
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Machines that Understand Music

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Signal and Image Processing)

by

Luke Barrington

Committee in charge:

Professor Gert Lanckriet, Chair

Professor Garrison W. Cottrell

Professor Bhaskar Rao

Professor Lawrence Saul

Professor Nuno Vasconcelos

2012

Copyright

Luke Barrington, 2012

All rights reserved.

The dissertation of Luke Barrington is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my mum and dad, for getting me here...

and to Laia, for keeping me going.

iv

TABLE OF CONTENTS

Signature Page. iii

Dedication . iv

Table of Contents. v

List of Figures . viii

List of Tables . xii

Acknowledgements. xiv

Vita . xvi

Abstract of the Dissertation. xviii

Chapter I Introduction . 1

Chapter II Game-Powered Machine Learning 4
II.A. Abstract . 5
II.B. Introduction . 5

II.B.1. Related Work on Human Computation 9
II.C. Herd It - A Social Music Annotation Game 10

II.C.1. Herd It Minigames . 14
II.D. Growing the Herd . 18
II.E. Automatic Music Tagging . 23
II.F. Automatic Music Tagging . 24

II.F.1. Active Learning . 27
II.F.2. Training Data Requirements 28

II.G. Game-Powered Machine Learning 30
II.H. Music Data . 33

II.H.1. Audio Features . 33
II.H.2. Training on Expert Labels: the Music Genome Project . . 34
II.H.3. Evaluating on CAL500 . 35
II.H.4. Tag Vocabulary . 36
II.H.5. Dataset Availability . 37

II.I. Results . 37
II.I.1. Experiment 1: Comparison to Expert Annotations 37
II.I.2. Experiment 2: Active Learning 38
II.I.3. Experiment 3: Comparison to Other Music Annotation Games 42

II.J. Conclusions . 43
II.K. Acknowledgements . 44

v

Chapter III Semantic Annotation and Retrieval of Music and Sound Effects 46
III.A. Abstract . 47
III.B. Introduction . 47
III.C. Related work . 50
III.D. Semantic audio annotation and retrieval 53

III.D.1. Problem formulation . 53
III.D.2. Annotation . 53
III.D.3. Retrieval . 55

III.E. Parameter Estimation . 56
III.E.1. Direct estimation . 58
III.E.2. Model averaging . 59
III.E.3. Mixture hierarchies estimation 59

III.F. Semantically Labeled Music Data 61
III.F.1. Semantic Feature Representation 63
III.F.2. Music Feature Representation 64

III.G.Semantically Labeled Sound Effects Data 65
III.H. Model evaluation . 65

III.H.1. Annotation . 66
III.H.2. Retrieval . 69

III.I. Discussion . 70
III.J. Acknowledgements . 72

Chapter IV Modeling Music as a Dynamic Texture 77
IV.A. Abstract . 78
IV.B. Introduction . 78
IV.C. Related Work . 80
IV.D. Dynamic Textures Models . 82

IV.D.1. Dynamic textures . 82
IV.D.2. Mixture of Dynamic Textures 85
IV.D.3. Parameter estimation of DTMs 86

IV.E. Song Segmentation with DTM 88
IV.E.1. Features . 88
IV.E.2. Song segmentation . 89
IV.E.3. Musical Constraints on Segments 89
IV.E.4. Refining Segment Boundaries 91

IV.F. Segmentation Evaluation . 91
IV.F.1. Data . 91
IV.F.2. Experimental Setup . 92
IV.F.3. Segmentation Results . 93
IV.F.4. Boundary Detection Results 96

IV.G. Applications of Automatic Song Segmentation 98
IV.G.1. Autotagging Song Segments 98
IV.G.2. Song Segment Retrieval . 101

vi

IV.H. Conclusions . 103
IV.I. Acknowledgements . 104

Chapter V Conclusion . 111

Bibliography . 114

vii

LIST OF FIGURES

Figure II.1 Game-powered machine learning framework for music annotation. 8
Figure II.2 Illustration of Herd It gameplay. (a) Six bubbles float around the

play area, each suggesting a mood that might be evoked by the
music that is playing. The player clicks the bubble that they feel
is most appropriate and all other bubbles disappear with a pop.
After 15 seconds, the minigame ends and (b) the player is shown
the choices made by the rest of the Herd. During this feedback
period, an “agree-O-meter” fills up as other members of the
Herd are revealed to agree with the player’s choice. Players are
awarded points equal to the percentage of the Herd that agreed
with them, rewarding consensus with the Herd and implicitly
collecting reliable music tags. 11

Figure II.3 Examples of Herd It’s minigames that (a) weigh the Herd’s
response to a yes/no question and (b) determine the most ap-
propriate sub-genre for a song. 15

Figure II.4 More examples of Herd It’s minigames that (a) collect two-
dimensional valence and arousal on a Cartesian plane and (b)
enquire about the color evoked by the music. 16

Figure II.5 Illustration of Herd It’s trivia round. (a) Players can earn 20
bonus points for correctly naming the song that they hear. (b)
The correct song is revealed after the player makes a choice. User
testing determined that the familiar “name that tune” challenge
of the trivia round encouraged novice players to participate
in Herd It and the objective, “right/wrong” scoring provided
a compelling counterpoint to the subjective, consensus-based
scoring of the minigames. 17

Figure II.6 Evolution of overall game enjoyment over 10 months of user-
centered design and development. 20

Figure II.7 Training an automatic music tagger. (a) Human labelers provide
a training set of songs that have been reliably labeled with a
given tag (e.g., “romantic”). (b) A “bag of features” represents
the waveform of each training song. (c) A Gaussian mixture
model (GMM) of the acoustic features of each song is learned
using the EM algorithm [32]. (d) The GMMs for each song
are combined efficiently into a single GMM that models the
acoustic features predictive of the tag using a hierarchical EM
algorithm [115]. 26

viii

Figure II.8 Automatically tagging a new song. (a) A new, unlabeled song is
to be analyzed by the automatic tagging system. (b) A “bag of
features” represents the waveform of the song. (c) The features
are compared to previously-learned models of each tag. (d)
Tag probabilities are obtained, providing a semantic profile that
describes the song’s acoustic content. 26

Figure II.9 Autotagging top-ten precision as a function of the number of
training examples. For 25 tags in the CAL500 dataset with at
least 133 songs, we train multiple autotagging models by limiting
the number of training examples to {10, 25, 50, 100, 133} songs.
Vertical lines show the average performance at each limit: 10
songs is clearly insufficient but no improvement is gained beyond
100 training examples (the averages for 100 and 133 examples
are overlapping). 29

Figure II.10 Top-ten precision for machine learning models trained on Herd It’s
crowdsourced data (x-axis) and models trained on data from the
Music Genome Project (y-axis). While absolute performance
depends on the tag (e.g., “acoustic” music is better modeled than
“soul” music), on average (dashed lines) Herd It’s crowdsourced
data trains models that are as precise, at the tag-level, as models
learned from expert-labeled data. 39

Figure II.11 Music autotagging performance as a function of human effort
(i.e., number of songs analyzed by Herd It players). For each
of the 25 tags considered, “passive” randomly selects songs for
analysis while “active” leverages an active learning paradigm.
Each {song,tag} pair appeared in Herd It minigames until it
was either confirmed by GLAD or rejected after being presented
to 50 players. Y-axis plots the average precision of the top-
ten search results returned by tag models trained on all songs
confirmed by Herd It at each 100-song increment on the x-axis.
Bands show the standard error of the mean and remain shaded
while performance is inferior to expert-trained models (550 songs
for active, 1090 songs for passive). Integrating active machine
learning with Herd It’s data collection improves the learning
rate, achieving target performance (within error bands) with less
human effort. 40

Figure III.1 Semantic annotation and retrieval model diagram. 54
Figure III.2 Semantic multinomial distribution over all words in our vocab-

ulary for the Red Hot Chili Pepper’s ”Give it Away”. Word
categories are indicated by color. The 10 most probable words
are labeled. 57

ix

Figure III.3 (a) Direct, (b) naive averaging, and (c) mixture hierarchies pa-
rameter estimation. Solid arrows indicate that the distribution
parameters are learned using standard EM. Dashed arrows indi-
cate that the distribution is learned using mixture hierarchies
EM. 58

Figure IV.1 Modeling audio as a temporal texture: (a) an audio waveform,
and (b) feature vectors yt extracted from the audio; (c) the
sequence of features vectors {yt} is modeled as the output of
a linear dynamical system, where (d) the hidden state-space
sequence {xt} encodes both the instantaneous sound texture and
the evolution of this texture over time. 83

Figure IV.2 Graphical model for the dynamic texture mixture. The hidden
variable z selects the parameters of the DT represented by the
remaining nodes. 85

Figure IV.3 DTM song segmentation. A song’s waveform (a) is represented
as a series of audio feature vectors that are collected into short,
overlapping sequences (b). These sequences of feature vectors are
modeled as a dynamic texture mixture and the song is segmented
based on the dynamic texture mixture component to which each
sequence is assigned (c). Segments are constrained (d) and
refined (e) to produce a final segmentation which is evaluated
with reference to a human labeled ground-truth segmentation (f). 106

Figure IV.4 DTM segmentations and reference segmentation of the track
“p053” from the RWC dataset (Rand Index = 0.78, Pairwise F
= 0.66). The addition of the musical constraints removes short
segments. 107

Figure IV.5 DTM segmentations and reference segmentation of ‘Wonderwall’
by Oasis. This is an example of an accurate segmentation where
the DTM model captures almost all the reference segments but
incorrectly divides the verse (class 2) into 2 parts (these in fact
correspond to singing / no singing). 107

Figure IV.6 DTM segmentations and reference segmentation of ‘Drive’ by
R.E.M. This is an example of a poor segmentation where the
DTM model under-segments the “refrain” class (class 3) and the
constraints incorrectly expand class 6. 108

Figure IV.7 DTM segmentations and reference segmentation of ‘Lucy In
The Sky With Diamonds’ by The Beatles. The addition of
the musical constraints allows the DTM model to remove extra
segment classes when there are more mixture components than
necessary. 108

x

Figure IV.8 DTM segmentations and reference segmentation of ‘It’s Oh So
Quiet’ by Björk from the PopMusic dataset (Rand Index =
0.82, Pairwise F = 0.55). When there are more classes in the
reference segmentation than there are DTM components, the
model successfully ignores the smallest classes. 109

Figure IV.9 DTM segmentation of the song “Bohemian Rhapsody” by Queen.
The automatically generated tags show the most likely genre, the
most prevalent instrument or vocal characteristic, the emotion
evoked and a general description of each segment class. Treating
the song as a whole results in the general tags pop, female vocal,
pleasant and not very danceable. The y-axis labels are added by
the authors to highlight the musical or lyrical content of each
segment class. 109

Figure IV.102-D visualization of the distribution of song segments. Each
black dot is a song segment. Areas of the space are automatically
tagged based on the system described in Section IV.G.1. . . . 110

xi

LIST OF TABLES

Table II.1 Subject responses to final user test of user-centered gameplay
design. 19

Table II.2 Social engagement metrics measured at the final user test. . . 19
Table II.3 Pros and cons of Herd It promotional channels. 22
Table II.4 Herd It tags collected. Although Herd It has collected data to

train machine learning models of 127 tags, only the 25 tags that
are also found in the CAL500 and MGP datasets are used for
evaluation. 36

Table II.5 Average top-ten precision of four autotagging algorithms trained
on Herd It examples and tested on the CAL500 dataset; also
shown is the relative (top-ten precision) performance of these
Herd It-trained models compared to models trained on expert
MGP examples. “Random” shows the expected performance
from random guessing. 38

Table II.6 Comparison of the average number of training examples available
from various data sources and the resulting music tagging perfor-
mance. Top-ten precision, averaged over the 14 tags in common
between all three data sources and CAL500, is evaluated in ref-
erence to the CAL500 ground-truth, after training GMM-based
models for each tag. While collecting the fewest number of songs
for each tag, Herd It clearly provides more reliable examples
for training machine learning models than TagATune. Models
trained on examples collected by Herd It perform significantly
better than those learned from TagATune data (paired t-test,
95% significance level). 43

Table II.7 Automatic music summaries produced by GMM-based machine
learning models trained on Herd It data. For each song, the tags
in bold are automatically determined by the automatic tagging
system to be the most appropriate genre, instrument, emotion,
color and time. 45

Table III.1 Automatic annotations generated using the audio content. Words
in bold are output by our system and then placed into a
manually-constructed natural language template. 49

Table III.2 Music annotation results. Track-level models haveK = 8 mixture
components, word-level models have R = 16 mixture components.
A = annotation length (determined by the user), |V| = vocabu-
lary size. 73

Table III.3 Sound effects annotation results. A = 6, |V| = 348. 74
Table III.4 Music retrieval results. |V| = 174. 74
Table III.5 Music retrieval results for 2- and 3-word queries. 75

xii

Table III.6 Sound effects retrieval results. |V| = 348. 75
Table III.7 Qualitative music retrieval results for our SML model. Results

are shown for 1-, 2- and 3-word queries. 76

Table IV.1 Song segmentation of the RWC dataset. 94
Table IV.2 Song segmentation of the PopMusic dataset. 95
Table IV.3 Effect of musical constraints and boundary refinement on DTM-

MFCC segmentation of the PopMusic dataset. 96
Table IV.4 DTM boundary detection performance on the RWC dataset,

compared to a commercial online service “the EchoNest” and
the supervised method of [112]. 97

Table IV.5 DTM boundary detection performance on the PopMusic dataset
compared to EchoNest. 97

Table IV.6 Mean semantic KL divergence and tempo mismatch between a
DTM segment and another segment from the same class, from
the same song (but a different class) and from a different song,
averaged over all songs from the PopMusic dataset. Section
IV.G.B explains the Similar DT (bottom row). 101

xiii

ACKNOWLEDGEMENTS

I thank the following people who, in one way or another, made this work possible:

Damien O’Malley, for design, development and testing of Herd It, for

invaluable “board” meetings and for helping me avoid turning completely septic.

Brian McFee for teaching me how to hack, for fueling me with the funk

and for his boundless, unrelenting and always uplifting cynicism.

Antoni Chan for ideas, code, tunes, conversations, parties, lessons, recipes,

trips and basslines. Thanks a ton.

Douglas Turnbull for blazing the trail that I could stroll through.

Albert Lin, Nate Ricklin and Shay Har-Noy for continuing crazy adventures

and for the support and ambition to get the hell out of here. Fiiiiiiiiiiiiiles.

Michael Lyons for showing me Kyoto and teaching me that messing with

music really could be the subject of an engineering Ph.D thesis.

Garrison W.Cottrell for getting me started and then letting me go but

supporting me all the way. Thanks, dude.

Robert Hecht-Nielsen for giving me the inspiration to pursue greatness

and the conviction to believe that I deserve it.

Gert Lanckriet for winding me up and (finally) setting me free.

Soren Solari and Cecile Levasseur for getting me past those first two years.

Patrick Amihood, Chandra Murthy and David Wipf, may we surf together

forever.

All gurons, especially Matt Tong.

All of my Computer Audition Laboratory, especially Emanuele “Mario”

Coviello who carries on the torch, higher and brighter.

Arshia Cont, Sanjoy Dasgupta, Shlomo Dubnov, Charles Elkan, Ken

Kreutz-Delgado, Andrew Huynh, Reid Oda, Miller Puckette, Bhaskar Rao, Lawrence

Saul, David Torres, David Vanoni, Nuno Vasconcelos and all the professors, students,

researchers and staff at UCSD who tolerated, taught and inspired me through eight

great years.

xiv

Chapter 2, in full, has been submitted for publication of the material

as it may appear in Proceedings of the National Academy of Science, 2011, L.

Barrington, D. Turnbull and G.R.G. Lanckriet. The dissertation author was the

primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in IEEE

Transactions on Acoustics, Speech and Language Processing, 16(2) pp467-476, 2008,

D. Turnbull, L. Barrington, D. Torres and G.R.G. Lanckriet. The dissertation

author was investigator and co-author of this paper.

Chapter 4, in full, is a reprint of the material as it appears in IEEE

Transactions on Acoustics, Speech and Language Processing, 18(3) pp602-612, 2010,

L. Barrington, A.B. Chan and G.R.G. Lanckriet. The dissertation author was the

primary investigator and author of this paper.

xv

VITA

2001 Bachelor of Electronic Engineering
University College Dublin, Ireland

2004 Master of Science
Electrical Engineering (Signal and Image Processing)
University of California, San Diego

2012 Doctor of Philosophy
Electrical Engineering (Signal and Image Processing)
University of California, San Diego

PUBLICATIONS

L. Barrington, D. Turnbull and G.R.G. Lanckriet. Game-Powered Machine Learning.
Proceedings of the National Academy of Sciences, in press, 2012.

B. McFee, L. Barrington, and G.R.G. Lanckriet. Learning Similarity from Collabo-
rative Filters. In International Society for Music Information Retrieval Conference,
Utrecht, Netherlands, 2010.

E. Coviello, L. Barrington, G.R.G. Lanckriet and A.B. Chan. Automatic Music
Tagging with Time Series Models. In International Society for Music Information
Retrieval Conference, Utrecht, Netherlands, 2010.

L. Barrington, A.B. Chan and G.R.G. Lanckriet. Modeling Music as a Dynamic
Texture. IEEE Transactions on Audio, Speech and Language Processing, 18(3)
602-612, 2010.

L. Barrington, R. Oda and G.R.G. Lanckriet. Smarter Than Genius? Human
Evaluation of Music Recommender Systems. In International Society for Music
Information Retrieval Conference, Kobe, Japan, 2009.

L. Barrington, D. Turnbull, D. O’Malley and G.R.G. Lanckriet. User-Centered
Design of a Social Game to Tag Music. In Workshop on Human Computation,
Paris, France, 2009.

L. Barrington, D. Turnbull, M. Yazdani and G.R.G. Lanckriet. Combining Audio
Content and Social Context for Semantic Music Discovery. In Special Interest
Group on Information Retrieval, Boston, MA, 2009

L. Barrington, A.B. Chan and G.R.G. Lanckriet. Dynamic Texture Models of
Music. In International Conference on Acoustics, Speech and Signal Processing,
Taipei, Taiwan, 2009.

xvi

L. Barrington, T.K. Marks, J.H.W. Hsiao and Cottrell. NIMBLE: A Kernel Density
Model of Saccade-Based Visual Memory. Journal of Vision, 8(14):17, 1-14, 2008.

L. Barrington, M. Yazdani, D. Turnbull and G.R.G. Lanckriet. Combination of
Feature Kernels for Semantic Music Retrieval. In International Society for Music
Information Retrieval Conference, Philadelphia, PA, 2008.

D. Turnbull, L. Barrington and G.R.G. Lanckriet. Five Approaches to Collecting
Tags for Music. In International Society for Music Information Retrieval Conference,
Philadelphia, PA, 2008.

D. Turnbull, L. Barrington, D. Torres and G.R.G. Lanckriet. Semantic Annotation
and Retrieval of Music and Sound Effects. IEEE Transactions on Audio, Speech,
and Language Processing, 16(2), 467-476, 2008.

D. Torres, D. Turnbull, L. Barrington and G.R.G. Lanckriet 2007. Identifying Words
that are Musically Meaningful. In International Society for Music Information
Retrieval Conference, Vienna, Austria, 2007.

D. Turnbull, R. Liu, L. Barrington and G.R.G. Lanckriet. A Game-Based Approach
for Collecting Semantic Annotations of Music. In International Society for Music
Information Retrieval Conference, Vienna, Austria, 2007.

D. Turnbull, L. Barrington, D. Torres and G.R.G. Lanckriet. Towards Musical
Query-by-Semantic-Description using the CAL500 Data Set. In ACM Special
Interest Group on Information Retrieval, Amsterdam, Netherlands, 2007.

L. Barrington, T.K. Marks and G.W. Cottrell. NIMBLE: A Kernel Density Model of
Saccade-Based Visual Memory. In Cognitive Science Society Conference, Nashville,
TN, 2007.

L. Barrington, A.B. Chan, D. Turnbull and G.R.G. Lanckriet. Audio Information
Retrieval Using Semantic Similarity. In International Conference on Acoustics,
Speech and Signal Processing, Honolulu, HI, 2007.

D. Turnbull, L. Barrington and G.R.G. Lanckriet Modeling Music and Words. In
International Society for Music Information Retrieval Conference, Victoria, Canada,
2006.

L. Barrington and G.W. Cottrell. Automatic Visual Integration - Defragmenting
the Face. In Cognitive Science Society Conference, Vancouver, Canada, 2006.

L. Barrington, M. Lyons, D. Diegmann and S. Abe. Ambient Display Using Musical
Effects. In Intelligent User Interfaces, Sydney, Australia, 2006.

xvii

ABSTRACT OF THE DISSERTATION

Machines that Understand Music

by

Luke Barrington

Doctor of Philosophy in Electrical Engineering

(Signal and Image Processing)

University of California, San Diego, 2012

Professor Gert Lanckriet, Chair

Machine learning, signal processing and data mining are being combined to

analyze audio content in a relatively new field of research called computer audition.

This thesis develops and describes a number of computer audition methods and

shows how they can be applied to solve challenges including automatic tagging,

similarity and recommendation, search and discovery, and segmentation of music

content. To achieve these advances in music understanding requires human guidance.

A further contribution of this work is to pioneer game-powered machine learning that

uses crowdsourced human intelligence to guide the training of machine algorithms.

By leveraging human perception with machine automation, the work described in

this thesis presents a comprehensive approach to computer audition that leads to

the development of machines that understand music.

xviii

Chapter I

Introduction

1

2

The explosive rise of music creation, distribution and consumption in

digital formats has seen the emergence of a new field of research called computer

audition. Sometimes termed “music information retrieval” (MIR) or “machine

listening”, computer audition aims to advance automated methods for analyzing

and, ultimately, understanding music content : that is to “listen” to an music

waveform and extract useful information. The specific type of information, and the

uses to which it is put, range across a wide variety of application areas including

song similarity, music recommendation, tempo estimation, song structure analysis

and semantic music tagging i.e., description of music with relevant textual metadata,

including artist names, genres, emotions, instruments and more.

This thesis describes a number of computer audition methods and in-

vestigates their role in the aforementioned applications. The computer audition

advances reported here – as well as the long list of related work from colleagues in

the fields of MIR, machine learning, signal processing, acoustics, speech recognition,

computer vision, video processing, time-series analysis, data mining, collabora-

tive filtering, statistics, neuroscience, psychology and more – move towards the

development of machines that can indeed understand music. However there is,

as yet, no computer substitute that can begin to match the most sophisticated

music processing machinery in existence: the human mind. The ability to produce,

perceive, identify, analyze, describe, emote with and get down to music is a uniquely

human trait (well, almost [86]). Thus, machine understanding can best be derived

from human interpretation of music.

For this reason, this thesis proposes a novel method for advancing computer

audition that explicitly brings humans into the loop. Termed “Game-Powered

Machine Learning” and described in Chapter 2, this method exploits human social

networks online to “feed the machine”. Using a game called “Herd It” to collect

crowdsourced human consensus about semantic music interpretations, this game-

powered approach provides reliable information required to train machine learning

models of music. Chapter 3 continues by describing one of the first machine learning

3

algorithms for automatically tagging music content, that is describing music with

relevant words or “tags”. Termed a music autotagger, such algorithms can be used

to index audio content with semantic terms, powering a applications including

music search engines, song similarity and music recommendation and discovery.

While the model in Chapter 3 automates many human-like descriptions of music,

it’s analysis makes a simplifying assumption that ignores the temporal aspects

of how a piece of music changes from start to end. Chapter 4 takes steps to

redress this shortcoming by introducing a dynamic model of musical content. By

considering both the timbral and temporal aspects of a piece of music, this model

can automatically determine the structure of a song and points the way to more

descriptive representations of audio content.

With musicians all over the planet creating, recording, remixing and

sharing music like never before, we all have access to hundreds of millions of songs

with the push of a button. Computer audition and related work offer to help us

find the top hits, classic cuts and rare gems in this sea of content. By leveraging

advances in machine learning and crowdsourcing the unparalleled expertise of

human perception, this thesis describes how computers can describe, segment and

recommend audio content and brings us closer to the day when machines can

understand music.

Chapter II

Game-Powered Machine Learning

4

5

II.A Abstract

Searching for relevant content in a massive amount of multimedia infor-

mation requires that each image, video, or song be accurately annotated with a

large number of relevant semantic keywords, or tags. We introduce game-powered

machine learning, an integrated approach to annotating multimedia content that

combines the effectiveness of human computation, through online games, with

the scalability of machine learning. We investigate this framework for labeling

music. First, a socially-oriented music annotation game called Herd It collects

reliable music annotations based on the “wisdom of the crowds”. Second, these

annotated examples are used to train a supervised machine learning system. Third,

the machine learning system actively directs the annotation games to collect new

data that will most benefit future model iterations. Once trained, the system can

automatically annotate a corpus of music much larger than what could be labeled

using human computation alone. Automatically annotated songs can be retrieved

based on their semantic relevance to text-based queries (e.g., “funky jazz with

saxophone”, “spooky electronica”, etc.). Based on the results presented in this

chapter, we find that actively coupling annotation games with machine learning

provides a reliable and scalable approach to making searchable massive amounts of

multimedia data.

