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Summary

In addition to SecA of the general Sec system, many Gram-positive bacteria including 

mycobacteria express SecA2, a second, transport-associated ATPase. SecA2s can be subdivided 

into two mechanistically distinct types: 1) SecA2s that are part of the accessory Sec (aSec) system, 

a specialized transporter mediating the export of a family of serine-rich repeat (SRR) 

glycoproteins that function as adhesins; 2) SecA2s that are part of multi-substrate systems, in 

which SecA2 interacts with components of the general Sec system, specifically the SecYEG 

channel, to export multiple types of substrates. Found mainly in streptococci and staphylococci, 

the aSec system also contains SecY2 and novel accessory Sec proteins (Asps) that are required for 

optimal export. Asp2 also acetylates glucosamine residues on the SRR domains of the substrate 

during transport. Targeting of the SRR substrate to SecA2 and the aSec translocon is mediated by 

a specialized signal peptide. Multi-substrate SecA2 systems are present in mycobacteria, 

corynebacteria, listeria, clostridium and some bacillus. Although most substrates for this SecA2 

have canonical signal peptides that are required for export, targeting to SecA2 appears to depend 

on structural features of the mature protein. The feature of the mature domains of these proteins 

that renders them dependent on SecA2 for export may be their potential to fold in the cytoplasm. 

The discovery of aSec and multi-substrate SecA2 systems expands our appreciation of the 

diversity of bacterial export pathways. Here, we present our current understanding of the 

mechanisms of each of these SecA2 systems.

Introduction

The protein export systems of bacteria deliver proteins from the cytoplasm to the cell 

envelope or extracellular environment and, in doing so, they play critical roles in bacterial 

physiology and pathogenesis. In bacteria, the majority of protein export is carried out by the 

general Sec system (1, 2). The core components of the Sec system are the integral membrane 

proteins SecY, SecE and SecG that form the SecYEG channel through which unfolded 

proteins traverse the membrane, and the SecA ATPase, which provides energy for export 

(Fig. 1A). SecA shuttles between the cytoplasm and SecYEG in its role in export. 

SecDFYajC are auxiliary components that enhance export efficiency. Proteins exported by 
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the Sec pathway are synthesized as preproteins with N-terminal signal peptides that are 

recognized by the Sec machinery and removed during export to produce the mature protein. 

Some Gram-positive bacteria, including high-GC Gram-positive actinobacteria such as 

mycobacteria, possess two SecA proteins. In these cases, SecA (sometimes called SecA1) is 

the canonical SecA of the Sec pathway while SecA2 functions in a specialized pathway that 

exports one or a few proteins. There are at least two evolutionarily and mechanistically 

distinct types of SecA2 systems: the accessory Sec (aSec) system, which has also been 

referred to as the SecA2/SecY2 system, and the multi-substrate SecA2 system, which was 

initially called the SecA2-only system.

Accessory Sec (aSec) system

Many species of Gram-positive bacteria express an aSec system. Along with SecA2, the 

aSec system invariably includes SecY2 (a paralogue of SecY) and three to five accessory 

Sec proteins (Asps) (Fig. 1B) (3). These latter proteins are essential for substrate transport 

and are exclusively associated with aSec systems (4, 5). aSec systems transport large, 

heavily glycosylated cell wall-anchored proteins, known as serine-rich repeat (SRR) 

glycoproteins (6–8). These substrates undergo extensive O-linked glycosylation 

intracellularly, prior to their transport to the bacterial cell surface, where they function as 

adhesins important for commensal and pathogenic behavior (9–19).

The gene organization of aSec loci is highly conserved across species and genera (Fig. 2A). 

Along with the transport components, each aSec locus typically encodes one transported 

substrate (although up to three have been described), and two or more glycosyltransferase 

(Gtf) proteins that modify the preprotein in the cytoplasm prior to export (3, 20–22). It is not 

entirely clear why a dedicated system is necessary for the export of the SRR glycoproteins. 

