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Abstract

Insect herbivory is pervasive in plant communities, but its impact on microbial plant colonizers is 

not well-studied in natural systems. By calibrating sequencing-based bacterial detection to 

absolute bacterial load, we find that the within-host abundance of most leaf microbiome 

(phyllosphere) taxa colonizing a native forb is amplified within leaves impacted by insect 

herbivory. Herbivore-associated bacterial amplification reflects community-wide compositional 

shifts towards lower ecological diversity, but the extent and direction of such compositional shifts 

can be interpreted only by quantifying absolute abundance. Experimentally eliciting anti-herbivore 

defenses reshaped within-host fitness ranks among Pseudomonas spp. field isolates and amplified 

a subset of putatively phytopathogenic P. syringae in a manner causally consistent with observed 

field-scale patterns. Herbivore damage was inversely correlated with plant reproductive success 

and was highly clustered across plants, which predicts tight co-clustering with putative 

phytopathogens across hosts. Insect herbivory may thus drive the epidemiology of plant-infecting 

bacteria as well as the structure of a native plant microbiome by generating variation in within-

host bacterial fitness at multiple phylogenetic and spatial scales. This study emphasizes that “non-

focal” biotic interactions between hosts and other organisms in their ecological settings can be 

crucial drivers of the population and community dynamics of host-associated microbiomes.
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Introduction

For many organisms, attack by multiple enemies is inevitable and often occurs sequentially 

during the lifetime of individual hosts. Prior attack can alter host phenotypes and change 

how future attacks unfold, often generating cascading effects at larger spatial and temporal 

scales1–4. Given the large effects of co-infection on host health and the population dynamics 

of their parasites, explicitly studying co-infection is becoming increasingly common4–6. But 

rarely has this perspective been extended to studies of diverse host-associated microbial 

communities (‘microbiomes’). Instead, microbiome studies tend to focus on effects of host 

genotype or abiotic variation on microbiome diversity patterns7–11. This has left a major gap 

in our understanding of how host colonization from non-microbial enemies impacts the 

population biology of microbiome-associated taxa.

For plants, there is tremendous interest in understanding the structure and function of the 

microbiome both for applied purposes, such as engineering growth promotion and disease 

resistance12,13, and as model systems for host-microbial symbioses more generally. Insect 

herbivory represents a pervasive threat to plants in wild and agricultural settings alike14. 

Herbivory alters plant phenotypes through tissue damage and induction of plant defenses, 

which can change susceptibility of plants to attack by insects15 as well as microbes16,17. 

Thus, factors that influence the impact of herbivores on hosts will likely affect the 

colonization and growth of plant-associated microbes. While insect herbivores14 and plant-

associated microbes18 have clear effects on plant phenotypes and fitness, they are generally 

considered independently. Our study addresses this gap by explicitly considering how 

patterns of abundance and diversity of leaf-colonizing (endophytic) bacterial taxa are altered 

in the presence of insect herbivory and by exploring the associations among herbivory, 

bacterial infection, and plant fitness in a native forb (Cardamine cordifolia, Brassicaceae; 

‘bittercress’).

We first used marker gene sequencing (16S rRNA) coupled with paired leaf culturing to 

establish and validate sequence-based estimates of absolute bacterial load in host tissue. By 

elucidating a relationship between bacterial load and the sequence counts of bacteria- versus 

host-derived 16S (Box 1), our approach enabled standard 16S marker gene sequencing to 

quantitatively reveal variation in abundance distributions of entire suites of bacterial taxa 

across hosts with and without prior herbivory by the specialist leaf-mining insect 

Scaptomyza nigrita (Drosophilidae). We then assessed the extent of co-clustering between 

microbial abundance and intensity of insect herbivory at the plant patch scale across our 

natural study populations, and we related microbe-herbivore co-aggregation to fruit set, a 

component of plant fitness. In parallel, we directly examined variation in sensitivity to 

inducible plant defenses against chewing herbivores among 12 genetically diverse, 

bittercress-derived isolates of Pseudomonas spp. bacteria. We did so by experimentally 

infecting accessions of native bittercress in which prior herbivory was simulated by 

exogenously pre-treating plants with the plant defense hormone jasmonic acid (JA), which 

induces canonical defenses against chewing herbivores in plants17, including bittercress19.

Our experiments reveal that insect herbivory, via induction of plant defenses, can modify 

endophytic bacterial diversity patterns by amplifying naturally prevalent and potentially 

Humphrey and Whiteman Page 2

Nat Ecol Evol. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



phytopathogenic bacterial taxa within a native plant host. This mechanism may be at least 

partly responsible for the strong positive association between herbivory and endophytic 

bacterial abundance within leaf microbiomes seen under field conditions. Crucially, the 

patterns and degree of bacterial abundance variation we found cannot be revealed by 

traditional compositional analysis of high-throughput marker gene sequencing, which masks 

the extent and direction of within-host variation in bacterial load. By linking marker gene 

counts to an absolute standard, our study reveals how insect herbivory associates with 

variation in bacterial loads at leaf and patch scales within a natural plant population. More 

generally, this work highlights the importance of (a) accounting for prevalent but ‘non-focal’ 

biotic interactions hosts have with other colonizers in their natural contexts, and (b) using 

detection and analytical approaches to quantify these effects on components of microbial 

fitness.

Results

Bacterial loads are amplified in insect-damaged leaf tissues

We devised an estimator of bacterial absolute abundance (γ) from 16S sequence data by 

statistically calibrating information on 16S counts from host versus bacteria to a culture-

based standard of bacterial load (Box 1). Using this approach, we found that bacteria within 

herbivore-damaged leaves at our field sites (see Methods) exhibited local population sizes 

several doublings greater compared to the bacteria found in undamaged leaves (Fig. 1a,b; 

median ± 95% credible interval of posterior predicted additional doublings: 2.5 [2.1; 3.9] 

site Emerald Lake [EL]; 4.5 [3.6; 5.3] site North Pole Basin [NP]). This result, rooted in 

sequence data, is further validated by the parallel observation that damaged leaves showed 

higher bacterial loads than undamaged leaves via culturing of the n = 101 calibration set 

(Supplementary Figure 5; mean difference of 3.7 bacterial doublings [1.8–5.6, 95% c.i. on 

mean difference]; Welch’s unequal variance two-sample t-test, t = 3.86, p < 0.001), which is 

quantitatively consistent with a prior result from a parallel and independent culture-based 

study in this system20.