II.B Introduction

The last decade has seen an explosion in the amount of multimedia

content available online: over 3 billion images are uploaded to Facebook each

month1, YouTube users upload 24 hours of video content per minute2, and iTunes,

the world’s largest music retailer, offers a growing catalog of more than 13 million

songs3. Developing a semantic multimedia search engine – that enables simple

1http://www.facebook.com/press/info.php?statistics
2http://www.youtube.com/t/fact sheet
3http://www.apple.com/itunes/features/

6

discovery of relevant multimedia content as easily as Internet search engines (e.g.,

Google [16]) help us find relevant web pages – presents a challenge since the domain

of the query (text) differs from the range of the search results (images, video,

music).

To enable semantic search of non-textual content requires a mapping

between multimedia data and a wide vocabulary of descriptive tags. Describing

multimedia content with relevant semantics necessitates intervention from humans

who can understand and interpret the images, video or music. However, manual

tagging by human experts is too costly and time-consuming to be applied to billions

of data items. For example, Pandora, a popular Internet radio service, employs

musicologists to annotate songs with a fixed vocabulary of about five hundred tags.

They then create personalized music playlists by finding songs that share a large

number of tags with a user-specified seed song. After ten years of effort by up to 50

full-time musicologists, less than 1 million songs have been manually annotated4,

representing less than 8% of the current iTunes catalog.

Crowdsourcing has emerged as an affordable and scalable alternative to

expert annotation by engaging many non-expert contributors to label content online.

Participants are motivated through small monetary rewards5, or, even better, to

contribute for free by disguising tasks as fun games, appealing to scientific altruism,

or requiring it to access a service of interest. This distributed human computation

has been applied, e.g., to categorize galaxies6, fold proteins [26], transcribe old

books [121], classify smiles [123] and apply descriptive tags to images [120], web

pages [119] and music [63] (see Section II.B.1 for a review). Despite the promise of

recruiting vast amounts of free labor, human computation games have had limited

success in tagging the vast amount of multimedia content on the web: in 5 years,

the ESPgame [120] has collected labels for up to 100m images — roughly the same

number that are uploaded to Facebook daily — and TagATune [63] has labeled

4http://blog.pandora.com/faq/
5e.g., Amazon’s Mechanical Turk: http://mturk.amazon.com
6http://www.galaxyzoo.org

7

30,000 song clips, or about 0.23% of iTunes’ catalog.

Instead of requiring that humans manually label every image, video or song,

tagging can be partially automated using supervised machine learning algorithms

that learn how semantics relate to multimedia. Machine learning approaches discover

consistent patterns among a modest number of pre-labeled training examples and

then generalize this learned knowledge to label new, unlabeled data. The scalability

of computer automation offers the potential to categorize massive amounts of

multimedia information but reliability hinges on the quality of training data used.

For example, by learning from millions of example images of faces in all possible

poses, angles and lighting conditions, machine learning algorithms [117] rapidly

and reliably detect faces to automate focus in consumer digital cameras.

In this chapter, we propose and investigate game-powered machine learn-

ing as a reliable and scalable long-term solution to annotating large amounts of

multimedia content for semantic search, by leveraging the effectiveness of human

computation through online games with the scalability of supervised machine

learning. The main idea, illustrated for music search in Figure Figure II.1, is to

use an online annotation game to collect reliable, human-labeled examples that

are tailored for training a supervised machine learning system. Once trained, this

system can automatically annotate new content with the same tags that are used

in the game, rapidly propagating semantic knowledge to lots of multimedia content.

Through an active learning feedback loop, the games focus on collecting the data

that will most effectively improve future machine learning updates.

To validate the effectiveness of game-powered machine learning for music

search, we designed and developed “Herd It”, an online music annotation game that

motivates players to contribute tags for songs. In contrast to previous “games with

a purpose” which have aimed to annotate every image [120] or song [63, 73] on the

web, Herd It was designed with a different, unique and more realistic goal in mind:

to enable the active machine learning approach presented in Figure Figure II.1.

To this end, Herd It was designed to allow integration with a machine learning

8

How to tag every song on the web...
thousands of
songs tagged by
human gamers

millions of
songs tagged by
machine learning

Semantic Music Search
Machine intelligence ampli�es the wisdom
of the crowds to automate music tagging.

Now fans can easily search every song on
the web by describing music with words.

September
 Earth Wind and Fire

Onyonghasyo
 Skankin Pickle

Give it Up or Turnit Loose
 James Brown

Search Results

funky party music with horns SEARCH

Active requests for new training data are fed
back to Herd It to improve the system.

Machine Learning
Herd It provides reliable labels for music.
But even gamers can't tag every song.

Computers learn to recognize consistent
patterns in songs labeled with the same tag.

Machine learning can identify these patterns
and automatically tag lots of new music.

match (funky)

SONG B

SONG A

Social Gaming
To map songs to semantics requires
reliable, human descriptions of music.

Online games like Herd It motivate players to
contribute tags that best describe a song.

Herd It rewards consensus: if many players
agree on a tag for a song, we know it is reliable.

60 points

How does this song feel?

heavy
gert

funkymary
peter

dave

luke

laia

megan

mellow doug
sanjay

francois

Figure II.1 Game-powered machine learning framework for music annotation.

system that actively suggests training songs and tags, to be presented to users.

As a result, the game can collect the most effective data for training the machine

learning algorithm that then automates large-scale music tagging. Besides focusing

human effort on efficient data collection, active song and tag suggestion also made

gameplay more appealing.

We deploy this game-based machine learning system to investigate and

answer two important questions. First, we demonstrate that the collective wisdom

of Herd It’s crowd of non-experts can train machine learning algorithms as well

as expert annotations by paid musicologists. In addition, our approach offers

some distinct advantages over training based on static expert annotations: it is

cost-effective, scalable, and has the flexibility to model demographic and temporal

changes in the semantics of music. Second, we show that integrating Herd it

in an active learning loop allows to learn accurate tag models more effectively,

i.e., with less human effort, compared to a passive approach. We note that

the resulting data is publicly available on the Computer Audition Lab’s website:

http://cosmal.ucsd.edu/cal/.

9

II.B.1 Related Work on Human Computation

Herd It and similar “games with a purpose” [26, 59, 63, 73, 75, 120] offer

fun and competition as incentives to motivate wide-spread human participation in

scientific endeavors. Other human computation approaches engage participation

on a volunteer basis [15, 90,118] or use Amazon’s Mechanical Turk7 to offer small

monetary rewards in return for completing data labeling tasks [4, 78, 79, 95, 103,

104,116]. The majority of applications have focused on classifying text [4, 15, 103]

or images [79, 90,95,104,116,122] although speech transcription [75,78] and video

labeling [118] applications also exist. Vijayanarasimhan and Grauman [116] estimate

the human effort required on Mechanical Turk to obtain image labels of varying

granularity (i.e., weak labels for the entire image to explicit object segmentation

and tagging) and balance this with the value of information to the resulting

discriminative classifier.

Beyond labeling of multimedia data, human computation methods have

been applied to numerous fields where the so-called “wisdom of the crowds” provides

insight beyond what individual experts can offer. Crowdsourcing successes include

prediction markets for sports betting [29], product development scheduling [98],

company stocks [105] and political races [13].

Data collected by annotation games has been used to evaluate the output

of machine learning systems. E.g., data from the ESPgame [120] has been used

as a computer vision test set [71] and both MajorMiner [73] and TagATune [63]

have been used to evaluate and compare different music tagging algorithms [37, 64].

To date, attempts to use human computation to train machine learning systems

as accurately as training them from expert data have focused on using Amazon’s

Mechanical Turk, rather than games. Novotney et al. [78] use Mechanical Turk

to crowdsource transcriptions of phone conversations and find a small reduction

in performance of the resulting speech recognition system, compared to the same

system trained on expert transcriptions. Ambati et al. [4] also use Mechanical

7http://mturk.amazon.com/

10

Turk to collect 3,000 English translations of Spanish sentences and train a machine

translation system that rivals a system trained on expert annotations.

The proposed game-powered machine learning moves beyond monetary

incentives and collects training data for free, a potentially more sustainable and scal-

able approach. For example, human computation games for annotating multimedia

data have succeeded in collecting hundreds of thousands of tags for images [120] and

music [63], a significantly larger scale than most Mechanical Turk applications (e.g.,

thousands to tens of thousands of tags for images [104] or speech transcription [78]).

II.C Herd It - A Social Music Annotation Game

A player arriving at Herd It (www.HerdIt.org) is connected with “the

Herd” - all other players currently online - and the game begins. Each round of

Herd It begins by playing the same piece of music to all members of the Herd. A

variety of fun, simple minigames prompt players to choose from suggested tags that

describe different aspects of the music they hear (Figure Figure II.2 illustrates an

example of Herd It’s gameplay with further examples in Section II.C.1). In every

minigame, players are awarded points based on their agreement with the choices

made by the rest of the Herd, encouraging players to contribute tags that are likely

to achieve consensus.

Herd It’s goal is to collect training data that primes and improves the

machine learning system through an active learning loop by motivating human

players to provide reliable descriptions of a large number of example songs using a

dynamic vocabulary of tags. To achieve this goal, Herd It’s development followed

a user-centered design process [51] that aimed to create an intuitive, viral game

experience. A series of rapid prototypes were released every month and tested on

focus groups of 5-10 players, both in person at our lab and remotely online. During

each test, we evaluated factors including playability and appeal, user-interface

intuitiveness, viral potential and stability. Interviews and questionnaires completed

11

Gert

Laia

Damo

Doug

Brian

(a)

You chose ‘CALM’

carefree boring

calm

calm

calm

calm

calm

calm

calm

calm
LukeLuke

JJoe

RyanRyan

EEric

SSarahDorothyDorothyDorothy
CChrishris

JonJon
MMatthew TTomom

Luke

Joe

Ryan

Eric

SarahDorothy
Chris

Jon
Matthew Tom

(b)

Figure II.2 Illustration of Herd It gameplay. (a) Six bubbles float around the play

area, each suggesting a mood that might be evoked by the music that is playing.

The player clicks the bubble that they feel is most appropriate and all other bubbles

disappear with a pop. After 15 seconds, the minigame ends and (b) the player is

shown the choices made by the rest of the Herd. During this feedback period, an

“agree-O-meter” fills up as other members of the Herd are revealed to agree with

the player’s choice. Players are awarded points equal to the percentage of the Herd

that agreed with them, rewarding consensus with the Herd and implicitly collecting

reliable music tags.

by test subjects were used to evaluate the extent to which players were able to

focus on the music (ensuring reliable data collection), their awareness of the other

players (Herd It is a social game and a player’s score depends on the Herd), and

overall enjoyment (indicating likelihood of large-scale participation). Feedback

from test subjects led to improvements in the design and this process continued

until key performance measures were reached (e.g., 90% of players said they would

recommend Herd It to their friends, 100% understood the scoring system within

5 games; further results in Section II.D). Finally, wider alpha and beta releases

were used to refine design features and improve performance and stability before

Herd It’s launch.

12

The user-centered design process was instrumental in determining crucial

gameplay mechanics that differentiate Herd It from other music annotation games

(e.g., [63,73]). In particular our user tests discovered that, while free-text tagging

works well when annotating images (which tend to feature many obvious, easily-

named objects; see, e.g., [120]), many listeners found it difficult to produce and agree

on a variety of tags for music in a game environment without some priming. Asking

players to type their own descriptions of the music meant that the vast majority of

tags were confined to a limited vocabulary of generic tags, e.g., “rock”, “guitar”,

“drums”, “male/female vocalist” (MajorMiner [73] suffers from this problem). As

a result, the independent inputs of multiple players rarely converged on more

interesting tags (TagATune [63] avoids this problem by asking players to guess

whether they are listening to the same song, based on the free-text tags other

players entered, rather than requiring agreement on the exact tags). To achieve

both variety and consensus, Herd It’s novel solution is to suggest tags for player

confirmation, thereby controlling the vocabulary used to describe music while

maintaining simple and compelling gameplay. In addition, tag suggestion addresses

another, important design objective: it facilitates the active learning paradigm

depicted in Figure Figure II.1 which requires precise control over the data collected

from the Herd. Specifically, an active learning approach leverages machine learning

models to suggest {song,tag} combinations that, if confirmed by human players, are

most likely to produce useful training examples and optimize future model training.

Herd It’s tag suggestion mechanism enables this by focusing human labeling on

specific {song,tag} combinations. Vice versa, Herd It’s new tag suggestion design

benefits from it being powered with machine intelligence. Indeed, suggesting tags

randomly, rather than intelligently, was found to result in many minigames that

have no relevant choices and are not fun.

Next, to achieve widespread player engagement and thus maximize training

data collection, we found that Herd It should target the “casual” gamer. Unlike

the traditional computer gaming demographic (i.e., teenage boys) who enjoy long-

13

lasting games with complicated gameplay mechanics, casual games appeal to a much

wider demographic (e.g., skewed towards middle-aged women), are played in short

time increments (5-20 minutes) and feature simple but addicting gameplay [57].

Herd It’s simple, single-click gameplay, cartoon-ish minigame design, and intuitive

scoring metric were designed to attract a broad audience of casual gamers.

Third, based on the choices offered in a given minigame, different users may

end up describing a song differently, using either compatible tags (e.g., a “romantic”

song that is also described as “carefree”) or opposite tags (e.g., what sounds

“exciting” to one listener may be “boring” to another). Given this subjectivity

inherent in music appreciation, our design process revealed that it is important to

evaluate agreement in minigames in a (larger) group setting, as this enables clusters

of consensus to develop between the players, around multiple “right” answers. This

observation inspired us to make “the Herd” a central feature of the game, rather

than the player-vs-player mechanic used by other games (e.g., [63,120]). In addition,

our user tests determined that realtime, social interaction produced more compelling

gameplay than off-line group feedback (e.g., [73]). The group dynamic also makes

it more difficult for a few players to cheat and gain lots of points by coordinating

poor labeling (other measures to prevent cheating include randomizing tag order in

minigames and preventing a single player from entering multiple games).

Finally, since many individuals use music preference to communicate

information about their personality [92], players desired Herd It to be embedded

in a larger social music experience. For example, they requested the ability to

choose preferred genres, share music, create personal profiles and send challenges

and compare scores with friends. This led us to integrate the game within the

players’ existing social network by publicly releasing Herd It as an application on

Facebook.8Integrating Herd It with Facebook offers many avenues to engage players

(e.g., easy login, personalized messages, player photos) and to promote the game

to a wide audience (e.g., invites, challenges, fan pages). Facebook also provides

8www.facebook.com, the world’s most popular social networking site with over 500 million users

14

demographic and psychographic information about Herd It players (e.g., gender,

age, location, friend networks, favorite music), offering a hitherto unavailable level

of insight into how different people experience and describe music.

II.C.1 Herd It Minigames

In order to collect information about diverse aspects of the music as well

as to enhance engagement with players, Herd It features a variety of minigames

that prompt the Herd to describe the music they hear by:

• catching floating bubbles that describe emotions or instruments present in

the song,

• weighing responses to yes/no questions on a scale,

• selecting the most appropriate sub-genre from a grid,

• plotting emotional valence and arousal intensity on a Cartesian plane [59, 96]

and

• choosing the color that best matches the music.

Each minigame requires a single mouse-click for players to indicate their chosen

tag. In addition to the bubbles game depicted in Figure Figure II.2, screenshots in

Figures Figure II.3 and Figure II.4 illustrate the remaining Herd It minigames.

Following each minigame, the player can earn 20 bonus points by correctly

naming the song or the artist they have been listening to in a multiple-choice trivia

round (see Figure Figure II.5 for an illustration). The sequence of one minigame

and one trivia round is repeated for 5 different songs for a total of 10 rounds. At

the end of 10 rounds (lasting 2-3 minutes), a summary screen presents the final

scores, lists the songs that were played during the game and encourages players to

connect with the Herd and the rest of their social network.

15

Do you like this song? Do you like this song?

Doug

Laia
Eula

Luke

(a)

(b)

Figure II.3 Examples of Herd It’s minigames that (a) weigh the Herd’s response

to a yes/no question and (b) determine the most appropriate sub-genre for a song.

16

happy

calm energetic

sad

Brenda

Jennifer

Kim

Eric

Robert
Richard

GeorgeSara

happy

calm energetic

sad

(a)

(b)

Figure II.4 More examples of Herd It’s minigames that (a) collect two-dimensional

valence and arousal on a Cartesian plane and (b) enquire about the color evoked

by the music.

17

What SONG have you been listening to?

Time Is Running Out by Muse

E-Pro by Beck

Where Is My Mind? by The Pixies

Everything In Its Right Place by RadioheadD

C

B

A

Trivia Round

(a)

You heard
by

Correct
Everything In Its Right Place
Radiohead

+20

Trivia Round

(b)

Figure II.5 Illustration of Herd It’s trivia round. (a) Players can earn 20 bonus

points for correctly naming the song that they hear. (b) The correct song is revealed

after the player makes a choice. User testing determined that the familiar “name

that tune” challenge of the trivia round encouraged novice players to participate in

Herd It and the objective, “right/wrong” scoring provided a compelling counterpoint

to the subjective, consensus-based scoring of the minigames.

18

II.D Growing the Herd

To ensure that we would generate sufficient Herd It participation to make

the game-powered machine learning system viable, we engaged in a user-centered

design process [51] to examine the effect of a variety of design features aimed at

making the game fun, popular and possibly viral. Our primary goal in this formative

design process was to create a core gameplay experience that was understood by

the majority of players and discover problems with the interface that would prevent

reliable data collection. Over a 10-month period we conducted regular user-studies

both in our lab and in controlled online environments. Each test included at least 5

invited subjects and focused on issues-based (e.g., interviewer observed user mistakes

or confusions) and self-reported metrics (e.g., user verbally expressed frustration or

displeasure) [108]. Of the many innovative design features this iterative process

inspired and tested, a handful were found to be crucial for improving interface

usability and gameplay efficacy, including:

• computing player scores from percentage agreement with the rest of the Herd,

rather than an arbitrary scoring metric,

• customizing feedback animations that present a player with the Herd’s votes

for each individual minigame, rather than a single, generic results screen for

all minigames,

• including trivia rounds after each minigame, both to inform players about

songs they hear and just for fun,

• integrating players’ existing personal data and social network via Facebook,

rather than requiring them to create a new identity on Herd It,

To quantify the impact of these design iterations, subjects completed a questionnaire

at the end of each testing session that evaluated key gameplay metrics on a 3- or

5-point Likert scale. Table Table II.1 shows subject responses from the final user

test, at which point we had confidence that players who tried the game would likely

understand Herd It and contribute meaningful data.

19

Table II.1 Subject responses to final user test of user-centered gameplay design.

Are you aware of other

people playing with you?

Very aware Somewhat Not at all

64.3% 28.6% 7.1%

Did questions and words

correspond to the music?

Clearly Sort of Confusing

100% 0% 0%

Overall, how did you like

the game?

Great Good OK Bad Awful

35.7% 57.1% 7.1% 0% 0%

Our secondary goal during the formative design process was to create an

enjoyable, positive experience for Herd It players so as to maximize time spent

playing and user uptake. In order to grow the Herd, and thereby the amount of

data collected, this process inspired features that enabled players to:

• recommend Herd It, share scores and issue challenges to Facebook friends

• share music discovered during the game with Facebook friends

• chat in real-time with members of the Herd.

Figure Figure II.6 plots overall subject enjoyment of updated iterations of this

user-centered game design, refined based on player input. By the end of the design

process, users consistenly rated their experience as “Good” or “Great” and said

they were likely to share the game with their friends or challenge friends’ high

scores (see Table Table II.2).

Table II.2 Social engagement metrics measured at the final user test.

Definitely Likely Maybe Unlikely No Way

Would you try to beat a

friend’s high-score?

42.9% 50% 7.1% 0% 0%

Would you recommend

Herd It to your friends?

44.4% 44.4% 11.1% 0% 0%

20

Months of User-Centered Design
1 3 4 5 8 11

Awful

Bad

OK

Good

Great

Figure II.6 Evolution of overall game enjoyment over 10 months of user-centered

design and development.

In the next step of the design process, the most current version of Herd It

underwent continuous, larger-scale testing. The game was exposed to 200 online

users who provided feedback actively (web surveys, emails) and passively via live-

site metrics [108] (e.g., ratio of new visitors who registered, clickthrough rates,

number of games played, time on site). During this phase of the design process,

the core gameplay experience remained unchanged. We focused on enabling and

testing features designed to catalyze the continuous recruitment of human music

labelers, i.e., i) acquire new users and ii) encourage existing users to return and

play more games. For example, in order to track progress and save demographic

details, a new player arriving at HerdIt.org was required to “add” the Facebook

application before playing Herd It. Although this registration step was very simple

(one button click: similar to adding a Facebook friend), it proved to be a barrier

as not all players understood Herd It or why they should share their personal

information. Our user tests determined that we achieved more registrations when

new players were launched directly into a short demonstration game, rather than

21

being required to register immediately. In addition to instructing players on the

rules of Herd It, this scripted demo was chosen to include well-known, popular

songs and fun tags that would appeal to a wide audience and entice new users to

continue playing. Once registered, a new player was brought to the Herd It home

page. Multiple iterations of the home page design revealed that simplicity is key:

to maximize time spent playing, the home page offers just a few simple buttons

that immediately launch the user into the game. All ancillary features (high score

tables and statistics, friend invites, more information about Herd It, music search,

etc.) were removed to secondary pages accessed from a list of tabs.

Having enticed a new player to join the Herd, a number of design and

gameplay features were included to offer deeper content that would encourage them

to return and to invite their friends to join. Indeed, one of the motivations for the

social elements in Herd It’s design (i.e., multiple simultaneous players, group-based

scoring, Facebook integration, sharing of songs and scores, etc.) was to aid in the

viral distribution of the game. For example, players were prompted to invite their

friends at the end of a game where they accomplished certain achievements (e.g.,

setting a high-score, advancing in rank or surpassing a friend’s score). Increasing

ranks were awarded as users scored more points (e.g., “beginner”, “rock star”, “hip

hop hero”) and a scoreboard page tracked each user’s progress daily, weekly and

monthly and compared to their friends. Users could post clips of the songs they

had enjoyed while playing Herd It on their Facebook wall, sharing the musical

experience with their friends. Finally, a blog described some of the science behind

Herd It and polled users about suggested improvements to the game.

Once the design process was complete and the game was launched, Herd It

was promoted to a wide audience of wouldbe players. We leveraged a number

of external promotional channels, the advantages, effectiveness and drawbacks of

which are summarized in Table Table II.3. including: personal emails to friends and

co-workers; viral promotion through players’ social networks (suggesting Facebook

friends to invite, issuing high-score challenges to friends and sharing songs on

22

Table II.3 Pros and cons of Herd It promotional channels.

Emails to friends, family, coworkers and

music research mailing lists.

pros: high response rate from personal acquain-

tances

cons: not sustainable, responders were not

“gamers” and played few games on average

Viral social network promotion:

suggesting Facebook friends to invite,

issuing high-score challenges to friends

and sharing songs on Facebook wall.

pros: automatic, magnified traffic by leveraging

the social network of each new user

cons: low response rate to automated requests,

pop-up requests distract players

Affiliate promotion by contacting

musicians on MySpace and offering to

include their music in Herd It.

pros: artists were eager to expose their music to

potential new fans in Herd It

cons: relied on artists to promote Herd It to their

fans, slow, limited responses from most artists

Articles and interviews about music

research and Herd It released in the

scientific and popular press.

pros: wide distribution

cons: difficult to arrange, low percentage of audi-

ence converted to players

Posting articles to blogs and online

media.

pros: best combination of wide distribution and

audience response. The single biggest source of

traffic came in response to an article mentioning

Herd It on the technology news site slashdot.org

cons: sporadic and “bursty” – large response to

each article but traffic declined sharply after 2-3

days

Facebook wall); affiliate promotion by inviting musicians to include their songs in

Herd It and then promote the game to their fans; media articles and interviews,

both in print and online (e.g., blogs, technology news sites).

23

II.E Automatic Music Tagging

Statistical pattern recognition methods for tagging music begin by ex-

tracting features that summarize properties of the acoustic waveforms, essentially

“listening” to the musical signal. By considering a training set of reliably-labeled

songs, supervised machine learning algorithms identify statistical regularities in

these acoustic features that are predictive of descriptive tags like “bluegrass”,

“banjo”, “mellow” or “slow”. Machines can then generalize this knowledge by

detecting the presence of similar patterns in vast catalogs of new, untagged music,

thereby leveraging the accuracy of human labeling (to obtain the training set) with

the scalability of automated analysis to tag this new music content (once trained).

Machine learning methods for automatic music tagging continue to improve and,

given training data of sufficient quality, their accuracy approaches the ceiling set

by the inherent subjectivity of describing music with tags [111].

To thoroughly evaluate the efficacy of the game-powered machine learn-

ing paradigm depicted in Figure Figure II.1, we consider various state-of-the-art

autotagging algorithms for its machine learning component. This includes gener-

ative [28, 111] and discriminative [38, 72] approaches. Generative methods focus

on estimating the (class-conditional) distribution (e.g., with a Gaussian mixture

model (GMM), dynamic texture mixtures (DTM), etc.) of acoustic features that

are common among songs that human “trainers” have labeled with a given tag. By

evaluating the likelihood of features from a new song under the learned distribution,

the model determines the probability that the tag is a relevant description of

the song [111]. Discriminative methods, on the other hand, directly optimize a

decision rule to discriminate between a tag being present or absent for a given

audio clip. Similarly, evaluating the decision rule for a new song allows to obtain

tag probabilities (see following section for details). Just as Internet search engines

rank web-pages by their relevance to a text query, the tag probabilities output by

a model can be used to rank songs by their relevance to the tag.

