
Insurance Equilibrium with Monoline and Multiline

Insurers ∗

Rustam Ibragimov† Dwight Jaffee‡ Johan Walden§

October 3, 2008

Abstract

We study a competitive multiline insurance industry, in which insurance com-
panies with limited liability choose which insurance lines to cover and the amount
of capital to hold. The results are developed under the realistic assumptions that
insurers face friction costs in holding capital and that the losses created by insurer
default are shared among policyholders following an ex post, pro rata, sharing
rule. We characterize the situations in which monoline and multiline insurance
structures will be optimal. Markets characterized by a large number of essen-
tially independent risks will be served by multiline firms. Markets for which
the risks are asymmetric or correlated may best served by monoline insurers.
The results are directly relevant to such catastrophe lines as bond and mortgage
default insurance, and may be applicable more generally to industries in which
risky activities can be carried out by either monoline or conglomerate entities.
We illustrate the results with examples.
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1 Background

If insurers hold sufficient capital, they can make a credible guarantee to pay all claims.

In practice, two factors create a significant risk of insurer default: 1) limited liability,

creating conditions under which insurers may fail to make payments to policyholders

and 2) excess costs to holding capital, leading insurers to limit the amount of capital

they hold. When markets are incomplete, in the sense that policyholders face a coun-

terparty risk that cannot be independently hedged, the existence of the two factors can

have a significant impact on the industry equilibrium.

For example, Froot, Scharsfstein, and Stein (1993) and Froot and Stein (1998) em-

phasize the importance of capital market imperfections for understanding a variety of

corporate risk management decisions, with the tax disadvantages to holding capital

within a firm an especially common and important factor. For insurance firms, Cum-

mins (1993), Merton and Perold (1993), Jaffee and Russell (1997), Myers and Read

(2001), and Froot (2007) all emphasize the importance of various accounting, agency,

informational, regulatory, and tax factors in raising the cost of internally held capi-

tal. Such frictions combined with limited liability can have a significant impact on the

amount of capital held by insurers, the premiums set across insurance lines, and the

industry structure regarding which insurance lines are provided by monoline versus

multiline insurers.

The risk of insurer default in paying policyholder claims has lead to the imposition

of strong regulatory constraints on the insurance industry in most countries. Capital

requirements are one common form of regulation, although no systematic framework

is available for determining the appropriate levels. As Cummins (1993) and Myers

and Read (2001) point out, it is likely that the capital requirements are being set too

high in some jurisdictions and too low in others, and similarly for the various lines

of insurance risk, in both cases leading to inefficiency. It is thus important to have

an objective framework for identifying the appropriate level of capital based on each

2



insurer’s particular book of business.

Insurance regulation also focuses on the industry structure, requiring that certain

high-risk insurance lines be provided on a monoline basis. A monoline restriction

requires that the insurer dedicates its capital to pay claims on its single line of business

alone, thus eliminating the diversification benefit in which a multiline firm can apply its

capital to pay claims on any and all of its insurance lines.1 Jaffee (2006), for example,

describes the monoline restrictions imposed on mortgage default insurance, an industry,

as it happens, currently at significant risk to default on its obligations as a result of

the subprime mortgage crisis. Jaffee conjectures that the monoline restrictions were

imposed as consumer legislation to protect the policyholders on relatively safe lines

from an insurer default that would be created from large losses on catastrophe lines,

such as mortgage and bond insurance. It is thus valuable to have a framework in which

the optimality of monoline versus multiline formats can be determined.

This paper provides a systematic analysis of the structure of an insurance market

with multiple lines of risk under the assumptions of costly capital, limited liability, in-

complete markets and perfect competition among insurance companies. We specifically

focus on the following questions:

1. How will risk-averse agents rank risks and evaluate monoline versus multiline

coverage when insurance is available?

2. For a given choice of insurance lines, what is the equilibrium level of capital for

an insurer to hold, and what are the resulting premiums net of default costs?

We use the term “default costs” to refer to the shortfall in payments received

by policyholders on claims. We do not assume any deadweight bankruptcy costs

that might also be associated with such shortfalls.

3. How will insurers choose which insurance lines to offer to their customers, includ-

1Monoline restrictions do not preclude an insurance holding company from owning an amalgam
of both monoline and multiline subsidiaries. Within a holding company, the force of a monoline
restriction is to restrict the capital of each monoline division to paying claims for that division alone.
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ing the choice whether to operate on a monoline or multiline basis?

We develop a parsimonious model, which we use to analyze these questions. Our

results significantly extend and generalize the analyses in earlier papers, e.g., in Phillips,

Cummins, and Allen (1998) (PCA) and Myers and Read (2001) (MR) based on three

key factors:

1. We consider a competitive market, in which insurance companies (insurers) com-

pete to attract risk averse agents (insurees) who wish to insure risks. This com-

petition severely restricts the monoline and multiline structures that may exist in

equilibrium. We know of no other paper that provides an analytic framework for

determining the equilibrium structure for an insurance industry that may contain

both monoline and multiline firms.

2. We assume that there are excess costs associated with internal capital held by

the insurer. PCA do model the risk of insurer default based on limited capital,

but their analysis does not embed a cost of internal capital or other motivation

for the limited capital. As a result, equilibrium premiums in their model have no

component that reflects the internal cost of capital. MR apply the PCA premium

model, so the same comment applies to their paper.

3. When insurer bankruptcy occurs, the PCA and MR papers assume that the asset

shortfall is allocated to policyholders on the basis of the ex ante value of the

default free insurance. While an ex ante rule provides analytic simplifications,

it requires an impractical pattern of ex post side payments, for example that

policyholders with no claims must make payments to other policyholders, see

Ibragimov, Jaffee, and Walden (2008b). In contrast, in this paper we apply an

ex post pro rata rule under which an asset shortfall is allocated in proportion

to each policyholders actual claim. Ibragimov, Jaffee, and Walden (2008b) show

that this ex post rule has sensible properties and reflects the actual industry

practice.

4



Although our model is developed in the context of an insurance market, we be-

lieve the framework may be applicable to the issues of counterparty risk and monoline

structures that are pervasive throughout the financial services industry. For example,

the 1933 Glass Steagall Act forced U.S. commercial banks to divest their investment

bank divisions, a clear monoline restriction. Subsequent legislation—specifically the

1956 Bank Holding Company Act and the Gramm-Leach-Bliley Act of 1999—provided

more flexibility for bank holding companies, but the capital of the underlying com-

mercial bank still may be used only to offset losses of that bank alone. In this sense,

U.S. commercial banks remain monoline entities. In a similar fashion, Leland (2007)

develops a model in which single-activity corporations can choose the optimal debt to

equity ratio, whereas multiline conglomerates obtain a diversification benefit but can

only choose an average debt to equity ratio for the overall firm. Thus here too there is

a tension between the diversification benefit associated with a multiline structure and

the benefit of separating risks allowed by a monoline structure.

The paper is organized as follows: In section 2, we introduce the basic framework

for our analysis. In section 3, we analyze the monoline versus multiline choice and

the implications for industry structure. We analyze the insurance line choices in a

competitive market under two different assumptions for the properties of the underlying

risks. In the first case, we assume that many essentially independent risks are available:

insurance companies will then be multiline oriented. In the second case, we assume that

the losses between lines are highly correlated, or that the loss distributions between

lines are asymmetric, or that there are few lines overall: the market may then be best

served by monoline insurance companies. We also provide several other results, e.g.,

a detailed analysis of capital choice in the single line case, as well as an extension of

the second order stochastic dominance concept to the case when insurance markets are

present. Finally, section 4 provides concluding remarks.
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2 A competitive multiline insurance market

2.1 The special case with one insured risk class

We first study the case of only one insured risk class to introduce the basic concepts

and notation.2 Consider the following one-period model of a competitive insurance

market. At t = 0, an insurer (i.e., an insurance company) in a competitive insurance

market sells insurance against an idiosyncratic risk, L̃ ≥ 0 (throughout the paper we

use the convention that losses take on positive values) to an insuree.3

The expected loss of the risk is μL = E[L̃], μL < ∞. For many types of individual

and natural disaster risks, such as auto and earthquake insurance, etc., it seems rea-

sonable to assume that risks are idiosyncratic, although, of course, there will be some

mega-disasters and corporate risks for which it is not true.

The insurer has limited liability and reserves capital within the company, so that

the assets A are available at t = 1, at which point losses are realized and the insurer

satisfies all claims by paying L̃ to the insuree, as long as L̃ ≤ A. But, if L̃ > A, the

insurer pays A and defaults on the additional amount that is due.4 Thus, the payment

is

Payment = min(L̃, A) = L̃ − max(L̃ − A, 0) = L̃ − Q̃(A),

where Q̃(A) = max(L̃ − A, 0), i.e., Q̃(A) is the payoff to the option the insurer has to

default. When obvious, we suppress the A dependence, e.g., writing Q̃ instead of Q̃(A).

The price for the insurance is P . Throughout the paper, the risk-free discount rate

2For a more extensive discussion of the basic properties of the model, see Ibragimov, Jaffee, and
Walden (2008b).

3It is natural to think of each risk as an insurance line. This interpretation is motivated if risks
are perfectly correlated within an insurance line. Similar results arise if risks within a line are i.i.d.,
although the analysis becomes more complex.

4For some lines of consumer insurance (e.g. auto and homeowner), there exist state guaranty funds
through which the insurees of a defaulting insurer are supposed to be paid by the surviving firms for
that line. In practice, delays and uncertainty in payments by state guaranty funds leave insurees still
facing a significant cost when an insurer defaults; see Cummins (1988). More generally, our analysis
applies to all the commercial insurance lines and catastrophe lines for which no state guaranty funds
exist.
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is normalized to zero. The results are qualitatively the same with a non-zero risk-free

rate.

With unlimited liability and no friction costs, the price for L̃ risk in the competitive

market is

PL = μL̃,

Similarly, the value of the option to default is

PQ = E[Q̃(A)] = μQ.

We assume that these prices are determined in a friction-free competitive market for

risk.

We assume, however, that there are friction costs when holding capital within an

insurer, including both taxation and liquidity costs. The cost of internal capital is δ

per unit of capital. This means that to ensure that A is available at t = 1, (1 + δ)×A

needs to be reserved at t = 0. Since the market is competitive and the cost of internal

capital is δA, the price charged for the insurance is

P = PL − PQ + δA = μL − μQ + δA. (1)

The premium setting and capital allocations build on the no-arbitrage, option-

based, technique, introduced to insurance models by Doherty and Garven (1986), then

extended to multiline insurers by Phillips, Cummins, and Allen (PCA, 1998) and Myers

and Read (MR, 2001), and further developed in Ibragimov, Jaffee, and Walden (2008b).

The results developed here apply to both monoline and multiline insurers.