One longstanding explanation is that the aSec system transports these unusual substrates 

because the canonical SecA or SecYEG cannot accommodate glycosylated proteins. Indeed, 

many aSec substrates cannot undergo canonical Sec transport, if glycosylated (23, 24). As 

discussed below, however, recent studies indicate a more complex role for the aSec system 

in coordinating transport and post-translational modification of the SRR glycoprotein, 

thereby assuring proper adhesin function.

Substrates of the aSec system.—The SRR glycoproteins comprise a unique family of 

adhesins that bind a wide range of ligands and impact biofilm formation and virulence (10, 

12, 18, 19, 25–29). The adhesins have a conserved domain organization, with a 90 amino 

acid signal peptide at the N-terminus, followed by a short SRR domain, a ligand binding 

region (BR), a long SRR domain, and a C-terminal LPXTG cell wall anchoring motif (Fig. 

3). The BRs can vary significantly, reflecting their considerable repertoire of ligands. For 

example, several species of oral streptococci express SRR adhesins with “Siglec (sialic acid-

binding immunoglobulin-type lectins)-like” binding regions that mediate binding to 

sialoglycans (30, 31), while Streptococcus agalactiae express SRR glycoproteins that 

interact with proteins (e.g. human keratin 4 and fibrinogen) (16, 32, 33). This diversity of 

ligands most likely reflects specific targets for microbial adhesion in different biological 

niches.

Braunstein et al. Page 2

Microbiol Spectr. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Preprotein recognition and trafficking to the aSec system.—The preprotein signal 

peptide of aSec substrates has a tripartite structure similar to that of general Sec system 

substrates, but the N region is approximately three times longer and includes a 

KxYKxGKxW motif (Fig. 3). This polybasic motif, along with additional basic resides in 

the extended N region, aids in targeting of the preprotein to anionic phospholipid patches in 

the membrane, and is important for the Asp-independent co-localization of the preprotein 

with SecA2 (34). The hydrophobic core (the H region) of the signal peptide is also important 

for trafficking to the aSec system, and contains three glycine residues essential for substrate 

delivery to the aSec pathway, and away from the canonical Sec system.

In addition to the signal peptide, the SRR adhesin GspB of Streptococcus gordonii has a 

specific segment (the accessory Sec transport or AST domain) at the amino terminus of the 

mature region that is required for transport. Deletion of the AST domain abolishes aSec 

export (24, 35) and even single amino acid substitutions within the domain can impair this 

process. The AST domain interacts directly with SecA2 during transport (36), which affects 

substrate targeting to the translocon and perhaps opening of the Y2 channel. The 

requirement of a specific segment in the mature region of the preprotein, along with the 

involvement of the Asps (see below), is a unique feature of aSec transport that may ensure 

the selectivity of this pathway for SRR glycoproteins.

The accessory Sec translocase.—SecA2 proteins belonging to the aSec system have a 

45 amino acid truncation of the C-terminal domain (CTD), as compared with canonical 

SecAs, and typically have a proline residue at the C-terminus (3) (Fig. 4). These SecA2 have 

70% similarity (35 to 40% identity) to SecA of Escherichia coli, which includes a high 

similarity in the preprotein cross-linking domain (PPXD) and the nucleotide binding motifs 

of NBD1 and NBD2 (3). In S. gordonii, SecA2 has a lower basal rate of ATP hydrolysis as 

compared with its SecA paralogue, and SecA2 requires higher magnesium concentrations 

for activity (37). These and other findings indicate that the streptococcal SecA2 may be 

more tightly regulated than SecA, which supports the possibility that one or more of the 

Asps may be required to stimulate ATP binding or hydrolysis, as discussed below.

SecY2 likely forms the transmembrane channel for aSec transport and likely functions 

similarly to SecY (38, 39). The predicted topology of SecY2 is nearly identical to that of 

SecY (3), even though SecY2 homologs have low primary sequence similarity to the SecY 

paralogues (20% identity, 60% similarity). Like its paralogue, SecY2 is likely to interact 

directly with SecA2 to mediate transport (35). It remains unclear as to how SecY2 can 

transport an extensively glycosylated protein, as compared to SecY.