24

II.F Automatic Music Tagging

Machine learning approaches to modeling the association between semantic

tags and spectral patterns in a musical waveform include discriminative learning

algorithms [8, 38, 72, 77, 84, 102, 125], unsupervised learning algorithms [12], and

generative models [28,53,84,91,111,114]. Of these approaches, generative models

are generally better suited to handling weakly-labeled data (i.e., where songs are

labeled only with the presence of some relevant tags) since they estimate audio

feature distributions that naturally emerge around audio content relevant to a tag,

while down-weighting irrelevant outliers. Furthermore, probabilistic rankings of

relevant songs for a given query tag emerge naturally from a generative model.

One of the music autotaggers used in this work, which is also the focus of

our active learning approach, is implemented using the generative machine learning

model of [111], based on Gaussian mixture models (GMMs). This model gave rise

to a top performing automatic music tagger in the 2008 MIREX evaluation [37].

After collecting training data (with some data collection method), the associations

between a vocabulary of tags, V, and a training song, X , are represented as

y = (y1, ..., y|V|) where yi > 0 if the tag wi has been positively associated with the

audio of X (e.g., if the consensus of Herd It players agrees that the tag wi is a

good description for the song) and yi = 0 otherwise. Figure Figure II.7(a) shows an

example of a group of songs that are all described with the tag “romantic”. Spectral

feature vectors xi extracted from the audio waveform at regular time intervals,

represent a song as a collection of vectors, or “bag of features”, X = {x1, ...,xT},

where T is proportional to the length of the song (Figure Figure II.7(b)). The system

learns a Gaussian mixture model (GMM) of the audio features for each song, using

the standard expectation-maximization (EM) algorithm [32] (Figure Figure II.7(c)).

These song-level GMMs are then combined efficiently into a tag-level GMM using

the hierarchical EM algorithm of [115] (Figure Figure II.7(d)). The result is a

model of P (x|wi), the distribution of acoustic features x that are associated with

25

tag wi:

P (x|wi) =
N∑
n=1

αinG(x|µin,Σi
n),

where G(·|µ,Σ) is a multivariate Gaussian distribution with mean µ and covariance

Σ, and the mixture weights αin are such that αin ≥ 0, ∀n and
N∑
n=1

αin = 1. In this

work, we use N = 16 component GMMs to model each tag.

To label a new song X using the vocabulary of tags, modeled as above, the

likelihood of the bag of features that represents the entire song is inferred under the

learned tag-level models using the näıve Bayes assumption of independence between

features: P (X|wi) =
∏T

t=1 P (xt|wi) (Figure Figure II.8(c)). Posterior probabilities

of each tag, for the new song X , are found using Bayes’ rule:

P (wi|X) =
P (X|wi)P (wi)

P (X)
,

where P (wi) is the prior probability that tag wi will appear in an annotation and

is assumed to be uniform; P (wi) = 1/|V|. The song prior, P (X), is obtained by

summing the song likelihoods over all |V| tags in the vocabulary:

P (X) =

|V|∑
v=1

P (X|wv)P (wv).

The final result is a set of semantic weights, P (wi|X), ∀wi ∈ V , probabili-

ties that suggest how well each tag in the vocabulary describes the song’s acoustic

content. The semantic weights for each tag are collected in a semantic multinomial,

a probability distribution that provides a rich description of the acoustic content

of a song (Figure Figure II.8(d)). While the alternative autotagging algorithms

examined in this chapter (i.e., [28, 38, 72]) use different models of the acoustic

content associated with each tag, they each allow to compute a similar probabilistic

description of the semantics of a song’s content. Given a semantic query, based

on a tag or set of tags, the relevant dimensions of the semantic multinomials are

selected to automatically rank songs by their relevance to the query.

26

P(x|romantic)

Tag ModelSong ModelsSong FeaturesTraining Songs
(a) (b) (c) (d)

Hierarchical
EM

Standard
EM

Feature
Extraction

romantic

Figure II.7 Training an automatic music tagger. (a) Human labelers provide

a training set of songs that have been reliably labeled with a given tag (e.g.,

“romantic”). (b) A “bag of features” represents the waveform of each training song.

(c) A Gaussian mixture model (GMM) of the acoustic features of each song is

learned using the EM algorithm [32]. (d) The GMMs for each song are combined

efficiently into a single GMM that models the acoustic features predictive of the

tag using a hierarchical EM algorithm [115].

...

P(x|romantic)

P(x|mellow)

P(x|hiphop)

Tag ProbabilitiesTag ModelsSong FeaturesNew Song

Semantic
AnnotationInference

Feature
Extraction

(a) (b) (c) (d)

...
P(

w
 χ

)
i|

0
w1w₂ w|ν|

Figure II.8 Automatically tagging a new song. (a) A new, unlabeled song is to be

analyzed by the automatic tagging system. (b) A “bag of features” represents the

waveform of the song. (c) The features are compared to previously-learned models

of each tag. (d) Tag probabilities are obtained, providing a semantic profile that

describes the song’s acoustic content.

27

II.F.1 Active Learning

Traditional machine learning approaches use a single, fixed training set

to learn models that, once trained, remain static. In our game-powered machine

learning framework however, new data is constantly being contributed by Herd It

players. That data can be used to update our tag models. Even more, since

Herd It’s design permits actively focusing players’ efforts on specific songs and tags,

it is possible to collect specifically that data that is expected to improve tag models

most effectively. This is achieved through an active learning approach [99], that

leverages the current tag models to identify the most effective song-tag pairs for

future model updates. Active learning fully integrates the autotagging algorithm

with the data collection process, to optimize model training. To investigate the

benefits of deploying Herd It in an active learning loop compared to updating

models with randomly collected data, we develop a novel active learning algorithm

to suggest data for training generative models and apply it with the GMM-based

autotagger, a top performing algorithm in the 2008 MIREX (Music Information

Retrieval Evaluation eXchange) evaluation of automatic music taggers [37].

Various active learning algorithms have been proposed for discriminative

machine learning methods,9 where both positive and negative examples are used to

learn a decision boundary between classes. Generative approaches, on the other

hand, require only positively-labeled examples for training (i.e., songs that exemplify

a certain tag) and negatively-labeled training examples offer no improvement to the

model.10 To collect positively-labeled training examples and improve a generative

model through active learning may suggest sampling unlabeled examples that

have high likelihood under the current model and procuring labels for them (e.g.,

by presenting {song,tag} pairs in Herd It minigames). However, this “certainty”

9Strategies for actively learning discriminative models include uncertainty sampling [67] — where
points are chosen that are least certain (or have highest entropy), under the current model (e.g., points
closest to the decision boundary) — and variance reduction [25] — where samples are chosen to reduce
the model’s output variance.

10For example, for generative models, uncertainty sampling faces the problem that unlabeled songs
which have low certainty under the current model are likely to result in negative labels.

28

sampling approach suffers from two drawbacks: early in training, when the model is

not yet well learned, the most likely samples may not in fact be positive examples

and thus will not contribute to the training set. Later in the learning process,

sampling from the most likely areas results in many confirmed positive examples

that conform to the model’s current training set and lack the diversity required to

generalize the current model to uncertain areas of the feature space. Exploration of

these uncertain areas advocates for a more random sampling of unlabeled examples.

Rather than a complete random sampling, we can actively increase the efficiency

of the data collection and, thus, the learning rate, by reducing the likelihood of

sampling unlabeled examples that are eventually labeled as negatives (which are

of no use to train the generative model). We achieve this by avoiding points

that most disagree with the current model. More specifically, we rank all of the

unlabeled examples by their likelihood under the current model, remove the 10%

of examples with lowest likelihood and query labels randomly from the remaining

90% of examples. By removing the least likely points and sampling randomly

elsewhere, we aim to avoid querying labels for negative examples and achieve

rapid confirmation of a diverse training set for our generative model. Preliminary

experiments for GMM modeling of music tags have shown that removing the 10%

least likely songs finds a good balance between exploring areas of the feature space

that are poorly modeled while avoiding points that are unlikely to result in positive

examples.11

II.F.2 Training Data Requirements

To determine the total amount of human labeling effort required to learn

a reliable tag model, we evaluate the machine learning performance, given a varying

number of training examples. Figure Figure II.9 shows the per-tag and average

11In a feature space of high dimension, d, the probability density of a Gaussian distribution with
variance σ is focused on a small shell a distance σ

√
d from the mean and thus the majority of points tend

to have very similar GMM likelihoods [31]. While this fact can make it difficult to identify positive points
based on likelihood, any points that have significantly lower than average likelihood can be excluded
with confidence.

29

performance of the GMM-based autotagger when trained on {10, 25, 50, 100, 133}

CAL500 songs per tag. Although absolute performance varies between individual

tags, on average, autotagger performance plateaus with 100 training examples.

With 2 clicks required to confirm one {song,tag} association and 100 songs sufficient

to learn a reliable tag model, our game-powered machine learning system requires

approximately 200 human inputs to capture the essential information about a tag.

0.2 0.4 0.6 0.8 1

folk
catchy

drum machine
pleasant

like
classic rock

happy
blues

alternative
bass guitar

mellow
rock

electronica
drum set

fast
recording quality

slow
hip hop

male lead vocals
acoustic

synthesizer
soft rock

punk
party

pop

Top 10 Precision

10 examples
25 examples
50 examples

100 examples
133 examples

Figure II.9 Autotagging top-ten precision as a function of the number of training

examples. For 25 tags in the CAL500 dataset with at least 133 songs, we train

multiple autotagging models by limiting the number of training examples to {10,

25, 50, 100, 133} songs. Vertical lines show the average performance at each limit:

10 songs is clearly insufficient but no improvement is gained beyond 100 training

examples (the averages for 100 and 133 examples are overlapping).

30

II.G Game-Powered Machine Learning

Our game-powered machine learning approach aims to collect sufficient

human labels, through game play, to train an automatic music annotation system

that can reliably generalize semantics to unlimited music. Qualitatively, we argue

that this crowdsourced approach is superior to requiring expert annotators as it is

less costly, more scalable and collects a dynamic dataset that can be adapted over

time to focus on the most relevant or important tags. To quantify the efficacy of our

game-powered machine learning framework, we conduct experiments designed to

answer the following two questions: i) Can machine learning algorithms be trained

with data collected from Herd It’s crowd of non-experts as accurately as with data

collected from paid expert musicologists? ii) Can accurate tag models be learned

with less human effort by encapsulating Herd It in an active learning framework?

To answer these questions, we deployed Herd It online, engaging 7,947 people to

provide over 140,000 clicks that associate songs with tags through 5 different types

of minigames.

To generate minigames in a passive system, without active learning, we

first generate a list of 10-20 candidate {song,tag} pairs, chosen randomly from the

authors’ personal music collection of over 6,000 popular songs from the past 70

years, and a vocabulary of 1,269 tags, including sub-genres, emotions, instruments,

usages, colors and more. To generate a particular minigame, one {song,tag} pair is

selected from the list of candidate pairs, biased by associations12 with the musical

genre Herd It players selected before starting the game (pop, rock, hip-hop, blues,

electronica or “everything”) and by the specific minigame (e.g., certain minigames

focus on sub-genres, colors or bi-polar adjectives). The remaining tags for the

minigame (each minigame suggests between 1 and 9 tags for player confirmation)

are chosen from the same tag category. Candidate {song,tag} pairs remain on the

list until they have been viewed in minigames by a maximum of 50 players. At

that point, a candidate {song,tag} pair is removed from the list and replaced by

12determined using the online music service http://last.fm

31

a new, randomly sampled one. Maintaining a reasonable list of candidate pairs

ensures diverse game play.

Consensus between players’ clicks collected in Herd It minigames is used to

“confirm” reliable {song,tag} associations. More specifically, the generative model of

labels, accuracies and difficulties, or “GLAD”, [123] conceives of each human input as

an estimate of the underlying true label that has been corrupted by player inaccuracy

and the difficulty of labeling the song. Using an expectation-maximization algorithm,

GLAD optimally combines the votes from all Herd It players and we confirm the

findings of [123] that the resulting consensus is more reliable than heuristics such

as majority vote, percentage agreement or vote thresholds. A {song,tag} pair is

presented in Herd It minigames until GLAD “confirms” a reliable association, based

on the historical click data for that {song,tag} pair. If a {song,tag} pair remains

unconfirmed after being viewed by 50 Herd It players, it is “rejected” and not

sampled further. Overall, GLAD confirmed 8,784 {song,tag} pairs, representing

song examples of 549 tags, while 256,000 pairs were rejected. To ensure that we

have enough data to train robust machine learning models and answer the first

question, we reduce the dataset to the 127 tags for which Herd It has identified

at least 10 reliable example songs. Data was collected passively (i.e., no active

learning) and this provides the baseline against which to compare an active learning

strategy and evaluate the second question.

To answer the first question, we quantify the efficacy of our game-powered

machine learning framework and compare it to “expert-trained” machine learning.

That is, we evaluate the performance of a music autotagging algorithm when

trained on i) the Herd It game data and ii) data derived from expert musicologists

at Pandora.com’s “Music Genome Project” (MGP), respectively. After training, the

accuracy of each autotagger is evaluated on CAL500 : an independent evaluation

set of 500 songs fully labeled by multiple humans using a controlled survey [111]

(see Section II.H for details about the CAL500 and MGP datasets). For this

comparison, we train and evaluate models of all tags that are available in both

32

the MGP and CAL500 vocabulary and for which Herd It has collected at least

ten confirmed example songs. This results in 25 tags. The models of each of these

tags are used to retrieve the 10 most relevant songs from the CAL500 corpus

for each single-tag query. These top-ten search results – automatically retrieved

by a machine – are evaluated by comparing to the CAL500 ground-truth, and

computing the precision (i.e., the number of songs in the machine-ranked top-ten

that the ground truth effectively associates with the tag). Finally, the precision

is averaged over all 25 tags. Since both Herd It and MGP models are instances

of the same machine learning algorithm, but trained on different data sets, any

significant differences in autotagging performance most likely reflect differences

in the quality of the respective training data sources. This allows us to evaluate

human computation games — Herd It, in particular — as a source of reliable

training data. To prevent bias induced by a particular choice of machine learning

algorithm, this comparison is repeated for multiple state-of-the-art autotagging

algorithms.

In addition to showing that game-powered machine learning can be com-

petitive with an expert-trained system, in a second step, we demonstrate the

efficacy of actively integrating machine learning with game-based data collection.

The baseline here is the passive approach outlined above, which “analyzes” (i.e.,

confirms or rejects through human labeling) {song,tag} pairs in random order.

As more {song,tag} pairs are analyzed (i.e., more human effort contributed), a

tag’s training set grows, tag models are updated and autotagging performance is

expected to improve. We compare this to an active learning paradigm which aims

to improve tag models more effectively by leveraging current models to select the

next {song,tag} pairs that will be analyzed. More precisely, for each of the 25

Herd It tags that were evaluated earlier, we collect all songs that appeared with

the tag (confirmed or rejected) in previous Herd It minigames. We then estimate

25 GMM-based tag models by engaging in an iterative training procedure, for each

tag, based on this list of “candidate” songs. At each iteration, we first compute the

33

likelihood, under the current tag model, of all remaining candidate songs and use

our active learning method for generative models to prioritize 10 candidate songs for

analysis with that tag (for the first iteration, candidate songs are chosen randomly).

That is, we use our active learning algorithm to re-sample {song,tag} pairs that

were previously presented in Herd It games. Songs for which the {song,tag} pair

was previously confirmed are added to the tag’s training set; the remaining, rejected

songs are removed from future candidate lists. Finally, we retrain the tag model

using the updated training set and evaluate its performance on the CAL500 test

set. We once again recompute the likelihood of all remaining candidate songs under

the updated model, actively select 10 candidate songs for analysis, retrain the tag

models, and so on. This is repeated up to 200 times, analyzing up to 2,000 songs

for each tag. At each iteration, we evaluate and average the performance of the 25

updated tag models. We compare this to the passive baseline, which corresponds

to sampling 10 songs randomly, for each tag, at each iteration.

II.H Music Data

In this section, we describe in more detail the data used in our experiments,

including the audio features, the MGP data and the CAL500 data.

II.H.1 Audio Features

The method in [111] used Mel-frequency cepstral coefficients (MFCCs)

[69] to capture the spectral content of short-time segments (approximately 5ms)

from each song. For the GMM autotagger used in this work, we instead use

the timbre coefficients computed using the feature extraction application pro-

gramming interface (API) offered online by EchoNest.com, and described at

http://developer.echonest.com/docs/method/get segments/. This open API pro-

duces audio descriptors very similar in content to MFCCs but combines feature

values over longer-time windows of homogenous audio (variable length but approxi-

34

mately 250ms), resulting in a more concise representation of each song (i.e., 100’s

vs. 10,000’s of feature vectors per song). Tingle et al. recently showed that these

EchoNest timbre feature vectors outperform MFCC feature vectors on the task of

automatic music tagging when using the GMM-based system [106]. As a result,

we use this feature representation and similarly find a (slight) improvement in

performance (results not shown). For the machine learning methods that represent

a song as a single feature vector (e.g., SVM [72] and Boosting [38]), we follow [72]

and represent each song as the concatenated mean and variance of it’s EchoNest

timbre features. For the DTM model, which requires a constant interval between

extracted feature vectors, we use the MFCCs described above.

Note: To augment content-based music search (based on features that

describe the acoustic content only), a wealth of metadata (e.g., artist and song

names, web search results [60], lyrics, song reviews, artist biographies, chart position,

playlists, etc.) can be collected. To take advantage of this additional information to

augment music search, one possible direction that has been explored, for example,

is the use of kernel-based methods that can learn from multiple kernels. Such

approaches combine kernels derived from the acoustic waveform with kernels derived

from metadata extracted online, when available. This improves the performance

of using either data source in isolation (e.g., [8, 74]). However, while metadata

is readily available for popular songs, in the case of undiscovered songs, where a

music search engine would be most useful, this information can not be relied upon

(e.g., new songs have not yet been reviewed, unknown artists do not have lyrics or

biographies available online). Thus, to satisfy the most general use case (including

undiscovered music), our game-powered machine learning solution focuses solely on

the only data that is guaranteed to be available: the acoustic waveform.

II.H.2 Training on Expert Labels: the Music Genome Project

The Music Genome Project (MGP), a subsidiary of the Internet radio

station Pandora.com, employs musicological experts to annotate music using com-

35

prehensive surveys. Over the past ten years and at a cost of many millions of

dollars, the MGP has labeled hundreds of thousands of songs with up to 500 tags.13

While these labels are presumably of very high quality, the MGP lexicon is static:

adding new styles of music or translating to another language requires laboriously

re-tagging all songs with the new vocabulary and, as musical styles change, the

tags can not be updated (e.g., contrast tags used to describe “classical” music with

those relating to “hip hop” or even “hip hop” in 1981 with “hip hop” in 2011).

Although we do not have access to the complete MGP data, we have collected a few

MGP tags for 10,000 songs by retrieving publicly-available information displayed on

Pandora.com [106]. Training machine learning models on this MGP subset allows

to evaluate our music retrieval system when trained on data derived from a small

group of expert labelers.

II.H.3 Evaluating on CAL500

At UCSD’s Computer Audition Laboratory (CAL), we collected ground-

truth data, similar to the Music Genome Project, by paying undergraduate music

students to listen to songs and complete a survey that labeled the songs with

relevant tags. The CAL500 dataset consists of 500 songs annotated with 149 tags

from categories related to musical genres, emotional content, instrumentation, vocal

characteristics and activities during which one might listen to the song [111]. Each

song was annotated by at least three individuals. It is important to note that,

unlike most data mined from online sources, the CAL500 dataset includes both

positive and negative associations between songs and tags. This makes CAL500

suitable for evaluating the output of automatic tagging systems as it is possible to

judge correct — and also incorrect — results14.

The CAL500 songs were used only for testing the machine learning models;

none were included in the training sets. Each learned model is used to rank all the

13http://blog.pandora.com/faq/
14Datasets that do not explicitly label negative associations between tags and songs are weakly labeled ;

the absence of a label may mean that the tag is truly not relevant or that no data was available for this
song-tag pair.

36

CAL500 songs by their relevance to the tag. For example, the model for the tag

“jazz” orders songs by how well they match patterns common to the jazz music in

the training set. The ranking is evaluated in reference to the CAL500 ground-truth

labels by computing the top-ten precision, the proportion of relevant songs among

the first ten results (e.g., the true number of “jazz” songs in the top-ten)15. High

top-ten precision means that many songs at the top of the machine-ranked list are

appropriate results for the query tag — exactly the goal of a music search engine16.

II.H.4 Tag Vocabulary

To learn reliable models, we consider only the 127 tags for which Herd It

players have confirmed at least ten training examples. Of these, we limit our

evaluation to the 25 tags that also appear in both the MGP dataset and the

CAL500 ground-truth dataset. Table Table II.5 details the size of the resulting

vocabulary used in our evaluation.

Table II.4 Herd It tags collected. Although Herd It has collected data to train

machine learning models of 127 tags, only the 25 tags that are also found in the

CAL500 and MGP datasets are used for evaluation.

1,269 unique tags used by Herd It players

549 ... confirmed by GLAD algorithm [123]

127 ... with at least 10 example songs confirmed

25 ... overlap with CAL500 and MGP datasets

15If there are only n < 10 relevant songs in the ground truth, only the top n results are evaluated.
16Other metrics that evaluate the complete ranking, such as mean average precision or the area under

the receiver operating characteristic curve, exhibit qualitatively similar trends to the results reported
here.

37

II.H.5 Dataset Availability

The song labels from all datasets collected for this work – Herd It, MGP

and CAL500 – are available on the Computer Audition Lab webpage http://

cosmal.ucsd.edu/cal/. Each dataset is presented as a flat text file where each

line has the format:

<song-name><TAB><tag-name>

While copyright issues preclude distribution of the audio files used in this work, all

audio features are made available.

II.I Results

II.I.1 Experiment 1: Comparison to Expert Annotations

Table Table II.5 presents the average precision of the top-ten music search

results for 25 single-tag queries on CAL500, achieved by training four state-of-the-

art autotagging algorithms on Herd It’s data. This is compared to the performance

obtained by training on expert MGP data. For each of the 25 tags common

to Herd It, MGP and CAL500, we evaluate the top-ten precision on CAL500

and average performance over all tags. While the absolute performance depends

on the machine learning method used, the relative performance between models

trained using Herd It and those that use MGP data remains consistently over

95%. These findings answer our first question by demonstrating that a game-based

machine learning system, trained on data collected from Herd It players, provides a

competitive alternative to a system trained on expert labeled data, across a variety

of algorithms.

Figure Figure II.10 offers a more detailed comparison of a Herd It and a

MGP based system, by examining the performance of each tag model learned by the

hierarchical GMM algorithm [111]. The ability of the machine learning algorithm

to model different tags varies (explaining the relatively large standard errors in

Table Table II.5), e.g., “acoustic”, “male lead vocals” and “hip hop” songs are more

38

Table II.5 Average top-ten precision of four autotagging algorithms trained on

Herd It examples and tested on the CAL500 dataset; also shown is the relative

(top-ten precision) performance of these Herd It-trained models compared to models

trained on expert MGP examples. “Random” shows the expected performance

from random guessing.

Autotagging

algorithm

Top-

10 Precision

Herd It

training

Herd It vs.

MGP

Hierarch. GMM [111] 0.40 95.8% ±4.6

Hierarch. DTM [28] 0.42 98.9% ±6.0

Boosting [38] 0.38 99.7% ±4.2

SVM [72] 0.38 95.6% ±7.2

Random 0.18 -

easily identified, while “hand drums” and “funk” music are poorly modeled. In

general, model performance is independent of the training data source (i.e., most

points lie close to the diagonal in Figure Figure II.10, indicating comparable results

for each system). Only the tag “synthesizer” was modeled significantly better

using MGP training data while the model trained on Herd It’s examples of the

tag “drum set” was significantly better (2-tailed t-test, 95% significance level). In

summary, Table Table II.5 and Figure Figure II.10 quantitatively demonstrate that

training from Herd It’s crowdsourced data captures knowledge similar to training

from expert annotations.

