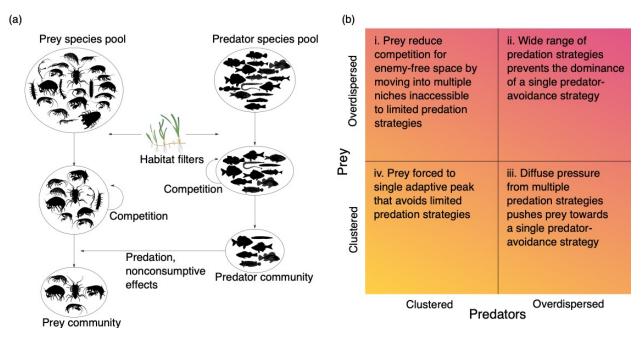



Figure 2.1. a) Species pools of both predators and prey are subject to abiotic and habitat filters as well as competition within trophic guilds, all of which exert selective pressure to restrict species from the local community. The local predator community, shaped by selection from other ecological filters, can act on the prey species pool to shape the final prey community. b) To the extent that predators act as filters on the prey species pool, predator trait dispersion patterns may exert selective pressure in directions that cause prey communities to mirror or oppose predator communities in terms of trait dispersion. Animal silhouettes by CPG; *Zostera* image by C. Collier, James Cook University (ian.umces.edu/media-library).

CHAPTER 2: Extending trait dispersion across trophic levels

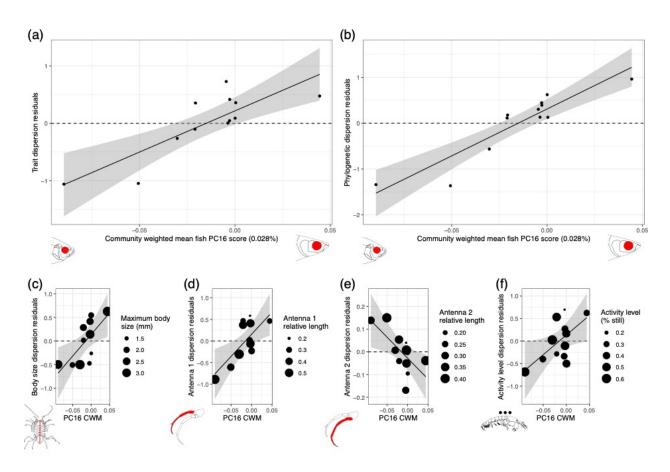
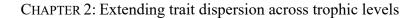




Figure 2.2. Responses of residual peracarid trait (a;  $R^2 = 0.656$ , p < 0.001) and phylogenetic (b;  $R^2 = 0.826$ , p < 0.001) dispersion to community-weighted mean (CWM) fish PC16 scores. Four traits showed noteworthy responses in their residual dispersion to PC16, although none were significant at  $\alpha = 0.0045$ : maximum body size (c;  $R^2 = 0.381$ , p = 0.019), antenna 1 length (d;  $R^2 = 0.419$ , p = 0.0136), antenna 2 length (e;  $R^2 = 0.361$ , p = 0.0228), and activity level measured as % still (f;  $R^2 = 0.300$ , p = 0.0380). In panels c-f, point size varies with CWM values for each individual trait examined. The dashed horizontal line represents a randomly assembled peracarid community (SES<sub>MNTD</sub> = 0; calculated using the tip shuffle algorithm). Drawings by CPG.



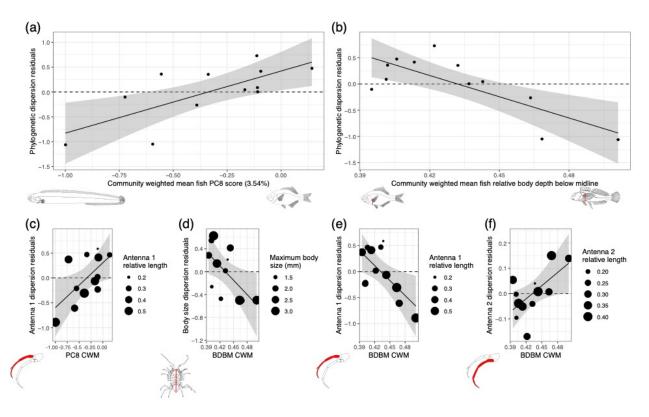



Figure 2.3. Responses of residual peracarid phylogenetic dispersion to community-weighted mean (CWM) fish PC8 scores (a;  $R^2 = 0.590$ , p = 0.00215) and body depth below midline (BDBM; b;  $R^2 = 0.671$ , p < 0.001). Antenna 1 length showed a noteworthy albeit nonsignificant positive correlation with community weighted mean PC8 score (c;  $R^2 = 0.307$ , p = 0.0359). Residual dispersion of maximum body size, antenna 1 length, and antenna 2 length were all correlated with community weighted mean BDBM (d:  $R^2 = 0.308$ , p = 0.0356; e:  $R^2 = 0.352$ , p = 0.0247; f:  $R^2 = 0.303$ , p = 0.0372), although none of these were significant at  $\alpha = 0.0045$ . In panels c-f, point size varies with community weighted mean values for each individual trait examined. The dashed horizontal line represents a randomly assembled peracarid community (SES<sub>MNTD</sub> = 0; calculated using the tip shuffle algorithm). Drawings by CPG.

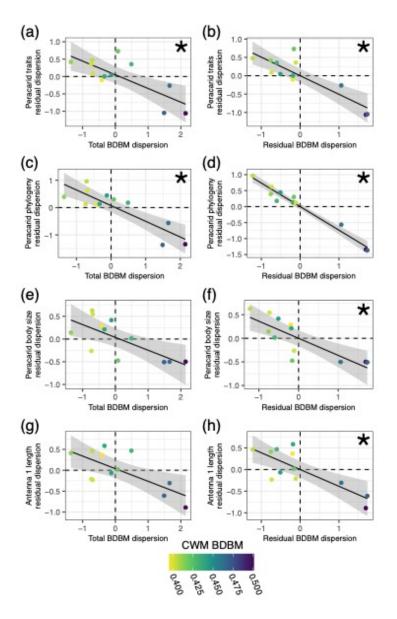



Figure 2.4. Responses of residual peracarid community dispersion to fish body depth below midline (BDBM) dispersion. Fish communities clustered around smaller BDBMs co-occur with peracarid communities that are more overdispersed when including (a, c, e, g) and controlling for the influence of habitat filters (b, d, f, h) for all traits (a,  $R^2 = 0.549$ , p = 0.00355; b,  $R^2 = 0.732$ , p < 0.001), phylogenetic distance (c,  $R^2 = 0.726$ , p < 0.001; d,  $R^2 = 0.960$ , p < 0.001), maximum body size (e,  $R^2 = 0.463$ , p = 0.00889; f,  $R^2 = 0.622$ , p = 0.0014), and antenna 1 length (g,  $R^2 = 0.444$ , p = 0.0107; h,  $R^2 = 0.598$ , p = 0.00194). Colors indicate the community weighted mean BDBM of each fish community. The dashed horizontal and vertical lines represent randomly assembled peracarid and fish communities, respectively (SES<sub>MNTD</sub> = 0; calculated using the tip shuffle algorithm). Asterisks indicate a significant relationship at  $\alpha = 0.0083$ 

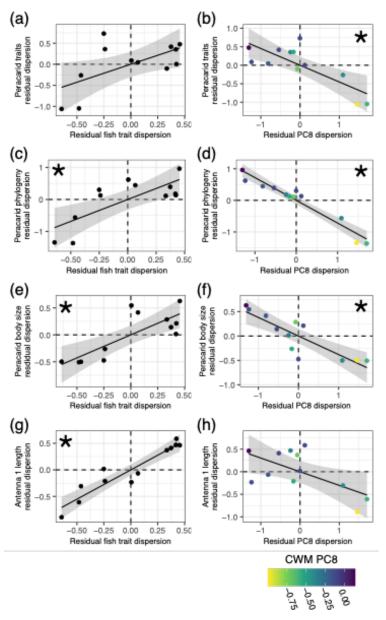



Figure 2.5. Residual fish trait dispersion (a, c, e, g) and PC8 dispersion (b, d, f, h) as predictors of residual peracarid trait dispersion (a,  $R^2 = 0.302$ , p = 0.0374; b,  $R^2 = 0.570$ , p = 0.00274), phylogenetic dispersion (c,  $R^2 = 0.537$ , p = 0.00406; d,  $R^2 = 0.927$ , p < 0.001), body size dispersion (e,  $R^2 = 0.603$ , p = 0.0018; f,  $R^2 = 0.712$ , p < 0.001), and antenna 1 length dispersion (g,  $R^2 = 0.883$ , p < 0.001; h,  $R^2 = 0.336$ , p = 0.0283). The dashed horizontal and vertical lines represent randomly assembled peracarid and fish communities, respectively (SES<sub>MNTD</sub> = 0; calculated using the tip shuffle algorithm). In panels b, d, f, and h, colors indicate fish community-weighted mean scores of PC8. Asterisks indicate a significant relationship at  $\alpha = 0.0083$ .

# CHAPTER 3: Eelgrass genetic diversity is strongly associated with a novel latitudinal cline in taxonomic turnover

# ABSTRACT

Structural complexity within and among populations of habitat-forming foundation species is important for facilitating mobile animal diversity and abundance. Yet not all animal taxa respond equally to different axes of structural complexity and microhabitat space provided by foundation species, and because of functional differences among these taxa, variation in structural complexity may cascade upwards to affect ecosystem function. We examined global patterns in communities of epifaunal mesograzers dominated by peracarid crustaceans and gastropod molluscs in eelgrass (Zostera marina) beds, where variation in shoot morphology is underlaid by intraspecific genetic diversity. The abundance of peracarids and gastropods exhibited a strong latitudinal cline in turnover, with gastropods abundant at high-latitude sites, and peracarids abundant at low-latitude sites, especially in the Atlantic. This pattern appeared to be driven by greater eelgrass genetic diversity at lower latitudes, which strongly influenced both the richness and abundance of peracarids, but less so for gastropods. The two taxa exhibited functional complementarity, and so variation in eelgrass genetic diversity across latitudes and between ocean basins led to geographic variation in the distribution of functional traits across the range of eelgrass. Our results add to a growing body of literature that suggests that variation in traits underlaid by genetic differences within species has important consequences for assemblage variation and ecosystem function across broad spatial scales.

### INTRODUCTION

The variety of microhabitats created by structurally complex foundation species can be an important driver of diversity in animal communities in both marine and terrestrial systems (MacArthur and MacArthur 1961, Hughes et al. 2002, Loke and Chisholm 2022). Different taxa may coexist by physically partitioning niche space in these habitats, based on the utility of microhabitats for feeding, avoiding predators, or optimizing physiological performance (Schmitz and Suttle 2001, Lindo and Winchester 2013, Lürig et al. 2016). In habitats composed of monospecific stands of foundation species, intraspecific trait variation, whether as a result of plasticity or standing genetic variation, can influence foundation species' suitability as habitat for numerous organisms.

# CHAPTER 3: Genetic diversity is associated with taxonomic turnover

Yet not all taxa may respond equally to the same aspects of structural complexity that may be underlaid by inter- or intraspecific variation in genetic architecture. Diverse trophic guilds across ecosystems are often composed of distinct lineages of taxa that have converged upon similar niches, despite separate origins (Scheltema 1997, Lefcheck and Duffy 2015). Despite their functional similarity, these lineages' may have distinct morphologies or other traits that may be favored by different aspects of structural complexity (e.g., Montalbetti et al. 2022), imposing a separate set of filters on the parts of a habitat they can occupy or the types of foundation species that may facilitate them. For taxa that are especially deeply diverged in time, these filters play out on a background of differences in biogeographic or phylogenetic history, differential responses to abiotic environmental filters, and other factors that can influence how they are distributed across broad spatial scales. Understanding the drivers behind differences in distributions among otherwise functionally similar taxa is key to generalizing how functional and phylogenetic differences affect species distributions, abundance, and community composition.

Worldwide, habitats formed by submerged marine angiosperms (seagrasses) are often composed of clonal individuals of just one or a few species (Hughes et al. 2009, Serra et al. 2010, Leopardas et al. 2014, Duffy et al. 2022). In these species-depauperate systems, plasticity within beds and genetic differences between individual clones are responsible for variation in shoot density, numbers of leaves, canopy height, and other aspects of structural complexity that make these habitats suitable for diverse communities of epifaunal macroinvertebrates (Hughes et al. 2009, Abbott et al. 2017, 2018). Gastropod molluscs and peracarid crustaceans form an important component of these epifaunal communities around the world (Jernakoff and Nielsen 1997, Lefcheck and Duffy 2015, Ha and Williams 2018). Both are typically included in the herbivorous "mesograzer" guild, feeding on epiphytic microalgae that foul seagrass blades, as well as detritus, macroalgae, and live seagrass tissue itself. Yet these taxa are phylogenetically distinct, separated by more than 550 million years of evolutionary history. In some seagrass systems, they are also differentially susceptible to predation, with peracarids being much more vulnerable to consumption than gastropods at the same sites (Reynolds et al. 2018). Direct development is common to all peracarids and when coupled with short generation times can lead to rapid population increases compared to gastropods which have slower individual growth and more diverse developmental modes. Whether global seagrass communities dominated by gastropods or peracarids are functionally distinct in other ways, including their responses to the

structural complexity provided by seagrasses, can have major implications for understanding their broader patterns of distribution and the ability of whole epifaunal communities to promote seagrass growth by suppressing algae (Hughes et al. 2004).

Here, using a global dataset of epifaunal invertebrate communities associated with the world's most widespread seagrass species (eelgrass, *Zostera marina*), we describe how epifaunal community composition and functional trait distributions vary with environmental parameters including aspects of eelgrass habitat structure on broad biogeographic scales, including between ocean basins and across latitudes. We were specifically interested in documenting any patterns of turnover exhibited between higher taxonomic groups, particularly peracarid crustaceans and gastropod molluscs, across space, with the goal of uncovering the likely drivers underlying spatial turnover in taxonomic dominance as well as its consequences for ecosystem function in these imperiled habitats.

#### **METHODS**

*Study design and sample collection.* Between May and September 2014, we sampled 49 sites across the range of *Z. marina*, spanning 37 degrees of latitude along both coasts of Eurasia and North America (30.4°N to 67.3°N; Fig. 3.1; Table A4.1, Fig. A4.1) to characterize the biological and physical structure of eelgrass beds using standardized measurements. Each site had 20 plots, for a total of 980 plots sampled as part of the *Zostera* Experimental Network (ZEN). Plots were 1 m<sup>2</sup> and spaced 2 m apart at each site. We sampled eelgrass biomass and quantified eelgrass habitat structure at the plot level as described by Gross et al. (2022) – briefly, we quantified eelgrass aboveground biomass, shoot density, canopy height, and leaf nitrogen, as well as macroalgal biomass from 20-cm diameter cores in each plot. We quantified epiphyte load by scraping fouling microalgae from four eelgrass shoots per plot and drying to a constant weight. We additionally quantified eelgrass genotypic richness as the average site-level genetic dissimilarity (Rozenfeld distance) between individual shoots based on 24 microsatellite loci, and allelic richness as the average number of alleles per locus, normalized to 7 genets (Duffy et al. 2022).

*Abiotic environmental variables.* To characterize the abiotic environment experienced by epifauna across the range of eelgrass, we measured in-situ temperature and salinity at each site at the time of sampling. To characterize the overall abiotic environment of each site, we also retrieved estimates of annual mean sea surface temperature (SST), photosynthetically active

radiation (PAR), surface chlorophyll a (Chl a), salinity, and pH from the surrounding region, available in the Bio-ORACLE data set (Tyberghein et al. 2012). These data were taken from monthly readings of the Aqua-MODIS and SeaWiFS satellites at a 9.6 km<sup>2</sup> spatial resolution from 2002 to 2009. We used the raster package in R v. 3.6.3 (Hijmans and Etten 2020, R Development Core Team 2022) to extract the annual mean SST, SST range, PAR, and Chl a from all cells within 10 km of each site, and averaged these cell-level estimates to generate site-level predictors. Other water quality parameters, including dissolved nitrate and other nutrients, were spatially interpolated based on surface measurements in the World Ocean Database 2009 (Garcia et al. 2010).

*Measuring predation intensity*. Predation intensity was quantified with prey tethering units (PTUs) – locally-collected prey (shelled gastropods and "gammarid" amphipods) as well as standardized prey types (dried squid and kale) were tethered in each plot for 24 hours. Data and methods for amphipod and gastropod prey are reported in detail in Reynolds et al. (2018). Standardized squid prey were 1 cm<sup>2</sup> pieces of dried squid attached by monofilament line to one acrylic rod in each plot (Duffy et al. 2015, Whalen et al. 2020). Pieces of organic curly-leaf green kale measuring approximately 5 x 3 cm were wrapped around acrylic rods to measure macroherbivory pressure at each site. Each PTU type was deployed in each of the four corners of each plot. After 24 hours, we removed the stakes and scored prey as present (uneaten) or absent (eaten); partially-consumed prey were considered eaten, and molted prey were excluded from analyses. Site-level predation was calculated by averaging scores across plots. We calculated site-level consumption of each prey type by averaging scores across plots.

*Epifaunal community composition.* To sample the macrofauna associated with the eelgrass blades, we carefully placed an open-mouthed fine-mesh drawstring bag (500  $\mu$ m mesh, 18 cm diameter) over a clump of shoots in the centre of the plot so that the mouth of the bag was flush with the sediment surface. We then cut the shoots where they emerged from the sediment and quickly closed the drawstring to capture the shoots and associated animals. We transferred shoots to the lab on ice and rinsed and hand-inspected them to dislodge the epifauna. We preserved all epifauna that remained on a 1-mm sieve in 70% ethanol and then identified them to the lowest possible taxonomic level (typically species). We standardized epifaunal abundance by the aboveground biomass of the eelgrass sample from which they were collected. We separated epifaunal species into 7 coarse taxonomic groups, including peracarid crustaceans (amphipods,

#### CHAPTER 3: Genetic diversity is associated with taxonomic turnover

isopods, tanaids, and mysids), gastropod molluscs, polychaete annelids, bivalve molluscs, decapod crustaceans, anemones, and others (including but not limited to barnacles, nemertean worms, echinoderms, ostracods, and chironomid midge larvae). Peracarids and gastropods were by far the most abundant and speciose groups in these global epifaunal communities (comprising 21.6% and 39.9% of individuals and 116 and 91 species, respectively), and have known functional roles as grazers of eelgrass and associated epiphytes, so we chose to focus subsequent analyses on these taxa.

We scored all peracarid and gastropods for a common series of traits based on information available in the literature, including maximum body size, parental care, developmental mode, tolerance of brackish and fresh water, grazer diet components (fresh eelgrass tissue, eelgrass detritus, macroalgae, microalgae), and alternate non-grazing feeding modes (suspension feeder, carnivore/parasite/scavenger). We also used a series of nested sieves to group individual epifauna into size classes, and used these to approximate mean, mode, medium, and maximum observed sizes for each species. We additionally estimated each species' latitudinal range as the difference between the two most extreme point observations regardless of hemisphere (to account for introduced species and others that span the equator), and latitudinal mean as the mean latitude absolute latitude value of point observations, available online from the Ocean Biodiversity Information System (OBIS) and the Global Biodiversity Information Facility (GBIF) (UNESCO 2023, GBIF 2023). A more detailed discussion of traits including how we defined and measured each, and any transformations we applied prior to analysis is included in Table A4.2.

*Functional trait ordination and clustering*. To examine how communities dominated by peracarids and gastropods varied across trait space, we calculated continuous community weighted mean trait values for each site. For binary and discrete categorical traits, this translated to average relative abundances of each trait level, while for continuous traits it was the average value. We then calculated Bray-Curtis distances among sites based on their community-weighted trait means, and visualized sites in trait space using an NMDS ordination.

To examine any geographic signal in the trait composition of these communities, we hierarchically clustered communities in trait space based on average Bray-Curtis distances, separating clusters into discrete groups based on a maximum average distance of 0.1. We then

recalculated group-level community-weighted means for our trait values by considering individuals from all sites within a group to be part of one community.

*Data analyses.* We first examined how species richness and Shannon-Weiner diversity varied across latitude, both for the entire epifaunal community and separately for gastropods and peracarids. We additionally examined how the relative abundance of each of these two groups varied across latitudes and ocean basins. For both sets of analyses we used generalized linear models, assuming Poisson-distributed species richness and binomially-distributed relative abundance of gastropods and peracarids.

To identify candidate predictors of the relative abundance of peracarids and gastropods across sites, we used the log-transformed ratio of peracarid relative abundance to gastropod relative abundance (hereafter log-ratio) as the response variable in a random forest model that incorporated both abiotic and environmental predictor variables, including the first two principle components of eelgrass morphology (including sheath length, sheath width, longest leaf length, shoot density, and aboveground biomass; Fig. A4.4), and species richness of the entire epifaunal community as well as the gastropod and peracarid components. We transformed predictor variables (Table A4.2) where appropriate to conform to expectations of normality. Variables that showed a pairwise Kendall's  $\tau$  value of greater than 0.6 were not included in the predictor pool. We tuned each forest model by visually inspecting out-of-bag error rates across all trees in the model, and adjusted the number of trees to the smallest number for which error was consistently low. We identified the top 10 predictors of relative abundance from each forest by the degree to which they increased MSE when removed from the model and the total increase in node impurities when removed from the model.

We then performed a model selection procedure to determine the best predictor of each taxon's relative abundance. First, we created a set of 30 a priori generalized linear models of relative abundance: one set based on the top 10 predictors alone, another set based on the top 10 predictors with an interaction term for ocean basin (Atlantic vs. Pacific; to address differences in historical processes that may affect local species pools), and another set based on the top 10 predictors with an interaction term for continental margin (Eastern vs. Western; to address differences in the slope of abiotic latitudinal gradients that may affect communities). We ranked these initial models using AICc scores (MuMIn package; Bartoń 2020), and then incorporated predictors from the three lowest-scoring models of each set into a set of composite models to

#### CHAPTER 3: Genetic diversity is associated with taxonomic turnover

examine the combined effects of multiple predictor types. We then used backwards elimination to select the lowest-scoring model from these composite models. Where two models had a  $\Delta$ AICc less than 3 units, we selected the model with the fewest parameters for interpretation. To specifically examine the responses of these two taxa to aspects of eelgrass habitat composition and structural complexity, we modelled the richness and total abundance of gastropods and peracarids as a function of eelgrass allelic richness, genotypic richness, and the first two principle components of eelgrass morphology. The significance of model predictors was assessed using the Anova() function in the car package in R.

To test whether gastropods and peracarids contributed distinct, non-overlapping suites of traits to epifaunal communities, we asked whether the log-ratio determined the clustering of sites in trait space. We performed a permutational multivariate ANOVA (PERMANOVA) on the Bray-Curtis distances of community-weighted means between sites, using 9,999 permutations. We also investigated whether the volume of trait space occupied by gastropod-dominated (negative log-ratio) or peracarid-dominated (positive log-ratio) sites differed significantly from each other by measuring the average dissimilarity from individual sites to their group centroid (Anderson et al. 2006). Because this procedure requires discrete categories across which to compare variances, we assigned sites with positive and negative log-ratios to separate groups and compared between them. All statistical analyses were conducted in R v.4.2.2 (R Development Core Team 2022).

# RESULTS

As is typical for many marine and terrestrial systems, total epifaunal species richness and Shannon-Weiner diversity declined with increasing latitude, and this was true for both Atlantic and Pacific oceans ( $\chi^{2}_{1}$  = 67.999, p < 0.001; Fig. 3.1A). For peracarids, species richness showed opposite latitudinal clines between ocean basins – in the Pacific, richness tended to increase with increasing latitude, while it declined significantly with increasing latitude in the Atlantic ( $\chi^{2}_{1}$  = 22.331, p < 0.001; Fig. 3.1B). Gastropods showed no significant latitudinal clines in species richness, even after removing Porth Dinllaen, Wales, where the species richness was an anomalously high 17 species (Fig. 3.1C). Shannon-Weiner diversity for peracarids and gastropods did not show any significant latitudinal trends. Species richness increased with total abundance for peracarids, but not for gastropods (Fig. A4.2).

# CHAPTER 3: Genetic diversity is associated with taxonomic turnover

We found striking clines in the relative abundance of both peracarids and gastropods across the 37° of latitude surveyed in our study – at high latitudes, gastropods dominated (up to 99.55% in Seldianaya, Russia;  $\chi^2_1 = 58295$ , p < 0.001), while at lower latitudes, peracarids dominated ( $\chi^2_1 = 11284.0$ , p < 0.001; Fig. 3.2). These patterns also differed by ocean basin – in the Pacific, peracarids dominated (up to 98.54% in Willapa Bay, WA, USA) and declined more slowly with increasing latitude than in the Atlantic ( $\chi^2_1 = 3524.8$ , p < 0.001; Fig. 3.2A), where gastropods dominated and increased more steeply with increasing latitude ( $\chi^2_1 = 1722$ , p < 0.001; Fig. 3.2B). There were few sites dominated by other epifaunal taxa, including anemones, mussels, and polychaete worms, but this dominance of other taxa did not vary significantly by latitude or ocean basin (Fig. 3.2C).

Our random forest model employed to predict the log-ratio of peracarids to gastropods across sites used 4,000 trees with an average of 12.327 nodes per tree and explained 33.83% of the variance in log-ratios. Top predictors in this model included coast, ocean basin, in-situ temperature, eelgrass morphology PC1 (positively correlated with shorter leaf lengths and narrower sheath widths), eelgrass allelic richness, eelgrass leaf carbon content, site peracarid richness, eelgrass genotypic richness, mean water column Chl a, and water column silicate (Table 3.1). The log-ratio of peracarids to gastropods was best explained by an additive model including only 3 variables: peracarid richness, eelgrass allelic richness, and ocean basin ( $F_{3,43} =$ 20.42, p < 0.001). Log-ratios increased (more peracarids than gastropods) with peracarid richness and eelgrass allelic richness (Fig. 3.3A, B), and were greater in the Pacific than in the Atlantic Ocean (Fig. 3.3C). Eelgrass allelic richness and morphological variation were also greater on average in the Pacific than in the Atlantic (Fig A5.4).

Peracarid abundance and richness showed consistently significant responses to eelgrass allelic richness, genotypic richness, and the first two principle components of eelgrass morphology – sites with more genetically diverse eelgrass, eelgrass with wider, longer blades (negative PC1 scores), and more dense shoots and greater aboveground biomass (positive PC2) scores, had more peracarid species and individuals (Table A4.4, Table A4.5). Gastropod species richness showed a significant positive response to PC1 and genotypic richness (Table A4.4), while abundance responded positively only to PC1 (Table A4.5).

Gastropod-dominated epifaunal communities (those with a negative log-ratio) occupied a distinctive area of ordination space from peracarid-dominated communities (positive log-ratio; pseudo  $F_{1,45} = 11.918$ , p < 0.001; Fig. 3.4A). Gastropod and peracarid species also occupied complementary regions of trait space (Fig. A4.3). The proportion of other epifaunal taxa did not significantly affect a community's trait assemblage (pseudo  $F_{1,48} = 0.33$ , p = 0.784). The log-ratio did not significantly affect functional beta diversity among sites with similar proportions of these focal taxa ( $F_{1,47} = 0.7606$ , p = 0.3876). Community-weighted trait means explained 62.48% of the variation in log-ratio, according to a random forest model. Traits that drove the functional distinction between gastropod- and peracarid-dominated communities predictably included those related to parental care and developmental mode – Peracarid-dominance was significantly correlated with more brooding, less egg-case-laying, more direct development, and less broadcast spawning – but communities with more peracarids also had more suspension feeders, carnivores, parasites, and scavengers. Species' average latitudinal ranges and mean latitudes were also smaller in peracarid-dominated communities (Table 3.2).

Our hierarchical clustering scheme produced 5 distinct groups of sites with different mean trait values for both peracarids and gastropods (Fig. 3.4B). The first group ("cold Pacific") consisted of cool-temperate Northeast Pacific sites in British Columbia, the outer coast of Washington State (Willapa Bay), Oregon, and Northern California, as well as sites in Japan (Hokkaido), South Korea, Portugal, and Mediterranean France. The second group consisted only of one site in Croatia, where we only found the snail Bittium reticulatum. The third group ("warm sites") consisted of warm-temperate to subtropical sites in Southern California, Mexico (Baja California), Virginia, and North Carolina, as well as one site in the Salish Sea (Dabob Bay). The fourth group ("cold Atlantic") consisted of cold temperate sites on both sides of the Atlantic, including Long Island, Massachusetts, Quebec, Ireland, Wales, Sweden, Finland, Norway, and Russia (White Sea). The fifth group ("Asia") included sites in Japan and South Korea as well as one site in Southern California (San Diego Bay). Groups varied mostly by mean maximum body length (from the literature; group 1: 23.43 mm; group 5: 11.65 mm), latitudinal range (group 2: 68.47°; group 5: 21.79°), and mean latitude (group 4: 52.58°; group 5: 37.78°), while all groups were dominated by microalgal grazers and marine species (Table 3.3). **DISCUSSION** 

# CHAPTER 3: Genetic diversity is associated with taxonomic turnover

We found a prominent latitudinal gradient in epifaunal species richness, with greater richness at lower latitudes (Fig. 3.1A). At Atlantic sites, peracarids followed this same trend (Fig. 3.1B), but the pattern was not recapitulated by peracarids at Pacific sites or gastropods worldwide (Fig. 3.1C). While the negative correlation between species richness and latitude is typical for many terrestrial systems and some marine systems (Pianka 1966, Gaston 2000), evidence increasingly shows that for most marine taxa, richness peaks at mid-latitudes, with a dip near the equator (Chaudhary et al. 2016, Arfianti and Costello 2020, Thyrring and Peck 2021). Furthermore, previously published analyses place peaks in gastropod species richness between 25-30°N and peracarid (amphipod) richness between 50-60°N in the northern hemisphere (Chaudhary et al. 2016, Arfianti and Costello 2020), in direct contrast with our results. However, these analyses pooled species across multiple nearshore habitat types, including seagrasses, coral reefs, rocky shores, and soft sediments, and our observed peaks in richness at lower latitudes for total epifauna and Atlantic peracarids may reflect the responses of these taxa specifically to unique characteristics of eelgrass habitat that obscure broader patterns of species richness.

The composition of epifaunal communities shifts from being peracarid-dominated to gastropod-dominated at high latitudes, especially in the Atlantic (Fig. 3.2A, B). As far as we are aware, this latitudinal gradient in taxonomic turnover has not been documented elsewhere in the literature, although there is some limited evidence that gastropods may be more abundant in high-latitude seagrass beds than in low-latitude beds (Barnes and Ellwood 2011). This gradient in turnover mirrors the pattern we observed for peracarid species richness (Fig. 3.1B), but appears to be independent of any broader patterns in gastropod diversity (Fig. 3.1C). Despite superficially recovering some expected latitudinal patterns, the variation in taxa and relationship with eelgrass genetic diversity suggest these are not likely to be driven directly by the processes that might generate a latitudinal diversity gradient, such as temperature. Instead, the results of our analyses suggest a set of plausible explanations for this pattern that may hinge on the historical legacy created by eelgrass range expansion across the Pacific from Japan to North America and then through the Arctic to the Atlantic (Duffy et al. 2022, Yu et al. in revision).

Despite differences in the relative abundances of peracarids and gastropods between the Pacific and Atlantic (Fig. 3.3C), we still observe significant increases in gastropod dominance and decreases in peracarid dominance with increasing latitude in Pacific sites, suggesting

additional mechanisms acting within ocean basins to drive the latitudinal pattern. Notably, logratios increase with eelgrass allelic richness (Fig. 3.3A). Eelgrass genetic diversity and variation in morphology are both greater in the Pacific than the Atlantic, the result of bottlenecks that occurred during its colonization of the Atlantic via the Arctic starting 3.5 million years ago (Olsen et al. 2004, Duffy et al. 2022, Yu et al. in revision; Fig. A4.4A). Within the Atlantic, allelic richness also declines significantly with latitude (Fig. A4.4A). The response of epifaunal communities to structural complexity in eelgrass is well-characterized (Orth 1992, Carr et al. 2011, Lürig et al. 2016), particularly as refuge from predators. Experimental evidence has shown that eelgrass genetic diversity affects the abundance of epifaunal mesograzers, and that genetic diversity is associated with eelgrass trait diversity (Hughes et al. 2009, Abbott et al. 2017, 2018; Fig. A4.4B,C). We found similar associations between genetic diversity and abundance and richness for peracarids (Table A4.4, A5.5). Differences in numbers of leaves, shoot widths, and shoot length as a result of genetic differentiation may potentially create a greater variety of microhabitats that support more peracarid species and individuals – for example, longer leaves create horizontal "canopies" that are distinct from vertical "stem" habitats (Lürig et al. 2016). PC1's place in the top predictors from our random forest model corroborates this result and indicate that aspects of eelgrass morphology, notably leaf length and sheath width, are also important determiners of epifaunal log-ratios (Table 3.2).

Our best model predicting epifaunal log-ratios shows a significant positive relationship with site-level peracarid species richness (Fig. 3.3B), suggesting that greater abundance and richness of peracarids (perhaps facilitated by greater eelgrass structural complexity; Table A4.4) at lower latitudes may occupy more niches and competitively exclude gastropods. Yet our ordinations (Fig. 3.4, Fig. A4.3) point to complementarity in the traits of gastropods and peracarids, rather than overlap or redundancy. However, the limited number of comparable traits we were able to assemble for both gastropods and peracarids may be biased more towards niche differences that promote stabilizing coexistence rather than fitness differences (sensu Mayfield and Levine 2010), obscuring potential interactions between these two taxa that may lead to competitive exclusion. For example, in many cases gastropods and peracarids differ in their feeding rates on microalgae, macroalgae, or detritus (Graça et al. 2000, Aberle et al. 2005, Sampaio et al. 2017), which may lead to competitive exclusion if multiple species are focusing on the same food source. Peracarids tend to be more selective grazers than gastropods, and

greater richnesses of species with complementary diets may contribute to the exclusion of gastropods (Jernakoff and Nielsen 1997, Duffy and Harvilicz 2001). Peracarids may also dislodge or even prey upon small molluscs (Lefcheck et al. 2014). It seems unlikely that these behaviors would have a major effect on global distributions of the two taxa, but this remains to be tested.

Our experimental network is notably biased in its sampling of eelgrass epifauna in the Atlantic and Pacific Oceans. Our 29 Atlantic sites span nearly 33° of latitude – nearly the full latitudinal range of eelgrass in the Atlantic (den Hartog 1970, Green and Short 2003) – and include 14 of our highest-latitude sites (Fig. 3.2C). In the Pacific, the remaining 20 sites span only 18.6° of latitude, excluding both higher-latitude sites in Alaska, British Columbia, and the Sea of Okhotsk as well as lower-latitude sites in Mexico. Our latitudinal pattern thus seems to be in part driven by high-latitude gastropod-dominated Atlantic sites at one extreme, and low-latitude peracarid-dominated Pacific sites at the other (Fig. 3.3C). However, the latitudinal pattern of taxonomic turnover is highly significant across our Atlantic sites, and the trend, while weaker, is still observable in the limited latitudinal range of our Pacific sites (Fig. 3.3A, 3.3B).

Regardless of the proximate mechanisms behind the patterns of taxonomic turnover we observed, they ultimately contribute to significant differences in the functional structure of global eelgrass communities. Gastropod-dominated sites were not only geographically distinct, but also occupied a distinct area of niche space from communities dominated by peracarids (Fig. 3.4A). Functionally similar groups of sites appeared to group according to similar latitudes within ocean basins (Fig. 3.4B), emphasizing the role of distinct ocean basins as well as correlated aspects of eelgrass habitat structure in affecting the structure and functioning of epifaunal communities (Fig. 3.3A, C). Epifaunal mesograzer communities in seagrass beds play a critical role in linking the primary production of algae and seagrass to populations of larger predators, including juveniles of economically important fishery species (Heck et al. 2003, Blandon and zu Ermgassen 2014, McDevitt-Irwin et al. 2016). Because epifauna vary in their ability to consume fouling epiphytes, feed directly on seagrass tissue, and their palatability to predators (Jernakoff and Nielsen 1997, Lewis and Anderson 2012, Reynolds et al. 2018), understanding the functional consequences of variation in taxonomic structure across broad biogeographic regions may help us begin to predict the idiosyncratic and geographically variable dynamics of seagrass ecosystem function (Duffy et al. 2014).

#### ACKNOWLEDGMENTS

We thank the many lab and field assistants that participated in this research and whose contributions of time and effort were invaluable for making this project happen. The manuscript was improved with comments from SP Lawler, ED Sanford, and SY Strauss. This research was funded by National Science Foundation grants to JED, JJS, and KAH (NSF-OCE 1336206, OCE 1336905, and OCE 1336741). CB was funded by the Åbo Akademi University Foundation.

# REFERENCES

- Abbott, J. M., K. DuBois, R. K. Grosberg, S. L. Williams, and J. J. Stachowicz. 2018. Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, *Zostera marina*. Ecology and Evolution 8:7476–7489.
- Abbott, J. M., R. K. Grosberg, S. L. Williams, and J. J. Stachowicz. 2017. Multiple dimensions of intraspecific diversity affect biomass of eelgrass and its associated community. Ecology 98:3152–3164.
- Aberle, N., H. Hillebrand, J. Grey, and K. H. Wiltshire. 2005. Selectivity and competitive interactions between two benthic invertebrate grazers (*Asellus aquaticus* and *Potamopyrgus antipodarum*): an experimental study using 13C- and 15N-labelled diatoms. Freshwater Biology 50:369–379.
- Anderson, M. J., K. E. Ellingsen, and B. H. McArdle. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683–693.
- Arfianti, T., and M. J. Costello. 2020. Global biogeography of marine amphipod crustaceans: latitude, regionalization, and beta diversity. Marine Ecology Progress Series 638:83–94.
- Barnes, R. S. K., and M. D. F. Ellwood. 2011. Macrobenthic assemblage structure in a cooltemperate intertidal dwarf eelgrass bed in comparison with those from lower latitudes. Biological Journal of the Linnean Society 104:527–540.

Bartoń, K. 2020, April 14. Multi-Model Inference. R.

- Blandon, A., and P. S. E. zu Ermgassen. 2014. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine, Coastal and Shelf Science 141:1–8.
- Carr, L. A., K. E. Boyer, and A. J. Brooks. 2011. Spatial patterns of epifaunal communities in San Francisco Bay eelgrass (*Zostera marina*) beds. Marine Ecology 32:88–103.

- Chaudhary, C., H. Saeedi, and M. J. Costello. 2016. Bimodality of latitudinal gradients in marine species richness. Trends in Ecology & Evolution 31:670–676.
- Duffy, J. E., and A. M. Harvilicz. 2001. Species-specific impacts of grazing amphipods in an eelgrass-bed community. Marine Ecology Progress Series 223:201–211.
- Duffy, J. E., A. R. Hughes, and P.-O. Moksnes. 2014. Ecology of seagrass communities. Pages 271–299 in M. D. Bertness, J. F. Bruno, and B. R. Silliman, editors. Marine community ecology and conservation. Sinauer Associates, Sunderland, MA, USA.
- Duffy, J. E., J. J. Stachowicz, P. L. Reynolds, K. A. Hovel, M. Jahnke, E. E. Sotka, C. Boström, K. E. Boyer, M. Cusson, J. Eklöf, A. H. Engelen, B. K. Eriksson, F. J. Fodrie, J. N. Griffin, C. M. Hereu, M. Hori, A. R. Hughes, M. V. Ivanov, P. Jorgensen, C. Kruschel, K.-S. Lee, J. S. Lefcheck, P.-O. Moksnes, M. Nakaoka, M. I. O'Connor, N. E. O'Connor, R. J. Orth, B. J. Peterson, H. Reiss, K. Reiss, J. P. Richardson, F. Rossi, J. L. Ruesink, S. T. Schultz, J. Thormar, F. Tomas, R. Unsworth, E. Voigt, M. A. Whalen, S. L. Ziegler, and J. L. Olsen. 2022. A Pleistocene legacy structures variation in modern seagrass ecosystems. Proceedings of the National Academy of Sciences 119:e2121425119.
- Duffy, J. E., S. L. Ziegler, J. E. Campbell, P. M. Bippus, and J. S. Lefcheck. 2015. Squidpops: a simple tool to crowdsource a global map of marine predation intensity. PLOS ONE 10:e0142994.
- Garcia, H. E., R. A. Locarnini, T. P. Boyer, J. I. Antonov, M. M. Zweng, O. K. Baranova, and D.
  R. Johnson. 2010. World Ocean Atlas 2009, Volume 4: Nutrients (phosphate, nitrate, silicate). Page (S. Levitus, Ed.). U.S. Government Printing Office, Washington, D.C.
- Gaston, K. J. 2000. Global patterns in biodiversity. Nature 405:220–227.
- GBIF: Global Biogeographic Information Facility. 2023. . https://www.gbif.org/.
- Graça, M. A., S. Y. Newell, and R. T. Kneib. 2000. Grazing rates of organic matter and living fungal biomass of decaying *Spartina alterniflora* by three species of salt-marsh invertebrates. Marine Biology 136:281–289.
- Green, E. P., and F. T. Short. 2003. World atlas of seagrasses. University of California Press, Berkeley, CA, USA.
- Ha, G., and S. L. Williams. 2018. Eelgrass community dominated by native omnivores in Bodega Bay, California, USA. Bulletin of Marine Science 94:1333–1353.
- den Hartog, C. 1970. The seagrasses of the world. North Holland Publishing Co., Amsterdam.

- Heck, K. L., G. Hays, and R. J. Orth. 2003. Critical evaluation of the nursery role hypothesis for seagrass meadows. Marine Ecology Progress Series 253:123–136.
- Hijmans, R. J., and J. van Etten. 2020, November 14. raster: Geographic Data Analysis and Modeling. R.
- Hughes, A. R., K. J. Bando, L. F. Rodriguez, and S. L. Williams. 2004. Relative effects of grazers and nutrients on seagrasses: a meta-analysis approach. Marine Ecology Progress Series 282:87–99.
- Hughes, A. R., J. J. Stachowicz, and S. L. Williams. 2009. Morphological and physiological variation among seagrass (*Zostera marina*) genotypes. Oecologia 159:725–733.
- Hughes, J. E., L. A. Deegan, J. C. Wyda, M. J. Weaver, and A. Wright. 2002. The effects of eelgrass habitat loss on estuarine fish communities of southern New England. Estuaries 25:235–249.
- Intergovernmental Oceanographic Commission of UNESCO. 2023. OBIS: Ocean Biodiversity Information System. https://obis.org/.
- Jernakoff, P., and J. Nielsen. 1997. The relative importance of amphipod and gastropod grazers in *Posidonia sinuosa* meadows. Aquatic Botany 56:183–202.
- Lefcheck, J. S., and J. E. Duffy. 2015. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96:2973–2983.
- Lefcheck, J. S., J. van Montfrans, R. J. Orth, E. L. Schmitt, J. E. Duffy, and M. W. Luckenbach. 2014. Epifaunal invertebrates as predators of juvenile bay scallops (*Argopecten irradians*). Journal of Experimental Marine Biology and Ecology 454:18–25.
- Leopardas, V., W. Uy, and M. Nakaoka. 2014. Benthic macrofaunal assemblages in multispecific seagrass meadows of the southern Philippines: Variation among vegetation dominated by different seagrass species. Journal of Experimental Marine Biology and Ecology 457:71–80.
- Lewis, L. S., and T. W. Anderson. 2012. Top-down control of epifauna by fishes enhances seagrass production. Ecology 93:2746–2757.
- Lindo, Z., and N. Winchester. 2013. Out on a limb: microarthropod and microclimate variation in coastal temperate rainforest canopies. Insect Conservation and Diversity 6:513–521.
- Loke, L. H. L., and R. A. Chisholm. 2022. Measuring habitat complexity and spatial heterogeneity in ecology. Ecology Letters 25:2269–2288.

- Lürig, M. D., R. J. Best, and J. J. Stachowicz. 2016. Microhabitat partitioning in seagrass mesograzers is driven by consistent species choices across multiple predator and competitor contexts. Oikos 125:1324–1333.
- MacArthur, R. H., and J. W. MacArthur. 1961. On bird species diversity. Ecology 42:594-598.
- Mayfield, M. M., and J. M. Levine. 2010. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecology Letters 13:1085–1093.
- McDevitt-Irwin, J. M., J. C. Iacarella, and J. K. Baum. 2016. Reassessing the nursery role of seagrass habitats from temperate to tropical regions: a meta-analysis. Marine Ecology Progress Series 557:133–143.
- Montalbetti, E., L. Fallati, M. Casartelli, D. Maggioni, S. Montano, P. Galli, and D. Seveso. 2022. Reef complexity influences distribution and habitat choice of the corallivorous seastar Culcita schmideliana in the Maldives. Coral Reefs 41:253–264.
- Olsen, J. L., W. T. Stam, J. A. Coyer, T. B. H. Reusch, M. Billingham, C. Boström, E. Calvert, H. Christie, S. Granger, R. L. Lumière, N. Milchakova, M.-P. Oudot-Le Secq, G. Procaccini, B. Sanjabi, E. Serrão, J. Veldsink, S. Widdicombe, and S. Wyllie-Echeverria. 2004. North Atlantic phylogeography and large-scale population differentiation of the seagrass *Zostera marina* L. Molecular Ecology 13:1923–1941.
- Orth, R. J. 1992. A perspective on plant-animal interactions in seagrass: physical and biological determinants influencing plant and animal abundance. Pages 147–164 *in* D. M. John, S. T. Hawkins, and J. H. Price, editors. Plant –animal interactions in the marine benthos. Clarendon Press, Oxford.
- Pianka, E. R. 1966. Latitudinal gradients in species diversity: a review of concepts. The American Naturalist 100:33–46.

R Development Core Team. 2022. R: a language and environment for statistical computing.

Reynolds, P. L., J. J. Stachowicz, K. Hovel, C. Boström, K. Boyer, M. Cusson, J. S. Eklöf, F. G. Engel, A. H. Engelen, B. K. Eriksson, F. J. Fodrie, J. N. Griffin, C. M. Hereu, M. Hori, T. C. Hanley, M. Ivanov, P. Jorgensen, C. Kruschel, K.-S. Lee, K. McGlathery, P.-O. Moksnes, M. Nakaoka, M. I. O'Connor, N. E. O'Connor, R. J. Orth, F. Rossi, J. Ruesink, E. E. Sotka, J. Thormar, F. Tomas, R. K. F. Unsworth, M. A. Whalen, and J. E. Duffy. 2018. Latitude, temperature, and habitat complexity predict predation pressure in eelgrass beds across the Northern Hemisphere. Ecology 99:29–35.

- Sampaio, E., I. F. Rodil, F. Vaz-Pinto, A. Fernández, and F. Arenas. 2017. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Marine Environmental Research 125:25–33.
- Scheltema, A. H. 1997. Aplacophoran molluscs: deep-sea analogs to polychaetes. Bulletin of Marine Science 60:575–583.
- Schmitz, O. J., and K. B. Suttle. 2001. Effects of top predator species on direct and indirect interactions in a food web. Ecology 82:2072–2081.
- Serra, I. A., A. M. Innocenti, G. Di Maida, S. Calvo, M. Migliaccio, E. Zambianchi, C.
  Pizzigalli, S. Arnaud-Haond, C. M. Duarte, E. A. Serrao, and G. Procaccini. 2010.
  Genetic structure in the Mediterranean seagrass *Posidonia oceanica*: disentangling past vicariance events from contemporary patterns of gene flow. Molecular Ecology 19:557–568.
- Thyrring, J., and L. S. Peck. 2021. Global gradients in intertidal species richness and functional groups. eLife 10:e64541.
- Tyberghein, L., H. Verbruggen, K. Pauly, C. Troupin, F. Mineur, and O. D. Clerck. 2012. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Global Ecology and Biogeography 21:272–281.
- Whalen, M. A., R. D. B. Whippo, J. J. Stachowicz, P. H. York, E. Aiello, T. Alcoverro, A. H. Altieri, L. Benedetti-Cecchi, C. Bertolini, M. Bresch, F. Bulleri, P. E. Carnell, S. Cimon, R. M. Connolly, M. Cusson, M. S. Diskin, E. D'Souza, A. A. V. Flores, F. J. Fodrie, A. W. E. Galloway, L. C. Gaskins, O. J. Graham, T. C. Hanley, C. J. Henderson, C. M. Hereu, M. Hessing-Lewis, K. A. Hovel, B. B. Hughes, A. R. Hughes, K. M. Hultgren, H. Jänes, D. S. Janiak, L. N. Johnston, P. Jorgensen, B. P. Kelaher, C. Kruschel, B. S. Lanham, K.-S. Lee, J. S. Lefcheck, E. Lozano-Álvarez, P. I. Macreadie, Z. L. Monteith, N. E. O'Connor, A. D. Olds, J. K. O'Leary, C. J. Patrick, O. Pino, A. G. B. Poore, M. A. Rasheed, W. W. Raymond, K. Reiss, O. K. Rhoades, M. T. Robinson, P. G. Ross, F. Rossi, T. A. Schlacher, J. Seemann, B. R. Silliman, D. L. Smee, M. Thiel, R. K. F. Unsworth, B. I. van Tussenbroek, A. Vergés, M. E. Yeager, B. K. Yednock, S. L. Ziegler, and J. E. Duffy. 2020. Climate drives the geography of marine consumption by changing predator communities. Proceedings of the National Academy of Sciences 117:28160–28166.