We assume, in line with practice, that premiums are paid upfront, and thus to

ensure that A is available at t = 1, the additional amount of A − PL + PQ needs to be

contributed by the insurer. Through the remainder of the paper, we shall refer to A

as the insurer’s assets or capital, depending on the context, it being understood that

the amount PL − PQ + δA is paid by the insurees as the premium, and the amount
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Market for risk
-Noarbitrage 
pricing operator

Insurance market
-Costly capital
-Competitive

Insurer

Insuree

t=0: A-PL+PQ t=1: A-L+Qt=1: A-L+Qt=0: A-PL+PQ

t=0: δA+PL-PQ

t=1:  L-Q

Figure 1: Structure of model. Insurers can invest in market for risk and in a competitive
insurance market. There is costly capital, so to ensure that A is available at t = 0, (1 + δ)A
needs to be reserved at t = 1. The premium, δA+PL −PQ, is contributed by the insuree and
A − PL + PQ by the insurer. The discount rate is normalized to zero. Competitive market
conditions imply that the price for insurance is P = PL − PQ + δA.

A−PL +PQ is contributed by the insurer’s shareholders.5 The total industry structure

is summarized in Figure 1.

It is natural to ask why insurees, recognizing that insurers impose the costs of hold-

ing internal capital, would not instead purchase their coverage directly in the market

for risk. The answer is that here, as in any model of financial intermediation, there

must be other costs, arising from transactions, contracting, or asymmetric information,

which cause agents to prefer to deal with the intermediary. In this paper, we simply

make the assumption that insurees do not have direct access to the market for risk and

that they can obtain coverage only through the insurers.

5We do not explicitly consider the existence of reinsurance, which an insurer could use to transfer
some of its risks. However, our results can be interpreted as applying to the insurer’s risks net of
those transferred to a reinsurer. Indeed, our analysis is equally applicable to insurers and reinsurers.
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2.2 The general case of multiple insured risk classes

The generalization to the case when there are multiple risk classes requires an additional

assumption regarding the timing at which claims are made. Here we follow PCA by

assuming that claims on all the insured lines are realized at the same time, t = 1. The

result is that at t = 1 the insurer either pays all claims in full (when assets exceed total

claims) or defaults (when total claims exceed the assets). This is also the basis for our

ex post sharing rule by which the shortfall in total assets for a defaulting insurer is

allocated across insurance lines in proportion to the actual claims by line.

If coverage against N risks is provided by one multiline insurer, the total payment

made to all policyholders with claims, taking into account that the insurer may default,

is

Total Payment = L̃ − max(L̃ − A, 0) = L̃ − Q̃(A),

where L̃ =
∑

i L̃i and Q̃(A) = max(L̃−A, 0). In the case of default under the ex post

sharing rule, the payments made to insuree i is then

Paymenti =
L̃i

L̃
A = L̃i − L̃i

L̃
Q̃(A).

We define the binary default option

Ṽ (A) =

⎧⎨
⎩ 0 L̃ ≤ A,

1 L̃ > A,
(2)

and the price for such an option in the competitive friction free market, PV = E[Ṽ ].

The total price for the risks is, P
def
=

∑
i Pi, where Pi is the price for insurance against

risk i. From PCA (1998) and MR (2001), and as extensively discussed in Ibragimov,

Jaffee, and Walden (2008b), it follows that

Pi = PLi
− riPQ + viδA, (3)

9



where

ri = E

[
L̃i

L̃
× Q̃

PQ

]
, vi = E

[
L̃i

L̃
× Ṽ

PV

]
.

Now consider an insurance market, in which M insurers sell insurance against

N ≥ M risks. We partition the total set of N risks into X = {X1, X2, . . . , XM},
where ∪iXi = {1, . . . , N}, Xi ∩ Xj = ∅, i 	= j, Xi 	= ∅. The partition represents how

the risks are insured by M monoline or multiline insurers.

The total industry structure is then characterized by the duple, S = (X ,A), where

A ∈ R
M
+ is a vector with i:th element representing the capital available in the firm that

insures the risks for agents in Xi. Here, we use the notation R+ = {x ∈ R : x ≥ 0}
and R− = {x ∈ R : x ≤ 0}. We call A the capital allocation and X the industry

partition. The number of sets in the industry partition is denoted by M(X ). Two

polar cases are the fully multiline industry partition, XMULTI = {{0, 1, . . . , N}} and

the monoline industry partition, XMONO = {{0}, {1}, . . . , {N}}. Of course, for a fully

multiline industry structure, M = 1 and A = A. Given an industry structure, S, the

price in each line is uniquely defined through (3), Pi = Pi(S).

To model the prevailing industry structure, S = (X ,A)—our main objective—we

also need assumptions about insurees. For simplicity, we assume that there are N

distinct insurees.6 Each risk is insured by one insuree with expected utility function

u, where u is a strictly concave, increasing, twice continuously differentiable function

defined on the whole of R−, and that u′(0) ≥ C > 0, and u′′(x) ≤ C < 0, for some

constant C, for all x ≤ 0. For some of the results we need to impose stronger conditions

on u. The risk can not be divided between multiple insurers.7 Finally, we assume that

6As mentioned in section 2, we do not distinguish between lines of risks and individual risks, in
effect assuming that there is one insuree within each line. So far this is no restriction, since, in
principle, N can be very large. If we wish to study a case with a “small” N , for the special case when
there are several identical agents with perfectly correlated risks, we can treat such a situation as there
being one representative insuree facing one risk, collapsing many risks into one line.

7Sharing risks is uncommon in practice, reflecting the fixed costs of evaluating risks and selling
policies, as well as the agency problems between insurers when handling split insurance claims.
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expected utility, U , is finite, U = Eui(−L̃i) > −∞ for all i.

We will make extensive use of the certainty equivalent as the measure of the size of a

risk. For a specific utility function, u, the certainty equivalent of risk L̃, CEu(−L̃) ∈ R−

is defined such that u(CEu(−L̃)) = E[u(−L̃)].

To summarize, the following assumptions are made about insurees and risks:

1. Idiosyncratic risks: The insurance risks are idiosyncratic.

2. Limited liability : Insurers have limited liability.

3. Costly capital : There is a cost for insurers to hold capital.

4. Competitive insurance markets : Prices for insurance are set competitively.

5. Risk-averse insurees: Insurees are risk averse.

6. Nondivisibility : Risks are nondivisible.

3 Industry structure

We now turn to our main objectives, namely to study how the industry structure—

monoline versus multiline—and the related capital allocations are determined. To

analyze these questions given a fixed level of capital and prices, although quite straight-

forward, may give misleading results because the capital held and the structure chosen

are determined simultaneously. For example, an insurance company choosing to be

massively multiline may choose to hold a lower level of capital than the total capital

of a set of monoline firms insuring the same risks. A similar point for corporations

with tax shields is made in Leland (2007), when analyzing the financial synergies of

a merger between two firms, although the driving forces behind the results in Leland

(2007) are, of course, different.

The differing risk structures between monoline and multiline insurers will also have

implications for the pattern of cash flow payments received by the insurees. In a
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competitive market we would expect differences in payments, due to the risk structure,

to have pricing implications, since insurees will value each cash flow pattern differently.

Therefore, before answering the questions of industry structure, we study how total

capital, A, and price, P , are endogenously determined in a competitive market.

In section 3.1, we start by analyzing these questions for competitive monoline in-

surers with costly internal capital, δ > 0. In section 3.2 we focus on the concept of

risk rankings when insurance is present (question 1 in the introduction). Then in sec-

tions 3.3 and 3.4, we extend the analysis of section 3.1 to the multiline setting, which

allows us to analyze the capital choice (question 2) and industry structure (question 3).

3.1 Capital and price in the monoline case

We analyze what price will be charged for insurance, as a function of the level of capital,

by an insurance company offering insurance in a single insurance line in a competitive

market. We then use the pricing analysis to understand what level of capital will be

chosen for such an insurance company.

For simplicity, in this section we assume that the loss, L̃, is absolutely continuous,

with a strictly positive probability density function (p.d.f.) on the whole of R+. We de-

fine the default option’s “Eta”, η(A) = ∂E[Q̃(A)]
∂A

. Since L̃ has an absolutely continuous,

strictly positive, distribution, η(A) is a continuous strictly negative function on (0,∞)

regardless of the distribution of L̃ (Ingersoll 1987). We study the price of insurance, P

as a function of capital, A. It is straightforward to show that

Lemma 1 If L̃ has an absolutely continuous distribution, with support on the whole

of R+, then the price of insurance as a function of capital, A, satisfies the following

conditions

1. P (0) = 0,

2. P ′(A) = δ − η(A) > 0,
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3. P (A) = μL + δA + o(1), for large A,

4. P ′′(A) < 0.

Here, for a general function, f(A) = o(1) means that limA→∞ f(A) = 0. Thus, regard-

less of the distribution of L̃, P (A) will be a strictly increasing, strictly concave function

with known asymptotics, as shown in Figure 2.

A

P(A)

μL+δA

Figure 2: Insurance premium, PL as a function of capital, A, for an arbitrary absolutely
continuous risk, L̃, with support on (0,∞). The line μL + δA is the price of insurance
without default (i.e with unlimited liability). The curve P (A) is the premium net of default
costs. The distance between the two lines is thus the value of the option to default.

The conditions in Lemma 1 are natural. The first condition states that if the insurer

does not put aside any capital, it may charge no premium (anything else would be an

arbitrage opportunity). The second condition shows that for a small increase in capital,

A the premium, P , increases via two effects: the cost of internal capital, δA, increases,

and the value of the default option decreases (η < 0). The third condition shows

that as A becomes large, the premium approaches the sum of the friction free price

of insurance with unlimited liability, PL = μL, (since the option value of defaulting

disappears) and the cost of holding internal capital. The second term becomes large,

since it is proportional to capital. The fourth condition, which follows as a direct
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consequence of the convexity of an option’s value as a function of strike price (see

Ingersoll 1987), states that P is concave.

The optimal (A, P ) pair will depend on the preferences of the insuree. We therefore

turn to the insuree’s problem. The price the insuree has to pay, from (1), is

P (A) = μL − μQ + δA.

Given the competitiveness in the insurance market, the insurer will choose capital, A

that maximizes the expected utility of the insuree, i.e., since the total payoff to the

insuree is −P (A) − L̃ + (L̃ − Q̃(A)) = −P (A) − Q̃(A),

A∗ = arg max
0≤A<∞

Eu[−P (A) − Q̃(A)]. (4)

If an insurer were to select a value for capital, A other than A∗, this would allow a

competitor to outcompete the insurer by offering a contract with a preferable level of

capital, A∗.

In general, A∗ may be a set, i.e., there can be multiple solutions to (4). If δ = 0,

it is easy to show that the company will reserve an arbitrary large amount of capital.

Formally, the solution is A∗ = {∞} and the price is P = μL. We call this the friction-

free outcome, since the insurer never defaults and all risk is transferred from the insuree

to the insurer in an optimal manner. In this case the expected utility of the insuree

is U = u(−μL) and the certainty equivalent of his decrease in utility is the same as if

he were risk-neutral, CEu(L̃) = −μL, since μL is exactly the premium he pays for full

insurance.