II.I.2 Experiment 2: Active Learning

We turn now to the second question: can integrating machine learning

and Herd It’s game-powered data collection in an active learning loop train accurate

models with less human effort than a passive system? To measure human effort,

39

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Herd It Top−Ten Precision

M
G

P
 T

op
−T

en
 P

re
ci

si
on

acoustic

alternative

blues

catchy
classic rock

country

danceable

drum set

electronica

female lead vocals

folk

funk
hand drums

hip hop

jazz

male lead vocals

mellow

metal

piano
poppunk

rock
slow

soul

synthesizer

Figure II.10 Top-ten precision for machine learning models trained on Herd It’s

crowdsourced data (x-axis) and models trained on data from the Music Genome

Project (y-axis). While absolute performance depends on the tag (e.g., “acoustic”

music is better modeled than “soul” music), on average (dashed lines) Herd It’s

crowdsourced data trains models that are as precise, at the tag-level, as models

learned from expert-labeled data.

we consider the number of {song,tag} pairs analyzed through Herd It gameplay,

expressed as the number of songs analyzed per tag (for each of the 25 tags being

modeled). Figure Figure II.11 displays the improvement in song retrieval perfor-

mance of the GMM autotagging algorithm as more songs are analyzed for each

tag (and, consequently, more training examples collected for model estimation),

following both an active learning and a random sampling strategy. The results

demonstrate an improved learning rate due to active learning: active learning

requires analyzing, on average, 550 songs per tag to get within one standard error

of expert-trained performance, while the passive strategy hits this performance

level after analyzing 1090 songs for each tag. We see significantly improved perfor-

mance due to active learning between 520 and 600 analyzed songs (paired t-test,

p=0.05). Fig. 4 highlights the improved efficiency by shading the learning curves

while performance is outside the MGP error: by prioritizing the order in which

40

{song,tag} pairs are presented to players, our active learning approach reduces the

human labeling effort required by half. A more detailed inspection of the results

reveals that active learning confirms an average of 36 training songs per tag, out of

550 analyzed candidates, versus 54, out of 1090, for random sampling. This shows

that active learning boosts the learning rate by suggesting fewer {song,tag} pairs

that eventually get rejected and are of no use for training (compared to suggesting

random {song,tag} pairs) while still producing a sufficiently diverse set of confirmed

training songs.
To

p−
Te

n
P

re
ci

si
on

Number of analyzed songs (per tag)
500 1000 1500 20000.2

0.25

0.3

0.35

0.4

0.45

Expert MGP
Herd It: active
Herd It: passive

Figure II.11 Music autotagging performance as a function of human effort (i.e.,

number of songs analyzed by Herd It players). For each of the 25 tags considered,

“passive” randomly selects songs for analysis while “active” leverages an active

learning paradigm. Each {song,tag} pair appeared in Herd It minigames until it

was either confirmed by GLAD or rejected after being presented to 50 players.

Y-axis plots the average precision of the top-ten search results returned by tag

models trained on all songs confirmed by Herd It at each 100-song increment on

the x-axis. Bands show the standard error of the mean and remain shaded while

performance is inferior to expert-trained models (550 songs for active, 1090 songs

for passive). Integrating active machine learning with Herd It’s data collection

improves the learning rate, achieving target performance (within error bands) with

less human effort.

Having demonstrated that Herd It data can train automatic music taggers

41

that are as accurate as an expert-trained system, we now compare the efficiency

of collecting tags from amateur players with that from trained experts. Pandora’s

musicological experts take 20-30 minutes to analyze and quantify the association

between a song and 100-500 semantic dimensions,17 a rate of about 12 song-tag

associations per expert-minute. Herd It minigames last about 30 seconds and

present, on average, 5.4 tags for player analysis. Thus, a single Herd It player

analyzes 10.8 song-tag associations per minute, a little less than the Pandora expert.

To quantify (i.e., confirm or reject) a song-tag association, the analysis of up to 50

players is required, versus that of one Pandora expert. So, Herd It’s game-based

approach gathers reliable tags from humans for free with about 2% the efficiency

of paid, expert labeling. Of course, Herd It’s lower efficiency is multiplied by the

number of simultaneous players in the Herd, which could be significantly larger than

the number of musicological experts that can be gainfully employed, simultaneously.

Moreover, while a human-only approach requires the same amount of

labeling effort for the first song as for the millionth, our game-powered machine

learning solution needs only a small, reliable training set before all future examples

can be labeled automatically. The latter improves efficiency and cost by orders

of magnitude. Tagging a new song takes about 4 seconds on a modern CPU:

with 8 parallel processors, it would take just a week to tag 1 million songs or

annotate Pandora’s complete song collection, which required a decade of effort from

dozens of trained musicologists. Table Table II.7 presents results for 7 example

songs, randomly chosen from personal music collections and never presented to

the system before. Each song is analyzed using the GMM autotagger trained

on all 127 tags for which Herd It has collected at least 10 reliable examples and

then described by inserting the most likely genre, instrument, emotion, color and

usage tags into a template sentence (as in [111]). The resulting “robot reviews”

qualitatively illustrate that the machine learning models trained on Herd It data

reliably label new music with a variety of tags. In general, musically objective

17http://blog.pandora.com/faq/

42

tags (e.g., “hip hop” and “disco”) are well-modeled by machine learning while the

subjective tags collected by Herd It’s more whimsical minigames are harder for

machine learning models to predict (e.g., the color evoked by the music or songs

that are “atmospheric” or “sexy”).

II.I.3 Experiment 3: Comparison to Other Music Annotation Games

The first principal experiment, comparing systems based on Herd It versus

MGP data, demonstrated that consensus derived from multiple non-experts playing

a human annotation game can train a multimedia retrieval system as reliably as

data from expert labelers. With Herd It, we designed a new, custom solution

as opposed to using existing music annotation games such as TagATune [63] or

MajorMiner [73] as a source of training data. In particular, TagATune connects

pairs of players and asks them to describe the music they hear by typing tags

on their computer keyboard. Based on their partner’s tags, players must guess

if they are listening to the same song or not. Likewise, MajorMiner’s tagging is

entirely user-driven. Herd It, on the other hand, is based on tag suggestion (and

confirmation by users), to focus human effort on a larger, more varied vocabulary

than TagATune or MajorMiner — which tend to focus on a small set of short,

obvious words like, e.g., “drums”, “rock”, “guitar”, etc. Moreover, while the aim of

previous games was to have music directly labeled by humans, we designed Herd It

explicitly to collect training data for labeling music with machine learning. By

suggesting tags for players to confirm, rather than asking players to input tags,

Herd It allows to focus data collection on tags (and songs) that are of most interest

to the modeling process, in a dynamic way (enabling an active learning loop, as

opposed to TagATune’s or MajorMiner’s more open-ended data collection).

To validate the motivation for designing Herd It as a new game, we

empirically compare GMM-based models trained on TagATune and Herd It data.

TagATune has released18 a dataset similar to Herd It’s: 10,000 song clips labeled

18http://tagatune.org/Magnatagatune.html

43

Table II.6 Comparison of the average number of training examples available

from various data sources and the resulting music tagging performance. Top-ten

precision, averaged over the 14 tags in common between all three data sources

and CAL500, is evaluated in reference to the CAL500 ground-truth, after training

GMM-based models for each tag. While collecting the fewest number of songs

for each tag, Herd It clearly provides more reliable examples for training machine

learning models than TagATune. Models trained on examples collected by Herd It

perform significantly better than those learned from TagATune data (paired t-test,

95% significance level).

Songs per Tag Top-Ten Prec.

TagATune [63] 88 0.368

MGP [106] 851 0.422

Herd It 46 0.424

with 188 user-generated tags. MajorMiner data was not explored as it is a private

evaluation set for the MIREX challenge [37]. Evaluation of GMM-based autotag-

ging models of the 14 tags that are common to TagATune, Herd It, MGP and

CAL500 demonstrates that, even with fewer examples of each tag, groups of Herd It

players provide more reliable training data than do pairs of TagATune players (see

Table Table II.6).

II.J Conclusions

We proposed game-powered machine learning as an integrated, scalable,

affordable and reliable solution to powering semantic search of massive amounts of

multimedia content, and investigated its efficacy for music search. Herd It, an online

music annotation game, collects reliable examples of how humans use semantic tags

to describe music. Although this human computation approach is insufficient to

44

label the millions of songs available on the web, the knowledge collected by our

game trains machine learning algorithms that can generalize tags to vast amounts

of new, unlabeled music. Compared to other music games with a purpose, Herd It

was specifically designed for and is actively integrated with the machine learning

algorithms, to provide the data that most effectively trains them.

Our results demonstrate, first of all, that game-powered machine learning

is as good as expert-based machine learning – i.e., annotations collected from

human computation games allow to train autotagging models as accurately as

expensive, expert annotations – while offering some distinct advantages (e.g.,

cost-effectiveness, scalability, flexibility to update tags presented in the game, or

replace them to focus learning on different tags of interest). Second, we show

that embedding Herd It in an active learning paradigm allows to train accurate

autotaggers more effectively, i.e., with less human effort, compared to a passive,

feed-forward approach. We conclude that actively integrating human computation

games and machine learning – combining targeted data collection by annotation

games, directed by machine learning, with automatic prediction by scalable machine

learning algorithms – enables simple, widespread multimedia search and discovery.

II.K Acknowledgements

Chapter 2, in full, is a reprint of the material as submitted for publication

in the Proceedings of the National Academy of Science. L. Barrington, D. Turnbull

and G.R.G Lanckriet, 2011. The dissertation author was the primary investigator

and author of this paper.

45

Table II.7 Automatic music summaries produced by GMM-based machine learning

models trained on Herd It data. For each song, the tags in bold are automatically

determined by the automatic tagging system to be the most appropriate genre,

instrument, emotion, color and time.

Wham!

“Careless whisper”

This soft rock song features male lead vocals, feels mellow, evokes

the color white and would be good to listen to on a rainy day.

Neil Young

“Heart of gold”

This folk song features bass guitar, feels slow, evokes the color orange

and would be good to listen to late at night.

Michael Jackson

“The way you make me feel”

This disco song features drum set, feels catchy, evokes the color

yellow and would be good to listen to at dusk.

Metallica

“One”

This rock song features male lead vocals, feels atmospheric, evokes

the color orange and would be good to listen to in the morning.

Lady Gaga

“Poker face”

This hip hop song features drum set, feels happy, evokes the color

red and would be good to listen to at a party.

The Flying Burrito

Brothers

“White line fever”

This folk-rock song features piano, feels acoustic, evokes the color

orange and would be good to listen to in the morning.

Eminem

“Kill you”

This hip hop song features drum machine, feels sexy, evokes the

color black and would be good to listen to late at night.

Chapter III

Semantic Annotation and

Retrieval of Music and Sound

Effects

46

47

III.A Abstract

We present a computer audition system that can both annotate novel

audio tracks with semantically meaningful words and retrieve relevant tracks from

a database of unlabeled audio content given a text-based query. We consider the

related tasks of content-based audio annotation and retrieval as one supervised

multi-class, multi-label problem in which we model the joint probability of acoustic

features and words. We collect a data set of 1700 human-generated annotations that

describe 500 Western popular music tracks. For each word in a vocabulary, we use

this data to train a Gaussian mixture model (GMM) over an audio feature space.

We estimate the parameters of the model using the weighted mixture hierarchies

expectation maximization algorithm. This algorithm is more scalable to large data

sets and produces better density estimates than standard parameter estimation

techniques. The quality of the music annotations produced by our system is

comparable with the performance of humans on the same task. Our ‘query-by-text’

system can retrieve appropriate songs for a large number of musically relevant

words. We also show that our audition system is general by learning a model that

can annotate and retrieve sound effects.

III.B Introduction

Music is a form of communication that can represent human emotions,

personal style, geographic origins, spiritual foundations, social conditions, and

other aspects of humanity. Listeners naturally use words in an attempt to describe

what they hear even though two listeners may use drastically different words when

describing the same piece of music. However, words related to some aspects of

the audio content, such as instrumentation and genre, may be largely agreed upon

by a majority of listeners. This agreement suggests that it is possible to create a

computer audition system that can learn the relationship between audio content

and words. In this paper, we describe such a system and show that it can both

48

annotate novel audio content with semantically meaningful words and retrieve

relevant audio tracks from a database of unannotated tracks given a text-based

query.

We view the related tasks of semantic annotation and retrieval of audio

as one supervised multi-class, multi-label learning problem. We learn a joint

probabilistic model of audio content and words using an annotated corpus of audio

tracks. Each track is represented as a set of feature vectors that is extracted by

passing a short-time window over the audio signal. The text description of a track

is represented by an annotation vector, a vector of weights where each element

indicates how strongly a semantic concept (i.e., a word) applies to the audio track.

Our probabilistic model is one word-level distributions over the audio

feature space for each word in our vocabulary. Each distribution is modeled using a

multivariate Gaussian mixture model (GMM). The parameters of a word-level GMM

are estimated using audio content from a set of training tracks that are positively

associated with the word. Using this model, we can infer likely semantic

annotations given a novel track and can use a text-based query to rank-order a

set of unannotated tracks. For illustrative purposes, Table Table III.1 displays

annotations of songs produced by our system. Placing the most likely words from

specific semantic categories into a natural language context demonstrates how our

annotation system can be used to generate automatic music reviews. Table Table

III.7 shows some of the top songs that the system retrieves from our data set, given

various text-based queries.

Our model is based on the supervised multi-class labeling (SML) model

that has been recently proposed for the task of image annotation and retrieval

by Carneiro and Vasconcelos [19]. They show that their mixture hierarchies

Expectation Maximization (EM) algorithm [115], used for estimating the parameters

of the word-level GMMs, is superior to traditional parameter estimation techniques

in terms of computational scalability and annotation performance. We confirm these

findings for audio data and extend this estimation technique to handle real-valued

49

Table III.1 Automatic annotations generated using the audio content. Words

in bold are output by our system and then placed into a manually-constructed

natural language template.

Frank Sinatra - Fly me to the moon

This is a jazzy, singer / songwriter song that is calming and sad. It features acoustic

guitar, piano, saxophone, a nice male vocal solo, and emotional, high-pitched vocals.

It is a song with a light beat and a slow tempo that you might like listen to while hanging

with friends.

Creedence Clearwater Revival - Travelin’ Band

This is a rockin’, classic rock song that is arousing and powerful. It features clean electric

guitar, backing vocals, distorted electric guitar, a nice distorted electric guitar solo,

and strong, duet vocals. It is a song with a catchy feel and is very danceable that you

might like listen to while driving.

New Order - Blue Monday

This is a poppy, electronica song that is not emotional and not tender. It features

sequencer, drum machine, synthesizer, a nice male vocal solo, and altered with

effects, high-pitched vocals. It is a song with a synthesized texture and with positive

feelings that you might like listen to while at a party.

Dr. Dre (feat. Snoop Dogg) - Nuthin’ but a ’G’ thang

This is dance poppy, hip-hop song that is arousing and exciting. It features drum

machine, backing vocals, male vocal, a nice acoustic guitar solo, and rapping, strong

vocals. It is a song that is very danceable and with a heavy beat that you might like listen

to while at a party.

(rather than binary) class labels. Real-valued class labels are useful in the context

of music since the strength of association between a word and a song is not always

all or nothing. For example, based on a study described below, we find that three

out of four college students annotate Elvis Presley’s “Heartbreak Hotel” as being a

‘blues’ song while everyone identified B.B. King’s “Sweet Little Angel” as being a

blues song. Our weighted mixture hierarchies EM algorithm explicitly models these

respective strengths of associations when estimating the parameters of a GMM.

The semantic annotations used to train our system come from a user

50

study in which we asked participants to annotate songs using a standard survey.

The survey contained questions related to different semantic categories, such as

emotional content, genre, instrumentation, and vocal characterizations. The music

data used is a set of 500 ‘Western popular’ songs from 500 unique artists, each of

which was reviewed by a minimum of three individuals. Based on the results of

this study, we construct a vocabulary of 174 ‘musically-relevant’ semantic keywords.

The resulting annotated music corpus, referred to as the Computer Audition Lab

500 (CAL500) data set, is publicly-available1 and may be used as a common test

bed for future research involving semantic music annotation and retrieval.

Though the focus of this work is on music, our system can be used to

model other classes of audio data and is scalable in terms of both vocabulary size

and training set size. We demonstrate that our system can successfully annotate

and retrieve sound effects using a corpus of 1305 tracks and a vocabulary containing

348 words.

The following section discusses how this work fits into the field of music

information retrieval (MIR) and relates to research on semantic image annotation

and retrieval. Sections III.D and III.E formulate the related problems of semantic

audio annotation and retrieval, present the SML model, and describe three param-

eter estimation techniques including the weighted mixture hierarchies algorithm.

Section III.F describes the collection of human annotations for the CAL500 data set.

Section III.G describes the sound effects data set. Section III.H reports qualitative

and quantitative results for annotation and retrieval of music and sound effects.

The final section outlines a number of future directions for this research.

III.C Related work

A central goal of the music information retrieval community is to create

systems that efficiently store and retrieve songs from large databases of musical

content [50]. The most common way to store and retrieve music uses metadata

1The CAL-500 data set can be downloaded from http://cosmal.ucsd.edu/cal.

51

such as the name of the composer or artist, the name of the song or the release date

of the album. We consider a more general definition of musical metadata as any

non-acoustic representation of a song. This includes genre and instrument labels,

song reviews, ratings according to bipolar adjectives (e.g., happy/sad), and purchase

sales records. These representations can be used as input to collaborative filtering

systems that help users search for music. The drawback of these systems is that

they require a novel song to be manually annotated before it can be retrieved.

Another retrieval approach, called query-by-similarity, takes an audio-

based query and measures the similarity between the query and all of the songs

in a database [50]. A limitation of query-by-similarity is that it requires a user

to have a useful audio exemplar in order to specify a query. For cases in which

no such exemplar is available, researchers have developed query-by-humming [30],

-beatboxing [3], and -tapping [39]. However, it can be hard, especially for an

untrained user, to emulate the tempo, pitch, melody, and timbre well enough to

make these systems viable [30]. A natural alternative is to describe music using

words, an interface that is familiar to anyone who has used an Internet search

engine. A good deal of research has focused on content-based classification of

music by genre [76], emotion [68], and instrumentation [41]. These classification

systems effectively ‘annotate’ music with class labels (e.g., ‘blues’, ‘sad’, ‘guitar’).

The assumption of a predefined taxonomy and the explicit labeling of songs into

(mutually exclusive) classes can give rise to a number of problems [83] due to the

fact that music is inherently subjective.

We propose a content-based query-by-text audio retrieval system that

learns a relationship between acoustic features and words from a data set of

annotated audio tracks. Our goal is to create a more general system that directly

models the relationship between audio content and a vocabulary that is less

constrained than existing content-based classification systems. The query-by-text

paradigm has been largely influenced by work on the similar task of image annotation.

We adapt a supervised multi-class labeling (SML) model [19] since it has performed

52

well on the task of image annotation. This approach views semantic annotation

as one multi-class problem rather than a set of binary one-vs-all problems. A

comparative summary of alternative supervised one-vs-all [44] and unsupervised

([14, 42]) models for image annotation is presented in [19].

Despite interest within the computer vision community, there has been

relatively little work on developing ‘query-by-text’ for audio (and specifically music)

data. One exception is the work of Whitman et al. ([124–126]). Our approach

differs from theirs in a number of ways. First, they use a set of web-documents

associated with an artist whereas we use multiple song annotations for each song

in our corpus. Second, they take a one-vs-all approach and learn a discriminative

classifier (a support vector machine or a regularized least-squares classifier) for

each word in the vocabulary. The disadvantage of the one-vs-all approach is that it

results in binary decisions for each word. We propose a generative multi-class model

that outputs a semantic multinomial distribution over the vocabulary for each song.

As we show in Section III.D, the parameters of the multinomial distribution provide

a natural ranking of words [19]. In addition, semantic multinomials are a compact

representation of an audio track which is useful for efficient retrieval.

Other query-by-text audition systems ([18, 102]) have been developed for

annotation and retrieval of sound effects. Slaney’s Semantic Audio Retrieval system

([101, 102]) creates separate hierarchical models in the acoustic and text space,

and then makes links between the two spaces for either retrieval or annotation.

Cano and Koppenberger propose a similar approach based on nearest neighbor

classification [18]. The drawback of these non-parametric approaches is that

inference requires calculating the similarity between a query and every training

example. We propose a parametric approach that requires one model evaluation

per semantic concept. In practice, the number of semantic concepts is orders of

magnitude smaller than the number of potential training data points, leading to a

more scalable solution.

53

III.D Semantic audio annotation and retrieval

This section formalizes the related tasks of semantic audio annotation

and retrieval as a supervised multi-class, multi-label classification problem where

each word in a vocabulary represents a class and each song is labeled with multiple

words. We learn a word-level (i.e., class-conditional) distribution for each word in a

vocabulary by training only on the audio tracks that are positively associated with

that word. A schematic overview of our model is presented in Figure Figure III.1.

III.D.1 Problem formulation

Consider a vocabulary V consisting of |V| unique words. Each ‘word’

wi ∈ V is a semantic concept such as ‘happy’, ‘blues’, ‘electric guitar’, ‘creaky door’,

etc. The goal in annotation is to find a set W = {w1, ..., wA} of A semantically

meaningful words that describe a query audio track sq. Retrieval involves rank

ordering a set of tracks (e.g., songs) S = {s1, ..., sR} given a set of query words

Wq. It will be convenient to represent the text data describing each song as an

annotation vector y = (y1, ..., y|V|) where yi > 0 if wi has a positive semantic

association with the audio track and yi = 0 otherwise. The yi’s are called semantic

weights since they are proportional to the strength of the semantic association. If

the semantic weights are mapped to {0, 1}, then they can be interpreted as class

labels. We represent an audio track s as a set X = {x1, ...,xT} of T real-valued

feature vectors, where each vector xt represents features extracted from a short

segment of the audio content and T depends on the length of the song. Our data

set D is a collection of track-annotation pairs D = {(X1,y1), ..., (X|D|,y|D|)}.

III.D.2 Annotation

Annotation can be thought of as a multi-class classification problem in

which each word wi ∈ V represents a class and the goal is to choose the best class(es)

for a given song. Our approach involves modeling a word-level distribution over

54

Figure III.1 Semantic annotation and retrieval model diagram.

an audio feature space, P (x|i), i ∈ {1, ..., |V|} for each word wi ∈ V . Given a track

represented by the set of audio feature vectors X = {x1, ...,xT}, we use Bayes’ rule

to calculate the posterior probability of each word in the vocabulary, given the

audio features:

P (i|X) =
P (X|i)P (i)

P (X)
, (III.1)

where P (i) is the prior probability that word wi will appear in an annotation.

If we assume that xa and xb are conditionally independent given word wi (i.e.,

xa ⊥ xb|wi, ∀a, b ∈ N ≤ T, a 6= b) , then

P (i|X) =

[∏T
t=1 P (xt|i)

]
· P (i)

P (X)
. (III.2)

The näıve Bayes assumption implies that there is no temporal relationship between

audio features. While this assumption of conditional independence is unrealistic,

attempting to model the temporal interaction between feature vectors may be

infeasible due to computational complexity and data sparsity. We assume a uniform

prior, P (i) = 1/|V|, for all i = 1, .., |V| since the T factors in the product will

dominate the word prior. We estimate the song prior P (X) by
∑|V|

v=1 P (X|v)P (v)

and arrive at our final annotation equation:

P (i|X) =

∏T
t=1 P (xt|i)∑|V|

v=1

∏T
t=1 P (xt|v)

. (III.3)

Note that by assuming a uniform word prior, the 1/|V| factor cancels out of the

equation.

55

Using word-level distributions (P (x|i), ∀i = 1, ..., |V|) and Bayes’ rule, we

use Equation III.3 to calculate the parameters of a semantic multinomial distribution

over the vocabulary. That is, each song in our database is compactly represented

as a vector of posterior probabilities p = {p1, ..., p|V|} in a ‘semantic space’, where

pi = P (i|X) and
∑

i pi = 1. An example of such a semantic multinomial is given

in Figure Figure III.2. To annotate a track with the A best words, we use the

word-level models to generate the track’s semantic distribution and then choose the

A largest peaks of the multinomial distribution, i.e., the A words with maximum

posterior probability.

III.D.3 Retrieval

Given the one-word query string wq, a straightforward approach to retrieval

involves ranking songs by P (X|q) =
∏T

t=1 P (xt|q), where again we use the word-

level distribution P (x|q) and make the näıve Bayes assumption. However, we find

empirically that this approach returns almost the same ranking for every word in

our vocabulary. The first reason for this is length bias: longer tracks (with more

feature vectors) have lower likelihoods resulting from the product of additional

probability terms (i.e., T is larger). It has been argued that the underestimation of

the likelihood is due to the poor näıve Bayes assumption [93]. The second, more

subtle, problem is due to the fact that many word-level distributions P (x|q) are

similar (in the Kullback-Leibler sense) to the generic distribution P (x) over the

audio feature vector space2. This creates a track bias in which generic tracks that

have high likelihood under this generic distribution will also have high likelihood

under many of the word-level distributions.

Both of these problems can be solved by dividing P (X|q) by the track

prior P (X) to normalize for both length and track bias. Note that, if we assume a

2This may be caused by using a general purpose audio feature representation that captures additional
information besides the specific semantic notion that we are attempting to model. For example, since
most of the songs in our training corpus feature vocals, guitar, bass and drums, we would expect most
Rolling Stones’ songs to be more likely than most Louis Armstrong songs with respect to both the generic
distribution P (x) and most word-level distributions P (x|q).

56

uniform word prior (which doesn’t affect the relative ranking), this is equivalent

to ranking by P (q|X) which is calculated in Equation III.3 during annotation.

That is, we first annotate our audio corpus by estimating the parameters of a

semantic multinomial for each track. Once we have a query multinomial, we rank

all the songs in our database by the Kullback-Leibler (KL) divergence between the

query multinomial q and each semantic multinomial. The KL divergence between

q and a semantic multinomial p is given by [27]:

KL(q||p) =

|V|∑
i=1

qi log
qi
pi
, (III.4)

where the query distribution serves as the ‘true’ distribution. Since qi = ε is

effectively zero for all words that do not appear in the query string, a one-word

query wi reduces to ranking by the i-th parameter of the semantic multinomials.

For a multiple-word query, we only need to calculate one term in Equation III.4 per

word in the query. This leads to a very efficient and scalable approach for music

retrieval in which the majority of the computation involves sorting the D scalar

KL divergences between the query multinomial and each song in the database.