Herbivore-associated bacterial amplification is both community-wide and taxon-specific

We then capitalized on the high taxonomic resolution and sampling depth afforded by 

amplicon sequencing to examine shifts in the abundance and distribution of diverse bacteria 

within the bittercress leaf microbiome. We constructed exact bacterial amplicon sequence 

variants (bASVs) from our 16S data and estimated how bASVs from each bacterial family 

varied across damaged and un-damaged leaves (see Methods). The within-host density of 

bacterial bASVs from several bacterial families was elevated in herbivore-damaged leaves 

compared to undamaged leaves (Fig. 1). For most bacterial families, the relative increase in 

within-host density with herbivory was greater at site NP than at site EL (Fig. 1b). This was 

largely because several taxa showed lower baseline loads in undamaged leaves at site NP 

(Extended Data 1). In contrast, bacterial loads for all families were similar for damaged 

leaves at both site (Extended Data 1). Pseudomonadaceae was the most abundant taxon 

across all leaves and also showed the greatest fold increase under herbivory (Fig. 1).
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Several statistical models of abundance (γ; see Methods) at the level of bacterial family 

showed support for bASV-level differences in intercept and slope values (Table S2), 

including Pseudomonadaceae and Sphingomonadaceae. Two individual bASVs in particular 

drove family-level patterns in these clades (Supplementary Figure 6), which together 

comprised ~ 20% of all sequencing reads across the two sample sets. Within the 

Pseudomonadaceae, Pseudomonas3 was the most abundant bASV, which falls within the 

putatively phytopathogenic P. syringae clade (Supplementary Figure 7). We previously 

showed that P. syringae strains can be pathogenic, induce chlorosis, and reduce leaf 

photosynthetic function in bittercress20. Thus, a major component of the signal of elevated 

bacterial load in the presence of insect herbivory comes from putatively phyopathogenic 

genotypes within the group P. syringae.

Compositional shifts in leaf bacterial communities under herbivory

When the absolute bacterial abundance patterns described above were analyzed in a 

compositional framework, we detected differences in overall community structure and 

ecological diversity between damaged and undamaged leaves. Specifically, we found lower 

evenness (J′; Fig. 2b) in damaged leaves, indicating a stronger skew towards a smaller 

number of bacterial taxa: Pseudomonadaceae comprise an even greater proportion of the 

population in damaged leaves owing to their already-high average abundance in undamaged 

leaves and large fold-increase under herbivory. Family-level relative abundances differed in 

terms of Shannon-Jensen divergence (i.e., β-diversity) between damaged versus un-damaged 

leaves (Fig. 2c). These observations indicate that amplification of bacteria in herbivore-

damaged leaves can produce community-wide signatures of reduced within-host diversity 

and elevated between-host diversity at broad taxonomic scales.

Plant defenses against chewing herbivores enhance growth of putative phytopathogens in 
planta

We then directly addressed how inducible plant defenses against chewing herbivores 

impacted the within-host fitness of a suite of bittercress-derived endophytic bacteria from 

the family Pseudomonadaceae. Plant pre-treatment with the plant defense hormone JA 

caused statistically clear alterations in within-host growth of five of the twelve Pseuomonas 
spp. strains tested (Fig. 3a), with the most pronounced changes resulting in 2.5–5 additional 

doublings of two phylogenetically distinct P. syringae isolates (20A and 02A; Table S3). 

Increased within-host density of these two strains can account for differences in total 

Pseudomonas abundance, as well as differences in abundance patterns summed at the level 

of bacterial clade (P. syringae versus P. fluorescens; Fig. 3b). By recapitulating the elevated 

P. syringae and family-wide increased abundance under herbivory seen in our field studies, 

this greenhouse result highlights that induction of plant defenses against chewing herbivores 

is one potential mechanism whereby insect herbivory could lead to amplification of bacterial 

taxa within the bittercress leaf microbiome.

Notably, two strains (22B and 20B) exhibited markedly decreased within-host fitness in JA-

treated compared to mock-treated leaves (Fig. 3a–b). Such herbivore-driven fitness variation 

among P. syringae is undetectable when only considering larger taxonomic scales of genus 

or family (Fig. 3), where genotypes which increase in local abundance contribute to an 
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overall signature of elevated taxon-wide abundance as measured by lower resolution tools 

(e.g., 16S sequencing). Thus, induction of plant defenses against chewing herbivores leads to 

the amplification and numerical dominance of a narrow subset of the P. syringae community 

within this host population (Fig. 3c). Such changes result in compositional shifts towards 

decreased Shannon evenness in JA-treated leaves (Fig. 3d) and an overall community-wide 

divergence with mock-treated leaves (Fig. 3e).

Putative phytopathogens are aggregated in highly herbivore-damaged plant patches

We then analyzed how Pseudomonas3, a highly abundant individual bASV within the P. 
syringae group, varied across bittercress plant patches in relation to the level of herbivory on 

those plant patches. At site NP, we found a highly aggregated (i.e., right-skewed) distribution 

of herbivore loads across plant patches (Fig. 4a, top marginal density plot). This aggregated 

herbivore distribution across plant patches results in a predicted 50-fold enrichment of local 

density of Pseudomonas3 in the most-damaged compared to the least-damaged plant patch 

(Fig. 4). Analyzed in a more general framework, over half the predicted Pseudomonas3 

population is harbored in just one fifth of the plant patches in the bittercress population at 

our study site NP (Extended Data 2).

Herbivore–bacteria co-aggregation is associated with lower plant fitness

At site NP, bittercress patches with higher herbivore intensity showed lower reproductive 

success, with the most damaged patches estimated to produce half as many fruits as patches 

with no herbivore damage (Fig. 4b, Table S4). Plants with more insect damage tend to have 

higher levels of bacterial infection. Thus, standing variation in fruit set is closely associated 

with levels of co-aggregation of these plant natural enemies across our sample within this 

native bittercress population.

Causes of herbivore aggregation in natural plant populations

Although not the primary focus of our study, our field experiments were also designed to test 

how mid-season pre-treatment with the exogenous plant defense hormones JA or salicylic 

acid (SA) impacted plant attack rates by S. nigrita (see Methods). JA-induced bittercress can 

locally deter adult S. nigrita and reduce larval feeding rates19. SA treatment canonically 

induces defenses against biotrophic microbial colonizers and often pleiotropically 

suppresses plant defenses against chewing herbivores17, including S. nigrita 20. Thus, 

treatment with either plant defense hormone has the potential to modify the foraging 

behavior of S. nigrita.