Table 3.1. Top 10 predictors in a random forest model that explained 56.5% of variation in the log-ratio of peracarid relative abundance to gastropod relative abundance across global eelgrass sites. Bolded rows indicate predictors included in the best model of log-ratio.

| Predictor                                       | Transformation | % Increase in MSE | % Increase in Node<br>Impurity |
|-------------------------------------------------|----------------|-------------------|--------------------------------|
| Coast                                           | None           | 23.469200         | 31.201383                      |
| Ocean Basin                                     | None           | 21.772421         | 29.091206                      |
| In-situ Temperature (°C)                        | None           | 14.963883         | 11.001778                      |
| Eelgrass Morphology PC1 (62.09%)                | None           | 14.214091         | 30.976627                      |
| Eelgrass Allelic Richness (avg.                 |                |                   |                                |
| number of alleles per locus,                    | Squared        | 12.844151         | 21.280422                      |
| normalized to 7 genets)                         | -              |                   |                                |
| Mean Eelgrass Leaf % C                          | None           | 10.997176         | 13.525104                      |
| Site Peracarid Richness                         | $\log + 1$     | 9.401629          | 11.836563                      |
| Genotypic Richness (mean<br>Rozenfeld distance) | None           | 6.845336          | 3.603339                       |
| Mean Water Column Chl a                         | log            | 6.779512          | 6.117515                       |
| Mean Water Column Silicate                      | log            | 6.455153          | 4.595070                       |

Table 3.2. Top 10 candidate traits (continuous) and trait states (categorical) associated with increases in log-ratio peracarid relative abundance to gastropod relative abundance across sites, as output from a random forest model explaining 62.48% of variation in log-ratios. Bolded rows indicate trait states unique to gastropods.

| Trait value                  | % Increase in | Increase in Node | Spearman   | р         |
|------------------------------|---------------|------------------|------------|-----------|
|                              | MSE           | Impurity         | ρ          |           |
| Brooder                      | 14.792646     | 85.317146        | 0.8086603  | 6.188e-12 |
| Mean Latitude                | 14.093822     | 72.964589        | -0.6279949 | 2.298e-06 |
| Lays Egg Case                | 8.811130      | 36.860245        | -0.7153161 | 1.607e-08 |
| Direct Developer             | 6.700999      | 19.853744        | 0.56727    | 3.214e-05 |
| Latitudinal Range            | 5.559044      | 21.833437        | -0.5122888 | 0.0002322 |
| Suspension Feeder            | 5.396012      | 23.410392        | 0.5174202  | 0.0001958 |
| Non-Suspension Feeder        | 4.523542      | 13.447565        | -0.517311  | 0.0001965 |
| Non-                         | 3.554432      | 10.720121        | -0.471435  | 0.0008231 |
| carnivore/parasite/scavenger |               |                  |            |           |
| Broadcast Spawner            | 3.516959      | 4.040270         | -0.1846305 | 0.2141    |
| Microalgal Grazer            | 3.066659      | 5.222737         | -0.3014138 | 0.0395    |

## CHAPTER 3: Genetic diversity is associated with taxonomic turnover

Table 3.3. Mean trait values of the peracarid and gastropod community in 5 a posteriori groups of eelgrass sites created by hierarchical clustering based on similarities in site-level community-weighted mean trait values. Dominant values for binary and categorical traits are shown, while group-level community-weighted means are supplied for continuous traits. Observed sizes are derived from sieved epifaunal samples. Latitudinal range and mean latitude are derived from observations gathered from GBIF and OBIS.

| Group                  | Diet                                    | Parental<br>Care  | Development<br>al mode | Mode Obs.<br>Size (mm) | Max Obs.<br>Size (mm) |
|------------------------|-----------------------------------------|-------------------|------------------------|------------------------|-----------------------|
| 1 - "Cold<br>Pacific"  | Microalgal grazer                       | Brooder           | Direct<br>development  | 2.585                  | 5.556                 |
| 2 - Croatia            | Microalgal grazer,<br>detritivore       | Broadcast spawner | Lecithotrophi<br>c     | 2.800                  | 8.000                 |
| 3 - "Warm<br>Sites"    | Microalgal grazer                       | Brooder           | Direct<br>development  | 1.443                  | 5.042                 |
| 4 - "Cold<br>Atlantic" | Microalgal grazer,<br>macroalgal grazer | Lays egg<br>case  | Direct<br>development  | 1.440                  | 4.139                 |
| 5 - "Asia"             | Microalgal grazer,<br>detritivore       | Brooder           | Direct<br>development  | 1.578                  | 4.959                 |

Table 3.3, continued.

| Group                  | Mean Obs. Size<br>(mm) | Max Lit. Size<br>(mm) | Lat.<br>Range | Lat.<br>Mean | Salinity                        |
|------------------------|------------------------|-----------------------|---------------|--------------|---------------------------------|
| 1 - "Cold<br>Pacific"  | 2.473                  | 23.428                | 32.574°       | 46.735°      | Marine                          |
| 2 - Croatia            | 2.364                  | 15.000                | 68.471°       | 52.156°      | Marine, Brackish,<br>Freshwater |
| 3 - "Warm<br>Sites"    | 1.669                  | 15.000                | 38.205°       | 36.942°      | Marine                          |
| 4 - "Cold<br>Atlantic" | 1.474                  | 14.141                | 45.610°       | 52.584°      | Marine                          |
| 5 - "Asia"             | 1.713                  | 11.646                | 21.788°       | 37.782°      | Marine                          |

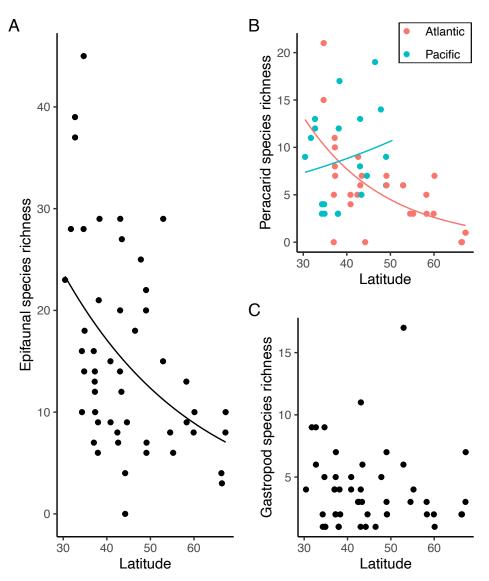
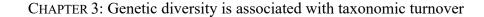




Figure 3.1. Latitudinal clines in species richness for all epifauna (A), peracarids (B), and gastropods (C) across global eelgrass sites. There was a significant relationship between latitude and total epifaunal species richness in both the Atlantic and Pacific oceans ( $\chi^{2}_{1} = 67.999$ , p < 0.001). Peracarids showed opposite patterns of richness with latitude in the Pacific and Atlantic ( $\chi^{2}_{1} = 22.331$ , p < 0.001), while gastropods showed no significant latitudinal richness gradient.



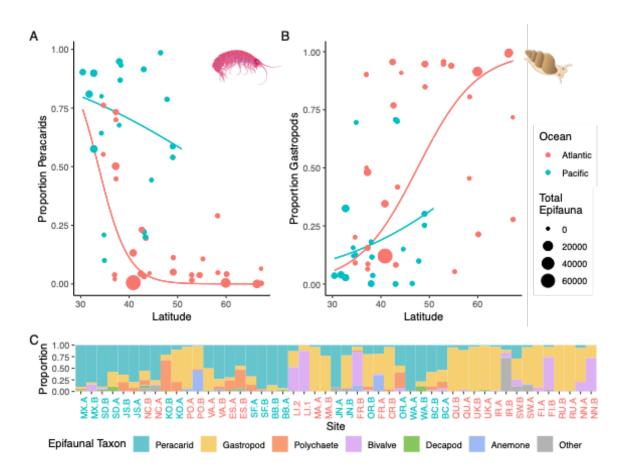



Figure 3.2. Latitudinal clines in the dominance of peracarid crustaceans (A) and gastropods (B) across global epifaunal communities (C). The relative abundance of each taxon changed significantly with latitude (peracarids  $\chi^{2}_{1} = 11284.0$ , p < 0.001; gastropods  $\chi^{2}_{1} = 58295$ , p < 0.001). For both taxa, the latitudinal clines varied significantly between ocean basins (peracarids  $\chi^{2}_{1} = 3524.8$ , p < 0.001; gastropods  $\chi^{2}_{1} = 1722$ , p < 0.001). Site labels in C are colored according to ocean basin as in panels A and B, and arranged from lowest (on the left) to highest latitude (on the right); site locations are shown in Fig. A4.1 and Table A4.1.

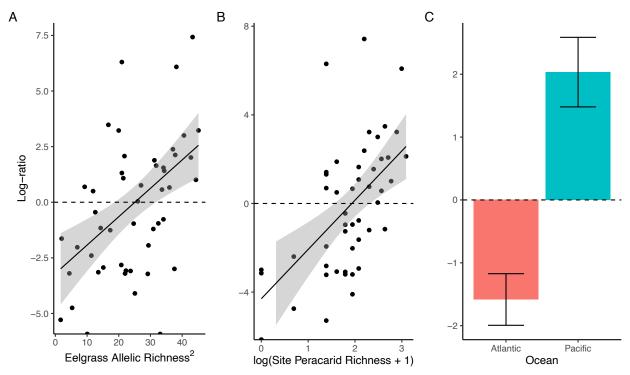
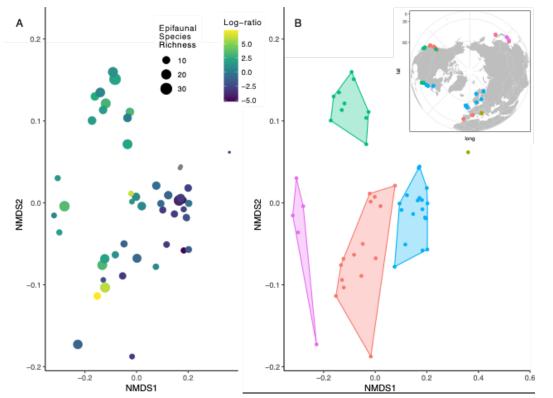




Figure 3.1. The best predictors of the log-transformed ratio of peracarid relative abundance to gastropod relative abundance in epifaunal communities across sites. Log-ratios were best explained by an additive model including eelgrass allelic richness, peracarid species richness, and ocean basin ( $F_{3,43} = 20.42$ , p < 0.001). The horizontal dashed line indicates a 1:1 ratio of gastropods to peracarids.



CHAPTER 3: Genetic diversity is associated with taxonomic turnover

Figure 3.2. NMDS ordinations of eelgrass epifaunal communities in trait space. Points represent individual sites, and points that fall more closely together are more similar in community-weighted mean trait values. In (A), sites are colored by the log-ratio of the relative abundance of peracarids and gastropods; positive log-ratios indicate more peracarids than gastropods, while negative log-ratios indicate more gastropods than peracarids. Log-ratios significantly predicted sites' positions in trait space (pseudo  $F_{1,45} = 11.918$ , p < 0.001). In (B), the same sites are colored according to membership to one of 5 groups created by hierarchical clustering based on similarities in community-weighted mean trait values; inset map shows the geographic location of groups.

#### **APPENDIX 1: Supplementary material for Chapter 1**

Table A1.1. Results of t-tests comparing average SES values within ocean basins to zero. SES values are calculated relative to the global species pool; p values in bold represent significance at an a level of 0.05.

| Ocean    | Metric | Permutation Algorithm | Trait Set    | Mean SES | t      | df | p        |
|----------|--------|-----------------------|--------------|----------|--------|----|----------|
| Pacific  | MPD    | Independent Swap      | All          | 0.393    | 2.27   | 19 | 0.0352   |
|          |        |                       | Microhabitat | 0.404    | 2.41   | 19 | 0.0261   |
|          |        |                       | Diet         | 0.415    | 1.66   | 19 | 0.114    |
|          |        | Tip Shuffle           | All          | 0.363    | 2.12   | 19 | 0.0479   |
|          |        |                       | Microhabitat | 0.412    | 2.86   | 19 | 0.0101   |
|          |        |                       | Diet         | 0.381    | 1.56   | 19 | 0.135    |
|          | MNTD   | Independent Swap      | All          | 0.155    | 0.589  | 19 | 0.563    |
|          |        |                       | Microhabitat | 0.686    | 3.48   | 19 | 0.00254  |
|          |        |                       | Diet         | -0.0449  | -0.155 | 17 | 0.879    |
|          |        | Tip Shuffle           | All          | 0.221    | 0.855  | 19 | 0.403    |
|          |        |                       | Microhabitat | 0.737    | 3.73   | 19 | 0.00143  |
|          |        |                       | Diet         | 0.263    | 0.684  | 14 | 0.505    |
| Atlantic | MPD    | Independent Swap      | All          | -0.156   | -1.07  | 21 | 0.295    |
|          |        |                       | Microhabitat | -0.0959  | -0.518 | 21 | 0.61     |
|          |        |                       | Diet         | -0.0998  | -0.532 | 20 | 0.601    |
|          |        | Tip Shuffle           | All          | -0.699   | -4.23  | 21 | 0.000375 |
|          |        |                       | Microhabitat | -0.505   | -2.55  | 21 | 0.0185   |
|          |        |                       | Diet         | -0.382   | -2.06  | 20 | 0.0531   |
|          | MNTD   | Independent Swap      | All          | -0.364   | -2.4   | 21 | 0.026    |
|          |        |                       | Microhabitat | -0.314   | -1.74  | 21 | 0.0974   |
|          |        |                       | Diet         | -0.272   | -1.77  | 19 | 0.0935   |
|          |        | Tip Shuffle           | All          | -0.358   | -2.35  | 21 | 0.0285   |
|          |        |                       | Microhabitat | -0.3327  | -1.69  | 21 | 0.011    |
|          |        |                       | Diet         | 0.00933  | 0.0394 | 14 | 0.9691   |

Table A1.2. Average predation rate and epiphyte load across ocean basins. Values in the first two rows are mean  $\pm$  standard deviation. Values in the third row represent the results of two-sample t-tests on untransformed (predation) and log-transformed (epiphytes) data across oceans.

| Ocean      | Prop. Tethered | Prey Removed | g Epiphytes | g Eelgrass <sup>-1</sup> |
|------------|----------------|--------------|-------------|--------------------------|
| Pacific    | 0.80           | ± 0.20       | 0.30        | ± 0.31                   |
| Atlantic   | 0.64           | ± 0.24       | 0.13        | ± 0.12                   |
| Difference | t = 2.18       | p = 0.037    | t = 1.13    | p = 0.27                 |

APPENDIX 1

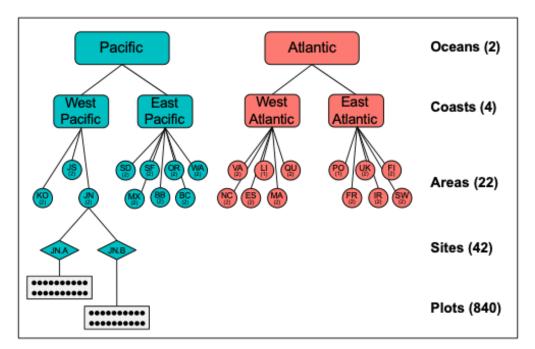



Figure A1.1. Hierarchical design of the ZEN 2014 seagrass ecosystem survey. Sites are nested in one of 22 areas: KO = South Korea; JS = southern Japan (Seto Inland Sea); JN = northern Japan (Hokkaido); SD = San Diego Bay, US; MX = Mexico (Pacific Baja California); SF = San Francisco Bay, US; BB = Bodega and Tomales Bays, US; OR = Oregon, US, BC = British Columbia, Canada; WA = Washington State, US; NC = North Carolina (Back Sound), US; VA = York River, Virginia, US; ES = Virginia Eastern Shore, US; LI = Long Island, US; MA = Massachusetts, US; QU = Quebec (St. Lawrence Estuary), Canada; PO = Algarve, Portugal; FR = Mediterranean France; UK = Wales, UK; IR = Ireland; FI = Archipelago Sea, Finland; SW = Swedish west coast. Numbers in parentheses indicate the number of sites in a given area.

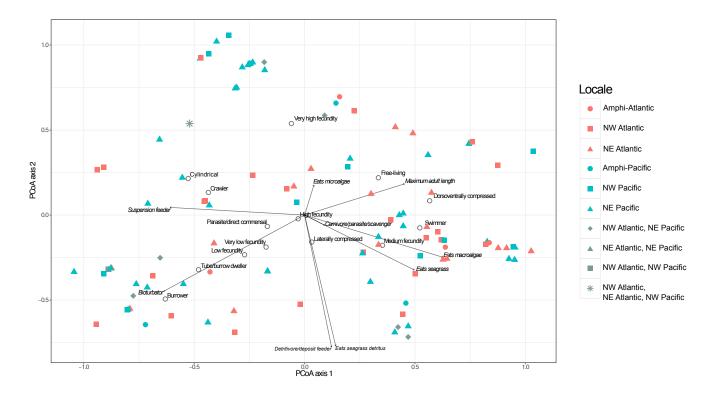



Figure A1.2. Principal coordinates analysis (PCoA) biplot of peracarid species in our global species pool, based on Gower distances. Solid symbols represent species in trait space, with symbol shape and colour corresponding to where they were found in our samples; hollow symbols represent centroids for categorical traits. Traits were fairly independent, and few were strongly correlated. Additionally, locale was not a significant predictor of where a given species fell in trait space (PERMANOVA; pseudo  $F_{9,95} = 0.98$ , p = 0.51). In other words, there were no traits that were particularly distinct to regions. Amphi-Pacific and Amphi-Atlantic distributions refer to species that occur in both the western and eastern margins of the Pacific and Atlantic Oceans, respectively.

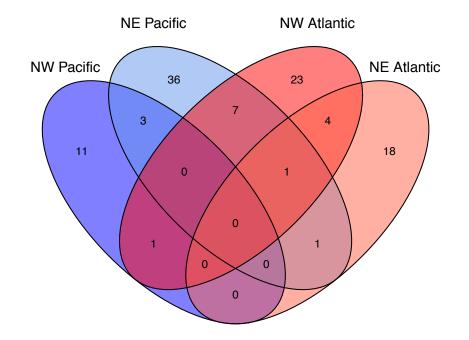



Figure A1.3. Peracarid species richnesses across the four coastlines observed in this study. 55 species were collected from Atlantic sites and 60 species were collected from Pacific sites. Of these, 15 species were collected from the Northwest Pacific, 48 species from the Northeast Pacific, 36 species from the Northwest Atlantic, and 24 species from the Northeast Atlantic. There were 37 genera in 24 families in the Pacific and 40 genera in 22 families in the Atlantic.

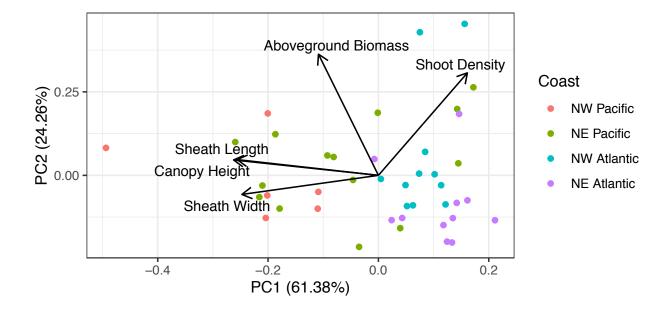



Figure A1.4. Principal component biplot for eelgrass habitat structure across sites. Most of the variation in eelgrass was between short canopies of dense shoots and taller canopies of sparser shoots. The first two principal components accounted for 85.64% of the total variation in habitat structure at the site level. Eelgrass beds in the Atlantic Ocean were mostly characterized by small, densely packed shoots, while those in the Northwest Pacific contained larger, sparser shoots. Northeast Pacific sites contained both of these bed types.

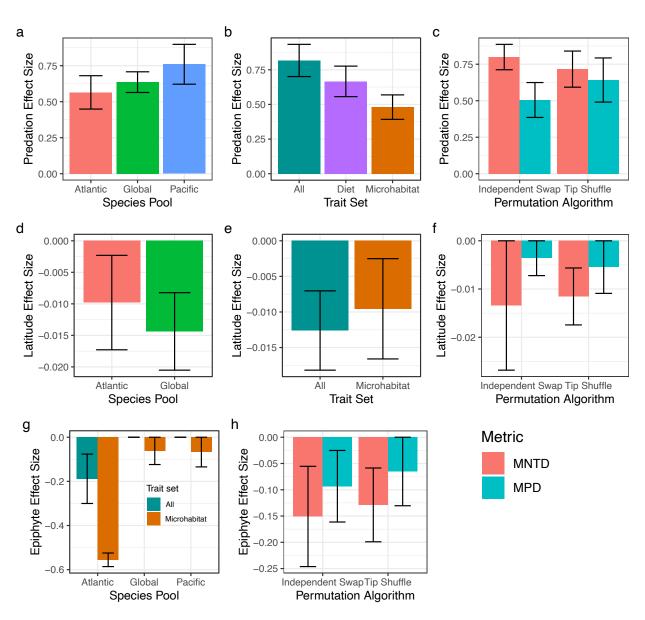



Figure A1.5. Effects of predation (a-c), latitude (d-f), and epiphyte load (g-h) in best models of site-level trait dispersion (SES values) across three species pools (a, d, g), 3 sets of traits (b, e, g), two permutation algorithms, and two dispersion metrics (c, f, h). Columns show mean effect sizes (across best models selected by AICc) averaged across species pools, trait sets, algorithms, and metrics where appropriate; error bars represent standard errors.

APPENDIX 1

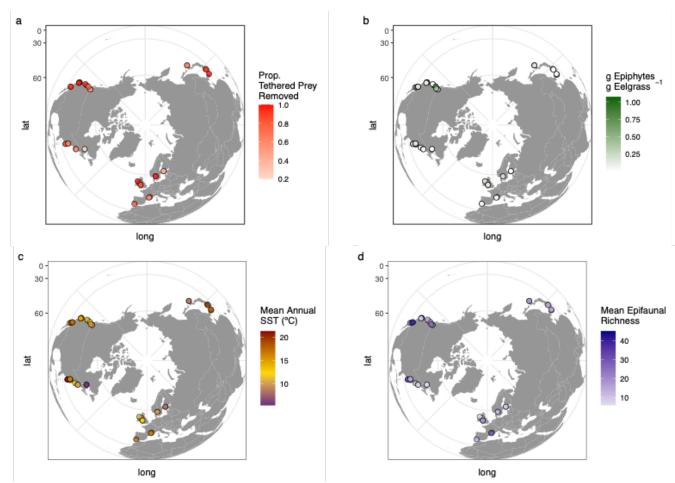



Figure A1.6. Maps of predation intensity (a), epiphyte load (b), mean annual sea surface temperature (c), and epifaunal species richness (d) across sites and ocean basins. None of these predictors varied significantly by ocean basin. See Fig. A1.1 for more detailed information about site locations.

APPENDIX 1

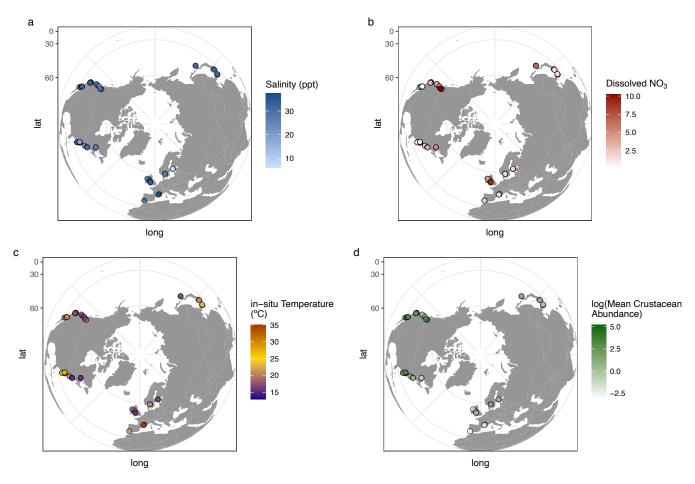



Figure A1.7. Maps of salinity (a), water column nitrate (b), in-situ temperature (c), and crustacean abundance (d) across sites and ocean basins. Of these predictor, only crustacean abundance was significantly greater in the Pacific ( $R^2 = 0.076$ , p = 0.043). See Fig. A1.1 for more detailed information about site locations.

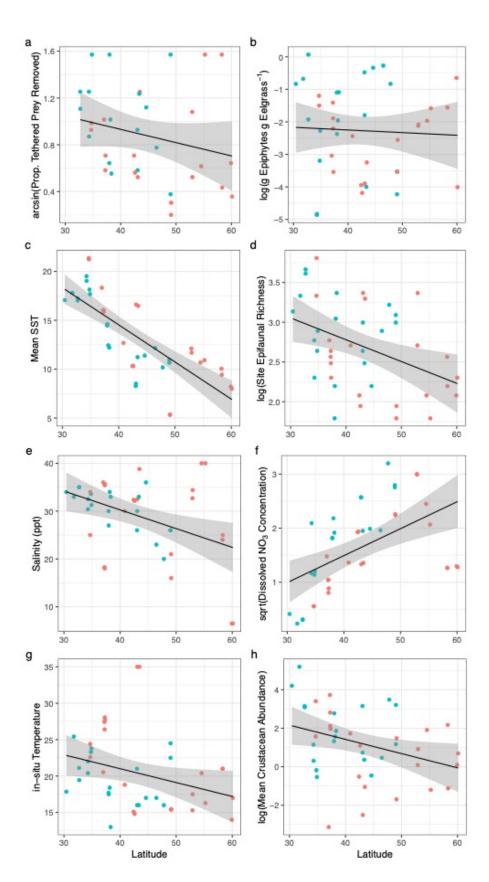



Figure S8. Predictors used in models of dispersion, including predation intensity (a), epiphyte load (b), mean sea surface temperature (c), epifaunal richness (d), salinity (e), water column nitrate (f), in-situ temperature (g), and crustacean abundance (h), plotted against latitude. Without accounting for other variables, latitude was a significant predictor of mean sea surface temperature ( $R^2 = 0.58$ , p < 0.0001), site epifaunal richness (log-transformed;  $R^2 = 0.15$ , p = 0.0062), salinity ( $R^2 = 0.16$ , p = 0.0056), nitrate (square root-transformed;  $R^2 = 0.26$ , p = 0.00034), in-situ temperature ( $R^2 = 0.074$ , p = 0.046), and crustacean abundance (log-transformed;  $R^2 = 0.092$ , p = 0.029). Points represent sites, color-coded by ocean; Atlantic sites are in red, Pacific sites are in blue.

#### **APPENDIX 2: References for peracarid trait data used in global analyses of trait dispersion**

- Arimoto, I. 1976. Taxonomic studies of caprellids (Crustacea, Amphipoda, Caprellidae) found in the Japanese and adjacent waters. Special Publications from the Seto Marine Biological Laboratory 3:234.
- Ariyama, H. 2004. Nine Species of the Genus *Aoroides* (Crustacea : Amphipoda : Aoridae) from Osaka Bay, Central Japan. Publications of the Seto Marine Biological Laboratory 40:1–66.
- Ashford, O. S., A. J. Kenny, C. R. S. Barrio Froján, M. B. Bonsall, T. Horton, A. Brandt, G. J. Bird, S. Gerken, and A. D. Rogers. 2018. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proceedings of the Royal Society B: Biological Sciences 285:20180923.
- Beermann, J., and H.D. Franke. 2011. A supplement to the amphipod (Crustacea) species inventory of Helgoland (German Bight, North Sea): Indication of rapid recent change. Marine Biodiversity Records 4:1–15.
- Best, R. J., and J. J. Stachowicz. 2012. Trophic cascades in seagrass meadows depend on mesograzer variation in feeding rates, predation susceptibility, and abundance. Marine Ecology Progress Series 456:29–42.
- Best, R. J., and J. J. Stachowicz. 2013. Phylogeny as a Proxy for Ecology in Seagrass Amphipods: Which Traits Are Most Conserved? PLOS ONE 8:e57550.
- Borges, F. O., C. Figueiredo, E. Sampaio, R. Rosa, and T. F. Grilo. 2018. Transgenerational deleterious effects of ocean acidification on the reproductive success of a keystone crustacean (*Gammarus locusta*). Marine Environmental Research 138:55–64.
- Borowsky, B. 1996. Laboratory Observations On the Life History of the Isopod *Sphaeroma quadridentatum* Say, 1818. Crustaceana 69:94–100.
- Boström, C., and E. Bonsdorff. 1997. Community structure and spatial variation of benthic invertebrates associated with *Zostera marina* (L.) beds in the northern Baltic Sea. Journal of Sea Research 37:153–166.
- Brook, H. J., T. A. Rawlings, and R. W. Davies. 1994. Protogynous Sex Change in the Intertidal Isopod Gnorimosphaeroma oregonense (Crustacea: Isopoda). The Biological Bulletin 187:99–111.

- Cruz-García, R., A. L. Cupul-Magaña, M. E. Hendrickx, and A. P. Rodríguez-Troncoso. 2013. Abundance of three species of Isopoda (Peracarida, Isopoda) associated with a coral reef environment in Pacific Mexico. Crustaceana 86:1664–1674.
- Drumm, D. T., and B. Kreiser. 2012. Population genetic structure and phylogeography of *Mesokalliapseudes macsweenyi* (Crustacea: Tanaidacea) in the northwestern Atlantic and Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 412:58–65.
- Duffy, J. E., and A. M. Harvilicz. 2001. Species-specific impacts of grazing amphipods in an eelgrass-bed community. Marine Ecology Progress Series 223:201–211.
- Duffy, J. E., and M. E. Hay. 1991. Food and shelter as determinants of food choice by an herbivorous marine amphipod. Ecology 72:1286–1298.
- Ferreira, A. C., E. S. Ambrosio, and A. R. Capítulo. 2015. Population ecology of *Sinelobus stanfordi* (Crustacea: Tanaidacea) in a temperate southern microtidal estuary. New Zealand Journal of Marine and Freshwater Research 49:462–471.
- Fincham, A. A. 1974. Rhythmic swimming of the isopod *Exosphaeroma obtusum* (Dana). New Zealand Journal of Marine and Freshwater Research 8:655–662.
- Ford, A. T., T. F. Fernandes, S. A. Rider, P. A. Read, C. D. Robinson, and I. M. Davies. 2003. Reproduction in the amphipod, *Echinogammarus marinus*: a comparison between normal and intersex specimens. Journal of the Marine Biological Association of the United Kingdom 83:937–940.
- Gaston, K. J., and J. I. Spicer. 2001. The relationship between range size and niche breadth: a test using five species of *Gammarus* (Amphipoda). Global Ecology and Biogeography 10:179–188.
- Gray, A. P., C. A. Richardson, and R. Seed. 1997. Ecological relationships between the valviferan isopod *Edotia doellojuradoi* Giambiagi, 1925, and its host *Mytilus edulis chilensis* in the Falkland Islands. Estuarine, Coastal and Shelf Science 44:231–239.
- Greve, L. 1974. *Anatanais normani* (Richardson) found near Bermuda and notes on other *Anatanais* species. Sarsia 55:115–120.
- Guerra-García, J. M., and J. M. Tierno de Figueroa. 2009. What do caprellids (Crustacea: Amphipoda) feed on? Marine Biology 156:1881–1890.
- Hosono, T. 2014. Temperature explains reproductive dynamics in caprellids at different latitudes. Marine Ecology Progress Series 511:129–141.

- Hou, Z., J. Fu, and S. Li. 2007. A molecular phylogeny of the genus *Gammarus* (Crustacea: Amphipoda) based on mitochondrial and nuclear gene sequences. Molecular Phylogenetics and Evolution 45:596–611.
- Ingólfsson, A. 2000. Colonization of floating seaweed by pelagic and subtidal benthic animals in southwestern Iceland. Pages 181–189 *in* M. B. Jones, J. M. N. Azevedo, A. I. Neto, A. C. Costa, and A. M. F. Martins, editors. Island, Ocean and Deep-Sea Biology. Springer Netherlands.
- Jeong, S. J., O. H. Yu, and H. L. Suh. 2007. Life History and Reproduction of *Jassa slatteryi* (Amphipoda, Ischyroceridae) on a Seagrass Bed (*Zostera marina* L.) in Southern Korea. Journal of Crustacean Biology 27:65–70.
- Jung, T. W., S. Jeong, D. Han, M.-S. Kim, and S. Yoon. 2016. The First Record of the Genus Eogammarus (Crustacea: Amphipoda: Anisogammridae) from Korea. ASED.
- Khalaji-Pirbalouty, V., N. Bruce, and J. W. Wägele. 2013. The genus *Cymodoce* Leach, 1814 (Crustacea: Isopoda: Sphaeromatidae) in the Persian Gulf with description of a new species. Zootaxa 3686.
- Kondylatos, G., M. Corsini-Foka, and E. Perakis. 2018. First record of the isopod *Idotea hectica* (Pallas, 1772) (Idoteidae) and of the brachyuran crab *Matuta victor* (Fabricius, 1781) (Matutidae) in the Hellenic waters. Mediterranean Marine Science 19:656–661.
- Kunkel, B. Waugh., and B. W. Kunkel. 1918. The Arthrostraca of Connecticut. State Geological and Natural History Survey, Hartford,.
- Ledet, J., M. Byrne, and A. G. B. Poore. 2018. Temperature effects on a marine herbivore depend strongly on diet across multiple generations. Oecologia 187:483–494.
- Lefcheck, J. S., and J. E. Duffy. 2015. Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96:2973–2983.
- Levings, C. D. 1980. The biology and energetics of *Eogammarus confervicolus* (Stimpson) (Amphipoda, Anisogammaridae) at the Squamish River Estuary, B.C. Canadian Journal of Zoology 58:1652–1663.
- Lindén, E., M. Lehtiniemi, and M. Viitasalo. 2003. Predator avoidance behaviour of Baltic littoral mysids *Neomysis integer* and *Praunus flexuosus*. Marine Biology 143:845–850.

- Lürig, M. D., R. J. Best, and J. J. Stachowicz. 2016. Microhabitat partitioning in seagrass mesograzers is driven by consistent species choices across multiple predator and competitor contexts. Oikos 125:1324–1333.
- Mancinelli, G. 2012. To bite, or not to bite? A quantitative comparison of foraging strategies among three brackish crustaceans feeding on leaf litters. Estuarine, Coastal and Shelf Science 110:125–133.
- Martínez-Laiz, G., A. Ulman, M. Ros, and A. Marchini. 2019. Is recreational boating a potential vector for non-indigenous peracarid crustaceans in the Mediterranean Sea? A combined biological and social approach. Marine Pollution Bulletin 140:403–415.
- Menzies, R. J. 1951. New Marine Isopods, Chiefly from Northern California, with Notes on Related Forms.
- Nakamachi, T., H. Ishida, and N. Hirohashi. 2015. Sound Production in the Aquatic Isopod *Cymodoce japonica* (Crustacea: Peracarida). The Biological Bulletin 229:167–172.
- Othman, M. S., and D. Pascoe. 2001. Growth, Development and Reproduction of *Hyalella azteca* (Saussure, 1858) in Laboratory Culture. Crustaceana 74:171–181.
- Pennafirme, S., and A. Soares-Gomes. 2009. Population biology and reproduction of *Kalliapseudes schubartii* Mañé-Garzón, 1949 (Peracarida, Tanaidacea) in a tropical coastal lagoon, Itaipu, southeastern Brazil. Crustaceana 82:1509–1526.
- Pilgrim, E. M., M. J. Blum, D. A. Reusser, H. Lee, and J. A. Darling. 2013. Geographic range and structure of cryptic genetic diversity among Pacific North American populations of the non-native amphipod *Grandidierella japonica*. Biological Invasions 15:2415–2428.
- Poore, A. G. B., S. T. Ahyong, J. K. Lowry, and E. E. Sotka. 2017. Plant feeding promotes diversification in the Crustacea. Proceedings of the National Academy of Sciences 114:8829–8834.
- Rumbold, C. E., S. M. Obenat, and E. D. Spivak. 2012. Life History of *Tanais dulongii* (Tanaidacea: Tanaidae) in an Intertidal Flat in the Southwestern Atlantic. Journal of Crustacean Biology 32:891–898.
- Rumbold, C. E., S. M. Obenat, and E. D. Spivak. 2015. Comparison of life history traits of *Tanais dulongii* (Tanaidacea: Tanaididae) in natural and artificial marine environments of the south-western Atlantic. Helgoland Marine Research 69:231.

- Sainte-Marie, B. 1991. A review of the reproductive bionomics of aquatic gammaridean amphipods: variation of life history traits with latitude, depth, salinity and superfamily. Hydrobiologia 223:189–227.
- Schückel, U., M. Beck, and I. Kröncke. 2013. Spatial variability in structural and functional aspects of macrofauna communities and their environmental parameters in the Jade Bay (Wadden Sea Lower Saxony, southern North Sea). Helgoland Marine Research 67:121.
- Schultz, G. A. 1969. How to know the marine isopod crustaceans. Wm. C. Brown Company Publishers, Dubuque, IA, USA.
- Shuster, S. M. 1995. Female reproductive success in artificial sponges in *Paracerceis sculpta* (Holmes) (Crustacea: Isopoda). Journal of Experimental Marine Biology and Ecology 191:19–27.
- Skadsheim, A. 1984. Life cycles of *Gammarus oceanicus* and *G. salinus* (Amphipoda) in the Oslofjord, Norway. Ecography 7:262–270.
- Smith, G. 1905. The effect of pigment migration on the phototropism of *Gammarus annulatus* S.I. SMITH. American Journal of Physiology-Legacy Content 13:205–216.
- Sotka, E. E., T. Bell, L. E. Hughes, J. K. Lowry, and A. G. B. Poore. 2017. A molecular phylogeny of marine amphipods in the herbivorous family Ampithoidae. Zoologica Scripta 46:85–95.
- Steele, D. H., and V. J. Steele. 1970. The biology of *Gammarus* (Crustacea, Amphipoda) in the northwestern Atlantic. IV. *Gammarus lawrencianus* Bousfield. Canadian Journal of Zoology 48:1261–1267.
- Steele, D. H., and V. J. Steele. 1973. Some aspects of the biology of *Calliopius laeviusculus* (Krøyer) (Crustacea, Amphipoda) in the northwestern Atlantic. Canadian Journal of Zoology 51:723–728.
- Steele, D. H., and V. J. Steele. 1974. The blology of *Gammarus* (Crustacea, Amphipoda) In the northwestern Atlantle. VIII. Geographic distribution of the northern species. Canadian Journal of Zoology 52:1115–1120.
- Steele, D. H., and V. J. Steele. 1975. The biology of *Gammarus* (Crustacea, Amphipoda) in the northwestern Atlantic. XI. Comparison and discussion. Canadian Journal of Zoology 53:1116–1126.

- Strong, J. A., C. A. Maggs, and M. P. Johnson. 2009. The extent of grazing release from epiphytism for *Sargassum muticum* (Phaeophyceae) within the invaded range. Journal of the Marine Biological Association of the United Kingdom 89:303–314.
- Thiel, M. 1997. Reproductive biology of a filter-feeding amphipod, *Leptocheirus pinguis*, with extended parental care. Marine Biology 130:249–258.
- Vader, W., and T. Krapp-Schickel. 2012. On some maerid and melitid material (Crustacea: Amphipoda) collected by the Hourglass Cruises (Florida). Part 2: Genera *Dulichiella* and *Elasmopus*, with a key to world *Elasmopus*. Journal of Natural History 46:1179–1218.
- Vassallo, L., and D. H. Steele. 1980. Survival and Growth of Young *Gammarus lawrencianus* Bousfield, 1956, on Different Diets. Crustaceana. Supplement:118–125.
- Viherluoto, M., H. Kuosa, J. Flinkman, and M. Viitasalo. 2000. Food utilisation of pelagic mysids, *Mysis mixta* and *M. relicta*, during their growing season in the northern Baltic Sea. Marine Biology 136:553–559.
- Watling, L. 1981. Amphipoda from the northwestern Atlantic: The genera *Jerbarnia*, *Epimeria*, and *Harpinia*. Sarsia 66:203–211.

# APPENDIX 3: Methods and Results – post-hoc modeling of individual peracarid trait dispersion (SES) against environmental predictors in global eelgrass beds

*Data analysis*. To assess how individual traits responded to ecological filters in our dataset, we built a series of simple post-hoc models with the subset of environmental variables that appeared most often in our best models of broader trait dispersion at the site level: latitude, ocean, epiphyte load, and predation on amphipods. For each of the traits in our dataset, we calculated the standard effect size of MPD and MNTD (SES<sub>MPD</sub> and SES<sub>MNTD</sub>) using the independent swap and tip shuffle algorithms across the global pool. We calculated SES<sub>MPD</sub> for all 13 of our traits (Table 1.1), but because MNTD is sensitive to missing values, we were unable to calculate SES<sub>MNTD</sub> for fecundity or any of the diet traits in our data.

SES values for each metric and permutation algorithm were used as continuous response variables in each of four models with the univariate predictors of latitude, ocean, epiphyte load, and predation. To account for multiple comparisons, we used a Bonferroni-corrected  $\alpha$ -level of 0.0125 when evaluating the significance of the individual predictors. In total, we built 144 models: four predictors, two permutation algorithms, two diversity metrics, two sets of 13 traits, and two sets of five traits.

*Results.* The majority of trait SES values showed no significant response to any of the four predictors we examined (Table A3.1). However, we found that peracarid communities were more overdispersed in fecundity (SES<sub>MPD</sub> independent swap and tip shuffle), living habit (SES<sub>MPD</sub> independent swap and tip shuffle, SES<sub>MNTD</sub> tip shuffle), motility (SES<sub>MPD</sub> tip shuffle), and feeding on macroalgae (SES<sub>MPD</sub> independent swap) at lower latitudes than at higher latitudes (Fig. A3.1). We also found that body size and living habit were significantly more dispersed in the Pacific than the Atlantic Ocean (SES<sub>MPD</sub> independent swap and tip shuffle; Fig. A3.2), and that communities were increasingly dispersed in feeding on macroalgae as predation increased (SES<sub>MPD</sub> tip shuffle; Fig. A3.3). These trait dispersion-environment patterns were consistent across other metrics and permutation algorithms for which they were calculated, albeit not significant in every case (Table A3.1).

Table A3.1. Post-hoc models of individual trait dispersion (SES) as a function of latitude, ocean, predation on amphipods, and epiphyte load in eelgrass-associated peracarid crustaceans. Bolded rows indicate models that were significant according to a Bonferroni-corrected  $\alpha$ -level of 0.0125.

| Permutation<br>Algorithm | Metric | Predictor        | Trait                                | Intercept | Slope  | AICc    | Adj.<br>R <sup>2</sup> |
|--------------------------|--------|------------------|--------------------------------------|-----------|--------|---------|------------------------|
| Independent<br>Swap      | MPD    | Latitude         | Maximum<br>adult body<br>length      | -0.373    | 0.012  | 133.647 | -0.017                 |
| Independent<br>Swap      | MPD    | Latitude         | Maximum<br>fecundity                 | 2.565     | -0.063 | 68.362  | 0.301                  |
| Independent<br>Swap      | MPD    | Latitude         | Body shape                           | 0.954     | -0.015 | 104.648 | 0.001                  |
| Independent<br>Swap      | MPD    | Latitude         | Living habit                         | 2.734     | -0.065 | 103.412 | 0.312                  |
| Independent<br>Swap      | MPD    | Latitude         | Motility                             | 1.821     | -0.041 | 122.781 | 0.088                  |
| Independent<br>Swap      | MPD    | Latitude         | Bioturbator                          | -0.691    | 0.017  | 126.783 | -0.006                 |
| Independent<br>Swap      | MPD    | Latitude         | Eats<br>microalgae                   | 0.271     | -0.006 | 117.443 | -0.026                 |
| Independent<br>Swap      | MPD    | Latitude         | Eats<br>macroalgae                   | 2.465     | -0.053 | 82.125  | 0.180                  |
| Independent<br>Swap      | MPD    | Latitude         | Eats seagrass                        | 1.619     | -0.028 | 76.790  | 0.026                  |
| Independent<br>Swap      | MPD    | Latitude         | Eats seagrass<br>detritus            | 0.108     | 0.003  | 70.142  | -0.044                 |
| Independent<br>Swap      | MPD    | Latitude         | Suspension<br>feeder                 | -0.325    | 0.000  | 67.632  | -0.045                 |
| Independent<br>Swap      | MPD    | Latitude         | Detritivore/<br>deposit feeder       | 0.719     | -0.015 | 75.792  | -0.022                 |
| Independent<br>Swap      | MPD    | Latitude         | Carnivore/<br>parasite/<br>scavenger | 0.800     | -0.017 | 64.469  | -0.016                 |
| Independent<br>Swap      | MPD    | Pacific<br>Ocean | Maximum<br>adult body<br>length      | -0.329    | 0.969  | 124.989 | 0.173                  |
| Independent<br>Swap      | MPD    | Pacific<br>Ocean | Maximum<br>fecundity                 | -0.625    | 0.608  | 75.889  | 0.085                  |
| Independent<br>Swap      | MPD    | Pacific<br>Ocean | Body shape                           | 0.469     | -0.333 | 103.797 | 0.021                  |
| Independent<br>Swap      | MPD    | Pacific<br>Ocean | Living habit                         | -0.472    | 0.914  | 108.725 | 0.219                  |
| Independent<br>Swap      | MPD    | Pacific<br>Ocean | Motility                             | 0.040     | 0.059  | 127.646 | -0.024                 |

| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Bioturbator                          | -0.048 | 0.140  | 127.353 | -0.020 |
|---------------------|-----|---------------------------------------|--------------------------------------|--------|--------|---------|--------|
| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Eats<br>microalgae                   | -0.053 | 0.106  | 117.439 | -0.026 |
| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Eats<br>macroalgae                   | -0.021 | 0.286  | 88.432  | -0.012 |
| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Eats seagrass                        | 0.444  | -0.195 | 78.270  | -0.031 |
| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Eats seagrass<br>detritus            | 0.297  | -0.085 | 70.116  | -0.043 |
| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Suspension<br>feeder                 | -0.485 | 0.434  | 66.125  | 0.018  |
| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Detritivore/<br>deposit feeder       | -0.079 | 0.257  | 75.871  | -0.025 |
| Independent<br>Swap | MPD | Pacific<br>Ocean                      | Carnivore/<br>parasite/<br>scavenger | -0.012 | 0.210  | 64.982  | -0.041 |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Maximum<br>adult body<br>length      | 0.039  | 0.287  | 109.673 | -0.018 |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Maximum fecundity                    | -0.813 | 0.540  | 71.273  | 0.032  |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Body shape                           | 0.150  | 0.184  | 88.825  | -0.021 |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Living habit                         | -0.546 | 0.506  | 95.522  | 0.023  |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Motility                             | -0.140 | 0.226  | 105.248 | -0.022 |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Bioturbator                          | 0.063  | 0.099  | 105.528 | -0.029 |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Eats<br>microalgae                   | -0.462 | 0.525  | 101.826 | 0.004  |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Eats<br>macroalgae                   | -1.040 | 1.112  | 70.734  | 0.194  |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Eats seagrass                        | 0.143  | 0.183  | 64.584  | -0.045 |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Eats seagrass<br>detritus            | -0.485 | 0.956  | 52.352  | 0.155  |
| Independent<br>Swap | MPD | arcsin(Mean<br>Amphipod<br>Predation) | Suspension<br>feeder                 | -0.361 | 0.130  | 54.402  | -0.055 |

| Independent<br>Swap | MPD  | arcsin(Mean<br>Amphipod<br>Predation) | Detritivore/<br>deposit feeder       | -0.670 | 0.890  | 61.434  | 0.087  |
|---------------------|------|---------------------------------------|--------------------------------------|--------|--------|---------|--------|
| Independent<br>Swap | MPD  | arcsin(Mean<br>Amphipod<br>Predation) | Carnivore/<br>parasite/<br>scavenger | 0.443  | -0.700 | 47.083  | 0.016  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Maximum<br>adult body<br>length      | -0.189 | -0.154 | 129.301 | 0.010  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Maximum fecundity                    | -0.880 | -0.207 | 74.635  | 0.065  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Body shape                           | -0.172 | -0.212 | 98.913  | 0.102  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Living habit                         | -0.004 | -0.001 | 116.137 | -0.026 |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Motility                             | -0.471 | -0.254 | 118.562 | 0.090  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Bioturbator                          | -0.370 | -0.156 | 121.828 | 0.018  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Eats<br>microalgae                   | -0.268 | -0.122 | 114.464 | -0.006 |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Eats<br>macroalgae                   | -0.291 | -0.157 | 85.502  | 0.015  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Eats seagrass                        | -0.066 | -0.191 | 71.932  | 0.045  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Eats seagrass<br>detritus            | 0.636  | 0.172  | 66.344  | 0.025  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Suspension<br>feeder                 | -0.715 | -0.149 | 64.562  | 0.010  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Detritivore/<br>deposit feeder       | 0.535  | 0.191  | 71.167  | 0.032  |
| Independent<br>Swap | MPD  | log(Mean<br>Epiphyte<br>Load)         | Carnivore/<br>parasite/<br>scavenger | 0.620  | 0.215  | 59.953  | 0.050  |
| Independent<br>Swap | MNTD | Latitude                              | Maximum<br>adult body<br>length      | 0.078  | 0.001  | 125.763 | -0.025 |
| Independent<br>Swap | MNTD | Latitude                              | Body shape                           | 0.175  | -0.006 | 97.761  | -0.020 |

| Independent<br>Swap | MNTD | Latitude                              | Living habit                    | 0.578  | -0.021 | 58.862  | 0.113  |
|---------------------|------|---------------------------------------|---------------------------------|--------|--------|---------|--------|
| Independent<br>Swap | MNTD | Latitude                              | Motility                        | -0.130 | -0.003 | 86.032  | -0.023 |
| Independent<br>Swap | MNTD | Latitude                              | Bioturbator                     | -0.807 | 0.017  | 101.258 | 0.011  |
| Independent<br>Swap | MNTD | Pacific<br>Ocean                      | Maximum<br>adult body<br>length | -0.196 | 0.700  | 120.284 | 0.100  |
| Independent<br>Swap | MNTD | Pacific<br>Ocean                      | Body shape                      | -0.120 | 0.083  | 97.822  | -0.022 |
| Independent<br>Swap | MNTD | Pacific<br>Ocean                      | Living habit                    | -0.442 | 0.212  | 62.895  | 0.024  |
| Independent<br>Swap | MNTD | Pacific<br>Ocean                      | Motility                        | -0.249 | -0.034 | 86.074  | -0.024 |
| Independent<br>Swap | MNTD | Pacific<br>Ocean                      | Bioturbator                     | -0.011 | -0.118 | 102.525 | -0.019 |
| Independent<br>Swap | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Maximum<br>adult body<br>length | -0.080 | 0.358  | 107.974 | -0.011 |
| Independent<br>Swap | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Body shape                      | -0.225 | 0.135  | 83.174  | -0.025 |
| Independent<br>Swap | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Living habit                    | -0.244 | -0.126 | 56.605  | -0.020 |
| Independent<br>Swap | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Motility                        | -0.018 | -0.271 | 76.168  | -0.003 |
| Independent<br>Swap | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Bioturbator                     | 0.301  | -0.409 | 86.409  | 0.015  |
| Independent<br>Swap | MNTD | log(Mean<br>Epiphyte<br>Load)         | Maximum<br>adult body<br>length | 0.007  | -0.071 | 121.862 | -0.016 |
| Independent<br>Swap | MNTD | log(Mean<br>Epiphyte<br>Load)         | Body shape                      | -0.182 | -0.048 | 96.288  | -0.018 |
| Independent<br>Swap | MNTD | log(Mean<br>Epiphyte<br>Load)         | Living habit                    | -0.320 | 0.002  | 62.545  | -0.026 |
| Independent<br>Swap | MNTD | log(Mean<br>Epiphyte<br>Load)         | Motility                        | -0.546 | -0.132 | 80.162  | 0.057  |
| Independent<br>Swap | MNTD | log(Mean<br>Epiphyte<br>Load)         | Bioturbator                     | -0.308 | -0.088 | 95.046  | 0.001  |
| Tip Shuffle         | MPD  | Latitude                              | Maximum<br>adult body<br>length | -0.059 | 0.011  | 148.536 | -0.020 |
|                     |      |                                       |                                 |        |        |         |        |

| Tip Shuffle        | MPD | Latitude         | Maximum<br>fecundity                         | 2.783  | -0.067 | 77.612  | 0.254  |
|--------------------|-----|------------------|----------------------------------------------|--------|--------|---------|--------|
| Tip Shuffle        | MPD | Latitude         | Body shape                                   | 1.040  | -0.018 | 94.983  | 0.022  |
| <b>Tip Shuffle</b> | MPD | Latitude         | Living habit                                 | 2.565  | -0.064 | 103.586 | 0.310  |
| <b>Tip Shuffle</b> | MPD | Latitude         | Motility                                     | 1.958  | -0.047 | 115.614 | 0.142  |
| Tip Shuffle        | MPD | Latitude         | Bioturbator                                  | -1.022 | 0.017  | 128.657 | -0.007 |
| Tip Shuffle        | MPD | Latitude         | Eats<br>microalgae                           | 0.219  | -0.010 | 111.643 | -0.021 |
| Tip Shuffle        | MPD | Latitude         | Eats<br>macroalgae                           | 2.262  | -0.052 | 90.555  | 0.132  |
| Tip Shuffle        | MPD | Latitude         | Eats seagrass                                | 1.575  | -0.021 | 71.748  | 0.004  |
| Tip Shuffle        | MPD | Latitude         | Eats seagrass detritus                       | -0.040 | 0.003  | 73.020  | -0.045 |
| Tip Shuffle        | MPD | Latitude         | Suspension<br>feeder                         | -0.236 | -0.005 | 68.924  | -0.043 |
| Tip Shuffle        | MPD | Latitude         | Detritivore/<br>deposit feeder<br>Carnivore/ | 0.601  | -0.016 | 77.781  | -0.020 |
| Tip Shuffle        | MPD | Latitude         | parasite/<br>scavenger                       | 0.728  | -0.019 | 61.796  | 0.000  |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Maximum<br>adult body<br>length              | -0.232 | 1.327  | 136.379 | 0.236  |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Maximum<br>fecundity                         | -0.697 | 0.834  | 81.630  | 0.139  |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Body shape                                   | 0.307  | -0.108 | 96.709  | -0.019 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Living habit                                 | -0.695 | 1.038  | 104.831 | 0.290  |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Motility                                     | -0.188 | 0.272  | 122.230 | -0.005 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Bioturbator                                  | -0.415 | 0.236  | 128.873 | -0.012 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Eats<br>microalgae                           | -0.369 | 0.290  | 111.125 | -0.007 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Eats<br>macroalgae                           | -0.215 | 0.323  | 95.177  | -0.012 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Eats seagrass                                | 0.694  | -0.120 | 72.798  | -0.037 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Eats seagrass<br>detritus                    | 0.083  | -0.004 | 73.037  | -0.045 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Suspension<br>feeder                         | -0.675 | 0.589  | 66.299  | 0.065  |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Detritivore/<br>deposit feeder               | -0.280 | 0.320  | 77.711  | -0.017 |
| Tip Shuffle        | MPD | Pacific<br>Ocean | Carnivore/<br>parasite/<br>scavenger         | -0.223 | 0.328  | 62.245  | -0.022 |

| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)                                                                           | Maximum<br>adult body<br>length                                                                 | 0.240           | 0.391           | 123.622          | -0.01                           |
|----------------------------|------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------|-----------------|------------------|---------------------------------|
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)                                                                           | Maximum<br>fecundity                                                                            | -0.919          | 0.701           | 78.825           | 0.049                           |
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)                                                                           | Body shape                                                                                      | 0.031           | 0.255           | 83.991           | -0.01                           |
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)<br>arcsin(Mean                                                            | Living habit                                                                                    | -0.805          | 0.611           | 96.893           | 0.04                            |
| Tip Shuffle                | MPD        | Amphipod<br>Predation)<br>arcsin(Mean                                                                           | Motility                                                                                        | -0.438          | 0.409           | 104.419          | -0.00                           |
| Tip Shuffle                | MPD        | Amphipod<br>Predation)<br>arcsin(Mean                                                                           | Bioturbator                                                                                     | -0.317          | 0.144           | 108.902          | -0.02                           |
| Tip Shuffle                | MPD        | Amphipod<br>Predation)<br>arcsin(Mea                                                                            | Eats<br>microalgae                                                                              | -0.645          | 0.474           | 96.641           | 0.00                            |
| Tip Shuffle                | MPD        | n<br>Amphipod<br>Predation)                                                                                     | Eats<br>macroalgae                                                                              | -1.457          | 1.357           | 75.901           | 0.23                            |
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)                                                                           | Eats seagrass                                                                                   | 0.454           | 0.170           | 62.224           | -0.04                           |
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)                                                                           | Eats seagrass<br>detritus                                                                       | -0.750          | 1.043           | 53.737           | 0.17                            |
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod                                                                                         | Suspension<br>feeder                                                                            | -0.650          | 0.279           | 56.207           | -0.04                           |
|                            |            | Predation)                                                                                                      |                                                                                                 |                 |                 |                  |                                 |
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)                                                                           | Detritivore/<br>deposit feeder                                                                  | -0.916          | 0.960           | 62.376           | 0.10                            |
| Tip Shuffle<br>Tip Shuffle | MPD<br>MPD | arcsin(Mean<br>Amphipod<br>Predation)<br>arcsin(Mean<br>Amphipod<br>Predation)                                  | Detritivore/<br>deposit feeder<br>Carnivore/<br>parasite/<br>scavenger                          | -0.916<br>0.139 | 0.960<br>-0.514 | 62.376<br>45.163 |                                 |
| -                          |            | arcsin(Mean<br>Amphipod<br>Predation)<br>arcsin(Mean<br>Amphipod<br>Predation)<br>log(Mean<br>Epiphyte<br>Load) | Detritivore/<br>deposit feeder<br>Carnivore/<br>parasite/                                       |                 |                 |                  | -0.01                           |
| Tip Shuffle                | MPD        | arcsin(Mean<br>Amphipod<br>Predation)<br>arcsin(Mean<br>Amphipod<br>Predation)<br>log(Mean<br>Epiphyte          | Detritivore/<br>deposit feeder<br>Carnivore/<br>parasite/<br>scavenger<br>Maximum<br>adult body | 0.139           | -0.514          | 45.163           | 0.10<br>-0.01<br>-0.00<br>-0.00 |

| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Living habit                         | -0.075 | 0.040  | 116.091 | -0.022 |
|-------------|------|-------------------------------|--------------------------------------|--------|--------|---------|--------|
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Motility                             | -0.474 | -0.201 | 115.002 | 0.056  |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Bioturbator                          | -0.636 | -0.130 | 123.979 | 0.003  |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Eats<br>microalgae                   | -0.407 | -0.084 | 109.387 | -0.016 |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Eats<br>macroalgae                   | -0.446 | -0.147 | 92.477  | -0.001 |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Eats seagrass                        | 0.354  | -0.138 | 66.500  | 0.016  |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Eats seagrass<br>detritus            | 0.585  | 0.225  | 68.210  | 0.063  |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Suspension<br>feeder                 | -0.747 | -0.109 | 66.520  | -0.019 |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Detritivore/<br>deposit feeder       | 0.510  | 0.254  | 72.036  | 0.080  |
| Tip Shuffle | MPD  | log(Mean<br>Epiphyte<br>Load) | Carnivore/<br>parasite/<br>scavenger | 0.453  | 0.218  | 57.386  | 0.066  |
| Tip Shuffle | MNTD | Latitude                      | Maximum<br>adult body                | 0.210  | 0.005  | 150.228 | -0.024 |
| TT: C1 CC1  |      | T 1                           | length                               | 0.0(5  | 0.000  | 105.047 | 0.017  |
| Tip Shuffle | MNTD | Latitude                      | Body shape                           | 0.265  | -0.008 | 105.847 | -0.017 |
| Tip Shuffle | MNTD | Latitude                      | Living habit                         | 0.519  | -0.022 | 56.049  | 0.130  |
| Tip Shuffle | MNTD | Latitude                      | Motility                             | -0.063 | -0.003 | 107.246 | -0.024 |
| Tip Shuffle | MNTD | Latitude                      | Bioturbator                          | -0.962 | 0.021  | 109.889 | 0.018  |
| Tip Shuffle | MNTD | Pacific<br>Ocean              | Maximum<br>adult body<br>length      | -0.033 | 0.939  | 144.753 | 0.101  |
| Tip Shuffle | MNTD | Pacific<br>Ocean              | Body shape                           | -0.133 | 0.088  | 106.036 | -0.022 |
| Tip Shuffle | MNTD | Pacific<br>Ocean              | Living habit                         | -0.542 | 0.235  | 60.250  | 0.038  |
| Tip Shuffle | MNTD | Pacific<br>Ocean              | Motility                             | -0.163 | -0.085 | 107.177 | -0.022 |
| Tip Shuffle | MNTD | Pacific                       | Bioturbator                          | -0.006 | -0.124 | 111.472 | -0.019 |

| Tip Shuffle | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Maximum<br>adult body<br>length | 0.090  | 0.518  | 128.226 | -0.008 |
|-------------|------|---------------------------------------|---------------------------------|--------|--------|---------|--------|
| Tip Shuffle | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Body shape                      | -0.232 | 0.105  | 89.054  | -0.027 |
| Tip Shuffle | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Living habit                    | -0.371 | -0.101 | 52.202  | -0.023 |
| Tip Shuffle | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Motility                        | 0.117  | -0.337 | 94.204  | -0.005 |
| Tip Shuffle | MNTD | arcsin(Mean<br>Amphipod<br>Predation) | Bioturbator                     | 0.310  | -0.403 | 93.942  | 0.006  |
| Tip Shuffle | MNTD | log(Mean<br>Epiphyte<br>Load)         | Maximum<br>adult body<br>length | 0.193  | -0.114 | 145.966 | -0.012 |
| Tip Shuffle | MNTD | log(Mean<br>Epiphyte<br>Load)         | Body shape                      | -0.177 | -0.041 | 104.488 | -0.021 |
| Tip Shuffle | MNTD | log(Mean<br>Epiphyte<br>Load)         | Living habit                    | -0.397 | 0.007  | 60.495  | -0.025 |
| Tip Shuffle | MNTD | log(Mean<br>Epiphyte<br>Load)         | Motility                        | -0.498 | -0.140 | 102.387 | 0.029  |
| Tip Shuffle | MNTD | log(Mean<br>Epiphyte<br>Load)         | Bioturbator                     | -0.269 | -0.071 | 105.115 | -0.012 |

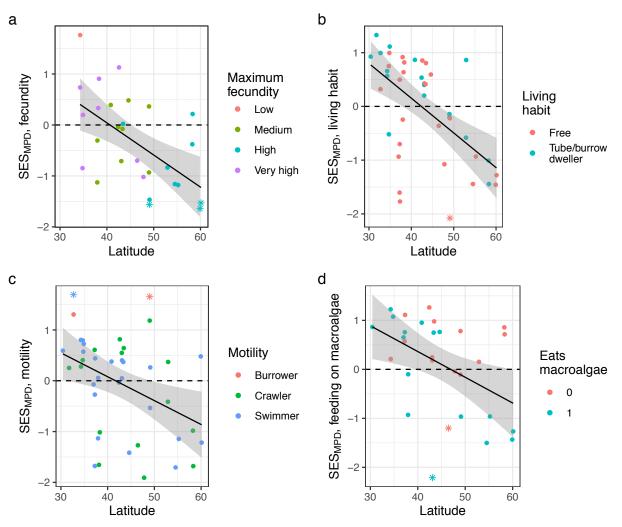



Figure A3.1. Effects of latitude on trait dispersion (measured by SES<sub>MPD</sub> using the independent swap algorithm in panels A, B, and D and the tip shuffle algorithm in panel C). Permuting across the global species pool, SES<sub>MPD</sub> declined with latitude for fecundity (A;  $R^2 = 0.301$ , p = 0.002), living habit (B;  $R^2 = 0.312$ , p < 0.001), motility (C;  $R^2 = 0.142$ , p = 0.008), and feeding on macroalgae (D;  $R^2 = 0.180$ , p = 0.011). The dashed horizontal line represents an SES value of 0, indicating an observed value of MPD indistinguishable from random assembly; points displayed as stars represent those for which SES is significantly different from 0 at  $\alpha = 0.05$ . Colors represent dominant trait values.

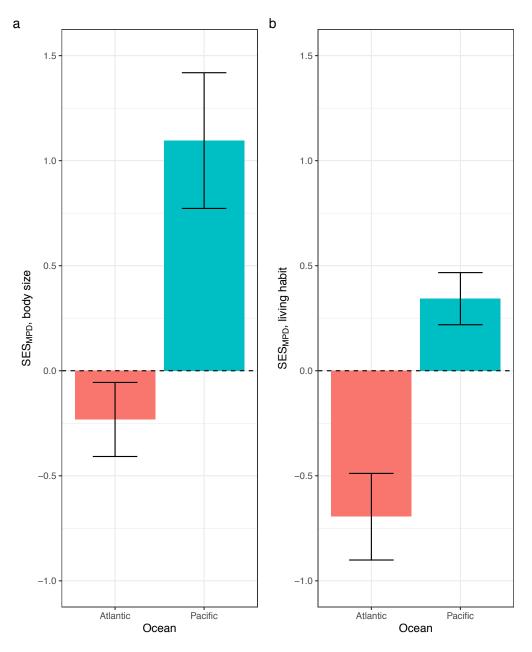



Figure A3.2. Trait dispersion across ocean basins (measured by  $SES_{MPD}$  using the tip shuffle algorithm). Permuting across the global species pool,  $SES_{MPD}$  was significantly greater in the Pacific than the Atlantic Ocean for maximum adult body length (A;  $R^2 = 0.236$ , p < 0.001) and living habit (B;  $R^2 = 0.290$ , p < 0.001). In the Atlantic, community-weighted mean body size was 14.09 mm; in the Pacific it was 20.79 mm. In both oceans, the majority of species were free-living. The dashed horizontal line represents an SES value of 0, indicating an observed value of MPD indistinguishable from random assembly.



Figure A3.3. Effects of predation intensity on trait dispersion (measured by SES<sub>MPD</sub> using the tip shuffle algorithm). Permuting across the global species pool, SES<sub>MPD</sub> increased with increasing predation intensity for macroalgae consumption ( $R^2 = 0.231$ , p = 0.009). The dashed horizontal line represents an SES value of 0, indicating an observed value of MPD indistinguishable from random assembly; points displayed as stars represent those for which SES is significantly different from 0 at  $\alpha = 0.05$ . Colors represent dominant trait values.

# APPENDIX 4: Species and trait data for fish and peracarid communities in Tomales Bay and Bodega Harbor, California

#### **1. FISHES**

Across both years and all six sites, we found a total of 35 fish species of which 16 species were retained in our analyses, after removing singletons, species that only occurred in one site-year combination, and species whose abundance totaled fewer than 4 individuals across samples (Table A4.1). The most speciose fish community had 13 species. Four fish species (*Cymatogaster aggregata, Gasterosteus aculeatus, Porichthys notatus,* and *Sebastes carnatus*) were present in discrete size cohorts and counted as separate groups for our analyses (Table A4.2).

We assigned two categorical (vertical position and foraging mode) and one continuous trait (trophic level) to fishes based on Fishbase (Froese & Pauly 2020) and Love (2011; Table A4.3). Vertical position, defined as the orientation of the fish in the water column, had three levels: 1) benthic – resting on the bottom, touching the substrate; 2) benthopelagic – suspended in the water column a short distance from the bottom; and 3) pelagic – suspended in the water column away from benthic structures, not bottom-associated aside from feeding. Foraging mode, defined as the suite of behaviors associated with feeding and foraging, had 5 levels: 1) pursuit predator – actively chases after fast-moving prey; 2) benthic browser – searches for and picks off bottom-associated prey items; 3) epifaunal browser – searches for and picks off prey items associated with eelgrass; 4) planktivore – feeds on suspended prey in the water column; and 5) sit-and-wait – ambush predators that feed on passing prey within reach. We fuzzy-coded vertical position and foraging mode among 5 and 3 levels, respectively, to accommodate species that occupied two or more levels (Ashford et al. 2018).

We collected linear morphometric measurements of fishes from 2-26 specimens of each species and size class collected from seines, and standardized them for ease of comparison across species (Fig. A4.1, Table A4.3). We log-tranformed fish traits where appropriate to conform to a normal distribution. Species-level mean trait values are listed in Table A4.4. We also used principal component analysis (PCA) to condense variation among fish species' linear morphometric traits into 16 axes, the first three of which explained 66% of variation among species (Fig. A4.2).

### REFERENCES

Ashford, O. S., A. J. Kenny, C. R. S. Barrio Froján, M. B. Bonsall, T. Horton, A. Brandt, G. J. Bird, S. Gerken, and A. D. Rogers. 2018. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proceedings of the Royal Society B: Biological Sciences 285:20180923.

- Froese, R., and Pauly, D. (eds). 2023. Fishbase. World Wide Web electronic publication, ver. 01/2023
- Love, M. 2011. Certainly more than you want to know about the fishes of the Pacific Coast: a postmodern experience. First edition. Really Big Press, Santa Barbara, CA, USA.

Table A4.2. Total counts for all fish species observed across sites and years, including separate size classes for G. aculeatus, C. aggregata, S. carnatus, and P. notatus. Rows in bold indicate species and size classes that were retained for community analyses.

| Species                  | Size class | Total count |
|--------------------------|------------|-------------|
| Gasterosteus aculeatus   | small      | 2468        |
| Cymatogaster aggregata   | small      | 729         |
| Syngnathus leptorhynchus |            | 563         |
| Gasterosteus aculeatus   | large      | 146         |
| Sebastes melanops        |            | 143         |
| Leptocottus armatus      |            | 51          |
| Embiotoca lateralis      |            | 50          |
| Clevelandia ios          |            | 43          |
| Gibbonsia metzi          |            | 42          |
| Apodicththys flavidus    |            | 37          |
| Brachyistius frenatus    |            | 37          |
| Sebastes carnatus        | small      | 31          |
| Atherinops affinus       |            | 19          |
| Sebastes carnatus        | large      | 18          |
| Oligocottus snyderi      |            | 17          |
| Phanerodon vacca         |            | 13          |
| Cymatogaster aggregata   | large      | 12          |
| Porichthys notatus       | large      | 10          |
| Pholis ornata            |            | 9           |
| Porichthys notatus       | small      | 4           |
| Aulorhynchus flavidus    |            | 5           |

| Acanthogobius flavimanus   | 4 |
|----------------------------|---|
| Citharichthys stigmaeus    | 4 |
| Scorpaenichthys marmoratus | 4 |
| Sebastes caurinus          | 4 |
| Xiphister mucosus          | 4 |
| Hexagrammos stelleri       | 3 |
| Embiotoca jacksoni         | 2 |
| Oligocottus maculosus      | 2 |
| Parophrys vetulus          | 2 |
| Cebidichthys violaceus     | 1 |
| Clupea pallasii            | 1 |
| Lepidogobius lepidus       | 1 |
| Ophiodon elongatus         | 1 |
| Sebastes paucispinis       | 1 |
|                            |   |

Table A4.3. Size thresholds for delimiting large vs. small individuals of *G. aculeatus*, *C.* 

*aggregata, S. carnatus,* and *P. notatus,* based on preliminary seine surveys in the same sites as in our study. No individuals were collected of sizes in between the ranges listed.

| Species                | Size Class | Size threshold (standard length) |
|------------------------|------------|----------------------------------|
| Gasterosteus aculeatus | Large      | ≥ 55 mm                          |
| Gasterosteus aculeatus | Small      | $\leq$ 45 mm                     |
| Cymatogaster aggregata | Large      | $\geq$ 60 mm                     |
| Cymatogaster aggregata | Small      | $\leq$ 56 mm                     |
| Sebastes carnatus      | Large      | $\geq$ 50 mm                     |
| Sebastes carnatus      | Small      | $\leq$ 48 mm                     |
| Porichthys notatus     | Large      | $\geq$ 67 mm                     |
| Porichthys notatus     | Small      | $\leq$ 25 mm                     |

Table A4.4. Traits used to characterize fish communities. Cat = discrete categorical trait, Cont. = continuous trait

| Trait             | Туре | Definition                                                                                              | Standardized | Transformed | Functional<br>Category | Source    |
|-------------------|------|---------------------------------------------------------------------------------------------------------|--------------|-------------|------------------------|-----------|
| Vertical position | Cat. | The orientation of<br>the fish in the<br>water column.<br>Levels: Benthic,<br>Benthopelagic,<br>Pelagic | N/A          | N/A         | Feeding                | Love 2011 |
| Foraging mode     | Cat. | Suite of behaviors associated with                                                                      | N/A          | N/A         | Feeding                | Love 2011 |

|                           |       | feeding and<br>foraging. Levels:<br>pursuit predator,<br>benthic browser,<br>epifaunal browser,<br>planktivore, sit-<br>and-wait.<br>The average |                                |     |                            |                         |
|---------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|----------------------------|-------------------------|
| Trophic<br>level          | Cont. | trophic level of the<br>species, estimated<br>from food items<br>Body length from                                                                | N/A                            | N/A | Feeding                    | Fishbase                |
| Standard<br>length        | Cont. | snout tip to the<br>end of the caudal<br>peduncle<br>Distance from                                                                               | N/A                            | N/A | Habitat use,<br>feeding    | Measured<br>individuals |
| Mouth<br>Height           | Cont. | distal tip of the<br>premaxilla to the<br>distal tip of the<br>dentary with the<br>jaws fully<br>extended<br>Straight length                     | Height /<br>Standard<br>Length | N/A | Feeding                    | Measured<br>individuals |
| Dorsal Fin<br>Length      | Cont. | from the anterior<br>to posterior end of<br>the dorsal fin;<br>summed where<br>dorsal fins were<br>discontinuous                                 | Length /<br>Standard<br>Length | N/A | Locomotion                 | Measured<br>individuals |
| Anal Fin<br>Length        | Cont. | Straight length<br>from the anterior<br>to posterior end of<br>the anal fin<br>Straight distance                                                 | Length /<br>Standard<br>Length | N/A | Locomotion                 | Measured<br>individuals |
| Caudal<br>Fin<br>Length   | Cont. | from the end of<br>the caudal<br>peduncle to the<br>distal tip of the<br>longest caudal fin                                                      | Length /<br>Standard<br>Length | log | Locomotion                 | Measured<br>individuals |
| Pectoral<br>Fin<br>Length | Cont. | ray<br>Length from base<br>to the tip of the<br>longest pectoral<br>ray<br>Distance from                                                         | Length /<br>Standard<br>Length | N/A | Locomotion,<br>habitat use | Measured<br>individuals |
| Head<br>Length            | Cont. | posterior margin<br>of the operculum<br>to the distal tip of<br>the premaxilla<br>with the jaws<br>closed                                        | Length /<br>Standard<br>Length | N/A | Feeding                    | Measured<br>individuals |

| Body<br>Depth                     | Cont. | Greatest vertical distance from the top of the fish to the bottom                                                                      | Depth /<br>Standard<br>Length  | N/A | Locomotion,<br>habitat use | Measured<br>individuals |
|-----------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----|----------------------------|-------------------------|
| Body<br>Depth<br>Below<br>Midline | Cont. | Greatest vertical<br>distance below a<br>horizontal line<br>drawn from the tip<br>of the snout to the<br>end of the caudal<br>peduncle | Depth / Body<br>Depth          | log | Locomotion,<br>habitat use | Measured<br>individuals |
| Head<br>Depth                     | Cont. | Vertical distance<br>from the top of the<br>head to the bottom<br>of the head,<br>passing through<br>the eye pupil                     | Depth / Body<br>Depth          | N/A | Feeding                    | Measured<br>individuals |
| Eye<br>Position                   | Cont. | Vertical distance<br>from the pupil to<br>the bottom of the<br>head                                                                    | Position /<br>Head Depth       | N/A | Habitat use                | Measured individuals    |
| Eye<br>Diameter                   | Cont. | Horizontal<br>distance across the<br>eye passing<br>through the pupil                                                                  | Diameter /<br>Head Length      | N/A | Feeding                    | Measured individuals    |
| Mouth<br>Protrusion               | Cont. | Length from distal<br>tip of the<br>premaxilla to the<br>eye pupil with the<br>jaws fully<br>extended                                  | Protrusion /<br>Head Length    | log | Feeding                    | Measured<br>individuals |
| Snout<br>Length                   | Cont. | Distance from eye<br>pupil to distal tip<br>of the premaxilla,<br>with the mouth<br>closed                                             | Length /<br>Head Length        | N/A | Feeding                    | Measured<br>individuals |
| Caudal<br>Peduncle<br>Length      | Cont. | Horizontal<br>distance from the<br>end of the caudal<br>peduncle to the<br>end of the anal fin                                         | Length /<br>Standard<br>Length | log | Locomotion                 | Measured<br>individuals |
| Caudal<br>Peduncle<br>Depth       | Con.  | Vertical distance<br>across the<br>narrowest portion<br>of the caudal<br>peduncle                                                      | Depth / Body<br>Depth          | log | Locomotion                 | Measured<br>individuals |

Table A4.5. Mean trait values for each fish species and size class observed in seines. Continuous morphometric traits are standardized according to Table A4.3; sample size denotes the number of individuals used to collect morphometric measurements.

| Species                                          | Vertical position         | Foraging mode                                                          | Trophic<br>level | Standard<br>length<br>(mm) | Mouth<br>Height | Dorsal<br>Fin<br>Length | Sample<br>size |
|--------------------------------------------------|---------------------------|------------------------------------------------------------------------|------------------|----------------------------|-----------------|-------------------------|----------------|
| Apodicththys<br>flavidus                         | Benthic                   | Benthic<br>browser,<br>epifaunal<br>browser, sit-<br>and-wait          | 3.55             | 94.0000                    | 0.0428          | 0.8862                  | 10             |
| Atherinops<br>affinus                            | Pelagic                   | Benthic<br>browser,<br>planktivore                                     | 2.76             | 42.1667                    | 0.0760          | 0.1358                  | 9              |
| Brachyistius<br>frenatus                         | Pelagic                   | Epifaunal<br>browser,<br>planktivore                                   | 3.5              | 56.0000                    | 0.0860          | 0.3864                  | 8              |
| Clevelandia<br>ios                               | Benthic                   | Benthic<br>browser                                                     | 3.12             | 35.4444                    | 0.1299          | 0.1627                  | 9              |
| <i>Cymatogaster<br/>aggregata</i><br>large       | Pelagic,<br>Benthopelagic | Benthic<br>browser,<br>epifaunal<br>browser                            | 2.99             | 86.0000                    | 0.1137          | 0.4869                  | 7              |
| <i>Cymatogaster</i><br><i>aggregata</i><br>small | Pelagic                   | Planktivore                                                            | 2.99             | 39.1731                    | 0.1160          | 0.4282                  | 26             |
| Embiotoca<br>lateralis                           | Pelagic,<br>Benthopelagic | Benthic<br>browser,<br>epifaunal<br>browser                            | 3.33             | 64.0000                    | 0.1353          | 0.4131                  | 7              |
| <i>Gasterosteus<br/>aculeatus</i><br>large       | Pelagic,<br>Benthopelagic | Benthic<br>browser,<br>epifaunal<br>browser,<br>planktivore<br>Benthic | 3.38             | 65.2500                    | 0.1038          | 0.2646                  | 12             |
| <i>Gasterosteus<br/>aculeatus</i><br>small       | Pelagic,<br>Benthopelagic | browser,<br>epifaunal<br>browser,<br>planktivore                       | 3.38             | 25.7727                    | 0.0756          | 0.2510                  | 11             |
| Gibbonsia<br>metzi                               | Benthic                   | Sit-and-wait                                                           | 3.06             | 48.5625                    | 0.0911          | 0.7078                  | 8              |
| Leptocottus<br>armatus                           | Benthic                   | Sit-and-wait                                                           | 3.68             | 80.7143                    | 0.1727          | 0.4446                  | 21             |
| Oligocottus<br>snyderi                           | Benthic                   | Benthic<br>browser, sit-<br>and-wait                                   | 3.16             | 50.5625                    | 0.1631          | 0.6191                  | 8              |

| Phanerodon<br>vacca                       | Pelagic,<br>Benthopelagic | Benthic<br>browser,<br>epifaunal<br>browser<br>Benthic | 3.38 | 67.0000  | 0.0848 | 0.4216 | 3  |
|-------------------------------------------|---------------------------|--------------------------------------------------------|------|----------|--------|--------|----|
| Pholis ornata                             | Benthic                   | browser,<br>epifaunal<br>browser, sit-<br>and-wait     | 3.55 | 75.0000  | 0.0451 | 0.8854 | 6  |
| Porichthys<br>notatus large               | Benthic,<br>Benthopelagic | Pursuit<br>predator,<br>planktivore                    | 4.04 | 77.0000  | 0.1634 | 0.5039 | 4  |
| <i>Porichthys</i><br><i>notatus</i> small | Benthic,<br>Benthopelagic | Pursuit<br>predator                                    | 4.04 | 24.5000  | 0.1824 | 0.5712 | 2  |
| <i>Sebastes</i><br><i>carnatus</i> large  | Benthopelagic             | Benthic<br>browser, sit-<br>and-wait                   | 3.62 | 50.0000  | 0.2195 | 0.5128 | 4  |
| <i>Sebastes</i><br><i>carnatus</i> small  | Benthopelagic             | Benthic<br>browser,<br>planktivore                     | 3.62 | 31.6250  | 0.2183 | 0.5078 | 7  |
| Sebastes<br>melanops                      | Pelagic,<br>Benthopelagic | Pursuit<br>predator,<br>planktivore                    | 3.9  | 45.5833  | 0.2171 | 0.5574 | 6  |
| Syngnathus<br>leptorhynchus               | Pelagic,<br>Benthopelagic | Epifaunal<br>browser,<br>planktivore                   | 3.24 | 128.3400 | 0.0131 | 0.1129 | 25 |

# Table A4.4, continued

| Species                                          | Anal<br>Fin<br>Length | log(Caudal<br>Fin<br>Length) | Pectoral<br>Fin<br>Length | Head<br>Length | Body<br>Depth | log(Body<br>Depth<br>Below<br>Midline) | Head<br>Depth | Sample<br>size |
|--------------------------------------------------|-----------------------|------------------------------|---------------------------|----------------|---------------|----------------------------------------|---------------|----------------|
| Apodicththys<br>flavidus                         | 0.4127                | -1.3213                      | 0.0392                    | 0.0956         | 0.1146        | -0.2654                                | 0.4688        | 10             |
| Atherinops<br>affinus                            | 0.2217                | -0.9279                      | 0.1389                    | 0.2090         | 0.1635        | -0.2926                                | 0.6175        | 9              |
| Brachyistius<br>frenatus                         | 0.3220                | -0.8215                      | 0.2123                    | 0.2900         | 0.3725        | -0.3134                                | 0.4749        | 8              |
| Clevelandia<br>ios                               | 0.2122                | -0.7990                      | 0.1120                    | 0.2263         | 0.1325        | -0.2391                                | 0.6821        | 9              |
| <i>Cymatogaster<br/>aggregata</i><br>large       | 0.2541                | -0.9175                      | 0.2464                    | 0.3073         | 0.3787        | -0.3134                                | 0.5063        | 7              |
| <i>Cymatogaster</i><br><i>aggregata</i><br>small | 0.2477                | -0.8154                      | 0.2344                    | 0.3133         | 0.3623        | -0.3214                                | 0.5587        | 26             |
| Embiotoca<br>lateralis                           | 0.2883                | -0.7982                      | 0.2393                    | 0.2989         | 0.4085        | -0.3269                                | 0.5133        | 7              |

| Gasterosteus<br>aculeatus<br>large         | 0.1817 | -0.9132 | 0.1327 | 0.2742 | 0.1983 | -0.1755 | 0.6826 | 12 |
|--------------------------------------------|--------|---------|--------|--------|--------|---------|--------|----|
| <i>Gasterosteus<br/>aculeatus</i><br>small | 0.1639 | -0.9809 | 0.1539 | 0.2692 | 0.2364 | -0.3194 | 0.5415 | 11 |
| Gibbonsia<br>metzi                         | 0.3884 | -0.8776 | 0.1601 | 0.2141 | 0.1785 | -0.3089 | 0.5975 | 8  |
| Leptocottus<br>armatus                     | 0.3112 | -0.8138 | 0.2411 | 0.3130 | 0.1889 | -0.2324 | 0.7066 | 21 |
| Oligocottus<br>snyderi                     | 0.3959 | -0.7076 | 0.2840 | 0.2572 | 0.2073 | -0.1304 | 0.7178 | 8  |
| Phanerodon<br>vacca                        | 0.2739 | -0.7846 | 0.2354 | 0.3087 | 0.3868 | -0.2999 | 0.5397 | 3  |
| Pholis ornata                              | 0.3927 | -1.2525 | 0.0628 | 0.1150 | 0.1124 | -0.2596 | 0.4975 | 6  |
| Porichthys<br>notatus large                | 0.4883 | -0.9009 | 0.1751 | 0.2609 | 0.1774 | -0.2417 | 0.6574 | 4  |
| <i>Porichthys</i><br><i>notatus</i> small  | 0.4978 | -0.7547 | 0.1492 | 0.2123 | 0.1914 | -0.2753 | 0.7659 | 2  |
| <i>Sebastes</i><br><i>carnatus</i> large   | 0.2023 | -0.8042 | 0.2463 | 0.3261 | 0.3055 | -0.2512 | 0.6436 | 4  |
| <i>Sebastes</i><br><i>carnatus</i> small   | 0.1925 | -0.7509 | 0.2298 | 0.3681 | 0.2575 | -0.2419 | 0.8601 | 7  |
| Sebastes<br>melanops                       | 0.1869 | -0.8116 | 0.2069 | 0.3322 | 0.2701 | -0.3394 | 0.6755 | 6  |
| Syngnathus<br>leptorhynchus                | 0.0000 | -1.5273 | 0.0203 | 0.1284 | 0.0309 | -0.2518 | 0.7862 | 25 |
|                                            |        |         |        |        |        |         |        |    |

# Table A4.4, continued

| Species                                          | Eye<br>Position | Eye<br>Diam. | log(Mouth<br>Protrusion) | Snout<br>Length | log(Caudal<br>Peduncle<br>Length + 1) | log(Caudal<br>Peduncle<br>Depth) | Sample<br>size |
|--------------------------------------------------|-----------------|--------------|--------------------------|-----------------|---------------------------------------|----------------------------------|----------------|
| Apodicththys<br>flavidus                         | 0.6797          | 0.2387       | -0.3886                  | 0.3662          | 0.0000                                | -0.4780                          | 10             |
| Atherinops<br>affinus                            | 0.4831          | 0.2531       | -0.3137                  | 0.3552          | 0.0708                                | -0.2898                          | 9              |
| Brachyistius<br>frenatus                         | 0.5510          | 0.2898       | -0.2775                  | 0.3960          | 0.0796                                | -0.3960                          | 8              |
| Clevelandia<br>ios                               | 0.8090          | 0.1153       | -0.3887                  | 0.3287          | 0.0675                                | -0.2702                          | 9              |
| <i>Cymatogaster</i><br>aggregata<br>large        | 0.6484          | 0.2581       | -0.2702                  | 0.3950          | 0.0494                                | -0.5274                          | 7              |
| <i>Cymatogaster</i><br><i>aggregata</i><br>small | 0.5780          | 0.3552       | -0.2315                  | 0.4294          | 0.0560                                | 1.2031                           | 26             |
| Embiotoca<br>lateralis                           | 0.5784          | 0.3287       | -0.3805                  | 0.3731          | 0.0630                                | -0.4818                          | 7              |

| Gasterosteus<br>aculeatus<br>large         | 0.5319 | 0.2478 | -0.3119 | 0.4166 | 0.0507 | -0.5158 | 12 |
|--------------------------------------------|--------|--------|---------|--------|--------|---------|----|
| <i>Gasterosteus<br/>aculeatus</i><br>small | 0.6582 | 0.2303 | -0.2900 | 0.4224 | 0.0540 | -0.5753 | 11 |
| Gibbonsia<br>metzi                         | 0.6632 | 0.1998 | -0.3606 | 0.3620 | 0.0313 | -0.4292 | 8  |
| Leptocottus<br>armatus                     | 0.8663 | 0.1219 | -0.3504 | 0.3282 | 0.0436 | -0.3910 | 21 |
| Oligocottus<br>snyderi                     | 0.8195 | 0.2043 | -0.3193 | 0.4333 | 0.0506 | -0.3608 | 8  |
| Phanerodon<br>vacca                        | 0.5659 | 0.2846 | -0.2959 | 0.3782 | 0.0603 | -0.4758 | 3  |
| Pholis ornata                              | 0.7278 | 0.1710 | -0.5043 | 0.2323 | 0.0000 | -0.4657 | 6  |
| Porichthys<br>notatus large                | 1.0048 | 0.1810 | -0.5686 | 0.2525 | 0.0000 | -0.5855 | 4  |
| <i>Porichthys</i><br><i>notatus</i> small  | 0.8781 | 0.1991 | 0.4096  | 0.4936 | 0.0000 | -0.5794 | 2  |
| <i>Sebastes</i><br><i>carnatus</i> large   | 0.7764 | 0.2604 | -0.2458 | 0.4105 | 0.0548 | -0.4383 | 4  |
| <i>Sebastes</i><br><i>carnatus</i> small   | 0.6840 | 0.2753 | -0.2326 | 0.3767 | 0.0603 | -0.3827 | 7  |
| Sebastes<br>melanops                       | 0.6204 | 0.2898 | -0.2466 | 0.4023 | 0.0652 | -0.3920 | 6  |
| Syngnathus<br>leptorhynchus                | 0.7109 | 0.0950 | -0.2494 | 0.5647 | 0.1689 | -0.6167 | 25 |

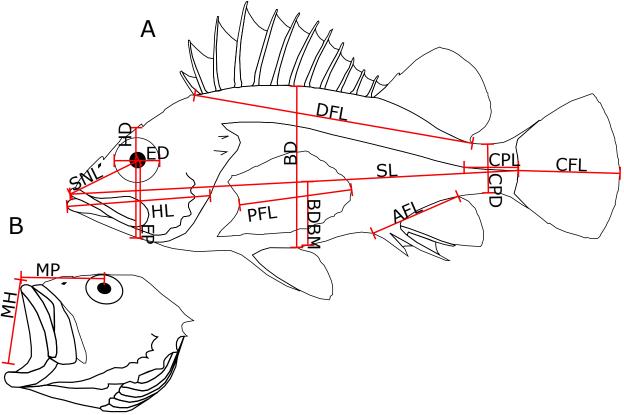



Figure A4.3. Fish morphometric traits used in functional analyses, here measured on a rockfish (*Sebastes* sp.) with its mouth closed (A) and open (B). SNL = snout length; HD = head depth; ED = eye diameter; HL = head length; EP = eye position; PFL = pectoral fin length; BD = body depth; BDBM = body depth below midline; SL = standard length; AFL = anal fin length; CPL = caudal peduncle length; CPD = caudal peduncle depth; CFL = caudal fin length; MP = mouth protrusion; MH = mouth height. Descriptions of individual traits are provided in Table A4.3.

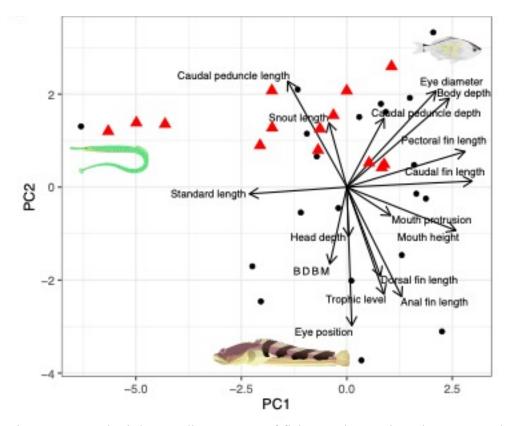



Figure A4.4. Principle coordinates axes of fish morphometric traits. PC1 explained 25.18% of the variation in fish morphology, while PC2 explained 23.10% of the variation. Black circular points represent mean values for species, while red triangles represent community weighted mean values. Species visually represented in morphospace include *Cymatogaster aggregata* (top right), *Syngnathus leptorhynchus* (middle left), and *Porichthys notatus* (bottom middle).

#### **2. PERACARIDS**

Across both years and all six sites, we found a total of 28 peracarid species of which 23 species were retained in our analyses, after removing singletons and species that only occurred in one site-year combination (Table A4.5). The most species peracarid community in our dataset had 18 species.

We assigned each two categorical traits (body shape and living habit) and one continuous trait (maximum body size) from the literature (Carlton 2007; Table A4.6). We determined tube fidelity for each species according to observations of living and preserved specimens and information in the literature about the presence or absence of silk glands. We ranked tube fidelity along a four-point ordered scale: none = lacks silk glands to build tubes; low = has silk glands but was never observed in tubes when alive or preserved in ethanol; medium = has silk glands

and was observed in tubes when alive but readily flees tube when exposed to ethanol, and high = has silk glands, is tubicolous when alive, and is regularly found inside tubes after preservation in ethanol. Living habit had 3 levels: tubicolous = has silk glands to build tubes, regardless of tube fidelity; clinging = lacks silk glands and typically remains stationary, clinging to eelgrass blades or other structure with well-developed dactyls; and swimming = lacks silk glands, readily swims among vertical structures, and lacks specialized dactyls for clinging. Body shape also had 3 levels: cylindrical = elongated or tube-shaped body, rounded in cross section; dorsoventrally compressed = body wider than it is tall; and laterally compressed = body taller than it is wide.

To measure activity level, we recorded videos of 9-20 individuals of each species, except for *Uromunna ubiquita*. After we started recording, we dropped each individual from a height of 6 centimeters into a cylindrical cup with 150 ml of seawater positioned over a grid on a dark background. We stopped recording 1 minute after the animal was first submerged in the seawater. After recording, we trimmed videos to a length of 1 minute to remove the initial seconds of dropping and splashing, and used FIJI (Schindelin et al. 2012) to record the number of frames during which the animal was not moving, walking, or swimming. We defined a lack of movement as a lack of sustained forward or backward locomotion facilitated by pereopods or pleopods. We defined walking as motion propelled primarily by the pereopod dactyls making contact with the bottom of the cup, while swimming was motion propelled primarily by beating the pleopods and freeing the pereopods from the substrate. We show the pleopods and pereopods of a typical amphipod in Fig. A4.3. We measured continuous morphometric traits from images of 9-22 individuals of each species in FIJI, and standardized and transformed them as described in Table A4.6 and shown in Fig. A4.3. We show species-level mean values for each trait in Table A4.7.

#### REFERENCES

- Ashford, O. S., A. J. Kenny, C. R. S. Barrio Froján, M. B. Bonsall, T. Horton, A. Brandt, G. J. Bird, S. Gerken, and A. D. Rogers. 2018. Phylogenetic and functional evidence suggests that deep-ocean ecosystems are highly sensitive to environmental change and direct human disturbance. Proceedings of the Royal Society B: Biological Sciences 285:20180923.
- Carlton, J. T. 2007. The Light and Smith Manual: intertidal invertebrates from Central California to Oregon. Fourth edition. University of California Press.

Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. 2012. Fiji: an open-source platform for biological image analysis. Nature Methods 9:676-682.

Table A4.6. Total and standardized counts for all peracarid species observed across sites and years. Standardized abundances are obtained by dividing the number of individuals in a sample by the biomass of macrophytes in the sample Rows in bold indicate species and size classes that were retained for community analyses.

| Species                    | Total count | Standardized total abundance (ind. g <sup>-1</sup> ) |
|----------------------------|-------------|------------------------------------------------------|
| Leptochelia sp.            | 4468        | 7.92451204                                           |
| Photis brevipes            | 2757        | 6.94097811                                           |
| Caprella californica       | 3534        | 6.22669491                                           |
| Zeuxo normani              | 2159        | 3.98439136                                           |
| Monocorophium insidiosum   | 2012        | 3.30624947                                           |
| Paracorophium sp.          | 1524        | 2.71298939                                           |
| Ampithoe valida            | 1452        | 2.22806836                                           |
| Aoroides columbiae         | 550         | 1.32119752                                           |
| Grandidierella japonica    | 567         | 0.83671613                                           |
| Ampithoe lacertosa         | 390         | 0.7393752                                            |
| Pentidotea resecata        | 540         | 0.54697383                                           |
| Ericthonius brasiliensis   | 170         | 0.35707027                                           |
| Ischyrocerus anguipes      | 204         | 0.35049762                                           |
| Paranthura japonica        | 96          | 0.17125917                                           |
| Uromunna ubiquita          | 64          | 0.15066378                                           |
| Paracerceis cordata        | 62          | 0.11774281                                           |
| Melita nitida              | 67          | 0.11653687                                           |
| Paramicrodeutopus schmitti | 48          | 0.09474279                                           |
| Pontogeneia rostrata       | 43          | 0.09220466                                           |
| Allorchestes angusta       | 59          | 0.08527527                                           |
| Americorophium spinicorne  | 34          | 0.05073408                                           |
| Apolochus barnardi         | 26          | 0.03992121                                           |
| Gnorimosphaeroma sp.       | 21          | 0.03192348                                           |
| Incisocalliope derzhavini  | 6           | 0.00912099                                           |
| Ampithoe sectimanus        | 2           | 0.00617033                                           |
| Hourstonius vilordes       | 2           | 0.00384578                                           |
| Janiralata occidentalis    | 1           | 0.0021857                                            |
|                            |             |                                                      |

Megamoera subtener20.00148796Table A4.7. Traits used to characterize peracarid communities. Traits standardized by bodylength are standardized by the measured body length of the same individual. Cat = discretecategorical trait, Cont. = continuous trait.

| Trait                | Туре            | Definition                                                                                                            | Standardized | Transformed | Functional category                              | Source          |
|----------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------------------------------------------|-----------------|
| Body shape           | Cat.            | Overall body<br>shape. Levels:<br>Cylindrical,<br>Dorsoventrally<br>compressed,<br>Laterally<br>compressed<br>Mode of | N/A          | N/A         | Microhabitat<br>use                              | Carlton<br>2007 |
| Living<br>habit      | Cat.            | contact with<br>habitat<br>substrate<br>(eelgrass).<br>Levels:<br>Tubicolous,<br>Clinging,<br>Swimming                | N/A          | N/A         | Microhabitat<br>use                              | Carlton<br>2007 |
| Tube<br>fidelity     | Ordered<br>Cat. | The degree of<br>association<br>with<br>constructed silk<br>tubes. Levels:<br>None, Low,<br>Medium, High              | N/A          | N/A         | Microhabitat<br>use                              | Pers. obs.      |
| Maximum<br>body size | Cont.           | Body length<br>measured from<br>the tip of the<br>rostrum to the<br>tip of the telson                                 | N/A          | log         | Microhabitat<br>use, predator<br>susceptibility  | Carlton<br>2007 |
| Mean body<br>size    | Cont.           | Body length<br>measured from<br>the tip of the<br>rostrum to the<br>tip of the telson                                 | N/A          | log         | Microhabitat<br>use, predator<br>susceptibility  | Measured        |
| %<br>Swimming        | Cont.           | Percentage of<br>total frames<br>during which<br>pleopod-driven<br>locomotion<br>occurred                             | N/A          | log         | Activity<br>level,<br>predator<br>susceptibility | Measured        |
| % Walking            | Cont.           | Percentage of<br>total frames<br>during which                                                                         | N/A          | N/A         | Activity<br>level,                               | Measured        |

|                     |       | pereopod-<br>driven<br>locomotion in<br>contact with<br>the cup surface<br>occurred                    |                           |     | predator<br>susceptibility                       |          |
|---------------------|-------|--------------------------------------------------------------------------------------------------------|---------------------------|-----|--------------------------------------------------|----------|
| % Still             | Cont. | Percentage of<br>total frames<br>during which<br>no forward<br>locomotion<br>occurred<br>Diameter of a | N/A                       | N/A | Activity<br>level,<br>predator<br>susceptibility | Measured |
| Eye<br>diameter     | Cont. | circle with an<br>area equal to<br>that of the eye<br>(eyes are often<br>irregularly-<br>shaped)       | Diameter /<br>Body length | N/A | Sensory                                          | Measured |
| Antenna<br>length 1 | Cont. | Distance from<br>the base to the<br>distal tip of<br>antenna 1                                         | Length /<br>Body length   | N/A | Sensory                                          | Measured |
| Antenna<br>length 2 | Cont. | Distance from<br>the base to the<br>distal tip of<br>antenna 2                                         | Length /<br>Body length   | N/A | Sensory                                          | Measured |

Table A4.8. Mean trait values for each peracarid species observed in grab samples. Continuous morphometric traits are standardized according to Table A4.6; sample size denotes the number of individuals used to collect morphometric measurements, followed by the number of individuals used to collect movement data.

| Species                      | Body shape           | Living<br>habit | Tube<br>fidelity | log(Max.<br>body size<br>(mm)) | log(Mean<br>body size<br>(mm)) | Sample<br>size |
|------------------------------|----------------------|-----------------|------------------|--------------------------------|--------------------------------|----------------|
| Allorchestes angusta         | Laterally compressed | Swimming        | None             | 1.0000                         | 0.7656                         | 10, 20         |
| Americorophium<br>spinicorne | Cylindrical          | Tubicolous      | Medium           | 0.8451                         | 0.5573                         | 20, 9          |
| Ampithoe lacertosa           | Laterally compressed | Tubicolous      | Medium           | 1.3802                         | 1.2241                         | 20, 19         |
| Ampithoe valida              | Laterally compressed | Tubicolous      | Medium           | 1.0969                         | 0.8336                         | 14, 19         |
| Aoroides columbiae           | Laterally compressed | Tubicolous      | Low              | 0.7782                         | 0.7108                         | 22, 14         |
| Apolochus barnardi           | Laterally compressed | Clinging        | None             | 0.3979                         | 0.4465                         | 18, 9          |

| Caprella californica<br>Ericthonius | Cylindrical               | Clinging   | None   | 1.4771 | 1.2663 | 21, 20 |
|-------------------------------------|---------------------------|------------|--------|--------|--------|--------|
| brasiliensis                        | Cylindrical               | Tubicolous | High   | 0.8129 | 0.7804 | 20, 15 |
| Gnorimosphaeroma<br>sp.             | Dorsoventrally compressed | Clinging   | None   | 1.0000 | 0.3656 | 10, 10 |
| Grandidierella<br>japonica          | Laterally compressed      | Tubicolous | Medium | 1.1139 | 0.6055 | 12, 11 |
| Ischyrocerus<br>anguipes            | Laterally compressed      | Tubicolous | Low    | 1.0792 | 0.7205 | 22, 12 |
| Leptochelia sp.                     | Cylindrical               | Tubicolous | Medium | 0.4771 | 0.5380 | 10, 10 |
| Melita nitida                       | Laterally compressed      | Swimming   | None   | 1.0792 | 0.6598 | 14, 10 |
| Monocorophium<br>insidiosum         | Cylindrical               | Tubicolous | Medium | 0.6532 | 0.4433 | 18, 15 |
| Paracerceis cordata                 | Dorsoventrally compressed | Clinging   | None   | 0.8513 | 0.5545 | 9, 14  |
| Paracorophium sp.                   | Laterally compressed      | Tubicolous | Low    | 0.6021 | 0.3888 | 16, 17 |
| Paramicrodeutopus<br>schmitti       | Laterally compressed      | Tubicolous | Low    | 0.6990 | 0.7730 | 10, 10 |
| Paranthura japonica                 | Cylindrical               | Tubicolous | Medium | 0.9590 | 0.9129 | 10, 11 |
| Pentidotea resecata                 | Dorsoventrally compressed | Clinging   | None   | 1.6990 | 1.2320 | 10, 10 |
| Photis brevipes                     | Laterally compressed      | Tubicolous | High   | 0.8451 | 0.6721 | 21, 13 |
| Pontogeneia<br>rostrata             | Laterally compressed      | Swimming   | None   | 0.8129 | 0.7542 | 22, 14 |
| Uromunna ubiquita                   | Dorsoventrally compressed | Clinging   | None   | 0.3010 | 0.0216 | 13, 0  |
| Zeuxo normani                       | Cylindrical               | Tubicolous | High   | 0.4771 | 0.5253 | 10, 10 |

# Table A4.7, continued. A1 = antenna length 1, A2 = antenna length 2

| Species                      | log(%<br>Swimming) | %<br>Walking | % Still | Eye<br>diam. | A1     | A2     | Sample<br>size |
|------------------------------|--------------------|--------------|---------|--------------|--------|--------|----------------|
| Allorchestes<br>angusta      | -0.2712            | 0.0560       | 0.4084  | 0.0334       | 0.2656 | 0.2451 | 10, 20         |
| Americorophium<br>spinicorne | -0.3674            | 0.3353       | 0.2355  | 0.0230       | 0.4270 | 0.5313 | 20, 9          |
| Ampithoe lacertosa           | -0.6914            | 0.2940       | 0.5025  | 0.0151       | 0.6798 | 0.4924 | 20, 19         |
| Ampithoe valida              | -0.3708            | 0.2619       | 0.3123  | 0.0200       | 0.5430 | 0.4249 | 14, 19         |
| Aoroides columbiae           | -0.9805            | 0.3705       | 0.5249  | 0.0191       | 0.5919 | 0.3128 | 22, 14         |
| Apolochus barnardi           | -1.4612            | 0.0205       | 0.9449  | 0.0433       | 0.2288 | 0.1896 | 18, 9          |
| Caprella<br>californica      | -1.0288            | 0.2929       | 0.6135  | 0.0077       | 0.6116 | 0.2864 | 21, 20         |
| Ericthonius<br>brasiliensis  | -0.9664            | 0.1314       | 0.7605  | 0.0244       | 0.4831 | 0.4838 | 20, 15         |

| Gnorimosphaeroma<br>sp.       | -0.8345 | 0.2346 | 0.6191 | 0.0667 | 0.2593 | 0.3793 | 10, 10 |
|-------------------------------|---------|--------|--------|--------|--------|--------|--------|
| Grandidierella<br>japonica    | -0.3383 | 0.1971 | 0.3441 | 0.0228 | 0.5652 | 0.4371 | 12, 11 |
| Ischyrocerus<br>anguipes      | -1.0569 | 0.4292 | 0.4831 | 0.0177 | 0.4416 | 0.4272 | 22, 12 |
| Leptochelia sp.               | -1.1577 | 0.5021 | 0.4283 | 0.0178 | 0.2144 | 0.1157 | 10, 10 |
| Melita nitida                 | -0.4091 | 0.0615 | 0.5487 | 0.0245 | 0.5435 | 0.3654 | 14, 10 |
| Monocorophium<br>insidiosum   | -0.2725 | 0.1974 | 0.2687 | 0.0246 | 0.3748 | 0.4900 | 18, 15 |
| Paracerceis<br>cordata        | -1.8909 | 0.4669 | 0.5202 | 0.0739 | 0.2338 | 0.3244 | 9, 14  |
| Paracorophium sp.             | -0.6522 | 0.3501 | 0.4271 | 0.0240 | 0.3082 | 0.3156 | 16, 17 |
| Paramicrodeutopus<br>schmitti | -0.6657 | 0.0013 | 0.7828 | 0.0194 | 0.3932 | 0.2589 | 10, 10 |
| Paranthura<br>japonica        | -1.1076 | 0.5976 | 0.3243 | 0.0155 | 0.0831 | 0.1013 | 10, 11 |
| Pentidotea resecata           | -0.4588 | 0.5181 | 0.1341 | 0.0186 | 0.0969 | 0.4472 | 10, 10 |
| Photis brevipes               | -1.6417 | 0.4967 | 0.4805 | 0.0202 | 0.3877 | 0.3628 | 21, 13 |
| Pontogeneia<br>rostrata       | -0.2748 | 0.0401 | 0.4288 | 0.0594 | 0.4266 | 0.4973 | 22, 14 |
| Uromunna ubiquita             | NA      | NA     | NA     | 0.0393 | 0.2001 | 0.8503 | 13, 0  |
| Zeuxo normani                 | -1.8539 | 0.8506 | 0.1354 | 0.0161 | 0.1411 | 0.1284 | 10, 10 |

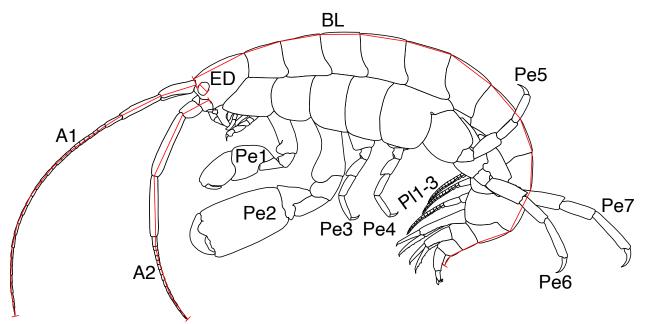



Figure A4.5. Peracarid morphometric traits used in functional analyses, here measured on an amphipod, *Ampithoe valida*. A1 = antenna length 1; A2 = antenna length 2; ED = eye diameter; BL = body length. Pe1-Pe7 denote individual pereopods (walking legs), while Pl1-Pl3 denote individual pleopods (swimming legs). Descriptions of individual traits are provided in Table A4.6.