III.E Parameter Estimation

For each word wi ∈ V, we learn the parameters of the word-level (i.e.,

class-conditional) distribution, P (x|i), using the audio features from all tracks that

have a positive association with word wi. Each distribution is modeled with a

R-component mixture of Gaussians distribution parameterized by {πr, µr,Σr} for

r = 1, ..., R. The word-level distribution for word wi is given by:

P (x|i) =
R∑
r=1

πrN (x|µr,Σr),

where N (·|µ,Σ) is a multivariate Gaussian distribution with mean µ, covariance

matrix Σ, and mixing weight πr. In this work, we consider only diagonal covariance

matrices since using full covariance matrices can cause models to overfit the training

57

angry

exc
itin

gnot c
alm

ing dance
 pop

funk

sy
nth

esiz
er

dance
able

exe
rci

zin
g

ca
ll &

 re
sp

onse

str
ong

EMOTION USAGE VOCAL
CHARACTERISTIC

SONG
CHARACTERISTIC

GENRE INSTRUMENT

P(x | word)

Figure III.2 Semantic multinomial distribution over all words in our vocabulary

for the Red Hot Chili Pepper’s ”Give it Away”. Word categories are indicated by

color. The 10 most probable words are labeled.

58

Figure III.3 (a) Direct, (b) naive averaging, and (c) mixture hierarchies parameter

estimation. Solid arrows indicate that the distribution parameters are learned using

standard EM. Dashed arrows indicate that the distribution is learned using mixture

hierarchies EM.

data while scalar covariances do not provide adequate generalization. The resulting

set of |V| models each have O(R · D) parameters, where D is the dimension of

feature vector x.

We consider three parameter estimation techniques for learning the param-

eters of a word-level distributions: direct estimation, (weighted) modeling averaging,

and (weighted) mixture hierarchies estimation. The techniques are similar in that,

for each word-level distribution, they use the Expectation-Maximization (EM)

algorithm for fitting a mixture of Gaussians to training data. They differ in how

they break down the problem of parameter estimation into subproblems and then

merge these results to produce a final density estimate.

III.E.1 Direct estimation

Direct estimation trains a model for each word wi using the superset

of feature vectors for all the songs that have word wi in the associated human

annotation:
⋃
Xd, ∀d such that [yd]i > 0. Using this training set, we directly

learn the word-level mixture of Gaussians distribution using the EM algorithm (see

Figure Figure III.3a). The drawback of using this method is that computational

complexity increases with training set size. We find that, in practice, we are unable

59

to estimate parameters using this method in a reasonable amount of time since there

are on the order of 100,000’s of training vectors for each word-level distribution.

One suboptimal work around to this problem is to simply ignore (i.e., subsample)

part of the training data.

III.E.2 Model averaging

Instead of directly estimating a word-level distribution for wi, we can first

learn track-level distributions, P (x|i, d) for all tracks d such that [yd]i > 0. Here we

use EM to train a track-level distribution from the feature vectors extracted from a

single track. We then create a word-level distribution by calculating a weighted

average of all the track-level distributions where the weights are set by how strongly

each word wi relates to that track:

PX|Y(x|i) =
1

C

|D|∑
d=1

[yd]i

K∑
k=1

π
(d)
k N (x|µ(d)

k ,Σ
(d)
k),

where C =
∑

d[yd]i is the sum of the semantic weights associated with word wi, |D|

is total number of training examples, and K is the number of mixture components

in each track-level distribution (see Figure Figure III.3b).

Training a model for each track in the training set and averaging them

is relatively efficient. The drawback of this non-parametric estimation technique

is that the number of mixture components in the word-level distribution grows

with the size of the training database since there will be K components for each

track-level distribution associated with word wi. In practice, we may have to

evaluate thousands of multivariate Gaussian distributions for each of the feature

vectors xt ∈ Xq of a novel query track, Xq. Note that Xq may contain thousands of

feature vectors depending on the audio representation.

III.E.3 Mixture hierarchies estimation

The benefit of direct estimation is that it produces a distribution with a

fixed number of parameters. However, in practice, parameter estimation is infeasible

60

without subsampling the training data. Model averaging efficiently produces

a distribution but it is computationally expensive to evaluate this distribution

since the number of parameters increases with the size of the training data set.

Mixture hierarchies estimation is an alternative that efficiently produce a word-level

distribution with a fixed number of parameters [115].

Consider the set of |D| track-level distributions (each with K mixture

components) that are learned during model averaging estimation for word wi. We

can estimate a word-level distribution with R components by combining the |D| ·K

track-level components using the mixture hierarchies EM algorithm. (see Figure

Figure III.3c). This EM algorithm iterates between the E-step and the M-step as

follows:

E-step: Compute the responsibilities of each word-level component r to a track-

level component k from track d:

hr(d),k =
[yd]i

[
N (µ

(d)
k |µr,Σr)e

− 1
2

Tr{(Σr)−1Σ
(d)
k }
]π(d)

k N

πr∑
l

[
N (µ

(d)
k |µl,Σl)e

− 1
2

Tr{(Σl)−1Σ
(d)
k }
]π(d)

k N

πl

,

where N is a user defined parameter. In practice, we set N = K so that on average

π
(d)
k N is equal to 1.

M-step: Update the parameters of the word-level distribution

πnewr =

∑
(d),k h

r
(d),k

W ·K
, , where W =

|D|∑
d=1

[yd]i

µnewr =
∑
(d),k

zr(d),kµ
(d)
k , where zr(d),k =

hr(d),kπ
(d)
k∑

(d),k h
r
(d),kπ

(d)
k

,

Σnew
r =

∑
(d),k

zr(d),k

[
Σ

(d)
k + (µ

(d)
k − µt)(µ

(d)
k − µt)

T
]
.

From a generative perspective, a track-level distribution is generated by

sampling mixture components from the word-level distribution. The observed audio

features are then samples from the track-level distribution. Note that the number of

61

parameters for the word-level distribution is the same as the number of parameters

resulting from direct estimation yet we learn this model using all of the training data

without subsampling. We have essentially replaced one computationally expensive

(and often impossible) run of the standard EM algorithm with |D| computationally

inexpensive runs and one run of the mixture hierarchies EM. In practice, mixture

hierarchies EM requires about the same computation time as one run of standard

EM.

Our formulation differs from that derived in [115] in that the responsibility,

hr(d),k, is multiplied by the semantic weight [yd]i between word wi and audio track

sd. This weighted mixture hierarchies algorithm reduces to the standard formulation

when the semantic weights are either 0 or 1. The semantic weights can be interpreted

as a relative measure of importance of each training data point. That is, if one

data point has a weight of 2 and all others have a weight of 1, it is as though the

first data point actually appeared twice in the training set.

III.F Semantically Labeled Music Data

Perhaps the fastest and most cost effective way to collect semantic in-

formation about music is to mine web documents that relate to songs, albums

or artists [109, 126]. Whitman et al. collect a large number webpages related to

the artist when attempting to annotate individual songs [126]. One drawback of

this methodology is that it produces the same training annotation vector for all

songs by a single artist. This is a problem for many artists, such as Paul Simon

and Madonna, who have produced an acoustically diverse set of songs over the

course of their careers. In previous work, we take a more song-specific approach by

text-mining song reviews written by expert music critics [109]. The drawback of

this technique is that critics do not explicitly make decisions about the relevance of

each individual word when writing about songs and/or artists. In both works, it

is evident that the semantic labels are a noisy version of an already problematic

62

‘subjective ground truth.’

To address the shortcomings of noisy semantic data mined from text-

documents, we decided to collect a ‘clean’ set of semantic labels by asking human

listeners to explicitly label songs with acoustically-relevant words. We considered

135 musically-relevant concepts spanning six semantic categories: 29 instruments

were annotated as present in the song or not; 22 vocal characteristics were annotated

as relevant to the singer or not; 36 genres, a subset of the Codaich genre list [?],

were annotated as relevant to the song or not; 18 emotions, found by Skowronek

et al. [?] to be both important and easy to identify, were rated on a scale from

one to three (e.g., ”not happy”, ”neutral”, ”happy”); 15 song concepts describing

the acoustic qualities of the song, artist and recording (e.g., tempo, energy, sound

quality); and 15 usage terms from [55] (e.g., “I would listen to this song while

driving, sleeping, etc.”).

The music corpus is a selection of 500 Western popular songs from the

last 50 years by 500 different artists. This set was chosen to maximize the acoustic

variation of the music while still representing some familiar genres and popular

artists. The corpus includes 88 songs from the Magnatunes database [45], one from

each artist whose songs are not from the classical genre.

To generate new semantic labels, we paid 66 undergraduate students

to annotate our music corpus with the semantic concepts from our vocabulary.

Participants were rewarded $10 per hour to listen to and annotate music in a

university computer laboratory. The computer-based annotation interface contained

a MP3 player and an HTML form. The form consisted of one or more radio boxes

and/or check boxes for each of our 135 concepts. The form was not presented

during the first 30 seconds of song playback to encourage undistracted listening.

Subjects could advance and rewind the music and the song would repeat until they

completed the annotation form. Each annotation took about 5 minutes and most

participants reported that the listening and annotation experience was enjoyable.

We collected at least 3 semantic annotations for each of the 500 songs in our music

63

corpus and a total of 1708 annotations. This annotated music corpus is referred to

as the Computer Audition Lab 500 (CAL500) data set.

III.F.1 Semantic Feature Representation

We expand the set of concepts to a set of 237 words by mapping all bipolar

concepts to two individual words. For example, ‘tender’ gets mapped to ‘tender’

and ‘not tender’ so that we can explicitly learn separate models for tender songs

and songs that are not tender. Note that, according to the data that we collected,

many songs may be annotated as neither tender nor not tender. Other concepts,

such as genres or instruments, are mapped directly to a single word.

For each song, we have a collection of human annotations where each

annotation is a vector of numbers expressing the response of a subject to a set of

words. For each word, the annotator has supplied a response of +1 or -1 if the

annotator believes the song is or is not indicative of the word, or 0 if unsure. We

take all the annotations for each song and compact them to a single annotation

vector by observing the level of agreement over all annotators. Our final semantic

weights y are

[y]i = max

(
0,

[
#(Positive Votes)−#(Negatives Votes)

#(Annotations)

]
i

)
.

For example, for a given song, if four annotators have labeled a concept wi with +1,

+1, 0, -1, then [y]i = 1/4. The semantic weights are used for parameter estimation.

For evaluation purposes, we also create a binary ‘ground truth’ annotation

vector for each song. To generate this vector, we label a song with a word if a

minimum of two people vote for the word and there is a high level of agreement

([y]i = .80) between all subjects. This assures that each positive label is reliable.

Finally, we prune all words that are represented by fewer than five songs. This

reduces our set of 237 words to a set of 174 words.

64

III.F.2 Music Feature Representation

Each song is represented as a bag-of-feature-vectors : a set of feature vectors

where each vector is calculated by analyzing a short-time segment of the audio signal.

In particular, we represent the audio with a time series of Delta-MFCC feature

vectors [17]. A time series of Mel-frequency cepstral coefficient (MFCC) [89] vectors

is extracted by sliding a half-overlapping, short-time window (∼23 msec) over the

song’s digital audio file. A Delta-MFCC vector is calculated by appending the first

and second instantaneous derivatives of each MFCC to the vector of MFCCs. We

use the first 13 MFCCs resulting in about 5,200 39-dimensional feature vectors per

minute of audio content. The reader should note that the SML model (a set of

GMMs) ignores the temporal dependencies between adjacent feature vectors within

the time series. We find that randomly sub-sampling the set of delta cepstrum

feature vectors so that each song is represented by 10,000 feature vectors reduces

the computation time for parameter estimation and inference without sacrificing

overall performance.

We have also explored a number of alternative feature representations,

many of which have shown good performance on the task of genre classification,

artist identification, song similarity, and/or cover song identification [36]. These

include auditory filterbank temporal envelope [76], dynamic MFCC [76], MFCC

(without derivatives), chroma features [40], and fluctuation patterns [85]. While a

detailed comparison is beyond the scope of this paper, one difference between these

representations is the amount of the audio content that is summarized by each

feature vector. For example, a Delta-MFCC vector is computed from less than 80

msec of audio content, a dynamic MFCC vector summarizes MFCCs extracted over

3/4 of a second, and fluctuation patterns can represent information extracted from

6 seconds of audio content. We found that Delta-MFCC features outperformed the

other representations with respect to both annotation and retrieval performance.

65

III.G Semantically Labeled Sound Effects Data

To confirm the general applicability of the SML model to other classes

of audio data, we show that we can also annotate and retrieve sound effects. We

use the BBC sound effects library which consists of 1305 sound effects tracks [102].

Each track has been annotated with a short 5-10 word caption. We automatically

extract a vocabulary consisting of 348 words by including each word that occurs in

5 or more captions. Each caption for a track is represented as a 348-dimensional

binary annotation vector where the i-th value is 1 if word wi is present in the

caption, and 0 otherwise. As with music, the audio content of the sound effect track

is represented as a time series of Delta-MFCC vectors, though we use a shorter

short-time window (∼11.5 msec) when extracting MFCC vectors. The shorter time

window is used in an attempt to better represent important inharmonic noises that

are generally present in sound effects.

III.H Model evaluation

In this section, we quantitatively evaluate our SML model for audio

annotation and retrieval. See Chapter 2 for a comparision of the model described

here to other algorithms for automatic music tagging (e.g., SVM [72], Boosting

[38] and Dynamic Texture Mixtures [28]). In this Section, we evaluate our two

GMM-based SML models and compare them against three baseline models. The

parameters for one SML model, denoted ‘MixHier’, are estimated using the weighted

mixture hierarchies EM algorithm. The second SML model, denoted ‘ModelAvg’,

results from weighted modeling averaging. Our three baseline models include a

‘Random’ lower bound, an empirical upper bound (denoted ‘UpperBnd’), and a

third ‘Human’ model that serves as a reference point for how well an individual

human would perform on the annotation task.

The ‘Random’ model samples words (without replacement) from a multino-

mial distribution parameterized by the word prior distribution, P (i) for i = 1...|V|,

66

estimated using the observed word counts of a training set. Intuitively, this prior

stochastically generates annotations from a pool of the most frequently used words

in the training set. The ‘UpperBnd’ model uses the ground truth to annotated

songs. However, since we require that each model use a fixed number of words to

annotate each song, if the ground truth annotation contains too many words, we

randomly pick a subset of the words from the annotation. Similarly, if the ground

truth annotation contains too few words, we randomly add words to the annotation

from the rest of the vocabulary.

Lastly, we will compare an individual’s annotation against a ‘ground truth’

annotation that is found by averaging multiple annotations (i.e., an annotation

based on group consensus). Specifically, the ‘Human’ model is created by randomly

holding out a single annotation for a song that has been annotated by 4 or more

individuals. This model is evaluated against a ‘ground truth’ that is obtained

combining the remaining annotations for that song. (See Section III.F.1 for the

details of our summarization process.) It should be noted that each individual

annotation uses on average 36 of the 174 words in our vocabulary. Each ground

truth annotation uses on average only 25 words since we require a high-level of

agreement between multiple independent annotators for a word to be considered

relevant. This reflects the fact that music is inherently subjective in that individuals

use different words to describe the same song.

III.H.1 Annotation

Using Equation III.3, we annotate all test set songs with 10 words and

all test set sound effect tracks with 6 words. Annotation performance is measured

using mean per-word precision and recall. Per-word precision is the probability that

the model correctly uses the word when annotating a song. Per-word recall is the

probability that the model annotates a song that should have been annotated with

the word. More formally, for each word w, |wH | is the number of tracks that have

word w in the human-generated ‘ground truth’ annotation. |wA| is the number of

67

tracks that our model automatically annotates with word w. |wC | is the number

of ‘correct’ words that have been used both in the ground truth annotation and

by the model. Per-word recall is |wC |/|wH | and per-word precision is |wC |/|wA|3.

While trivial models can easily maximize one of these measures (e.g., labeling all

songs with a certain word or, instead, none of them), achieving excellent precision

and recall simultaneously requires a truly valid model.

Mean per-word recall and precision is the average of these ratios over all

the words in our vocabulary. It should be noted that these metrics range between

0.0 and 1.0, but one may be upper-bounded by a value less than 1.0 if either the

number of words that appear in a ground truth annotation is greater or lesser

than the number of words that are output by our model. For example, if our

system outputs 10 words to annotate a test song where the ground truth annotation

contains 25 words, mean per-word recall will be upper-bounded by a value less

than one. The exact upper bounds for recall and precision depend on the relative

frequencies of each word in the vocabulary and can be empirically estimated using

the ‘UpperBnd’ model which is described above.

It may seem more straightforward to use per-song precision and recall,

rather than the per-word metrics. However, per-song metrics can lead to artificially

good results if a system is good at predicting the few common words relevant to a

large group of songs (e.g., ‘rock”) and bad at predicting the many rare words in the

vocabulary. Our goal is to find a system that is good at predicting all the words in

our vocabulary. In practice, using the 10 best words to annotate each of the 500

songs, our system outputs 166 of the 174 words for at least one song.

Table Table III.2 presents quantitative results for music and Table Table

III.3 for sound effects. Table Table III.2 also displays annotation results using only

words from each of six semantic categories (emotion, genre, instrumentation, solo,

3If the model never annotates a song with word w then per-word precision is undefined. In this case,
we estimate per-word precision using the empirical prior probability of the word P (i). Using the prior is
similar to using the ‘Random’ model to estimate the per-word precision, and thus, will in general hurt
model performance. This produces a desired effect since we are interested in designing a model that
annotates songs using many words from our vocabulary.

68

usage and vocal). All reported results are means and standard errors computed

from 10-fold cross-validation (i.e., 450-song training set, 50-song test set).

The quantitative results demonstrate that the SML models trained using

model averaging (ModelAvg) and mixture hierarchies estimation (MixHier) signif-

icantly outperform the random baselines for both music and sound effects. For

music, MixHier significantly outperforms ModelAvg in both precision and recall

when considering the entire vocabulary as well as shows superior performance for

most semantic categories, where‘instrumentation precision’ is the sole exception.

However, for sound effects, ModelAvg significantly outperforms MixHier. This

might be explained by interpreting model averaging as a non-parametric approach

in which the likelihood of the query track is computed under every track-level

model in the database. For our sound effects data set, it is often the case that

semantically related pairs of tracks are acoustically very similar causing that one

track-level model to dominate the average.

Over the entire music vocabulary, the MixHier model performance is

comparable to Human model. It is also interesting to note that MixHier model

performance is significantly worse than the Human model performance for the

more ‘objective’ semantic categories (e.g., Instrumentation and Genre) but is

comparable for more ‘subjective’ semantic categories (e.g., Usage and Emotion).

We are surprised by the low Human model precision, especially for some of these

more objective categories, when compared against the UpperBnd model. Taking

a closer look at precision for individual words, while there are some words with

relatively high precision, such as ‘male lead vocals’ (0.96) and ‘drum set’ (0.81),

there are many words with low precision. Low precision words arise from a number

of causes including test subject inattentiveness (due to boredom or fatigue), non-

expert test-subjects (e.g., can’t detect a ‘trombone’ in a horn section), instrument

ambiguity (e.g., deciding between ‘acoustic guitar’ vs. ‘clean electric guitar’),

and our summarization process. For example, consider the word ‘clean electric

guitar’ and the song “Everything she does is magic” by The Police. Given four

69

test subjects, two subjects positively associate the song with the word because

the overall guitar sound is clean, one is unsure, and one says there is no ‘clean

electric guitar’ presumably because, technically, the guitarist makes use of a delay

distortion4. Our summarization process would not use the word to label this songs

despite the fact that half of the subjects used this word to describe the song. In

Section III.I, we will discuss both ways to improve the survey process as well as an

alternative data collection technique.

III.H.2 Retrieval

For each one-word query wq in V, we rank-order a test set of songs. For

each ranking, we calculate the average precision (AP) [42] and the area under

the receiver operating characteristic curve (AROC). Average precision is found by

moving down our ranked list of test songs and averaging the precisions at every

point where we correctly identify a new song. An ROC curve is a plot of the true

positive rate as a function of the false positive rate as we move down this ranked list

of songs. The area under the ROC curve (AROC) is found by integrating the ROC

curve and is upper-bounded by 1.0. Random guessing in a retrieval task results in

an AROC of 0.5. Comparison to human performance is not possible for retrieval

since an individual’s annotations do not provide a ranking over all retrievable audio

tracks. Mean AP and Mean AROC are found by averaging each metric over all the

words in our vocabulary (shown Tables Table III.4 and Table III.6).

As with the annotation results, we see that our SML models significantly

outperform the random baseline and that MixHier outperforms ModelAvg for music

retrieval. For sound effects retrieval, MixHier and ModelAvg are comparable if

we consider Mean AROC, but MixHier shows superior performance if we consider

Mean AP.

In addition, we extend the evaluation of music retrieval two- and three-

word text-based queries, with results shown in Table Table III.5. Table Table III.7

4A delay causes the sound to repeatedly echo as the sound fades away, but does not grossly distort the
timbre of electric guitar.

70

shows the top 5 songs retrieved for a number of text-based queries. In addition to

being (mostly) accurate, the reader should note that queries, such as ‘Tender’ and

‘Female Vocals’, return songs that span different genres and are composed using

different instruments. As more words are added to the query string, note that the

songs returned are representative of all the semantic concepts in each of the queries.

III.I Discussion

The qualitative annotation and retrieval results in Tables Table III.1 and

Table III.7 indicate that our system can produce sensible semantic annotations

for an acoustically diverse set of songs and can retrieve relevant songs given a

text-based query. When comparing these results with previous results based on

models trained using web-mined data [109], it is clear that using ‘clean’ data (i.e.,

the CAL500 data set) results in much more intuitive music reviews and search

results.

Our goal in collecting the CAL500 data set was to quickly and cheaply

collect a small music corpus with reasonably accurate annotations for the purposes

of training our SML model. The human experiments were conducted using (mostly)

non-expert college students who spent about five minutes annotating each song

using our survey. While we think that the CAL500 data set will be useful for

future content-based music annotation and retrieval research, it is not of the same

quality as data that might be collected using a highly-controlled psychoacoustics

experiment. Future improvements would include spending more time training our

test subjects and inserting consistency checks so that we could remove inaccurate

annotations from test subjects who show poor performance.

In derivative work, we have examined an extension to our data collection

process involving vocabulary selection: if a word in the vocabulary is inconsistently

used by human annotators, or the word is not clearly represented by the underlying

acoustic representation, the word can be considered as noisy and should be removed

71

from the vocabulary to de-noise the modeling process. We explore these issues

in [107], whereby we devise vocabulary pruning techniques based on measurements

of human agreement and correlation of words with the underlying audio content.

A further extention is described in Chapter 2 where we collect a much larger

annotated data set of music using web-based human computation games. Both

Herd It and our other web-based game called “Listen Game” [?] allow multiple

‘annotators’ to label music through realtime competition. We consider this to

be a more scalable and cost-effective approach for collecting high-quality music

annotations than laborious surveys. We are also able to grow our vocabulary by

allowing users to suggest words that describe the music.

The weighted mixture hierarchies EM algorithm presented here is more

computationally efficient and produces better density estimates than direct estima-

tion or modeling averaging. The improvement in performance may be attributed to

the fact that we represent each track with a track-level distribution before modeling

a word-level distribution. The track-level distribution is a smoothed representation

of the bag-of-feature-vectors that are extracted from the audio signal. We then

learn a mixture from the mixture components of the track-level distributions that

are semantically associated with a word. The benefit of using smoothed estimates

of the tracks is that the EM framework, which is prone to find poor local maxima,

is more likely to converge to a better density estimate.

The semantic multinomial representation of a song, which is generated

during annotation (see Section III.D.2), is a useful and compact representation of

a song. We show that if we construct a query multinomal based on a multi-word

query string, we can quickly retrieve relevant songs based on the Kullback-Liebler

(KL) divergence between the query multinomial and all semantic multinomials

in our database of automatically annotated tracks. The semantic multinomial

representation is also useful for related audio information tasks such as ‘retrieval-

by-semantic-similarity’ [7, 12].

It should be noted that we use a very basic frame-based audio feature

72

representation. We can imagine using alternative representations, such as those

that attempt to model higher-level notions of harmony, rhythm, melody, and timbre.

Similarly, our probabilistic SML model (a set of GMMs) is one of many models

that have been developed for image annotation [14,42]. Future work may involve

adapting other models for the task of audio annotation and retrieval. In addition,

one drawback of our current model is that, by using GMMs, we ignore all temporal

dependencies between audio feature vectors. Future research will involve exploring

models, such as hidden Markov models, that explicitly model the longer-term

temporal aspects of music.

Lastly, an interesting direction for future work will involve modeling

individual users (or subsets of similar users) with user-specific models. For example,

during data collection, we had one test subject annotate 200 of the 500 songs in

our data set. A preliminary study showed that we were better able to predict

some words (especially ‘usage’ words) for this subject using the 200-song subset

when compared against models trained using the entire CAL500 data set. This

is not surprising since we would expect an individual to be self-consistent when

annotating songs with subjective concepts. We expect that user-specific models,

made possible given data such as collected by Herd It (where a user’s Facebook

profile is associated with each tag) will offer the potential to reduce the impact

of subjectivity in music such that we can better model an individual’s notions of

audio semantics.