When capital is costly, δ > 0, it is not possible to obtain the friction-free outcome.

We assume that the cost of holding capital is small compared with expected losses.

Specifically, we assume that

Condition 1 CEu(−P (A) − Q̃(A)) < −μL(1 + δ) for all A ∈ [0, μL].
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This condition implies that each risk is potentially insurable in that if an insurer could

guarantee default-free insurance against a risk by holding capital just equal to the

expected loss and by setting a premium equal to the expected loss plus the cost of

holding the internal capital, the insuree would purchase such insurance. No other

policy could be as attractive to the insuree. Generally, an insurer holding capital just

equal to the expected loss would face a risk of default, and in practice insurers would

hold a higher level of capital and there would still be a risk of default. Thus, given

costly capital, the best possible risk-free outcome is for the insuree to reach a certainty

equivalent of −μL(1 + δ). We therefore call an outcome in which an insuree obtains

CEu = −μL(1 + δ) the ideal risk-free outcome with costly internal capital.

It is easy to show that the set of solutions to (4) is compact and nonempty. However,

it may be that 0 ∈ A∗, i.e., that it is optimal not to be insured. In fact, for insurees

that are close to risk neutral, we would expect insurance to be suboptimal, since the

costs of internal capital would always be greater than the gain from the reduced risk.

We wish to understand in which situations there is a potential for insurance to exist,

i.e., when there exists a utility function such that 0 /∈ A∗. We have

Proposition 1

For a risk L̃ and cost of holding internal capital, δ > 0, there exists a strictly

concave utility function, u, such that 0 /∈ A∗ for an insuree with utility function u, if

and only if there is a level of capital, A, such that the price, P , defined in (1), satisfies

P < A.

The “only if”-part of the proposition is immediate, since if it does not hold it would be

less expensive for the insuree to hold the capital than to buy the insurance. Clearly, we

would only expect such “self insurance” to be optimal when δ is large. The “if”-part

is proved in the appendix.

There are several other observations that are straightforward to show. First, if L̃

has an absolutely continuous distribution in a neighborhood of 0, then the optimization
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in (4) satisfies ∂Eu[−P (A)− Q̃(A)]/∂A < 0 at A = 0, i.e., insurees are always strictly

worse off buying a small amount of insurance than buying no insurance at all. Second,

if L̃ has a bounded range, with upper bound L, and L̃ has an absolutely continuous

distribution function in a neighborhood of L, then ∂Eu[−P (A) − Q̃(A)]/∂A < 0 at

A = L, i.e., insurees are always strictly worse off buying full insurance compared with

buying slightly less than full insurance. These results are similar to the classical results

in the insurance literature on optimal insurance contracts having deductibles. Third,

if the p.d.f. of L̃ vanishes on an interval [a, b], then Eu[−P (A) − Q̃(A)] is a strictly

concave function of A for A ∈ [a, b].

Thus, in the simplest case of a risk that has a scaled Bernoulli distribution, i.e., that

takes on value Z > 0 with probability p and 0 with probability 1 − p, L̃ ∈ Be(Z, p),

the optimization problem (4) is concave, which allows for a complete characterization

of the solution. We have

Proposition 2 Let L̃ ∼ Be(Z, p) and L̃′ ∼ Be(Z ′, p), Z ′ > Z. Further, let A∗ and

A∗′ be the optimal internal capital for the risks L̃ and L̃′, respectively. Then

1. The optimal internal capital is unique, and satisfies A∗ ∈ [0, Z).

2. If A∗′ = 0 then A∗ = 0.

3. If A∗ > 0 then A∗′ > A∗.

4. For an insuree with decreasing absolute risk aversion (DARA), PQ(A∗) < PQ(A∗′).

5. For an insuree with increasing absolute risk aversion (IARA), PQ(A∗) > PQ(A∗′).

In case of general risks, none of 1-5 in proposition 2 need to hold, the technical reason

being that the optimization problem may no longer be concave. This is true, even for

the only slightly more complicated case, in which L̃ has a three point distribution.
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3.2 Ranking of risks when insurance markets are present

Our first objective is to understand, given that the insurance market is present, whether

it is possible to rank risks, in the sense that any risk averse insuree agrees which

risk is the worst of two risks. Of course, without an insurance market, stochastic

dominance arguments can be used: Given two risks, with payoff −L̃1 and −L̃2, with

μL1 = μL2 = μL, Eu(−L̃1) ≥ Eu(−L̃2) for all utility functions, if and only if −L̃1

second order stochastically dominates −L̃2,

−L̃1 � −L̃2. (5)

If F1 and F2 are the c.d.f.’s of −L̃1 and −L̃2 respectively (with range in R−), it was

shown in Rothschild and Stiglitz (1970) that −L̃1 � −L̃2 is equivalent to the integration

condition:

∫ t

−∞
F1(x)dx ≤

∫ t

−∞
F2(x)dx,

for all t < 0.

Is there a similar ranking when the insurance market is present? To analyze this

question, we define Q̃1 and Q̃2 as the option payoffs from default, for risk 1 and 2

respectively. In what follows, we restrict our attention to cases in which it is optimal

for an insurer to buy insurance against risk L̃2 and the optimal internal capital is

greater than the expected loss, i.e., A∗ > μL. This is obviously a situation that we

expect to have in a standard insurance setting.

We use (1) to get

U = Eu
[
−P − Q̃

]
= Eu

[
−μL − δA + (μQ − Q̃)

]
(6)

For a given A, (6) implies that regardless of utility function, an investor will be
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better off facing risk L̃1, than L̃2 if, for all A > μL,

−(Q̃1 − μQ1) � −(Q̃2 − μQ2). (7)

Clearly, (7) is not the same as (5), so second order stochastic dominance does not

immediately allow us to rank the risks in the presence of an insurance market. A

stronger condition, however, is sufficient for such a ranking, as shown in the following

Proposition 3 Given a insuree with a strictly concave utility function, in the presence

of an insurance market. Consider two risks, L̃1 and L̃2, with the same expected losses,

μL1 = μL2 = μL, such that the optimal capital for L̃2 satisfies A ∈ A∗
2, A > μL. Then,

if for all t < −μL, ∫ t

−∞
F1(x)dx ≤

∫ t−μL

−∞
F2(x)dx, (8)

the insuree is (weakly) better off facing risk L̃1 than risk L̃2.

The following example shows the differences between what is required for second

order stochastic dominance and the stronger condition that is needed for one insurable

risk to dominate another.

Example: Consider the risks L̃β, β ≥ 1, where the c.d.f. of −L̃β is Fβ(x) =

eβ(x+1)−1, x < 1/β−1 that are shifted, reflected, exponential distributions (the restric-

tion β ≥ 1 can be extended to β > 0 if L̃ is allowed to take on negative values). It

is clear that μL = E[L̃β] = 1 and, furthermore, it is easy to check that for β1 > β2,

Fβ1(x)−Fβ2(x− 1) < 0 for x < −β2/(β1 −β2), and Fβ1(x)−Fβ2(x− 1) ≥ 0 otherwise.

Therefore
∫ t

−∞(Fβ1(x) − Fβ2(x− 1))dx realizes a maximal value at t = 1/β − 1, and it

is straightforward to check that

β1 ≥ β2e
β2

is a necessary and sufficient condition for the conditions in Proposition 3 to be satisfied.

This is obviously a stronger condition than β1 ≥ β2, which is what is needed for second

order stochastic dominance of the uninsurable risks, −L̃1 � −L̃2.
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3.3 The monoline versus multiline business choices

We now have almost all of the machinery to understand industry structure and capital

choice, but we still need to extend the notion of a competitive market to a multiline

setting.

We have already used the assumption of competitive markets to understand the

pricing and optimal capital level in the monoline case. Specifically, equation (4) deter-

mined the level of capital held by competitive monoline insurers as the amount that

maximizes insuree utility. In the multiline case, however, the analysis is more complex,

since there are multiple possible industry structures, S, and for each multiline structure

a trade-off in utility levels must be evaluated for the participating insurees.

To impose additional restrictions, we first note that for N risks, L̃1, . . . , L̃N , and

a general industry structure, S = (X ,A), when the ex post sharing rule is used, the

residual risk for an insuree, i ∈ Xj, is

K̃i(S) =
L̃i∑

i′∈Xj
L̃i′

min

⎛
⎝Ai −

∑
i′∈Xj

L̃i′ , 0

⎞
⎠ . (9)

His expected utility is therefore Eui(−Pi(S) + K̃i(S)).

For N agents with utility functions, ui, 1 ≤ i ≤ N , each agent wishing to insure

risk L̃i, an industry structure, S ′, Pareto dominates another industry structure, S, if

E[ui(−Pi(S)+K̃i(S))] ≤ E[ui(−Pi(S ′)+K̃i(S ′))] for all i and E[ui(−Pi(S)+K̃i(S))] <

E[ui(−Pi(S)+ K̃i(S ′))] for at least one i. We also say that S ′ is a Pareto improvement

of S. An industry structure, S, for which there is no Pareto improvement is said to be

Pareto efficient. An industry structure, (X ,A), is said to be constrained Pareto efficient

(given X ), if there is no A′ such that (X ,A′) is a Pareto improvement of (X ,A). An

industry partition X is said to be Pareto efficient, if there is a capital allocation, A, such

that (X ,A) is Pareto efficient. In a Pareto dominated industry structure, we would

expect insurers to enter the market with improved offerings, thereby outcompeting

existing insurers. Such an outcome can therefore not be an equilibrium.
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In fact, we impose a somewhat stronger requirement, restricting our attention to

only those multiline outcomes for which a monoline entrant cannot increase the ex-

pected utility for any of the participating insurees (whether or not this makes some

other agents worse off).

Definition 1

• An industry structure, S, is said to be robust to monoline blocking, if there is no

insuree, i ∈ {1, . . . , N} such that E[ui(−Pi(S)+K̃i(S))] < E[ui(−P (A)−Q̃(A))]

for some A ≥ 0, where P (A) is the price of monoline insurance with internal

capital A, and Q̃(A) is the payout of the default option of such an insurance.

• The set of Pareto efficient industry structures robust to monoline blocking is

denoted by O.

• If, (X ,A) ∈ O, for some A, we write X ∈ O.

The concept of robustness to monoline blocking has similarities to the core con-

cept used in coalition games (see, e.g., Osborne and Rubinstein (1984)), although, in

general, O is neither a subset, nor a superset of the core. In our model, monoline

structures may dominate multilines, leading to non-cohesiveness, which means that

the core may contain Pareto-dominated outcomes. Therefore, there may be outcomes

in the core that are not in O. On the other hand, elements in the core are robust to

blocking/competition by any type of insurance company (monoline or multiline) which

is a stricter requirement than the monoline blocking condition for O, and moreover, O
may contain other structures than the partition into one massively multiline business,

so O may contain elements that are not in the core. In the case of cohesive games,

the core is a subset of O, since any element in the core will be Pareto efficient. If,

in addition, there are only two insurance lines, the core is the same as O, since only

monoline blocking is possible in this case. It is easy to show that O is always nonempty,
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as opposed to the core. We are interested in O, since we believe that it may be easier

for a competitor to compete for customers within one line of business than in multiple

lines simultaneously.