By the end of the growing season, we observed that the degree of herbivore aggregation 

among host plants at site NP varied extensively across plant patches at site NP (Extended 

Data 3a,b) and reflected little statistical signature of causation by the early-season hormone 

treatments with either JA or SA. Estimates for both SA and JA treatment coefficients were 

elevated above the mock/control condition, but the posterior distribution for both hormone 

effects overlapped zero (lower 4th %-ile < 0 for JA; lower 15th %-ile < 0 for SA; Table S5; 

Extended Data 3c). Thus, while prior plant exposure to JA, and possible also SA, may cause 

elevated S. nigrita herbivory at the patch scale, standing variation in S. nigrita herbivory 

arising stochastically or from unmeasured factors at site NP dominates over any causal 
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effects of our population-level defense hormone manipulation (Extended Data 3). 

Additionally, these early-season plant defense hormone treatments showed no discernible 

effects on distributions of γ for overall or family-wise bacterial abundance (Extended Data 

4).

Discussion

Overview

Here we show that insect herbivory is strongly associated with bacterial abundance and 

diversity within a native plant microbiome using field and greenhouse experiments. We 

provide evidence that activation of plant defenses against chewing herbivores is at least one 

causal mechanism whereby such within-host amplification of leaf-colonizing bacteria can 

occur. Specifically, the growth of a majority of bacterial taxa found in the leaf microbiome 

of native bittercress was amplified in plant tissues damaged by the specialist herbivore S. 
nigrita (Fig. 1) at two separate sub-alpine field sites. These ecological effects were only 

detectable by linking sequence-based bacterial quantification to an external standard of 

absolute abundance (Box 1), rather than relying on compositional analysis as is commonly 

done with studies of both plant and animal microbiomes (but see Vandeputte et al. 21).

The bacterial clades most altered under herbivory include strains from groups well-known 

for causing plant disease (P. syringae), and our follow-up experimental work in the 

greenhouse showed that inducing plant defenses against chewing herbivores in bittercress 

was sufficient to cause similar degrees of amplification of putatively phytopathogenic P. 
syringae genotypes in leaf tissues. Amplification of specific P. syringae genotypes can 

largely account for species- and family-level patterns seen in our field studies, which has 

coarser taxonomic resolution. Overall, these experiments suggest that S. nigrita herbivores 

may play a larger role than previously appreciated in promoting the within-host growth of 

particular bacterial genotypes or pathovars in bittercress, although the causal nature of the 

role of herbivores was not gleaned from the field portion of this study. Given that the 

majority of plants face herbivore attack to some degree14,22, it is possible that our results 

generalize across plant-microbe systems.

Herbivore-inducible plant defenses can amplify putative phytopathogens

The mechanisms governing the growth-promoting effects of insect herbivory on leaf-

colonizing bacteria are potentially numerous. Leaf damage itself can release nutrients, 

alleviating resource constraints for bacteria while also creating routes for colonization of the 

leaf interior from the leaf surface23,24. Plant defenses induced by chewing herbivores could 

directly or indirectly alter interactions with bacteria independent of the physical effects of 

plant tissue damage. It is known that JA-dependent anti-herbivore defenses can suppress the 

subsequent activity of signaling pathways responsive to bacterial infection17, allowing 

bacteria (including strains of P. syringae) to reach higher densities within JA-affected leaf 

tissues25. S. nigrita can trigger JA-dependent host defenses in bittercress19, and this form of 

defense signaling is widely conserved among diverse plant groups17. Released from top-

down control, a diversity of resident microbes may then proliferate as defenses are more 
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strongly directed against herbivory, which may manifest in community-wide patterns of 

abundance changes as noted in our study (Fig. 1).

The hypothesis that anti-herbivore defenses pleiotropically increase bacterial growth is 

consistent with results from our greenhouse experiment. We found that the within-host 

fitness of several strains of putatively phytopathogenic P. syringae increased within 

bittercress leaves pre-treated with JA compared to mock-treated leaves (Fig. 2). Although 

our experiment is consistent with this plausible mechanism by which herbivores can 

facilitate bacterial growth within plants, it does not identify the proximal mechanism(s) 

responsible for these effects. JA induction may have instead stressed the plants, or triggered 

expression of traits unrelated to defense per se, reducing basal tolerance to infection by a 

subset of the bacterial commuity. Such net effects of JA induction on bacterial abundance are 

also likely influenced by underlying constitutive levels of genetic resistance and/or tolerance 

to herbivory, traits which often exhibit quantitative variation within and among plant 

populations26. The role of host genetic variation in mediating the impacts of herbivore attack 

on microbial plant colonization is an open avenue of future research.

Finally, several other abundant bacterial groups (e.g., Sphingomonadaceae, 

Flavobacteriaceae) exhibited amplified abundance under insect herbivory in our field studies 

(Fig. 1). Functional studies examining finer-scale variation among genotypes of these 

relatively less well-studied bacterial groups would be highly fruitful for establishing a more 

general understanding of the mechanistic basis of plant-microbe interactions in the context 

of inducible defenses against chewing herbivores.

Herbivore distributions can alter the spatial patterning of plant disease

The impact of insect herbivory on phyllosphere bacteria can be observed at several spatial 

scales. Herbivore damage was highly clustered on a subset of hosts (Fig. 4), which is a 

pattern consistent with other plant-herbivore systems27 as well as many host–macroparasite 

systems more generally28. An accompanying effect of aggregated herbivore damage is the 

enrichment of bacterial infection on a subset of the host population (Fig. 4; Extended Data 

2), which alters the spatial structure of growth and potentially also the transmission of plant-

colonizing microbes. Uncovering the temporal dynamics of how herbivore aggregation 

precedes or follows microbial attack—or whether the two colonizers cyclically amplify one 

another—will require more controlled studies that manipulate the timing and density of 

herbivory itself.

Regardless of the precise mechanisms resulting in such herbivore-microbe co-aggregation, 

plant patches with the highest levels of co-aggregation had substantially (~ 50%) lower 

reproductive success compared to minimally-damaged plant patches (Fig. 4b). Although we 

cannot identify the cause of lower plant fitness from our study, the co-aggregation of these 

distinct plant colonizers may at least partly explain it. Whether these plants were more 

stressed to begin with or achieved lower fruiting success because of their infestation with 

herbivores and phytopathogens cannot be resolved without future studies which isolate the 

causal effects of single and multiple infection on plant fitness.

Humphrey and Whiteman Page 7

Nat Ecol Evol. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



What drives the highly skewed pattern of herbivory among host plants? Plant populations 

often display a patchwork of defensive phenotypes, influenced by plant abiotic stress, 

variation in the underlying defensive alleles, or by defense induction from prior herbivore or 

microbial attack. While plant defenses can shape herbivore attack rates in the laboratory and 

over wide spatial extents26, less is known about how patterns of defense induction impact 

the population dynamics of insect herbivores27,29. Many insects are deterred by anti-

herbivore defenses, but some specialist herbivores use these same cues as attractants owing 

to detoxification mechanisms which confer resistance to such defenses30. S. nigrita uses 

anti-herbivore plant defenses to locate host but also avoids high concentrations of defensive 

compounds when given the option19. Thus, the joint expression of positive chemo-taxis 

towards JA-inducible compounds, coupled to aversion of high levels of JA responsive 

defensive chemistry, may influence where herbivory becomes concentrated among plants in 

native bittercress populations.