III.J Acknowledgements

Chapter 3, in full, is a reprint of the material as it appears in IEEE

Transactions on Audio, Speech and Language Processing 16(2). D. Turnbull, L.

Barrington and G.R.G Lanckriet, 2008. The dissertation author was investigator

and co-author of this paper.

73

Table III.2 Music annotation results. Track-level models have K = 8 mixture

components, word-level models have R = 16 mixture components. A = annota-

tion length (determined by the user), |V| = vocabulary size.

Category A / |V| Model Precision Recall

All Words 10 / 174

Random 0.144 (0.004) 0.064 (0.002)

Human 0.296 (0.008) 0.145 (0.003)

UpperBnd 0.712 (0.007) 0.375 (0.006)

ModelAvg 0.189 (0.007) 0.108 (0.009)

MixHier 0.265 (0.007) 0.158 (0.006)

Emotion 4 / 36

Random 0.276 (0.012) 0.113 (0.004)

Human 0.453 (0.014) 0.180 (0.006)

UpperBnd 0.957 (0.005) 0.396 (0.010)

ModelAvg 0.366 (0.012) 0.179 (0.005)

MixHier 0.424 (0.008) 0.195 (0.004)

Genre 2 / 31

Random 0.055 (0.005) 0.079 (0.008)

Human 0.268 (0.017) 0.290 (0.021)

UpperBnd 0.562 (0.026) 0.777 (0.018)

ModelAvg 0.122 (0.012) 0.161 (0.017)

MixHier 0.171 (0.009) 0.242 (0.019)

Instrumentation 4 / 24

Random 0.141 (0.009) 0.195 (0.014)

Human 0.416 (0.014) 0.522 (0.008)

UpperBnd 0.601 (0.015) 0.868 (0.018)

ModelAvg 0.267 (0.008) 0.320 (0.022)

MixHier 0.259 (0.010) 0.381 (0.021)

Solo 1/ 9

Random 0.031 (0.007) 0.155 (0.035)

Human 0.104 (0.020) 0.158 (0.034)

UpperBnd 0.197 (0.019) 0.760 (0.052)

ModelAvg 0.057 (0.012) 0.231 (0.033)

MixHier 0.060 (0.012) 0.261 (0.050)

Usage 2 / 15

Random 0.073 (0.008) 0.154 (0.016)

Human 0.125 (0.012) 0.175 (0.023)

UpperBnd 0.363 (0.014) 0.814 (0.031)

ModelAvg 0.103 (0.010) 0.170 (0.017)

MixHier 0.122 (0.012) 0.264 (0.027)

Vocal 2 / 16

Random 0.062 (0.007) 0.153 (0.018)

Human 0.188 (0.021) 0.304 (0.023)

UpperBnd 0.321 (0.017) 0.788 (0.019)

ModelAvg 0.102 (0.008) 0.226 (0.016)

MixHier 0.134 (0.005) 0.335 (0.021)

74

Table III.3 Sound effects annotation results. A = 6, |V| = 348.

Model Recall Precision

Random 0.018 (0.002) 0.012 (0.001)

UpperBnd 0.973 (0.004) 0.447 (0.009)

ModelAvg (K = 4) 0.360 (0.014) 0.179 (0.010)

MixHier (K = 8, R = 16) 0.306 (0.010) 0.145 (0.005)

Table III.4 Music retrieval results. |V| = 174.

Category |V| Model MeanAP MeanAROC

All Words 174

Random 0.231 (0.004) 0.503 (0.004)

ModelAvg 0.372 (0.008) 0.682 (0.006)

MixHier 0.390 (0.004) 0.710 (0.004)

Emotion 36

Random 0.327 (0.006) 0.504 (0.003)

ModelAvg 0.486 (0.013) 0.685 (0.010)

MixHier 0.506 (0.008) 0.710 (0.005)

Genre 31

Random 0.132 (0.005) 0.500 (0.005)

ModelAvg 0.309 (0.020) 0.695 (0.008)

MixHier 0.329 (0.012) 0.719 (0.005)

Instrumentation 24

Random 0.221 (0.007) 0.502 (0.004)

ModelAvg 0.372 (0.015) 0.694 (0.008)

MixHier 0.399 (0.018) 0.719 (0.006)

Solo 9

Random 0.106 (0.014) 0.502 (0.004)

ModelAvg 0.190 (0.028) 0.688 (0.008)

MixHier 0.180 (0.025) 0.712 (0.006)

Usage 15

Random 0.169 (0.012) 0.501 (0.005)

ModelAvg 0.231 (0.012) 0.684 (0.007)

MixHier 0.240 (0.016) 0.707 (0.004)

Vocal 16

Random 0.137 (0.006) 0.502 (0.004)

ModelAvg 0.234 (0.019) 0.680 (0.007)

MixHier 0.260 (0.018) 0.705 (0.005)

75

Table III.5 Music retrieval results for 2- and 3-word queries.

Query Length Model MeanAP MeanAROC

2-words Random 0.076 0.500

(4,658/15,225) SML 0.164 0.723

3-words Random 0.051 0.500

(50,471/1,756,124) SML 0.120 0.730

Table III.6 Sound effects retrieval results. |V| = 348.

Model Mean AP Mean AROC

Random 0.051 (0.002) 0.506 (0.004)

ModelAvg (K = 4) 0.183 (0.003) 0.785 (0.005)

MixHier (K = 8, R = 16) 0.331 (0.008) 0.784 (0.006)

76

Table III.7 Qualitative music retrieval results for our SML model. Results are

shown for 1-, 2- and 3-word queries.

Query Returned Songs

Pop

The Ronettes- Walking in the Rain

The Go-Gos - Vacation

Spice Girls - Stop

Sylvester - You make me feel mighty real

Boo Radleys - Wake Up Boo!

Female Lead Vocals

Alicia Keys - Fallin’

Shakira - The One

Christina Aguilera - Genie in a Bottle

Junior Murvin - Police and Thieves

Britney Spears - I’m a Slave 4 U

Tender

Crosby Stills and Nash - Guinnevere

Jewel - Enter from the East

Art Tatum - Willow Weep for Me

John Lennon - Imagine

Tom Waits - Time

Pop
Britney Spears - I’m a Slave 4 U

Buggles - Video Killed the Radio Star

AND Christina Aguilera - Genie in a Bottle

Female Lead Vocals
The Ronettes - Walking in the Rain

Alicia Keys - Fallin’

Pop
5th Dimension - One Less Bell to Answer

Coldplay - Clocks

AND Cat Power - He War

Tender
Chantal Kreviazuk - Surrounded

Alicia Keys - Fallin’

Female Lead Vocals
Jewel - Enter from the East

Evanescence - My Immortal

AND Cowboy Junkies - Postcard Blues

Tender
Everly Brothers - Take a Message to Mary

Sheryl Crow - I Shall Believe

Pop Shakira - The One

AND Alicia Keys - Fallin’

Female Lead Vocals Evanescence - My Immortal

AND Chantal Kreviazuk - Surrounded

Tender Dionne Warwick - Walk on by

Chapter IV

Modeling Music as a Dynamic

Texture

77

78

IV.A Abstract

We consider representing a short temporal fragment of musical audio as a

dynamic texture, a model of both the timbral and rhythmical qualities of sound,

two of the important aspects required for automatic music analysis. The dynamic

texture model treats a sequence of audio feature vectors as a sample from a linear

dynamical system. We apply this new representation to the task of automatic

song segmentation. In particular, we cluster audio fragments, extracted from a

song, as samples from a dynamic texture mixture (DTM) model. We show that

the DTM model can both accurately cluster coherent segments in music and detect

transition boundaries. Moreover, the generative character of the proposed model

of music makes it amenable for a wide range of applications besides segmentation.

As an example, we use DTM models of songs to suggest possible improvements in

some other music information retrieval applications such as music annotation and

similarity.

IV.B Introduction

Models of music begin with a representation of the audio content in some

machine-readable form. It is common practice in music information retrieval to

represent a song as an unordered set or “bag” of audio feature vectors (e.g., Mel-

frequency cepstral coefficients). While this has shown promise in many applications,

(e.g., music annotation and retrieval [111], audio similarity [7] and song segmentation

[5]), the bag-of-feature-vectors representation is fundamentally limited by ignoring

the time-dependency between feature vectors (permuting the feature vectors in the

bag will not alter the representation, so information encapsulated in how feature

vectors are ordered in time is ignored). As a result, the bag-of-feature-vectors

representation fails to represent the higher-level, longer-term musical dynamics of

an audio fragment, like rhythmic qualities (e.g., tempo and beat patterns) and

temporal structure (e.g., repeated riffs and arpeggios).

79

In this paper, we address the limitations of the bag-of-features representa-

tion, by modeling simultaneously the instantaneous spectral content (timbre) as

well as the longer-term spectral dynamics (rhythmic and temporal structure) of

audio fragments that are several seconds in length [6]. To do this, we propose to

use a dynamic texture (DT) [34] to represent a sequence of audio feature vectors

as a sample from a generative probabilistic model, specifically, a linear dynamical

system (LDS).

One application where it is useful to model the temporal, as well as timbral,

dynamics of music is automatic song segmentation; the task of dividing a song

into self-coherent units which a human listener would label as similar (e.g., verse,

chorus, bridge, etc.). In particular, we propose a new algorithm that segments a

song by clustering fragments of the song’s audio content, using a dynamic texture

mixture (DTM) model [22]. We test the segmentation algorithm on a wide variety

of songs from two popular music datasets, and show that the dynamic texture

captures much of the information required to determine the structure of music.

We also illustrate the applicability of the DTM segmentation to other music

information retrieval problems. For example, one common problem with semantic

song annotation (auto-tagging) occurs when different segments of the same song

contain a variety of musical styles and instrumentations (the “Bohemian Rhapsody

problem”). For such songs, the bag-of-features representation averages musical

information from the whole song and existing auto-tagging systems (e.g., [111])

will produce generic descriptions of the song. One solution to this problem is

first to segment the song into its constituent parts using the proposed automatic

segmentation algorithm, and then to generate tags for each segment. We show that

the dynamic texture model produces musical segments with homogeneous timbre

and tempo, resulting in a more precise description of the song.

The remainder of this paper is organized as follows. In Section IV.C,

we review related work on song segmentation. In Section IV.D, we introduce the

dynamic texture models for audio fragments, and in Section IV.E we propose an

80

algorithm for segmenting song structure using the DTM. Section IV.F evaluates

the segmentation algorithm on two music datasets. Finally, Section IV.G illustrates

several applications of song segmentation to music annotation, retrieval, and

visualization.

IV.C Related Work

The goal of automatic song segmentation is to divide a song into self-

coherent units such as the chorus, verse, bridge, etc. Foote [43] segments music

based on self-similarity between timbre features. Paulus and Klapuri [87] efficiently

search the space of all possible segmentations and use a musicological model to

label the most plausible segmentation.

Other methods attempt to model music explicitly and then cast segmen-

tation as a clustering problem. Gaussian mixture models (GMMs) ignore temporal

relations between features but model music well for applications such as music

segmentation and similarity [5] as well as classification of a variety of semantic

musical attributes [111]. Hidden Markov models (HMMs) consider transitions

between feature states and have offered improvements for segmentation [66], key

phrase detection [70] and genre classification [91]. Abdallah et al. [2] incorporate

prior knowledge about segment duration into a HMM clustering model to address

the problem of over-segmentation. Levy and Sandler [65] realize that feature-level

HMMs do not capture sufficient temporal information so encode musical segments

as clusters of HMM state-sequences and improve their clustering using constraints

based on the temporal length of musical segments.

The DT model used in this paper is similar to the HMM, in that they

are both probabilistic time-series models with hidden states that evolve over time.

The main difference between the two models is that the hidden states of the HMM

take on discrete values, whereas those of the DT are real-valued vectors. As a

consequence, the HMM representation discretizes the observations into bins defined

81

by the observation likelihoods, and the evolution of the sequence is modeled as

jumps between these bins. The continuous state space of the DT, on the other

hand, can capture smooth (rather than discrete) dynamics of state transitions and

model the observed audio fragments without quantization.

Structural segmentation of music is often used as a first step in discovering

distinctive or repeated sections that can serve as a representative summary or

musical thumbnail of both acoustic [20, 70,88] and symbolic [54] music representa-

tions. For example, Bartsch and Wakefield [10] follow [43] but use chroma features

to identify repeated segments for audio thumbnailing and Goto adds high-level

assumptions about repeated sections to build a system for automatically detecting

choruses [49].

Similar to song segmentation is the task of detecting boundaries between

musical segments (e.g., the change from verse to chorus). Turnbull et al. [112]

present both an unsupervised (picking peaks of difference features) and supervised

(boosted decision stumps) method for identifying musical segment boundaries.

Similarly, Ong and Herrera [81] look for novelty in successive feature vectors to

predict segment boundaries. These methods only detect the segment boundaries

and make no attempt to assess the similarity of resulting segments.

Our formulation of treating audio as a dynamic texture was originally

introduced in [6]. The current paper goes beyond [6] in the following ways: 1) we

include a complete description of our segmentation algorithm; 2) we add a new

step to the algorithm that uses music-based constraints to smooth the segments; 3)

we present additional experiments on the PopMusic dataset from [65], along with

illustrative examples; and 4) we include additional and more rigorous experiments

on automatic annotation of music segments as opposed to entire songs.

82

IV.D Dynamic Textures Models

Consider representing the audio fragment in Figure Figure IV.1(a) with

the corresponding sequence of audio feature vectors shown in Figure Figure IV.1(b).

We would like to use these features to model simultaneously the instantaneous

audio content (e.g., the instrumentation and timbre) and the melodic and rhythmic

content (e.g., guitar riff, drum patterns, and tempo). In this work, we will model

the temporal dependencies in the audio fragment using a single model for the entire

sequence of feature vectors. In particular, we will treat the sequence of feature

vectors as a sample from a linear dynamical system (LDS). The LDS contains

two random variables: 1) an observed variable, which generates the feature vector

at each time-step (i.e., the instantaneous audio); and 2) a hidden variable which

models the higher-level musical state and how it dynamically evolves over time

(i.e., the melodic and rhythmic content). In this way, we are able to capture both

the spectral and temporal properties of the musical signal in a single probabilistic

generative model.

The treatment of a time-series as a sample from a linear dynamical

system is also known as a dynamic texture (DT) [34] in the computer vision

literature, where a video is modeled as a sequence of vectorized image frames. The

dynamic texture model has been successfully applied to various computer vision

problems, including video texture synthesis [34], video recognition [21, 97], and

motion segmentation [22, 35]. Although the DT was originally proposed in the

computer vision literature as a generative model of video sequences, it is a generic

model that can be applied to any time-series data, which in our case, are sequences

of feature vectors that represent fragments of musical audio.

IV.D.1 Dynamic textures

A dynamic texture [34] is a generative model that treats a vector time-

series as a sample from a linear dynamical system (LDS). Formally, the model

83

xt xt+1xt−1… …

yt−1 yt yt+1

xt+2xt−2

yt−2 yt+2

yt

xt

audio

audio
feature
vectors

hidden
state
space

a)

b)

c)

d)

dynamic
texture

Figure IV.1 Modeling audio as a temporal texture: (a) an audio waveform, and

(b) feature vectors yt extracted from the audio; (c) the sequence of features vectors

{yt} is modeled as the output of a linear dynamical system, where (d) the hidden

state-space sequence {xt} encodes both the instantaneous sound texture and the

evolution of this texture over time.

captures both the appearance and the dynamics of the sequence with two random

variables: an observed variable yt ∈ Rm, which encodes the appearance component

(feature vector at time t); and a hidden state variable xt ∈ Rn (with n < m), which

84

encodes higher-level characteristics of the time-series and their dynamics (sequence

evolution over time). The state and observed variables are related through the

linear dynamical system (LDS) defined by xt = Axt−1 + vt

yt = Cxt + wt + ȳ
, (IV.1)

where A ∈ Rn×n is a state transition matrix , which encodes the dynamics of the

hidden state, C ∈ Rm×n is an observation matrix, which maps the hidden state

variable to an observed feature vector, and ȳ ∈ Rm is the mean of the observed

feature vectors, or the constant offset of the observation variable, yt. The driving

noise process vt is normally distributed with zero mean and covariance Q, i.e.,

vt ∼ N (0, Q) where Q ∈ Sn+ is a positive definite n×n matrix, with Sn+ the set of

positive definite matrices of dimension n × n. The observation noise wt is also

zero mean and Gaussian, with covariance R, i.e., wt ∼ N (0, R) where R ∈ Sm+ .

The initial state vector x1, which determines the starting point of the model, is

distributed according to x1 ∼ N (µ, S), with µ ∈ Rn and S ∈ Sn+. The dynamic

texture is specified by parameters Θ = {A,Q,C,R, µ, S, ȳ} and the graphical model

of the dynamic texture is shown in Figure Figure IV.1(c).

A number of methods are available to learn the parameters of the dynamic

texture from a training sequence, including maximum-likelihood methods (e.g.,

expectation-maximization [100]), non-iterative subspace methods (e.g., N4SID [82],

CCA [11,62]) or a suboptimal, but computationally efficient, least-squares procedure

[34]. The dynamic texture has an interesting interpretation when the columns of

C are orthogonal (e.g., when learned with the method of [34]). In this case, the

columns of C are the principal components of the observations (feature vectors) in

time. Hence, the hidden state vector xt contains the PCA coefficients that generate

each observation yt, where the PCA coefficients (xt) themselves evolve over time

according to a Gauss-Markov process. In this sense, the dynamic texture is an

evolving PCA representation of the sequence.

85

x

1

x

2

x

3

x

4

y

1

y

2

y

3

y

4

...

z

Figure IV.2 Graphical model for the dynamic texture mixture. The hidden

variable z selects the parameters of the DT represented by the remaining nodes.

IV.D.2 Mixture of Dynamic Textures

The DT models a single observed sequence, e.g., an audio fragment lasting

several seconds. It could also model multiple sequences, if all exhibited the same

dynamic texture (specified by the parameters Θ). However, many applications

require the simultaneous analysis of N sequences, where it is known a priori that any

single sequence exhibits one of a small set of K dynamic textures (with K << N).

For example, the sequences could be audio fragments extracted from a song that

can be clustered into a limited number of textures (e.g., corresponding to the

verse, chorus, bridge, etc.). Such a clustering would unravel the verse-chorus-bridge

structure of the song. An extension of the DT, the dynamic texture mixture (DTM)

model, was proposed in [22] to handle exactly this situation. The DTM is a

generative model that treats a collection of N sequences as samples from a set of

K dynamic textures.

Clustering is performed by first learning a DTM for the sequences, and

then assigning each sequence to the DT component with largest posterior probability.

This is analogous to clustering feature vectors using a Gaussian mixture model

(GMM), except that the DTM clusters time-series (sequences of feature vectors),

whereas the GMM clusters only feature vectors.

Formally, the DTM [22] is a mixture model where each mixture component

86

is a dynamic texture, and is defined by the system of equations xt = Azxt−1 + vt

yt = Czxt + wt + ȳz
, (IV.2)

where

z ∼ multinomial(α1, · · · , αK), s.t.
K∑
j=1

αj = 1 (IV.3)

is a random variable that signals the mixture component from which each sequence

is drawn. Conditioned on this assignment variable z, the hidden-state xt and

observation yt behave like a standard dynamic texture with parameters Θz =

{Az, Qz, Cz, Rz, µz, Sz, ȳz}. The graphical model for the dynamic texture mixture

is presented in Figure Figure IV.2.

In computer vision, the model has been shown to be a robust model for

motion segmentation by clustering patches of video [22]. In this paper, we will

use the DTM to segment a song into sections (e.g., verse, chorus, and bridge) in

a similar way by clustering audio fragments (sequences of audio feature vectors)

extracted from the song. We next present an algorithm for learning the parameters

of a DTM from training sequences.

IV.D.3 Parameter estimation of DTMs

Given a set of N sequences {y(i)}Ni=1, where y(i) = {y(i)
1 , · · · y(i)

τ } and τ is

the sequence length, the parameters Θ that best fit the observed sequences, in the

maximum-likelihood sense [58], can be learned by optimizing

Θ∗ = argmax
Θ

N∑
i=1

log p(y(i); Θ), (IV.4)

where Θ = {Θj, αj}Kj=1 are the parameters of the DTM,

and Θj = {Aj, Qj, Cj, Rj, µj, Sj, ȳj} are the parameters for the jth DT compo-

nent. Note that the data likelihood function p(y(i); Θ) depends on two sets of

hidden variables: 1) the assignment variable z(i), which assigns each sequence y(i)

87

to a mixture component; and 2) the hidden state sequence x(i) = {x(i)
1 , · · · x

(i)
τ }

that produces each y(i). Since the data likelihood depends on hidden variables

(i.e., missing information), the maximum-likelihood solution of (IV.4) can be found

with recourse to the Expectation Maximization (EM) algorithm [32]. The EM

algorithm is an iterative procedure that alternates between estimating the missing

information with the current parameters, and computing new parameters given the

estimate of the missing information. For the DTM, each iteration of EM consists of

E− Step : Q(Θ; Θ̂) = EX,Z|Y ;Θ̂(log p(X, Y, Z; Θ)) (IV.5)

M− Step : Θ̂∗ = argmax
Θ

Q(Θ; Θ̂) (IV.6)

where p(X, Y, Z; Θ) is the complete-data likelihood of the observations Y = {y(i)}Ni=1,

hidden states sequences X = {x(i)}Ni=1, and hidden assignment variables Z =

{z(i)}Ni=1, parameterized by Θ.

The EM algorithm for the mixture of dynamic textures was derived in [22],

and a summary is presented in Algorithm 1. The E-step relies on the Kalman

smoothing filter [22, 100] to compute: 1) the expectations of the hidden state

variables xt, given the observed sequence y(i) came from the jth component; and 2)

the likelihood of observing y(i) from the jth component. The M-step then computes

the maximum-likelihood parameter values for each dynamic texture component j,

by averaging over all sequences {y(i)}Ni=1, weighted by the posterior probability of

assigning z(i) = j.

It is known that the accuracy of parameter estimates produced by EM is

dependent on how the algorithm is initialized. We use the initialization strategy

from [22], where EM is run several times with an increasing number of mixture

components. After each EM converges, one of the components is duplicated and

its parameters are perturbed slightly, and EM is run again on the new mixture

model. More details on the EM algorithm for DTM and the initialization strategy

are available in [22].

88

IV.E Song Segmentation with DTM

Figure Figure IV.3 outlines our approach to song segmentation using the

DTM model. First, audio features vectors are extracted from the song’s audio

waveform (e.g., Mel-frequency cepstral coefficients shown in Figure Figure IV.3(b)).

Overlapping sequences of audio feature vectors are extracted from a 5 second

fragment of the song where the start position of the fragment slides through the

entire song with a large step-size (∼0.5sec). A DTM is learned from the collection

of these audio fragments and a coarse song segmentation is obtained by assigning

each 5 second audio fragment to the most probable DTM component (Figure ??(c)).

Next, we constrain the assigned segmentation so that very short segments are

unlikely (Figure Figure IV.3(d)). Finally, we run a second segmentation using

sequences with a much smaller fragment length (∼1.75sec) and step size (∼0.05sec)

to refine the precise location of the segment boundaries (Figure Figure IV.3(e))

and evaluate the results with reference to a human-labeled “true” segmentation

(Figure Figure IV.3(f)). Each of these steps is described in detail below.

IV.E.1 Features

The content of each 22,050Hz-sampled, monaural waveform is represented

using two types of music information features:

Mel-Frequency Cepstral Coefficients

Mel-frequency cepstral coefficients (MFCCs), developed for speech analysis

[89], describe the timbre or spectral shape of a short-time piece of audio and are

a popular feature for a number of music information analysis tasks, including

segmentation [5, 43, 112]. We compute the first 13 MFCCs for half-overlapping

frames of 256 samples (each feature vector summarizes 12msec of audio, extracted

every 6msec). In music information retrieval, it is common to augment the MFCC

feature vector with its instantaneous first and second derivatives, in order to capture

89

some information about the temporal evolution of the feature. When using the

DT, this extra complexity is not required since the temporal evolution is modeled

explicitly by the DT.

Chroma

Chroma features have also been successfully applied for song segmentation

[10,49,80]. They represent the harmonic content of a short-time window of audio

by computing the spectral energy present at frequencies that correspond to each

of the 12 notes and their octave harmonics in a standard chromatic scale. We

compute a 12-dimensional chroma feature vector from three-quarter overlapping

frames of 2048 samples (each feature vector summarizes 93msec of audio, extracted

every 23msec).

IV.E.2 Song segmentation

Song segmentation is performed with the DTM using a coarse-to-fine

approach. A DTM is learned from the collection of audio fragments, using the EM

algorithm described in Section IV.D.3. A coarse song segmentation is formed by

assigning each fragment to the DTM component with largest posterior probability,

i.e.,

j∗(i) = argmax
j

αjp(y
(i); Θj)∑K

j=1 αjp(y
(i); Θj)

(IV.7)

where p(y(i); Θj) is the likelihood of sequence y(i) under the j-th mixture component

Θj. Next, musical constraints are applied to the segmentation, and the boundaries

are refined for better localization.

IV.E.3 Musical Constraints on Segments

Levy and Sandler [65] note that musical segments are most likely to last

16 or 32 beats (4 or 8 bars of music in standard 4/4 time). They find that imposing

constraints on the minimum segment length results in improved segmentations.