What can we say about industry structure when there are many risks available?

Intuitively, when capital is costly and there are many risks available, we would expect

an insurer to be able to diversify by pooling many risks and, through the law of large

numbers, choose an efficient A∗ per unit of risk. Therefore, the multiline structure

should be more efficient than the monoline structure.8 The argument is very general,

as long as there are enough risks to pool, and these risks are not too dependent. For

example, in our model, under general conditions, the multiline business can reach an

outcome arbitrary close to the ideal risk-free outcome with costly internal capital. We

have:

Proposition 4 Consider a sequence of insurees, i = 1, 2, . . ., with expected utility func-

tions, ui ≡ u, holding independent risks L̃i. Suppose that u′′ is bounded by a polynomial

of degree q, EL̃p
i ≤ C for p = 2 + q + ε and some C, ε > 0, and E(L̃i) ≥ C ′, for some

C ′ > 0. Then, regardless of the cost of internal capital, 0 < δ < 1, as the number of

risks in the economy, N , grows, a fully multiline industry, XMULTI = {{1, . . . , N}}
with capital A =

∑N
i=1 μLi

, reaches an outcome that converges to the ideal risk-free

outcome with costly internal capital, i.e.,

min
1≤i≤N

CEu(−Pi((XMULTI , A)) + K̃i((XMULTI , A))) = −μLi(1 + δ) + o(1).

Proposition 4 can be generalized in several directions, e.g., to allow for dependence.

As follows from the proof of the proposition, it also holds for all (possibly depen-

dent) risks L̃i with E|L̃i|p < C that satisfy the Rosenthal inequality (see Rosenthal

(1970)). The Rosenthal inequality and its analogues are satisfied for many classes of de-

8This type of diversification argument is, for example, underlying the analysis and results in both
Jaffee (2006) and Lakdawalla and Zanjani (2006).
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pendent random variables, including martingale-difference sequences (see Burkholder

(1973) and de la Peña, Ibragimov, and Sharakhmetov (2003) and references therein),

many weakly dependent models, including mixing processes (see the review in Nze and

Doukhan (2004)), and negatively associated random variables (see Shao (2000) and

Nze and Doukhan (2004)).

Using the Phillips-Solo device (see Phillips and Solo (1992)) in a similar fashion

of the proof of Lemma 12.12 in Ibragimov and Phillips (2004), one can show that

Proposition 4 also holds for correlated linear processes L̃i =
∑∞

j=0 cjεi−j , where (εt)

is a sequence of i.i.d. random variables with zero mean and finite variance and cj

is a sequence of coefficients that satisfy general summability assumptions. Several

works have focused on the analysis of limit theorems for sums of random variables

that satisfy dependence assumptions that imply Rosenthal-type inequalities or similar

bounds (see Serfling (1970), Móricz, Serfling, and Stout (1982) and references therein).

Using general Burkholder-Rosenthal-type inequalities for nonlinear functions of sums of

(possibly dependent) random variables (see de la Peña, Ibragimov, and Sharakhmetov

(2003) and references therein), one can also obtain extensions of Proposition 4 to the

case of losses that satisfy nonlinear moment assumptions.

Proposition 4 shows that, with enough risks, a solution can be obtained arbitrarily

close to the ideal risk-free outcome with costly internal capital. Proposition 5 below

shows the opposite, that with too few risks it is not possible to get arbitrarily close to

the ideal risk-free outcome with costly internal capital:

Proposition 5 Consider a sequence of insurees, i = 1, 2, . . .. If, in additions to the

assumptions of proposition 4, the risks are uniformly bounded: L̃i ≤ C0 < ∞ (a.s.)

for all i, and V ar(L̃i) ≥ C1, for some C1 > 0, for all i, then for every ε > 0, there

is an n such that limε↘0 n(ε) = ∞ and such that, as N grows, any partition with
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Aj =
∑

i∈Xj
μLi

for all j and

min
1≤i≤N

CEu(−Pi((X ,A)) + K̃i((X ,A))) ≥ μLi
(1 + δi) − ε, (10)

must have |X| ≥ n for all X ∈ X , i.e., any X ∈ X must contain at least n elements.

The condition of uniformly bounded risks in Proposition 5 can be relaxed. If the

utility function, u, has deceasing absolute risk aversion, then the proposition holds if

the expectations of the risks are uniformly bounded (E[L̃i] < C) for all i.

The previous results show that it is possible to get close to the ideal risk-free out-

come with costly internal capital, but only with massively multiline industry structures.

The results indicate that such massively multiline industry structures provide diver-

sification benefits for the insurees. However, since capital is costly, it may be that

the insurees may not wish to reach the the ideal risk-free outcome with costly inter-

nal capital. They may be better off if a lower level of capital is chosen, facing some

risk, but avoiding some cost of internal capital. Proposition 6 uses Pareto dominance

arguments to show that, under additional assumptions about the risks, massively mul-

tiline industry structures Pareto dominate purely monoline outcomes, and that every

industry structures with more than a few monoline insurers is Pareto dominated.

We need a precise definition of what it means for an industry to be massively

multiline: An industry partition is said to be massively multiline if, as the number of

lines in the industry, N , grows, the average number of lines per insurer grows without

bounds, i.e., limN→∞ N/M(X ) = ∞. Here, M(X ), defined in section 2.2, is the number

of insurers in the economy. We let XMASS (or XMASS
N , if we want to stress the number

of risks) represent a massively multiline industry partition.

For some of the results, we need conditions on the behavior of the risks. Specifically,

the following condition ensures that they are not too “asymmetric.” We impose the

following conditions
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Condition 2 There are positive, functions, g : R+ → R+, and h : R+ → R+ such

that, g is strictly decreasing, h is nonincreasing, limx→∞ h(x) = 1, and for all i,

Fi(x) ∈ [g(h(x)x), g(x)].

Here, Fi(x)
def
= P(Li ≥ x).

We also need the risks to be insurable in the sense that the cost of capital is not too

high and/or the insurees are too close to risk-neutral to wish to insure the risks. We

could assume that the outcome in which no insurance is offered is not Pareto optimal,

but we need a stronger condition

Condition 3 There is an ε > 0, such that, for each risk, i, the optimal capital for a

monoline insurer is greater than ε, i.e., a > ε, ∀a ∈ A∗, for all i.

Both conditions ensure, in different ways, that the risks do not become degenerate

for large i. Obviously, if the risks are i.i.d., g = F1 and h(x) ≡ 1 can be chosen in

condition 2.

We now have

Proposition 6 Under the conditions of proposition 4, if the risks, L̃i, have absolutely

continuous distributions with strictly positive p.d.f.’s on R+. Then, for large N ,

1. If conditions 2 and 3 are satisfied, there is a massively multiline industry parti-

tion, XMASS, that Pareto dominates the monoline industry partition, XMONO,

i.e., XMONO /∈ O.

2. If conditions 2 and 3 are satisfied, there is a constant, C < ∞, such that any

Pareto efficient industry partition has at most C monoline insurers, regardless of

N , i.e., any X ∈ O has at most C monoline insurers.
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3. If the risks are i.i.d. and if condition 3 is satisfied, the fully multiline industry

partition, XMULTI, Pareto dominates the monoline industry partition, XMONO.

4. If condition 1 is satisfied, the fully multiline industry partition, XMULTI with

capital A =
∑

i μLi
Pareto dominates the monoline industry partition, XMONO.

All these results are for economies in which many lines are present, with independent

risks that are not too asymmetric. The first result shows that there are massively

multiline industry structures that dominate monoline structures. The second result

shows that a monoline structure be optimal only for very few lines, in a large economy.

The third result shows that if the risks are identically distributed, then a market with

one fully multiline insurer dominates the monoline outcome, and the fourth results

show assumptions under which a firm with almost no risk dominates the monoline

structure.

The difference between the first and third result in proposition 6 is important. If

the risks are identically distributed, then the agents, having the same utility functions,

will all agree upon the optimal level of internal capital, A∗. They may therefore agree

to insure in one fully multiline company. If, on the other hand, the risks have different

distributions (or equivalently, if the utility functions are different), then the insurees

will typically disagree about what is the optimal level of internal capital. Recall that

increasing capital has two offsetting effects. It decreases the risk of insurer default and

thereby increases the expected utility of the insurees, but it also increases the total

cost of internal capital, and thereby decreases the expected utility. For severe risks, as

shown in a special case in section 3.1, it may be argued that a higher degree of internal

capital will be optimal than for less severe risks. With different types of risks, it may

therefore be optimal to have several massively multiline insurance firms that all choose

different levels of internal capital, instead of one fully multiline company.

These asymptotic results together suggest that when there is a large number of

essentially independent risks that are thin-tailed, a monoline insurance structure is
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never optimal and that massively multiline industry structures may instead occur. For

standard risks — like auto and life insurance — it can be argued that these conditions

are reasonable. However, the results also provide an indication of when a multiline

structure may not be optimal:

Implication 1 A multiline industry structure may be suboptimal

• If the number of risks is limited.

• If risks are asymmetric, for example, when some risks are heavy-tailed and others

are not.

• If risks are dependent.

Catastrophe risks, in particular, appear to satisfy all these conditions under which

a multiline structure may be suboptimal. Consider, for example, residential insurance

against earthquake risk in California.9 The outcome for different households within this

area will obviously be heavily dependent when an earthquake occurs, making the pool

of risks essentially behave as one large risk, without diversification benefits. Moreover,

many other catastrophic risks are known to have heavy tails. This further reduces

the diversification benefits, even when risks are independent. Thus, even though an

earthquake in California and a hurricane in Florida may be considered independent

events, the gains from diversification of such risks may be limited due to their heavy-

tailedness.

We now provide an example in which monoline insurance is more likely to dominate

when the conditions of Implication 1 holds. Specifically, we show that asymmetry

between risks and dependence of risks can lead to the monoline outcome being optimal.

9See, e.g., Ibragimov, Jaffee, and Walden (2008a).
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3.4 One versus two lines - An example

We focus on the special and simplified case with two insurance lines and compare the

two industry structures: XMONO = {{1}, {2}} (monoline) versus XMULTI = {{1, 2}}
(multiline).

In the first partition, we know how A1 = (A1, A2)
T should be chosen from our

previous analysis, leading to industry structure SMONO = (XMONO,A1). In the second

partition, there is a whole range of capital, A ∈ [A, A], leading to competitive outcomes,

SMULTI = (XMULTI , A).

The condition for the multiline structure to be optimal is now that there is an A ∈
[A, A], such that SMULTI offers an improvement for both agents, i.e., Eu[−Pi(SMONO)+

K̃i(SMONO)] ≤ Eu[−Pi(SMULTI) + K̃i(SMULTI)], i = 1, 2. We study the conditions

under which this is satisfied.