In most species of streptococci with aSec systems, one or two additional small proteins 

(Asp4 and Asp5) are likely to form a complex with SecY2 in vivo (5) (39). Although the 

roles of Asp4 and Asp5 in transport are uncertain, these proteins are predicted to have 

structural features resembling SecE and SecG of other organisms, respectively, suggesting 

analogous functions. In complex with SecY2, these proteins enhanced the ATPase activity of 

streptococcal SecA2 in proteoliposomes, paralleling the effects of SecYEG on SecA (39). 

Asp4 is partially dispensable for the export of truncated or non-glycosylated GspB variants 

via the aSec route (40) consistent with a role of Asp4 in stabilizing the open state of the 
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transmembrane channel, rather than a role in the initiation of translocation. Some species 

lack Asp5 (e.g., S. agalactiae) or both Asp4 and Asp5 (e.g., S. aureus). It is possible that 

members of the canonical system substitute for these Asps, and indeed, in S. aureus, there is 

evidence for interaction between SecY2 and SecG (41).

Accessory Sec Proteins 1, 2, and 3.—Asps1–3 are invariable components of the aSec 

system, and are essential for substrate transport by this pathway. These Asps are located in 

the cytosol, but have an affinity for anionic lipids, and can localize as a complex with SecA2 

at the inner membrane (38, 42, 43). Although Asp1–3 lack homology to other transport-

associated proteins and their roles in aSec transport are not well-defined, their interactions 

provide some insights as to function. Asp2 and Asp3 directly bind the SRR regions of the 

GspB preprotein (44). This interaction does not require glycosylation of the SRR domain or 

specific amino acid motifs. Instead, Asps2 and 3 appear to recognize the unstructured or 

non-folded sections of the preprotein. Although these Asps bind GspB directly, they do not 

seem to function as conventional chaperones, since they are not required for GspB stability 

or targeting to the membrane or translocon (42, 43). However, these Asps augment the 

physical engagement of the AST domain of substrates with SecA2, as indicated by more 

extensive AST domain-SecA2 crosslinking in vivo, when Asp1–3 are present (35). Since 

these interactions are essential for aSec transport, one key role of Asp1–3 appears to be the 

enhancing of substrate interactions with the motor protein.

aSec transport and post-translational modification are coordinated 
processes.—Glycosylation and transport of aSec substrates were initially viewed as 

independent and sequential processes. Recent studies indicate, however, that these events are 

coordinated to assure the proper post-translational modification and function of the SRR 

glycoproteins. In addition to its role in transport, Asp2 has been shown to be an 

acetyltransferase that modifies N- acetylglucosamine moieties on the SRR domains of GspB 

(45). Targeted mutations of the predicted Asp2 catalytic domain had no effect on transport, 

but abolished acetylation of GspB. Moreover, acetylated GspB was only detected when the 

glycoprotein had undergone aSec transport, not among cytosolic forms (when aSec transport 

was blocked), or when GspB was engineered to undergo canonical Sec transport. Thus, 

Asp2 is a bifunctional protein involved in both the post-translational modification and 

transport of SRR glycoproteins. Moreover, these processes appear to be coordinated during 

the biogenesis of SRR glycoproteins, such that the adhesin is optimally modified for 

binding. This requirement to couple substrate modification and export may explain the co-

evolution of the SRR glycoproteins with their specialized glycan modifying and export 

systems.