90

To include this constrained clustering in our model, we wish to encourage audio

fragments which are close in time to be assigned to the same segment class. This

defines a Markov random field (MRF) over the DTM’s assignment variables, Z,

which restricts the probability that z(i), the class label variable for a given output

y(i) ∈ Y , will differ from the labels assigned to sequences neighboring y(i).

The MRF penalizes the class conditional likelihoods output by the DTM

in proportion to their disagreement with the class labels assigned to neighboring

sequences. The constrained assignments are estimated as in [65] using iterated

conditional modes (ICM) as follows: Labels, j∗(i), are first assigned to all audio

fragments, as in Equation (IV.7). Next, the constraints are incorporated while

iterating through each fragment i. The log-likelihood, with constraints, of fragment

i under each mixture component j is computed;

log p̃(y(i); Θj) = log p(y(i); Θj)−
W/2∑

c=−W/2,c6=0

φj(j
∗(i+c)), (IV.8)

where W is the length of the temporal neighborhood surrounding the ith fragment

over which the constraints are imposed, and

φj(j
∗(c)) =

0 if j∗(c) = j

λ otherwise

(IV.9)

adds a penalty of λ when the neighboring class labels j∗(c) do not match the current

label j. The new constrained class label of the fragment, j∗(i), is then assigned

according to:

j∗(i) = argmax
j

log p̃(y(i); Θj) (IV.10)

The process is iterated, for all i, until convergence of the class labels for all

fragments. The fixed cost parameter, λ, and the neighborhood size, W , over which

the constraints are imposed are determined experimentally and depend on the type

of feature and sequence step size being used. We find that λ ≈ 90 and a constraint

neighborhood corresponding to 15-20 seconds is optimal.

91

IV.E.4 Refining Segment Boundaries

This first segmentation is relatively coarse and can localize segment bound-

aries, at best, to within 0.25 sec, due to the large step size and the poor localization

properties of using long audio fragments. Precise boundaries are found by extracting

audio fragments with shorter length (∼1.75 sec) and step size (∼0.05 sec). We

assign these short fragments to the same DTM components learned in Section

IV.E.2, resulting in a finer segmentation of the song. This tends to over-segment

songs as the DTM state changes too frequently: the coarse segmentation more

accurately learns the temporal structure of each song. However, we can refine the

original, coarse segmentation by moving each segment boundary to the closest

corresponding boundary from the fine segmentation. These refined boundaries are

likely to be valid since they were produced by the same DTM model. They are

expected to provide a more precise estimate of the true segment boundaries.

IV.F Segmentation Evaluation

In this section, we evaluate the proposed algorithm for song segmentation

on two music datasets. We also test the applicability of the algorithm to the similar

task of music boundary detection.

IV.F.1 Data

We evaluate the automatic song segmentation performance of the DTM

model on two separate musical datasets for which human-derived structural seg-

mentations exist:

RWC dataset

The RWC Music Database (RWCMDB-P-2001) [47] contains 100 Japanese

pop songs where each song has been segmented into coherent parts by a human

listener [48]. The segments are accurate to 10ms and are labeled with great detail.

92

For this work we group the labeled segments into 4 possible classes: “verse” (i.e.,

including verse A, verse B, etc.), “chorus”, “bridge” and “other” (“other” includes

labels such as “intro”, “ending”, “pre-chorus”, etc. and is also used to model any

silent parts of the song). This results in a “ground truth” segmentation of each

song with 4 possible segment classes. On average, each song contains 11 segments

(with an average segment length of 18.3 seconds).

PopMusic dataset

The second dataset is a collection of 60 popular songs from multiple

genres including rock, pop and hip-hop. Half the tracks are by the Beatles and the

remainder are from a selection of popular artists from the past 40 years including

Radiohead, Michael Jackson and the Beastie Boys. The human segmentations

for this dataset were used by Levy and Sandler [65] to evaluate their musical

segmentation algorithm. The ground truth segmentation of each song contains

between 2 and 15 different segment classes (mean = 6.3) and, on average, each

song also contains 11 segments (with an average segment length of 16.5 seconds).

IV.F.2 Experimental Setup

The songs in the RWC dataset were segmented with the DTM model

into K = 4 segments (chosen to model “verse”, “chorus”, “bridge” and “other”

segments and for comparison to previous work on the same dataset [112]) using the

method described in Section IV.E. DTM models trained using either the MFCC

or chroma features, we denote DTM-MFCC and DTM-Chroma, respectively. For

DTM-MFCC, we use a sequence length of 900 MFCC feature vectors (extracted

from 5.2 seconds of audio content) and a step-size of 100 feature frames, while for

DTM-Chroma, we use a sequence length of 600 chroma feature vectors (13.9 seconds

of audio) and a step-size of 20 frames. The dimension of the hidden state-space of

the DTM was n = 7 for MFCC, and n = 6 for chroma.

For comparison, we also segment the songs using a Gaussian mixture

93

model (GMM) trained on the same feature data [5]. We learn a K = 4 component

GMM for each song, and segment by assigning features to the most likely Gaussian

component. Since segmentation decisions are now made at the short time-scale of

individual feature vectors, we smooth the GMM segmentation with a length-1000

maximum-vote filter. We compare these models against two baselines: “constant”

assigns all windows to a single segment, “random” selects segment labels for each

window at random.

We quantitatively measure the correctness of a segmentation by comparing

with the ground-truth using two clustering metrics: 1) the Rand index [56] intuitively

corresponds to the probability that any pair of audio fragments will be clustered

correctly, with respect to each other (i.e, in the same cluster, or in different clusters);

2) the pairwise F-measure [65] compares pairs of feature sequences that the model

labels as belonging to the same segment-type with the true segmentation. If Pm is

the set of audio fragment pairs that the model labels as similar and Ph is the set of

fragment pairs that the human segmentation indicates should be similar then:

pairwise precision, Ppairwise =
|Pm ∩ Ph|
|Pm|

pairwise recall, Rpairwise =
|Pm ∩ Ph|
|Ph|

pairwise F-measure =
2 ∗ Ppairwise ∗Rpairwise

Ppairwise +Rpairwise

We also report the average number of segments per song.

IV.F.3 Segmentation Results

Table Table IV.1 reports the segmentation results on the RWC dataset.

DTM-MFCC outperforms all other models, with a Rand index of 0.751 and a

pairwise F-measure of 0.62. GMM performs significantly worse than DTM, e.g., the

F-measure drops to 0.52 on the MFCC features. In particular, the GMM grossly

1This Rand index result is slightly lower than the value reported in [6] as, in the current work, we
allow each model segment to match only one reference segment. This is consistent with the evaluations
in [65].

94

Table IV.1 Song segmentation of the RWC dataset.

Model Rand Ind Pairwise F Av. Segments

DTM-MFCC 0.75 0.62 10.8

DTM-Chroma 0.73 0.58 11.9

GMM-MFCC 0.66 0.52 58.7

GMM-Chroma 0.61 0.51 26.3

Constant 0.32 0.48 1

Random 0.57 0.32 279.0

Truth 1.00 1.00 11

over-segments the songs, leading to very low pairwise precision. This suggests that

there is indeed a benefit in modeling the temporal dynamics with the DTM.

For the PopMusic dataset, we no longer restrict the segmentation to just 4

classes and instead attempt to model all possible segment classes. Given that each

song in the dataset has an average of 6.3 different segments, we set the number

of mixture components in the DTM model K = 6 and increase the state-space

dimension to n = 12. The segmentation results are shown in Table Table IV.2 and

are very similar to the results obtained for the RWC dataset. We note that the

DTM-MFCC model F-measure of 0.6196 +/- 0.0163 improves on the segmentation

algorithm of Levy and Sandler [65] who report an average F-measure of 0.603 using

K = 6 clusters to segment the same data. The result of [65] lies at the minimum of

our confidence interval. A paired comparison of the results for each song would

be required to conclusively determine the significance of our improvement, but

this data was not available in [65]. The state-of-the-art segmentation performance

validates the DTM’s capacity to model musical audio content and its promise for

applications beyond segmentation, as a general, generative model for music.

Looking at the different feature representations, the DTM-MFCC outper-

95

Table IV.2 Song segmentation of the PopMusic dataset.

Model Rand Ind. Pairwise F Av. Segments

DTM-MFCC 0.78 0.62 10.7

DTM-Chroma 0.74 0.51 12.0

GMM-MFCC 0.72 0.49 78.9

GMM-Chroma 0.67 0.50 32.4

Constant 0.32 0.48 1

Random 0.57 0.32 279.0

Truth 1.00 1.00 11.1

forms DTM-Chroma on both datasets, with F-scores of 0.62 vs 0.58 on RWC, and

0.62 vs 0.51 on PopMusic. On the other hand, GMM-MFCC and GMM-Chroma

perform similarly (F-scores of 0.52 vs 0.51 on RWC, and 0.49 vs. 0.50 on Pop).

These results suggest that chroma time-series are not as well modeled as MFCC

time-series by the DTM model. In particular, each coordinate of the chroma feature

vector is active (non-zero) when a particular musical key is present, and hence

the time-series of chroma features will tend to be “spiky”, depending on when the

chords change in the song. The chroma features are also non-negative. Because

of these two aspects, the chroma time-series is not as well modeled by the DTM,

which is better suited for modeling second-order smooth time-series with Gaussian

noise.

Table Table IV.3 examines the impact of the musical constraints and

boundary refinement on the segmentations produced by our best model, the DTM-

MFCC model. We see that the musical constraints improve the final segmentation

of the PopMusic dataset by removing short, inaccurate segments and thus reducing

the overall number of segments (the average number of segments drops from 17.9

to 10.7 where the true segmentations contain an average of 11.1 segments). Indeed,

96

Table IV.3 Effect of musical constraints and boundary refinement on DTM-MFCC

segmentation of the PopMusic dataset.

Model Rand Ind. Pairwise F Av. Segments

Coarse 0.762 0.577 17.9

Refine 0.770 0.587 17.9

Constrain 0.773 0.614 10.7

Constrain+Refine 0.779 0.620 10.7

these constraints often remove certain segment classes from the output altogether.

In cases where the true segmentation had less than K different classes, the model

can now ignore irrelevant classes.

Examples of DTM song segmentations are compared to the ground truth

in Figures Figure IV.4 and Figure IV.5-Figure IV.8. We see that, while most DTM

segments are accurate, there are a few errors due to imprecise borders, and some

cases where the model over- or under-segments.

IV.F.4 Boundary Detection Results

In addition to evaluating the segmentation performance of the DTM model,

we can consider its accuracy in detecting the boundaries between segments (without

trying to label the segment classes). We evaluate boundary detection performance

using two median time metrics: true-to-guess (T-to-G) and guess-to-true (G-to-T)

respectively measure the median time from each true boundary to the closest

model estimate, and the median time from each model estimate to the closest true

boundary, as in [112]. We also consider the precision, recall and F-measure of

boundary detection where a boundary output by the model is considered a “hit” if

it is within a certain time threshold of a true segment boundary, as in [65, 81,112].

The boundary detection results, averaged over the 100 RWC songs (K = 4),

97

are presented in Table Table IV.4. We use a threshold of 0.5 seconds for comparison

to [112], who tackle the boundary detection problem by learning a supervised

classifier that is optimized for boundary detection. In Table ??, we show results

for the PopMusic dataset (K = 6) where we now use a hit threshold of 3 seconds,

following [65] and [81]. For both datasets, we also compare with the music analysis

company EchoNest [1], which offers an online service for automatically detecting

music boundaries.

Table IV.4 DTM boundary detection performance on the RWC dataset, compared

to a commercial online service “the EchoNest” and the supervised method of [112].

Model G-to-T T-to-G P R F

DTM-MFCC 3.21 2.96 0.22 0.22 0.22

DTM-Chroma 5.69 4.46 0.10 0.12 0.11

EchoNest 5.08 1.84 0.18 0.21 0.19

[112] 4.29 1.82 0.33 0.46 0.38

Table IV.5 DTM boundary detection performance on the PopMusic dataset

compared to EchoNest.

Model G-to-T T-to-G P R F

DTM-MFCC 3.58 2.99 0.62 0.65 0.61

DTM-Chroma 5.82 4.39 0.41 0.46 0.42

EchoNest 5.59 5.32 0.41 0.56 0.45

For the PopMusic dataset, the boundary detection results for the DTM

segmentation (boundary F-measure = 0.61) are comparable to the performance of

Levy and Sandler’s segmentation algorithm (best boundary F-measure = 0.604) [65].

98

However, neither system approaches the accuracy of specialized boundary detection

algorithms (e.g., Ong and Herrera [81] achieve boundary F-measure of 0.75 on a

test set of similar Beatles music). Boundary detection algorithms (e.g., [81,112])

are designed to detect novelty between successive feature frames or respond to

musical cues such as drum fills or changes in instrumentation which indicate that

one segment is ending and another beginning. However, they do not model the

musical structure and there is no characterization of the segments between the

boundaries as the DTM or [65] provides. In future work, we will investigate using

a supervised boundary detection algorithm to improve on the simple refinement of

the DTM segmentation that we propose in Section IV.E.4.

IV.G Applications of Automatic Song Segmentation

In this section, we demonstrate several applications of the automatic song

segmentation algorithm to music annotation, retrieval, and visualization.

IV.G.1 Autotagging Song Segments

A number of algorithms have been proposed for automatically associating

music content with descriptive semantic phrases or “tags” [38, 111, 125]. These

supervised methods use large corpora of semantically tagged music to discover

patterns in the audio content that are correlated with specific tags. Various methods

exist for collecting the tags used to train these systems including hiring human

subjects to label songs [111], mining websites [61], or online games [113] (see [110]

for a review of the performance of each of these methods).

The tags generated by most of these method are presumed to be associated

with the entire song. However, depending on the specific tag and the source from

which it was collected, this may not be true. For example, the song “Bohemian

Rhapsody” by Queen might accurately be tagged by one listener as a “melancholy

piano ballad”, another listener might refer to the “energetic opera with falsetto

99

vocal harmonies”, while a third listener might hear “screaming classic rock with

a powerful electric guitar riff”. The training of autotagging algorithms [38, 111]

is designed to accommodate the fact that not all of the features present in the

labeled music audio content will actually manifest the associated tags. However,

this “multiple instance learning” problem presents a challenge for evaluating the

output of such algorithms since many of the tags apply to only certain segments of

the song.

The solution to the “Bohemian Rhapsody problem” lies in first dividing a

song into musically homogeneous segments and then tagging each of the segments

individually. We use the music tagging algorithm described in [111] to associate the

segments extracted from the 60-song PopMusic dataset described in Section IV.F

with 149 semantic tags from the CAL-500 vocabulary used in [111]. Given a music

waveform, the output of this algorithm is a semantic multinomial distribution, a

vector of probabilities that each tag in the vocabulary applies to the music content.

These tags include genre, emotion, instrument, vocal style and song-usage descrip-

tors. The accuracy of the tagging algorithm has been found to predict one human’s

responses as accurately as another human would [111] (i.e., it approaches the limit

imposed by musical subjectivity) and was the best performing automatic music

tagging algorithm in the 2008 Music Information Retrieval Evaluation eXchange

(MIREX) contest [9].

Figure Figure IV.9 demonstrates the K = 6 class DTM segmentation of

the song “Bohemian Rhapsody”. Four of the top automatically-determined tags

are displayed for each segment where the first indicates the segment’s most likely

genre, the second detects the most prevalent instrument or vocal characteristic,

the third describes the emotion evoked by the segment and the fourth gives a

general description of the segment. The majority of the tags accurately describe

the musical content although a few are clearly incorrect (e.g., there is no saxophone

in the second segment and, though his voice was high pitched, Freddie Mercury

was not a female singer!). More importantly, there is a big difference between the

100

tags that describe the mellow, acoustic, early segments of the song and those used

to describe the more rocking, up-tempo segments towards the end. Compare the

tags for each segment in Figure Figure IV.9 with the top tags output for the entire

song which generically describe Bohemian Rhapsody as a pop song with a female

vocal that is pleasant and is not very danceable.

Table Table IV.6 further illustrates the need for segmentation before

semantic analysis of audio content. In the left column, we present the average

Kullback-Leibler (KL) divergence between the semantic multinomial describing a

single, automatically-extracted segment of a given song from the PopMusic dataset

(e.g., the first chorus of song 1) and other segments from that song that are assigned

to the same DTM component (e.g., other choruses from song 1), segments from

the same song but different classes (e.g., verse, bridge, etc. from song 1) and

segments chosen randomly from any other song in the dataset, averaged over all

songs from the PopMusic dataset. This method of using semantic descriptors to

determine audio similarity has been shown to be more accurate than calculating

similarity of the acoustic content directly [7]. Table Table IV.6 demonstrates that

while segments assigned to the same DTM components produce almost identical

semantic descriptions (KL = 0.04), there is a large divergence between the semantic

multinomial distributions of segments from different DTM components from within

the same song (KL = 0.54), approaching the divergence between two random

segments (KL = 0.70).

The right column of Table Table IV.6 presents the average tempo mismatch

between segments, averaged over all songs from the PopMusic dataset. We use an

automatic tempo extraction algorithm [33] to compute the tempo, in beats-per-

minute (bpm), of each segment. As in [52], we deem two segments to have similar

tempi if the bpm of the second is within ±4% of the bpm of the first, where, to

account for confusion in the meter, matches with one-third, half, double or triple

the first bpm are also permitted. We see that segments from the same class differ

in tempo 20% of the time whereas two random segments have almost 50% chance

101

Table IV.6 Mean semantic KL divergence and tempo mismatch between a DTM

segment and another segment from the same class, from the same song (but a

different class) and from a different song, averaged over all songs from the PopMusic

dataset. Section IV.G.B explains the Similar DT (bottom row).

KL divergence Tempo mismatch

Same Class 0.04 0.20

Same Song 0.54 0.29

Different Song 0.70 0.49

Similar DT 0.33 0.29

of a tempo mismatch. The average tempo mismatch between segments from the

same class in the true segmentation is 10%. These results suggest that the DT is

also capturing temporal information, along with the semantic information.

IV.G.2 Song Segment Retrieval

The automatic segmentation of a song and the representation of a segment

as a series of audio fragments as a coherent similar dynamic texture can now

be used to retrieve songs with musically similar segments, answering questions

like “what sounds similar to the verse of this song?”. We represent each segment

by its corresponding dynamic texture component in the DTM-MFCC model and

measure similarities between dynamic textures with the KL divergence between

them [21](note that this KL divergence is now between dynamic texture models,

rather than the KL between semantic multinomial distributions considered in the

previous section and presented in Table Table IV.6). Using each song segment

from the RWC dataset as a query, the five closest retrieved segments are presented

online2. Qualitatively, the retrieved segments are similar in both audio texture

2http://cosmal.ucsd.edu/cal/projects/segment/

102

and temporal characteristics. For example, a segment with slow piano will retrieve

other slow piano songs, whereas a rock song with piano will retrieve more upbeat

segments.

To quantitatively evaluate the song segment retrieval, we compute the

average semantic KL divergence and tempo mismatch between each query segment

and the retrieved song segments that are modeled with the most similar dynamic

texture component. The results for the single most similar DT are presented in the

bottom row of Table Table IV.6. It can be seen that two segments with most similar

DT components are, on average, more semantically similar than two segments

from the same song (KL of 0.33 vs 0.54). The tempo mismatch between retrieved

segments is the same as segments from the same song but significantly lower than

segments from different songs (note that 75% of the most similar retrieved segments

came from the same song as the query - DT components of the same DTM model).

This indicates that the dynamic texture model captures both the timbre of the

audio content, evidenced by the similar semantic descriptions (derived from analysis

of the instantaneous spectral characteristics), as well as temporal characteristics,

as shown by the similar tempi.

In order to visualize the distribution of songs in the dataset, the automat-

ically extracted segments of songs from the PopMusic dataset were embedded into

a 3-D manifold using local-linear embedding (LLE) [94] of the KL similarity matrix

computed above for song retrieval. Two dimensions of the embedding are shown in

Figure Figure IV.10.

We add interpretability to this embedding by inferring genre and emotion

tags that best describe each part of the space. For each tag, we compute a kernel

density estimate of the tag’s probability distribution by placing a Gaussian kernel

at each segment point in the embedding space. We weight each kernel by the tag

probability assigned to the corresponding segment by the autotagging algorithm

described in Section IV.G.1. The result is an estimate of the distribution over the

embedding space of a each tag’s relevance. In Figure Figure IV.10, we label the

103

embedding space by finding the centroid of the area of the top 20% of each of these

probability densities.

The four emotion tags in Figure Figure IV.10 illustrate that the largest

variance in the DTM segments results in good separation between the tags “happy”

and “sad” and between “calming” and “arousing”, corresponding with the psy-

chological primitives or “core affect” described in [96]. The six genre tags show a

progression from synthesized music like “hip hop” and “electronica” in the lower

right, through “blues” and “pop” in the center to “rock” and “punk” at the top

left. This automatic labeling of the embedding space again suggests that the DTM

model is successfully capturing both the audio texture (e.g., separating happy and

sad) and the temporal characteristics (e.g., separating calming and arousing) of

the songs.

IV.H Conclusions

We have presented a new representation for musical audio, the dynamic

texture (DT), which simultaneously accounts for both the instantaneous content of

short audio fragments as well as the evolution of the audio over time. We applied the

new representation to the task of song segmentation (i.e., automatically dividing a

song into coherent segments that human listeners would label as verse, chorus, bridge,

etc.), by modeling audio fragments from a song as samples from a dynamic texture

mixture (DTM) model. Experimentally, the resulting segmentation algorithm

achieves state-of-the-art results in segmentation experiments on two music datasets.

More importantly, the generative nature of the proposed model of music makes it

directly applicable to a wider and more diverse range of applications, compared

to algorithms specifically developed for music segmentation. Its state-of-the-art

results on music segmentation indicate that the dynamic texture representation

shows promise as a new model for automatic music analysis. Future work will

consider using the DTM model to move beyond the bag-of-features representation

104

in applications such as music similarity and automatic music tagging.

Another interesting direction for future work is to use more complex

“switching” DT models [23, 24,46] to improve on the DTM segmentation. These

models should better localize the segment boundaries, as they operate on the

entire song, rather than in a fragment-based manner. In general, these switching

models are more difficult to learn robustly, due to the complexity of the models

and the necessity for approximate inference. However, their effectiveness can be

greatly increased by initializing the learning algorithm with a good segmentation,

such as the one provided by the proposed DTM segmentation algorithm. Also a

potential direction of future work is to modify the DTM so that it better models

the properties of the chroma time-series.

IV.I Acknowledgements

This research utilized the AIST Annotation for the RWC Music Database

(Popular Music Database) and the Queen Mary reference structural segmentations.

We made use of the EchoNest developer web services at

http://developer.echonest.com.

Chapter 4, in full, is a reprint of the material as it appears in IEEE

Transactions on Audio, Speech and Language Processing 18(3). L. Barrington,

A.B. Chan and G.R.G Lanckriet, 2010. The dissertation author was the primary

investigator and author of this paper.

105

Algorithm 1 EM for a Mixture of Dynamic Textures

1: Input: N sequences {y(i)}Ni=1, number of components K.

2: Initialize Θ = {Θj , αj}Kj=1.

3: repeat

4: {Expectation Step}

5: for i = {1, . . . , N} and j = {1, . . . ,K} do

6: Compute the conditional expectations

x̂
(i)
t|j = Ex(i)|y(i),z(i)=j

[
x
(i)
t

]
,

P̂
(i)
t,t|j = Ex(i)|y(i),z(i)=j

[
x
(i)
t (x

(i)
t)T

]
,

P̂
(i)
t,t−1|j = Ex(i)|y(i),z(i)=j

[
x
(i)
t (x

(i)
t−1)T

]
,

by running Kalman smoothing filter with parameters Θj on sequence y(i).

7: Compute the posterior assignment probability

ẑi,j = p(z(i) = j|y(i))

=
αjp(y

(i)|z(i) = j)∑K
k=1 αkp(y

(i)|z(i) = k)
.

8: end for

9: {Maximization Step}

10: for j = 1 to K do

11: Compute aggregate expectations

N̂j =
∑
i ẑi,j , ξj =

∑
i ẑi,j x̂

(i)
1|j , Φj =

∑
i ẑi,j

∑τ
t=1 P̂

(i)
t,t|j ,

ϕj =
∑
i ẑi,j

∑τ
t=2 P̂

(i)
t,t|j , ηj =

∑
i ẑi,jP̂

(i)
1,1|j , φj =

∑
i ẑi,j

∑τ
t=2 P̂

(i)
t−1,t−1|j ,

Ψj =
∑
i ẑi,j

∑τ
t=2 P̂

(i)
t,t−1|j , Λj =

∑
i ẑi,j

∑τ
t=1(y

(i)
t − ȳj)(y

(i)
t − ȳj)T ,

Γj =
∑
i ẑi,j

∑τ
t=1(y

(i)
t − ȳj)(x̂

(i)
t|j)

T ,

γj =
∑
i ẑi,j

∑τ
t=1 y

(i)
t , βj =

∑
i ẑi,j

∑τ
t=1 x̂

(i)
t|j .