Results from our field hormone treatments using JA and SA both showed elevated patch-

level S. nigrita leaf miner damage compared to mock-treated patches (Extended Data 3a,b). 

However, the statistical signature of these treatment effects was not clear enough to 

confidently conclude that our field trials substantially altered natural patterns of herbivory by 

this specialist, given the high degree of stochastic or unexplained variation in herbivore 

damage we observed across plant patches (Extended Data 3c; Table S5). Discovering the 

biotic and abiotic factors structuring herbivory patterns in natural host populations thus 

remains a challenge in this system31 as well as many others29, and we have not attempted to 

solve this problem in the present study. Nonetheless, our study suggests that predicting 

herbivore distributions may be key for understanding population-level distributions of plant-

associated bacteria. Regardless of its causes, insect herbivore damage can be readily 

measured and incorporated into plant microbiome studies in order to help reveal the drivers 

of variation in microbiome abundance and diversity within plant communities.

Quantifying bacterial loads is crucial for understanding the ecology of the microbiome

The patterns of abundance variation among bacterial taxa across leaf types, when distilled 

into a community-level compositional metric, showed decreased ecological diversity (i.e., 

evenness) in damaged versus un-damaged leaves, resulting in overall compositional 

divergence between sample sets (Fig. 2–3). This results from particular taxa undergoing 

larger absolute changes in abundance than other taxa, which leads to stronger skews in the 

composition of the community calculated on the relative scale. Compositional analysis on its 

own would preclude inference of the direction or magnitude of changes in bacterial 

abundance 32 , even though this is of primary interest to researchers exploring the 

microbiome and its impact on host fitness21,33,34. Compositional methods are thus poorly 

suited to studies of the population biology of microbiome-dwelling bacterial taxa when 

bacterial load varies or when microbial fitness is a desired response variable.

Direct bacterial quantification21, as well as controlled DNA spike-ins35, can correct for 

biases and ambiguities inherent to compositional analyses. Our study provides an additional 

framework for enabling standard high-throughput 16S sequencing approaches to provide 

quantitative measures of bacterial abundance when canonical approaches (e.g., qPCR) are 
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infeasible due to host organelle contamination. Rather than being discarded, 16S read counts 

derived from host organelles—once curated—can provide an internal reference population 

against which the proportionality of other taxa can be measured36. While we have 

established the usefulness of our estimator of bacterial load (γ) using a paired culture-based 

experiment, this need not be the only way. Bacterial culturing is an intrinsically noisy means 

of enumerating bacteria, due to dilution and/or counting noise. In addition, chemically-

mediated antagonism or facilitation among bacterial species or strains can cause over- or 

under-detection of particular combinations of taxa on agar plates37. These limitations will no 

doubt set a lower limit to the resolution of biological effects one is capable of detecting with 

culture-dependent methods. Testing the generality of our approach across other plant–

microbe systems, and with other means of enumerating bacteria in samples, is therefore a 

priority.

Conclusions

Our study emphasizes that large effects on the population biology of P. syringae, and many 

other lineages of leaf-colonizing bacteria, may stem from the action of insect herbivores. 

Biotic interactions such as herbivory are absent from the classic ‘disease triangle’ of plant 

pathology. The role of insect herbivores in P. syringae epidemiology—and plant-microbiome 

relations in general—has been under-appreciated. Variation in bacterial abundance across 

samples, and the implications of relative abundance changes for bacterial fitness, are not 

easily detectable via compositional analyses applied to 16S data, which typically do not 

utilize external or internal standards. Thus, studies aiming to decipher why plant 

microbiomes differ in structure or function should endeavor to quantify bacterial loads in 

order to retain this important axis of variation as a focal response variable, while also 

considering additional biotic interactions commonly encountered by the hosts under study.

Methods

Field studies of herbivore–bacteria co-infection

We surveyed herbivore damage arising from S. nigrita (Supplementary Figure 1f–g) in 

replicate 0.5 m2 plots of native bittercress along transects in sub-alpine and alpine streams 

near the Rocky Mountain Biological Laboratory (RMBL) in each of two years (2012, 

Emerald Lake [EL], n = 24 plots; 2013, site North Pole Basin [NP], n = 60 plots; 

Supplementary Figure 1a–d). Our analysis of the impact of hormone treatments on S. nigrita 
foraging patterns was previously published for site EL20, and we implemented a similar 

approach for site NP in this study. Full experimental design details are given in the 

Supplemental Methods and are depicted in the schematic in Supplementary Figure 1e.

By the end of the growing season, when herbivory and bacterial infection had run their 

course, we determined S. nigrita leaf-miner damage status of all leaves (both sites) as well as 

fruit set (site NP only) produced on each of the focal bittercress stems (stem-level sample 

size n = 768, site EL; n = 1920, site NP). At both sites, we collected leaf tissue in a 

randomized manner (see Supplemental Methods) to quantify the abundance and diversity of 

bacteria that had colonized the leaf interior.
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Amplicon sequencing of bacteria in leaf tissues

We quantified bacterial abundance in leaf tissues using next-generation amplicon sequencing 

of the bacterial 16S rRNA locus using the Illumina MiSeq platform. In order to enrich our 

samples for endophytic bacteria, we surface-sterilized all samples prior to DNA extraction, 

which achieved a reliable reduction of bacterial abundance as detected by our 16S analysis 

approach (Supplementary Figure 2). Subsequently, we extracted DNA from the 192 leaf 

discs (~ 0.8 cm2) from site EL and 192 tissue pools from site NP (4 four discs per pool) and 

amplified bacterial 16S following published protocols38 (see Supplemental Methods). We 

amended this protocol by including peptic nucleic acid (PNA) PCR clamps into reaction 

mixtures to reduce amplification of host chloroplast- and mitochondria-derived 16S, 

following Lundberg et al.39. This was highly effective at reducing the proportion of host-

derived 16S reads per library in our sample sets (Supplementary Figure 3).