### **APPENDIX 5: Supplementary material for Chapter 2.**

Table A5.1. Effect sizes of community-weighted mean fish traits on peracarid community trait and phylogenetic dispersion. Bolded cells indicate values significant at the alpha level indicated; the first 103 rows are models for which results are presented in the main text. Italicized rows represent post-hoc tests of individual peracarid community response traits. Rows are colored according to the direction and magnitude of the effect size; red indicates a negative effect while blue indicates a positive effect, and color saturation is proportional to  $R^2$ . TS = Tip Shuffle algorithm, IS = Independent Swap algorithm; BDBM = Body Depth Below Midline

| Predictor trait          | Response trait | Response<br>metric  | Response<br>permutation<br>algorithm | Effect<br>size | R <sup>2</sup> | alpha level |
|--------------------------|----------------|---------------------|--------------------------------------|----------------|----------------|-------------|
| PC1                      | all            | SES <sub>MNTD</sub> | TS                                   | 0.04471        | -0.07225       | 0.003125    |
| PC2                      | all            | SES <sub>MNTD</sub> | TS                                   | 0.225          | -0.01413       | 0.003125    |
| PC3                      | all            | SES <sub>MNTD</sub> | TS                                   | 0.1713         | 0.001343       | 0.003125    |
| PC4                      | all            | SES <sub>MNTD</sub> | TS                                   | -1.07          | 0.2779         | 0.003125    |
| PC5                      | all            | SES <sub>MNTD</sub> | TS                                   | -0.25312       | 0.06352        | 0.003125    |
| PC6                      | all            | SES <sub>MNTD</sub> | TS                                   | 0.2937         | 0.1789         | 0.003125    |
| PC7                      | all            | SES <sub>MNTD</sub> | TS                                   | -0.7743        | 0.2114         | 0.003125    |
| PC8                      | all            | SES <sub>MNTD</sub> | TS                                   | 1.249          | 0.4769         | 0.003125    |
| PC9                      | all            | SES <sub>MNTD</sub> | TS                                   | 0.9483         | 0.3428         | 0.003125    |
| PC10                     | all            | SES <sub>MNTD</sub> | TS                                   | -1.2957        | 0.03707        | 0.003125    |
| PC11                     | all            | SES <sub>MNTD</sub> | TS                                   | 3.65107        | 0.03478        | 0.003125    |
| PC12                     | all            | SES <sub>MNTD</sub> | TS                                   | -3.24415       | 0.3404         | 0.003125    |
| PC13                     | all            | SES <sub>MNTD</sub> | TS                                   | 2.48169        | 0.01732        | 0.003125    |
| PC14                     | all            | SES <sub>MNTD</sub> | TS                                   | -5.0352        | 0.3272         | 0.003125    |
| PC15                     | all            | SES <sub>MNTD</sub> | TS                                   | 5.4195         | 0.03951        | 0.003125    |
| PC16                     | all            | SES <sub>MNTD</sub> | TS                                   | 14.3565        | 0.6565         | 0.003125    |
| Anal fin                 | 11             | ar a                | TC                                   | 1 4054         | 0.0(102        | 0.000/01/50 |
| length                   | all            | SES <sub>MNTD</sub> | TS                                   | 1.4954         | -0.06102       | 0.00263158  |
| BDBM                     | all            | SES <sub>MNTD</sub> | TS                                   | -13.492        | 0.5642         | 0.00263158  |
| Body depth<br>Caudal fin | all            | SES <sub>MNTD</sub> | TS                                   | 2.3018         | 0.004472       | 0.00263158  |
| length                   | all            | SES <sub>MNTD</sub> | TS                                   | 2.3498         | -0.08527       | 0.00263158  |
| Caudal                   |                |                     |                                      |                |                |             |
| peduncle                 | 11             | ar a                | TC                                   | 0.05(0         | 0.00711        | 0.000/01/50 |
| depth<br>Caudal          | all            | SES <sub>MNTD</sub> | TS                                   | 0.2568         | -0.00711       | 0.00263158  |
| peduncle                 |                |                     |                                      |                |                |             |
| length                   | all            | $SES_{MNTD}$        | TS                                   | 0.6436         | -0.09203       | 0.00263158  |
|                          |                |                     |                                      |                |                |             |

| Dorsal fin                          |           |                     |    |          |           |            |
|-------------------------------------|-----------|---------------------|----|----------|-----------|------------|
| length                              | all       | SES <sub>MNTD</sub> | TS | 1.2216   | -0.01383  | 0.00263158 |
| Eye diameter                        | all       | SES <sub>MNTD</sub> | TS | 1.4517   | -0.0776   | 0.00263158 |
| Eye position                        | all       | SES <sub>MNTD</sub> | TS | 7.84     | 0.2658    | 0.00263158 |
| Head depth                          | all       | SES <sub>MNTD</sub> | TS | -3.557   | 0.05329   | 0.00263158 |
| Head length                         | all       | SES <sub>MNTD</sub> | TS | 0.8822   | -0.09438  | 0.00263158 |
| Mouth height                        | all       | SES <sub>MNTD</sub> | TS | 3.5411   | -0.02024  | 0.00263158 |
| Mouth<br>protrusion<br>Pectoral fin | all       | SES <sub>MNTD</sub> | TS | 4.283    | 0.06329   | 0.00263158 |
| length<br>Standard                  | all       | SES <sub>MNTD</sub> | TS | 3.4599   | 0.007227  | 0.00263158 |
| length                              | all       | SES <sub>MNTD</sub> | TS | 0.007442 | 0.005068  | 0.00263158 |
| Snout length                        | all       | SES <sub>MNTD</sub> | TS | -0.2739  | -0.09941  | 0.00263158 |
| Trophic level<br>Foraging           | all       | SES <sub>MNTD</sub> | TS | -0.198   | -0.09573  | 0.00263158 |
| mode<br>Vertical                    | all       | SES <sub>MNTD</sub> | TS | -0.4545  | -0.04048  | 0.00263158 |
| position                            | all       | SES <sub>MNTD</sub> | TS | -0.07623 | -0.09513  | 0.00263158 |
| PC1                                 | phylogeny | SES <sub>MNTD</sub> | TS | 0.04383  | -0.08396  | 0.003125   |
| PC2                                 | phylogeny | SES <sub>MNTD</sub> | TS | 0.3495   | 0.02462   | 0.003125   |
| PC3                                 | phylogeny | SES <sub>MNTD</sub> | TS | 0.2277   | 0.00781   | 0.003125   |
| PC4                                 | phylogeny | SES <sub>MNTD</sub> | TS | -1.6731  | 0.456     | 0.003125   |
| PC5                                 | phylogeny | SES <sub>MNTD</sub> | TS | -0.34585 | 0.08368   | 0.003125   |
| PC6                                 | phylogeny | SES <sub>MNTD</sub> | TS | 0.4308   | 0.2609    | 0.003125   |
| PC7                                 | phylogeny | SES <sub>MNTD</sub> | TS | -1.0766  | 0.2622    | 0.003125   |
| PC8                                 | phylogeny | SES <sub>MNTD</sub> | TS | 1.7603   | 0.5895    | 0.003125   |
| PC9                                 | phylogeny | SES <sub>MNTD</sub> | TS | 1.253    | 0.3652    | 0.003125   |
| PC10                                | phylogeny | SES <sub>MNTD</sub> | TS | -1.83117 | 0.06472   | 0.003125   |
| PC11                                | phylogeny | SES <sub>MNTD</sub> | TS | 4.9229   | 0.04743   | 0.003125   |
| PC12                                | phylogeny | SES <sub>MNTD</sub> | TS | -4.41861 | 0.3911    | 0.003125   |
| PC13                                | phylogeny | SES <sub>MNTD</sub> | TS | 2.66958  | -0.01832  | 0.003125   |
| PC14                                | phylogeny | SES <sub>MNTD</sub> | TS | -6.7443  | 0.3611    | 0.003125   |
| PC15                                | phylogeny | SES <sub>MNTD</sub> | TS | 6.3838   | 0.01647   | 0.003125   |
| PC16                                | phylogeny | SES <sub>MNTD</sub> | TS | 20.4799  | 0.8263    | 0.003125   |
| Anal fin<br>length                  | phylogeny | SES <sub>MNTD</sub> | TS | 1.6601   | -0.0711   | 0.00263158 |
| BDBM                                | phylogeny | SES <sub>MNTD</sub> | TS | -18.736  | 0.6706    | 0.00263158 |
| Body depth<br>Caudal fin            | phylogeny | SES <sub>MNTD</sub> | TS | 2.7896   | -0.007678 | 0.00263158 |
| length                              | phylogeny | SES <sub>MNTD</sub> | TS | 1.4752   | -0.09651  | 0.00263158 |
| Caudal<br>peduncle<br>depth         | phylogeny | SES <sub>MNTD</sub> | TS | 0.3752   | 0.0193    | 0.00263158 |

| Caudal<br>peduncle         |                                |                                |     |           |           |             |
|----------------------------|--------------------------------|--------------------------------|-----|-----------|-----------|-------------|
| length<br>Dorsal fin       | phylogeny                      | SES <sub>MNTD</sub>            | TS  | 1.237     | -0.08227  | 0.00263158  |
| length                     | phylogeny                      | $SES_{MNTD}$                   | TS  | 1.476     | -0.02431  | 0.00263158  |
| Eye diameter               | phylogeny                      | $SES_{MNTD}$                   | TS  | 1.5907    | -0.08382  | 0.00263158  |
| Eye position               | phylogeny                      | SES <sub>MNTD</sub>            | TS  | 10.751    | 0.314     | 0.00263158  |
| Head depth                 | phylogeny                      | SES <sub>MNTD</sub>            | TS  | -4.946    | 0.07829   | 0.00263158  |
| Head length                | phylogeny                      | SES <sub>MNTD</sub>            | TS  | 0.36599   | -0.09942  | 0.00263158  |
| Mouth height               | phylogeny                      | SES <sub>MNTD</sub>            | TS  | 3.799     | -0.04477  | 0.00263158  |
| Mouth                      |                                | ana                            | TO  | 6 10 4    | 0 10 40   | 0.000(0150  |
| protrusion<br>Pectoral fin | phylogeny                      | SES <sub>MNTD</sub>            | TS  | 6.184     | 0.1048    | 0.00263158  |
| length<br>Standard         | phylogeny                      | SES <sub>MNTD</sub>            | TS  | 4.0482    | -0.01168  | 0.00263158  |
| length                     | phylogeny                      | $\mathbf{SES}_{\mathbf{MNTD}}$ | TS  | 0.01177   | 0.05813   | 0.00263158  |
| Snout length               | phylogeny                      | SES <sub>MNTD</sub>            | TS  | 0.4038    | -0.09922  | 0.00263158  |
| Trophic level              | phylogeny                      | SES <sub>MNTD</sub>            | TS  | -0.3671   | -0.09117  | 0.00263158  |
| Foraging                   |                                | ana                            | TO  | 0.420     | 0.0(01    | 0.000(0150  |
| mode<br>Vertical           | phylogeny                      | SES <sub>MNTD</sub>            | TS  | -0.429    | -0.0681   | 0.00263158  |
| position                   | phylogeny                      | SES <sub>MNTD</sub>            | TS  | -0.1518   | -0.08838  | 0.00263158  |
|                            | activity level                 |                                |     |           |           |             |
| BDBM                       | (% still)                      | $SES_{MNTD}$                   | TS  | -6.523    | 0.1309    | 0.0045455   |
| PC16                       | activity level<br>(% still)    | SES <sub>MNTD</sub>            | TS  | 8.7216    | 0.3152    | 0.0045455   |
| 1010                       | activity level                 | SLSMNID                        | 15  | 0.7210    | 0.5152    | 0.0045455   |
| PC8                        | (% still)                      | $SES_{MNTD}$                   | TS  | 0.7664    | 0.223     | 0.0045455   |
| אמממ                       | activity level                 | ara                            | TC  | 0.011     | 0.000207  | 0 00 45 455 |
| BDBM                       | (% swimming)<br>activity level | $SES_{MNTD}$                   | TS  | -8.911    | -0.008397 | 0.0045455   |
| <i>PC16</i>                | (% swimming)                   | SES <sub>MNTD</sub>            | TS  | 12.7537   | 0.08878   | 0.0045455   |
|                            | activity level                 |                                |     |           |           |             |
| PC8                        | (% swimming)                   | $SES_{MNTD}$                   | TS  | 1.1776    | 0.06215   | 0.0045455   |
| BDBM                       | activity level<br>(% walking)  | SES <sub>MNTD</sub>            | TS  | -10.302   | -0.000527 | 0.0045455   |
| 22211                      | activity level                 |                                | 1.0 | 10.002    | 0.0000027 | 0.000       |
| <i>PC16</i>                | (% walking)                    | $SES_{MNTD}$                   | TS  | 9.3668    | -0.01727  | 0.0045455   |
| PC8                        | activity level<br>(% walking)  | SES <sub>MNTD</sub>            | TS  | 0.8837    | -0.02581  | 0.0045455   |
| 100                        | antenna 1                      | SESMNID                        | 15  | 0.0057    | -0.02301  | 0.0045455   |
| BDBM                       | length                         | SES <sub>MNTD</sub>            | TS  | -9.596    | 0.3811    | 0.0045455   |
| DCLC                       | antenna 1                      | ana                            | ΤC  | 10 2 (0 ( | 0 (522    | 0.0045455   |
| PC16                       | length<br>antenna 1            | SES <sub>MNTD</sub>            | TS  | 10.2606   | 0.4533    | 0.0045455   |
| PC8                        | length                         | SES <sub>MNTD</sub>            | TS  | 0.9024    | 0.3311    | 0.0045455   |
|                            | antenna 2                      |                                |     |           |           |             |
| BDBM                       | length                         | SES <sub>MNTD</sub>            | TS  | 1.7397    | 0.329     | 0.0045455   |

| APPENDIX | 5 |
|----------|---|
|----------|---|

|                    | antenna 2         |                                |    |           |           |            |
|--------------------|-------------------|--------------------------------|----|-----------|-----------|------------|
| PC16               | length            | SES <sub>MNTD</sub>            | TS | -1.84729  | 0.3866    | 0.0045455  |
| D GO               | antenna 2         | 0.50                           | TC | 0.1.(1.(0 | 0.0550    |            |
| PC8                | length            | SES <sub>MNTD</sub>            | TS | -0.16162  | 0.2753    | 0.0045455  |
| BDBM               | body shape        | SES <sub>MNTD</sub>            | TS | -1.4493   | 0.265     | 0.0045455  |
| <i>PC16</i>        | body shape        | SES <sub>MNTD</sub>            | TS | 1.52118   | 0.3045    | 0.0045455  |
| PC8                | body shape        | SES <sub>MNTD</sub>            | TS | 0.13093   | 0.2019    | 0.0045455  |
| BDBM               | eye diameter      | SES <sub>MNTD</sub>            | TS | 2.5251    | 0.09542   | 0.0045455  |
| <i>PC16</i>        | eye diameter      | SES <sub>MNTD</sub>            | TS | -2.8551   | 0.1513    | 0.0045455  |
| PC8                | eye diameter      | SES <sub>MNTD</sub>            | TS | -0.26376  | 0.1161    | 0.0045455  |
| BDBM               | living habit      | $SES_{MNTD}$                   | TS | -1.0751   | 0.1289    | 0.0045455  |
| <i>PC16</i>        | living habit      | $SES_{MNTD}$                   | TS | 1.05591   | 0.1221    | 0.0045455  |
| PC8                | living habit      | $SES_{MNTD}$                   | TS | 0.0883    | 0.05653   | 0.0045455  |
| BDBM               | max body size     | $SES_{MNTD}$                   | TS | -8.346    | 0.3318    | 0.0045455  |
| <i>PC16</i>        | max body size     | $SES_{MNTD}$                   | TS | 9.1473    | 0.4218    | 0.0045455  |
| PC8                | max body size     | $SES_{MNTD}$                   | TS | 0.7703    | 0.2728    | 0.0045455  |
| BDBM               | mean body<br>size | SES <sub>MNTD</sub>            | TS | 0.9199    | -0.06737  | 0.0045455  |
| DDDM               | mean body         | SESMNTD                        | 15 | 0.9199    | -0.00/3/  | 0.0043433  |
| <i>PC16</i>        | size              | SES <sub>MNTD</sub>            | TS | 0.587207  | -0.08662  | 0.0045455  |
|                    | mean body         |                                |    |           |           |            |
| PC8                | size              | SES <sub>MNTD</sub>            | TS | -0.05646  | -0.08754  | 0.0045455  |
| BDBM               | tube fidelity     | $SES_{MNTD}$                   | TS | 0.2693    | -0.09993  | 0.0045455  |
| <i>PC16</i>        | tube fidelity     | $SES_{MNTD}$                   | TS | -4.74418  | -0.07704  | 0.0045455  |
| PC8                | tube fidelity     | $SES_{MNTD}$                   | TS | -0.3953   | -0.08394  | 0.0045455  |
| PC1                | all               | $SES_{MNTD}$                   | IS | 0.06359   | -0.0628   | 0.003125   |
| PC2                | all               | $SES_{MNTD}$                   | IS | 0.2856    | -0.008355 | 0.003125   |
| PC3                | all               | SES <sub>MNTD</sub>            | IS | 0.2031    | -0.005549 | 0.003125   |
| PC4                | all               | SES <sub>MNTD</sub>            | IS | -1.1039   | 0.1666    | 0.003125   |
| PC5                | all               | SES <sub>MNTD</sub>            | IS | -0.25133  | 0.006855  | 0.003125   |
| PC6                | all               | $SES_{MNTD}$                   | IS | 0.3333    | 0.138     | 0.003125   |
| PC7                | all               | SES <sub>MNTD</sub>            | IS | -0.9344   | 0.2005    | 0.003125   |
| PC8                | all               | $SES_{MNTD}$                   | IS | 1.3956    | 0.3774    | 0.003125   |
| PC9                | all               | $SES_{MNTD}$                   | IS | 1.0248    | 0.2427    | 0.003125   |
| PC10               | all               | $\mathbf{SES}_{\mathrm{MNTD}}$ | IS | -1.28943  | -0.01003  | 0.003125   |
| PC11               | all               | $\mathbf{SES}_{\mathrm{MNTD}}$ | IS | 3.53332   | -0.01634  | 0.003125   |
| PC12               | all               | SES <sub>MNTD</sub>            | IS | -3.49097  | 0.2377    | 0.003125   |
| PC13               | all               | SES <sub>MNTD</sub>            | IS | 2.98987   | 0.01287   | 0.003125   |
| PC14               | all               | SES <sub>MNTD</sub>            | IS | -5.3802   | 0.2233    | 0.003125   |
| PC15               | all               | SES <sub>MNTD</sub>            | IS | 6.4034    | 0.02909   | 0.003125   |
| PC16               | all               | SES <sub>MNTD</sub>            | IS | 16.0453   | 0.5263    | 0.003125   |
| Anal fin<br>length | all               | SES <sub>MNTD</sub>            | IS | 1.8311    | -0.06126  | 0.00263158 |
|                    |                   |                                |    |           |           |            |

| BDBM                       | all       | SES <sub>MNTD</sub> | IS | -15.136  | 0.4541             | 0.00263158           |
|----------------------------|-----------|---------------------|----|----------|--------------------|----------------------|
| Body depth                 | all       | SES <sub>MNTD</sub> | IS | 2.9529   | 0.01395            | 0.00263158           |
| Caudal fin                 | 11        |                     | 10 | 2 5552   | 0.07506            | 0.000 (01.50         |
| length<br>Caudal           | all       | SES <sub>MNTD</sub> | IS | 3.7553   | -0.07506           | 0.00263158           |
| peduncle                   |           |                     |    |          |                    |                      |
| depth                      | all       | SES <sub>MNTD</sub> | IS | 0.3279   | 0.0003347          | 0.00263158           |
| Caudal                     |           |                     |    |          |                    |                      |
| peduncle<br>length         | all       | SES <sub>MNTD</sub> | IS | 0.46255  | -0.09727           | 0.00263158           |
| Dorsal fin                 | an        | SLOMNID             | 15 | 0.40235  | -0.07727           | 0.00205158           |
| length                     | all       | SES <sub>MNTD</sub> | IS | 1.367    | -0.02848           | 0.00263158           |
| Eye diameter               | all       | SES <sub>MNTD</sub> | IS | 2.1562   | -0.06725           | 0.00263158           |
| Eye position               | all       | SES <sub>MNTD</sub> | IS | 8.291    | 0.1712             | 0.00263158           |
| Head depth                 | all       | SES <sub>MNTD</sub> | IS | -4.147   | 0.03808            | 0.00263158           |
| Head length                | all       | SES <sub>MNTD</sub> | IS | 1.7281   | -0.08571           | 0.00263158           |
| Mouth height               | all       | SES <sub>MNTD</sub> | IS | 4.3921   | -0.01868           | 0.00263158           |
| Mouth                      | 11        |                     | 10 | 1.0.00   | 0.02077            | 0.000(0150           |
| protrusion<br>Pectoral fin | all       | $SES_{MNTD}$        | IS | 4.868    | 0.03977            | 0.00263158           |
| length                     | all       | SESMNTD             | IS | 4.4111   | 0.01552            | 0.00263158           |
| Standard                   |           |                     |    |          |                    |                      |
| length                     | all       | $SES_{MNTD}$        | IS | 0.006985 | -0.03865           | 0.00263158           |
| Snout length               | all       | $SES_{MNTD}$        | IS | -0.6682  | -0.09765           | 0.00263158           |
| Trophic level              | all       | $SES_{MNTD}$        | IS | -0.3021  | -0.09341           | 0.00263158           |
| Foraging<br>mode           | all       | SES <sub>MNTD</sub> | IS | -0.483   | -0.05545           | 0.00263158           |
| Vertical                   | an        | SES MNT             | 15 | -0.405   | -0.05545           | 0.00205150           |
| position                   | all       | D                   | IS | 0.012752 | -0.09991           | 0.00263158           |
| PC1                        |           | SES_MNT<br>D        | IS | 0.05727  | 0.06595            | 0.003125             |
| PC1<br>PC2                 | phylogeny | _                   | IS | 0.03727  | -0.06585<br>0.0275 | 0.003125             |
|                            | phylogeny | SES <sub>MNTD</sub> |    |          |                    |                      |
| PC3                        | phylogeny | SES                 | IS | 0.2281   | 0.03479            | 0.003125             |
| PC4                        | phylogeny | SES <sub>MNTD</sub> | IS | -1.3922  | 0.3798             | 0.003125<br>0.003125 |
| PC5                        | phylogeny | SES <sub>MNTD</sub> | IS | -0.28792 | 0.05869            |                      |
| PC6                        | phylogeny | SES                 | IS | 0.3784   | 0.2472             | 0.003125             |
| PC7                        | phylogeny | SES <sub>MNTD</sub> | IS | -0.9775  | 0.2722             | 0.003125             |
| PC8                        | phylogeny | SES <sub>MNTD</sub> | IS | 1.5378   | 0.5559             | 0.003125             |
| PC9                        | phylogeny | SES <sub>MNTD</sub> | IS | 1.1032   | 0.3495             | 0.003125             |
| PC10                       | phylogeny | SES <sub>MNTD</sub> | IS | -1.54419 | 0.04602            | 0.003125             |
| PC11                       | phylogeny | SES                 | IS | 4.307    | 0.04067            | 0.003125             |
| PC12                       | phylogeny | SES <sub>MNTD</sub> | IS | -3.91788 | 0.3813             | 0.003125             |
| PC13                       | phylogeny | SES                 | IS | 2.56861  | -0.005734          | 0.003125             |
| PC14                       | phylogeny | SES                 | IS | -5.9804  | 0.352              | 0.003125             |
| PC15                       | phylogeny | $SES_{MNTD}$        | IS | 5.8831   | 0.0233             | 0.003125             |

| PC16                 | phylogeny                      | SES <sub>MNTD</sub>            | IS | 17.89997 | 0.7821        | 0.003125    |
|----------------------|--------------------------------|--------------------------------|----|----------|---------------|-------------|
| Anal fin<br>length   | nhylogony                      | SES <sub>MNTD</sub>            | IS | 1.9277   | -0.05142      | 0.00263158  |
| BDBM                 | phylogeny<br>phylogeny         | SES <sub>MNTD</sub>            | IS | -16.773  | <b>0.6699</b> | 0.00263158  |
| Body depth           | phylogeny                      | SES <sub>MNTD</sub>            | IS | 2.9711   | 0.03055       | 0.00263158  |
| Caudal fin           | phylogeny                      | SESMNID                        | 15 | 2.9711   | 0.05055       | 0.00205150  |
| length               | phylogeny                      | $\mathbf{SES}_{\mathrm{MNTD}}$ | IS | 2.7667   | -0.08468      | 0.00263158  |
| Caudal peduncle      |                                |                                |    |          |               |             |
| depth                | phylogeny                      | SES <sub>MNTD</sub>            | IS | 0.3562   | 0.03404       | 0.00263158  |
| Caudal               | 1 5 8 5                        |                                |    |          |               |             |
| peduncle             |                                | SES                            | IC | 0 (001   | 0.00206       | 0.00262159  |
| length<br>Dorsal fin | phylogeny                      | SES <sub>MNTD</sub>            | IS | 0.6981   | -0.09296      | 0.00263158  |
| length               | phylogeny                      | SES <sub>MNTD</sub>            | IS | 1.496    | -0.003069     | 0.00263158  |
| Eye diameter         | phylogeny                      | SES <sub>MNTD</sub>            | IS | 2.0708   | -0.06581      | 0.00263158  |
| Eye position         | phylogeny                      | SES <sub>MNTD</sub>            | IS | 9.082    | 0.2682        | 0.00263158  |
| Head depth           | phylogeny                      | $SES_{MNTD}$                   | IS | -4.762   | 0.106         | 0.00263158  |
| Head length          | phylogeny                      | $SES_{MNTD}$                   | IS | 1.153    | -0.0928       | 0.00263158  |
| Mouth height         | phylogeny                      | SES <sub>MNTD</sub>            | IS | 4.0495   | -0.02177      | 0.00263158  |
| Mouth protrusion     | phylogeny                      | SES <sub>MNTD</sub>            | IS | 5.416    | 0.09584       | 0.00263158  |
| Pectoral fin         | phylogeny                      | SESMNID                        | 15 | 5.410    | 0.09504       | 0.00203138  |
| length               | phylogeny                      | $SES_{MNTD}$                   | IS | 4.3394   | 0.02651       | 0.00263158  |
| Standard<br>length   | nhulaganu                      | SES <sub>MNTD</sub>            | IS | 0.00899  | 0.01499       | 0.00263158  |
| Snout length         | phylogeny<br>phylogeny         | SES <sub>MNTD</sub>            | IS | -0.2454  | -0.09964      | 0.00263158  |
| Trophic level        | phylogeny                      | $SES_{MNTD}$                   | IS | -0.2454  | -0.09904      | 0.00263158  |
| Foraging             | phylogeny                      | SLO <sub>MNID</sub>            | 15 | -0.5157  | -0.07100      | 0.00203138  |
| mode                 | phylogeny                      | $SES_{MNTD}$                   | IS | -0.4784  | -0.05056      | 0.00263158  |
| Vertical position    | phylogeny                      | <b>SES</b> <sub>MNTD</sub>     | IS | -0.07682 | -0.09629      | 0.00263158  |
| position             | activity level                 | SES <sub>MNTD</sub>            | 15 | -0.07082 | -0.09029      | 0.00203138  |
| BDBM                 | (% still)                      | SES <sub>MNTD</sub>            | IS | -7.506   | 0.00504       | 0.0045455   |
| PC16                 | activity level<br>(% still)    | SES                            | IS | 11 4022  | 0 1 4 7 7     | 0 00 45 455 |
| PCIO                 | activity level                 | $SES_{MNTD}$                   | 15 | 11.4922  | 0.1477        | 0.0045455   |
| PC8                  | (% still)                      | SES <sub>MNTD</sub>            | IS | 1.0264   | 0.09906       | 0.0045455   |
|                      | activity level                 | SES                            | IC | Q 100    | 0 005 406     | 0 00 45 455 |
| BDBM                 | (% swimming)<br>activity level | $SES_{MNTD}$                   | IS | -8.199   | -0.005406     | 0.0045455   |
| PC16                 | (% swimming)                   | SES <sub>MNTD</sub>            | IS | 11.5614  | 0.08922       | 0.0045455   |
| DCO                  | activity level                 | ana                            | 10 | 10714    | 0.06272       | 0.0045455   |
| PC8                  | (% swimming)<br>activity level | SES <sub>MNTD</sub>            | IS | 1.0714   | 0.06372       | 0.0045455   |
| BDBM                 | (% walking)                    | SES <sub>MNTD</sub>            | IS | -7.592   | 0.01645       | 0.0045455   |
| DCL                  | activity level                 |                                | 10 |          | 0.005550      | 0.00/5/55   |
| <i>PC16</i>          | (% walking)                    | $SES_{MNTD}$                   | IS | 7.207    | 0.005558      | 0.0045455   |

| PC8         | activity level<br>(% walking) | SES <sub>MNTD</sub> | IS | 0.6739        | -0.007018 | 0.0045455 |  |
|-------------|-------------------------------|---------------------|----|---------------|-----------|-----------|--|
|             | antenna 1                     |                     |    |               |           |           |  |
| BDBM        | length                        | SES <sub>MNTD</sub> | IS | -10.835       | 0.3396    | 0.0045455 |  |
|             | antenna 1                     |                     |    |               |           |           |  |
| <i>PC16</i> | length                        | $SES_{MNTD}$        | IS | 11.5808       | 0.4052    | 0.0045455 |  |
| PC8         | antenna 1<br>length           | SES <sub>MNTD</sub> | IS | 1.0178        | 0.2931    | 0.0045455 |  |
| 100         | antenna 2                     | SESMNID             | 15 | 1.0170        | 0.2751    | 0.0043433 |  |
| BDBM        | length                        | SES <sub>MNTD</sub> | IS | 3.362         | 0.2894    | 0.0045455 |  |
|             | antenna 2                     |                     |    |               |           |           |  |
| <i>PC16</i> | length                        | $SES_{MNTD}$        | IS | -3.92486      | 0.4338    | 0.0045455 |  |
| PC8         | antenna 2<br>length           | SES <sub>MNTD</sub> | IS | -0.34984      | 0.3273    | 0.0045455 |  |
|             | -                             |                     |    |               |           |           |  |
| BDBM        | body shape                    | SES <sub>MNTD</sub> | IS | -0.3067       | -0.02747  | 0.0045455 |  |
| <i>PC16</i> | body shape                    | SES <sub>MNTD</sub> | IS | 0.233292      | -0.05778  | 0.0045455 |  |
| PC8         | body shape                    | $SES_{MNTD}$        | IS | 0.017372      | -0.07641  | 0.0045455 |  |
| BDBM        | eye diameter                  | SES <sub>MNTD</sub> | IS | 8.208         | 0.2628    | 0.0045455 |  |
| PC16        | eye diameter                  | SES <sub>MNTD</sub> | IS | -8.9757       | 0.3365    | 0.0045455 |  |
| PC8         | eye diameter                  | SES <sub>MNTD</sub> | IS | -0.8018       | 0.251     | 0.0045455 |  |
| BDBM        | living habit                  | SES <sub>MNTD</sub> | IS | -0.09085<br>- | -0.09906  | 0.0045455 |  |
| <i>PC16</i> | living habit                  | SES <sub>MNTD</sub> | IS | 0.324136      | -0.08793  | 0.0045455 |  |
| PC8         | living habit                  | SES <sub>MNTD</sub> | IS | -0.04007      | -0.08142  | 0.0045455 |  |
| BDBM        | max body size                 | SES <sub>MNTD</sub> | IS | -10.955       | 0.2785    | 0.0045455 |  |
| PC16        | max body size                 | SES <sub>MNTD</sub> | IS | 11.9026       | 0.3494    | 0.0045455 |  |
| PC8         | max body size                 | SES <sub>MNTD</sub> | IS | 0.9915        | 0.2142    | 0.0045455 |  |
| BDBM        | mean body<br>size             | SES <sub>MNTD</sub> | IS | 3.816         | 0.02283   | 0.0045455 |  |
| PC16        | mean body                     | SES                 | IS | -3.78075      | 0.0213    | 0.0045455 |  |
| FC10        | size<br>mean body             | SES <sub>MNTD</sub> | 15 | -3.70073      | 0.0213    | 0.0043433 |  |
| PC8         | size                          | SES <sub>MNTD</sub> | IS | -0.337        | -0.002909 | 0.0045455 |  |
| BDBM        | tube fidelity                 | SES <sub>MNTD</sub> | IS | -0.21395      | -0.09994  | 0.0045455 |  |
| PC16        | tube fidelity                 | SES <sub>MNTD</sub> | IS | -2.83726      | -0.08982  | 0.0045455 |  |
| PC8         | tube fidelity                 | $SES_{MNTD}$        | IS | -0.21927      | -0.09388  | 0.0045455 |  |
| PC1         | all                           | $SES_{MPD}$         | TS | 0.02844       | -0.08938  | 0.003125  |  |
| PC2         | all                           | $SES_{MPD}$         | TS | 0.1031        | -0.08296  | 0.003125  |  |
| PC3         | all                           | $SES_{MPD}$         | TS | 0.1541        | -0.02243  | 0.003125  |  |
| PC3<br>PC4  |                               |                     |    | -1.0746       | 0.2606    | 0.003125  |  |
|             | all                           | SES                 | TS |               |           |           |  |
| PC5         | all                           | SES <sub>MPD</sub>  | TS | -0.30594      | 0.126     | 0.003125  |  |
| PC6         | all                           | SES <sub>MPD</sub>  | TS | 0.2437        | 0.08158   | 0.003125  |  |
| PC7         | all                           | SES <sub>MPD</sub>  | TS | -0.5432       | 0.04495   | 0.003125  |  |
| PC8         | all                           | $SES_{MPD}$         | TS | 1.1196        | 0.3385    | 0.003125  |  |
| PC9         | all                           | $SES_{MPD}$         | TS | 0.992         | 0.3584    | 0.003125  |  |

| PC10                         | all       | $SES_{MPD}$                   | TS | -1.5469  | 0.0848    | 0.003125   |
|------------------------------|-----------|-------------------------------|----|----------|-----------|------------|
| PC11                         | all       | $SES_{MPD}$                   | TS | 4.8927   | 0.1289    | 0.003125   |
| PC12                         | all       | $SES_{MPD}$                   | TS | -3.40143 | 0.3575    | 0.003125   |
| PC13                         | all       | $SES_{MPD}$                   | TS | 2.21331  | -0.01173  | 0.003125   |
| PC14                         | all       | $SES_{MPD}$                   | TS | -5.4347  | 0.3708    | 0.003125   |
| PC15                         | all       | ${\rm SES}_{{ m MPD}}$        | TS | 4.73924  |           | 0.003125   |
| PC16                         | all       | $SES_{MPD}$                   | TS | 12.7554  | 0.4649    | 0.003125   |
| Anal fin<br>length           | all       | ${ m SES}_{ m MPD}$           | TS | 1.5383   | -0.06098  | 0.00263158 |
| BDBM                         | all       | SES <sub>MPD</sub>            | TS | -12.423  | 0.4327    | 0.00263158 |
| Body depth<br>Caudal fin     | all       | $SES_{MPD}$                   | TS | 1.705    | -0.04578  | 0.00263158 |
| length<br>Caudal<br>peduncle | all       | SES <sub>MPD</sub>            | TS | 1.1645   | -0.09658  | 0.00263158 |
| depth<br>Caudal<br>peduncle  | all       | SES <sub>MPD</sub>            | TS | 0.1372   | -0.07493  | 0.00263158 |
| length                       | all       | SES <sub>MPD</sub>            | TS | 0.7863   | -0.08874  | 0.00263158 |
| Dorsal fin length            | all       | $SES_{MPD}$                   | TS | 1.3908   | 0.005655  | 0.00263158 |
| Eye diameter                 | all       | $SES_{MPD}$                   | TS | 0.6543   | -0.0957   | 0.00263158 |
| Eye position                 | all       | ${\rm SES}_{\rm MPD}$         | TS | 8.175    | 0.2763    | 0.00263158 |
| Head depth                   | all       | $SES_{MPD}$                   | TS | -3.15    | 0.01367   | 0.00263158 |
| Head length                  | all       | $SES_{MPD}$                   | TS | -0.10338 | -0.09993  | 0.00263158 |
| Mouth height                 | all       | $SES_{MPD}$                   | TS | 3.1774   | -0.03926  | 0.00263158 |
| Mouth<br>protrusion          | all       | $\mathrm{SES}_{\mathrm{MPD}}$ | TS | 3.561    | 0.00674   | 0.00263158 |
| Pectoral fin<br>length       | all       | $SES_{MPD}$                   | TS | 2.704    | -0.03805  | 0.00263158 |
| Standard length              | all       | SES <sub>MPD</sub>            | TS | 0.008589 | 0.03239   | 0.00263158 |
| Snout length                 | all       | $SES_{MPD}$                   | TS | -0.1489  | -0.09983  | 0.00263158 |
| Trophic level                | all       | $SES_{MPD}$                   | TS | 0.09102  | -0.09915  | 0.00263158 |
| Foraging<br>mode<br>Vertical | all       | ${\rm SES}_{\rm MPD}$         | TS | -0.6671  | 0.02129   | 0.00263158 |
| position                     | all       | SES <sub>MPD</sub>            | TS | -0.1976  | -0.06905  | 0.00263158 |
| PC1                          | phylogeny | $SES_{MPD}$                   | TS | 0.05309  | -0.07896  | 0.003125   |
| PC2                          | phylogeny | $SES_{MPD}$                   | TS | 0.3247   | -0.003811 | 0.003125   |
| PC3                          | phylogeny | $SES_{MPD}$                   | TS | 0.1938   | -0.03023  | 0.003125   |
| PC4                          | phylogeny | $SES_{MPD}$                   | TS | -1.2883  | 0.1947    | 0.003125   |
| PC5                          | phylogeny | $SES_{MPD}$                   | TS | -0.2897  | 0.01521   | 0.003125   |
| PC6                          | phylogeny | $\mathbf{SES}_{\mathrm{MPD}}$ | TS | 0.377    | 0.1471    | 0.003125   |
| PC7                          | phylogeny | $SES_{MPD}$                   | TS | -1.0497  | 0.2078    | 0.003125   |
|                              |           |                               |    |          |           |            |

| 1.5874 0.4013 0.003125           |
|----------------------------------|
| 1.1396 0.244 0.003125            |
| -1.45346 -0.007229 0.003125      |
| 3.68702 -0.02607 0.003125        |
| -3.81167 0.2267 0.003125         |
| 3.26063 0.008936 0.003125        |
| -5.8638 0.2116 0.003125          |
| 7.1662 0.03121 0.003125          |
| 18.21 0.5547 0.003125            |
|                                  |
| 1.4783 -0.07951 0.00263158       |
| -16.645 0.4437 0.00263158        |
| 2.8054 -0.01652 0.00263158       |
| 2.8572 -0.08828 0.00263158       |
| 0.3522 -0.006041 0.00263158      |
| 0.9322 -0.091 0.00263158         |
| 1.2565 -0.05097 0.00263158       |
| 1.7631 -0.08223 0.00263158       |
| 9.66 0.1988 0.00263158           |
| -4.133 0.01128 0.00263158        |
| 1.2172 -0.09425 0.00263158       |
| 4.2515 -0.03816 0.00263158       |
| 5.549 0.04739 0.00263158         |
| 4.1853 -0.0156 0.00263158        |
| 0.009002 -0.01731 0.00263158     |
| -0.1326 -0.09993 0.00263158      |
| -0.3928 -0.09096 0.00263158      |
| -0.3937 -0.07598 0.00263158      |
| -0.0519 -0.09879 0.00263158      |
|                                  |
| -11.716 0.493 0.0045455          |
| <b>13.51323 0.6936</b> 0.0045455 |
| 1.1939 0.5241 0.0045455          |
|                                  |

| BDBM        | activity level<br>(% swimming) | SES <sub>MPD</sub>         | TS         | -12.082  | 0.05978  | 0.0045455 |
|-------------|--------------------------------|----------------------------|------------|----------|----------|-----------|
|             | activity level                 |                            |            |          |          |           |
| PC16        | (% swimming)                   | $SES_{MPD}$                | TS         | 12.4202  | 0.06986  | 0.0045455 |
| PC8         | activity level<br>(% swimming) | $SES_{MPD}$                | TS         | 1.1517   | 0.04714  | 0.0045455 |
| 100         | activity level                 | SESMPD                     | 15         | 1.1317   | 0.04/14  | 0.0045455 |
| BDBM        | (% walking)                    | $SES_{MPD}$                | TS         | -13.287  | 0.116    | 0.0045455 |
|             | activity level                 |                            |            |          |          |           |
| PC16        | (% walking)                    | $SES_{MPD}$                | TS         | 13.3525  | 0.1194   | 0.0045455 |
| PC8         | activity level<br>(% walking)  | $SES_{MPD}$                | TS         | 1.2181   | 0.08399  | 0.0045455 |
| 100         | antenna 1                      | SESMPD                     | 15         | 1.2101   | 0.00399  | 0.0043433 |
| BDBM        | length                         | SES <sub>MPD</sub>         | TS         | -15.248  | 0.5752   | 0.0045455 |
|             | antenna 1                      |                            |            |          |          |           |
| PC16        | length                         | $SES_{MPD}$                | TS         | 17.13355 | 0.7575   | 0.0045455 |
| PC8         | antenna 1<br>length            | $SES_{MPD}$                | TS         | 1.5025   | 0.5644   | 0.0045455 |
| 100         | antenna 2                      | SESMPD                     | 10         | 1.5025   | 0.3077   | 0.0045455 |
| BDBM        | length                         | $SES_{MPD}$                | TS         | 0.18411  | -0.07591 | 0.0045455 |
|             | antenna 2                      |                            |            |          |          |           |
| PC16        | length                         | $SES_{MPD}$                | TS         | 2.09415  | -0.06906 | 0.0045455 |
| PC8         | antenna 2<br>length            | $SES_{MPD}$                | TS         | 0.18411  | -0.07591 | 0.0045455 |
| BDBM        | body shape                     | $SES_{MPD}$                | TS         | 6.29     | 0.137    | 0.0045455 |
| PC16        | body shape                     | $SES_{MPD}$                | TS         | -6.42637 | 0.1488   | 0.0045455 |
| PC8         | body shape                     | $SES_{MPD}$                | TS         | -0.5253  | 0.06753  | 0.0045455 |
| BDBM        | eye diameter                   | SES <sub>MPD</sub>         | TS         | -0.4154  | -0.09141 | 0.0045455 |
| PC16        | eye diameter                   | $SES_{MPD}$<br>$SES_{MPD}$ | TS<br>TS   | 0.75786  | -0.07125 | 0.0045455 |
| PC8         | •                              |                            | TS<br>TS   | 0.05451  | -0.08501 | 0.0045455 |
|             | eye diameter                   | $SES_{MPD}$                |            |          |          |           |
| BDBM        | living habit                   | $SES_{MPD}$                | TS         | -3.714   | -0.05397 | 0.0045455 |
| PC16        | living habit                   | $SES_{MPD}$                | TS         | 1.93645  | -0.08741 | 0.0045455 |
| PC8         | living habit                   | SES <sub>MPD</sub>         | TS         | 0.09847  | -0.09672 | 0.0045455 |
| BDBM        | max body size                  | SES <sub>MPD</sub>         | TS         | -6.376   | 0.1635   | 0.0045455 |
| <i>PC16</i> | max body size                  | $SES_{MPD}$                | TS         | 5.10984  | 0.07023  | 0.0045455 |
| PC8         | max body size                  | $SES_{MPD}$                | TS         | 0.4032   | 0.006777 | 0.0045455 |
| BDBM        | mean body<br>size              | $SES_{MPD}$                | TS         | -2.766   | -0.03771 | 0.0045455 |
| DDDM        | mean body                      | SESMPD                     | 15         | -2.700   | -0.03//1 | 0.0045455 |
| PC16        | size                           | $SES_{MPD}$                | TS         | 1.52946  | -0.08084 | 0.0045455 |
| D.C.        | mean body                      | <b>6</b> 56                | <b>—</b> ~ | 0.00005  | 0.00017  | 0.00/5/55 |
| PC8         | size                           | SES <sub>MPD</sub>         | TS         | 0.09095  | -0.09317 | 0.0045455 |
| BDBM        | tube fidelity                  | $SES_{MPD}$                | TS         | -11.093  | 0.1503   | 0.0045455 |
| PC16        | tube fidelity                  | $SES_{MPD}$                | TS         | 9.1219   | 0.07026  | 0.0045455 |
| PC8         | tube fidelity                  | $SES_{MPD}$                | TS         | 0.7595   | 0.01892  | 0.0045455 |
| PC1         | all                            | $SES_{MPD}$                | IS         | 0.1312   | 0.05105  | 0.003125  |
|             |                                |                            |            |          |          |           |

| PC2                      | all  | $SES_{MPD}$                   | IS | 0.2099   | -0.05275 | 0.003125   |
|--------------------------|------|-------------------------------|----|----------|----------|------------|
| PC3                      | all  | $SES_{MPD}$                   | IS | 0.34     | 0.1527   | 0.003125   |
| PC4                      | all  | $SES_{MPD}$                   | IS | -0.7953  | 0.03207  | 0.003125   |
| PC5                      | all  | $SES_{MPD}$                   | IS | -0.1668  | -0.05508 | 0.003125   |
| PC6                      | all  | $SES_{MPD}$                   | IS | 0.2603   | 0.0386   | 0.003125   |
| PC7                      | all  | $SES_{MPD}$                   | IS | -0.6837  | 0.05357  | 0.003125   |
| PC8                      | all  | $SES_{MPD}$                   | IS | 0.9918   | 0.1301   | 0.003125   |
| PC9                      | all  | $SES_{MPD}$                   | IS | 0.8282   | 0.1136   | 0.003125   |
| PC10                     | all  | $SES_{MPD}$                   | IS | -1.09532 | -0.03804 | 0.003125   |
| PC11                     | all  | $SES_{MPD}$                   | IS | 4.5731   | 0.03375  | 0.003125   |
| PC12                     | all  | $SES_{MPD}$                   | IS | -3.34981 | 0.1967   | 0.003125   |
| PC13                     | all  | $SES_{MPD}$                   | IS | 2.08646  | -0.04754 | 0.003125   |
| PC14                     | all  | $SES_{MPD}$                   | IS | -5.1499  | 0.1827   | 0.003125   |
| PC15                     | all  | $SES_{MPD}$                   | IS | 3.93297  | -0.05352 | 0.003125   |
| PC16                     | all  | $SES_{MPD}$                   | IS | 11.8474  | 0.2259   | 0.003125   |
| Anal fin                 |      |                               |    |          |          |            |
| length                   | all  | $SES_{MPD}$                   | IS | 4.3025   | 0.1041   | 0.00263158 |
| BDBM                     | all  | $SES_{MPD}$                   | IS | -13.779  | 0.3382   | 0.00263158 |
| Body depth<br>Caudal fin | all  | $SES_{MPD}$                   | IS | 4.6609   | 0.171    | 0.00263158 |
| length                   | all  | SES <sub>MPD</sub>            | IS | 8.5411   | 0.02312  | 0.00263158 |
| Caudal peduncle          |      |                               |    |          |          |            |
| depth                    | all  | SES <sub>MPD</sub>            | IS | 0.3385   | 0.002095 | 0.00263158 |
| Caudal                   |      |                               |    |          |          |            |
| peduncle                 | 11   |                               | 10 | 1 5 (02  | 0.07001  | 0.000(0150 |
| length<br>Dorsal fin     | all  | $SES_{MPD}$                   | IS | -1.5693  | -0.07001 | 0.00263158 |
| length                   | all  | SES <sub>MPD</sub>            | IS | 2.4794   | 0.1245   | 0.00263158 |
| Eye diameter             | all  | $SES_{MPD}$                   | IS | 4.7839   | 0.05387  | 0.00263158 |
| Eye position             | all  | $SES_{MPD}$                   | IS | 4.602    | -0.02025 | 0.00263158 |
| Head depth               | all  | SES <sub>MPD</sub>            | IS | -6.152   | 0.19     | 0.00263158 |
| Head length              | all  | $SES_{MPD}$                   | IS | 4.327    | -0.01447 | 0.00263158 |
| Mouth height             | all  | SES <sub>MPD</sub>            | IS | 6.1171   | 0.05055  | 0.00263158 |
| Mouth                    |      |                               |    |          |          |            |
| protrusion               | all  | $\mathbf{SES}_{\mathrm{MPD}}$ | IS | 3.466    | -0.03238 | 0.00263158 |
| Pectoral fin length      | all  | SES <sub>MPD</sub>            | IS | 6.8813   | 0.1683   | 0.00263158 |
| Standard                 |      | OFOWLD                        | 10 | 0.000799 | 0.1005   | 0.00203130 |
| length                   | all  | SES <sub>MPD</sub>            | IS | 9        | -0.09923 | 0.00263158 |
| Snout length             | all  | $\mathbf{SES}_{\mathrm{MPD}}$ | IS | -3.188   | -0.04901 | 0.00263158 |
| Trophic level            | all  | SES <sub>MPD</sub>            | IS | 0.04308  | -0.09987 | 0.00263158 |
| Foraging                 | - 11 | <b>CEC</b>                    | IC | 1 0744   | 0.1102   | 0.002(2150 |
| mode                     | all  | $SES_{MPD}$                   | IS | -1.0744  | 0.1103   | 0.00263158 |