12: Compute new parameters {Θj , αj}

C∗j = Γj(Φj)
−1, A∗j = Ψj(φj)

−1, R∗j = 1
τN̂j

(
Λj − C∗j Γj

)
,

Q∗j = 1
(τ−1)N̂j

(
ϕj −A∗jΨT

j

)
, µ∗j = 1

N̂j
ξj , S∗j = 1

N̂j
ηj − µ∗j (µ∗j)T ,

ȳ∗j = 1
τN̂j

(γj − C∗j βj). α∗j =
N̂j

N ,

13: end for

14: until convergence

15: Output: {Θj , αj}Kj=1

106

song

audio
feature
vectors

(MFCC)

DTM
segm.

truth

constrained
segm.

refined
segm.

a)

b)

c)

d)

e)

f)

time (s)

Figure IV.3 DTM song segmentation. A song’s waveform (a) is represented as a

series of audio feature vectors that are collected into short, overlapping sequences

(b). These sequences of feature vectors are modeled as a dynamic texture mixture

and the song is segmented based on the dynamic texture mixture component to

which each sequence is assigned (c). Segments are constrained (d) and refined (e) to

produce a final segmentation which is evaluated with reference to a human labeled

ground-truth segmentation (f).

107

1
2
3
4

Reference segmentation

1
2
3
4

DTM Segmentation

1
2
3
4

Constrained DTM Segmentation

0 50 100 150 200

1
2
3
4

Constrained DTM Segmentation, re�ned boundaries

Figure IV.4 DTM segmentations and reference segmentation of the track “p053”

from the RWC dataset (Rand Index = 0.78, Pairwise F = 0.66). The addition of

the musical constraints removes short segments.

123456

Reference segmentation

123456

DTM segmentation

123456

Constrained DTM segmentation

0 50 100 150 200 250

123456

Constrained DTM segmentation, re�ned boundaries

Figure IV.5 DTM segmentations and reference segmentation of ‘Wonderwall’ by

Oasis. This is an example of an accurate segmentation where the DTM model

captures almost all the reference segments but incorrectly divides the verse (class

2) into 2 parts (these in fact correspond to singing / no singing).

108

123456

Reference segmentation

123456

DTM segmentation

123456

Constrained DTM segmentation

0 50 100 150 200 250

123456

Constrained DTM segmentation, re�ned boundaries

Figure IV.6 DTM segmentations and reference segmentation of ‘Drive’ by R.E.M.

This is an example of a poor segmentation where the DTM model under-segments

the “refrain” class (class 3) and the constraints incorrectly expand class 6.

123456

Reference segmentation

123456

DTM segmentation

123456

Constrained DTM segmentation

0 50 100 150 200

123456

Constrained DTM segmentation, re�ned boundaries

Figure IV.7 DTM segmentations and reference segmentation of ‘Lucy In The Sky

With Diamonds’ by The Beatles. The addition of the musical constraints allows

the DTM model to remove extra segment classes when there are more mixture

components than necessary.

109

2
4
6
8

Reference segmentation

2
4
6
8

DTM segmentation

2
4
6
8

Constrained DTM segmentation

0 50 100 150 200

2
4
6
8

Constrained DTM segmentation, re�ned boundaries

Figure IV.8 DTM segmentations and reference segmentation of ‘It’s Oh So Quiet’

by Björk from the PopMusic dataset (Rand Index = 0.82, Pairwise F = 0.55).

When there are more classes in the reference segmentation than there are DTM

components, the model successfully ignores the smallest classes.

0 50 100 150 200 250 300

acapella, piano + vocals

"mama! oo−ooh"

"carry on, carry on"

piano interlude

"let me go!" + guitar rock

operetta

world music
female vocal
calming
recorded in studio

electric blues
saxophone
bizarre
acoustic texture

soul
vocal harmonies
emotional
catchy

world music
ambient sounds
calming
acoustic texture

rock
strong vocals
exciting
high energy

dance pop
effect−altered vocals
arousing
very danceable

time (seconds)

Figure IV.9 DTM segmentation of the song “Bohemian Rhapsody” by Queen.

The automatically generated tags show the most likely genre, the most prevalent

instrument or vocal characteristic, the emotion evoked and a general description of

each segment class. Treating the song as a whole results in the general tags pop,

female vocal, pleasant and not very danceable. The y-axis labels are added by the

authors to highlight the musical or lyrical content of each segment class.

110

Arousing

Calming

Happy

Sad

 Punk

Blues

Electronica

Hip Hop

Pop

Rock

Figure IV.10 2-D visualization of the distribution of song segments. Each black

dot is a song segment. Areas of the space are automatically tagged based on the

system described in Section IV.G.1.

Chapter V

Conclusion

111

113

This thesis described machine learning and human crowdsourcing methods

that have combined to advance the growing field of computer audition by analyzing,

segmenting, describing, searching and recommending massive datasets of musical

content. As the methods described here mature and evolve, they point towards the

realization of machines that replicate a fundamentally human task and begin to

understand music.

Thanks for listening.

Bibliography

[1] “EchoNest,” http://the.echonest.com.

[2] S. Abdallah, M. Sandler, C. Rhodes, and M. Casey, “Using duration models
to reduce fragmentation in audio segmentation,” Machine Learning: Special
Issue on Machine Learning in and for Music, vol. 65, no. 2-3, p. 485515,
December 2006.

[3] G. T. Ajay Kapur, Manjinder Benning, “Query by beatboxing: Music infor-
mation retrieval for the dj,” ISMIR, 2004.

[4] V. Ambati, S. Vogel, and J. Carbonell, “Active learning and crowd-sourcing for
machine translation,” in 7th Conference on International Language Resources
and Evaluation (LREC), 2010.

[5] J.-J. Aucouturier, F. Pachet, and M. Sandler, “‘The Way It Sounds’: Timbre
models for analysis and retrieval of music signals,” IEEE Transactions on
Multimedia, vol. 7, no. 6, pp. 1028–1035, 2005.

[6] L. Barrington, A. B. Chan, and G. Lanckriet, “Dynamic texture models of
music,” in IEEE ICASSP, 2009, pp. 1589–1592.

[7] L. Barrington, A. Chan, D. Turnbull, and G. Lanckriet, “Audio information
retrieval using semantic similarity,” in ICASSP, 2007.

[8] L. Barrington, M. Yazdani, D. Turnbull, and G. Lanckriet, “Combining
feature kernels for semantic music retrieval,” in 9th International Conference
on Music Information Retrieval (ISMIR), 2008.

[9] L. Barrington, D. Turnbull, and G. Lanckriet, “Auto-tagging music content
with semantic multinomials,” http://www.music-ir.org/mirex/2008/abs/AT
barrington.pdf, October 2008.

[10] M. Bartsch and G. Wakefield, “To catch a chorus: Using chroma-based
representations for audio thumbnailing,” in IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, 2001, pp. 15–19.

114

115

[11] D. Bauer, “Comparing the CCA subspace method to pseudo maximum
likelihood methods in the case of no exogenous inputs,” Journal of Time
Series Analysis, vol. 26, pp. 631–68, 2005.

[12] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman, “A large-scale evaluta-
tion of acoustic and subjective music-similarity measures,” Computer Music
Journal, vol. 28, no. 2, pp. 63–76, 2004.

[13] J. Berg, R. Forsythe, F. Nelson, and T. Rietza, “Results from a dozen years
of election futures markets research,” Handbook of Experimental Economics
Results, vol. 1, pp. 742–751, 2008.

[14] D. M. Blei and M. I. Jordan, “Modeling annotated data,” 26th International
Conference on Research and Development in Information Retrieval (ACM
SIGIR), 2003.

[15] A. Brew, D. Greene, and P. Cunningham, “Using crowdsourcing and active
learning to track sentiment in online media,” in 6th Conference on Prestigious
Applications of Intelligent Systems (PAIS), Lisbon, Portugal, 2010.

[16] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search
engine,” Computer Networks, vol. 30, no. 1-7, pp. 107–117, 1998.

[17] C. R. Buchanan, “Semantic-based audio recognition and retrieval,” Master’s
thesis, School of Informatics, University of Edinburgh, 2005.

[18] P. Cano and M. Koppenberger, “Automatic sound annotation,” in IEEE
workshop on Machine Learning for Signal Processing, 2004.

[19] G. Carneiro and N. Vasconcelos, “Formulating semantic image annotation as
a supervised learning problem,” IEEE CVPR, 2005.

[20] W. Chai and B. Vercoe, “Music thumbnailing via structural analysis,” in
Proceedings of the 11th ACM international conference on Multimedia, 2003,
pp. 223–226.

[21] A. B. Chan and N. Vasconcelos, “Probabilistic kernels for the classification of
auto-regressive visual processes,” in IEEE CVPR, vol. 1, 2005, pp. 846–851.

[22] ——, “Modeling, clustering, and segmenting video with mixtures of dynamic
textures,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30,
no. 5, pp. 909–926, May 2008.

[23] ——, “Layered dynamic textures,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 31, no. 10, pp. 1862–1879, 2009.

[24] ——, “Variational layered dynamic textures,” in IEEE Conf. on Computer
Vision and Pattern Recognition, 2009.

116

[25] D. Cohn, Z. Ghahramani, and M. Jordan, “Active learning with statistical
models,” Journal of Artificial Intelligence Results, vol. 4, no. 1, pp. 129–145,
1996.

[26] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-
Fay, D. Baker, Z. Popovic, and Foldit Players, “Predicting protein structures
with a multiplayer online game,” Nature, vol. 466, pp. 756–760, 2010.

[27] T. Cover and J. Thomas, Elements of Information Theory. Wiley-Interscience,
1991.

[28] E. Coviello, L. Barrington, G. Lanckriet, and A. Chan, “Automatic music
tagging with time series models,” in Eleventh International Symposium for
Music Information Retrieval (ISMIR), 2010.

[29] V. Dani, O. Madani, D. Pennock, and S. Sanghai, “An empirical comparison
of algorithms for aggregating expert predictions,” in 22nd Conference on
Uncertainty in Artificial Intelligence (UAI), 2006.

[30] R. B. Dannenberg and N. Hu, “Understanding search performance in query-
by-humming systems,” ISMIR, 2004.

[31] S. Dasgupta and L. Schulman, “A probabilistic analysis of em for mixtures
of separated, spherical Gaussians,” Journal of Machine Learning Research,
vol. 8, pp. 203–226, 2007.

[32] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from
incomplete data via the EM algorithm,” Journal of the Royal Statistical
Society B, vol. 39, pp. 1–38, 1977.

[33] S. Dixon, “Mirex 2006 audio beat tracking evaluation: Beatroot,” ISMIR,
2006. [Online]. Available: http://www.ofai.at/∼simon.dixon/beatroot

[34] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,” Intl.
J. Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

[35] G. Doretto, D. Cremers, P. Favaro, and S. Soatto, “Dynamic texture segmen-
tation,” in IEEE ICCV, vol. 2, 2003, pp. 1236–1242.

[36] J. S. Downie, “Music information retrieval evaluation exchange (mirex),”
http://www.music-ir.org/mirex2006.

[37] ——, “Audio tag classification,” Music Information Retrieval Evalua-
tion eXchange (MIREX) http://music-ir.org/mirex/wiki/2008:Audio Tag
Classification Results, 2008.

[38] D. Eck, P. Lamere, T. Bertin-Mahieux, and S. Green, “Automatic generation
of social tags for music recommendation,” in 21st Conference on Neural
Information Processing Systems (NIPS), 2007.

117

[39] G. Eisenberg, J.-M. Batke, and T. Sikora, “Beatbank - an mpeg-7 compliant
query by tapping system,” Audio Engineering Society Convention, 2004.

[40] D. Ellis and G. Poliner, “Identifying cover songs with chroma features and
dynamic programming beat tracking.” IEEE ICASSP, 2007.

[41] S. Essid, G. Richard, and B. David, “Inferring efficient hierarchical taxonomies
for music information retrieval tasks: Application to music instruments.”
ISMIR, 2005.

[42] S. L. Feng, R. Manmatha, and V. Lavrenko, “Multiple bernoulli relevance
models for image and video annotation,” IEEE CVPR, 2004.

[43] J. Foote, “Visualizing music and audio using self-similarity,” in International
Multimedia Conference, 1999, pp. 77 – 80.

[44] D. Forsyth and M. Fleck, “Body plans,” IEEE CVPR, 1997.

[45] M. free MP3 music and music licensing, “Magnatune,”
http://www.magnatune.com.

[46] Z. Ghahramani and G. E. Hinton, “Variational learning for switching state-
space models,” Neural Computation, vol. 12, no. 4, pp. 831–864, 2000.

[47] M. Goto, “Development of the RWC music database,” in International
Congress on Acoustics, April 2004, pp. 553–556.

[48] ——, “AIST annotation for RWC music database,” in Proceedings of the 7th
International Conference on Music Information Retrieval (ISMIR), October
2006, pp. 359–360.

[49] ——, “A chorus selection detection method for musical audio singals and its
application to a music listening station,” IEEE TASLP, vol. 14-5, 2006.

[50] M. Goto and K. Hirata, “Recent studies on music information processing,”
Acoustical Science and Technology, vol. 25, no. 4, pp. 419–425, 2004.

[51] J. Gould and C. Lewis, “Designing for usability: key principles and what
designers think,” Communications of ACM, vol. 28, no. 3, pp. 300–311, 1985.

[52] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle, and
P. Cano, “An experimental comparison of audio tempo induction algorithms,”
IEEE Transactions on Speech and Audio Processing, no. 5, pp. 1832–1844,
2006.

[53] M. Hoffman, D. Blei, and P. Cook, “Easy as CBA: A simple probabilis-
tic model for tagging music,” in 10th International Conference on Music
Information Retrieval (ISMIR), 2009.

118

[54] J. Hsu, C. Liu, , and L. Chen, “Discovering nontrivial repeating patterns
in music data,” IEEE Trans. on Multimedia, vol. 3, no. 3, pp. 311–325,
September 2001.

[55] X. Hu, J. S. Downie, and A. F. Ehmann, “Exploiting recommended usage
metadata: Exploratory analyses,” ISMIR, 2006.

[56] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification,
vol. 2, pp. 193–218, 1985.

[57] International Game Developers Association, “Casual games white paper,”
2008. [Online]. Available: http://www.igda.org/casual/IGDA Casual Games
White Paper 2008.pdf

[58] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory.
Prentice-Hall, 1993.

[59] Y. Kim, E. Schmidt, and L. Emelle, “Moodswings: A collaborative game
for music mood label collection,” in 9th International Conference on Music
Information Retrieval (ISMIR), 2008.

[60] P. Knees, T. Pohle, M. Schedl, D. Schnitzer, and K. Seyerlehner, “A document-
centered approach to a natural language music search engine,” in 30th Euro-
pean Conference on Information Retrieval (ECIR), 2008.

[61] P. Knees, T. Pohle, M. Schedl, and G. Widmer, “A music search engine built
upon audio-based and web-based similarity measures,” in 30th International
Conference on Research and Development in Information Retrieval (ACM
SIGIR), 2007.

[62] W. E. Larimore, “Canonical variate analysis in identification, filtering, and
adaptive control,” in IEEE Conf. on Decision and Control, vol. 2, 1990, pp.
596–604.

[63] E. Law and L. von Ahn, “Input-agreement: A new mechanism for collecting
data using human computation games,” in 27th International Conference on
Human Factors in Computing Systems (ACM CHI), 2009.

[64] E. Law, K. West, M. Mandel, M. Bay, and S. Downie, “Evaluation of al-
gorithms using games: The case of music tagging,” in 10th International
Conference on Music Information Retrieval (ISMIR), 2009.

[65] M. Levy and M. Sandler, “Structural segmentation of musical audio by
constrained clustering,” IEEE Trans. on Acoustics, Speech and Language
Processing, vol. 16, no. 2, pp. 318–326, February 2008.

[66] M. Levy, M. Sandler, and M. Casey, “Extraction of high-level musical structure
from audio data and its application to thumbnail generation,” in IEEE
ICASSP, 2006.

119

[67] D. Lewis and J. Catlett, “Heterogeneous Uncertainty Sampling for Supervised
Learning,” in 11th International Conference on Machine Learning, 1994, pp.
148–156.

[68] T. Li and G. Tzanetakis, “Factors in automatic musical genre classification
of audio signals,” IEEE WASPAA, 2003.

[69] B. Logan, “Mel frequency cepstral coefficients for music modeling,” in 1st
International Conference on Music Information Retrieval (ISMIR), 2000.

[70] B. Logan and S. Chu, “Music summarization using key phrases,” in IEEE
ICASSP, 2000, pp. 749–752.

[71] A. Makadia, V. Pavlovic, and S. Kumar, “A new baseline for image annota-
tion,” in 10th European Conference on Computer Vision (ECCV), 2008.

[72] M. Mandel and D. Ellis, “Multiple-instance learning for music information
retrieval,” in 9th International Conference on Music Information Retrieval
(ISMIR), 2008.

[73] ——, “A web-based game for collecting music metadata,” Journal of New
Music Research, vol. 37, no. 2, pp. 151–165, June 2008.

[74] B. McFee and G. Lanckriet, “Heterogeneous embedding for subjective artist
similarity,” in Tenth International Symposium for Music Information Retrieval
(ISMIR2009)), October 2009.

[75] I. McGraw, A. Gruenstein, and A. Sutherland, “A self-labeling speech cor-
pus: Collecting spoken words with an online educational game,” in INTER-
SPEECH, 2009.

[76] M. McKinney and J. Breebaart, “Features for audio and music classification,”
in ISMIR, 2003.

[77] S. Ness, A. Theocharis, G. Tzanetakis, and L. Martins, “Improving automatic
music tag annotation using stacked generalization of probabilistic SVM
outputs,” in 17th ACM International Conference on Multimedia (ACM MM),
2009.

[78] S. Novotney and C. Callison-Burch, “Cheap, fast and good enough: Automatic
speech recognition with non-expert transcription,” in Human Language Tech-
nologies: 11th Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL HLT), 2010.

[79] S. Nowak and S. Rüger, “How reliable are annotations via crowdsourcing:
a study about inter-annotator agreement for multi-label image annotation,”
in 11th ACM International Conference on Multimedia Information Retrieval
(ACM MIR), 2010.

120

[80] B. Ong, E. Gómez, and S. Streich, “Automatic extraction of musical struc-
ture using pitch class distribution features,” in Workshop on Learning the
Semantics of Audio Signals, 2006.

[81] B. Ong and P. Herrera, “Semantic segmentation of music audio contents,” in
ISMIR, 2005.

[82] P. V. Overschee and B. D. Moor, “N4SID: Subspace algorithms for the
identification of combined deterministic-stochastic systems,” Automatica,
vol. 30, pp. 75–93, 1994.

[83] F. Pachet and D. Cazaly, “A taxonomy of musical genres,” RIAO, 2000.

[84] E. Pampalk, A. Flexer, and G. Widmer, “Improvements of audio-based music
similarity and genre classification,” in 6th International Conference on Music
Information Retrieval (ISMIR), 2005.

[85] E. Pampalk, “Computational models of music similarity and their application
to music information retrieval,” Ph.D. dissertation, Vienna University of
Technology, 2006.

[86] A. Patel, J. Iversen, M. Bregman, and I. Schulz, “Experimental evidence for
synchronization to a musical beat in a nonhuman animal,” Current Biology,
vol. 19, no. 10, pp. 827–830, 2009.

[87] J. Paulus and A. Klapuri, “Music structure analysis using a probabilistic
fitness measure and an integrated musicological model,” in ISMIR, 2008.

[88] G. Peeters, A. Burthe, and X. Rodet, “Toward automatic music audio sum-
mary generation from signal analysis,” in Proceedings of the 3rd Conference
on Music Information Retrieval (ISMIR), 2002, pp. 94–100.

[89] L. Rabiner and B. H. Juang, Fundamentals of Speech Recognition. Prentice
Hall, 1993.

[90] V. C. Raykar, S. Yu, L. Zhao, G. Valadez, C. Florin, L. Bogoni, and L. Moy,
“Learning from crowds,” Journal of Machine Learning Research, vol. 11, pp.
1297–1322, April 2010.

[91] J. Reed and C. Lee, “A study on music genre classification based on universal
acoustic models,” in 7th International Conference on Music Information
Retrieval (ISMIR), 2006.

[92] P. Rentfrow and S. Gosling, “Message in a ballad: The role of music prefer-
ences in interpersonal perception,” Psychological Science, vol. 17, no. 3, pp.
236–242, 2006.

[93] D. Reynolds, T. Quatieri, and R. Dunn, “Speaker verification using adapted
gaussian mixture models,” Digital Signal Processing, vol. 10, pp. 19–41, 2000.

121

[94] S. Roweis and L. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[95] B. Russell, A. Torralba, K. Murphy, and W. Freeman, “LabelMe: a database
and web-based tool for image annotation,” International Journal of Computer
Vision, vol. 77, no. 3, pp. 157–173, 2008.

[96] J. Russell, “Core affect and the psychological construction of emotion,” Psy-
chological Review, vol. 110, no. 1, pp. 145–172, 2003.

[97] P. Saisan, G. Doretto, Y. Wu, and S. Soatto, “Dynamic texture recognition,”
in IEEE CVPR, vol. 2, 2001, pp. 58–63.

[98] S.Cherry, “Bet on it,” Spectrum, IEEE, vol. 44, no. 9, pp. 48–53, 2007.

[99] B. Settles, “Active learning literature survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2010.

[100] R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing
and forecasting using the EM algorithm,” Journal of Time Series Analysis,
vol. 3, no. 4, pp. 253–264, 1982.

[101] M. Slaney, “Mixtures of probability experts for audio retrieval and indexing,”
IEEE Multimedia and Expo, 2002.

[102] ——, “Semantic-audio retrieval,” 27th International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2002.

[103] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng, “Cheap and fast—but is it
good? Evaluating non-expert annotations for natural language tasks,” in 13th
Conference on Empirical Methods in Natural Language Processing (EMNLP),
2008.

[104] A. Sorokin and D. Forsyth, “Utility data annotation with Amazon Mechanical
Turk,” in Computer Vision and Pattern Recognition Workshops (CVPRW),
2008.

[105] J. Surowiecki, The Wisdom of Crowds. Anchor, 2004.

[106] D. Tingle, Y. Kim, and D. Turnbull, “Exploring automatic music annotation
with “acoustically-objective” tags,” in IEEE International Conference on
Multimedia Information Retrieval (MIR), 2010.

[107] D. Torres, D. Turnbull, L. Barrington, and G. Lanckriet, “Identifying words
that are musically meaningful,” in ISMIR, 2007.

[108] T. Tullis and B. Albert, Measuring the User Experience: Collecting, Analyzing
and Presenting Usability Metrics. Morgan Kaufmann, 2008.

122

[109] D. Turnbull, L. Barrington, and G. Lanckriet, “Modelling music and words
using a multi-class näıve bayes approach,” in ISMIR, 2006.

[110] ——, “Five approaches to collecting tags for music,” in ISMIR, 2008.

[111] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic annotation
and retrieval of music and sound effects,” IEEE Trans. on Acoustics, Speech
and Language Processing, vol. 16, no. 2, pp. 467–476, February 2008.

[112] D. Turnbull, G. Lanckriet, E. Pampalk, and M. Goto, “A supervised approach
for detecting boundaries in music using difference features and boosting,” in
Proceedings of the 8th Conference on Music Information Retrieval (ISMIR),
2007.

[113] D. Turnbull, R. Liu, L. Barrington, D. Torres, and G. Lanckriet, “Using
games to collect semantic information about music,” in Proceedings of the
International Symposium on Music Information Retrieval, 2007.

[114] G. Tzanetakis and P. R. Cook, “Musical genre classification of audio signals,”
IEEE Transactions on Speech and Audio Processing, vol. 10, no. 5, pp. 293–
302, 7 2002.

[115] N. Vasconcelos, “Image indexing with mixture hierarchies,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2001.

[116] S. Vijayanarasimhan and K. Grauman, “Cost-sensitive active visual category
learning,” International Journal of Computer Vision, vol. 91, pp. 24–44, 2011.

[117] P. Viola and M. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, pp. 137–154, 2004.

[118] T. Volkmer, J. Smit, and A. Natsev, “A web-based system for collaborative
annotation of large image and video collections: an evaluation and user study,”
in 13th ACM International Conference on Multimedia (ACM MM), 2005.

[119] L. von Ahn, “Games with a purpose,” IEEE Computer Magazine, vol. 39,
no. 6, pp. 92–94, 2006.

[120] L. von Ahn and L. Dabbish, “Labeling images with a computer game,” in
22nd International Conference on Human Factors in Computing Systems
(ACM CHI), 2004.

[121] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum,
“reCAPTCHA: Human-Based Character Recognition via Web Security
Measures,” Science, vol. 321, no. 5895, pp. 1465–1468, 2008. [Online].
Available: http://www.sciencemag.org/cgi/content/abstract/321/5895/1465

[122] P. Welinder, S. Branson, S. Belongie, and P. Perona, “The multidimensional
wisdom of crowds,” in Neural Information Processing Systems (NIPS), 2010.

123

[123] J. Whitehill, P. Ruvolo, J. Bergsma, T. Wu, and J. Movellan, “Whose vote
should count more: Optimal integration of labels from labelers of unknown
expertise,” in 23rd Conference on Neural Information Processing Systems
(NIPS), 2009.

[124] B. Whitman, “Learning the meaning of music,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2005.

[125] B. Whitman and D. Ellis, “Automatic record reviews.” in 5th International
Conference on Music Information Retrieval (ISMIR), 2004.

[126] B. Whitman and R. Rifkin, “Musical query-bydescription as a multi-
class learning problem,” in IEEE Multimedia Signal Processing Conference
(MMSP), December 2002.