We then used DADA240 to error-correct, trim, quality-filter, and merge the paired-end 

sequencing reads that passed error thresholds off the sequencer. Of the approximately 4 

million raw reads, ~ 90% were retained following quality control via DADA2 

(Supplementary Figure 4), and these reads were then delineated into exact amplicon 

sequencing variants (ASVs). 16S reads from bittercress chloroplast or mitochondria were 

manually curated and summed into ‘host-derived’ for comparison with bacteria-derived 16S 

(see Supplemental Methods).

Quantifying and modeling bacterial abundance patterns

In order to quantitatively asses how herbivore damage relates to abundance and diversity of 

microbial plant colonizers, we required a link between 16S counts and bacterial load. We 

therefore devised and validated an estimator (γ) of the abundance of bacterial ASVs within 

host tissues (Box 1). Using γ as an empirically validated estimator of absolute bacterial load 

in leaf tissues, we then constructed a two-stage modeling approach to estimate bacterial load 

across our complete sample set.

We first fit and compared a series of increasingly flexible Bayesian regression models to 

estimate how γ varies as a function of herbivore damage in leaves (see Supplemental 

Methods). When calculating γ, we took rB at the bASV-level for all bASVs within each of 

the 14 most abundant bacterial families, together comprising > 95% of total bASV counts in 

the datasets. We then took the candidate best stage-1 model, heuristically defined as the 

model with the lowest leave-one-out Bayesian information criterion (LOO-IC)41, and used it 

to generate n = 200 replicate sets of simulated response values (γ) predicted by the model 

parameters fit to the original data.

In the next stage, we used this distribution of γ as an input predictor variable to the model 

we fit between our observed γ and observed log CFU (Box 1). This allowed us to report 

bacterial abundance estimates, based initially on 16S count data, on the scale of predicted 

log CFU per unit leaf mass—a more directly interpretable measure of within-host fitness. 

Rather than point estimates, we sampled intercept, slope, and residual error parameters from 

their joint posterior distribution of the calibration CFU model for each data point 

independently. Specifically, this has the effect of incorporating uncertainty in the fit between 
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observed log CFU and γ such that downstream predictions are not overly biased by the 

precise value of any regression slope estimate, which may itself arise from peculiarities in 

the action of PNA during amplification of 16S. Overall, this two-stage modeling approach 

was designed to incorporate uncertainty in the model fit for γ as well as in the relationship 

between observed γ and observed log CFU. The endpoint of this approach is 200 sets of 

posterior predicted log CFU values for each sample in the dataset, which formed the basis of 

downstream calculations of bacterial abundance variation, as well as ecological diversity 

(Shanon evenness J′) and similarity (Shannon–Jensen divergence SJ) in and between 

damaged and undamaged leaf sets, respectively (see Supplemental Methods).

Population-level analysis of herbivore–bacteria co-aggregation

We assessed how patch-level variation in herbivory correlated with bacterial infection 

intensity at the field-scale by focusing on the most highly abundant bASV at both field sites 

(‘Pseudomonas3’). Leaf-level abundance of this individual bASV was predicted using the 

approach described above. We then summed the predicted abundance (on the linear scale) of 

bacteria across leaves within each plant patch and used these predicted bacterial sums to 

calculate the cumulative proportion of the total Pseudomonas3 population harbored by plant 

patches with differing levels of herbivory, which portrays the extent of co-aggregation of 

herbivores and bacteria across the host population.

Experimental infections in planta

We directly examined how inducible plant defenses against chewing herbivores impacted 

within-host bacterial performance using field-derived accessions of bittercress plants and 

their bacterial colonizers. We randomized the selection of six focal strains from within each 

of the two dominant Pseudomonas clades (P. syringae, and P. fluorescens) represented in our 

endophytic strain collection from bittercress20. We infected each strain into a single leaf on 

each of n = 32 distinct bittercress clones that had been randomized to receive pre-treated 3 

days prior with JA (1 mM; Sigma) or a mock solution. Bittercress clones were originally 

isolated as rhizomes from various sites within 2 km of the RMBL in 201242 and were re-

grown in the greenhouse at University of Arizona for up to 12 months prior to use. Two days 

post infection, we sampled, sterilized, homogenized, and dilution-plated leaf discs onto non-

selective rich King's B media, following Humphrey et al. 20. We compared bacterial 

abundance (log2) between treated and untreated samples using Gaussian Bayesian regression 

models. We subsequently used posterior predicted abundances as the basis for considering 

how herbivore-inducible defenses impact the composition and diversity of this Pseudomonas 
community at different taxonomic levels (see Supplemental Methods).

Extended Data
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Extended Data Fig. 1. Correspondence between predicted bacterial abundance and herbivory 
effects between sites EL and NP
a. Plotted are median (circles) ± 95% posterior distributions of predicted abundance for 

bacterial bASVs summed at the family level for sites EL (x-axis) and NP (y-axis). b. 
Comparison between the magnitudes of log2-fold differences between damaged and 

undamaged leaves at sites EL (x-axis) and NP (y-axis). Middle 50%-ile and 95%-iles of 

median effects (circles) are depicted by thick and thin bars, respectively. On both plots, we 

also show data summed across all taxa in the dataset (‘all Bacteria’).
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Extended Data Fig. 2. Plant patches with high herbivory harbor a disproportionate fraction of 
the estimated population of the most abundant P. syringae bASV
Scaling of percentile rank (high to low) of patch-level herbivore load with total population-

level percentage of bacterial propagules present in the sampled patch. At site NP, the top 

20% of plant patches with the most herbivory harbor >50% of bacterial propagules in the 

plant population.
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Extended Data Fig. 3. Effects of hormone pre-treatment effects on levels of S. nigrita herbivory 
in bittercress populations at site NP
a. For each plot separately, plotted is the average (± 1 std error) leaf mines per stem 

calculated at the patch level (n=16 stems per patch) for mock-treated (x-axis) versus 

hormone-treated (y-axis) patches. The three panels represent plots assigned to each of the 

three conditions: mock (i.e., control), jasmonic acid (JA) or salicylic acid (SA). b. 
Histograms of patch-level leaf miner damage broken down by patch-level treatment. c. 
Marginal effects for estimates of patch-level treatment on total mined leaves per patch (see 

table S5 for statistical results). Black bars are posterior means, while thick and thin bars 
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comprises middle 50%- and 95%-iles of posterior distributions of model terms marginalized 

over all other parameters.
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Extended Data Fig. 4. Hormone pre-treatment (Mock, JA, or SA) five weeks prior to sampling 
does not leave a clear signature in the distribution of γ across samples for undamaged (gray) or 
herbivore damaged (orange) leaf samples
For each of the 14 most abundant bacterial families, in addition to all Bacteria, we have 

plotted the distributions of raw γ for damaged and undamaged samples across mock-(M), 