Multi-substrate SecA2 systems

Multi-substrate SecA2 systems export more than one substrate, although the number of 

exported substrates is still small when compared to the general Sec system. The multi-

substrate SecA2 systems of Mycobacterium tuberculosis (46, 47), Listeria monocytogenes 
(48, 49) and likely Bacillus anthracis (50, 51) are required for pathogenesis. In 

Corynebacterium glutamicum (52) and Clostridium difficile (53) their multi-substrate 

systems are essential for bacterial viability. There is no SecY2 in multi-substrate SecA2 
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systems. Instead, the canonical SecYEG channel is used (Fig. 1C) (54, 55). A common 

finding across multi-substrate systems is that secA2 mutations diminish but do not 

completely abolish export of SecA2 substrates (56–59). Given that SecA2 works with 

SecYEG, the residual export observed in the absence of SecA2 may be attributable to the 

general Sec pathway, although this is unproven.

Unlike aSec systems, phylogenetic analysis of multi-substrate SecA2 proteins and the 

genomic regions flanking the secA2 gene do not indicate evolutionary relatedness (Fig. 2B) 

(3). Thus, there is risk in assuming there is a single type of multi-substrate SecA2 system 

with a common mechanism. Nonetheless, there are some intriguing similarities between 

systems, such that multi-substrate SecA2 systems might be examples of convergent 

evolution.

Substrates of multi-substrate SecA2 systems.—Proteomics has been the primary 

method for identifying substrates of multi-substrate SecA2 systems (48, 56, 58, 60, 61). 

Proteins exported by multi-substrate systems exhibit a relatively wide variety of functions, 

with some common themes. Recently, the multi-substrate SecA2 systems of M. tuberculosis 
and L. monocytogenes were identified as functioning in RNA secretion as well as protein 

export (62, 63). While the role for SecA2 in secreting RNA is a complete mystery, this 

discovery emphasizes the substrate diversity of multi-substrate systems.

(i) Actinobacteria (Mycobacteria and Corynebacteria).: At least fifteen mycobacterial 

proteins clearly depend on SecA2 for their export to the cell wall or extracellular 

environment (56, 58, 60). While no corynebacterial SecA2 substrates have been identified, 

the essentiality of secA2 in C. glutamicum predicts SecA2 substrates with vital functions in 

this species.

In mycobacteria, one category of SecA2 substrates are cell wall proteins involved in 

importing solutes, such as solute binding proteins (SBPs) and Mce proteins (56, 60). SBPs 

deliver solutes to ABC transporters in the membrane (64) and Mce proteins are thought to 

deliver lipids to Mce transporters (65). A second category of SecA2 substrates are proteins 

with roles in growth and survival of mycobacteria in macrophages, such as SapM, PknG and 

LipO that prevent delivery of mycobacteria to phagolysosomes (58, 66) (56) and SodA and 

KatG that protect against oxygen radicals (47). As discussed below, peptidoglycan 

hydrolases are SecA2 substrates in other multi-substrate systems. While this is not clearly 

the case in mycobacteria, in M. marinum a peptidoglycan hydrolase (IipA) was identified as 

SecA2-dependent (58).

(ii) Listeria.: In listeria, the secA2 gene is adjacent to the gene encoding the p60 protein 

(Fig. 2B) (57, 67). p60 is one of a group of listeria SecA2 substrates that are peptidoglycan 

hydrolases including NamA (MurA), SspB and MltD (57, 61, 67, 68). Another functional 

category of listeria SecA2 substrates are adhesins, such as Cbp and LAP (61, 69). Finally, 

similar to the mycobacterial SecA2 system, export of SBPs and superoxide dismutase 

(SodA) is associated with SecA2 of L. monocytogenes (48, 61, 70).
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(ii) Clostridium.: In C. difficile, the secA2 gene is in a locus with genes encoding the 

major S-layer protein (SlpA) and S-layer-related proteins, called cell-wall proteins (CwpV, 

Cwp2, Cwp66, Cwp84) (Fig. 2B) (53)(71). SlpA and Cwps are exported as SecA2 substrates 

(53). The finding that slpA is required for C. difficile viability explains, at least in part, why 

the SecA2 system is essential in this bacterium (71). Peptidoglycan hydrolase and adhesin 

activities have been assigned or predicted for SlpA and/or Cwp proteins (71–74), which is 

reminiscent of functional categories of listeria SecA2 substrates.