| Vertical                                                                                                                                                                  |                                                                                                                   |                                                                                                                                  |                                              |                                                                                             |                                                                                                 |                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| position                                                                                                                                                                  | all                                                                                                               | $SES_{MPD}$                                                                                                                      | IS                                           | 0.12334                                                                                     | -0.09193                                                                                        | 0.00263158                                                                                                   |
| PC1                                                                                                                                                                       | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | 0.1347                                                                                      | 0.1092                                                                                          | 0.003125                                                                                                     |
| PC2                                                                                                                                                                       | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | 0.2708                                                                                      | 0.003273                                                                                        | 0.003125                                                                                                     |
| PC3                                                                                                                                                                       | phylogeny                                                                                                         | ${\rm SES}_{\rm MPD}$                                                                                                            | IS                                           | 0.3124                                                                                      | 0.1801                                                                                          | 0.003125                                                                                                     |
| PC4                                                                                                                                                                       | phylogeny                                                                                                         | $\mathbf{SES}_{\mathrm{MPD}}$                                                                                                    | IS                                           | -0.5609                                                                                     | -0.01375                                                                                        | 0.003125                                                                                                     |
| PC5                                                                                                                                                                       | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | -0.07359                                                                                    | -0.08852                                                                                        | 0.003125                                                                                                     |
| PC6                                                                                                                                                                       | phylogeny                                                                                                         | ${\rm SES}_{{ m MPD}}$                                                                                                           | IS                                           | 0.245                                                                                       | 0.06123                                                                                         | 0.003125                                                                                                     |
| PC7                                                                                                                                                                       | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | -0.7439                                                                                     | 0.1387                                                                                          | 0.003125                                                                                                     |
| PC8                                                                                                                                                                       | phylogeny                                                                                                         | ${\rm SES}_{\rm MPD}$                                                                                                            | IS                                           | 0.8693                                                                                      | 0.1321                                                                                          | 0.003125                                                                                                     |
| PC9                                                                                                                                                                       | phylogeny                                                                                                         | $\mathbf{SES}_{\mathrm{MPD}}$                                                                                                    | IS                                           | 0.6145                                                                                      | 0.05441                                                                                         | 0.003125                                                                                                     |
| PC10                                                                                                                                                                      | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | -0.61088                                                                                    | -0.0747                                                                                         | 0.003125                                                                                                     |
| PC11                                                                                                                                                                      | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | 2.6675                                                                                      | -0.04025                                                                                        | 0.003125                                                                                                     |
| PC12                                                                                                                                                                      | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | -2.55808                                                                                    | 0.1272                                                                                          | 0.003125                                                                                                     |
| PC13                                                                                                                                                                      | phylogeny                                                                                                         | ${\rm SES}_{\rm MPD}$                                                                                                            | IS                                           | 1.98236                                                                                     | -0.03782                                                                                        | 0.003125                                                                                                     |
| PC14                                                                                                                                                                      | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | -3.8007                                                                                     | 0.1022                                                                                          | 0.003125                                                                                                     |
| PC15                                                                                                                                                                      | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | 3.73891                                                                                     | -0.04485                                                                                        | 0.003125                                                                                                     |
| PC16                                                                                                                                                                      | phylogeny                                                                                                         | $SES_{MPD}$                                                                                                                      | IS                                           | 10.4749                                                                                     | 0.2345                                                                                          | 0.003125                                                                                                     |
| Anal fin                                                                                                                                                                  |                                                                                                                   | and a                                                                                                                            | 10                                           | 2 0 5 7 1                                                                                   | 0 1154                                                                                          | 0.000(0150                                                                                                   |
| length                                                                                                                                                                    | phylogeny                                                                                                         | SES <sub>MPD</sub>                                                                                                               | IS                                           | 3.8571                                                                                      | 0.1154                                                                                          | 0.00263158                                                                                                   |
| BDBM                                                                                                                                                                      | phylogeny                                                                                                         | SES <sub>MPD</sub>                                                                                                               | IS                                           | -12.012                                                                                     | 0.3373                                                                                          | 0.00263158                                                                                                   |
| Body depth<br>Caudal fin                                                                                                                                                  | phylogeny                                                                                                         | SES <sub>MPD</sub>                                                                                                               | IS                                           | 4.6634                                                                                      | 0.2562                                                                                          | 0.00263158                                                                                                   |
| length                                                                                                                                                                    | phylogeny                                                                                                         | SES <sub>MPD</sub>                                                                                                               | IS                                           | 9.0636                                                                                      | 0.08204                                                                                         | 0.00263158                                                                                                   |
| Caudal                                                                                                                                                                    |                                                                                                                   |                                                                                                                                  |                                              |                                                                                             |                                                                                                 |                                                                                                              |
|                                                                                                                                                                           |                                                                                                                   |                                                                                                                                  |                                              |                                                                                             |                                                                                                 |                                                                                                              |
| peduncle                                                                                                                                                                  | nhylogeny                                                                                                         | SESURE                                                                                                                           | IS                                           |                                                                                             | 0.07606                                                                                         | 0 00263158                                                                                                   |
|                                                                                                                                                                           | phylogeny                                                                                                         | SES <sub>MPD</sub>                                                                                                               | IS                                           | 0.388                                                                                       | 0.07606                                                                                         | 0.00263158                                                                                                   |
| peduncle<br>depth<br>Caudal<br>peduncle                                                                                                                                   |                                                                                                                   |                                                                                                                                  |                                              | 0.388                                                                                       |                                                                                                 |                                                                                                              |
| peduncle<br>depth<br>Caudal<br>peduncle<br>length                                                                                                                         | phylogeny<br>phylogeny                                                                                            | SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                         | IS<br>IS                                     |                                                                                             | 0.07606<br>-0.05101                                                                             | 0.00263158<br>0.00263158                                                                                     |
| peduncle<br>depth<br>Caudal<br>peduncle<br>length<br>Dorsal fin                                                                                                           | phylogeny                                                                                                         | SES <sub>MPD</sub>                                                                                                               | IS                                           | 0.388<br>-1.7504                                                                            | -0.05101                                                                                        | 0.00263158                                                                                                   |
| peduncle<br>depth<br>Caudal<br>peduncle<br>length<br>Dorsal fin<br>length                                                                                                 | phylogeny                                                                                                         | SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                         | IS<br>IS                                     | 0.388<br>-1.7504<br>2.0368                                                                  | -0.05101<br>0.09897                                                                             | 0.00263158<br>0.00263158                                                                                     |
| peduncle<br>depth<br>Caudal<br>peduncle<br>length<br>Dorsal fin<br>length<br>Eye diameter                                                                                 | phylogeny<br>phylogeny<br>phylogeny                                                                               | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                   | IS<br>IS<br>IS                               | 0.388<br>-1.7504<br>2.0368<br>5.085                                                         | -0.05101<br>0.09897<br>0.1283                                                                   | 0.00263158<br>0.00263158<br>0.00263158                                                                       |
| peduncle<br>depth<br>Caudal<br>peduncle<br>length<br>Dorsal fin<br>length<br>Eye diameter<br>Eye position                                                                 | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny                                                                  | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                             | IS<br>IS<br>IS<br>IS                         | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932                                                | -0.05101<br>0.09897<br>0.1283<br>-0.05749                                                       | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158                                                         |
| peduncle<br>depth<br>Caudal<br>peduncle<br>length<br>Dorsal fin<br>length<br>Eye diameter<br>Eye position<br>Head depth                                                   | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny                                                     | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                             | IS<br>IS<br>IS<br>IS<br>IS                   | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645                                      | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206                                             | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158                                           |
| peduncle<br>depthCaudal<br>peduncle<br>lengthDorsal fin<br>lengthEye diameterEye positionHead depthHead length                                                            | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny                                        | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                       | IS<br>IS<br>IS<br>IS<br>IS<br>IS             | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645<br>4.98                              | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206<br>0.04873                                  | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158                             |
| peduncle<br>depth<br>Caudal<br>peduncle<br>length<br>Dorsal fin<br>length<br>Eye diameter<br>Eye position<br>Head depth                                                   | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny                                                     | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                             | IS<br>IS<br>IS<br>IS<br>IS                   | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645                                      | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206                                             | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158                                           |
| peduncle<br>depthCaudalpeduncle<br>lengthDorsal fin<br>lengthEye diameterEye positionHead depthHead lengthMouth height<br>mouthMouth neight                               | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny                                        | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                       | IS<br>IS<br>IS<br>IS<br>IS<br>IS             | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645<br>4.98                              | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206<br>0.04873                                  | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158                             |
| peduncle<br>depthCaudalpeduncle<br>lengthDorsal fin<br>lengthEye diameterEye positionHead depthHead lengthMouth height<br>protrusionPectoral fin                          | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny              | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645<br>4.98<br>5.7597<br>3.272           | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206<br>0.04873<br>0.07526<br>-0.02085           | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158 |
| peduncle<br>depthCaudalpeduncle<br>lengthDorsal fin<br>lengthEye diameterEye positionHead depthHead lengthMouth height<br>mouth<br>protrusionPectoral fin<br>lengthlength | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny                           | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS       | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645<br>4.98<br>5.7597                    | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206<br>0.04873<br>0.07526                       | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158               |
| peduncle<br>depthCaudalpeduncle<br>lengthDorsal fin<br>lengthEye diameterEye positionHead depthHead lengthMouth height<br>protrusionPectoral fin                          | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny              | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645<br>4.98<br>5.7597<br>3.272           | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206<br>0.04873<br>0.07526<br>-0.02085           | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158 |
| peduncle<br>depthCaudalpeduncle<br>lengthDorsal fin<br>lengthEye diameterEye positionHead depthHead lengthMouth height<br>protrusionPectoral fin<br>lengthlengthStandard  | phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS | 0.388<br>-1.7504<br>2.0368<br>5.085<br>2.932<br>-5.645<br>4.98<br>5.7597<br>3.272<br>6.7875 | -0.05101<br>0.09897<br>0.1283<br>-0.05749<br>0.2206<br>0.04873<br>0.07526<br>-0.02085<br>0.2427 | 0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158<br>0.00263158 |

| Trophic level                                                                                                                                                                                                                                                                                                                                                                                                | phylogeny                                                                                                                                                                                                                                               | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.1808                                                                                                                                            | -0.09704                                                                                                                                                         | 0.00263158                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Foraging<br>mode                                                                                                                                                                                                                                                                                                                                                                                             | phylogeny                                                                                                                                                                                                                                               | SES <sub>MPD</sub>                                                                                                                                                                                                       | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.7833                                                                                                                                            | 0.0468                                                                                                                                                           | 0.00263158                                                                                                                                                            |
| Vertical                                                                                                                                                                                                                                                                                                                                                                                                     | 1 2 8 2                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                                       |
| position                                                                                                                                                                                                                                                                                                                                                                                                     | phylogeny                                                                                                                                                                                                                                               | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.245                                                                                                                                              | -0.05821                                                                                                                                                         | 0.00263158                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                              | activity level                                                                                                                                                                                                                                          | <b>656</b>                                                                                                                                                                                                               | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.055                                                                                                                                             |                                                                                                                                                                  | 0.00.45.455                                                                                                                                                           |
| BDBM                                                                                                                                                                                                                                                                                                                                                                                                         | (% still)                                                                                                                                                                                                                                               | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -18.077                                                                                                                                            | 0.5759                                                                                                                                                           | 0.0045455                                                                                                                                                             |
| PC16                                                                                                                                                                                                                                                                                                                                                                                                         | activity level<br>(% still)                                                                                                                                                                                                                             | SES <sub>MPD</sub>                                                                                                                                                                                                       | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.8945                                                                                                                                            | 0.5662                                                                                                                                                           | 0.0045455                                                                                                                                                             |
| 1 010                                                                                                                                                                                                                                                                                                                                                                                                        | activity level                                                                                                                                                                                                                                          | SESMPD                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 17.0745                                                                                                                                            | 0.5002                                                                                                                                                           | 0.0043433                                                                                                                                                             |
| PC8                                                                                                                                                                                                                                                                                                                                                                                                          | (% still)                                                                                                                                                                                                                                               | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5369                                                                                                                                             | 0.3951                                                                                                                                                           | 0.0045455                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                              | activity level                                                                                                                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                                       |
| BDBM                                                                                                                                                                                                                                                                                                                                                                                                         | (% swimming)                                                                                                                                                                                                                                            | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -11.559                                                                                                                                            | 0.1032                                                                                                                                                           | 0.0045455                                                                                                                                                             |
| DCIC                                                                                                                                                                                                                                                                                                                                                                                                         | activity level                                                                                                                                                                                                                                          | ara                                                                                                                                                                                                                      | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 (201                                                                                                                                            | 0.07296                                                                                                                                                          | 0 00 45 455                                                                                                                                                           |
| <i>PC16</i>                                                                                                                                                                                                                                                                                                                                                                                                  | (% swimming)<br>activity level                                                                                                                                                                                                                          | SES <sub>MPD</sub>                                                                                                                                                                                                       | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.6291                                                                                                                                            | 0.07286                                                                                                                                                          | 0.0045455                                                                                                                                                             |
| PC8                                                                                                                                                                                                                                                                                                                                                                                                          | (% swimming)                                                                                                                                                                                                                                            | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.9597                                                                                                                                             | 0.04197                                                                                                                                                          | 0.0045455                                                                                                                                                             |
| 100                                                                                                                                                                                                                                                                                                                                                                                                          | activity level                                                                                                                                                                                                                                          |                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.7077                                                                                                                                             | 0.07197                                                                                                                                                          | 0.0010100                                                                                                                                                             |
| BDBM                                                                                                                                                                                                                                                                                                                                                                                                         | (% walking)                                                                                                                                                                                                                                             | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -10.427                                                                                                                                            | 0.1532                                                                                                                                                           | 0.0045455                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                              | activity level                                                                                                                                                                                                                                          |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                                       |
| <i>PC16</i>                                                                                                                                                                                                                                                                                                                                                                                                  | (% walking)                                                                                                                                                                                                                                             | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.4573                                                                                                                                             | 0.1095                                                                                                                                                           | 0.0045455                                                                                                                                                             |
| PC8                                                                                                                                                                                                                                                                                                                                                                                                          | activity level<br>(% walking)                                                                                                                                                                                                                           | SES MPD                                                                                                                                                                                                                  | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8446                                                                                                                                             | 0.06836                                                                                                                                                          | 0.0045455                                                                                                                                                             |
| r Co                                                                                                                                                                                                                                                                                                                                                                                                         | antenna 1                                                                                                                                                                                                                                               | SES_MFD                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.8440                                                                                                                                             | 0.00830                                                                                                                                                          | 0.0043433                                                                                                                                                             |
| BDBM                                                                                                                                                                                                                                                                                                                                                                                                         | length                                                                                                                                                                                                                                                  | SES <sub>MPD</sub>                                                                                                                                                                                                       | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -14.464                                                                                                                                            | 0.4704                                                                                                                                                           | 0.0045455                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 1                                                                                                                                                                                                                                               |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                                       |
| PC16                                                                                                                                                                                                                                                                                                                                                                                                         | antenna 1<br>length                                                                                                                                                                                                                                     | $SES_{MPD}$                                                                                                                                                                                                              | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.4336                                                                                                                                            | 0.395                                                                                                                                                            | 0.0045455                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 1<br>length<br>antenna 1                                                                                                                                                                                                                        | $SES_{MPD}$                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.4336                                                                                                                                            | 0.395                                                                                                                                                            |                                                                                                                                                                       |
| PC16<br>PC8                                                                                                                                                                                                                                                                                                                                                                                                  | antenna 1<br>length<br>antenna 1<br>length                                                                                                                                                                                                              |                                                                                                                                                                                                                          | IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                    |                                                                                                                                                                  | 0.0045455<br>0.0045455                                                                                                                                                |
| PC8                                                                                                                                                                                                                                                                                                                                                                                                          | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2                                                                                                                                                                                                 | $SES_{MPD}$ $SES_{MPD}$                                                                                                                                                                                                  | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.4336<br>1.1297                                                                                                                                  | 0.395<br>0.2527                                                                                                                                                  | 0.0045455                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 1<br>length<br>antenna 1<br>length                                                                                                                                                                                                              | $SES_{MPD}$                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.4336                                                                                                                                            | 0.395                                                                                                                                                            |                                                                                                                                                                       |
| PC8                                                                                                                                                                                                                                                                                                                                                                                                          | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length                                                                                                                                                                                       | $SES_{MPD}$ $SES_{MPD}$                                                                                                                                                                                                  | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.4336<br>1.1297                                                                                                                                  | 0.395<br>0.2527                                                                                                                                                  | 0.0045455                                                                                                                                                             |
| PC8<br>BDBM<br>PC16                                                                                                                                                                                                                                                                                                                                                                                          | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2                                                                                                                                                   | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                                                                     | IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.4336<br>1.1297<br>-7.51<br>5.41524                                                                                                              | 0.395<br>0.2527<br>0.08254<br>-0.004533                                                                                                                          | 0.0045455<br>0.0045455<br>0.0045455                                                                                                                                   |
| PC8<br>BDBM                                                                                                                                                                                                                                                                                                                                                                                                  | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length                                                                                                                                                                | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                                                                                           | IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.4336<br>1.1297<br>-7.51                                                                                                                         | 0.395<br>0.2527<br>0.08254                                                                                                                                       | 0.0045455<br>0.0045455                                                                                                                                                |
| PC8<br>BDBM<br>PC16                                                                                                                                                                                                                                                                                                                                                                                          | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2                                                                                                                                                   | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                                                                     | IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.4336<br>1.1297<br>-7.51<br>5.41524                                                                                                              | 0.395<br>0.2527<br>0.08254<br>-0.004533                                                                                                                          | 0.0045455<br>0.0045455<br>0.0045455                                                                                                                                   |
| РС8<br>ВDВМ<br>РС16<br>РС8                                                                                                                                                                                                                                                                                                                                                                                   | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length                                                                                                                                         | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                                                                     | IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407                                                                                                    | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628                                                                                                              | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                                                                                                                      |
| PC8<br>BDBM<br>PC16<br>PC8<br>BDBM                                                                                                                                                                                                                                                                                                                                                                           | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape                                                                                                                           | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                         | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328                                                                                           | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247                                                                                                  | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                                                                                                         |
| PC8<br>BDBM<br>PC16<br>PC8<br>BDBM<br>PC16                                                                                                                                                                                                                                                                                                                                                                   | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape                                                                                                             | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                                                                         | IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407                                                                                | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014                                                                                        | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                                                                                            |
| PC8<br>BDBM<br>PC16<br>PC8<br>BDBM<br>PC16<br>PC8                                                                                                                                                                                                                                                                                                                                                            | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>body shape                                                                                 | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                             | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391                                                          | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864                                                                  | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                                                                  |
| PC8<br>BDBM<br>PC16<br>PC8<br>BDBM<br>PC16<br>PC8<br>BDBM<br>PC16                                                                                                                                                                                                                                                                                                                                            | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>eye diameter<br>eye diameter                                                               | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                                             | <i>IS IS IS IS IS IS IS IS</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391<br>8.836                                                 | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864<br>0.1084                                                        | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                                                                  |
| PC8<br>BDBM<br>PC16<br>PC8<br>BDBM<br>PC16<br>PC8<br>BDBM<br>PC16<br>PC16<br>PC8                                                                                                                                                                                                                                                                                                                             | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>eye diameter<br>eye diameter<br>eye diameter                                               | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                       | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391<br>8.836<br>0.6975                                       | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864<br>0.1084<br>0.03081                                             | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                                        |
| PC8         BDBM         PC16         BDBM         PC16         BDBM         PC16         BDBM         PC16         BDBM                                                                                       | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>eye diameter<br>eye diameter<br>living habit                                               | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS                                                                                                                                                                                                                                                                                    | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391<br>8.836<br>0.6975<br>-7.53                              | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864<br>0.1084<br>0.1084<br>0.03081<br>0.04946                        | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                           |
| PC8         BDBM         PC16                                                                                      | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>eye diameter<br>eye diameter<br>living habit                                               | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS         IS | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391<br>8.836<br>0.6975<br>-7.53<br>5.137                     | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864<br>0.1084<br>0.03081<br>0.04946<br>-0.03002                      | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455                           |
| PC8         BDBM         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC8                                                                                                                   | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>body shape<br>eye diameter<br>eye diameter<br>living habit<br>living habit                 | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD                                                                                           | IS         IS | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391<br>8.836<br>0.6975<br>-7.53<br>5.137<br>0.3726           | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864<br>0.1084<br>0.1084<br>0.03081<br>0.04946<br>-0.03002<br>-0.0629 | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455              |
| PC8         BDBM         PC16         PC8         BDBM | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>body shape<br>eye diameter<br>eye diameter<br>living habit<br>living habit<br>living habit | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD                                                                                 | IS         IS | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391<br>8.836<br>0.6975<br>-7.53<br>5.137<br>0.3726<br>-8.346 | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864<br>0.1084<br>0.03081<br>0.04946<br>-0.03002<br>-0.0629<br>0.112  | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455 |
| PC8         BDBM         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC8         BDBM         PC16         PC8                                                                                                                   | antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>body shape<br>body shape<br>body shape<br>body shape<br>eye diameter<br>eye diameter<br>living habit<br>living habit                 | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD                                                                                           | IS         IS | 13.4336<br>1.1297<br>-7.51<br>5.41524<br>0.4407<br>2.328<br>-5.1407<br>-0.4629<br>-10.391<br>8.836<br>0.6975<br>-7.53<br>5.137<br>0.3726           | 0.395<br>0.2527<br>0.08254<br>-0.004533<br>-0.03628<br>-0.08247<br>-0.014<br>-0.02973<br>0.1864<br>0.1084<br>0.1084<br>0.03081<br>0.04946<br>-0.03002<br>-0.0629 | 0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455<br>0.0045455              |

| BDBM        | mean body<br>size              | SES <sub>MPD</sub> | IS | -5.872  | 0.02926  | 0.0045455 |
|-------------|--------------------------------|--------------------|----|---------|----------|-----------|
| PC16        | mean body<br>size<br>mean body | SES <sub>MPD</sub> | IS | 4.06398 | -0.03771 | 0.0045455 |
| PC8         | size                           | SES <sub>MPD</sub> | IS | 0.29273 | -0.06744 | 0.0045455 |
| BDBM        | tube fidelity                  | SES <sub>MPD</sub> | IS | -10.087 | 0.1548   | 0.0045455 |
| <i>PC16</i> | tube fidelity                  | SES <sub>MPD</sub> | IS | 8.1603  | 0.06775  | 0.0045455 |
| PC8         | tube fidelity                  | SES <sub>MPD</sub> | IS | 0.6825  | 0.01822  | 0.0045455 |

Table A5.2. Effect sizes of fish community trait dispersion on residual peracarid community trait and phylogenetic dispersion, not accounting for the effects of habitat filters on fish dispersion. Bolded cells indicate values significant at alpha = 0.008333; the first 24 rows are effects for which results are presented in the main text. Rows are colored according to the direction and magnitude of the effect size; red indicates a negative effect while blue indicates a positive effect, and color saturation is proportional to  $R^2$ . TS = Tip Shuffle algorithm, IS = Independent Swap algorithm; BDBM = Body Depth Below Midline.

| Predictor<br>trait | Predictor<br>metric | Predictor<br>algorithm | Response<br>trait           | Response<br>metric  | Response algorithm | Effect size | $R^2$    |
|--------------------|---------------------|------------------------|-----------------------------|---------------------|--------------------|-------------|----------|
| all                | SES <sub>MNTD</sub> | TS                     | activity level<br>(% still) | SES <sub>MNTD</sub> | TS                 | 0.1302      | -0.01212 |
| BDBM               | SES <sub>MNTD</sub> | TS                     | activity level<br>(% still) | SES <sub>MNTD</sub> | TS                 | -0.2055     | 0.1616   |
| PC16               | SES <sub>MNTD</sub> | TS                     | activity level<br>(% still) | SES <sub>MNTD</sub> | TS                 | -0.07272    | -0.09093 |
| PC8                | SES <sub>MNTD</sub> | TS                     | activity level<br>(% still) | $SES_{MNTD}$        | TS                 | -0.13771    | 0.06993  |
| all                | $SES_{MNTD}$        | TS                     | all                         | $SES_{MNTD}$        | TS                 | 0.13797     | -0.03364 |
| BDBM               | SES <sub>MNTD</sub> | TS                     | all                         | SES <sub>MNTD</sub> | TS                 | -0.3945     | 0.5485   |
| PC16               | $SES_{MNTD}$        | TS                     | all                         | SES <sub>MNTD</sub> | TS                 | 0.09154     | -0.09034 |
| PC8                | SES <sub>MNTD</sub> | TS                     | all                         | SES <sub>MNTD</sub> | TS                 | -0.24802    | 0.2707   |
| all                | SES <sub>MNTD</sub> | TS                     | antenna 1<br>length         | SES <sub>MNTD</sub> | TS                 | 0.17849     | 0.059    |
| BDBM               | SES <sub>MNTD</sub> | TS                     | antenna 1<br>length         | SES <sub>MNTD</sub> | TS                 | -0.30197    | 0.4439   |
| PC16               | $SES_{MNTD}$        | TS                     | antenna 1<br>length         | SES <sub>MNTD</sub> | TS                 | -0.08891    | -0.08695 |
| PC8                | SES <sub>MNTD</sub> | TS                     | antenna 1<br>length         | SES <sub>MNTD</sub> | TS                 | -0.16647    | 0.1391   |
| all                | SES <sub>MNTD</sub> | TS                     | antenna 2<br>length         | SES <sub>MNTD</sub> | TS                 | -0.010598   | -0.08479 |

| BDBM | SES <sub>MNTD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | TS | 0.047625  | 0.2671   |
|------|---------------------|----|-----------------------------|---------------------|----|-----------|----------|
| PC16 | SES <sub>MNTD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | TS | -0.02119  | -0.07988 |
| PC8  | SES <sub>MNTD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | TS | 0.029647  | 0.1058   |
| all  | SES <sub>MNTD</sub> | TS | max. body<br>size           | SES <sub>MNTD</sub> | TS | 0.13862   | 0.0138   |
| BDBM | SES <sub>MNTD</sub> | TS | max. body<br>size           | SES <sub>MNTD</sub> | TS | -0.28207  | 0.4631   |
| PC16 | SES <sub>MNTD</sub> | TS | max. body<br>size           | SES <sub>MNTD</sub> | TS | 0.03453   | -0.09766 |
| PC8  | SES <sub>MNTD</sub> | TS | max. body<br>size           | SES <sub>MNTD</sub> | TS | -0.20856  | 0.3453   |
| all  | SES <sub>MNTD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | 0.22165   | 0.003042 |
| BDBM | SES <sub>MNTD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | -0.5742   | 0.7263   |
| PC16 | SES <sub>MNTD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | 0.1332    | -0.08769 |
| PC8  | SES <sub>MNTD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | -0.39414  | 0.4632   |
| all  | SES <sub>MNTD</sub> | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | IS | 0.18328   | -0.04017 |
| BDBM | SES <sub>MNTD</sub> | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | IS | -0.23325  | 0.01581  |
| PC16 | SES <sub>MNTD</sub> | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | IS | -0.178    | -0.08133 |
| PC8  | SES <sub>MNTD</sub> | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | IS | -0.15043  | -0.03033 |
| all  | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | 0.11902   | -0.06727 |
| BDBM | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | -0.43018  | 0.4109   |
| PC16 | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | 0.1613    | -0.08012 |
| PC8  | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | -0.27484  | 0.2017   |
| all  | SES <sub>MNTD</sub> | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | 0.21427   | 0.06424  |
| BDBM | SES <sub>MNTD</sub> | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | -0.34608  | 0.412    |
| PC16 | $SES_{MNTD}$        | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | -0.11917  | -0.08319 |
| PC8  | SES <sub>MNTD</sub> | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | -0.19037  | 0.1241   |
| all  | SES <sub>MNTD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | IS | -0.023894 | 0.686    |
| BDBM | SES <sub>MNTD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | IS | 0.08781   | 0.2033   |
| PC16 | SES <sub>MNTD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | IS | -0.01991  | -0.09568 |
| PC8  | SES <sub>MNTD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | IS | 0.050719  | 0.04635  |
| all  | SES <sub>MNTD</sub> | TS | max. body<br>size           | SES <sub>MNTD</sub> | IS | 0.17243   | -0.01043 |
|      |                     |    |                             |                     |    |           |          |

| BDBM        | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MNTD</sub>        | IS | -0.37488  | 0.406     |
|-------------|--------------------------------|----|-----------------------------|----------------------------|----|-----------|-----------|
| PC16        | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MNTD</sub>        | IS | 0.08646   | -0.09255  |
| PC8         | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MNTD</sub>        | IS | -0.29047  | 0.3394    |
| all         | SES <sub>MNTD</sub>            | TS | phylogeny                   | <b>SES</b> <sub>MNTD</sub> | IS | 0.18771   | -0.00787  |
| BDBM        | SES <sub>MNTD</sub>            | TS | phylogeny                   | <b>SES</b> <sub>MNTD</sub> | IS | -0.51094  | 0.7157    |
| PC16        | SES <sub>MNTD</sub>            | TS | phylogeny                   | SES <sub>MNTD</sub>        | IS | 0.1362    | -0.08396  |
| PC8         | $\mathbf{SES}_{\mathbf{MNTD}}$ | TS | phylogeny                   | SES <sub>MNTD</sub>        | IS | -0.3461   | 0.4414    |
| all         | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | $SES_{MPD}$                | TS | 0.15091   | -0.006004 |
| BDBM        | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | SES <sub>MPD</sub>         | TS | -0.33869  | 0.4658    |
| PC16        | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | $SES_{MPD}$                | TS | -0.01331  | -0.09976  |
| PC8         | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | SES <sub>MPD</sub>         | TS | -0.20024  | 0.1861    |
| all         | SES <sub>MNTD</sub>            | TS | all                         | SES <sub>MPD</sub>         | TS | 0.20343   | 0.03646   |
| BDBM        | SES <sub>MNTD</sub>            | TS | all                         | SES <sub>MPD</sub>         | TS | -0.38374  | 0.4803    |
| PC16        | SES <sub>MNTD</sub>            | TS | all                         | SES <sub>MPD</sub>         | TS | -0.06502  | -0.09539  |
| PC8         | SES <sub>MNTD</sub>            | TS | all                         | SES <sub>MPD</sub>         | TS | -0.2103   | 0.1521    |
| all         | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | $SES_{MPD}$                | TS | 0.19853   | 0.00935   |
| BDBM        | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | SES <sub>MPD</sub>         | TS | -0.4511   | 0.5746    |
| PC16        | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | $SES_{MPD}$                | TS | 0.007573  | -0.09995  |
| PC8         | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | SES <sub>MPD</sub>         | TS | -0.27583  | 0.2648    |
| all         | SES <sub>MNTD</sub>            | TS | antenna 2<br>length         | $SES_{MPD}$                | TS | -0.030261 | -0.09386  |
| BDBM        | SES <sub>MNTD</sub>            | TS | antenna 2<br>length         | SES <sub>MPD</sub>         | TS | -0.059989 | -0.07119  |
| PC16        | SES <sub>MNTD</sub>            | TS | antenna 2<br>length         | SES <sub>MPD</sub>         | TS | 0.10682   | -0.07471  |
| PC8         | SES <sub>MNTD</sub>            | TS | antenna 2<br>length         | $SES_{MPD}$                | TS | -0.029769 | -0.08974  |
| all         | SES <sub>MNTD</sub>            | TS | max. body<br>size           | $SES_{MPD}$                | TS | 0.11042   | -0.02451  |
| BDBM        | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MPD</sub>         | TS | -0.23592  | 0.3118    |
| PC16        | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MPD</sub>         | TS | 0.06831   | -0.09044  |
| PC8         | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MPD</sub>         | TS | -0.17195  | 0.2165    |
|             | SES <sub>MNTD</sub>            | TS | phylogeny                   | $SES_{MPD}$                | TS | 0.1192    | -0.07337  |
| all         |                                |    |                             |                            |    |           |           |
| all<br>BDBM | SES <sub>MNTD</sub>            | TS | phylogeny                   | SES <sub>MPD</sub>         | TS | -0.46549  | 0.3855    |

| PC16 | SES <sub>MNTD</sub>            | TS | phylogeny                   | SES <sub>MPD</sub>            | TS | 0.189     | -0.07784 |
|------|--------------------------------|----|-----------------------------|-------------------------------|----|-----------|----------|
| PC8  | SES <sub>MNTD</sub>            | TS | phylogeny                   | $\mathbf{SES}_{\mathrm{MPD}}$ | TS | -0.30306  | 0.1977   |
| all  | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | SES <sub>MPD</sub>            | IS | 0.24903   | 0.02255  |
| BDBM | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | SES <sub>MPD</sub>            | IS | -0.56827  | 0.6626   |
| PC16 | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | SES <sub>MPD</sub>            | IS | 0.0647    | -0.09726 |
| PC8  | SES <sub>MNTD</sub>            | TS | activity level<br>(% still) | SES <sub>MPD</sub>            | IS | -0.35456  | 0.3294   |
| all  | SES <sub>MNTD</sub>            | TS | all                         | $SES_{MPD}$                   | IS | 0.22319   | 0.009846 |
| BDBM | SES <sub>MNTD</sub>            | TS | all                         | SES <sub>MPD</sub>            | IS | -0.46525  | 0.4704   |
| PC16 | SES <sub>MNTD</sub>            | TS | all                         | $SES_{MPD}$                   | IS | 0.04955   | -0.09821 |
| PC8  | SES <sub>MNTD</sub>            | TS | all                         | $SES_{MPD}$                   | IS | -0.29018  | 0.2209   |
| all  | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | $SES_{MPD}$                   | IS | 0.21298   | 0.01816  |
| BDBM | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | SES <sub>MPD</sub>            | IS | -0.47811  | 0.6116   |
| PC16 | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | SES <sub>MPD</sub>            | IS | 0.08451   | -0.09385 |
| PC8  | SES <sub>MNTD</sub>            | TS | antenna 1<br>length         | SES <sub>MPD</sub>            | IS | -0.31398  | 0.3439   |
| all  | $\mathbf{SES}_{\mathbf{MNTD}}$ | TS | antenna 2<br>length         | $\mathrm{SES}_{\mathrm{MPD}}$ | IS | 0.038464  | -0.09543 |
| BDBM | SES <sub>MNTD</sub>            | TS | antenna 2<br>length         | $SES_{MPD}$                   | IS | -0.23202  | 0.0989   |
| PC16 | SES <sub>MNTD</sub>            | TS | antenna 2<br>length         | SES <sub>MPD</sub>            | IS | 0.1815    | -0.06629 |
| PC8  | SES <sub>MNTD</sub>            | TS | antenna 2<br>length         | SES <sub>MPD</sub>            | IS | -0.15222  | 0.02383  |
| all  | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MPD</sub>            | IS | 0.13779   | -0.04479 |
| BDBM | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MPD</sub>            | IS | -0.31445  | 0.2436   |
| PC16 | SES <sub>MNTD</sub>            | TS | max. body<br>size           | SES <sub>MPD</sub>            | IS | 0.1236    | -0.08531 |
| PC8  | SES <sub>MNTD</sub>            | TS | max. body<br>size           | $\mathbf{SES}_{\mathrm{MPD}}$ | IS | -0.23535  | 0.1784   |
| all  | SES <sub>MNTD</sub>            | TS | phylogeny                   | $SES_{MPD}$                   | IS | 0.12528   | -0.05456 |
| BDBM | SES <sub>MNTD</sub>            | TS | phylogeny                   | SES <sub>MPD</sub>            | IS | -0.38672  | 0.4175   |
| PC16 | SES <sub>MNTD</sub>            | TS | phylogeny                   | $\mathbf{SES}_{\mathrm{MPD}}$ | IS | 0.1758    | -0.0704  |
| PC8  | SES <sub>MNTD</sub>            | TS | phylogeny                   | $SES_{MPD}$                   | IS | -0.26378  | 0.2482   |
| all  | SES <sub>MNTD</sub>            | IS | activity level<br>(% still) | SES <sub>MNTD</sub>           | TS | 0.12006   | 0.01551  |
| BDBM | SES <sub>MNTD</sub>            | IS | activity level<br>(% still) | SES <sub>MNTD</sub>           | TS | -0.3024   | 0.2628   |
| PC16 | SES <sub>MNTD</sub>            | IS | activity level<br>(% still) | SES <sub>MNTD</sub>           | TS | -0.013916 | -0.09959 |

|                                                                                | SES                                                                                                             | IC                                                                                                                                                                                                                                                                                                                                                                                                                              | activity level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SES                                                                                                             | TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.199                                                                                                                             | 0.00022                                                                                                                           |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| PC8                                                                            | $SES_{MNTD}$                                                                                                    | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | (% still)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | 0.09933                                                                                                                           |
| all                                                                            | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.16135                                                                                                                            | 0.04027                                                                                                                           |
| BDBM                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.49631                                                                                                                           | 0.5574                                                                                                                            |
| PC16                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.2819                                                                                                                             | 0.01272                                                                                                                           |
| PC8                                                                            | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.29346                                                                                                                           | 0.1915                                                                                                                            |
| all                                                                            | $SES_{MNTD}$                                                                                                    | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 1<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.17363                                                                                                                            | 0.1326                                                                                                                            |
| BDBM                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 1<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.38078                                                                                                                           | 0.454                                                                                                                             |
| PC16                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 1<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1119                                                                                                                             | -0.07458                                                                                                                          |
| PC8                                                                            | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 1<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.20403                                                                                                                           | 0.1017                                                                                                                            |
| all                                                                            | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 2<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.015273                                                                                                                          | -0.05117                                                                                                                          |
| BDBM                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 2<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.059638                                                                                                                           | 0.2688                                                                                                                            |
| PC16                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 2<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.04693                                                                                                                           | 0.02137                                                                                                                           |
| PC8                                                                            | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | antenna 2<br>length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.032959                                                                                                                           | 0.04284                                                                                                                           |
| all                                                                            | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | max. body<br>size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.14296                                                                                                                            | 0.08709                                                                                                                           |
| BDBM                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | max. body<br>size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.36485                                                                                                                           | 0.5036                                                                                                                            |
|                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                 | SIZC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                                                                                                   |
| PC16                                                                           | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | max. body<br>size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05677                                                                                                                            | -0.09223                                                                                                                          |
| PC16<br>PC8                                                                    | SES <sub>MNTD</sub>                                                                                             | IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                        | max. body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SES <sub>MNTD</sub>                                                                                             | TS<br>TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05677<br>-0.2825                                                                                                                 | -0.09223<br>0.3589                                                                                                                |
|                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                 | max. body<br>size<br>max. body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                                                                                                   |
| PC8                                                                            | SES <sub>MNTD</sub>                                                                                             | IS                                                                                                                                                                                                                                                                                                                                                                                                                              | max. body<br>size<br>max. body<br>size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SES <sub>MNTD</sub>                                                                                             | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.2825                                                                                                                            | 0.3589                                                                                                                            |
| PC8<br>all                                                                     | SES <sub>MNTD</sub>                                                                                             | IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                        | max. body<br>size<br>max. body<br>size<br>phylogeny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | TS<br>TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.2825<br>0.24844                                                                                                                 | 0.3589<br>0.1001                                                                                                                  |
| PC8<br>all<br>BDBM                                                             | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                               | IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                  | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>phylogeny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | TS<br>TS<br>TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.2825<br>0.24844<br><b>-0.7385</b>                                                                                               | 0.3589<br>0.1001<br><b>0.7757</b>                                                                                                 |
| PC8<br>all<br>BDBM<br>PC16                                                     | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                            | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.2825<br>0.24844<br><b>-0.7385</b><br>0.2965                                                                                     | 0.3589<br>0.1001<br><b>0.7757</b><br>-0.02499                                                                                     |
| PC8<br>all<br>BDBM<br>PC16<br>PC8                                              | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                      | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level<br>(% still)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.2825<br>0.24844<br><b>-0.7385</b><br>0.2965<br>-0.49931                                                                         | 0.3589<br>0.1001<br><b>0.7757</b><br>-0.02499<br>0.4077                                                                           |
| PC8<br>all<br>BDBM<br>PC16<br>PC8<br>all                                       | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                      | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | TS<br>TS<br>TS<br>TS<br>TS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2825<br>0.24844<br>-0.7385<br>0.2965<br>-0.49931<br>0.15697                                                                     | 0.3589<br>0.1001<br><b>0.7757</b><br>-0.02499<br>0.4077<br>-0.03216                                                               |
| PC8<br>all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM                               | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level<br>(% still)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | TS<br>TS<br>TS<br>TS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.2825<br>0.24844<br>-0.7385<br>0.2965<br>-0.49931<br>0.15697<br>-0.37822                                                         | 0.3589<br>0.1001<br><b>0.7757</b><br>-0.02499<br>0.4077<br>-0.03216<br>0.09508                                                    |
| PC8<br>all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16                       | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                          | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level<br>(% still)<br>activity level<br>(% still)<br>activity level<br>(% still)<br>activity level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                                                  | TS<br>TS<br>TS<br>TS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.2825<br>0.24844<br>-0.7385<br>0.2965<br>-0.49931<br>0.15697<br>-0.37822<br>-0.09835                                             | 0.3589<br>0.1001<br><b>0.7757</b><br>-0.02499<br>0.4077<br>-0.03216<br>0.09508<br>-0.09299                                        |
| PC8<br>all<br>PC16<br>PC8<br>all<br>BDBM<br>PC16<br>PC16                       | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                    | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level<br>(% still)<br>activity level<br>(% still)<br>activity level<br>(% still)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                                                  | TS<br>TS<br>TS<br>TS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.2825<br>0.24844<br>-0.7385<br>0.2965<br>-0.49931<br>0.15697<br>-0.37822<br>-0.09835<br>-0.23597                                 | 0.3589<br>0.1001<br>0.7757<br>-0.02499<br>0.4077<br>-0.03216<br>0.09508<br>-0.09299<br>-0.003703                                  |
| PC8<br>all<br>PC16<br>PC3<br>all<br>BDBM<br>BDBM<br>PC16<br>PC8<br>all         | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                            | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                        | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                            | TS<br>TS<br>TS<br>TS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.2825<br>0.24844<br>-0.7385<br>0.2965<br>-0.49931<br>0.15697<br>-0.37822<br>-0.09835<br>-0.23597<br>0.15432                      | 0.3589<br>0.1001<br>0.7757<br>-0.02499<br>0.4077<br>-0.03216<br>0.09508<br>-0.09299<br>-0.003703<br>-0.01495                      |
| PC8<br>all<br>PC16<br>PC8<br>all<br>BDBM<br>PC16<br>PC16<br>PC8<br>all<br>BDBM | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                            | IS                                                   | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                 | TS         TS         TS         TS         IS                                                                                                                                                                                                                                        | -0.2825<br>0.24844<br>-0.7385<br>0.2965<br>-0.49931<br>0.15697<br>-0.37822<br>-0.09835<br>-0.23597<br>0.15432<br>-0.5393           | 0.3589<br>0.1001<br>0.7757<br>-0.02499<br>0.4077<br>-0.03216<br>0.09508<br>-0.09299<br>-0.003703<br>-0.01495<br>0.4145            |
| PC8<br>all<br>PC16<br>PC3<br>all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16 | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD      | IS          IS              IS | max. body<br>size<br>max. body<br>size<br>phylogeny<br>phylogeny<br>phylogeny<br>activity level<br>(% still)<br>activity level<br>(% still)<br>all<br>all | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                 | TS         TS         TS         TS         IS         IS | -0.2825<br>0.24844<br>-0.7385<br>0.2965<br>-0.49931<br>0.15697<br>-0.37822<br>-0.09835<br>-0.23597<br>0.15432<br>-0.5393<br>0.3636 | 0.3589<br>0.1001<br>0.7757<br>-0.02499<br>0.4077<br>-0.03216<br>0.09508<br>-0.09299<br>-0.003703<br>-0.01495<br>0.4145<br>0.02425 |

| BDBM | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | SES <sub>MNTD</sub>           | IS | -0.43648  | 0.4218    |
|------|---------------------|----|-----------------------------|-------------------------------|----|-----------|-----------|
| PC16 | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | SES <sub>MNTD</sub>           | IS | 0.1094    | -0.08258  |
| PC8  | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | SES <sub>MNTD</sub>           | IS | -0.23605  | 0.09354   |
| all  | SES <sub>MNTD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>           | IS | -0.030193 | -0.05362  |
| BDBM | SES <sub>MNTD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>           | IS | 0.11801   | 0.2509    |
| PC16 | $SES_{MNTD}$        | IS | antenna 2<br>length         | SES <sub>MNTD</sub>           | IS | -0.08006  | -0.01418  |
| PC8  | SES <sub>MNTD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>           | IS | 0.057143  | 0.004347  |
| all  | $SES_{MNTD}$        | IS | max. body<br>size           | SES <sub>MNTD</sub>           | IS | 0.1823    | 0.05477   |
| BDBM | SES <sub>MNTD</sub> | IS | max. body<br>size           | SES <sub>MNTD</sub>           | IS | -0.4832   | 0.4386    |
| PC16 | SES <sub>MNTD</sub> | IS | max. body<br>size           | SES <sub>MNTD</sub>           | IS | 0.07557   | -0.093    |
| PC8  | SES <sub>MNTD</sub> | IS | max. body<br>size           | SES <sub>MNTD</sub>           | IS | -0.39588  | 0.3584    |
| all  | SES <sub>MNTD</sub> | IS | phylogeny                   | SES <sub>MNTD</sub>           | IS | 0.21551   | 0.0877    |
| BDBM | SES <sub>MNTD</sub> | IS | phylogeny                   | SES <sub>MNTD</sub>           | IS | -0.64641  | 0.7364    |
| PC16 | SES <sub>MNTD</sub> | IS | phylogeny                   | SES <sub>MNTD</sub>           | IS | 0.2984    | -0.005307 |
| PC8  | SES <sub>MNTD</sub> | IS | phylogeny                   | SES <sub>MNTD</sub>           | IS | -0.4298   | 0.3689    |
| all  | SES <sub>MNTD</sub> | IS | activity level<br>(% still) | $SES_{MPD}$                   | TS | 0.15812   | 0.05951   |
| BDBM | SES <sub>MNTD</sub> | IS | activity level<br>(% still) | SES <sub>MPD</sub>            | TS | -0.4502   | 0.5404    |
| PC16 | SES <sub>MNTD</sub> | IS | activity level<br>(% still) | SES <sub>MPD</sub>            | TS | 0.1851    | -0.0425   |
| PC8  | SES <sub>MNTD</sub> | IS | activity level<br>(% still) | $SES_{MPD}$                   | TS | -0.24541  | 0.1414    |
| all  | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub>            | TS | 0.20574   | 0.1158    |
| BDBM | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub>            | TS | -0.47088  | 0.4598    |
| PC16 | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub>            | TS | 0.1998    | -0.04647  |
| PC8  | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub>            | TS | -0.24609  | 0.0939    |
| all  | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | SES <sub>MPD</sub>            | TS | 0.21032   | 0.08968   |
| BDBM | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | SES <sub>MPD</sub>            | TS | -0.58901  | 0.6369    |
| PC16 | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | $SES_{MPD}$                   | TS | 0.2411    | -0.03438  |
| PC8  | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | $SES_{MPD}$                   | TS | -0.33989  | 0.2112    |
| all  | SES <sub>MNTD</sub> | IS | antenna 2<br>length         | $\mathrm{SES}_{\mathrm{MPD}}$ | TS | -0.008941 | -0.09917  |