JA-, or SA-treated plant patches. Black bars represent medians for the respective 

distribution, and data points are slightly jittered along the x-axis. Systematic differences in γ 
can be easily seen between damaged versus undamaged sample classes, whereas no 

systematic differences can be seen between the different hormone treatment classes within 

each damage class. If any effects of hormone treatments are indeed present, they do not 

constitute a discernible feature of these data, supporting the choice to devote minimal 

attention to this aspect of our experiment.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

PTH and NKW gratefully acknowledge funding from the National Science Foundation (DEB-1309493 to PTH, 
DEB-1256758 to NKW), the National Institute of General Medical Sciences of the National Institutes of Health 
(R35GM119816 to NKW), as well as the Rocky Mountain Biological Laboratory. We are indebted to field 
assistance provided by Heather Briggs, Kara Cromwell, Aaron Koning, Lucy Anderson, Kyle Niezgoda, Devon 
Picklum, and Nicolas Alexandre; bioinformatics advice from Tim K O’Connor; and laboratory assistance from 
Hoon Pyon and Amir Abidov. We thank our contacts at Argonne National Laboratory Sarah Owens and Jason 
Koval for their technical expertise and support.

References

[1]. Lloyd-Smith JO, Poss M, and Grenfell BT Hiv-1/parasite co-infection and the emergence of new 
parasite strains. Parasitology, 135(7):795–806, 6 2008. doi: 10.1017/S0031182008000292. 
[PubMed: 18371236] 

[2]. Laine A-L Context-dependent effects of induced resistance under co-infection in a plant-pathogen 
interaction. Evol Appl, 4(5):696–707, 9 2011. doi: 10.1111/j.1752-4571.2011.00194.x. [PubMed: 
25568016] 

[3]. Tollenaere C, Susi H, and Laine A-L Evolutionary and epidemiological implications of multiple 
infection in plants. Trends Plant Sci, 21(1):80–90, 1 2016. [PubMed: 26651920] 

[4]. Karvonen A, Jokela J, and Laine A-L Importance of sequence and timing in parasite coinfections. 
Trends Parasitol, 12 2018. doi: 10.1016/j.pt.2018.11.007.

[5]. Halliday FW, Umbanhowar J, and Mitchell CE Interactions among symbionts operate across scales 
to influence parasite epidemics. Ecol Lett, 20:1285–1294, 9 2017. [PubMed: 28868666] 

[6]. Susi H, Barres B, Vale PF, and Laine A-L Co-infection alters population dynamics of infectious 
disease. Nat Commun, 6:5975, 1 2015. doi: 10.1038/ncomms6975. [PubMed: 25569306] 

[7]. Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD, Subramanian S, Vetter MM, 
Vilhjalmsson BJ, Nordborg M, Gordon JI, and Bergelson J Genome-wide association study of 
arabidopsis thaliana leaf microbial community. Nat Commun, 5:5320, 2014. [PubMed: 
25382143] 

[8]. Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E. , Ahmadinejad N., Assenza F, Rauf 
P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, and 
Schulze-Lefert P. Revealing structure and assembly cues for arabidopsis root-inhabiting bacterial 
microbiota. Nature, 488(7409):91–5, Aug 2012. [PubMed: 22859207] 

[9]. Bodenhausen N, Bortfeld-Miller M, Ackermann M, and Vorholt JA A synthetic community 
approach reveals plant genotypes affecting the phyllosphere microbiota. PLoS Genet, 
10(4):e1004283, Apr 2014. [PubMed: 24743269] 

[10]. Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, and 
Sundaresan V Structure, variation, and assembly of the root-associated microbiomes of rice. Proc 
Natl Acad Sci USA, 112(8):E911–20, Feb 2015. [PubMed: 25605935] 

[11]. Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, and Mitchell-Olds T Host 
genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun, 7: 
12151, 2016. [PubMed: 27402057] 

[12]. Finkel OM, Castrillo G, Herrera Paredes S, Salas Gonzalez I, and Dangl JL Understanding and 
exploiting plant beneficial microbes. Curr Opin Plant Biol, 38:155–163, 08 2017. doi: 10.1016/
j.pbi.2017.04.018. [PubMed: 28622659] 

[13]. Orozco-Mosqueda MDC, Rocha-Granados MDC, Glick BR, and Santoyo G Microbiome 
engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res, 
208:25–31, Mar 2018. doi: 10.1016/j.micres.2018.01.005. [PubMed: 29551209] 

Humphrey and Whiteman Page 17

Nat Ecol Evol. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[14]. Maron JL and Crone E Herbivory: effects on plant abundance, distribution and population 
growth. Proc Biol Sci, 273(1601):2575–84, 10 2006. doi: 10.1098/rspb.2006.3587. [PubMed: 
17002942] 

[15]. Agrawal AA Induced responses to herbivory and increased plant performance. Science, 
279(5354): 1201–2, 2 1998. [PubMed: 9469809] 

[16]. Bressan M, Roncato M-A, Bellvert F, Comte G, Haichar FZ, Achouak W, and Berge O 
Exogenous glucosinolate produced by arabidopsis thaliana has an impact on microbes in the 
rhizosphere and plant roots. ISME J, 3(11):1243–57, 11 2009. [PubMed: 19554039] 

[17]. Thaler JS, Humphrey PT, and Whiteman NK Evolution of jasmonate and salicylate signal 
crosstalk. Trends Plant Sci, 17(5):260–70, 5 2012. doi: 10.1016/j.tplants.2012.02.010. [PubMed: 
22498450] 

[18]. Wagner MR, Lundberg DS, Coleman-Derr D, Tringe SG, Dangl JL, and Mitchell-Olds T Natural 
soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild 
arabidopsis relative. Ecol Lett, 17(6):717–26, 6 2014. doi: 10.1111/ele.12276. [PubMed: 
24698177] 

[19]. Humphrey PT, Gloss AD, Alexandre NM, Villalobos MM, Fremgen MR, Groen SC, Meihls LN, 
Jander G, and Whiteman NK Aversion and attraction to harmful plant secondary compounds 
jointly shape the foraging ecology of a specialist herbivore. Ecol Evol, 6(10):3256–68, 05 2016. 
doi: 10.1002/ece3.2082. [PubMed: 27096082] 

[20]. Humphrey PT, Nguyen TT, Villalobos MM, and Whiteman NK Diversity and abundance of 
phyllosphere bacteria are linked to insect herbivory. Mol Ecol, 23(6):1497–515, 3 2014. doi: 
10.1111/mec.12657. [PubMed: 24383417] 

[21]. Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S, Valles-Colomer M, Sabino J, Wang J, Tito 
RY, De Commer L, Darzi Y, Vermeire S, Falony G, and Raes J Quantitative microbiome profiling 
links gut community variation to microbial load. Nature, 551(7681):507–511, 11 2017. doi: 
10.1038/nature24460. [PubMed: 29143816] 

[22]. Turcotte MM, Davies TJ, Thomsen CJM, and Johnson MTJ Macroecological and 
macroevolutionary patterns of leaf herbivory across vascular plants. Proc Biol Sci, 281(1787), 7 
2014. doi: 10.1098/rspb.2014.0555.