(iii) Bacillus.: Similar to C. difficile, in B. anthracis the SecA2 system exports S-layer 

proteins (EA1 and Sap) (59), and the secA2 gene is adjacent to genes encoding these 

proteins (Fig. 2B). While B. anthracis has a secY2, the gene is not clustered with secA2 in 

the genome and a secY2 mutant does not exhibit a Sap or EA1 export defect. Thus, there 

appears to be no SecY2 involvement in SecA2 transport (59). Both Sap and EA1 possess 

peptidoglycan hydrolase activity (75). Only members of the Bacillus cereus sensu lato group 

have secA2 or an S-layer (51).

Substrate recognition by multi-substrate SecA2 systems.—Most substrates of 

multi-substrate SecA2 systems have signal peptides that are indistinguishable from 

canonical Sec signal peptides. Experiments with mycobacteria demonstrate that the signal 

peptide of a SecA2 substrate is required for export (60, 76). However, the signal peptide 

does not determine whether a protein is exported by the SecA2 pathway versus another 

pathway. When signal peptides of SecA2-dependent and SecA1-dependent substrates are 

swapped the proteins are still exported by their respective pathways (76). Thus, it is the 

mature domain of a SecA2-exported protein that determines its transport pathway. These 

details have only been studied with mycobacterial SecA2 substrates; similar studies are 

needed for other multi-substrate systems.

In mycobacteria and listeria there are also examples of proteins lacking signal peptides that 

depend on SecA2 for export (i.e. PknG, SodA and KatG in mycobacteria and SodA, LAP 

and phosphomannose isomerase in listeria) (47, 48, 56, 69, 77) For these cases, the proteins 

are exported as well as localized to the cytoplasm and they are likely to be ‘moonlighting’ 

proteins that function in both locations. Nothing is known about the recognition of these 

proteins by the SecA2 system. Further, it remains possible that the effect of SecA2 on these 

proteins is indirect. One possibility is that ‘moonlighting’ proteins might be released from 

the cytoplasm as a secondary consequence of SecA2-dependent export of peptidoglycan 

hydrolases that affect cell wall integrity (78).

The multi-substrate SecA2 translocase.—The mycobacterial SecA2 pathway is the 

most studied multi-substrate system, in terms of mechanism. Compared to its SecAl 

paralogue, mycobacterial SecA2 has a distinct role. Even when overexpressed, SecAl or 

SecA2 are unable to fulfill the function of one another (79). In addition, M. tuberculosis 
SecAl and SecA2 share only 38% identity (54% sequence similarity). Thus, it was a surprise 

to discover broad similarity between the crystal structures of M. tuberculosis SecAl and 

SecA2 (80). However, compared to SecAl, the CTD of SecA2 is truncated, similar to what 

was found for SecA2 of the aSec system (Fig. 4) (3). In addition, the helical wing domain 

(HWD) is missing in the mycobacterial SecA2. The lack of an HWD is a conserved feature 
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of actinobacteria SecA2 proteins, but small HWD truncations may also exist in other SecA2 

proteins (80). The significance of CTD and HWD truncations to SecA2 function remains to 

be investigated.

Like canonical SecAs, SecA2 is an ATPase and amino acid substitutions in the nucleotide 

binding domain (NBDl) of SecA2 abolishes export (53, 81). However, mycobacterial SecAl 

and SecA2 differ in ATPase activity. Compared to SecAl, SecA2 has a lower ATPase rate 

and SecA2 also binds ADP and ATP with a higher affinity and releases ADP more slowly 

(81, 82). Moreover, ADP binding to SecA2 induces a structural rearrangement involving the 

precursor-binding domain (PPXD) that is not observed in ADP-bound SecAl or conventional 

SecA proteins. These differences in nucleotide interactions might reflect the existence of 

additional proteins that stimulate ATP hydrolysis or ADP release or distinct mechanisms of 

substrate recognition by SecA2.