| BDBM                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | antenna 2<br>length                                                                                                                                                                                           | $SES_{MPD}$                                                                          | TS                                                                                                                                                                                                                                                                                               | -0.053199                                                                                                                   | -0.08548                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| PC16                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | antenna 2<br>length                                                                                                                                                                                           | $\operatorname{SES}_{\operatorname{MPD}}$                                            | TS                                                                                                                                                                                                                                                                                               | 0.1747                                                                                                                      | -0.01679                                                                                                                  |
| PC8                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | antenna 2<br>length                                                                                                                                                                                           | $\mathbf{SES}_{\mathrm{MPD}}$                                                        | TS                                                                                                                                                                                                                                                                                               | -0.0079275                                                                                                                  | -0.09959                                                                                                                  |
| all                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | max. body<br>size                                                                                                                                                                                             | $SES_{MPD}$                                                                          | TS                                                                                                                                                                                                                                                                                               | 0.12066                                                                                                                     | 0.03933                                                                                                                   |
| BDBM                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | max. body<br>size                                                                                                                                                                                             | $SES_{MPD}$                                                                          | TS                                                                                                                                                                                                                                                                                               | -0.26045                                                                                                                    | 0.2216                                                                                                                    |
| PC16                                                                                                                                                                                                                                                                                                           | <b>SES</b> <sub>MNTD</sub>                                                                          | IS                                                                                                                                                                                                                                                                                                                                | max. body<br>size                                                                                                                                                                                             | $\mathbf{SES}_{\mathrm{MPD}}$                                                        | TS                                                                                                                                                                                                                                                                                               | 0.09129                                                                                                                     | -0.07901                                                                                                                  |
| PC8                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | max. body<br>size                                                                                                                                                                                             | SES <sub>MPD</sub>                                                                   | TS                                                                                                                                                                                                                                                                                               | -0.21713                                                                                                                    | 0.1834                                                                                                                    |
| all                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | phylogeny                                                                                                                                                                                                     | SES <sub>MPD</sub>                                                                   | TS                                                                                                                                                                                                                                                                                               | 0.15893                                                                                                                     | -0.02679                                                                                                                  |
| BDBM                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | phylogeny                                                                                                                                                                                                     | SES <sub>MPD</sub>                                                                   | TS                                                                                                                                                                                                                                                                                               | -0.59703                                                                                                                    | 0.4117                                                                                                                    |
| PC16                                                                                                                                                                                                                                                                                                           | <b>SES</b> <sub>MNTD</sub>                                                                          | IS                                                                                                                                                                                                                                                                                                                                | phylogeny                                                                                                                                                                                                     | SES <sub>MPD</sub>                                                                   | TS                                                                                                                                                                                                                                                                                               | 0.3938                                                                                                                      | 0.01829                                                                                                                   |
| PC8                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | phylogeny                                                                                                                                                                                                     | SES <sub>MPD</sub>                                                                   | TS                                                                                                                                                                                                                                                                                               | -0.3555                                                                                                                     | 0.1301                                                                                                                    |
| all                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | activity level<br>(% still)                                                                                                                                                                                   | $SES_{MPD}$                                                                          | IS                                                                                                                                                                                                                                                                                               | 0.27083                                                                                                                     | 0.124                                                                                                                     |
| BDBM                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | activity level<br>(% still)                                                                                                                                                                                   | SES <sub>MPD</sub>                                                                   | IS                                                                                                                                                                                                                                                                                               | -0.68456                                                                                                                    | 0.609                                                                                                                     |
| PC16                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | activity level<br>(% still)                                                                                                                                                                                   | SES <sub>MPD</sub>                                                                   | IS                                                                                                                                                                                                                                                                                               | 0.3288                                                                                                                      | -0.01309                                                                                                                  |
| PC8                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | activity level                                                                                                                                                                                                | SES <sub>MPD</sub>                                                                   | IS                                                                                                                                                                                                                                                                                               | -0.42436                                                                                                                    | 0.2455                                                                                                                    |
| 100                                                                                                                                                                                                                                                                                                            | SLOMNID                                                                                             | 10                                                                                                                                                                                                                                                                                                                                | (% still)                                                                                                                                                                                                     | <b>DED</b> MPD                                                                       | 10                                                                                                                                                                                                                                                                                               | 0.12150                                                                                                                     | 0.2.00                                                                                                                    |
| all                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | (% still)<br>all                                                                                                                                                                                              | SES <sub>MPD</sub>                                                                   | IS                                                                                                                                                                                                                                                                                               | 0.23963                                                                                                                     | 0.09572                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                                                                                                                                                                                                                                                                                                                   | . ,                                                                                                                                                                                                           |                                                                                      |                                                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                           |
| all                                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub>                                                                                 | IS                                                                                                                                                                                                                                                                                                                                | all                                                                                                                                                                                                           | SES <sub>MPD</sub>                                                                   | IS                                                                                                                                                                                                                                                                                               | 0.23963                                                                                                                     | 0.09572                                                                                                                   |
| all<br>BDBM                                                                                                                                                                                                                                                                                                    | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                          | IS<br>IS                                                                                                                                                                                                                                                                                                                          | all                                                                                                                                                                                                           | SES <sub>MPD</sub>                                                                   | IS<br>IS                                                                                                                                                                                                                                                                                         | 0.23963<br>-0.5208                                                                                                          | 0.09572<br>0.3579                                                                                                         |
| all<br>BDBM<br>PC16                                                                                                                                                                                                                                                                                            | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                   | IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                    | all<br>all<br>all<br>all<br>antenna 1<br>length                                                                                                                                                               | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                       | IS<br>IS<br>IS                                                                                                                                                                                                                                                                                   | 0.23963<br>-0.5208<br>0.2554                                                                                                | 0.09572<br>0.3579<br>-0.04147                                                                                             |
| all<br>BDBM<br>PC16<br>PC8                                                                                                                                                                                                                                                                                     | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                   | IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                              | all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length                                                                                                                                        | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub>                       | IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                             | 0.23963<br>-0.5208<br>0.2554<br>-0.34169                                                                                    | 0.09572<br>0.3579<br>-0.04147<br>0.15                                                                                     |
| all<br>BDBM<br>PC16<br>PC8<br>all                                                                                                                                                                                                                                                                              | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>            | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                        | all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1                                                                                                                                                  | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                       | 0.23963<br>-0.5208<br>0.2554<br>-0.34169<br>0.2327                                                                          | 0.09572<br>0.3579<br>-0.04147<br>0.15<br>0.118                                                                            |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub> SES <sub>MNTD</sub> SES <sub>MNTD</sub> SES <sub>MNTD</sub> SES <sub>MNTD</sub> | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                        | all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1                                                                                                                           | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD                                       | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                       | 0.23963<br>-0.5208<br>0.2554<br>-0.34169<br>0.2327<br>-0.55807                                                              | 0.09572<br>0.3579<br>-0.04147<br>0.15<br>0.118<br><b>0.5211</b>                                                           |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16                                                                                                                                                                                                                                                              | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                                                 | IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                  | all<br>all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1                                                                                             | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD                                       | IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                 | 0.23963<br>-0.5208<br>0.2554<br>-0.34169<br>0.2327<br>-0.55807<br>0.2518                                                    | 0.09572<br>0.3579<br>-0.04147<br>0.15<br>0.118<br><b>0.5211</b><br>-0.03281                                               |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16<br>PC8                                                                                                                                                                                                                                                       | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                                      | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                            | all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2                                                                             | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD                             | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                           | 0.23963<br>-0.5208<br>0.2554<br>-0.34169<br>0.2327<br>-0.55807<br>0.2518<br>-0.38184                                        | 0.09572<br>0.3579<br>-0.04147<br>0.15<br>0.118<br><b>0.5211</b><br>-0.03281<br>0.2688                                     |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16<br>PC16<br>PC8<br>all                                                                                                                                                                                                                                        | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                                      | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                      | all<br>all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2                                               | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD                   | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                     | 0.23963<br>-0.5208<br>0.2554<br>-0.34169<br>0.2327<br><b>-0.55807</b><br>0.2518<br>-0.38184<br>0.07208                      | 0.09572<br>0.3579<br>-0.04147<br>0.15<br>0.118<br><b>0.5211</b><br>-0.03281<br>0.2688<br>-0.07517                         |
| all         PC16         PC28         all         BDBM         PC16         PC8         BDBM         PC16         BDBM         BDBM         BDBM         BDBM         BDBM         BDBM                                                                                                                        | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                           | IS         IS | all<br>all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2                        | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD         | IS         IS | 0.23963<br>-0.5208<br>0.2554<br>-0.34169<br>0.2327<br>-0.55807<br>0.2518<br>-0.38184<br>0.07208<br>-0.23115                 | 0.09572<br>0.3579<br>-0.04147<br>0.15<br>0.118<br><b>0.5211</b><br>-0.03281<br>0.2688<br>-0.07517                         |
| all         BDBM         PC16         PC8         all         BDBM         PC16         PC3         BDBM         BDBM         BDBM         BDBM         PC16         PC3         BDBM         PC16         PC3         PC4         PC5         PC3         PC4         PC4         PC5         PC4         PC4 | SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD<br>SESMNTD                | IS                                  | all<br>all<br>all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2 | SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD<br>SESMPD         | IS         IS | 0.23963<br>-0.5208<br>0.2554<br>-0.34169<br>0.2327<br><b>-0.55807</b><br>0.2518<br>-0.38184<br>0.07208<br>-0.23115<br>0.278 | 0.09572<br>0.3579<br>-0.04147<br>0.15<br>0.118<br><b>0.5211</b><br>-0.03281<br>0.2688<br>-0.07517<br>0.02647<br>-0.002797 |

| BDBM | SES <sub>MNTD</sub>           | IS | max. body<br>size           | SES <sub>MPD</sub>             | IS | -0.33702 | 0.1529             |
|------|-------------------------------|----|-----------------------------|--------------------------------|----|----------|--------------------|
| PC16 | SES <sub>MNTD</sub>           | IS | max. body<br>size           | $SES_{MPD}$                    | IS | 0.1355   | -0.07828           |
| PC8  | SES <sub>MNTD</sub>           | IS | max. body<br>size           | SES <sub>MPD</sub>             | IS | -0.29496 | 0.1457             |
| all  | SES <sub>MNTD</sub>           | IS | phylogeny                   | SES <sub>MPD</sub>             | IS | 0.15761  | 0.01117            |
| BDBM | SES <sub>MNTD</sub>           | IS | phylogeny                   | SES <sub>MPD</sub>             | IS | -0.43416 | 0.3178             |
| PC16 | SES <sub>MNTD</sub>           | IS | phylogeny                   | SES <sub>MPD</sub>             | IS | 0.2909   | -<br>0.000352<br>4 |
| PC8  | $SES_{MNTD}$                  | IS | phylogeny                   | $SES_{MPD}$                    | IS | -0.30763 | 0.166              |
| all  | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub>            | TS | 0.033014 | -0.0895            |
| BDBM | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub>            | TS | -0.26964 | 0.2573             |
| PC16 | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub>            | TS | -0.09467 | -0.04211           |
| PC8  | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub>            | TS | -0.2855  | 0.1996             |
| all  | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub>            | TS | 0.013132 | -0.09888           |
| BDBM | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub>            | TS | -0.3601  | 0.3285             |
| PC16 | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub>            | TS | -0.14598 | -0.007435          |
| PC8  | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub>            | TS | -0.3422  | 0.1895             |
| all  | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub>            | TS | 0.029034 | -0.09218           |
| BDBM | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub>            | TS | -0.30374 | 0.3364             |
| PC16 | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub>            | TS | -0.14081 | 0.0233             |
| PC8  | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub>            | TS | -0.3108  | 0.242              |
| all  | $\mathbf{SES}_{\mathrm{MPD}}$ | TS | antenna 2<br>length         | $\mathbf{SES}_{\mathbf{MNTD}}$ | TS | 0.001044 | -0.09973           |
| BDBM | $\mathbf{SES}_{\mathrm{MPD}}$ | TS | antenna 2<br>length         | SES <sub>MNTD</sub>            | TS | 0.04179  | 0.1242             |
| PC16 | SES <sub>MPD</sub>            | TS | antenna 2<br>length         | $\mathbf{SES}_{\mathbf{MNTD}}$ | TS | 0.015735 | -0.05822           |
| PC8  | SES <sub>MPD</sub>            | TS | antenna 2<br>length         | SES <sub>MNTD</sub>            | TS | 0.03394  | 0.01065            |
| all  | SES <sub>MPD</sub>            | TS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | 0.040296 | -0.08213           |
| BDBM | SES <sub>MPD</sub>            | TS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | -0.26935 | 0.3072             |
| PC16 | $SES_{MPD}$                   | TS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | -0.1101  | -0.01051           |
| PC8  | SES <sub>MPD</sub>            | TS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | -0.3405  | 0.3869             |
| all  | SES <sub>MPD</sub>            | TS | phylogeny                   | SES <sub>MNTD</sub>            | TS | 0.04277  | -0.09287           |

| BDBM | SES <sub>MPD</sub> | TS | phylogeny                      | SES <sub>MNTD</sub>            | TS | -0.5411   | 0.482    |
|------|--------------------|----|--------------------------------|--------------------------------|----|-----------|----------|
| PC16 | SES <sub>MPD</sub> | TS | phylogeny                      | SES <sub>MNTD</sub>            | TS | -0.21187  | 0.01731  |
| PC8  | SES <sub>MPD</sub> | TS | phylogeny                      | SES <sub>MNTD</sub>            | TS | -0.5795   | 0.3994   |
| all  | SES <sub>MPD</sub> | TS | activity level<br>(% still)    | SES <sub>MNTD</sub>            | IS | 0.9565    | 0.029    |
| BDBM | SES <sub>MPD</sub> | TS | activity level<br>(% still)    | SES <sub>MNTD</sub>            | IS | -0.6395   | 0.8058   |
| PC16 | SES <sub>MPD</sub> | TS | activity level<br>(% still)    | SES <sub>MNTD</sub>            | IS | -1.083    | 0.6788   |
| PC8  | SES <sub>MPD</sub> | TS | activity level<br>(% still)    | SES <sub>MNTD</sub>            | IS | -0.6478   | 0.523    |
| all  | $SES_{MPD}$        | TS | all                            | SES <sub>MNTD</sub>            | IS | 0.003516  | -0.09995 |
| BDBM | $SES_{MPD}$        | TS | all                            | SES <sub>MNTD</sub>            | IS | -0.38064  | 0.2173   |
| PC16 | $SES_{MPD}$        | TS | all                            | SES <sub>MNTD</sub>            | IS | -0.14793  | -0.037   |
| PC8  | $SES_{MPD}$        | TS | all                            | SES <sub>MNTD</sub>            | IS | -0.343    | 0.09281  |
| all  | SES <sub>MPD</sub> | TS | antenna 1<br>length            | SES <sub>MNTD</sub>            | IS | 0.037087  | -0.09086 |
| BDBM | SES <sub>MPD</sub> | TS | antenna 1<br>length            | SES <sub>MNTD</sub>            | IS | -0.3506   | 0.3168   |
| PC16 | SES <sub>MPD</sub> | TS | antenna 1<br>length            | SES <sub>MNTD</sub>            | IS | -0.1646   | 0.02076  |
| PC8  | SES <sub>MPD</sub> | TS | antenna 1<br>length            | SES <sub>MNTD</sub>            | IS | -0.3666   | 0.2409   |
| all  | SES <sub>MPD</sub> | TS | antenna 2<br>length            | SES <sub>MNTD</sub>            | IS | 0.0023632 | -0.09966 |
| BDBM | SES <sub>MPD</sub> | TS | antenna 2<br>length            | $\mathbf{SES}_{\mathbf{MNTD}}$ | IS | 0.09311   | 0.1705   |
| PC16 | SES <sub>MPD</sub> | TS | antenna 2<br>length            | $SES_{MNTD}$                   | IS | 0.03172   | -0.05874 |
| PC8  | SES <sub>MPD</sub> | TS | antenna 2<br>length            | SES <sub>MNTD</sub>            | IS | 0.06735   | 0.005886 |
| all  | SES <sub>MPD</sub> | TS | max. body<br>size              | SES <sub>MNTD</sub>            | IS | 0.05506   | -0.08302 |
| BDBM | SES <sub>MPD</sub> | TS | max. body<br>size              | SES <sub>MNTD</sub>            | IS | -0.34674  | 0.2433   |
| PC16 | SES <sub>MPD</sub> | TS | max. body<br>size<br>max. body | SES <sub>MNTD</sub>            | IS | -0.13929  | -0.02717 |
| PC8  | SESMPD             | TS | size                           | SES                            | IS | -0.457    | 0.3463   |
| all  | SES <sub>MPD</sub> | TS | phylogeny                      | SES <sub>MNTD</sub>            | IS | 0.032402  | -0.0949  |
| BDBM | SES <sub>MPD</sub> | TS | phylogeny                      | SES <sub>MNTD</sub>            | IS | -0.4636   | 0.4326   |
| PC16 | SES <sub>MPD</sub> | TS | phylogeny                      | SES <sub>MNTD</sub>            | IS | -0.18612  | 0.01285  |
| PC8  | SES <sub>MPD</sub> | TS | phylogeny                      | SES <sub>MNTD</sub>            | IS | -0.4911   | 0.3472   |
| all  | SES <sub>MPD</sub> | TS | activity level<br>(% still)    | SES <sub>MPD</sub>             | TS | 0.01758   | -0.09763 |
| BDBM | SES <sub>MPD</sub> | TS | activity level<br>(% still)    | $SES_{MPD}$                    | TS | -0.36203  | 0.4128   |

| PC16SES_MPDTSactivity level<br>(% still)SES_MPDTS $-0.1399$ $0.00061$<br>2PC8SES_MPDTSactivity level<br>(% still)SES_MPDTS $-0.3286$ $0.216$ allSES_MPDTSallSES_MPDTS $0.027224$ $-0.0954$ BDBMSES_MPDTSallSES_MPDTS $0.027224$ $-0.0954$ PC16SES_MPDTSallSES_MPDTS $-0.3597$ $0.3045$ PC16SES_MPDTSallSES_MPDTS $-0.17114$ $0.02033$ PC8SES_MPDTSallSES_MPDTS $0.027213$ $-0.0961$ allSES_MPDTSantenna 1<br>lengthSES_MPDTS $0.027213$ $-0.0961$ BDBMSES_MPDTSantenna 1<br>lengthSES_MPDTS $-0.4601$ $0.4566$ PC16SES_MPDTSantenna 1<br>lengthSES_MPDTS $-0.18283$ $0.01553$ PC8SES_MPDTSantenna 2<br>lengthSES_MPDTS $-0.021943$ $-0.0944$ BDBMSES_MPDTSantenna 2<br>lengthSES_MPDTS $-0.009834$ $-0.0993$ PC16SES_MPDTSantenna 2<br>lengthSES_MPDTS $-0.006666$ $-0.0996$ PC8SES_MPDTSantenna 2<br>lengthSES_MPDTS $0.03169$ $-0.0952$ allSES_MPDTSantenna 2<br>lengthSES_MPDTS $0.03169$ $-0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PC8SESMPDTS $(\% \text{ still})$ SESMPDTS $-0.3286$ $0.216$ allSESMPDTSallSESMPDTS $0.027224$ $-0.0954$ BDBMSESMPDTSallSESMPDTS $-0.3597$ $0.3045$ PC16SESMPDTSallSESMPDTS $-0.17114$ $0.02033$ PC8SESMPDTSallSESMPDTS $-0.17114$ $0.02033$ allSESMPDTSallSESMPDTS $-0.3582$ $0.2001$ allSESMPDTSallSESMPDTS $0.027213$ $-0.0961$ allSESMPDTSantenna 1SESMPDTS $0.027213$ $-0.0961$ BDBMSESMPDTSantenna 1SESMPDTS $0.027213$ $-0.0961$ BDBMSESMPDTSantenna 1SESMPDTS $-0.4601$ $0.4566$ PC16SESMPDTSantenna 1SESMPDTS $-0.021943$ $-0.094$ allSESMPDTSantenna 2SESMPDTS $-0.009834$ $-0.0993$ PC16SESMPDTSantenna 2SESMPDTS $-0.006666$ $-0.0996$ PC8SESMPDTSantenna 2SESMPDTS $0.03169$ $-0.0952$ allSESMPDTS $antenna 2$ SESMPDTS $0.03169$ $-0.0952$ allSESMPDTS $antenna 2$ SESMPDTS $0.03169$ $-0.0952$ all <td< td=""></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| all       SES <sub>MPD</sub> TS       all       SES <sub>MPD</sub> TS $0.027224$ $-0.0954$ BDBM       SES <sub>MPD</sub> TS       all       SES <sub>MPD</sub> TS $-0.3597$ $0.3045$ PC16       SES <sub>MPD</sub> TS       all       SES <sub>MPD</sub> TS $-0.17114$ $0.02033$ PC8       SES <sub>MPD</sub> TS       all       SES <sub>MPD</sub> TS $-0.3582$ $0.20014$ all       SES <sub>MPD</sub> TS       all       SES <sub>MPD</sub> TS $-0.3582$ $0.20014$ all       SES <sub>MPD</sub> TS       all       SES <sub>MPD</sub> TS $-0.3582$ $0.20014$ all       SES <sub>MPD</sub> TS       antenna 1<br>length       SES <sub>MPD</sub> TS $0.027213$ $-0.09614$ BDBM       SES <sub>MPD</sub> TS       antenna 1<br>length       SES <sub>MPD</sub> TS $-0.4601$ $0.45666$ PC16       SES <sub>MPD</sub> TS       antenna 1<br>length       SES <sub>MPD</sub> TS $-0.4406$ $0.2819$ all       SES <sub>MPD</sub> TS       antenna 2<br>length       SES <sub>MPD</sub> TS $-0.021943$ $-0.0944$ BDBM       SES <sub>MPD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PC16SES_MPDTSallSES_MPDTS $-0.17114$ $0.02033$ PC8SES_MPDTSallSES_MPDTS $-0.3582$ $0.20014$ allSES_MPDTSantenna 1<br>lengthSES_MPDTS $0.027213$ $-0.09614$ BDBMSES_MPDTSantenna 1<br>SES_MPDTS $0.027213$ $-0.09614$ BDBMSES_MPDTSantenna 1<br>SES_MPDTS $-0.4601$ $0.45664$ PC16SES_MPDTSantenna 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PC8SESMPDTSallSESMPDTS-0.35820.2001allSESMPDTSantenna l<br>lengthSESMPDTS0.027213-0.0961BDBMSESMPDTSantenna l<br>lengthSESMPDTS0.027213-0.0961BDBMSESMPDTSantenna l<br>lengthSESMPDTS-0.46010.4566PC16SESMPDTSantenna l<br>lengthSESMPDTS-0.182830.01553PC8SESMPDTSantenna l<br>lengthSESMPDTS-0.44060.2819allSESMPDTSantenna 2<br>lengthSESMPDTS-0.021943-0.0943BDBMSESMPDTSantenna 2<br>lengthSESMPDTS-0.009834-0.0993PC16SESMPDTSantenna 2<br>lengthSESMPDTS-0.006666-0.0996PC8SESMPDTSantenna 2<br>lengthSESMPDTS0.03169-0.0952allSESMPDTSmax. body<br>sizeSESMPDTS0.032259-0.0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| allSES_MPDTSantenna 1<br>lengthSES_MPDTS $0.027213$ $-0.0961$ BDBMSES_MPDTSantenna 1<br>SES_MPDTS $-0.4601$ $0.4566$ PC16SES_MPDTSantenna 1<br>SES_MPDTS $-0.18283$ $0.01552$ PC8SES_MPDTSantenna 1<br>SES_MPDTS $-0.4406$ $0.2819$ allSES_MPDTSantenna 2<br>SES_MPDTS $-0.021943$ $-0.094$ BDBMSES_MPDTSantenna 2<br>SES_MPDTS $-0.009834$ $-0.0993$ PC16SES_MPDTSantenna 2<br>SES_MPDTS $-0.006666$ $-0.09966$ PC8SES_MPDTSantenna 2<br>SES_MPDTS $0.03169$ $-0.0952$ allSES_MPDTSantenna 2<br>SES_MPDTS $0.031259$ $-0.0880$ allSES_MPDTSantenna 2<br>SES_MPDTS $0.032259$ $-0.0880$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| allSESMPDTSlengthSESMPDTS0.027213-0.0961BDBMSESMPDTSantenna 1<br>lengthSESMPDTS-0.46010.4566PC16SESMPDTSantenna 1<br>SESMPDTS-0.182830.01553PC8SESMPDTSantenna 1<br>SESMPDTS-0.44060.2819<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| BDBMSESMPDISlengthSESMPDIS-0.46010.4366PC16SESMPDTSantenna 1<br>lengthSESMPDTS-0.182830.01553PC8SESMPDTSantenna 1<br>lengthSESMPDTS-0.44060.2819allSESMPDTSantenna 2<br>lengthSESMPDTS-0.021943-0.094BDBMSESMPDTSantenna 2<br>lengthSESMPDTS-0.009834-0.0993PC16SESMPDTSantenna 2<br>lengthSESMPDTS-0.006666-0.0996PC8SESMPDTSantenna 2<br>SESMPDTS0.03169-0.0952allSESMPDTSmax. body<br>sizeSESMPDTS0.032259-0.0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PC16SESMPDTSlengthSESMPDTS-0.182830.01551PC8SESMPDTSantenna 1<br>lengthSESMPDTS-0.44060.2819allSESMPDTSantenna 2<br>lengthSESMPDTS-0.021943-0.094BDBMSESMPDTSantenna 2<br>lengthSESMPDTS-0.009834-0.0993PC16SESMPDTSantenna 2<br>lengthSESMPDTS-0.006666-0.0996PC8SESMPDTSantenna 2<br>lengthSESMPDTS0.03169-0.0952allSESMPDTSmax. body<br>sizeSESMPDTS0.032259-0.0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PC8SES <sub>MPD</sub> TSlengthSES <sub>MPD</sub> TS-0.44060.2819allSES <sub>MPD</sub> TSantenna 2<br>lengthSES <sub>MPD</sub> TS-0.021943-0.094BDBMSES <sub>MPD</sub> TSantenna 2<br>lengthSES <sub>MPD</sub> TS-0.009834-0.0993PC16SES <sub>MPD</sub> TSantenna 2<br>lengthSES <sub>MPD</sub> TS-0.006666-0.0996PC8SES <sub>MPD</sub> TSantenna 2<br>lengthSES <sub>MPD</sub> TS0.03169-0.0952allSES <sub>MPD</sub> TSmax. body<br>sizeSES <sub>MPD</sub> TS0.032259-0.0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| allSESMPDTSlengthSESMPDTS $-0.021943$ $-0.094$ BDBMSESMPDTSantenna 2<br>lengthSESMPDTS $-0.009834$ $-0.0993$ PC16SESMPDTSantenna 2<br>SESMPDTS $-0.006666$ $-0.0996$ PC8SESMPDTSantenna 2<br>SESMPDTS $0.03169$ $-0.0952$ allSESMPDTSmax. body<br>sizeSESMPDTS $0.032259$ $-0.0880$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BDBMSESMPDTSlengthSESMPDTS $-0.009834$ $-0.09934$ PC16SESMPDTSantenna 2<br>lengthSESMPDTS $-0.006666$ $-0.0996$ PC8SESMPDTSantenna 2<br>SESMPDTS $0.03169$ $-0.0952$ allSESMPDTSmax. body<br>SESMPDTS $0.032259$ $-0.0880$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PC16SES_MPDTSlengthSES_MPDTS-0.006666-0.0996PC8SES_MPDTSantenna 2<br>lengthSES_MPDTS $0.03169$ -0.0952allSES_MPDTSmax. body<br>sizeSES_MPDTS $0.032259$ -0.0880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PC8SES <sub>MPD</sub> ISlengthSES <sub>MPD</sub> IS $0.03169$ $-0.0952$ allSES <sub>MPD</sub> TSmax. bodySES <sub>MPD</sub> TS $0.032259$ $-0.0880$ sizeSES <sub>MPD</sub> TSsizeSES <sub>MPD</sub> TS $0.032259$ $-0.0880$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| all SES <sub>MPD</sub> IS $ize$ SES <sub>MPD</sub> IS $0.032259 - 0.0880$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| BDBM SES <sub>MPD</sub> TS max. body ses <sub>MPD</sub> TS -0.15096 0.03373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PC16 SES <sub>MPD</sub> TS max. body<br>size SES <sub>MPD</sub> TS -0.08894 -0.0389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PC8 SES <sub>MPD</sub> TS max. body SES <sub>MPD</sub> TS -0.2445 0.1625 size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| all SES <sub>MPD</sub> TS phylogeny SES <sub>MPD</sub> TS 0.001917 -0.0999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BDBM SES <sub>MPD</sub> TS phylogeny SES <sub>MPD</sub> TS -0.4296 0.228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PC16 SES <sub>MPD</sub> TS phylogeny SES <sub>MPD</sub> TS -0.1562 -0.0429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PC8 SES <sub>MPD</sub> TS phylogeny SES <sub>MPD</sub> TS -0.3777 0.08969                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| all SES <sub>MPD</sub> TS $\frac{\text{activity level}}{(\% \text{ still})}$ SES <sub>MPD</sub> IS 0.039802 -0.0941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BDBM SES <sub>MPD</sub> TS $\frac{\text{activity level}}{(\% \text{ still})}$ SES <sub>MPD</sub> IS -0.4809 0.3332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PC16 SES <sub>MPD</sub> TS $\begin{array}{c} \text{activity level} \\ (\% \text{ still}) \end{array}$ SES <sub>MPD</sub> IS -0.22572 0.02544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DC2 CEC TC activity level CEC IC 0.524/ 0.2857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PC8 SES <sub>MPD</sub> TS $\frac{\text{activity level}}{(\% \text{ still})}$ SES <sub>MPD</sub> IS -0.5246 0.2857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $PLX = NEN(mp) = LN = \frac{1}{2} \frac{1}{2}$ |
| PC8 SES <sub>MPD</sub> 1S (% still) SES <sub>MPD</sub> 1S -0.5246 $0.2857$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| PC8SES_MPDIS $(\% \text{ still})$ SES_MPDIS $-0.3246$ $0.2857$ allSES_MPDTSallSES_MPDIS $0.0423$ $-0.0926$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| all  | SES <sub>MPD</sub>                        | TS | antenna 1<br>length         | SES <sub>MPD</sub>                        | IS | 0.04317   | -0.09098 |
|------|-------------------------------------------|----|-----------------------------|-------------------------------------------|----|-----------|----------|
| BDBM | SES <sub>MPD</sub>                        | TS | antenna 1<br>length         | SES <sub>MPD</sub>                        | IS | -0.3688   | 0.2359   |
| PC16 | SES <sub>MPD</sub>                        | TS | antenna 1<br>length         | $SES_{MPD}$                               | IS | -0.18644  | 0.01282  |
| PC8  | SES <sub>MPD</sub>                        | TS | antenna 1<br>length         | $SES_{MPD}$                               | IS | -0.4552   | 0.2828   |
| all  | SES <sub>MPD</sub>                        | TS | antenna 2<br>length         | $SES_{MPD}$                               | IS | -0.004148 | -0.0999  |
| BDBM | SES <sub>MPD</sub>                        | TS | antenna 2<br>length         | $\operatorname{SES}_{\operatorname{MPD}}$ | IS | -0.09871  | -0.07144 |
| PC16 | SES <sub>MPD</sub>                        | TS | antenna 2<br>length         | $\operatorname{SES}_{\operatorname{MPD}}$ | IS | -0.06791  | -0.08223 |
| PC8  | SES <sub>MPD</sub>                        | TS | antenna 2<br>length         | $SES_{MPD}$                               | IS | -0.12109  | -0.06785 |
| all  | SES <sub>MPD</sub>                        | TS | max. body<br>size           | $SES_{MPD}$                               | IS | 0.0425    | -0.09024 |
| BDBM | SES <sub>MPD</sub>                        | TS | max. body<br>size           | $SES_{MPD}$                               | IS | -0.17961  | -0.01107 |
| PC16 | SES <sub>MPD</sub>                        | TS | max. body<br>size           | $SES_{MPD}$                               | IS | -0.1136   | -0.05324 |
| PC8  | SES <sub>MPD</sub>                        | TS | max. body<br>size           | $SES_{MPD}$                               | IS | -0.3172   | 0.1075   |
| all  | $SES_{MPD}$                               | TS | phylogeny                   | $SES_{MPD}$                               | IS | 0.02093   | -0.09764 |
| BDBM | $SES_{MPD}$                               | TS | phylogeny                   | $SES_{MPD}$                               | IS | -0.25492  | 0.07834  |
| PC16 | SES <sub>MPD</sub>                        | TS | phylogeny                   | $\mathbf{SES}_{\mathrm{MPD}}$             | IS | -0.13258  | -0.03658 |
| PC8  | SES <sub>MPD</sub>                        | TS | phylogeny                   | $SES_{MPD}$                               | IS | -0.3178   | 0.1074   |
| all  | SES <sub>MPD</sub>                        | IS | activity level<br>(% still) | SES <sub>MNTD</sub>                       | TS | 0.08915   | -0.06832 |
| BDBM | $SES_{MPD}$                               | IS | activity level<br>(% still) | SES <sub>MNTD</sub>                       | TS | -0.15453  | 0.01039  |
| PC16 | SES <sub>MPD</sub>                        | IS | activity level<br>(% still) | $\mathbf{SES}_{\mathbf{MNTD}}$            | TS | 0.0127594 | -0.09884 |
| PC8  | SES <sub>MPD</sub>                        | IS | activity level<br>(% still) | $SES_{MNTD}$                              | TS | -0.051485 | -0.08262 |
| all  | $SES_{MPD}$                               | IS | all                         | SES <sub>MNTD</sub>                       | TS | 0.4155204 | 0.3628   |
| BDBM | $SES_{MPD}$                               | IS | all                         | SES <sub>MNTD</sub>                       | TS | -0.029272 | -0.09734 |
| PC16 | $SES_{MPD}$                               | IS | all                         | SES <sub>MNTD</sub>                       | TS | 0.072724  | -0.07469 |
| PC8  | SES <sub>MPD</sub>                        | IS | all                         | SES <sub>MNTD</sub>                       | TS | 0.051274  | -0.08841 |
| all  | SES <sub>MPD</sub>                        | IS | antenna 1<br>length         | SES <sub>MNTD</sub>                       | TS | 0.3505693 | 0.3717   |
| BDBM | SES <sub>MPD</sub>                        | IS | antenna 1<br>length         | SES <sub>MNTD</sub>                       | TS | -0.014731 | -0.09903 |
| PC16 | $\operatorname{SES}_{\operatorname{MPD}}$ | IS | antenna 1<br>length         | SES <sub>MNTD</sub>                       | TS | 0.05012   | -0.08279 |
| PC8  | SES <sub>MPD</sub>                        | IS | antenna 1<br>length         | SES <sub>MNTD</sub>                       | TS | 0.033471  | -0.09293 |

| all  | SES <sub>MPD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | TS | -0.06274   | 0.3099   |
|------|--------------------|----|-----------------------------|--------------------------------|----|------------|----------|
| BDBM | SES <sub>MPD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | TS | -0.006551  | -0.09482 |
| PC16 | SES <sub>MPD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | TS | -0.013763  | -0.06478 |
| PC8  | SES <sub>MPD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | TS | -0.01445   | -0.0642  |
| all  | SES <sub>MPD</sub> | IS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | 0.01788    | -0.09854 |
| BDBM | SES <sub>MPD</sub> | IS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | -0.23032   | 0.1802   |
| PC16 | SES <sub>MPD</sub> | IS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | -0.03551   | -0.08974 |
| PC8  | SES <sub>MPD</sub> | IS | max. body<br>size           | SES <sub>MNTD</sub>            | TS | -0.11715   | 0.002835 |
| all  | SES <sub>MPD</sub> | IS | phylogeny                   | $SES_{MNTD}$                   | TS | 0.3510316  | 0.09874  |
| BDBM | SES <sub>MPD</sub> | IS | phylogeny                   | SES <sub>MNTD</sub>            | TS | -0.2364    | 0.004544 |
| PC16 | SES <sub>MPD</sub> | IS | phylogeny                   | SES <sub>MNTD</sub>            | TS | 0.033958   | -0.09668 |
| PC8  | SES <sub>MPD</sub> | IS | phylogeny                   | SES <sub>MNTD</sub>            | TS | -0.059588  | -0.09058 |
| all  | SES <sub>MPD</sub> | IS | activity level<br>(% still) | SES <sub>MNTD</sub>            | IS | 0.107      | -0.08431 |
| BDBM | SES <sub>MPD</sub> | IS | activity level<br>(% still) | SES <sub>MNTD</sub>            | IS | -0.21041   | -0.02968 |
| PC16 | SES <sub>MPD</sub> | IS | activity level<br>(% still) | SES <sub>MNTD</sub>            | IS | 0.029508   | -0.09787 |
| PC8  | SES <sub>MPD</sub> | IS | activity level<br>(% still) | SES <sub>MNTD</sub>            | IS | -0.062562  | -0.09118 |
| all  | $SES_{MPD}$        | IS | all                         | SES <sub>MNTD</sub>            | IS | 0.4769437  | 0.3041   |
| BDBM | $SES_{MPD}$        | IS | all                         | SES <sub>MNTD</sub>            | IS | -0.0077435 | -0.09988 |
| PC16 | $SES_{MPD}$        | IS | all                         | SES <sub>MNTD</sub>            | IS | 0.092329   | -0.07296 |
| PC8  | $SES_{MPD}$        | IS | all                         | SES <sub>MNTD</sub>            | IS | 0.0776     | -0.0824  |
| all  | SES <sub>MPD</sub> | IS | antenna 1<br>length         | SES <sub>MNTD</sub>            | IS | 0.3874407  | 0.3129   |
| BDBM | SES <sub>MPD</sub> | IS | antenna 1<br>length         | SES <sub>MNTD</sub>            | IS | -0.028704  | -0.09737 |
| PC16 | SES <sub>MPD</sub> | IS | antenna 1<br>length         | $\mathbf{SES}_{\mathbf{MNTD}}$ | IS | 0.051007   | -0.08722 |
| PC8  | SES <sub>MPD</sub> | IS | antenna 1<br>length         | SES <sub>MNTD</sub>            | IS | 0.028051   | -0.09644 |
| all  | SES <sub>MPD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | IS | -0.1417    | 0.4085   |
| BDBM | SES <sub>MPD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | IS | -0.021817  | -0.08603 |
| PC16 | SES <sub>MPD</sub> | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | IS | -0.037163  | -0.03759 |
| PC8  | $SES_{MPD}$        | IS | antenna 2<br>length         | SES <sub>MNTD</sub>            | IS | -0.039501  | -0.03503 |
|      |                    |    |                             |                                |    |            |          |

| all         SESMED         IS         size         SESMED         IS         -0.04846         -0.0436           BDBM         SESMED         IS         max.body<br>size         SESMED         IS         -0.057542         0.2332           PC16         SESMED         IS         max.body<br>size         SESMED         IS         -0.067544         -0.08113           PC8         SESMED         IS         phylogeny         SESMED         IS         -0.18914         0.03635           all         SESMED         IS         phylogeny         SESMED         IS         -0.17085         -0.03124           PC16         SESMED         IS         phylogeny         SESMED         IS         -0.030648         -0.09478           PC8         SESMED         IS         phylogeny         SESMED         IS         -0.019472         -0.0986           all         SESMED         IS         activity level<br>(% still)         SESMED         TS         0.06188         -0.08           PC16         SESMED         IS         all         SESMED         TS         0.06188         -0.08           all         SESMED         IS         all         SESMED         TS         0.025127         <                                                                                                                                                                         | - 11     | are                | IC | max. body                                      | <b>CEC</b>          | IC | 0.04949   | 0.00456  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|----|------------------------------------------------|---------------------|----|-----------|----------|
| BLDBM         SESMPD         IS         size         SESMPD         IS         -0.03213         0.2322           PC16         SESMPD         IS         max.body<br>size         SESMPD         IS         -0.067544         -0.08113           PC8         SESMPD         IS         max.body<br>size         SESMPD         IS         -0.18914         0.03635           all         SESMPD         IS         phylogeny<br>SESMPD         SESMPD         IS         -0.17085         -0.03144           PC16         SESMPD         IS         phylogeny<br>SESMPD         IS         -0.030648         -0.09689           all         SESMPD         IS         phylogeny<br>SESMPD         IS         -0.030648         -0.09689           all         SESMPD         IS         phylogeny SESMPD         IS         -0.030648         -0.09689           all         SESMPD         IS         (% still)         SESMPD         TS         -0.019472         -0.0986           all         SESMPD         IS         attivity level<br>(% still)         SESMPD         TS         0.06188         -0.0825           PC16         SESMPD         IS         all         SESMPD         TS         0.025127         -0.09814                                                                                                                                                           | all      | SES <sub>MPD</sub> | 15 | size                                           | SES <sub>MNTD</sub> | 15 | -0.04848  | -0.09456 |
| PC16         SESMPD         IS         size         SESMPD         IS         -0.06/344         -0.08113           PC8         SESMPD         IS         max.body<br>size         SESMPD         IS         -0.18914         0.03635           all         SESMPD         IS         phylogeny         SESMPD         IS         0.17085         -0.03194           PC16         SESMPD         IS         phylogeny         SESMPD         IS         0.0352747         0.1502           BDBM         SESMPD         IS         phylogeny         SESMPD         IS         0.030648         -0.009478           all         SESMPD         IS         phylogeny         SESMPD         IS         0.030648         -0.009478           all         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.04061137         0.4235           BDBM         SESMPD         IS         all         SESMPD         TS         0.0406188         -0.05925           PC16         SESMPD         IS         all         SESMPD         TS         0.06188         -0.05           all         SESMPD         IS         all         SESMPD         TS         0.025127                                                                                                                                                                                         | BDBM     | $SES_{MPD}$        | IS | size                                           | SES <sub>MNTD</sub> | IS | -0.35215  | 0.2332   |
| PC8         SESMPD         IS         size         SESMPD         IS         -0.18914         0.03533           all         SESMPD         IS         phylogeny         SESMNTD         IS         0.352747         0.1502           BDBM         SESMPD         IS         phylogeny         SESMNTD         IS         0.03126         -0.03194           PC16         SESMPD         IS         phylogeny         SESMNTD         IS         0.030648         -0.09478           PC8         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.04061137         0.4235           BDBM         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.019472         -0.0986           PC16         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.06188         -0.08           PC8         SESMPD         IS         all         SESMPD         TS         0.06188         -0.08           all         SESMPD         IS         all         SESMPD         TS         0.07379         -0.07582           PC8         SESMPD         IS         antenna 1         SESMPD         TS         0.0                                                                                                                                                                    | PC16     | SES <sub>MPD</sub> | IS | size                                           | SES <sub>MNTD</sub> | IS | -0.067544 | -0.08113 |
| all         SES <sub>MPD</sub> IS         phylogeny         SES <sub>MND</sub> IS         0.1502           BDBM         SES <sub>MPD</sub> IS         phylogeny         SES <sub>MND</sub> IS         -0.17085         -0.03194           PC16         SES <sub>MPD</sub> IS         phylogeny         SES <sub>MND</sub> IS         -0.030648         -0.09689           all         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> IS         -0.019472         -0.09669           BDBM         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         -0.019472         -0.0966           PC16         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         0.084798         -0.05925           PC8         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.06188         -0.0847           PC8         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.025127         -0.09814           PC16         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.068623         -0.08035           all         SES <sub>MPD</sub> IS         altenna 1         SES <sub>MPD</sub>                                                                                                           | PC8      | $SES_{MPD}$        | IS | -                                              | SES <sub>MNTD</sub> | IS | -0.18914  | 0.03635  |
| PC16         SES <sub>MPD</sub> IS         phylogeny         SES <sub>MNTD</sub> IS         0.038126         -0.09478           PC8         SES <sub>MPD</sub> IS         phylogeny         SES <sub>MNTD</sub> IS         -0.030648         -0.09689           all         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         0.4061137         0.4235           BDBM         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         0.019472         -0.0986           PC16         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         0.06188         -0.08           all         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.06188         -0.08           all         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.06188         -0.08           PC16         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.073079         -0.07582           PC8         SES <sub>MPD</sub> IS         altenna 1         SES <sub>MPD</sub> TS         0.047626         -0.09244           PC16         SES <sub>MPD</sub> IS         antenna 1         SES <sub>MPD</sub> <                                                                                                 | all      | SES <sub>MPD</sub> | IS |                                                | SES <sub>MNTD</sub> | IS | 0.352747  | 0.1502   |
| PC8         SES <sub>MPD</sub> IS         Phylogeny         SES <sub>MNTD</sub> IS         -0.030648         -0.09689           all         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         0.4061137         0.4235           BDBM         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         -0.019472         -0.0986           PC16         SES <sub>MPD</sub> IS         activity level<br>(% still)         SES <sub>MPD</sub> TS         0.084798         -0.05925           PC8         SES <sub>MPD</sub> IS         attivity level<br>(% still)         SES <sub>MPD</sub> TS         0.06188         -0.08           all         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.06188         -0.08           all         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.06188         -0.08           PC16         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.025127         -0.09814           PC16         SES <sub>MPD</sub> IS         all         SES <sub>MPD</sub> TS         0.04735671         0.3784           BDBM         SES <sub>MPD</sub> IS         antenna 1<br>length                                                                                                        | BDBM     | SES <sub>MPD</sub> | IS | phylogeny                                      | SES <sub>MNTD</sub> | IS | -0.17085  | -0.03194 |
| allSES_MPDISactivity level<br>(% still)SES_MPDTS0.40611370.4235BDBMSES_MPDISactivity level<br>(% still)SES_MPDTS-0.019472-0.0986PC16SES_MPDISactivity level<br>(% still)SES_MPDTS0.084798-0.05925PC8SES_MPDISactivity level<br>(% still)SES_MPDTS0.06188-0.08allSES_MPDISallSES_MPDTS0.06188-0.08allSES_MPDISallSES_MPDTS0.025127-0.09814PC16SES_MPDISallSES_MPDTS0.025127-0.09814PC16SES_MPDISallSES_MPDTS0.068623-0.08035allSES_MPDISallSES_MPDTS0.068623-0.09044PC16SES_MPDISantenna 1<br>lengthSES_MPDTS0.047356710.3784PC16SES_MPDISantenna 1<br>lengthSES_MPDTS0.047626-0.09204allSES_MPDISantenna 2<br>lengthSES_MPDTS0.047824-0.07896PC16SES_MPDISantenna 2<br>lengthSES_MPDTS0.047824-0.07896PC16SES_MPDISantenna 2<br>lengthSES_MPDTS0.047824-0.07896PC16SES_MPDISantenna 2<br>lengthSES_MPDTS0.047824-0.07896PC16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PC16     | SES <sub>MPD</sub> | IS | phylogeny                                      | SES <sub>MNTD</sub> | IS | 0.038126  | -0.09478 |
| all         SESMPD         IS         (% still)         SESMPD         IS         0.4061137         0.4233           BDBM         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         -0.019472         -0.0986           PC16         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.084798         -0.05925           PC8         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.06188         -0.08           all         SESMPD         IS         all         SESMPD         TS         0.06188         -0.08           all         SESMPD         IS         all         SESMPD         TS         0.025127         -0.09814           PC16         SESMPD         IS         all         SESMPD         TS         0.073079         -0.07582           PC8         SESMPD         IS         all         SESMPD         TS         0.04735671         0.3784           BDBM         SESMPD         IS         antenna 1         SESMPD         TS         0.047626         -0.09204           all         SESMPD         IS         antenna 2         SESMPD         TS         0.11418                                                                                                                                                                     | PC8      | SES <sub>MPD</sub> | IS | phylogeny                                      | SES <sub>MNTD</sub> | IS | -0.030648 | -0.09689 |
| BDBM         SESMPD         IS         (% still)         SESMPD         IS         -0.0194/2         -0.0396           PC16         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.084798         -0.05925           PC8         SESMPD         IS         activity level<br>(% still)         SESMPD         TS         0.06188         -0.08           all         SESMPD         IS         all         SESMPD         TS         0.06188         -0.08           PC8         SESMPD         IS         all         SESMPD         TS         0.04852413         0.497           BDBM         SESMPD         IS         all         SESMPD         TS         0.025127         -0.09814           PC16         SESMPD         IS         all         SESMPD         TS         0.073079         -0.07582           PC8         SESMPD         IS         altenna 1         SESMPD         TS         0.047626         -0.09044           PC16         SESMPD         IS         antenna 1         SESMPD         TS         0.047626         -0.09204           all         SESMPD         IS         antenna 2         SESMPD         TS         0.11418         <                                                                                                                                                                            | all      | SES <sub>MPD</sub> | IS | (% still)                                      | $SES_{MPD}$         | TS | 0.4061137 | 0.4235   |
| PC16         SESMPD         IS         (% still)<br>(% still)         SESMPD         IS         0.084798         -0.03923           PC8         SESMPD         IS         attivity level<br>(% still)         SESMPD         TS         0.06188         -0.08           all         SESMPD         IS         all         SESMPD         TS         0.06188         -0.08           BDBM         SESMPD         IS         all         SESMPD         TS         0.025127         -0.09814           PC16         SESMPD         IS         all         SESMPD         TS         0.073079         -0.07822           PC8         SESMPD         IS         all         SESMPD         TS         0.068623         -0.08035           all         SESMPD         IS         antenna 1<br>length         SESMPD         TS         0.4735671         0.3784           BDBM         SESMPD         IS         antenna 1<br>length         SESMPD         TS         0.062153         -0.09044           PC16         SESMPD         IS         antenna 1<br>length         SESMPD         TS         0.047626         -0.09204           all         SESMPD         IS         antenna 2<br>length         SESMPD         TS <th< td=""><td>BDBM</td><td>SES<sub>MPD</sub></td><td>IS</td><td>(% still)</td><td><math>SES_{MPD}</math></td><td>TS</td><td>-0.019472</td><td>-0.0986</td></th<> | BDBM     | SES <sub>MPD</sub> | IS | (% still)                                      | $SES_{MPD}$         | TS | -0.019472 | -0.0986  |
| PC8         SESMPD         IS         (% still)         SESMPD         IS         0.06188         -0.08           all         SESMPD         IS         all         SESMPD         TS         0.04852413         0.497           BDBM         SESMPD         IS         all         SESMPD         TS         0.025127         -0.09814           PC16         SESMPD         IS         all         SESMPD         TS         0.073079         -0.07822           PC8         SESMPD         IS         all         SESMPD         TS         0.04735671         0.3784           BDBM         SESMPD         IS         antenna 1<br>length         SESMPD         TS         0.068623         -0.009044           PC16         SESMPD         IS         antenna 1<br>length         SESMPD         TS         0.04735671         0.3784           BDBM         SESMPD         IS         antenna 1<br>length         SESMPD         TS         0.066133         -0.009044           all         SESMPD         IS         antenna 1<br>length         SESMPD         TS         0.047626         -0.09204           all         SESMPD         IS         antenna 2<br>length         SESMPD         TS         0.047824 <td>PC16</td> <td>SES<sub>MPD</sub></td> <td>IS</td> <td>(% still)</td> <td>SES<sub>MPD</sub></td> <td>TS</td> <td>0.084798</td> <td>-0.05925</td>              | PC16     | SES <sub>MPD</sub> | IS | (% still)                                      | SES <sub>MPD</sub>  | TS | 0.084798  | -0.05925 |
| BDBMSESMPDISallSESMPDTS0.0251270.09814PC16SESMPDISallSESMPDTS0.073079-0.07582PC8SESMPDISallSESMPDTS0.068623-0.08035allSESMPDISantenna 1SESMPDTS0.47356710.3784BDBMSESMPDISantenna 1SESMPDTS0.066633-0.09044PC16SESMPDISantenna 1SESMPDTS0.086683-0.07138PC8SESMPDISantenna 1SESMPDTS0.047626-0.09204allSESMPDISantenna 2lengthSESMPDTS0.047626-0.09204allSESMPDISantenna 2lengthSESMPDTS0.11418-0.0221PC16SESMPDISantenna 2lengthSESMPDTS0.047824-0.07896PC16SESMPDISantenna 2lengthSESMPDTS0.047824-0.07896PC16SESMPDISantenna 2lengthSESMPDTS0.005722-0.09984BDBMSESMPDISmax. bodySESMPDTS-0.156790.03574PC16SESMPDISmax. bodySESMPDTS-0.058124-0.07128PC16SESMPDISmax. bodySESMPDTS-0.058124-0.07128PC16SESMPDISmax. bodySESMPDTS-0.05812                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PC8      | $SES_{MPD}$        | IS | •                                              | $SES_{MPD}$         | TS | 0.06188   | -0.08    |
| PC16       SES <sub>MPD</sub> IS       all       SES <sub>MPD</sub> TS $0.073079$ $-0.07582$ PC8       SES <sub>MPD</sub> IS       all       SES <sub>MPD</sub> TS $0.068623$ $-0.08035$ all       SES <sub>MPD</sub> IS       antenna 1<br>length       SES <sub>MPD</sub> TS $0.4735671$ $0.3784$ BDBM       SES <sub>MPD</sub> IS       antenna 1<br>length       SES <sub>MPD</sub> TS $0.4735671$ $0.3784$ PC16       SES <sub>MPD</sub> IS       antenna 1<br>length       SES <sub>MPD</sub> TS $0.062153$ $-0.09044$ PC16       SES <sub>MPD</sub> IS       antenna 1<br>length       SES <sub>MPD</sub> TS $0.086683$ $-0.07138$ PC8       SES <sub>MPD</sub> IS       antenna 2<br>length       SES <sub>MPD</sub> TS $0.047626$ $-0.09244$ all       SES <sub>MPD</sub> IS       antenna 2<br>length       SES <sub>MPD</sub> TS $0.1912914$ $0.08853$ BDBM       SES <sub>MPD</sub> IS       antenna 2<br>length       SES <sub>MPD</sub> TS $0.11418$ $-0.02214$ PC16       SES <sub>MPD</sub> IS       antenna 2<br>length       SES <sub>MPD</sub> TS $0.005722$ $-0.09844$ </td <td>all</td> <td><math>SES_{MPD}</math></td> <td>IS</td> <td>all</td> <td><math>SES_{MPD}</math></td> <td>TS</td> <td>0.4852413</td> <td>0.497</td>                                                                                                                                          | all      | $SES_{MPD}$        | IS | all                                            | $SES_{MPD}$         | TS | 0.4852413 | 0.497    |
| PC8SESMPDISallSESMPDTS $0.068623$ $-0.08035$ allSESMPDISantenna I<br>lengthSESMPDTS $0.4735671$ $0.3784$ BDBMSESMPDISantenna 1<br>lengthSESMPDTS $-0.062153$ $-0.09044$ PC16SESMPDISantenna 1<br>lengthSESMPDTS $0.086683$ $-0.07138$ PC8SESMPDISantenna 1<br>lengthSESMPDTS $0.047626$ $-0.09204$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.047626$ $-0.09204$ allSESMPDISantenna 2<br>SESMPDTS $0.047626$ $-0.09204$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.1912914$ $0.08853$ BDBMSESMPDISantenna 2<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BDBM     | $SES_{MPD}$        | IS | all                                            | $SES_{MPD}$         | TS | 0.025127  | -0.09814 |
| allSESMPDISantenna I<br>lengthSESMPDTS0.47356710.3784BDBMSESMPDISantenna 1<br>lengthSESMPDTS-0.062153-0.09044PC16SESMPDISantenna 1<br>lengthSESMPDTS0.086683-0.07138PC8SESMPDISantenna 1<br>lengthSESMPDTS0.047626-0.09204allSESMPDISantenna 2<br>lengthSESMPDTS0.047626-0.09204allSESMPDISantenna 2<br>lengthSESMPDTS0.19129140.08853BDBMSESMPDISantenna 2<br>lengthSESMPDTS0.11418-0.0221PC16SESMPDISantenna 2<br>lengthSESMPDTS0.047824-0.07896PC8SESMPDISantenna 2<br>lengthSESMPDTS0.08659-0.03644allSESMPDISantenna 2<br>lengthSESMPDTS0.08659-0.03644allSESMPDISmax. body<br>sizeSESMPDTS0.005722-0.09984BDBMSESMPDISmax. body<br>sizeSESMPDTS-0.156790.03574PC16SESMPDISmax. body<br>sizeSESMPDTS-0.058124-0.07128PC8SESMPDISmax. body<br>sizeSESMPDTS-0.058124-0.07128PC16SESMPDISmax. body<br>sizeSESMPDTS-0.058124-0.07128 <tr< td=""><td>PC16</td><td><math>SES_{MPD}</math></td><td>IS</td><td>all</td><td><math>SES_{MPD}</math></td><td>TS</td><td>0.073079</td><td>-0.07582</td></tr<>                                                                                                                                                                                                                                                                                                                                                                                       | PC16     | $SES_{MPD}$        | IS | all                                            | $SES_{MPD}$         | TS | 0.073079  | -0.07582 |
| allSESMPDISlengthSESMPDIS0.4/356/10.3/84BDBMSESMPDISantenna 1<br>lengthSESMPDTS-0.062153-0.09044PC16SESMPDISantenna 1<br>lengthSESMPDTS0.086683-0.07138PC8SESMPDISantenna 1<br>lengthSESMPDTS0.047626-0.09204allSESMPDISantenna 2<br>lengthSESMPDTS0.19129140.08853BDBMSESMPDISantenna 2<br>lengthSESMPDTS0.11418-0.0221PC16SESMPDISantenna 2<br>lengthSESMPDTS0.047824-0.07896PC8SESMPDISantenna 2<br>lengthSESMPDTS0.08659-0.03644allSESMPDISantenna 2<br>lengthSESMPDTS0.005722-0.09984BDBMSESMPDISmax. body<br>sizeSESMPDTS-0.156790.03574PC16SESMPDISmax. body<br>sizeSESMPDTS-0.058124-0.07128PC16SESMPDISmax. body<br>sizeSESMPDTS-0.058124-0.07128PC16SESMPDISmax. body<br>sizeSESMPDTS-0.058124-0.07128PC8SESMPDISmax. body<br>sizeSESMPDTS-0.058124-0.07128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PC8      | $SES_{MPD}$        | IS | all                                            | $SES_{MPD}$         | TS | 0.068623  | -0.08035 |
| BDBMSESMPDISlengthSESMPDIS $-0.062153$ $-0.09444$ PC16SESMPDISantenna 1<br>lengthSESMPDTS $0.086683$ $-0.07138$ PC8SESMPDISantenna 1<br>lengthSESMPDTS $0.047626$ $-0.09204$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.047626$ $-0.09204$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.1912914$ $0.08853$ BDBMSESMPDISantenna 2<br>lengthSESMPDTS $0.11418$ $-0.0221$ PC16SESMPDISantenna 2<br>lengthSESMPDTS $0.047824$ $-0.07896$ PC8SESMPDISantenna 2<br>lengthSESMPDTS $0.08659$ $-0.03644$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.005722$ $-0.09984$ BDBMSESMPDISmax. body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC16SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | all      | $SES_{MPD}$        | IS | length                                         | $SES_{MPD}$         | TS | 0.4735671 | 0.3784   |
| PC16SESMPDISlengthSESMPDIS $0.086683$ $-0.07138$ PC8SESMPDISantenna 1<br>lengthSESMPDTS $0.047626$ $-0.09204$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.1912914$ $0.08853$ BDBMSESMPDISantenna 2<br>lengthSESMPDTS $0.1912914$ $0.08853$ PC16SESMPDISantenna 2<br>lengthSESMPDTS $0.11418$ $-0.0221$ PC16SESMPDISantenna 2<br>lengthSESMPDTS $0.047824$ $-0.07896$ PC8SESMPDISantenna 2<br>lengthSESMPDTS $0.08659$ $-0.03644$ allSESMPDISmax.body<br>sizeSESMPDTS $0.005722$ $-0.09984$ BDBMSESMPDISmax.body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC16SESMPDISmax.body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax.body<br>sizeSESMPDTS $-0.058124$ $-0.07128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | BDBM     | SES <sub>MPD</sub> | IS | length                                         | SES <sub>MPD</sub>  | TS | -0.062153 | -0.09044 |
| PC8SESMPDISlengthSESMPDIS $0.04/626$ $-0.09204$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.1912914$ $0.08853$ BDBMSESMPDISantenna 2<br>lengthSESMPDTS $0.11418$ $-0.0221$ PC16SESMPDISantenna 2<br>lengthSESMPDTS $0.047824$ $-0.07896$ PC8SESMPDISantenna 2<br>lengthSESMPDTS $0.047824$ $-0.07896$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.08659$ $-0.03644$ allSESMPDISmax. body<br>sizeSESMPDTS $0.005722$ $-0.09984$ BDBMSESMPDISmax. body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC16SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC16SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PC16     | SES <sub>MPD</sub> | IS | length                                         | SES <sub>MPD</sub>  | TS | 0.086683  | -0.07138 |
| allSESMPDISlengthSESMPDIS $0.1912914$ $0.08833$ BDBMSESMPDISantenna 2<br>lengthSESMPDTS $0.11418$ $-0.0221$ PC16SESMPDISantenna 2<br>lengthSESMPDTS $0.047824$ $-0.07896$ PC8SESMPDISantenna 2<br>lengthSESMPDTS $0.08659$ $-0.03644$ allSESMPDISantenna 2<br>lengthSESMPDTS $0.005722$ $-0.09984$ BDBMSESMPDISmax. body<br>sizeSESMPDTS $0.005722$ $-0.09984$ PC16SESMPDISmax. body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC8SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PC8      | $SES_{MPD}$        | IS | length                                         | SES <sub>MPD</sub>  | TS | 0.047626  | -0.09204 |
| BDBMSESMPDISlengthSESMPDTS $0.11418$ $-0.0221$ PC16SESMPDISantenna 2<br>lengthSESMPDTS $0.047824$ $-0.07896$ PC8SESMPDISantenna 2<br>lengthSESMPDTS $0.047824$ $-0.07896$ allSESMPDISmax.body<br>sizeSESMPDTS $0.08659$ $-0.03644$ BDBMSESMPDISmax.body<br>sizeSESMPDTS $0.005722$ $-0.09984$ PC16SESMPDISmax.body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC8SESMPDISmax.body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax.body<br>sizeSESMPDTS $-0.15679$ $-0.01215$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | all      | $SES_{MPD}$        | IS | length                                         | SES <sub>MPD</sub>  | TS | 0.1912914 | 0.08853  |
| PC16SESMPDISlengthSESMPDTS $0.04/824$ $-0.0/896$ PC8SESMPDISantenna 2<br>lengthSESMPDTS $0.08659$ $-0.03644$ allSESMPDISmax. body<br>sizeSESMPDTS $0.005722$ $-0.09984$ BDBMSESMPDISmax. body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC16SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BDBM     | $SES_{MPD}$        | IS | length                                         | SES <sub>MPD</sub>  | TS | 0.11418   | -0.0221  |
| PC8SESMPDISlength<br>max. body<br>sizeSESMPDTS $0.08659$ $-0.03644$ allSESMPDISmax. body<br>sizeSESMPDTS $0.005722$ $-0.09984$ BDBMSESMPDISmax. body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC16SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax. body<br>sizeSESMPDTS $-0.15679$ $-0.01215$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PC16     | SES <sub>MPD</sub> | IS | length                                         | SES <sub>MPD</sub>  | TS | 0.047824  | -0.07896 |
| allSESMPDISsizeSESMPDIS $0.003722$ $-0.09984$ BDBMSESMPDISmax. body<br>sizeSESMPDTS $-0.15679$ $0.03574$ PC16SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$ PC8SESMPDISmax. body<br>sizeSESMPDTS $-0.058124$ $-0.07128$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PC8      | $SES_{MPD}$        | IS | length                                         | SES <sub>MPD</sub>  | TS | 0.08659   | -0.03644 |
| BDBMSES <sub>MPD</sub> ISSizeSES <sub>MPD</sub> IS $-0.13679$ $0.03374$ PC16SES <sub>MPD</sub> ISmax. body<br>sizeSES <sub>MPD</sub> TS $-0.058124$ $-0.07128$ PC8SES <sub>MPD</sub> ISmax. body<br>sizeSES <sub>MPD</sub> TS $-0.1059$ $-0.01215$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                    |    | may body                                       | <b>CEC</b>          | TC | 0.005722  | 0.00004  |
| PC10 SES <sub>MPD</sub> IS size $SES_{MPD}$ IS $-0.038124$ $-0.07128$<br>PC8 SES <sub>MPD</sub> IS max. body SES <sub>MPD</sub> TS $-0.1059$ $-0.01215$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | SES <sub>MPD</sub> | IS | size                                           | SES <sub>MPD</sub>  | 15 | 0.003722  | -0.09984 |
| PLX = NEN(DD) = IN (IN (IN (IN (IN (IN (IN (IN (IN (IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | all      |                    |    | size<br>max. body<br>size                      |                     |    |           | 0.03574  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | all BDBM | SES <sub>MPD</sub> | IS | size<br>max. body<br>size<br>max. body<br>size | SES <sub>MPD</sub>  | TS | -0.15679  |          |