For simplicity, we assume that insurees have expected utility functions defined by

u(x) = −(−x + t)β, β > 1, x < 0, and that L̃1 and L̃2 have Bernoulli distributions:

P(L̃1 = 1) = p, P(L̃2 = 1) = q, corr(L̃1, L̃2) = ρ. Depending on 0 < p < 1 and

0 < q < 1, there are restrictions on the correlation, ρ. For example, ρ can only be

equal to 1 if p = q.

We study the case β = 7, t = 1, δ = 0.2 and p = 0.25. We first choose q = 0.65 and

compare the monoline outcome with the multiline outcome for ρ ∈ {0.1, 0.2, 0.3, 0.4},
as shown in Figure 3. The solid vertical and horizontal lines show optimal expected

utility for insuree 1 and 2 respectively when the industry is structured as two monoline

firms (with optimal capital levels A1 = −12.06 and A2 = −933.7).

For the case of negative and zero correlation, the situation can be improved for both

insuree classes by moving to a multiline (i.e., duo-line) solution, reaching an outcome

somewhere on the efficiency frontier of the multiline utility possibility curve. For the

case of ρ = 0.1, insuree class 1 will not participate in the multiline solution, and the

monoline outcome will therefore prevail.

In Figure 4 we plot the regions in which the monoline and multiline solutions will
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Figure 3: The solid vertical and horizontal lines show optimal expected utility for insuree
1 and 2 respectively when the industry is structured as two monoline firms (with optimal
capital levels A1 = −12.06 and A2 = −933.7). The curved lines show the utility combinations
for a multiline insurer, based on 4 different correlations between risks 1 and 2. The monoline
outcome dominates when ρ = 0.4, because the multiline structure is suboptimal for insuree
2. For ρ = 0.3, ρ = 0.2 and ρ = 0.1, the multiline structure dominates since it is possible
to improve expected utility for insuree 2, as well as for insuree 1. Parameters: p = 0.25,
q = 0.65, δ = 0.2, β = 7.
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Figure 4: Regions of q and ρ, in which monoline and multiline structure is optimal. All else
equal: Increasing ρ (correlation), given q makes monoline structure more likely. Increasing
asymmetry of risks (q − p) also makes monoline structure more likely. Correlations can not
be arbitrary for the two (Bernoulli) risks, so there are combinations of q and ρ that are not
feasible. Parameters: p = 0.1, δ = 0.01, β = 1.2.

occur respectively, as a function of q and ρ. We use the parameter values p = 0.1,

β = 1.2, δ = 0.01 and t = 1. In line with our previous discussion and summarized in

Implication 1, the Figure shows that, all else equal, increasing the correlation decreases

the prospects for a multiline solution. Also, increasing the asymmetry (q − p) between

risks decreases the prospects for a multiline outcome.

Thus, in line with Implication 1, we find that multiline insurers choose lines in

which

• Losses are uncorrelated/have low correlation.

• Loss distributions are similar/not too asymmetric.
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4 Concluding remarks

This paper develops a model of the insurance market under the assumptions of costly

capital, limited liability and perfect competition. The premium setting and capital

allocations build on the no-arbitrage, option-based, technique, first introduced for a

multiline insurer by Phillips, Cummins, and Allen (1998) and Myers and Read (2001),

and further developed in Ibragimov, Jaffee, and Walden (2008b). These results apply

for any given monoline or multiline industry structure.

The unique contribution of this paper is that it develops a framework to determine

the optimal industry structure in terms of which insurance lines are provided by mono-

line versus multiline insurers. We employ an equilibrium concept based on a criterion

of Pareto efficiency within a competitive industry. Pareto dominated structures are

eliminated by new entrants that offer a preferred structure. A resulting equilibrium is

robust to the entry of any new monoline provider. Capital levels and premiums are set

optimally for the given equilibrium industry structure.

We derive two important properties for any such equilibrium. First, we show that

the multiline structure dominates when the benefits of diversification are achieved

because the underlying lines are numerous and uncorrelated. Second, we show that

the monoline structure may be the efficient form when the risks are difficult to diversify

because they are limited in number and heavy tailed, as is characteristic of the various

catastrophe lines. The intuition for this result is that a multiline insurer with a portfolio

of diversifiable risks will accept a catastrophe line only if that line contributes enough

capital to leave the insurers expected default rate unchanged. With very heavy tails,

the required capital contribution is very large, and it becomes in the best interest of

the catastrophe line insurees to join a monoline insurer which holds less capital, albeit

with a higher default risk.

Our results are also consistent with the observed structure of the insurance industry

by lines. Consumer lines such as homeowners and auto insurance are dominated by
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multiline insurers, while the catastrophe lines of bond and mortgage default insurance

are available only on a monoline basis. Furthermore, it is a feature of our model that

the default probability for a monoline bond or mortgage default insurer would likely

be higher than it is for a multiline firm offering coverage only on highly diversifiable

lines.
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Appendix

Proof of Lemma 1: 1 and 2 follow immediately from the definition of P in (1). 3 is an immediate
consequence of (1), and that E[Q̃(A)] = o(1) for large A, which follows from E[L̃] being finite. 4
follows from 2 and that η′ > 0 for general distributions (see Ingersoll (1987)).

Proof of Proposition 1
We first prove the “only if”-part. Assume that for all A > 0, P (A) ≥ A. Let x− denote min(x, 0).

For a given A, expected utility is Eu(−P (A) + (A − L̃)−) ≤ Eu(−P (A) + A − L̃) ≤ Eu(−L̃) =
Eu(−P (0) + (0 − L̃)−), so 0 ∈ A∗.

For the “if”-part: Assume that there is an A such that P (A) < A. Obviously, A > 0, since
P (0) = 0 = A. Now, define the “utility function” uq(x) = (x + q)−. This function is concave, but
only weakly so, and not twice continuously differentiable, so it is outside the class of utility functions
we are studying. However, it is easy to “regularize” uq and get an infinitely differentiable strictly
increasing and concave function that is arbitrarily close to uq in any reasonable topology. We can do
this by using the Gaussian test function, φ(x) = 1

2
√

2π
e−x2/2 and define φε(x) = φ(x/ε)/ε. Finally, we

define uq,ε(x) = uq ∗ φε =
∫ ∞
−∞ uq(y)φε(x − y) dy. Clearly, as ε ↘ 0, uq,ε converges to uq. Moreover,

uq,ε is infinitely differentiable and since u
(n)
q,ε = (uq ∗ φε)(n) = u

(n)
q ∗ φε, where u

(n)
q,ε denotes the nth

derivative of uq,ε, it is easy to check that u′
q,ε > 0 and u′′

q,ε < 0 for all q and ε, so uq,ε belongs to our
class of utility functions.

Now, if A > P , then EuP (−P + (A − L̃)−) = E[(A − L̃)−] > E[(P − L̃)−] = EuP (−L̃), so
an insuree with “utility function” uP is strictly better off by choosing insurance. However, since
limε↘0 EuP,ε(−P + (A − L̃)−) = EuP (−P + (A − L̃)−) and limε↘0 EuP,ε(−L̃) = EuP (−L̃), for ε
small enough, the strict inequality also holds for a uP,ε, which belongs to our class of utility functions.
Thus, insurance is optimal for an insuree with such a utility function.

Proof of Proposition 2
1. Clearly, since δ > 0, choosing A = Z always dominates choosing A > Z, as the insurance

payoffs are identical in both states of the world, but the cost of internal capital is higher if A > Z
than if A = Z. Thus, the solution, which is unique, since the objective function is strictly concave,
must lie in [0, Z].

Define q = δ + p. The first order condition from (4) is

(1 − p)qu′ (−qA∗) = p(1 − q)u′ ((1 − q)A∗ − Z) ,

which, when the function bZ(A) def= u′(−qA)
u′((1−q)A−Z) is defined is equivalent to

bZ(A∗) =
p

1 − p
× 1 − q

q
, (11)

where, since q > p, the right hand side is strictly less than 1. Now, since u is strictly concave
and twice continuously differentiable, it follows that bZ(A) is strictly increasing in A, and since
bZ(Z) = 1 > p

1−p × 1−q
q , the maximum must indeed be realized for A∗ < Z. The monotonicity of the

utility function, u, obviously implies that bZ is positive.

2. and 3. Since the r.h.s. of (11) does not depend on Z, and bZ is increasing in A regardless of
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Z, it is sufficient to show that ∂bZ(A)
∂Z < 0. Differentiating bZ with respect to Z leads to

b′Z = −ARA((1 − q)A − Z)bZ ,

where the absolute risk aversion is defined as ARA(x) def= −u′′(x)
u′(x) > 0, so it is indeed the case that

b′Z < 0.

4. and 5. We have PQ(A) = p(Z − A) for A < Z. Therefore, dPQ

dZ = p
(
1 − dA∗

dZ

)
. So, if dA∗

dZ < 1,

then dPQ

dZ > 0.
From the implicit function theorem, it follows that

dA∗

dZ
= −

∂bZ

∂Z
∂bZ

∂A

=
ARA((1 − q)A − Z)bZ

(qARA(−qA) + (1 − q)ARA((1 − q)A − Z))bZ
=

ARA((1 − q)A − Z)
qARA(−qA) + (1 − q)ARA((1 − q)A − Z)

.

Now, since (1 − q)A − Z < −qA, and for an agent with DARA preferences ARA is positive and
decreasing, dA∗

dZ is therefore less than 1, and 4. follows. A similar argument for IARA preferences
leads to 5. We are done.

Proof of Proposition 3: Choose A ∈ A∗
2, such that A > μL2 . The utility of insuring a risk L̃2 is

Eu
[
−μL − δA + (μQ − Q̃)

]
= Eu

[
−μL − δA + (A − L̃)− − E[(A − L̃)−]

]
. Here, we use the notation

x− = min(x, 0). Since E[L̃1] = E[L̃2] = μL, a sufficient condition for risk 1 to be preferred is that
Eu

(
(A − L̃1)− − E[(A − L̃1)−]

)
≥ Eu

(
(A − L̃2)− − E[(A − L̃2)−]

)
, which in turn is implied by

(A − L̃1)− � (A − L̃2)− + z, (12)

where z = E[(A− L̃1)−]−E[(A− L̃2)−], so if g1
def= (A− L̃1)−, and g2

def= (A− L̃2)− +z, so a sufficient
condition is that

g1 � g2. (13)

We wish to apply the integral condition. For t < 0, we have that the c.d.f. of g1 is

G1(t) = F1(t − A), (14)

and for t ≥ 0, G1(t) = 1. The c.d.f. of g2, for t < z is

G2(t) = F2(t − A − z), (15)

and for t ≥ z, G2(t) = 1.
Since, if z ≥ 0, G1(t) ≥ G2(t) when t ≥ 0, and if z < 0, G1(t) ≥ G2(t) when t > z, and moreover,

for a general r.v., X̃, with support on [A, B] and c.d.f. F ,
∫ B

A
F (t)dt = [F (t)t]BA − E[X̃], the integral

condition that ensures (13) is

∫ t

−∞
G1(s)ds ≤

∫ t

−∞
G2(s)ds, t < min(0, z). (16)

33



That is, it is enough to ensure that the integral condition is satisfied for t < min(0, z), instead of on
the whole support of g1 and g2, which is t ≤ max(0, z).