Data indicate SecA2 works with the canonical SecYEG. In mycobacteria and listeria, 

suppressors of secA2 mutants map to the sole secY gene in these bacteria, which argues for 

the canonical SecY being used by SecA2 for export (54, 55). In C. difficile, there are also 

data for SecA2 working with the same SecYEG channel used by SecAl (53). Because 

proteins must be in an unfolded state to transit SecYEG (83, 84), the discovery that SecYEG 

is used by multi-substrate SecA2 systems implies that the substrates of these systems need to 

be unfolded for translocation. In mycobacteria, it is demonstrated that the mature domain of 

a protein dictates the need for SecA2 for export (i.e. not the signal peptide) (76). Further, the 

mature domain of a mycobacterial SecA2 substrate can be engineered to be exported by the 

Tat system, a pathway requiring proteins be folded in order to be exported (76). Thus, one 

possibility is that the mature domain of SecA2 substrates have a propensity to fold or 

aggregate in the cytoplasm and that the SecA2 system, through currently unknown 

mechanisms, enables export of such proteins. For example, SecA2 or other players in the 

multi-substrate system might keep substrates from folding prior to or during export.

There may also be a role for SecAl in SecA2-dependent export. M. tuberculosis SecAl and 

SecA2 form heterodimers in vitro (85). Additionally, in mycobacteria and listeria, if SecAl 

is depleted or inhibited, SecA2-dependent export is compromised (86, 87). However, further 

studies are required because the effect of SecAl on SecA2 export could instead be due to a 

function of SecA1 in transporting SecYEG proteins to the membrane. In C. difficile, SecA1 

depletion does not impact SecA2 export, indicating that in this species there is no role of 

SecA1 in SecA2 transport (53).

Additional factors involved in multi-substrate SecA2 systems.—In mycobacteria, 

SatS is a cytoplasmic chaperone that works with SecA2 to export a subset of SecA2 

substrates (88). SatS stabilizes and prevents aggregation of substrates in the cytoplasm and 

potentially delivers them to the export machinery. In B. anthracis SlaP and SlaQ, which are 

encoded by genes adjacent to secA2 (Fig. 2B), are cytoplasmic proteins required for export 

of SecA2 substrates. The functions of SlaP and SlaQ are unknown (59, 89). In listeria, the 

DivIVA protein that recruits proteins to the poles and septum of Gram-positive bacteria is 

necessary for septal localization and secretion of the p60 and MurA SecA2 substrates (68). 

The connection between DivIVA and SecA2 export requires further studies to understand.

Braunstein et al. Page 7

Microbiol Spectr. Author manuscript; available in PMC 2019 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

Many Gram-positive bacteria have SecA2 systems that export a small set of proteins and 

contribute to pathogenesis. However, it is important to recognize that at least two types of 

SecA2 systems exist (aSec and multi-substrate systems), each with a distinctive mechanism. 

In the future, it will be important to clarify the defining features of the respective SecA2 

substrates as well as the recognition and translocation events of each type of pathway. For 

multi-substrate systems, in particular, more studies are needed to determine the degree of 

mechanistic similarity in the absence of evolutionary relatedness.
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Figure 1. Models for the general Sec system, the aSec system and the multi-substrate SecA2 
system.
A. General Sec system. SecA uses ATP hydrolysis to export cytoplasmic preproteins through 

the SecYEG channel in an unfolded state. SecDFYajC are auxiliary components that 

enhance export efficiency. Sec signal peptides (black rectangle) target preproteins (blue 

ribbon) for export through SecYEG. Following export across the membrane, the signal 

peptide is cleaved by a signal peptidase (SP) and the resulting mature protein folds into its 

proper conformation. B. aSec system. The model depicted is largely based on studies of the 

S. gordonii SecA2 system. Glycosylation of the preprotein (pink ribbon) with GlcNAc (blue 

squares) and Glc (blue circles) likely occurs co-translationally. The positively-charged N 

region of the signal peptide (black rectangle) targets the preprotein to anionic phospholipids, 

which aids the localization with SecA2. Transport through the SecY2/Asp4/5 channel 

requires a specific sequence in the mature region of the preprotein, as well as Asps1–3. Asp2 

is a bifunctional protein that also mediates O-acetylation of GlcNAc moieties (red square). 