| all  | $SES_{MPD}$                   | IS | phylogeny                        | $\operatorname{SES}_{\operatorname{MPD}}$ | TS | 0.5049448  | 0.2676    |
|------|-------------------------------|----|----------------------------------|-------------------------------------------|----|------------|-----------|
| BDBM | $SES_{MPD}$                   | IS | phylogeny                        | $\mathbf{SES}_{\mathrm{MPD}}$             | TS | -0.02663   | -0.09881  |
| PC16 | $SES_{MPD}$                   | IS | phylogeny                        | $SES_{MPD}$                               | TS | 0.106704   | -0.07069  |
| PC8  | $SES_{MPD}$                   | IS | phylogeny                        | $SES_{MPD}$                               | TS | 0.082716   | -0.08377  |
| all  | SES <sub>MPD</sub>            | IS | activity level<br>(% still)      | SES <sub>MPD</sub>                        | IS | 0.5028334  | 0.2842    |
| BDBM | SES <sub>MPD</sub>            | IS | activity level<br>(% still)      | SES <sub>MPD</sub>                        | IS | -0.08985   | -0.08577  |
| PC16 | SES <sub>MPD</sub>            | IS | activity level<br>(% still)      | SES <sub>MPD</sub>                        | IS | 0.046504   | -0.09413  |
| PC8  | SES <sub>MPD</sub>            | IS | activity level<br>(% still)      | SES <sub>MPD</sub>                        | IS | 0.0061558  | -0.09991  |
| all  | $SES_{MPD}$                   | IS | all                              | $SES_{MPD}$                               | IS | 0.3459184  | 0.1029    |
| BDBM | SES <sub>MPD</sub>            | IS | all                              | SES <sub>MPD</sub>                        | IS | -0.0861    | -0.08542  |
| PC16 | SES <sub>MPD</sub>            | IS | all                              | SES <sub>MPD</sub>                        | IS | -0.0099042 | -0.0997   |
| PC8  | $SES_{MPD}$                   | IS | all                              | $SES_{MPD}$                               | IS | -0.038843  | -0.09579  |
| all  | $\mathbf{SES}_{\mathrm{MPD}}$ | IS | antenna 1<br>length              | $SES_{MPD}$                               | IS | 0.2939826  | 0.07311   |
| BDBM | SES <sub>MPD</sub>            | IS | antenna 1<br>length              | $\mathbf{SES}_{\mathrm{MPD}}$             | IS | -0.1488    | -0.04857  |
| PC16 | SES <sub>MPD</sub>            | IS | antenna 1<br>length              | SES <sub>MPD</sub>                        | IS | -0.011551  | -0.09952  |
| PC8  | SES <sub>MPD</sub>            | IS | antenna 1<br>length              | SES <sub>MPD</sub>                        | IS | -0.063766  | -0.0866   |
| all  | SES <sub>MPD</sub>            | IS | antenna 2<br>length              | SES <sub>MPD</sub>                        | IS | 0.2270953  | 0.02261   |
| BDBM | SES <sub>MPD</sub>            | IS | antenna 2<br>length<br>antenna 2 | SES <sub>MPD</sub>                        | IS | 0.034939   | -0.09663  |
| PC16 | SES <sub>MPD</sub>            | IS | length<br>antenna 2              | $SES_{MPD}$                               | IS | 0.0104468  | -0.09954  |
| PC8  | SES <sub>MPD</sub>            | IS | length<br>max. body              | SES <sub>MPD</sub>                        | IS | 0.027849   | -0.09697  |
| all  | $SES_{MPD}$                   | IS | size                             | $\mathbf{SES}_{\mathrm{MPD}}$             | IS | -0.0264231 | -0.09844  |
| BDBM | SES <sub>MPD</sub>            | IS | max. body<br>size                | SES <sub>MPD</sub>                        | IS | -0.22135   | 0.02707   |
| PC16 | SES <sub>MPD</sub>            | IS | max. body<br>size                | $SES_{MPD}$                               | IS | -0.09183   | -0.06633  |
| PC8  | $SES_{MPD}$                   | IS | max. body<br>size                | $SES_{MPD}$                               | IS | -0.15676   | -0.009592 |
| all  | SES <sub>MPD</sub>            | IS | phylogeny                        | SES <sub>MPD</sub>                        | IS | 0.2396337  | 0.02785   |
| BDBM | SES <sub>MPD</sub>            | IS | phylogeny                        | $SES_{MPD}$                               | IS | -0.09424   | -0.07707  |
| PC16 | SES <sub>MPD</sub>            | IS | phylogeny                        | SES <sub>MPD</sub>                        | IS | -0.008824  | -0.09969  |
| PC8  | $SES_{MPD}$                   | IS | phylogeny                        | $\mathbf{SES}_{\mathrm{MPD}}$             | IS | -0.038022  | -0.0947   |
|      |                               |    |                                  |                                           |    |            |           |

Table A5.3. Effect sizes of fish community trait dispersion on residual peracarid community trait and phylogenetic dispersion, controlling for the effects of habitat filters on fish dispersion.

Bolded cells indicate values significant at alpha = 0.008333; the first 24 rows are effects for which results are presented in the main text. Rows are colored according to the direction and magnitude of the effect size; red indicates a negative effect while blue indicates a positive effect, and color saturation is proportional to  $R^2$ . TS = Tip Shuffle algorithm, IS = Independent Swap algorithm; BDBM = Body Depth Below Midline.

| Predictor<br>trait | Predictor<br>metric | Predictor algorithm | Response trait              | Response<br>metric         | Response algorithm | Effect<br>size | $R^2$     |
|--------------------|---------------------|---------------------|-----------------------------|----------------------------|--------------------|----------------|-----------|
| all                | SES <sub>MNTD</sub> | TS                  | activity level<br>(% still) | SES <sub>MNTD</sub>        | TS                 | 0.8045         | 0.443     |
| BDBM               | CEC                 | TS                  | activity level              |                            | TS                 | -0.2636        | 0.2355    |
| DDDM               | SES <sub>MNTD</sub> | 15                  | (% still)<br>activity level | SES <sub>MNTD</sub>        | 15                 | -0.2030        | 0.2333    |
| PC16               | SES <sub>MNTD</sub> | TS                  | (% still)                   | SES <sub>MNTD</sub>        | TS                 | -0.7534        | -0.006049 |
|                    |                     |                     | activity level              |                            |                    |                |           |
| PC8                | SES <sub>MNTD</sub> | TS                  | (% still)                   | SES <sub>MNTD</sub>        | TS                 | -0.251         | 0.2098    |
| all                | SES <sub>MNTD</sub> | TS                  | all                         | SES <sub>MNTD</sub>        | TS                 | 0.8525         | 0.3018    |
| BDBM               | SES <sub>MNTD</sub> | TS                  | all                         | SES <sub>MNTD</sub>        | TS                 | -0.506         | 0.7316    |
| PC16               | SES <sub>MNTD</sub> | TS                  | all                         | SES <sub>MNTD</sub>        | TS                 | 0.9485         | 0.0001235 |
| PC8                | SES <sub>MNTD</sub> | TS                  | all                         | SES <sub>MNTD</sub>        | TS                 | -0.4521        | 0.5757    |
|                    |                     |                     | antenna 1                   |                            |                    |                |           |
| all                | SES <sub>MNTD</sub> | TS                  | length                      | SES <sub>MNTD</sub>        | TS                 | 1.103          | 0.8825    |
| BDBM               | SES <sub>MNTD</sub> | TS                  | antenna 1<br>length         | SES <sub>MNTD</sub>        | TS                 | -0.3873        | 0.5975    |
| DDDM               | SESMNTD             | 15                  | antenna 1                   | SESMNTD                    | 15                 | -0.3073        | 0.3773    |
| PC16               | SES <sub>MNTD</sub> | TS                  | length                      | SES <sub>MNTD</sub>        | TS                 | -0.9212        | 0.03522   |
|                    |                     |                     | antenna 1                   |                            |                    |                |           |
| PC8                | SES <sub>MNTD</sub> | TS                  | length                      | SES <sub>MNTD</sub>        | TS                 | -0.3035        | 0.3358    |
| -11                | <b>SEC</b>          | TS                  | antenna 2                   | <b>CEC</b>                 | TC                 | 0.06540        | 0.006011  |
| all                | SES <sub>MNTD</sub> | 15                  | length<br>antenna 2         | SES <sub>MNTD</sub>        | TS                 | -0.06549       | -0.006011 |
| BDBM               | SES <sub>MNTD</sub> | TS                  | length                      | SES <sub>MNTD</sub>        | TS                 | 0.06108        | 0.3708    |
|                    |                     |                     | antenna 2                   |                            |                    |                |           |
| PC16               | SES <sub>MNTD</sub> | TS                  | length                      | SES <sub>MNTD</sub>        | TS                 | -0.2196        | 0.1085    |
|                    | <b>SEC</b>          | ΤC                  | antenna 2                   | CEC                        | TC                 | 0.05404        | 0 2751    |
| PC8                | SES <sub>MNTD</sub> | TS                  | length                      | SES <sub>MNTD</sub>        | TS                 | 0.05404        | 0.2751    |
| all                | SES <sub>MNTD</sub> | TS                  | max. body size              | SES <sub>MNTD</sub>        | TS                 | 0.8565         | 0.6032    |
| BDBM               | SES <sub>MNTD</sub> | TS                  | max. body size              | SES <sub>MNTD</sub>        | TS                 | -0.3617        | 0.6221    |
| PC16               | SES <sub>MNTD</sub> | TS                  | max. body size              | SES <sub>MNTD</sub>        | TS                 | 0.3578         | -0.07579  |
| PC8                | SES <sub>MNTD</sub> | TS                  | max. body size              | SES <sub>MNTD</sub>        | TS                 | -0.3802        | 0.7117    |
| all                | SES <sub>MNTD</sub> | TS                  | phylogeny                   | SES <sub>MNTD</sub>        | TS                 | 1.37           | 0.5367    |
| BDBM               | SES <sub>MNTD</sub> | TS                  | phylogeny                   | <b>SES</b> <sub>MNTD</sub> | TS                 | -0.7364        | 0.9597    |
| PC16               | SES <sub>MNTD</sub> | TS                  | phylogeny                   | SES <sub>MNTD</sub>        | TS                 | 1.38           | 0.02755   |
|                    |                     |                     |                             |                            |                    |                |           |

| PC8          | SES <sub>MNTD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | -0.7185        | 0.9267        |
|--------------|---------------------|----|-----------------------------|---------------------|----|----------------|---------------|
|              |                     |    | activity level              |                     |    |                |               |
| all          | SES <sub>MNTD</sub> | TS | (% still)<br>activity level | SES <sub>MNTD</sub> | IS | 1.133          | 0.2697        |
| BDBM         | SES <sub>MNTD</sub> | TS | (% still)                   | SES <sub>MNTD</sub> | IS | -0.2991        | 0.04852       |
|              |                     |    | activity level              |                     |    |                |               |
| PC16         | SES <sub>MNTD</sub> | TS | (% still)                   | SES <sub>MNTD</sub> | IS | -1.845         | 0.09348       |
| PC8          | SES <sub>MNTD</sub> | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | IS | -0.2742        | 0.027         |
| all          | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | 0.7354         | 0.1022        |
| BDBM         | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | -0.5517        | 0.5553        |
| PC16         | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | 1.671          | 0.106         |
| PC8          | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | -0.501         | 0.4499        |
|              |                     |    | antenna 1                   |                     |    |                |               |
| all          | SES <sub>MNTD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | 1.324          | 0.9149        |
| BDBM         | SES <sub>MNTD</sub> | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | -0.4438        | 0.5567        |
| DDDM         |                     | 15 | antenna 1                   | SESMINID            | 10 | 0.1100         | 0.0007        |
| PC16         | SES <sub>MNTD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | -1.235         | 0.07413       |
| PC8          | SES <sub>MNTD</sub> | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | -0.347         | 0.3085        |
| rco          | SESMNTD             | 15 | antenna 2                   | SESMNTD             | 15 | -0.347         | 0.3083        |
| all          | SES <sub>MNTD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | -0.1476        | 0.01612       |
| עממע         | <b>GEG</b>          | TO | antenna 2                   | CEC                 | IC | 0.1126         | 0.200         |
| BDBM         | SES <sub>MNTD</sub> | TS | length<br>antenna 2         | SES <sub>MNTD</sub> | IS | 0.1126         | 0.289         |
| PC16         | SES <sub>MNTD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | -0.2063        | -0.05528      |
| <b>D</b> CO  | <b>aFa</b>          | ma | antenna 2                   | <b>a F a</b>        | 10 | 0.00046        | 0.1.6.60      |
| PC8          | SES <sub>MNTD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | 0.09246        | 0.1668        |
| all          | SES <sub>MNTD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | IS | 1.065          | 0.4535        |
| BDBM         | SES <sub>MNTD</sub> | TS | max. body size              | SES                 | IS | -0.4808        | 0.5489        |
| PC16         | SES <sub>MNTD</sub> | TS | max. body size              | SES                 | IS | 0.8959         | -0.0228       |
| PC8          | SES <sub>MNTD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | IS | -0.5295        | 0.701         |
| all          | SES                 | TS | phylogeny                   | SES                 | IS | 1.16           | 0.4693        |
| BDBM<br>PC16 | SES <sub>MNTD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | IS | <b>-0.6553</b> | <b>0.9461</b> |
| PC16         | SES <sub>MNTD</sub> | TS | phylogeny<br>phylogeny      | SES                 | IS | 1.411          | 0.06622       |
| PC8          | SES <sub>MNTD</sub> | TS | activity level              | SES <sub>MNTD</sub> | IS | -0.6309        | 0.8869        |
| all          | SES <sub>MNTD</sub> | TS | (% still)                   | SES <sub>MPD</sub>  | TS | 0.9325         | 0.4808        |
|              | ODO                 | TC | activity level              | <b>CEC</b>          | TO | 0.4244         | 0.6256        |
| BDBM         | SES <sub>MNTD</sub> | TS | (% still)<br>activity level | $SES_{MPD}$         | TS | -0.4344        | 0.6256        |
| PC16         | SES <sub>MNTD</sub> | TS | (% still)                   | SES <sub>MPD</sub>  | TS | -0.1379        | -0.09749      |
|              |                     |    | activity level              | a E a               |    |                | 0             |
| PC8          | SES <sub>MNTD</sub> | TS | (% still)                   | SES <sub>MPD</sub>  | TS | -0.365         | 0.4215        |
| all          | SES <sub>MNTD</sub> | TS | all                         | SES <sub>MPD</sub>  | TS | 1.257          | 0.7432        |
| BDBM         | SES <sub>MNTD</sub> | TS | all                         | $SES_{MPD}$         | TS | -0.4921        | 0.6442        |

| PC16 | SES <sub>MNTD</sub> | TS | all                              | SES <sub>MPD</sub>    | TS | -0.6736  | -0.05222  |
|------|---------------------|----|----------------------------------|-----------------------|----|----------|-----------|
| PC8  | SES <sub>MNTD</sub> | TS | all                              | SES <sub>MPD</sub>    | TS | -0.3834  | 0.3596    |
| all  | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | ${\rm SES}_{\rm MPD}$ | TS | 1.227    | 0.5757    |
| BDBM | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | SES <sub>MPD</sub>    | TS | -0.5785  | 0.7652    |
| PC16 | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | SES <sub>MPD</sub>    | TS | 0.07847  | -0.09945  |
| PC8  | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | SES <sub>MPD</sub>    | TS | -0.5028  | 0.5651    |
| all  | SES <sub>MNTD</sub> | TS | antenna 2<br>length<br>antenna 2 | SES <sub>MPD</sub>    | TS | -0.187   | -0.06209  |
| BDBM | SES <sub>MNTD</sub> | TS | length                           | $SES_{MPD}$           | TS | -0.07693 | -0.06305  |
| PC16 | SES <sub>MNTD</sub> | TS | antenna 2<br>length<br>antenna 2 | SES <sub>MPD</sub>    | TS | 1.107    | 0.1621    |
| PC8  | SES <sub>MNTD</sub> | TS | length                           | SES <sub>MPD</sub>    | TS | -0.05427 | -0.08129  |
| all  | SES <sub>MNTD</sub> | TS | max. body size                   | SES <sub>MPD</sub>    | TS | 0.6823   | 0.3665    |
| BDBM | SES <sub>MNTD</sub> | TS | max. body size                   | SES <sub>MPD</sub>    | TS | -0.3026  | 0.4281    |
| PC16 | SES <sub>MNTD</sub> | TS | max. body size                   | SES <sub>MPD</sub>    | TS | 0.7078   | -0.000965 |
| PC8  | SES <sub>MNTD</sub> | TS | max. body size                   | SES <sub>MPD</sub>    | TS | -0.3135  | 0.4769    |
| all  | SES <sub>MNTD</sub> | TS | phylogeny                        | SES <sub>MPD</sub>    | TS | 0.7364   | 0.06457   |
| BDBM | SES <sub>MNTD</sub> | TS | phylogeny                        | SES <sub>MPD</sub>    | TS | -0.597   | 0.5227    |
| PC16 | SES <sub>MNTD</sub> | TS | phylogeny                        | SES <sub>MPD</sub>    | TS | 1.958    | 0.1296    |
| PC8  | SES <sub>MNTD</sub> | TS | phylogeny                        | SES <sub>MPD</sub>    | TS | -0.5525  | 0.4427    |
| all  | SES <sub>MNTD</sub> | TS | activity level<br>(% still)      | $SES_{MPD}$           | IS | 1.539    | 0.6573    |
| BDBM | SES <sub>MNTD</sub> | TS | activity level<br>(% still)      | SES <sub>MPD</sub>    | IS | -0.7288  | 0.878     |
| PC16 | SES <sub>MNTD</sub> | TS | activity level<br>(% still)      | SES <sub>MPD</sub>    | IS | 0.6703   | -0.07165  |
| 1010 | SESMINTD            | 15 | activity level                   | SECMPD                | 15 | 0.0705   | 010 / 102 |
| PC8  | SES <sub>MNTD</sub> | TS | (% still)                        | SES <sub>MPD</sub>    | IS | -0.6463  | 0.6828    |
| all  | SES <sub>MNTD</sub> | TS | all                              | $SES_{MPD}$           | IS | 1.379    | 0.5788    |
| BDBM | SES <sub>MNTD</sub> | TS | all                              | SES <sub>MPD</sub>    | IS | -0.5967  | 0.6315    |
| PC16 | SES <sub>MNTD</sub> | TS | all                              | $SES_{MPD}$           | IS | 0.5134   | -0.08145  |
| PC8  | SES <sub>MNTD</sub> | TS | all                              | SES <sub>MPD</sub>    | IS | -0.529   | 0.4851    |
| all  | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | SES <sub>MPD</sub>    | IS | 1.316    | 0.6302    |
| BDBM | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | SES <sub>MPD</sub>    | IS | -0.6132  | 0.8126    |
| PC16 | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | SES <sub>MPD</sub>    | IS | 0.8756   | -0.03623  |
| PC8  | SES <sub>MNTD</sub> | TS | antenna 1<br>length              | SES <sub>MPD</sub>    | IS | -0.5724  | 0.7092    |

| all                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | antenna 2<br>length                                                                                                                                                                                                                                                                                                                                 | ${ m SES}_{ m MPD}$                                                                                                                                           | IS                                                                                                                                                                                                                                                                                    | 0.2377                                                                                                                     | -0.07173                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| BDBM                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | antenna 2<br>length<br>antenna 2                                                                                                                                                                                                                                                                                                                    | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | -0.2976                                                                                                                    | 0.1551                                                                                                              |
| PC16                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | length<br>antenna 2                                                                                                                                                                                                                                                                                                                                 | $SES_{MPD}$                                                                                                                                                   | IS                                                                                                                                                                                                                                                                                    | 1.881                                                                                                                      | 0.2493                                                                                                              |
| PC8                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | length                                                                                                                                                                                                                                                                                                                                              | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | -0.2775                                                                                                                    | 0.1257                                                                                                              |
| all                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max. body size                                                                                                                                                                                                                                                                                                                                      | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | 0.8514                                                                                                                     | 0.2412                                                                                                              |
| BDBM                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max. body size                                                                                                                                                                                                                                                                                                                                      | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | -0.4033                                                                                                                    | 0.3407                                                                                                              |
| PC16                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max. body size                                                                                                                                                                                                                                                                                                                                      | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | 1.28                                                                                                                       | 0.05219                                                                                                             |
| PC8                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | max. body size                                                                                                                                                                                                                                                                                                                                      | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | -0.429                                                                                                                     | 0.4076                                                                                                              |
| all                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | phylogeny                                                                                                                                                                                                                                                                                                                                           | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | 0.7741                                                                                                                     | 0.1808                                                                                                              |
| BDBM                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | phylogeny                                                                                                                                                                                                                                                                                                                                           | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | -0.496                                                                                                                     | 0.5636                                                                                                              |
| PC16                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | phylogeny                                                                                                                                                                                                                                                                                                                                           | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | 1.821                                                                                                                      | 0.2067                                                                                                              |
| PC8                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | phylogeny                                                                                                                                                                                                                                                                                                                                           | SES <sub>MPD</sub>                                                                                                                                            | IS                                                                                                                                                                                                                                                                                    | -0.4808                                                                                                                    | 0.5348                                                                                                              |
|                                                                                                                                                                                                                                                                                                           | ~~~~                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | activity level                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               |                                                                                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                     |
| all                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (% still)<br>activity level                                                                                                                                                                                                                                                                                                                         | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                    | 0.4837                                                                                                                     | 0.3654                                                                                                              |
| BDBM                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (% still)                                                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                    | -0.3759                                                                                                                    | 0.3511                                                                                                              |
| DDDM                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | activity level                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                               | 15                                                                                                                                                                                                                                                                                    | 0.0709                                                                                                                     | 0.0011                                                                                                              |
| PC16                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (% still)                                                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                    | -0.116                                                                                                                     | -0.09659                                                                                                            |
| PC8                                                                                                                                                                                                                                                                                                       | OFO                                                                                                                                                           | IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | activity level                                                                                                                                                                                                                                                                                                                                      | CEC                                                                                                                                                           | TC                                                                                                                                                                                                                                                                                    | 0 2060                                                                                                                     | 0 2975                                                                                                              |
| PC8                                                                                                                                                                                                                                                                                                       | SES <sub>MNTD</sub>                                                                                                                                           | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (% still)                                                                                                                                                                                                                                                                                                                                           | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                    | -0.3868                                                                                                                    | 0.2875                                                                                                              |
|                                                                                                                                                                                                                                                                                                           | SES                                                                                                                                                           | IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a11                                                                                                                                                                                                                                                                                                                                                 | SES                                                                                                                                                           | тс                                                                                                                                                                                                                                                                                    | 0.65                                                                                                                       | 0 4651                                                                                                              |
| all                                                                                                                                                                                                                                                                                                       | SES                                                                                                                                                           | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | all                                                                                                                                                                                                                                                                                                                                                 | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                    | 0.65                                                                                                                       | 0.4651                                                                                                              |
| all<br>BDBM                                                                                                                                                                                                                                                                                               | SES <sub>MNTD</sub>                                                                                                                                           | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | all                                                                                                                                                                                                                                                                                                                                                 | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                    | -0.6171                                                                                                                    | 0.7174                                                                                                              |
| all<br>BDBM<br>PC16                                                                                                                                                                                                                                                                                       | SES <sub>mntd</sub><br>SES <sub>mntd</sub>                                                                                                                    | IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | all<br>all                                                                                                                                                                                                                                                                                                                                          | SES <sub>mntd</sub><br>SES <sub>mntd</sub>                                                                                                                    | TS<br>TS                                                                                                                                                                                                                                                                              | -0.6171<br>2.351                                                                                                           | 0.7174<br>0.8399                                                                                                    |
| all<br>BDBM                                                                                                                                                                                                                                                                                               | SES <sub>MNTD</sub>                                                                                                                                           | IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | all<br><mark>all</mark><br>all                                                                                                                                                                                                                                                                                                                      | SES <sub>MNTD</sub>                                                                                                                                           | TS                                                                                                                                                                                                                                                                                    | -0.6171                                                                                                                    | 0.7174                                                                                                              |
| all<br>BDBM<br>PC16                                                                                                                                                                                                                                                                                       | SES <sub>mntd</sub><br>SES <sub>mntd</sub>                                                                                                                    | IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | all<br>all                                                                                                                                                                                                                                                                                                                                          | SES <sub>mntd</sub><br>SES <sub>mntd</sub>                                                                                                                    | TS<br>TS                                                                                                                                                                                                                                                                              | -0.6171<br>2.351                                                                                                           | 0.7174<br>0.8399                                                                                                    |
| all<br>BDBM<br>PC16<br>PC8<br>all                                                                                                                                                                                                                                                                         | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                                             | IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1                                                                                                                                                                                                                                                                                               | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                                             | TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                                  | -0.6171<br>2.351<br>-0.5705<br>0.6995                                                                                      | 0.7174<br>0.8399<br>0.4666<br>0.8369                                                                                |
| all<br>BDBM<br>PC16<br>PC8                                                                                                                                                                                                                                                                                | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                                             | IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length                                                                                                                                                                                                                                                                                     | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                                             | TS<br>TS<br>TS                                                                                                                                                                                                                                                                        | -0.6171<br>2.351<br>-0.5705                                                                                                | <b>0.7174</b><br><b>0.8399</b><br>0.4666                                                                            |
| all BDBM PC16 PC8 all BDBM                                                                                                                                                                                                                                                                                | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1                                                                                                                                                                                                                                                                        | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                            | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734                                                                           | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888                                                                      |
| all<br>BDBM<br>PC16<br>PC8<br>all                                                                                                                                                                                                                                                                         | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                                             | IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length                                                                                                                                                                                                                                                                                     | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                                             | TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                                  | -0.6171<br>2.351<br>-0.5705<br>0.6995                                                                                      | 0.7174<br>0.8399<br>0.4666<br>0.8369                                                                                |
| all BDBM PC16 PC8 all BDBM                                                                                                                                                                                                                                                                                | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length                                                                                                                                                                                                                                       | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                            | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734                                                                           | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888                                                                      |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>BDBM                                                                                                                                                                                                                                                         | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                               | IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2                                                                                                                                                                                                                          | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966                                                       | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921                                                   |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16                                                                                                                                                                                                                                                         | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length                                                                                                                                                                                                                | SES <sub>MNTD</sub> SES <sub>MNTD</sub> SES <sub>MNTD</sub> SES <sub>MNTD</sub> SES <sub>MNTD</sub>                                                           | TS<br>TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                      | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933                                                                  | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112                                                             |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>BDBM                                                                                                                                                                                                                                                         | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                               | IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2                                                                                                                                                                                                                          | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                                                      | TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                                | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966                                                       | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921                                                   |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM                                                                                                                                                                                                                                   | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | <ul> <li>IS</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2                                                                                                                                                                            | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                    | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966<br>-0.06153<br>0.07415                                | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921<br>0.09672<br>0.3585                              |
| all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>PC16<br>PC8<br>all                                                                                                                                                                                                                                           | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                               | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length                                                                                                                                                                  | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                                               | TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS                                                                                                                                                                                                                                          | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966<br>-0.06153                                           | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921<br>0.09672                                        |
| all         BDBM         PC16         PC8         all         BDBM         PC16         all         BDBM         BDBBM         BDBBM         BDBBM         PC8         all         PC16         PC8         all         PC8         all         PC16                                                      | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | IS                                                                                                                                                                                                                                                                                                                                           | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2                                                                                                       | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub>                        | TS            | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966<br>-0.06153<br>0.07415<br>-0.3913                     | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921<br>0.09672<br>0.3585<br>0.912                     |
| all         BDBM         PC16         PC8         all         BDBM         PC16         PC8         all         PC8         all         PC8         BDBM         PC8         PC8         PC8         PC8         PC8         PC8         PC8         PC8         PC8         PC16         PC8             | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | IS                                                                                                                                                                                                                                                                                    | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length                                                                                                                    | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | TS         TS | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966<br>-0.3966<br>-0.06153<br>0.07415<br>-0.3913          | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921<br>0.09672<br>0.3585<br>0.912<br>0.1777           |
| all         BDBM         PC16         PC8         all         BDBM         PC16         all         BDBM         PC16         BDBM         PC16         PC16         PC16         PC16         PC8         all         PC16         PC16         PC16         PC16         PC16         PC16         PC16 | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | IS         IS | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | TS         TS | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966<br>-0.06153<br>0.07415<br>-0.3913<br>0.06407<br>0.576 | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921<br>0.09672<br>0.3585<br>0.912<br>0.1777<br>0.6537 |
| all         BDBM         PC16         PC8         all         BDBM         PC16         PC8         all         PC8         all         PC8         BDBM         PC8         PC8         PC8         PC8         PC8         PC8         PC8         PC8         PC8         PC16         PC8             | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | IS                                                                                                                                                                                                                                                                                    | all<br>all<br>all<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 1<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length<br>antenna 2<br>length                                                                                                                    | SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub><br>SES <sub>MNTD</sub> | TS         TS | -0.6171<br>2.351<br>-0.5705<br>0.6995<br>-0.4734<br>0.933<br>-0.3966<br>-0.3966<br>-0.06153<br>0.07415<br>-0.3913          | 0.7174<br>0.8399<br>0.4666<br>0.8369<br>0.5888<br>0.112<br>0.2921<br>0.09672<br>0.3585<br>0.912<br>0.1777           |

| PC8  | SES <sub>MNTD</sub>   | IS | max. body size                                | SES <sub>MNTD</sub>        | TS | -5.492  | 0.792    |
|------|-----------------------|----|-----------------------------------------------|----------------------------|----|---------|----------|
| all  | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | TS | 1.001   | 0.7061   |
| BDBM | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | TS | -0.9181 | 0.9888   |
| PC16 | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | TS | 2.472   | 0.5354   |
| PC8  | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | TS | -0.9706 | 0.8869   |
| all  | $\mathbf{SES}_{MNTD}$ | IS | activity level<br>(% still)                   | <b>SES</b> <sub>MNTD</sub> | IS | 0.6324  | 0.1733   |
| BDBM | SES <sub>MNTD</sub>   | IS | activity level<br>(% still)<br>activity level | SES <sub>MNTD</sub>        | IS | -0.4703 | 0.1425   |
| PC16 | $SES_{MNTD}$          | IS | (% still)<br>activity level                   | SES <sub>MNTD</sub>        | IS | -0.82   | -0.04156 |
| PC8  | SES <sub>MNTD</sub>   | IS | (% still)                                     | SES <sub>MNTD</sub>        | IS | -0.4587 | 0.08719  |
| all  | $SES_{MNTD}$          | IS | all                                           | SES <sub>MNTD</sub>        | IS | 0.6217  | 0.2427   |
| BDBM | SES <sub>MNTD</sub>   | IS | all                                           | SES <sub>MNTD</sub>        | IS | -0.6705 | 0.5397   |
| PC16 | $SES_{MNTD}$          | IS | all                                           | SES <sub>MNTD</sub>        | IS | 3.031   | 0.936    |
| PC8  | $SES_{MNTD}$          | IS | all                                           | SES <sub>MNTD</sub>        | IS | -0.6182 | 0.341    |
| all  | SES <sub>MNTD</sub>   | IS | antenna 1<br>length                           | <b>SES</b> <sub>MNTD</sub> | IS | 0.8289  | 0.843    |
| BDBM | SES <sub>MNTD</sub>   | IS | antenna 1<br>length                           | SES <sub>MNTD</sub>        | IS | -0.5427 | 0.5488   |
| PC16 | SES <sub>MNTD</sub>   | IS | antenna 1<br>length                           | SES <sub>MNTD</sub>        | IS | 0.9123  | 0.04528  |
| PC8  | SES <sub>MNTD</sub>   | IS | antenna 1<br>length                           | SES <sub>MNTD</sub>        | IS | -0.4589 | 0.2762   |
| all  | SES <sub>MNTD</sub>   | IS | antenna 2<br>length<br>antenna 2              | SES <sub>MNTD</sub>        | IS | -0.1216 | 0.08684  |
| BDBM | SES <sub>MNTD</sub>   | IS | length<br>antenna 2                           | SES <sub>MNTD</sub>        | IS | 0.1467  | 0.3363   |
| PC16 | SES <sub>MNTD</sub>   | IS | length                                        | SES <sub>MNTD</sub>        | IS | -0.6675 | 0.6155   |
| PC8  | SES <sub>MNTD</sub>   | IS | antenna 2<br>length                           | SES <sub>MNTD</sub>        | IS | 0.1111  | 0.1028   |
| all  | $SES_{MNTD}$          | IS | max. body size                                | SES <sub>MNTD</sub>        | IS | 0.7345  | 0.5235   |
| BDBM | SES <sub>MNTD</sub>   | IS | max. body size                                | SES <sub>MNTD</sub>        | IS | -6.008  | 0.5697   |
| PC16 | SES <sub>MNTD</sub>   | IS | max. body size                                | SES <sub>MNTD</sub>        | IS | 0.6301  | -0.04163 |
| PC8  | SES <sub>MNTD</sub>   | IS | max. body size                                | SES <sub>MNTD</sub>        | IS | -0.7695 | 0.7911   |
| all  | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | IS | 0.8682  | 0.6562   |
| BDBM | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | IS | -0.8037 | 0.94     |
| PC16 | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | IS | 2.488   | 0.6895   |
| PC8  | SES <sub>MNTD</sub>   | IS | phylogeny                                     | SES <sub>MNTD</sub>        | IS | -0.8354 | 0.8115   |
| all  | SES <sub>MNTD</sub>   | IS | activity level<br>(% still)                   | SES <sub>MPD</sub>         | TS | 0.637   | 0.5426   |
| BDBM | SES <sub>MNTD</sub>   | IS | activity level<br>(% still)                   | SES <sub>MPD</sub>         | TS | -0.5597 | 0.6936   |

|      |                     |    | activity level              |                    |    |          |          |
|------|---------------------|----|-----------------------------|--------------------|----|----------|----------|
| PC16 | SES <sub>MNTD</sub> | IS | (% still)                   | SES <sub>MPD</sub> | TS | 1.543    | 0.3795   |
| PC8  | SES <sub>MNTD</sub> | IS | activity level<br>(% still) | SES <sub>MPD</sub> | TS | -0.4771  | 0.3692   |
| all  | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub> | TS | 0.82889  | 0.7692   |
| BDBM | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub> | TS | -0.5855  | 0.596    |
| PC16 | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub> | TS | 1.666    | 0.3463   |
| PC8  | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub> | TS | -0.4784  | 0.2769   |
| 100  | SESWITT             | 10 | antenna 1                   |                    | 10 | 0.1701   | 0.2709   |
| all  | SES <sub>MNTD</sub> | IS | length                      | SES <sub>MPD</sub> | TS | 0.8473   | 0.6642   |
| BDBM | SES <sub>MNTD</sub> | IS | antenna 1<br>length         | SES <sub>MPD</sub> | TS | -0.7323  | 0.8162   |
|      |                     |    | antenna 1                   |                    |    |          |          |
| PC16 | SES <sub>MNTD</sub> | IS | length                      | SES <sub>MPD</sub> | TS | 2.011    | 0.4471   |
|      | CEC                 | IC | antenna 1                   | OEC                | TC | 0.((07   | 0.5040   |
| PC8  | SES <sub>MNTD</sub> | IS | length<br>antenna 2         | SES <sub>MPD</sub> | TS | -0.6607  | 0.5049   |
| all  | SES <sub>MNTD</sub> | IS | length                      | SES <sub>MPD</sub> | TS | -0.03602 | -0.09666 |
|      |                     |    | antenna 2                   |                    |    |          |          |
| BDBM | SES <sub>MNTD</sub> | IS | length                      | SES <sub>MPD</sub> | TS | -0.06614 | -0.08195 |
|      | <b>CEC</b>          | IC | antenna 2                   | OEO                | TC | 1 457    | 0 5020   |
| PC16 | SES <sub>MNTD</sub> | IS | length<br>antenna 2         | $SES_{MPD}$        | TS | 1.457    | 0.5938   |
| PC8  | SES <sub>MNTD</sub> | IS | length                      | SES <sub>MPD</sub> | TS | -0.01541 | -0.09921 |
| all  | SES <sub>MNTD</sub> | IS | max. body size              | SES <sub>MPD</sub> | TS | 0.4861   | 0.4613   |
| BDBM | SES <sub>MNTD</sub> | IS | max. body size              | SES <sub>MPD</sub> | TS | -0.3238  | 0.2998   |
| PC16 | SES <sub>MNTD</sub> | IS | max. body size              | SES <sub>MPD</sub> | TS | 0.7611   | 0.07502  |
| PC8  | SES <sub>MNTD</sub> | IS | max. body size              | SES <sub>MPD</sub> | TS | -0.4221  | 0.4509   |
| all  | SES <sub>MNTD</sub> | IS | phylogeny                   | SES <sub>MPD</sub> | TS | 0.6403   | 0.1949   |
| BDBM |                     | IS |                             |                    | TS | -0.7423  | 0.5362   |
| PC16 | SES <sub>MNTD</sub> | IS | phylogeny                   | SES <sub>MPD</sub> |    |          | 0.8863   |
|      | SES <sub>MNTD</sub> |    | phylogeny                   | SES <sub>MPD</sub> | TS | 3.283    |          |
| PC8  | SES <sub>MNTD</sub> | IS | phylogeny<br>activity level | $SES_{MPD}$        | TS | -0.691   | 0.3472   |
| all  | SES <sub>MNTD</sub> | IS | (% still)                   | SES <sub>MPD</sub> | IS | 1.091    | 0.8025   |
|      | MILLE I             |    | activity level              | III D              |    |          |          |
| BDBM | SES <sub>MNTD</sub> | IS | (% still)                   | SES <sub>MPD</sub> | IS | -0.8511  | 0.7815   |
| DC1( | <b>CEC</b>          | IC | activity level              | OEC                | IC | 2 7 4 2  | 0 (247   |
| PC16 | SES <sub>MNTD</sub> | IS | (% still)<br>activity level | $SES_{MPD}$        | IS | 2.742    | 0.6247   |
| PC8  | SES <sub>MNTD</sub> | IS | (% still)                   | SES <sub>MPD</sub> | IS | -0.8249  | 0.5716   |
| all  | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub> | IS | 0.9654   | 0.6885   |
| BDBM | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub> | IS | -0.6475  | 0.4694   |
| PC16 | SES <sub>MNTD</sub> | IS | all                         | $SES_{MPD}$        | IS | 2.13     | 0.388    |
| PC8  | SES <sub>MNTD</sub> | IS | all                         | SES <sub>MPD</sub> | IS | -0.6642  | 0.3859   |
| 100  |                     | 15 | antenna 1                   | STOWLD             | 15 | 0.0012   | 0.0007   |
| all  | SES <sub>MNTD</sub> | IS | length                      | SES <sub>MPD</sub> | IS | 0.9375   | 0.7783   |

| BDBM | SES <sub>MNTD</sub>           | IS | antenna 1<br>length         | SES <sub>MPD</sub>  | IS | -0.6939 | 0.6723         |
|------|-------------------------------|----|-----------------------------|---------------------|----|---------|----------------|
| PC16 | SES <sub>MNTD</sub>           | IS | antenna 1<br>length         | SES <sub>MPD</sub>  | IS | 2.1     | 0.4602         |
| PC8  | SES <sub>MNTD</sub>           | IS | antenna 1<br>length         | SES <sub>MPD</sub>  | IS | -0.7423 | 0.6168         |
| all  | SES <sub>MNTD</sub>           | IS | antenna 2<br>length         | $SES_{MPD}$         | IS | 0.2904  | 0.0000188<br>9 |
| BDBM | SES <sub>MNTD</sub>           | IS | antenna 2<br>length         | SES <sub>MPD</sub>  | IS | -0.2874 | 0.05725        |
| PC16 | SES <sub>MNTD</sub>           | IS | antenna 2<br>length         | SES <sub>MPD</sub>  | IS | 2.318   | 0.7105         |
| PC8  | SES <sub>MNTD</sub>           | IS | antenna 2<br>length         | $SES_{MPD}$         | IS | -0.2989 | 0.038          |
| all  | SES <sub>MNTD</sub>           | IS | max. body size              | SES <sub>MPD</sub>  | IS | 0.6268  | 0.3383         |
| BDBM | SES <sub>MNTD</sub>           | IS | max. body size              | SES <sub>MPD</sub>  | IS | -0.419  | 0.2144         |
| PC16 | SES <sub>MNTD</sub>           | IS | max. body size              | SES <sub>MPD</sub>  | IS | 1.13    | 0.08112        |
| PC8  | SES <sub>MNTD</sub>           | IS | max. body size              | SES <sub>MPD</sub>  | IS | -0.5734 | 0.3775         |
| all  | SES <sub>MNTD</sub>           | IS | phylogeny                   | SES <sub>MPD</sub>  | IS | 0.635   | 0.3479         |
| BDBM | SES <sub>MNTD</sub>           | IS | phylogeny                   | SES <sub>MPD</sub>  | IS | -0.5398 | 0.4195         |
| PC16 | SES <sub>MNTD</sub>           | IS | phylogeny                   | SES <sub>MPD</sub>  | IS | 2.425   | 0.7309         |
| PC8  | SES <sub>MNTD</sub>           | IS | phylogeny                   | SES <sub>MPD</sub>  | IS | -0.598  | 0.4172         |
| all  | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | TS | 1.796   | 0.4713         |
| BDBM | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | TS | -0.4763 | 0.5311         |
| PC16 | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | TS | -0.7327 | 0.348          |
| PC8  | SES <sub>MPD</sub>            | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | TS | -0.5628 | 0.4907         |
| all  | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub> | TS | 0.7145  | -0.03922       |
| BDBM | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub> | TS | -0.6362 | 0.657          |
| PC16 | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub> | TS | -1.13   | 0.6164         |
| PC8  | SES <sub>MPD</sub>            | TS | all                         | SES <sub>MNTD</sub> | TS | -0.6747 | 0.4708         |
| all  | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | TS | 1.58    | 0.3254         |
| BDBM | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | TS | -5.366  | 0.671          |
| PC16 | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | TS | -1.09   | 0.8543         |
| PC8  | SES <sub>MPD</sub>            | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | TS | -0.6129 | 0.5743         |
| all  | SES <sub>MPD</sub>            | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | TS | 0.0568  | -0.08507       |
| BDBM | $\mathbf{SES}_{\mathrm{MPD}}$ | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | TS | 0.07383 | 0.2961         |
|      |                               |    | antenna 2                   |                     |    |         |                |