However, (16) can be rewritten as

∫ t

−∞
F1(s)ds ≤

∫ t

−∞
F2(s − z)ds, t < −A + min(0, z), (17)

and since z ≤ μL, a sufficient condition for (16) is

∫ t

−∞
F1(s)ds ≤

∫ t

−∞
F2(s − μL)ds, t < −A,

i.e.,

∫ t

−∞
F1(s)ds ≤

∫ t−μL

−∞
F2(s)ds, t < −A,

and since A ≥ μL, this is implied by the even stronger condition

∫ t

−∞
F1(s)ds ≤

∫ t−μL

−∞
F2(s)ds, t < −μL. (18)

Thus, the insuree prefers risk 1 over 2 at A, when (18) is satisfied, which is the optimal value of
capital for L̃2. Now, it may well be that the insuree can be even better off for another value of capital,
A′, under risk L̃1, e.g., A′ = 0. However, this will just make L̃1 even more preferred compared with
L̃2. We are done.

Proof of Proposition 4: To simplify the notation, in this proof we write Li instead of L̃i, L instead
of L̃, and μi instead of μLi . Moreover, C represents an arbitrary positive, finite constant, i.e., that
does not depend on N . The condition that u is twice continuously differentiable with u′′ bounded by
a polynomial of degree q implies that

|u′′(z)| ≤ C(1 + |z|q), z ≤ 0, (19)

for some constant, C > 0.
Moreover, condition E|Li|p ≤ C, together with Jensen’s inequality implies that E|Li − μi|p ≤ C,

σ2
i ≤ (E|Li−μi|p)2/p ≤ C. Using the Rosenthal inequality for sums of independent mean-zero random

variables, we obtain that, for some constant C > 0,

E|
N∑

i=1

(Li − μi)|p ≤ C max
( N∑

i=1

E|Li − μi|p,
( N∑

i=1

σ2
i

)p/2)
, (20)
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and, thus,

N−pE|
N∑

i=1

(Li − μi)|p ≤ CN−p max
( N∑

i=1

E|Li − μi|p,
( N∑

i=1

σ2
i

)p/2)

≤ CN−p/2 max
(
N−p/2 × CN, N−p/2 × (CN)p/2

)
≤ CN−p/2

→ 0, (21)

as N → ∞, where the second to last inequality follows since p ≥ 2.
Take A =

∑N
i=1 μi. This represents a fully multiline insurer, who chooses internal capital to be

equal to total expected losses. Denote

yi = −Ki(S) = Li max
(
1 − A∑N

i=1 Li

, 0
)

= Li max
(
1 −

∑N
i=1 μi∑N
i=1 Li

, 0
)
.

From (3) and (9), the expected utility of insuree i is then Eu(−μi(1+ δ)+Eyi − yi + δμi(bi − 1)).
Here,

bi
def= E

[
Li

μi
×

∑N
i=1 μi∑N
i=1 Li

× Ṽ

E[Ṽ ]

]
, (22)

and Ṽ =
(∑N

i=1 Li −
∑N

i=1 μLi

)
+

, in line with the definition of the binary default option in section

2.2. Clearly, for large N , bi → 1 uniformly over the i’s, i.e., limN→∞ max1≤i≤N |1 − bi| = 0, so
Eu(−μi(1 + δ) + Eyi − yi + δμi(bi − 1)) → Eu(−μi(1 + δ) + Eyi − yi) uniformly.

Using a Taylor expansion of order one around −μi(1 + δ), and the polynomial bound, (19), for
u′′, we get

u(−μi(1 + δ) + Eyi − yi) = u(−μi(1 + δ)) + u′(−μi(1 + δ))(Eyi − yi) +
u′′(ξ(yi))

2
(yi − Eyi)2,

ξ(yi) ∈ [−μi(1 + δ),−μi(1 + δ) + Eyi − yi], ∀yi.

Therefore,

Eu(−μi(1 + δ) + Eyi − yi) = u(−μi(1 + δ)) +
1
2
E

(
u′′(ξ(yi))(yi − Eyi)2

)
,

so

|Eu(−μi(1 + δ) + Eyi − yi) − u(−μi(1 + δ))| ≤ C×E
(
(1 + |yi|q)(yi − Eyi)2

) ≤ C′×(E|yi|+E|yi|2+q).

If the right hand side is small, then the expected utility is close to u(−μi(1 + δ)). To complete
the proof, it thus suffices to show that

E|yi|2+q → 0 (23)

as N → ∞, where the speed of convergence does not depend on i, i.e., the convergence is uniform
over i.

By Jensen’s inequality, evidently, E|Li|p ≤ C for p = 2 + q + ε with 0 < ε ≤ 2 + q. For such p

and ε, using the obvious bound max
(
1 −

PN
i=1 μiPN
i=1 Li

, 0
)
≤ 1 and Hölder’s inequality, we get, under the
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conditions of the proposition,

E|yi|2+q = E
∣∣∣Li max

(
1 −

∑N
i=1 μi∑N
i=1 Li

, 0
)∣∣∣2+q

≤ E|Li|2+q
(

max
(∑N

i=1(Li − μi)∑N
i=1 Li

, 0
))ε

≤

E|Li|2+q
∣∣∣∑N

i=1(Li − μi)∑N
i=1 Li

∣∣∣ε ≤ (
E|Li|p

) 2+q
p

(
E

∣∣∣∑N
i=1(Li − μi)∑N

i=1 Li

∣∣∣p)ε/p

≤

C
(
E

∣∣∣∑N
i=1(Li − μi)∑N

i=1 μi

∣∣∣p)ε/p

≤ C
(
N−pE

∣∣∣ N∑
i=1

(Li − μi)
∣∣∣p)ε/p

. (24)

From (24) and (21) it follows that (23) indeed holds, and, since the constants do no depend on i,
the convergence is uniform over i.

We now go from expected utility to certainty equivalents. Expected utility is u(−μi(1 + δ))− ε =
u(−μi(1 + δ) − c) = u(−μi(1 + δ)) − cu′(ξ), where ξ ∈ (−μi(1 + δ) − c,−μi(1 + δ)), so c = ε/u′(ξ) ≤
ε/u′(−μi(1 + δ)) ≤ ε/u′(0), and ε → 0 therefore implies that c → 0. The proof is complete.

Proof of Proposition 5:
By Taylor expansion, for all x, y, u(x+y) = u(x)+u′(x)y+u′′(ζ)y2

2 , where ζ is a number between
x and x + y. Since u′′ is bounded away from zero: −u′′ ≥ C > 0, we, therefore, get

u(x + y) ≤ u(x) + u′(x)y − C
y2

2
(25)

for all x, y. Using inequality (25), in the notations of the proof of Proposition 4, we obtain

Eu(−μi(1 + δ) + Eyi − yi) ≤
E

[
u(−μi(1 + δ)) + u′(−μi(1 + δ))(Eyi − yi) − C

(yi − Eyi)2

2

]
=

u(−μi(1 + δ)) − CV ar(yi). (26)

Consequently, if u(−μi(1 + δ)) − Eu(−μi(1 + δ) + Eyi − yi) < ε, then V ar(yi) < ε′ = ε/C. We
therefore wish to show that, for a fixed number of risks, N , V ar(yi) ≥ εN > 0.

We need the following two lemmas:

Lemma 2 For x2 ≥ x1, if X is a random variable, such that P(X ≤ x1) = a and P(X ≥ x2) = b,
then V ar(X) ≥ min(a,b)(x2−x1)

2

4 .

Proof: Define e = x2−x1
2 ≥ 0. Define M = E(X)and assume that M ≥ x1 + e. Moreover, let φ denote

X ’s p.d.f. Then V ar(X) =
∫

(x−M)2φ(x)dx ≥ ∫
x≤x1

(x−M)2φ(x)dx ≥ ∫
x≤x1

(x− x1 − e)2φ(x)dx ≥
e2a = a(x2−x1)

2

4 . A similar argument shows that if M < x1 + e, then V ar(X) ≥ b(x2−x1)
2

4 , and since
either M ≥ x1 + e or M < x1 + e the lemma follows.

Lemma 3 If X is a random variable, such that 0 ≤ X ≤ C < ∞, E(X) = μ and V ar(X) = σ2 > 0,
then there are constants d > 0 and ε > 0, that only depend on C, μ and σ2, such that P(X ≤ μ−ε) ≥ d
and P(X ≥ μ + ε) ≥ d.
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Proof Let φ be X ’s p.d.f. For a small ε > 0, we have

σ2 =
∫ C

0

(x − μ)2φ(x)dx

=
∫
|x−μ|<ε

(x − μ)2φ(x)dx +
∫
|x−μ|≥ε

(x − μ)2φ(x)dx

≤ ε2 + μ

∫
x≤μ−ε

|x − μ|φ(x)dx + (C − μ)
∫

x≥μ+ε

|x − μ|φ(x)dx. (27)

Moreover,
∫
|x−μ|<ε(x − μ)φ(x)dx +

∫
|x−μ|≥ε(x − μ)φ(x)dx = 0, and

∣∣∣∫|x−μ|<ε(x − μ)φ(x)dx
∣∣∣ ≤ ε, so

∫
x≥μ+ε

|x − μ|φ(x)dx + ε ≥
∫

x≤μ−ε

|x − μ|φ(x)dx.

Plugging this into (27) yields

C

∫
x≥μ+ε

|x − μ|φ(x)dx ≥ σ2 − ε2 − με.

However, since
∫

x≥μ+ε |x − μ|φ(x)dx ≤ (C − μ)
∫

x≥μ+ε φ(x)dx = (C − μ)P(X ≥ μ + ε), we arrive at

P(X ≥ μ + ε) ≥ σ2 − ε2 − εμ

C(C − μ)
.

A similar argument implies that

∫
x≤μ−ε

|x − μ|φ(x)dx + ε ≥
∫

x≥μ+ε

|x − μ|φ(x)dx,

which, when plugged into (27) yields

C

∫
x≤μ−ε

|x − μ|φ(x)dx ≥ σ2 − ε2 − ε(C − μ),

and since
∫

x≤μ−ε
|x − μ|φ(x)dx ≤ μ

∫
x≥μ+ε

φ(x)dx = μP(X ≤ μ − ε), we arrive at

P(X ≤ μ − ε) ≥ σ2 − ε2 − ε(C − μ)
Cμ

.

Thus, by defining

d
def= min

(
σ2 − ε2 − εμ

C(C − μ)
,
σ2 − ε2 − ε(C − μ)

Cμ

)
, (28)

the lemma follows.

We note that the condition in proposition 4, that ELi ≥ C′ for some C′ > 0, actually is implied
by the conditions that V ar(Li) > C1 and that Li ≤ C0, by the following lemma
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Lemma 4 If X is a random variable, such that 0 ≤ X ≤ C0 < ∞, then E(X) ≥ V ar(X)
C0

.