Cleavage of the signal peptide is thought to be carried out by the general signal peptidase 

(SP). C. Multi-substrate SecA2 system. The model depicted is largely based on studies of 

the mycobacterial SecA2 system. SecA2 works with the canonical SecYEG channel and 

possibly SecA1 to export its specific subset of preproteins (green ribbon). The majority of 

SecA2 substrates are synthesized as preproteins with a signal peptide (black rectangle) that 

is cleaved in association with export. The mature domain, not the signal peptide, of a 

preprotein determines if a protein is exported by this SecA2 system. It is proposed that the 

mature domain of a SecA2 substrate has the propensity to fold in the cytoplasm and that the 

role of SecA2 is to facilitate the export of such proteins, in an unfolded state, through the 

SecYEG channel. Additional factors are likely to work with SecA2 in the pathway (purple 

symbol). The role of SecA2 in exporting ‘moonlighting’ proteins that lack signal peptides is 

unclear and not depicted in the model.
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Figure 2. Genomic regions encoding aSec and multi-substrate SecA2 proteins.
A. aSec loci. Shown are representative aSec loci in Gram-positive bacteria. The secA2 gene 

is shown in black and the other genes encoding core components of the aSec translocase 

(SecY2, Asps) are colored yellow. Genes encoding glycosyltransferases (Gtf) and proteins 

involved in carbohydrate modifications are shown in orange. Genes encoding exported 

SecA2 substrates are shown in blue. In S. parasanguis the Asp orthologues are called 

Gaps123. In S. salivarius, the gtfEF genes are located distal to the secA2 locus but they are 

required for the first step of O-GlcNAcylation of the substrate (90) and, thus, may be 

functionally analogous to the gtfAB pairs found in other aSec loci. B. Multi-substrate SecA2 

loci. Shown are representative multi-substrate secA2 genes and neighboring genomic 

regions in Gram-positive bacteria. The secA2 gene is shown in black and genes encoding 

SecA2-substrates are shown in blue. Candidate genes for additional SecA2 substrates are 

shown with blue stripes. Substrates encoded elsewhere in the genome are not shown. 

Additional proteins with roles in SecA2-dependent export are encoded by genes shown in 

pink. Genes encoding proteins with no known connection to export are shown in grey.
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Figure 3. GspB domains and features of the N-terminal signal peptide.
Upper: Domains of the serine-rich repeat glycoprotein GspB. SP, signal peptide; AST, aSec 

transport domain; SRR1 and SRR2, serine-rich repeat regions 1 and 2, respectively; BR, 

ligand binding region; CWA, cell-wall anchoring domain. The CWA domain includes a 

transmembrane segment, an LPxTG motif, and a charged C-terminal tail (91). Lower: The 

GspB signal peptide has the tripartite structure of canonical signal peptides: the N-terminal 

(N), hydrophobic core (H) and cleavage (C) region. However, the N region is substantially 

longer than typical signal peptides, and includes a KxYKxGKxW motif (red font). Gycine 

residues in the H region are also indicated in red font.
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Figure 4. Domain organization in the canonical SecA of Escherichia coli and SecA2 proteins of S. 
gordonii and M. tuberculosis.
Domains were identified in SecA2 proteins by alignment with E. coli SecA using published 

domain boundaries (92). NBD, nucleotide binding domain; PPXD, preprotein cross-linking 

domain; HSD, helical scaffold domain; HWD, helical wing domain; IRA, intramolecular 

regulator of ATPase activity; CTD, C-terminal domain. When compared to the canonical 

SecA, SecA2 proteins have deletions in the HWD and CTD regions. Amino acid number in 

the protein sequence is shown below each schematic.
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