| PC8          | SES <sub>MPD</sub> | TS | antenna 2<br>length         | SES <sub>MNTD</sub> | TS | 0.06692        | 0.1182   |
|--------------|--------------------|----|-----------------------------|---------------------|----|----------------|----------|
| all          | SES <sub>MPD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | TS | 2.192          | 0.8723   |
| BDBM         | SES <sub>MPD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | TS | -0.4758        | 0.6194   |
| PC16         | SES <sub>MPD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | TS | -0.8523        | 0.5926   |
| PC8          | SES <sub>MPD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | TS | -0.6713        | 0.8599   |
| all          | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | 2.327          | 0.2879   |
| BDBM         | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | -0.9558        | 0.9281   |
| PC16         | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | -1.64          | 0.808    |
| PC8          | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | TS | -1.142         | 0.8847   |
| 11           | ana                | Ta | activity level              | ana                 | IC | <b>a c</b> 00  | 0.211    |
| all          | SES <sub>MPD</sub> | TS | (% still)<br>activity level | SES <sub>MNTD</sub> | IS | 2.599          | 0.311    |
| BDBM         | SES <sub>MPD</sub> | TS | (% still)                   | SES <sub>MNTD</sub> | IS | -0.662         | 0.3188   |
|              |                    |    | activity level              |                     |    |                |          |
| PC16         | SES <sub>MPD</sub> | TS | (% still)                   | SES <sub>MNTD</sub> | IS | -0.9429        | 0.1549   |
| PC8          | SES <sub>MPD</sub> | TS | activity level<br>(% still) | SES <sub>MNTD</sub> | IS | -0.7479        | 0.2583   |
| all          | SES <sub>MPD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | 0.1913         | -0.09711 |
| BDBM         | SES <sub>MPD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | -0.6724        | 0.4605   |
| PC16         | SES <sub>MPD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | -1.145         | 0.3876   |
| PC8          | SES <sub>MPD</sub> | TS | all                         | SES <sub>MNTD</sub> | IS | -0.6763        | 0.2801   |
|              |                    |    | antenna 1                   |                     |    |                |          |
| all          | SES <sub>MPD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | 2.018          | 0.3975   |
| BDBM         | SES <sub>MPD</sub> | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | -0.6194        | 0.6363   |
| DDDM         | OLOWID.            | 15 | antenna 1                   | SESMINID            | 10 | 0.0171         | 0.0000   |
| PC16         | SES <sub>MPD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | -1.274         | 0.8347   |
| PC8          | SES <sub>MPD</sub> | TS | antenna 1<br>length         | SES <sub>MNTD</sub> | IS | -0.7228        | 0.5721   |
| 100          | OLOWDD             | 15 | antenna 2                   | SESMNTD             | 15 | -0.7220        | 0.3721   |
| all          | SES <sub>MPD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | 0.1286         | -0.08141 |
|              | SES                | тс | antenna 2                   | CEC                 | IC | 0 1645         | 0 2779   |
| BDBM         | $SES_{MPD}$        | TS | length<br>antenna 2         | SES <sub>MNTD</sub> | IS | 0.1645         | 0.3778   |
| PC16         | SES <sub>MPD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | 0.2455         | 0.2194   |
| DCO          | <b>GEG</b>         | TO | antenna 2                   |                     | IC | 0.1220         | 0.1000   |
| PC8          | SES <sub>MPD</sub> | TS | length                      | SES <sub>MNTD</sub> | IS | 0.1328         | 0.1088   |
| all          | SES <sub>MPD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | IS | 2.996          | 0.8236   |
| BDBM         | SES                | TS | max. body size              | SES <sub>MNTD</sub> | IS | -0.6125        | 0.5065   |
| PC16         | SES                | TS | max. body size              | SES <sub>MNTD</sub> | IS | -1.078         | 0.4637   |
| PC8          | SES <sub>MPD</sub> | TS | max. body size              | SES <sub>MNTD</sub> | IS | <b>-0.9011</b> | 0.7799   |
| all          | SES                | TS | phylogeny                   | SES                 | IS | 1.763          | 0.1775   |
| BDBM<br>PC16 | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | IS | -0.8189        | 0.8409   |
| PC16         | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub> | IS | -1.441         | 0.7735   |

| PC8  | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MNTD</sub>        | IS | -0.9683  | 0.7817        |
|------|--------------------|----|-----------------------------|----------------------------|----|----------|---------------|
|      |                    |    | activity level              | ~~~~                       |    |          |               |
| all  | $SES_{MPD}$        | TS | (% still)<br>activity level | $SES_{MPD}$                | TS | 0.9565   | 0.029         |
| BDBM | SES <sub>MPD</sub> | TS | (% still)                   | SES <sub>MPD</sub>         | TS | -0.6395  | 0.8058        |
|      |                    |    | activity level              |                            |    |          |               |
| PC16 | SES <sub>MPD</sub> | TS | (% still)                   | SES <sub>MPD</sub>         | TS | -1.083   | 0.6788        |
| PC8  | SES <sub>MPD</sub> | TS | activity level<br>(% still) | SES <sub>MPD</sub>         | TS | -0.6478  | 0.523         |
| all  | SES <sub>MPD</sub> | TS | all                         | SES <sub>MPD</sub>         | TS | 1.481    | 0.1471        |
| BDBM | SES <sub>MPD</sub> | TS | all                         | SES <sub>MPD</sub>         | TS | -0.6355  | 0.1471        |
| PC16 | SES <sub>MPD</sub> | TS | all                         | SES <sub>MPD</sub>         | TS | -0.0335  | 0.8315        |
|      |                    |    |                             |                            |    |          |               |
| PC8  | SES <sub>MPD</sub> | TS | all<br>antenna 1            | $SES_{MPD}$                | TS | -0.7063  | 0.4917        |
| all  | SES <sub>MPD</sub> | TS | length                      | SES <sub>MPD</sub>         | TS | 1.481    | 0.1077        |
|      |                    |    | antenna 1                   |                            |    |          |               |
| BDBM | SES <sub>MPD</sub> | TS | length                      | SES <sub>MPD</sub>         | TS | -0.8127  | 0.8832        |
| PC16 | SES <sub>MPD</sub> | TS | antenna 1<br>length         | SES <sub>MPD</sub>         | TS | -1.415   | 0.7944        |
| 1010 | OLOMPD             | 15 | antenna 1                   | OLOMPD                     | 15 | 1,410    | 0.7744        |
| PC8  | SES <sub>MPD</sub> | TS | length                      | SES <sub>MPD</sub>         | TS | -0.8687  | 0.653         |
| 11   | <b>CEC</b>         | TC | antenna 2                   | ara                        | TC | 1 104    | 0.00(0        |
| all  | $SES_{MPD}$        | TS | length<br>antenna 2         | $SES_{MPD}$                | TS | -1.194   | 0.2262        |
| BDBM | SES <sub>MPD</sub> | TS | length                      | SES <sub>MPD</sub>         | TS | -0.01737 | -0.09891      |
|      |                    |    | antenna 2                   |                            |    |          |               |
| PC16 | SES <sub>MPD</sub> | TS | length                      | SES <sub>MPD</sub>         | TS | -0.05159 | -0.09713      |
| PC8  | $SES_{MPD}$        | TS | antenna 2<br>length         | $SES_{MPD}$                | TS | 0.06248  | -0.09059      |
| all  | $SES_{MPD}$        | TS | max. body size              | $SES_{MPD}$                | TS | 1.755    | <b>0.5515</b> |
| BDBM | $SES_{MPD}$        | TS |                             |                            | TS | -0.2667  | 0.1363        |
| PC16 |                    | TS | max. body size              | $SES_{MPD}$<br>$SES_{MPD}$ | TS | -0.2007  | 0.1303        |
|      | SES                |    | max. body size              |                            |    |          |               |
| PC8  | SES                | TS | max. body size              | SES <sub>MPD</sub>         | TS | -0.4821  | 0.4176        |
| all  | SES                | TS | phylogeny                   | SES                        | TS | 0.1043   | -0.0993       |
| BDBM | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MPD</sub>         | TS | -0.7589  | 0.4794        |
| PC16 | SES <sub>MPD</sub> | TS | phylogeny                   | SES <sub>MPD</sub>         | TS | -1.209   | 0.3414        |
| PC8  | $SES_{MPD}$        | TS | phylogeny<br>activity level | SES <sub>MPD</sub>         | TS | -0.7447  | 0.274         |
| all  | SES <sub>MPD</sub> | TS | (% still)                   | SES <sub>MPD</sub>         | IS | 2.166    | 0.2165        |
|      |                    |    | activity level              |                            |    |          |               |
| BDBM | SES <sub>MPD</sub> | TS | (% still)                   | SES <sub>MPD</sub>         | IS | -0.8495  | 0.6652        |
| PC16 | SES <sub>MPD</sub> | TS | activity level<br>(% still) | SES <sub>MPD</sub>         | IS | -1.747   | 0.8709        |
| 1010 | OTOWD.             | 15 | activity level              | STOWD                      | 15 | -1.74/   | 0.0707        |
| PC8  | SES <sub>MPD</sub> | TS | (% still)                   | SES <sub>MPD</sub>         | IS | -1.034   | 0.6604        |
| all  | SES <sub>MPD</sub> | TS | all                         | SES <sub>MPD</sub>         | IS | 2.302    | 0.299         |
| BDBM | SES <sub>MPD</sub> | TS | all                         | SES <sub>MPD</sub>         | IS | -0.5871  | 0.3078        |

| PC16 | SES <sub>MPD</sub>                        | TS | all                                           | SES <sub>MPD</sub>  | IS | -1.465   | 0.6617   |
|------|-------------------------------------------|----|-----------------------------------------------|---------------------|----|----------|----------|
| PC8  | SES <sub>MPD</sub>                        | TS | all                                           | SES <sub>MPD</sub>  | IS | -0.8356  | 0.4538   |
| all  | SES <sub>MPD</sub>                        | TS | antenna 1<br>length                           | SES <sub>MPD</sub>  | IS | 2.349    | 0.3908   |
| un   | <b>BEDWID</b>                             | 15 | antenna 1                                     | SEC MID             | 10 | 2.5 17   | 0.5900   |
| BDBM | SES <sub>MPD</sub>                        | TS | length                                        | SES <sub>MPD</sub>  | IS | -0.6516  | 0.4934   |
| PC16 | SES <sub>MPD</sub>                        | TS | antenna 1<br>length                           | SES <sub>MPD</sub>  | IS | -1.443   | 0.7732   |
| PC8  | SES <sub>MPD</sub>                        | TS | antenna 1<br>length                           | SES <sub>MPD</sub>  | IS | -0.8976  | 0.6548   |
| all  | $SES_{MPD}$                               | TS | antenna 2<br>length<br>antenna 2              | $SES_{MPD}$         | IS | -0.2257  | -0.09462 |
| BDBM | SES <sub>MPD</sub>                        | TS | length                                        | SES <sub>MPD</sub>  | IS | -0.1744  | -0.04955 |
| PC16 | SES <sub>MPD</sub>                        | TS | antenna 2<br>length                           | SES <sub>MPD</sub>  | IS | -0.5256  | 0.03751  |
| PC8  | SES <sub>MPD</sub>                        | TS | antenna 2<br>length                           | $SES_{MPD}$         | IS | -0.2387  | -0.03661 |
| all  | SES <sub>MPD</sub>                        | TS | max. body size                                | SES <sub>MPD</sub>  | IS | 2.312    | 0.4311   |
| BDBM | SES <sub>MPD</sub>                        | TS | max. body size                                | SES <sub>MPD</sub>  | IS | -0.3173  | 0.0571   |
| PC16 | SES <sub>MPD</sub>                        | TS | max. body size                                | SES <sub>MPD</sub>  | IS | -0.8792  | 0.2619   |
| PC8  | SES <sub>MPD</sub>                        | TS | max. body size                                | SES <sub>MPD</sub>  | IS | -0.6254  | 0.3092   |
| all  | SES <sub>MPD</sub>                        | TS | phylogeny                                     | SES <sub>MPD</sub>  | IS | 1.139    | 0.02829  |
| BDBM | SES <sub>MPD</sub>                        | TS | phylogeny                                     | SES <sub>MPD</sub>  | IS | -0.4503  | 0.215    |
| PC16 | SES <sub>MPD</sub>                        | TS | phylogeny                                     | SES <sub>MPD</sub>  | IS | -1.026   | 0.3908   |
| PC8  | SES <sub>MPD</sub>                        | TS | phylogeny                                     | SES <sub>MPD</sub>  | IS | -0.6267  | 0.309    |
| all  | ${ m SES}_{ m MPD}$                       | IS | activity level<br>(% still)                   | SES <sub>MNTD</sub> | TS | 0.1259   | -0.05524 |
| BDBM | SES <sub>MPD</sub>                        | IS | activity level<br>(% still)<br>activity level | SES <sub>MNTD</sub> | TS | -0.397   | 0.1836   |
| PC16 | $\operatorname{SES}_{\operatorname{MPD}}$ | IS | (% still)<br>activity level                   | SES <sub>MNTD</sub> | TS | 0.1423   | -0.08708 |
| PC8  | SES <sub>MPD</sub>                        | IS | (% still)                                     | SES <sub>MNTD</sub> | TS | -0.2349  | -0.02067 |
| all  | SES <sub>MPD</sub>                        | IS | all                                           | SES <sub>MNTD</sub> | TS | 0.587    | 0.5538   |
| BDBM | SES <sub>MPD</sub>                        | IS | all                                           | SES <sub>MNTD</sub> | TS | -0.0752  | -0.09316 |
| PC16 | SES <sub>MPD</sub>                        | IS | all                                           | SES <sub>MNTD</sub> | TS | 0.8108   | 0.1822   |
| PC8  | SES <sub>MPD</sub>                        | IS | all                                           | SES <sub>MNTD</sub> | TS | 0.234    | -0.04709 |
| all  | $SES_{MPD}$                               | IS | antenna 1<br>length                           | SES <sub>MNTD</sub> | TS | 0.4952   | 0.5663   |
| BDBM | $SES_{MPD}$                               | IS | antenna 1<br>length                           | SES <sub>MNTD</sub> | TS | -0.03784 | -0.09752 |
| PC16 | SES <sub>MPD</sub>                        | IS | antenna l<br>length                           | SES <sub>MNTD</sub> | TS | 0.5588   | 0.0919   |
| PC8  | SES <sub>MPD</sub>                        | IS | antenna 1<br>length                           | SES <sub>MNTD</sub> | TS | 0.1527   | -0.06772 |

|             |                               |          | _                             |                            |          |                     |                           |
|-------------|-------------------------------|----------|-------------------------------|----------------------------|----------|---------------------|---------------------------|
| all         | SES <sub>MPD</sub>            | IS       | antenna 2<br>length           | SES <sub>MNTD</sub>        | TS       | -0.08863            | 0.4791                    |
| BDBM        | SES <sub>MPD</sub>            | IS       | antenna 2<br>length           | SES <sub>MNTD</sub>        | TS       | -0.01683            | -0.08669                  |
| PC16        | SES_MP<br>D                   | IS       | antenna 2<br>length           | SES <sub>MNTD</sub>        | TS       | -0.1535             | 0.2927                    |
| PC8         | SES_MP<br>D                   | IS       | antenna 2<br>length           | SES <sub>MNTD</sub>        | TS       | -0.06596            | 0.06334                   |
| all         | SES_MP<br>D                   | IS       | max. body size                | SES <sub>MNTD</sub>        | TS       | 0.02527             | -0.09794                  |
| BDBM        | SES_MP<br>D                   | IS       | max. body size                | SES <sub>MNTD</sub>        | TS       | -0.5917             | 0.6197                    |
| PC16        | SES_MP<br>D                   | IS       | max. body size                | SES <sub>MNTD</sub>        | TS       | -0.396              | 0.01435                   |
| PC8         | SES <sub>MPD</sub>            | IS       | max. body size                | SES <sub>MNTD</sub>        | TS       | -0.5346             | 0.3692                    |
| all         | SES <sub>MPD</sub>            | IS       | phylogeny                     | SES <sub>MNTD</sub>        | TS       | 0.4959              | 0.1807                    |
| BDBM        | SES <sub>MPD</sub>            | IS       | phylogeny                     | SES <sub>MNTD</sub>        | TS       | -0.6073             | 0.1686                    |
| PC16        | SES <sub>MPD</sub>            | IS       | phylogeny                     | SES <sub>MNTD</sub>        | TS       | 0.3786              | -0.06298                  |
| PC8         | $SES_{MPD}$                   | IS       | phylogeny<br>activity level   | SES <sub>MNTD</sub>        | TS       | -0.2719             | -0.05701                  |
| all         | $SES_{MPD}$                   | IS       | (% still)<br>activity level   | SES <sub>MNTD</sub>        | IS       | 0.1512              | -0.07783                  |
| BDBM        | $SES_{MPD}$                   | IS       | (% still)<br>activity level   | SES <sub>MNTD</sub>        | IS       | -0.5405             | 0.08066                   |
| PC16        | SES <sub>MPD</sub>            | IS       | (% still)<br>activity level   | SES <sub>MNTD</sub>        | IS       | 0.329               | -0.07626                  |
| PC8         | SES <sub>MPD</sub>            | IS       | (% still)                     | SES <sub>MNTD</sub>        | IS       | -0.2855             | -0.05975                  |
| all         | $SES_{MPD}$                   | IS       | all                           | <b>SES</b> <sub>MNTD</sub> | IS       | 0.6738              | 0.4709                    |
| BDBM        | $SES_{MPD}$                   | IS       | all                           | SES <sub>MNTD</sub>        | IS       | -0.01989            | -0.09968                  |
| PC16        | SES <sub>MPD</sub>            | IS       | all                           | SES <sub>MNTD</sub>        | IS       | 1.029               | 0.2015                    |
| PC8         | $SES_{MPD}$                   | IS       | all                           | SES <sub>MNTD</sub>        | IS       | 0.3541              | -0.01968                  |
| all         | $SES_{MPD}$                   | IS       | antenna 1<br>length           | SES <sub>MNTD</sub>        | IS       | 0.5473              | 0.4833                    |
| BDBM        | $SES_{MPD}$                   | IS       | antenna 1<br>length           | SES <sub>MNTD</sub>        | IS       | -0.07374            | -0.09325                  |
| PC16        | $SES_{MPD}$                   | IS       | antenna 1<br>length           | SES <sub>MNTD</sub>        | IS       | 0.5687              | 0.04248                   |
| PC8         | $\mathbf{SES}_{\mathrm{MPD}}$ | IS       | antenna 1<br>length           | SES <sub>MNTD</sub>        | IS       | 0.128               | -0.08375                  |
| .11         | SES                           | IC       | antenna 2                     | SEC                        | IC       | 0 2002              | 0.6194                    |
| all<br>BDBM | SES <sub>MPD</sub>            | IS<br>IS | length<br>antenna 2<br>length | SES <sub>MNTD</sub>        | IS<br>IS | -0.2002<br>-0.05604 | <b>0.6184</b><br>-0.06411 |
| PC16        | SES <sub>MPD</sub>            | IS       | antenna 2<br>length           | SES <sub>MNTD</sub>        | IS       | -0.4143             | 0.5958                    |
| PC8         | SES <sub>MPD</sub>            | IS       | antenna 2<br>length           | SES <sub>MNTD</sub>        | IS       | -0.1802             | 0.1965                    |
| all         | SES <sub>MPD</sub>            | IS       | max. body size                | SES <sub>MNTD</sub>        | IS       | -0.06848            | -0.09231                  |

| BDBM                                                             | $SES_{MPD}$                                                                                                                                                                  | IS                                                       | max. body size                                                                                                                               | SES <sub>MNTD</sub>                                                                                                                                    | IS                                                       | -0.9046                                                                                              | 0.7559                                                                                               |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| PC16                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | max. body size                                                                                                                               | SES <sub>MNTD</sub>                                                                                                                                    | IS                                                       | -0.7531                                                                                              | 0.1104                                                                                               |
| PC8                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | max. body size                                                                                                                               | SES <sub>MNTD</sub>                                                                                                                                    | IS                                                       | -0.8631                                                                                              | 0.5222                                                                                               |
| all                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | phylogeny                                                                                                                                    | SES <sub>MNTD</sub>                                                                                                                                    | IS                                                       | 0.4983                                                                                               | 0.2534                                                                                               |
| BDBM                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | phylogeny                                                                                                                                    | SES <sub>MNTD</sub>                                                                                                                                    | IS                                                       | -0.4389                                                                                              | 0.07484                                                                                              |
| PC16                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | phylogeny                                                                                                                                    | SES <sub>MNTD</sub>                                                                                                                                    | IS                                                       | 0.4251                                                                                               | -0.04182                                                                                             |
| PC8                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | phylogeny                                                                                                                                    | <b>SES</b> <sub>MNTD</sub>                                                                                                                             | IS                                                       | -0.1398                                                                                              | -0.08582                                                                                             |
|                                                                  |                                                                                                                                                                              |                                                          | activity level                                                                                                                               |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
| all                                                              | $SES_{MPD}$                                                                                                                                                                  | IS                                                       | (% still)<br>activity level                                                                                                                  | $SES_{MPD}$                                                                                                                                            | TS                                                       | 0.5737                                                                                               | 0.6395                                                                                               |
| BDBM                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | (% still)                                                                                                                                    | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | -0.05002                                                                                             | -0.09641                                                                                             |
|                                                                  |                                                                                                                                                                              |                                                          | activity level                                                                                                                               |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
| PC16                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | (% still)                                                                                                                                    | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.9455                                                                                               | 0.3544                                                                                               |
| PC8                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | activity level<br>(% still)                                                                                                                  | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.2824                                                                                               | -0.00876                                                                                             |
| all                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | all                                                                                                                                          | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.2824                                                                                               | <b>0.7434</b>                                                                                        |
| BDBM                                                             |                                                                                                                                                                              | IS                                                       | all                                                                                                                                          | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.06455                                                                                              | -0.09523                                                                                             |
| PC16                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | all                                                                                                                                          | $SES_{MPD}$<br>$SES_{MPD}$                                                                                                                             | TS                                                       | 0.06433                                                                                              | -0.09323                                                                                             |
|                                                                  | SES                                                                                                                                                                          |                                                          | all                                                                                                                                          |                                                                                                                                                        |                                                          |                                                                                                      | -0.01036                                                                                             |
| PC8                                                              | $SES_{MPD}$                                                                                                                                                                  | IS                                                       | antenna 1                                                                                                                                    | $SES_{MPD}$                                                                                                                                            | TS                                                       | 0.3131                                                                                               | -0.01030                                                                                             |
| all                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | length                                                                                                                                       | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.669                                                                                                | 0.5758                                                                                               |
|                                                                  |                                                                                                                                                                              |                                                          | antenna 1                                                                                                                                    |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
| BDBM                                                             | $SES_{MPD}$                                                                                                                                                                  | IS                                                       | length                                                                                                                                       | $SES_{MPD}$                                                                                                                                            | TS                                                       | -0.1597                                                                                              | -0.07545                                                                                             |
| PC16                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | antenna 1<br>length                                                                                                                          | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.9665                                                                                               | 0.2191                                                                                               |
| 1010                                                             | OLOMPD                                                                                                                                                                       | 15                                                       | antenna 1                                                                                                                                    | SLSMPD                                                                                                                                                 | 15                                                       | 0.7005                                                                                               | 0.2171                                                                                               |
| PC8                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | length                                                                                                                                       | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.2173                                                                                               | -0.06367                                                                                             |
| 11                                                               | ara                                                                                                                                                                          | 10                                                       | antenna 2                                                                                                                                    | ara                                                                                                                                                    | TC                                                       | 0.0700                                                                                               | 0.1((2)                                                                                              |
| all                                                              | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | length<br>antenna 2                                                                                                                          | $SES_{MPD}$                                                                                                                                            | TS                                                       | 0.2702                                                                                               | 0.1663                                                                                               |
| BDBM                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | length                                                                                                                                       | SES <sub>MPD</sub>                                                                                                                                     | TS                                                       | 0.2933                                                                                               | 0.1001                                                                                               |
|                                                                  |                                                                                                                                                                              |                                                          | antenna 2                                                                                                                                    |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
| PC16                                                             | SES <sub>MPD</sub>                                                                                                                                                           | IS                                                       | length                                                                                                                                       | $SES_{MPD}$                                                                                                                                            | TS                                                       | 0.5332                                                                                               | 0.1346                                                                                               |
| PC8                                                              | SESMER                                                                                                                                                                       | IS                                                       |                                                                                                                                              | SESMER                                                                                                                                                 | TS                                                       | 0 3951                                                                                               | 0.19                                                                                                 |
|                                                                  |                                                                                                                                                                              |                                                          | e                                                                                                                                            |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
|                                                                  |                                                                                                                                                                              |                                                          |                                                                                                                                              |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
|                                                                  |                                                                                                                                                                              |                                                          | -                                                                                                                                            |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
|                                                                  |                                                                                                                                                                              |                                                          | •                                                                                                                                            |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
|                                                                  |                                                                                                                                                                              |                                                          |                                                                                                                                              |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
|                                                                  |                                                                                                                                                                              |                                                          |                                                                                                                                              |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
|                                                                  |                                                                                                                                                                              |                                                          |                                                                                                                                              |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
|                                                                  |                                                                                                                                                                              |                                                          |                                                                                                                                              |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
| PUX                                                              | SESMPD                                                                                                                                                                       | 15                                                       |                                                                                                                                              | SESMPD                                                                                                                                                 | 15                                                       | 0.3//4                                                                                               | -0.02594                                                                                             |
| 100                                                              |                                                                                                                                                                              |                                                          | activity level                                                                                                                               |                                                                                                                                                        |                                                          |                                                                                                      |                                                                                                      |
| PC16<br>PC8<br>all<br>BDBM<br>PC16<br>PC8<br>all<br>BDBM<br>BDBM | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS<br>IS | length<br>antenna 2<br>length<br>max. body size<br>max. body size<br>max. body size<br>max. body size<br>phylogeny<br>phylogeny<br>phylogeny | SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub><br>SES <sub>MPD</sub> | TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS<br>TS | 0.5332<br>0.3951<br>0.008083<br>-0.4028<br>-0.6481<br>-0.4832<br>0.7133<br>-0.0684<br>1.19<br>0.3774 | 0.1346<br>0.19<br>-0.09978<br>0.2487<br>0.2202<br>0.3009<br>0.4193<br>-0.09695<br>0.2268<br>-0.02594 |

| BDBM | SES <sub>MPD</sub>            | IS | activity level<br>(% still)<br>activity level | SES <sub>MPD</sub>            | IS | -0.2308  | -0.06346 |
|------|-------------------------------|----|-----------------------------------------------|-------------------------------|----|----------|----------|
| PC16 | SES <sub>MPD</sub>            | IS | (% still)<br>activity level                   | SES <sub>MPD</sub>            | IS | 0.5185   | -0.03458 |
| PC8  | SES <sub>MPD</sub>            | IS | (% still)                                     | $SES_{MPD}$                   | IS | 0.02809  | -0.09957 |
| all  | SES <sub>MPD</sub>            | IS | all                                           | $SES_{MPD}$                   | IS | 0.4887   | 0.1866   |
| BDBM | $SES_{MPD}$                   | IS | all                                           | $SES_{MPD}$                   | IS | -0.2212  | -0.06255 |
| PC16 | $SES_{MPD}$                   | IS | all                                           | $SES_{MPD}$                   | IS | -0.1104  | -0.09669 |
| PC8  | SES <sub>MPD</sub>            | IS | all                                           | $SES_{MPD}$                   | IS | -0.1772  | -0.08079 |
| all  | ${\rm SES}_{\rm MPD}$         | IS | antenna 1<br>length                           | $SES_{MPD}$                   | IS | 0.4153   | 0.1446   |
| BDBM | $\mathbf{SES}_{\mathrm{MPD}}$ | IS | antenna 1<br>length                           | SES <sub>MPD</sub>            | IS | -0.3823  | 0.03213  |
| PC16 | SES <sub>MPD</sub>            | IS | antenna 1<br>length<br>antenna 1              | SES <sub>MPD</sub>            | IS | -0.1288  | -0.09468 |
| PC8  | SES <sub>MPD</sub>            | IS | length                                        | SES <sub>MPD</sub>            | IS | -0.291   | -0.03885 |
| all  | $SES_{MPD}$                   | IS | antenna 2<br>length                           | SES <sub>MPD</sub>            | IS | 0.3208   | 0.07321  |
| BDBM | SES <sub>MPD</sub>            | IS | antenna 2<br>length<br>antenna 2              | SES <sub>MPD</sub>            | IS | 0.08975  | -0.09135 |
| PC16 | SES <sub>MPD</sub>            | IS | length<br>antenna 2                           | $SES_{MPD}$                   | IS | 0.1165   | -0.09483 |
| PC8  | SES <sub>MPD</sub>            | IS | length                                        | $SES_{MPD}$                   | IS | 0.1271   | -0.08616 |
| all  | SES <sub>MPD</sub>            | IS | max. body size                                | SES <sub>MPD</sub>            | IS | -0.03733 | -0.09779 |
| BDBM | SES <sub>MPD</sub>            | IS | max. body size                                | $\mathbf{SES}_{\mathrm{MPD}}$ | IS | -0.5686  | 0.2264   |
| PC16 | SES <sub>MPD</sub>            | IS | max. body size                                | $SES_{MPD}$                   | IS | -1.024   | 0.2754   |
| PC8  | SES <sub>MPD</sub>            | IS | max. body size                                | SES <sub>MPD</sub>            | IS | -0.7153  | 0.3125   |
| all  | SES <sub>MPD</sub>            | IS | phylogeny                                     | $SES_{MPD}$                   | IS | 0.3385   | 0.08061  |
| BDBM | $SES_{MPD}$                   | IS | phylogeny                                     | $SES_{MPD}$                   | IS | -0.2421  | -0.04109 |
| PC16 | $SES_{MPD}$                   | IS | phylogeny                                     | $SES_{MPD}$                   | IS | -0.09838 | -0.09655 |
| PC8  | $SES_{MPD}$                   | IS | phylogeny                                     | $SES_{MPD}$                   | IS | -0.1735  | -0.07584 |

## **APPENDIX 6: Supplementary material for Chapter 3**

Table A6.9. ZEN sites. Site names, codes, and geospatial coordinates.

| Site | Name                                                                       | Ocean    | Margin | Latitude   | Longitude  |
|------|----------------------------------------------------------------------------|----------|--------|------------|------------|
| BB.A | Westside Park, Bodega Bay, CA, USA<br>Sacramento Landing, Tomales Bay, CA, | Pacific  | East   | 38.319755  | -123.05514 |
| BB.B | USA                                                                        | Pacific  | East   | 38.1496437 | -122.90638 |
| BC.A | Tsawwassen, BC, Canada                                                     | Pacific  | East   | 49         | -123.1     |
| BC.B | White Rock, BC, Canada                                                     | Pacific  | East   | 49         | -122.8     |
| CR   | Sveti Duh, Croatia                                                         | Atlantic | East   | 44.2055713 | 15.4777338 |
| ES.A | South Bay, VA, USA                                                         | Atlantic | West   | 37.265686  | -75.812668 |
| ES.B | Cobb Bay, VA, USA                                                          | Atlantic | West   | 37.31855   | -75.789076 |
| FI.A | Fårö, Finland                                                              | Atlantic | East   | 59.92025   | 21.7961833 |
| FI.B | Ängsö, Finland                                                             | Atlantic | East   | 60.10785   | 21.70995   |
| FR.A | Bouzigues, Etang de Thau, France<br>Peyrac sur mer, Etang de Bages-Sigean, | Atlantic | East   | 43.446971  | 3.661503   |
| FR.B | France                                                                     | Atlantic | East   | 43.082895  | 2.973231   |
| IR.A | Greyabbey, Northern Island, UK                                             | Atlantic | East   | 54.531944  | -5.569167  |
| IR.B | Donegal, Ireland                                                           | Atlantic | East   | 55.2225    | -7.701944  |
| JN.A | Akkeshi-ko estuary, Hokkaido, Japan                                        | Pacific  | West   | 43.021167  | 144.903217 |
| JN.B | Akkeshi-bay, Hokkaido, Japan                                               | Pacific  | West   | 43.052222  | 144.842699 |
| JS.A | Ikunoshima, Hiroshima, Japan                                               | Pacific  | West   | 34.297834  | 132.91631  |
| JS.B | Onoura, Hiroshima, Japan                                                   | Pacific  | West   | 34.274018  | 132.26617  |
| KO.A | Dongdae Bay, South Korea                                                   | Pacific  | West   | 34.8946611 | 128.020272 |
| KO.B | Koje Bay, South Korea                                                      | Pacific  | West   | 34.8009722 | 128.583694 |
| LI.1 | Landscape Lab, Long Island, NY, USA                                        | Atlantic | West   | 40.85762   | -72.45119  |
| LI.2 | Tiana Beach, Long Island, NY, USA                                          | Atlantic | West   | 40.83158   | -72.54082  |
| MA.A | Dorothy Cove, MA, USA                                                      | Atlantic | West   | 42.42014   | -70.91544  |
| MA.B | Niles Beach, MA, USA<br>San Quintin Bay, Baja California,                  | Atlantic | West   | 42.59697   | -70.6556   |
| MX.A | Mexico<br>Punta Banda Estuary, Baja California,                            | Pacific  | East   | 30.419675  | -115.96419 |
| MX.B | Mexico                                                                     | Pacific  | East   | 31.7584722 | -116.62278 |
| NC.A | Middle Marsh, NC, USA                                                      | Atlantic | West   | 34.692458  | -76.622589 |
| NC.B | Shackleford Island, NC, USA                                                | Atlantic | West   | 34.670544  | -76.574561 |
| NN.A | Misvaerfjorden, Norway                                                     | Atlantic | East   | 67.2147    | 15.0083    |
| NN.B | Rövika, Norway                                                             | Atlantic | East   | 67.2667233 | 15.2560633 |
| OR.A | Yaquina Bay, OR, USA                                                       | Pacific  | East   | 44.6127333 | -124.01413 |
| OR.B | Coos Bay, OR, USA                                                          | Pacific  | East   | 43.34625   | -124.31828 |
| PO.A | Culatatra, Portugal                                                        | Atlantic | East   | 36.997057  | -7.82849   |
| PO.B | Marim, Portugal                                                            | Atlantic | East   | 37.027333  | -7.810105  |

| QU.A | Pointe-Lebel, QU, Canada                                                 | Atlantic | West | 49.11237   | -68.17593  |
|------|--------------------------------------------------------------------------|----------|------|------------|------------|
| QU.B | Baie-St-Ludger, QU, Canada                                               | Atlantic | West | 49.08696   | -68.32041  |
| RU.A | Seldianaya, Russia                                                       | Atlantic | East | 66.4061111 | 33.7230556 |
| RU.B | Nicolskaya, Russia                                                       | Atlantic | East | 66.2858333 | 34.0025    |
| SD.A | Shelter Island, San Diego Bay, CA, USA                                   | Pacific  | East | 32.713756  | -117.22547 |
| SD.B | Coronado, San Diego Bay, CA, USA<br>Point Molate, San Francisco Bay, CA, | Pacific  | East | 32.700762  | -117.17289 |
| SF.A | USA<br>Point San Pablo, San Francisco Bay,                               | Pacific  | East | 37.946557  | -122.4185  |
| SF.B | USA                                                                      | Pacific  | East | 37.978118  | -122.40594 |
| SW.A | Torseröd, Sweden                                                         | Atlantic | East | 58.3131    | 11.5488    |
| SW.B | Bökevik, Sweden                                                          | Atlantic | East | 58.2488    | 11.4536    |
| UK.A | Porth Dinllaen, Wales, UK                                                | Atlantic | East | 52.942282  | -4.565173  |
| UK.B | Penn Y Chain, Wales, UK<br>Goodwin Islands, Chesapeake Bay, VA,          | Atlantic | East | 52.89856   | -4.321868  |
| VA.A | USA<br>Allen's Islands, Chesapeake Bay, VA,                              | Atlantic | West | 37.2204206 | -76.401335 |
| VA.B | USA                                                                      | Atlantic | West | 37.2543093 | -76.437447 |
| WA.A | Willapa Bay, WA, USA                                                     | Pacific  | East | 46.474     | -124.028   |
| WA.B | Dabob Bay, WA, USA                                                       | Pacific  | East | 47.809     | -122.815   |

Table A6.10. Traits used in functional analyses of epifaunal community structure. Traits were selected for their variation both within and among peracarids and gastropods; only parental care and developmental mode are invariant within peracarids (all peracarids are brooding direct developers). Observed sizes were measured by sieving epifauna through a series of 9 sieves with pore sizes of 0.5, 0.71, 1, 1.4, 2, 2.8, 4, 5.6, 8 mm. Latitudinal range was calculated as the range in absolute values of latitude from the combined set of observations from OBIS and GBIF for a given species after using the CoordinateCleaner package to remove inland observations, centroids, and identical latitude-longitude pairs.

| Trait         | Type Values | Interpretation | Transformation | Source       |
|---------------|-------------|----------------|----------------|--------------|
| Eats          |             | Dietary niche  |                | Gross et al. |
| Microalgae    | Bin.        | partitioning   |                | 2022, MRK    |
| Eats          |             | Dietary niche  |                | Gross et al. |
| Macroalgae    | Bin.        | partitioning   |                | 2022, MRK    |
|               |             | Dietary niche  |                | Gross et al. |
| Eats Seagrass | Bin.        | partitioning   |                | 2022, MRK    |
| Suspension    |             | Dietary niche  |                | Gross et al. |
| Feeder        | Bin.        | partitioning   |                | 2022, MRK    |
|               |             | Dietary niche  |                | Gross et al. |
| Detritivore   | Bin.        | partitioning   |                | 2022, MRK    |

| Carnivore,<br>Parasite,<br>Scavenger                       | Bin.                                    | broadcast                                                                | Dietary niche<br>partitioning                                                                                     |     | Gross et al.<br>2022, MRK                           |
|------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------|
| Parental Care<br>Developmental                             | Cat.                                    | spawner, brooder,<br>lays egg case<br>lecithotrophic,<br>planktotrophic, | Dispersal ability                                                                                                 |     | MRK                                                 |
| Mode                                                       | Cat.                                    | direct developer                                                         | Dispersal ability<br>Susceptibility to<br>predators, ability to<br>occupy physical                                |     | MRK                                                 |
| Mode<br>Observed Size                                      | Cont.                                   | 0.5 - 8 mm                                                               | space, competitive<br>ability<br>Susceptibility to<br>predators, ability to                                       | log | Empirically<br>measured                             |
| Maximum<br>Observed Size                                   | Cont.                                   | 0.5 - 8 mm                                                               | occupy physical<br>space, competitive<br>ability<br>Susceptibility to<br>predators, ability to                    | log | Empirically<br>measured                             |
| Mean Observed<br>Size                                      | Cont.                                   | 0.5 - 8 mm                                                               | occupy physical<br>space, competitive<br>ability<br>Susceptibility to<br>predators, ability to<br>occupy physical | log | Empirically<br>measured<br>Light &<br>Smith,        |
| Maximum Size<br>(Literature)<br>Latitudinal                | Cont.                                   | 1 - 140 mm                                                               | space, competitive ability                                                                                        | log | Gastropods.<br>com, etc.                            |
| Range<br>Mean Latitude<br>Marine<br>Brackish<br>Freshwater | Cont.<br>Cont.<br>Cont.<br>Bin.<br>Bin. | 0 - 72.569°<br>13.719 - 66.183°                                          | Thermal niche<br>Thermal niche<br>Salinity niche<br>Salinity niche<br>Salinity niche                              |     | OBIS, GBIF<br>OBIS, GBIF<br>WoRMS<br>WoRMS<br>WoRMS |

Table A6.11. Predictors used in random forest model of the log-transformed ratio of peracarid relative abundance to gastropod relative abundance (log-ratio). Mean in-situ measurements are derived from averaging across measurements from 20 sites; measurements from Bio-ORACLE are yearly averages measured between 2002-2009 within a 10-km radius of each site; measurements from World Ocean Database (WOD) were spatially interpolated based on sea surface measurements in 2009.

| Predictor | Values            | Transformation | Source |
|-----------|-------------------|----------------|--------|
| Ocean     | Pacific, Atlantic | None           |        |

| Coast                                                                                                                        | West Pacific, East Pacific, West<br>Atlantic, East Atlantic | None        |            |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------|------------|
| Margin                                                                                                                       | West, East                                                  | None        |            |
| In-Situ Temperature (°C)                                                                                                     | 8 - 35                                                      | None        | In situ    |
| Salinity (ppt)                                                                                                               | 6.5 - 40                                                    | None        | In situ    |
| Genotypic Richness (mean<br>Rozenfeld distance)<br>Allelic Richness (avg.<br>number of alleles per<br>locus, normalized to 7 | 0.11 - 1.0                                                  | None        | In situ    |
| genets)                                                                                                                      | 1.29 - 6.72                                                 | Squared     | In situ    |
| Epiphyte Load (g cm <sup>-2</sup>                                                                                            |                                                             | 1           |            |
| eelgrass)                                                                                                                    | 0.00554072 - 1.071013                                       | log         | In situ    |
| Macroalgal Abundance (g $m^{-2}$ )                                                                                           | 0 - 4172.653                                                | 1           | Ter alter  |
| m <sup>-2</sup> )<br>Eelgrass morphology PC1                                                                                 | 0 - 41/2.033                                                | $\log + 1$  | In situ    |
| (62.09%)                                                                                                                     | -6.06524939 - 2.30096651                                    | None        | In situ    |
| Eelgrass morphology PC2                                                                                                      |                                                             |             |            |
| (24.34%)                                                                                                                     | -1.48402338 - 3.59837339                                    | None        | In situ    |
| Total Seagrass Biomass                                                                                                       | 45.74725 - 1364.95000                                       | 100         | In situ    |
| (g)<br>Mean Leaf % N                                                                                                         | 1.092617 - 3.049590                                         | log<br>None |            |
|                                                                                                                              |                                                             |             | In situ    |
| Mean Leaf % C                                                                                                                | 31.59211 - 42.03824                                         | None        | In situ    |
| Predation on Amphipods                                                                                                       | 0.2 - 1                                                     | arcsin      | In situ    |
| Predation on Gastropods                                                                                                      | 0 - 0.8                                                     | logit       | In situ    |
| Predation on Kale                                                                                                            | 0 - 0.9                                                     | None        | In situ    |
| Predation on Dried Squid<br>Mean Total Epifaunal                                                                             | 0 - 1                                                       | None        | In situ    |
| Abundance                                                                                                                    | 0.00 - 795.55                                               | log         | In situ    |
| Site Epifaunal Richness                                                                                                      | 0 - 34                                                      | log         | In situ    |
| Calcite                                                                                                                      | 0.00031100 - 0.02810775                                     | log         | WOD        |
| Mean Chl A                                                                                                                   | 0.613 - 24.016                                              | log         | Bio-Oracle |
| Nitrate                                                                                                                      | 0.05533333 - 10.23499997                                    | square root | WOD        |
| Phosphate                                                                                                                    | 0.034800 - 2.172433                                         | log         | WOD        |
| Mean PAR                                                                                                                     | 27.34367 - 42.52075                                         | None        | Bio-Oracle |
| рН                                                                                                                           | 7.705167 - 8.311857                                         | None        | Bio-Oracle |
| Silicate                                                                                                                     | 0.93350 - 39.64817                                          | log         | WOD        |
| Maximum SST (°C)                                                                                                             | 12.6166 - 29.6965                                           | log         | Bio-Oracle |
| Mean SST (°C)                                                                                                                | 4.0669 - 21.3620                                            | None        | Bio-Oracle |
| SST Range (°C)                                                                                                               | 3.573667 - 22.870750                                        | None        | Bio-Oracle |
| Peracarid Richness                                                                                                           | 0 - 21                                                      | $\log + 1$  | In situ    |
| Gastropod Richness                                                                                                           | 1 - 17                                                      | log         | In situ    |
| 1                                                                                                                            |                                                             | 0           |            |

Table A6.4. Results of generalized linear models examining the effects of eelgrass genetic diversity and morphology on the species richness of peracarids and gastropods across global eelgrass beds. Allelic richness refers to the average number of alleles per locus normalized to 7 genets, while genotypic richness refers to the mean Rozenfeld distance between individuals in a site. PC1 is positively correlated with shorter, thinner shoots, while PC2 is positively correlated with more dense shoots and greater aboveground biomass. Bolded rows indicate significant predictors at  $\alpha = 0.05$ .

|                       | Predictor                 | $\chi^{2}$ 1 | р         | Effect size | pseudo R <sup>2</sup> |
|-----------------------|---------------------------|--------------|-----------|-------------|-----------------------|
| urid<br>ess           | Allelic Richness          | 37.258       | 1.035e-09 | 0.028996    | 0.2076344             |
| Peracarid<br>richness | <b>Genotypic Richness</b> | 19.88        | 8.247e-06 | 1.125       | 0.1107829             |
| Pe                    | PC1                       | 4.8839       | 0.02711   | -0.0652     | 0.0271942             |
|                       | PC2                       | 17.978       | 2.235e-05 | 0.1907      | 0.100195              |
| pc                    | Allelic Richness          | 2.271        | 0.1318    | 0.009235    | 0.02300632            |
| iastropo<br>richness  | <b>Genotypic Richness</b> | 4.8883       | 0.02704   | 0.7009      | 0.04951779            |
| Gastropod<br>richness | PC1                       | 12.976       | 0.0003154 | 0.16457     | 0.1314531             |
| 0.14                  | PC2                       | 0.78951      | 0.3742    | 0.05649     | 0.00799295            |

Table A6.5. Results of linear models examining the effects of eelgrass genetic diversity and morphology on the log-transformed total site-level abundance of peracarids and gastropods across global eelgrass beds. Allelic richness refers to the average number of alleles per locus normalized to 7 genets, while genotypic richness refers to the mean Rozenfeld distance between individuals in a site. PC1 is positively correlated with shorter, thinner shoots, while PC2 is positively correlated with more dense shoots and greater aboveground biomass. Bolded rows indicate significant predictors at  $\alpha = 0.05$ .

|  | 1) d                            | Predictor          | F      | р       | Effect size | <b>R</b> <sup>2</sup> |
|--|---------------------------------|--------------------|--------|---------|-------------|-----------------------|
|  | cari<br>e +                     | Allelic Richness   | 8.968  | 0.00433 | 0.07691     | 0.1399                |
|  | Pera<br>lanc                    | Genotypic Richness | 5.191  | 0.0272  | 2.921       | 0.07879               |
|  | log(Peracarid<br>abundance + 1  | PC1                | 4.722  | 0.0347  | -0.3904     | 0.0706                |
|  | da                              | PC2                | 9.963  | 0.00276 | 0.8638      | 0.1546                |
|  | log(Gastropod<br>abundance + 1) | Allelic Richness   | 3.171  | 0.0813  | -0.04703    | 0.04242               |
|  |                                 | Genotypic Richness | 3.162  | 0.0817  | -2.266      | 0.04226               |
|  |                                 | PC1                | 6.533  | 0.0138  | 0.4402      | 0.1015                |
|  | log(<br>abun                    | PC2                | 0.7402 | 0.394   | 0.2503      | -0.005331             |

. . . .

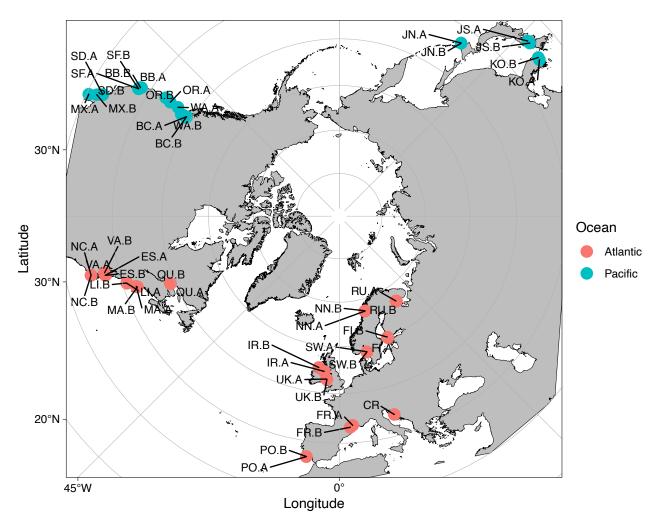



Figure A6.6. ZEN sites in the Atlantic (pink) and Pacific (blue) oceans. See Table A6.1 for site codes.

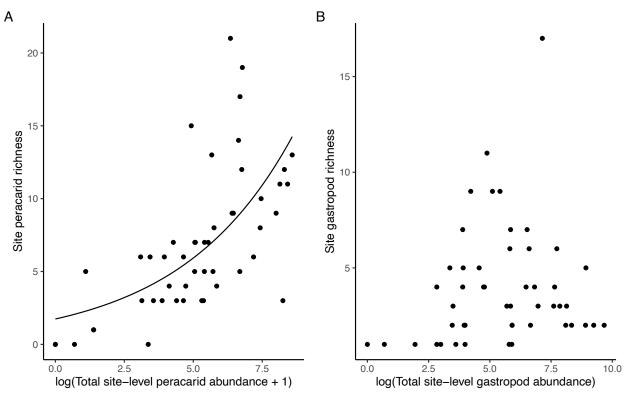



Figure A6.2. Relationships between total site-level abundance (calculated as the sum of plotlevel abundances standardized by eelgrass biomass) and species richness for peracarids (A) and gastropods (B) in eelgrass epifaunal communities. Species richness only increased with increasing abundance for peracarids ( $\chi^2_1 = 77.038$ , p < 0.001); gastropods showed no significant trend.

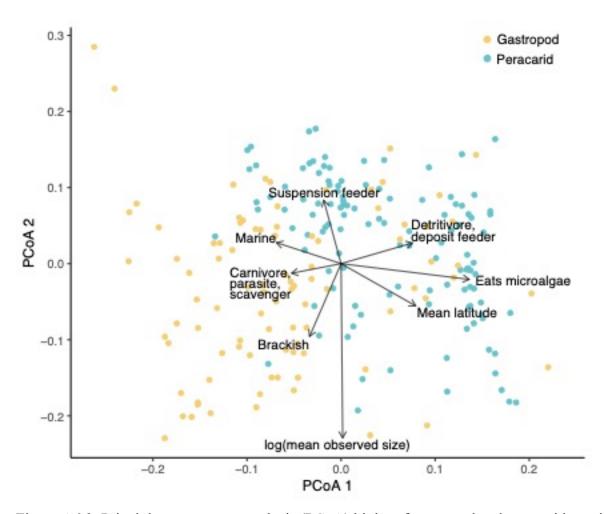



Figure A6.3. Principle components analysis (PCoA) biplot of gastropod and peracarid species in global eelgrass beds. Distances between points (species) are based on weighted Gower distances, which take into account among-species variation in continuous, binary, and categorical traits. For clarity, not all traits are included in this ordination.

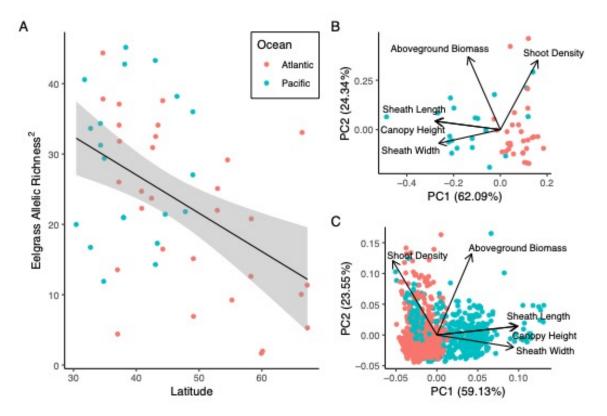



Figure S4. Variation in eelgrass allelic richness and morphology across ocean basins. Allelic richness declined with latitude across sites in both oceans (A;  $F_{1,48} = 13.36$ , p = 0.0006375), and was greater on average in the Pacific, although this was marginally nonsignificant ( $F_{1,48} = 3.804$ , p = 0.05699). Eelgrass morphological variation was greater in the Pacific than in the Atlantic when looking across sites (B) and across plots within sites (C).