[23]. Hirano SS and Upper CD Bacteria in the leaf ecosystem with emphasis on pseudomonas 
syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev, 64(3):624–53, 9 2000. 
[PubMed: 10974129] 

[24]. Lindow SE and Brandl MT Microbiology of the phyllosphere. Appl Environ Microbiol, 69(4): 
1875–83, 4 2003. [PubMed: 12676659] 

[25]. Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, and Ausubel FM 
Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. 
Proc Natl Acad Sci USA, 102(5):1791–6, 2 2005. doi: 10.1073/pnas.0409450102. [PubMed: 
15657122] 

[26]. Ziist T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, and Turnbull LA Natural 
enemies drive geographic variation in plant defenses. Science, 338(6103):116–9, 10 2012. doi: 
10.1126/science.1226397. [PubMed: 23042895] 

[27]. Underwood N, Anderson K, and Inouye BD Induced vs. constitutive resistance and the spatial 
distribution of insect herbivores among plants. Ecology, 86(3):594–602, 2005.

[28]. Shaw DJ and Dobson AP Patterns of macroparasite abundance and aggregation in wildlife 
populations: a quantitative review. Parasitology, 111 Suppl:S111–27, 1995. [PubMed: 8632918] 

[29]. Karban R and Baldwin IT Induced Responses to Herbivory. University of Chicago Press, 1997.

[30]. Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenzon J, and 
Vogel H Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc 
Natl Acad Sci USA, 101(14):4859–64, 4 2004. doi: 10.1073/pnas.0308007101. [PubMed: 
15051878] 

[31]. Alexandre NM, Humphrey PT, Gloss AD, Lee J, Frazier J, Affeldt HA 3rd, and Whiteman NK 
Habitat preference of an herbivore shapes the habitat distribution of its host plant. Ecosphere, 9 
(9), 9 2018. doi: 10.1002/ecs2.2372.

Humphrey and Whiteman Page 18

Nat Ecol Evol. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[32]. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, and Egozcue JJ Microbiome datasets are 
compositional: And this is not optional. Frontiers in Microbiology, 8:2224, 2017. doi: 10.3389/
fmicb.2017.02224. [PubMed: 29187837] 

[33]. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, 
Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De Sutter L, 
Lima-Mendez G, D’hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu 
J, Henckaerts L, Zhernakova A, Wijmenga C, and Raes J Population-level analysis of gut 
microbiome variation. Science, 352(6285):560–4, 4 2016. doi: 10.1126/science.aad3503. 
[PubMed: 27126039] 

[34]. Raes J Editorial overview: It’s the ecology, stupid: microbiome research in the post-stamp 
collecting age. Curr Opin Microbiol, 44:iv–v, 8 2018. doi: 10.1016/j.mib.2018.07.008. [PubMed: 
30145038] 

[35]. Stammler F, Glasner J, Hiergeist A, Holler E, Weber D, Oefner PJ, Gessner A, and Spang R 
Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. 
Microbiome, 4(1): 28, 6 2016. [PubMed: 27329048] 

[36]. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, and Bahler J Proportionality: a valid 
alternative to correlation for relative data. PLoS Comput Biol, 11(3):e1004075, 3 2015. 
[PubMed: 25775355] 

[37]. Foster KR and Bell T Competition, not cooperation, dominates interactions among culturable 
microbial species. Curr Biol, 22(19):1845–50, 10 2012. doi: 10.1016/j.cub.2012.08.005. 
[PubMed: 22959348] 

[38]. Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, Prill RJ, Tripathi A, 
Gibbons SM, Ackermann G, Navas-Molina JA, Janssen S, Kopylova E, Vazquez-Baeza Y, 
Gonzalez A, Morton JT, Mirarab S, Zech Xu Z, Jiang L, Haroon MF, Kanbar J, Zhu Q, Jin Song 
S, Kosciolek T, Bokulich NA, Lefler J, Brislawn CJ, Humphrey G, Owens SM, Hampton-Marcell 
J, Berg-Lyons D, McKenzie V, Fierer N, Fuhrman JA, Clauset A, Stevens RL, Shade A, Pollard 
KS, Goodwin KD, Jansson JK, Gilbert JA, Knight R, and Earth Microbiome Project Consortium. 
A communal catalogue reveals earth’s multiscale microbial diversity. Nature, 551(7681):457–
463, 11 2017. doi: 10.1038/nature24621. [PubMed: 29088705] 

[39]. Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, and Dangl JL Practical innovations for 
high-throughput amplicon sequencing. Nat Methods, 10(10):999–1002, 10 2013. doi: 10.1038/
nmeth.2634. [PubMed: 23995388] 

[40]. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, and Holmes SP Dada2: High-
resolution sample inference from illumina amplicon data. Nat Methods, 13(7):581–3, 07 2016. 
doi: 10.1038/nmeth.3869. [PubMed: 27214047] 

[41]. Vehtari A, Gelman A, and Gabry J Practical bayesian model evaluation using leave-one-out 
cross-validation and waic. Statistics and Computing, 27(5):1413–1432, 9 2017 ISSN 1573–1375. 
doi: 10.1007/s11222-016-9696-4.

[42]. Humphrey PT, Gloss AD, Frazier J, Nelson-Dittrich AC, Faries S, and Whiteman NK Heritable 
plant phenotypes track light and herbivory levels at fine spatial scales. Oecologia, 187(2): 427–
445, 6 2018. doi: 10.1007/s00442-018-4116-4. [PubMed: 29603095] 

[43]. Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Rio 
TGlavina del , Jones CD., Tringe SG, and Dangl JL. Salicylic acid modulates colonization of the 
root microbiome by specific bacterial taxa. Science, 349(6250):860–4, 8 2015. [PubMed: 
26184915] 

[44]. Humphrey PT and Whiteman NK Data from: Insect herbivory reshapes a native leaf microbiome. 
Dryad,, Dataset, 2019. doi: 10.5061/dryad.qz612jm95.

Humphrey and Whiteman Page 19

Nat Ecol Evol. Author manuscript; available in PMC 2020 July 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Box 1:

Devising an estimator of bacterial load from 16S data.