Proof: Define e = E(X) and let φ denote X ’s p.d.f. We have V ar(X) =
∫ C

0
x2φ(x)dx − e2 ≤∫ C

0
x2φ(x)dx ≤ C

∫ C

0
xφ(x)dx = C × E[X ].

Now, from the conditions of proposition 5, it follows that the Li’s satisfy the conditions of lemma 3,
and that ε and d can be chosen not to depend on i. Moreover, yi = Li max

(
1 −

P
i μiP
i Li

, 0
)
, so

P(yi ≤ 0) ≥ P(
∑

i Li ≤
∑

i μi) ≥
∏N

i=1 P(Li ≥ μi) ≥
∏N

i=1 P(Li ≥ μi + ε) ≥ dN , where d is defined in
(28).

Similarly, if Li ≥ μi + ε for all i, then yi = Li

(
1 −

P
i μiP
i Li

)
≥ (μi + ε)

(
1 −

P
i μiP

i μi+Nε

)
= (μi + ε)×(

1 − 1
1+ NεP

i μi

)
≥ μi ×

(
1 − (

1 − Nε
NC

))
= μi × ε

C , so P(yi ≥ μiε
C ) ≥ ∏N

i=1 P (Li ≥ μi + ε) ≥ dN .

Now, from lemma 4, μi ≥ σ2

C for all i, so we have P(yi ≥ σ2ε
C2 ) ≥ dN . Therefore, yi satisfies all the

conditions of lemma 2, with x1 = 0, x2 = σ2ε
C2 , a = b = dN , and therefore

V ar(yi) ≥ CN , where CN =
σ4ε2

4C4

(
min

(
σ2 − ε2 − εμ

C(C − μ)
,
σ2 − ε2 − ε(C − μ)

Cμ

))N

> 0.

The constant, CN , depends on N , σ2 and C, but not on the specific distributions of the Li’s, so for a
fixed N ,

Eu(−μi(1 + δ) + Eyi − yi) ≤ u(−μi(1 + δ)) − C × CN . (29)

The argument, so far, has been for Eu(μi(1 + δ) + Eyi − yi), whereas the utility is Eu(μi(1 +
δ) + Eyi − yi + δμi(bi − 1)), where bi is defined in (22). However, since by definition

∑N
i=1 bi = 1

for all N , it is clear that for all N , there must be an i, such that bi − 1 ≤ 0. For such an i,
Eu(μi(1 + δ) + Eyi − yi + δμi(bi − 1)) < Eu(μi(1 + δ) + Eyi − yi), so Eu(μi(1 + δ))−Eu(μi(1 + δ) +
Eyi − yi) > ε ⇒ Eu(μi(1 + δ))−Eu(μi(1 + δ) + Eyi − yi + δμi(bi − 1)) > ε. Thus, the argument also
goes through for the utility of agent.

A similar argument as in the proof of proposition 4, takes us from utilities to certainty equivalents:
u(−μi(1+ δ)− c) = u(−μi(1+ δ))− ε ⇒ c = ε/u′(−ξ), ξ ≤ C0, so c ≥ ε

u′(−C0)
, so if ε is bounded away

from 0, so is c. We are done.

Proof of Proposition 6: We use the same notation as in the proof of proposition 4. We prove the
third result first, since it will help us in proving the other results.

3. For the fully multiline industry structure, with capital A = β
∑

i μi, the utility of agent i is
Eu(−μi(1 + δβ) + Eyi − yi), where

yi = −Ki(S) = Li max
(
1 − A∑N

i=1 Li

, 0
)

= Li max
(
1 − β

∑N
i=1 μi∑N
i=1 Li

, 0
)
. (30)

Here, since we we will use the results for non i.i.d. risks when proving (1.) and (2.), we use the
i-subscript, even though it is not needed in the i.i.d. case, in which μi ≡ μ.

Assume that (XMONO, (A1, A2, A3, . . . , )) is a constrained Pareto efficient industry structure.
Then, SMONO = (XMONO , (A1, A1, A1, . . . , )) is obviously Pareto equivalent, i.e., it provides the
same expected utility for all insurees, i, as (XMONO, (A1, A2, A3, . . . , )) does. Such an industry
structure is characterized by β

def= A/μ. If we show that, regardless of β, for large enough N , and
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some βMULTI , the industry partition, XMULTI , with capital, A, where A = βMULTI ×∑
i μi, Pareto

dominates SMONO, then we are done.
For βMULTI = 1, the argument of proposition 4 implies that Eu(−μi(1+δβMULTI)+Eyi−yi) →

u(−μi(1 + δ)), i.e., the expected utility converges to the ideal risk-free outcome with costly capital,
as N grows, and that the convergence is uniform in i. The utility from insuring with a monoline
insurer with βMONO = 1, on the other hand, is Eu(−μi(1 + δ) + Eyi − yi), where (30) implies
that yi = max(Li − βMONOμi, 0). Now, Eyi − yi is obviously second order stochastically dominated
(SOSD) by 0, so for βMONO = 1, the fully multiline partition with βMULTI = 1, will obviously
dominate the monoline offering. Similarly, the multiline partition with βMULTI = 1 dominates any
monoline offering with βMONO > 1, since there is still residual risk for such a monoline offering and
the total cost of internal capital is higher — effects that both make the insuree worse off.

It is also clear that for large N , βMULTI for any constrained Pareto efficient outcome must lie in
[0, 1 + o(1)], since internal capital is costly, which imposes a linear cost of increasing β, and, by the
law of large numbers, all risk eventually vanishes for βMULTI = 1. Thus, there is always a constrained
Pareto efficient solution in [0, 1 + o(1)], given the fully multiline industry partition.

If we show that, for a given 0 < β < 1, the fully multiline outcome will dominate monoline offerings
with the same β, then we are done, since, regardless of a candidate βMONO, choosing βMULTI =
βMONO will lead to a Pareto improvement (βMONO = 0 is strictly dominated by some βMONO > ε/μ
from condition 3, so we do not need to consider βMONO = 0).

For the fully multiline outcome, it is clear from (30), using an identical argument as in the proof
of proposition 4 that yi converges uniformly in i to (1 − β)Li, and the expected utility of agent i
converges uniformly to

Eu(−μi(1 + δβ) + (1 − β)(μi − Li)). (31)

On the other hand, for the monoline offering, the expected utility is

Eu(−μi(1 + δβ) + Eyi − yi), (32)

where

yi = max(L − βμi, 0) = (1 − β)max
(

μi − μi − L

1 − β
, 0

)
. (33)

We define zi
def= μi − Li ∈ (−∞, μi) and α

def= 1
1−β ∈ (1,∞). Equations (31-33) imply that if

(1 − β)zi � (1 − β) (E [max (μi − αzi, 0)] − max (μi − αzi, 0)) (34)

for all α ∈ (1,∞), where � denotes second order stochastic dominance, then the third part of propo-
sition 6 is proved. However, (34) is equivalent to

zi � E [max (μi − αzi, 0)] − max (μi − αzi, 0) ,

and by defining xi
def= max (μi − αzi, 0), and wi

def= Exi − xi, to

zi � wi.

We define qi(α) def= Exi. From the definitions in section 2: Q̃(A) = max(L − A, 0) and PQ(A) =

E[Q̃(A)], it follows that qi(α) = αPQ

((
1 − 1

α

)
μi

)
. Therefore,

wi = qi(α) − max (μi − αzi, 0) . (35)

To show that zi second order stochastically dominates wi, we use the following lemma, which
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follows immediately from the theory in Rothschild and Stiglitz (1970):

Lemma 5 if z and w are random variables with absolutely continuous distributions, and distribution
functions Fz(·) and Fw(·) respectively, z ∈ (z, z), −∞ ≤ z < z ≤ ∞ (a.s.) and the following conditions
are satisfied:

1. Ez = Ew,

2. Fz(x) < Fw(x) for all z < x < x0, for some x0 > z,

3. Fz(x) = Fw(x) at exactly one point, x∗ ∈ (z, z).

Then z � w, i.e., z strictly SOSD w.

Clearly, Ezi = Ewi = 0, so the first condition of lemma 5 is satisfied. For the second condition,
it follows from (35), that for x < qi(α),

Fwi(x) = P(wi ≤ x) = P(qi(α) − μi + αzi ≤ x)
= P(zi ≤ (x + μi − qi(α))/α)
= Fzi((x + μi − qi(α))/α). (36)

Since α > 1, it is clear that for small enough x, (x+μi− qi(α))/α > x, and therefore Fzi(x) < Fwi(x),
so the second condition is satisfied.

To show that the third condition is satisfied, we need the following lemma

Lemma 6 qi(α) ≥ μi for all α > 1.

Proof : Denote by φ, the probability distribution function (or measure) of Li. Thus, μi =
∫ ∞
0

Lφ(L)dL.
We have, for r > 0:

∫ r

0

Lφ(L)dL ≤ r

∫ r

0

φ(L)dL,

which leads to

μi −
∫ r

0

Lφ(L)dL ≥ μi − r

∫ r

0

φ(L)dL ⇔
∫ ∞

r

Lφ(L)dL ≥ μi − r

∫ r

0

φ(L)dL

⇔
∫ ∞

r

Lφ(L)dL +
∫ r

0

φ(L)dL − r ≥ μi − r

⇔
∫ ∞

r

Lφ(L)dL − r

(
1 −

∫ r

0

φ(L)dL

)
≥ μi − r

⇔
∫ ∞

r

Lφ(L)dL − r

∫ ∞

r

φ(L)dL ≥ μi − r

⇔
∫ ∞

r

(L − r)φ(L)dL ≥ μi − r

⇔ μi

μi − r

∫ ∞

r

(L − r)φ(L)dL ≥ μi

⇔ μi

μi − r

∫ ∞

0

max(L − r, 0)φ(L)dL ≥ μi

⇔ μi

μi − r
E [max(L − r, 0)] ≥ μi.

⇔ μi

μi − r
PQ(r) ≥ μi. (37)

40



Now, for r < μi, define α = μi

μi−r ∈ (1,∞), implying that r =
(
1 − 1

α

)
μi. Then, the last line of (37)

can be rewritten

qi(α) = αPQ

((
1 − 1

α

)
μi

)
≥ μi.

This completes the proof of lemma 6.

Since z ∈ (z, z) = (−∞, μi), and the p.d.f. is strictly positive, Fzi(μi) = 1 and, Fzi(x) < 1 for
x < μi. We also note that for x < qi(α), Fwi(x) < 1 is given by (36), and for x ≥ qi(α), Fwi(x) = 1.
Since z ≤ qi(α) (by lemma 6) the only points at which Fzi(x) = Fwi(x) are therefore points at which
Fzi(x) = Fzi((x + μi − qi(α))/α), i.e., for points at which

x =
x + μi − qi(α)

α
⇒ x =

μi − qi(α)
α − 1

. (38)

Now, since there is a unique solution to (38), the third condition is indeed satisfied. Thus, zi
SOSD wi, so a monoline offering is inferior for any insuree with strictly concave utility function, and
therefore the third part (3.) of proposition 6 holds.