Defining the estimator

To establish an estimator of bacterial load using 16S sequence data, we hypothesized that 

the composition of the sequencing data, in terms of host-versus bacteria-derived 16S 

reads, may provide information about the underlying density of bacteria. This occurs, we 

reasoned, because DNA templates of the two sources compete as targets during the 

amplification reaction, and biases towards one or the other will accrue exponentially. By 

this logic, the logarithm of the relative abundance of bacteria-to-host 16S counts captures 

information about the density of bacterial cells in the starting material. Accordingly, for 

each sample, we calculated the following estimator

γ = ln(rB/rH)

where rB and rH are the read counts of bacteria- and curated host-derived 16S counts for a 

given sample, respectively. rB can be calculated at any taxonomic level, ranging from the 

single bASV to all of the bacteria present in the sample, by summing the sequence counts 

at the desired taxonomic scale.

Validating and deploying the estimator

Step 1: Collect paired tissue samples and enumerate bacteria 
independently.

We validated this estimator empirically by examining the relationship between γ and an 

independent measure of bacterial abundance in leaf tissues derived from bacterial 

culturing of a subset (n = 101) of the samples from the EL study. These samples were 

surface-sterilized, homogenized, and plated on non-selective King’s B media to 

enumerate bacterial colony forming units (CFU) per g starting leaf material, following 

Humphrey et al. 20. This approach is appropriate because a majority of bacterial taxa 

typically found to colonize leaf tissues can be cultivated in the laboratory on rich 

media20,43.

Step 2: Quantify relationship between 16S data and directly observed 
bacterial load.

We then estimated the slope and intercept of the relationship between observed log10 

CFU g−1 leaf tissue (hereafter log CFU) and the predictor variable γ for this sample set 

using a Bayesian linear regression, which allowed us to directly incorporate uncertainty 

in model fit into downstream analyses. We found a clear positive association between γ 
and log CFU (see figure), validating our usage of γ as an estimator of absolute bacterial 

abundance in leaf tissues.

Step 3: Model relationship between observed γ and herbivore damage.

We then deployed the validated estimator to test whether bacterial abundance as 

measured by γ was elevated in insect-damaged plant tissues. To begin, we modeled how 
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γ varied across herbivore-damaged and undamaged leaves for various bacterial taxa. The 

illustrating example below shows that the distributions of γ calculated for all bacteria are 

elevated in herbivore-damaged bittercress tissues sampled from both sites EL and NP.

Step 4: Transform results for γ into predicted bacterial load via parameters 
from Step 2.

Finally, we used posterior draws of parameters from the Step 2 model to predict how 

variation in γ translates into predicted bacterial load as expressed in log CFU. Here see 

that elevated γ in herbivore-damaged tissues translates into higher bacterial loads when 

predicted based on the relationship between γ and log CFU derived in Step 2. Further 

details on how we specified and estimated models, as well as how we incorporated 

parameter uncertainty throughout this approach, can be found in Methods: Quantifying 

and modeling bacterial abundance patterns.
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Figure 1: Pervasive increases in endophytic bacterial load in herbivore-damaged leaves.
a–b. Posterior predicted (‘pp.’) infection intensity of bacterial amplicon sequence variants 

(bASV) from the 14 most prevalence bacterial families show variation in the extent of 

elevated growth in herbivore-damaged leaf tissue. a. Heatmap shows median predicted log10 

bacterial abundance (colony-forming units, CFU) per g starting leaf material) from 200 

posterior simulations of the best-fitting model of each bacterial family separately (see 

Methods). b. Boxplots showing median (white), 95% (thin), and 50% (thick) quantiles of the 

posterior predicted median difference in the number of bacterial cell divisions (i.e., 

doublings) achieved in herbivore-damaged leaves compared to undamaged leaves, for sites 

EL and NP separately.
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Figure 2: Herbivore-damaged leaves harbor compositionally diverged microbiomes with reduced 
ecological diversity shifted heavily towards Pseudomonadaceae.
a. log10 relative abundance of each family in undamaged (x-axis) versus damaged (y-axis) 

samples shows skew towards Pseudomonadaceae (Ps) and relative reductions of abundance 

among most other taxa at both study sites, including Sphingomonas (Sph), which shows a ~ 

2-fold increase in number of doublings in herbivore damaged leaves. Error bars represent 

95% predicted median frequency intervals calculated from posterior simulations of bacterial 

abundance across damaged and undamaged leaf classes. b. Compositional changes from the 

amplification of already abundant taxa (e.g., Pseudomonadaceae) produces reduced 

community-level evenness (J′) and leads to compositional divergence (i.e., β-diversity) 

between damaged and undamaged leaves at both study sites (c). Boxplots represent the 

median (white), 95% (thin), and 50% (thick) quantiles of each statistic calculated from the 

posterior predicted median relative frequency data depicted in a.
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Figure 3: Eliciting plant defenses against chewing herbivores alters within-host performance of 
putative phytopathogens.
a. Experimental infections with 12 Pseudomonas spp. strains, concurrently isolated from EL 

study site20, reveal strain-to-strain variation in growth under mock-treated (M) and jasmonic 

acid (JA) induced plants. Heatmap shows median log10CFU g−1 surface sterilized plant 

tissue 2 d post inoculation. Maximum likelihood phylogeny of strains estimated with four 

housekeeping loci (2951 bp)20. b. The median (white), 95% (thin), and 50% (thick) 

quantiles of the posterior difference between the number of bacterial doublings attained by 
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bacteria growing in JA-versus mock-treated leaves (see Supplemental Methods). c. 
Compositional analysis of relative abundances (± 95% posterior interval) calculated from (a) 

reflect decreased evenness (J′; d) in JA-treated plant tissues, leading to overall community-

level divergence (e). Shown in d and e are boxplots of the median (white), 95% (thin), and 

50% (thick) quantiles from 200 posterior simulations of abundance from the model results 

depicted in (b).
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Figure 4: Co-infection by herbivores and phytopathogenic bacteria is aggregated across plant 
populations and is associated with lower plant reproduction.
a. Median, 95%, and 50% quantiles of 200 posterior simulations of predicted (‘pp.’) 

bacterial load across plant patches (n = 110 at site NP; n = 16 stems sampled per patch). 

Density plot above x-axes exhibits right-skewed (i.e., aggregated) distribution of herbivore 

damage at the plant patch level. b. Patch-level herbivory (and thus co-infection intensity) is 

associated with decreased fruit-set in this native plant population. Plotted are raw fruit-set 

data summed at the patch level (n = 16 stems per patch), with marginal effects slope (and its 

95% credible interval) plotted after accounting for average plant height (see Table S4).
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