4. Since, from proposition 4, with β = 1 (i.e. with A =
∑

i μi), the fully multiline outcome con-
verges to the ideal risk-free outcome with costly internal capital, and this outcome strictly dominates
any offering that can be provided by a monoline insurer, the fourth part (4.) of proposition 6 follows
immediately.

1. It was shown in the proof of the third part of the proposition (3.) above that when the risks
are i.i.d., a massively multiline industry partition Pareto dominates the monoline one. There are two
complications when extending the proof to nonidentical distributions. The first, main, complication
is that insurees may no longer agree on the optimal level of capital, i.e., they have different βi’s.
Some insurees may face “small” risks and thereby opt for limited capital, to save on costs of internal
capital (a low β), whereas others may wish to have a close to full insurance (a high β). A fully
multiline industry structure has only one β, and it may therefore be optimal to have several insurance
companies, each with a different β. As the number of lines tends to infinity, however, within each
such company the number of lines grows, making the industry structure massively — but not fully —
multiline.

The second complication is technical: Since the risks are no longer i.i.d., and each insuree may
therefore have a different β, most insurees will not be at their optimal β when insuring with a
multiline firm, although they will be close. There is therefore a trade off between the utility loss of
being at a suboptimal β, versus the utility gains of diversification, in the multiline partition. We need
quantitative bounds, as opposed to the qualitative SOSD bounds in the third part of the proposition
above, that show that when N increases, for most insurees the second effect dominates the first. This
will be ensured by condition 2.

If condition 2 fails, even though each insuree may eventually wish to be insured by a multiline
industry, for any fixed N , it could still be that most insurees prefer a monoline solution, e.g., if insurees
i = 1, . . . , N/2 prefer a massively multiline insurer, whereas insurees i = N/2 + 1, . . . , N prefer to
insure with a fully multiline insurance company. In this case, M(S) = N/2+1, so the average number
of lines converges to 2 and the industry structure is thus not massively multiline.

The expected utility of insuree i ∈ Xj, is Eu(−μi(1 + δβ) + Eyi − yi + βδμi(bi − 1)), where

yi = −Ki(S) = Li max
(
1 − A∑

i∈Xj
Li

, 0
)

= Li max
(
1 − β

∑
i∈Xj

μi∑
i∈Xj

Li
, 0

)
, (39)

41



and

bi
def= E

[
Li

μi
×

∑
i∈Xj

μi∑
i∈Xj

Li
× Ṽ

E[Ṽ ]

]
. (40)

A similar argument as in proposition 4 implies that bi → 1 uniformly, so for large |Xj |, we can study
Eu(−μi(1 + δβ) + Eyi − yi) → Eu(−μi(1 + δβ) + (1 − β)(μ − Li)).

The following two lemmas are needed to show the result.

Lemma 7 Under the conditions of proposition 6.1, there is a C > 0, that does not depend on i, such
that for all 0 ≤ β ≤ 1, ∣∣∣∣∂Eu(−μi(1 + δβ) + (1 − β)(μi − Li))

∂β

∣∣∣∣ ≤ C. (41)

Proof Define Z(β) def= Eu(−μi(1 + δβ) + (1 − β)(μi − Li)). It immediately follows that Z is concave,
so max0≤β≤1 |Z ′(β)| is realized at either β = 0 or β = 1. The derivative of Z is

Z ′(β) = E[(−(1 + δ) + Li)u′(−μi(1 + δβ) + (1 − β)(μi − Li))],

so |Z ′(0)| = |E[((−1 − δ) + Li)u′(−Li)]| ≤ C(|E[u′(0) + Liu
′′(−Li)| + |E[Liu

′(0)| + L2
i u

′′(−Li)]| ≤
C(|u′(0)(μi + 1)+ E[(Li + L2

i )u
′′(−Li)]|) ≤ C. Here, the last inequality follows from the assumptions

in proposition 4: Since |u′′(−x)| ≤ c1 + c2x
q and |E[L2

i u
′′(−Li)]| ≤ E[L2

i (c1 + c2L
q
i )] ≤ c1 × E[L2

i ] +
c2 × E[L2+q

i ] ≤ C′.
Thus, |Z ′(0)| is bounded by a constant, and moreover, since a Taylor expansion yields that

|Z ′(1)| ≤ |Z ′(0)| + max0≤β≤1 |Z ′′(β)|, as long as |Z ′′(β)| is bounded in 0 ≤ β ≤ 1 (independently of
i), |Z ′(1)| will also be bounded by a constant. We have

|Z ′′(β)| = |E[(−(1 + δ) + Li)2u′′(−μi(1 + δβ) + (1 − β)(μi − Li))]|
≤ |E[(−(1 + δ) + Li)2u′′(−μi(1 + δ) − Li))|
≤ E[(c1 + c2Li + c3L

2
i )(c4 + c5L

q
i )] ≤ C.

The lemma is proved.

Lemma 7 immediately implies that for β close to the optimal β∗, the utility will be close to
the utility at the optimum, since |Z(β + ε) − Z(β)| ≤ Cε. The second condition, that the utility
provided from the asymptotic fully multiline company is bounded away from the utility provided by
the monoline insurer, for a fixed β, follows from the following lemma.

Lemma 8 If condition 2 is satisfied, then for any ε > 0, there is a constant, C > 0, such that, for
all β ∈ [ε, 1),

Eu(−μi(1 + δβ) + (1 − β)(μi − Li)) − Eu(−μi(1 + δβ) + Eyi − yi) ≥ C. (42)

Here, yi = max(Li−βμi, 0), is the payoff of the option to default for the monoline insurer, with capital
βμi.

Proof: In the notation of the proof of the third result (3.), equation (42) can be rewritten as
Eu(−c + zi(1 − β)) ≥ Eu(−c + wi(1 − β)) + C, where c

def= −μi(1 + δβ), zi
def= (μi − Li) and wi

def=
1

1−β (Eyi−yi). We know from the proof that zi SOSD wi, so Eu(−c+zi(1−β)) > Eu(−c+wi(1−β)),
but we need a bound that is independent of i.

From (36), we know that

Fwi − Fzi = Fzi((x + μi − qi(α))/α) − Fzi(x) (43)
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Here, α = 1
1−β ∈ [ 1ε ,∞). We know from the definition of qi that qi(α) ≤ α × μi. The conditions of

proposition 4, immediately imply that μi ≤ C for some C independent of i, so qi(α) is bounded for
each α, independently of i, by α × C0. If we denote by Fi, the c.d.f of −Li, then, since zi = μi − Li,
it follows that Fzi(x) = Fi(x − μi). The risk faced by the insuree is 1

αzi in the asymptotic multiline
case, and 1

αwi in the monoline case. Therefore, (43) implies that

e(x, α) def= Fi(x + μi − qi(α)) − Fi(αx)

is the difference between the c.d.f.’s of the monoline and fully insured offerings for largely negative
x. Since qi(α) ≤ C0α, e(x, α) ≥ Fi(x − C0α) − Fi(αx). we can choose x negative enough so that
h(−x) < αx−1

x−C0α . Then, for x′ < x, from condition 2, it follows that

e(x′, α) ≥ g(−h(−x′)(x′ − C0α)) − g(−αx′) ≥ g(−αx′ − 1) − g(−αx′).

This bound is independent of i, and since g is continuous and strictly decreasing, for each α it is the
case that on [−x − 1,−x],

Fi(x + μi − qi(α)) − Fi(αx) > εα > 0. (44)

We have, for a general risk, R, with c.d.f. FR, and support on (−∞, r), where R is thin-tailed
enough so expected utility is defined,

Eu[R] =
∫ r

−∞
u(x)dFR = u(r) −

∫ r

−∞
u′(x)FR(x)dx. (45)

Now, since u is strictly concave, u′ is decreasing, but positive, so if, E[R1] = E[R2], FR1 > FR2 + ε, on
[a, b], ε > 0, and if FR1 and FR2 only cross at one point, then Eu[R1]−Eu[R2] =

∫ r

−∞ u′(x)(FR2 (x)−
FR1(x))dx ≥ (infx≤r |u′′(x)|) × ε × b−a

2 .
Therefore, (44), implies that Eu(−c + zi(1 − β)) ≥ Eu(−c + wi(1 − β)) + Cα, and since εα is

continuous in α, we can take the minimum over α ∈ [1, 1/ε], to get a bound that does not depend on
α. The lemma is proved.

We have thus shown that, away from β = 0, the asymptotic fully multiline solution is uniformly
better (in i) than the monoline solution, for each β (lemma 8), and that, as long as a β close to the
optimal β is offered, the decrease in utility for the insuree is small (lemma 7). This, together with the
uniform convergence toward the asymptotic risk as the number of lines covered by an insurer grows,
implies that there is an ε∗ > 0 and a C∗ < ∞, such that any firm with a β within ε∗ distance from
the optimal β for the monoline offering, and with at least C∗ insurees, will make all insurees strictly
better off than the monoline insurer.

Now, since β ∈ [ε, 1] is in a compact interval, as the number of lines grows, most insurees will
be close to many insurees, making massively multiline offerings feasible for the bulk of the insurees.
In fact, defining TN(i, ε) to be the number of insurees, who haev β’s within ε distance from insuree
i, i.e., for which |βi − βj | ≤ ε, in the economy with insurees 1 ≤ i ≤ N , it is the case that ∀ε > 0,
and ∀C < ∞, all but a bounded number of agents belong to {i : TN (i, ε) ≥ C}, due to a standard
compactness argument. If this were not the case, there would be a sequence of insurees, ij , j = 1, . . .,
with β’s not close to other insurees, and since such a sequence must have a limit point, there must be
an agent with more than C neighbors within ε distance, contradicting the original assumption.

Now, it is clear that for agents in {i : TN (i, ε) ≥ C}, as N grows, multiline solutions will be
optimal. Specifically, for ε = ε∗, a sequence of C → ∞ can be chosen, and an N large enough, such
that {i : TN(i, ε) ≥ C}/N > 1 − δ, for arbitrary δ > 0. Then it follows immediately that all insurees
can be covered by insurers with at least C/2 insurees, where insurer n chooses βn = nε∗/2. This
leads to a massively multiline structure, since the average number of insurees is greater than or equal
to (1 − δ)C/2, and, as we have shown, it Pareto dominates the monoline industry partition. We are
done.
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2. The proposition follows immediately from the compactness argument made toward the end of
the proof of the first result, (1.). If there would be a sequence of insurees, ij , j = 1, . . ., for which it
is Pareto optimal to insure with a monoline insurer, there must be a limit point, i.e., a β∗ ∈ [ε, 1] for
which, for each ε > 0, there is an infinite number of insurees — each insuree having optimal capital βij

— such that |βij − β∗| < ε. However, the argument in (1.) then immediately implies that a multiline
firm with βMULTI = β∗ can make a Pareto improvement, contradicting the original assumption that
the industry partition was Pareto efficient.
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